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ABSTRACT

Given a rational map f : Ĉ → Ĉ of degree d ≥ 2, it follows from work done

in [25] by McMullen and Sullivan that in certain circumstances, the pure mapping

class group PMCG(f) can be identified with a subgroup of the pure mapping class

group of a Riemann surface. We investigate this identification and explore what

types of subgroups of mapping class groups of surfaces arise in this way. We focus

primarily on the case in which PMCG(f) can be viewed as a subgroup of a product

of pure mapping class groups of punctured tori. A specific case of this setting —

namely, when f is a generic quadratic rational map — was explored by Goldberg

and Keen in [15]. The authors proved that for such a choice of f , PMCG(f) is an

infinitely generated subgroup of PMCG(Σ1,2). We prove the analogous statement in

the setting of cubic polynomials, and explicitly write down a collection of generators

of PMCG(f) in terms of point-pushes and a Dehn twist. We then prove a general

result that is independent of the degree of the map. Specifically, we prove that for f

in an open subset of rational maps of degree d, PMCG(f) is an infinitely generated

subgroup of a product of pure mapping class groups of punctured tori.

x



CHAPTER I

Introduction

In this thesis, we provide an account of a link between the topology of certain

parameter spaces that arise in complex dynamics, and the mapping class groups of

certain punctured surfaces.

1.1 A correspondence

This link begins with the association of a 1-dimensional complex surface to a

rational self-map of the Riemann sphere with specific dynamical features. Given a

rational map f : Ĉ→ Ĉ, the grand orbit GO(z) of a point z ∈ Ĉ under f is the union

of all points in Ĉ whose orbit under f eventually intersects a point in the orbit of z.

Under identification of points in the same grand orbit, rational maps with attracting

cycles give rise to quotient tori, and rational maps with parabolic cycles give rise to

quotient spheres. A common theme in the study of complex dynamics concerns the

role of critical points of f — that is, points z ∈ Ĉ with f ′(z) = 0 — in understanding

the dynamics of f . This theme arises in the setting of quotient surfaces as well: these

1



2

quotient surfaces have punctures corresponding to grand orbits of critical points.

For much of this thesis, we will be working with the following definition.

Definition 1.1. A rational map f : Ĉ→ Ĉ is called MCG-generic if

1. f is hyperbolic,

2. f has no acyclic critical points in its super-attracting basins, and

3. f has no critical orbit relations coming from critical points in attracting basins.

When we have a MCG-generic map f , we have a relationship between the mapping

class group of f and the product of mapping class groups of finitely-punctured tori.

Specifically, we can identify MCG(f) with a subgroup of
∏

i MCG(Σ1,ni), where i

indexes the attracting periodic cycles of f and and the number of punctures ni is

equal to the number of grand orbits containing critical points of f in the basin of the

ith attracting cycle. Quotient surfaces, this identification, and all objects in question

are discussed in more detail in Chapters II and III.

The mapping class group of a surface is a well-studied topic of great interest in

geometric group theory1, and a primary goal of this thesis is to leverage results in

this field to say something about the dynamics of rational maps. In particular, we

investigate the question:

Question 1.2. Which subgroups of mapping class groups of surfaces arise from map-

ping class groups of rational maps?

1in the literature, the mapping class group of a surface is sometimes called the modular group, and is often
denoted by Mod(S).
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To help answer this question, we devise the following definition.

Definition 1.3. An element γ of MCG(Σ0,m) or MCG(Σ1,n) is called a dynamical

mapping class (or, a pure dynamical mapping class if working with PMCG(Σi,n)) if

there exists some rational map f so that (the image of) γ is in MCG(f). An element

of MCG(Σ0,m) or MCG(Σ1,n) that is not dynamical mapping classes is called a non-

dynamical mapping class.

1.2 Outline and main results

The outline of the results in this document is as follows. Chapters II through

V give preliminaries and background to complex dynamics, mapping class groups of

surfaces, and a link between the two. In Chapter VI we work out an explicit example

of the link between the mapping class group of a rational map and the mapping class

group of a surface in the setting of quadratic polynomials. This setting serves as

intuition for our first general result, proven in Chapter VII.

Theorem 1.4. For every n > 0, there exists a non-dynamical mapping class in

MCG(Σ1,n).

We then focus on the specific setting of cubic polynomials. In this context, we

prove the following.

Theorem 1.5. The pure mapping class group of a MCG-generic cubic polyno-

mial with a twice-punctured quotient torus is an infinitely generated subgroup of

PMCG(Σ1,2) with generators explicitly given by point pushes and a Dehn twist.
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A specific case of this theorem, for the mapping class group of a perturbation of

the cubic polynomial z 7→ z3, is proven in Chapter IX. The more general statement

is proven in Chapter XII, along with a discussion of a parameter space picture for

cubic polynomials that serves as intuition for a number of proofs in this document.

In Chapter XI, we prove the following general theorem, independent of degree.

Theorem 1.6. Let f be a MCG-generic rational map. If f has an attracting cycle

with at least two critical points in the basin of this cycle, then PMCG(f) is infinitely

generated. Otherwise, PMCG(f) is finitely generated, with generators given by one

Dehn twist for each attracting cycle of f .

Finally, in Chapter XIII, we depart from the case of attracting cycles and quo-

tient tori. We calculate the mapping class group of a bicritical rational map with

a parabolic cycle, and relate this to the mapping class group of its quotient sphere.

Specifically, we prove the following.

Theorem 1.7. The pure mapping class group of a bicritical rational map with a

parabolic cycle, where both critical points are attracted to the cycle with no critical

orbit relations, is an infinitely generated free subgroup of PMCG(Σ0,4) ∼= F2 which is

generated by

• One (based) loop enclosing each orbit relation, and

• One loop enclosing the connectedness locus.

These generators correspond to point-pushes (and squares of point-pushes) around

closed curves in Σ0,4.
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1.3 Notes and references

Much of the work done in establishing the relationship between the mapping class

groups of rational maps and of surfaces was done in [25], and is summarized in

Chapter III.

The exposition and result of the special case of Theorem 1.5 in Chapter IX mirror

work done in [15] on the analogous question in the setting of quadratic rational

maps. Specifically, as in [15], in this setting we construct a homeomorphism between

a parameter space and a dynamical picture, and use the Birman exact sequence

to interpret this homeomorphism in the context of mapping class groups. However,

unlike in [15], the proof of Theorem 1.5 uses the idea of spinning as developed in [32].

This tool is discussed in Chapter VIII.

To prove Theorem 1.5 in generality, we make use of the notion of mapping schemes

as developed in [29].

The notion of spinning arises again in Chapter XI as a way to leverage results

about mapping class groups of surfaces to prove Theorem 1.6. In addition to spinning,

the proof of Theorem 1.6 uses an analysis of the pure torus braid group — this

background can be found in Chapter X.

Finally, the computation of the mapping class group for bicritical rational maps

with a parabolic cycle makes use of the construction of global coordinates for this

space in [27]. We use these results to draw and investigate pictures of a parameter

space that allow us to explicitly calculate a class of dynamical mapping classes of a
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4-times punctured sphere.

1.4 A remark on figures

One of the benefits of complex dynamics in a single variable is that one can draw

many of the spaces and objects being studied. Often these images, in addition to

being beautiful for their own sake, lend significant insight into the correct questions

to ask and the best way to proceed. Embracing this valuable feature of the subject,

in this thesis we include many figures to provide intuition, to illustrate ideas and

methods of proof, and sometimes simply because the images are compelling in and

of themselves. Many of the pictures were drawn using FractalStream (see http:

//pi.math.cornell.edu/~noonan/fstream.html). When more specific detail was

needed, the pictures were created with Python. Scripts for each are available upon

request.



CHAPTER II

Complex dynamics background

This chapter is written to give a gentle introduction and background to complex

dynamics.

In a very general sense, dynamics is the study of long-term behavior. In complex

dynamics, the objects whose long-term behavior is studied are holomorphic self-maps

of a Riemann surface. The class of maps with the most interesting behavior, and

therefore classically those most closely studied, are maps f : Ĉ → Ĉ, where Ĉ is

the Riemann sphere. Such holomorphic self-maps of the Riemann sphere are called

rational maps. The degree of a rational map is the degree of the map as viewed as

topological map on a sphere. Every rational map can be written as a quotient of two

complex polynomials, in which case the degree of the map is exactly the maximum

of the degrees of the two polynomials when written in lowest terms.

Since degree 1 rational maps are Möbius transformations, which have no criti-

cal points and are therefore well-understood, throughout the course of this thesis,

whenever we refer to a rational map will will assume it has degree d ≥ 2.

7
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Figure 2.1: Julia sets for a number of rational maps. The blue region is the Fatou set, and the Julia
set is its boundary.

2.1 Julia and Fatou sets

The notion of long-term behavior in this setting comes from the repeated compo-

sition of a map with itself. Specifically, given a rational map f : Ĉ→ Ĉ, we look at

the sequence

{fn : Ĉ→ Ĉ}n∈N.

To understand this sequence of maps, we define the Fatou and the Julia sets associ-

ated to f , using the definition found in [28]. 1

Definition 2.1. Given a rational map Ĉ→ Ĉ, the Fatou set of f is the union of all

open sets U ⊆ Ĉ so that every sequence of iterates fnj |U contains a locally uniformly

convergent subsequence. The Julia set of f is the complement of the Fatou set.

In the pursuit of understanding the dynamics of a map f , we will often look at the

trajectory of a point p ∈ Ĉ under iteration. In particular, the orbit of p is just the

sequence {fn(p)}n∈N. If f(p) = p, we say p is a fixed point, and if fk(p) = p, with

1For more background on these definitions and associated properties of the sets defined, see [28] Chapter 5.
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k the smallest integer satisfying this property, we say that {p, f(p), . . . , fk−1(p)} is

a periodic cycle of period k.

2.2 Fatou components

Throughout the course of this document, we will make a number of references

to local behavior of certain maps. We highlight here a couple different types of

components of the Fatou set, all of which are associated with a periodic cycle. Given

a map f with a cycle p = {p0, . . . , pk−1} of period k, we define the multiplier of the

cycle to be

λ = (fk)′(pi),

which is the same quantity for each point pi in the cycle, and therefore well-defined.

We consider four cases.

1. If 0 < |λ| < 1, we say p is attracting2.

2. If |λ| = 0, we say p is super-attracting.

3. If |λ| is a root of unity, we say p is parabolic.

4. If |λ| > 1, we say p is repelling.3

Attracting and super-attracting cycles are necessarily in the Fatou set of f , whereas

parabolic and repelling cycles are in the Julia set. Each attracting, super-attracting,

and parabolic cycle has an associated basin Bp, contained in the Fatou set. This basin

2Notice that in this thesis, when we refer to an attracting fixed point, we specifically mean an attracting fixed
point that is not super-attracting.

3In this thesis we will mostly focus on attracting, super-attracting, and parabolic cycles. For more information
on repelling cycles, the reader is referred to [28].
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consists of all points in Ĉ that converge to p under iteration. When the associated

cycle p is understood, we will write B for the basin, suppressing the dependence on

p. In each of the attracting, super-attracting, and parabolic cases, the behavior of

f |Bp under iteration can be understood via a local model: more detail is given in

Chapters V and XIII.

2.3 Conjugacy

Given that we are studying the long-term behavior of maps, we often want to think

of two maps as being “the same” if their long-term behavior is the same. Specifically,

suppose we have some invertible map ψ : Ĉ→ Ĉ. We say that f is conjugate to g if

f = ψ−1 ◦ g ◦ ψ.

Notice that if this is the case, we also have

fn = ψ−1 ◦ gn ◦ ψ.

In particular, conjugation takes orbits of one map to orbits of the other, which pro-

vides a notion of dynamical equivalence. We will consider three types of conjugacy

depending on the regularity of the conjugating map in question. If ψ is a homeo-

morphism, we say the f and g are topologically conjugate. If ψ is quasiconformal, we

say f and g are quasiconformally conjugate. Finally, if ψ is a biholomorphic map,

we say that f and g are conformally conjugate. In this last case, notice that ψ is

necessarily a Möbius transformation and f and g are holomorphically equivalent. In
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particular, the Julia and Fatou sets of f and g differ only by a holomorphic change

of coordinates.

Throughout the course of this thesis, we will often be restricting ourselves to

looking at polynomial maps. Polynomial maps viewed as maps on the Riemann

sphere have a fully ramified, super-attracting fixed point at∞. In this setting, given

a polynomial f , we define the filled Julia set of f as the set of all points in Ĉ whose

orbits remain bounded under iteration. We have that Jf = ∂Kf .

2.4 Parameter spaces

Given the notion of conformal equivalence, a natural question is to understand and

classify the dynamics of all maps of, say, a given degree. The most well-understood

example of this is in the family of quadratic polynomials. A quick computation shows

that every quadratic polynomial is uniquely conjugate via an affine map (that is, a

conformal map of Ĉ that fixes the distinguished point ∞) to a polynomial of the

form

fc(z) = z2 + c,

where c ∈ C. In other words, the moduli space of quadratic polynomials is isomorphic

to C: given two polynomials z 7→ z2 + c1 and z 7→ z2 + c2, the polynomials are

conformally conjugate if and only if c1 = c2. In the early 1900s, Pierre Fatou and

Gaston Julia proved that there is a dichotomy: either the filled Julia set of a quadratic

polynomial is connected, or it is a Cantor set. This partitions the parameter space
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Figure 2.2: The Mandelbrot set, along with filled Julia sets for some parameters

into the connectedness locus M, called the Mandelbrot set, given by

M = {c ∈ C : Kc is connected},

and its complement C \M, the Cantor locus.

The images in Figure 2.1 are examples of dynamical pictures — that is, each

picture is associated with a single map f and every point in the image is colored based

on its long-term behavior under iteration of f . On the other hand, the Mandelbrot

set in Figure 2.2 is an example of a picture of a parameter space – each point in this

space represents a quadratic polynomial, and the colors are chosen to distinguish

maps with different dynamical properties. Throughout the rest of this document, we

will have both dynamical and parameter pictures, and we will often work to draw
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parallels between the two. When possible, in this thesis we will draw dynamical

space pictures in blue and parameter space pictures in orange to distinguish the two.

In the case of quadratic polynomials, the dichotomy that gave rise to the definition

of M can be characterized entirely in terms of critical points. The filled Julia set

of a quadratic polynomial fc is connected if and only if z0 = 0 (the unique critical

point of fc in C) has bounded orbit. From this, we have

M = {c ∈ C : {fnc (0)}n∈N is bounded.}

Remark 2.2. As a side note, this equivalent formulation is how all the images of the

Mandelbrot set in this document are generated. It is much easier for a computer to

check whether the orbit {fnc (0)} escapes to ∞ as opposed to checking a topological

property of some set.



CHAPTER III

Complex dynamics and geometric group theory: a link

The local dynamics of certain large classes of rational maps give rise to certain

quotient surfaces. These surfaces will form the basis of most of the analysis in this

thesis. We describe these surfaces and how they arise, and use them as motivation

to define mapping class groups of both surfaces and maps, and to make connections

between the two.

Throughout, we let f : Ĉ→ Ĉ denote a rational map of degree d ≥ 2.

3.1 Quotient surfaces

As described in [25], the map f decomposes the Riemann sphere into a disjoint

union

Ĉ = Ĵ t Ωdis t Ωfol

where Ĵ is the union of the Julia set of f and the grand orbits of all of its periodic

points and critical points, Ωdis is the union of all attracting and parabolic basins

(minus Ĵ), and Ωfol is the union of all super-attracting basins, Siegel disks, and

14
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Herman rings1 (minus Ĵ). Under this subdivision, f is a covering map on Ωdis.

Within Ωdis ∪ Ωfol, we can define an equivalence relation that identifies points in

the same grand orbit under f . That is, z ∼ f(z) for all z ∈ Ωdis ∪ Ωfol. Then Ωdis

is the set where the equivalence relation is discrete, and Ωfol is the set where the

equivalence relation is indiscrete and foliates the set.

We will mod out by the dynamics of f (that is, take the quotient associated with

this equivalence relation) on Ωdis. The space Ωdis/f is a disjoint union of punctured

tori and punctured spheres. Here, the tori come from the basins of attracting periodic

cycles of f , the spheres from the basins of parabolic periodic cycles of f , and the

punctures correspond to the grand orbits of the critical points of f .

Definition 3.1. The Riemann surface Ωdis/f is called the quotient surface associated

to f .

Often we will mark a single attracting (respectively, parabolic) periodic cycle

and consider the connected component of Ωdis/f coming from the basin B of that

periodic cycle. This is a torus (respectively, sphere) with finitely many punctures,

each corresponding to the grand orbit of a critical point of f in B. When the choice

of cycle is understood, we will often refer to this Riemann surface as the quotient

torus (respectively, quotient sphere). In this case, we denote the quotient surface as

Tf or S2
f respectively, and let B∗ = Ωdis ∩ B.

In this setting, we denote the covering map coming from the restriction of the

1Siegel disks and Herman rings are two other types of Fatou components. They will not be discussed in this
thesis. For more information, the reader is referred to [28], specifically Chapters 11 and 15.
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quotient map on Ωdis/f by either Φf : B∗ → Tf in the case of a quotient torus, or

Af : B∗ → S2
f in the case of a quotient sphere.

3.2 Teichmüller space, moduli space, and mapping class groups

We will be discussing the relationship between the mapping class group of a

rational map and that of a surface. We define both notions here.

For a 1-dimensional complex manifold X (potentially disconnected, and poten-

tially with punctures), recall that Teich(X) consists of equivalence classes of pairs

(ϕ, Y ) where Y is a complex manifold and ϕ : X → Y is a quasiconformal homeo-

morphism2. Two elements (ϕ1, Y1) and (ϕ2, Y2) are equivalent in Teich(X) if we have

a diagram

X
ϕ1

~~

ϕ2

  
Y1 α

// Y2

where α : Y1 → Y2 is conformal and the diagram commutes up to isotopy.

For a rational map f : Ĉ → Ĉ, Teich(f) consists of equivalence classes of pairs

(h, g) where h : Ĉ → Ĉ is quasiconformal, g is a rational map, and h−1 ◦ f ◦ h = g.

Similarly to the classical theory, (h1, g1) and (h2, g2) are equivalent if we have a

2This definition, as well as those that follow, also make sense for a oriented topological surfaces. In the setting
of topological surfaces, the quasiconformal homeomorphisms in these definitions are replaced by homeomorphisms
or diffeomorphisms. This agrees with our definitions: for X,Y complex manifolds with no boundary components, a
homeomorphism φ : X → Y taking punctures to punctures can be promoted to a quasiconformal representative. For
more details, see, for example, [14] or [24].
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diagram

f
ch1

��

ch2

��
g1 M

// g2

where ch denotes conjugation by h, M is a Möbius transformation, and the diagram

commutes up to isotopy through quasiconformal maps that conjugate f to some

rational map.

We have a similar parallel between the mapping class group of a surface and

the mapping class group of a rational map. In particular, for such a 1-dimensional

complex surface X, let QC(X) denote the space of quasiconformal homeomorphisms

ψ : X → X. We define

MCG(X) = QC(X)/isotopy.

Example 3.2. The Riemann sphere Ĉ is trivial. To see this, note that any homeo-

morphism ϕ of the sphere has a representative in its isotopy class that fixes a point

p. On C ∼= Ĉ \ {p}, we can then take the straight-line isotopy between ϕ and the

identity. For non-trivial examples of mapping class groups, see Chapter IV.

Similarly, for f a rational map, let QC(f) denote the space of quasiconformal

homeomorphisms h : Ĉ→ Ĉ so that h−1 ◦ f ◦ h = f . Then

MCG(f) = QC(f)/isotopy.

The groups MCG(X) and MCG(f) act on Teich(X) and Teich(f) respectively:
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For σ ∈ MCG(X), choose a representative ψ ∈ QC(X) of h. Then

ψ · (ϕ, Y ) = (ϕ ◦ ψ−1, Y ).

For σ ∈ MCG(f), choose a representative h ∈ QC(f). Then

h · (h̃, g) = (h̃ ◦ h−1, g).

We use these actions to define the moduli space of a complex surface and of a

rational map. In particular,

M(X) = Teich(X)/MCG(X)

and

M(f) = Teich(f)/MCG(f).

