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ABSTRACT

To make autonomous robots “taskable” so that they function properly and interact fluently with

human partners, they must be able to perceive and understand the semantic aspects of their environ-

ments. More specifically, they must know what objects exist and where they are in the unstructured

human world. Progresses in robot perception, especially in deep learning, have greatly improved

for detecting and localizing objects. However, it still remains a challenge for robots to perform

a highly reliable scene estimation in unstructured environments that is determined by robustness,

adaptability and scale. In this dissertation, we address the scene estimation problem under uncer-

tainty, especially in unstructured environments. We enable robots to build a reliable object-oriented

representation that describes objects present in the environment, as well as inter-object spatial re-

lations. Specifically, we focus on addressing following challenges for reliable scene estimation:

1) robust perception under uncertainty results from noisy sensors, objects in clutter and perceptual

aliasing, 2) adaptable perception in adverse conditions by combined deep learning and probabilis-

tic generative methods, 3) scalable perception as the number of objects grows and the structure of

objects becomes more complex (e.g. objects in dense clutter).

Towards realizing robust perception, our objective is to ground raw sensor observations into

scene states while dealing with uncertainty from sensor measurements and actuator control . Scene

states are represented as scene graphs, where scene graphs denote parameterized axiomatic state-

ments that assert relationships between objects and their poses. To deal with the uncertainty, we

present a pure generative approach, Axiomatic Scene Estimation (AxScEs). AxScEs estimates a

probabilistic distribution across plausible scene graph hypotheses describing the configuration of

objects. By maintaining a diverse set of possible states, the proposed approach demonstrates the

ix



robustness to the local minimum in the scene graph state space and effectiveness for manipulation-

quality perception based on edit distance on scene graphs.

To scale up to more unstructured scenarios and be adaptable to adversarial scenarios, we

present Sequential Scene Understanding and Manipulation (SUM), which estimates the scene as

a collection of objects in cluttered environments. SUM is a two-stage method that leverages the

accuracy and efficiency from convolutional neural networks (CNNs) with probabilistic inference

methods. Despite the strength from CNNs, they are opaque in understanding how the decisions

are made and fragile for generalizing beyond overfit training samples in adverse conditions (e.g.,

changes in illumination). The probabilistic generative method complements these weaknesses and

provides an avenue for adaptable perception.

To scale up to densely cluttered environments where objects are physically touching with se-

vere occlusions, we present GeoFusion , which fuses noisy observations from multiple frames by

exploring geometric consistency at the object level. Geometric consistency characterizes geomet-

ric compatibility between objects and geometric similarity between observations and objects. It

reasons about geometry at the object-level, offering a fast and reliable way to be robust to semantic

perceptual aliasing. The proposed approach demonstrates greater robustness and accuracy than the

state-of-the-art pose estimation approach.

x



CHAPTER 1

Introduction

1.1 Aims and Motivation

With the recent advances in AI and robotics research, the realization of general-purpose robots

that can perform useful tasks in the human environment is within reach. Unlike traditional in-

dustrial robots that perform pre-programmed actions in a confined workspace, general purpose

robots are expected to autonomously and intelligently complete a variety of tasks that are helpful

to humans across a diversity of user preferences and environments, including household chores,

entertainment, medical domains, education, and emergency response. In these environments, they

are expected to be “taskable” so that they function properly, meet human expectations, and interact

fluently with human partners.

Ideally, human users can specify their intent as a goal state (i.e., the desired configuration of

the world) without being required to specify how this goal should be achieved (either as motions

and actions). Such human-expressed goals could then be translated into symbols that interpret

as computationally assertable axioms. The symbolic description of the goal could be used by

well-developed goal-directed symbolic planners [30, 55] in the planning stage of the well-known

sense-plan-act cycle. Upon receiving the symbolic requests, robots should be able to perceive the

world, reason over actions towards a satisfying goal, and carry out these actions in terms of physi-

cal motion. More importantly, lots of tasks like preparing meals, doing laundry, or setting up tables

require robots to physically interact with objects in the environments. Examples of common ma-

1



(a) (b) (c)

Figure 1.1: Common household manipulation tasks. (a) The robot from Technical University of

Munich is preparing meals [8], (b) The robot from University of Tokyo is doing laundry, (c) The

robot from Toyota Research Institute is making coffee [7].

nipulation tasks are shown in Figure 1.1 Robots need to perform manipulation actions with objects

to satisfy task requirements. This level of autonomy is defined as goal-directed manipulation.

For extended goal-directed autonomy, we specifically face the problem of anchoring [20], a

case of symbol grounding [37], to associate physical objects in the real world and relationships

between these objects with computationally assertable axioms, from the robot’s perception of the

world. Anchoring and symbol grounding are at the heart the emerging area of semantic mapping

[52] and its accelerated growth due to advancements in 3D RGBD mapping [92, 41]. Given raw

sensor observations, taskable robots must know what objects exist and where they are. They should

be able to build an object-oriented symbolic representation that describes objects present in the

environment, as well as inter-object spatial relations. This representation provides a natural and

efficient way for robots to reason and plan at the task level and communicate with human users

naturally. In this dissertation, our objective is to enable robots to perceive their surroundings and

build an object-oriented representation, including object classes, poses, and spatial inter-object

relations for goal-directed manipulation.

1.2 Challenges

Great progress has been made in the field of scene perception, especially in perception for robotic

manipulation with the renaissance of deep learning. Convolutional Neural Networks (CNNs), a

2
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(a) (b) (c)

Figure 1.2: Examples of mobile manipulation robots. (a) Brown PR2 robot [103] (b) Michigan

Progress Fetch Robot [104] (c) Kejia robot from University of Science and Technology of China

[14]. They are equipped with low-cost cameras like Microsoft Kinect [121] or Asus Xtion, which

have limited field-of-view and produce noisy RGB and depth data. Unlike the industrial arms, their

manipulators also introduce imprecisions in actuator controls.

prevalent class of neural networks for visual data, have achieved promising accuracy and real-time

inference speed for object detection [86, 60, 40], 6D object pose estimation [116, 109, 111], and

spatial relations estimation in 2D images [57, 118, 122]. It is worth noting that these successes

depend on well-designed models and adequate training resources. The robustness and general-

ization ability of CNNs depends largely on the training data, which represents a certain range of

conditions that the robot may face.

However, the real world that robots attempt to perceive is dominated by uncertainty. Uncer-

tainty comes at three levels: 1) low-cost hardwares on robots, 2) noisy or erroneous measurements

from imperfect algorithms, and 3) complex and dynamic nature of the real unstructured environ-

ments. Uncertainty from low-cost hardwares arises as a result of both the observations from the

noisy sensors and the performance of the motors that control the robot. Examples of mobile ma-

nipulation robots are shown in Figure 1.2. They are equipped with low-cost cameras like Microsoft

Kinect [121] or Asus Xtion, which have limited field-of-view and produce partial and noisy RGB

and depth observations. Unlike the industrial arms, their manipulators introduce imprecisions in

actuator controls.
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Uncertainty also comes from imperfect algorithms. CNN-based object detection and pose esti-

mation methods often produce noisy or even false output due to the effects of overfitting during the

training process and the biases and insufficient diversity in the training dataset. The performance

of such discriminative systems deteriorates in unforeseen environmental conditions (which makes

them especially vulnerable in adverse conditions). These errors (both benign and malicious) are

another major source of uncertainty, semantic perceptual aliasing, as such CNNs serve as building

blocks in scene perception for robotic manipulation.

Uncertainty from on-board sensors and algorithms increases in unstructured environments. The

complex and dynamic nature of the environments (e.g., objects in clutter or varying illumination)

limits the observability of the on-board sensors and adaptability of the CNNs recognition systems.

Occlusions and physical contact between objects in clutter make Kinect produce data with greater

depth discontinuities and straight edges appear as zig-zag lines. Distorted objects and/or objects

captured under poor lighting conditions could be enough to defeat the recognition abilities of a

CNN [27].

Under such perception uncertainty, our goal is to enable autonomous robots to perform robust

goal-directed manipulation, which requires reliable scene perception. Specifically, robots should

be able to build a reliable object-oriented representation that describes objects present in the envi-

ronment, as well as inter-object spatial relations. Towards making a reliable scene perception, we

must first answer: What are the key factors that restrict the reliability of scene perception methods

for robotic goal-directed manipulation?

The first factor is robustness. Scene perception methods should be able to provide robustness to

uncertainty. However, a majority of the CNNs recognition systems [86, 116, 57] are discriminative

methods, which perceive exact single estimates of scene state. The single estimate is fragile to

uncertainty, especially in the manipulation tasks with a long horizon plan. Once the estimate

is erroneous, it can lead to potentially disastrous outcomes, and the robot is difficult to recover

from the failure as the single estimate does not preserve any other possibilities. Generative models

provide a means to address uncertainty probabilistically. Possible world states can be hypothesized
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to explain possibilities for the true world state that could have generated the robot?s observations.

These generated hypotheses form an approximate probability distribution (or belief) over possible

states of the world. The probabilistic generative approaches [23, 31, 107] have shown great success

in the traditional robotics state estimation problem such as localization and mapping. The sample

principle can be applied to perform reliable scene perception under uncertainty for goal-directed

manipulation.

The second factor is adaptability. Due to the complex and dynamic nature of the unstructured

environments, robots are subject to unforeseen conditions, which are not present in the training

data. Discriminative CNNs recognition systems are not adaptable to such conditions, especially to

adversarial scenarios due to the effects of overfitting to the training data. Generative approaches

are inherently resilient to these conditions through the process of generating, evaluating, and main-

taining a distribution of many hypotheses representing possible decisions. However, adaptability

comes at the cost of computational efficiency. Discriminative-generative algorithms [97, 95, 72]

offer a promising avenue for adaptable perception in unforeseen and adverse conditions. Such

methods combine inference by deep learning (or other discriminative techniques) with sampling

and probabilistic inference models. The weaknesses of one can be addressed by the strengths of

the other.

The last factor is the scale. Lots of scene perception algorithms can work near perfectly in

structured environments with objects separately placed on the table. But they don’t work well

in scenarios where objects are in dense clutter as the problem becomes rapidly difficult when

dealing with severe occlusions, physical contact, and semantic perceptual aliasing. One promising

approach [94, 65, 119] for building object-level representation of objects in dense clutter is to fuse

semantic measurements from different viewpoints. Robots can take advantage of their ability to

move around the environment and provide continuous observations. This approach is particularly

advantageous of objects in dense clutter as it performs inference directly on object instances instead

of low-level primitives, which offers faster inference, more compact map representation, and the

potential for dynamic object reasoning.

5



The major challenge of enabling autonomous robots perform reliable scene perception is to

break the limitation that is determined by robustness, adaptability and scale. In this dissertation,

we describe several methods that expand the reliability of scene perception for goal-directed ma-

nipulation.

1.3 Thesis Contributions

In this dissertation, we address the scene estimation problem under uncertainty, especially in un-

structured environments. We enable robots to build an object-oriented representation that describes

objects present in the environment, as well as inter-object spatial relations. The object-oriented

representation is expressed as scene graphs, where scene graphs denote parameterized axiomatic

statements that assert relationships between objects and their poses and geometry. Given the arbi-

trary initial scene, the robot is able to ground the raw sensor observations to scene graphs, generate

a sequence of actions by symbolic planners and execute the motions to complete the task. We

require the scene graph estimation to be reliable under uncertainty with respect to robustness,

adaptability, and scale.

In particular, this dissertation makes following contributions:

1. AxScEs: Axiomatic Scene Estimation for Goal-directed Manipulation We propose pure

generative approaches [102, 103] to estimate the approximate distribution of the tree-structured

scene graph describing the configuration of objects observed from robot sensing under sen-

sor and actuation uncertainty. Our generative approaches iteratively hypothesizes possible

scene configurations (as lists of axioms) and evaluates these hypotheses against the robot’s

observations. The result of this inference is an approximate posterior probability distribution

over possible scenes, where the scene with maximum likelihood is taken as the estimate of

the scene configuration. Though probabilistic in nature, a principal motivation for provid-

ing estimates represented in axiomatic form is the “closing the loop” between goal-directed

symbolic planners [30, 55] and modern robotics. Such planners reason over manipulation
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actions for the robot to execute from the estimate towards realizing a given goal scene, also

expressed axiomatically. Planned sequences of actions are then executed by motion con-

trol/planning systems for pick-and-place manipulation [17] or general manipulation affor-

dances [38]. By maintaining a diverse set of possible states, the proposed approach demon-

strates the robustness to the local minimum in the axiomatic state space and effectiveness for

manipulation-quality perception based on edit distance on scene graphs.

2. SUM: Sequential Scene Understanding and Manipulation However, AxScEs assumes

known object identifications and works in moderately structured environments. To scale up

to more unstructured scenarios and be adaptable to unforeseen and adverse conditions, we

propose a combined discriminative-generative approach [104], which estimates the scene as

a collection of objects in cluttered environments. SUM is a two-stage method that leverages

the accuracy and efficiency from convolutional neural networks (CNNs) with generative

probabilistic inference methods to deal with scene complexity and uncertainty. The approach

utilizes candidates from the discriminative object detector to guide the generative process of

sampling scene hypothesis, and each scene hypothesis is evaluated against observations. We

demonstrate the effectiveness and robustness of SUM with respect to both perception and

manipulation errors in a cluttered tabletop scenario for an object sorting task with a Fetch

mobile manipulator. Moreover, we show that the proposed two-stage method is also adaptive

to example adversarial scenarios.

3. GeoFusion: Geometric Consistency informed Scene Estimation in Dense Clutter SUM

ignores physical interactions between objects by assuming objects are independent with each

other. To reason about physical interactions between objects, especially in densely cluttered

environments, we explore geometric consistency, which characterizes geometric compatibil-

ity between objects and geometric similarity between observations and objects. We present a

geometric consistency informed scene estimation method [101] by fusing observations from

multiple frames in dense clutter (GeoFusion). The geometric consistency in GeoFusion
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reasons about geometry at the object-level, offering a fast and reliable way to be robust to

semantic perceptual aliasing. The proposed approach demonstrates greater robustness and

accuracy than the state-of-the-art pose estimation approach.

1.4 Dissertation Outlines

The remainder of this dissertation is organized into five chapters as follows.

Chapter 2 (Background) will survey work related to symbol grounding for robotics, perception

for manipulation, scene estimation, and semantic mapping.

Chapter 3 (Axiomatic Scene Estimation) presents our generative approaches for scene infer-

ence and the evaluation of scene graphs and robot manipulation demonstrations.

Chapter 4 (Sequential Scene Understanding and Manipulation) describes the combined discriminative-

generative approach for sequential scene estimation and manipulation and provides the scene esti-

mation and sequential manipulation tasks evaluation.

Chapter 5 (Geometric Consistency informed Scene Estimation in Dense Clutter) describes the

SLAM-based scene estimation method for building a semantic map at object-level from continuous

noisy semantic measurements.

Chapter 6 (Conclusion) concludes the dissertation with a summary and talks about open prob-

lems and future directions.
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CHAPTER 2

Background

The aim of this dissertation is for robots to perform robust scene estimation in unstructured envi-

ronments for goal-directed manipulation. This objective is related to and/or motivated by previous

work in several areas, including symbol grounding, robotic perception for manipulation, scene

estimation, and semantic mapping. By surveying the related work, it places our work within per-

ception for manipulation and semantic mapping.

