
Real-Time Collision Imminent Steering Using One-Level
Nonlinear Model Predictive Control

by

John B. Wurts

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2020

Doctoral Committee:
Associate Research Scientist Tulga Ersal, Co-Chair
Professor Jeffrey L. Stein, Co-Chair
Dr. Vishnu Desaraju, Toyota Research Institute
Professor Brent Gillespie
Professor Ilya V. Kolmanovsky

John Benjamin Wurts

jbwurts@umich.edu

ORCID iD: 0000-0002-4049-8945

c© John Wurts 2020

All Rights Reserved

for me

ii

Acknowledgments

As I was preparing for my Eagle Scout court of honor, I came across the saying "behind

every Eagle Scout who believes in himself, is an Eagle Scout mom who believed in him

first." As I near completion of my doctoral studies, I now appreciate how the work of

doctoral students is empowered by so many along the journey.

First and foremost, I wish to extend my sincerest gratitude to my advisers, Dr.

Tulga Ersal and Dr. Jeffrey Stein. It is through their leadership, insight, and patience

that allowed me to grow as a researcher, but more broadly, critical thinker. On multiple

occasions they have allowed me to take risks in my research, foremost accepting me as

a graduate student, but also allowing me to branch far from our expertise along the

research path. Without their personal investment and desire to see me succeed, this

work herein would not have been possible.

My appreciation extends to my committee members and lab mates. I appreciate

the efforts of my committee to bring forward their insight as a means of refining my

research, with a special appreciation to Vishnu Desaraju for his efforts to showcase

the work herein on a live vehicle. And my appreciation to my lab mates, both early

in my studies to support my development and later towards completion to keep me

accountable and as an opportunity to continue the cycle.

I also wish to acknowledge Toyota Research Institute for their funding to support my

graduate studies. Through their university partnerships dozens of graduate students

are able to participate in cutting edge research while pursue advanced degrees. The

work herein is not possible without their support.

iii

To Elizabeth, as a personal example of the triumphs of hard work through adversary

and challenging times.

To my family, parents Judy and Michael, and siblings Meghan and Andrew, as a

steady guiding light to keep me on track and ever growing in life.

Along my journey, I am ever thankful of the personal investments those in my

life make in me. If I had to pin-point a single instance that led to this point, it was

when my father gifted me a Raspberry Pi for Christmas in 2014. That Raspberry Pi

supported my tinkering in electronics, and eventual automation of a remote controlled

car. It took many years of playing with that pet project until it grew into the scope of

a research project, morphing far from my initial tinkering.

That Christmas I received a few other electronics tinkering sets, most of which did

not go anywhere. But without that initial investment in my curiosity and passion, I

would not be where I am today. The path to the end goal is not known, but I am

forever grateful for the efforts by those in my life to encourage me to continue on.

iv

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables viii

List of Figures ix

Abstract xiv

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review on Automotive Collision Avoidance Controllers . . . 3

1.3 Literature Review on Computational Cost of Model Predictive Control 10

1.4 Research Objectives . 13

1.5 Dissertation Organization . 15

Chapter 2 CIS Controller Formulation 16

2.1 Candidate CIS Environment and Plant Model 17

2.1.1 Geometrically Generated Highway Environment 17

2.1.2 Host Vehicle Plant Model . 21

2.2 Prediction Model . 24

2.3 Curved Road CIS Fitness and Feasibility Formulation 26

2.3.1 Boundary Constraints . 26

v

2.3.2 Vehicle Stability: Tire Slip . 28

2.3.3 Terminal State Constraint . 33

2.3.4 Vehicle Physical Limits . 34

2.3.5 Objective Function: Minimum Slip 35

2.3.6 KS Function . 36

2.3.7 ρ Scaling . 39

2.4 Optimal Control Problem Formulation 40

2.5 Numeric Simulation of Curved Roads 43

2.5.1 Outside Lane Change . 43

2.5.2 Inside Lane Change . 46

2.5.3 Outside Double Lane Change 48

2.6 Straight Road Formulation . 50

2.6.1 Straight Road Environment . 50

2.6.2 Minimum Distance Objective Function Formulation 51

2.6.3 Outer Lane Boundary Constraint 52

2.6.4 Straight Road Stability Criteria 52

2.6.5 Minimum Distance Optimization Problem Formulation 53

2.6.6 Straight Road Numerical Simulations 54

2.6.7 Minimum Distance Performance Versus Maneuver Aggression . 57

2.7 Robustness Analysis and Adaptive Formulation 58

2.7.1 Literature Review on Adaptive Automotive Controllers 58

2.7.2 Adaptive Controller Design . 60

2.7.3 Numerical Simulations of Adaptive MPC Controller 64

Chapter 3 Computational Cost of Nonlinear MPC Controllers 72

3.1 Computational Cost: Integration Time Step 73

3.2 Analytic Derivatives of RK4 Explicit Integration 80

3.3 Trajectory Optimization Structure . 94

3.4 Parallel Hardware: GPU Acceleration through CUDA 101

vi

3.4.1 Block Parallel Multiple Shooting 102

3.4.2 Thread Parallel Multiple Shooting 103

Chapter 4 Summary and Outlook 107

4.1 Dissertation Contributions . 107

4.1.1 One-level Nonlinear MPC Controller Design 107

4.1.2 Window of Feasibility for CIS 108

4.1.3 Minimum Slip Controller Formulation 109

4.1.4 Adaptive CIS Controller Formulation 109

4.1.5 Real-time Controller Performance 110

4.2 List of Publications . 112

4.2.1 Conference Presentations . 112

4.2.2 Journal Publications . 113

4.2.3 United States Patent and Trademark Submission 114

4.3 Future Work . 114

4.3.1 Shared Control Formulation . 114

4.3.2 Robust Versus Adaptive Controller Formulations 115

4.3.3 Parallel Implementation of Nonlinear Numerical Optimizer . . . 116

Appendix 118

Bibliography 126

vii

List of Tables

2.1 14DoF Plant Parameters . 22

2.2 Pacejka Tire Properties . 23

2.3 3DoF Model Parameters . 26

3.1 Integration Scheme Resolutions . 79

3.2 Optimization Summary for Candidate CIS Maneuver Using RK4 Single

Shooting . 89

3.3 Solve Time Versus Number of Segments in Multiple Shooting. 98

viii

List of Figures

1.1 In a two-level control architecture, a separate path planning block passes

a reference trajectory to a path tracker, then sending a control command

to the plant. In a one-level architecture, a combined path planning and

path tracking controller generates a prediction trajectory internally, and

the required control command sent to the plant. 8

2.1 A topographical view of a successful lane change. The host vehicle

starts at the left side of the image and travels to the right. The host

vehicle clears the starting lane boundary before passing the obstacle,

stays within the second lane outer boundary, and settles in the next

lane at the end of the maneuver. 17

2.2 The host vehicle, red, encounters the stationary vehicle, blue. For the

outside lane change CIS, the safe area for the plant model is shown in

teal, and drivable tube for the 3DoF prediction model is shown in the

blue parallelograms. The vehicle is allowed to use the entire center and

left lane prior to passing the obstacle, then restricted to left lane after

passing. 21

2.3 An integration state xi is shown as residing inside a parallelogram. Us-

ing various vector cross products, the algorithm can identify when an

integration state has left one parallelogram and traversed into the next.

Once the active parallelogram is identified, the right and left boundary

constraints are evaluated, again with vector logic. 27

ix

2.4 The tire slip angle is the difference in the tire velocity vector and align-

ment vector. It is through this discrepancy that tire forces are generated. 29

2.5 The lateral force in the tire frame and vehicle frame is plotted in solid

blue and dashed blue, respectively. In this scenario, the vehicle is trav-

eling straight ahead, thus the steering angle matches exactly the slip

angle. Due to the coordinate transformation, at high steering angles the

vehicle lateral force decays faster than the tire lateral force. 30

2.6 The same response of Fig. 2.5 are plotted, but for variations in lateral

velocity. For this example, angular velocity is zero, but angular velocity

introduces tire slip to the same effect lateral velocity does. 31

2.7 An outside lane change CIS maneuver. The vehicle identifies an obstacle

47 m away, and begins a quick left turn followed by a long sweeping right

turn into the next lane. 45

2.8 For an inside lane change CIS maneuver, the vehicle must quickly fur-

ther load the tires to a tighter turn, which is comparatively more aggres-

sive. Additionally, just prior to passing the obstacle, the host begins an

equally aggressive counter steer to avoid turning too far into the inside

lane. In final version, figure 3 and 4 are intended to be side by side at

the top of the page for comparison purposes. 47

2.9 An outside double lane change CIS maneuver. The vehicle identifies an

obstacle 57 m away, but must find a trajectory that returns to the initial

lane on completion. 49

2.10 Numerical thresholds for the straight road scenario. 51

2.11 The four concurrent plots, plotted against x position of the maneuver,

show the various states and control inputs during the aggressive lane

change. 56

2.12 Increasing the allowable slip angle improves the effectiveness of the CIS

system, but with diminishing returns. 58

x

2.13 Three iterations of an example closed-loop MPC controller are shown.

The vehicle starts at t0, but extrapolates the starting state by the blue

dotted line, because its control command will not be applied until tupdate.

The controller’s prediction of the plant’s path until the goal is shown in

solid line. In the second iteration, the MPC sees the plant at a different

state than expected based on the previous solution. It takes the most

current information and iterates the process as shown in green and red

for the subsequent iterations. 62

2.14 The UKF observer resides outside the MPC controller, taking in sensor

information and outputting updated tire response parameters. 63

2.15 Five concurrent plots are shown showing various states of the adaptive

MPC performing a CIS maneuver. By improving the estimate for the

coefficient of friction online, the adaptive MPC can update the predic-

tion model to more accurately represent the plant, thus avoiding an

unrecoverable maneuver later in the trajectory. 65

2.16 Various combinations of the coefficient of friction for the plant model

and prediction model are analyzed. Red squares indicate at some point

in the maneuver, the plant violated hard safety constraints, resulting in

an unsuccessful CIS maneuver. Green circles indicate the closed loop

nature of the controller is sufficient to account for the small deviation in

plant and prediction model mismatch. 68

2.17 Various combinations of the coefficient of friction for the plant model and

prediction model are analyzed. The band of green circles extends further

than the nonadaptive case, showing the adaptive MPC can handle a

larger error in the initial prediction coefficient of friction. 70

xi

3.1 In the most rudimentary form, the single shooting, Forward Euler, finite

difference sensitivity implementation of the CIS controller is profiled.

The left plot shows the approximate 70 major iterations the nonlinear

optimizer required to converge, and the right shows the breakdown of a

candidate major iteration. The vast majority of the wall time is spent

calculating the finite differences for the derivatives, as this requires sim-

ulating the trajectory 64 times. 74

3.2 The nominal trajectory in blue, as well as +2% coefficient of friction in

yellow and −2% coefficient of friction in green. While the state bounds

are most obvious in x− y in the figure, the bounds are enforced for all

system states. 78

3.3 The wall time of a candidate major iteration for Forward Euler and RK4

are compared. 81

3.4 The absolute error of the terminal y position based on finite difference

approximation for different control inputs in the prediction horizon. The

optimal step size cannot be established a priori, which results in either

too small a step size and inaccurate gradients, or too large a step size

and numeric round-off errors. 89

3.5 The state-state sensitivities for various integration methods. The im-

plicit nature of collocation becomes apparent from the third subplot:

obeying the consistency constraints at the collocation points are fully

sensitive to all internal states, as well as the control input. 91

3.6 The wall time to solve the single shooting, analytic derivatives, RK4

based CIS controller, and a candidate major iteration are plotted. . . . 93

3.7 In multiple shooting, the sequential dependency of single shooting is

reduced by simulating the multiple segments in parallel. However, the

introduction of consistency constraints grows the optimization problem,

requiring more time to converge on a solution. 97

xii

3.8 Various multiple shooting structures. Dark grey blocks represent a fully

dense Jacobian structure for an arbitrary system dynamics. Light grey

blocks represent the negative identity matrix. 100

3.9 The elapsed time for the thread parallel, analytic derivative, RK4 based

CIS controller solution is plotted, as well as a candidate major iteration. 106

A.1 The Toyota Research Institute test vehicle is a modified Lexus LS 500h

with additional sensors for self-driving research. 120

A.2 The CIS controller resides within the vehicle control pipeline, taking

input from the perception stack and output control commands to sub-

dependencies. 120

A.3 The low speed vehicle test is recreated in numerical simulation in an

attempt to recreate the wiggles. The first sub plot shows various trajec-

tories when the obstacle is far away. In the second subplot, the obstacle

reduces the drivable tube, but there are still variations between trajec-

tories. 122

A.4 By artificially restricting the drivable tube, a termianl state constraint

is effectively introduced in x− y space within the road. 125

xiii

Abstract

Automotive active safety features are designed to complement or intervene a human

driver’s actions in safety critical situations. Existing active safety features, such as

adaptive cruise control and lane keep assist, are able to exploit the ever growing sensor

and computing capabilities of modern automobiles. An emerging feature, collision

imminent steering, is designed to perform an evasive lane change to avoid collision if

the vehicle believes collision cannot be avoided by braking alone. This is a challenging

maneuver, as the expected highway setting is characterized by high speeds, narrow

lane restrictions, and hard safety constraints. To perform such a maneuver, the vehicle

may be required to operate at the nonlinear dynamics limits, necessitating advanced

control strategies to enforce safety and drivability constraints.

This dissertation presents a one-level nonlinear model predictive controller formu-

lation to perform a collision imminent steering maneuver in a highway setting at high

speeds, with direct consideration of safety criteria in the highway environment and the

nonlinearities characteristic of such a potentially aggressive maneuver. The controller

is cognizant of highway sizing constraints, vehicle handling capability and stability lim-

its, and time latency when calculating the control action. In simulated testing, it is

shown the controller can avoid collision by conducting a lane change in roughly half the

distance required to avoid collision by braking alone. In preliminary vehicle testing, it

is shown the control formulation is compatible with the existing perception pipeline,

and prescribed control action can safely perform a lane change at low speed.

Further, the controller must be suitable for real-time implementation and compat-

xiv

ible with expected automotive control architecture. Collision imminent steering, and

more broadly collision avoidance, control is a computationally challenging problem.

At highway speeds, the required time for action is on the order of hundreds of mil-

liseconds, requiring a control formulation capable of operating at tens of Hertz. To

this extent, this dissertation investigates the computational expense of such a con-

troller, and presents a framework for designing real-time compatible nonlinear model

predictive controllers. Specifically, methods for numerically simulating the predicted

vehicle response and response sensitivities are compared, their cross interaction with

trajectory optimization strategy are considered, and the resulting mapping to a par-

allel computing hardware architecture is investigated. The framework systematically

evaluates the underlying numerical optimization problem for bottlenecks, from which

it provides alternative solutions strategies to achieve real-time performance. As ap-

plied to the baseline collision imminent steering controller, the procedure results in

an approximate three order of magnitude reduction in compute wall time, supporting

real-time performance and enabling preliminary testing on automotive grade hardware.

xv

Chapter 1

Introduction

1.1 Motivation

Automotive related accidents have been declining over the past few decades, in large

part due to improvements in passive safety features. These features, including manda-

tory seat belts and airbags, greatly improve the survivability of accidents, but active

safety features reduce fatalities through avoiding accidents all together. Active safety

features, such as adaptive cruise control and anti-lock braking systems, are designed

to complement or even override a human driver in challenging or dangerous scenarios

[1]. Modern automobiles are equipped with ever-growing sensor and compute capabil-

ities, supporting advanced active safety features such as lane departure warning, lane

keep assist, and collision imminent braking. As vehicles tend towards higher levels of

autonomy, these active safety features address limited scopes of the complex situations

autonomous vehicles have to face [2].

One emerging active safety feature is collision imminent steering (CIS), which is

designed to swerve and change lanes if the vehicle detects a forward collision cannot be

avoided by braking alone. This can be a challenging maneuver to perform, as limited

space constraints may require pushing the vehicle to its nonlinear limits of handling,

which can be a dangerous operating condition, as vehicle control can quickly be lost [3],

1

[4]. Thus, advanced controllers are required to properly account for these nonlinearities,

balancing the control action against safety constraints and lane change performance.

CIS is a specific case of collision avoidance type maneuvers. Collision avoidance con-

trollers have been studied in varying levels of controller and environmental complexity.

At low speeds, system nonlinearities are not significant, reducing the complexity of

the required solution [5]. At high speeds, system nonlinearities must be directly ac-

counted for, increasing the complexity of the controller, often at computational speeds

prohibitive of real-time performance [6].

In the case of CIS, the maneuver is expected to take place in a highway setting, as

the inherent high speed requires a long braking distance. However, a highway setting is

challenging from a controller design perspective, because the vehicle nonlinearities must

be directly accounted for in the controller, yet high speeds and lane sizing mandate a

faster solution time.

To this extent, the overarching goal of this thesis is to address two critical needs.

First, design of an optimal controller is needed that accounts for system nonlinearities,

appropriately balancing vehicle handling capability against lane change performance.

The fitness of a candidate CIS maneuver is not necessarily following a reference trajec-

tory, thus optimality criteria need to be developed specific for a CIS maneuver. Hard

safety constraints need to be introduced into the controller; ensuring feasible solutions

obey vehicle stability limits, as well as collision avoidance guarantees. The controller

needs to be designed with consideration to expected perception capability [7], support-

ing live sensor data input and reducing dependency on a priori information.

Second, the controller needs to be compatible with real-time performance, which re-

quires scrutinizing the computational expense. To achieve real-time performance, four

areas need to be studied. First, the computational cost required to numerically ap-

proximate the prediction model needs to be studied for different numerical integration

techniques. Second, sensitivities of the vehicle prediction trajectory need to be consid-

ered, relating to the derivatives of the fitness and feasibility criteria in the numerical

optimization problem. Third, different trajectory optimization strategies needs to be

2

studied, taking careful consideration of how these methods map into the computational

cost of solving the optimization problem. Fourth, modern parallel hardware architec-

tures needs to be considered, and the required mapping of the trajectory optimization

strategy into the parallel framework presented.

To understand the scope of the desired CIS controller, relevant literature in the

collision avoidance space is presented next.

1.2 Literature Review on Automotive Collision

Avoidance Controllers

Automotive collision avoidance controllers are typically structured as one of two ar-

chitecture types: two-level and one-level strategies [8]. In a two-level architecture, the

task of path planning and path following are separated, with each task handled by a

different controller or strategy. In contrast, a one-level architecture combines the task

of path planning with path following, resulting in a control formulation to solve for

both simultaneously in agreement.

Consider first a two-level strategy. Two-level architectures are comparatively com-

putationally easier, as the two independent tasks of path planning and path tracking

are both significantly reduced in complexity. Early implementations of two-level archi-

tectures focused on achieving collision avoidance through trajectory generation. For

example, potential energy field methods can simulate a populated environment where

obstacles are regions of high potential energy [9]. From a provided input of a topo-

graphical start and terminal position, an initial straight line is morphed, minimizing

the trajectory’s potential energy through the environment, thus avoiding obstacles rep-

resented as a weighted high energy region. The resulting reference trajectory is passed

to a lower level controller, such as a PID based controller, to guide the vehicle through

the environment [10]. In these cases, obstacle avoidance is not natively addressed by

the reference trajectory; rather, these methods rely on the path following controller for

3

obstacle avoidance.

There are two primary drawbacks to using potential energy methods to generate a

reference trajectory. First, the appropriate weightings used to generate the potential

energy field are not known a priori, as they depend on the scenario. Second, potential

energy methods cannot distinguish difficult to navigate trajectories from infeasible

trajectories that violate safety constraints. Thus, for safety critical situations, hard

safety constraints are preferable [11].

An alternative approach for generating a reference trajectory is to utilize known

structure of the environment. For dedicated road applications, the center of a lane can

be used as a reference trajectory, with lateral deviation limits established through the

edge markings [12]. Alternatively, other optimality criteria can be used for trajectory

generation, such as minimum lap time [13], or relative passing orientation to obstacles

[14].

For path following applications in structured lane settings, using two-level archi-

tectures is a common approach, because lateral deviation limits can be generated with

respect to a reference trajectory. In the context of operating within curved roads, the

reference trajectory is often set as the lane center line because the lateral deviation

limits are well defined as the lane widths [15]. To enforce lane boundary limits, the

path following controller constrains the lateral deviation to within ± lane width
2

. Alterna-

tively, controllers have been developed for variable lateral deviation limits defined by

splines [16].

A more complex methodology of storing lateral deviation limits also includes ob-

stacle information. The drivable tube [17] or safe corridor [12] concepts represent the

allowable space the vehicle can safely reside in to be collision free and within the road

limits. A reference trajectory is first propagated through the drivable tube, and at

each discrete integration point of the reference trajectory, the left and right distance

to the drivable tube is calculated. Similar to prior controllers, these deviation limits

are then stored within the optimization problem to form linear constraints, supporting

a quadratic penalty path following controller. For the controller of [17], it is shown to

4

navigate sharp turns while maintaining deviation limits and stability criteria, but the

underlying optimality is to follow a trajectory known a priori, and is not intended to

deviate far from the seeding reference trajectory.

For other applications, alternative methods of generating the reference trajectory

have been explored [18, 13, 19, 20], but the enforcement of collision-free path following

mirrors the same approach: propagate the reference trajectory through the environ-

ment and at each discrete integration point, calculate the allowable deviation limits.

Once a reference trajectory is generated, a separate controller handles path fol-

lowing. However, not all path following controllers are capable of ensuring collision

avoidance. For example, PID controllers cannot guarantee the satisfaction of the safety

constraints. Specifically, PID controllers cannot control the magnitude or position of

state trajectory following error, thus cannot ensure the safety of the host vehicle, es-

pecially when the CIS maneuver needs to push the vehicle to its dynamic limits. For

example, certain provided reference trajectories can overly excite the vehicle response

for a set of PID weights, resulting in vehicle roll over [10].

To address the shortcomings of simple low-level path following controllers, advanced

controllers have been implemented to capture system nonlinearities. For example,

reachability set based controllers [21], [22] as well as feedback-feedforward controllers

[23], [18], [13] can incorporate estimated future state information into current control

input and greatly improve tracking error. In [23], a feedback-feedforward controller is

developed for a performance race car, where vehicle implementation testing showcases

a successful following of the optimal racing line through a race course at high speed.

However, it also shows that following a pre-computed optimal reference trajectory does

not always push the vehicle to its dynamic limits, as the optimal trajectory changes

dynamically as the vehicle deviates from the reference path [24].

Alternatively, model predictive control (MPC) has been considered for the path

tracking problem. Using a reference trajectory as input, the MPC problem is structured

to best follow the trajectory [15], [12], [25], [26], [27], [28]. Using MPC for path following

is advantageous, as complex stability and other constraints can be introduced into

5

the formulation. However, the provided reference trajectory cannot guarantee it fully

utilizes the vehicle handling capabilities, which is essential for safety critical maneuvers.

Overall, the core drawbacks from two-level architectures are due to the reference

trajectory. While a common approach, two-level architectures have three key limita-

tions.

Limitation 1: drivability of reference trajectory. By splitting trajectory generation

from path following, two-level architectures cannot ensure the reference trajectory is

drivable. Often, the reference trajectory is generated without regards to the system

dynamics, which can be problematic in safety critical applications, which might require

operating up to the limits of handling, though not exceeding them. The issues of

drivability can be so pronounced that traditional PID controllers can lead to vehicle

rollover in certain scenarios [10]. Some approaches supplement the reference trajectory

with pseudometrics, such as acceleration limits [29], [30], but this does not alleviate the

problem. In fact, these limits can overly restrict reference trajectories, which can again

be problematic for safety critical applications where a maneuver requires operating up

to the limits of handling.

Limitation 2: fitness dictated by path following metric. A second complication with

two-level MPC architectures is the fitness of the path following controller. Various

controllers exist to follow a reference trajectory, most often focusing on minimizing the

l2-norm of x − y trajectory deviation. For safety critical applications, the fitness of a

maneuver might not be measured by x − y trajectory response. Thus, generating an

x − y reference trajectory by some other optimality metric can be difficult, especially

when operating at the vehicle limits of handling.

Limitation 3: optimality after deviation. A third complication with two-level MPC

architectures occurs when a host vehicle has deviated from a reference path. When

a small deviation occurs in closed-loop control implementation, the path following

controller attempts to return the host vehicle to the reference trajectory. However,

at the vehicle’s starting deviated state, the optimal path through the environment

may no longer be to return to the previous trajectory. Trying to return to the previous

6

trajectory can push the vehicle above its limits of handling, or not accurately maximize

the vehicle’s handling capability, both cases resulting in suboptimal performance [24].

The problem of provable safe trajectory generation has been identified, with a few

options presented [31]. Alternatively, one-level architectures simultaneously handle the

path planning and path tracking problems with exact agreement. While one-level con-

trol architectures are a comparatively more complex problem, abstract fitness criteria

can be implemented beyond path following. The most common one-level architec-

tures are MPC formulations, although instances of model-free [32] and model reference

adaptive control exist [33]. These methods all use some model of the system and ex-

trapolate a predicted response, which is used in the one-level control formulation. To

be clear, model-free methods refer to formulations that do not use an explicit model of

the system, but rather some generic learned input-output response as a system model.

An example of a two-level versus one-level architecture can be seen in Fig. 1.1. In

a two-level architecture, the obstacle information and vehicle state are passed into the

path planner. The resulting reference path and vehicle state are passed into the path

tracker, which prescribes a steering command to the vehicle. In contrast, for one-level

architecture, the obstacle information and vehicle state are passed into the combined

path planner and tracker controller, and the resulting steering command sent to the

vehicle.

By introducing a one-level architecture, a system constraint is imposed such that

the internally generated prediction horizon, which is in exact agreement of a reference

trajectory, is guaranteed to be drivable according to the prediction model. This avoids

the issue of drivability of a reference trajectory for two-level architectures, which is

necessary for safety constraints. Further, if the formulation accurately accounts for

and models the system limits, then the controller is allowed to push the vehicle to

the defined limits of handling. Combined, these two features allow a CIS controller

to ensure the candidate maneuver is drivable, and if necessary, allow the maneuver to

push the vehicle to its limits of handling.

One-level MPC architectures have been applied to various driving scenarios already.

7

(a) two-level controller architecture (b) one-level controller architecture

Figure 1.1: In a two-level control architecture, a separate path planning block passes
a reference trajectory to a path tracker, then sending a control command to the plant.
In a one-level architecture, a combined path planning and path tracking controller
generates a prediction trajectory internally, and the required control command sent to
the plant.

For example, one such CIS controller can perform a lane change at low speeds based on

intervention threshold [34]. Here, the controller monitors the current trajectory, and

monitors the intervention effort required if a CIS were to be performed autonomously.

If the autonomous intervention effort exceeds a threshold, the system can blend the

human input with the controller or lock out the human, and perform the lane change.

By using a different optimality condition compared to path following, the controller is

not reliant on a provided state trajectory a priori, and can incorporate online sensor

information to generate and modify a safer trajectory. In this case, the CIS lane change

criteria are formulated based on a lateral displacement threshold at a certain position

longitudinally for a straight road. However, this formulation is based on a low speed

vehicle, which can be characterized with linear dynamics. As such, this formulation

intentionally avoids operating at the vehicle’s limits of handling.

To this extent, nonlinear model predictive control can handle nonlinear system

response, albeit at a higher computational cost. One-level nonlinear MPC has been

applied to various driving scenarios, showcasing complex fitness and feasibility metrics

of the application. For example, one-level nonlinear MPC has been used to perform a T-

bone mitigation maneuver [35]. In this scenario, a host vehicle believes it will act as the

8

stem in T-bone automotive collision, which is a comparatively severe collision. Instead,

the controller attempts to rotate the vehicle 90◦, resulting in a side-side collision, thus

reducing the severity.