We think ofM(X) as the space of surfaces homeomorphic to X up to biholomor-

phism. We think ofM(f) as the space of rational maps quasiconformally conjugate

to f up to conformal conjugacy.

3.3 Pure mapping class groups and moduli spaces

Throughout the course of this thesis, we will primarily refer to the pure mapping

class group or pure moduli space of a map or a surface. In the setting of a rational

map f of degree d, let Pf denote the set of 2d − 2 critical points of f (counted

with multiplicity), and let X denote a complex surface with some punctures. No-

tice that in the definitions of the mapping class group and moduli space above, all
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maps in question must take critical points of f/punctures of X to critical points

of f/punctures of X set-wise. These definitions can be modified to give definitions

for PMCG(X), PMCG(f), M∗(X) and M∗(f), where all the notions are the same

except that we require all maps in question to preserve PX or Pf pointwise rel isotopy.

Let Sn denote the permutation group on n elements. If X has n punctures or

|Pf | = n, then Sn acts on MCG(X) or MCG(f) respectively by permuting the

punctures or permuting the points Pf , respectively. This gives rise to the following

analogous relationships between the mapping class group and pure mapping class

group of a surface, and the mapping class group and the pure mapping class group

of a rational map via the following exact sequences:

1 // PMCG(X) //MCG(X) // Sn // 1

and

1 // PMCG(f) //MCG(f) // Sn // 1 .

Remark 3.3. Given a holomorphic map, we can define the Teichmüller space, moduli

space, and mapping class group of a map on a domain different from the Riemann

sphere. In this case we will write, for example, PMCG(U, f) or Teich(U, f) where

f : U → U is holomorphic and all quasiconformal maps in the definitions are also

defined as maps from U to U .

Based on the similarity of the given definitions, it may not be surprising that

there is a relationship between the mapping class groups of rational maps and the
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mapping class groups of Riemann surfaces. To best exploit this relationship, we

restrict ourselves to looking at certain classes of rational maps, described in Definition

3.5.

Definition 3.4. A critical orbit relation of a rational map f is a relation of one of

the two following forms.

1. There exist critical points c1 6= c2 of f and n,m ∈ N so that fn(c1) = fm(c2).

2. There exists a critical point c of f and n,m ∈ N with n 6= m so that fn(c) =

fm(c).

We recall here the definition of an MCG-generic rational map as defined in the

introduction, as this is the setting in which we will be working for much of the

remainder of this thesis.

Definition 3.5. A rational map f is called MCG-generic if

1. f is hyperbolic,

2. f has no acyclic critical points in its super-attracting basins, and

3. f has no critical orbit relations coming from critical points in attracting basins.

Under these conditions, we can make a strong statement about the relationship

between MCG(f) and the mapping class group of a certain Riemann surface.

Proposition 3.6. If f is MCG-generic, then there is an inclusion MCG(f) ↪→

MCG(Ωdis/f).
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Proof. From [25], we know that there is a natural isomorphism

Teich(f) ∼= M1(J, f)× Teich(Ωfol, f)× Teich(Ωdis/f),

where M1(J, f) (the invariant Beltrami differentials on the Julia set of f) is trivial

due to condition 1. of 3.5. Since f has no acyclic critical points in super-attracting

basins (by condition 2. of 3.5) and no Siegel disks or Herman rings (by condition 1.

of 3.5), Teich(Ωfol, f) is trivial as well. Therefore, we have a natural isomorphism

Teich(f) ∼= Teich(Ωdis/f).

The actions of MCG(f) and MCG(Ωdis/f) on Teich(f) and Teich(Ωdis/f) are prop-

erly discontinuous, and so we have a diagram

Teich(f)

yy &&
M(f) //M(Ωdis/f)

where the maps from Teich(f) are covering maps. This gives a covering mapM(f)→

M(Ωdis/f), which in turn induces an injection

MCG(f) ↪→ MCG(Ωdis/f).

Furthermore, the same statement holds if we don’t allow for permutations of

punctures or marked points. Specifically, we have the following.
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Corollary 3.7. If f is MCG-generic, then there is an inclusion PMCG(f) ↪→

PMCG(Ωdis/f).

Throughout this thesis, we will use this identification to view MCG(f) as a sub-

group of MCG(Ωdis/f) and PMCG(f) as a subgroup of PMCG(Ωdis/f).

Finally, notice that Proposition 3.6 holds true for a larger class of rational maps

— in particular, in the proof we needed only conditions 1 and 2 of Definition 3.5.

As mentioned in the proof of 3.6, for hyperbolic rational maps, Ωdis/f is a disjoint

union of punctured tori. The benefit of the inclusion of condition 3 is that the grand

orbits of critical points in Ωdis are distinct, and so the number of punctures on the

these tori correspond with the number of critical points in Ωdis. Specifically, if f is

MCG-generic, we have that

(3.1) MCG(Ωdis/f) ∼=
∏
i

MCG(Σ1,ni)

where ni is the number of critical points in the ith attracting basin of f . That is,

understanding the mapping class groups of punctured tori is key in understanding

the mapping class groups of MCG-generic maps.



CHAPTER IV

Mapping class groups of surfaces

The main results of this thesis involve understanding mapping class groups of

rational maps in relation to the much more well-understood and studied mapping

class groups of surfaces. In this chapter, we introduce some fundamentals of mapping

class groups of surfaces that will be referenced and used throughout the rest of this

thesis. The topics and examples introduced have been picked and pruned to tie into

the narrative of rational maps — for a much more complete overview of the rich

study of mapping class groups, the reader is referred to [14].

4.1 Dehn twists

We first introduce a general construction of a type of nontrivial mapping class

element that can be defined locally around a curve on any underlying surface. It

turns out that these types of elements, called Dehn twists, play a huge role in the

study of mapping class groups.

23
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We begin with an annulus A = S1 × [0, 1]. We define a twist map T : A→ A via

T (s, t) = (s+ 2πt, t).

Let X be a Riemann surface, and let γ be a simple closed curve in X. Choose

some annular neighborhood N of γ and a homeomorphism ψ : A → N . We define

the Dehn twist about γ to be Tγ : X → X given by

Tγ =


id on X \N

ψ ◦ T ◦ ψ−1 on N

Notice that the twist map T fixes the boundary of A pointwise, and so the map

Tγ is continuous. Furthermore, while Tγ depends on the choice of neighborhood N

and homeomorphism ψ, the isotopy class of Tγ depends only on the curve γ, and so

Tγ ∈ MCG(X).

In fact, as long at γ is not trivial or peripheral (that is, as long as γ is not

nullhomotopic or homotopic to a marked point in X), Tγ is a nontrivial element of

the mapping class group (see, for example, [14], Proposition 3.1).

4.2 A first example: MCG(T)

The mapping class group of a torus can be explicitly calculated. This calculation

will tie in to a number of results about mapping class groups of rational maps.

Proposition 4.1. The mapping class group of the torus is

MCG(T) ∼= SL2(Z).
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Proof. The isomorphism comes from the action of a homeomorphism of T on homol-

ogy. Specifically, let σ : T → T be an orientation-preserving homeomorphism. This

induces an automorphism σ∗ on H1(T;Z) which doesn’t depend on the homotopy

class of the original map σ (so in particular, we can promote σ to a quasiconformal

homeomorphism in the same class). We consider the map from MCG(T) to GL2(Z)

given by

σ 7→ σ∗.

View the torus T as the product S1 × S1, and let {a, b} be the basis of H1(T;Z)

given by a = [S1 × 1] and b = [1× S2]. Then we have that for a homeomorphism σ,

we get that the matrix associated to σ∗ is given by

Mσ =

i(σ∗(a), b) i(σ∗(b), b)

i(a, σ∗(a)) i(a, σ∗(b))


where i denotes the algebraic intersection number. We can then calculate

det(Mσ) = i(σ∗(a), b)i(a, σ∗(b))− i(σ∗(b), b)i(a, σ∗(a))

= i(σ∗(b), b)i(σ∗(a), a)− i(σ∗(a), b)i(σ∗(b)− a)

= i(σ∗(a), σ∗(b))

= i(a, b)

= 1

since f is orientation-preserving. Therefore, the map σ 7→ σ∗ does in fact give a map

MCG(T)→ SL2(Z).



26

Figure 4.1: A picture proof (taken from [14]) that any homeomorphism of the disk that fixes the
boundary is homotopic to the identity. Each horizontal slice in the image illustrates a slice of the
homotopy. This is known as the Alexander trick.

To show that this map is an isomorphism, we show that it is both injective and

surjective. Surjectivity follows from the fact that an element M ∈ SL2(Z) induces

a linear map on R2 that preserves Z2, and so M descends to a homeomorphism of

T ∼= R2/Z2 whose image under our homomorphism is exactly M .

Let σ be a representative homeomorphism so that Mσ = id ∈ SL2(Z). Consider

closed curves α, β ∈ π1(T2) ∼= Z2 so that α = (1, 0) and β = (0, 1) in Z2 under this

isomorphism. Since σ∗ = id, we must have that σ|α and σ|β are both homotopic to

the identity as maps. In particular, we can modify σ via homotopy to fix α and β

pointwise. Now imaging cutting T along α∪β — this yields a topological disk. Since

σ fixes α and β, σ induces a homeomorphism of this disk that fixes the boundary

pointwise. However, every homeomorphism of the disk that fixes the boundary is

necessarily homotopic to the identity (see Figure 4.1). Therefore, σ is homotopic to

the identity, and our homomorphism is an isomorphism.

In fact, the exact same proof goes through if we consider a once marked/punctured
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torus instead.

Proposition 4.2. The mapping class group of the once punctured torus is

MCG(Σ1,1) ∼= SL2(Z).

In both cases, we can take as generators the elements

A =

1 −1

0 1

 and B =

1 0

1 1


in SL2(Z). These correspond to Dehn twists around the (1, 0)-curve and (0, 1)-curve

in T as in the proof of Proposition 4.1.

4.3 Point pushes

We will define the notion of a point push, another type of element of the mapping

class group of a surface.

For a Riemann surface X, let x̂ ∈ X be a marked point, and let γ be a simple

closed curve in X, based at x̂. Make an identification of an annular neighborhood N

of γ with the annulus A = S1× [0, 2] so that the point x̂ corresponds to (0, 1) and γ

corresponds to S1 × {1} in A. We define an isotopy H : A× [0, 1]→ A by

H((s, r), t) =


(s+ 2πrt, r) 0 ≤ r ≤ 1

(s+ 2π(2− r)t, r) 1 ≤ r ≤ 2.

Notice that H((s, 0), t) = (s, 0) and H((s, 2), t) = (s, 2), and so H extends to an

isotopy H : X × [0, 1]→ X by H(x, t) = x for all x ∈ X \N . We define

Push(x̂, γ) := H(x, 1).
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γ

ab

γ

ab

Figure 4.2: An illustration of the image of the red curve under the point pushing map around γ

We have that H(x̂, 1) = x̂, and so Push(x̂, γ) is a homeomorphism of X fixing the

marked point x̂. The name comes from the fact that the isotopy H pushes the marked

point x̂ around the curve γ (see Figure 4.2). As in the case of the Dehn twist, while

the homeomorphism depends on the choice of neighborhood N and identification

with A, the isotopy class depends only on the homotopy class of γ.

We can write each point push as a product of two Dehn twists. Specifically, let

a and b denote the isotopy classes of the simple closed curves gotten by pushing γ

off to the left and to the right of x̂ (via the standard orientation on A = S1× [0, 2]).

Then

Push(x̂, γ) = TaT
−1
b .

4.4 The Birman exact sequence

let X be any (possibly punctured) oriented topological surface, and let (X, x̂)

denote the surface X with marked point x̂ ∈ X. It turns out point-pushing can be
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viewed as a well-defined map

Push : π1(X, x̂)→ MCG(X, x̂),

and the image of this map has a simple characterization. Specifically, we get a

homomorphism

Forget : MCG(X, x̂)→ MCG(X)

that comes from forgetting the marked point x̂. We have the following:

Theorem 4.3 (Birman exact sequence). The following sequence is exact:

1 // π1(X, x̂) Push //MCG(X, x̂)
Forget //MCG(X) // 1

This result, originally proven in [2], can be shown via the long exact sequence of

homotopy groups associated to the fiber bundle

Homeo+(X, x̂) // Homeo+(X)
evalx̂ // X.

For more details, see Theorem 4.6 in [14].

The following fact about point-push elements of the mapping class group will

be used a number of times. It says that the conjugate of a point-push is still a

point-push.1

Lemma 4.4. For any σ ∈ MCG(X, x̂) and any γ ∈ π1(X, x̂), we have that

σ Push(x̂, γ)σ−1 = Push(x̂, σ∗(γ)).

1In the following Lemma and the remainder of this thesis, to simplify notation, if γ1 and γ2 are two mapping
classes, we write γ1γ2 := γ2 ◦ γ1. Notice that under this notation, mapping class elements are applied left-to-right.



CHAPTER V

Attracting basins and quotient tori

In this chapter, we give some background of the local dynamics in an attracting

basin of a map. Many of the definitions and results follow [28], specifically Chapter

8.

5.1 Linearizing coordinates

If f has an attracting cycle a of multiplier λ with attracting basin B, we will use

two maps, φ and κ on B to track the convergence of points to the attracting cycle.

The map φ = φf : B → C∗ is the usual linearizing coordinate on B. That is,

we can find biholomorphic φ in a neighborhood of the attracting cycle satisfying the

functional equation

(5.1) φ ◦ f = λ · φ.

This map can be extended radially on C∗ via analytic continuation until we hit

some critical point c0 ∈ B of f . If a single critical point is hit in this way (as opposed

to encountering two or more at the same radius) will be called the preferred critical

30
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point. Normalizing so that φ(a) = 0 and φ(c0) = −1 determines φ uniquely, and

then φ can be extended to all of B to satisfying equation 5.1 as above.

This process implicitly gives the following classical result. For more detail see, for

example, Lemma 8.5 in [28].

Lemma 5.1. For every attracting cycle a of f , there is at least one critical point of

f attracted to a.

In the context of quotient surface, this translates to the following.

Corollary 5.2. If f has a quotient torus, this torus has at least one puncture.

Notice here that under this procedure, the quotient torus of a map comes equipped

with some extra dynamical information. In particular, the quotient torus Tf has

a distinguished homology class. This class comes from a simple counter-clockwise

closed curve in B that is a circle in the linearizing coordinates and surrounds the

attractor (see Figure 5.1). We refer to any representative of this curve on Tf as

the distinguished curve on Tf . Such a curve will play a large role in describing the

mapping class groups of different maps.

We also define here the filled potential function (as introduced in [31]), closely

related to the linearizing coordinate φ, to be

κ̂ : B → [−∞,∞)

given by

κ̂(z) =
log |φ(z)|

log 1
|λ|

.
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Figure 5.1: A representative of the distinguished curve on a quotient torus

Notice that

κ̂(f(z)) = κ̂(z)− 1.

We define, for s ∈ R, U(s) to be the connected component of κ̂−1([−∞, s)) containing

the attracting cycle a and L(s) to be the connected component of κ̂−1([−∞, s])

containing the attracting cycle.

Then we have that U(s) is always a Jordan domain with U(s) ⊆ L(s). Further-

more, L(s) = U(s) when there is no critical point of φ (or, equivalently, no backwards

image of a critical point of f) in ∂U(s). Otherwise, L(s) is a multiply pinched disk

— that is, a closed topological disk with a finite number of pairs of boundary points

identified (see Figure 5.2).

We define

κ(z) = inf{s : z ∈ U(s)}.

The following fact about κ will be useful later.

Lemma 5.3. For any s ∈ R, κ is locally constant on int(L(s) \ U(s)).
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Figure 5.2: An example of the difference between U and L. The image shows some level curves of
|φ|. If φ is normalized so that φ(c0) = −1, then the (open) grey region on the left is U(0) and the
(closed) grey region on the right is L(0).

Proof. Notice first that this holds vacuously for most s; in particular, if L(s) = U(s).

On the other hand, if we choose s so that there exists some critical point of φ,

then L(s) \ U(s) is a union of disks and pinched disks. By definition of κ, for all

z ∈ L(s) \ U(s) we have κ(z) = s.

We will use both φ and κ to compare relative positions of critical points in B. In

some very general sense, we think of φ(z) as measuring how long z takes to converge

to the attracting cycle under f , and κ(z) as measuring how far z is from the cycle

when extending φ radially.



CHAPTER VI

Quadratic polynomials

As we saw in Chapter V, if f has a quotient torus, this torus must have at least one

puncture. We provide an explicit calculation in the simplest case where the quotient

torus has exactly one puncture. We first work through the example of the mapping

class group of a quadratic polynomial with an attracting fixed point. This setting is

especially nice, both because we can explicitly see the mapping class elements that

we obtain, and also because this example exhibits some behavior that is important

for understanding the general case.

Notice that the space of quadratic polynomials with an attracting fixed point is

given by exactly those polynomials corresponding to parameters in the main cardioid

of the Mandelbrot set. However, the parameter c = 0, corresponding to the map

z 7→ z2 has a super-attracting fixed point. Here, Ωdis
f is empty and f has no quotient

torus. In other words, if f is a quadratic polynomial with an attracting fixed point,

f is not globally quasiconformally conjugate to z 7→ z2. Therefore, we want to work

in the punctured main cardioid. Denote by C∗ the punctured main cardioid C \ {0}.
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Proposition 6.1. Let fc : z 7→ z2 + c where c ∈ C∗. Let a be the attracting fixed

point of f and U a linearizing neighborhood of a. Then

Tc = U/fc ∼= C/Λ

where Λ = 2πiZ⊕ log(λ)Z with λ the multiplier of the fixed point.

Proof. Since c 6= 0, the fixed point a of fc is attracting with multiplier

λc := f ′(0) = 1−
√

1− 4c.

For each such c ∈ C∗, the attracting fixed point attracts the critical point z = 0 by

Lemma 5.1.

Since U is linearizing neighborhood of f around this fixed point, there is some

disk Dr with φf : U → Dr where φf (a) = 0. Let λ = f ′(a), and let

Mλ : z 7→ λz

denote the map given by multiplication by λ. Then f is conformally conjugate to

Mλ on U .

We have the identification z ∼ f(z) under the quotient map Φf , and since φf

conjugates f to Mλ,

Tc ∼= Dr/Mλ.

That is, we can consider the quotient of the disk Dr by the equivalence z ∼ λz. Let

Aλ denote the annulus in Dr bounded by concentric circles of radius 1 and |λ|. Then

Aλ is a fundamental domain for the quotient z ∼ λz. Notice also that, taking a path
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γ from 1 to λ in Aλ, there is a unique branch of the log function defined along this

curve satisfying log(1) = 0. Under this branch, the exponential map takes the region

B = [0, log λ)× [0, 2π)

conformally onto Ar0 . Therefore, Tc is conformally isomorphic to C/Λ with Λ =

2πiZ⊕ (log λc)Z (see Figure 6.1).

Figure 6.1: The identification torus coming from a map with an attracting fixed point

Now consider the quotient torus Ωdis/fc. This torus is exactly Tc punctured at

the image of the critical point 0 of fc under the quotient map. By Proposition 4.2,

we have that MCG(f) ↪→ MCG(Σ1,1) ∼= SL2(Z).

To make the connection between MCG(fc) and MCG(Σ1,1), we use the following.

Proposition 6.2. Any two quadratic polynomials in the same hyperbolic component

of the Mandelbrot set are quasiconformally conjugate.

For a discussion of this result, including a proof, see, for example, section 4.1

in [5].

This gives the following.
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Corollary 6.3. For fc ∈ C \ {0}, we have that

M(fc) = C \ {0}

and

MCG(fc) = π1(C \ {0}, fc) ∼= Z

.

Proof. Certainly fc cannot be quasiconformally conjugate to any map without an

attracting fixed point, and so by Proposition 6.2, M(fc) = C \ {0}. But therefore,

MCG(fc) ∼= π1(M(fc), fc) ∼= Z.

Choosing a base point fc0 ∈ C \ {0}, we then see that

MCG(fc0) ∼= Z ↪→ SL2(Z) ∼= MCG(Tc0).

In particular, notice that not every element of the mapping class group of a punctured

torus is induced via conjugacies of quadratic polynomials. Using Proposition 6.1, we

can calculate explicitly what generator of Z ↪→ SL2(Z) we get from the quadratic

parameter space.

