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ABSTRACT

New data collection and storage technologies have given rise to a new field of

streaming data analytics, including real-time statistical methodology for online data

analyses. Modeling and analysis of streaming health datasets become increasingly

popular in the biomedical sciences and public health. Streaming data refers to high-

throughput recordings with large volumes of observations gathered sequentially and

perpetually over time. Such type of data includes national disease registry, mo-

bile health, and disease surveillance, among others. This dissertation primarily con-

cerns the development of fast real-time statistical estimation and inference for re-

gression analysis, with a particular objective of optimizing both the streaming data

storage and computational efficiency of statistical methods. Following the classi-

cal stochastic gradient descent (SGD) algorithm (Sakrison, 1965) and the seminal

work of maximization-by-part (Song et al., 2005), I develop a new regression analysis

methodology that enjoys strong theoretical guarantees, including both asymptotic

consistency and estimation efficiency, as well as fast computational speed.

The overarching objective of my dissertation is to develop a new methodology

that allows to sequentially update parameter estimates and their standard errors

along with data streams. The key technical novelty pertains to the fact that the

proposed estimation method, termed as renewable estimation in my dissertation, uses

current data and summary statistics of historical data, but no use of any historical

subject-level data. This way of data operation in producing parameter estimates

enables to optimize the steadily growing need in the space of streaming data storage

xiv



and sequential updates of repeated statistical analyses. To implement the renewable

estimation, I utilize the powerful Lambda architecture in Apache Spark to design a

new paradigm that includes an inference layer in addition to the existing speed layer.

This expanded architecture is named as the Rho architecture in the dissertation,

which accommodates inference-related statistics to facilitate sequential updating of

quantities involved in estimation and inference.

The first project focuses on the renewable estimation in the setting of generalized

linear models in which I develop a new sequential updating algorithm to calculate

numerical solutions of parameter estimates and related inferential quantities. The

proposed procedure aggregates both score functions and information matrices over

streaming data batches through some approximate sufficient statistics. I show that the

resulting estimation is asymptotically equivalent up to order 1/N in comparison to the

maximum likelihood estimation (MLE) conducted with the entirely aggregated data

once. An incremental Wald test is proposed to perform online statistical inference.

I demonstrate this new methodology on the analysis of the National Automotive

Sampling System-Crashworthiness Data System (NASS CDS) that aims to evaluate

the effectiveness of graduated driver licensing (GDL) in the USA.

The second project focuses on a substantial extension of the first project to analyze

streaming datasets with correlated outcomes, such as clustered data and longitudinal

data. I establish the theoretical guarantees for the proposed renewable quadratic

inference function (QIF) for dependent outcomes, and implement the proposed re-

newable QIF within the Rho architecture. Furthermore, I relax the homogeneous

assumption in the first project and consider regime-switching regression models with

a structural change-point. I propose a real-time hypothesis testing procedure based

on a goodness-of-fit test statistic that is shown to achieve both proper type I error

control and desirable change-point detection power.

The third project concerns data streams that involve both inter-data batch cor-

xv



relation and dynamic heterogeneity, arising typically from various types of electronic

health records (EHR) and mobile health data. This project is built in the framework

of state space models in which the observed data stream is driven by a latent state

process that may incorporate trend, seasonal, or time-varying covariate effects. In

this setting, calculating the online MLE is challenge due to the involvement of high-

dimensional integrals and complex covariance structures. In this project, I develop

a Kalman filter to facilitate a multivariate online regression analysis (MORA) in the

context of linear state space mixed models. MORA enables to renew both point es-

timates and standard errors of the fixed effects. We also apply the MORA method

to analyze an EHR data example, adjusting for some heterogeneous batch-specific

effects. The dissertation is closed with some summary remarks and future work.
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CHAPTER I

Introduction

1.1 Motivation

New data collection and storage technologies have given rise to a new field of

streaming data analytics, including real-time statistical methodology for online data

analyses. Modeling and analysis of streaming health datasets become increasingly

popular in the biomedical sciences and public health. Streaming data refers to high-

throughput recordings with large volumes of observations gathered sequentially and

perpetually over time. Such type of data has been often seen in national disease

registry, mobile health, and disease surveillance, among others. One of the defining

features for streaming data is that patient information is collected sequentially in real-

time, and in some occasions the rate of data updates may be high. Unfortunately,

most of currently available online learning methods focus only on point estimation,

prediction and classification; statistical inference is lacking in the existing arsenal,

which is essential to understand margin of error and uncertainty as part of statistical

inference in data analysis. For example, in the analysis of phase IV clinical trials with

streaming medical data, statistical inference (e.g. p-value) is needed to communicate

with the clinical community and for drug side-effects monitoring. My dissertation

aims to fill this gap of no statistical inference in regression analysis of streaming data.

My dissertation research has focused on the development of fast real-time data

1



analytics to perform estimation and inference in the regression analysis of streaming

data, in both aspects of methodology and implementation via Spark’s Lambda ar-

chitecture. Regression analysis is regarded as the most widely used statistical tool in

practice, so the proposed new methods and software in my dissertation will bring in

a new useful toolbox to handle streaming health data analysis. In this dissertation,

I plan to develop new methodologies that allow to sequentially update parameter

estimates and associated standard errors along with data streams in generalized lin-

ear models with cross-sectional data and clustered data. To implement the proposed

new methods, I will utilize the powerful Lambda architecture in Apache Spark (Bifet

et al., 2015) to design a new paradigm that includes an inference layer in addition to

the existing speed layer. This expanded architecture is named as the Rho architec-

ture in the dissertation, which accommodates inference-related statistics to facilitate

sequential updating of the quantities involved in estimation and inference over data

streams.

1.2 Statistical Challenges in Streaming Data Analyses

New technical issues arise when conventional statistical methods are applied for

real-time data streams analysis. This section discusses a list of key issues that I will

take into consideration when dealing with streaming data analysis. Despite being

impossible to make a complete list of new technical challenges related to streaming

data analysis, I present the most critical ones pertaining to regression analysis and its

applications in biomedical studies. Moreover, the proposed methods in the subsequent

chapters are going to address these listed challenges.

1.2.1 Real-time statistical inference

Since data streams arrive perpetually and are potentially unbounded in their sizes,

it is rather challenging to either store or make inquiries from cumulatively growing

2



datasets. For example, a large-scale streaming database maintained by the Scientific

Registry of Transplant Recipients (SRTR) is constantly updated, where every ten

minutes new patients are added to the transplant waiting list. And, since the mid-

2000s on average over 25,000 transplants have entered the data base yearly. Due to the

lack of suitable data analytic methods, such data gathered and updated sequentially

have been analyzed in a static fashion, which results in latency in the transition of data

to knowledge. Also, conventional data analysis approaches with static data are often

challenged by limitations in data storage and computational capacity when dealing

with data that grow fast in volumes. Both analytic and computational challenges

in the analysis of perpetually growing data call for reliable and efficient real-time

statistical methodologies that promote timely processing of such data to generate

new knowledge, so to improve clinical decision-making.

The Lambda architecture (Marz and Warren, 2015) is a real-time Big Data system

of computing and storage with a synchronized processing of batch and stream data

flows. This is the state-of-art paradigm widely used in industries to handle streaming

data storage and analysis. My dissertation will utilize this platform to implement my

newly proposed methods. The batch layer of this architecture provides accurate views

with latency by processing all the raw data, while the speed layer calculates real-time

but rough views of online data. The two views may be joined together to balance

latency and throughput, and fault-tolerance. Unfortunately, so far this powerful

architecture has ignored the need of real-time statistical inference. To address this

weakness, in Chapters II I propose an expansion, called Rho architecture, that adds

a new inference layer to compute and store inferential statistics.

1.2.2 Detection of abnormal data batches

The assumption of a fully homogeneous regression model in Project I may be vio-

lated. A sequence of streaming datasets is typically gathered by collecting individual
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data batches over time. For example, streaming datasets became available quar-

terly from the National Automotive Sampling System-Crashworthiness Data System

(NASS CDS), beginning in January, 2009. Analyzing the sequence of observational

datasets based on an assumption of a common homogeneous statistical model may

be just for a mathematical convenience. One of key complicating factors has to do

with data contamination, which presents an issue of change-point in the regression

analysis. Real-time data analysis with no quality control procedure would result in

misleading conclusions. Thus, I plan to develop some adaptive and robust proce-

dures to address such a data quality issue. Previous classical work in the field of

online change-point detection have mostly deal with the simplest case in which both

pre-change and post-change distributions have been fully specified; for example, She-

whart’s control charts (Amin et al., 1995), moving average control charts (Amin and

Search, 1991), the CUSUM procedure (Page, 1954) and the Shiryayev-Roberts (SR)

procedure (Shiryayev , 1963; Roberts , 1966), among others. For an unknown post-

change distribution, one of popular approaches is rooted in the Generalized Likelihood

Ratio (GLR) type procedure (Goel and Wu, 1971). However, GLR test statistic is

not available when a quasi-likelihood approach is used to analyze streaming clustered

data. Chapter III is devoted to the development of a new method in the framework of

quadratic inference function (QIF), to detect abnormal data batches via a score-type

test statistic for change-point detection.

1.2.3 Streaming dependence and dynamic heterogeneity

The assumption of independent data batches in projects I and II may be in-

valid in some practical studies. In some occasions, data streams may be a long time

series in nature where both correlation and dynamic changes are present. For exam-

ple, recent advances in health data collection technologies such as wearable devices

have made mobile devices to collect individual streaming data by following individ-
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ual subjects overtime. On one hand, this results in data batches that are essentially

inter-correlated, leading to increasing complexity of data dependence; and on the

other hand, data batches may not be homogeneous and there might be some quan-

tities changing over time, leading to another technical challenge in streaming data

analysis. Most of existing methods for long time series or longitudinal data anal-

ysis such as state space models have to be redeveloped to handle such data in an

offline setting (Jørgensen et al., 1999; Song , 2007). In project III, I will develop an

online multivariate regression analysis procedure that allows to sequentially update

regression analysis of serially dependent data batches. Additionally, the dynamic het-

erogeneity is modeled as a latent process, such as a stationary autoregressive process

of order 1. The proposed new version of real-time regression analysis with heteroge-

neous streaming data will enjoy fast computational speed with little loss of statistical

efficiency.

1.3 Summary of Objectives

Focusing on the key challenges presented above, I organize in this dissertation the

methodology developments as follows.

Aim 1: To establish real-time estimation and inference methodologies in gen-

eralized linear models for independent cross-sectional data and quadratic inference

functions for independent clustered data.

Aim 2: To propose an online hypothesis testing procedure to detect abnormal

data batches in the framework of change-point detection with streaming clustered

data.

Aim 3: To establish a multivariate online regression analysis method for real-time

data streams with both inter-data batch correlation and heterogeneity.

Three projects are presented to address the above specific aims, respectively, in

Chapter II, Chapter III, and Chapter IV. More details on backgrounds, literature re-
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view, existing methodology and numerical illustrations can be found in the respective

introduction sections of three chapters.
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CHAPTER II

Renewable Estimation and Incremental Inference

in Generalized Linear Models with Streaming

Datasets

2.1 Introduction

We consider a classical problem where a series of cross-sectional datasets becomes

available sequentially. Such type of data collection is pervasive in practice, which

is referred to as streaming datasets throughout this paper. Statistical analysis of

streaming datasets has recently drawn a considerable attention in the emerging field

of Big Data analytics due to the availability of modern powerful computing platforms

such as the Apache Spark (Bifet et al., 2015). The key methodology relevant to

such data analysis pertains to algorithms that allow to sequentially update certain

statistics needed in parameter estimation and inference. For example, it is known

that a statistic of sample mean may be recursively updated along a series of data

batches in which only previous sample means, instead of the entire historical subject-

level data, is needed. More specifically, consider two datasets arriving sequentially,

where D1 = (x11, . . . , x1n1) denotes the first dataset of n1 observations. Suppose one

wants to update the sample mean when the second data batch D2 = (x21, . . . , x2n2)

of n2 observations arrives. Let δ(D1) denote the sample mean for D1, which can be
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easily updated with the new data batch D2; that is,

δ(D1 ∪D2) =
1

n1 + n2

(
n1∑

i=1

x1i +

n2∑

i=1

x2i

)
=

1

n1 + n2

(
n1δ(D1) +

n2∑

i=1

x2i

)
. (2.1)

The defining feature in (2.1) is that the mean estimate from the previous data, δ(D1),

rather than the dataset D1 itself, is used in the calculation. In this paper, a statistic

that satisfies such property is named as a renewable estimator. Indeed, the recursive

operation exemplified in (2.1) works in general for many other statistics, such as sam-

ple moments and the least squares estimator in the linear model (Stengel , 1994). This

is because all these statistics take certain linear functions of data, so that a decompo-

sition similar to (2.1) between current and past data is feasible (see Section 2.3.3 for

the details). Using only summary statistics from the previous data, instead of origi-

nal historical raw data, is conceptually linked to sufficient statistic and is of critical

importance in handling Big Data, as far as computing memory and speed are con-

cerned. This strategy has been widely advocated in the literature of online learning,

incremental analytics, matrix or tensor decomposition and classification, and online

Bayesian inference; see Bucak and Gunsel (2009); Cardot and Degras (2015); Nion

and Sidiropoulos (2009); Qamar et al. (2014), just to name a few.

Whether or not, and if so, to which extent, does the above renewability property

seen in (2.1) for the case of sample mean hold in general? For example, can the

maximum likelihood estimation (MLE), one of the most important statistical estima-

tion and inference methods, may be updated sequentially in a similar fashion to the

renewable procedure given in (2.1)? If not, how about MLE as a sufficient statistic?

Answers to these questions are not trivial, because most of the maximum likelihood

estimators are nonlinear functions of data, and often have no closed-form expressions,

in that their MLE solutions can only be obtained by numerical iterative algorithms,

such as Newton-Raphson. In this paper, we choose the class of generalized linear
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models (GLMs) as an exemplary setting to illustrate the feasibility for an answer to

the above questions. It is known that GLMs constitute a class of nonlinear models

that play a central role in regression analysis, and the renewable estimation and in-

cremental inference developed in such context will provide a useful arsenal to perform

regression analysis of streaming datasets with both statistical and computational ef-

ficiency. In addition, in this setting of exponential dispersion models (Jørgensen,

1997), the connection between sufficient statistic and MLE may be established as

part of solutions to the above questions.

The interest in developing procedures allowing “quick” updates of parameter es-

timates along with sequentially arrived data may be dated back five decades or so.

In 1965, Sakrison (1965) proposed a seminal recursive estimation method that has

become a very popular technique, namely the well-known stochastic gradient descent

(SGD) algorithm that has been extensively used in the field of machine learning. The

SGD method is applied for a data sequence that takes a form of an open-ending set

of independent observations, yi
i.i.d.∼ f(y;θ0), drawn from a certain statistical model

f(·) with a fixed common unknown “true” parameter θ0. An estimation of parameter

θ0 may be updated sequentially by a forward updating procedure, with a single data

point yi involved at each iteration: θsgdi = θsgdi−1 + γiCi∇θ log f(yi;θ
sgd
i−1), where γi > 0

is a prespecified learning rate sequence such that iγi → γ as i → ∞ and {Ci} is a

sequence of certain positive-definite matrices. Here ∇θ denotes the gradient opera-

tion with respect to the model parameter θ. This updating procedure is later termed

as “explicit SGD” in Toulis et al. (2014). Under the condition that γiCi → I(θ0)
−1,

i → ∞ where I(θ0) is the Fisher information matrix, this updating method enjoys

the theoretical guarantees that as i→∞ the above SGD estimator θsgdi converges to

the true parameter θ0 with the optimal asymptotic efficiency. That is, the asymptotic

covariance matrix is the inverse of the Fisher information matrix.

However, the SGD method is generally not robust to learning rate misspecification;
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the algorithm may fail to converge if γ is too large. To overcome this, an improved

recursive procedure is proposed by Toulis et al. (2014) where θimi appears in both

sides of the updating equation, i.e., θimi = θimi−1+γiCi∇θ log f(yi;θ
im
i ), called “implicit

SGD”. According to the comparison of these two versions of SGD algorithms in GLMs

in the aspects of bias and empirical variance, Toulis et al. (2014) concluded that the

implicit SGD appeared more robust to learning rate misspecification. To improve

statistical efficiency, Toulis et al. (2014) further proposed the averaged implicit SGD

(AI-SGD). SGD is also known as a second-order procedure when the learning rate is

adapted according to diagonal elements of an approximated Hessian, such as SGD-

QN (Bordes et al., 2009) and AdaGrad (Duchi et al., 2011). Although such second-

order procedures can be computationally as fast as the first-order methods with Ci

being the identity matrix trivially, it is not useful for statistical inference because only

part of the information matrix (i.e. its diagonal elements) is updated over iterations.

There are some online second-order methods such as Natural Gradient (NG) algo-

rithm (Amari et al., 2000) and Online Newton Step (Hazan et al., 2007) that maintain

complete information matrices over iterations. Similar to SGD, an outer product of

the first gradients is used to approximate the negative Hessian whose inverse is up-

dated through the Sherman-Morrison formula. This updating scheme is widely used;

see Vaits et al. (2013); Hao et al. (2016). However, this outer-product approxima-

tion to the Fisher information may not work well in general beyond the conventional

likelihood framework due to the failing of the Bartlett Identity (Song , 2007, Chapter

2), and hence affects statistical inference. For online quasi-Newton methods, both

Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Nocedal and Wright , 1999) and limited

memory BFGS (LBFGS) (Liu and Nocedal , 1989) algorithms have been modified for

streaming data, respectively termed as oBFGS and oLBFGS algorithms (Schraudolph

et al., 2007; Bordes et al., 2009). But it is unclear whether estimated approximate

Hessian is appropriate for statistical inference. A detailed comparison among all these
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second-order online methods is available in Table A.1 in the appendix.