The maneuver is defined by rotating the vehicle 90◦ in the shortest amount of time.

This is a complex problem for a two-level architecture, as the required state trajectory

to rotate 90◦ cannot be known a priori, and the time minimization fitness criterion is

not well suited for a path following application.

Other one-level nonlinear MPC controllers have been considered in similarly com-

plex conditions. For example, one-level nonlinear MPC is used to avoid vehicle roll-over

in open environments [36], or avoid other unstable vehicle regions [37]. In these various

applications, one-level nonlinear MPC can handle complex driving environments and

nonlinear vehicle responses, but must adjust the controller for the specific vehicle in

the specific setting. This often requires formulating the control problem based on the

expected perception formulation, leveraging LIDAR data formats [38], moving obstacle

estimation [39], or obstacle uncertainty [16], [40], [41], to name a few.

While these one-level nonlinear MPC controllers have been used in unstructured

environments, incorporating both lane boundary constraints and obsticle information

can be challenging. For example, [42] designs a one-level nonlinear MPC controller to

mimic human input while maintaining lateral deviation limits in curved roads. This

controller is able to relax a path following optimality condition in favor of mirroring

human input as best as safely possible. However, the lateral deviation information

is separate from obstacle information, requiring multiple constraints for each obstacle

encountered, growing the optimization problem. Additionally, the controller is designed

for a vehicle kinematics model, which does not ensure drivability.

Previous collision avoidance controllers have showcased the benefit of a one-level

MPC architecture, and for aggressive and complex maneuvers, highlighted the neces-

sity of nonlinear formulations. However, one-level nonlinear MPC controllers, while

beneficial for their increased complexity, require a specific development for the candi-

date application. For these reasons, a one-level nonlinear MPC controller architecture

9

is desirable, but a specific formulation for a candidate vehicle and scenario must be

derived. Hence a gap exists where a controller designed for a CIS maneuver operating

at the limits of handling does not exist.

While one-level nonlinear MPC controllers can capture complex scenarios, a com-

mon side effect to such formulations is increased computational cost. Therefore, various

strategies and solutions used to address compute timing are reviewed next.

1.3 Literature Review on Computational Cost of

Model Predictive Control

In the control community over the past few decades, MPC has emerged as a competitive

solution to various control applications [43]. Fundamentally, MPC is designed to take

control action now that is mindful of future control actions and system responses [44].

However, this increase in complexity comes at an increase in computational cost. Over

the past few decades as computing power has grown, more complex levels of MPC can

be implemented.

The simplest and least computationally expensive form of MPC comes from linear-

quadratic regulator (LQR) controllers [45]. The LQR feedback control law is a specific

solution to the algebraic Riccati equation. Specifically, LQR solves the optimal control

input for a linear system for a quadratic cost function. Depending on the formulation,

this special case gives a closed-form solution of the finite or infinite horizon path follow-

ing problem based on a linear computation of the instantaneous state error. The result

is a low computational complexity problem, which can be implemented in real-time on

compute limited systems [46].

One drawback to LQR controllers is constraints in both state and input cannot be

directly incorporated into the problem. Instead, the full linear MPC problem must be

solved online, growing the computational cost. While still in the linear system domain,

linear state and input constraints can be incorporated, and mapped into a quadratic

10

programming problem efficiently [47]. Despite the increase in computational cost,

modern compute systems can still achieve real-time performance. Applications such

as automotive engine timing control [48], engine emission control [49], and quadcopter

control [50], to name a few, can incorporate linear MPC solutions online in real-time.

Specific to automotive obstacle avoidance, linear MPC architectures have been im-

plemented. Using a pre-generated reference path through an environment, linear MPC

systems have been shown to avoid obstacles while still obeying lane boundary and other

state and control limits [9], [12]. Due to the linear nature of the problem, these appli-

cations can still achieve real time performance, even on modern low-power hardware

architectures [51], [15].

The key computational benefit to solving these linear MPC problems is in exploit-

ing the linear time-invariant system dynamics, and solving the resulting quadratic

programming efficiently [52], [53]. Implementing quadratic programs are desirable,

because these can be solved within a predetermined tolerance in a fixed number of

iterations [54], [55]. Further, this result is shown to map onto deterministic hardware,

such as field-programmable gate arrays, which allows solving the control problem in a

deterministic wall time [56].

However, these implementations rely on two key assumptions, namely, (i) a linear

system model, or a system that can be well controlled using a linearized model, and

(ii) a reference trajectory, from which the quadratic penalty can be generated. The

first limitation can be addressed through nonlinear MPC, and the second through

the designation of a one-level MPC instead of a two-level one. As discussed prior in

Sec. 1.2, linear MPC formulations cannot support operating at the nonlinear limits of

handling necessary for CIS controllers, and for based on the criteria of a CIS maneuver,

an optimal reference trajectory is not available a priori.

In the case of nonlinear MPC, the nonlinear system dynamics and/or nonlinear

objective functions and constraints can be incorporated, which typically break down the

mapping to quadratic programming solutions [57], [58]. Instead, nonlinear numerical

optimization must be employed, which can come at a significant computational penalty.

11

Solving the full nonlinear MPC problem in real time is challenging, even on mod-

ern compute architectures [59]. While researchers have explored various automotive

applications for nonlinear MPC, the solutions are often too computationally expensive

to achieve real-time [60], [38], [16], [61]. In order to reduce the compute cost, the

underlying nonlinear MPC is reduced in scale. For example, the resulting nonlinear

numerical optimization problem cost can be reduced by detuning the control frequency

[11], linearizing the design point to map to a quadratic programming problem [25],

reducing the system dynamic nonlinearities by mapping tire forces as control variables

[17], or converging on feasible but sub-optimal solutions [62], among other options.

The second limitation, availability of a reference trajectory a priori, is addressed by

one-level MPC, but incurs a higher computational cost, because the task of generating

a trajectory online increases the problem size and complexity. If the controller’s fitness

is not characterized by a path following metric, a new objective function must be

incorporated, and likely incurs a higher computational cost than a quadratic error

penalty.

While researchers are attentive on the compute time of nonlinear MPC systems,

the subtleties that are required to support compute scaling and achieve real-time per-

formance are often masked by modifications to the MPC structure and not discussed.

Hence, there is an opportunity to study factors beyond the MPC fitness and feasabil-

ity formulation to address the computational cost. Specifically, how the differential

equations governing the system trajectory are solved, various trajectory optimization

strategies, and how these map onto modern computing hardware architectures can

provide insight in achieving real-time performance. Altogether, balancing these as-

pects of the MPC problem could lend to a net computational speed up, beyond high

level adjustments to the MPC formulation. However, the literature does not provide a

framework for a comprehensive balance of these components.

Fundamentally, one-level nonlinear MPC controllers will always have a higher com-

putational cost than linear path following controllers. However, for complex controller

objectives, the merits of an advanced controller formulation have been identified and

12

deemed necessary. Yet, for advanced nonlinear MPC controllers to be implemented,

they must achieve real-time capability. Thus, it is proposed to scrutinize the underly-

ing computational expense of such controllers and present various solutions to achieve

real-time compatibility.

1.4 Research Objectives

The task of automotive obstacle avoidance is an extensive and ongoing research area

in the control community. There exist many controller formulations to address various

and diverse obstacle avoidance scenarios. These controllers can handle variations in

environment structure, spanning from well-defined paved road settings to unstructured

open fields, as well as varying levels of vehicle excitation. However, these controllers are

often structured for a specific application, resulting in a gap where existing controllers

do not fit the intended CIS maneuver. To this extent, this dissertation seeks to present

a controller formulation that captures the relevant highway setting, while allowing the

controller to operate up to, but not exceeding, the vehicle nonlinear limits of handling.

While the existing nonlinear MPC controllers can theoretically address their in-

tended use case, they are typically incompatible with real-time performance. For fea-

sible implementation on a passenger vehicle, a CIS controller must be able to solve the

underlying nonlinear numerical optimization problem within real-time targets. While

some nonlinear MPC controllers handle real-time constraints by simplifying or reducing

the complexity of the MPC fitness and feasibility formulations, this approach corre-

spondingly reduces the controller performance. To maintain the maximum performance

possible, this dissertation seeks to investigate the computational expense of nonlinear

MPC controllers, provide insight on various numeric approximation strategies, trajec-

tory optimization structures, and hardware interfacing, and showcase a net optimal

formulation that is compatible with real-time performance.

Based on these two challenges, the research objectives of this dissertation are as

follows.

13

• Design a nonlinear one-level MPC controller to perform the intended CIS ma-

neuver in a provably safe manner, even at the limits of handling. To achieve this,

the controller requires novel hard safety constraint formulations specific to the

intended passenger vehicle in a highway setting. The controller formulation must

be compatible with a drivable tube concept to capture both curved lane bound-

ary information and scattered obstacle data, provided by an expected perception

stack. Additionally, a unique safety metric must be derived to define the fitness

of such a CIS maneuver.

• Using the controller, investigate the window of opportunity, representing obstacle

distances where the vehicle cannot avoid a collision by braking alone, but can

safely perform an evasive lane change. Showcase the feasibility of performing

such a CIS maneuver in a curved environment for both inside and outside lane

changes, as well as a straight road environment.

• Introduce an adaptive controller formulation to improve the controller’s robust-

ness to uncertainty in the coefficient of friction. Analyze the baseline controller

performance to benchmark the closed-loop stability to discrepancies in plant-

prediction model coefficient of friction, and by extension, benchmark the adap-

tive formulation to showcase the improved controller performance to expected

uncertainties.

• Propose a framework for the design of real-time compatible nonlinear MPC con-

trollers, focusing on the computational cost of solving the underlying nonlinear

numerical optimization problem. The framework includes addressing the cost

of numerically simulating the prediction trajectory and sensitivities, trade-offs

in the trajectory optimization architecture, and provides a mapping of the con-

troller software design to parallel hardware implementation. The resulting de-

sign framework strives for real-time computing performance without reducing

controller fidelity by the fitness and feasibility metrics.

14

1.5 Dissertation Organization

The remainder of the dissertation is organized as follows.

Chapter 2 focuses on the optimal control problem formulation to represent the CIS

maneuver. Sec. 2.1 presents the plant model as well as highway environment. Sec. 2.2

presents the prediction model used in MPC, as well as derives constraints for the CIS

maneuver. Sec. 2.4 presents the numeric optimization problem, and provides insight on

how it is solved. Sec. 2.5 presents various CIS maneuvers in curved roads. A special

straight road scenario and controller formulation is presented in Sec. 2.6. Sec. 2.7

presents a preliminary analysis to real world effects, as well as showcases an adaptive

formulation.

Chapter 3 focuses on the computational cost of solving nonlinear MPC problems,

using the CIS maneuver as the prime example. Sec. 3.1 presents various methods

of numerically simulating the differential equations governing the prediction model,

and recommends an approach on establishing integration resolution. Sec. 3.2 presents

analytic derivatives of explicit integration techniques to improve the convergence rate

of numeric optimization. Sec. 3.3 presents various methods of trajectory optimiza-

tion, showcasing trade-offs of different approaches. Sec. 3.4 presents considerations

necessary when mapping to parallel hardware, and showcases a GPU accelerated im-

plementation of the CIS maneuver.

Chapter 4 concludes this dissertation. Sec. 4.1 summarizes the contributions made

in this dissertation to the field of CIS controller formulation and computational cost

of nonlinear MPC controllers. Sec. 4.2 lists existing and under review conference

publications, journal publications, and US patent publications. Sec. 4.3 makes rec-

ommendations on what aspects of the CIS formulation and computational cost can be

addressed to further improve the controller formulation.

Appendix A discusses what can be made publicly available on preliminary live

vehicle testing. This includes a high level description of the vehicle interfacing and test

conditions, as well as findings from low speed testing.

15

Chapter 2

CIS Controller Formulation

Similar to existing state-of-the-art obstacle avoidance and safety critical controllers

[35], [34], [63], [37], [42], [11], a one-level architecture is desirable for a CIS controller.

And like for the other controllers, fitness of such a maneuver is not defined by a path

following metric, and such a reference trajectory is not available. While a potential

drawback to one-level architectures, the fitness and feasibility metrics used to evaluate

a candidate CIS maneuver must be uniquely derived.

For a candidate CIS maneuver to be considered safe, it must obey three key con-

straints. First, the host vehicle must leave the starting lane when passing the obstacle.

Second, the host vehicle must remain within the outer lane boundary through the ma-

neuver. Third, the host vehicle must remain stable throughout the maneuver and settle

in the next lane at the end of the prediction horizon. Within this chapter, these three

high level descriptors of a safe CIS maneuver are mapped into fitness and feasability

criteria to generate the CIS controller. An example of a CIS maneuver can be seen in

Fig. 2.1, shown in a 2 lane straight road setting including the safe braking distance

and safe steering distance.

The remaining sections of this chapter are organized as follows. Sec. 2.1 intro-

duces a geometrically simulated highway setting and the numeric plant model used in

simulations. Sec. 2.2 introduces the prediction model and maps the CIS criteria into

16

Safe braking distance

Safe steering distance

Figure 2.1: A topographical view of a successful lane change. The host vehicle starts
at the left side of the image and travels to the right. The host vehicle clears the
starting lane boundary before passing the obstacle, stays within the second lane outer
boundary, and settles in the next lane at the end of the maneuver.

fitness and feasibility metrics. Sec. 2.4 formulates the optimal control problem. Sec.

2.5 showcases the controller in a few different CIS scenarios. Sec. 2.6 introduces a dif-

ferent CIS controller formulation for straight roads and contains numeric simulations.

Sec. 2.7 highlights robustness testing and introduces an adaptable formulation.

2.1 Candidate CIS Environment and Plant Model

2.1.1 Geometrically Generated Highway Environment

A CIS maneuver is intended to take place if the vehicle detects it cannot avoid collision

by braking alone; hence a highway environment is the most likely scenario due to the

high speed operating condition. However, the scale of a highway setting makes a CIS

maneuver challenging due to the relatively narrow lane widths. To design the CIS

controller, a geometrically generated highway environment is generated, taking into

account typical highway spacing and operating conditions.

The maximum highway speed in the United States of America varies state by state,

reaching 85 MPH in Texas, though most states peak around 70 MPH [64]. Herein,

17

the simulated highway considers a host vehicle traveling at u0 = 35 m/s, representing

about 78 MPH or 126 KPH.

Allowable road curvature is based on a combination of design speed, expected traffic

load, and sight distance, among other factors. For a 78 MPH speed limit, the tightest

turn radius allowable per US building regulations is 1, 500 m [65]. However, a curvature

of rturn = 500 m is considered to emphasize the effects of road curvature and to generate

a more extreme maneuver.

The candidate section has three lanes with the center of the middle lane following

a constant right hand curve of rturn. The lane width is set at the minimum allowable

width of wlane = 3.7 m [66], again to generate a challenging scenario. The host vehicle

starts in the center lane with a steady state trajectory to follow the road curvature.

To motivate a CIS maneuver, there is a stopped obstacle identified in the center

lane at some distance dobstacle ahead. A separate logic system would identify if the

vehicle is capable of avoiding a collision by braking alone, seeding the high level de-

cision of initiating a CIS maneuver or not. Due to the high speeds and sharp road

curvature, the limit braking distance can be high. For example, a 0.8g deceleration

for the described scenario requires approximately 79 m of travel. However, this is the

most aggressive braking possible, and human drivers prefer to decelerate significantly

slower [65]; braking at 0.4g requires 169 m.

For the numeric simulations, an obstacle distance of dobstacle = 47 m is chosen as

this obstacle distance is too short to avoid collision by braking alone, but, as will be

shown, is sufficiently large to perform an evasive lane change maneuver. Because the

host and obstacle are both in the center lane, there are two types of CIS maneuvers

that can take place: an outside CIS representing a lane change to the left, and an

inside CIS representing lane change to the right.

Consider first an outside CIS into the left lane. From CIS criterion (1), the maneuver

is considered safe if the vehicle resides in the center or left lane, and from criterion (2),

the maneuver is considered safe if the vehicle remains exclusively in the left lane. This

information is well captured in the drivable tube [17], [67] or safe corridor [12] concepts.

18

The drivable tube, referred here forward, represents the topographical area the host

vehicle can reside within without causing collision or leaving the lane boundaries. CIS

criteria (1) and (2) can be directly embedded in the drivable tube by adjusting the

edges of the drivable tube.

As discussed Appendix A, the drivable tube is readily available from the host vehi-

cle’s perception stack pipeline. The drivable tube can be generated onboard, leverag-

ing sensors such as vision based cameras, LIDAR, radar, and high definition reference

maps, employing techniques such as road segmentation and localization [7]. The pro-

vided drivable tube is expected to capture both the lane boundary information as well

as obstacle information. By designing the CIS controller to stay within the drivable

tube, this directly embeds the first two CIS criteria and is compatible with realistic

vehicle expectations. Additionally, by directly using the drivable tube concept in the

controller formulation, the limitations of generating deviation limits through a reference

trajectory as discussed in Chapter 1 are avoided.

A key characteristic of the drivable tube is the edges of the tube do not intersect,

and the tube does not branch into multiple tubes. Thus, for the inside and outside

CIS maneuvers, there are two unique drivable tubes. The drivable tube is generated

geometrically for the numerical simulations herein.

The high level safety criteria of metrics (1) and (2) are defined with respect to the

topographic position of the vehicle in the environment. That is, these safety criteria are

not concerned with the vehicle rotation, steering angles, side slip, etc. when traversing

the environment. Due to the restrictive nature of the lane sizing, it is desirable to set

the drivable space as large as possible. For an outside CIS maneuver into the left lane,

the allowable space is the entire starting center lane and left lane prior to passing the

obstacle, then exclusively the left lane thereafter.

This space represents the allowable region the host vehicle can reside within, but

is not directly compatible with the CIS controller due how the prediction model is

handled. As discussed in Sec. 2.2, the prediction model used by the controller is a 3

degree of freedom (3DoF) bicycle model which only considers the vehicle’s center of

19

gravity (CG). To generate the drivable tube in a format useful for the controller, the

safe space is reduced by the vehicle half width, wvehicle
2

.

An additional restriction is applied to address corner clipping due to vehicle rota-

tion. Because the drivable tube concept is not concerned with the vehicle rotation,

it is theoretically possible for the CG to be within the buffer of wvehicle
2

yet one of the

corners to clip beyond the lane boundary.

There are different approaches to handling vehicle corner clipping, such as over-

lapping circles [42], or expressly monitoring each corner [20]. However, testing of the

algorithm by implementing a safety buffer σ = 0.5 m sufficiently restricts the edge

boundary to avoid corner clipping. While it is desirable to grow the drivable space

as large as possible, more complex methods increase the complexity of the underlying

optimization problem.

For an outside lane change, the right drivable tube edge follows a radius of rturn −
wlane
2

+ wvehicle
2

+ σ prior to crossing the obstacle, then follows rturn + wlane
2

+ wvehicle
2

+ σ

thereafter. The left edge follows rturn − 3wlane
2
− wvehicle

2
− σ throughout.

For an inside lane change, the left edge follows a radius of rturn + wlane
2
− wvehicle

2
− σ

before the obstacle, and rturn − wlane
2
− wvehicle

2
− σ thereafter. The right edge follows

rturn − 3wlane
2
− wvehicle

2
− σ throughout.

The drivable tube is stored as a sequence of matched point pairs, where each pair

consists for the [x, y] position of the left and right tube edge. Consecutive pairs in the

sequence march along the road to form the drivable tube. The four points contained in

sequential pairs form a parallelogram, where the after edge of on parallelogram forms

the fore edge of the next. The controller expects the drivable tube to be stored in this

sequence of connected parallelograms and will solve the optimization problem to keep

the predicted trajectory within the edge.

The lengths of the parallelograms are flexible depending on the external system

used to establish them. Parallelograms’ lengths do not need to be consistent, but

parallelograms of zero length should be avoided. Shorter parallelogram lengths allow

for a more accurate road description, but have a higher memory requirement for MPC

20

Figure 2.2: The host vehicle, red, encounters the stationary vehicle, blue. For the
outside lane change CIS, the safe area for the plant model is shown in teal, and drivable
tube for the 3DoF prediction model is shown in the blue parallelograms. The vehicle
is allowed to use the entire center and left lane prior to passing the obstacle, then
restricted to left lane after passing.

solving. The scenario herein uses matched pairs spaced approximately 5 m down the

road. Immediately before the obstacle, the parallelogram is smoothed by blending the

consecutive parallelograms, preventing a zero length parallelogram that can lead to

numerical difficulty. An example drivable tube constructed from the parallelogram, as

well as the safe allowable space for the host vehicle, can be seen in Fig. 2.2.

2.1.2 Host Vehicle Plant Model

The host vehicle is modeled as a luxury sedan, as this class of vehicles is most likely to

feature the latest technologies. One such feature is active rear steering, which allows

the rear wheels to be steered by an onboard computer independent of driver input

and front wheel manipulation. The MPC controller is designed to leverage active rear

wheel steering, if available, as leveraging rear wheel steering has been shown to improve

vehicle performance over conventional front only steering [68].

The host vehicle is numerically simulated as a 14 degree of freedom (14DoF) dy-

namics model [69]. The model is validated against CarSim’s F-class sedan [70], which

is comparable to a BMW 7 series, Audi A8, or Mercedes S class. Ref. [69] contain the

detailed equations of motion, with Table 2.1 listing parameters used. While vehicle

manufacturers often publish some parameters, such as vehicle mass and weight dis-

21

Table 2.1: 14DoF Plant Parameters

Parameter Symbol Value

Vehicle sprung mass msprung 1820 kg
Per wheel unsprung mass munsprung 50 kg

Weight distribution - 51.4/48.6 F/R
Wheel base - 3.2 m
Vehicle width wv 1.9 m

Vehicle track width lc 1.6 m
Roll moment of inertia ixx 1023.8 kg m2

Pitch moment of inertia iyy 3567.2 kg m2

Yaw moment of inertia izz 4095.0 kg m2

Strut height zstrut 0.590 m
Strut stiffness kstrut 83000 N/m
Strut damping dstrut 1896.1 N/m

s

Wheel stiffness kwheel 278000 N/m
Wheel radius rwheel 0.353 m

The host vehicle is modeled after a 2018 BMW 740i. While some parameters are
published by the manufacturer, others can be estimated based on normalized ratios
for sedans.

tribution, other parameters are not available and are estimated by normalized trends

[71].

The plant model uses nonlinear Pacejka tire forces [72], given in (2.1), with param-

eters given in Table 2.2. (2.1) uses the lateral slip ratio Vx
Vy
, which must be calculated

at each of the tire contact points in each tire’s frame. Tire manufacturers seldom, if

ever, provided tire property coefficients or performance metrics. Instead, these tire

parameters are calculated to provide a peak tire force of 0.8g at approximately 12◦ slip

and 10% force relaxation at high slip angles.

Fy = µFzσy

σy = − sin(C arctan(B
Vy
Vx

))

Vx = u cos(δ) + (v + ωl) sin(δ)

Vy = −u sin(δ) + (v + ωl) cos(δ)

(2.1)

22

Table 2.2: Pacejka Tire Properties

Tire Parameter Symbol Value

Coefficient of Friction µ 0.8
Tire Property B 13
Tire Property C 1.285

Tire Longitudinal Velocity Vx
Tire Lateral Velocity Vy
Vertical Tire Force Fz

The vertical tire force, Fz, is calculated based on the instantaneous strut deflection,

relating to the spring force, and the strut vertical velocity, relating to the damper

force. The higher fidelity plant model includes suspension dynamics, thus the vertical

tire force requires a dynamic analysis as opposed to a static equilibrium analysis.

For numerical simulation purposes, the starting steady state trajectory is estab-

lished through a separate simulation. In the example of a curved road environment

with a given road curvature and design velocity, the remaining states in the 14DoF

model can be established. In the case of for front and rear steering capable vehicles,

solving for the steady state vector results in a continuum of solutions in the front and

rear steering angle. As such, the steady state is fixed at δr = 0, as this solution also

satisfies front only steering architectures.

Other vehicle models can be used as well. Options such as directly interfacing

into CarSim, ADAMS vehicle simulation, higher or lower degree of freedom numeric

models, or models trained on empirical data are all viable options. From Sec. 2.7, the

difference in plant and prediction model fidelity and parameterization results in some

amount of model discrepancy, which can be addressed in controller formulation.

With the drivable tube and plant model established, the controller formulation can

be introduced.

23

2.2 Prediction Model

MPC controllers leverage some model of a plant to predict the future response for a

candidate control trajectory. While the prediction model used by the controller might

be a full order model of the plant, this can be computationally prohibitive. Instead,

prediction models used in MPC are often reduced order models that can still make

sufficiently accurate future state predictions in a computationally efficient manner.

The 3DoF bicycle model has been shown to sufficiently accurate in high speed

obstacle avoidance applications [73], provided the obstacle is not excessively wide [3].

This is because the bicycle model does not inherently capture vehicle roll; wide obstacles

require prolonged turning, which, over time, can excite large vehicle roll in the plant,

which can lead to excessive deviation between the plant response and the prediction

model.

The prediction model used for the intended CIS controller is a single track 3DoF

bicycle model with active independent front and rear wheels. The 3DoF bicycle model

states, control inputs, and equations of motion are given as follows.

x =

global x position [m]

global y position [m]

vehicle yaw [rad]

longitudinal velocity [m/s]

lateral velocity [m/s]

yaw rate [rad/s]

front steering angle [rad]

rear steering angle [rad]

=

x

y

ψ

u

v

ω

δf

δr

(2.2)

u =

 front steering rate [rad/s]

rear steering rate [rad/s]

 =

 δ̇f

δ̇r

 (2.3)

24

dx
dt

=

u cos(ψ)− v sin(ψ)

u sin(ψ) + v cos(ψ)

ω

0

−u ω +
Fy,f cos(δf)+Fy,r cos(δr)

m

Fy,f cos(δf)lf−Fy,r cos(δr)lr
Izz

δ̇f

δ̇r

(2.4)

In (2.4), the time derivative of longitudinal velocity is set to zero. This is because

both the prediction and plant models lock the longitudinal velocity. Per US highway

testing standards, the double lane change maneuver, also known as "moose avoidance

maneuver", does not allow acceleration or braking [74]. In numerical simulations, lon-

gitudinal acceleration due to yawing under non-zero lateral velocity has been negligible.

The longitudinal velocity is retained in the system dynamics as a reference in comput-

ing the tire slip. However, modern optimizers often reduce this locked state from the

control problem.

The prediction model also uses the same Pacejka tire forces as the plant model,

defined by (2.1) and Table 2.2. In initial simulations, the prediction tire model uses

the same coefficients as the plant, but model discrepancies in tire parameters are in-

vestigated in Sec. 2.7. For the single track bicycle model, the tire forces are calculated

as a lump front wheel force at the front axle location and a lump rear force at the rear

axle location. The parameters used in the prediction mode are listed in Table 2.3.

In the next section, the fitness and feasibility metrics of the CIS criteria are mapped

into numerical constraints for use in the nonlinear optimization representing the con-

troller.

25

Table 2.3: 3DoF Model Parameters

Parameter Symbol Value

Vehicle mass m 2020 kg
Weight distribution - 51.4/48.6 F/R

Wheel base - 3.2 m
Vehicle width wv 1.9 m

Front wheel to CG distance lf 1.56 m
Rear wheel to CG distance lr 1.64 m
Front wheel vertical force Fz,f 1038
Rear wheel vertical force Fz,r 982
Yaw moment of inertia Izz 4095.0 kg ·m2

The upper table contains values published by the manufacturer. The lower table
contains values derived as needed for 3DoF prediction model.