2.1 Symbol Grounding for Robotics

2.1.1 Shared Autonomy for Manipulation

In order for autonomous robots to interact fluidly with human partners, a robot must be able to

interpret scenes in the context of a human user’s model of the world. The challenge is that many

aspects of the human’s world model are difficult or impossible for the robot to sense directly. We

posit the critical missing component is the grounding of symbols that conceptually tie together low-

level perception and high-level reasoning for extended goal-directed autonomy. We specifically

face the problem of anchoring [20], a case of symbol grounding [37], to associate physical objects

in the real world and relationships between these objects with computationally assertable facts (or

axioms), from the robot’s perception of the world. Anchoring and symbol grounding are at the

heart the emerging area of semantic mapping [52] and its accelerated growth due to advancements

in 3D RGBD mapping [92, 41]. With a working memory of grounded axioms about the world,
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robot manipulators will be able to flexibly and autonomously perform goal-directed tasks that

require reasoning over sequential actions. Just as important, human users will be able to more

intuitively specify goals for robots, as desired states of the world, through spatial configurations.

In the greater context of shared autonomy, goal-directed manipulation offers the opportunity to

extend the boundaries of the “neglect curve” [33]. The neglect curve is a conceptual expression of

robot effectiveness with respect to delegation (or user neglect), codifying tradeoffs between the ex-

tremes of full autonomy and manual teleoperation. While teleoperation can often yield high-levels

of robot effectiveness, the performance of such systems relies heavily upon the training, apti-

tude, and stamina of a human operator. Conversely, systems for autonomous robots place much

less burden on a human operator but are often limited to generalized trajectories over controls

[3, 11, 84, 42], reactive policies [35, 22, 15, 78, 47, 110], or goals as combinations of hardcoded

features [77, 1, 6, 49, 98]. As evidenced during the recent DARPA Robotics Challenge [117],

shared autonomy is especially onerous and error prone for control of humanoids and mobile ma-

nipulators due to the complexity of goal-directed control. Similar to the pointing work by Kemp

et al. [48], our long-term conjecture is that shared autonomy through the expression of goals will

greatly reduce the complexity for human operation of robots, improving robot effectiveness during

periods of delegation.

2.1.2 Goal-directed Manipulation

Our aim is to estimate axiomatic state representations that will allow robotics to build on the

body of work in sequential planning algorithms, which have over a five-decade history. Described

in early work, such as STRIPS [30] and SHRDLU [113], classical planning algorithms adapted

theorem-provers to “prove” conclusions about goals based on symbolic axioms that describe the

world through assertable logical statements. A classical planner can compute actions for a physical

robot to perform arbitrary sequential tasks assuming full perception of the environment, which is

often an untenable assumption in general.

However, in structured perceivable environments, systems based on classical planning have
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demonstrated the ability to reliably perform goal-directed manipulation. Recent work by Mohan

et al. [70] uses the Soar cognitive architecture for teaching a robot arm to play games such as tic-

tac-toe, Connect-4, and Towers of Hanoi through language-based expressions. Similar in spirit to

our AxScEs estimators, Soar uses an axiomatic scene graph representation [114]. We posit AxScEs

estimates could also be used within broader cognitive architectures, such as ACT-R/E [108], that

are suited to axiomatic rather than strictly metric spatial representations. The approach proposed by

Chao et al. [12] performs taskable symbolic goal-directed manipulation with a focus on associating

observed robot percepts with knowledge categories. This method uses background subtraction to

adaptively build appearance models of objects and obtain percepts but with sensitivity to lighting

and object color. The work by Narayanaswamy et al. [74] performs scene estimation and goal-

directed robot manipulation for cluttered scenes of toy parts for flexible assembly of structures.

The KnowRob system by Tenorth et al. [106] performs taskable goal-directed sequential ma-

nipulation at the scale of entire buildings by automatically synthesizing sources from the semantic

web and Internet. Leveraging the community of perception modules available in the Robot Operat-

ing System (ROS) [85], KnowRob focuses uncertainty at the symbolic level and relies on hard and

complete state estimates from hardcoded software components. Similarly, the work by Srivastava

et al.[99] relies on hardcoded perception systems to perform the joint task and motion planning,

taking advantage of modifications in controlled environments, which include green screens and

augmented reality tags.

2.2 Perception for Manipulation

We summarize a relevant subset of existing work with respect to perception for manipulation. The

PR2 interactive manipulation pipeline by Ciocarlie et al. [17] segments objects from a flat tabletop

surface through the clustering of surface normals. This pipeline can perform relatively robust

pick-and-place manipulation for isolated, non-occluded, and non-touching objects. For cluttered

scenes, the work by Narayanaswamy et al. [74] performs pose and structure estimation of toy parts
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for flexible assembly of structures. MOPED [19] is a framework for object detection and pose

estimation using the clustering of features from multi-views. The method from Joho et al. [45]

uses a probabilistic generative model to model the spatial arrangement of objects on a flat surface

in the context of a table setting task.

In terms of sequential manipulation, the system by Tenorth et al. [106] performs task-directed

manipulation at the scale of entire buildings by integrating different knowledge sources from a

perception system, an internal knowledge base and Internet repositories.The approach proposed

by Cosgun et al. [21] performs sequential manipulation for placing objects in a scene where the

objects are separating on a clear table. The work from Papazov et al. [82] performs sequential

scene estimation and manipulation through the matching of known 3D geometries with an observed

point cloud. However, this method takes a bottom-up approach using a RANSAC algorithm with

Iterative Closest Point registration that neither requires nor uses a model of uncertainty.

Rosman et al. [88] proposed approaches to address the same problem of estimating relational

scene graphs for objects in contact as a collection of axioms. Their approach detects contact points

between objects that can be directly observed from depth. Liu et al. [61] proposed KSMCMC,

which uses MCMC to sample over scene graph structures represented axiomatically to estimate

objects as oriented bounding boxes. Pose estimation is performed using image features for align-

ment. Joho et al. [45] use a generative model to cluster objects on a flat surface into semantically

meaningful categories.

2.3 Scene Estimation

We consider two categories of traditional methods for model-based object recognition and pose es-

timation. First, feature-based methods, also known as descriptor-based methods, aim to match key

features in the models to the scenes. Key features can be comprised of local or global descriptors

[4]. Using local features [44, 91, 89], the pose of the object is estimated by first matching a set of

extracted features from the object model to the scene. Then, every matching pair will go through
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the filtering process to generate the final transformation. In contrast, methods using global features

[5, 64, 90] attempt to match features with high resistance to the variance of the object pose. The

object pose can be estimated by comparing those pose-preserving features from the training phase

with the features computed from the test scene. A limitation of feature-based methods is that the

estimation quality will degrade as the number of objects (and clutter) in the scene increases due to

occlusion of key features.

Alternatively, generative methods (or analysis by synthesis) attempt to find the state estimate

that best describes the observed sensor input through iterating over comparisons with state hy-

potheses rendered into sensor readings. The Render-Match-Refine paradigm by Stevens et al. [100]

applied iterative optimization method to find a rendering that best explains the input. Their early

work demonstrated Render-Match-Refine for 2D images, relying upon low-level feature extrac-

tion. Recent work uses convolutional neural networks (CNNs) to compare rendered and observed

images. Among this work, the approach by Krull et al. [51] casts the CNN as a probabilistic model

to output energy value, whereas work by Gupta et al. [36] directly outputs a coarse object pose

and use ICP to refine it later.However, these methods do not address multi-object pose estimation

such as in cluttered scenes. Narayanan et al. [72, 73] proposed approaches to integrate exhaustive

global reasoning with discriminatively-trained algorithm to perform scene estimation. However,

their work assumes the identification of objects is given or provided by an idealized object detec-

tion and recognition system in order to perform A* search.

Great progress has been made by deep neural networks in object detection [86, 40], 6D object

pose estimation [116, 111] and semantic segmentation [62, 80]. To be robust to false detections

due to the effects of overfitting, discriminative-generative algorithms [46, 72] have been proposed

for robust perception, especially in adversarial environments [13]. These efforts combine inference

by deep neural networks with sampling and probabilistic inference models to achieve robust and

adaptive perception. However, the robustness is at the cost of computation time and the assumption

object independence.

Desingh et al. [25] and Mitash et al. [69] leverage physics into scene estimation to search object
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poses based on compatibility score from physics simulation. The above-mentioned methods take

either geometric and physical constraints into account for searching object poses, at the cost of

computational efficiency.

2.4 Semantic Mapping

From the emerging of semantic mapping [52], lots of work have explored this field with various

semantic representations [50]. With the focus on the object-level semantic map, one widely used

approach is to reconstruct a 3D map from either sparse features [71] or dense point clouds [76,

112, 87] and then augments the map with the objects. Civera et al. [18] and Ekvall et al. [26]

used SURF/SIFT descriptors to register objects to the map created in a parallel thread. However,

their work can not deal with objects in clutter. To deal with clutter, Li et al. [56] proposed an

incremental segmentation approach to fuse segmentation across different frames based on dense

reconstruction 3D map and used ObjRecRANSAC [81] to register object poses. But their method

does not scale well with substantial false detections.

Salas-Moreno et al. [94] proposed an object SLAM system that recognized objects using Point-

Pair Features in each frame and directly performed graph optimization on object and camera 6D

poses. Their work shows promising results in the direction of building maps with 6D object poses.

Fusion++ [65] constructed an online object-level SLAM system with previously unknown shape

and perform pose graph optimization at object level. Both of their work assume independence be-

tween objects and hence difficult to work well in densely cluttered environments. Zeng et al. [119]

proposed CT-MAP, which considers contextual relation between objects and temporal consistency

of object poses in a conditional random field and maintain belief over object classes and poses.

This approach is robust to false detections, however it does not scale well to the increasing number

of objects due to the nature of pure generative inference.
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2.5 Summary

In summary, we described previous work that is related for perception for manipulation and seman-

tic mapping. We first elaborated on the related work of symbol grounding with shared autonomy

and goal-directed manipulation. We then presented the related work of perception for manipulation

and scene estimation. We also discussed related work on semantic mapping.
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CHAPTER 3

Axiomatic Scene Estimation

In this chapter, we describe the problem of Axiomatic Scene Estimation (AxScEs), pronounced

“access”, for robot manipulation in cluttered scenes given raw sensor observations. We propose

generative approaches to scene inference (as the axiomatic particle filter, and the axiomatic scene

estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as a scene

graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation

through symbolic inference for task planning and collision-free motion planning and execution.

Figure 3.1 shows goal-directed manipulation in action from an AxScEs estimate of a cluttered

scene of eight objects with a Willow Garage PR2 robot. We phrase the problem of AxScEs as

the estimation of a tree-structured scene graph describing the configuration of objects observed

from robot sensing. Similar to their use in computer graphics, scene graphs are represented as

parameterized axiomatic statements that assert relationships between objects in the scene graph

and the poses and geometry of each object. Our generative approach to inference for problems

of AxScEs iteratively hypothesizes possible scene configurations (as lists of axioms) and evaluates

these hypotheses against the robot’s observations (currently as depth images). The result of this

inference is an approximate posterior probability distribution over possible scenes, where the scene

with maximum likelihood is taken as the estimate of the scene configuration. Though probabilistic

in nature, a principal motivation for providing AxScEs estimates represented in axiomatic form

is the “closing the loop” between goal-directed symbolic planners [30, 55] and modern robotics.

Such planners reason over manipulation actions for the robot to execute from an AxScEs estimate
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(a) robot in initial scene (b) known geometries for each object (c) achieved user-specified goal scene

(d) depth image observation of initial scene (e) estimated initial scene in depth image (f) estimated initial scene in point cloud

(g) action: pick red bull, place bin (h) action: pick toothpaste box, place bin (i) action: pick pringles, place bin

(j) action: pick nutrigrain, place side region (k) action: pick nature valley, place side region (l) reach goal: pick shampoo, place bin

Figure 3.1: An example of AxScEs estimation and goal-directed manipulation of a (a) cluttered

scene with (b) eight objects to a (c) goal state of putting small objects in a bin and boxes to

the side. AxScEs estimation generatively infers from robot observations (d) the maximally likely

scene configuration (e,f). The resulting AxScEs is used to plan and execute actions (g-l) to the

user-specified goal state (c).

towards realizing a given goal scene, also expressed axiomatically. Planned sequences of actions

are then executed by motion control/planning systems for pick-and-place manipulation [17] or

general manipulation affordances [38].
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The remainder of this chapter describes the problem of axiomatic scene estimation, proposes

instances of AxScEs estimators, and examines their use for goal-directed manipulation in scenes

of increasing numbers of physically stacked objects. Section 3.1 motivates the need for genera-

tive approaches to problems of AxScEs as a matter of inclusion towards bridging probabilistic and

symbolic inference for goal-directed manipulation. We describe a formulation for the problem of

axiomatic scene estimation in Section 3.2. An analysis of the growth of possible tree-structured

scene graphs is presented with respect to the number of stackable objects in a scene. In Section

3.2.3, we phrase the problem AxScEs as a probabilistic state estimation model that factors into

the inference of scene tree relations and object pose. Within the AxScEs model, we propose the

Axiomatic Particle Filter (AxPF), as an exhaustive search over scene tree relations with particle

filter inference of poses in Section 3.3. We also introduce Axiomatic Scene Estimation by MCMC

Sampling (AxMC ) using the Metropolis-Hastings algorithm [39] to search the scene tree relations

with pose estimation likelihoods. Our GPU-optimized parallel implementation of AxScEs estima-

tion for both the AxPF and AxMC are described in Section 3.5. This likelihood works directly

with depth images from common ranging cameras without the need for computing discriminative

features. Our experiments with this implementation are described in Section 3.6. These results

indicate that AxScEs estimators are effective for manipulation-quality perception based on edit

distance on scene graphs, estimation of currently manipulatable (clear) objects, and object pose

estimation.

3.1 Motivation for Generative Approach

To motivate the problem of AxScEs , consider the scene in Figure 3.2 observed from 3D point

clouds captured from the robot’s perspective. For this scene, assume the goal for the robot is to

grab the bottom green block to give to a human user. It can be clearly observed that block1 (the

top block) and block2 (the bottom block) are two distinct objects from the perspective of human

perception. A naı̈ve perception of this scene, common to most robots, would instead perceive
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objects that are physically touching as a single object as shown in the right. From the perspective

of common segmentation methods for 3D point clouds, estimates of the scene as two smaller

objects or a single larger object are equally likely parsings of the robot’s observations.

To capture this uncertainty, our approach to problems of AxScEs is to maintain a distribution

across plausible scene graph hypotheses supported by the robot’s point cloud observations. These

generated hypotheses form an approximate probability distribution (or belief) over possible states

of the scene. This ambiguity over possible scenes can be resolved at a later time with further in-

formation, such as after a robot action to grasp one of the objects. In addition, by maintaining

diverse perspectives, the robot can use either one of these hypotheses as an estimate of the scene

state to plan and execute a current course of action. If the chosen state estimate was incorrect, the

alternate hypothesis of the scene should still be represented in the diversity of the belief distribu-

tion. Assuming the result of the action resolved the ambiguity, this alternate state hypothesis will

now have a greater likelihood given the new point cloud observation. This distribution will now

clearly distinguish the alternate as the true scene state estimate from which the robot’s plan can be

recomputed. This approach to scene estimation is implemented by a system architecture, whose

details are described in Section 3.4.