Although analytic expressions have been derived for the asymptotic variances of

both explicit and implicit SGD (Toulis and Airold , 2017), the issue of constructing

confidence intervals online has remained unexplored. Recently, Fang (2019) proposed

a perturbation-based resampling method to construct confidence intervals for AI-

SGD. Even though this online-bootstrap procedure can be parallelized to improve

computation efficiency, it is derived from a first-order SGD procedure that will lose

statistical efficiency comparing to second-order procedures (Toulis and Airold , 2017).

Consequently, with the same finite sample size, both bias and empirical standard error

will be much larger than the one with second-order learning rate, let alone the oracle

MLE. In essence, this procedure is not targeted to perform any valid interim statis-

tical analysis and inference. It is important to note that interim statistical inference

and decision making are essential in clinical studies and other related biomedical

sciences (e.g., mobile health) where sequentially adaptive intervention to observed

outcomes is of critical importance to increase treatment efficacy and to maximize

ethical benefits. Besides, as pointed out by Fang (2019), it may not be used to con-

duct hypothesis testing which involves multiple comparisons. Furthermore, when p

is very large, the AI-SGD procedure has very large bias but small empirical standard

error. Even if the estimated standard error aligns with the empirical one, it may not

provide valid inference. In addition to the SGD types of recursive algorithms, several

cumulative updating methods have been proposed to specifically perform sequential

updating of regression coefficient estimators, including the online least squares es-

timator (OLSE) for the linear model by Stengel (1994), the cumulative estimating

equation (CEE) estimator and the cumulatively updated estimating equation (CUEE)

estimator by Schifano et al. (2016) for estimating equations. Even though CUEE is

shown to have less estimation bias than CEE with finite sample sizes, its estimation

consistency has been established upon a strong regularity condition: the total number
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of streaming datasets, say, B, needs to satisfy the order of B = O(nkj ), with k < 1/3

for j = 1, 2, . . . , B, where nj is the sample size of the j-th streaming dataset (Lin

and Xi , 2011; Schifano et al., 2016). This strong condition is also required by CEE

for its estimation consistency. This implies a very strong restriction for these two

methods; for example, estimation consistency may not be guaranteed in the situation

where streaming datasets arrive perpetually with B → ∞. Our proposed renewable

estimation method overcomes this unnatural restriction. Section 2.2 presents a more

detailed review of these existing methods.

Streaming data analytics may be implemented in the so-called Lambda architec-

ture (Marz and Warren, 2015). It is a real-time Big Data system of computing and

storage with a synchronized processing of batch and stream data flows. The Lambda

architecture consists of three layers: the speed layer, the batch layer, and the serving

layer. Figure 2.1 shows a schematic outline as to how the speed and batch layers inter-

act when a new data stream arrives. Transient and rough real-time views are captured

at the speed layer using incremental algorithms, where previously stored views are

updated with an incoming data stream to generate renewed views. In effect, SGD

is one of the most popular incremental algorithms widely used in the Spark Stream-

ing to process high-throughput streaming data via the Apache Spark System (Bifet

et al., 2015). The batch layer stores a constantly growing dataset and continuously

recomputes the batch views when new data stream arrives. Despite latency, the batch

layer refines results produced in the speed layer where estimation accuracy cannot be

maintained consistently. Then the two view outputs are stored in the serving layer

for queries. This architecture is flexible and applicable to a wide range of streaming

data analysis in which the batch layer stores all sequentially accumulated raw data

and produces reliable results via re-computations. Unfortunately, this powerful archi-

tecture has completely ignored the need of real-time statistical inference; for example,

there are no gears in the system designed to sequentially compute and store Fisher
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Figure 2.1: Diagram of the Lambda architecture.

information or as such, a critical piece required for statistical inference. To overcome,

in this paper we propose to expand the speed layer by adding a new “inference layer”,

and this new sub-architecture is named as “Rho architecture” (named after the first

letter of Greek word “stream”, ρενµα), shown in Figure 2.2, so the resulting expanded

architecture allows to conduct statistical inference in the setting of high-throughput

streaming datasets.

In the proposed Rho architecture, we aim to address three basic questions for the

new method: (i) what types of summary statistics to be stored in the inference layer;

(ii) how to update those summary statistics required for estimation and inference

without use of previous raw data; and (iii) how to optimize the renewable estimation

method so as to achieve the asymptotically equivalent efficiency to that of MLE based

on the entire dataset. In the setting of GLMs (McCullagh and Nelder , 1983) with

data streams, our goal is to fit a regression model E(yi | xi) = g(xTi β) for subjects i =

1, 2, . . . , Nb, where g(·) is a known link function andNb is the sample size of aggregated

streaming dataset up to data batch b, Nb =
∑b

j=1 nj. Consider a time point b ≥ 2

with a total of Nb samples arriving in a series of b data batches, denoted by D1 =
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{y1,X1}, . . . , Db = {yb,Xb}, . . . , where y andX are the generic notations of response

variables and associated covariates. Under a fixed design, suppose each observation

is drawn from (yi;xi) ∼ f(y;x,β0, φ0), i = 1, . . . , Nb independently, where β0 ∈ Rp

is the true value of the parameter of interest and φ0 is the true value of a nuisance

parameter. Let D?
b = {D1, . . . , Db} denote the accumulated data up to data batch

b. For convenience, slightly abusing the notation, we use Db (a single data batch b)

or D?
b (an aggregation of b data batches) as respective sets of indices for subjects

involved. For a GLM, we may write out the associated log-likelihood function in the

form of exponential dispersion model (ED) (Jørgensen, 1997):

`Nb
(β, φ;D?

b ) =
∑

i∈D?
b

log f(yi;xi,β, φ) =
∑

i∈D?
b

log a(yi;φ)− 1

2φ

∑

i∈D?
b

d(yi;µi), (2.2)

where d(yi;µi) is the unit deviance function with mean µi = E(yi | xi), and a(·) is a

suitable normalizing factor depending only on the dispersion parameter φ > 0. The

systematic component of a GLM takes the form: µi = g(xTi β), i ∈ D?
b . It is known

that in the Gaussian linear model, the dispersion parameter φ is the variance param-

eter, and in both Bernoulli logistic and Poisson log-linear regression models, φ = 1.

The unit score function is U(yi;xi,β) := ∂d(yi;µi)/∂β = {∂d(yi;µi)/∂µi}{∂µi/∂β}

with ∂d(yi;µi)/∂µi = (yi−µi)/v(µi) where v(·) is the unit variance function of mean

µi. The maximum likelihood estimator β̂?b satisfying
∑

i∈D?
b
U(yi;xi,β) = 0 is the

oracle estimator, which in general has no closed-form solution, and is obtained nu-

merically by certain numerical iterative algorithms such as Newton-Raphson. Note

that in the GLM the MLE β̂?b is derived with no involvement of nuisance parameter

φ due to the so-called parameter orthogonality (Cox and Reid , 1987). For the detail

of the MLE, refer to for example, McCullagh and Nelder (1983) and Song (2007,

Chapter 2). Thus, unlike the case of linear regression model where the MLE has an

explicit closed-form expression, algorithms for exact sequential updating are generally
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unavailable for the GLMs.

In this chapter, we consider developing a new framework of renewable estimation

and incremental inference, in which the MLE can be renewed with current data and

summary statistics of historical data, but with no use of any historical subject-level

data. To understand the nature of summary statistics, we introduce a notion of

approximate sufficiency in the theory of renewable estimation. Different from the

SGD, our new method enables to continuously update information matrices along

streaming datasets, so to update statistical inference whenever a new data batch

arrives. In Section 2.4.2, we present renewable Wald test statistic for hypothesis

testing to conduct incremental inference within the proposed renewable methodology.

Our new methodology contributions include: (i) we propose a Rho architecture

as a critical expansion of the Spark’s Lambda architecture for streaming data anal-

ysis with the purpose of statistical inference, including both methods of renewable

estimation and incremental inference; (ii) the proposed renewable estimator is shown

to be asymptotically equivalent to the oracle MLE derived from the full cumulative

data without strong condition B = O(nkj ), k < 1/3; (iii) the `2-norm difference be-

tween our renewable estimator and the oracle MLE vanishes as the total sample size

increases; and (iv) being computationally advantageous, our method does not require

a re-access to any old subject-level data after the completion of current updating

step. Thus, our renewable estimation method is computationally efficient to address

the challenge of data storage and data processing, which is particularly useful in the

case where the number of data batches increases fast and/or perpetually. In addition,

our method provides a real-time interim inference based on the Wald test statistic

without constraints on the relative scale of batch size and total number of batches,

B = O(nkj ), k < 1/3, which, as pointed above, presents significant restrictions in

existing methods.

This paper is organized as follows. Section 2.2 gives a brief overview on several
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existing methods: stochastic gradient descent (SGD), online LSE as well as CEE

and CUEE. Section 2.3 presents our renewable estimation framework and incremen-

tal updating algorithm that is used to obtain renewable estimate. Section 2.4 in-

cludes the derivation of some key large sample properties, discussion on hypothesis

testing methods, and approximate sufficient statistic. Section 2.5 presents numeri-

cal implementation and some examples of commonly used generalized linear models.

Section 2.6 presents simulation results with comparisons of our proposed renewable

methodology to the oracle MLE, SGD, and incremental estimators including online

LSE, CEE and CUEE. Section 2.7 illustrates the proposed method by a real data

analysis application. Some concluding remarks are provided in Section 2.8. All tech-

nical details are included in the appendix, including a comparison of computational

complexity among second-order online methods, a table of notations for the sake of

readability, the proofs of estimation consistency, asymptotic efficiency, the asymp-

totic equivalence between the renewable estimator and the oracle MLE, as well as

properties of approximate sufficient statistics in the GLMs.

2.2 Existing Methods

We begin with some necessary notations that are also listed in Table A.2 in the

appendix for perusal. At an intermediary time point b, β̂?b denotes the oracle MLE

estimator based on the entire cumulative dataset D?
b , and β̃b denotes a renewable esti-

mator with the same dataset D?
b . Here β̂?b serves as the gold standard in all subsequent

comparisons. Throughout this paper, β̂ denotes MLE, and “?” in the superscript,

e.g. β̂?b indicates a quantity derived from a cumulative dataset D?
b ; otherwise, it is

obtained from a single data batch, e.g.. β̂b from Db. Likewise, β̃ denotes an estimator

obtained by an online updating procedure (e.g., online LSE, CEE, CUEE and our

renewable estimator); for convenience, “∼” over a symbol, say, ã, denotes a quantity

obtained cumulatively by an incremental algorithm using summary statistics of the
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historical data. For example, Ũ2 denotes the aggregated unit score function from the

cumulative dataset D?
2 = D1∪D2, while U2 denotes the one from a single data batch

D2 only.

2.2.1 Stochastic Gradient Descent Algorithm

Averaged Implicit SGD.

Toulis et al. (2014) proposed an averaged implicit stochastic gradient descent (AI-

SGD) algorithm that took a cumulative average along iterations involving two steps:

the first solves an implicit root βim
i , followed by a cumulative average, βaim

i .

βim
i = βim

i−1 + γiU(yi;xi,β
im
i ),

βaim
i =

1

i

i∑

k=1

βim
k , i = 1, . . . , Nb.

(2.3)

It is shown that the AI-SGD in (2.3) not only works with flexible learning rate γi

with desirable numerical stability, but also achieves the optimal Cramér-Rao bound

under a strong convexity assumption. Throughout the paper, we compare our renew-

able estimation method to the AI-SGD method with the one-dimensional learning

rate (Xu, 2011) and hyperparameters α = 1, γ0 = 1 and c = 2/3 are left to default

values in the R package sgd.

Randomly Weighted AI-SGD. To approximate the sampling distribution of AI-

SGD, Fang (2019) proposed a randomly weighted implicit stochastic gradient descent

algorithm that adds a random weight to the gradient in implicit SGD procedure,

followed by a cumulative average.

β
(s)im
i = βim

i−1 + γiW
s
i U(yi;xi,β

(s)im
i ),

β
(s)aim
i =

1

i

i∑

k=1

β
(s)im
k , i = 1, . . . , Nb,

(2.4)
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where W
(s)
i

i.i.d.∼ Exponential(1). At each i, we can obtain S copies of β
(s)aim
i , s =

1, . . . , S, and then estimating the standard errors of βaim
i by the empirical standard

errors of {β(s)aim
i , s = 1, . . . , S}. Following Fang (2019), we set S = 200 in our

simulations.

2.2.2 Sequential Updating Methods

Online Least Squares Estimation. Consider a linear model yi = xTi β0 + εi, with

i.i.d. errors εi’s, i = 1, . . . , Nb, for cumulative dataset D?
b to time point b. For the

current single data batch Db, the LSE (LSE) and its sum of squared errors (SSE) are

denoted by β̂b = (XT
b Xb)

−1XT
b yb and SSEb = SSE(β̂b;Db), respectively. Let β̃olse

b

and CMSEb denote the online LSE (OLSE) and the cumulative mean squared error

(CMSE) based on D?
b . With initial β̃olse

1 = β̂1, the OLSE takes the following form of

decomposition:

β̃olse
b =

(
b−1∑

j=1

XT
j Xj +XT

b Xb

)−1( b−1∑

j=1

XT
j Xjβ̃

olse
b−1 +XT

b Xbβ̂b

)
, b = 2, 3, . . . .

(2.5)

The cumulative SSE (CSSE) takes a recursive procedure:

CSSEb :=SSE(β̃olse
b ;D?

b )

=CSSEb−1 + SSEb + β̃olseT

b−1

(
b−1∑

j=1

XT
j Xj

)
β̃olse
b−1 + β̂TbX

T
b Xbβ̂b

− β̃olseT

b

(
b∑

j=1

XT
j Xj

)
β̃olse
b , b = 2, 3, . . . .

(2.6)

The initial CSSE1 := SSE(β̂1;D1). It follows that the CMSE with D?
b is CMSEb :=

MSE(β̃olse
b ;D?

b ) = CSSEb/(Nb − p).

Online Estimation with Estimating Equations. Let β0 ∈ Rp be a parameter

value satisfying
∑

i∈D?
b
E{ψ(yi,xi;β0)} = 0, where ψ(·) is an unbiased estimating
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function. This includes the unit score U and the scaled score U(·)/φ as special

cases. The estimator and its variance with Db are denoted by β̂b and V b where Vb

is the sandwich covariance matrix. A cumulative estimating equation (CEE) estima-

tor, β̃cee
b , proposed by Schifano et al. (2016) is a sequentially updated estimate by

the means of the following meta-type estimation, together with the corresponding

cumulative negative Hessian matrix Ãcee
b :

β̃cee
b =

(
Ãcee
b−1 +Acee

b

)−1 (
Ãcee
b−1β̃

cee
b−1 +Acee

b β̂b

)
,

Ãcee
b =

b∑

j=1

Acee
j , b = 1, 2, . . . ,

(2.7)

where the initial Ãcee
0 = 0p×p, A

cee
b = −∑i∈Db

∇βψ(yi,xi; β̂b) is the negative Hessian

matrix of Db. With initial Ṽ cee
0 = 0p×p, the variance of the estimator β̃cee

b is

Ṽ cee
b := Ṽar(β̃cee

b ) =
(
Ãcee
b−1 +Acee

b

)−1{
Ãcee
b−1Ṽ

cee
b−1

(
Ãcee
b−1

)T
+Acee

b V b (Acee
b )T

}

×
{(
Ãcee
b−1 +Acee

b

)−1}T
, b = 1, 2, . . . .

(2.8)

It is easy to show that the bias of β̃cee
b in (2.7) is of order O

(∑b
j=1 n

−1/2
j

)
, which

is bn−1/2 for the case of equal batch size nj = n for all j. This suggests that for a

small nj, the dominance of b in the order of bias produces a cumulative bias, and

consequently the meta estimator β̃cee
b in (2.7) becomes increasingly biased over data

batches. To reduce bias, a cumulatively updated estimating equation (CUEE) estima-

tor is proposed by Schifano et al. (2016). The CUEE estimator and the corresponding
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cumulative negative Hessian Ãcuee
b :

β̃cuee
b =

(
Ãcuee
b−1 +Acuee

b

)−1

×





b−1∑

j=1

Acuee
j β̌j +Acuee

b β̌b +
b−1∑

j=1

∑

i∈Dj

ψi(β̌j) +
∑

i∈Db

ψi(β̌b)



 ,

Ãcuee
b =

b∑

j=1

Acuee
j , b = 1, 2, . . . ,

(2.9)

with initial Ã0 = A0 = 0p×p, A
cuee
b = −∑i∈Db

∇βψ(yi,xi; β̌b) is the negative Hessian

ofDb evaluated at β̌b which is an intermediary estimator similar to the CEE estimator.