2.3 Curved Road CIS Fitness and Feasibility Formu-

lation

To design a controller to perform a CIS maneuver, the three CIS criteria must be

translated into numeric constraints. In the next subsections, the feasibility metrics are

derived, as well as constraints on the vehicle, and fitness metric introduced.

2.3.1 Boundary Constraints

In Subsec. 2.1.1, the benefit of the drivable tube is highlighted as it incorporates

both lane boundary information and obstacle information into one data structure. By

adjusting the drivable tube to follow the allowable space, the drivable tube can enforce

CIS criteria one and two. The CIS controller is then tasked with finding a steering

sequence to keep the vehicle within the drivable tube.

Using vector algebra, the relevant parallelogram can quickly be identified, and cor-

responding left and right boundary constraints evaluated. Consider Fig. 2.3 showing

an integration state located inside a parallelogram.

26

r0

r1

r2

l2l1
l0

xi

−−→r1xi

−−→
r1l1

−−→r2xi −−→
r2l2

−−→r2r1

−→
l2l1

−−→
l2xi

Figure 2.3: An integration state xi is shown as residing inside a parallelogram. Using
various vector cross products, the algorithm can identify when an integration state
has left one parallelogram and traversed into the next. Once the active parallelogram
is identified, the right and left boundary constraints are evaluated, again with vector
logic.

As the MPC controller integrates the state forward in time, the algorithm must

identify which parallelograms in the drivable tube are applicable to that state. To find

the active parallelogram, the vector cross product of the vehicle position with the fore

parallelogram boundary is calculated.

Consider the matched pair (rk, lk, representing the (k + 1)th matched pair in the

drivable tube sequence and the for parallelogram boundary of the kth parallelogram.

For the ith integration state in the prediction horizon, the vehicle’s position vector

relative to the right boundary in the matched pair is given by −−→rkxi. To find the active

kth parallelogram, k is increased until the fore boundary cross product with the position

vector crosses zero, which can be calculated numerically by (−−−−→rk−1xi ×
−−−−−→
rk−1lk−1)(−−→rkxi ×

−−→
rklk) < 0. This fast vector algebra allows efficient scaling to the GPU hardware used

to simulate the vehicle and evaluate the fitness and feasibility criteria, to be discussed

in Chapter 3.

With the active parallelogram k identified, the left and right lane boundaries are

evaluated. The left lane boundary constraint is evaluated by the cross product of the

27

position vector with left edge vector,
−−→
xilk ×

−−−→
lklk−1. This constraint is formed such that

if the cross product is less than zero, the vehicle integration state is to the right of

the left lane boundary, which is valid. It is also important to note the validity of the

constraint is based on the sign. This allows the valid limits of the constraint, being in

reference to 0, to be established at the start of the MPC problem and avoid having to

first seed a trajectory.

Likewise, the right lane boundary is generated by the cross product of the right

edge vector with the position vector, −−−−→rkrk−1 × −−→xirk. Here, the order is swapped to

maintain a cross product of less than or equal to zero to be valid in convention with

constraint formulation. Together, the left and right lane boundary constraints form

(2.5) and (2.6).

dl =
−−→
lkxi ×

−−−→
lklk−1 ≤ 0 (2.5)

dr = −−−−→rkrk−1 ×−−→rkxi ≤ 0 (2.6)

Note, the constraint is formed as at least C2 smooth. This helps with solving the

numerical optimization problem using gradient based optimization, which is necessary

for real-time performance.

Further, the left and right constraints are evaluated based on the integration state’s

instantaneous position in the environment, in contrast to other methods that use an

initial seeding through a reference trajectory for lateral displacement limits. This

ensures the left and right constraints are relevant at the converged optimal trajectory, as

well as all the intermediate trajectories, not just the first candidate seeding trajectory.

2.3.2 Vehicle Stability: Tire Slip

The third CIS criterion addresses vehicle stability by requiring the host vehicle remains

stable throughout the maneuver and settle in the next lane at the end of the prediction

horizon. The first description, remaining stable, is enforced by ensuring the vehicle

28

Figure 2.4: The tire slip angle is the difference in the tire velocity vector and alignment
vector. It is through this discrepancy that tire forces are generated.

retains controllability throughout. Various methods and techniques on vehicle stability

have been studied such as the Milliken Moment Method [75], tire lift off [76], and

vehicle envelope control [17], [67]. The presented controller ensures vehicle stability by

establishing bounds on the tire slip angle and restricting the vehicle to within these

stable limits.

Tire slip, denoted s = vy
vx
, is the ratio of lateral velocity to longitudinal velocity.

This can also be expressed as the tire slip angle; representing the angle between the

tire velocity vector and the direction the tire is rolling. It is through some amount of

tire slip that the tire rubber compound deforms as the contact patch, resulting in a

tire force between the road surface and the vehicle. The tire slip angle can be seen in

Fig. 2.4.

Depending on the tire properties used in (2.1), the tire lateral force may relax

beyond the peak slip angle. This is an unsafe driving condition because the tire forces

are completely or nearly insensitive to steering angle, thus the controller has little to

no control authority over the vehicle response, thus control authority can be quickly

lost and mid-maneuver adjustments cannot reliably be made when operating in this

regime [36]. Additionally, tire relaxation at high slip causes gradient inversion within

the optimization problem, where the gradient information indicates the tire force is

actually reduced by increasing tire slip. This causes local minima and is challenging

29

0 10 20 30
Steering angle [deg]

0.0

0.2

0.4

0.6

0.8
N

or
m

al
iz

ed
la

te
ra

lf
or

ce

Tire frame
Vehicle frame

Figure 2.5: The lateral force in the tire frame and vehicle frame is plotted in solid
blue and dashed blue, respectively. In this scenario, the vehicle is traveling straight
ahead, thus the steering angle matches exactly the slip angle. Due to the coordinate
transformation, at high steering angles the vehicle lateral force decays faster than the
tire lateral force.

for the optimization problem to converge

For the parameters chosen in Table 2.2, the peak tire force occurs around 12◦ slip

with 10% relaxation above that. However, due to the coordinate transform between

the tire frame and vehicle frame, the maximum lateral force is not necessarily at 12◦.

When the vehicle is traveling purely longitudinally, the peak tire force occurs around

10◦ tire slip. Consider Fig. 2.5 plotting the lateral force in the tire frame and in the

vehicle frame when the vehicle is traveling longitudinally. If the vehicle has zero lateral

velocity and yaw rate, then the steering angle and slip angle match exactly.

The lateral force mismatch between the vehicle frame and tire frame is exacerbated

when lateral velocity is introduced. Lateral velocity causes an initial tire slip angle

that can be either constructive or destructive with the steering angle, as seen in Fig.

2.6, plotting the lateral forces at different lateral velocities.

In Fig. 2.6, the difference in steering angle for peak lateral force in the vehicle frame

30

−10 0 10 20 30
Steering angle [deg]

0.70

0.75

0.80

N
or

m
al

iz
ed

la
te

ra
lf

or
ce

v=0 m/s, tire frame
v=0 m/s, vehicle rame
v=7 m/s, tire frame
v=7 m/s, vehicle frame
v=-7 m/s, tire frame
v=-7 m/s, vehicle frame

Figure 2.6: The same response of Fig. 2.5 are plotted, but for variations in lateral
velocity. For this example, angular velocity is zero, but angular velocity introduces tire
slip to the same effect lateral velocity does.

31

versus tire frame is not consistent for different lateral velocities, nor is the difference in

magnitude of the peak lateral force in the vehicle frame versus tire frame consistent.

Further, the neutral steering angle for zero lateral force is not at a fixed steering angle.

Thus, applying constraints to the steering angle does not ensure vehicle stability.

Fundamentally, the stable steering region is where d|Fy,veh. frame|
dδ

> 0. However, the

stability constraint in this form, and subsequently calculating sensitivities, is compu-

tationally expensive. As a conservative alternative, limiting the peak tire slip to a

set αpeak has restricted the slip angle to the stable region in practice. αpeak can be

established a priori though offline simulations of the expected or experience operating

states. For the CIS maneuver and chosen tire coefficients, αpeak = 8◦ allows the con-

troller to operate within 98% of the peak available tire force. Subsequently, a trajectory

is considered stable if the tire slip never exceeds αpeak.

This constraint is formulated on the front and rear wheels as follows and is enforced

at every integration state in the prediction trajectory.

αf = |δf − arctan(
v + ωlf

u
)| ≤ αpeak (2.7)

αr = |δr − arctan(
v − ωlr
u

)| ≤ αpeak (2.8)

For the tires used in the bicycle model, the front and rear tires have the same prop-

erties. This is not always the case, but the controller can enforce different αpeak, front

and αpeak, rear constraints for the front and rear tires. Further, by forming a separate

front and rear stability constraint, the numeric optimizer has better control of address-

ing the feasibility criteria as the gradient information pertaining to the front slip and

rear slip is independent.

The tire slip only forms half of the vehicle stability consideration. Next, the terminal

stability is developed.

32

2.3.3 Terminal State Constraint

The latter component of the third CIS criteria is the vehicle must settle in the desired

lane at the end of the prediction horizon. This ensures the MPC controller sees the

entire maneuver though prior to taking action, thus preventing starting a CIS maneuver

that later becomes infeasible in closed loop as the prediction horizon recedes.

The simpler forms of CIS perform a single lane change maneuver. For the curved

road example, this implies the vehicle settles in the left lane for the outside lane change,

or the right lane for the inside lane change. Alternatively, a more complected CIS

maneuvers of double lane change is simulated, where the host vehicle settles back in

the original lane.

The terminal state, xstable, is derived from road information. For the geometrically

generated sample case, the terminal state would be a right hand turn following a radius

of rlane = rturn +wlane for the outside lane change, and rlane = rturn−wlane for the inside

lane change. Similar to the initial state, the terminal stable state for the new radius is

calculated by evaluating the steady state conditions from (2.4).

One challenging element of terminal state constraint is establishing a priori the

location of final state in the prediction horizon. While it is easy to describe the desired

position as centered in the next lane, it is difficult to state how far down the lane the

final state is, and correspondingly, how much the vehicle needs to be rotated relative to

its starting position. For this implementation, the terminal (xt, yt) position is set based

on radius from the curve center (xc, yx), not explicitly road position. The terminal

vehicle rotation angle is set based on (xt, yt) position, and calculated such that the

vehicle velocity is tangent to the road center.

In practice, implementing the terminal position would require some form of esti-

mate for road curvature at the end of the maneuver, which supports a look-up table

or alternative estimate for the stable states. Alternatively, both in practice and in

numerical simulation the drivable space boundaries can be artificially contracted to

mandate the vehicle is in the center of the lane far in the prediction horizon.

33

It is not essential that the terminal position constraints are as accurate as possible.

The terminal position constraints are enforced far in the prediction horizon where the

vehicle has the most control authority and ability to correct in closed-loop implemen-

tation.

The terminal position (xt, yt) and rotation ψt are structured as follows.

(xt − xc)2 + (yt − yc)2 = r2lane (2.9)

arctan
(yt − yc
xt − xc

)
=
π

2
− arctan

(vt
y0

)
(2.10)

The complete terminal state is structured as follows.

xstable =
[
xt yt ψt u0 vt ωt δf,0 0

]T
(2.11)

The inclusion of the terminal state constraint addresses recursive feasibility consid-

erations. If the initial maneuver obeys the terminal state constraint, the next iteration

in the receding horizon of closed-loop MPC obeys the terminal state constraint as well,

with the final control input as the zero vector. While this is valid in the context of the

prediction model, it does not guarantee recursive feasibility subject to plant-prediction

model mismatch.

2.3.4 Vehicle Physical Limits

The last set of constraints on the MPC problem is to capture the physical limits of

the vehicle. Specifically, the front and rear wheels are both steering angle and steering

rate limited.

For this vehicle, the front wheels have a simulated maximum steering angle limit of

±35◦ and a maximum rate limit of ±70 deg/s. For rear wheel steering capable vehicles,

the rear wheels typically do not have as strong control authority, and are comparatively

reduced. For this vehicle, a simulated limitation on the rear wheel angle is set at ±10◦

34

and rate limited to ±35 deg/s. To model a front-only steering vehicle, the rear wheels’

angle limit can be set at 0◦.

Like the other constraints, the steering rate limits are enforced at every integration

point in the prediction horizon. Because the optimization problem is structured such

that the design variables are the steering rates, the physical rate limitations are enforced

as bounds on the design variables.

Additionally, the steering angle is a linear function of the design variables, and

for certain numerical optimizers, it might be handled differently. While it does not

change the structure of the numerical optimization problem presented here, this subtle

difference should be considered for simulation timing purposes.

Hitherto, all the constraints for the optimization problem are built. Any candidate

trajectory that obeys all these constraints is considered feasible. Next, the objective

function is formulated to determine the optimal trajectory.

2.3.5 Objective Function: Minimum Slip

As discussed in Sec. 1.2, many of the obstacle avoidance algorithms are designed based

on path following formulations. In the context of CIS, following a predefined reference

path does not necessarily correlate to the safest trajectory. Instead, it is proposed

to minimize the largest tire slip. By minimizing the peak tire slip in the prediction

horizon, this maximizes the additional available tire force, which maximizes the control

authority available to make mid-maneuver corrections. Additionally, by minimizing the

peak tire slip, and correlating to minimizing the peak tire force, the resulting CIS can

be argued to be the least invasive on the occupants.

Alternatively, a minimum distance formulation is presented in Sec. 2.6. While

leaving the starting lane in the shortest distance can provide an informative metric for

how late to intervene, it might not be the best in practice. If the vehicle decides it will

intervene, it can be beneficial to intervene right away instead of delaying.

If the vehicle detects it cannot brake in time and must perform a lane change,

35

one option is to still perform the minimum distance lane change, thus maximizing the

available gap between when leaving the lane and the obstacle. However, this would be

an overly aggressive maneuver, as the minimum distance lane change will always load

the vehicle tires to the maximum allowable force, to be see in Sec. 2.6.

Minimizing a maximum function can be difficult in gradient based optimization

because the maximum element in the aggregate can change index discretely, resulting in

discrete changes to the gradient. Thus, the Kreisselmeier-Steinhauser (KS) constraint

aggregation function is used to minimize the peak tire slip in a gradient smooth fashion.

2.3.6 KS Function

The KS function was proposed as a means of creating a single performance metric to

represent a group of performance indicators [77]. At a high level, the KS function

represents a smooth near-infinity norm, which is beneficial in gradient-based optimiza-

tion as it mathematically represents a smooth maximal-like function. The discrete KS

function is introduced as follows [78], [79].

KS(g, ρ) =
1

ρ
ln
(n∑
i=1

eρgi
)

(2.12)

In (2.12), g represents a vector of constraints, with gi being the ith constraint

value. For the CIS MPC formulation, gi represents the constraint value at the ith time

integration step, g represents the constraint vector over the prediction horizon, and ρ

represents the constraint aggregation curvature parameter.

While the KS function is introduced here as a means to minimize the peak tire slip,

constraint aggregation techniques are beneficial for other constraints as well because

they reduce the size of the numerical optimization problem. For example, enforcing

the front tire slip constraint at n integration points in the prediction trajectory would

require n constraints, which can be reduced to 1 aggregated constraint. Each constraint

derived from the CIS criteria is collected into its own KS aggregation metric. This

36

reduces m feasibility constraints over n integration states from mn constraints in the

optimization problem to m KS constraints.

To leverage the constraint aggregation technique for the objective function and

other constraints, consider the following properties of the KS function. Specifically,

there are a few key properties that are desirable for safety constraint aggregation

[80]. Researchers have shown that the KS function is a conservative aggregation, and

as ρ becomes large the aggregation approaches the maximum value [78]. These are

numerically represented as follows.

KS(g, ρ) ≥ max(gi) ∀i ∈ [1, n] (2.13a)

lim
ρ→∞

KS(g, ρ) = max(gi) ∀i ∈ [1, n] (2.13b)

max(gi) ≤ KS(g, ρ) ≤ max(gi) +
ln(n)

ρ
(2.13c)

The significance of the conservative aggregation can be seen from (2.13a); if the KS

aggregation obeys the constraint, than each component of g obeys the constraint as

well. In terms of the CIS maneuver, this means if the KS aggregation of the tire slip

constraint is satisfied, then each integration point in the prediction horizon will obey

the tire slip constraint as well.

While the conservative nature of the KS function is important at a theoretical level,

there are practical limitations to using the KS function. Because the KS function is

conservative, the KS aggregation will be larger than the maximum of g. For the

drivable tube boundary constraint, if KS(g, ρ) = 0 and ρ is small, then max(gi) can be

much less than 0 by (2.13c). This can cause the controller to be overly conservative of

the drivable tube edge boundary, thus not using the fully allowable space, hence not

achieving good CIS performance.

Large values of ρ can cause numerical difficulties depending on the sign of the

elements of g. For example, the tire slip constraint has a positive constraint value; thus

limρ→∞ e
ρgi =∞, which causes numerical difficulties. Using algebraic manipulation, a

37

shifted KS aggregation formulation can be used.

KS(g, ρ, g) = g +
1

ρ
ln
(n∑
i=1

eρ(gi−g)
)

(2.14)

(2.14) is identical to (2.12), but is numerically robust. By choosing g = max(gi),

the exponent is non-positive, thus avoiding overflow errors. Additionally, the shifted

form of (2.14) provides insight into the maximum overestimation seen in (2.13c). If g

is taken as max(gi), the largest feasible value of (gi−g) is 0. If gi = max(gi) ∀i ∈ [1, n],

then (2.14) is equivalent to KS(g, ρ,max(gi)) = max(gi) + 1
ρ
ln(ne0), which reduces to

the third property.

However, evaluating max(gi) requires storing all values of gi, iterating through

the list for the maximum value, then evaluating the KS aggregation, which can be

computationally expensive. Alternatively, as the controller propagates the predicted

state trajectory, the controller can store the incremental KS contribution for a fixed

g. Calculating the incremental KS contribution at each time step has the additional

benefit that the entire state trajectory does not need to be stored, only the current

state at numeric integration.

While choosing g is not obvious, choosing g as the peak allowable constraint value

is a good starting point. If a solution to the numerical optimization problem exists,

the starting design point is in the neighborhood of the feasible region, and values of

ρ are reasonable, then the nested exponent does not encounter overflow issues and

hence retains the aggregate value and gradient information. Further, by setting g

to the constraint limit means g can be set prior to simulating the candidate control

trajectory, avoiding having to store every instance of gi.

Even with setting g as the allowable constraint limit there can be numerical overflow

issues. Often, the initial control trajectory violates the constraints, thus causing a

positive value in the exponent.

Consider a numerical analysis related to computing accuracy standards. Per IEEE

754 standard on single-precision floating-point, the exponent of a single-precision floating-

38

point is an integer on [−126, 127]. For the largest exponent of 127, this represents

2127 ≈ 1038. While 1038 is large, 1038 ≈ e87.5 forms an upper bound on the stable

values of the nested exponent. Thus, ρ must be scaled to avoid numerical overflow

errors, and a method to set this parameter once a priori is presented in Sec. 2.4.

Evaluating in double-precision float-point does little to help. Per IEEE 754, the

exponent of a double-precision floating point is an integer on [−1023, 1024]. Thus,

21024 ≈ 10308 ≈ e710, which allows a larger upper bound for the nested exponent, but

only allows a single order of magnitude larger ρ over single-precision.

Using the instantaneous tire slip at every integration point similar to (2.7) and

(2.8), the KS aggregation is generated as follows.

KS(α, ρslip) =
1

ρ
ln
(n∑
i=1

eρslipαi

)
(2.15)

Here, α is a vector containing the front and rear instantaneous tire slip angles at every

integration state in the prediction horizon.

For most of the trajectory simulation methods discussed in Chapter 3, the lane

boundary and tire slip constraints are enforced through the KS function. For each KS

function, a ρ constraint aggregation parameter must be defined a priori, and a method

to do so is as follows.

2.3.7 ρ Scaling

The parameter ρ should be scaled as large as possible without causing numerical sta-

bility issues. The various KS constraints used so far aggregate values of varying mag-

nitude, thus a universal ρ for the optimization is not feasible.

From KS property (2.13c), the overshoot bounding equation can fix ρ for a set al-

lowable percent overshoot. This introduces an allowable overshoot parameter, fovershoot,

which is the ratio of how much overestimation though the KS aggregation is allowable

39

to the maximum allowable constraint value.

fovershoot :=
KS(g, ρ)−max(gi)

gallowable

ρ =
ln(n)

fovershoot gallowable

(2.16)

Based on an analysis of the largest expected value of gi and the number of dis-

crete integration points n in the prediction horizon, fovershoot = 0.15 aggregates the

constraints while avoiding numerical overflow issues. In simulation, ρboundary = 13 and

ρfront = ρrear = 264 has been stable. In the context of the objective function, there is

no peak allowable objective value. However, for a feasible solution to exist, the peak

tire slip constraint must be obeyed, hence ρobj = 264 is stable.

While ρ is a tuning parameter to the CIS controller, it is established a priori for

each constraint. Once it is set offline, it does not change during online use.

With the objective and constraints defined, the numerical optimization problem

can be formulated.

2.4 Optimal Control Problem Formulation

The task of finding a control sequence to perform a CIS maneuver is posed as a nu-

merical optimization problem. The design variables, in this case steering angle control

rates [81], [82], are adjusted such that by the feasibility criteria, the vehicle response

obeys the hard safety constraints. Of the set of feasible trajectories, the best trajectory

is the one that minimizes the peak tire slip.

To begin, the instantaneous plant state seeds the starting state for the prediction

model. In implementation, the instantaneous 3DoF state is provided by a localization

stack. The current CIS controller formulation requires all 8 states in the 3DoF bicycle

model in (2.2) to be defined. Some states, like x−y position and steering angle, can be

directly measured, but other states, such as lateral velocity, might require estimation.

While all states are observable and controllable, the observation task is beyond the

40

scope of the controller, but some insight is provided in Chapter 4.

For numerical simulations herein, the 3DoF states are passed directly from the

14DoF state vector. This bypasses sensor noise and data acquisition timing, but insight

on uncertainty is provided in Sec. 2.7. Although the plant states are exactly available

to the prediction model, this passing still retains deviation between the prediction

model and plant model due to model fidelity.

One complication with the starting state is the controller takes a nontrivial amount

of time to solve. The controller is designed for a tupdate = 100 ms closed-loop update

rate to the plant. As a result, the starting state the controller sees is seeded forward

100 ms by the prediction model, denoted the initial state x0. Additionally, this implies

the earliest a control action can be implemented to make a correction is 100 ms into

the future.

From the initial state x0, the control trajectory is numerically integrated forward

with a zero order control hold. The zero order control hold represents a constant

control input, in this case constant steering rate, for a set block of time and is chosen

to simulate closed loop control architectures typically found on distributed automotive

control systems. Details on the numerical integration method and trajectory simulation

are explored further in Chapter 3. The resulting prediction trajectory is defined by n

integration states, each denoted xi.

For this problem, an MPC time horizon of 3.2 s has been sufficiently long in simu-

lation for the vehicle to complete the lane change maneuver and stabilize in the next

lane. While a longer time horizon can be used, this increases the problem size, typically

incurring a computational penalty. Identifying the appropriate time horizon for MPC

is an ongoing research area in controls research [8].

The time horizon is broken into uniform constant control intervals. In the latest

version of the controller, the prediction horizon is broken into 50 ms intervals defined

by a constant front and rear control rate, resulting in a total of 64 segments. For

the 100 ms update rate, the controller issues two control intervals to the plant every

interval.

41

Combining the objective function and constraints described prior, the nonlinear

numerical optimization problem is formulated as follows.

min
u

KS(α, ρ)

subject to dl,i ≤ 0 ∀ i ∈ [1, n]

dr,i ≤ 0 ∀ i ∈ [1, n]

αf,i ≤ αpeak ∀ i ∈ [1, n]

αr,i ≤ αpeak ∀ i ∈ [1, n]

|δf,i| ≤ δf,max ∀ i ∈ [1, n]

|δr,i| ≤ δr,max ∀ i ∈ [1, n]

|δ̇f,i| ≤ δ̇f,max ∀ i ∈ [1, n]

|δ̇r,i| ≤ δ̇r,max ∀ i ∈ [1, n]

xterminal − xstable = 0

(2.17)

(2.17) does not explicitly include the equations of motion as part of the optimization

problem, as the equations of motion are enforced in the mapping of the control input

to prediction state trajectory, discussed further in Sec. 3.1.

(2.17) still retains the tire slips as constraints, even though the objective function

is to minimize the peak tire slip. Even though the optimal solution is expected to

minimize the peak tire force, retaining these stability constraints in the optimization

problem improves the convergence rate as intermediate candidate solutions might be

infeasible, and due to the gradient inversion can have trouble converging.

With the numerical optimization problem established, various scenarios are con-

structed to evaluate the performance of the CIS controller.

42

2.5 Numeric Simulation of Curved Roads

Solving nonlinear numerical optimization problems is an entire discipline on itself,

but (2.17) is implemented in IPOPT [83] for simulation purposes. The simulation

hardware is a 2017 HP Omen desktop with an Intel i7-7700k CPU and NVidia GTX

1080 discrete GPU, which, at the time, was a high performance personal desktop

machine. Solutions converge in approximately 55 ms wall time, but details on achieving

real-time performance are addressed in Chapter 3.

IPOPT is chosen primarily as it is an interior point solver. Interior point solver

methods are desirable for this type of application because the optimization problem

is tasked with finding a feasible point first, then finding the optimal point. This is

important for time sensitive safety critical applications, such as CIS, because it means

the optimizer attempts to find a control trajectory that first obeys the hard safety

constraints, then iterates on the optimality if time allows. Additionally, IPOPT does

not require the initial candidate point, nor subsequent iterations, to be strictly feasible.

This ensures the optimizer does not fail during the nonlinear iterations, nor does the

discrete change in the drivable tube that occurs when an obstacle enters the lane

terminate the iterations. The plant vehicle and environment simulation is modeled

in Python, and relevant CIS control information passed into a C implementation of

IPOPT.

As discussed in Sec. 2.1, an obstacle is fixed 47 m down the road with the host

vehicle traveling at 35 m/s. The prior discussed braking distance of 79 to 169 m dictates

a collision cannot be avoided by braking alone, thus requires an evasive lane change.

Consider first the outside CIS maneuver.

2.5.1 Outside Lane Change

Consider first an outside lane change, representing a change into the left lane for a

right hand turn. Fig. 2.7 shows 4 concurrent plots highlighting different aspects of the

maneuver. The first plot shows the x–y trajectory through the lane corridor, second

43

plot shows the front and rear wheel angles, third plot shows the front and rear slip

angles, and fourth plot shows the front and rear steering rate commands.

This is a comparatively easy maneuver, because the vehicle begins by relaxing the

tires and opening up the radius to the turn. Although the vehicle does turn to the left

initially, this is a brief maneuver immediately followed by a long sweeping right turn.

The vehicle holds the turn, just leaving the starting lane when passing the obstacle,

and then just coming to the edge of the outer lane limit before stabilizing for the end

of the maneuver.

This single lane change to the outside reaches a peak tire slip of approximately

4.6◦ slip, representing about 86% of the available tire force. Because the objective is

structured to minimize the peak tire slip, there is no penalty for holding the vehicle at

that peak slip for prolonged periods of time. As a result, the optimal solution turns

left to +4.6◦, then begins the sweeping turn to the right, during which the vehicle is

loaded to −4.6◦.

There is some deviation from the peak slip later in the trajectory for two reasons.

First, the controller acts in the receding horizon, and minimizes the peak slip from

that point forward. Even though the vehicle reaches a higher peak slip earlier in

the maneuver, the closed-loop solution will only push to the peak slip if necessary.