Proposition 6.4. For f a quadratic polynomial with an attracting cycle,

PMCG(f) = MCG(f) ∼= Z

with generator coming from a Dehn twist around the distinguished curve.
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Proof. First suppose f has an attracting fixed point. Since there is only a single

critical point in the basin of this attracting fixed point, fixing the punctures as a set

and fixing the punctures pointwise are equivalent, and so MCG(f) = PMCG(f).

Fix a base point fc0 ∈ C \ {0}, so that MCG(fc0) ∼= Z with a generator coming

from the induced mapping class h obtained from moving around a loop in C around

0. To calculate which mapping class we get as a generator, let us fix our base point

c0 such that λc0 = 0.5, so that Tc0 comes from the lattice 2πiZ ⊕ log(0.5)Z. Now,

take the loop γ : [0, 1] → C such that the multiplier λγ(t) of the unique attracting

fixed point at each γ(t) is 0.5e2πit. Note that γ is a simple closed curve in the c-plane

winding once around 0, and therefore [γ] generates π1(C \ {0}, c0) and induces h.

By Proposition 4.2, MCG(Tc0) ∼= SL2(Z). Let β be the distinguished curve on

Tc0 , and choose simple closed curves α in Tc0 as below, so that Dehn twists Tα and

Tβ around α and β, respectively, get sent to

A =

1 −1

0 1

 and B =

1 0

1 1

 ,

generators of MCG(Tc0) (see Figure 6.2). Notice that here, our choice of α can also

be described explicitly from a dynamical standpoint — specifically, α is the image

of a curve in B with arg(φ(z)) constant.

To determine which element of the mapping class group we get from h, we look

at what happens to α and β under this map. As t ranges from 0 to 1, we see that

log λγ(t) = log γ + 2πit. On the other hand, clearly β is fixed under h. Therefore,

under the identification of MCG(Σ1,1) with SL2(Z), the map h corresponds to the
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map fixing

0

1

 and sending

1

0

 to

(
11

)
. But this is exactly B, and therefore

h = Tβ.

The proof for when f has an attracting cycle that is not a fixed point goes through

in the same way, by looking at a loop in the corresponding hyperbolic component

around the center.

β

α

Tβ(β)

Tβ(α)

Figure 6.2: Two views of the Dehn twist Tβ



CHAPTER VII

Non-dynamical mapping classes

A natural question that arises is whether we can find a loop in some other pa-

rameter space whose induced mapping class with the above notation is Tα. Towards

this end, we first develop a necessary condition for an element σ ∈ MCG(Σ1,k) to be

a dynamical mapping class. This condition will be useful in Chapter XI as well.

7.1 Factoring the quotient map

Often in this thesis, when looking at families of rational maps, we will want to

mark the critical points of the maps. To this end, we first define the space of critically

marked maps of degree d, following the definition given in [26].

Definition 7.1. Let Ratcmd denote the space of critically marked rational maps of

degree d, so that Ratcmd consists of elements (f, c1, . . . , c2d−2) where f ∈ Ratd and

c1, . . . , c2d−2 is an ordered list of the critical points of f .

Let (f, c1, . . . , c2d−2) ∈ Ratcmd be a critically marked MCG-generic map of degree

d ≥ 2 with a marked quotient torus. Without loss of generality, assume the marked

40
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cycle is a fixed point a with basin B, and let λ denote the multiplier of a. Choosing a

different marking if necessary, let c1, . . . , ck denote the critical points attracted to a,

so that the quotient torus Tf under the quotient map Φf has k punctures p1, . . . , pk.

Notice that any pure mapping class h ∈ PMCG(f) must fix critical points of f

pointwise.

Let β be the distinguished curve on Tf . We can factor the quotient map Φf

through a space that comes from “unrolling” Tf along β as follows. Consider the

space

L∗ := φf (B∗) ⊆ C∗

where φf is the linearizing map on B. Let Mλ(z) := λz, and Ψλ : L∗ → Tf be the

quotient map coming from identifying grand orbits under Mλ. Then

Φf = Ψλ ◦ φf .

Notice further that while φf (ci) and Ψλ(φf (ci)) are all well-defined (that is, we

can view Φf as a map from all of B), the map Φf is only a covering map on B∗ ⊆ B.

We will often switch between thinking of the images of the critical points of f under

φf and Ψ as either marked points or punctures. When the distinction is important,

we will make it.

First note that h ∈ PMCG(f) induces an isotopy class of homeomorphisms h̃ ∈

PMCG(L∗) that commutes with multiplication by λ via the following diagram.
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...

Φf Ψλ

φf

B∗ L∗

Tf

Figure 7.1: Factoring the quotient map

B h //

f

��

φf

  

B

f

��

φf

~~
C∗ h̃ //

Mλ

��

C∗

Mλ

��
C∗

h̃

// C∗

B
h

//
φf

>>

B
φf

``

The map h̃ is defined in a neighborhood of 0 ∈ C by

h̃ = φf ◦ h ◦ φ−1
f

on a neighborhood where φf is bijective, and then extended to all of L by

h̃(z) = λ−k · h̃(λk · z).



43

In particular, we have that for all critical points ci of f ,

h̃(φf (ci)) = φf (ci)

On the other hand, if ζ ∈ PMCG(Tf ), we can lift ζ to a homeomorphism class

ζ̃ ∈ MCG(L∗) under the covering map Ψλ. This lift will not be unique, but the

different choices of lifts must differ by multiplication by λ. In particular, depending

on the choice of lift, it is not true that ζ̃ ∈ PMCG(L∗), but this failure can be easily

understood (that is, all marked points can be shifted “up” or “down” in L∗). Let

MCGλ(L∗) denote the subgroup of MCG(L∗) made up of classes of maps that send

each marked point z of L∗ to λnz for n ∈ Z

Lemma 7.2. If ζ̃ 6∈ MCGλ(L∗), then ζ is not a dynamical mapping class.

Proof. If ζ were a dynamical mapping class, then we must have ζ̃ = h̃ for some f

and some h ∈ PMCG(f). However, as we saw above, h̃ ∈ MCGλ(L∗).

Now, let A∗ ⊆ Ratcmd be the space of critically marked maps of degree d with a

marked quotient torus (that is, a marked attracting cycle). We have a map

Forget : A∗ →M(Σ1)

which fills in the punctures on the quotient torus. If f ∈ A∗, we get an induced

injection

Forget∗ : PMCG(f)→ MCG(Σ1) ∼= SL2(Z).

We will prove the following general proposition.
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Proposition 7.3. For any f ∈ A∗,

Forget∗(PMCG(f)) ∼= Z

generated by Tβ.

Proof. Let ζ ∈ PMCG(Σ1), and suppose ζ is represented by a matrix Mζ ∈ SL2(Z).

Suppose that ζ ∈ Forget∗(PMCG(f)) for some f . Then there exists some h ∈

PMCG(f) so that Forget∗(h) = ζ. Consider the ramified cover Ψλ : C∗ → Forget(Tf )

and let

p = Ψλ(c1) ∈ F(Tf )

be a marked point corresponding to a critical point c1 of f .

Recall that PMCG(Forget(Tf )) is generated by Dehn twists Tα and Tβ corre-

sponding to matrices A and B in SL2(Z). Let βp be a curve homotopic to β in

Forget(Tf ) that goes through p.

Let

Mζ =

a b

c d

 .

The image ζ(βp) corresponds to

Mζ

0

1

 =

b
d

 .

But now, consider the lift β̃p ∈ C∗ so that Ψλ(β̃p) = βp and so that β̃p goes

through φ(c1). The image ζ̃(β̃p) then necessarily goes through λbφ(ci). In particular,

ζ̃(φ(c1)) = φ(c1) if and only if b = 0.
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So if ζ is a dynamical mapping class, we must have that

Mζ =

a 0

c d

 .

But since Mζ ∈ SL2(Z), we therefore must have that

Mζ =

±1 0

n ±1

 = ±Bn.

Therefore,

Forget∗(PMCG(f)) ↪→ Z.

To finish the proof, we show that the generator B = Tβ is in fact an element

of Forget∗(PMCG(f)). The strategy is as follows: first, we construct an element of

PMCG(f) by quasiconformal deformation of the multiplier of f . This is a standard

procedure, and further details can be found in, for example, [5]. Having done that,

we show that the image of this element in Forget∗(MCG(f)) is exactly Tβ. This is

simply a generalization of Proposition 6.4.

Let

λ(t) = λ exp(2πit)

and let Tλ(t) be the torus corresponding to the lattice 2πiZ⊕ (log λ(t))Z. Here, we

make sure to choose our branch of logarithm so that log λ(t) varies continuously in

t, so that, in particular, λ = λ(0) = λ(1), but log(λ(1)) = 2πi + log(λ(0)). Notice

that Forget(Tf ) = Tλ(0).
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Let qt : Tλ(0) → Tλ(t) be a family of quasiconformal homeomorphisms. For each

qt we define an f -invariant conformal structure on C in a few steps. First, let σ0 be

the standard conformal structure on Ĉ. We define a conformal structure σ∗t on B by

pulling back the dilatation of qt to all of B under the map Ψλ. We set σt = σ∗t on B,

and σ = σ0 on C \ B. By the Measurable Riemann Mapping Theorem, there exists

a quasiconformal map

ht : C→ C,

unique up to postcomposition with a Möbius transformation, so that ht ◦ f ◦ h−1
t

preserves the standard conformal structure, and is therefore a rational map ft. By

construction, ft has a corresponding attracting fixed point with multiplier λ(t), and

the ft vary holomorphically in t.

Notice further that f1 = f0 = f up to conjugation by a Möbius transformation.

This is the analogue of “moving around the super-attracting puncture” as in the

example of the main cardioid. The class h1 is an element of PMCG(f), and its

image in PMCG(Σ1,1) is exactly the Dehn twist Tβ.

From this, we immediately see that for each n ≥ 1, not every mapping class of

an n-punctured torus can be realized as a mapping class of a rational map. As a

particular example, we get the following corollary.

Corollary 7.4. The element Tα ∈ PMCG(Σ1,1) is not a dynamical mapping class.
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We conclude this chapter by using Proposition 7.3 to prove one component of

Theorem 1.6.

Corollary 7.5. Let f be an MCG-generic rational map, and suppose that every

attracting cycle of f contains exactly one grand orbit containing a critical point in

its associated basin. Then

PMCG(f) ∼= Zk,

where k is the number of attracting cycles of f .

Proof. Let {a1, . . . , ak} denote the attracting cycles of f . By Equation 3.1, we see

that we can view

PMCG(f) ↪→
k∏
j=1

PMCG(Σ1,1) ∼=
k∏
j=1

SL2(Z).

More specifically,

PMCG(f) ∼=
k∏
j=1

PMCG(Baj , f |Baj ) ⊆
k∏
j=1

PMCG(Σ1,1).

For each cycle aj with multiplier λj, we can construct a representative element q1 ∈

PMCG(Baj , f |Baj ) by quasiconformally deforming the multiplier λj inside the basin.

By Proposition 7.3,

PMCG(Baj , f |Baj ) ∼= Forget∗(PMCG(Baj , f |Baj )) ∼= Z

and the result follows.



CHAPTER VIII

Spinning

In the case of a once-punctured torus, we understand the mapping class group

well enough to be able to explicitly calculate dynamical mapping classes. However,

for higher-degree rational maps with quotient tori with more of punctures, we need

more sophisticated tools.

Throughout the paper, we will make use of the technique of deforming a rational

map via spinning, as developed in [32]. We describe the process here.

8.1 Definition of spinning

Fix a rational map (f0, c1, . . . , c2d−2) ∈ Ratcmd with a marked attracting cycle a

with basin B. Let Tf0 denote the quotient torus associated with a, with projection

Φ0 : B∗ → Tf0 .

Choose a critical point c̃ ∈ B of f0, and let c = Φ0(c̃) be its image puncture in T0.

Denote

T#
f0

= Tf0 ∪ {c}.

48
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Choose a simple closed curve γ : [0, 1] → T#
0 passing through c and parametrized

so that γ(0) = γ(1) = c. We will “spin” c around γ. To do so, we modify the

complex structure of T#
0 in an annular neighborhood of γ by a translation, spread

that structure to Ĉ under Φ0, and then apply the Measurable Riemann Mapping

Theorem to obtain a new rational map.

More specifically, choose an annular neighborhood A of γ in T#
f0

with core curve

γ, making A small enough so that it does not contain any punctures on T#
f0

. We

can choose a unique universal cover Ã given by a strip, so that

Ã = {z ∈ C : −2k < =(z) < 2k}

and so that the projection p : Ã → A has p−1(c) = Z and p(R) = γ. We spin the

critical point around γ by defining

h̃t : Ã→ Ã

to interpolate between the identity on ∂Ã and translation to the right by t on the

strip −k ≤ =(z) ≤ k.

As described in [32], h̃t is quasiconformal and descends to a homeomorphism

ht : A→ A.

Furthermore, ht extends to a quasiconformal homeomorphism on T#
f0

, where ht = id

on the complement of A.

We now use the map ht : T#
f0
→ T#

f0
to create a new rational map. In particular,

pull back the dilatation of ht on Tf0 to the basin B under the projection Φ0. Then,
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invoking the Measurable Riemann Mapping Theorem, there exists a quasiconformal

homeomorphism

Ht : Ĉ→ Ĉ

that has the same dilatation. Therefore, the map

(8.1) ft = Ht ◦ f0 ◦H−1
t

preserves the standard structure on Ĉ, and thus ft is a rational map. Furthermore,

Ht is unique up to postcomposition with a Möbius transformation, and different

choices of Ht lead to Möbius conjugate maps ft. Therefore, ft defines a point in

Ratd /PSL2(C). Even more specifically, ft ∈M∗(f0), and so we get a map

σ : R→M∗(f0)

given by

t 7→ ft

as defined above. Then σ(R) ⊆M∗(f0) is some path in pure moduli space.

Definition 8.1. This path σ(R) coming from spinning will be called the spinning

path.

We will often be looking just at the segment σ([0, 1]).

We write

ft = Spinc,t(f0, γ)

to denote the map ft at time t coming from spinning the image of critical point c of

the base map f0 around the curve γ ∈ Tf0 based at Φ0(c).
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Extension to non-simple curves. Notice that in the construction of spinning,

it is important that γ is a simple closed curve on the torus. However, if γ can be

written as a concatenation of simple closed curves γ0, . . . , γm−1, we may extend the

definition of Spinc,t(f0, γ) via spinning around each of the γj in turn. That is, we

define

Spinc,t(f0, γ) := Spinc,t−k(f0, γk)

for the appropriate value of k ∈ {0, . . . ,m− 1} so that 0 ≤ mt− k ≤ 1.

Spinning and mapping classes. In the following work, we will use spinning to

construct specific mapping classes of punctured tori. To do this, we distinguish

between the map Spin, whose image is a rational map in M∗(f0), and the map S ,

whose image is a quasiconformal homeomorphism. In particular, define

S c(f0,−) : π1(T#
0 , c)→ QC(f0)

so that S c(f0, γ) = H1, where H1 is homeomorphism with

f1 = H1 ◦ f0 ◦H−1
1

as in equation (8.1). This image is not guaranteed to give an element of PMCG(f0) —

in fact, S c(f0, γ) ∈ PMCG(f0) exactly when f1 = f0 inM∗(f0). This is summarized

in the proposition below.

Proposition 8.2. The image S c(f0,−) : π1(T#
f0
, c) → QC(f0) is an element of

PMCG(f0) ↪→ PMCG(Tf0) exactly when the associated spinning path satisfies

σ(1) = σ(0) = f0.
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In this case,

S c(f0, γ) = Push(c, γ) ⊆ PMCG(Tf0).

Proof. If σ(0) = σ(1), the spinning path σ = σ([0, 1]) will be a loop inM∗(f0). That

is,

H1 ◦ f ◦H−1
1 = f

in M∗(f0) and so we get a representative

H1 ∈ PMCG(f0).

On the level of the quotient torus, h1 : T#
f0
→ T#

f0
is exactly the point-push Push(c, γ)

(see figure 8.1).

p p

h̃1

h1

Figure 8.1: Spinning induces a point pushing map

Notice that we can find a spinning path based at f0 that induces any point-push

in PMCG(Σ1,n) by simply pushing c around around a corresponding representative
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curve in π1(T#
f0

). However, we are not necessarily guaranteed to get a dynamical

mapping class in this fashion, since the spinning path inducing this element might

not be a loop in M∗(f0). In other words, we are not guaranteed that the spinning

construction on the chosen curve will result in σ(1) = f0. Much of the remainder of

this document explores the following question.

Question 8.3. For a fixed base map with quotient torus, which point pushes on the

torus yield dynamical mapping classes?

Formulating the question in this way allows us to leverage results about the well-

studied mapping class groups of surfaces to explore the comparatively less well un-

derstood mapping class group of rational maps.

We also remark that the formulation of Question 8.3 does not rely on working in

a space of maps with a fixed degree. In some sense, it is only the local behavior near

the attracting cycle of the map that governs the relationship between the mapping

class group of the map and of the surface. This is what allows us to prove the

statement in Theorem 1.6 for MCG-generic maps of arbitrary degree.

8.2 Spinning spaces

We conclude this chapter with a number of facts about spinning, and associated

notation. Specifically, we build up a space of maps where the dynamics of all but a

single critical point are fixed. For more detail, the reader is referred to [32]. Many

of the results of this paper are built up from dynamical mapping classes that come
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from loops in this space.

As in [32], we will work in the space GRatd, consisting of a cover of all conjugacy

classes of generic critically marked rational maps of degree d (that is, those with

simple critical points), where the locations of the critical points are globally defined

functions. We will focus further on the open subspace of GRatd consisting of maps

with an attracting cycle with at least two critical points attracted to this cycle.

Without loss of generality, for a map f0 in this subspace, we may assume this cycle

is a fixed point, by replacing f0 with a sufficient power of itself. Finally, we can

conjugate the map to normalize so that f0 has a marked attracting fixed point at

0 with marked critical points c1 = 1, c2 = ∞, c3, . . . , cn attracted to 0. For the

remainder of this chapter, we assume that any base map chosen is equipped with

such a marking and normalized accordingly.

Fix now a base map f0, equipped with a marking. We further impose the condition

that c1, . . . , cn−1 are attracted to 0 with no critical orbit relations. We will build up a

submanifold of GRatd containing f0 in which the dynamics of c1, . . . , cn−1 are fixed,

but the dynamics of cn is allowed to vary. We have a map Λ : GRat→ C given by

Λ(f) = f ′(0)

that sends each map to its multiplier at 0. We define Y (f0) to be the connected

component of Λ−1(Λ(f)) that contains f0.

Lemma 8.4 (Corollary 2.1, [32]). The space Y (f0) is a closed submanifold of GRatd

of dimension 2d− 2− n.
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We have another map Φ : GRatd → Cn−1 given in terms of the linearizing coor-

dinate of the map. Specifically, for f ∈ GRatd, we can normalize φf , multiplying by

a scalar so that φf (0) = 0 and φf (c1) = −1. With this constraint, the map φf is

unique. Then, define

Φ(f) = (φf (c1), . . . , φf (cn−1)).

Let X(f0) be the connected component of
(
Φ−1|Y (f0)

)
(Φ(f0)) containing f0. We once

again get that X(f0) is a closed submanifold of GRatd.

Remark 8.5. In our setting, the space X(f0) is one complex dimensional, and the

map f 7→ φf (cn) gives a local coordinate on X(f0).

In [32], the authors prove that the spinning path σ that comes from spinning cn

around a curve on Tf0 lies in X(f0). Specifically, we will make use of the following

facts.

Lemma 8.6 (Lemma 2.1, [32]). Spinning does not change the multiplier of the

marked attracting cycle.

Notice further that for all c1, . . . , cn critical points of f0, for each

ft := Spincn,t(γ, f0),

we inherit a marking ct1, . . . , c
t
n on critical points of ft since there is a unique critical

point cti of ft so that {cti} varies continuously in t. This gives the following (compare

with Proposition 2.4, VIII).
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Lemma 8.7. The linearizing coordinates of critical points of the maps on the spin-

ning path satisfy

φt(c
t
i) = φ0(ci)

and

κt(c
t
i) = κ0(ci)

for all 1 ≤ i < n.