Our approach to AxScEs aims to emulate and scale the highly effective and now ubiquitous pat-

tern of decoupled decision making and probabilistic inference for autonomous navigation [23, 9]

in the domain of robot manipulation. Specifically, probabilistic perception and symbolic planning

are treated as independent processes, allow each to focus on what they do best. These processes

interoperably interface through the communication of the maximally likely axiomatic state esti-

mate and selected robot action (or operator). While avoiding the intractability of planning in the

space of beliefs, this decoupling assumes state estimates are a plausibly accurate representation of

the current state of the world.

Unlike autonomous navigation, AxScEs estimation faces a drastically large state space where

generative inference must balance estimation accuracy and computational tractability. The scene

dimensionality grows rapidly towards intractability as the number of objects in the scene increases,
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Figure 3.2: Example of a robot needing to grasp an object (the green block) in a simple stack

scene. The robot needs to estimate the scene but faces ambiguity about whether there are two

stacked objects or one larger object. Once estimated, the robot needs to perform a sequence of

actions to move the yellow block and then, once cleared, grasp the green block.

exceeding factorial growth. Such expansive state spaces prohibit exhaustive search over scenes,

even with an optimized processing pipeline. Further, our search space consists of state variables

with mixed types over both non-binary tree structures and real-valued object pose parameters.As

described later, we explore sampling-based algorithms, including Markov Chain Monte Carlo

(MCMC) and particle filtering, suited to the diverse types and high-dimensionality of axiomatic

scenes.

3.2 Problem Statement and Formulation

The objective of axiomatic scene estimation is to infer a symbolic description of the scene Ŝ from

partial observations zt by a given robot at time t. This symbolic scene description can then be read-
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(table object)

(pose table pos1)

(Nutrigrain object)

(pose Nutrigrain pos4)

(geom Nutrigrain geom nut)

(on Nutrigrain table)

(toothpaste object)

(pose toothpaste pos5)

(geom toothpaste geom tp)

(on toothpaste Nutrigrain)

(clear toothpaste)

(geom table geom table)

(nat val object)

(pose nat val pos2)

(geom nat val geom nv)

(on nat val table)

(shampoo object)

(pose shampoo pos3)

(geom shampoo geom sp)

(on shampoo nat val)

(clear shampoo)

(free right hand robot)

(free left hand robot)

Figure 3.3: Axiomatic scene estimation for an example four-object scene (top left), observed by

the robot as a depth image (top right), will estimate the pose and spatial relations of objects as

parameterized axiomatic assertions.

ily used by modern task and motion planners to generate sequential actions that will autonomously

control the robot to achieve a user-expressed desired goal state SG.

Axiomatic state xt at time t is defined as a collection of axioms expressing possible scenes S.

A scene is expressed as a scene graph S(W(Q,V)) as a set of axiomatic assertions describing the

pose Qi and geometry Vi of each object Wi and relations for object interactions and affordances.

The Planning Domain Definition Language (PDDL) [66] is used to model axiomatic state as a

formal language, which implicitly defines a tree-structured scene graph. Shown in Fig. 3.3, an

example scene graph of a four object scene is represented in PDDL. To avoid ambiguity, we restrict

the set of axioms to only spatial and physical expressions that can be tested geometrically or

through physical simulation. These axioms assert the existence of an object Wi, as (Wi object),

with spatial geometry Vi, (geomWi Vi), and spatial pose configuration Qi, (poseWi Qi). Axioms
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also assert parent-child relationships between objects as whether an object Wi is inside another

object Wj , (in Wi Wj), or resting on another object Wk, (on Wi Wk), as well as whether the

object is the possession of a robot R, (has R Wi). Each of these inter-object relations induces a

spatial frame relation, where the frame of a child object is expressed in relation to its parent object.

Given the AxScEs relations above, the relation (clear Wi) is asserted for each object Wi

that is not supporting another object. The objects asserting this relation can be picked by the

robot or used as a support surface for placing other objects. For general manipulation affordances,

additional axioms can be created that describe assertions for preconditions and postconditions

for actions associated with objects. Precondition and postconditions axioms are envisioned to

resemble collision-based “trigger” conditions, widely used to script interactive behaviors in video

games through programming languages such as Lua [68].

3.2.1 Assumptions

For the methods presented in this article, we address the problem of AxScEs for inferring the ax-

ioms in the scene S and the 3 DOF poses of each object Q. The n objects comprising W are

assumed to have been uniquely identified with each having known spatial geometries contained in

V. This assumption is made based on using an ideal of common visual object recognition sys-

tems [28, 19] as a preprocessing step. Only the inter-object relation for stacking (on) is considered

for AxScEs estimation, although the relations for enveloping (in) and grasping (has) are consid-

ered for task planning. Objects are assumed to be an upright oriented and can take on any pose on

the support surface provided by its parent object. As such, the object poses of Q consist of a 2D

position and yaw rotation (SE(2) group) in the coordinates provided by its parent object.

3.2.2 Scene Graph Enumeration

In the general case, scene estimation in this axiomatic form can lead to a very high dimensional

belief space that would theoretically pose problems for probabilistic inference. For this work, we

will assume scene graphs are tree-structured, have an implied base support plane, and consider only
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the stacking case (asserted by the ”on” relation). Thus, a single object could physically support

any number of other objects, but is itself physically supported by one other object. With these

assumptions, let T (n) be the number of possible scene graphs, given n objects in a scene. Then,

the total number of scenes can be expressed recursively:

T (n) =
n∑

k=1

nCkg(n− k, k) (3.1)

where nCk is the number of combinations for selecting a subset of k objects out of the n objects

and g(s, k) is the number of scene graphs possible for stacking s objects on top of a fixed scene on

k base objects:

g(s, k) =
s∑

s1=0

s∑

s2=0

...

s∑

si=0

...

s∑

sk=0

s!

s1!s2!...si!...sk!
T (s1)T (s2)...T (si)...T (sk) (3.2)

where s =
∑k

i=1 si

When n = 0, T (0) = 1 as the number of scenes with no objects as 1. Similarly when n = 1,

T (1) = 1 expresses the number of scenes with 1 object 1. When n = 2, T (2) = 3 breaks down

into two terms 2C1∗g(1, 1) and 2C2∗g(0, 2) with respect to the recursion in Equation 3.2. The first

term considers the number of ways 1 object can be placed on 1 supporting object g(1, 1) = 1 times

the number of ways each of the 2 objects to each of these stacking roles 2C1 = 2. g(0, 2) = 1 is

the number of ways 2 objects can be placed on the table, for which there is only one combination

for stacking. Relationally, T (2) = 3 expresses the 3 possible axiomatic scene graphs for 2 objects:

objects A and B are not stacked, object A is stacked on object B, object B is stacked on object A.

When n = 3, T (3) = 16 has three terms 3C1 ∗g(2, 1), 3C2 ∗g(1, 2) and 3C3 ∗g(0, 3). First term

3C1 ∗ g(2, 1) denotes the number of ways of choosing 1 object out of 3 objects, g(2, 1) denotes the

number of ways 1 object can be placed on two supporting objects. Computing each of the terms

turns out to be 9, 6, and 1 respectively and hence T (3) = 16.

Following this recursive expression of Equation 3.2, T (3) = 16, T (4) = 125, T (5) = 1296,

T (6) = 16807, T (7) = 262144, T (8) = 4782969, and so on. This recursive expansion provides
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an upper bound as it assumes each object is capable of providing a support surface for all other

objects. However, we speculate that most of these scene possibilities are actually implausible phys-

ically and statistically improbably to be encountered in common manipulation settings and human

environments. That stated, naı̈vely performing state estimation in such a huge state space becomes

intractable quickly as the number of objects grows. Such inference can still be of considerable use

for manipulation as tabletop environments can often consist of small stacks of objects. In such

cases, a tabletop segmentation algorithm, such as for the PR2 Interactive Manipulation [17] can be

used to identify clusters of stacked objects, each of which can be treated as their own scene.

3.2.3 Formulation

For axiomatic scene estimation, we represent the configuration of a scene at given time St as a

random state variable xt to be inferred from a history of robot observations z1..t. This scene state

variable xt = [gt, qt] is comprised of both real-valued object poses, as random variable qt ∈ ℜ3,

and set-valued lists of axioms, as random variable gt. In our case, the axioms gt define the topology

of objects in a scene as a tree.

We decompose the AxScEs problem as an expression of the probability of a scene into pose qt

and scene tree structure g (assuming a static scene for clarity):

p(xt|z1:t) = p(g, qt|z1:t) (3.3)

= p(g|z1:t)p(qt|g, z1:t) (3.4)

∝ p(g|z1:t)p(g, zt|qt)p(g|z1:t)
∫

p(qt|qt−1, ut−1)p(qt−1|g, z1:t−1)dqt−1 (3.5)

≈ p(g|z1:t)p(g, zt|qt)
∑

j

w
(j)
t−1p(qt|q(j)t−1, ut−1) (3.6)

The expressions decompose the problem of AxScEs into a scene tree factor p(g|z1:t) and an

object pose factor p(qt|g, z1:t). For inference, we assume the scene tree factor is unknown and

treat the object pose factor as a likelihood of pose given a scene tree. Inference of the scene tree
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structure allows maintenance of the distribution over scenes in relation to object poses over time,

approximated by particle filtering. For goal-directed planning, our primary concern is obtaining a

scene estimate Ŝ from these distributions, which leads to our formulation of AxScEs :

Ŝ = argmax
xt

p(xt|z1:t) (3.7)

= argmax
g,qt

p(g|z1:t)p(qt|g, z1:t) (3.8)

≈ argmax
g,qt

p(g|z1:t)
[

argmax
qt

p(g, zt|qt)
∑

j

w
(j)
t−1p(qt|q(j)t−1, ut−1)

]

(3.9)

3.3 Methods

We first propose a brute force method, the Axiomatic Particle Filter (AxPF). The AxPF exhaus-

tively marginalizes over combinations of scene axioms gt and performs inference over object poses

qt through particle filtering on robot observations zt. In the context of the AxPF, we additionally

explore object pose estimation using MCMC sampling.

Avoiding exploration over all possible scenes, another approach to AxScEs inference is to

search over scenes with algorithms amenable to general data structures, such as a hill climbing

optimization or MCMC algorithm. Similar to [61], such an inference procedure samples over pos-

sible scenes gt where pose estimation on qt on robot observations zt is performed for each sampled

scene. Our proposed Axiomatic Scene Estimation by MCMC sampling (AxScEs MCMCs) takes

this form. AxMC performs scene inference of gt with the MCMC-based Metropolis-Hastings algo-

rithm and pose inference of qt with a particle filter. AxMC works directly on depth images without

the need for discriminative features, as used by [61] or [19]. Further, AxMC provides distributions

over both scene structure and object poses, which conceptually allows for updates over time as we

consider for future work.
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3.3.1 Axiomatic Particle Filter

For the Axiomatic Particle Filter (AxPF), we modeled the inference of axiomatic state xt from a

history of robot observations z1:t as a sequential Bayesian filter. This model consists of updating

a prior belief from time t− 1 with a dynamic resampling and likelihood evaluation to form a new

posterior belief at time t:

p(xt|z1:t) ∝ p(zt|xt)

∫

p(xt|xt−1, ut−1)p(xt−1|z1:t−1)dxt−1 (3.10)

Although results presented are for observations of static scenes, the dynamics term p(xt|xt−1, ut−1)

in this formulation is to retain generality for tracking the scene as the robot performs an action ut−1.

As described by [23], the sequential Bayesian filter in Equation 3.10 is commonly approximated by

a collection of N weighted particles, {x(j)
t , w

(j)
t }Nj=1, with weight w

(j)
t for particle x

(j)
t , expressed

as:

p(xt|z1:t) ≈ p(zt|xt)
∑

j

w
(j)
t−1p(xt|x(j)

t−1, ut−1) (3.11)

Over successive iterations, inference in the particle filter is performed by drawing N scene hy-

potheses by importance sampling, evaluating the likelihood of each hypothesis, and normalizing

the weights to sum to one:

x
(j)
t ∼

∑

j

w
(i)
t−1p(xt|x(i)

t−1, ut−1) (3.12)

w
∗(j)
t = p(zt|x(j)

t ) (3.13)

w
(j)
t =

w
∗(j)
t

∑

k w
∗(k)
t

(3.14)

Within the likelihood p(zt|x(j)
t ), the scene S(j) associated with each particle x

(j)
t is rendered into
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a depth image ẑ
(j)
t , through the z-buffer of a 3D graphics engine, for comparison with the robots

current observation zt:

p(zt|x(j)
t ) = e−λr·SSD(z,ẑ

(j)
t ) (3.15)

where λr is a constant scaling factor and SSD(I, I ′) is the sum of squares distance function (SSD)

between depth images I and I ′:

SSD(I, I ′) =
∑

(a,b)∈z

(I(a, b)− I ′(a, b))2 (3.16)

where a and b are 2D image indices. Once the posterior distribution converges about a single scene

hypothesis, the scene Ŝt from the most likely particle x̂t is taken as the scene estimate:

Ŝt = argmax
x
(j)
t

p(x
(j)
t |z1:t) (3.17)

This axiomatic scene estimate Ŝt is used for planning robot actions and motion towards a given

goal state SG, which is also expressed in axiomatic form.

3.3.2 Axiomatic Monte Carlo Markov Chain

We now describe AxMC as a method to perform axiomatic scene estimation using MCMC and

particle filtering over, respectively, scene trees g and object poses qt. With respect to Equation 3.4,

we cast inference of the unknown scene tree factor p(g|z1:t) as the target distribution for MCMC

sampling. Just as in the AxPF, particle filtering is performed on the pose factor p(qt|g, z1:t) and is

treated as a likelihood for a sampled scene tree. The AxScEs estimate St is taken as the scene tree

and pose associated with the maximally likely sample from the AxMC process.

MCMC sampling uses the single-site Metropolis-Hastings algorithm to approximate the target

distribution. In each iteration of Metropolis-Hastings, a proposal distribution p′(g∗|g(i)) is used

to generate a new sample g∗ local to the previous sample g(i). As we describe in Section 3.3.2.1,
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a common instance of Metropolis-Hastings for a real-valued vector space has this local sampling

using a normally distributed proposal.

For our tree-valued variable g, generation of a proposal sample g∗ ∼ T (g(i)) occurs with

respect to a tree kernel T (g(i)) that performs a single random edit to the tree g(i). The sampling of

T (g(i)) randomly selects two different nodes, a and b, of g(i) to perform one of three permutation

operations, also selected at random: 1) swap a and b, 2) move a to be the child of b, and 3) move b to

the child of a. These operations are carried out by changing the on relations for objects associated

with tree nodes for a and b.

The newly sampled scene tree g∗ is either accepted or rejected with probability:

A(g(i), g∗) = min

{

1,

argmax
qt

p(qt|g∗, z1:t)

argmax
qt

p(qt|g(i), z1:t))

}

(3.18)

based on the respective maximally likely pose estimates for each scene tree. In other words, the

sample g∗ is accepted if A(g(i), g∗) is greater than a uniformly generated random number between

zero and one. After accepting a fixed number of N samples G∗ = {g(i)}Ni=1, the scene tree esti-

mate ĝ is taken as the sample with the highest likelihood with respect to the likelihood over pose

estimates qi, as expressed in Equation 3.9.