Similarly, initiated by Ṽ cuee
0 = 0p×p, the recursively updated variance of β̃cuee

b is

Ṽ cuee
b := Ṽar(β̃cuee

b ) =
(
Ãcuee
b−1 +Acuee

b

)−1{
Ãcuee
b−1 Ṽ

cuee
b−1

(
Ãcuee
b−1

)T
+Acuee

b Vb (Acuee
b )T

}

×
{(
Ãcuee
b−1 +Acuee

b

)−1}T
, b = 1, 2, . . . .

(2.10)

As shown by Schifano et al. (2016), the CUEE estimator is less biased than the

CEE estimator under finite sample sizes. Nevertheless, its estimation consistency is

established under the same strong regularity condition as that required by the CEE

estimator; that is, the number of data batches b is of order O(nkj ), for k < 1/3 and

each j = 1, . . . , b. As pointed out above, this condition apparently is not valid for

high throughput streaming data, where nj is typically small, but b grows at a high

rate. Consequently, in this case, the valid statistical inference is not yet available.

2.3 Renewable Estimation

Let β̃b be a renewable estimator, with β̃1 being initialized by the MLE, namely,

β̂1, from the first data batch D1. For b = 2, 3, . . . , a previous estimator β̃b−1 is

sequentially updated to β̃b when data batch Db arrives; after the updating, data batch
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Db is no longer accessible except estimate β̃b and summary statistics Jb(Db; β̃b) and

φ̃b, which are carried forward in future calculations.

2.3.1 Method

We begin with a simple scenario of two data batches, where the second data batch

D2 arrives after the first data batch D1. Similar to the operation given in (2.1), we

are interested in updating the initial MLE β̂1 (or β̂?1) to a renewed MLE β̂?2 without

using any subject-level data but only some summary statistics from D1.

The initial MLE β̂1 in a GLM satisfies the unit score equation, U1(D1; β̂1) = 0.

When D2 arrives, we hope to obtain an updated MLE, β̂?2, that satisfies the following

aggregated unit score equation:

U1(D1; β̂
?
2) +U2(D2; β̂

?
2) = 0. (2.11)

Let Ub(Db;β) =
∑

i∈Db
U(yi;xi,β) be the unit score function of current data batch

Db, and the negative Hessian of the unit deviance d(·; ·) is denoted by Jb(Db;β) :=

−∑i∈Db
∂2 d(yi;µi)/∂β

2, b = 1, 2, . . . . Note that the dispersion parameter φ is

not involved in estimation as the root of equation (2.11), but in the calculation of

Fisher information. Additionally, solving (2.11) for β̂?2 actually involves the use of

subject-level data in both data batches D1 and D2. To derive a renewable version of

estimation, we take the first-order Taylor expansion of the first term in (2.11) around

MLE β̂1,

U1(D1; β̂1) + J1(D1; β̂1)(β̂1 − β̂?2) +U2(D2; β̂
?
2) +Op(‖β̂?2 − β̂1‖2) = 0. (2.12)

Since D1 and D2 are independently sampled from the same underlying population

with a common true parameter β0, when min{n1, n2} is large enough, under some mild

regularity conditions, both β̂1 and β̂?2 are consistent estimators of β0 (e.g. Fahrmeir
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and Kaufmann (1985)). This implies that the error term Op(‖β̂?2 − β̂1‖2) in (2.12)

may be asymptotically ignored. Removing such term, we propose a new estimator β̃2

as a solution to the equation of the form:

U1(D1; β̂1) + J1(D1; β̂1)(β̂1 − β̃2) +U2(D2; β̃2) = 0,

where U1(D1; β̂1) = 0. Thus, the proposed estimator β̃2 satisfies the following esti-

mating equation:

J1(D1; β̂1)(β̂1 − β̃2) +U2(D2; β̃2) = 0. (2.13)

Note that β̃2 approximates the oracle MLE β̂?2 up to the second order asymptotic

errors. Through (2.13), the initial β̂1 is renewed by β̃2. Because of this, β̃2 is a

renewable estimator of β0, and equation (2.13) is termed as an incremental estimating

equation. Numerically, it is rather straightforward to find β̃2 by, for example, the

Newton-Raphson algorithm or Fisher scoring algorithm with φ = 1. Note that these

two algorithms are equivalent in this paper that concerns the GLM with a canonical

link. That is, at the (r + 1)-th iteration,

β̃
(r+1)
2 = β̃

(r)
2 +

{
J1(D1; β̂1) + J2(D2; β̃

(r)
2 )
}−1

×
{
J1(D1; β̂1)(β̂1 − β̃(r)

2 ) +U2(D2; β̃
(r)
2 )
}
,

where no subject-level data of D1, but only the prior estimate β̂1 and the prior neg-

ative Hessian J1(D1; β̂1) are used in the above iterative algorithm. To speed up the

iterations, we could avoid updating the negative Hessian J2(D2, β̃
(r)
2 ) at each itera-

tion; that is, we replace β̃
(r)
2 with β̂1, leading to the following incremental updating
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algorithm:

β̃
(r+1)
2 = β̃

(r)
2 +

{
2∑

j=1

Jj(Dj; β̂1)

}−1 {
J1(D1; β̂1)

(
β̂1 − β̃(r)

2

)
+U2

(
D2; β̃

(r)
2

)}

= β̃
(r)
2 +

{
J1(β̂1) + J2(β̂1)

}−1
Ũ

(r)
2 ,

(2.14)

where Ũ
(r)
2 = J1(D1; β̂1)

(
β̂1 − β̃(r)

2

)
+ U2

(
D2; β̃

(r)
2

)
. In equation (2.14), β̃2 is it-

eratively solved by using the adjusted unit score function Ũ2 and the aggregated

negative Hessian
{
J1(β̂1) + J2(β̂1)

}
evaluated at the previous estimate β̂1. In this

paper, we name this algorithm as incremental updating algorithm. It is interesting to

note that equation (2.14) may be regarded as a kind of gradient descent algorithm, so

its solution will converge to the root of equation (2.13). Similar ideas have been used

in the literature to speed up the calculation of Hessian matrix; see for example, Song

et al. (2005). The difference between the proposed renewable estimator β̃2 and the

oracle β̂?2 stems from an approximation to the unit score function U1(D1; β̂
?
2), which,

as shown in Theorem II.6, vanishes at the rate of 1/N2, with N2 = |D?
2| = n1 + n2.

In practice, because accumulated sample size Nb =
∑b

j=1 nj increases to infinity very

fast, these two estimators, β̃b and β̂?b , are numerically very close, and eventually be-

come the same. To run the incremental updating algorithm (2.14), we extend the

Spark Lambda architecture by designing the Rho architecture that stores three key

components
{
β̂1,J1(D1; β̂1), φ̂1

}
. Here, the initial estimate of the dispersion pa-

rameter is given by φ̂1 = 1
n1−p

∑
i∈D1

(yi−µ̂i)2
v(µ̂i)

based on the Pearson residuals, where

µ̂i = g(xTi β̂1).

Generalizing the above procedure to streaming datasets, we now define a renewable

estimation of β0 as follows. Let β̂?b be the oracle MLE of β0 with the accumulated data

D?
b = ∪bj=1Dj that satisfies the cumulative unit score equation:

∑b
j=1Uj(Dj; β̂

?
b ) = 0.

We propose a renewable estimator β̃b of β0 as a solution to the following incremental
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estimating equation:

b−1∑

j=1

Jj(Dj; β̃j)(β̃b−1 − β̃b) +Ub(Db; β̃b) = 0, (2.15)

where β̂1 = β̃1 at the initial data batch D1. Note that when b = 2, equation (2.15)

reduces to equation (2.13). Let J̃b =
∑b

j=1 Jj(Dj; β̃j) denote the aggregated neg-

ative Hessian matrix. Solving equation (2.15) may be easily done by the following

incremental updating algorithm:

β̃
(r+1)
b = β̃

(r)
b +

{
J̃b−1 + Jb(Db; β̃b−1)

}−1
Ũ

(r)
b , (2.16)

where the adjusted unit score Ũ
(r)
b = J̃b−1(β̃b−1 − β̃(r)

b ) + Ub(Db; β̃
(r)
b ). In equa-

tion (2.16), both the gradient and the adjusted unit score use the subject-level data

of current batch Db and summary statistics
{
β̃b−1, J̃b−1, φ̃b−1

}
from historical data.

In the end, a consistent estimator of the dispersion parameter φ is updated according

to φ̃b = Nb−1−p
Nb−p

φ̃b−1+ 1
Nb−p

φ̂b, where φ̂b takes the same form as φ̂1 based on the Pearson

residuals from the current data batch Db and β̃b−1.

2.3.2 Rho Architecture

Apache Spark is known as a distributed computing system that allows the commu-

nication and coordination between batch and speed processing layers in the Lambda

architecture. To implement our proposed algorithm that provides both real-time

estimation and statistical inference, we expand the speed layer in the Lambda ar-

chitecture to accommodate inferential statistics, i.e. information matrices (in short

“info.mats”), such as Fisher information. Consequently, the proposed new Rho ar-

chitecture consists of a speed layer and an inference layer responsible for inferential

statistics updating, as shown in Figure 2.2. When a new data batch arrives, the

speed layer updates the views (or estimates) in GLM with the utility of prior infer-
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Figure 2.2: Diagram of the Rho architecture.

ential statistics from the inference layer. Then, the updated views are sent back to

the inference layer, where, together with the current data, real-time updates of infor-

mation matrices are generated. More specifically, in Figure 2.2, for GLM considered

in this paper, the “views” are parameter estimates and “info.mats” correspond to in-

ferential statistics, such as Fisher information matrices, required in the calculation of

inferential quantities. The incremental algorithm in (2.16) can then be implemented

in the proposed Rho architecture as shown in Figure 2.3.

2.3.3 An example: Linear Model

To see some specific operational details discussed above, here we present an exam-

ple of the renewable estimation in the case of the Gaussian linear model. It is inter-

esting to note that for the linear model, the proposed renewable estimation turns out

to be identical to the online least squares estimation (OLSE) given in equations (2.5)

and (2.6).

Example II.1. Consider data batchDb = {yb,Xb} with outcome yb = (yb1, . . . , ybnb
)T
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and covariates Xb = (xb1, . . . ,xbnb
)T . Suppose that yb|Xb are independently sampled

from a Gaussian distribution with mean µb = (µb1, . . . , µbnb
)T and variance φI such

that µbi = E(ybi | xbi) = xTbiβ and v(ybi | xbi) = φ. Here the unit variance function

v(µi) ≡ 1. Then, the unit score function and the corresponding negative Hessian for

data batch Db are, respectively,

Ub(β) = XT
b (yb −Xbβ), Jb(β) = XT

b Xb.

At the speed layer, we calculate the point estimation; a closed-form expression for the

renewable estimator of β is obtained directly by solving the incremental estimating

equation (2.15):

β̃b =
(
J̃b−1 + Jb

)−1 (
J̃b−1β̃b−1 +XT

b yb

)
, b = 1, 2, . . . .

Here by convention, the initials are β̃0 = 0p and J̃0 = 0p×p. Moreover, an unbiased

estimator of variance parameter φ based on β̃b takes the following recursive formula:

φ̃b =
1

Nb − p
b∑

j=1

(yj −Xjβ̃b)
T (yj −Xjβ̃b)

=
1

Nb − p
{

(Nb−1 − p)φ̃b−1 + β̃Tb−1J̃b−1β̃b−1 + yTb yb − β̃Tb J̃bβ̃b
}
, b = 1, 2, . . . .

This unbiased estimator of variance parameter φ can be renewed easily at the inference

layer. In the linear model, the unbiased estimator φ̃b is exact and stored in the

inference layer as part of Fisher information calculation, which is given as follows:

Ṽar(β̃b) = φ̃b(J̃b−1 + Jb)
−1.

Note that this estimated variance leads to exactly the same standard error as that

given by the oracle MLE β̂?b , which is obtained by fitting the linear model once
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with the entire data D?
b = ∪bj=1Dj. So, the incremental estimation does not lose

any estimation efficiency over the incremental updates, but is advantageous in data

storage and computing speed.

2.4 Large Sample Properties, Inference and Sufficiency

In this section we first establish estimation consistency and asymptotic normality

for the proposed renewable estimator, and then show its asymptotic equivalency to

the oracle MLE. Also, we present the incremental inference based on the Wald statis-

tic in the Rho architecture. To address the issue concerning which types of statistics

suit for the renewable estimation framework, we discuss sufficient statistic and ap-

proximate sufficient statistic, as well as their connections to key summary statistics
{
β̃b−1, J̃b−1, φ̃b−1

}
used in the Rho architecture.

2.4.1 Large Sample Properties

For an arbitrary time b, suppose (yi,xi) are i.i.d. samples from an exponential

dispersion model with density f(y;x,β, φ), i = 1, . . . , Nb, with β ∈ Θ ⊂ Rp where

the true parameter is β0, and φ is the dispersion parameter with true value φ0. Under

the canonical link, denote INb
(β0) =

∑Nb

i=1 E
[
UiU

T
i

]
/φ =

∑Nb

i=1 xiv(µi)x
T
i where v(·)

is the known unit variance function. Let BNb
(δ) be a neighborhood of β0, namely

BNb
(δ) = {β : ‖IT/2

Nb
(β − β0)‖ ≤ δ} ∈ Θ, δ > 0, (2.17)

where IT/2
Nb

denotes the right Cholesky square root of INb
(β0), according to INb

=

I1/2
Nb

IT/2
Nb

, and ‖ · ‖ is the `2-norm.

We postulate the following regularity conditions:

(C1) Divergence: the smallest eigenvalue of INb
(β0) satisfies λmin(INb

) → ∞, as

Nb →∞.
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(C2) INb
(β) is positive-definite for all β ∈ BNb

(δ).

(C3) The log-likelihood function `(β, φ,x; y) is twice continuously differentiable and

INb
(β) is Lipschitz continuous in Θ.

Remark II.2. Under condition (C1), the neighborhood BNb
(δ) shrinks to a single-

ton β0, as Nb → ∞. Condition (C2) is necessary for both consistency and asymp-

totic normality. Both (C1) and (C2) are the standard regularity conditions assumed

by Fahrmeir and Kaufmann (1985). Different from the traditional MLE, the consis-

tency for the renewable estimator requires the continuity assumption (C3) to be held

over the whole parameter space Θ, rather than over a neighborhood of β0. Since in

the GLMs, the matrix INb
(β) depends on β via the unit variance function v(µi) with

µi = g(xTi β), the Lipschitz continuity condition automatically holds on a compact

parameter space, which is sufficient for most applications.

Theorem II.3. Under conditions (C1)-(C3), the renewable estimator β̃b given in (2.15)

is consistent, namely β̃b
p→ β0, as Nb =

∑b
j=1 nj →∞.

The proof of Theorem II.3 is given in Section A.1 of the appendix.

Theorem II.4. Under conditions (C1)-(C3), the renewable estimator β̃b is asymp-

totically normally distributed, that is,

√
Nb(β̃b − β0)

d→ N (0,Σ0) , as Nb =
b∑

j=1

nj →∞,

where Σ0 is the inverse of Fisher information for a single observation at the true

values.

The proof of Theorem II.4 is provided in Section A.2 of the appendix. It is

interesting to notice that the asymptotic covariance matrix of the renewable estimator

β̃b given in Theorem II.4 is the same as that of the oracle MLE β̂?b . This implies that

the proposed renewable estimator is fully efficient; see also Remark II.5 below. With
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no need of historical subject-level data in the computation, using the prior aggregated

negative Hessian matrix stored in the Rho architecture, J̃b =
∑b

j=1 Jj(Dj; β̃j), we

calculate the estimated asymptotic covariance matrix Σ̃b as follows:

Σ̃b =

{
(Nbφ̃b)

−1
b∑

j=1

Jj(Dj; β̃j)

}−1
= Nbφ̃bJ̃

−1
b .

It follows that the estimated variance matrix for β̃b is given by

Ṽ (β̃b) := Ṽar(β̃b) =
1

Nb

Σ̃b = φ̃bJ̃
−1
b . (2.18)

Remark II.5. Because both SGD and AI-SGD may be regarded as special cases of the

proposed renewable estimator, with nj = 1 for j = 1, . . . , b, the result of Sakrison’s

asymptotic efficiency established by Sakrison (1965) remains true theoretically for AI-

SGD (Toulis and Airoldi , 2015). Theorems II.4 presents an extension of the statistical

efficiency result for the GLMs with streaming datasets.

The following theorem is the theoretical basis for the proposed renewable estimator

β̃b, which is shown to be asymptotically equivalent to the oracle MLE β̂?b .

Theorem II.6. Under conditions (C1)-(C3), the `2-norm difference between the or-

acle MLE β̂?b and the proposed renewable estimator β̃b vanishes at the rate of N−1b ,

namely

‖β̃b − β̂?b‖2 = Op(1/Nb), as Nb →∞.

Theorem II.6 implies that the renewable estimator achieves the optimal efficiency

and its distance to the MLE β̂?b vanishes in the order of Op(1/Nb). The proof of

Theorems II.6 is included in Section A.3 of the appendix.
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2.4.2 Incremental Inference

The Wald test based on the asymptotic distribution of the renewable estimator

in Theorem II.4 is a straightforward approach to testing hypotheses of individual

coefficients or of nested parameter sets. For k < p and a pre-fixed null subvector

βnull
1 , define the following null hypothesis parameter space ΘH0 :

ΘH0 = {(β1,β2) = (βnull
1 , βk+1, . . . , βp)}, (2.19)

where ΘH0 is a (p−k)-dimensional subspace of Θ. The subvector β̃1b of β̃b correspond-

ing to its first k parameters follows an asymptotically k-dimensional marginal normal

distribution, according to Theorem II.4. Specifically, a suitable block-partition of the

estimate β̃b and its asymptotic variance matrix are given by, respectively,

β̃b = (β̃T1b, β̃
T
2b)

T , and Σ0 =




Σ11 Σ12

Σ21 Σ22


 .