CHAPTER IX

Cubic polynomials

Looking at the special case of cubic polynomials with an attracting fixed point

is very informative, since in this case we can again leverage the low dimension to

explicitly calculate mapping class groups. The method of proof closely follows that

of [15] in which the authors prove an analogous theorem for quadratic rational maps.

In addition, a number of the results needed for the main theorem of this chapter

were proven in [31]. However, the use of spinning in the proof is novel, and serves

to illustrate the main way in which we get our hands on mapping classes in higher

degrees.

In this chapter, we prove the following special case of Theorem 1.5 where the base

map is taken to be in the hyperbolic component containing z 7→ z3.

Theorem 9.1. Let f0 be a MCG-generic cubic polynomial with an attracting fixed

point with both critical points in the basin. Then PMCG(f0) is an infinitely generated

subgroup of PMCG(Σ1,2) with generators given explicitly by a Dehn twist and an

infinite collection of point pushes.
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9.1 Coordinates and parameter slices

Throughout, we use the general coordinates fc,λ : C→ C where

fc,λ(z) =
λ

3(c2 − 4)
z3 − λc

c2 − 4
z2 + λz

where the map has a fixed point at 0 with multiplier λ and critical points at

c+ = c+ 2

and

c− = c− 2.

We will consider parameters in (c, λ) ∈ C× D∗ (where 0 < |λ| < 1 for λ ∈ D∗, so

that the fixed point at 0 is attracting).

In this space, there is a symmetry coming from the marking of the critical points.

Lemma 9.2. The map fc,λ is affine conjugate to the map fc′,λ′ if and only if λ = λ′

and c = ±c′.

Proof. Any conjugacy between two such maps must fix 0 and therefore be of the

form z 7→ αz. Furthermore, such a conjugacy will preserve the multiplier at that

fixed point, and therefore necessarily λ = λ′. It is easy to check that then we must

have α = ±1 and therefore c′ = ±c.

Let X ⊆ C × D∗ denote the space of pairs (c, λ) associated cubic polynomials

fc,λ that we are interested in — that is, those with both finite critical points in the

immediate basin of 0. We want to say something about the mapping class group of
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a polynomial in f , and therefore we’re interested in which maps fc,λ parametrized

by C × D∗ are quasiconformally conjugate. In particular, note that any two maps

in X with no critical orbit relations so that both critical points are in the same

immediate basin are quasiconformally conjugate (see, for example, [25]). Therefore

C× D∗ breaks up into the following subsets:

1. The set X that we are interested in.

2. The set E where fc,λ coming from a point in E has only one critical point

attracted to 0.

3. The set A where fc,λ coming from a point in A has both critical points attracted

to 0, but only one critical point in the immediate basin. The set A is discussed

in much greater detail in Chapter XII.

4. The set P where a critical point of fc,λ is a preimage of 0.

5. The set O where the two critical points of fc,λ have a critical orbit relation of

the form fnc,λ(c+ 2) = fmc,λ(c− 2).

Let P3
0 be the space of cubic polynomials that is parametrized by X – that is,

parametrized by (C × D∗) \ (E ∪ A ∪ P ∪ O). Fix a map f0 ∈ P3
0. We have the

following.

Lemma 9.3. The projection map p sending a map g ∈P3
0 to its Möbius conjugacy

class gives a degree 2 cover P3
0 →M(f0) that is ramified over the curve {0} × D∗.

Proof. This follows from the fact that any two maps in P3
0 are quasiconformally

conjugate, as well as the analysis of PSL2(C) conjugacy classes in Lemma 9.2.
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In the coordinates of P3
0, the two critical points are marked, and the identification

of fc,λ with f−c,λ in M(f0) comes from interchanging the marking. From this, we

see that the image of π1(P3
0, f0) under the map p∗ is exactly PMCG(f0) — the pure

mapping class group of f0 coming from those elements of MCG(f0) which fix the

critical points pointwise. Using this, we will study the fundamental group of the

space P3
0 to understand PMCG(f0).

We will often restrict to looking at only the left or right half-plane for a fixed

λ ∈ D∗, which we denote HL and HR, respectively. (Here we suppress the dependence

on λ since, as we will see, these slices for different λ all have a similar structure.)

Lemma 9.4. Any two maps f, g ∈ HL (respectively HR) are in different Möbius

conjugacy classes.

Proof. This follows immediately from Lemma 9.2.

A picture of the slice F1/2 = HL ∪HR of this space with λ = 1/2 is shown in

Figure 9.1. The region X we are focusing on is the unbounded orange region. The

set E is the black region. We can also begin to see the set P here – this is the subset

of points at the center of the lighter orange regions accumulating on the boundary

of E. Some components of A might be seen if the reader looks very closely; they are

smaller orange regions inside the black region.

We first make a couple more remarks about this parameter slice, since it is one that

will play a key role in the results. In this slice, we write fc := f1/2,c for simplicity.

Recall that the critical points of the map fc are at c + 2 and c − 2. We make
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Figure 9.1: The c-parameter slice with fixed λ = 1/2

observations about the half-plane HR with the understanding that by symmetry,

analogous statements are true about HL.

Notice that for fc ∈ HR, the critical point c− = c− 2 is always attracted to 0 and

is the preferred critical point (as defined in Chapter V).

To use the properties of this 1-dimensional slice to say something about the map-

ping class group, we relate F1/2 to P3
0. Specifically, as in [15], we get a fibration

(9.1) F1/2
//P3

0
Λ // D∗.

where the map Λ : P3
0 → D∗ sends f 7→ λ = f ′(0), the multiplier of its attracting

fixed point. From the long exact homotopy sequence of fibrations, we get the short
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exact sequence

(9.2) 1 // π1(F1/2, f0) // π1(P3
0, f0) // π1(D∗, λ) // 1

Lemma 9.5. The short exact sequence given in (9.2) splits on the right.

Proof. We want to show that there exists a section ι : π1(D∗, λ) → π1(P3
0, f0). But

since π1(D∗, λ) ∼= Z, we can simply send a generator of π1(D∗, λ) to some preimage

in π1(P3
0, f0) under the map π1(P3

0)→ π1(D∗, λ), giving the necessary section.

By Lemma 9.5, we then have that

PMCG(f0) ∼= π1(F1/2, f0) o Z.

This decomposition lets us focus primarily on an analysis of the slice F1/2.

To calculate π1(F1/2, f0), we relate the parameter plane F1/2 to the dynamical

plane of a quadratic polynomial. The quadratic polynomial we choose is Q(z) =

z2 + 0.5z. Its filled Julia set is pictured below for reference, alongside the right

half-plane HR from the slice F1/2.

We make this connection between these two spaces by proving the analogue of

Theorem 3.3 in [15]. In particular, we will construct a homeomorphism from HR to

a subset of the filled Julia set KQ.

Note that Q has a single critical point at cQ = −1/4, and an attracting fixed point

of multiplier 1/2 at 0. Let φQ be the linearizing map around 0 for Q, normalized so

that φQ(cQ) = 1, and κQ the filled potential function associated with φQ, as defined

as in Chapter V. Recall that for each s ∈ R, we have open and closed sets UQ(s)
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(a) Parameter slice for cubic polynomials

(b) Dynamical plane for quadratic polynomial Q

Figure 9.2: Similarities between dynamical and parameter spaces. We define a homeomorphism
mapping the imaginary axis on the left to the boundary of the gray region on the right.

and LQ(s) respectively. The set UQ(0) is an open topological disk containing the

attracting fixed point at 0, with cQ on its boundary. Let K = int(K) \ UQ(0) (see

figure 9.2b — K is the interior of the filled Julia set minus the closed gray disk in

the center).

9.2 Defining the homeomorphism

We define a homeomorphism H : HR \ (E ∪ A) → K. That is, this is a map

from the large orange region in Figure 9.2a to the blue region in Figure 9.2b. Let

fc ∈ HR \ (E ∪ A). Then since fc 6∈ E ∪ A, it has both critical points contained in

the immediate basin of the attracting fixed point at 0. Furthermore, since fc ∈ HR,

the preferred critical point of fc is given by c− = c− 2.
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In defining the homeomorphism, we mirror work done in [31]. However, we restate

this work here in our more specialized environment, for the ideas will be extended in

Chapter XI to prove Theorem 1.6.

We normalize the linearizing map φc := φfc so that φc(c−) = φQ(cQ) = 1. The

neighborhoods Uc(0) := Ufc(0) ⊆ Kfc and UQ(0) ⊆ KQ satisfy c− ∈ ∂Uc(0) and cQ ∈

∂UQ(0). Furthermore, φc and φQ are biholomorphic on Uc(0) and UQ(0) respectively.

Define

ξc := φ−1
Q ◦ φc.

Then since both Q and fc have multiplier λ = 1/2 at 0, ξc : Uc(0)→ UQ(0) conjugates

fc to Q on a neighborhood of 0.

Since ξ is analytic, we can extend ξ to a homeomorphism on the boundaries, with

ξc(c−) = cQ. We now want to extend ξ to larger subsets of Kfc . To do so, we look

at the topological structure of the sets of Uc(s), Lc(s), UQ(s), and LQ(s).

Let T = κ̂(c+) and let s ∈ N. When s < T , we have the following.

1. Each Uc(s) and UQ(s) is a Jordan domain with 2s preimages of c− and cQ on

the boundary, respectively.

2. Each Lc(s) and LQ(s) is a pinched disk with 2s pinch points at the same preim-

ages of c− and cQ, respectively.

3. The sets satisfy Uc(s) ⊆ Lc(s) and UQ(s) ⊆ LQ(s).

4. Furthermore, f(Uc(s)) = Uc(s−1), f(Lc(s)) = Lc(s−1), Q(UQ(s)) = UQ(s−1),

and Q(LQ(s)) = LQ(s− 1).
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Figure 9.3: An image of ∂LQ(s) (on the left) and ∂Lc(s) (on the right) for different values of s and
one choice of c. The green curve is ∂L∗(0), the blue is ∂L∗(1), and the black is partial L∗(s) for
1 < s < 2.

For an example of some of these regions, see Figure 9.3.

Let S ∈ N be such that S < T ≤ S + 1. We extend ξc sequentially to Uc(s) and

Lc(s) for s ∈ {0, . . . , S}. In particular,

fc(Lc(0)) ⊆ Uc(0)

and so we can lift

ξc ◦ fc : Lc(0)→ UQ(0)

under Q so that the following diagram commutes.

Lc(0)
ξc //

fc
��

LQ(0)

Q

��
Uc(0)

ξc
// UQ(0)
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We can continue this sequentially, extending to Uc(s) and Lc(s) using property (4)

above, whenever s ≤ S.

However, we really want to extend ξc to the critical point c+. This extension of

ξc splits into two cases. In particular, we know that c+ ∈ Lc(S + 1). The extension

depends on whether or not c+ ∈ Uc(S + 1).

Case 1: c+ ∈ Uc(S + 1)

Define

Ω := {z ∈ Uc(S + 1) : |φf (z)| < |φf (c+)|} ⊆ Uc(S + 1).

This is a Jordan domain with c+ on the boundary. Furthermore, since f(Ω) ⊆ Uc(S),

we have ξc defined on f(Ω) and we can take the correct lift to extend ξc to Ω.

Notice that this extension is necessarily biholomorphic, and therefore there is a

further homeomorphic extension to ∂Ω, and ξc(c+) is well-defined.

Case 2: c+ ∈ Lc(S + 1) \ Uc(S + 1)

Here, the extension is slightly more delicate. The set Lc(S + 1) \ Uc(S + 1)

has 2S+1 components, all but one of which are topological disks. Label these disks

D1, . . . ,D2S+1−1. The final component D0 is the one that contains the critical point

c+. Topologically, it is a pinched disk. We can then find an open topological disk

D+ ⊆ D0 so that c+ ∈ ∂D+ and so that every point z ∈ D+ satisfies

|φf (z)| < |φf (c+)|

In fact, there are two disks satisfying this property — choose D+ to be one of them.
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Then

f |D+ : D+ → Lc(S)

is biholomorphic. Additionally, there is an analogous disk DQ ⊆ LQ(S + 1) so that

the restriction Q|DQ : DQ → LQ(S) is biholomorphic, and φQ(DQ) = φf (D+). Then

we can extend ξc to Uc(S + 1) ∪D+ by

ξc = Q|−1
DQ
◦ f |D+

on D+.

Furthermore, the same logic holds for each of the disks D1, . . . ,D2S+1−1. In par-

ticular, there are analogous disks in KQ and since each Dm has exactly one point on

∂Lc(S) (where ξc is defined), it is clear how to extend ξc to Uc(S + 1) ∪ Dm. Thus,

in this case we can extend the domain

Ω := Uc(S + 1) ∪ D1 ∪ · · · ∪ D2S+1−1 ∪D+

and extend the map ξc : Ω→ KQ biholomorphically so that, once again, ξc conjugates

f to Q on this subset. Finally, we can extend ξc homeomorphically to the boundary.

In particular, we get that ξc(c+) is well-defined. Notice that choosing D+ differently

would give ξc defined on a different subset of Kf , but the value ξc(c+) of its extension

would not change.

We define the map

H(fc) = ξc(c+).

The construction of ξc immediately gives us a number of properties of H.
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D1

D2

D3

D+
U2

Figure 9.4: Extending the conjugacy ξc

Lemma 9.6. The map H : HR \ (E ∪ A)→ K satisfies the following properties.

1. If fnc (c+) = 0, then Qn(H(fc)) = 0.

2. If fmc (c+) = fnc (c−), then Qm(H(fc)) = Qn(cQ).

In other words, H takes cubic polynomials with critical orbit relations to points in K

in the critical orbit of Q.

To prove injectivity of H, we will make use of the following lemma. We prove

the lemma in greater generality than is necessary for this section, so that we can

reference it later. The proof of the lemma, as well as the proof of injectivity of H,

follow from work done in [31] (see, for example, section 5). However, we write down

the proofs in our context since the ideas will be essential in proving Theorem 1.6 is

Chapter XI.

Lemma 9.7. Let f1 and f2 be MCG-generic, each with a marked fixed point. Suppose

we have connected, disjoint open sets U1, V1, U2 and V2 so that

1. fi(Ui) ⊆ Ui and fi(Vi) ⊆ Vi,
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2. all critical points of fi are in Ui ∪ Vi, and

3. there exist conformal maps ϕU : U1 → U2 and ϕV : V1 → V2 that conjugate f1

to f2 on these domains.

Then f1 = f2 in M∗(f1) =M∗(f2).

Proof. Since the immediate basin of any periodic attracting point must have a critical

point, and since the Ui and Vi are forward invariant, all such periodic points of fi

must be in Ui ∪ Vi. Since fi is MCG-generic, every point in the Fatou set of fi must

eventually be attracted to one of these periodic points. Therefore,

⋃
n>0

f−ni (Ui ∪ Vi) ⊆ Ĉ \ Jfi .

We define a map η0 : Ĉ → Ĉ by setting η0 = ϕU on U1 and η0 = ϕV on V1. We

extend η0 to all of Ĉ in such a way that η0 is globally quasiconformal. Specifically,

we define η0 as a C1 interpolation on the closed annulus between U1 and V1 as in

Lemma 2.22 in [5]. Then η0 is a quasiconformal conjugacy between f1 and f2 that is

conformal on the sets U1 and V1.

If a1 is the marked fixed point of f1 and a2 the marked fixed point of f2, notice

that we must have that η0(a1) = a2.

We now iteratively lift η0 to maps that are conformal on larger and larger unions

of disks. To do so, we find a sequence of maps ηk : Ĉ → Ĉ so that the following
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diagram commutes:

�� ��

Ĉ ηk //

f1

��

Ĉ
f2

��
...

��

...

��

Ĉ η1 //

f1

��

Ĉ
f2

��

Ĉ η0 // Ĉ
That is, let η1 be the lift of η0 ◦ f1 with η1(a1) = a2. This lift is guaranteed to exist

because f1 and f2 are covering maps away from their critical sets Crit1, and Crit2

respectively, and η0 takes critical points of f1 to critical points of f2. Therefore,

(h0 ◦ f1)∗(π1(Ĉ \ Crit1, a1)) ⊆ (f2)∗(π1(Ĉ \ Crit2, a2))

and the lift η1 exists and is unique.

Notice further that η1 is a conformal conjugacy on f−1
1 (U1) ∪ f−1

1 (V1), and that

η1 = η0 on U1.

We can then iterate this procedure to generate a family of maps {ηk}. Taking a

subsequence, we get a limit map η∞ that is conformal on all of Ĉ except, maybe, the

Julia set Jf1 . However, since f1 is MCG-generic, it is hyperbolic, and therefore Jf1

has Lebesgue measure zero. Thus, η∞ is conformal and, by construction, conjugates

f1 to f2.

Lemma 9.8. The map H : HR \ (E ∪ A)→ K is injective.
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Proof. We prove that H is injective on HR \ (O ∪P ∪E ∪A). Since H is continuous

and O ∪ P is made up of isolated points, the result will follow.

Suppose we have two maps fc1 and fc2 in HR \ (O ∪ P ), so that H(fc1) = H(fc2).

We will construct a conjugacy between the two maps, and since every map in HR has

a unique conjugacy class representative in this space, this will give us that c1 = c2.

Let φ1 and φ2, respectively, denote the linearizing map for fc1 and fc2 . As in the

construction of the map H, we have sets Ω1 and Ω2 with maps ξ1 : Ω1 → KQ and

ξ2 : Ω2 → KQ that conjugate fc1|Ω1 and fc2 |Ω2 , respectively, to Q.

Consider the map η : Ω1 → Ω2 given by

η = ξ−1
c2
◦ ξc1 .

This map can be extended to a homeomorphism that satisfies

η(c1
+) = c2

+.

We now want to extend η even further — in particular, we want a biholomorphic

extension of η to a Jordan domain in Kf1 that contains c1
+ in its interior. To do so,

let

Si = κ(ci+)

so that η is defined from U(S1) → U(S2). We can then extend η to L(S1), since

fc1 maps each component of L(S1) \ U(S1) either homeomorphically or 2-to-1 into

U(S1), where η is defined.
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Finally, we extend η to U(S1+1). To do so, consider the annuli Ai = U(Si)\L(Si−

1). We have that η maps A1 to A2. We take the larger annuli Bi = U(Si+1)\L(Si).

Then fci : Bi → Ai is a 3-to-1 covering, and we can lift η ◦ fc1 by fc2 to extend η.

Take s̃ where S1 < s̃ < S1 + 1, so that η is defined and biholomorphic on U(s̃)

and c1
+ is in its interior.

On the other hand, since each of the fci are cubic polynomials, we also have

Böttcher maps

ψi : Vi → Ĉ \ D

conjugating fci to z 7→ z3 on a neighborhood Vi of infinity.

Therefore, by Lemma 9.7, fc1 = fc2 in M∗(fc1).

Intuitively, this lemma establishes a correspondence between the set O∪P in our

parameter slice and preimages of the fixed point and the critical value in KQ.

9.3 An inverse via spinning

To show that H : HR \ (E ∪ A)→ K is a homeomorphism, we just need to show

that it is surjective. Here is where our proof differs significantly from that in [15]. In

particular, we construct a right inverse to H using spinning. We will define a map

S : K \GO(cQ)→ HR \ (A ∪ E ∪O)

so that

H ◦S = id
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where defined.

Once we have S as above, we can then extend the map continuously to the

countable number of points in GO(cQ), giving S : K → HR \ (A ∪ E). Since H

injective, we then get that H is a homeomorphism.

Let f0 ∈ HR be the base cubic map and Q be as above. Recall that we have

quotient tori T0 and TQ for f0 and Q, respectively. Let Φ0 and ΦQ denote the

respective quotient maps. There are punctures on T0 coming from Φ0(c−) and Φ0(c+).

Let T#
0 denote the filled-in torus T0 ∪ {Φ(c−)} on which spinning is defined.

Proposition 9.9. The two tori T#
0 and TQ are isomorphic.

Proof. We explicitly get the isomorphism by considering φ−1
Q ◦ φ0 : U0(0) → UQ(0).

This is a biholomorphism that descends to a map ζ : T0 → TQ. Furthermore, because

of our choices of φQ and φ0, we see that Φ0(c−) 7→ ΦQ(cQ) under ζ. Therefore,

T#
0
∼= TQ.