3.3.2.1 MCMC Pose

As an alternative to particle filtering, we additionally investigated an MCMC approach to pose

estimation of qi as a likelihood for known scene graph g. This pose inference used a single-

site Metropolis-Hastings algorithm to approximate the target distribution p(q|z, g) as a sampled

Markov chain, where g is a known set of scene graph axioms. In each iteration of Metropolis-

Hastings, a proposal distribution p′(q∗|q(i)) is used to generate a new sample q∗ ∼ N (q(i),Σq) from

a normal distribution centered on the previous sample q(i) with covariance Σq over the space of all

pose dimensions. Alternatively, this sampling can be done per object with normal distributions in

the space of DOFs for each object. The newly sampled particle q∗ is either accepted or rejected
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with acceptance probability:

A(q(i), q∗) = min
{

1,
w(q∗)

w(q(i))

}

(3.19)

where w(q) is the likelihood of pose state q, as specified in Equations 3.13 and 3.15.

After accepting a fixed number of N samples Q∗ = {q(i)}Ni=1, the pose estimate q̂ is taken as

the sample with the highest likelihood with respect to the likelihood w:

q̂ = argmax
Q∗(i)

w(Q∗(i)) (3.20)

After several rounds of informal testing, we chose to focus on pose inference by particle filter-

ing due to significantly better estimation accuracy. We attribute this preference to the relative ease

of tuning parameters of the particle filter predictive density in comparison to MCMC proposal co-

variance Σq. The remainder of the discussion in this article will assume pose estimation by particle

filtering, although MCMC pose estimation can be performed instead without loss of generality.

3.4 System Architecture

Our implementation for AxScEs perception of scenes and goal-directed manipulation is discussed

in this section. This implementation follows the architecture outlined in Figure 3.4. The core of

this implementation is the particle filter object pose estimation that follow a module flow of pre-

diction, diffusion, measurement and resampling. The distribution over object poses is represented

as a mixture model of particles. The measurement module additionally performs comparisons of

relative likelihood across estimations from other scenes. We store object geometries in a database,

which are expressed with respect to the parent object frame once retrieved. We further assume that

invalid samples, where the center of mass for a child object is outside the support surface of its

parent, is disregarded.

As shown in Figure 3.4 the measurement module gets the observation from the robot and hy-
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Figure 3.4: Architecture diagram for pose estimation within goal-directed manipulation with re-

spect to the AxPF . Pose estimation and manipulation components are respectively highlighted in

red and blue.

pothesized particles generated from the rendering engine. Robot observations are in the form of

depth images from a Microsoft Kinect depth camera mounted on the head of a Willow Garage PR2

robot. The likelihood of a particle is calculated by comparing the depth images of the observa-

tion and a graphical rendering of the axiomatic state hypothesized by a particle. The comparison

function is a sliding window sum of squared distance (SSD) on two images. The z-buffer of an

OpenGL-based graphics rendering engine is used to generate depth images from axiomatic states.

We assume a known intrinsic calibration and extrinsic pose for the Kinect camera and that all the

object geometries are known and stored in a geometry database.

The principal output of the measurement module is the posterior distribution representing the

distribution of belief for the current state of the world. If the particles converge within a threshold,

the planner takes the maximum likely state estimate and computes a plan of action for the robot
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to execute. In parallel, the resampling module takes in the posterior distribution and performs

important sampling over their states to give the new distribution of particles to the prediction

module. Based on the robot action decided by the planner the predict module updates the state

of the particles. The diffusion module adds noise randomly to this distribution of particles and

measurement is performed again with a new observation from the robot. The diffusion module also

updates the rendering engine with a new set of axiomatic states to generate particles.

A STRIPS-based system [30] was used for sequential planning in our manipulation system.

With the goal and the current state of the world, the planner would compute a sequence of actions

towards the goal and outputs the next immediate action to the robot. Actions from the planner

will be pick-and-place actions for a specific object in the scene. Given this object’s pose and

geometry, from the geometry database, PR2 Tabletop Manipulation [17] is used to execute these

manipulation actions.

3.5 Parallelized likelihood evaluation

As described in 3.2.2, the complexity of scene graph enumeration quickly grows beyond compu-

tational tractability. In practice, however, we can address this inference computationally viable

through parallelization and constraining the space of physically viable scene estimates ([25]). De-

scribed below is one method for parallel sample generation and likelihood evaluation through

leveraging hardware graphics rasterizers in modern GPUs. This parallelization provides perfor-

mance beyond that is offered through general-purpose computing on graphics processing units.

We consider parallel rendering based on OpenGL ([96]) to simulate depth cameras and gener-

ate scene estimation particles rapidly. This renderer sets up the rendering pipeline using camera

extrinsic and intrinsic parameters, object geometries, and estimated object transformations. During

each particle filter iteration, the OpenGL renderer renders all particles in parallel onto a single ren-

der buffer, which is then passed to CUDA kernels for computing the objective metrics of particles.

A particle is a scene consisting of objects with the same geometries but of different transforma-
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tions. Each particle is specified by a draw call for its object geometries and transformations. Then

draw calls for rendering each particle are separated by viewport specifications glViewport(),

which set the positions and sizes of sub-images for particle hypotheses in the output render buffer.

With credit to internal GPU work scheduling, all particles are rendered in parallel and viewport

specification does not reduce the parallelism of issued draw calls.

The transformations in OpenGL draw calls include model matrices, the view matrix, and the

projection matrix. Model matrices specify the transformations of the objects without changing

the geometry of the objects. Model matrices are constantly updated per iteration according to

the changing estimates in particles. The view matrix is the extrinsic transformation of the camera

within the world coordinate and can be derived using the position of the camera and the direction of

the camera. The projection matrix can be derived using the camera intrinsic parameters, including

the focal length fx, fy, the principal point cx, cy, and the OpenGL clipping near and far distances,

zn, zf . We derive the following matrix P for perspective projection:

P =













2fx
W

0 1− 2cx
W

0

0
2fy
H

1− 2cy
H

0

0 0 −zf + zn
zf − zn

− 2zfzn
zf − zn

0 0 −1 0













(3.21)

where W and H are the image width and height.

Similar to [16], we attach the output render buffer to a framebuffer object (FBO) for efficient

off screen rendering. However, we use render buffer objects (RBO) instead of textures because

multisampling features in textures are not useful for our purposes and only add overhead. We

also attach a depth render buffer to the FBO, which is required for depth enabled rendering. In

contrast to previous research where only color information is used, we are interested in the depth

information. However, RBOs in depth format are not supported by CUDA and cannot be accessed

from CUDA kernels via the OpenGL interoperation interfaces. We propose an efficient multi-step

process for this by modifying the OpenGL fragment shader to compute the depth values and output
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as float point color values in a color formatted GL R32F RBO, which can be accessed from CUDA.

Note that the depth rendering process described here is similar to a part of the known deferred

shading pipeline where the depth is saved in an intermediate result called Geometric Buffers([93]).

Fragment shaders have access to a built-in variable gl FragCoord = (x, y, z, 1/w) in which

w is the extra dimension of the clip-space homogeneous coordinate of the fragment. Using the

perspective projection matrix P , a point [X, Y, Z, 1]T in camera coordinate will be projected to

clip-space coordinate [x, y, z, w]T in which w = −Z, and Z is the distance from the point to the

X-Y plane of the camera coordinate. w = −Z has a negative sign because [x, y, z]T is converted

from the right-handed camera coordinate to the left-handed normalized device coordinate. The

depth in the camera coordinate is then represented by Z = w. Thus the depth values can be

computed in the fragment shader with color = 1/gl FragCoord.w;. By leveraging the

fragment shader that is already part of the existing rendering pipeline, this approach obtains depth

values in one pass and eliminates the overhead of extra copying from a depth RBO to a color RBO.

The color RBO containing depth values is then passed to CUDA kernels through memory

mapping with no data transfer and minimal overhead. The CUDA kernels compute the squared

error objective for each pixel, and rearrange the memory layout to compute the sums of errors

for each particle. The sums are then normalized and used as weights in particle filter resampling.

Actually, the square error objectives can also be computed in the fragment shader prior to CUDA

kernels, which provides some flexibility, though it should not have a big difference on the overall

performance. The process of computing scores for 625 particles takes 0.027 seconds.

To maximize the performance of OpenGL rendering, we adopt several scene rendering best

practices. [105] We use glVertexAttribDivisor() to specify vertex attributes format,

making it only require a single model matrix for all vertices of an object. We also use the OpenGL

extension ARB multidraw indirect, which allows drawing of multiple objects in a scene

with a single draw call provided with parameters of multiple draw commands. With this extension,

more objects in a scene would no longer require more draw calls, and all object geometries in

all scenes/particles and their draw commands can be constructed and uploaded to GPU as static
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data during initialization. During particle filter iterations, only the model matrices will need to be

updated, and the draw calls with fixed parameters reissued.

To validate the correctness of the depth value obtained by the OpenGL renderer, we also im-

plemented a separate renderer based on Nvidia OptiX [83] ray tracing engine. We use the OptiX

Prime API to implement the renderer, which solely executes on GPU compute nodes without the

help of hardware rasterizers. The OptiX renderer submits parallel rendering queries that contain

the scene geometries, transformations, and ray specifications corresponding to each pixel. Exper-

iments with a toy scene of three cubes on a table show less than 10−5 (meter) average error in the

results between OpenGL and OptiX renderers, which can be mostly attributed to floating number

error. However, the performance of the OptiX renderer is much worse than the OpenGL renderer.

To render 1000 images of 512 by 424 resolution, the OptiX renderer took 0.124 seconds, while

for 1024 images of the same resolution, the OpenGL renderer took less than 0.005 seconds. This

is because the OpenGL renderer takes advantage of the power of hardware rasterizers, while the

OptiX renderer is limited to per-pixel computation on GPU compute processors.

3.6 Results

In this section, we examine our AxScEs estimators, the AxPF and the AxMC, with respect to 20

test scenes of interacting objects from a depth camera. These objects are common to households

and vary in dimensions and geometries, as shown in Figure 3.1b. We first report the results of

particle filter inference on object poses, which serve as the foundation for the inference methods

over scene graphs by both AxPF and AxMC . Results are then presented for exhaustive search

by the AxPF over scene graph, which yields estimates with high accuracy in small collections of

scenes. AxMC results are then presented that demonstrate tractable inference with less accuracy.

All the experiments are tested on a Linux PC with Intel Core i7, 32 GB memory and an Nvidia

GeForce GTX Titan X Graphic Card with CUDA 7.5.

Next, we conduct three sets of experiments to demonstrate our goal-directed manipulation sys-
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Scene (a) RMSE Translation 0.12 cm, Yaw 8.94 deg Scene (b) RMSE Translation 0.20 cm, Yaw 2.38 deg

Scene (c) RMSE Translation 0.30 cm, Yaw 4.34 deg Scene (d) RMSE Translation 0.32 cm, Yaw 2.38 deg

Scene (e) RMSE Translation 0.27 cm, Yaw 9.40 deg Scene (f) RMSE Translation 0.64 cm, Yaw 11.80 deg

Scene (g) RMSE Translation 0.34 cm, Yaw 10.90 deg Scene (h) RMSE Translation 0.56 cm, Yaw 13.20 deg

Scene (i) RMSE Translation 0.35 cm, Yaw 8.80 deg Scene (j) RMSE Translation 0.32 cm, Yaw 10.60 deg

Figure 3.5: Pose estimation results for known axiom sets in scenes containing three to four objects.

Each subfigure, shows the RGB (left) and depth (middle) from an RGBD camera mounted on the

head of the PR2 and estimated scene graph as a depth image (right), as well as the RMSE for

translation and rotation error.

tem with AxMC axiomatic scene estimation. In our baseline manipulation experiment, we evaluate

the manipulation system in a scenario of three blocks stacked and rotated (Figure 3.7). We then

consider a more complex scenario of three stacked blocks along with a basket in the scene (Fig-

ure 3.8). At last, to test the limit of AxScEs , we conduct an experiment with an eight object scene

as shown in Fig. 3.1. The PR2 robot was successful in achieving the goal scene: the nature valley

and nutrigrain boxes cleared to a side of the table and place all other objects into the basket.
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Scene (k) RMSE Translation 0.31 cm, Yaw 9.40 deg Scene (l) RMSE Translation 0.29 cm, Yaw 10.50 deg

Scene (m) RMSE Translation 0.39 cm, Yaw 10.14 deg Scene (n) RMSE Translation 0.45 cm, Yaw 11.06 deg

Scene (o) RMSE Translation 0.68 cm, Yaw 13.05 deg Scene (p) RMSE Translation 0.67 cm, Yaw 10.84 deg

Scene (q) RMSE Translation 0.17 cm, Yaw 11.18 deg Scene (r) RMSE Translation 0.39 cm, Yaw 8.56 deg

Scene (s) RMSE Translation 0.88 cm, Yaw 10.03 deg Scene (t) RMSE Translation 0.44 cm, Yaw 10.71 deg

Figure 3.6: Pose estimation results for known axiom sets in scenes containing five to seven objects.

Each subfigure, shows the RGB (left) and depth (middle) from an RGBD camera mounted on the

head of the PR2 and estimated scene graph as a depth image (right), as well as the RMSE for

translation and rotation error.

3.6.1 Object Pose Estimation

In order to validate the accuracy of particle filter pose estimation, we first started by evaluating

our GPU-optimized likelihood function for estimating object poses given known scene graphs.

For each scene, 40 estimation trials were performed with 400 particle filter iterations with 1250

particles. As the render buffer size supported by the graphics card is 163484 x 16384 and the size

of the depth image is 640 x 480, so the maximum number of images the graphics card can render

at a time is 16384 / 640 = 625. Thus, our choice of 1250 particles as two times 625.

The Root Mean Square Error (RMSE) on both translation (x and y) and rotation (yaw) are
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Scene N
Tree Edit Distance Leaf node classification RMS Pose Error

Mean Var Acc Prec Rec Trans Yaw

Scene(a) 3 0.00 0.00 1.00 1.00 1.00 0.47 0.99

Scene(b) 3 0.00 0.00 1.00 1.00 1.00 0.38 6.47

Scene(c) 3 0.80 1.07 0.73 0.80 0.80 3.04 11.73

Scene(d) 3 0.00 0.00 1.00 1.00 1.00 0.21 0.90

Scene(e) 4 0.00 0.00 1.00 1.00 1.00 0.23 1.69

Scene(f) 4 1.40 2.71 0.80 0.75 0.90 0.62 8.56

Scene(g) 4 1.10 1.10 0.72 0.72 0.72 0.82 0.73

Scene(h) 4 0.00 0.00 1.00 1.00 1.00 0.46 8.84

Table 3.1: Metrics calculated for AxPF scene estimation. The first two columns are the mean and

variance of the tree edit distance which is the minimum number of node operations to transform

one tree to the other. From the 3rd column to the 5th column, the accuracy, precision and recall of

the leaf node classification are reported. The last two columns are the pose error of translation(x
and y) and yaw a correctly classified leaf node. N is the number of objects in each scene.

computed and is denoted in each scene in Figure 3.5 and Figure 3.6. The translation error remains

very low for each scene (under 1 cm) but the rotation error seems a bit high. The large angular

error is primarily due to the less accurate estimation of occluded supporting objects, and not due to

the accounting of object symmetry. Supporting objects, higher in the scene graph, are occluded by

the top objects and, thus, have fewer pixels in the observation depth image. Further, the standing

objects also have fewer observed pixels, due to taking observations directly from the robot’s first

person viewpoint, which leads to a larger angular error. Regardless, these errors are within our

observed estimate of tolerable error for grasping with the PR2. The time taken for each particle

filter iteration is 0.022s and varies with different rendering objects. The total computation time for

each scene is around 9.08 seconds.