Under the null hypothesis H0 : β1 = βnull
1 ,
√
Nb

(
β̃1b − βnull

1

)
d→ Nk(0,Σ11), as Nb →

∞, which gives rise to the following asymptotic chi-square distribution with k degrees

of freedom. That is, under the null H0,

W̃b = (β̃1b − βnull
1 )T

{
Ṽ (β̃b)11

}−1
(β̃1b − βnull

1 )

= (β̃1b − βnull
1 )T

{(
φ̃bJ̃

−1
b

)
11

}−1
(β̃1b − βnull

1 )
asy∼ χ2

k,

(2.20)

where
(
φ̃bJ̃

−1
b

)
11

is the (1, 1)-block of matrix Ṽ (β̃b) in (2.18). Consequently, a 100(1−

α)% confidence ellipsoid for subvector β1 is given by

C =

{
β1 : (β̃1b − β1)

T
{(
φ̃bJ̃

−1
b

)
11

}−1
(β̃1b − β1) < χ2

k(α)

}
.
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It is worth pointing out that Rao’s Score test and Wilks’s likelihood-ratio test

are not discussed here because both methods require the renewable estimates of β

under H0. Unlike the Wald test statistic which is just a direct byproduct of both

estimate β̃b and estimated asymptotic covariance matrix Ṽ (β̃b), the other two tests

involve constrained estimates under the null. The related estimation does not seem

to follow incremental operations. Thus, incremental inference based on Rao’s Score

test or Wilks’s likelihood ratio test is an open problem in the setting of streaming

data analysis.

2.5 Implementation

2.5.1 Rho architecture and pseudo code

The proposed renewable estimation and incremental inference may be imple-

mented according to the Rho architecture in Figure 2.2. The work flow chart in

Figure 2.3 facilitates the organization of the pseudo code for related numerical calcu-

lations.

Algorithm 2.4 lists the pseudo code for the implementation of the algorithm in

Figure 2.3. Some explanations for the pseudo code are given below.

1. Line 1: the GLM considered in this paper belongs to the family of exponential

dispersion (ED) models (Jørgensen, 1997) and all streaming datasets are sup-

posed to be governed by the same model with a common true parameter β0.

The ED models automatically satisfy some of the regularity conditions given in

Section II.3, such as condition (C3).

2. Line 2: the outputs are renewable estimates of the regression coefficients and

the corresponding estimated asymptotic variances at each time point b, and the

latter is needed for statistical inference.
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J̃b−1

φ̃b−1

J̃b = J̃b−1 + Jb(Db; β̃b)

φ̃b =
Nb−1−p
Nb−p φ̃b−1 +

1
Nb−p φ̂b(Db; β̃b)
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(r)
b +{

J̃b−1 + Jb(Db; β̃b−1)
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Ũ
(r)
b

β̃b−1 β̃b
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time

Figure 2.3: Implementation of GLM in the Rho architecture.

3. Line 3: set certain initial values for regression coefficients, e.g., β̃init = 0.

4. Line 4: run through the online updating procedure along dataset streams.

5. Line 6: at the inference layer, utilize the prior estimate β̃b−1 and current data

batch Db to calculate the negative Hessian Jb(Db; β̃b−1) that is temporary and

only used for the operation of incremental updating iterations. There is a

communication between the speed layer and the inference layer to carry out the

updating algorithm at the speed layer.

6. Line 7-8: run the incremental updating algorithm to update from β̃b−1 to β̃b.

Note that with a given b this gradient matrix is fixed through all iterations, in

which the cached factorizations are repetitively used in iterative steps;

7. Line 9: at the inference layer, update both negative Hessian matrix and dis-

persion parameter estimate with the current data batch Db and newly updated

β̃b from the speed layer. These quantities are needed to perform statistical

inference.
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Figure 2.4: Pseudo code for the implementation of renewable GLM.

2.5.2 Examples

In addition to the first example of linear model discussed in Section 2.3.3, here we

present the renewable estimation and its implementation in two popular generalized

linear models: logistic model for binary outcomes and log-linear model for count

outcomes.

Example II.7. (Logistic model). Assume data batch Db = {yb,Xb} with binary

outcomes yb = (yb1, . . . , ybnb
)T and covariates Xb = (xb1, . . . ,xbnb

)T , where ybi|xbi
are independently sampled from a Bernoulli distribution with probability of success

πbi = P (ybi = 1 | xbi), and the dispersion parameter φ = 1. A logistic regression
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model takes the form g(πbi) = log( πbi
1−πbi

) = xTbiβ. The (unit) score function and

negative Hessian matrix (also the observed information matrix) for data batch Db are

respectively given by

Ub(β) =

nb∑

i=1

xbi

{
ybi −

exp(xTbiβ)

1 + exp(xTbiβ)

}
, and Jb(β) =

nb∑

i=1

vbixbix
T
bi,

where vbi(πbi) = πbi(1 − πbi) =
exp(xT

biβ)

{1+exp(xT
biβ)}2

is the variance function. The renewable

estimate β̃b and the aggregated observed information matrices J̃b are updated accord-

ing to the procedure given in Algorithm 2.4 and the Rho architecture in Figure 2.3.

Example II.8. (Poisson log-linear model). Assume data batch Db = {yb,Xb},

with outcomes of counts yb = (yb1, . . . , ybnb
)T and covariates Xb = (xb1, . . . ,xbnb

)T ,

and ybi|xbi are independently sampled from a Poisson distribution with mean µbi =

E(ybi|xbi) that is specified by a log-linear model g(µbi) = log(µbi) = xTbiβ. Here the

dispersion parameter φ = 1. The (unit) score function and negative Hessian matrix

(also the observed information matrix) for data batch Db are given by, respectively,

Ub(β) =

nb∑

i=1

xbi
{
ybi − exp(xTbiβ)

}
, and Jb(β) =

nb∑

i=1

vbixbix
T
bi,

where vbi = µbi = exp(xTbiβ) is the variance function. Again, the renewable estimate

β̃b and the aggregated observed information matrices J̃b are produced in the Rho

architecture, respectively, at the speed layer and the inference layer, also presented

in Algorithm 2.4 and Figure 2.3.

2.6 Simulation Experiments

2.6.1 Setup

We conduct several simulation experiments to assess the numerical performance of

the proposed renewable estimator and incremental inference in the settings of linear
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and logistic models. We compare our method with AI-SGD and additional existing

methods, including (i) the oracle MLE obtained by processing the entire data once, (ii)

sequential estimation method of online LSE in the linear model, and (iii) sequential

estimation method of CEE/CUEE for the logistic model.

These methods are compared thoroughly in the aspects of parameter estimation,

computation efficiency, and hypothesis testing. The evaluation criteria for parameter

estimation include (a) absolute bias (A.bias), (b) asymptotic standard error (ASE),

(c) empirical standard error (ESE) and (d) coverage probability (CP). We use the

MLE yielded from the R package glm as the gold standard in all comparisons. Com-

putation efficiency is also assessed by (e) computation time (C.Time) and (f) running

time (R.Time). R.time accounts only for the data processing time, while C.time in-

cludes time spent on both loading data streams and processing data. Note that in

the case of AI-SGD, one data point is run at one iteration, thus the data loading time

cannot be properly captured. In this case, we consider only R.time for AI-SGD.

In all the simulation experiments considered in Tables 2.1-2.3, we set a terminal

point B, and we generate the full dataset D?
B with NB observations independently

from the respective GLMs with the mean model E(yi|xi) = g(xTi β0), i = 1, ..., NB.

We set β0 = (0.2,−0.2, 0.2,−0.2, 0.2)T , and xi[2:5] ∼ N4(0,V4) independently where

V4 being a 4 × 4 compound symmetry covariance matrix with correlation ρ = 0.5,

and intercept xi[1] = 1.

2.6.2 Evaluation of Parameter Estimation

Scenario 1: fixed B and NB but varying batch size nb

We begin with the comparison of four methods for the effect of data batch size nb on

their performances of point estimation and computation efficiency. These methods

include (A) MLE, (B) AI-SGD, (C) online LSE for the linear model, or CEE/CUEE

for the logistic model, and (D) Renewable estimation (Renew). There are B data
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Table 2.1: Simulation results under the linear model with fixed NB = 100, 000 and
p = 5 with varying batch sizes nb.

AI-SGD MLE Online LSE Renew
nb 1 1000 200 50 1000 200 50 1000 200 50
A.bias×10−3 13.48 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17
ASE×10−3 15.08 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83
ESE×10−3 17.24 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94
CP 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
C.Time(s) - 0.56 1.68 5.91 0.08 0.19 0.66 0.12 0.34 1.27
R.Time(s) 0.14 0.32 0.30 0.29 0.02 0.07 0.28 0.07 0.24 0.95

Table 2.2: Simulation results under the setting of NB = 100, 000 and p = 5 for logistic
model with varying batch size nb.

AI-SGD MLE CEE CUEE Renew
nb 1 105 1000 200 50 1000 200 50 1000 200 50
A.bias×10−3 24.98 6.31 6.40 8.31 24.50 6.34 6.89 11.98 6.32 6.32 6.32
ASE×10−3 27.10 7.82 7.84 7.94 8.34 7.83 7.86 7.94 7.82 7.82 7.82
ESE×10−3 31.14 7.93 7.88 7.67 7.02 7.93 8.43 15.64 7.92 7.93 7.92
CP 0.92 0.95 0.94 0.88 0.12 0.95 0.92 0.74 0.95 0.95 0.95

streams, each with data batch size nb, and the total of NB = |D?
B| = 100, 000 inde-

pendent observations, which are simulated from a GLM with the mean model specified

in Section 4.6.1. Tables 2.1 and 2.2 report the evaluation criteria for the linear and

logistic models, respectively, over 500 rounds of simulations. Additional simulation

results in the linear and logistic models with other values of nb may be found in Ta-

bles A.3 and A.4 in the Supplementary Material. Also, comparison results in the case

of the Poisson log-linear model are listed in Table A.5 in the Supplementary Material.

Bias and coverage probability. In the linear regression, due to the fact that

the LSE is a linear function of data, it can be perfectly decomposed across data

batches. Thus, MLE, online LSE and Renew are identical, leading to exactly the

same bias and coverage probability, shown in Table 2.1. It is easy to see that both

bias and coverage probability in the linear model are not affected by data batch

size nb. From Table 2.2 with the logistic regression, our renewable estimation always

exhibits similar performances to the oracle MLE, and appears quite robust to different

nb. In contrast, CEE appears numerically unstable; as sample size of single batch nb

decreases to 200, its coverage probability drops down below 90%. Even though the
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CUEE is proposed to improve the CEE (Schifano et al., 2016), bias of CUEE appears

much larger than that of the MLE as nb decreases to 50. In addition, CUEE has

much larger empirical standard error than that of CEE as nb gets smaller. AI-SGD

processes a single observation each time (i.e. nb = 1 for b = 1, . . . , B), so its bias,

estimated and empirical standard errors are not related to batch size nb. but all

of them are constantly larger than those of the MLE or our renewable estimation.

Even though the coverage probability of AI-SGD is 0.92, it does not preserve the nice

property of MLE; see also the supplementary Tables A.3 to A.5.

Computation time. Two metrics are used to evaluate computation efficiency:

“C.Time” in Tables 2.1 (as well as in the supplementary Tables A.4 and A.5) refers

to the total amount of time required by data loading and algorithm execution, while

“R.Time” is the amount of time required only for algorithm execution. With an

increased B, our renewable estimation method shows clearly advantageous for much

lower computation time over the three existing competitors, MLE, CEE and CUEE.

AI-SGD is very competitive with noticeable computation efficiency, due to the fact

that it avoids matrix inversion calculation in the algorithm, which, however, sacrifices

to larger estimation bias, possibly leading to problematic inference if it were available.

As pointed out above, we are not able to evaluate data loading time for AI-SGD, since

it passes single data point one at a time.

Scenario 2: fixed batch size nb but varying B

Now we turn to an interesting scenario where streaming datasets arrive at a high

speed. For convenience, we fix batch size nb = 100, but let NB increase from 103

to 106. Table 2.3 lists the summaries of simulation results under the logistic model

specified in Section 4.6.1.

Bias and coverage probability. When the batch size is as small as nb = 100,

increasing NB does not seem to help reduce the estimation bias of CEE or CUEE

estimates, and such bias exacerbates as more data streams are processed, resulting
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in clearly problematic performances of statistical inference. When the number of

data batches B increases to 1000, the coverage probability by CEE or CUEE remains

steadily below 90%, with no sign of improvement in response to increased amount of

data. It is striking to notice that when B is further increased to 104, the coverage

probability of CUEE falls significantly down to 67%, while CEE gives the worst 0%

coverage probability. This confirms that when the condition B = O(nkj ), k < 1/3,

is violated, CEE/CUEE will not have valid asymptotic distribution for inference. In

contrast, our proposed method confirms the large sample properties similar to those

of the oracle MLE: the average absolute bias decreases rapidly as the total sample size

accumulates, and the coverage probability stays robustly around 95%. For competitor

AI-SGD, the estimated standard error is much smaller than the empirical one and

coverage probability is only 83% when NB = 103. Similar to the results in Scenario

1, when NB reaches 105 so that the coverage probability is around 95%, both bias

and estimated standard error are much larger than those of MLE or our renewable

method. Even worse, its bias stops decreasing after a certain level; for example, it

remains at 23.44 × 10−3 when NB increases from 105 to 106 with no sign of further

improvement. A similar phenomenon has been reported in the literature, according

to Toulis and Airoldi (2015); that is, once AI-SGD reaches a convergence phase, the

subsequent estimates will jitter around the true parameter within a ball of slowly

decreasing radius.

Computation time. Our renewable estimation method shows more and more ad-

vantageous as NB increases: the combined amount of time for data loading and

algorithm execution only takes less than 10 seconds, whereas the oracle MLE, when

processing a total of 106 samples once, requires more than 5 minutes. This 35-fold

faster computation by the proposed renewable estimation method does not cost any

price of estimation precision and inference power. In addition, the running time for

our renewable method and AI-SGD are comparable even under large sample size set-
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tings such as NB = 105 and 106. Once again, AI-SGD produces much larger bias

and standard errors than our method. The extra small amount of time used by our

renewable method on updating info.mats at the inference layer is computationally

worthwhile for the proposed incremental inference.

Scenario 3: fixed NB and B but varying large p

To examine the scalability of the renewable method when p becomes large, we run

simulations with p = 1000 and p = 2500, in the logistic regression model where p-

element covariates xi
i.i.d.∼ N (0, N−1B Ip), with NB = 2 × 105, B = 20 and nb = 104.

Following Sur and Candés (2018), in order to guarantee the existence of MLE, in

such high dimensions, we generate the true value of β0 entrywise of dimension 1000

i.i.d. from N (10, 900) and β0 of dimension 2500 entrywise i.i.d. from N (10, 300).

The same evaluation criteria are used in assessments and comparisons.

Bias and coverage probability. Table 2.4 summarizes the simulation results over

200 replications. Our renewable method has the same level of bias as the oracle

MLE in this high-dimensional logistic regression. In this setting with nj ≤ 10p, CEE

and CUEE both do not provide reliable coverage probabilities due to largely severe

biases. AI-SGD has the largest bias that is more than 10 times that of MLE but very

small standard errors, which may be caused by local trapping points that AI-SGD

gets stuck. Consequently, estimated standard error based on perturbation resampling

method will also be too small, resulting in 0% coverage probability. As also pointed

out in Fang (2019), their method may not be able to deal with high-dimensional

large-scale data.

Computation time. For large p = 1000 or 2500, our renewable estimation method

is at least 4-fold faster than the oracle MLE, and this computation efficiency gain

repeats in the low dimension case (p = 5) shown in Table 2.3. Although the AI-SGD

runs faster than our renewable method, it is not applicable to the setting with very

large p. The resulting severely large bias and small estimated standard error cannot
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Table 2.3: Compare different estimators in logistic model with fixed batch size nb =
100 and p = 5, NB increases from 103 to 106.