Let γ : [0, 1]→ T#
0 be a path with γ(0) = γ(1) = Φ0(c+). We additionally require

that γ can be decomposed into a finite concatenation of simple closed paths based

at γ(0) (so that spinning around γ is well-defined).

We denote Spint(γ) := SpinΦ0(c+),t(γ, f0), the cubic polynomial obtained from

spinning Φ0(c+) around γ from γ(0) to γ(t).

Proposition 9.10. For any choice of γ and t as above, the cubic map fγ,t = Spint(γ)

is in HR.
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Proof. Spinning does not change the multiplier of the attractor, and therefore the

new map has a unique conjugacy class representative in HR.

For any fγ,t = Spint(γ) with critical points cγ,t− and cγ,t+ , we therefore have an

associated ξγ,t biholomorphic on a neighborhood around the attractor of fγ,t that

conjugates fγ,t to Q, and ξγ,t(c
γ,t
+ ) is well-defined. Define

pγ,t = ξγ,t(c1(γ, t)) ∈ KQ.

We define the map

S : K → HR

as follows. Let p0 = H(f0) ∈ KQ. For a point p ∈ KQ \ (UQ ∪ GO(cQ)), we choose

a path γ̃ : [0, 1]→ KQ \UQ that projects to a “nice” path on the quotient torus TQ.

In particular, for most p, we will want the path to satisfy the following conditions.

Condition 9.11. (a) γ̃([0, 1]) ⊆ K \GO(cQ),

(b) γ̃(0) = γ̃(1) = p0,

(c) γ̃(1/2) = p,

(d) γ̃ can be written as a finite union of concatenated sub-paths γ̃1 . . . γ̃r so that the

endpoints of each sub-path are contained in GO(p0), and for each γ̃i, either

i. arg(φ(γ̃i(t))) is constant across all t in the domain of γ̃i, or

ii. |φ(γ̃i(t))| is constant across all t in the domain of γ̃i.

Here, condition (a) guarantees that the projection ΦQ ◦ γ̃ to the quotient torus

TQ avoids the puncture ΦQ(cQ) on this torus. Condition (d) guarantees that the
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projection traces out a path in the fundamental group of TQ as a word in two

standard generators, defined in detail later in this chapter. This in turn guarantees

that the spinning path on TQ can be written as a concatenation of simple closed

curves. Recall from Chapter VIII that this means that spinning around this path is

well-defined.

Specifically, we have the following.

Lemma 9.12. If γ̃ satisfies Condition 9.11, its projection γ : [0, 1]→ TQ defined by

γ = ΦQ ◦ γ̃

is a concatenation of simple closed curves on TQ.

Proof. Let

Zmod = {z ∈ KQ : |φ(z)| = |φ(p0)|},

and

Zarg = {z ∈ KQ : arg(z) = arg(p0)}.

Then the images β = ΦQ(Zmod) and α = ΦQ(Zarg) are two curves on TQ that generate

π1(TQ,ΦQ(p0)) ∼= F2. Furthermore, by definition of ΦQ, every point in the grand

orbit of p0 gets mapped to the same point that p0 does — namely the base point of

the generating curves α and β.

Therefore, we see that the image

ΦQ(γ̃([0, 1])
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is completely made up of a concatenation of powers of α and powers of β. In partic-

ular, the image is a concatenation of simple closed curves on TQ.

We now construct a spinning path.

Lemma 9.13. For each point p ∈ K \ GO(cQ), we can find a path γ̃ : [0, 1] →

K \ GO(cQ) with γ̃(0) = γ̃(1) = p0 and γ̃(1/2) = p, so that the projection ΦQ ◦ γ̃ is

a concatenation of simple closed curves on TQ.

Proof. For most points p ∈ K\GO(cQ), this lemma is proven by constructing a path

γ̃ satisfying condition 9.11, and then appealing to Lemma 9.12.

Throughout this proof, to ease the notational burden, we write φ = φQ for the

normalized linearizing coordinate for Q.

To do so, consider the loci

Γp = {z : arg(φ(z)) = arg(φ(p))}

and

Γp0 = {z : arg(φ(z)) = arg(φ(p0))},

and let γp and γp0 be the connected components of Γp and Γp0 , respectively, containing

p and p0, respectively. Choose some K > 1 together with a point qK on γp so that

1. |φ(qK)| = K, and

2. |φ(qK)| = 2m|φ(p)| for some m (notice that this, together with the argument

condition along the path γp guarantees that qK and p are in the same grand

orbit).
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Choose qK0 on γp0 according to the same constraints, with |φ(qK0 )| = |φ(qK)|. We

then parametrize γp as a path from p to qK and γp0 as a path from p0 to qK0 .

Finally, consider the set UK ⊆ KQ given by

UK = {z ∈ KQ : |φ(z)| < K}.

Since K > 1 (that is since K > φ(c)), the domain UK is connected. In particular,

letting δ = ∂UK , we see that it must be the case that qK ∈ δ and qK0 ∈ δ. Parametrize

δ as a path from qK to qK0 , and notice further that for all points z in the image of

this path, we have that

|φ(z)| = K = |φ(p0)|.

Let δ′ be the parametrized path from qK0 to qK so that the concatenation δδ′ is

the entire boundary of UK .

The path given by the concatenation

γp0δγ
−1
p

is now a path from p0 to p that can be broken up into component paths as in 9.11

(d).

We define the entire path γ̃ as the concatenation

γp0δγ
−1
p γpδ

′γ−1
p0
,

parametrized so that γ̃(1/2) = p. This path then satisfies conditions (b)-(d). Fur-

thermore, if arg(p0) 6= arg(c) and arg(p) 6= arg(c), we are also guaranteed that this
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path satisfies condition (a). However, depending on our choice of base point and the

fixed point p, it is possible that the constructed path γ̃ may contain a point in the

grand orbit of the critical point.

In this case, we must make a small perturbation of the constructed path. In order

to guarantee that we end up with a path on which spinning is well-defined, we make

this perturbation on the level of the projection ΦQ(γ̃) and lift it back to KQ \ UQ.

In particular, consider γ = ΦQ(γ̃), whose image is a path contained in T#
Q. In the

case that the marked point ΦQ(cQ) is on this path, we perturb γ slightly to avoid

ΦQ(cQ), but so that γ is still a concatenation of simple closed curves. In doing so,

we make sure not to modify γ in a neighborhood of ΦQ(p). This is possible, since

p 6∈ GO(cQ), and therefore ΦQ(p) 6= ΦQ(cQ).

We then lift the modified γ under the covering map ΦQ to a modified γ̃, so that

γ̃(0) = p0. This modified γ̃ now satisfies the conditions of the lemma.

Choose γ̃ as above with projection γ : [0, 1]→ TQ with γ = ΦQ ◦ γ̃, so that

γ(0) = γ(1) = ΦQ(p0).

Under the isomorphism TQ ∼= T#
0 , we can view γ as a curve γ : [0, 1]→ T#

0 based at

Φ0(c+).

Then, we define

S (p) = SpinΦ(c+),1/2(γ, f0).

First, notice a few facts about the maps SpinΦ(c+),1/2(γ, f0).
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Lemma 9.14. If γ is a curve on T#
0 and ft = SpinΦ(c+),t(γ, f0), then

γ(t) = φft(c
γ,t
+ ) = φQ(pγ,t).

Proof. The first equality follows from the definition of spinning.

By the assumptions on critical orbit relations, pγ,t is not a critical point of φQ,

and therefore φQ is locally invertible around pγ,t. We’ve also seen that therefore

ξγ,t = φ−1
Q ◦ φft for the correct choice of branch of φ−1

Q . In particular, we have that

φQ(pγ,t) = φQ(ξγ,t(c
γ,t
+ ))

= φft(c
γ,t
+ )

Proposition 9.15. The map S is well-defined. That is, this construction depends

only on the point p ∈ K.

Proof. Let p ∈ K. Suppose we choose two loops γ1 and γ2 as described above.

Notably, we have that γ1(1/2) = γ2(1/2) = p. Let

fγ1 = Spin1/2(γ1) and fγ2 = Spin1/2(γ2).

But note that since γ1(1/2) = γ2(1/2),

ξfγ1
(c1

+) = ξfγ2
(c2

+)

and since H is injective, by Lemma 9.8, fγ1 and fγ2 are conjugate.
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Figure 9.5: The homeomorphism between the parameter plane (left) and the dynamical plane
(right).

Notice that we constructed S so that S (p) is exactly the map satisfying ξS (p)(c+) =

p, so that H(S (p)) = p. This gives the following.

Proposition 9.16. The map S : K → HR \ (E ∪ A) is an inverse to H.

9.4 Remark: a connection with translation surfaces

Figure 9.5 gives an illustration of the homeomorphism H. (In the coordinates

chosen for the parameter space, this homeomorphism turns the filled Julia set “inside

out”.) Notice that we can endow BQ with the structure of a square-tiled surface —

that is, ΦQ : BQ → TQ is a branched cover (branched over the image of the critical

point cQ). The image on the left shows such a tiling. From this point of view, BQ is

an infinite translation surface.
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9.5 Understanding the mapping class group

Understanding the dynamics of a single quadratic polynomial is relatively simple

in comparison to understanding a parameter slice. As such, we will follow the famous

mantra of Adrien Douady to “sow the seeds in the dynamical plane and harvest in

the parameter plane” to use the structure of K to say something about the slice F1/2

and then, in turn, about MCG(f0).

We remark that the remainder of the results in this section can be proved via

techniques in [15]. For details on how these techniques are applied in this setting,

the reader is referred to Chapter XII, where the discussion turns to the mapping

class group of a map with multiple attracting basin components. However, we opt

for a different analysis that is more indicative of techniques used in higher-degree

cases. The idea behind this proof is to consider all point-pushes on the torus and,

via tools from spinning, consider which ones come from dynamical mapping classes.

9.5.1 Calculation of dynamical mapping classes

Recall that we defined the set K = int(KQ) \ UQ(0). Let

On,m = {z ∈ KQ : Qn(z) = Qm(cQ)}

and

P n = {z ∈ KQ : Qn(z) = 0}.

That is, On,m is the set of points in KQ whose nth forward image agree with the

mth forward image of the critical point of Q, and P n is the set of nth preimages of
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Figure 9.6: The space B∗. A subset of the points Pn is drawn in green, and of Qn,m in orange.

0 under Q.

Let

K∗ = K \

(
∞⋃

n,m=0

(On,m ∪ P n)

)
.

The set P n is made up of 2n points in K, and as n→∞, the sets P n accumulate on

the boundary of KQ. Similarly, On,m is made up of 2n points, one “close to” each

element of P n. We also have that
⋃∞
n,m=0 O

n,m accumulate on each point in
⋃∞
n=0 Pn.

We see that

π1(K∗, p) ∼= F∞,

the free group on countably many generators (see Figure 9.6).

We have that, by Lemma 9.6,

K∗ ∼= F1/2.
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For any choice of base map f0 ∈ F1/2, let v0 := H(f0) ∈ K∗. We then have that

π1(F1/2, f0) ∼= π1(K∗, v0)

with the isomorphism coming from H∗. So

π1(F1/2, f0) ∼= F∞.

We can lift any closed curve γ based at v = ΦQ(v0) ∈ TQ to a curve γ̃ based at

v0 ∈ KQ under ΦQ. If this curve is a loop, invoking the isomorphism coming from

S ∗, we get a dynamical mapping class. We will enumerate an infinite set of curves

γn ∈ π1(TQ, v) whose lifts γ̃n generate π1(K∗, v0), which will in turn imply that the

collection Spin(γn) generates π1(F1/2, f0).

Let β̃0 be the connected component of φ−1
Q (|φQ(v0)|) containing v0, and let β ∈ TQ

be given by

β = ΦQ(β̃0)

(so that β is a representative of the distinguished curve of TQ). Similarly, consider

the curve

α̃ = φ−1
Q (arg(φQ(v0))) ⊆ KQ.

Let

α = ΦQ(α̃).

Then π1(TQ, v) ∼= F2 with free generators given by [α] and [β].

We consider the structure of

Φ−1
Q (α) ∪ Φ−1

Q (β).
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ΨQ

α

β

Figure 9.7: A subset of the lift of the curves α and β to K∗
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The lifts of α and β under ΦQ partition K∗ into components such that

1. Each component contains exactly one puncture in On,m, and

2. Each component is bounded by some set of lifts of α and β.

From here, we can enumerate a generating set for π1(K∗, v0) in terms of the curves

in π1(TQ, v) that lift to them (though notice that the exact curves of course depend

on our choice of base map f0). For example, if we choose f0 so that H(f0) = v0

with −0.5 < φQ(v0) < −1 and κ(v0) = κ(−0.25), we get that the subset of the loops

that generate coming from punctures O1,m accumulation on P 1 come from the lift of

curves of the form

{αnβα−n}n≥0.

In particular, we can find a map f0 so that

{Spin(αnβα−n)}n≥0

are dynamical mapping classes. Classes of this form will play an important role in

Chapter XI. In fact, using the structure of the punctures P n and On,m, we get that

π1(F1,2, f0) are generated by Spin(v, γ) where γ is in one of the following classes:

{αnβα−n}n≥0

{(α−kβ2m+1)(αnβα−n)(α−kβm)−1}k>1,n>0,1≤2m+1<2k

{α−kβ2kαk}k≥1

{(α−kβ2mαβ−mαk−1)}k>1,1<2m<2k
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Let G1/2,v denote this set of generators.

We are now ready to prove a special case of Theorem 1.5.

Theorem 9.17. The pure mapping class group PMCG(f0) is an infinitely generated

subgroup of PMCG(Σ1,2) with generators explicitly given by point pushes and a Dehn

twist.

Proof. We saw in Lemma 9.5 that

PMCG(f0) ∼= π1(F1/2, f0) o Z.

We saw that π1(F1/2, f0) is generated by G1/2,v, and by construction, the images

of these generators in PMCG(T0) are exactly point pushes. Finally, the generator

coming from the copy of Z ∼= π1(D∗, λ) is a Dehn twist as calculated in Proposition

7.3 coming from varying the multiplier of the base map.

Notice that in this setting of cubic polynomials, we recover a very similar result

to the main result of [15] in the setting of quadratic rational maps.



CHAPTER X

Pure torus braid groups

The progress on understanding the mapping class group of a rational map —

between the classical case of quadratic polynomials, the case of quadratic rational

maps in [15], and now the setting of cubic polynomials — have all relied heavily on an

explicit description of the space of MCG-generic maps. Attempts to promote these

proofs to higher-degree settings run against a number of challenges as the spaces

in question increase in dimension and complexity. Therefore, in order to begin to

understand higher-degree rational maps, we need to develop different tools.

In particular, for f a general critically marked MCG-generic map of degree d, we

will rely heavily on the idea of spinning marked points on the identification torus

in order to construct elements of PMCG(f). As we saw in Chapters VIII and IX,

the elements of PMCG(Σ1,n) that come from this spinning construction can often

be written in the form of point-pushes, and we think about following trajectories of

critical points as we move around inM∗(f). This idea motivates the introduction of

surface braid groups, in which we consider these elements from spinning as inducing

87
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a trajectory of the punctures on the identification torus.

Definition 10.1. For a Riemann surface M1 and n ∈ N, the nth configuration space

of M is defined as

Fn(M) = {p1, . . . , pn ∈Mn : pi 6= pj for i 6= j}.

Definition 10.2. Given M , n as above, we define the pure surface braid group to

be

Pn(M) = π1(Fn(M)).

The configuration space Fn(M) is connected, and so the choice of base point is

suppressed in Pn(M). There are many ways to define Pn(M), and while we take

Definition 10.2 to be our definition for this document, we will often think of an

element of Pn(M) as a trajectory of n non-colliding particles on M that return to

their starting locations.

Figure 10.1: An element of P3(Σ1)

1As in Chapter II, this definition makes sense for any oriented topological surface. However, in our setting all of
our surfaces are Riemann surfaces.
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There is a natural way to view the pure surface braid group (or potentially a

quotient of the surface braid group) as a subset of the pure mapping class group of a

surface M with punctures. We will mostly be interested in the case where M = Σ1

is a torus, and the rest of this chapter will focus on this special case.

Proposition 10.3 (c.f. [17], Section 2.4). We have the following short exact se-

quence:

1 // Pn(Σ1)/Z(Pn(Σ1)) // PMCG(Σ1,n) //MCG(Σ1) // 1

Proof. A more general proof for surface braid groups of higher genus can be found

in [17]. We recreate the proof for our case of a torus here.

Let n ≥ 1 and fix a base point En of n distinct points on the torus Σ1. It is true

that the map

Ψ : Homeo+(Σ1)→ Fn(Σ1)

given by the images of En under the homeomorphism is a locally trivial fiber bundle

with fiber Homeo+(Σ1, En) — that is, orientation-preserving homeomorphisms of Σ1

that preserve En pointwise. But note that

π0(Homeo+(Σ1, En)) = PMCG(Σ1,n).

Therefore, taking the long exact homotopy sequence of the fibration

Homeo+(Σ1, En)→ Homeo+(Σ1)→ Fn(Σ1)

we get
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. . . // π1(Homeo+(Σ1, En)) // π1(Homeo+(Σ1)) // π1(Fn(Σ1))

uu
π0(Homeo+(Σ1, En)) // π0(Homeo+(Σ1)) // 1.

We have that

π1(Homeo+(Σ1, En)) = 1

(see, for example, [18]). Furthermore,

π1(Homeo+(Σ1)) ∼= Z2

and the inclusion in Pn(Σ1) is exactly the center Z(Pn(Σ1)) ∼= Z2 (c.f. [1]).

We use this relationship to move the problem of proving properties of PMCG(f) ⊆

PMCG(Σ1,n) into the setting of the pure braid group Pn(Σ).

In particular, we leverage the following explicit presentation for Pn(Σ1) (see [16]).

Theorem 10.4 (González-Meneses). There is a finite presentation of Pn(Σ1) with

generators given by

GB = {ai}1≤i≤n ∪ {bi}1≤i≤n ∪ {Ti,j}1≤i<j≤n

and relations RB. The relations are of the form

1. a−1
n b−1

n anbn = Πn−1
i=1 T

−1
i,n−1Ti,n

2. aiaj = ajai, 1 ≤ i < j ≤ n

3. bibj = bjbi, 1 ≤ i < j ≤ n
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4. aib
−1
j a−1

i bj = Ti,jT
−1
i,j−1, 1 ≤ i < j ≤ n

5. aibiajb
−1
i a−1

i a−1
j = Ti,jT

−1
i,j−1, 1 ≤ i < j ≤ n

6. Ti,jTk,` = Tk,`Ti,j, 1 ≤ i < j < k < ` ≤ n or 1 ≤ i < k < ` ≤ j ≤ n

7. Tk,`Ti,jT
−1
k,` = Ti,k−1T

−1
i,k Ti,jT

−1
i,` Ti,kT

−1
i,k−1Ti,`, 1 ≤ i < k ≤ j < ` ≤ n

8. aiTj,k = Tj,kai, 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n

9. biTj,k = Tj,kbi, 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n

10. ai(b
−1
j a−1

j Tj,kbjaj) = (b−1
j a−1

j Tj,kbjaj)ai, 1 ≤ j < i < k ≤ n

11. bi(b
−1
j a−1

j Tj,kbjaj) = (b−1
j a−1

j Tj,kbjaj)bi, 1 ≤ j < i < k ≤ n

12. Tj,n =
(
Πj−1
i=1 b

−1
i a−1

i Ti,j−1T
−1
i,j aibi

)
ajbja

−1
j b−1

j , 1 ≤ i < j ≤ n.

a1

b1

T1,n
T1,2

...

α
β

Figure 10.2: Generators of the pure torus braid group

Remark 10.5. For the sake of readability, we abuse notion to use bi, Tij, or ai to

represent both braids in Pn(Σ1), as well as based curves on the torus (in which
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case we think about the corresponding braid as coming from pushing the base point

around that curve).

As we saw in Proposition 10.3, to relate the torus braid group to the mapping

class group, we will need to understand the center Z(Pn(Σ1)). The following is a

result of [1].

Proposition 10.6 (c.f. [1]). In terms of the presentation given in 10.4, the center

satisfies

Z := Z(Pn(Σ1)) ∼= Z2

with generators given by

{a1a2 . . . an, b1b2 . . . bn}.