This experiment demonstrates our particle filter can estimate the object poses with high accu-

racy and can serve as a likelihood function for scene graph estimation methods.
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3.6.2 Metrics for AxScEs

For evaluating the results of our AxScEs methods, we used metrics related to scene graph struc-

ture, tree edit distance [120], and leaf node classification, as the correct identification of currently

manipulatable objects. Tree edit distance is the minimum number of node operations to transform

one scene tree to the other. This distance uses three edit operations: replace a node, insert a node,

and delete a node. Tree edit distance is used to compute the distance between an estimated scene

graph tree and ground truth scene graph tree, where smaller values mean two trees are closer to

each other.

In a cluttered scene, the directly manipulable objects provide support for no other objects that

are immediately available to be picked or placed upon. These objects, asserted by the clear rela-

tion, are the leaves in a scene graph tree. We care more about these objects than the support objects

higher in a scene graph from an estimation perspective because they are unoccluded. As leaf node

objects are picked up and moved away, the scene will become less cluttered, and the supported

objects will become clearer in the eye of the robot. Towards properly estimating leaf node objects,

we introduce leaf node classification, which identifies whether a node in the estimation is a cor-

rect leaf node or not. We report the accuracy, precision, and recall for this manipulation-oriented

classification, as well as their pose estimation accuracy.

3.6.3 Scene Graph Estimation

3.6.3.1 AxPF

For each of the 20 test scenes, we then ran the exhaustive search over scene graph (Section 3.3.1)

with 625 particles for each scene. Due to the prohibitive computational complexity, the AxPF was

not considered for scenes with more than 4 objects. From table 3.1, mean and variance of the tree

edit distance remain very low for all the scenes tested. The computation time of the exhaustive

set of particle filters is relatively high. For scenes with three objects, the exhaustive particle filters

averaged 110.80 seconds and for four object scenes, the time grew to 1318.14 seconds on average.
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3.6.3.2 AxMC

We ran MCMC with 200 iterations. In each MCMC iteration, a particle filter estimates object

poses with 625 particles over 400 iterations. The results in table 3.2 is averaged over 10 times

experiment for each scene. Based on these results, we interpreted the AxMC to perform well for

scenes of up to six objects. The tree edit distance grows linearly with the number of objects in

the scene. The average accuracy of leaf node classification is 0.78 which means only one leaf

node object would get wrong on average for each scene as there are maximal four objects on the

top. The RMS yaw error of the leaf nodes is relatively smaller than the error from Section 3.6.1,

which are computed over all the objects in the scene. This indicates the robot can grasp the top

objects more robustly. For scenes with greater numbers of objects, we found that at least one

object was estimated correctly in each trial. This gives room for an active approach to perception

and manipulation. From an AxScEs estimate, the leaf object with the highest likelihood can be

grasped and moved to decrease ambiguity for another round of AxScEs estimation.

3.6.4 Manipulation Results

In this set of manipulation experiments, AxMC estimation is evaluated within the goal-directed

manipulation system described in the previous section. The AxMC will first estimate the scene and

get the scene graph and the pose for each object after convergence. The system would then recon-

struct the 3D scene graph in the point cloud in camera view given the pose, object geometry, and

current transformation from robot base link to camera link. The planner computes a sequence of

actions towards the goal axiomatic state, and executes the first action in this plan. After performing

this action, the robot re-estimates and re-plans for the resulting scene to take its next action. This

process loop continues until the goal scene state is achieved.
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Scene N
Tree Edit Distance Leaf node classification RMS Pose Error

Mean Var Acc Prec Rec Trans Yaw

Scene(a) 3 0.00 0.00 1.00 1.00 1.00 0.41 1.35

Scene(b) 3 0.30 0.90 1.00 1.00 1.00 0.38 5.23

Scene(c) 3 1.40 0.93 0.53 0.65 0.65 1.20 18.72

Scene(d) 3 1.00 1.11 1.00 1.00 1.00 0.70 0.55

Scene(e) 4 1.20 2.84 0.82 0.81 0.85 1.16 5.97

Scene(f) 4 2.20 2.18 0.72 0.68 0.85 0.81 7.33

Scene(g) 4 2.00 0.67 0.65 0.62 0.75 3.13 3.74

Scene(h) 4 1.40 1.82 0.97 0.96 1.00 0.91 7.34

Scene(i) 5 3.00 2.00 0.72 0.60 0.90 1.20 1.04

Scene(j) 5 3.30 1.34 0.66 0.71 0.73 1.72 7.60

Scene(k) 5 2.40 1.60 0.82 0.70 0.95 0.56 1.97

Scene(l) 5 2.40 1.38 0.82 0.69 1.00 2.02 0.51

Scene(m) 6 3.90 0.77 0.73 0.68 0.87 2.31 6.77

Scene(n) 6 4.30 4.23 0.59 0.58 0.70 5.88 5.92

Scene(o) 6 3.20 2.84 0.76 0.71 0.89 3.18 13.31

Scene(p) 6 3.20 1.29 0.78 0.78 0.95 3.09 7.31

Scene(q) 7 4.30 2.01 0.60 0.62 0.75 7.81 8.80

Scene(r) 7 4.10 5.88 0.81 0.79 0.93 6.30 32.54

Scene(s) 7 5.80 1.51 0.63 0.55 0.70 5.58 25.73

Scene(t) 7 5.60 2.49 0.66 0.57 0.80 4.62 15.78

Scene 8 5.80 2.34 0.50 0.50 1.00 6.94 7.85

Table 3.2: Metrics calculated for AxMC scene estimation. The first two columns are the mean and

variance of the tree edit distance which is the minimum number of node operations to transform

one tree to the other. From the 3rd column to the 5th column, the accuracy, precision and recall of

the leaf node classification are reported. The last two columns are the pose error of translation(x
and y) and yaw a correctly classified leaf node. N is the number of objects in each scene.
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3.6.4.1 Three stacked and rotated blocks

The first manipulation experiment is to rearrange three stacked and rotated blocks into a straight

stack with reversed order. The observation depth image is shown in Fig. 3.7a. Fig. 3.7b shows

the estimation result in the depth image and Fig. 3.7c shows the reconstructed scene in the point

cloud. The STRIPS planner planned a sequence of actions towards the goal with the estimated

scene graph and sent them to the robot. Then the robot executed them sequentially, shown from

Fig. 3.7d to Fig. 3.7i.

3.6.4.2 Extraction of middle block

The second manipulation experiment is to extract the middle block from the three blocks sequence

into a basket, which shows our system can handle complex geometries. The remaining two blocks

are rearranged into a straight stack aside from the basket. Fig. 3.8a shows the perceived depth

image and Fig. 3.8b and Fig. 3.8c show the estimated blocks with the basket. From Fig. 3.8d to

Fig. 3.8e, the robot picked up the top block and placed it on the table. Then the middle block was

picked by the robot and placed it into a basket, which is shown in Fig. 3.8f and 3.8g. Finally, the

bottom block was picked and placed onto the top block, as shown in Fig. 3.8h and Fig. 3.8i.

3.6.4.3 Manipulation in Cluttered Environment

To test the limit of our approach, we conducted the manipulation experiment in a much cluttered

environment with eight objects in it. The goal of the task is to place nature valley and nutrigrain

boxes to a side of the table and put all other objects into the basket. Note that as the robot gripper

is not wide enough to pick up the large boxes lying on the table, nature valley and nutrigrain are

standing vertically on the table. Fig. 3.1e and Fig. 3.1f show the estimation results and scene in

point cloud view. The actions performed by the robot are shown from Fig. 3.1g to Fig. 3.1l.
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(a) observation (b) estimated result (c) reconstructed scene

(d) pick up block1 (e) place block1 (f) pick up block2

(g) place block2 (h) pick up block3 (i) place block3

Figure 3.7: Manipulation experiment of rearrangement of three rotated and stacked blocks. Ob-

servation and estimated depth image along with reconstructed point cloud (top row). Frames of

the robot performing stacking actions to rearrange toothpaste boxes into a straight stack (bottom

rows).

3.7 Summary

In this chapter, we proposed generative approaches to address the problem of Axiomatic Scene

Estimation (AxScEs) as the estimation of scenes for goal-directed robot manipulation. In AxScEs

estimation, a generative model maintains a distribution across plausible scene graph hypotheses

supported by the robot’s point cloud observations. These generated hypotheses form an approx-

imate probability distribution (or belief) over possible states of the scene. We cast the problem

of AxScEs as factors for estimating a scene graph as a tree and poses. Our AxPF method per-

forms inference in this model as a brute force exhaustive search over combinations of scenes.

We additionally proposed the MCMC-base AxMC method to avoid exploration over all possible
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(a) observation (b) estimated result (c) reconstructed scene

(d) pick up block1 (e) place block1 (f) pick up block2

(g) place block2 (h) pick up block3 (i) place block3

Figure 3.8: Manipulation experiment of extraction of the middle block into the basket. Observation

and estimated depth image along with reconstructed point cloud (top row). Frames of the robot

performing stacking actions to extract the middle block into the basket (bottom rows).

scenes by random walk sampling. A parallelized GPU-optimized version of these inference meth-

ods was described and implemented. Our results indicate that AxScEs estimators are effective for

manipulation-quality perception based on edit distance on scene graphs, estimation of currently

manipulatable (clear) objects, and object pose estimation.
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CHAPTER 4

Sequential Scene Understanding and Manipulation

AxScEs assumes known object identifications and works in moderately structured environments.

To scale up to more unstructured scenarios and be adaptable to unforeseen and adverse conditions,

we propose a combined discriminative-generative approach for robust sequential scene estimation

and manipulation - Sequential Scene Understanding and Manipulation (SUM ). SUM considers

uncertainty due to discriminative object detection and recognition in the generative estimation of

the most likely object poses maintained over time to achieve a robust estimation of the scene

under heavy occlusions and unstructured environment. Our method utilizes candidates from a

discriminative object detector and recognizer to guide the generative process of sampling scene

hypothesis, and each scene hypothesis is evaluated against the observations. Also, SUM maintains

beliefs of scene hypothesis over robot physical actions for better estimation and against noisy

detections. We conduct extensive experiments to show that our approach is able to perform robust

estimation and manipulation.

4.1 Motivation

In the previous chapter, we addressed the problem of perception for goal-directed manipulation

as axiomatic scene estimation, sharing similar aims to existing work in scene estimation for ma-

nipulation of rigid objects [72, 73, 61, 45, 19]. These methods take a generative multi-hypothesis

approach to robustly infer a tree-structured scene graph, as object poses and directed inter-object

relations, from cluttered scenes observed as 3D point clouds. The inferred scene graph estimate
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Figure 4.1: (Left) Michigan Progress Fetch robot using SUM for scene perception in the sorting of

a cluttered set of objects on a table into cleaning (right bin) and non-cleaning categories (left bin).

SUM performs perception by using (Middle) RGB object recognition to inform (Right) sequential

pose estimation from 3D point cloud observations and the feasible grasp poses on the manipulated

object.

can be expressed as parameterized axioms that allow for interoperable symbolic task and motion

planning towards goals expressed as desired scenes in world space. We posit this pattern of sym-

bolic task-level reasoning using estimates from probabilistic perception will be as applicable to

scenes for autonomous manipulation as it has been for autonomous navigation.

Existing formulations of axiomatic scene estimation impose several limiting assumptions that

must be relaxed for viable autonomous manipulation. First, existing axiomatic scene estimators

assume the identification of objects observed in a scene is given or provided by an idealized ob-

ject detection and recognition system. Object detection and recognition [43, 32, 29] has greatly

improved towards feasible general use, due in part to the renaissance in convolutional neural net-

works. However, such recognition methods remain subject to substantial and inherent errors in

discriminating false positive and negative detections. As such, our robots will need to handle

uncertainty due to such recognition errors in both its scene estimation and task execution.

Second, scenes have been assumed to be static, where scene state at each moment in time is

effectively decoupled sequentially from its past state. This assumption can be prohibitively costly

in terms of computation, as the dimensionality of scene state space grows exponentially with the

number of scene objects. We posit that robots can manage this complexity by maintaining a belief

of scene state over time informed by past beliefs, a manipulation process model, and current object

detections, as well as the incorporation of physical and contextual constraints [25].
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Figure 4.2: An overview of our SUM framework. Given an observation of the scene, pre-trained

R-CNN object detector and recognizer output bounding boxes and object labels along with their

confidence. Assuming that every object is independent with each other, we estimate the state of

the scene by estimating the state of each object individually. The numbers in the figure denote

the value of each term that composes to the posterior probability of a hypothesized object state.

Multiple object pose estimator can originate from the same bounding box, for example, both the

”shampoo” and ”clorox” pose estimator originates from the same bounding box, and clorox is

selected as the correct estimate since it has higher p(xi
t).

Lastly, existing scene estimation often assumes some scene structure, such as a canonical object

orientation, a large flat surface support, or “stacking” as a single support surface per object. By

maintaining belief sequentially and managing computational burden, our robots will be able to

perform tractable inference in cluttered scenes with full six degree-of-freedom object poses and an

arbitrary number of inter-object contacts and supports.

4.2 Formulation

Given past RGBD observations (z0, . . . , zt) and robot manipulation actions (u0, . . . , ut), our aim

is to estimate the scene as a collection of k objects, with object labels o, 2D image-space bounding

boxes bt, and six DoF object poses qt. Note, k is the number of objects recognized in the scene.
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Object labels are strings containing a semantic identifier assumed to be a human-intuitive reference.

In our experiments, the manipulation actions ut are pick-and-place actions, which will invoke a

motion planning process. However, our formulation is general such that ut also applies to low

level motor commands represented by joint torques, such as in scenarios for object tracking. The

state of an individual object i in the scene is represented as xi
t = {qit, bit, oi}. We assume that every

object is independent of all other objects, which implies there will be only one object with a given

label in the eventual inferred scene estimate. Independence between objects allows us to state this

scene estimation problem as:

p(x1
t , · · · , xk

t |z0:t, u1:t) =
k∏

i=1

p(xi
t|z0:t, u1:t) (4.1)

where, for each object, the posterior probability is

p(xi
t|z0:t, u1:t) =p(qit, b

i
t, o

i|z0:t, u1:t)

=p(bit|z0:t, u1:t)p(o
i|bit, z0:t, u1:t)·

p(qit|bit, oi, z0:t, u1:t) (4.2)

= p(bit|zt)
︸ ︷︷ ︸

detection

p(oi|bit, zt)
︸ ︷︷ ︸

recognition

p(qit|bit, oi, z0:t, u1:t)
︸ ︷︷ ︸

Bel(qit)

(4.3)

using the statistical chain rule and independence assumptions to yield Equations 4.2 and 4.3,

respectively. Equation 4.3 represents the factoring of the scene estimation problem into object

detection, object recognition, and belief over object pose. The object detection factor p(bit|zt)

denotes the probability of object i being observed within the bounding box bit given observation

zt. The object recognition factor p(oi|bit, zt) denotes the probability of this object having label

oi given the observation zt inside the bounding box bit. These distributions are generated as the

output of a pre-trained discriminative object detector and recognizer that evaluates all possibilities.