B = 10, NB = 103

MLE AI-SGD CEE CUEE Renew
A.bias×10−3 61.59 63.18 58.71 60.78 60.97
ASE×10−3 78.70 58.34 81.07 79.38 79.15
ESE×10−3 77.32 78.63 73.05 76.30 76.56
CP 0.96 0.83 0.97 0.96 0.96
C.Time(s) 0.01 - 0.03 0.06 0.01
R.Time(s) 0.007 0.008 0.028 0.056 0.006

B = 100, NB = 104

MLE AI-SGD CEE CUEE Renew
A.bias×10−3 19.59 24.14 20.80 19.93 19.55
ASE×10−3 24.73 28.40 25.53 24.93 24.76
ESE×10−3 24.50 30.23 22.99 24.81 24.44
CP 0.95 0.92 0.95 0.95 0.95
C.Time(s) 0.08 - 0.34 0.63 0.07
R.Time(s) 0.045 0.064 0.311 0.599 0.047

B = 103, NB = 105

MLE AI-SGD CEE CUEE Renew
A.bias×10−3 6.23 23.44 12.63 7.66 6.22
ASE×10−3 7.82 27.94 8.07 7.88 7.82
ESE×10−3 7.78 29.39 7.31 9.42 7.78
CP 0.95 0.94 0.68 0.90 0.95
C.Time(s) 2.88 - 3.056 5.74 0.64
R.Time(s) 0.51 0.19 2.84 5.50 0.47

B = 104, NB = 106

MLE AI-SGD CEE CUEE Renew
A.bias×10−3 1.92 23.44 12.43 4.67 1.92
ASE×10−3 2.47 27.94 2.55 2.49 2.47
ESE×10−3 2.42 29.39 2.28 5.98 2.42
CP 0.95 0.94 0 0.67 0.95
C.Time(s) 343.5 - 32.60 56.51 6.46
R.Time(s) 7.04 0.98 28.85 54.04 4.66
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Table 2.4: Compare different estimators in logistic regression models with a fixed
total sample size NB = 2 × 105, each data batch size nb = 104 and B = 20 batches.
The number of covariates, p, increases from 1000 to 2500.

p = 1000
AI-SGD MLE CEE CUEE Renew

A.bias 25.799 2.176 3.880 2.242 2.152
ASE 1.70× 10−3 2.705 2.904 2.668 2.707
ESE 1.72× 10−3 2.715 2.358 2.616 2.673
CP 0 0.948 0.757 0.937 0.951
C.Time(min) - 17.959 17.288 20.470 4.207
R.Time(min) 1.609 16.686 17.093 20.258 4.014

p = 2500
AI-SGD MLE CEE CUEE Renew

A.bias 16.386 2.212 6.994 2.581 2.192
ASE 1.67× 10−3 2.728 3.475 2.523 2.789
ESE 1.63× 10−3 2.745 1.804 2.442 2.715
CP 0 0.946 0.561 0.874 0.954
C.Time(min) - 126.407 122.528 149.411 31.451
R.Time(min) 4.737 123.904 122.037 148.924 30.917

provide any reliable estimation or valid inference.

The above simulation results clearly suggest that our proposed renewable esti-

mation method can produce real-time robust and reliable estimation and inference

that are similar to the oracle MLE that processes the entire data once, regardless of

low or high dimension p. The high computation efficiency of the proposed method is

clearly preferred to any existing methods when data streams arrive at a high speed.

Instead of invoking a meta-type estimation procedure as done by CEE and CUEE,

our renewable estimation method directly solves a cumulative estimating equation

that is of second-order equivalency to the cumulative log-likelihood function from

which the MLE is yielded. Thus, a global optimality is guaranteed for the proposed

method. Consequently, unlike CEE or CUEE, our renewable estimation does not

require control the relative scale of B and nb, and thus is more desirable.

Note that the running time complexity of our method is O (NBp
2 +Bp3/3). When

p < nb, it reduces to O(NBp
2), a typical order of second-order online methods. When

NB is fixed and p is large, increasing data batch size nb will make B small, and
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thus greatly improves computation efficiency. This evidence has been seen in both

Tables 2.1 and 2.4.

2.6.3 Evaluation of Hypothesis Testing

Now we evaluate the performance of the proposed incremental inference based on

the Wald test available at the inference layer in the Rho architecture. We run a sim-

ulation study on the Wald test for H0 : β01 = 0.2 vs. HA : β01 6= 0.2, where β01 is the

regression coefficient of the intercept in the logistic model used in Tables 2.2 and 2.3.

With the βnull = (0.2,−0.2, 0.2,−0.2, 0.2)T , set βa = (βa1,−0.2, 0.2,−0.2, 0.2)T with

βa1 chosen to be a sequence of values from 0.205 to 0.250 with an increment of 0.005.

We evaluate both the size (or type slowromancapi@ error) and power (1−type slowro-

mancapii@ error) of the Wald test in equation (2.20) proposed in Section 2.4.2. Based

on simulated data streams, with NB = 100, 000, each data batch with size nb = 200,

we calculated empirical type slowromancapi@ error and power from 500 replications.

Under H0, as shown in Figure A.2 (the (1,1)-th panel) in the Supplementary

Material, the Q-Q plot of the Wald test statistic from a total of 500 replications is

distributed closely along the 45◦ diagonal, indicating the validity of asymptotic χ2
1

distribution. In addition, we increase the number of coefficients being tested, and

found that under H0 the resulting Wald statistics are all shown to approximately chi-

square distributed with degrees of freedom equal to the number of parameters under

the alternative HA (see the remaining panels of Figure A.2). The supplementary

Table A.6 shows the empirical type I error and power based on 500 replications,

where the type I errors of the Wald test for H0 : β01 = 0.2 by the MLE, AI-SGD and

our proposed Wald test are very close to the nominal level of 0.05, while the Wald

tests based on CEE and CUEE have poor type I error control. Figure 2.5 shows that

the power of AI-SGD is consistently much lower than that of the Wald test based on

the renewable estimation or the MLE, while CEE or CUEE has lower power when
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Figure 2.5: Power curves of the Wald tests.

βa1 has a smaller distance to β01 = 0.2.

2.7 Data Example

To show the usefulness of our proposed renewable estimation and incremental

inference in practice, we analyzed streaming data from the National Automotive

Sampling System-Crashworthiness Data System (NASS CDS). Our primary interest

was to evaluate the effectiveness of graduated driver licensing (GDL), which is a

nationwide legislature on novice drivers of age 21 or younger with various conditions

of vehicle operation. On the other hand, there are no restrictions on vehicle operation

for older drivers in the current law. To address the effect of driver’s age on driving

safety, we compared age groups with respect to the risk of fatal crash when an accident

occurred. Three age groups were considered: “Age< 21” represented the young group

with a restricted GDL, while “Age≥ 65” was the old group with a regular driver’s
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license, and those falling in between was treated as the reference group. Three age

groups (Age< 21, 21 ≤ Age < 65, Age≥ 65) were coded as dummy variables in our

analysis. Since the number of drivers involved in accidents in the young group or

the old group was much smaller than those in the reference group, it was of great

interest to renew analysis results with more data being collected sequentially over

time. Event of “Fatality” in a crash is a binary outcome of interest, which was

analyzed using a logistic model. This outcome variable was created from the variable

of Maximum Treatment in Accident (ATREAT) in the database, which indicated the

most intensive treatment given to driver in an accident.

In this illustrative example, streaming data were formed by monthly accident

data from the period of 7 years over January, 2009 to December, 2015, with B = 84

data batches and a total sample size NB = 23, 184 completely recorded accidents in

USA. We applied our renewable estimation and incremental inference to sequentially

update parameter estimates and standard errors for the regression coefficients. In the

analysis, we assumed the underlying risk of fatal crash across age groups was constant

over the 7-year time window. Six additional confounding factors were included in the

model, including, Sex, Seat Belt Use, Light condition and Speed Limit.

As shown in Figure 2.6, the 95% pointwise confidence bands over the 84 batches be-

came narrower for all regression coefficients as more monthly streaming data batches

arrived for the analysis. The top two panels display the traces plots for coefficient

estimates obtained by the renewable estimation method for young and old groups,

respectively. The coefficient estimates for the young group stay below 0 over the

84-month period, meaning that the young group (Age< 21) has lower adjusted odds

of fatal crash than the reference group. This finding is consistent with the reported

results in the literature that GDL is an effective policy to protect novice drivers from

severe injuring (e.g. Chen et al. (2014)). In contrast, the trace plot for the old age

group (Age≥ 65) shows an upward trend and get stabilized when the sample size
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increases. This suggests that the adjusted odds of fatality in a vehicle crash for the

old group becomes significant higher than the reference group when the number of

streaming data batches is large enough. This may suggest a need on policy modifi-

cation on restrictive vehicle operation for old drivers.

Figure 2.7 shows the trends of − log10(p) values, p-values of the incremental Wald

test in the 10-base logarithm, for each regression coefficient over 84 months. Clearly,

all their levels of evidence against the null H0 : βj = 0 are increasing over time. “Seat

Belt” turns out to have the strongest association to the odds of fatality in a crash

among all covariates included in the model. This is an overwhelming confirmation to

the enforcement of policy “buckle up” when sitting in a moving vehicle. In addition,

to characterize the overall significance level for each covariate over the 84-month

period, we proposed to calculate a summary statistic as of area under the p-value

curve. Most of these curves have well separated patterns, so that the ranking of the

overall significance by the calculated areas is well aligned with the ranking of p-values

obtained at the end time of streaming data availability, namely December, 2015. It

is interesting to note that “Traffic Control Function”, “Light Condition” and “Sex”

are among the weakest predictors.

Applying the proposed renewable estimation and incremental inference to the

above CDS data analysis enabled us to visualize time-course patterns of data evi-

dence accrual as well as stability and reproducibility of inference. As shown clearly in

Figure 2.6, at the early stage of data streams, due to limited sample sizes and possibly

sampling bias, both parameter estimates and test power may be unstable and even

misleading. These potential shortcomings can be convincingly overcome when esti-

mates and inferential quantities were continuously updated along with data streams,

which eventually reached stability and reliable conclusions. Table 2.5 reports the

results of the renewable estimation and incremental inference at the terminal time of

these streaming data. Our proposed Rho architecture has made the above incremen-
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Table 2.5: Results from the MLE method and the proposed renewable estimation
method in logistic model with N = 23, 184, p = 9, B = 84.

MLE Renew
Estimate ASE p-value Estimate ASE p-value

Intercept -4.284 0.174 3.91× 10−134 -4.254 0.169 6.18× 10−140

Young -0.081 0.127 0.524 -0.080 0.132 0.541
Old 0.889 0.104 1.16× 10−17 0.876 0.105 9.99× 10−17

Sex 0.343 0.079 1.60× 10−5 0.326 0.077 2.32× 10−5

Seat Belt -1.080 0.084 3.55× 10−38 -1.085 0.081 2.87× 10−41

Light Condition 0.208 0.042 7.25× 10−7 0.202 0.042 1.24× 10−6

Drinking 0.835 0.106 2.42× 10−15 0.833 0.108 1.33× 10−14

Speed Limit 0.719 0.078 2.94× 10−20 0.734 0.077 2.19× 10−21

Traffic Control Function -0.414 0.085 1.18× 10−6 -0.397 0.084 2.09× 10−6

tal analysis straightforward. As a matter of fact, this expanded architecture with an

addition of inference layer has given rise to tremendous convenience in data storage

and data analytics for processing high-throughput streaming data.

2.8 Concluding Remarks

Although a large number of statistical methods and computational recipes have

been developed to address various challenges for Big Data analytics, such as the

subsampling-based methods (Liang et al., 2013; Kleiner et al., 2014; Ma et al., 2015)

and divide-and-conquer techniques (Lin and Xi , 2011; Guha et al., 2012; Chen and

Xie, 2014; Tang et al., 2016; Zhou and Song , 2017a), little is known about statistical

inference for streaming data analysis under dynamic data storage and incremental

updates. This paper has filled the gap by proposing the renewable estimation method

and incremental inference.

The renewable methodology for estimation and inference is of second-order ap-

proximation to the oracle MLE. It can sequentially renew both point estimation and

asymptotic normality along data streams. We proposed a new Rho architecture for

implementation, which is an extended Apache Spark Lambda architecture, with an

added inference layer that carries out the storage and updating of information matri-

ces. Both proposed statistical methodology and computational algorithms have been
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Figure 2.6: Trace plot for the coefficients estimates and 95% confidence bands.
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Figure 2.7: Trace plot of −log10(p) during January, 2009 to December, 2015.
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justified theoretically and examined numerically in the setting of generalized linear

models. Being a key methodology contribution, the incremental inference has been

shown to be statistically valid and efficient; it has no loss of efficiency comparing to

the oracle method of the maximum likelihood that processes the entire data once,

while enjoys high computational efficiency. We demonstrate the connection of renew-

able estimators to approximate sufficient statistics, which builds a bridge between the

classical statistical theory and modern online learning analytics.

Through various simulation studies, we have shown that our proposed renewable

estimation method runs computationally faster than two existing methods CEE and

CUEE, as well as the oracle MLE. The reason that CUEE is slower than CEE is that it

requires one extra step calculation involving an intermediary estimator. Our proposed

incremental updating algorithm keeps using the same inversed Hessian matrix over

all iterations, where the matrix inverting operation is only carried out once per data

batch, leading to tremendous saving of computation time. It is worth pointing out

that the estimation consistency of CEE or CUEE is established under strong regularity

conditions concerning the constraint on the ratio of batch size nb to the number of

data batches B. Such conditions may not hold in some real applications when data

streams arrive perpetually. Our method has overcome this restriction, as confirmed

in the second simulation study. In addition, the renewable estimator is found to

be appealing especially when the number of data batches accumulates quickly, with

both advantages on the asymptotic properties being virtually identical to the oracle

MLE and highly efficient information storage and processing via the Rho architecture.

Reliability of statistical inference is of great importance in practice to handle data

streams, such as Phase IV clinical trials where drug safety, side-effect and efficacy

have to be assessed at the general population mobile health data analysis, as well

as traditional sensor networks, web logs and computer network traffic (Gaber et al.,

2005).
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The proposed renewable estimation method to sequentially handle data sets may

be treated as an appealing alternative approach to currently popular parallel com-

putation. Allocating memory has become a main focus in the development of Big

Data analytics. The crucial technical challenge pertains to whether or not historical

raw data, instead of summary statistics, are needed in iterative updates to search for

the MLE. Some R packages such as biglm (Lumley , 2013) and speedglm (Enea et al.,

2015) have been proposed to address the problem of loading a large data set, and they

have been shown to provide exactly the same results as the MLE from the R package

glm. Both biglm and speedglm avoid reading in the entire big data set at once;

instead calculating the needed sufficient statistics, XTWX and XWZ, in sequen-

tial increments and then summing them up in the Iterative Weighted Least Square

(IWLS) algorithm. However, these two methods must use historical subject-level

data in calculations. Thus, they are more expensive in data storage and computa-

tional inefficient in comparison to our proposed renewable estimation method. From

this perspective, our renewable estimation method could also serve as a powerful al-

ternative method to biglm and speedglm, and as well as to the parallel computing

paradigm when analyzing very large static data.

The formulation of renewable estimation method is under the context of gener-

alized linear model where the log-likelihood functions have nice properties such as

the twice continuous differentiability. The analytic procedures related to the devel-

opment of renewable estimator in the GLMs pave path to further generalization of

such method to other important settings such as generalized estimating equations

(GEEs), Cox regression model, and quantile regression model. Methods for devel-

oping renewable estimation for non-differentiable score functions such as quantile

regression would be an interesting direction of research. In addition, this method is

based on the assumption that data batches are all sampled from a common study

population, which may be violated in some of practical studies. In this case of het-

50



erogeneous data streams, sequential updating procedures will be a challenging but

useful methodology research topic, which is worth further exploration.
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CHAPTER III

Real-time Regression Analysis of Streaming

Clustered Data With or Without Data

Contamination

3.1 Introduction

When a car accident happens, driver and passengers in the same car would be

all likely to get injured, and their degrees of injury severity are correlated within the

cluster (or car). The National Automotive Sampling System-Crashworthiness Data

System (NASS CDS) is a publicly accessible source of streaming datasets containing

car accident information in USA. In this paper, we consider a problem where a se-

ries of independent clustered-data batches becomes available sequentially. Similar to

data of car accidents, each data batch consists of longitudinally correlated or cluster-

correlated outcomes from subjects. Other examples of such streaming correlated data

include cohorts of patients sequentially assembled from different clinical centers to pe-

riodically update national disease registry databases. The primary goal of processing

streaming data is to be able to analyze and update statistics of interest upon the

arrival of a new data batch, which enables to not only free up space for the storage

of massive historical individual-level data, but also to provide real-time inference and

decision making. Unfortunately, most of current available online learning methods
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such as stochastic gradient descent algorithm (Robbins and Monro, 1951; Toulis and

Airold , 2017) focus only on point estimation or prediction; statistical inference is lack-

ing in the existing arsenal, especially in correlated data analysis. In effect, interim

statistical inference and decision making are essential in many applied fields where

sequentially adaptive intervention to observed outcomes are of critical importance to

increase treatment effectiveness and to enforce quality control of production lines.

This chapter begins with an extension of renewable estimation and incremental

inference in generalized linear models (GLMs) from the case of cross-sectional data

in Chapter II to that of repeatedly measured responses. This extension is undertaken

not only to relax the availability of likelihood function in the renewable estimation

to estimating functions, but also to relax the assumption of homogeneous marginal

models with no occurrences of abnormal data batches. In real world applications,

practitioners often encounter outlying data batches that are not generated from the

same underlying model of interest over the course of data streams. In this case,

continually updating results without noticing abnormal data batches would lead to

invalid statistical inference and misleading conclusions. Consequently, our second

objective of this paper is to develop a quality control type of monitoring scheme by

the means of change-point detection.

The method of change-point detection has been extensively studied in recent lit-

erature. There are two major classes of problem formulations according to online

and offline platforms (Poor and Hadjiliadis , 2008; Basseville and Nikiforov , 1993).