Second, the discrepancy between the 3DoF prediction model and the 14DoF plant

model becomes apparent, causing small perturbations throughout the maneuver. The

14DoF plant includes higher order dynamics, such as suspension response, which the

controller cannot account for, but does correct for in the closed-loop through feedback.

Additionally, the importance of the computational speed becomes apparent from

this maneuver. When the host vehicle identifies the obstacle at some distance into the

future, it does not know if a safe CIS maneuver exists, thus does not immediately take

action. Instead, the CIS controller begins solving the maneuver, seeding the trajectory

as where it thinks the host vehicle will be 100 ms into the future. As a result, there

is no control intervention over the first 100 ms, effectively bringing the obstacle 3.5 m

closer.

44

-15

5

y
 p

o
s
it

io
n

[m
]

-8

0

8

S
te

e
ri

n
g
 a

n
g
le

[d
e
g
]

Front wheels

Rear wheels

-8

0

8

S
li
p
 a

n
g
le

[d
e
g
]

Front wheels

Rear wheels

0 20 40 60 80 100
x position [m]

-70

0

70

S
te

e
ri

n
g
 r

a
te

[d
e
g
/s

]

Front wheels

Rear wheels

Figure 2.7: An outside lane change CIS maneuver. The vehicle identifies an obstacle
47 m away, and begins a quick left turn followed by a long sweeping right turn into the
next lane.

45

2.5.2 Inside Lane Change

Next, consider an inside lane change, where the vehicle changes into the right lane for

a right hand turn. Fig. 2.8 shows the same 4 concurrent plots as the previous example.

This is a comparatively difficult maneuver, because the vehicle must make a more

aggressive turn-in than the starting trajectory. The inside CIS maneuver begins with

a stronger turn to the right to begin the lane change, holds that tighter turn for a

stretch, then makes a left turn to counter steer. Similar to the outside lane change,

the vehicle just changes lanes when passing to the inside, and travels to the edge limit

of the inside lane change. The maneuver finishes with the vehicle settled in the inside

lane at the new steady state terminal trajectory.

One difference with the inside lane change is the counter steering takes place just

before crossing the obstacle. This is because the MPC controller can see that the right

lane boundary constraint will be active, and must avoid turning too far to the right.

This can be difficult for a non-professional human driver, as identifying the perfect

moment to initiate the counter steer is not trivial. However, the MPC accounts for the

future states, and makes the appropriate corrections in a timely manner.

Additionally, the nature of the necessary counter steer emphasizes the need for

a one-level MPC architecture. It would be difficult to identify an optimal drivable

x − y reference trajectory a priori requiring the perfect counter steer, and would be

challenging to develop a controller to safely follow said reference trajectory as it drives

at the edges of the drivable tube, requiring the vehicle operates at the limits of handling.

This inside lane change requires a peak tire slip of approximately 7.2◦ slip, corre-

sponding to approximately 95% of the available tire force. While the CIS controller

is able to find a maneuver to perform the inside lane change for the obstacle at 47

m away, this is approaching the minimum distance an inside CIS maneuver can be

feasible.

While the outside lane change is less aggressive than the inside lane change, poten-

tial obstacle occlusion is not considered in this work, which might prevent ensuring the

46

-15

5

y
 p

o
s
it

io
n

[m
]

-8

0

8

S
te

e
ri

n
g
 a

n
g
le

[d
e
g
]

Front wheels

Rear wheels

-8

0

8

S
li
p
 a

n
g
le

[d
e
g
]

Front wheels

Rear wheels

0 20 40 60 80 100
x position [m]

-70

0

70

S
te

e
ri

n
g
 r

a
te

[d
e
g
/s

]

Front wheels

Rear wheels

Figure 2.8: For an inside lane change CIS maneuver, the vehicle must quickly further
load the tires to a tighter turn, which is comparatively more aggressive. Additionally,
just prior to passing the obstacle, the host begins an equally aggressive counter steer to
avoid turning too far into the inside lane. In final version, figure 3 and 4 are intended
to be side by side at the top of the page for comparison purposes.

47

outside lane is safe for a lane change.

2.5.3 Outside Double Lane Change

In the previous simulations, the vehicle performs a single lane change, where the ter-

minal position is either the outer or inner lane. Alternatively, a double lane change

maneuver can be conceived, where the vehicle must return to the starting lane after

passing the obstacle. In this scenario, the center lane is blocked between 57 m and

67 m, and the outside lane is blocked at 97 m. Thus, the host vehicle must leave

the starting lane within 57 m, return to the center lane before 97 m but after 67 m,

and must settle in the original lane at the end of the trajectory. The resulting four

concurrent plots can be seen in Fig. 2.9.

Similar to the outside single lane change, the outside double lane change begins

with a quick turn to the left and then a sweeping turn to the right. However, based

on the obstacle distance and outer lane restriction at 97 m, the vehicle counter steers

comparatively sooner. In contrast to the single lane change, the double lane change

does not reach the outer lane boundary, but rather must begin re-entering the starting

lane as soon as it passes the obstacle.

The nonlinear MPC is able to properly account for the outer lane restriction, and

identifies that the least aggressive maneuver requires an earlier counter steer to allow

the vehicle to settle in the starting lane in time. Further, this maneuver does not reach

the outer lane boundary, making it more challenging to generate an optimal reference

trajectory a priori that minimizes peak tire excitation, highlighting the importance of

a one-level architecture.

For this example, the outer lane is artificially restricted at 97 m, mandating a double

lane change. If this restriction were not in place, and either the outer lane or starting

lane are equally acceptable terminal lanes, then a higher level controller would have to

evaluate the target terminal lane. This can be challenging for the controller, because

based on the obstacle distance and prediction horizon, it cannot be guaranteed there is

48

-15

5

y
 p

o
s
it

io
n

[m
]

-8

0

8

S
te

e
ri

n
g
 a

n
g
le

[d
e
g
]

Front wheels

Rear wheels

-8

0

8

S
li
p
 a

n
g
le

[d
e
g
]

Front wheels

Rear wheels

0 20 40 60 80 100 120 140
x position [m]

-70

0

70

S
te

e
ri

n
g
 r

a
te

[d
e
g
/s

]

Front wheels

Rear wheels

Figure 2.9: An outside double lane change CIS maneuver. The vehicle identifies an
obstacle 57 m away, but must find a trajectory that returns to the initial lane on
completion.

49

sufficient travel distance after the obstacle for the host to return into the starting lane.

This can be problematic as the existing MPC formulation cannot identify sufficient

space to return and can only conclude it is an infeasible problem. Thus, the decision

coming from a higher level controller to perform a single lane change versus double

lane change must be conscious of this corner case.

Based on these various situations, the CIS controller developed with regards to a

drivable tube can adapt to various types of CIS maneuvers. Hence, it is feasible this

controller can handle variations in road curvatures, speeds, and other highway factors.

2.6 Straight Road Formulation

2.6.1 Straight Road Environment

One special highway scenario is in straight road settings. In the straight road set-

ting, the effects of road curvature are not present, and certain criteria about the lane

change can be exploited in the global reference frame. For specifically, the lane change

threshold can be well defined in the global coordinate frame, easily supporting a new

formulation.

While the minimum slip formulation discussed prior in Sec. 2.3 is useful for the

minimum aggressive maneuver, it does not directly support finding the limits of per-

formance. For that, a minimum distance formulation is presented, which seeks to leave

the starting lane in the minimum distance subject to the CIS criteria. This formulation

establishes what the latest possible moment for intervention is, and can be useful to

help tune when the controller intervenes.

The geometrically simulated straight road environment uses the same wlane = 3.7 m

as the curved road, as well as same plant and prediction model. However, by aligning

the road longitudinally with the global x axis, the lateral lane change boundary aligns

with a lateral displacement of y = wlane
2

. Similar to the contraction in the drivable tube,

the lateral lane boundaries are adjusted for the vehicle half width and safety buffer.

50

x

y

lane
y

lane
y

threshold
y

1
2 lane
y

1
2 v
w �� outer

y

1
2 v
w ��

Figure 2.10: Numerical thresholds for the straight road scenario.

As such, a lane change takes place at ythreshold = wlane
2

+ wvehicle
2

+ σ, and the outer lane

boundary is enforced along youter = 3wlane
2

+ wvehicle
2

+σ. An example of the straight road

setting can be seen in Fig. 2.10.

For this scenario, the host starts centered in the lower lane traveling to the right.

The center of the lower lane is set as y = 0, and the vehicle must displace in the positive

lateral position to make the lane change. Next, this lane change criteria is numerically

formulated to support the minimum distance numerical optimization problem.

2.6.2 Minimum Distance Objective Function Formulation

The minimum distance formulation is designed to minimize the x position when the

y position satisfies the lane change threshold. This formulation cannot be captured

through the drivable tube concept because the tube would have to know the x position

a priori to contract the edge boundary. By extension, the first CIS criterion is not

guaranteed through the drivable tube, rather enforced through the objective function.

Due to the discrete integration states in the prediction trajectory, no point xi will

perfectly align with yi = ytheshold. However, consider the two consecutive integration

points bounding ythreshold, where yk < ythreshold < yk+1. The x position when passing

the obstacle can be estimated by linear interpolation between the bounding states xk

51

and xk+1 as follows.

distancefixed offset(xk,xk+1) = xk +
xk+1 − xk
yk+1 − yk

(ythreshold − yk) (2.18)

(2.18) solves for the x position when the y position crosses ythreshold and is C2 with

respect to xk and xk+1. Additionally, this objective function inherently captures the

first CIS criteria, as the objective function mandates the ytheshold is satisfy, ensuring

the vehicle completely changes lanes for the solved x position. Next, the second CIS

criterion is constructed.

2.6.3 Outer Lane Boundary Constraint

While the drivable tube enforces the second CIS criterion natively by adjusting the

outer tube boundary, the straight road controller requires this constraint to be explicitly

enforced. However, by exploiting the straight road boundaries in the global coordinate

frame, this constraint is straight forward.

By the second CIS criterion, a candidate maneuver is considered safe if the y posi-

tion at all discrete integration points in the prediction horizon are less than youter, as

seen in (2.19).

yi ≤ youter ∀ i ∈ [1, n] (2.19)

This constraint can be incorporated into a KS aggregation similar to the curved

road example using a aggregation parameter of ρylane = 200. Finally, the third CIS

criterion is presented as well.

2.6.4 Straight Road Stability Criteria

The two stability criteria for the straight road case mirror the curved road. In the

case of the controllability consideration, the tire slip constraints in (2.7) and (2.8) are

enforced the same as curved roads. The terminal state position is similar, but is easier

to define in the straight road case.

52

For the straight road, the settled terminal state leaves the host vehicle traveling

straight down the road, with wheels forward and y shifted into the next lane. Similar

to the curved road scenario, establishing the x position at the end of the prediction

horizon is challenging. However, because there is no curvature, the y and ψ states are

well established, which supports the settled state definition as follows.

xstable =
[
x ylane 0 u0 0 0 0 0

]T
(2.20)

In (2.20), the final x position is defined recursively; per the CIS criteria, the terminal

x position is not a consideration, thus has no influence.

The remaining constraints in the optimization problem are dictated by the vehicle

model. For the straight road case, the same host vehicle and prediction models are

used, thus the same steering angle and steering rate constraints are enforced. Thus, all

constraints are formed to design the numeric optimization problem that is the minimum

distance CIS controller as follows.

2.6.5 Minimum Distance Optimization Problem Formulation

Combining the constraints specific to the straight road minimum distance formulation

and the select stability and vehicle constraints discussed in Sec. 2.3, the numerical

optimization problem is posed as follows. The optimization problem does not specifi-

cally include the KS aggregation in the formulation, but it is recommended to include it

when mapped into IPOPT as this will reduce the optimization problem size, improving

53

convergence speed.

min
u

distancefixed offset(xk,xk+1)

subject to yi ≤ yboundary ∀ i ∈ [1, n]

αf,i ≤ αpeak ∀ i ∈ [1, n]

αr,i ≤ αpeak ∀ i ∈ [1, n]

|δf,i| ≤ δf,max ∀ i ∈ [1, n]

|δr,i| ≤ δr,max ∀ i ∈ [1, n]

|δ̇f,i| ≤ δ̇f,max ∀ i ∈ [1, n]

|δ̇r,i| ≤ δ̇r,max ∀ i ∈ [1, n]

xterminal − xstable = 0

(2.21)

One drawback to the straight road formulation is the first and second CIS criteria

are posed in the global coordinate frame, aligned with the road. This can be challenging

for implementation in a vehicle fixed reference frame, as relaxing constraints in the

global x position transforms into relaxation in the x and y local coordinate frame.

However, this point is not a factor for numerical simulations.

Next, the optimization problem is solved and simulation results reported.

2.6.6 Straight Road Numerical Simulations

For the straight road example, the vehicle velocity is set at u0 = 30 m/s to provide

some variation from the previous examples. To motivate the necessity of an evasive

lane change, the minimum braking distance is estimated. Because the vehicle is not

on a curved road, a component of the available tire force does not need to maintain

a radial component, thus braking performance is improved. For the 0.8g deceleration

allowed through the coefficient of friction, limit braking requires 57.3 m of travel over

3.8 s.

Again, human drivers so not brake as aggressively, which would require additional

54

distance. However, real world effects, such as aerodynamic drag and down force, can

improve braking distance. Automotive manufacturers often publish the 60 − 0 mph

braking distance, which the host vehicle is modeled after is listed as 34.4 m. This

braking distance represents an average deceleration of about 1.2g, which for the 30m/s

example requires 44.6 m travel.

Fig. 2.11 plots the minimum distance lane change in the same 4 subplot manner as

prior.

In Fig. 2.11, the first plot shows the x− y trajectory in blue as the vehicle travels

down the highway. For front and rear steering limited to αpeak = 8◦, the vehicle changes

lanes in 31.0 m, which is almost half the distance of theoretical limit braking at 0.8g,

and about a two thirds that of 1.2g. The orange rectangle represents a fully blocked

lane and is placed at the x position representing when the host vehicle departs the

lane. The blue star represents ythreshold.

The second plot shows the front and rear steering angle, as well as vehicle rotation.

Both front and rear wheels initialize the maneuver with a turn to the left to begin

departing the lane, and then both turn to the right to stay within the lane boundary,

and finally steer to settle the vehicle at the end of the trajectory. As the vehicle’s

lateral velocity and yaw rate grow during the maneuver, the controller makes small

adjustments to hold the tires at the peak loading. This can be seen between 8 m and

18 m, where the front slip angle is steady at αpeak, but the steering angle slightly grows.

Similar to the curved road example, the straight road case initiates a counter steer

prior to clearing the obstacle. This is because if the vehicle held the left turn until

leaving the lane, the vehicle would not be able to stay within the lane boundary later

in the trajectory. Turning back into the lane at the right moment prior to clearing the

obstacle may be counterintuitive for some drivers, especially in an emergency situation

at high speeds.

The third plot shows the tire slip throughout the maneuver. The front tires turn

left to their peak slip limit to maximize the lateral force in the vehicle frame, and hold

the high slip angle until turning to the right and holding the peak slip again. While

55

0.00

3.25

4.15

y
po

si
tio

n
[m

]

Lane boundary youter

CG trajectory
Lane center
Obstacle

−20

−10

0

10

20

A
ng

le
[d

eg
]

Front wheel steering
Rear wheel steering
Vehicle yaw

−8

−4

0

4

8

S
lip

an
gl

e
[d

eg
]

Front wheels
Rear wheels
Limit

0 10 20 30 40 50 60 70
x position [m]

−70

−35

0

35

70

S
te

er
in

g
ra

te
[d

eg
/s

]

Front wheels
Rear wheels
Limit

Figure 2.11: The four concurrent plots, plotted against x position of the maneuver,
show the various states and control inputs during the aggressive lane change.

56

holding the high slip, the front wheels make small steering adjustments to maintain

the high slip as vehicle lateral velocity and yaw rate develop.

The rear tires attempt to turn to their peak slip limit, as well, but are steering

angle and rate limited in doing so. As a result, they reach the peak steering angle,

before turning back to the right at the peak steering angle again. Because the rear

steering mechanism’s steering and steering rate constraints are active, it is feasible that

an improved rear steering mechanism can improve the CIS performance.

The fourth plot shows the steering rate throughout the maneuver, but without the

100 ms timing delay. For the minimum distance formulation, the distance is calculated

as if the vehicle gets to act immediately to provide the theoretical best performance.

To change lanes in the minimum distance, the controller will always push the vehicle

to its allowable limits of handling. For this simulation, αpeak is set based on the stability

limits discussed in Sec. 2.3.2. In the next section, αpeak is adjusted manually to provide

insight on the controller performance.

2.6.7 Minimum Distance Performance Versus Maneuver Ag-

gression

To minimize the lane change distance, the CIS controller will always push the vehicle

to the allowable limits of handling. By manually adjusting what these limits are,

as defined by αpeak, the trade-off in lane change distance performance versus vehicle

performance can be investigated.

By manually varying the allowable maximum slip angle αpeak in (2.21), the distance

to perform a lane change for a prescribed level of vehicle excitation is resolved. Fig.

2.12 plots the minimum lane change distance against peak allowable slip for both front

and rear steering, and front only steering architectures. Per Sec. 2.3.4, front only

steering is numerically achieved by locking rear wheel deflection as δrear = 0◦.

Based on the Pareto fronts of Fig. 2.12, the windows of opportunity to initiate a

CIS maneuver are sizable, even for low slip angles. Only at very low slip angles, i.e.

57

1 2 3 4 5 6 7

Maximum allowable tire slip angle [deg]

31

34

37

40

43

46

49

52

55

58
La

ne
ch

an
ge

di
st

an
ce

[m
]

Safe braking limit at 0.8g

Safe braking limit at 1.2g

CIS Pareto front
Feasible CIS region

Front and rear steering

Front only steering

CIS Pareto front
Feasible CIS region

8

Figure 2.12: Increasing the allowable slip angle improves the effectiveness of the CIS
system, but with diminishing returns.

less than 2◦ peak slip, do the theoretical limit braking distances match the required

CIS distance. This implies if the vehicle identifies the obstacle quickly and can solve

the CIS maneuver in a time efficient manner; an evasive lane change can be performed

with small tire excitation.

While the minimum distance CIS formulation provides a theoretical bound on the

shortest lane change distance, waiting until this theoretical limit distance to initiate

CIS is not an advisable control strategy in practice due to plant-prediction model

mismatch inherent to MPC [60]. Thus, the minimum slip formulation presented with

the drivable tube concept is preferable for implementation.

2.7 Robustness Analysis and Adaptive Formulation

2.7.1 Literature Review on Adaptive Automotive Controllers

MPC controllers employ a prediction model to accurately represent the plant system

response. For nonlinear MPC formulations operating at the limits of handling, it

58

is critical to accurately capture the system response as incorrect control actions can

leave the system in an unrecoverable state [84], [85]. For the CIS controller, it is

essential to capture the interactions between the tire and road properly, and parametric

uncertainties in the tire model can significantly impact the safety and performance of

MPC [86].

Various tire models have been developed taking different parameters as input. Slip-

based models such as the Pacejka tire formula [87], [88] and exponential tire formula

[89] use the localized tire slip to estimate tire force and are widely used for on-road

applications. In these models, the most critical parameter to accurately model the

tire force is the coefficient of friction. The high sensitivity of tire response to the

coefficient of friction can be problematic for safety critical applications, as path-tracking

controllers can require within 2% accuracy in the coefficient of friction [24]. While it

is infeasible to obtain this accuracy a priori, adaptive controllers with an observer can

greatly improve closed-loop controller response.

One such observer considers both time-domain and frequency-domain vehicle re-

sponses to extract the best estimate of coefficient of friction [90]. However, in this

example, the tire force uses a linear response curve, which limits the accurate range of

slip angles, and thus the application is limited to a linear system dynamics model.

Researchers have also used sensor fusion to estimate the slip angle and shown that if

the slip angle is used in conjunction with a fixed tire force model, the controller has poor

robustness when tire parameters change; but a linear adaptive tire force model, with

the coefficient of friction as an added state, greatly improves stability [91]. However,

this method is still limited to linear tire forces operating far from the nonlinear region.

In the context of nonlinear tire force curves, particle filters can estimate both the

instantaneous tire force, as well as tire force curve in the neighborhood of the slip angle

[92]. In this example, a particle filter is used to best fit the instantaneous linear tire

response from a set of precomputed curves, and the resulting curve is used for inference

in the nonlinear tire response region. Further, it is shown that the particle filter is able

to outperform extended Kalman filters due to the breakdown of the Gaussian noise

59

assumption. In the presented examples, the particle filter does not retain a Gaussian

uncertainty while converging, which causes difficulty for the extended Kalman filter to

converge. During numerical simulations, the particle filter can identify discrete changes

in the environment, and estimate the full tire response online [93]. The presented

particle filter estimates of the coefficient of friction within 1% of the truth with a

settling time of up to 5 s. For some applications this settling time is sufficient, but it

is too slow for time critical applications such as CIS. Further, the validation cases were

at low speed with soft safety constraints, which are difficult to extrapolate to safety

critical maneuvers at high speed.

For the intended CIS application, it is vital to estimate both the coefficient of

friction accurately, and quickly. Thus, it is proposed to incorporate an unscented

Kalman filter (UKF) as this observer can estimate the coefficient of friction when

operating in the nonlinear tire regime in a time efficient manner.

2.7.2 Adaptive Controller Design

One desirable aspect to the minimum slip formulation is it maximizes the peak addi-

tional tire force to make mid-maneuver corrections. While the one-level MPC formu-

lation inherently introduces some stability performance, because the control action is

resolved based on the instantaneous state, excessive discrepancies between the plant

and prediction models can lead to constraint failure.

The ultimate goal of the prediction model is to accurately estimate the correspond-

ing plant state trajectory for a candidate control trajectory. As mentioned, the Pacejka

coefficients used in Table 2.2 are seldom, if ever, published. However, research has

shown these coefficients can be reliably estimated from controlled lab testing and cor-

relate well to road data [94]. However, the parameters describing the road surface, such

as roughness, have a large influence on peak tire response and cannot be extrapolated

from separate testing.

As a result, rubber stiffness and relaxation parameters B and C can be well es-

60

timated, but coefficient of friction µ is not as reliable. For this reason, the adaptive

formulation is concerned with uncertainty in the coefficient of friction.

The error from plant-prediction model mismatch is characterized in two forms. In

the first form, when the MPC applies a control command to the plant for a closed-loop

iteration, in the next closed-loop iteration the plant is at a different state than what the

prediction model expected it to be. This is denoted as the experienced error. For the

second form of error, for a candidate control trajectory, there is a difference between

the future state trajectories of the prediction model and the open-loop plant. This is

denoted as the prediction error and is the focus of the adaptive formulation.

The prediction error is further compounded by the time latency of solving the

MPC formulation. As mentioned, solving the optimal control problem (2.17) requires

a nontrivial amount of time, which is expected to be about tupdate, thus the starting

state set as the predicted state at ti + tupdate. This compounds the prediction error,

because during the time gap of tupdate, the controller cannot change the plant’s control

action. Additionally, as tupdate grows longer, the deviation of where the plant will be

at ti+1 and where the controller thinks the plant will be at ti + tupdate grows.

Fig. 2.13 illustrates this issue on an example maneuver. There are four theoretical

trajectories shown: the plant trajectory and the three prediction trajectories solved at

sequential closed-loop iterations. In this example, the vehicle is making a right turn

with the prediction model using a higher coefficient of friction than the plant.

While Fig. 2.13 only illustrates the error in the topographical displacement in x−y,
the predicted state and plant state may deviate in the other components, too. For the

example CIS maneuver, this means the lateral velocity and yaw rate, both having a

high influence on the tire response, can deviate and further cause discrepancies between

the plant and prediction models.

To help address the errors produced by differences in the plant and prediction model,

a UKF observer is introduced to estimate the plant’s coefficient of friction. Recall that

prior art identified the uncertainty in the nonlinear tire response for a particle filter

estimator as non-Gaussian [92]. For the considered CIS maneuver, nonlinear Pacejka

61

x position

y
 p

o
s
it

io
n

t0

t1

t0 + tupdate

t0 +2tupdate
t0 +3tupdate

t1 + tupdate

t1 +2tupdate

t2 t2 + tupdate

t3

Plant Trajectory

First Prediction Trajectory

Second Prediction Trajectory

Third Prediction Trajectory

Goal Position

Figure 2.13: Three iterations of an example closed-loop MPC controller are shown. The
vehicle starts at t0, but extrapolates the starting state by the blue dotted line, because
its control command will not be applied until tupdate. The controller’s prediction of the
plant’s path until the goal is shown in solid line. In the second iteration, the MPC sees
the plant at a different state than expected based on the previous solution. It takes
the most current information and iterates the process as shown in green and red for
the subsequent iterations.

tire forces are used, and the estimator needs to identify the coefficient of friction for

a range of slip angles with nonlinear response. The benefit of the UKF filter is that

by propagating many sigma points, the estimator can better capture the nonlinear

response in tire force due to the noise in the vehicle states and coefficient of friction

compared to an extended Kalman Filter, while converging faster than particle filters.

The UKF is focused on identifying the coefficient of friction, which is a linear scaling

of the tire force based on the Pacejka tire formula in Eq. (2.1). However, because of

the noise in the measured states and forward propagation of the nonlinear system

dynamics, the estimated tire slip is a nonlinear transformation, resulting in nonlinear

mapping to the tire force. In actuality, the UKF compares the required tire force to

achieve the next measurement against the belief in the system dynamics, outputting

the linear scaling, by way of coefficient of friction, to best agree the two beliefs. The

UKF feedback block diagram can be seen in Fig. 2.14.

The exact details of the UKF are not significant for the results of the controller,

just that the prediction model adjusts. Details on the UKF can be found in [95] for an

off-road application. For the work herein, the UKF is applied to an on-road scenario by

62

Figure 2.14: The UKF observer resides outside the MPC controller, taking in sensor
information and outputting updated tire response parameters.

estimating the coefficient of friction instead of the sinkage coefficient. State uncertainty

used in the estimator is the same as [95] and consistent with commercially available

automotive sensors.

The UKF observer runs at a prediction rate at 100 Hz. At t0, the MPC is launched

to solve for t0 + tupdate onward using the best guess of the coefficient of friction at

t0. Between t0 and t1, the UKF attempts to improve the estimate for the coefficient

of friction. At t1, the second closed-loop iteration is launched using the best guess

for coefficient of friction based on the plant data between t0 and t1. As the UKF

attempts to converge on the coefficient of friction during the closed-loop iterations,

the adaptive controller has a latency of tupdate before the MPC is able to change the

control trajectory to account for the improved coefficient of friction estimate. The

error due to latency can only be improved by reducing the length of tupdate, which

is a function of the controller and independent of the observer. This highlights the

necessity of a fast settling observer to produce an accurate prediction model quickly,

63

which is demonstrated further in Sec. 2.7.3 in simulation.

For the UKF to run at 100 Hz, relevant data must be available at 100 Hz. While

some sensors, such as IMUs, can support sampling rates over 1 kHz, other state esti-

mates, such as a localization from LIDAR data, could be at frequencies as low as 1 Hz.

While data fusion strategies can handle different data rates, the work here uses 100 Hz

sensor information for all states.

In general, the effect of update rate on the convergence of nonlinear Kalman filters

is not deterministic. At higher frequencies, the observer can incorporate more sensor

estimates in a given time. However, at lower update rates, the system dynamics are

given more time to evolve, which can provide more insight if the system model has

high belief. In general, simulating the UKF between 100 and 1000 Hz has not affected

CIS controller performance.

With the observer in place, the closed-loop adaptive CIS controller is compared to

the nonadaptive performance.