We will use the presentation in 10.4 to come up with a general criterion that all

braids arising from dynamics must satisfy. To this end, the generators given by ai

play a special role.

Definition 10.7. For a word w ∈ Pn(Σ1), the total ai-degree, denoted degai(w) is

the sum of the exponents of ai in w.

Looking at the relations coming from Theorem 10.4, we immediately get the

following.

Proposition 10.8. The total ai-degree of a braid in Pn(Σ1) is well-defined.

Notice that Proposition 10.6 implies that the total ai-degree of a word in Pn(Σ1)/Z

is not well-defined. However, we will make use of the following notion.
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Definition 10.9. The a-degree tuple of a word w is defined to be

dega(w) = (dega1
(w), dega2

(w), . . . , degan(w))

With this notion of, in some sense, “total a-degree” of a word, we have the fol-

lowing.

Proposition 10.10. The a-degree tuple of a braid in Pn(Σ1)/Z is well-defined as an

element of Zn/∆, where ∆ ⊆ Zn is the diagonal.

Proof. The relations for Pn(Σ1) preserve ai-degree, and the relations coming from

modding out by Z preserve the a-degree tuple up to addition by an element in the

diagonal.



CHAPTER XI

Mapping class groups of rational maps of higher degree

We now tie the surface braid group back to the mapping class group.

Lemma 11.1. We have a commutative diagram

PMCG(f)
Λ∗ //

� _

Φ∗
��

π1(D∗)� _
m∗
��

PMCG(Σ1,n)
F∗ //MCG(Σ1)

where the vertical maps are inclusions.

Proof. This comes from the diagram

M∗(f) Λ //

Φ
��

D∗

m

��
M∗(Σ1,n) F //M(Σ1)

where m is the modulus map sending λ ∈ D∗ to the torus Tλ with lattice

Λ = 2πi⊕ log λ.

94
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For a critically marked MCG-generic map (f, c1, . . . , c2d−2) with marked attract-

ing cycle a, let PDynn(f) denote the pullback that makes the following diagram

commute:

(11.1) 1 // PDynn(f) //

��

PMCG(f)
Λ∗ //

Φ∗
��

π1(D∗)

��

// 1

1 // Pn(Σ1)/Z // PMCG(Σ1,n)
F∗ //MCG(Σ1) // 1

so that PDynn(f) = ker(Λ∗).

Note that since π1(D∗) ∼= Z, the top sequence splits on the left, and therefore we

can realize

PMCG(f) ∼= PDynn(f) o Z.

Consider now the quotient torus Tf associated with f . We choose a critical

point c of f and set of generators of π1(Tf ,Φf (c)) with dynamical significance.

Specifically, recall from Chapter VII that we have dynamically distinguished curves

α, β ∈ Forget(Tf ), where β is the image of the distinguished curve in Kf around the

attractor. We will work with a set of generators {α, β1, . . . , βn} of the fundamental

group of the n-times punctured torus Tf so that β1, . . . , βn are homotopic to β in

Forget(Tf ) (see Figure 11.1).

Consider the elements of PMCG(Tf ) given by

hm = Push(p1, α)m Push(p1, β1) Push(p1, α)−m

where m ≥ 0 and α and β1 are as in Figure 11.1.
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...

α

β1

β2

βn

Figure 11.1: Generators of the fundamental group of an n-times punctured torus

We want to show that the family {hm}m≥0 is in fact made up of dynamical map-

ping classes — that is, that with an appropriate choice of base map f , there exist

elements of PMCG(f) that induce each hm in PMCG(Tf ).

11.1 A local homeomorphism

Throughout the rest of this subsection, we choose a critically marked MCG-generic

base map f0 of degree d satisfying the following conditions:

1. The map f0 has an attracting cycle a with multiplier λ0, with critical points

c1, . . . , cn in the basin of a, where n ≥ 2.

2. The critical point cn satisfies

(a) φf0(cn) < φf0(ci) for i < n, and

(b) κf0(cn) > κf0(ci) for i < n.

Note that by Lemma 5.3, κf0(cn) is locally constant in a neighborhood of f0.

Let ki = φf0(ci). Let Dφ ⊆ C be an open disk centered at 0 so that kn ∈ Dφ but

ki 6∈ Dφ for i < n, and let D∗φ = Dφ \ {0}. As in Chapter VII, the quotient map

Φf0 : B∗ → T0 factors through L∗ ⊇ D∗φ, with quotient map Ψ : L∗ → T0 coming
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c1

c0
a

Figure 11.2: Some φ-level curves of the map f0 when n = 2. Here, κf0 is constant in the grey
shaded region.

from the identification z ∼ λz. Let c = Φf0(cn) ∈ T0, the image of the spun critical

point on the quotient torus.

Let γ̃ be the simple closed curve t 7→ kne
2πit in D∗φ. Then γ̃ projects to a simple

closed curve γ = Ψ(γ̃) in T0 ∪ {c}. Notice that once again, γ is a representative of

the dynamically distinguished curve on the quotient torus.

We consider the spinning path

{ft = Spin(γ, t)}t∈[0,1].

In this section, we work toward the following theorem.

Theorem 11.2. We have that f0 = f1 in M∗(f0).

Notice that this is exactly what it means for the spinning path σ[0, 1] to be a

closed loop — that is, for the induced quasiconformal conjugacy between f0 and f1

to be in PMCG(f0).

To prove this theorem, we reveal a homeomorphism between a subset of L∗ and

subset of parameter space.
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11.2 A disk-like subset of parameter space

Recall from Chapter VIII that we have a one-complex-dimensional submanifold

X(f0) ⊆ GRatd in which spinning paths coming from spinning cn lie. We define the

subset W (f0) ⊆ X(f0) to be the connected component of maps f ∈ X(f0) satisfying

condition (2) above that contains the base map f0.

We will construct a large number of maps f ∈ W (f0) coming from spinning along

certain paths. In particular, for fixed m ≥ 0 and ` ∈ Z, let γ ∈ T0 be given by the

curve αmβ`α−m and consider the family of maps ft coming from

ft = Spincn,t(f0, γ).

Lemma 11.3. The family of maps {ft} is in W (f0).

Proof. It suffices to show that condition (2) is satisfied for all ft, since then each ft

is in the same path component as f0 in X(f0).

To show (2a), recall that if we are spinning cn, then φft(c
t
i) stays constant for all

i < n, and φft(c
t
n) = γ̃(t) for the lift γ̃ ∈ L∗ of the spinning curve γ ∈ T0. Since

γ̃ ⊆ Dkn , condition (2a) follows.

To show (2b) we use the following fact: if c1 is the preferred critical point of f0

and φf0(cn) < φf0(c1), then there exists some neighborhood Nn ⊆ Kf0 containing cn

so that κf0 ≡ κf0(cn) is constant on Nn — specifically, we can take Nn be any open

neighborhood of cn in L(s) \ U(s) (see Figure 11.2).
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Now recall that for a map ft, we defined

κ̂ft(z) =
log |φft(z)|

log 1
|λ|

,

and

κft(z) = inf{s : z ∈ U(s)}

where U(s) = κ̂ft [−∞, s). Furthermore, since |φft(ctn)| ≤ |φf0(cn)|, we have that

κ̂ft(c
t
n) ≤ κ̂f0(cn)

for all choices of spinning parameter t. Then, since |φt(ctn)| < |φft(cti)| for i < n, we

know that κft(c
t
n) = |λ`ki|. In particular, κft(c

t
n) is a constant function in t for our

choice of spinning path. Therefore, κft(c
t
n) > κft(ci) for i < n, and so each spinning

image ft is in the subset W0 of parameter space.

Lemma 11.4. There exists g ∈ W (f0) with φg(cn) = 0.

Proof. For each m, consider hm = Spin1(f0, α
m). We will show that the limit G =

limm→∞ hm exists, and that this limit is exactly the map g we are looking for. This

follows almost immediately from Theorem 1.3 in [32]. The only difference is that we

are spinning along a curve γ in the opposite direction as the authors in [32], and the

proof of Theorem 1.3 goes through under this modification. That is, we get that if

G exists,

1. G has an attracting fixed point with multiplier λ, and
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2. There exist embeddings Jm : U → Ĉ converging to an embedding J , where U

is a forward-invariant neighborhood in the attracting basin of f0 that contains

c1, . . . , cn−1, so that Jm ◦ f0 = hm ◦ Jm, and J ◦ f0 = G ◦ J .

In particular, G has an attracting fixed point with critical points c′1, . . . , c
′
n at-

tracted, and

φG(c′i) = φ(ci) and κG(c′i) = κ(ci)

for i < n. Furthermore, since φhm(cn) = λmφf0(cn) and the latter converges to 0 as

n→∞, we see that

φG(c′n) = 0.

Finally, as we saw in Lemma 11.3, κhm(chmn ) = κf0(cn). Therefore, G ∈ W (f0), as

desired.

Since f 7→ φf (cn) provides local coordinates on X(f0) in a neighborhood of g, we

have a neighborhood Ug ⊆ W (f0) centered at g where f 7→ φf (cn) is a homeomor-

phism Ug → D. We can extend this homeomorphism radially to a neighborhood of

W (f0) that contains the maps ft.

Corollary 11.5. For γ as above, where

f1 = Spincn,1(γ, f0),

we have that f0 = f1 ∈ W (f0).

Proof. The images satisfy φf0(cn) = φf1(cn) and the map f 7→ φf (cn) is injective.



101

Recall that we have identified potential dynamical mapping classes

hm = Push(p1, α)m Push(p1, β1) Push(p1, α)−m ∈ PMCG(Tf0)

Corollary 11.6. The element hm is an element of PMCG(f0).

Proof. With f0 as described above, consider the curve γ = αmβ1α
−m. By Theorem

11.2, we get that f1 = Spincn,1(f0, γ) induces an element h̃m ∈ PMCG(f0). Fur-

thermore, by Proposition 8.2, h̃m is exactly equal to hm on the level of the quotient

torus.

Let H ∼= F∞ be the free group generated by {hm}m>0. In particular,

H ⊆ PMCG(f0) ↪→ PMCG(Tf0).

Lemma 11.7. The subgroup H ⊆ PMCG(f0) is contained in PDynn(f0).

Proof. The map Spincn,t(f0, γ) fixes the multiplier of the attracting cycle, and so for

all h ∈ H, Λ(h) = c for some constant c ∈ D∗ (in fact, c = λ0). Therefore,

Λ∗(H) = id

and so H ⊆ ker(Λ∗).

Lemma 11.8. The group H is a subgroup of Pn(Σ1)/Z with generators given by

{hm := am1 b1a
−m
1 }m≥0



102

Proof. Consider the map PDynn(f)→ Pn(Σ1)/Z given by the diagram

PDynn(f) �
� ιf //

��

PMCG(f)

Φ∗
��

Pn(Σ1)/Z �
�

ιΣ
// PMCG(Σ1,n)

as in Equation 11.1. We have seen that

Φ∗(Spincn,1(α, f0)) = Push(p1, α)

and

Φ∗(Spincn,1(β, f0)) = Push(p1, β1).

Furthermore, the braid a1 is sent under the inclusion ιΣ to the point-push Push(p1, α)

and b1 is sent to Push(p1, β1) under our labeling conventions (see, for example, Figure

11.3), so the result follows.

Recall that we defined the notion of a-degree tuple of a braid σ ∈ Pn(Σ1)/Z, and

that PDynn(f0) ⊆ Pn(Tf0)/Z.

Proposition 11.9. Every element of PDynn must have a-degree tuple (0, . . . , 0) ∈

Zn/∆.

Proof. Let b be a braid in PDynn(f0), realized as a word in the generators of Pn. We

can lift this braid under the quotient map Ψ to the space L∗. Suppose by means

of contradiction that b does not have a-degree tuple (0, . . . , 0). That is, there are

two indices (without loss of generality, say 1 and 2), so that the total degree of a1

is different than the total degree of a2. Notice that under the lift via Ψ, each of the
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associated trajectories of generators {bi} ∪ {Ti,j} lift to closed curves in L∗, whereas

any lift trajectory associated with each ai is not a closed curve. Therefore, we see

that the critical images φft(c
t
1), φft(c

t
2) ∈ L∗ associated with the marked points p1

and p2 on the torus, vary over the continuous deformation along the parameter space

path, in such a way that

φf0(c0
1)/φf0(c0

2) 6= φf1(c1
1)/φf1(c1

2).

Therefore, even after accounting for the normalization of the linearizing functions

φft , the dynamical properties of the critical points of the maps f0 and f1 differ.

Specifically, there is no normalization of φf0 and φf1 so that φf0(c0
1) = φf1(c1

1) and

φf0(c0
2) = φf1(c1

2). In particular, this means we can’t have f0 = f1 up to conformal

conjugacy, contradicting the assumption that b is a dynamical braid.

For σ ∈ PDynn(f), let dega(σ) ∈ Zn/∆ denote the a-degree tuple of σ, and let

0 := (0, . . . , 0) ∈ Zn/∆.

Recall that

PMCG(f) ∼= PDynn(f) o Z.

We will prove, as the main theorem in this chapter, the following.

Theorem 11.10. The group PMCG(f) is an infinitely generated subgroup of PMCG(Σ1,n).

Over the course of the proof, it will become clear that the dynamical braid group

PDynn(f) is infinitely generated. However, is it not true in general that the semidi-
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rect product of an infinitely generated group with Z is itself infinitely generated, so

we need to dive deeper into how Z acts on PDynn(f).

...

b

b1
bn

a1 an

a1

b1

bn

an

b

αβ

Figure 11.3: The action of Z on PDynn via the lift b

Recall that Z ∼= π1(D∗) ⊆ MCG(Σ1,1) is generated by the Dehn twist Tβ. We

define a group homomorphism ϕ : Z→ Aut(PDynn(f)) by

ϕ(Tβ) 7→ (h 7→ TbhT
−1
b )

where b is the curve (with respect to the labeling of punctures) as shown in figure

11.3. Notice that Forget∗(Tb) = Tβ, and so this homomorphism does in fact realize

PMCG(f) = PDynn(f) oϕ Z.

We write

ϕβ := ϕ(Tβ).

Let G1 be a generating set of PDynn(f), and R1 the associated relations. Then we

can realize PMCG(f) as having generators G1 ∪ {Tβ} and relations R1 ∪ R2, where
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elements of R2 are of the form

TβgT
−1
β = ϕβ(g)

for g ∈ G.

That is, we can write

PMCG(f) = 〈G1 ∪ {Tβ}|R1 ∪R2〉.

As we have seen previously, the degree of the ai-generators of the torus braid group

play a significant role in the discussion of dynamical braids. While that a1-degree

of an element of Pn/Z is not well-defined, we can make the following definition with

the a-degree tuple in mind.

Definition 11.11. The relative a1-degree of an a-degree tuple (d1, . . . , dn) is defined

to be

degrela1
= max

i
{d1 − di}.

For example,

degrela1
(1, 0, 0, 0) = 1

and

degrela1
(−1, 1, 0, 0) = −1

Lemma 11.12. The relative a1-degree degrela1
is well-defined in PMCG(f), and

degrela1
(w) = 0

for all w ∈ G1 ∪ {Tβ} ∪ R1 ∪R2.
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Proof. Certainly degrela1
is well-defined in PDynn(f), since the a-degree tuple is well-

defined in this setting. To pass from PDynn(f) to PMCG(f), we first calculate ϕβ(h)

for the generators of Pn(Σ1,n).

We do this in three parts, one for generators of the form bi, one for generators of

the form Tij, and one for generators of the form ai.

The first two calculations are straightforward. Notice that the curve b does not

intersect any of the curves bi or Ti,j, and therefore

TbhT
−1
b = h

for each such element. Thus, we have

ϕ(Tβ)(bi) = bi

and

ϕ(Tβ)(Ti,j) = Ti,j.

On the other hand, the curves ai intersect the curve b for each i. To calculate

ϕ(Tβ)(ai), notice that by Lemma 4.4, we have that

TbaiT
−1
b = Push(Tb(ai)).

But we also have that

Tb(ai) = aibiTi,n

(see Figure 11.4), so that

ϕ(Tβ)(ai) = aibiTi,n
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...

Tb(a1)

...

a1b1T1n

Figure 11.4: The action of φ(Tβ) on ai

Since PDynn(f) ⊆ Pn(Σ1,n), we can write any word g ∈ PDynn(f) as some finite

product of generators g = h1 . . . hk with hi ∈ Pn(Σ1,n). Then

TbgT
−1
b = Tbh1T

−1
b Tbh2T

−1
b . . . TbhkT

−1
b ,

which preserves relative a1-degree.

We know already that the same is true for elements of R1, since elements of R1

are products of elements of the braid relations in Pn, which also preserve relative a1-

degree. This shows that degrela1
is well-defined. Finally, we’ve seen that the generators

of PDynn(f) must have relative a1-degree equal to 0, and the single extra generator

Tβ clearly satisfies the same.

Lemma 11.13. The relative a1-degree is subadditive. That is, for w, x,

degrela1
(wx) ≤ degrela1

(w) + degrela1
(x).

Proof. Certainly we have that

dega(wx) = dega(w) + dega(x).
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Suppose that

dega(w) = (dw1 , . . . , d
w
n ) and dega(x) = (dx1 , . . . , d

x
n)

so that

dega(wx) = (dw1 + dx1 , . . . , d
w
n + dxn).

Consider

(dw1 + dx1)− (dwj + dxj ).

We have that dw1 − dwj ≤ degrela1
(w) and dx1 − dxj ≤ degrela1

(x), and therefore

(dw1 + dx1)− (dwj + dxj ) ≤ degrela1
(w) + degrela1

(x)

and the subadditivity follows.

Definition 11.14. The leading a1-degree of a word w ∈ FGB (the free group in the

generators of the braid group) is defined to be

degleada1
= max

w1:w=w1w2

degrela1
(w1).

Lemma 11.15. If w, x ∈ FGB with degrela1
(w) = degrela1

(x) = 0 and degleada1
(w) >

degleada1
(x) > 0, then the leading a1-degree satisfies

degleada1
(wx) = degleada1

(w).

Proof. Let Lw = degleada1
(w) and Lx = degleada1

(x). Choose w1 and x1 so that w =

w1w2, x = x1x2 and degrela1
(w1) = Lw and degrela1

(x1) = Lx. Then degrela1
(w2) = −Lw

and degrela1
(x2) = −Lx. We can write

wx = w1w2x1x2
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and note that since Lx < Lw, we must have that

degrela1
(w2w1) ≤ −Lw + Lx < 0

by Lemma 11.13. Now consider a combination

wx = w′1w
′
2

so that degleada1
(wx) = degrela1

(w′1). Certainly we cannot have that w′1 is a subword

of w1, since we could always expand w′1 to w1 and increase the relative a1-degree,

contradicting maximality of degrela1
(w′1). On the other hand, since degrela1

(w2w1) < 0,

if w′1 contained w1 as a subword, we would have

degrela1
(w′1) < degrela1

(w1) = Lw.

Again, this contradicts maximality. Therefore, we must have w1 = w′1 and

degleada1
(wx) = Lw.

Lemma 11.16. The leading a1-degree of words that generate the relators R1 and R2

are bounded.

Proof. Since R1 and R2 are finitely generated by words with relative a1-degree 0,

this follows from Lemma 11.15.

Proof of Theorem 11.10. By Lemma 11.16 there exists some M <∞ so that

degleada1
(r) ≤M



110

for all r ∈ R. Let m1,m2 ≥ M with m1 6= m2. A relation between hm1 and hm2

would look like

hm1r1 = hm2r2

with r1, r2 ∈ R. But then by 11.15,

degleada1
(hm1r1) = m1 6= m2 = degleada1

(hm2r2).

Therefore, there are infinitely many elements of H with no relations in PMCG(f),

and so PMCG(f) is infinitely generated.

This now gives us the tools needed to prove Theorem 1.6.

Proof of Theorem 1.6. First, suppose that f has an attracting cycle a with at least

two grand orbits containing critical points in the basin. We choose a base map f0 ∈

M∗(f) and a labeling of critical points satisfying the conditions in Subsection 11.1,

so that PMCG(f0) ∼= PMCG(f). Then by Theorem 11.10, PMCG(f0) is infinitely

generated.