The implementation of these detectors and recognizers is as explained in Section 4.3. Figure 4.2

describes the framework of SUM showing three factors of the scene estimation. The pose belief
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Figure 4.3: Graphical model for estimating pose of a particular object oi given observations, ac-

tions. The bounding box and object label hypothesis at each frame is based on object detection,

recognition, and data association as explained in Section 4.3.

factor for a particular object oi is modeled over time by a recursive Bayesian filter, as illustrated in

Figure 4.3. The belief over the object pose qit at time t is estimated as:

Bel(qit) ∝ p(zt|qit, bit, oi)
︸ ︷︷ ︸

observation model

∫

qit−1

p(qit|qit−1, ut, b
i
t, o

i)
︸ ︷︷ ︸

action model

Bel(qit−1)dq
i
t−1 (4.4)

Data Association Across all objects, this Bayesian filtering framework also requires a data

association process to correspond to previous object estimators with the current detection and

recognition. Data association for SUM maintains independent filters for each possible object,

which are spawned or terminated based on object detection and recognition. At the initial instance

of time t = 0, the number of objects k is estimated by thresholding on the detection and recognition

results for the initial observation z0.For each recognized object oi along with its bounding box bi0,

we will assign an object pose estimator to localize the object within the region defined by bi0. When
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the robot manipulates the objects in the scene for the next action u1, the objects poses change as a

result. To decide within which region that each object pose estimator should continue to localize

the object oi, there is a data association stage where it is associated to a bounding box bi1 detected

at time t = 1 after the robot action. Thus after every robot action ut, the robot receives a new

observation zt, a data association stage takes care of associating each object estimator T i with a

bounding box bt detected in zt.

4.3 Methodology

4.3.1 Object Detection Heuristics

The SUM model above is agnostic to the specific algorithms for objects detection and recogni-

tion as long as distributions of possible object bounding boxes b and labels o can be generated.

Specifically, each proposed detection of an object will have a bounding box in the image space

with a probability belonging to one of N object labels in the training database. For each generated

bounding box at time t, we filter out the object proposal ol, 1 ≤ l ≤ N , if its confidence is smaller

than a certain ratio σc of the maximum confidence in this bounding box:

p(ol|z0, b) < max
ol

p(ol|z0, b) · σc (4.5)

where σc ∈ (0 . . . 1). The number of recognized objects k is determined by the above thresh-

olding procedure. An object pose estimator T i is associated to each recognized object i and its

corresponding bounding box bi0 and object label oi pair.

4.3.2 Particle Filtering for Pose Belief

Particle filtering is employed with each object estimator T i to infer the pose qit of object i. A par-

ticle filter is a means of inference for the sequential Bayesian filter in Eq. 4.4 through an approxi-

mation consisting of n weighted particles, {qijt , w(j)
t }nj=1. Weight w

(j)
t for particle q

ij
t is expressed
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as:

Bel(qit) ∝ p(zt|qit, bit, oi)
∑

j

p(q
ij
t |qijt−1, ut, b

i
t, o

i)Bel(qit−1) (4.6)

as described by [23]. The initial belief of object pose is uniform. At each time instance, the

weight of each hypothesis is computed, normalized to one, and resampled based on importance

into an updated set of n particles:

qit ∼
∑

j

w
(j)
t−1p(q

ij
t |qijt−1, ut) (4.7)

Before each robot action, we apply iterated likelihood weighting [67] to estimate the distribu-

tion of the object pose given the bounding box and the object label. This serves as a bootstrap

filter, where the state transition in the action model is replaced by a zero-mean Gaussian noise.

4.3.2.1 Observation Model

Our observation likelihood function measures how well a particle’s rendered point cloud explains

the observation point cloud. The observation model of this particle filter uses the z-buffer of a 3D

graphics engine to render each particle q
ij
t into a depth image for comparison with the observation.

This depth image, represented as ẑ
(j)
t , is back-projected into a point cloud r̂

(j)
t in the camera frame

to simulate the camera model.The observation likelihood for each particle hypothesis with respect

to the point cloud rt associated with the observation zt is then expressed as:

p(zt|qijt , bit, oi) =
∑

a,b∈r̂
(j)
t

INLIERS(rt(a, b), r̂
(j)
t (a, b))

Nzt

(4.8)

where a and b are 2D indices in the rendered point cloud r̂
(j)
t , Nzt is the total number of points in

the observation point cloud and

INLIERS(p, p′) =







1, if ‖p− p′‖2 < ǫ

0, otherwise

(4.9)
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Thus, if the Euclidean distance between an observed point and a rendered point is within a certain

sensor resolution ǫ, total number of inliers will increase by 1.

4.3.2.2 Action Model

A robot manipulation action is represented by u(j, φpick, φplace). This pick-and-place action is

parametrized by the target object index j, object pick and place pose φpick, φplace. For a particular

object oi, we use Gaussian components to model how the object pose qit will change from qit−1 after

a robot action ut(j, φpick, φplace),

p(qit|qit−1, ut(j, φpick, φplace), b
i
t, o

i)

∝







w1N (φplace, σ
2
1) + w2N (qit−1, σ

2
2), if i = j

N (qit−1, σ
2
3), if i 6= j

(4.10)

If the action ut is targeted on object oi, then either the action succeeds and the object is moved to

the place pose φplace with uncertainty characterized by σ2
1 , or the action fails and the object stays at

its previous pose qt−1 with uncertainty characterized by σ2
2 . If the action ut is not targeted on object

oi, then we assume that the object stays at its previous pose qit−1 with uncertainty characterized by

σ2
3 . In cases where the action fails due to the manipulated object being accidentally mishandled, the

new pose qt far from its previous pose qt−1 or its expected pose from manipulation success. This

possibility is currently not modeled. Instead, the data association will handle this object through

the spawning of a new estimator.

4.3.3 Greedy Data Association

Data association is needed to associate each currently detected object bounding box with at most

one object estimator at each moment in time. We use a greedy algorithm for our data association

problem, which yields similar results at the lower computational cost compared to the Hungarian

algorithm (as reported by [10]). First, a matching score matrix S of every pair (T i, blt) of the object
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Figure 4.4: The SUM dataset objects (a). Eight of these objects in a cluttered scene (b) viewed as

an observed depth image (c) and as ground truth (d).

estimator and the bounding box is calculated, with the matching score defined as

s(T i, blt) = IoU(bit−1, b
l
t)p(b

l
t|zt)p(oi|blt, zt) (4.11)

which consists of three factors: the overlap between blt and bit−1 by Intersection over Union (IoU),

the likelihood of an object to be in bounding box blt, the likelihood of object oi inside the bounding

box blt. The pair (T i∗, blt
∗
) with the maximum score in S is selected as an established association.

The rows and columns belonging to the object estimator T i∗ and the bounding box blt
∗

are removed

from S. This process is repeated until no further pairing is possible. In the end, we only keep the

established associations with a matching score above a chosen threshold. A new object estimator

is spawned for a bounding box blt not associated with any existing object estimators. An object

estimator will be terminated if it is not associated with any bounding boxes for K consecutive

frames.

4.4 Results

We first examined SUM on single scenes with the estimation on static images without robot actions.

We compare SUM with a local descriptor, Fast Point Feature Histograms [90], on 10 test scenes

of cluttered unstructured environments. For sequential manipulation, eight experiments for sorting

objects into two groups were performed with a Fetch mobile manipulation robot.

SUM was run on a Ubuntu 14.04 system with a Titan X Graphics card and CUDA 7.5 with

625 particles and 20 resampling iterations for all trials. σc is set to 0.1. Sensor resolution ǫ is set
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(a) (b)

(c) (d)

Figure 4.5: The plots compare the performance between our method SUM and FPFH with respect

to the accuracy of correct poses. In each plot, there is a fixed translation error bound (1cm, 5cm,

10cm and 20cm), the x-axis is the changing rotation error bound and the y-axis is the percentage

of the correct poses. Each point in the plot shows the accuracy of correctly localized objects with

a fixed translation and rotation error bound.

to 0.008 in meters. σ1, σ2 and σ3 are set to 0.04, 0.02, 0.01 respectively. A custom dataset of

15 household objects (Figure 4.4) was used for testing, as well as 3D model generation.For CNN

training, 8-10 streams of each object in the dataset was captured in a variety of different poses with

different backgrounds. The whole training dataset contains 8366 ground truth images and 60563

background images. The Caffenet model [43] was used for network fine-tuning, which was trained

on ImageNet [24].
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: (a)(d) The detection results from EgdeBox and R-CNN object detector . (b)(e) Inter-

mediate results from SUM which contain false positive estimation (c) The scene estimate result of

(a) after thresholding, correct the false positives: two ”spray bottle”, a ”shampoo” and a ”sugar”.

(f) The scene estimate result of (d), correct the false positives: ”ranch”, ”waterpot”, ”spray bottle”

and ”tide”.

4.4.1 Single Scene Estimation

SUM was evaluated and compared with FPFH on 10 single scenes, with 10 trials each, with respect

to the accuracy of estimated object poses.We compute the accuracy of correct poses over all the

test scenes and all the runs. Accuracy is defined as the number of correctly localized objects over

the total number of detection true positives from the RCNN object detector, where a true positive

has IoU greater than 0.5 between estimated and ground truth bounding boxes. We deem an object

as correctly localized if its translation error and rotation error fall with chosen error bounds. The

translation error is the Euclidean distance between estimated object position (x, y, z) and ground

truth pose (xgt, ygt, zgt) and the orientation error is the shortest angle error between estimate object

(roll, pitch, yaw) and ground truth (rollgt, pitchgt, yawgt).

The four plots in Fig. 4.5 depict the comparison between SUM and the baseline method. In
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Sequence(a) Sequence(b) Sequence(c) Sequence(d) Sequence(e) Sequence(f) Sequence(g) Sequence(h)

Number of

total objects
5 5 5 5 5 5 5 5

Number of

Manipulation Errors
1 1 2 0 0 1 1 0

Number of

Manipulation Trials
4 6 7 5 5 5 6 5

Completion

Ratio
0.80 1.0 1.0 1.0 1.0 0.8 1.0 1.0

Table 4.1: The table shows results of manipulation experiments for 8 sequences. The first row

shows the number of objects in each scene. The number of the manipulation errors and trials for

the sequence are shown in row two and row three. The last row shows the ratio of how much the

recognizable objects on the table are successfully sorted by the robot.

each plot, there is a fixed translation error bound (1cm, 5cm, 10cm and 20cm) and the x-axis is

the changing rotation error bound. The y-axis is the percentage of the correct poses. We can see

in Fig. 4.5a, 4.5b and 4.5c, our method performs better than FPFH in the small error bounds

(translation error smaller than 1cm, 5cm 10cm). SUM can also reject false positives from detection

results. Fig 4.6 shows two examples of how SUM corrected false positives from detection results.

We also calculated the mean ratio of rejected detection false positives. The mean ratio of rejected

detection false positives over all the test scenes is 0.84 and the standard error over 10 runs is 0.0126.

4.4.2 Estimation and Manipulation on Sequential Scenes

In the manipulation evaluation, the robot must sort objects on a cluttered tabletop into cleaning

and non-cleaning categories by picking and placing the object into the right or left bin. In order to

make a natural unstructured scene, we avoid manually placing objects in the scene by indiscrim-

inately pouring the objects onto the cluttered table. After scene estimation by SUM, the object

with the most likely estimate is selected to be grasped and sorted into the appropriate bin. No

matter whether the robot succeeds or not, SUM updates the pose hypotheses by the action model,

associates the object estimators with current detection results and estimates the scene iteratively.

The manipulation results are shown in Table 4.1. Each scene contains five recognizable objects.

We evaluate the method by the completion ratio of each sequence shown in the last row of the table.

The completion ratio is how much the recognizable objects on the table are successfully sorted by
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the robot. The robot successfully completed six out of eight sequences. In sequence(a), failure

occurred when the robot was trying to pick up ”downy”, it swept ”sugar can” onto the ground. In

sequence(f), the robot failed to pick up “waterpot” as the feasible grasp poses are out of the joint

limits of the arm. As shown in the second row, a manipulation action error occurs about once on

average per trial. Despite such errors, SUM performs robustly to not only detection uncertainties

but also manipulation failures. As shown in Figure 4.7, there is a manipulation error in the fourth

action of the sequence, where the “spray bottle” slipped from the gripper. SUM subsequently

estimated this object again and the robot picked it up successfully. More experiments are provided

in the video1.

4.4.3 Robotic Manipulation Experiment in Adversarial Scenarios

In this experiment, we compare the robot grasping results using Faster-RCNN [86] and our pro-

posed method for the object detection and pose estimation stages to get an initial understanding

of how these two approaches might perform under adversarial attack. The task for the robot is to

recognize the Coke can and then pick and place it on the black tray.

Figure 4.8 shows the results from these two methods. We first make a basic scene with normal

light condition and minimum occlusion of objects in our dataset (”Coke”, ”clorox”, ”downy” and

”ranch”). We then mimic three adversarial scenes by changing the light conditions, making the

Coke can partially occluded and altering the surface of the Coke. In the basic scene, both Faster-

RCNN and our method correctly recognize all the objects and the robot successfully picks and

places the Coke on the tray. However, in the adversarial scenes, the performance of Faster-RCNN

is not satisfactory while the two-stage method remains reliable. In the dark scene, Faster-RCNN

only detects one object, but it is a false positive, while our method finds three objects correctly

though missing the ”ranch”. When the Coke is partially occluded or wrapped with a cover, Faster-

RCNN fails to detect it, while our approach gives not only the correct label and bounding box but

also a good pose estimation, so that the robot succeeds in picking and placing.

1https://youtu.be/ry0mqY5I-04
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4.5 Summary

In this chapter, we propose SUM as a combined generative and discriminative approach to robust

sequential scene estimation and manipulation. SUM utilizes output from a discriminative object

detector and recognizer to guide the generative process of sampling scene hypothesis for 6DOF

pose estimation. By maintaining a belief over object poses over a sequence robot actions, SUM

is able to perform robust estimation and manipulation in a cluttered and unstructured tabletop

scenario.
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Figure 4.7: Sequential manipulation by a robot to sort 5 objects on a cluttered tabletop into two

bins: cleaning (right bin) and non-cleaning (left bin). From the left to right is the detection results

from RCNN object detector, most likely object from SUM, computed collision-free grasp poses

and robot manipulating the object in action. Our system estimated and manipulated “tide”, “scotch

brite”, “spray bottle”, “sugar” and “toy” sequentially.
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(a) Basic Scene (b) Faster-RCNN Detection (c) Two-Stage Detection (d) Grasping

(e) Dark Scene (f) Faster-RCNN Detection (g) Two-Stage Detection (h) Grasping

(i) Cluttered Scene (j) Faster-RCNN Detection (k) Two-Stage Detection (l) Grasping

(m) Surface-Change scene (n) Faster-RCNN Detection (o) Two-Stage Detection (p) Grasping

Figure 4.8: The robot task is to pick the can of Coke and place it on the black tray under various

adversarial scenes. One basic scene (a) and three adversarial scenes (b)(c)(d) are shown above. (b)

is a dark scene, (c) is a cluttered scene in which the Coke is partially occluded, and (d) is a scene

in which the Coke is wrapped with a brown cover. Figures (b)(f)(j)(n) show the detection results

from the Faster-RCNN detector with a threshold of 0.5. The Faster-RCNN detector was not able

to detect the Coke in those adversarial scenes. Figures (c)(g)(k)(o) show the detection results from

our method. The detector missed the bottle of ranch in the dark scene, but successfully detected

all the Coke cans and other objects in our dataset. Figure (d)(h)(i)(p) show the moment when the

robot successfully picked up the Coke can, given the detection from our method.
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CHAPTER 5

Geometric Consistency informed Scene Estimation

in Dense Clutter

SUM ignores physical interactions between objects by assuming objects are independent with each

other. However, as the structure of the objects becomes more complex as in densely cluttered

environments, taking physical interactions into account benefits reliable scene perception. In this

chapter, We propose GeoFusion, a SLAM-based scene estimation method for building an object-

level semantic map in dense clutter. In dense clutter, objects are often in close contact and severe

occlusions, which brings more false detections and noisy pose estimates from existing perception

methods. To solve these problems, our key insight is to consider geometric consistency at the ob-

ject level within a general SLAM framework. The geometric consistency is defined in two parts:

geometric consistency score and geometric relation. The geometric consistency score describes

the compatibility between the object geometry model and observation point cloud. Meanwhile, it

provides a reliable measure to filter out false positives in data association. The geometric relation

represents the relationship (e.g., contact) between geometric features (e.g., planes) among objects.