2.7.3 Numerical Simulations of Adaptive MPC Controller

Using the adaptive prediction model in closed loop, (2.17) is re-solved for the same

environmental settings, but for the front only steering architecture. Fig. 2.15 shows a

similar four subplots, but also includes a fifth subplot showing the estimated coefficient

of friction. The plant has a uniform coefficient of friction of 0.6 throughout the ma-

neuver, but the UKF starts the simulation with an initial coefficient of friction guess

of 0.8. In general, this is a challenging maneuver because the MPC must perform an

aggressive lane change and at the same time is experiencing a discrete jump decrease

in the coefficient of friction.

A key aspect to the observer is the settling time required to estimate the coefficient

of friction. The maneuver begins with the observer believing the coefficient of friction

is 0.8; hence, the first closed-loop iteration is solved with a higher coefficient of friction

than the plant. This can be problematic, because the prediction model expects the

64

y
 p

o
s
it

io
n

[m
]

-8

0

8

F
ro

n
t

s
te

e
ri

n
g
 a

n
g
le

[d
e
g
]

-8

0

8

S
li
p
 a

n
g
le

[d
e
g
]

Front slip

Rear slip

-70

0

70

F
ro

n
t

s
te

e
ri

n
g
 r

a
te

[d
e
g
/s

]

0 20 40 60 80 100
x position [m]

0.6

0.8

C
o
e
ff

ic
ie

n
t

o
f

fr
ic

ti
o
n

Observer estimate

Plant Truth

Figure 2.15: Five concurrent plots are shown showing various states of the adaptive
MPC performing a CIS maneuver. By improving the estimate for the coefficient of
friction online, the adaptive MPC can update the prediction model to more accurately
represent the plant, thus avoiding an unrecoverable maneuver later in the trajectory.

65

plant to be more responsive than it actually is, hence the solved control trajectory

under actuates. During the first 400 ms of simulation, the observer rapidly changes

its estimate of the coefficient of friction, closing in on the plant truth of 0.6. At the

second iteration, the prediction model is simulated with a coefficient of friction of 0.54,

which is still a 10% error from the plant, but offers a significant reduction from the

33% error in the first iteration.

The UKF observer converges to within 5% of the coefficient of friction within 400

ms. Compared to the state of the art reviewed in Sec. 1.2, where observers can require

order seconds to stabilize, this is a significant improvement. Because the UKF can

quickly trend towards the plant coefficient of friction, and ultimately settle in a shorter

amount of time, the need for a more aggressive control command is recognized earlier

in the iterations, and the controller can apply said command to the plant sooner in

the maneuver. By taking an action earlier in the maneuver, the actual peak tire slip

experienced is reduced and avoids saturation.

Later in the trajectory the effect of plant-prediction model mismatch becomes ap-

parent. Around 80 m into the maneuver, the controller must rapidly prescribe controller

adjustments, even though the coefficient of friction is well estimated. Similar to the

nonadaptive case, the suspension dynamics have a sizeable effect on the plant response

[96], [97], thus the prediction model does not have sufficient fidelity to capture the

plant as accurately. While this does not result in failure, it requires sudden correction

for an otherwise non-exciting point in the maneuver.

One potential drawback to the presented UKF is the estimate for coefficient of

friction can overshoot the constant plant truth, as seen at the start of the maneuver.

There are two causes for this overshoot. First, determining the coefficient of friction is

still susceptible to the identifiability concerns recognized in the art [90]. At the start

of the maneuver, both the front and rear tires are at a low slip angle and the controller

is unloading the tires as it turns to the left, resulting in little excitation of the vehicle

dynamics. At low vehicle excitation, random sensor noise results in a large variance in

tire slip angle, which correlates to a large variance in coefficient of friction. Due to the

66

low excitation, the UKF has difficulty converging at the start of the maneuver. After

approximately 20 m of travel, the vehicle has a persistently active tire slip where the

coefficient of friction can be observable, and the UKF converges rapidly.

Compounding the identifiability concerns, the second cause for overshoot is due

to the process noise covariance matrix, which is unknown for the nonlinear 3DoF

prediction model, and is treated as tuning weights based on simulations. However, it

is more important for the UKF to estimate in the neighborhood of the plant coefficient

of friction quickly than to settle on the exact value. In general, faster settling times

means earlier iterations of the closed-loop controller have a more accurate prediction

model, which means earlier iterations can take appropriate action to set the vehicle

up for success later in the maneuver. The tunable parameters used in the UKF are

not purely focused on settling time, but rather balance transient performance against

sensor noise, resulting in the initial overshoot.

Later in the maneuver there is still some variation in the coefficient of friction. This

comes from the constant sensor noise in the vehicle state, as well as system dynamics

discrepancies in the high fidelity plant model and bicycle prediction model.

Prior in Sec. 2.7 it was discussed that the plant-prediction model mismatch error

can be addressed by the nature of closed loop iterations alone, provided the mismatch

error is small. Fig. 2.16 shows a batch analysis for various plant coefficients of friction

and nonadaptive prediction coefficients of friction. For the nonadaptive controller,

there exists a green band roughly along the diagonal. For points on the diagonal, the

prediction model has the same coefficient of friction as the plant, but is still subject

to state error due to the 3DoF prediction model versus 14DoF plant model fidelity.

For points near the diagonal, the prediction model response is sufficiently close to the

plant response that the closed loop control can handle the experienced error without

changing the prediction model. However, there are two segmented regions of failure

experienced in the lower right corner and upper left corner.

In the lower right corner, the prediction model has a lower coefficient of friction

than the plant, meaning the plant is more responsive than the prediction model. This

67

0.5 0.7 0.9

Plant coefficient of friction

0.5

0.7

0.9

P
re

d
ic

ti
o
n
 c

o
e
ff

ic
ie

n
t

o
f

fr
ic

ti
o
n

Nonadaptive MPC Controller Performance

Success Failure

Figure 2.16: Various combinations of the coefficient of friction for the plant model and
prediction model are analyzed. Red squares indicate at some point in the maneuver,
the plant violated hard safety constraints, resulting in an unsuccessful CIS maneuver.
Green circles indicate the closed loop nature of the controller is sufficient to account
for the small deviation in plant and prediction model mismatch.

68

can cause failure, because when the controller is attempting to turn back into the lane

to avoid overshooting the outer lane boundary, the plant turns in too much and does

not completely leave the starting lane when passing the obstacle, violating a hard safety

constraint of the CIS maneuver.

In the upper left corner, the prediction model has a higher coefficient of friction

than the plant, implying the plant is less responsive than the prediction model. Such

as in Fig. 2.13, a less responsive plant drifts to the outer lane easier and helps leave

the starting lane. However, beyond the obstacle, the plant continues to drift to the

outside, eventually violating the outer lane boundary constraint, resulting in failure.

Fig. 2.16 only considers the plant to a coefficient of friction lower limit of 0.5. This

is because 0.52 is approximately the lower limit, below which no feasible CIS maneuver

exists, even if the prediction model has perfect knowledge of the plant.

For comparison, the same batch analysis is also conducted for the adaptive controller

using the UKF observer.

Fig. 2.17 shows a similar successful region along the diagonal, and two segmented

failure regions in the bottom right and upper left. However, the adaptive controller’s

success region expands farther from the diagonal than the nonadaptive controller, show-

ing improved performance for a larger discrepancy in the plant and prediction models’

coefficient of friction. For example, the nonadaptive controller is able to perform a

successful CIS for only up to a 25% error in the coefficient of friction, whereas the

adaptive controller performs successfully for as a large as a 55% error. Given that

the plant coefficient of friction is not known a priori, the improved robustness of an

adaptive controller with a fast converging observer suggests the method is more robust

to real world effects and should be included at implementation.

The adaptive controller’s success boundary is not as well defined as the nonadaptive

controller. Below a coefficient of friction of 0.52, the controller cannot conclude a

feasible solution exists. Due to the effect of the sensor noise on the estimate in the

UKF, certain coefficient of friction pairs result in Eq. (2.17) being infeasible on some

repetitions of the simulation. This noise causes a blurred edge boundary, with some

69

0.5 0.7 0.9

Plant coefficient of friction

0.5

0.7

0.9

P
re

d
ic

ti
o
n
 c

o
e
ff

ic
ie

n
t

o
f

fr
ic

ti
o
n

Adaptive MPC Controller Performance

Success Failure

Figure 2.17: Various combinations of the coefficient of friction for the plant model and
prediction model are analyzed. The band of green circles extends further than the
nonadaptive case, showing the adaptive MPC can handle a larger error in the initial
prediction coefficient of friction.

70

edge points that are successful in the nonadaptive case to be sometimes unsuccessful

in the adaptive one.

Both controllers experience failure at low plant-prediction coefficients of friction.

This is because the chosen highway scenario defined by the vehicle speed, obstacle

distance, road curvature, etc., inherently pushes the vehicle to its limits of handling,

which is reduced by the coefficient of friction.

To recap the prior few sections, a nonlinear one-level MPC controller is presented

to perform an evasive lane change maneuver by some optimality condition. The con-

troller is primarily designed to incorporate a drivable tube concept, embedding the CIS

safety criteria. The controller formulation is shown to be adaptive to different highway

scenarios, supporting flexibility to expected real world conditions. Additionally, an

adaptive controller formulation is introduced to support plant-prediction model mis-

match through the coefficient of friction. The adaptive controller improves performance

in uncertain road conditions, further improving the feasibility of implementation.

However, a major barrier to implementing the proposed controller is being able

to solve the nonlinear optimization problem in real-time. In the next chapter, the

computational cost of nonlinear MPC is investigated, and a framework for real-time

performance introduced.

71

Chapter 3

Computational Cost of Nonlinear

MPC Controllers

The optimal control problem to determine a CIS maneuver is posed as a numerical

optimization problem in Chapter 2. The computational cost of computing the ma-

neuver depends on convergence properties of the underlying numerical optimization

problem. While the specific nonlinear optimizer, in this case IPOPT, is taken as an off

the shelf solution, how the optimal control problem is mapped into the numerical op-

timization problem has a significant effect on the solution time. In the most primitive

form, the CIS controller converged to solutions on the order of tens of seconds. For

the tupdate = 100 ms target, this is computationally prohibitive in terms of real-time

performance.

To achieve real-time execution, the underlying computational cost of solving the

nonlinear optimization problem is scrutinized. While the intended application is the

CIS controller from Chapter 2, this dissertation presents the computational framework

in a broad nonlinear MPC context. Specific to within the nonlinear MPC problem,

the numerical integration scheme is discussed, trajectory optimization structure in-

vestigated, and parallel computing considered. To begin, the numerical integration

procedure is discussed next.

72

3.1 Computational Cost: Integration Time Step

At a high level, the CIS optimal control problem is to find a control sequence that

steers the vehicle from its starting state, through the drivable space, and into the next

lane. This forms an initial value problem (IVP), which is well studied in the literature

[8]. A common approach to solving these methods is the shooting method.

In the shooting method, the initial state is propagated in time by applying the

relevant control trajectory at the appropriate time steps. The system dynamics used

in (2.4), and more generally systems considered in modern applications, have no closed

form solution. Thus, numerical methods must be used to approximate the system

response. The earliest implementation of solving (2.17) uses Forward Euler integration

at a significant time penalty. Consider Fig. 3.1 plotting a computer profiling of the

solve time of a Forward Euler single shooting solution, as well as a candidate major

iteration. The profiling shows this implementation spends approximately 90% of the

wall computational time is spent evaluating the system dynamics for the finite difference

sensitivity approximation.

Given this bottleneck, there are two approaches to reducing the computational cost:

either compute the system dynamics faster, or reduce the number of times required to

compute the system dynamics. Accelerating the computational time of the underlying

system dynamics is both application and hardware specific; there is no blanket solution

to reducing this computational cost. However, reducing the number of times the system

dynamics must be computed can be addressed through various trajectory simulation

strategies.

As mentioned, the shooting method is one option for trajectory simulation. How-

ever, the inclusion of the terminal state constraint introduces an implicit constant,

which changes the IVP to a boundary value problem (BVP), which is similarly well

studied in the literature [98].

Two common numerical method families of solving BVP are shooting methods and

collocation methods [99]. Similar to IVP simulations, BVP shooting methods propagate

73

Single shooting,
finite difference,
Forward Euler

0

45

90

135

180

W
a
ll
ti
m
e
 [
s]

Sample Forward Euler
major iteration

89

90

91

92

W
a
ll
ti
m
e
 [
s]Simulating trajectory

Finite difference sensitivity
Evaluating fitness/feasability
 value/sensitivity
Incrementing nonlinear solver

Figure 3.1: In the most rudimentary form, the single shooting, Forward Euler, finite
difference sensitivity implementation of the CIS controller is profiled. The left plot
shows the approximate 70 major iterations the nonlinear optimizer required to con-
verge, and the right shows the breakdown of a candidate major iteration. The vast
majority of the wall time is spent calculating the finite differences for the derivatives,
as this requires simulating the trajectory 64 times.

74

an initial system state through the control trajectory, and conclude convergence when

the open loop simulation obeys the terminal state constraint.

In collocation methods, the system response and control trajectories are approx-

imated by some basis function through the time domain, with the system dynamics

imposed at the collocation points. The joint system response and control trajectory

is consistent when all collocation points simultaneously obey the system dynamic con-

straints. Using different basis functions and intervals distinguishes different families of

collocation methods.

Dynamic programming, a third family, is a procedure to reduce the original BVP

into a set of sub-problems through a recursive reduction. By reducing the single com-

paratively large BVP into multiple consecutive sub-BVPs, the sub-BVPs are compara-

tively easier to solve, and when stitched together, form a solution to the original BVP.

However, dynamic programming suffers from the curse of dimensionality as all pos-

sible system state changes for all possible control inputs must be represented within

the dynamic program. Thus, dynamic programming quickly becomes computationally

infeasible for problems with a large state space, such as in the 3DoF bicycle model.

In the context of reducing the required number of system dynamics evaluations, the

distinguishing difference between the numerical methods is the integration accuracy.

Taylor series analysis of numerical methods gives the method accuracy order though

the truncation error, and for a fixed time step, higher order methods are expected to

have a smaller integration error compared to lower order.

By extension, for a fixed integration accuracy, a higher order method is expected

to be able to use a larger time step than a lower order method. The trade-off is then

higher order methods have fewer integration segments, but are more complex requiring

system dynamic evaluations at intermediate corrector points. Thus, to minimize the

number of system dynamic evaluations, the proper integration method must balance

time step length against integration complexity.

Alternatively, embedded methods are designed to monitor the integration accuracy

online, and will reduce the time step as necessary to address a predefined integration

75

resolution. Embedded methods, such as Heun-Euler or Runge-Kutta-Fehlberg, use

two integration methods of different order for the same time step [100]. In the case of

Heun-Euler, the integration step is calculated once using Forward Euler and again using

Heun’s Method. If the difference in propagated state is above a resolution threshold,

the time step is reduced and method repeated until converged.

By monitoring the integration error and adjusting the time step accordingly, em-

bedded methods can reliably integrate a system to a given tolerance. However, the

nature of adjusting the time step during the method introduces some complications

for MPC problems. For example, when one integration time step is reduced, it shifts

all future discrete integration points backwards in time. This causes challenges for

gradient-based optimization solvers because the state sensitivities change discretely.

Additionally, if the number of time steps change during the trajectory simulation, it

means the computational cost of simulating a fixed prediction horizon is not determin-

istic. For these reasons, it is advantageous to use a fixed time step.

Establishing the time step a priori for an arbitrary nonlinear system is difficult,

especially if no integration resolution is provided. Thus, in this work it is proposed

to use some established or measurable uncertainty of the system to provide bounds

on the integration error. The motivation is that integrating the system dynamics to

a resolution finer than the uncertainty in the system parameters provides frivolous

insight.

Typically, uncertainties in system parameters, control input, and sensor noise, etc.,

are modeled as a Gaussian distribution, which can be propagated through the nominal

linearized system dynamics to give a transformed Gaussian uncertainty of future states.

This breaks down in nonlinear system, even when linearized, if the uncertainties are

sufficiently large. Alternatively, bounds can be generated a priori using Monte Carlo or

other importance sampling methods. By simulating various uncertainties through time,

bounds on the state error at each discrete integration point are generated. Using these

bounds in state variation, the largest allowable time step for a candidate numerical

method is established, and the computational effort for various methods compared.

76

For the case study CIS problem, uncertainty in the state trajectory is most strongly

affected by uncertainty in the coefficient of friction. Advanced path-tracking controllers

can require within 2% accuracy of the coefficient of friction to maintain stability, which

forms an upper and lower bound for this case study [24].

The system truth is taken as a fine resolution integration of the nominal parameters

for the prediction model. The prediction model is used as truth in favor of the plant

model, because the prediction model is the only system the MPC has knowledge of, and

if the prediction model is of insufficient complexity, then it is possible no integration

time step can accurately capture the plant. In the chosen scenarios, ten filtered random

control trajectories are applied to random initial states, and the system dynamics are

integrated for the various methods using a decreasing integration time step until the

trajectory is inside the bounds. The use of ten candidate maneuvers sufficiently covers

the design region, yet does not incur excessive computational error. In general, the

number of candidate maneuvers must sufficiently explore the design region comparable

to the intended application, requiring more samples when systems are subject to mul-

tiple sources of uncertainty, forming uncertainty in multiple dimensions. The control

trajectories are random in value, but resulting trajectories are filtered to ensure the

vehicle dynamics are excited but not excessive and enter inaccurately modeled system

regions.

A candidate trajectory, as well as ±2% bounds of road coefficient of friction are

shown in Fig. 3.2. The initial yaw rotation is normalized to align the trajectory about

the x axis.

From the vehicle architecture in Sec. 2.1.2, the MPC control inputs are set as piece-

wise constant steering rates for a duration of tupdate = 100 ms. To appropriately handle

the discrete jump in control rate, the maximum integration length is tinterval = 100 ms.

To find the appropriate control length for a given integration method, the time step is

reduced by tinterval/k for integer increments of k to divide the interval uniformly. The

time step is converged when for a given k, the integration resolution for all candidate

control trajectories are inside the uncertainty bounds of the coefficient of friction.

77

0 100

x position [m]

0

1
y
 p

o
s
it

io
n
 [

m
] 2% Reduced µ

Nominal µ

2% Increased µ

Figure 3.2: The nominal trajectory in blue, as well as +2% coefficient of friction in
yellow and −2% coefficient of friction in green. While the state bounds are most
obvious in x− y in the figure, the bounds are enforced for all system states.

Recall in Chapter 2 the control commands are issued as two consecutive 50 ms

intervals. In Sec. 3.4.2, it is established the most computationally efficient architecture

evaluates in 50 ms intervals. The length tupdate is still retained here to establish the

longest allowable time step.

Of the 10 integration methods considered, 6 are explicit and 4 are implicit. The

implicit integration schemes are converged within a state tolerance of 10−3. The re-

quired time steps for the various methods to achieve the desired accuracy are listed in

Table 3.1.

Of the considered methods, linear multistep methods are not included. This is

because multistep methods typically employ a similar integration scheme as higher

order explicit integration methods, but include the intermediate corrector points as

integration points in the solution. One benefit of multistep methods is that by tracking

the intermediate stages directly in the solution, the CIS criteria can also be enforced

at these points. For the CIS controller, the additional resolution does not improve the

performance of the controller, and the additional memory requirements and problem

size is detrimental to computational speed.

The tested collocation methods are based on the Gauss-Lobatto quadrature [101].

78

Table 3.1: Integration Scheme Resolutions

Integration Scheme Integration Type Time Step [ms]

Forward Euler Explicit 1.41
Heun’s Method Explicit 2.63

Explicit Midpoint Method Explicit 2.44
Runge-Kutta Fourth-Order Explicit 50.00

Runge-Kutta 3/8 Explicit 50.00

Backward Euler Implicit 1.54
Crank Nicolson Implicit 16.67

3 Point Collocation Implicit 20.00
4 Point Collocation Implicit 50.00
5 Point Collocation Implicit 100.00

Gauss-Lobatto, as opposed to Radau or Laguerre-Gauss, quadrature is chosen based

on the consistency constraint enforced at the ends of the intervals.

For this example system and control length tinterval, higher order collocation beyond

5 points provides excessive accuracy for the computational cost; but these methods

might be useful to other applications. For that reason, higher order collocation based

methods, such as spectral and pseudo-spectral, are not considered for this CIS formula-

tion. These higher order methods are often used in trajectory optimization due to the

incorporation of the state trajectory into the optimization problem, which is discussed

in Sec. 3.3.

As expected, within explicit and implicit methods, the higher order methods allow

for a longer time step, and hence fewer integration points in the prediction horizon.

However, these higher order methods achieve improved accuracy by evaluating and

incorporating the system dynamics at intermediate points in the integration step.

For example, Runge-Kutta Fourth Order (RK4) evaluates the system dynamics at

the start of the interval and three corrector points, resulting in a total of four system

dynamics evaluations. Yet, based on the previous assumption that solution time can

be reduced by minimizing the number of system dynamics evaluations, RK4 is the

most efficient considered explicit integration method in Table 3.1. The advantage over

79

Runge-Kutta 3/8 is apparent in Sec. 3.4 when memory requirements are discussed,

along with higher order Runge-Kutta methods.

It is also seen within implicit methods that higher order schemes are more accurate,

but distinguishing the advantages of implicit versus explicit are not as clear. While the

converged 5 point collocation only requires five evaluations of the system dynamics,

the nature of implicit methods require many iterations to converge, with each iteration

requiring multiple system dynamics evaluations. Advanced implementations of these

implicit methods, such as spectral integration, incorporate the implicit convergence as

a part of the optimization problem as opposed to open loop integration of the control

trajectory. This improves the convergence rate of the implicit constraints, and hence

reduces system dynamics evaluations, but increases the complexity of the optimization

problem. For the candidate CIS maneuver, Sec. 3.3 shows implicit schemes excessively

grow the optimization problem, thus explicit schemes are favorable.

Based on these observations, RK4 integration is recommended for the CIS con-

troller because it is the most efficient explicit integration method, on par with 4 point

orthogonal collocation, and avoids increased complexity in the optimization problem.

Fig. 3.3 compares the wall time of a candidate major iteration for the Forward

Euler and RK4 methods. Both methods use finite differences for derivatives, which

still require the vast majority of the wall time. However, because RK4 can simulate

the trajectory approximately 8 times faster than Forward Euler, both the trajectory

simulation and gradient calculation is reduced.

In the next section, gradients of the MPC prediction trajectory are presented for

RK4 integration.

3.2 Analytic Derivatives of RK4 Explicit Integration

In the previous section, different integration methods are compared to establish the

longest allowable time step to support the same integration accuracy. For the presented

CIS application, explicit RK4 integration is chosen as it can minimize the number of

80

Sample Forward Euler
major iteration

Sample RK4 major iteration
0

1

2

W
a
ll
ti
m
e
 [
s] Simulating trajectory

Finite difference sensitivity
Evaluating fitness/feasability
 value/sensitivity
Incrementing nonlinear solver

Figure 3.3: The wall time of a candidate major iteration for Forward Euler and RK4
are compared.

81

system dynamics evaluations for an established normalized integration accuracy.

Within the MPC problem, the controller must map a candidate control trajectory

to a corresponding state trajectory, and then evaluate the state trajectory for fitness

and feasibility. While the details of evaluating the fitness and feasibility are application

dependent, the mapping of the control trajectory to the state trajectory is achieved

numerically through the integration.

Numeric optimizers can be categorized as gradient-based or gradient-free. In

gradient-based optimizers, a single candidate design point is incremented based on local

gradient and curvature to improve the solution. In gradient-free optimizers, multiple

design points are morphed based on different design criteria to transition the set of

design points into the neighborhood of the optimum before concluding convergence.

Gradient-free approaches, such as particle swarm and genetic algorithms, are not de-

pendent on local gradient or curvature, thus not as susceptible to gradient inversion

or local minimum. However, gradient-free optimizers can take orders of magnitude

longer time to converge and require orders of magnitude more function evaluations

compared to gradient-based optimizers [102]. To improve solution time, it is favored

to use gradient-based optimization.

By name, gradient-based optimization requires sensitivities of the objective function

and constraints to the design variables. For MPC applications, this can be expressed

through the chain rule as follows.

dJ

du
=
dJ

dX
dX
du

(3.1)

dg
du

=
dG
dX

dX
du

(3.2)

Here, u is a vector of control inputs, X is a vector containing the state x at each

of the n integration points, J(X) is the objective function, and g(X) is a vector of the

constraints of the MPC.

The details of evaluating dJ
dX and dG

dX are specific to each MPC problem and there

82

is not a generic strategy to computationally improve this step. Further, of the various

MPC applications referred to in Chapter 1, evaluating J ,G, dJ
dX , and dG

dX is not the most

computationally expensive step. In the context of two-level MPC, evaluating J and dJ
dX

results in a quadratic penalty calculation, and linear sensitivity problem, respectively,

and is of low computation cost. Specific to the one-level CIS case study, these steps

account for 10% to 20% of the time spent evaluating a candidate trajectory. Rather,

evaluating X and dX
du is the most computationally expensive step. Efficient integration

schemes to evaluate X is discussed prior in Sec. 3.1, but it can be computationally

beneficial to calculate X and dX
du concurrently.

There are a few options to evaluate dX
du with differing levels of accuracy and com-

putational effort. In the simplest form, finite differences can be used to approximate

the sensitivity of the state trajectory to previous control inputs. However, finite dif-

ference sensitivity approximation requires simulating the state trajectory for each of

the control inputs, resulting in many system dynamics evaluations. Additionally, the

appropriate step size cannot be determined a priori, resulting in numerically inaccurate

approximations, to be seen in Fig. 3.4.

The complex finite difference approximation uses a step in the complex plane, which

can avoid round-off error from subtraction between small numbers [103]. However, this

approach requires evaluating the system dynamics, and possibly fitness and feasibility,

using a complex value as input, which is not always possible. Further, the complex

step still requires r + 1 function evaluations to calculate the sensitivities to r inputs.

Alternatively, exact derivatives can be calculated using automatic differentiation

of computer simulations [104], [105]. Consider a computer program to perform a cal-

culation using a sequence of trigonometric, exponential, algebraic, etc. functions. In

automatic differentiation, a secondary computer program iterates through the primary

simulation and calculates the sensitivities of all intermediate stored values to all pre-

vious stored values [106]. This produces the sensitivity of all outputs of the primary

simulation to both all intermediate calculated values and all initial inputs and values.

While automatic differentiation avoids requiring the user to explicitly program the

83

derivatives, the computational procedure, memory requirements, and sparsity of the

derivatives are not necessarily optimum [107]. For example, using neural networks

for the system dynamics can require hundreds of thousands of nodes. Automatic dif-

ferentiation would then generate and retain a hundreds of thousands by hundreds of

thousands sensitivity matrix, which can exceed memory allocation limits.

Additionally, automatic differentiation blindly calculates sensitivities and does not

inherently recognize a sensitivity value of zero from a sensitivity value as sparse zero.

This can result in retaining and calculating many internal sensitivities that do not

affect the final sensitivities or sensitivities of interest.

Exact derivatives can also be calculated analytically, but can be challenging and

error prone for users to derive and implement. However, for performance critical ap-

plications, analytic derivatives are the most computationally and memory efficient.

Researchers have shown the family of explicit Runge-Kutta integration can be analyti-

cally differentiated [108]. However, this high-level proof does not showcase the sparsity

of the sensitivities, nor does it incorporate computer memory considerations. These

shortcomings are addressed herein.

The CIS controller in Chapter 2 uses constant control rates over the integration step.