On the other hand, suppose f has attracting cycles a1, . . . ak, each with a single

grand orbit containing a critical point in the corresponding basin Ba1 , . . .Bak
. Then

by Corollary 7.5, PMCG(f) is finitely generated by Dehn twists, with one Dehn twist

corresponding to each attracting cycle.



CHAPTER XII

Other cubic components

Recall that in Chapter IX we completely characterized the mapping class group

of a generic cubic polynomial with an attracting fixed point in the setting where both

critical points were in the immediate basin of the attracting fixed point. Intuitively,

many of the same ideas should hold for cubic polynomials a fixed point with multiple

attracting basin components, and we extend this calculation here.

Notice that this extension corresponds to choosing a base map in one of the

components A of our parameter slice as classified in Chapter IX.

In fact, in a lot of ways, the calculations in this setting are easier, since we

avoid the ambiguity in choosing a marking when both critical points are on the

same linearizing potential in the immediate basin of an attracting fixed point. In

particular, a MCG-generic cubic polynomial with an attracting fixed point with

multiple basin components comes with a natural marking of critical points, via the

following simple result.

Lemma 12.1. Let f be a MCG-generic cubic polynomial with attracting fixed point

111
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a so that the attracting basin A is disconnected. Then there is exactly one critical

point in the immediate basin of f .

Proof. We have seen in Lemma 5.1 that the immediate basin A0 of an attracting

cycle must contain at least one critical point. On the other hand, suppose that

both critical points of f are contained in A0. Then f(A0) ⊆ A0 and f : A0 → A0

would have degree 3. Since f is a degree 3 map, we must have that f−1(A0) ⊆ A0.

Therefore, every point attracted to a must be in the immediate basin A0 — that is,

A = A0.

We will refer to the critical point in A0 as the preferred critical point.

The extra machinery introduced in this chapter, much of it adapted from [29], is

applied to be able to calculate the mapping class in full generality, independent of

the dynamics with which the non-preferred critical point maps into A0.

As in Chapter IX, we establish a connection between the hyperbolic components

of our parameter space and the parameter space of a quadratic polynomial. To do

this in full generality for every hyperbolic component, we use the notion of mapping

schemes developed in [29].

12.1 Mapping schemes

Following [29], the full mapping scheme Sf associated to a hyperbolic rational

map f is

1. A set of vertices {sU}U∈U where U is the set of Fatou components containing a
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critical or post-critical point,

2. A set of weights {w(sU)}U∈U where w(sU) is the number of critical points in U ,

counted with multiplicity, and

3. A map Ff : |U| → |U| that takes sU to sf(U).

The reduced mapping scheme Sf is closely related, and is given by

1. A set of vertices {sU}U∈U where U is the set of Fatou components containing a

critical point,

2. Weights {w(sU)}U∈U where w(sU) is the number of critical points in U , counted

with multiplicity, and

3. A map F f : |U| → |U| that takes sU to sV , where V = fk(U) is the first Fatou

component to contain a critical point of f .

Let H be a cubic hyperbolic component that does not contain the map z 7→ z3.

In this special case, each f ∈ H has a full mapping scheme of the following form:

· // · // . . . // · // · dd

where the first and last vertex have weight 1 and the rest have weight 0.

Furthermore, the reduced mapping scheme of each such component is identical,

namely

· // · dd

where both vertices have weight 1.
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12.2 Blaschke products

Recall that for each point a ∈ D, there is exactly one map βa : D→ D so that

1. βa is a Möbius transformation of the Riemann sphere Ĉ that maps D onto itself,

2. βa(a) = 0, and

3. βa(1) = 1.

It can be seen that βa has the form

βa(z) =

(
1− a
1− a

)
z − a
1− az

.

A Blaschke product is a map β : D→ D of the form

β(z) = ξβa1(z) . . . βad(z),

where |ξ| = 1. Notice that in this form, ξ = β(1). Blaschke products are exactly the

holomorphic self-maps of the disk. In particular, we have the following.

Lemma 12.2 (c.f. [29]). Every proper holomorphic map from D to D can be written

uniquely as a Blaschke product. Furthermore, these maps extend continuously to D.

Again following [29], we associate to each mapping scheme a model space of

Blaschke products. But we work in a much more specific setting, and use slightly

different normalizations. We first discuss these normalizations.

Definition 12.3. A proper holomorphic map β : D → D is 1-anchored if β(1) = 1,

is fixed point centered if β(0) = 0, and is critically centered if the critical points
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c1, . . . , cd−1 satisfy

c1 + · · ·+ cd−1 = 0.

In the setting we are working in, all our Blaschke products will be either degree 1

or degree 2. Notice that the only 1-anchored, fixed point centered Blaschke product

of degree 1 is the identity. Also, every Blaschke product has exactly one fixed point

in D, and so a fixed point centered map has that unique fixed point at 0. Finally, a

degree 2 Blaschke product has exactly one critical point in D, and therefore a degree

2 critically centered Blaschke product is exactly one whose unique critical point is

at 0.

Definition 12.4. We associate to the mapping scheme S with |S| = n the model

space BS,1/2 consisting of proper holomorphic maps

β : {0, . . . , n} × D→ {0, . . . , n} × D

where

β(i, z) = x(F (i), βi(z))

where F (i) = i + 1 if i < n and F (n) = n. We require that each βi is 1-anchored.

Furthermore, if vertex i has weight 0, we require that βi is the identity map. If vertex

i is periodic, (that is, if i = n), then βi is fixed point centered and that fixed point

has multiplier 1/2, and if vertex i is preperiodic with weight w > 0 (that is, if i = 0),

then βi is critically centered.

These definitions are constructed to mirror cubic polynomials in the parameter
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slice F1/2 as constructed in Chapter IX. Recall that in Chapter IX, we arbitrarily

chose our favorite multiplier λ = 1/2 ∈ D∗ with the understanding that analogous

statements hold for other choices of λ ∈ D∗ due to the fibration in 9.1. We do the

same in this setting, choosing to define and investigate the model space BS,1/2, with

the understanding that statements will hold for an analogous slice BS,λ for λ ∈ D∗.

In fact, we will show that maps in the model space BS,1/2 exactly correspond to cubic

polynomials in F1/2 with both critical points attracted to the fixed point at 0.

Lemma 12.5. There exists a unique 1-anchored, fixed point centered degree 2 Blaschke

product βλ with multiplier λ = 1/2 at 0, and every Blaschke product with fixed point

with multiplier 1/2 is uniquely conjugate to βλ.

Proof. Any degree 2 1-anchored, fixed point centered Blaschke product has the form

β(z) = ξz
z − a
1− āz

where a ∈ D and ξ = 1−ā
1−a . It is easy to check that there is then a unique value of a

so that β′(0) = 1/2. This map is given by

βλ(z) = z
z + 1

2

1 + 1
2
z̄
.

Now let β be a degree 2 Blaschke product with multiplier 1/2 at its fixed point.

Clearly conjugating by a Möbius automorphism of the disk will not change that mul-

tiplier. Furthermore, since β has degree 2, there is a unique Möbius automorphism

sending the fixed point z0 ∈ D to 0 and the (unique) fixed point on the boundary

∂D to 1. Therefore, β must be uniquely conjugate to βλ.
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We now discuss degree 2 critically centered Blaschke products.

Lemma 12.6. Let β be a degree 2 Blaschke product and let z1 ∈ ∂D with β(z1) = 1

(note that there are two choices of such z1). Then there exists a unique Möbius

automorphism h of D so that h(1) = z1 and β ◦ h is critically centered.

Proof. The map h must send critical points of β ◦h to those of β. Since β has degree

2, it has exactly one critical point, say at c. Then we require h(0) = c and h(1) = z1,

uniquely determining the map h.

Definition 12.7. A boundary marking q for a map β ∈ BS,1/2 is a function {0, . . . , n}× →

{0, . . . , n} × ∂D so that

q(F (i)) = β(q(i))

for all i ∈ {0, . . . , n}.

Note that this is coming directly from Definition 4.12 in [29]. However, in our

greatly restricted setting, we can simplify the notion of a boundary marking drasti-

cally. For the periodic vertex n of degree 2, q(n) must be a fixed point of βn on ∂D,

and therefore q(n) = 1. This in turn means that for the preceding weight zero ver-

tices where βi is the identity, we also must have q(i) = 1. So in our case, a boundary

marking will be a choice z1 ∈ ∂D so that β0(z1) = 1. There are two such choices.

From this observation and the proceeding two lemmas, we immediately get the

following theorem.
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Theorem 12.8. Let β : {0, . . . , n} × D → {0, . . . , n} × D such that (i × D) →

(F (i)×D) by a degree 2 Blaschke product if i = 0, n and a degree 1 Blaschke product

otherwise. Let q be a boundary marking for β. Then we can find a unique auto-

morphism h : {0, . . . , n} × D → {0, . . . , n} × D so that h−1 ◦ β ◦ h ∈ BS,1/2 with

h(i, 1) = q(i).

We also want to understand the topology of BS,1/2. To do so, we need the following

lemma.

Lemma 12.9. For every v ∈ D, there exists a unique degree 2 critically centered

Blaschke product β so that β(1) = 1 and v is the critical value of β.

Proof. The existence of such a map comes from the result (see, for example, Theorem

16 in [30]) that given n− 1 points counted with multiplicity, there exists a Blaschke

product of degree n realizing those points as its critical values. The uniqueness then

follows from the fact that two maps β1 and β2 satisfying the conditions of the lemma

agree at 3 points.

From this, we get the following.

Theorem 12.10 (c.f. [29], Lemma 4.11). The space BS,1/2 is homeomorphic to an

open cell of real dimension 2

Proof. We’ve seen that there is only one possible map for vertices {1, . . . , n} with

our normalization conditions, so the dimension of BS,1/2 is determined completely

by the dimension of degree 2, 1-anchored, critically centered Blaschke products —
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that is, by β0. But this space has dimension 2 by Lemma 12.9, parametrized by the

critical value β0(0).

To begin to establish the relationship between our parameter slice component H

and the space BS, we notice that restriction of a map f ∈ H to the relevant Fatou

components, after conjugation, gives us a map in BS,1/2. To talk more about this

map, we need a notion of “critically minimal” in the slices in which we are working.

Both maps f ∈ H and maps β ∈ BS,1/2 can’t be critically finite, since they have a

critical point of multiplier 1/2, which must attract a critical point with no critical

orbit relations. However, each such map has a second critical point, which we will

refer to as the flexible critical point.

Definition 12.11. A map f ∈ H or β ∈ BS,1/2 is called critically minimal if the

size of the forward orbit of the flexible critical point of the map is minimal over all

the maps in the space.

Lemma 12.12. The space BS,1/2 has a unique critically minimal map, given by

β0(z) = z2. The size of the orbit is exactly equal to the number of preperiodic vertices

in the mapping scheme.

Proof. The flexible critical point c of β can have finite forward orbit exactly if β0(c)

is equal to a preimage of 0 under βλ (since each βi is equal to the identity). The

minimal way in which this can happen is, of course, if β0(c) = 0. But β0 is critically

centered, and so c = 0. This implies 0 is a critical point of β0 with multiplicity 2,

and therefore β0(z) = z2.



120

Let H1/2 be the locus of H where each map has multiplier 1/2 at the attracting

fixed point. That is, H1/2 is one of the smaller orange connected components in

Figure 9.1.

We now establish a homeomorphism between H1/2 and BS,1/2. This will immedi-

ately give us that H is a topological 2-cell. More importantly, though, we will use

this map to establish a homeomorphism between H1/2 and the filled Julia set of a

quadratic polynomial, which will in turn let us talk about mapping classes.

The discussion that follows in a specific application of a number of the results in

Section 5 of [29].

We have a map restr : H1/2 → BS,1/2 given by restricting f : Ĉ→ Ĉ to its Fatou

components containing a critical point (and their forward images). We let

βf := restr(f).

We get the following.

Theorem 12.13 (c.f. [29], Theorem 5.1). The map restr : H1/2 → BS,1/2 is a dif-

feomorphism that sends f to the map βf that is conformally conjugate to f restricted

to the relevant Fatou components.

We use Theorem 12.13 to make the correspondence between parameter and dy-

namical space.

Theorem 12.14. The parameter component H1/2 is homeomorphic to BQ, the inte-

rior of the filled Julia set KQ for the quadratic polynomial Q(z) = z2 + 1
2
z.
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Proof. Recall that by Theorem 12.10, BS,1/2 has coordinates given by the critical

value β0(0) of β0. In particular, we have a homeomorphism BS,1/2 → D given by

β 7→ β0(0). Finally, let R : D → KQ denote the map that conjugates βλ to Q|KQ .

Thus, we construct the map h : H1/2 → BQ via the composition

H1/2 restr // BS,1/2 β 7→β0(0) // D R // BQ

and see that this gives a homeomorphism.

To use this theorem to say something about the mapping class of some f ∈ H1/2,

we need some properties of this homeomorphism. In particular, as before, we relate

the sets P and O in H1/2 to preimages of 0 and −1/4 (the fixed point and the critical

point) in KQ (compare with the statement of Lemma 9.6).

Theorem 12.15. Let vf denote the flexible critical value of a map f ∈ H1/2, and

let v0 denote the critical value in the periodic component. Recall that Q has critical

point cQ at −1/4 and critical value vQ at −1/8. The homeomorphism h : H1/2 → BQ

has the following properties:

1. If fn(vf ) = 0, then Qn(h(f)) = 0.

2. If fn(v0) = fm(vf ), then Qn(−1/8) = Qm(h(f)).

In other words, h takes cubic polynomials with critical orbit relations to points in KQ

in the critical orbit of Q.

Proof. This follows via the fact that all conjugacies involved preserve critical points

and orbits.
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To better understand h, we prove the equivalent of Lemma 4.5 in [15]. Recall

that we have quotient maps ΨQ : B∗Q → TQ with TQ a once-punctured torus and

Ψf : B∗f → Tf with Tf a twice-punctured torus.

Theorem 12.16. The following diagram commutes:

BQ

ΨQ !!

H1/2hoo // X

g 7→Tg
��

TQ //M∗(Tf )

Proof. Fix f ∈ H1/2. Let A0 be the immediate basin of 0, and let p ∈ A0 be the first

image of the flexible critical point that lands inA0. Let v denote the restricted critical

value of f , and recall that −1/8 is the unique critical value of Q. In constructing

the map h, we get a conformal isomorphism

ξ : A0 → BQ

given by restriction of f to A0 which gives a degree 2 Blaschke product, followed by

the Riemann map R. Notice that this map sends v to −1/8, and sends p to h(f).

Associated to A0 we get the twice-punctured torus Sf coming from modding out

by the dynamics. But now, the isomorphism ξ descends to an isomorphism

Tf → TQ \ ΦQ(h(p))

which gives us the commutative diagram above.

Again following [15], we denote

ν = ΨQ ◦ h.
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The map ν lets us relate representatives of π1(H1/2, f) to curves on the punctured

torus TQ by using what we know about the structure of the filled Julia set KQ.

Now that the correspondence has been established, the calculations of dynamical

mapping classes proceed directly as in Section 4 in [15].

Specifically, we see that π1(H1/2, f) is generated by

1. One based loop enclosing each puncture coming from an orbit relation between

the two critical points, and

2. One based loop enclosing each puncture coming from one of the critical points

(specifically, the flexible critical point) mapping onto the attracting fixed point.

For an illustration of this, see Figure 12.1

Figure 12.1: Loops of type 1 (in green) and type 2 (in blue) in a component H1/2.

We can then follow the analysis in [15] to get a similar result. We summarize the
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procedure here, and refer the reader to the original paper for more detail.

By choosing representatives of these generators inH1/2 and looking at their images

under the map ν : H1/2 → Tf , we see that the images of each of these generators is

either a point-push or the square of a point-push.

We can then use the fiber structure

H1/2 ι //H f 7→λa // D∗

to get the analogue of Theorem 4.7 in [15].

Theorem 12.17. For f ∈ H, the pure mapping class group PMCG(f) ↪→ PMCG(Σ1,2)

is infinitely generated, and can be expressed as a product

PMCG(f) = π1(H1/2, f) o Z

with generators given by

1. A Dehn twist around a simple closed curve β in Σ1,2 (for the Z factor), and

2. Countably many generators (for the π1(H1/2, f)) given by

(a) Loops around orbit relations of the form fn(vf ) = v0, which correspond to

the square of a point-push in PMCG(Σ1,2),

(b) Loops around orbit relations of the form fn(vf ) = fm(v0) with n,m ≥ 1,

and loops around orbit relations of the form fn(vf ) = fm(vf ) with n 6= m,

both of which correspond to a point-push in PMCG(Σ1,2).

As in Chapter IX, generators in terms of the curves around which the point-pushes

are defined could be explicitly characterized as elements in π1(Σ1,2) if desired.
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12.3 A map of parameter space

Consider the parameter space slice F1/2 as described in Chapter IX. We have seen

Figure 12.2: A closeup of a baby Mandelbrot set with attached components in a slice of cubic
parameter space.

that the orange components in Figure 12.2 correspond to the intersection of the locus

f ′(0) = 1/2 with the set of cubic maps with both critical points attracted to 0. We

have also seen that the unbounded component in this figure corresponds to a slice

of the component H0 that contains the map z 7→ z3 — that is, the cubic hyperbolic
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component with both critical points in the same immediate basin of the attracting

fixed point. Each of the other components has a full mapping scheme of the form

· // · // . . . // · // · dd.

Therefore, to each such component, we can associate an integer n ≥ 1 representing

the number of non-periodic vertices of its mapping scheme. In particular, n encodes

the number of iterations before the flexible critical point (necessarily not in the

immediate basin) gets mapped into the immediate basin of 0. For a component H,

let χ(H) = n be this association.

Moreover, notice that in Figure 12.2, there are a number of mini Mandelbrot sets,

each with hyperbolic components “budding off” them at various angles. We make

this precise, and calculate χ(H) for each such component.

To do so, we first discuss a parameterization of the boundary of a component

H1/2.

Recall that given a slice H1/2, we have a homeomorphism h : H1/2 → K̊Q (or to

K̊Q \ UQ if we are working with the component H1/2
0 ).

12.3.1 External rays

The boundary JQ = ∂KQ has a natural parameterization via R/Z coming from the

external angles of the polynomial. That is, recall that Q is given by Q(z) = z2+1/2z.

There is a Böttcher coordinate ϕ : Ĉ \ D → Ĉ \KQ that conjugates Q to the map

z 7→ z2 on the basin of ∞. Radial rays in Ĉ \ D can be pulled back under the
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Figure 12.3: The Böttcher map and external rays

biholomorphic map ϕ to rays

Rt = {ϕ−1
(
re2πit

)
: r ∈ (1,∞))}.

Furthermore, in this setting the limit

lim
r↘1

ϕ−1
(
re2πit

)
∈ KQ

exists (the ray lands) for every t ∈ R/Z, and furthermore, the map R/Z that sends

each angle to its landing point on KQ is a homeomorphism.

Notice that this correspondence allows us to parameterize the boundary of any

component H1/2 by angles in R/Z.

Lemma 12.18. If Pt ∈ ∂H1/2 has a parabolic cycle, then t is periodic under the

doubling map on R/Z.

Proof. Choose a polynomial P ∈ ∂H1/2 for some component H1/2 such that P has a

parabolic cycle. Let {pi} be some sequence of polynomials so that each pi ∈ int(H1/2),
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and so that the points in the slice F1/2 corresponding to the polynomials pi converge to

the point corresponding to P . Since each pi ∈ int(H1/2), under the homeomorphism

h : H1/2 → KQ, each pi gets sent to h(pi) ∈ KQ, and the sequence {h(pi)} converges

to the point h(P ) on the boundary of KQ. To show that h(P ) corresponds to an

angle that is periodic under the doubling map, we have to show that h(P ) ∈ JQ is

periodic under Q. To see this, let b = {b1, . . . , bk} denote the parabolic cycle of P .

Any perturbation of P that lies inside H1/2 has a single attracting cycle with both

critical points attracted to it, and so under this perturbation, the parabolic cycle b

must split into two repelling cycles. We see that the flexible critical point ci+ of the

polynomial pi tends to this associated repelling cycle. Therefore, the images h(pi)

converge to a point in JQ that is a cycle. In other words, h(P ) is periodic.