The class of offline methods includes procedures of estimating abrupt changes in a

single static dataset, most of which are based on certain regularization algorithms

such as fused LASSO and group LASSO, among others. For instance, Harchaoui and

Leduc (2010) propose an adaption of the LASSO algorithm to detect changes in a

sequence of mean values of one-dimensional Gaussian random variables; Qian and Su

(2013) and Angelosante and Giannakis (2012) adopt group fused LASSO to examine
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structural changes in the linear regression; Rojas and Wahlberg (2014) investigate

properties of the fused LASSO method in the context of change-point detection for

piece-wise signals; Zhang et al. (2015) determine change-points that would segment

data into different subgroups as well as enforce sparsity within each subgroup via the

sparse group LASSO.

In contrast, for the class of online methods, due to the fact that data batches

arrive sequentially, the goal of monitoring is slightly different. The primary interest

is to run real-time algorithms to detect abnormal changes detrimental to an online

learning platform in a timely fashion with no delay, while the false-alarm rate or

type I error is being properly controlled (Johari et al., 2016). Such task is techni-

cally challenging, and it is the setting that is considered in this paper. In a rather

simple case where both pre-change and post-change distributions are fully specified,

various detection rules have been studied based on classical procedures, including

Shewhart’s control charts (Amin et al., 1995), moving average control charts (Amin

and Search, 1991), the CUSUM procedure (Page, 1954), and the Shiryayev-Roberts

(SR) procedure (Shiryayev , 1963; Roberts , 1966), among others.

In the literature of statistical quality control, without loss of generality, it is often

the case that pre-change distribution is typically assumed to be well defined. If not,

one may first use a set of training samples to obtain point estimates of unknown pre-

change parameters (Pollak and Siegmund , 1991). Then, Generalized Likelihood Ratio

(GLR) test or as such (Goel and Wu, 1971) are widely used to derive online detection

procedures, which require to specify pre- and post-change distributions at a point

under examination. This assumption of known pre- and post-change distributions

is too restrictive and unrealistic. The online version of GLR statistic needs to find

maximum likelihood estimate (MLE) of unknown post-change parameters whenever

a new data batch arrives in order to obtain the detection statistic.

To comply with the computation efficiency in the online paradigm, a certain re-
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cursive form is certainly desirable to produce an update quickly with a new data

batch. In general, MLE does not take a recursive form and cannot be updated us-

ing simple summary statistics (Lai , 2004). This technical gap has been filled by the

content in Chapter II. An extension of this to streaming correlated data is one of

the focuses in this paper. In addition, we relax the quality of data streams by al-

lowing occurrences of abnormal data batches over streaming data collection. By an

“abnormal” data batch we mean a dataset that is generated with a different set of

regression coefficients from those of the model of primary interest. Our goal is to

identify any abnormal data batch and exclude it from updating results of estimation

and inference.

We focus on the generalized estimating equation (GEE) approach proposed by Liang

and Zeger (1986), one of the most widely used methods for the analysis of data with

correlated outcomes. This quasi-likelihood approach is based only on the first two

moments of the correlated data with no need of specifying a parametric joint dis-

tribution. Consequently, likelihood is no longer available, and thus no GLR test

statistic would be possibly formed for change-points detection as done extensively

in the current literature. To address this technical challenge, we utilize quadratic

inference function (QIF), another quasi-likelihood inference known in the analysis of

longitudinal or clustered data (Qu et al., 2000). QIF has several advantages in com-

parison to GEE: (i) QIF does not require more model assumptions than GEE; (ii) it

provides a goodness-of-fit test for the first moment assumption, i.e. the mean-model

specification; (iii) QIF estimator is more efficient than the GEE estimator when the

working correlation is misspecified; and (iv) it is more robust with a bounded influence

function against large outliers (Qu and Song , 2004).

For the implementation of online QIF, in the presence of potential abnormal data

batches, we expand the Rho architecture developed in GLM in Chapter II with a new

addition of monitoring layer in the Spark’s Lambda architecture, where a QIF-based
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test procedure is housed to check the compatibility of each upcoming data batch

with the previous ones. Specifically, we aim to develop a new methodology with

the following tasks. (i) To put forward renewable QIF estimation and incremental

inference in marginal GLMs for correlated outcomes; and (ii) to investigate a QIF-

based goodness-of-fit test statistic in the monitoring layer that enables to effectively

detect abnormal data batches over data streams with no fixed ending monitoring

time.

Our new methodology contributions include: (i) we propose a new quadratic

inference function method that allows to perform real-time regression analysis with

correlated outcomes in quadratic inference functions; (ii) the proposed renewable QIF

estimator is asymptotically equivalent to the oracle QIF estimator obtained from the

full cumulative data in the sense that their `2-norm difference decreases as the total

sample size NB increases; (iii) this renewable QIF method can be implemented in the

existing Spark’s Lambda architecture; and (iv) by adding a monitoring layer to the

Lambda architecture, our method allows to detect abnormal data batches in real-time

while conducting online correlated data analysis.

This chapter is organized as follows. Section 3.2 provides both algorithms and the-

oretical guarantees for our renewable QIF method. Section 3.3 presents a QIF-based

test statistic for detection of abnormal data batches with relevant power analysis.

Section 3.4 discusses an extended Lambda architecture with an addition of quality

control layer and pseudo code for numerical implementation. Section 3.5 includes sim-

ulation results with comparisons of the proposed renewable QIF to the oracle GEE,

QIF and renewable GEE with or without abnormal data batches. Section 3.6 illus-

trates the proposed method by a real data analysis application. All technique details

are included in the appendix, including the derivation of Renewable GEE method,

the proofs of estimation consistency, asymptotic normality, and the asymptotic equiv-

alence between the RenewQIF and the oracle QIF.
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3.2 Renewable QIF methodology

3.2.1 Formulation

Consider independent streaming datasets of cluster-correlated outcomes, sequen-

tially generated from a common underlying marginal generalized linear model with

an unknown regression parameter β0 ∈ Rp. For the ease of exposition, we assume

an equal cluster size mi = m. Our goal is to evaluate population-average effects of

p covariates, denoted by β0 = (β01, . . . , β0p)
T in the marginal mean model, E(y |

X) = µ =
[
h(xT1 β0), . . . , h(xTmβ0)

]T
, where µ = (µ1, . . . , µm)T with µk = h(xTkβ0),

xk = (xk1, . . . , xkp)
T , k = 1, . . . ,m, and the within-cluster dependence is specified by

Cov(y |X) = φΣ(β0,α) = φA1/2R(α)A1/2. Here h(·) is a known link function, φ is

a dispersion parameter, A = diag {v(µ1), . . . , v(µm)} is a diagonal matrix with v(·)

being a known variance function, and R(α) is a working correlation matrix that is

fully characterized by a correlation parameter vector α.

In the context of streaming data, consider a time point b ≥ 2 with a total of

Nb clusters arriving sequentially in b batches, D1, . . . ,Db, each containing nj = |Dj|,

j = 1, . . . , b, clusters. Let D?b = {D1, . . . ,Db} denote the accumulated collection

of clustered datasets with clustered outcomes up to data batch b, and Nb = |D?b |.

For simplicity Db (a single data batch b) or D?b (an aggregation of b data batches)

is used as respective sets of indices for clusters involved. yi = (yi1, . . . , yim)T and

Xi = (xi1, . . . ,xim)T are the correlated response vectors and associated covariates,

i = 1, . . . , nj, j = 1, . . . , b. According to Liang and Zeger (1986), a GEE estimator

of β0 is a solution to the following generalized estimating equation for data D?b up to

time point b:

ψ?
b (D?b ;β, α) =

∑

i∈D?
b

DT
i Σ−1i (yi − µi) = 0, (3.1)

where µi = (µi1, . . . , µim)T ,Di = ∂µi/∂β
T is anm×pmatrix and Σi = A

1/2
i R(α)A

1/2
i

with Ai = diag {v(µi1), . . . , v(µim)}. According to Qu et al. (2000), the formula-
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tion of QIF is based on an approximation to the inverse working correlation ma-

trix by R−1(α) ≈ ∑S
s=1 γsMs, where γ1, . . . , γS are constants possibly depend on

α, and M1, . . . ,MS are known basis matrices with elements 0 and 1, which are

determined by a given correlation matrix R(α). In some cases, the above expan-

sion can be exact. For example, as discussed in Qu et al. (2000) and Song (2007,

Chapter 5), basis matrices for the compound symmetry working correlation matrix

are M1 = Im and M cs
2 , a matrix with 0 on the diagonal and 1 off the diagonal.

For AR-1 working correlation, three basis matrices include M1 = Im, M ar
2 with

1 on the two main off-diagonals and 0 elsewhere, and M3 with 1 on the corners

(1, 1) and (m,m), and 0 elsewhere. Plugging such expansion into (3.1) leads to

ψ?
b (D?b ;β, α) =

∑
i∈D?

b

∑S
s=1 γsD

T
i A

−1/2
i MsA

−1/2
i (yi − µi) = 0, which may be re-

garded as a combination of the following extended score vector of pS dimension:

g?b (β) =
∑

i∈D?
b

g(yi;Xi,β) =
∑

i∈D?
b




DT
i A

−1/2
i M1A

−1/2
i (yi − µi)

...

DT
i A

−1/2
i MSA

−1/2
i (yi − µi)



.

This is an over-identified estimating function, namely dim(g?b (β)) > dim(β). To

obtain an estimator of β0, following Hansen (1982)’s generalized method of moments

(GMM), we take β̂?b = arg min
β∈Rp

Q?
b(β) with

Q?
b(β) = g?Tb (β) {C?

b (β)}−1 g?b (β), (3.2)

where C?
b (β) =

∑
i∈D?

b
g(yi;Xi,β)g(yi;Xi,β)T is the sample variance matrix of

g?b (β). Note that the nuisance parameter α is not involved in (3.2) for the estimation

of β̂?b .

Instead of processing the cumulative data D?b once as shown above, we may con-

duct the online estimation and inference via a sequentially recursive updating scheme.
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In the proposed renewable estimation framework, let β̃b be a renewable estimator,

which is initialized by β̃1 = β̂1 = arg min
β∈Rp

Q1(β), namely the QIF estimate obtained

with the first data batch. When data batch Db arrives, a previous estimator β̃b−1

is updated to β̃b using historical summary statistics of previous data batches D?b−1
and full observations of current data batch Db. After the completion of this updat-

ing, individual-level data of Db is no longer accessible for the sake of data storage,

but only updated estimate β̃b and summary statistics are carried forward in future

calculations. For the empirical version, we use gb(β) =
∑

i∈Db
g(yi;Xi,β) to denote

the extended score vector of data batch Db, clearly g?b (β) =
∑b

j=1 gj(β). Let its

corresponding negative gradient and sample variance matrix of gb(β) be Gb(β) =

−∑i∈Db
∂g(yi;Xi,β)/∂βT and Cb(β) =

∑
i∈Db

g(yi;Xi,β)g(yi;Xi,β)T , respec-

tively. In the theoretical framework, let the variability matrix and sensitivity matrix

be denoted by C(β) = Eβ
{
g(y;X,β)gT (y;X,β)

}
and G(β) = Eβ

{
−∂g(y;X,β)/∂βT

}
.

In the process of renewable QIF, the same basis matrices are used all data batches.

3.2.2 Derivation

We begin the derivation with two batches, the second one D2 arriving after the

first D1. This simple scenario can be easily generalized to many batch streams with

little effort. According to Qu et al. (2000), a QIF estimator, β̂1 = arg min
β∈Rp

Q1(β)

with Q1(β) = gT1 (β) {C1(β)}−1 g1(β), satisfies the estimating equation:

GT
1 (β̂1)

{
C1(β̂1)

}−1
g1(β̂1) = 0.

When D2 arrives, we aim to obtain the oracle QIF estimator, β̂?2, based on the accu-

mulated data D?2, that satisfies the estimating equationG?
2(β̂

?
2)TC?

2(β̂?2)−1g?2(β̂?2) = 0,

or equivalently

{
G1(β̂

?
2) +G2(β̂

?
2)
}T {

C1(β̂
?
2) +C2(β̂

?
2)
}−1 {

g1(β̂
?
2) + g2(β̂

?
2)
}

= 0. (3.3)
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Clearly, solving (3.3) for β̂?2 involves subject-level data from both batches D1 and D2

where D1 may no longer be accessible. Our renewable version of QIF estimation is

able to handle this issue. To do so, we take the first-order Taylor expansions of the

terms g1(β̂
?
2), G1(β̂

?
2) and C1(β̂

?
2) element-wise in (3.3) around β̂1, given that these

inferential quantities are differentiable, and yield

n−11 g1(β̂
?
2) = n−11 g1(β̂1) + n−11 G1(β̂1)(β̂1 − β̂?2) +Op(‖β̂1 − β̂?2‖2),

n−11 G1(β̂
?
2) = n−11 G1(β̂1) +Op(‖β̂1 − β̂?2‖2),

n−11 C1(β̂
?
2) = n−11 C1(β̂1) +Op(‖β̂1 − β̂?2‖2).

(3.4)

The error term Op(‖β̂1 − β̂?2‖2) in (3.4) may be asymptotically ignored if n1 is large

enough. Dropping such error terms, we propose a new QIF estimator β̃2 as a solution

to the estimating equation of the form G̃2(β̃2)
T C̃2(β̃2)

−1g̃2(β̃2) = 0, or equivalently,

{
G1(β̂1) +G2(β̃2)

}T {
C1(β̂1) +C2(β̃2)

}−1 {
g1(β̂1) +G1(β̂1)(β̂1 − β̃2) + g2(β̃2)

}
= 0,

(3.5)

where g̃2, G̃2 and C̃2 are, respectively, the resulting adjusted extended score vector,

the aggregated negative gradient, and sample variance matrix. Thus, equation (3.5)

updates the initial β̂1 to be β̃2, and the latter β̃2, as shown in Theorem III.3, approx-

imates the oracle QIF β̂?2 up to the second order asymptotic error with respect to the

cumulative sample size N2. Because of this, β̃2 is called a renewable QIF estimator

of β0, and equation (3.5) is termed as an incremental QIF estimating equation. Fur-

thermore, it is straightforward to find the renewable QIF estimator β̃2 numerically

via the Newton-Raphson algorithm. That is, at the (r + 1)-th iteration,

β̃
(r+1)
2 = β̃

(r)
2 +

{
G̃2(β̃

(r)
2 )T C̃2(β̃

(r)
2 )−1G̃2(β̃

(r)
2 )
}−1

G̃2(β̃
(r)
2 )T C̃2(β̃

(r)
2 )−1g̃2(β̃

(r)
2 ),

60



where G̃2(β̃
(r)
2 ) = G1(β̂1) +G2(β̃

(r)
2 ) and C̃2(β̃

(r)
2 ) = C1(β̂1) +C2(β̃

(r)
2 ). It is worth

pointing out that in the above iterations, no subject-level data of D1, but only the

historical summary statistics, including estimate β̂1 and its negative gradient G1(β̂1)

and sample variance matrix C1(β̂1), are used. Once again, the nuisance correlation

parameter α is not involved in the above iterations, either.

Generalizing the above procedure to a general setting of streaming datasets, we

now define a renewable estimation of β0 as follows. Let β̂?b be the oracle QIF es-

timator of β0 with the accumulated data D?b = ∪bj=1Dj obtained from the cumu-

lative QIF estimating equation G?
b(β̂

?
b )
TC?

b (β̂?b )
−1g?b (β̂

?
b ) = 0. A renewable estima-

tor β̃b of β0 is defined as a solution to the incremental QIF estimating equation:

G̃b(β̃b)
T C̃b(β̃b)

−1g̃b(β̃b) = 0, which is equivalent to

{
b−1∑

j=1

Gj(β̃j) +Gb(β̃b)

}T { b−1∑

j=1

Cj(β̃j) +Cb(β̃b)

}−1

×
{
g̃b−1(β̃b−1) +

b−1∑

j=1

Gj(β̃j)(β̃b−1 − β̃b) + gb(β̃b)

}
= 0,

(3.6)

where G̃b =
∑b

j=1Gj(β̃j) is the aggregated negative gradient matrix, and C̃b =
∑b

j=1Cj(β̃j) is the aggregated sample variance matrix. Solving (3.6) can be easily

down via the following Newton-Raphson iterations:

β̃
(r+1)
b = β̃

(r)
b +

{
G̃b(β̃

(r)
b )T C̃b(β̃

(r)
b )−1G̃b(β̃

(r)
b )
}−1

G̃b(β̃
(r)
b )T C̃b(β̃

(r)
b )−1g̃b(β̃

(r)
b ).

(3.7)

In equation (3.7), clearly we only use the subject-level data of current data batch Db
and summary statistics {β̃b−1, g̃b−1, G̃b−1, C̃b−1} from historical data batches up to

b− 1.
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3.2.3 Large Sample Properties

Let a neighborhood around true value β0 be Nδ(β0) = {β : ‖β − β0‖2 ≤ δ}. We

assume the following regularity conditions:

(C1) Eβ {g(y;X,β)} = 0 if and only if β = β0.

(C2) The score vector g(y;X,β) is continuously differentiable, and its negative gra-

dient G(y;X,β) = −∂g(y;X,β)/∂βT is Lipschitz continuous for β ∈ Θ.

(C3) The variability matrix C(β) is positive-definite for β ∈ Nδ(β0).

These conditions (C1)-(C3) are mild regularity conditions. Condition (C1) as-

sumes the unbiasedness of the extended score estimating functions. Conditions (C2)

and (C3) are required to establish estimation consistency and asymptotic normality.