Correspondingly, simplifications to the RK4 sensitivities are made using a zero-order

control hold as follows.

xi+1 = xi +
∆t

6
(k1 + 2k2 + 2k3 + k4) (3.3)

kj = f(ξj,ui); ∀j ∈ [1, 4]

84

where f is the system dynamics of the prediction model and

ξ1 = xi

ξ2 = xi +
∆t

2
k1

ξ3 = xi +
∆t

2
k2

ξ4 = xi + ∆t k3

Calculating the state derivatives in terms of the intermediate ξj results in

dxi+1

dxi
=
dxi
dxi

+
d

dxi

(∆t

6
(k1 + 2k2 + 2k3 + k4)

)
(3.4)

= I +
∆t

6

(dk1

dxi
+ 2

dk2

dxi
+ 2

dk3

dxi
+
dk4

dxi

)

85

where I is the identity matrix of appropriate size and

dk1

dxi
=
df(ξ1,ui)
dξ1

dξ1
dxi

(3.5a)

=
df(x,u)

dx

∣∣∣
x=ξ1,ui

(
I
)

dk2

dxi
=
df(ξ2,ui)
dξ2

dξ2
dxi

(3.5b)

=
df(x,u)

dx

∣∣∣
x=ξ2,ui

d

dxi

(
xi +

∆t

2
k1

)
=
df(x,u)

dx

∣∣∣
x=ξ2,ui

(
I +

∆t

2

dk1

dxi

)
dk3

dxi
=
df(ξ3,ui)
dξ3

dξ3
dxi

(3.5c)

=
df(x,u)

dx

∣∣∣
x=ξ3,ui

d

dxi

(
xi +

∆t

2
k2

)
=
df(x,u)

dx

∣∣∣
x=ξ3,ui

(
I +

∆t

2

dk2

dxi

)
dk4

dxi
=
df(ξ4,ui)
dξ4

dξ4
dxi

(3.5d)

=
df(x,u)

dx

∣∣∣
x=ξ4,ui

d

dxi

(
xi + ∆t k3

)
=
df(x,u)

dx

∣∣∣
x=ξ4,ui

(
I + ∆t

dk3

dxi

)
Note, expressions dkj

dxi
for j = 2, 3, 4 require dkj−1

dxi
, which is calculated in the previous

step.

Similarly, the sensitivity of the state xi+1 to the control input ui is calculated as

follows.

dxi+1

dui
=
dxi
dui

+
d

dui

(∆t

6
(k1 + 2k2 + 2k3 + k4)

)
(3.6)

=
∆t

6

(dk1

dui
+ 2

dk2

dui
+ 2

dk3

dui
+
dk4

dui

)

86

where

dk1

dui
=
df(ξ1,ui)
dξ1

dξ1
dui

+
df(ξ1,ui)

dui
(3.7a)

=
df(x,u)

dx

∣∣∣
x=ξ1,ui

(0) +
df(x,u)

du

∣∣∣
x=ξ1,ui

=
df(x,u)

du

∣∣∣
xi,ui

dk2

dui
=
df(ξ2,ui)
dξ2

dξ2
dui

+
df(ξ2,ui)

dui
(3.7b)

=
df(x,u)

dx

∣∣∣
x=ξ2,ui

(∆t

2

dk1

dui

)
+
df(x,u)

du

∣∣∣
x=ξ2,ui

dk3

dui
=
df(ξ3,ui)
dξ3

dξ3
dui

+
df(ξ3,ui)

dui
(3.7c)

=
df(x,u)

dx

∣∣∣
x=ξ3,ui

(∆t

2

dk2

dui

)
+
df(x,u)

du

∣∣∣
x=ξ3,ui

dk4

dui
=
df(ξ4,ui)
dξ4

dξ4
dui

+
df(ξ4,ui)

dui
(3.7d)

=
df(x,u)

dx

∣∣∣
x=ξ4,ui

(
∆t

dk3

dui

)
+
df(x,u)

du

∣∣∣
x=ξ4,ui

By (3.3)-(3.7), the sensitivity of the state at the next explicit integration point to

the current state and current input is calculated. Using the chain rule, the sensitivity is

carried forward through the prediction horizon to calculate the sensitivity of all future

states to all inputs and past states as follows.

dxk+i
duk

=
dxk+i
dxk+i−1

. . .
dxk+1

duk
(3.8)

87

dxk+1

du0

=
dxk+1

dxk
dxk
du0

dxk+1

du1

=
dxk+1

dxk
dxk
du1

...
dxk+1

duk−1
=
dxk+1

dxk
dxk
duk−1

dxk+1

duk
=
dxk+1

duk
dxk+1

duk+i
= 0 ∀ i ≥ 1

The sensitivities df(x,u)
dx and df(x,u)

du are based on the prediction model system dy-

namics. Based on the 3DoF bicycle model system dynamics in (2.4), the sparsity of

certain states becomes apparent. This becomes even more significant in the Sec. 3.3

when discussed in the context of collocation and introducing the state trajectory into

the optimization problem.

Using analytic derivatives to calculate the state trajectory sensitivity to the control

trajectory has a couple benefits. First, the computational time is significantly reduced

compared to numeric estimation, such as finite difference or complex finite differences.

Second, analytic derivatives are more accurate compared to finite differences, which

improves the convergence of the nonlinear optimizer.

To visualize the improved accuracy over finite differences, consider the error of finite

differences. Fig. 3.4 plots the error in terminal y position for a candidate lane change

maneuver for different control inputs in the prediction horizon.

The difficulty with finite differences can be seen in Fig. 3.4. As the step size

decreases, the accuracy improves to a limit. Beyond this limit, the accuracy is reduced

due to round-off error in the finite difference. Identifying this optimum step size is

further challenging, because it is different for each variable, and for each candidate

control trajectory.

To quantify the improvement of analytic derivatives over finite differences, the CIS

maneuver is solved using both methods. In each simulation, the total wall time as

88

10−1010−910−810−710−610−510−410−310−210−1

Finite Difference Step Size

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1
A

bs
ol

ut
e

er
ro

r
∂(Xth

)y
∂u1

∂(Xth
)y

∂u25

∂(Xth
)y

∂u41

Figure 3.4: The absolute error of the terminal y position based on finite difference
approximation for different control inputs in the prediction horizon. The optimal step
size cannot be established a priori, which results in either too small a step size and
inaccurate gradients, or too large a step size and numeric round-off errors.

Table 3.2: Optimization Summary for Candidate CIS Maneuver Using RK4 Single
Shooting

Parameter Analytic Derivatives Finite Difference

Solution time [s] 1.46 20.08
Major iterations 56 67
Number of function calls 63 85
Number of sensitivity calls 60 76

well as number of function and sensitivity calls is monitored. The finite differences

are solved with a step size of 10−4, as this safely avoids the numeric round-off issues

seen in Fig 3.4. Note, this analysis uses single shooting trajectory optimization and

does not employ the advancements discussed later in Sec. 3.3. The results of the two

experiments are summarized in Table 3.2.

Specific to the CIS controller, the sparsity of the sensitivity of the next integration

state xi+1 to the current state xi and control input u for the 3DoF vehicle model can

be examined. For the candidate CIS maneuver, the longitudinal velocity is locked,

implying that while u is an element in the state vector, the derivative of ui+1 to other

89

states is 0, and sensitivity of other states to ui is 0. With this modification, (2.4) is

updated and used for the state consistency sensitivity.

Figs. 3.5a - 3.5c show the state-state sensitivity for Forward Euler, RK4, and 5

point collocation. This is not an exact comparison, as Table 3.1 shows the required

time steps to achieve a desired resolution. To simulate a 100 ms time step, a single

5 point collocation integration could be used, or two RK4 steps, or about 71 Forward

Euler steps.

Consider first the Forward Euler sensitivity in Fig 3.5a. The first two states, [x, y],

do not affect the system dynamics, but do have an influence on the next state through

the identity matrix. However, if the coefficient of friction changed with road position,

then the tire forces would be sensitive to the [x, y] position, and the Jacobian would be

adjusted accordingly. Because Forward Euler only takes the system dynamics at the

starting point, the tire forces do not directly affect the next [x, y, ψ] states, rather only

the time derivatives at the next integration point.

In contrast, the RK4 integration uses multiple intermediate corrector points in

the integration step. As a result, the [x, y, ψ] states are fully sensitive to the time

derivatives, as the [v, ω, δf , δr, δ̇f δ̇r] all affect the tire forces.

From the perspective of a single integration step, Forward Euler is a more efficient

integration method than RK4. However, because Forward Euler requires a significantly

finer integration resolution, and hence significantly more integration steps resulting in

significantly more segments, the Forward Euler integration is not as computationally

efficient.

In the context of the 5 point collocation integration, the nature of the implicit

integration scheme is apparent. 5 point Gauss-Lobatto collocation requires implicitly

solving three intermediary states as well as the terminal state. Because these must be

solved implicitly, there is significant cross sensitivity within the interval, which makes

the state consistency constraint comparatively Jacobian dense.

In Sec. 3.1, the implicit states have been solved internal to the integration scheme

for comparison in time step length. In practice, these internal states would be mapped

90

x1 y1 ψ1 v1 ω1δf1δr1 δ̇f1δ̇r1

δr2

δf2

ω2

v2

ψ2

y2

x2

(a) State-state sensitivity for Forward Euler

x1 y1 ψ1 v1 ω1δf1δr1 δ̇f1δ̇r1

δr2

δf2

ω2

v2

ψ2

y2

x2

(b) State-state sensitivity for RK4

x1 x2 x3 x4 x5 u1

x5

x4

x3

x2

(c) State-state sensitivity for 5 point collocation

Figure 3.5: The state-state sensitivities for various integration methods. The implicit
nature of collocation becomes apparent from the third subplot: obeying the consistency
constraints at the collocation points are fully sensitive to all internal states, as well as
the control input.

91

into the optimization problem to allow the implicit constraints of the integration scheme

to be solved within the optimization problem. While this would allow the implicit

scheme to converge faster, the additional states and dense sensitivity excessively grows

the optimization problem.

In contrast, the intermediate corrector states used in RK4 are generated explicitly

when validating the integration scheme and are not part of the optimization problem.

Thus, RK4 offers an appropriate balance of complexity and accuracy to facilitate larger

integration time steps, but not too complex to incur computational penalties at the

optimization problem stage.

By exploiting the sparsity of the RK4 integration, the computational requirement

to calculate the sensitivities is reduced, as well as memory dependency. Both factors

are important to leverage to achieve real-time performance, showcased in in Sec. 3.4

Based on the comparison between analytic derivatives and finite differences, the

two core advantages of analytic derivatives are evident. The improved accuracy of

analytic derivatives allows the optimization problem to converge in fewer iterations,

which requires fewer function evaluations and sensitivity calls. Based on the profiling

discussed in Sec. 3.1, evaluating the system dynamics and derivatives is the most

computationally expensive stage; hence reducing the number of function calls and

sensitives improves wall time. Further, analytic derivatives are an order of magnitude

faster than finite differences, which again reduces wall time.

Fig. 3.6 shows the wall time to solve the CIS controller using a single shooting,

analytic derivatives, RK4 based CIS controller. Compared to the simple implementa-

tion depicted in Fig. 3.1, analytic derivatives converge in fewer major iterations, and

within each major iteration, the gradient calculation time is improved.

A secondary improvement in gradient accuracy comes from the Hessian. In the

prior optimization profilings, both analytic and finite difference based optimization use

a numerically approximated Hessian generated from the sensitivities. As a result, the

finite difference solution has a compounding error in the Hessian, whereas the analytic

derivatives have exact gradients and a single numeric error step in the Hessian.

92

Single shooting,
analytic derivatives,

RK4

0

.5

1.0

1.5

W
a
ll
ti
m
e
 [
s]

Sample analytic derivative
RK4 major iteration

859

873

887

W
a
ll
ti
m
e
 [
m
s]Simulating trajectory

Analytic derivative calculation
Evaluating fitness/feasability
 value/sensitivity
Incrementing nonlinear solver

Figure 3.6: The wall time to solve the single shooting, analytic derivatives, RK4 based
CIS controller, and a candidate major iteration are plotted.

93

It is feasible to derive an analytic Hessian of the prediction state trajectory to the

control trajectory, again leveraging the sparsity structure [109]. However, Hessian ma-

trices are typically significantly larger, containing approximately squared the number

of elements as the Jacobian, depending on the sparsity. Numerical optimizers do not

always update or adjust the Hessian at every major iteration, thus it is not clear that

analytically calculating the Hessian is advantageous over an occasional numerically

approximated Hessian.

Overall, introducing analytic derivatives is an order of magnitude faster wall time

improvement over finite difference, and an additional approximately 20% faster conver-

gence rate within the optimization problem. Further, analytic derivatives can exploit

the sparsity of the Jacobian, which reduces the solve time for the optimizer’s linear

sub-problem in between each major iteration [110] [111] [112], providing an advantage

over automatic differentiation. However, the current wall time of approximately 1.5 s

is still prohibitive of real-time performance, requiring modifications to the trajectory

optimization structure. In the next section, various trajectory optimization strategies

are considered, within which the sparsity of the Jacobian is examined in depth.

3.3 Trajectory Optimization Structure

In the previous section, the benefits of analytic derivatives over finite differences are

shown in an example CIS optimization. However, the experiment uses a single shooting

trajectory optimization, which is not necessarily the most efficient approach.

In single shooting trajectory simulation, the state trajectory is found by numerically

integrating the system dynamics according to the control trajectory. The optimization

problem is then structured such that for the given starting state, the control trajectory

is adjusted based on some fitness and feasibility criteria until optimally converged.

However, single shooting trajectory simulation suffers from high sequential dependency.

That is, to find the final state, the previous state must be calculated, which requires

the state prior, and so forth, all the way to the initial state. As a result, simulating the

94

state trajectory cannot be effectively parallelized. It might be possible to parallelize

evaluating the system dynamics for an arbitrary test case, but the CIS dynamics vector

(2.4) is not suitable.

Additionally, single shooting methods suffer from large discrepancies in state sen-

sitivities. The sensitivity of the terminal state to early control inputs can be orders

of magnitude larger than the sensitivity to later control inputs. This can be challeng-

ing for the numerical optimizer because small changes to the initial control inputs are

more effective at addressing the terminal state constraint than adjustments late in the

trajectory, which makes the optimization problem more difficult to converge.

In contrast, collocation methods introduce the state trajectory as part of the opti-

mization problem. For these implicit methods, both the control input and integration

states are introduced as design variables, but doing so adds an additional consistency

constraint that the integration states obey the system dynamics for the applied con-

trol input. By directly incorporating the state trajectory as part of the optimization

problem, the optimizer has more control of the vehicle response. In the case of sin-

gle shooting, the state trajectory can only be evaluated by integrating the nonlinear

dynamics through the entire maneuver. In contrast, collocation methods can directly

modify the candidate state trajectory to address the fitness and feasibility criteria,

and then simultaneously make corrections to both the state trajectory and control

trajectory to validate the consistency constraints.

Thus, a conundrum arises between balancing the integration method and trajectory

simulation method. In Sec. 3.1 it has been established that explicit RK4 integration

can integrate the control trajectory with fewer system dynamics evaluations than other

explicit and implicit methods considered. However, introducing the state trajectory

into the optimization problem reduces the complexity of the problem, allowing the

optimizer to converge faster.

To balance these two benefits, multiple shooting trajectory simulation is introduced

[113]. In multiple shooting trajectory simulation, the state trajectory is broken into q

segments, and the starting state of each segment is introduced into the optimization

95

problem. The first segment’s starting state is dictated by the starting state of the plant

system, but the starting states of the remaining segments are design variables. Similar

to collocation based trajectory simulations, the multiple shooting method introduces a

consistency constraint such that the end of one segment must exactly match the start

of the next segment. For the last segment, the final state must obey the terminal state

constraint by the fitness and feasibility criteria. Traditional single shooting trajectory

simulation is a special case of multiple shooting simulation when only 1 segment is

used.

The state consistency constraint for an arbitrary integration procedure, F , is ex-

pressed as follows.

gcons = xi + F (xi,ui,xi+1,ui+1,∆t)− xi+1∀i ∈ [1, q − 1] (3.9)

In addition to the state consistency constraint for each segment, the feasibility

constraints are applied to each segment as well. While the MPC constraints in (2.17)

are applied to the whole trajectory, q-gseg constraints are introduced, with one for each

segment. As a result, if each of the q segments obeys the feasibility constraints, then

the entire trajectory is feasibly by (2.17). The fitness criteria is dependent on the whole

trajectory, thus a single fitness criteria is retained.

Introducing multiple shooting has three core benefits. First, the starting state of

each segment is introduced into the optimization problem, directly giving the optimizer

partial control of the state trajectory. Second, by reducing the trajectory length into

shorter segments, each segment’s terminal state sensitivity to control inputs within

the segment is more consistent in magnitude, avoiding the compounding error seen in

single shooting. Third, the optimizer establishes the starting state for each segment at

the same time, thus when evaluating a candidate design point for fitness and feasibility,

each segment can be simulated in parallel.

The above third point, allowing parallel simulation, is critical to addressing the

computational wall time. While adding direct control of the state trajectory into the

96

Figure 3.7: In multiple shooting, the sequential dependency of single shooting is re-
duced by simulating the multiple segments in parallel. However, the introduction of
consistency constraints grows the optimization problem, requiring more time to con-
verge on a solution.

optimization problem makes the problem easier to converge, it also grows the opti-

mization problem size. As the number of q segments grows, simulating the trajectory

in parallel becomes more efficient, but adds more consistency constraints. An example

of this trade-off can be seen in Fig. 3.7 showing multiple shooting for a straight road

lane change. Here, the segments can be simulated in parallel for reduced wall time,

but the increase in consistency constraints grows the time required to converge the

optimization problem.

It is also important to note that in Fig. 3.7, the initial candidate design points is

infeasible, as the state trajectory has step discontinuities in y. However, through the

97

Table 3.3: Solve Time Versus Number of Segments in Multiple Shooting.

Number of Segments Optimization Wall Time [s]

1 segment 1.60
2 segments 0.82
3 segments 0.48
4 segments 0.35
5 segments 0.21
6 segments 0.24
8 segments 0.26
10 segments 0.37
15 segments 0.44
30 segments 0.52

consistency constraints, the converged solution obeys a continuous state trajectory.

While increasing the number of segments improves the parallel computation of

the state trajectory by allowing more parallel branch instances, this only decreases the

computational wall time to a limit as the optimization time begins to grow. The optimal

number of segments in multiple shooting cannot be determined a priori. Therefore,

tests are performed to seek the optimal balance.

Table 3.3 investigates the number of segments versus simulation time for the CIS

controller. Simulating the state trajectory is done in parallel using a custom CUDA

system dynamics implementation, to be discussed in Sec. 3.4, and the optimization

problem is again solved using IPOPT [83].

From the simulation times in Table 3.3, it is apparent as the number of segments

increases, the wall time initially decreases, then starts to increase. The minimum wall

time is around 5 segments of length 6 control inputs each. This trend in wall time

showcases the trade-off in efficiency of simulating the state trajectory against growing

the optimization problem size.

The effect of varying segment lengths on the optimization problem structure can

be seen in Figs. 3.8a - 3.8c. For these figures, a normalized 9 control input trajectory

is plotted for comparative purposes between figures. In Fig. 3.8a, the single shooting

trajectory Jacobian is plotted. While single shooting trajectory simulation has com-

98

paratively fewer dense elements, simulating the entire trajectory cannot be parallelized,

thus not as computationally efficient. In Fig 3.8b, a 3 segment multiple shooting Jaco-

bian is plotted, with each segment containing 3 control inputs. While there are more

dense elements than the single shooting, the state trajectory is calculated in parallel

across three independent threads. Finally, in Fig 3.8c, a 9 segment multiple shooting

Jacobian is plotted, with each segment containing a single control input. In Figs. 3.8b

and 3.8c, the impact of the consistency constraint (3.9) can be seen in the off diagonal

grey blocks, representing a negative identity matrix.

The diagonal Jacobian structure in Fig. 3.8c has a subtle difference compared to

the 3 segment formulations. In the 9 segment formulation, each segment has a control

input of length 1, suggesting the structure of xi ∀i ∈ [1, 9] defines the entire state

trajectory X. In this special case, the fitness and feasibility of the MPC problem can

entirely be evaluated by the provided state trajectory, and the control trajectory is

only used to validate the consistency constraints. This can be seen in the Jacobian

structure where the constraints gseg are only sensitive to the states, and the consistency

constraints gcons are sensitive to xi and ui.

This special case of multiple shooting allows for a unique formulation in evaluating

the gseg and gcons constraints in parallel. Specifically, each segment can be evaluated

in parallel, and within each segment, evaluating gseg and gcons can be done in parallel.

Additionally, when there is only one state in the segment, there is no need to implement

a constraint aggregation technique; rather, the single calculated value is used directly.

By evaluating the segment feasibility and consistency constraints in parallel, re-

ducing the constraint aggregation complexity, and refining the Jacobian structure, the

n-segment multiple shooting can be re-evaluated to exploit these benefits, which is

not seen in Table 3.3. Further, this special formulation can more efficiently utilize the

parallel hardware, as explored in the next section.

99

xstart u1 … u9

gterminal

gseg 1

(a) Single Shooting Jacobian

xstart u1…u3 x4 u4…u6 x7 u7…u9

gterminal

gseg 3

gcons. 2

gseg 2

gcons. 1

gseg 1

(b) 3 Segment Multiple Shooting Jacobian

xstart u1 x2 u2 x3 u3 x4 u4 x5 u5 x6 u6 x7 u7 x8 u8 x9 u9

gterminal

gseg 9

gcons. 8

gseg 8

gcons. 7

gseg 7

gcons. 6

gseg 6

gcons. 5

gseg 5

gcons. 4

gseg 4

gcons. 3

gseg 3

gcons. 2

gseg 2

gcons. 1

gseg 1

(c) 9 Segment Multiple Shooting Jacobian

Figure 3.8: Various multiple shooting structures. Dark grey blocks represent a fully
dense Jacobian structure for an arbitrary system dynamics. Light grey blocks represent
the negative identity matrix.

100

3.4 Parallel Hardware: GPU Acceleration through

CUDA

NVidia’s CUDA programming language allows for custom programming to run on

NVidia based GPU hardware [114]. At a silicon level, GPU architectures are designed

for simplistic massively parallel applications, in contrast to CPUs, which are optimized

for complex serial tasks. While GPUs can support higher floating point operations per

second (FLOPS), the application must directly support and map to massively parallel

hardware [115], [116], [117].

At a high level, the CUDA programming language mimics the C programming

language, but carries certain intrinsic variables to support parallel programming. The

core concept with parallel computing is all threads evaluate the same code, but due to

the intrinsic variables unique to each thread, the relevant data that is operated on can

vary. For example, the instruction float x_position = x_states[theadIdx.x] can

be used to locally load the vehicle x position into that thread’s register. As all threads

load their local vehicle state, the same system dynamics are evaluated embarrassingly

parallel across all threads.

A fundamental difference between GPU and CPU architectures is in the scaling

of thread count for problems. For example, CPUs commonly support 4 to 16 threads

[118], whereas NVidia GPUs support parallel execution of order hundreds to thousands

of threads [119]. If multiple shooting trajectory simulation is mapped into the paral-

lel thread architecture efficiently, this allows a GPU to simulate all segments of the

multiple shooting in parallel.

To map the multiple shooting trajectory into GPU hardware requires an addi-

tional step in understanding how GPU threads are evaluated in parallel. For improved

memory and computational efficiency, CUDA leverages thread blocks. Thread blocks

are a collection of threads and within a thread block, threads can access common

shared memory and synchronize within themselves. By extension, thread blocks can-

101

not efficiently share memory or synchronize with other thread blocks, and incur a

comparatively significant computational penalty when required to do so. One option

of simulating the multiple shooting trajectory optimization in parallel is to assign each

block to its own segment.

3.4.1 Block Parallel Multiple Shooting

When designing a CUDA parallelized application, the number of thread blocks and

number of threads within each block must be explicitly stated. In the block parallel

implementation, there are q blocks for the q segments, and sufficient threads within

each block to simulate the segment. Because the thread blocks are evaluated in parallel,

each segment of the multiple shooting is evaluated for fitness and feasibility in parallel.

To map the optimization problem to a parallel hardware, the design variables and

constraint vector are carefully structured. Consider a generic multiple shooting struc-

ture of q segments with r control inputs within each segment. The design variables

can be ordered as [xstart,u1, ...,ur,x2,ur+1, ...,u2r, ...,xq, ...,uqr]. Using this format,

(blockIdx.x)i knows it represents segment i, and can access the starting state at

index i(x + r u), with the following r u indices corresponding to the control inputs.

Additionally, the constraint vector is structured as [gseg 1,gcons. 1, ...,gseg q,gterminal].

This allows segment i to store the feasibility constraints starting at index i(gseg+gcons)

and state consistency constraints starting at i(gseg + gcons) + gseg.

Additionally, CUDA support atomic functions, which allow independent threads

to access and modify a common variable without causing conflicts between competing

threads. Recall the objective function in (2.17) is to minimize the largest tire slip

experienced in the trajectory. This would require first calculating the peak tire slip

within each segment, then synchronizing and comparing across segments. To avoid the

computational penalty of synchronizing blocks, independent blocks can increment the

KS function of slip through atomic functions, hence still minimizing the peak tire slip

experienced in the maneuver.

102

To calculate the sensitivities of the q-gseg constraints, analytic derivatives are im-

plemented in parallel within each segment using appropriate indexing. When imple-

menting the analytic derivatives for the specific system dynamics, the sparsity of the

Jacobian should be retained when indexing the sensitivity vectors, as this reduces the

amount of data required to be generated and transferred from the GPU. Exploiting the

sparsity of the Jacobian reduces the memory size, and significantly accelerates sparse

linear algebra solvers used in IPOPT.

One bottleneck to this block parallelization remains, namely, the system dynamics.

Although the blocks are evaluated in parallel, within each block the system dynamics

cannot be evaluated in parallel. Instead, a single thread calculates the system dynamics

at the current state, and then broadcasts the results to the other threads within block.

The remaining linear algebra can be evaluated in parallel, such as sensitivities to the

design variables and linear algebra steps required in Sec. 3.2.

Avoiding this thread bottleneck is critical to maximizing the performance of the

GPU hardware. GPUs are able to achieve high FLOPS by fully leveraging all threads at

all times. By having to restrict the blocks to a single thread for system dynamics, which

as discussed is the largest computational penalty in the optimization, the computational

efficiency of the GPU is significantly reduced.

To avoid this bottleneck, it is possible to implement a thread parallel multiple

shooting as discussed next.

3.4.2 Thread Parallel Multiple Shooting

The thread parallel multiple shooting is specific to the highest segment count multiple

shooting, where for n integration states in the prediction horizon there are n segments.

In thread parallel multiple shooting, each thread is structured to evaluate a single

integration point for fitness and feasibility. While these threads do get coupled into

thread blocks, the mapping does not leverage the benefits of a thread block. However,

by massively parallelizing the segments at the thread level, the bottleneck seen in block

103

parallelization can be reduced by keeping all threads active as discussed next.

A core limitation to the size and scope of the threads and thread blocks is the

available memory. While there is sufficient shared memory to implement the block

parallelization structure, the thread parallelization can be limited by the per thread

memory restrictions. The results showcased in this paper are run on an NVidia Pascal

microarchitecture, which supports up to 255 32-bit registers per thread [114]. For

thread parallelization, this means the entire RK4 integration step, as well as fitness

and feasibility evaluations and sensitivities, must be optimized for 255 registers.