The geometric relation makes the graph optimization for poses more robust and accurate. GeoFu-

sion can robustly and efficiently infer the object labels, 6D object poses, and spatial relations from

continuous noisy semantic measurements. We quantitatively evaluate our method using observa-

tions from a Fetch mobile manipulation robot. Our results demonstrate greater robustness against

false estimates than frame-by-frame pose estimation from the state-of-the-art convolutional neural

network.
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Figure 5.1: Given a robot moving around a table of cluttered objects (left), and noisy semantic

measurements from state-of-the-art neural networks (middle), the robot builds an accurate and

robust object-level semantic map (right).

5.1 Motivation

To make autonomous robots taskable such that they function properly, meet human expectations,

and interact fluently with human partners, they must be able to perceive and understand the se-

mantics of their environments [54]. More specifically, as robots move around in the environment,

they must know what objects are presented as well as their locations. It is desired for robots to un-

derstand the semantic aspects of the scene and build a map at the object-level. An object-oriented

representation of the world is a natural and efficient way for robots to make high-level decisions

using task-level planners and help them to communicate with human users.

The challenge is that many semantic aspects of the world are difficult for robots to sense directly

due to the limited field-of-view and noisy observations from their onboard sensors. Great progress

has been achieved by the advances in deep neural networks for object detection [86, 60, 40] and

6D object pose estimation [116, 109, 111]. However, building a semantic map at the object-level

remains a challenging problem, especially in densely cluttered environments. Because in such

dense clutter, objects are often in close contact, causing severe or complete occlusions.

One promising approach for building object-level maps is to fuse semantic measurements from

different viewpoints. Robots can take advantage of their ability to move around the environment

and provide continuous observations. More specifically, the data association between measure-

ments and objects are first determined [115] and probabilistic model are built over objects and

robot poses to infer the semantic map (SLAM++ [94], Fusion++ [65]) or belief over objects (CT-

MAP [119]). Such methods perform inference directly on the object instance instead of low-level
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primitives (points, surfels). This approach to inference offers faster inference, more compact map

representation, and the potential for dynamic object reasoning. We posit that this approach is

particularly advantageous in dense clutter. The geometric properties of object instances and the

geometric relationship between objects can be used for more robust data association and accurate

pose estimation.

In this work, we present GeoFusion , a SLAM-based approach for inferring object labels and

6D poses from continuous noisy measurements in dense clutter by exploring the geometric con-

sistency of the object instances. The geometric consistency is defined in two parts: geometric

consistency score and geometric relation. The geometric consistency score describes the com-

patibility between object geometry model and observation point cloud. Meanwhile, it provides a

reliable measure to filter out false positives in data association. The geometric relation represents

the relationship (e.g., contact) between geometric features (e.g., planes) among objects. More-

over, geometric relation is directly amenable to make better decisions for high-level task planners

[66, 58].

Given noisy measurements from state-of-the-art object detection [40] and pose estimation [111]

systems, our method first determines the correct correspondences between measurements and ob-

jects with geometric consistency between measurements and point cloud observations. The asso-

ciations are then used to build a factor graph along with the geometric relations between objects.

We use the fast optimization technique to get the maximum likelihood estimation of object and

robot poses. We quantitatively evaluate our method and demonstrate that GeoFusion is able to

estimate geometrically stable scene and be robust against false estimates from state-of-art frame-

by-frame estimation system and outperforms the baseline methods that do not consider geometric

consistency.
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5.2 Formulation

Our aim is to estimate the semantic map composed of a collection O = {oj}Mj=1 of M static objects

as well as geometric relationships R = {rij|i, j ∈ [1,M ]} between them with the assumption

of known 3D object geometries. Note that the number of objects M is unknown. Each object

oj = (ocj, o
p
j) contains object class ocj ∈ [1, C] and 6D object pose opj ∈ SE(3). Each rij describes

the geometric spatial relation between geometric features of two objects (e.g. support), more of

which will be discussed at Sec. 5.4.2.

When the robot moves around in the environment, it observes a set of semantic measurements

Z = {{zkt }Nt

k=1}Tt=1, where T is the total time step robot has travelled, and Nt is the number of

semantic measurements at each time step. Similar to the definition of object, each semantic mea-

surement zkt = (zk,ct , zk,pt ) is comprised of object class and 6D pose. The robot poses represent

as X = {xt}Tt=1, where xt ∈ SE(3) is also 6D pose in our case. In addition, the correspon-

dence between objects O and measurements Z also needs to be determined and is defined as

D = {{dkt }Nt

k=1}Tt=1 where dkt = j stipulates that measurement zkt corresponds to object oj .

A complete statement of this problem is the maximum likelihood estimation of X , O, and D

given the semantic measurements Z and the geometric relation R is computed heuristically from

O:

X̂ , Ô, D̂ = argmax
X ,O,D

log p(Z|X ,O,D) (5.1)

As the joint estimation of objects, data association and robot poses suffers from the high di-

mensionality, the most common approach is to decompose Eq. 5.1 into two separate estimation

problems: data association and graph optimization. The maximum likely estimation data associa-

tion D is first computed given initial estimates of robot poses X (0) and objects O(0). Then given

computed D̂, the most likely robot poses and objects are estimated:
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D̂ = argmax
D

p(D|X (0),O(0),Z) (5.2)

X̂ , Ô = argmax
X ,O

log p(Z|X ,O, D̂) (5.3)

Again, we decompose Eq. 5.3 to a two-step optimization where the object and robot poses

are first optimized and the geometric relation R will be computed heuristically from O and these

geometric relations will, in turn, pose constraints on factor graph for estimating geometrically

stable scene:

X̂ , Ô′

= argmax
X ,O

log p(Z|X ,O, D̂) (5.4)

Ô = argmax
O

log p(Z|O,R) (5.5)

5.3 Data Association

As the number of objects is not known as prior knowledge, we proposed a non-parametric cluster-

ing based approach for data association based on DPmeans algorithm [53], as shown in Algorithm

1. Given initial estimates of objects O(0), robot poses X (0) and measurements Z , we compute

how likely each measurement belongs to current objects, being a new object or a false positive.

The objects are created, updated and deleted dynamically as the data association process moves

forward.

5.3.0.1 Association

For each measurement zkt in frame t, the likelihood of zkt being assigned to object oj will be

calculated as follows:

P (dkt = j) ∝ I
z
k,c
t =ocj

fgc(z
k
t |oj) f(zkt |oj, xt), (5.6)

64



Algorithm 1: Clustering Based Data Association

Input: Measurements Z , Robot poses X , Objects O
Output: Data Associations D

1 for Each measurement zkt do

2 for Each object oj do

3 Compute likelihood of zkt of being object oj:

4 p(dkt = j) ∝ I
z
k,c
t =ocj

fgc(z
k
t |oj)f(zk,pt |opj , xt);

5 end

6 if max pj ≤ ǫnew then

7 NewObjectInit(zkt );

8 else

9 dkt = argmax pj;
10 end

11 end

12 for Each object oj do

13 Compute false positive score fj and remove it if score is above ǫfp
14 end

where I
z
k,c
t =cci

is the label factor and it is obtained using an indicator function that evaluates to 1 if

zk,ct = cci and 0 otherwise, meaning that each measurement will only be assigned to a object with

the same label.

The second term fgc(z
k
t |oj) captures the geometric consistency score between measurement

and the observation point cloud and provides a measure of how reliable the given measurement is.

The motivation behind this term is that the confidence score given by neural networks sometimes

are not accurate enough to describe the reliability of the measurement. Given a measurement zkt ,

a point cloud is back-projected from the rendered depth image and compared with the observation

point cloud to compute projective inlier ratio ri, outlier ratio rout and occlusion ratio rocc. A point in

the rendered point cloud is first considered as an occlusion point if it is occluded by the projective

point shooting from the camera ray. If not, it is considered as an inlier if the distance with the

projective point is less than certain sensor resolution ǫres, or outlier if the distance is greater than

ǫout. Fig. 5.2 shows an example of different types of points. The ratios are computed over the total

number of rendered points. And they are used as follows:
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Figure 5.2: Geometric consistency score between measurements and point cloud observation. The

zoomed in picture shows the inlier, outlier and occlusion points of a mustard bottle. Point cloud

observations are shown in blue. Inlier points are shown in green, outlier in red and occlusion in

orange.

fgc(z
k
t |oj) = S(ri)S(1− rout)S(1− rocc) (5.7)

where S is the modified sigmoid function providing an S-shaped logistic curve that is well-adapted

to reflect the changing tendency of confidence on the given measurement over different values of

each ratio.

f(zkt |oj, xt) is the pose factor that reflects the similarity of measurement pose and object pose,

given the current robot pose xt. Here, we make the assumption that the likelihood of each mea-

surement zkt given the robot pose and the object pose follows a multivariate Gaussian distribution.

f(zkt |oj, xt) ∼ N (x−1
t · opj , Q) (5.8)
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where Q is the measurement noise matrix and this factor can thus be drawn from the Gaussian

probability density function. With all the factors described above, zkt is assigned to be the maxi-

mum likelihood object if the object is within a certain threshold ǫnew, otherwise, it is assigned to a

new object.

The One Measurement Per Object (OMPO) constraint [115] is also applied in this process so

that two measurements in the same frame will never be assigned to the same object and the latter

will be assigned to a new object instead.

5.3.0.2 False positive removal

False positive score For each object candidate created or updated in the association step, we

compute its false positive score fj as follows:

fj = 1− Rj

1 + e(−ni)
(5.9)

where nj is the number of measurements assigned to oj and Rj is the maximum geometric

consistency score among all of these measurements. If there are more measurements assigned to

one object, it is reasonable to consider this object as more reliable among others thus it deserves

a lower false-positive score. All objects with false-positive scores higher than ǫfp will then be

deleted.

Overlapped objects merging We notice that most of the false positive measurements usually

overlap with other objects, especially for symmetric objects, like a cylinder-shape tomato soup can.

Object-level geometric consistency is incorporated again to address this problem as we applied the

Separating Axis Theorem (SAT) [34] to detect the collision ratio of the three-dimensional bounding

boxes of any two objects. Corner points of each bounding box are projected to several main axes

and the overall collision ratio is decided based on the percentage of overlap along each axis. One

object with a high collision ratio will be merged to the other one that has a lower false-positive

score. A Non-Maximum Suppression (NMS) algorithm [75] is also adopted to ensure we find the
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Figure 5.3: Factor graphs for our two stage optimization method.

best candidate when there are multiple objects that overlap with each other.

5.4 Graph Optimization

After the associations D between objects O and semantic measurements Z have been determined,

the most likely robot and object poses are then inferred in the graph optimization process. The

factor graph is used to model robot and object states and express the conditional independence

between them. It gained a huge success in solving SLAM problems [?] due existing computational

tools that allow efficient optimization [?]. In a factor graph, there exists a set of vertices V that

represent optimization random variables and edges represent factors F among a subset of random

variables. A factor f represents probabilistic dependencies among the random variables and is

associated with a cost function. Graphically, the vertex is a circle and the factor is a square in the

factor graph, as shown in Fig. 5.3. The joint probability of the optimization random variables can

be expressed as the product of factors:

p(V) ∝
∏

f∈F

f(V) (5.10)
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The optimization process in GeoFusion is decomposed into two stages, as shown in Fig. 5.3.

First, 6D poses of the robot and the objects are optimized over odometry and semantic measure-

ments. In the second stage, 6D poses of objects are then fine-tuned over the computed geometric

relations to produce a geometric consistent scene estimate.

5.4.1 Stage I Optimization

The right hand side of Eq. 5.4 is rewritten as:

log p(Z|X ,O, D̂) =
T∑

t=1

φ(T t−1
t ; xt−1, xt) +

T∑

t=1

Nt
∑

k=1

φ(zk,pt ; xt, o
p

dkt
)

where φ(T t−1
t ; xt−1, xt) is the odometry factor and φ(zk,pt ; xt, o

p

dkt
) is the object measurement factor.

T t−1
t is the odometry measurement between robot pose xt−1 and xt. z

k,p
t is the semantic measure-

ment of an object between the robot pose xt and the object pose op
dkt

. With the standard assumption

of additive Gaussian noise, each factor follows a quadratic form:

φ(T t−1
t ; xt−1, xt) = −1

2
(xt ⊖ xt−1 − T t−1

t )Q−1(xt ⊖ xt−1 − T t−1
t )

φ(zk,pt ; xt, o
p

dkt
) = −1

2
(xt ⊖ op

dkt
− zk,pt )R−1(xt ⊖ op

dkt
− zk,pt )

where ⊖ represents the operator that computes the relative transformation. Q and R is the corre-

sponding covariance noise matrix. Thus, The maximum likelihood estimation of X and O can be

written as the nonlinear least-squares problem:

X̂ , Ô′

= argmin
X ,O

T∑

t=1

‖xt−1 ⊖ xt − T t−1
t ‖ΣQ

+
T∑

t=1

Nt∑

k−1

‖xt ⊖ op
dkt

− zk,pt ‖ΣR

1 (5.11)
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Figure 5.4: Two types of the surface features: the left one is the plane surface feature, and the right

one is the curved surface feature.

where ΣQ and ΣR is the information matrix. Note that the as the metrics for translations and

rotations are different, the information matrix for them is also different. We use Σp for translations

and Σq for rotations which represent as quaternions. Σp and Σq are diagonal matrices and represent

as Diag(ωp, ωp, ωp) and Diag(ωq, 0, 0, 0). For symmetric objects in the object measurement factor,

we design a separate Sigmaq for the rotation. For example, object with rotation axis in z-axis is

associated with Σq = Diag(0, ωq, ωq, 0) to exclude the influence from z-axis.

5.4.2 Object Geometric Relationship Inference

In stage I optimization, the maximum likelihood estimation of robot and object poses is obtained

by minimizing the odometry and object measurement cost. However, the resulting object poses

are still noisy and not accurate enough for applications like precise robot manipulation. The noisy

object poses lead to geometrically inconsistent scene estimate, e.g., floating or intersection between

objects. To get a highly accurate and geometrically consistent scene estimate, we posit that if

the geometric relationship between objects can be inferred and these relations can serve as the

1‖X‖Ω =

√
XTΩX
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constraints (factors) between objects in the factor graph model, as shown in the right of Fig. 5.3.

Given the estimated object poses O from Eq. 5.11, R is heuristically computed.

5.4.2.1 Geometric Surface Feature

For common rigid household objects, we only consider contact relations between surfaces for gen-

erality in representing the geometry of the object and efficiency in the graph optimization process.

In this paper, geometric surface features are divided into two classes: plane surface feature and

curved surface feature. An illustration of surface features is shown in Fig 5.4.