Theorem III.1. Under regularity conditions (C1)-(C3), the renewable estimator β̃b

given in (3.6) is consistent, namely β̃b
p→ β0, as Nb =

∑b
j=1 nj →∞.

Theorem III.1 presents the estimation consistency of renewable estimator β̃b with

respect to the cumulative sample size Nb.

Theorem III.2. Under regularity conditions (C1)-(C3), the renewable estimator β̃b

is asymptotically normally distributed, that is,

√
Nb(β̃b − β0)

d→ N (0, J−1(β0)), as Nb =
b∑

j=1

nj →∞,

where Godambe information J(β0) = GT (β0)C−1(β0)G(β0).

Note that in Theorem III.2, the convergence rate is Op(N
−1/2
b ), based on the

cumulative sample size Nb. This indicates a faster convergence rate than parallelized

distributed estimation where the convergence rate is based on the sample size of the

smallest single dataset (Zhou and Song , 2017b) min
j

√
nj. The detailed proofs of both

Theorems III.1 and III.2 are provided in Appendix B.2.
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It is interesting to notice that the asymptotic covariance matrix of the renewable

estimator β̃b given in Theorem III.2 is exactly the same as that of the oracle estimator

β̂?b . This implies that the proposed renewable estimator achieves the same efficiency

as the oracle QIF estimator. With no access to any historical subject-level data in the

computation, using only the prior aggregated matrices G̃b =
∑b

j=1Gj(Dj; β̃j) and

C̃b =
∑b

j=1Cj(Dj; β̃j), we can calculate the estimated asymptotic covariance matrix

Σ̃b(β0) as Σ̃b(β0) =
{
N−1b J̃b

}−1
= Nb

{
G̃T
b C̃

−1
b G̃b

}−1
, where

J̃b =

{
b∑

j=1

Gj(Dj; β̃j)
}T { b∑

j=1

Cj(Dj; β̃j)
}−1{ b∑

j=1

Gj(Dj; β̃j)
}
.

It follows that the estimated asymptotic variance matrix for the renewable QIF β̃b is

Ṽ (β̃b) := Ṽar(β̃b) =
1

Nb

Σ̃b(β0) =
{
G̃T
b C̃

−1
b G̃b

}−1
. (3.8)

Theorem III.3 below presents the theoretical guarantee that the proposed renew-

able QIF estimator β̃b is asymptotically equivalent to the oracle QIF estimator β̂?b .

Theorem III.3. Under conditions (C1)-(C3), the `2-norm difference between the

oracle estimator β̂?b and the proposed renewable estimator β̃b vanishes at the rate of

N−1b , namely

‖β̃b − β̂?b‖2 = Op(1/Nb), as Nb →∞.

The proof of Theorem III.3 is included in Appendix B.3. When the size of cumu-

lative dataset grows fast, numerically there is virtually no difference between β̃b and

β̃?b .
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3.3 Detection of Abnormal Data Batches

For the case of high throughput data streams in practice, it is very likely to

encounter abnormal data batches. To address this issue, we relax the renewable QIF

method to a situation where abnormal data batches may occur over the course of

data streams, D2, . . . ,Db. In this paper, a data batch Dτ , τ ∈ {2, . . . , b}, is regarded

as being abnormal if Dτ is generated from a model whose regression parameters,

say βτ , are different from those of the underlying main model of interest β0 (or the

true model), i.e. βτ 6= β0. In other words, Dτ is an outlying data batch, which

is incompatible with the data batches generated from the true model. Let Γq =

{τ1, . . . , τq} denote the set of indices for q abnormal data batches. In reality, we do

not know set Γq in advance but want to find them out from streaming data. For

convenience, we assume that the first data batch is generated from a model with

β0. At each subsequent time point b (b ≥ 2), we propose to test a hypothesis of

mean-zero assumption for the pair of extended scores H0 : Eβ(gLb
) = Eβ(gb) =

0, which essentially checks the compatibility between current data batch Db under

investigation and DLb
, where Lb denotes the latest data batch that is not rejected by

the compatibility test. Clearly, Lb = max {j : 2 ≤ j < b, b /∈ Γq}. If H0 is rejected,

we would not use current data batch Db to renew β̃b−1 and set β̃b equal to β̃b−1;

otherwise, execute an update from β̃b−1 to β̃b. Then we proceed to test H0 with next

data batch Db+1, in which Lb is updated with the decision of the hypothesis test.

In the proposed test, we utilize two single data batches to monitor incidence

of incompatibility, because we want to minimize the influence of potentially falsely

selected or outdated historical data in the decision making (Liu et al., 2017). Techni-

cally speaking, a test statistic constructed only with two data batches reduces greatly

data storage demand and computational costs associated with extensive monitoring

activities.

We construct a test statistic along the line of Hansen (1982)’s seminal goodness-
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of-fit test. The quadratic inference function has useful chi-squared properties for

hypothesis testing (Lindsay and Qu, 2003). In our setting of checking for data com-

patibility, we consider a quadratic inference function of the following form:

Λb(β) =



gLb

(β)

gb(β)




T 

CLb

(β) 0

0 Cb(β)




−1

gLb

(β)

gb(β)


 ,

where CLb
and Cb are the estimated sample covariances of extended scores gLb

and gb,

respectively, similar to the one given in (3.3). Note that the form of block covariance

in Λb is due to the independence between DLb
and Db. Let β̌b = arg min

β∈Rp

Λb(β), under

H0, Λb(β̌b)
d−→ χ2

df ; under H1, for an index τ ∈ Γq and a sequence of local alternatives

in the form of βτ = β0 + (nLb
+ nτ )

−1/2d, where d ∈ Rp, Λτ (βτ )
d−→ χ2

df (λ) with

df = rank(CLb
) + rank(Cb(τ))− p, and non-centrality parameter λ = dTJ(β0)d with

J being the Godambe information matrix in Theorem III.2. Moreover, it is easy to

show that Power = PH1

(
Λτ (β̌τ ) > χ2

df,α

)
→ 1, as (nLb

+nτ )→∞, which implies that

the proposed test Λτ is consistent. Under a finite sample size, with fixed d, the power

of Λτ depends on both statistical significance level α and abnormal data batch size

nτ . Larger α leads to higher power and smaller type II error, but also a higher chance

to produce false alarms; obviously, increasing data batch size nb will help increase

power.

Even though the above monitoring test is carried out sequentially and repeatedly,

it is in fact different from the conventional sequential test (Wald , 1945). This is

because in the proposed monitoring scheme, we do not stop the test even if we find

an abnormal data batch. In other words, the previous decision does not affect a

current investigation, nor future ones. Every monitoring task takes place at a given

time b, which is an isolated circumstance, instead of a collective decision making

scheme.
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3.4 Implementation

We expand the existing Spark’s Lambda architecture to reduce computing burden

in the framework of renewable QIF methodology. The iterative calculation in (3.7)

can be implemented in the speed and inference layers in an extended Lambda architec-

ture shown in Figure 3.1. Here, relevant inferential statistics include the aggregated

extended score vector g̃ and two information matrices G̃ (aggregated negative gra-

dient) and C̃ (aggregated sample variance matrix). If H0 is not rejected, store Db
in the monitoring layer and update eligibility index as Lb = b, followed by updating

β̃b−1 to β̃b at the speed layer and updating g̃b−1, G̃b−1, C̃b−1 to g̃b, G̃b and C̃b at the

inference layer. Otherwise, skip all updating steps and proceed to next data batch

Db+1.

Db Use Db?

Store
Db→Lb

Delete
Db

Monitoring layer

g̃b−1,G̃b−1,C̃b−1
g̃
(r)
b = g̃b−1 + G̃b−1(β̃b−1 − β̃

(r)
b ) + gb(Db; β̃

(r)
b )

G̃
(r)
b = G̃b−1 + Gb(Db; β̃

(r)
b )

C̃
(r)
b = C̃b−1 + Cb(Db; β̃

(r)
b )

g̃b = g̃b−1, G̃b = G̃b−1, C̃b = C̃b−1

g̃b,G̃b,C̃b

Inference layer

β̃
(r+1)
b = β̃

(r)
b +

{
G̃

(r)T
b C̃

(r)−1
b G̃

(r)
b

}−1
G̃

(r)T
b C̃

(r)−1
b g̃

(r)
b

β̃b = β̃b−1

β̃b−1 β̃b

Speed layer

no

yes

no

yes

yes

no

Figure 3.1: Diagram of an extended Lambda architecture.

Algorithm 3.2 lists the pseudo code for the implementation of the renewable QIF

via the paradigm of the extended Lambda architecture shown in Figure 3.1. Some

explanations are given below.

1. Line 1: the marginal GLM considered in this paper belongs to the family of

exponential dispersion (ED) models (Jørgensen, 1997) and most streaming datasets
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are supposed to be governed marginally by the main underlying ED model with true

parameter β0, but also with possible abnormal data batches that are generated with

β 6= β0. The ED models automatically satisfy all regularity conditions given in

Section 3.2.3.

2. Line 2: the outputs include renewable QIF estimates of the regression coefficients

and the corresponding estimated asymptotic variance matrix at each time point b,

and the latter is needed for statistical inference.

3. Line 3: set certain initial values for the regression coefficients, e.g., set β̃0 sd the

QIF estimates from fitting D1 to R function glm().

4. Line 4: run through the sequential updating procedure along data streams. 5.

Line 6: before renew QIF with current Db, first check its compatibility with DLb
,

the latest data batch that passes the monitoring test. QIF estimator β̌b is obtained

by minimizing the quadratic inference function based only on the two adjacent data

batches, DLb
∪ Db.

5. Line 7: if the test is rejected, we set β̃b = β̃b−1, g̃b = g̃b−1, G̃b = G̃b−1 and

C̃b = C̃b−1 and jump to Line 15 directly.

6. Line 9: if the test concludes no rejection, at the inference layer, utilize the prior

QIF estimate β̃b−1 and current data batch Db to calculate the aggregated extended

score vector g̃b, the aggregated negative gradient G̃b and sample variance matrix

C̃b. Through a communication with the speed layer, update these three summary

statistics in the inference layer.

7. Line 11: run the Newton-Raphson algorithm to renew β̃b−1 to β̃b.

8. Line 15: at the inference layer, use inferential statistics G̃b and C̃b to perform

statistical inference.
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3.5 Simulation Experiments

3.5.1 Setup

We conduct simulation experiments to assess the performances of the proposed

renewable QIF estimation and inference, as well as of the monitoring scheme for ab-

normal data batches, in the setting of marginal generalized linear models (MGLMs).

We compare the renewable QIF method (RenewQIF) with (i) the oracle GEE esti-

mator obtained by processing the entire cumulative data once, (ii) the oracle QIF

estimator obtained by processing the entire data once, and (iii) renewable GEE esti-

mation method (RenewGEE) that is similar to RenewQIF (see the relevant derivation

in Appendix B.1).

In the first part of comparisons to be presented below, we consider the following

criteria related to both parameter estimation and inference: (a) averaged absolute

bias (A.bias), (b) averaged asymptotic standard error (ASE), (c) empirical standard

error (ESE), and (d) coverage probability (CP). Both oracle GEE and QIF estimates

are yielded from the R packages gee and qif. Computational efficiency is assessed by

(e) computation time (C.Time) and (f) running time (R.Time). R.Time accounts only

algorithm execution time, while C.Time includes time spent on both data loading and

algorithm execution. In the second part of comparisons, we will first evaluate the type

I error and power of the proposed goodness-of-fit test with different significance level

α and data batch size nb. Then the criteria for parameter estimation and inference

will be compared thoroughly on methods with and without quality control.

In the simulation studies, we set a terminal point B, and generate a full dataset D?B
with NB independent cluster-correlated observations of m dimensions from the respec-

tive MGLMs, consisting of the mean model E(yi | Xi) =
[
h(xTi1β0), . . . , h(xTimβ0)

]T

with β0 = (0.2,−0.2, 0.2,−0.2, 0.2)T , and covariance matrix Cov(yi | Xi) = φΣ,

i = 1, . . . , NB, where four covariates xij[2:5]
iid∼ N4(0,Vx) and intercept xij[1] = 1,
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j = 1, . . . ,m. Here both covariance matrices Vx and Σ are set as compound symme-

try with ρx = 0.5 and ρy = 0.7, respectively. The dispersion parameter φ = 1 and the

cluster size is m = 5. We consider both marginal linear model for continuous yij with

h(µij) = µij and marginal logistic model for binary yij with h(µij) = log(µij/(1−µij)).

For all four methods in comparison, the working correlation matrix is specified to be

compound symmetry.

3.5.2 Evaluation of Parameter Estimation

Scenario 1: fixed NB but varying batch size nb

We begin with the comparison of four methods for the effect of data batch size nb on

their performance of point estimation and computational efficiency. There are B data

streams, each with data batch size nb, and the total sample size NB = |D?
B| = 105

independent clusters, which are simulated, respectively, from an m-variable Gaussian

linear model and an m-dimensional logistic model (using R package SimCorMultRes)

specified in Section 3.5.1. Tables 3.1 reports the results of both linear and logistic

MGLMs, over 500 rounds of simulations.

Bias and coverage probability. In linear and logistic MGLMs, both RenewGEE and

RenewQIF provide similar bias and coverage probability as the two oracle methods,

shown in Table 3.1, which confirms the theoretical results given in Theorems III.1

and III.2. It is easy to see that both bias and coverage probability in both the linear

and logistic models are not affected by individual data batch size nb. In other words,

it depends only on NB.

Computation time. Two metrics are used to evaluate computation efficiency: “C.Time”

in Table 3.1 refers to the total amount of time required by data loading and algo-

rithm execution. With an increased B, both RenewGEE and RenewQIF show clearly

advantageous for much lower computation time over the oracle GEE and QIF, due to

the fact that it is much more time consuming for the oracle methods to load in full
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datasets.

Scenario 2: fixed batch size nb but varying B

Now we turn to a streaming setting where B data batches arrive sequentially. For

convenience, we fix single batch size nb = 100, but let NB increase from 103 to 106 (or

B from 10 to 104). Tables 3.2 and 3.3 list the summaries of simulation results under

the linear and logistic MGLMs specified in Section 3.5.1.

Bias and coverage probability. As number of data batches B increases from 10 to

104, both RenewGEE and RenewQIF confirm the large sample properties in Theo-

rems III.1 and III.2 similar to those of the oracle GEE and QIF: the average absolute

bias decreases rapidly as the total sample size accumulates, and the coverage proba-

bility stays robustly around the nominal level 95%.

Computation time. Both RenewGEE and RenewQIF methods show more and more

advantageous as NB increases: the combined amount of time for data loading and

algorithm execution only takes less than 5 seconds, whereas the oracle GEE and QIF,

when processing a total of 105 samples once, requires more than 20 seconds. This

5-fold faster computation by the proposed RenewGEE and RenewQIF methods costs

little price of estimation precision, and retains the same inferential power. One thing

worth mentioning for Table 3.3 is that when NB = 106, in the logistic MGLM, the

oracle GEE is computationally too intensive to produce results within 12 hours using

the standard R package gee.

3.5.3 Evaluation of Monitoring Procedure

We also evaluate the performance of the proposed monitoring procedure using

the chi-squared goodness-of-fit test Λb to detect abnormal data batches. First, we

confirm the properties of the test statistic with respect to both type I error and power

of detection abnormal data batches. Then, we compare the estimation and inference
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Table 3.1: Simulation results under the linear and logistic MGLMs are summarized
over 500 replications, with fixed NB = 105 and p = 5 with increasing number of data
batches B. “A.bias”, “ASE”, “ESE” and “CP” stand for the mean absolute bias, the
mean asymptotic standard error of the estimates, the empirical standard error, and
the coverage probability, respectively. “C.Time” and “R.Time” respectively denote
computation time and running time, and the unit of both is second.

Linear MGLM
Oracle GEE RenewGEE Oracle QIF RenewQIF

B 100 500 2000 100 500 2000 100 500 2000 100 500 2000
A.bias×10−3 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
ASE×10−3 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
ESE×10−3 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
CP 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
C.Time(s) 9.27 12.89 20.56 2.70 4.08 8.45 2.60 5.36 13.91 1.39 2.77 6.63
R.Time(s) 8.53 9.49 8.53 2.31 2.64 3.62 1.86 1.96 1.88 1.06 1.65 2.95

Logistic MGLM
Oracle GEE RenewGEE Oracle QIF RenewQIF

B 100 500 2000 100 500 2000 100 500 2000 100 500 2000
A.bias×10−3 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70
ASE×10−3 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31
ESE×10−3 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37
CP 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
C.Time(s) 10.73 14.04 27.77 2.05 2.45 3.32 3.22 6.51 20.25 1.14 1.47 2.37
R.Time(s) 9.85 9.86 9.81 1.86 2.07 2.35 2.34 2.33 2.30 0.99 1.23 1.86

Table 3.2: Compare renewable estimators and oracle ones in the linear MGLM model
with fixed single batch size nb = 100 and p = 5, B increases from 10 to 104. Results
are summarized from 500 replications.