It is feasible that higher order Runge-Kutta integration schemes could be more

efficient. Fifth order and higher Runge-Kutta schemes exist, but these methods exceed

memory availability. In RK4, the states at the intermediate corrector points, as well

as sensitivities, must be fully contained within the per thread register limit. However,

the RK4 Butcher tableau has diagonal structure [120], meaning each corrector point is

a calculated exclusively by the prior integration point. As a result, the intermediate

corrector points can be over written, reducing the maximum number of registers used

at any one time. For this reason, RK4 outperforms RK 3/8, as RK 3/8 method retains

all prior corrector points when calculating the next intermediate point, as well as final

integration point.

For the 3DoF bicycle model, retaining these calculations and sensitives exceed the

register count for fifth order and above Runge-Kutta methods, which incurs significant

memory access penalties. However, it is feasible that for other applications with simpler

system dynamics higher order explicit methods could be implemented, or in the case

of applications with more complicated system dynamics only second or third order

explicit methods compatible with the available memory.

Using the thread parallelized RK4 implementation, with all the other computa-

tional improvements discussed, achieves 55 ms convergence time for the nonlinear CIS

problem considered. However, the tested implementation uses a slightly different con-

trol structure of constant 50 ms control rates, instead of 100 ms, as this allows each of

the n segments defined by its own [x,u]. It is possible to implement constraints within

104

IPOPT as u2i = u2i+1∀2i+ 1 ≤ n, which would require each the control action u to be

equal within each pair.

By following the procedure laid out in previous sections, the final joint software-

hardware solution thus achieved the target loop timing and is compatible for real-

time performance. In Fig. 3.9, the wall time for IPOPT to converge, as well as

a candidate major iteration, are plotted. Within the major iteration, the parallel

computing nature is apparent as each thread can simulate the trajectory, sensitivity,

and fitness/feasibility metrics in parallel, reducing net elapsed time. However, the

increased size of the optimization problem becomes apparent as a larger ratio of time

is spent within IPOPT iterating the candidate design point.

105

Thread parallel multiple shooting,
analytic derivatives, RK4

0

15

30

45

W
a
ll
ti
m
e
 [
m
s]

Thread 1 … Thread n
Sample CUDA major iteration

27.6

28.2

28.8

W
a
ll
ti
m
e
 [
m
s]Simulating trajectory

Analytic derivative calculation
Evaluating fitness/feasability
 value/sensitivity
Incrementing nonlinear solver

Figure 3.9: The elapsed time for the thread parallel, analytic derivative, RK4 based
CIS controller solution is plotted, as well as a candidate major iteration.

106

Chapter 4

Summary and Outlook

This dissertation presents a CIS controller to perform the evasive lane change maneuver

in safety critical situations. As part of the underlying optimization formulation, feasi-

ble solutions are guaranteed to obey hard safety constraints, ensuring the prescribed

control actions are provably safe. Additionally, the controller is developed to be com-

patible with an evaluation test vehicle, requiring holistic assumptions on the available

perception system and compute power. The resulting formulation is experimentally

evaluated in a simplified test case, green-lighting further testing. The contributions

made during development are further highlighted as follows.

4.1 Dissertation Contributions

While pursuing the research objectives discussed in Sec. 1.4, the following salient

contributions to the field of automotive collision avoidance controllers are made.

4.1.1 One-level Nonlinear MPC Controller Design

The one-level nonlinear MPC CIS controller developed is capable of safely perform-

ing an evasive lane change maneuver, even at the limits of handling if needed. While

other controllers address collision avoidance for their intended application, these con-

107

trollers are not designed for a jointly one-level, nonlinear, MPC formulation with hard

safety constraints, even extending to the nonlinear limits of handling, for the expected

highway scenario. Often, obstacle avoidance controllers are structured as a two-level

architecture, tasked with separate path generation and path following controllers. In

the context of a safety critical application that might require operating at the vehicle

limits of handling, it is not feasible to design a reference trajectory that maximizes

the vehicle handling capabilities without exceeding them. Further, it is challenging to

design a path following controller with hard safety guarantees while operating at the

limits of handling.

To this extent, the safety considerations of an evasive lane change, as well as vehicle

stability guarantees, are formulated as hard constraints in a one-level architecture. The

one-level architecture directly maps the control actions to a predicted vehicle response

trajectory, and adjusts the control actions to ensure the response obeys hard safety

constraints. Further, this nonlinear formulation accounts for nonlinearities in the safety

constraints, as well as vehicle and tire models. While computationally challenging, the

reduced order nonlinear prediction model sufficiently describe the higher order plant

model, successfully allowing evasive lane changes at the limits of handling in simulation

tests.

4.1.2 Window of Feasibility for CIS

For the numerically simulated cases, it is shown the CIS controller can perform an

evasive lane change in roughly half the distance required for limit braking. Hence,

if for some reason the host vehicle detects a forward collision cannot be avoided by

braking alone, potentially due to a third party collision ahead or a vehicle unsafely

pulling into the host’s lane, it is possible that an evasive lane change could safely avoid

the collision. Further, if the obstacle is identified far away and controller solved quickly,

the lane change can take place at low vehicle excitation. But, if the obstacle is near, the

formulation is capable of identifying an aggressive lane change is necessary and taking

108

action. Although this insight into controller performance is important to benchmark

its capability, a similar CIS controller is developed for implementation.

4.1.3 Minimum Slip Controller Formulation

While the hard safety constraints of the one-level architecture ensure feasibility, the

fitness of a candidate CIS maneuver is not based on a path following metric; thus, a

novel slip minimization formulation is introduced. In the context of vehicle dynamics,

tire slip is the reference parameter that generates tire force; minimizing the tire slip

minimizes the tire force. The maximum force the tires are allowed to produce is

limited by the coefficient of friction, which depends on the road surface and tire rubber

interaction.

By minimizing the tire force needed for the maneuver, this formulation maximizes

the remaining available tire force. This is desirable for two reasons. First, the min-

imum tire force solution can be argued that it is the least intrusive on occupants,

thus the most comfortable maneuver. Second, by maximizing the additional available

tire force, the resulting maneuver maximizes the additional available control authority

to make corrections mid maneuver if disturbances happen. As a result, the inherent

plant-prediction model mismatch due to model fidelity can be addressed, and the CIS

maneuver safely completed.

4.1.4 Adaptive CIS Controller Formulation

While the combined minimum slip fitness metric and closed-loop nature of the controller

implementation provide some level of stability, failure can still occur if the prediction

model does not accurately represent the plant system. Literature has identified most of

the parameters dictating the vehicle dynamics can be well estimated and extrapolated,

with the key exception being coefficient of friction. Coefficient of friction is heavily

dependent on the road surface condition, which cannot necessarily be known a priori.

Thus, it is proposed to use a UKF observer to estimate the coefficient of friction

109

in closed loop. Through simulation testing, it is shown the UKF quickly identifies the

plant system coefficient of friction, allowing subsequent MPC solutions to use an im-

proved prediction model. The fact the UKF adjusts for the discrepancy in coefficient

of friction quickly is critical to the performance of the adaptive formulation. If the

plant system operates at a lower coefficient of friction than is believed by the predic-

tion model, early identification of the plant-prediction model mismatch gives the CIS

controller comparatively more time to adjust the control trajectory prior to constraint

failure. This prevents tire saturation, which often results in violating lane boundary

constraints. If the plant system operates at a higher coefficient of friction, the adaptive

controller formulation recognizes the plant system is more responsive than believed

and does not prescribe as aggressive a maneuver. In simulation testing, the adaptive

controller formulation can maintain hard safety constraint feasibility for an initial co-

efficient of friction discrepancy of up to 55% between the plant and prediction models,

compared to the baseline case maintaining up to 25% discrepancy.

4.1.5 Real-time Controller Performance

Arguably the most challenging hurdle to implementing such complex nonlinear MPC

controllers is achieving real-time performance. While many controllers have been im-

plemented for vehicle control in different controller architectures, they are often for

a low computationally complex application. Yet, for some applications like evasive

lane changes at the limits of handling, retaining the problem complexity is essential to

ensuring safe operation. While computing power has been steadily improving for the

past few decades, it is not foreseeable for computing power to grow the three orders of

magnitude required to implement the original CIS implementation. To this extent, a

framework for achieving real-time performance of the CIS controller, and more broadly

nonlinear MPC controllers, is presented.

Through profiling of the controller, it is identified that evaluating the system dy-

namics is the most computationally expensive stage. This is because for most nonlinear

110

systems of interest, there is no closed-form solution of the model, thus numerical inte-

gration is required [121]. To map the control inputs to the system response trajectory,

system dynamics must be evaluated multiple times. Additionally, to calculate the sen-

sitivity of the system response to control inputs, the original finite difference sensitivity

calculation requires simulating many prediction trajectories. While it is infeasible to

provide a blanket solution to improving the wall time of evaluating the system dynam-

ics for all nonlinear system, the framework is intended to minimize the number of times

the system dynamics need to be evaluated, hence reducing computational cost.

To begin, various numerical integration techniques are compared to establish the

longest allowable time step, hence fewest number of integration points. The numerical

integration methods are benchmarked off a derived or implied system uncertainty so

as to keep the integration resolution consistent with expected system response. This

analysis is mindful of both the computational cost and memory dependencies of the

numerical integration methods.

Second, the trajectory optimization structure is discussed, balancing the resulting

optimization problem size with optimization problem complexity. While some implicit

trajectory simulation methods, such as collocation and the family of spectral methods,

are often implemented for these complex nonlinear applications, multiple shooting is

introduced and compared. The core advantage of collocation methods is the intro-

duction and control of the state trajectory into the optimization problem, and it is

identified multiple shooting trajectory simulation can do the same. For the intended

CIS controller, it is concluded multiple shooting with explicit integration is the proper

balance of integration time step against controller complexity, though the framework

supports other conclusions for different applications.

Finally, the mapping of the optimization problem to modern compute hardware

is discussed. While computing power is steadily growing, applications require care-

ful mapping onto the underlying hardware to fully leverage the available compute

resources. To this extent, two formulations of the multiple shooting trajectory sim-

ulation are presented for a GPU co-processor architecture. While both formulations

111

leverage parallel computing hardware, the block parallelization structure achieves 7×
speed up and thread parallelization structure achieves 26× speed up over the serial

CPU implementation.

Without modification to the fitness and feasibility metrics of the nonlinear MPC

controller, the framework for designing the trajectory simulation architecture achieves

the necessary three orders of magnitude speed up for real-time compatibility. Addition-

ally, it is shown real-time performance is not achieved by only addressing the software

side of the problem, such as though numerical integration or collocation trajectory

simulation, or the hardware side, such as parallel threads or exotic co-processors, but

instead requires a balanced software-hardware solution.

Additionally, preliminary experiments on test vehicle confirm the impenetrability

as part of a full stack of modern autonomous driving architecture. These low speed

tests validate the assumptions the controller is built on, ranging from the expected

perception data structures to available automotive compute capabilities. Although the

low speed tests intentionally do not push the vehicle to the limits of handling, they

serve as a stepping stone to validate the controller is working as intend within the

vehicle architecture, green-lighting higher speed tests.

4.2 List of Publications

As a result of the efforts leading up to this dissertation, the above contributions have

been recognized in conference presentations, journal publications, and patent submis-

sions, denoted below.

4.2.1 Conference Presentations

1. J. Wurts, J. L. Stein, and T. Ersal, "Collision Imminent Steering Using Nonlinear

Model Predictive Control," in 2018 Annual American Control Conference (ACC).

2018, pp. 4772-4777 [122]

112

2. J. Wurts, J. L. Stein, and T. Ersal, “Increasing Computational Speed of Nonlinear

Model Predictive Control Using Analytic Gradients of the Explicit Integration

Scheme with Application to Collision Imminent Steering,” in 2018 Conference on

Control Technology and Applications (CCTA). 2018, pp. 1026–1031. [123]

3. J. Wurts, J. L. Stein, and T. Ersal, “Minimum Slip Collision Imminent Steering

in Curved Roads Using Nonlinear Model Predictive Control,” in 2019 American

Control Conference (ACC). 2019, pp. 3975–3980 [124]

4. J. Wurts, J. Dallas, J. L. Stein, and T. Ersal, "Adaptive Nonlinear Model Pre-

dictive Control for Collision Imminent Steering with Uncertain Coefficient of

Friction", in 2020 American Control Conference (ACC). 2020, to appear [125]

5. J. Dallas, J. Wurts, J. L. Stein, and T. Ersal, "Contingent Nonlinear Model

Predictive Control for Collision Imminent Steering in Uncertain Environments",

in 21st International Federation of Automatic Control World Congress. 2020, to

appear [126]

4.2.2 Journal Publications

1. J. Wurts, J. L. Stein, and T. Ersal, "Collision Imminent Steering at High Speed

Using Nonlinear Model Predictive Control," in IEEE Transactions on Vehicle

Technology. 2020, accepted, to appear [127]

2. J. Wurts, J. L. Stein, and T. Ersal, "Collision Imminent Steering in Curved Roads

Using Nonlinear Model Predictive Control," in IEEE Transactions on Vehicle

Technology. 2020, under review [128]

3. J. Wurts, J. L. Stein, and T. Ersal, "Design for Real-Time Nonlinear Model

Predictive Control with Application to Collision Imminent Steering," in IEEE

Transactions on Control Systems Technology. 2020, under review [129]

113

4.2.3 United States Patent and Trademark Submission

1. J. L. Stein, T. Ersal, and J. Wurts, "Collision Imminent Steering Control System

and Methods," US Patent App. 15/971,318 [130]

2. J. L. Stein, T. Ersal, and J. Wurts, "Lane Change Maneuvers with Minimized

Tire Slip," US Patent App. 16/452,936 [131]

3. J. Dallas, J. L. Stein, T. Ersal, and J. Wurts, "Contingent Model Predictive

Control Incorporating Online Estimation of Nominal and Uncertain Parameters",

University of Michigan Invention Disclosure, under patent consideration

4.3 Future Work

The contributions herein support a CIS controller compatible with real-time perfor-

mance. While the controller design and performance framework supports the intended

application, these results can expand to support more advanced implementations and

applications. Some potential considerations are highlighted below.

4.3.1 Shared Control Formulation

In the current form, the envisioned automotive CIS system is intended to lock out a

human driver and prescribe the CIS controller’s commands to the vehicle. From a

human driver’s perspective, this can be concerning, because such as system does not

necessarily have the human’s trust that the actions are safe. However, it is feasible to

pose the CIS control problem in a shared control setting.

In a shared control setting, there are two sources of control action: one from a

human and a second solved internal to the controller. The controller then takes as

input the human’s control action and, by some metric, blends the control commands

to issue a single action to the system.

114

Shared control architectures have been well studied, especially in the field of vehicle

control [132], [133]. These shared control architectures leverage the steering wheel for

haptic feedback as a means of encouraging the driver to take what the controller believes

to be a better control action.

The proposed CIS controller can employ a similar design by acting as overwatch to

the human driver. In the envisioned architecture, the CIS controller will take as input

the human’s current control action. The optimization problem will then be structured

to find a control sequence such that the first control action equals the driver’s current

action subject to the remaining feasibility constraints in (2.17).

In this formulation, the controller will identify if the driver’s control action could

perform a CIS maneuver, but will only intervene if the human is not acting quickly or

aggressively enough. This avoids completely locking the human out of control of the

vehicle, and even gives the human as much control authority as the controller identifies

as feasible.

The resulting control trajectory can then be used to assist the driver, either as

visual reference for intended trajectory or through a similar haptic feedback.

4.3.2 Robust Versus Adaptive Controller Formulations

To perform the intended CIS maneuver, the algorithm must be cognizant of the instan-

taneous environment conditions and vehicle handling capabilities. This is not trivial,

as the algorithm relies on sensor data, perceptual processes, mathematical system mod-

els, and stored reference data, all of which are prone to varying levels of uncertainty.

Thus, balancing the controller performance under these uncertainties is nontrivial. If

the algorithm is overly conservative in action, then the controller’s believed capability

of obstacle avoidance is reduced. If the algorithm is overly confident in its data and

models, then the controller’s actual capability is reduced. Either case would result

in safety issues that are in reality avoidable. Thus, there is an opportunity to incor-

porate the various sources of uncertainty directly into the MPC controller, balancing

115

instantaneous uncertainty with safety critical performance.

In Sec. 2.7, the controller is made resilient to uncertainty in the coefficient of friction

by introducing an adaptive control formulation. Of the prediction model parameters,

the prediction trajectory is most sensitive to coefficient of friction, yet the coefficient of

friction cannot be known a priori and can change during operation. However, tracking

the uncertainty in coefficient of friction shows a low frequency response, which is well

captured in an adaptive formulation. However, uncertainties with frequency content

too high for adaptive formulations, such as sensor noise, require robust formulations

[134].

Thus, a blended adaptive robust controller formulation can account for uncertainty

and noise through multiple sources. By properly incorporating such uncertainty into

the controller, the controller performance can be provably improved without excess risk

[135].

Often, uncertain parameters are modeled as independent Gaussian distributions.

However, traditional estimation approaches and optimization formulations used for

modern perception pipelines can also produce uncertainty models. Thus, there is an

opportunity to not only incorporate the process noise into the controller formulation,

but the exact noise model can be included in the nonlinear controller as well.

While a vastly computationally complex problem, a both adaptive and robust one-

level nonlinear MPC formulation promises significant performance improvements sub-

ject to various sources of uncertainty.

4.3.3 Parallel Implementation of Nonlinear Numerical Opti-

mizer

The optimal control formulation in (2.17) is solved using IPOPT as an off the shelf non-

linear optimizer. While the trajectory simulation strategy employs parallel computing

hardware, IPOPT does not natively do so as well.

There are two opportunities to leverage parallel computing within the optimizer.

116

One option is through the speed up of the linear algebra steps. GPUs are inherently

good at linear algebra subroutines because these stages are computationally heavy, but

have little sequential dependencies. Linear algebra subroutines such as matrix-matrix

multiplication and matrix inversion can greatly benefit from being run on GPUs over

CPUs.

However, there is an additional opportunity to fundamentally redesign the numer-

ical optimization procedure to leverage parallel computing, which is not specific to

IPOPT. Typically numerical optimization is a sequential dependency heavy operation:

from a candidate design point, calculate the search direction, solve the line search sub-

problem, evaluate new candidate point for fitness and feasibility, then repeat. While

this procedure cannot be natively parallelized, multiple candidate points can be con-

sidered in parallel.

In Sec. 3.4, it was discussed GPU applications can support thousands of threads

simultaneously. The GPU acceleration for evaluating fitness and feasibility criteria can

support evaluating tens to hundreds of candidate control trajectories simultaneously

for no wall time penalty.

The advantages of simulating candidate control points in parallel has been recog-

nized and leveraged in path integral controllers [136] and particle swarm optimization

[137]. However, these implementations are based on a statistical analysis and do not

benefit from the advantages of gradient-based optimization over gradient-free.

Hence, there is an opportunity for a gradient-based numeric optimizer to consider

many candidate points in parallel. For example, during the line search procedure,

multiple candidate points can be propagated with slight perturbations in the hopes of

identifying at least one point better than the traditional line search method.

The motivation in developing a new optimization procedure addresses the final

thread parallel multiple shooting profiling. In the final form, the majority of the wall

time was spent inside the numeric optimizer, not evaluating candidate design points.

By improving the convergence procedure of the optimizer, the net wall time can be

improved.

117

Appendix

118

Appendix A

Test Vehicle Implementation

As a proof of concept, the CIS controller developed in Chapter 2 is implemented on

a Toyota Research Institute (TRI) test platform. The vehicle is a modified Lexus LS

500h, equipped with additional sensors and hardware as a development platform for

self-driving research [138]. Beyond the standard sensing package of the Lexus LS 500h,

the test platform features multiple LIDAR, vision based cameras, and radar for percep-

tion purposes. Computing hardware is primarily commercially available components

consistent with high performance consumer grade products. A press release photo of

the development platform as appeared at Consumer Electronics Show 2019 can be seen

in Fig. A.1.

As input to the CIS controller, the TRI development platform’s perception stack

readily provides the drivable tube. Similar to the geometrically drivable tube in Sec.

2.1, the perception stack adjusts the drivable tube to capture both lane boundary and

obstacle information. A work flow block diagram of the CIS controller implemented

within the vehicle control pipeline can be seen in Fig. A.2.

While the controller is designed to natively interface with the test architecture,

performing a CIS maneuver at highway speeds is a dangerous test condition, even in

controlled environments. Thus, as a proof of concept, preliminary testing addresses a

low speed lane change.

119

Figure A.1: The Toyota Research Institute test vehicle is a modified Lexus LS 500h
with additional sensors for self-driving research.

Figure A.2: The CIS controller resides within the vehicle control pipeline, taking input
from the perception stack and output control commands to sub-dependencies.

120

In a low speed lane change, the host vehicle travels approximately 20 MPH in a

straight line in its starting lane. A barrel is place far down the road, partially blocking

the host’s lane. For the barrel distance and vehicle speed, the vehicle could feasibly

brake to avoid collision, but a lane change trajectory is mandated.

In the test, the lane change takes place well in advance of the barrel at low vehicle

excitation. While this result does not showcase the capability of such a complicated

nonlinear one-level MPC controller, it establishes the controller formulation is compati-

ble with expected testing hardware as well as control pipeline. Additionally, it suggests

slightly higher speed testing can proceed.

However, one insight provided by the low speed test conditions is variations in

subsequent prediction trajectories. Recall the CIS controller is tasked with navigating

the vehicle through the drivable tube as a feasability metric, with the optimality metric

as minimizing peak tire slip. In testing, consecutive iterations showed the prediction

trajectories vary in x − y space, best categorized as wiggles. These wiggles are not

a wiggle within any one trajectory; instead the wiggles are variations in consecutive

prediction horizons where the latter stretch of the prediction trajectories vary.

These wiggles become apparent in testing because the prediction horizon is dis-

played to the test engineer and safety driver. The resulting plant trajectory does not

exhibit wiggles or oscillations in state response. However, it is important to convey

to the test engineers the controller is operating as intended, requiring an investigation

into the source of the wiggles.

In subsequent numerical simulations of the low speed test condition, these trajectory

wiggles can be reproduced. Further analysis shows at low speeds and low vehicle

excitation, the design space is comparatively flat, meaning small changes to the control

rates can induce wiggles in the prediction trajectory, but have little variation on the

objective function. These wiggles can be seen in Fig. A.3, showing multiple converged

trajectories at different stages of the maneuver.

In Fig. A.3, each of the trajectory plots is a converged solution from IPOPT for

a different random starting control trajectory. The initial random control trajectory

121

(a) Candidate trajectories within the drivable tube when the obstacle is far away.

(b) Candidate trajectories when the obstacle is within the prediction horizon.

Figure A.3: The low speed vehicle test is recreated in numerical simulation in an
attempt to recreate the wiggles. The first sub plot shows various trajectories when the
obstacle is far away. In the second subplot, the obstacle reduces the drivable tube, but
there are still variations between trajectories.

122

is likely to cause constraint violation, but IPOPT quickly finds a feasible trajectory,

staying within the drivable tube. However, the design space is comparatively flat, as

the converged trajectories’ objective function value is within ±2% other solutions.

Within each prediction trajectory, the variation in x − y position later in the tra-

jectory is apparent. Even though all trajectories obey the drivable tube limits, the

absence of obstacle interference leaves the drivable tube comparatively wide. From

this simulation, it should be noted the low speed test terminal constraints are difficult

to enforce. For the 3.2 s prediction horizon, the low vehicle speed means the longitu-

dinal travel within the prediction trajectory is low. Hence, when the obstacle is far

away, the terminal state constraint is not well posed.

Slightly later in the maneuver as the vehicle encounters the obstacle, these variations

still persist. Even though all the candidate trajectories obey the drivable tube around

the obstacle, the low speed test condition implies low vehicle excitation is required.

Again, this makes the design space comparatively flat.

There are many parameters used in nonlinear numerical optimization to establish

convergence criteria, as well as iteration procedure. Depending on these tuning pa-

rameters, the converged numerical optimization problem can result in slightly different

control trajectories, mapping to slightly different prediction trajectories, which can be

within a comparable peak tire slip. for the set of parameters used within IPOPT, the

candidate trajectories converged on the believed optimum prematurely, as the solu-

tions are still approximately 10% above the global minimum of uniformly zero control

action.

In a similar numerical investigation of the high speed CIS, the design space is found

to not be comparatively flat. When the obstacle is imminent and an aggressive lane

change is performed which comparatively excites the vehicle dynamics, these wiggles

do not persist.

Tightening the convergence parameters of IPOPT might help the converged control

trajectories tend towards a singular trajectory, but this increases the computational

cost of the optimization as the candidate trajectory needs to be iterated further. For

123

the relatively flat design space of the low speed obstacle avoidance maneuver requiring

low vehicle excitation, improving the vehicle control is frivolous.

Yet, these low speed vehicle test results are insightful for two reasons. First, it

means the CIS controller reliably finds the optimal control commands to perform an

evasive lane change; hence the solution can be tested at high speeds. Second, because

the wiggles can be recreated in simulation, the controller is acting as designed and this

is not some corner case coming from an outside system or issue with the optimizer. It

also implies the low speed lane change is comparatively easy, and traditional two-level

path following controllers are well suited for this scenario.

While the wiggles in state trajectory are accounted for and do not lead to insta-

bility, they can be concerning from an operator perspective. If the wiggles need to be

removed, numerical simulations show narrowing the drivable space, as well as tuning

the optimization parameters, can sufficiently restrict the low speed test case, removing

wiggles in closed form. Fig. A.4, showing an artificial restriction in the drivable space.

Recall in Sec. 2.3 and 2.6, the terminal constraints are enforced through xterminal,

which was geometrically produced. It is difficult to establish xterminal for the low speed

test when the obstacle is far away at all points in the closed loop iterations. However,

by artificially restricting the drivable tube after the obstacle, the terminal x−y state is

restricted. By enforcing the starting state consistency constraint and terminal position

constraint, the maximum variation in x − y is reduced, but non-zero. When zoomed

in, there is some variations, but these wiggles are on the order of 1 cm, which is not a

concern to the safety drivers.

While the low speed test case showed some trajectory wiggles, these wiggles can be

recreated in simulation and accounted for, suggesting there is not an anomaly persist-

ing. Further, these wiggles in prediction trajectory are only seen under the hood to

the test engineer, not experienced by the driver in the vehicle response. While the test

case began at 20 MPH, this proof of concept suggests higher speed tests, such as at 25

to 40 MPH, can proceed.

124

(a) Artificial restriction in the drivable tube after passing the obstacle.

(b) Zoom in on the candidate trajectories with drivable tube restriction.

Figure A.4: By artificially restricting the drivable tube, a termianl state constraint is
effectively introduced in x− y space within the road.

125

Bibliography

[1] S. Thrun, “Toward robotic cars,” Communications of the ACM, vol. 53, no. 4,
pp. 99–106, 2010.

[2] T. Litman, Autonomous vehicle implementation predictions. Victoria Transport
Policy Institute Victoria, Canada, 2017.

[3] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “A study on model fidelity
for model predictive control-based obstacle avoidance in high-speed autonomous
ground vehicles,” Vehicle System Dynamics, vol. 54, no. 11, pp. 1629–1650, 2016.

[4] P. N. Currier, A method for modeling and prediction of ground vehicle dynamics
and stability in autonomous systems. PhD thesis, Virginia Tech, 2011.

[5] H. J. Kim and Y. Yoon, “Steering method for vehicle and apparatus thereof,”
May 14 2013. US Patent 8,442,713.

[6] J. Liu, High-Speed Obstacle Avoidance at the Dynamic Limits for Autonomous
Ground Vehicles. PhD thesis, 2016.

[7] R. W. Wolcott and R. M. Eustice, “Visual localization within lidar maps for auto-
mated urban driving,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 176–183, IEEE, 2014.

[8] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal
of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998.