Given an arbitrary convex polyhedron, geometric surface features can be extracted. For ex-

ample, there are six plane surfaces and twelve curved surfaces for a cube-like geometry, as it has

six planes and twelve edges. The edge is treated as a zero radius curve surface. For cylinder-like

geometry, there are two plane surfaces and one curved surface. Although the two classes of sur-

faces cannot represent all of the objects (e.g., articulated or non-rigid objects), they are general and

sufficient for common rigid household objects.

Plane Surface Feature Plane surface feature refers to those planes on polyhedrons. There are

three attributes associated with plane surface feature: a center point Cp ∈ R3, a set of points

Bp = {bip}Nb

i=1 with bip ∈ R3, and the normal direction Np ∈ R3. Cp describes the 3D position

of the plane center. Each bip is the 3D position of a boundary point on the surface and Nb is the

number of boundary points.

Curved Surface Feature The curved surface feature describes those curved surfaces in 3D

shapes like cylinders. Noticeably, edges of polyhedrons are also regarded as a curved surface

feature with a radius equal to zero. Five attributes are associated with the curved surface feature:

Cc ∈ R3 and Nc ∈ R3, determining the 3D position of center and direction of the rotation axis of

the curved surface. Bc = {bic}2i=1 with bic ∈ R3 refers to the 3D position of boundary points in the

rotation axis. Radius r describes the radius of the curved surface.

Accordingly, we define three types of spatial relations between these two surfaces: Plane2Plane
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Figure 5.5: Illustrations for geometric relationships. Plane to plane (P2P) contact, plane to curved

surface (P2C) contact, and curved to curved surface (C2C) contact are shown from the left to the

right.

Contact (P2P), Plane2Curve Contact (P2C), and Curve2Curve Contact (C2C). Fig 5.5 illustrates

these geometric relations.

5.4.2.2 Geometric Feature Relationship Inference

P2P contact If two different plane surface features Pu, Pv from two objects oi, oj are contacting

each other, their attributes should follow the following rules:

|ToiN
i
Pu

· TojN
j
Pv

+ 1| < ǫppn

|ToiN
i
Pu

· (TojC
j
Pv

− ToiC
i
Pu
)| < ǫppc

(5.12)

where ǫppn , ǫppc are the direction threshold and distance threshold for P2P contact.

P2C contact If a plane surface feature Pu and a curved surface feature Cv are contacting each

other, their attributes should follow the following rules:

|ToiN
i
Pu

· TojN
j
Cv
| < ǫpcn

|ToiN
i
Pu

· (TojC
j
Cv

− ToiC
i
Pu
)− rj| < ǫpcc

(5.13)

where ǫpcn , ǫ
pc
c are the direction threshold and distance threshold for P2C contact.
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C2C contact If two different curved surface features Cu, Cv are contacting each other, their

attributes should follow the following rules:

|(ToiN
i
Cu

× TojN
j
Cv
) · (TojC

j
Cv

− ToiC
i
Cu
)− (ri + rj)| < ǫccc (5.14)

where ǫccc is the distance threshold for C2C contact.

5.4.2.3 Physical Relationship Check

We also add two physical based checks in complement to the above geometric methods to ensure

eliminating false detected contact. For example, if two cubes are placed parallel and close to each

other on the table, a P2P contact can be detected. However, there is a chance that those objects are

just near to each other but not contacting each other.

Support direction check If a plane feature can support another plane or be supported, its normal

direction can not be horizontal to the gravity direction. Assume the direction of gravity is NG, the

support direction check of plane feature i is defined as:

NG ·N i
p > ǫG (5.15)

where ǫG is the threshold for support direction check. Here we make an implicit assumption

that there is at least one grounded object, e.g., table, which supports all the other objects. Similar

assumption can be found in SLAM++ [94].

Qualitative Support projection check If there is a support relationship between two features,

their 2D projections along the direction of gravity must be overlapped. For those contact feature

candidates, their 2D projections are the polygon or the edge projected from their boundary points.

The Separating Axis Theorem is applied again to check the overlapping of those 2D contours.

Those feature candidates whose 2D projections are not overlapped will be removed.
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5.4.3 Stage II Optimization

After spatial relations R between objects have been computed from the estimated object poses

in stage I optimization, these relations are used as constraints in the factor graph optimization.

These constraints will enforce proper contact between objects and fix the issues of floating and

interpenetration. We can rewrite the right hand side of Eq. 5.5 as:

log p(Z|O,R) =
M∑

i=1

M∑

j=1

φ(rij; o
p
i , o

p
j)

M∑

i=1

φ(o
′

i; oi) (5.16)

where φ(rij; o
p
i , o

p
j) is the geometric relation factor and φ(o

′

i; oi) is the object prior factor. The

object prior factor comes from the estimated object poses in stage I optimization. The geometric

relation factor encodes the contact constraint between two objects computed from the previous

section. Accordingly, there are three constraints: P2P, P2C, and C2C. For P2P constraint, the cost

function is defined as:

EP2P = ωq|ToiN
i
Pu

· TojN
j
Pv

+ 1|+ ωp|ToiN
i
Pu

· (TojC
j
Pv

− ToiC
i
Pu
)|

Similarly, the cost function of P2C constraint is defined as:

EP2C = ωq|ToiN
oi
u · TojN

oj
v |+ ωp|ToiN

oi
u · (ToiC

oi
u − TojC

oj
v )|

and the cost function of C2C is defined as:

Ep2c = ωp|(ToiN
oi
u × TojN

oj
v ) · (ToiC

oi
u − TojC

oj
v )− (rv + ru)|

74



FbF B-SLAM R-Front GeoFusion

mAP50 58.4 56.0 72.3 73.4

mAP75 28.6 24.6 50.3 59.5

mAP50:95 30.5 27.9 45.2 50.3

Table 5.1: Object detection performance of different methods with mAP under different IoU.

5.5 Experiments

5.5.1 Implementation

We use Mask R-CNN [40] and DenseFusion [111] to generate semantic measurements where the

former detects objects along with the instance segmentation which the latter takes in to estimate

the 6D pose. We finetune the Mask R-CNN with the YCB-Video Dataset [116] with the pretrained

Microsoft coco model [59]. We use the public available DenseFusion weights and implementation

without fine-tuning. The front-end in our implementation selects every 10th camera frame as a

keyframe. The camera visual odometry is provided by ORB-SLAM2 [?]. We use Ceres [2] as

the optimization backend. In our implementation, we perform stage I optimization every 10th

keyframe and perform stage II optimization every keyframe.

5.5.2 Dataset and Baseline

To test the performance of our method, we collect a testing dataset from six RGBD video streams

in which our Michigan Progress Robot moves around the table. In each scene, we put around 18

objects in dense clutter on the table and collect around 200 keyframe RGB-D observations from

the robot’s sensor. The groundtruth object classes and poses are labelled using LabelFusion [63].

For baseline methods, we compare our method with frame-by-frame (FbF) estimation from Mask

R-CNN and DenseFusion. It only considers the single frame and does not take any temporal or

spatial constraints into account. We also compare with the variations of our proposed GeoFusion

: 1) a baseline SLAM (B-SLAM) method without considering geometric consistency in both data
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FbF B-SLAM R-Front GeoFusion

Pr Rec Pr Rec Pr Rec Pr Rec

mAP50 0.87 0.60 0.87 0.27 0.91 0.43 0.99 0.51

mAP75 0.56 0.38 0.63 0.19 0.75 0.35 0.91 0.46

mAP50:95 0.52 0.35 0.57 0.17 0.65 0.30 0.77 0.40

Table 5.2: Object detection performance on precision (Pr) and recall (Rec) for different methods

under different mAP. The detection confidence threshold is set to 0.5.

association and graph optimization. The confidence score from DenseFusion instead of the geo-

metric consistent score is used in computing data association. The back-end graph optimization

only optimizes over odometry and object poses without considering spatial constraints between

objects. 2) a robust front-end (R-Front) method where only our data association is used and not

the graph optimization.

5.5.3 Evaluation

5.5.3.1 Object Detection

We first compare object detection performance with baseline methods on each keyframe collected

in the dataset.

mAP We use the common object detection metric: mean average precision (mAP), to evaluate

object detection. Average precision (AP) is the area under the Precision-Recall curve of an object

class and mean average precision is the mean of all the AP. The subscript under mAP is the ratio of

intersection over union (IoU) between the estimated bounding box and the ground truth bounding

box. We also use mAP@[50:95] which corresponds to the average AP for IOU from 0.5 to 0.95

with a step size of 0.05.

Results are shown in Table 5.1. GeoFusion significantly outperforms the frame-by-frame

method in all mAP metrics indicating that our method is capable of identifying false detections

and keeping true ones from noisy semantic measurements. Robust front-end method achieves the
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Figure 5.6: Pose accuracy comparison between different methods.

similar mAP50 with GeoFusion however underperforms in mAP75 and mAP50:95. It shows that the

back-end optimization improves the 6D poses of objects, which in turn increases the mAP with a

tighter threshold in IOU. The baseline SLAM method does not take any geometric consistency into

account and the performance is even worse than the frame-by-frame method. This is because the

false and noisy measurements accumulate in the baseline slam and without the help of geometric

consistency, they are difficult to be eliminated from the estimates.

Precision and Recall For a more intuitive evaluation on the object detection, we also report

numbers on precision (Pr) and recall (Rec) with a confidence score threshold set to 0.5. As shown

in Table 5.2, GeoFusion outperforms all the baseline methods under different mAP metrics. With

the ratio of IOU increases for checking true positives, the performance gap between GeoFusion
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Figure 5.7: The comparison of the two-stage optimization of 230th keyframe of the scene in Fig.

5.1.

and baseline methods becomes larger. Interestingly, the recall of the Frame-by-frame method under

mAP50is higher than GeoFusion. This is because GeoFusion has a strict way to filter out false and

noisy detections. In other words, detections are chosen very conservatively by GeoFusion which

leads to more false negatives in a looser metric.

5.5.3.2 Pose Accuracy

For 6D object pose accuracy, we use the ADD-S metric [116] to compute the average point distance

between the estimated pose and the correct pose. Only true positives are computed at each frame

for each method. As our aim is to build a high accuracy object-level map and the precision required

by the robot to grasp objects are relatively high, we plot the accuracy-threshold curves within the

range of [0.00m, 0.02m] as shown in Fig. 5.6. GeoFusion achieves the highest pose accuracy

among all the methods and about 90% percent of the objects have achieved pose error under 1cm.

The pose accuracy of the baseline SLAM method is even worse than the Frame-by-Frame method

indicating that the confidence score from perception module is sometimes not reliable.

5.5.3.3 Run Time

We show an analysis of run time in Fig. 5.8 on each frame for data association and optimization

of an example scene in Fig. 5.1. Note that our method only runs on CPU (without measurements

generation), the average time for each frame is under 200 ms
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Figure 5.8: Time plot for each frame of the scene in the Fig. 5.1

5.5.3.4 Geometric Relation

Fig. 5.7 compares the results of two optimization stage of the scene in Fig. 5.1. The left figure is

the result of the optimization stage I without geometric relation constraints and the right figure is

the result after optimized over geometric constraints. The geometric constraints pulled objects to

satisfy the constraints. For example, the objects on the right are more aligned with the table and

the intersection between objects is fixed.

5.6 Summary

In this work, we present GeoFusion , a SLAM-based scene understanding method for building a

semantic map at object-level in dense clutter while taking into account geometric consistency. Our
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method is able to infer object labels and 6D poses from noisy semantic measurements robustly

and efficiently. The reasoning at object-level with geometry offers a fast and reliable way to filter

out false positives and constraint the object through geometric relation. The computed geometric

relations are also directly amenable to high-level task planners for robots to reason over actions for

goal-directed manipulation tasks.
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CHAPTER 6

Discussion and Conclusion

6.1 Conclusion

This dissertation presents several methods that perform reliable scene perception under uncertainty

for robotic goal-directed manipulation. The proposed methods expand the reliability of the scene

perception towards robustness, adaptability, and scale: 1) robust perception under uncertainty re-

sults from low-level hardwares, imperfect algorithms and unstructured environments, 2) adaptable

perception to unforeseen and adverse conditions, 3) scalable perception when the number of ob-

jects grows, and the structure of objects becomes more complex.

In Chapter 3, we present a pure generative approach, AxScEs , to estimate the approximate

distribution of a tree-based scene graph to capture the uncertainty from sensor measurements.

AxScEs generates hypotheses to maintain a diverse set of perspectives over possible scene graph

states. The proposed generative approach demonstrates its robustness to the local minimum in

the axiomatic state space and object pose space. Our results indicate that AxScEs estimators are

effective for manipulation-quality perception based on edit distance on scene graphs, estimation of

currently manipulatable objects, and object pose estimation.

In Chapter 4, we present SUM as a combined discriminative and generative approach to robust

sequential scene estimation and manipulation. SUM combines the efficiency of the discrimina-

tive methods and the robustness of the generative methods. The method achieves robustness and

adaptiveness to unstructured and adversarial environments.
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In Chapter 5, we present GeoFusion that explores physical interactions between objects to

build a geometric consistent scene estimate from objects in dense clutter. The interactions between

objects are characterized as geometric consistency. GeoFusion takes the geometric consistency

into account within a SLAM framework. The geometric consistency plays a vital role in both data

association and graph optimization modules in the SLAM framework. Our results demonstrate

high robustness, accuracy, and efficiency of scene estimation of household objects in dense clutter.

6.2 Future Directions

In this section, we present some future directions for researchers to carry on ideas from this disser-

tation.

6.2.1 Explore space and physics for real-time inference for AxScEs

In addressing problems of AxScEs , one of our primary aims is to enable axiomatic perception

that will enable a greater convergence of symbolic inference for task planning and collision-free

motion planning and execution. Overcoming the divides between perception, planning, and action

is a critical challenge for realizing the next generation of task-oriented mobile manipulators. In

this regard, our AxScEs estimators are only a step towards this goal. There are still many issues

to address, given the computational and spatial complexity that limit our current AxPF and AxMC

methods. Our methods focus on the space of potential scenes. We have yet to exploit the space

of plausible scenes, where the constraints of physics and space could bring scene inference into

tractability. Ideally, such scene inference could occur in real-time, similar to localization for mod-

ern autonomous navigation. While our models incorporate notions of dynamics for tracking, we

have left exploration of this issue as future work.
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6.2.2 Maintain multi-modal distribution of object poses with multiple in-

stances for SUM

The two-stage method presented in Chapter 4 has an assumption that only one instance appears in

the scene, and the final object pose is taken wherever particle filter converges. The case becomes

different when multiple instances appear simultaneously in the scene, and one of the directions

is to explore more advanced particle selection techniques that maintain multiple modes in the

probability distribution. This insight has been used as diverse particle selection in [79] to preserve

multiple modes during belief propagation for multiple human pose estimation, where optimization

is used to select those particles that naturally maintain multiple modes instead of the common

re-sampling process that is easy to lose modes with lower probability.

6.2.3 Explore point-wise error in optimization process

In GeoFusion , geometric constraints between objects are considered into factor-graph based op-

timization to force proper contact between objects. When the poses of two objects are interpen-

etrated with each other, the geometric constraint in the optimization will pull these two objects

out from each other until there is no intersection. If one object is floating on the other one, the

optimization process will push them together until a proper contact. The final estimate is a geo-

metric consistent scene estimate. However, the direction of the ‘pull’ or ‘push’ is purely random

and could be guided by the point-wise error between the observation point cloud and the rendered

point cloud. In this case, the guided refine direction can provide a more accurate scene estimate

that matches the observations.
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