We will use this to prove the following.

Theorem 12.19. For each Pt ∈ ∂H1/2 with a parabolic cycle, the component H1/2

is attached to a baby Mandelbrot set Mt at Pt.

For the proof, we will need to make use the straightening theorem, which in turn

requires the notion of a polynomial-like map. These classical results are presented

here.

12.3.2 Polynomial-like maps and straightening

The results in this subsection can be originally attributed to [12]. The exposition

and definitions of objects involved are adapted from [13].
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Definition 12.20. Let U, V ⊆ C be topological disks satisfying U ⊆ V . A holomor-

phic map f : U → V is called polynomial-like of degree d if f is proper, and every

point in V has d preimages under f (counted with multiplicity).

A polynomial-like map has a notion of a filled Julia set, much like that of a

polynomial.

Definition 12.21. A polynomial-like map f has filled Julia set Kf given by

Kf = {z ∈ U : fn(z) ∈ U for all n} =
⋃
n≥0

{f−n(U)}

At its core, the straightening theorem says that every polynomial-like map of

degree d can be “straightened” via conjugacy to a polynomial of degree d. The

notion of straightening comes from the idea of hybrid equivalence.

Definition 12.22. Two polynomial-like maps f : U → V and g : U ′ → V ′ are hybrid

equivalent if the are quasiconformally conjugate via a map ϕ satisfying ∂ϕ = 0 almost

everywhere on ∂Kf .

Notice that if the Julia set Jf = ∂Kf has measure 0, this notion just requires that

the conjugacy be holomorphic on the interior of Kf .

Theorem 12.23 (The Straightening Theorem, [12]). If f is a polynomial-like map

of degree d, there exists a polynomial P of degree d so that f is hybrid equivalent to

P . If Kf is connected, then P is unique up to affine conjugation.

The straightening theorem can be applied to families of quadratic-like maps to
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understand why parameter spaces of higher-degree maps contain copies of the Man-

delbrot set in them.

We first define the notion of an analytic family of polynomial-like maps.

Definition 12.24. Consider a collection F of polynomial-like maps {fλ : Uλ →

Vλ}λ∈Λ, where Λ is a Riemann surface. Define

U = {(λ, z) : z ∈ Uλ}

V = {(λ, z) : z ∈ Vλ},

and a map f : U → V given by

f(λ, z) = fλ(z).

Then F is an analytic family if

1. Both U and V are homeomorphic to Λ× D,

2. The projection U → Λ given by (λ, z) 7→ λ is proper, and

3. The map f : U → V is both proper and holomorphic.

If we have such an analytic family F , we can define

MF = {λ ∈ Λ : Kf is connected}.

If the family consists of quadratic-like maps, we get the following.

Theorem 12.25. Let F be a family of quadratic-like maps, and let W ⊆ Λ be

homeomorphic to a disk, with MF ⊆ W . Let ωλ be the critical point of fλ, and

assume that
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1. for each λ ∈ Λ \W , we have that fλ(ωλ) ∈ Vλ \ Uλ, and

2. as λ winds around ∂W , f(ωλ)− ωλ winds once around 0.

Then MF is homeomorphic to M via a map that is analytic on its interior.

12.3.3 Mandelbrot sets in F1/2

We now turn back to our parameter space roadmap. Specifically, we prove Theo-

rem 12.19.

Proof. By Lemma 12.18, the map Pt has a parabolic cycle. Recall that every map

in this slice has an attracting fixed point at 0 that attracts the preferred critical

point c−; however the second critical point c+ may exhibit other behavior. Take Λ

to be the connected component of the set {c ∈ F1/2 : c+ is not attracted to 0 or ∞}

that contains the parameter corresponding to Pt. Since the maps in this slice vary

holomorphically in c, the subset of cubic polynomials {fλ}λ∈Λ forms an analytic

family of quadratic-like maps (restricting the polynomials to the basins of this second

cycle). The straightening theorem then gives that Mt is homeomorphic to M.

Next, we give a procedure for finding Blaschke components in F1/2 off of a baby

Mandelbrot set Mt.

Much as in the way we parametrized the boundary of KQ using dynamical exter-

nal rays, we can catalogue and locate specific points of ∂M in terms of parameter

external rays. Specifically, it is true that

Ĉ \M ∼= Ĉ \ D.
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Let ϕM : Ĉ \M ∼= Ĉ \ D be the uniformizing map. Then once again, we can pull

back radial external rays on Ĉ \ D to Ĉ \M.

Specifically, we define

ϕM(c) = ϕc(c)

and

RMt = ϕM
(
re2πit

)
.

If limr↘1R
M
t exists, we say that the parameter ray of angle t lands at this limit point

in M. It is not known if all rays land. However, we do have the following classical

result (see, for example, [11]).

Proposition 12.26. If t is periodic under the doubling map on R/Z, then the pa-

rameter ray RMt lands on M.

We will be focusing specifically on the dyadic angles — that is, elements θ ∈ R/Z

of the form

θ =
a

2k

for some k. Notice that these are exactly the angles that are pre-fixed under doubling.

Proposition 12.26 guarantees that if θ is dyadic, then RMθ lands at a point cθ ∈M.

Now for each baby Mandelbrot set Mt, the homeomorphism between Mt and

M gives distinguished points f θt ∈ ∂Mt corresponding to the dyadic angle landing

points on M.

Theorem 12.27. If Mt is a baby Mandelbrot set whose center of its main cardioid

is a map with superattracting cycle of period p, then for each dyadic angle θ = a
2k

, the
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Figure 12.4: External rays forM, with a number of dyadic rays and their landing points highlighted.

flexible critical point of f θt has orbit type (pk+1, p), and f θt is the point of attachment

of a component H with χ(H) = pk + 1.

Proof. If the main cardioid ofMt has a superattracting cycle of period p, the straight-

ening theorem tells us that for each polynomial fMt in this baby Mandelbrot set,

fpMt
is quadratic-like on the correct restriction of domain. Specifically, the home-

omorphism h−1 : M → Mt takes maps with periodic critical orbit of period q to

maps with periodic critical orbit of period pq.

For θ = a
2k

, the map fc(θ) ∈ ∂M — that is, the landing point of the external

ray RMθ on the boundary of M — has a pre-fixed critical orbit of pre-period k + 1.

Therefore, under h−1 this gets mapped to f θt ∈ ∂Mt with pre-periodic (flexible)
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critical orbit of period p and pre-period pk + 1.

Notice that the flexible critical orbit is therefore eventually mapped onto a re-

pelling cycle, which necessarily lies on the boundary of the basin of the attracting

fixed point of f θt at 0. Therefore, f θt lies on the boundary of a hyperbolic component

Ht,k with both critical points attracted to 0. Moreover, making a perturbation of f θt

to land in the interior of Ht,k gives that the flexible critical point takes pk + 1 steps

to land in the immediate basin of 0. Therefore, χ(Ht,k) = pk + 1.



CHAPTER XIII

Parabolic fixed points

As mentioned in Chapter III, if f is a rational map with a parabolic cycle a, then

MCG(Ba, f) is a subset of MCG(Σ0,n+2), the mapping class group a sphere with n+2

punctures, where n is the number of grand orbits containing critical points in the

basin Ba.

We remark that there is a lot to be explored in the general theory of the calculation

of MCG(f) when f has a parabolic cycle, and we expect that many of the tools

developed for the case of an attracting cycle will be able to be applied for parabolic

cycles as well.

Here, we illustrate a first example in which f has a parabolic cycle and MCG(f) is

non-trivial. To do so, we work in the setting of bicritical rational maps. This setting

has the benefit that in [27], the author shows that the moduli space of all such maps

of a fixed degree is biholomorphic to C2, and constructs explicit coordinates. The

ability to work in these coordinates allows for explicit calculations of the mapping

class group.

135
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13.1 Coordinates

We parametrize a certain subset of bicritical rational maps by pairs (λ, b) ∈ D∗×C.

We first describe these maps combining ideas from [15] and [27]. In particular, fix a

degree n ≥ 2 and let f be a bicritical rational map of degree n so that the following

are satisfied:

• f has critical points c+ = +1 and c− = −1, each of local degree n

• f has a fixed point at ∞ with multiplier λ.

Proposition 13.1. Every bicritical rational map with a fixed point can be written

in such a form, and in this form the maps will have corresponding critical values

v+ = f(c+) = 1
λ
(n+ b) and v− = f = 1

λ
(−n+ b) for some b ∈ C.

For such a map f , we write f = fλ,b.

Proof. In [27], the author shows that every bicritical rational map with a fixed point

can be put in the normal form

gµ,ξ(z) =
(1 + µ+ ξ)zn + (1− µ− ξ)
(1− µ+ ξ)zn + (1 + µ− ξ)

where in this normal form the map has critical points at 0 and ∞ with local degree

n and a fixed point at 1 (c.f. [27], Theorem 2.1). Furthermore, the multiplier of the
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fixed point is given by λ = nµ. Conjugating by a Möbius transformation sending

0 7→ 1

∞ 7→ −1

1 7→ ∞

gives us the map

fµ,ξ(z) =
1

µ

(
(1 + z)n + (−1− z)n + ξ(−(1 + z)n + (−1− z)n)

(1 + z)n − (−1− z)n

)
with a fixed point at ∞ with multiplier λ, and critical points at ±1. Making the

substitution λ = nµ and b = −nξ, we get the required fλ,b, and computation shows

that

fλ,b(1) =
1

λ
(n+ b)

and

fλ,b(−1) =
1

λ
(−n+ b).

We can explicitly calculate the coordinates (X, Y ) in the moduli space of degree

n bicritical rational maps Mn
∼= C2 by using Milnor Lemma 1.7 and Corollary 2.2.

given λ and b. In particular, since X is given by the negative of the cross-ratio

ξ(c+ : c− : v+ : v−), we have that for fλ,b,

X =
(1− v+)(−1− v−)

2(v+ − v−)
= −(b+ λ− n)(b− λ+ n)

4λn
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and Y is given as a polynomial of X depending on λ whenever λ 6= 0.

Notice that this tells us that the conjugacy class of fλ,b depends only on X.

For reference, explicit formulas for fλ,b for n ≤ 4 are listed below.

n = 2 fλ,b =
1

λ
(z + b+ 1/z)

n = 3 fλ,b =
1

λ

(
3z3 + 3bz2 + 9z + b

3z2 + 1

)

n = 4 fλ,b =
1

λ

(
z4 + bz3 + 6z2 + bz + 1

z3 + z

)
Table 13.1: Some explicit examples of the parameterizations of the fλ,b for small degree

Notice that the case where n = 2 is exactly the setting in which [15] work, and

the coordinates they choose are exactly those in the table. In fact, the results in

their paper go through for general bicritical rational maps with almost no changes

using the general coordinates as above.

For such a map fλ,b, we have a dichotomy. Let Kλ,b be the filled Julia set of fλ,b,

in the sense that Kλ,b is the complement of the basin of infinity.

Theorem 13.2 (Theorem 3.1, [27]). Either Kλ,b is a Cantor set and fλ,b|Kλ,b is

topologically conjugate to the shift map, or Kλ,b is connected.

13.2 Parabolic fixed points

In this section, we focus on maps fλ,b with λ = 1. This is the space Per1(1) — the

maps (of degree n) with a fixed point of multiplier 1. The following result is proven

in [27] and will be very useful for our purposes.
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Theorem 13.3 (Theorem 4.2, [27]). The space Per1(1) is isomorphic to C. The

connectedness locus Cpar := C ∩ Per1(1) is compact, connected, and full in Per1(1),

and the shift locus Spar = Per1(1) \ Cpar is conformally isomorphic to a punctured

disk.

We will work with generic maps in the shift locus. Notice that for all f ∈ Spar,

since ∞ ∈ Jf , it cannot be the case that ∞ ∈ GO(c+) ∪ GO(c−). In other words,

the only critical orbit relations coming from maps in Spar arise from a collision in the

orbits of the two critical points. We define

S∗par := Spar \ {f : fn(c−) = fm(c+) for some m,n}.

Fix f ∈ S∗par. Then f has a parabolic fixed point at∞ with multiplier 1, and with

both critical points of f in B∞, the basin of infinity.

Recall that B∗∞ is defined to be B∞ \ (GO(∞) ∪GO(c+) ∪GO(c−)) — that is, in

this setting B∞ = Ωdis.

We then have a covering map

Ψf : B∗∞ → Ωdis/f ∼= Sf

coming from modding out by the dynamics of f , where Sf is a four-times punctured

sphere. We in turn get an induced inclusion

Ψ∗ : PMCG(f) ∼= π1(S∗par, f)→ PMCG(Σ0,4).

So we see that to understand the mapping class group of a base map f , we will

need to understand the mapping class group of a 4-times punctured sphere.
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Remark 13.4. Much as how in the case of an attracting cycle, the quotient torus has

a dynamically significant homology class of curve, in the case of a parabolic cycle

the punctures on the quotient sphere Σ0,n have dynamical distinctions. In particular,

there are two distinguished punctures in Σ0,n coming from the image of the parabolic

cycle under the quotient map. In fact, dynamical mapping class elements in Σ0,n must

fix the distinguished punctures (and the non-distinguished punctures) set-wise. It

might make more sense to think about the dynamical mapping classes here in the

setting of a noded torus (see Figure 13.1).

Figure 13.1: A sphere with two dynamically distinguished punctures (in blue), versus a noded torus.

13.3 The mapping class group of Σ0,4

The Birman exact sequence from Theorem 4.3 applied to the four-times punctured

sphere gives us the following.

1 // π1(Σ0,3, x) Push // PMCG(Σ0,4)
Forget // PMCG(Σ0,3) // 1
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Note that PMCG(Σ0,3) is trivial and so we get an isomorphism

π1(Σ0,3, x) ∼= F2 → PMCG(Σ0,4).

If we choose generators for π1(Σ0,3, x) as on the left in in Figure 13.2, under this

isomorphism they get sent to point pushes around the corresponding curves in Σ0,4.

However, notice that writing these point pushes as a product of Dehn twists, one

of the twists is trivial. Therefore, we take as generators for PMCG(Σ0,4) the Dehn

twists Tα and Tβ around the curves α and β in the right of Figure 13.2.

x

a

b

Generators of π1(Σ0,3)

x

α

β

Dehn twists as generators of PMCG(Σ0,4)

Figure 13.2: The isomorphism between π1(Σ0,3) and PMCG(Σ0,4)

13.4 The topology of S∗par

Fix a base map f0 ∈ S∗par. Notice that

π1(S∗par, f0) ∼= F∞,

the free group on countably many generators, where we can take generators to be

loops based at f and winding around each of the countably many isolated punctures
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in S∗par, plus one loop around the connectedness locus.

As in Chapter IX, we relate the parameter space S∗par to MCG(Σ0,4) using the

Birman exact sequence. In particular, let Fn be the unique degree n polynomial

with a parabolic fixed point at 0 and with a single critical point with multiplicity

n − 1. Let Bn be the parabolic basin of Pn, and let Pn be the maximal attracting

petal in Bn with Fatou coordinate φn so that φn takes Pn homeomorphically onto a

right half-plane.

In [27], in the author’s alternate proof of Theorem 4.2, he describes a map

h : Spar → Bn \ Pn.

This map is defined much as the map from the parameter space to the basin of a

quadratic polynomial as in Chapter IX. Essentially, for a map g ∈ Spar, a conjugacy

is defined between a petal in the parabolic basin for g and a petal in Bn. The map

h is then given by where this conjugacy takes the critical value of g.

Lemma 13.5 (Theorem 4.2, [27]). The map h : Spar → Bn \ Pn is a conformal

isomorphism.

Proof. The proof is exactly that found in the alternate proof of Theorem 4.2 in [27],

with the small difference that our model space is affine conjugate to the one given

in the paper.

Lemma 13.6. The map h has the following properties.
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1. The map g ∈ Spar with critical values v+ and v− has a critical orbit relation

gn(v+) = gm(v−) if and only if F n(w+) = F n(w−), where w+ is the critical

value of F and w− = h(g).

2. As g tends to ∂Spar, w = h(b) tends to the boundary of the petal ∂Pn.

Proof. Statement (1) of the lemma comes directly from the construction of the map

h. Statement (2) is proven in [27], in the alternate proof of 4.2.

Compare this result to the corresponding result, Lemma 9.6, in Chapter IX. In

particular, we again have a correspondence between our parameter space and a model

space given by the dynamics of a specific map, and this correspondence preserves

critical orbit relations. However, notice that in the setting of a parabolic fixed point,

the open subset of parameter space in which we have MCG-generic maps does not

contain punctures corresponding to maps where one of the critical points is pre-fixed.

Figure 13.3: The correspondence between parameter (left) and dynamical (right) planes when
n = 3. The petal image Pn in the dynamical plane is in grey.
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Let B∗n ⊆ Bn be given by

B∗n \ {GO(c)}.

That is, B∗n is the subset of points in the basin of 0 whose orbit never intersects the

orbit of the critical point of Pn. Then by Lemma 13.6, we see that h restricts to

h : S∗par → B∗n \ Pn.

The construction of h gives the following commutative diagram

B∗n \ Pn
h−1

//

ψPn
��

S∗par

Ψ
��

Σ0,3
puncture //M∗(Σ0,4)

where the vertical maps are covering maps coming from modding out by the dynamics

on the basin of the map in question.

This gives us an induced diagram on fundamental groups that lets us work in the

model (dynamical) space Bn \ Pn. In particular, we have that

π1(S∗par, f0) ∼= π1(B∗n \ Pn, x)

where elements of π1(S∗par, f0) ∼= PMCG(f0) ↪→ PMCG(Σ0,4) can be given by images

of point-pushes

π1(Σ0,3,ΨPn(x))→ PMCG(Σ0,4).

From this, we get the following main result.

Theorem 13.7. The pure mapping class group PMCG(f0) is an infinitely generated

free subgroup of PMCG(Σ0,4) ∼= F2 which is generated by
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• One (based) loop enclosing each orbit relation, and

• One loop enclosing the connectedness locus.

These generators correspond to point-pushes (and squares of point-pushes) around

closed curves in Σ0,4.

Proof. The idea of the proof again follows that of Theorem 4.7 in [15]. As with so

many of the results of this flavor, the setup has been done to enable us to prove

this result by understanding generators of the fundamental group of a single, simpler

dynamical picture. Consider the space B∗n \ Pn. The punctures On in B∗n come

from points whose orbits intersect the orbit of the critical point c of Pn — these

punctures form an infinite discrete set. Our choice of base point f0 ∈ S∗par gives us

a corresponding base point q0 = h(f0) ∈ B∗n \ Pn, and we can choose generators of

π1(B∗par\Pn, q0), one surrounding each of the punctures in On. We want to understand

the image of the projection ψPn(γ) of these generators {γ}.

To do so, first choose a puncture qi ∈ On satisfying Pm1
n (qi) = Pm2

n (c) for some

m1,m2 with m2 > 0. Since m2 > 0, qi is not a critical point of the coordinate φ

for Pn, and there is a punctured neighborhood Ni of qi that maps homeomorphically

under ψPn to a neighborhood of Σ0,3, and ψPn(Ni) is a punctured neighborhood

around the marked point ψPn(c) ∈ Σ0,3.

We can choose the generator γi around puncture qi so that γi projects under ψPn

to a simple closed curve in Σ0,3, and parametrized as a segment from q0 to a point

in Ni traversed forward, a homotopically nontrivial loop contained completely in Ni,
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and then the same segment traversed backward. The image ψPn(γi) is then conjugate

to a loop in Σ0,3 enclosing only the puncture ψPn(c), and by Lemma 4.4 corresponds

to a point-push in PMCG(Σ0,4).

If on the other hand, the puncture qj corresponds to a point with Pm1
n (qj) = c

for some m1 > 0, the situation is similar with a slight complication: the map ψPn :

Nj → Σ0,3 is now a 2-to-1 cover branched at qj. The same analysis shows that a

generator γj constructed as above corresponding to the square of a point-push in

PMCG(Σ0,4).

Finally, we have a single generator in π1(B∗n \ Pn, q0) coming from a loop around

the petal Pn, enclosing no other punctures in B∗n. In S∗par, this corresponds to a

loop around the connectedness locus C. Again, a choice of loop γ∗ corresponds to a

point-push around the projection ψPn(γ∗) ∈ Σ0,3.
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