[9] J.-M. Park, D.-W. Kim, Y.-S. Yoon, H. J. Kim, and K.-S. Yi, “Obstacle avoidance
of autonomous vehicles based on model predictive control,” Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
vol. 223, no. 12, pp. 1499–1516, 2009.

[10] M. A. Abbas, R. Milman, and J. M. Eklund, “Obstacle avoidance in real time with
nonlinear model predictive control of autonomous vehicles,” Canadian Journal
of Electrical and Computer Engineering, vol. 40, no. 1, pp. 12–22, 2017.

126

[11] H. Febbo, J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Moving obstacle
avoidance for large, high-speed autonomous ground vehicles,” in American Con-
trol Conference, pp. 5568–5573, IEEE, 2017.

[12] D. Madås, M. Nosratinia, M. Keshavarz, P. Sundström, R. Philippsen, A. Ei-
dehall, and K.-M. Dahlén, “On path planning methods for automotive collision
avoidance,” in 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 931–937,
IEEE, 2013.

[13] P. A. Theodosis and J. C. Gerdes, “Generating a racing line for an autonomous
racecar using professional driving techniques,” in ASME 2011 Dynamic Systems
and Control Conference and Bath/ASME Symposium on Fluid Power and Motion
Control, pp. 853–860, American Society of Mechanical Engineers, 2011.

[14] Y. Yoon, T. Choe, Y. Park, and H. J. Kim, “Obstacle avoidance for wheeled
robots in unknown environments using model predictive control,” IFAC Proceed-
ings Volumes, vol. 41, no. 2, pp. 6792–6797, 2008.

[15] S. Di Cairano, U. Kalabić, and K. Berntorp, “Vehicle tracking control on
piecewise-clothoidal trajectories by mpc with guaranteed error bounds,” in De-
cision and Control (CDC), 2016 IEEE 55th Conference on, pp. 709–714, IEEE,
2016.

[16] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus, “Safe
nonlinear trajectory generation for parallel autonomy with a dynamic vehicle
model,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 9,
pp. 2994–3008, 2017.

[17] M. Brown, J. Funke, S. Erlien, and J. C. Gerdes, “Safe driving envelopes for
path tracking in autonomous vehicles,” Control Engineering Practice, vol. 61,
pp. 307–316, 2017.

[18] N. R. Kapania, J. Subosits, and J. C. Gerdes, “A sequential two-step algorithm
for fast generation of vehicle racing trajectories,” Journal of Dynamic Systems,
Measurement, and Control, vol. 138, no. 9, p. 091005, 2016.

[19] M. Gerdts, S. Karrenberg, B. Müller-Beßler, and G. Stock, “Generating locally
optimal trajectories for an automatically driven car,” Optimization and Engi-
neering, vol. 10, no. 4, p. 439, 2009.

[20] Y. Yoon, J. M. Park, H. J. Kim, and S. Sastry, “Utilizing parallax information for
collision avoidance in dynamic environments,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4186–4186, IEEE, 2008.

[21] H. Ahn, K. Berntorp, and S. Di Cairano, “Reachability-based decision making for
city driving,” in 2018 Annual American Control Conference (ACC), pp. 3203–
3208, IEEE, 2018.

127

[22] K. Leung, E. Schmerling, M. Chen, J. Talbot, J. C. Gerdes, and M. Pavone, “On
infusing reachability-based safety assurance within probabilistic planning frame-
works for human-robot vehicle interactions,” arXiv preprint arXiv:1812.11315,
2018.

[23] N. R. Kapania and J. C. Gerdes, “Design of a feedback-feedforward steering
controller for accurate path tracking and stability at the limits of handling,”
Vehicle System Dynamics, vol. 53, no. 12, pp. 1687–1704, 2015.

[24] V. A. Laurense, J. Y. Goh, and J. C. Gerdes, “Path-tracking for autonomous
vehicles at the limit of friction,” in American Control Conference, pp. 5586–5591,
2017.

[25] J. Alsterda, M. Brown, and J. C. Gerdes, “Contingency model predictive control
for automated vehicles,” in 2019 Annual American Control Conference (ACC),
pp. 718–722, IEEE, 2019.

[26] Z. Wang, G. Li, H. Jiang, Q. Chen, and H. Zhang, “Collision-free navigation of au-
tonomous vehicles using convex quadratic programming-based model predictive
control,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1103–
1113, 2018.

[27] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-predictive active
steering and obstacle avoidance for autonomous ground vehicles,” Control Engi-
neering Practice, vol. 17, no. 7, pp. 741–750, 2009.

[28] J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding horizon maneuver gen-
eration for automated highway driving,” Control Engineering Practice, vol. 41,
pp. 124–133, 2015.

[29] R. Jafari, S. Zeng, N. Moshchuk, and B. Litkouhi, “Reactive path planning for
emergency steering maneuvers on highway roads,” in 2017 American Control
Conference (ACC), pp. 2943–2949, IEEE, 2017.

[30] F. Altché, P. Polack, and A. de La Fortelle, “A simple dynamic model for aggres-
sive, near-limits trajectory planning,” arXiv preprint arXiv:1703.01225, 2017.

[31] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making
for autonomous vehicles,” Annual Review of Control, Robotics, and Autonomous
Systems, 2018.

[32] Z. Hou and S. Jin, Model free adaptive control: theory and applications. CRC
press, 2013.

[33] D. Zhang and B. Wei, “A review on model reference adaptive control of robotic
manipulators,” Annual Reviews in Control, vol. 43, pp. 188–198, 2017.

128

[34] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An optimal-
control-based framework for trajectory planning, threat assessment, and semi-
autonomous control of passenger vehicles in hazard avoidance scenarios,” Inter-
national Journal of Vehicle Autonomous Systems, vol. 8, no. 2-4, pp. 190–216,
2010.

[35] I. Chakraborty, P. Tsiotras, and R. S. Diaz, “Time-optimal vehicle posture control
to mitigate unavoidable collisions using conventional control inputs,” in American
Control Conference, pp. 2165–2170, 2013.

[36] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “A nonlinear model predictive
control formulation for obstacle avoidance in high-speed autonomous ground ve-
hicles in unstructured environments,” Vehicle System Dynamics, pp. 1–30, 2017.

[37] C. E. Beal and J. C. Gerdes, “Model predictive control for vehicle stabilization
at the limits of handling,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 4, pp. 1258–1269, 2012.

[38] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Combined speed and steering
control in high speed autonomous ground vehicles for obstacle avoidance using
model predictive control,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 10, pp. 8746–8763, 2017.

[39] H. Febbo, P. Jayakumar, J. L. Stein, and T. Ersal, “Real-time trajectory planning
for automated vehicle safety and performance in dynamic environments,” arXiv
preprint arXiv:2001.10163, 2020.

[40] A. Patterson, A. Lakshmanan, and N. Hovakimyan, “Intent-aware probabilistic
trajectory estimation for collision prediction with uncertainty quantification,”
arXiv preprint arXiv:1904.02765, 2019.

[41] A. Patterson, A. Gahlawat, and N. Hovakimyan, “Learning probabilistic intersec-
tion traffic models for trajectory prediction,” arXiv preprint arXiv:2002.01965,
2020.

[42] W. Schwarting, J. Alonso-Mora, L. Pauli, S. Karaman, and D. Rus, “Parallel
autonomy in automated vehicles: Safe motion generation with minimal inter-
vention,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1928–1935, IEEE, 2017.

[43] J. T. Betts, Practical methods for optimal control and estimation using nonlinear
programming, vol. 19. Siam, 2010.

[44] E. F. Camacho and C. B. Alba, Model predictive control. Springer Science &
Business Media, 2013.

129

[45] H. Kwakernaak and R. Sivan, Linear optimal control systems, vol. 1. Wiley-
interscience New York, 1972.

[46] H.-S. Juang and K.-Y. Lurrr, “Design and control of a two-wheel self-balancing
robot using the arduino microcontroller board,” in 2013 10th IEEE International
Conference on Control and Automation (ICCA), pp. 634–639, IEEE, 2013.

[47] P. TøNdel, T. A. Johansen, and A. Bemporad, “An algorithm for multi-
parametric quadratic programming and explicit mpc solutions,” Automatica,
vol. 39, no. 3, pp. 489–497, 2003.

[48] S. Di Cairano, D. Yanakiev, A. Bemporad, I. V. Kolmanovsky, and D. Hrovat,
“Model predictive idle speed control: Design, analysis, and experimental evalua-
tion,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp. 84–
97, 2011.

[49] H. Li, K. Butts, K. Zaseck, D. Liao-McPherson, and I. Kolmanovsky, “Emissions
modeling of a light-duty diesel engine for model-based control design using multi-
layer perceptron neural networks,” tech. rep., SAE Technical Paper, 2017.

[50] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control
for quadrotors,” in 2011 IEEE International Conference on Robotics and Au-
tomation, pp. 2520–2525, IEEE, 2011.

[51] R. Quirynen, K. Berntorp, and S. Di Cairano, “Embedded optimization algo-
rithms for steering in autonomous vehicles based on nonlinear model predictive
control,” in 2018 Annual American Control Conference (ACC), pp. 3251–3256,
IEEE, 2018.

[52] D. Liao-McPherson, M. Nicotra, and I. Kolmanovsky, “Time distributed sequen-
tial quadratic programming for model predictive control: Stability and robust-
ness,” arXiv preprint arXiv:1903.02605, 2019.

[53] J. T. Betts and W. P. Huffman, “Path-constrained trajectory optimization using
sparse sequential quadratic programming,” Journal of Guidance, Control, and
Dynamics, vol. 16, no. 1, pp. 59–68, 1993.

[54] S. Richter, C. N. Jones, and M. Morari, “Computational complexity certification
for real-time mpc with input constraints based on the fast gradient method,”
IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1391–1403, 2012.

[55] R. Milman and E. J. Davison, “Guaranteed bounds on the performance cost of
a fast real-time suboptimal constrained mpc controller,” in IEEE Conference on
Decision and Control, vol. 2, pp. 2035–2040, 2004.

130

[56] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded online optimization for model predictive control at
megahertz rates,” IEEE Transactions on Automatic Control, vol. 59, no. 12,
pp. 3238–3251, 2014.

[57] D. Q. Mayne, “Model predictive control: Recent developments and future
promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[58] L. Grüne and J. Pannek, “Nonlinear model predictive control,” in Nonlinear
Model Predictive Control, pp. 45–69, Springer, 2017.

[59] J. Albersmeyer, D. Beigel, C. Kirches, L. Wirsching, H. G. Bock, and J. P.
Schlöder, “Fast nonlinear model predictive control with an application in automo-
tive engineering,” in Nonlinear Model Predictive Control, pp. 471–480, Springer,
2009.

[60] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Improving the robustness of an
mpc-based obstacle avoidance algorithm to parametric uncertainty using worst-
case scenarios,” Vehicle System Dynamics, vol. 57, no. 6, pp. 874–913, 2019.

[61] I. Chakraborty, P. Tsiotras, and J. Lu, “Vehicle posture control through aggressive
maneuvering for mitigation of t-bone collisions,” in 2011 50th IEEE Conference
on Decision and Control and European Control Conference, pp. 3264–3269, IEEE,
2011.

[62] M. J. Tenny, J. B. Rawlings, and R. Bindlish, “Feasible real-time nonlinear model
predictive control,” in AICHE SYMPOSIUM SERIES, pp. 433–437, New York;
American Institute of Chemical Engineers; 1998, 2002.

[63] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Combined speed and steering
control in high speed autonomous ground vehicles for obstacle avoidance using
model predictive control,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 10, pp. 8746–8763, 2017.

[64] D. Solomon, “The struggles of the fastest highway in america,” Jul 2017.

[65] U. D. of Transportion, Speed Concepts: Informational Guide. Federal Highway
Administration, 2009.

[66] A. A. O. S. Highway and T. Off, A Policy on Geometric Design of Highways and
Streets 2001. American Association of State Highway Transport., 2001.

[67] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Safe driving envelopes for shared
control of ground vehicles,” IFAC Proceedings Volumes, vol. 46, no. 21, pp. 831–
836, 2013.

131

[68] A. Alleyne, “A comparison of alternative obstacle avoidance strategies for vehicle
control,” Vehicle System Dynamics, vol. 27, no. 5-6, pp. 371–392, 1997.

[69] T. Shim and C. Ghike, “Understanding the limitations of different vehicle models
for roll dynamics studies,” Vehicle system dynamics, vol. 45, no. 3, pp. 191–216,
2007.

[70] T. D. Gillespie, “Carsim data manual,” Ann Arbor, Michigan: Mechanical Sim-
ulation Corporation, 2004.

[71] G. J. Heydinger, R. A. Bixel, W. R. Garrott, M. Pyne, J. G. Howe, and D. A.
Guenther, “Measured vehicle inertial parameters-NHTSA’s data through Novem-
ber 1998,” tech. rep., SAE Technical Paper, 1999.

[72] E. Bakker, L. Nyborg, and H. B. Pacejka, “Tyre modelling for use in vehicle
dynamics studies,” tech. rep., SAE Technical Paper, 1987.

[73] J. hwan Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsio-
tras, and K. Iagnemma, “Optimal motion planning with the half-car dynamical
model for autonomous high-speed driving,” in 2013 American control conference,
pp. 188–193, IEEE, 2013.

[74] Y. Peng and X. Yang, “Comparison of various double-lane change manoeuvre
specifications,” Vehicle System Dynamics, vol. 50, no. 7, pp. 1157–1171, 2012.

[75] R. C. Hoffman, J. L. Stein, L. S. Louca, and K. Huh, “Using the milliken moment
method and dynamic simulation to evaluate vehicle stability and controllability,”
in ASME 2004 International Mechanical Engineering Congress and Exposition,
pp. 173–180, American Society of Mechanical Engineers Digital Collection, 2008.

[76] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “A study on model fidelity
for model predictive control based obstacle avoidance in high speed autonomous
ground vehicles,” Vehicle System Dynamics, vol. 54, no. 11, pp. 1629–1650, 2016.

[77] G. Kreisselmeier and R. Steinhauser, “Systematic control design by optimizing a
vector performance index,” in Computer aided design of control systems, pp. 113–
117, Elsevier, 1980.

[78] G. J. Kennedy and J. E. Hicken, “Improved constraint-aggregation methods,”
Computer Methods in Applied Mechanics and Engineering, vol. 289, pp. 332–
354, 2015.

[79] M. de FV Pereira, I. Kolmanovsky, and C. E. Cesnik, “Model predictive control
with constraint aggregation applied to conventional and very flexible aircraft,”
in 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 431–437,
IEEE, 2019.

132

[80] A. Richards, “Fast model predictive control with soft constraints,” European Jour-
nal of Control, vol. 25, pp. 51–59, 2015.

[81] T. Gu and J. M. Dolan, “On-road motion planning for autonomous vehicles,” in
International Conference on Intelligent Robotics and Applications, pp. 588–597,
Springer, 2012.

[82] D. Kogan and R. Murray, “Optimization-based navigation for the darpa grand
challenge,” in Conference on Decision and Control (CDC), 2006.

[83] A. Wächter and L. T. Biegler, “On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming,” Mathematical
Programming, vol. 106, no. 1, pp. 25–57, 2006.

[84] J. Jiang, M. Seaid, M. S. Mohamed, and H. Li, “Inverse algorithm for real-
time road roughness estimation for autonomous vehicles,” Archive of Applied
Mechanics, pp. 1–16, 2020.

[85] K. Berntorp, R. Quirynen, T. Uno, and S. Di Cairano, “Trajectory tracking
for autonomous vehicles on varying road surfaces by friction-adaptive nonlinear
model predictive control,” Vehicle System Dynamics, pp. 1–21, 2019.

[86] C. R. Carlson and J. C. Gerdes, “Consistent nonlinear estimation of longitudi-
nal tire stiffness and effective radius,” IEEE Transactions on Control Systems
Technology, vol. 13, no. 6, pp. 1010–1020, 2005.

[87] M. G. Bekker, “Mechanics of locomotion and lunar surface vehicle concepts,” Sae
Transactions, pp. 549–569, 1964.

[88] J. Y. Wong, Theory of ground vehicles. John Wiley & Sons, 2008.

[89] K. Guo and L. Ren, “A unified semi-empirical tire model with higher accuracy
and less parameters,” SAE transactions, pp. 1513–1520, 1999.

[90] C. Sierra, E. Tseng, A. Jain, and H. Peng, “Cornering stiffness estimation based
on vehicle lateral dynamics,” Vehicle System Dynamics, vol. 44, no. sup1, pp. 24–
38, 2006.

[91] G. Baffet, A. Charara, and D. Lechner, “Estimation of vehicle sideslip, tire force
and wheel cornering stiffness,” Control Engineering Practice, vol. 17, no. 11,
pp. 1255–1264, 2009.

[92] K. Berntorp and S. Di Cairano, “Tire-stiffness and vehicle-state estimation based
on noise-adaptive particle filtering,” IEEE Transactions on Control Systems
Technology, vol. 27, no. 3, pp. 1100–1114, 2018.

133

[93] K. Berntorp, R. Quirynen, and S. Di Cairano, “Steering of autonomous vehicles
based on friction-adaptive nonlinear model-predictive control,” in 2019 Annual
American Control Conference (ACC), pp. 965–970, IEEE, 2019.

[94] F. Braghin, F. Cheli, and E. Sabbioni, “Environmental effects on pacejka’s scaling
factors,” Vehicle System Dynamics, vol. 44, no. 7, pp. 547–568, 2006.

[95] J. Dallas, K. Jain, Z. Dong, M. P. Cole, P. Jayakumar, and T. Ersal, “Online ter-
rain estimation for autonomous vehicles on deformable terrains,” arXiv preprint
arXiv:1908.00130, 2019.

[96] N. Cooper, D. Crolla, M. Levesley, and W. Manning, “Integration of active sus-
pension and active driveline to ensure stability while improving vehicle dynam-
ics,” tech. rep., SAE Technical Paper, 2005.

[97] E. Esmailzadeh and H. Taghirad, “Active vehicle suspensions with optimal state-
feedback control,” International Journal of Modelling and Simulation, vol. 18,
no. 3, pp. 228–238, 1998.

[98] H. B. Keller, Numerical methods for two-point boundary-value problems. Courier
Dover Publications, 2018.

[99] L. T. Biegler, “An overview of simultaneous strategies for dynamic optimization,”
Chemical Engineering and Processing: Process Intensification, vol. 46, no. 11,
pp. 1043–1053, 2007.

[100] E. Fehlberg, “Low-order classical runge-kutta formulas with stepsize control and
their application to some heat transfer problems,” 1969.

[101] J. D. Hedengren, R. A. Shishavan, K. M. Powell, and T. F. Edgar, “Nonlinear
modeling, estimation and predictive control in apmonitor,” Computers & Chem-
ical Engineering, vol. 70, pp. 133–148, 2014.

[102] K. Schittkowski, C. Zillober, and R. Zotemantel, “Numerical comparison of non-
linear programming algorithms for structural optimization,” Structural Optimiza-
tion, vol. 7, no. 1-2, pp. 1–19, 1994.

[103] J. Kim, D. G. Bates, and I. Postlethwaite, “Nonlinear robust performance analysis
using complex-step gradient approximation,” Automatica, vol. 42, no. 1, pp. 177–
182, 2006.

[104] A. Griewank et al., “On automatic differentiation,” Mathematical Programming:
recent developments and applications, vol. 6, no. 6, pp. 83–107, 1989.

[105] J. Andersson, J. Åkesson, and M. Diehl, “Casadi: A symbolic package for au-
tomatic differentiation and optimal control,” in Recent advances in algorithmic
differentiation, pp. 297–307, Springer, 2012.

134

[106] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques
of algorithmic differentiation, vol. 105. Siam, 2008.

[107] J. T. Betts and W. P. Huffman, “Exploiting sparsity in the direct transcrip-
tion method for optimal control,” Computational Optimization and Applications,
vol. 14, no. 2, pp. 179–201, 1999.

[108] A. Walther, “Automatic differentiation of explicit runge-kutta methods for op-
timal control,” Computational Optimization and Applications, vol. 36, no. 1,
pp. 83–108, 2007.

[109] A. H. Gebremedhin, A. Tarafdar, A. Pothen, and A. Walther, “Efficient computa-
tion of sparse hessians using coloring and automatic differentiation,” INFORMS
Journal on Computing, vol. 21, no. 2, pp. 209–223, 2009.

[110] Y. Saad, Iterative methods for sparse linear systems, vol. 82. siam, 2003.

[111] C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse linear equations
and sparse least squares,” ACM Transactions on Mathematical Software (TOMS),
vol. 8, no. 1, pp. 43–71, 1982.

[112] Y. Saad and B. Suchomel, “Arms: An algebraic recursive multilevel solver for
general sparse linear systems,” Numerical linear algebra with applications, vol. 9,
no. 5, pp. 359–378, 2002.

[113] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of
optimal control problems,” IFAC Proceedings Volumes, vol. 17, no. 2, pp. 1603–
1608, 1984.

[114] C. Nvidia, “Nvidia cuda c programming guide,” Nvidia Corporation, vol. 120,
no. 18, p. 8, 2011.

[115] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, et al., “Debunking the 100x gpu
vs. cpu myth: an evaluation of throughput computing on cpu and gpu,” in Pro-
ceedings of the 37th annual international symposium on Computer architecture,
pp. 451–460, 2010.

[116] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure,
“On the limits of gpu acceleration,” in Proceedings of the 2nd USENIX conference
on Hot topics in parallelism, vol. 13, 2010.

[117] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-
m. W. Hwu, “Optimization principles and application performance evaluation of
a multithreaded gpu using cuda,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pp. 73–82, 2008.

135

[118] G. Chrysos, “Intel R© xeon phiTM coprocessor-the architecture,” Intel Whitepaper,
vol. 176, 2014.

[119] D. Patterson, “The top 10 innovations in the new nvidia fermi architecture, and
the top 3 next challenges,” Nvidia Whitepaper, vol. 47, 2009.

[120] J. Butcher, “Runge-kutta methods,” Scholarpedia, vol. 2, no. 9, p. 3147, 2007.

[121] M. Gerdts, Optimal control of ODEs and DAEs. Walter de Gruyter, 2011.

[122] J. Wurts, J. L. Stein, and T. Ersal, “Collision imminent steering using nonlinear
model predictive control,” in 2018 Annual American Control Conference (ACC),
pp. 4772–4777, IEEE, 2018.

[123] J. Wurts, J. L. Stein, and T. Ersal, “Increasing computational speed of nonlin-
ear model predictive control using analytic gradients of the explicit integration
scheme with application to collision imminent steering,” in 2018 IEEE Confer-
ence on Control Technology and Applications (CCTA), pp. 1026–1031, IEEE,
2018.

[124] J. Wurts, J. L. Stein, and T. Ersal, “Minimum slip collision imminent steering in
curved roads using nonlinear model predictive control,” in 2019 American Control
Conference (ACC), pp. 3975–3980, IEEE, 2019.

[125] J. Wurts, J. L. Stein, and T. Ersal, “Adaptive nonlinear model predictive control
for collision imminent steering with uncertain coefficient of friction,” in 2020
American Control Conference (ACC), p. accepted, IEEE, 2020.

[126] J. Dallas, J. Wurts, J. L. Stein, and T. Ersal, “Contingent nonlinear model predic-
tive control for collision imminent steering in uncertain environments,” in 21st In-
ternational Federation of Automatic Control World Congress, p. accepted, IFAC,
2020.

[127] J. Wurts, J. L. Stein, and T. Ersal, “Collision imminent steering at high speed
using nonlinear model predictive control,” Transactions on Vehicle Technology,
accepted, 2018.

[128] J. Wurts, J. L. Stein, and T. Ersal, “Collision imminent steering in curved
roads using one-level nonlinear model predictive control,” Transactions on Vehi-
cle Technology, under review, 2020.

[129] J. Wurts, J. L. Stein, and T. Ersal, “Design for real-time nonlinear model pre-
dictive control with application to collision imminent steering,” Transactions on
Control Systems Technology, under review, 2020.

[130] J. L. Stein, T. Ersal, and J. Wurts, “Collision imminent steering control systems
and methods,” Nov. 7 2019. US Patent App. 15/971,318.

136

[131] J. L. Stein, T. Ersal, and J. Wurts, “Lane change maneuvers with minimized tire
slip.” US Patent App. 16/452,936.

[132] M. Steele and R. B. Gillespie, “Shared control between human and machine:
Using a haptic steering wheel to aid in land vehicle guidance,” in Proceedings of
the human factors and ergonomics society annual meeting, vol. 45, pp. 1671–1675,
SAGE Publications Sage CA: Los Angeles, CA, 2001.

[133] P. Griffiths and R. B. Gillespie, “Shared control between human and machine:
Haptic display of automation during manual control of vehicle heading,” in 12th
International Symposium on Haptic Interfaces for Virtual Environment and Tele-
operator Systems, 2004. HAPTICS’04. Proceedings., pp. 358–366, IEEE, 2004.

[134] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust nonlinear
predictive control approach to semiautonomous ground vehicles,” Vehicle System
Dynamics, vol. 52, no. 6, pp. 802–823, 2014.

[135] I. R. Dunning, Advances in robust and adaptive optimization: algorithms, soft-
ware, and insights. PhD thesis, Massachusetts Institute of Technology, 2016.

[136] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggres-
sive driving with model predictive path integral control,” in IEEE International
Conference on Robotics and Automation, pp. 1433–1440, 2016.

[137] Y. Zhou and Y. Tan, “Gpu-based parallel particle swarm optimization,” in 2009
IEEE Congress on Evolutionary Computation, pp. 1493–1500, IEEE, 2009.

[138] “Toyota research institute rolls out p4 automated driving test vehicle at ces,”
Toyota USA Newsroom, Jun 2019.

137

	Title Page
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Literature Review on Automotive Collision Avoidance Controllers
	Literature Review on Computational Cost of Model Predictive Control
	Research Objectives
	Dissertation Organization

	CIS Controller Formulation
	Candidate CIS Environment and Plant Model
	Geometrically Generated Highway Environment
	Host Vehicle Plant Model

	Prediction Model
	Curved Road CIS Fitness and Feasibility Formulation
	Boundary Constraints
	Vehicle Stability: Tire Slip
	Terminal State Constraint
	Vehicle Physical Limits
	Objective Function: Minimum Slip
	KS Function
	 Scaling

	Optimal Control Problem Formulation
	Numeric Simulation of Curved Roads
	Outside Lane Change
	Inside Lane Change
	Outside Double Lane Change

	Straight Road Formulation
	Straight Road Environment
	Minimum Distance Objective Function Formulation
	Outer Lane Boundary Constraint
	Straight Road Stability Criteria
	Minimum Distance Optimization Problem Formulation
	Straight Road Numerical Simulations
	Minimum Distance Performance Versus Maneuver Aggression

	Robustness Analysis and Adaptive Formulation
	Literature Review on Adaptive Automotive Controllers
	Adaptive Controller Design
	Numerical Simulations of Adaptive MPC Controller

	Computational Cost of Nonlinear MPC Controllers
	Computational Cost: Integration Time Step
	Analytic Derivatives of RK4 Explicit Integration
	Trajectory Optimization Structure
	Parallel Hardware: GPU Acceleration through CUDA
	Block Parallel Multiple Shooting
	Thread Parallel Multiple Shooting

	Summary and Outlook
	Dissertation Contributions
	One-level Nonlinear MPC Controller Design
	Window of Feasibility for CIS
	Minimum Slip Controller Formulation
	Adaptive CIS Controller Formulation
	Real-time Controller Performance

	List of Publications
	Conference Presentations
	Journal Publications
	United States Patent and Trademark Submission

	Future Work
	Shared Control Formulation
	Robust Versus Adaptive Controller Formulations
	Parallel Implementation of Nonlinear Numerical Optimizer

	Appendix
	Bibliography