B = 10, NB = 103 B = 100, NB = 104

GEE QIF GEE QIF
Criterion Oracle Renew Oracle Renew Oracle Renew Oracle Renew
A.bias×10−3 11.06 11.06 11.08 11.08 3.64 3.64 3.64 3.64
ASE×10−3 14.19 14.16 14.15 14.13 4.49 4.49 4.49 4.49
ESE×10−3 13.82 13.83 13.85 13.85 4.51 4.51 4.51 4.51
CP 0.956 0.955 0.952 0.952 0.949 0.947 0.946 0.946
C.Time(s) 0.033 0.028 0.019 0.023 0.69 0.25 0.28 0.18
R.Time(s) 0.030 0.024 0.015 0.019 0.58 0.25 0.16 0.14

B = 103, NB = 105 B = 104, NB = 106

GEE QIF GEE QIF
Criterion Oracle Renew Oracle Renew Oracle Renew Oracle Renew
A.bias×10−3 1.11 1.11 1.11 1.11 0.35 0.35 0.35 0.35
ASE×10−3 1.42 1.42 1.42 1.42 0.45 0.45 0.45 0.45
ESE×10−3 1.40 1.40 1.40 1.40 0.44 0.44 0.44 0.44
CP 0.952 0.954 0.952 0.952 0.955 0.955 0.955 0.955
C.Time(s) 15.38 5.70 8.57 4.26 781.46 62.30 704.11 51.38
R.Time(s) 8.72 2.96 1.90 2.18 99.21 32.12 21.85 25.21
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Table 3.3: Compare renewable estimators and oracle ones in the logistic MGLM model
with fixed single batch size nb = 100 and p = 5, B increases from 10 to 104. Results
are summarized from 500 replications. The dashed line in the column for “Oracle
GEE” when NB = 106 indicates the standard gee package in R does not produce
output due to the excessive computational burden.

B = 10, NB = 103 B = 100, NB = 104

GEE QIF GEE QIF
Criterion Oracle Renew Oracle Renew Oracle Renew Oracle Renew
A.bias×10−3 25.92 25.82 26.07 26.01 8.17 8.16 8.17 8.16
ASE×10−3 33.08 33.06 33.03 33.07 10.45 10.45 10.45 10.45
ESE×10−3 32.48 32.36 32.67 32.60 10.31 10.30 10.32 10.31
CP 0.953 0.952 0.950 0.952 0.950 0.952 0.951 0.952
C.Time(s) 0.048 0.029 0.024 0.023 1.09 0.23 0.32 0.17
R.Time(s) 0.045 0.026 0.021 0.020 0.99 0.20 0.22 0.14

B = 103, NB = 105 B = 104, NB = 106

GEE QIF GEE QIF
Criterion Oracle Renew Oracle Renew Oracle Renew Oracle Renew
A.bias×10−3 2.71 2.71 2.71 2.71 - 0.82 0.82 0.82
ASE×10−3 3.31 3.31 3.31 3.31 - 1.05 1.05 1.05
ESE×10−3 3.39 3.39 3.39 3.39 - 1.04 1.04 1.04
CP 0.948 0.948 0.948 0.948 - 0.946 0.946 0.948
C.Time(s) 22.41 5.84 9.99 4.49 - 57.47 856.70 47.44
R.Time(s) 15.59 3.02 3.18 2.35 - 31.08 45.83 21.31

performance of the RenewQIF methods with and without monitoring procedure on

the criteria including (a) A.bias, (b) ASE, (c) ESE, and (d) CP. The abnormal data

batches are created by altering the true parameters via a local derivation on β02, that

is βτ = (0.2,−(0.2 + d), 0.2,−0.2, 0.2)T , τ ∈ Γq. We set Γ2, containing two positions

(q = 2) for two occurrences of abnormal data batches at τ1 = 0.25B and τ2 = 0.75B.

Table 3.4 shows the empirical type I error rates for different batch sizes nb under

various significance level α ∈ {0.1, 0.05, 0.01, 0.001, 5× 10−6}. They are all very close

to the nominal level α. These findings confirm the theoretical insights for a fixed local

alternative with departure size d. Table 3.4 also shows that the power of detection

abnormal data batches drops as α becomes smaller, while the power increases with

increasing nb.

Without monitoring procedure. With a fixedNB = 104 and Γ2 = {0.25B, 0.75B},

the upper panel in Table 3.5 shows that larger data batch size nb leads to a larger
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Table 3.4: Empirical type I error rate (×10−3) under a total number of B = 100
data batches with different data batch size nb and various significance level α. In the
calculation of empirical power, the locations of two contaminated data batches are
τ1 = 25 and τ2 = 75. Results are summarized over 500 replications.

Empirical type I error
rate (×10−3)

Empirical power (%)

d = 0 d = 0.5 d = 1.0
nb nb nb

α× 10−3 50 100 200 400 50 100 200 400 50 100 200 400
100 95 91 93 89 100 100 100 100 100 100 100 100
50 41 42 44 46 100 100 100 100 100 100 100 100
10 5 8 9 8 58 98.5 100 100 100 100 100 100
1 0.2 0.5 0.4 1 21.5 90 100 100 99.5 100 100 100
0.005 0 0 0 0 0 42.5 100 100 70.5 100 100 100

bias due to the increased number of contaminated observations generated from the

incompatible data model. A.bias increases almost linearly with nb. Consequently,

with similar levels of ASE and ESE, the coverage probability is departed more from

the nominal level 95% as nb increases; it drops from 78.5% to 0% as nb rises from 50

to 200 due to more severe data contamination.

With monitoring procedure. For the purpose of quality control, larger α increases

the sensitivity of rejection, so many small departures may be detected, which would be

consequently ignored in the online updating. The price to pay in this case is that the

resulting bias and standard error are larger than they would be if such false positives

can be avoided. Nevertheless, it is worth noting that the coverage probability stays

around 95% with, however, potentially wider confidence intervals. These are clearly

shown in the lower panel of Table 3.5 due to the reduced proportion of used samples,

defined by N0/NB (see also the last subplot in Figure 3.3). In contrast, choosing

small α may elevate type II error and thus lose power in detecting abnormal data

batches. In this case, the price to pay is not only increased bias but also decreased

coverage probability. The latter is indeed a more serious problem as far as inference

concerns. This phenomenon is evident when nb is small as shown in both Figure 3.3

and Table 3.5. As an extreme case of α = 5×10−6, the detection power is greatly lost
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with nb = 100 or 50, and the coverage probability reduces to 90%. In practice, with

high throughput data streams, where cumulative sample sizes increase rapidly, using

larger α, say α = 0.1, is much safer and recommended in practice for the monitoring,

resulting in a more protective process by effectively avoiding abnormal data batches.

Table 3.5: Performances with and without monitoring procedure. Fixed total number
of samples NB = 104 with varying data batch size nb. τ1 = 0.25B and τ2 = 0.75B.
In the table “With monitoring procedure”, N0/NB denotes the proportion of used
samples in the renewable estimation and inference.

Without monitoring procedure
nb 50 100 200 400
A.bias×10−3 7.469 14.90 29.74 59.66
ASE×10−3 5.591 5.656 5.755 5.925
ESE×10−3 5.721 5.225 5.540 5.389
CP 0.785 0.280 0.000 0.000

With monitoring procedure
nb = 50 nb = 100

α× 10−3 100 50 10 1 0.005 100 50 10 1 0.005
A.bias×10−3 4.893 4.841 4.697 4.805 5.568 4.601 4.395 4.307 4.359 5.044
ASE×10−3 5.850 5.679 5.573 5.559 5.568 5.871 5.720 5.613 5.596 5.596
ESE×10−3 6.067 6.074 5.865 5.823 6.134 5.652 5.432 5.298 5.332 5.736
CP 0.955 0.920 0.930 0.935 0.900 0.970 0.980 0.955 0.960 0.900
N0/NB 0.894 0.948 0.986 0.993 0.995 0.890 0.937 0.973 0.979 0.983

nb = 200 nb = 400
α× 10−3 100 50 10 1 0.005 100 50 10 1 0.005
A.bias×10−3 4.701 4.479 4.377 4.417 4.468 5.045 4.799 4.579 4.454 4.457
ASE×10−3 5.946 5.779 5.673 5.648 5.647 6.084 5.921 5.798 5.773 5.766
ESE×10−3 5.813 5.623 5.488 5.556 5.599 6.221 5.888 5.666 5.525 5.516
CP 0.945 0.960 0.960 0.970 0.965 0.935 0.950 0.950 0.955 0.955
N0/NB 0.868 0.917 0.951 0.960 0.960 0.832 0.875 0.911 0.918 0.920
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Figure 3.2: Pseudo code for the implementation of renewable QIF.
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Figure 3.3: For fixed NB = 104, the relationship between type I error, estimation
bias, coverage probability and percentage of used data.
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3.6 Analysis of NASS CDS Data

In regard to injuries involved in car accidents, we are interested in not only the

extent of injuries for drivers but also for passengers. Apparently, injury levels of

driver and passengers within the same vehicle are correlated, and such within-cluster

correlation needs to be taken into account in the analysis. In this real data application,

we focus on the analysis of a series of car crash datasets from the National Automotive

Sampling System-Crashworthiness Data System (NASS CDS) from January, 2009 to

December, 2015. Our primary interest was to evaluate the effectiveness of graduated

driver licensing (GDL) on overall driving safety with respect to injury levels in both

driver and passengers. GDL is a nationwide legislature on novice drivers of age 21 or

younger with various conditions of vehicle operation. In contrast, under the current

law, there are no restrictions on vehicle operation for older drivers with age, say older

than 65. Thus, we wanted to compare drivers’ age groups with respect to the extent

of injury when a car accident happened. We first categorized the “Age” variable into

three age groups: “Age<21” representing the young group under a restricted GDL,

and “Age≥65” for the old group with a regular full driver’s license, while those of age

in between was treated as the reference group. Extent of “Injury” in a crash is a binary

variable, 1 for a moderate or severe injury, and 0 for minor or no injury. This outcome

variable was created from the variable of Maximum Known Occupant Ais (MAIS),

which indicates the single most severe injury level reported for each occupant. Other

potential risk factors were also included in the model, including seat belt use (Seat

Belt, 1 for used and 0 for no), drinking (Drinking, 1 for yes and 0 for no), speed limit

(Speed Limit), vehicle weight (Vehicle Weight, 0 for ≤ 3000, 1 for 3000∼4000, 2 for

≥4000 ), air bag system deployed (Air Bag, 1 for yes and 0 for no), number of lanes

(Number of Lanes, 0 for ≤ 2 and 1 for else), drug involvement in this accident (Drug

Use, 1 for yes and 0 for no), driver’s distraction/inattention to driving (Distraction,

1 for attentive and 0 for else), roadway surface condition (Surface Condition, 1 for
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dry and 0 for else), and has vehicle been in previous accidents (Previous Accidents,

0 for no and 1 for else).

Streaming data were formed by quarterly accident data from the period of 7 years

from January, 2009 to December 2015, with B = 28 data batches and a total of

NB = 18, 832 crashed vehicles that contain 26, 330 occupants with complete records.

Each vehicle was treated as a cluster, and the cluster size varies from 1 to 10 with

an average of 2 occupants. We invoked RenewQIF to fit marginal logistic regression

model with the compound symmetry correlation to account for the within vehicle

correlation. In the analysis, we are interested in a 7-year average risk assessment and

thus assuming constant associations between extent of injuries and risk factors over

time. Since this sequence of data streams arrived with low speed and large data batch

size, we would expect to have high power to detect the abnormal data batch even if

we chose a small α, say α = 0.01. Additionally, samples from NASS CDS have gone

through extensive data cleaning and pre-processing steps, such a stringent α was a

reasonable choice to make full use of samples. At α = 0.01, our proposed monitoring

procedure identified data batch 8 as the incompatible one, corresponding to the 4th

quarter in year 2010. Table 3.6 reports estimated coefficients, standard errors and

p-values obtained by oracle QIF, RenewQIF with and without data batch 8.

Figure 3.4 shows the trajectories of− log10(p) values of the Wald test in the 10-base

logarithm, each for one regression coefficient over 28 quarters. Even though the total

sample size NB increases over time, not all of them show steep monotonic increasing

trends in evidence against the null H0 : βj = 0. “Seat Belt” turns out to have the

strongest association to the odds of injury in a crash among all covariates included

in the model. This is an overwhelming confirmation to the enforcement of policy

“buckle up” when sitting in a moving vehicle. For the convenience of comparison,

we reported a summary statistic as of the area under the p-value curve for each

covariate. “Seat Belt” (2297.45), “Drug Use” (1779.85), “Air Bag” (1249.49) and
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“Previous Accidents” (1342.46) appeared well separated from the other risk factors.

Their ranking is well aligned with the ranking of p-values obtained at the end time

of streaming data availability, namely December, 2015.

The trajectories of both young and old age groups were evaluated in Figure 3.5

with or without data batch 8. The trace of the estimators for the young age group

(Age<21) stays below 0 over the 28-quarter period, indicating that it has lower ad-

justed odds of moderate/severe injury than the reference group. This finding con-

firms the effectiveness of GDL in protecting young novice drivers. Unfortunately,

in contrast, the old age group (Age≥65) turns out to suffer from significantly higher

adjusted odds of moderate/severe outcomes comparing to the middle age group. This

suggests a need of policy-making to protect older drivers from injuries when an ac-

cident happens. Furthermore, the abnormal data batch seems to affect marginally

the estimates for age groups if we compare the plots with (right) and without (left)

monitoring procedure (see the red vertical dashed line).

Applying the proposed RenewQIF to the above CDS data analysis enabled us to

visualize time-course patterns of data evidence accrual as well as stability and repro-

ducibility of inference. As shown in Figure 3.5, at the early stage of data streams, due

to limited sample sizes and possibly sampling bias, both parameter estimates and test

power may be unstable and even possibly misleading. These potential shortcomings

can be overcome when estimates and inferential quantities were continuously updated

along with data streams, which eventually reached stability and reliable conclusions.

3.7 Concluding Remarks

Due to the advantage of technologies in data storage and data collection, streaming

data arise from many practical areas such as healthcare (Peek et al., 2014). Healthcare

data are typically measurements in forms of clusters or time series, such as patients

from the same clinic, or data from personal wearable devices (Sahoo et al., 2016).
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Figure 3.4: Trace plots of − log10(p) over quarterly data batches from January, 2009
to December, 2015, each for one regression coefficient. Dashed vertical
line indicates the location of detected abnormal data batch.

The traditional methods for clustered/longitudinal data analysis such as generalized

estimating equations (GEE) and quadratic inference functions (QIF) that process the

entire dataset once may be greatly challenged due to the following reasons: (i) they

become computationally prohibitive as the total sample size accumulates too fast

and too large, so to exceed the available computational power; see Table 3.3 where

GEE failed to produce output; and (ii) historical subject-level data may no longer

be accessible due to storage, time, or privacy issues. This type of problem has been

extensively tackled in the framework of online updating where stochastic gradient

descent algorithms are the primary methods of choice to provide fast updating with no

use of historical data. However, most online learning algorithms have not considered
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Figure 3.5: Trace plots for the coefficients estimates and 95% pointwise confidence
bands of “Young” and “Old”. The subplot on the left corresponds to
RenewQIF without monitoring procedure, and the one on the right is
obtained by excluding data batch 8. Numerical numbers on two sides
denote the estimated regression coefficients after the arrival of first and
last batches, while the ones above the traces denote the estimates at the
8th data batch.
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Table 3.6: Results from the oracle QIF method (NB = 18, 832), the proposed Re-
newQIF in logistic model with data batch 8 (NB = 18, 832, B = 28), and RenewQIFqc
without data batch 8 (N0 = 18, 157, B = 27).

QIF RenewQIF RenewQIFqc
β̂?B ASE p β̃B ASE p β̃B ASE p

Intercept -0.90 0.088 0.000 -0.89 0.092 0.000 -0.91 0.094 0.000
Young -0.22 0.050 0.000 -0.22 0.051 0.000 -0.22 0.052 0.000
Old 0.57 0.061 0.000 0.57 0.062 0.000 0.57 0.063 0.000
Seat Belt -1.16 0.046 0.000 -1.15 0.047 0.000 -1.14 0.048 0.000
Drinking 0.36 0.049 0.000 0.36 0.049 0.000 0.37 0.050 0.000
Speed Limit 0.17 0.034 0.000 0.17 0.035 0.000 0.17 0.036 0.000
Vehicle Weight -0.024 0.028 0.399 -0.026 0.029 0.365 -0.025 0.029 0.385
Air Bag -1.00 0.050 0.000 -1.00 0.052 0.000 -1.00 0.053 0.000
Number of Lanes -0.10 0.035 0.005 -0.10 0.037 0.008 -0.11 0.037 0.003
Drug Use 0.96 0.044 0.000 0.95 0.045 0.000 0.94 0.046 0.000
Distraction -0.45 0.035 0.000 -0.45 0.036 0.000 -0.45 0.036 0.000
Surface Condition 0.16 0.046 0.001 0.15 0.049 0.002 0.16 0.050 0.002
Previous Accident 1.17 0.059 0.000 1.16 0.061 0.000 1.16 0.062 0.000

statistical inference.

This gap has been filled in this paper by the renewable QIF. The proposed Re-

newQIF method provides a new paradigm of renewable estimation and incremental

inference, in which parameter estimates are recursively updated with current data

and inferential statistics of historical data, but does not require the accessibility to

any historical subject-level data. To achieve efficient communications between cur-

rent data and historical summary statistics, we design an extended Spark’s Lambda

architecture to execute both data storage and analysis updates. Both proposed sta-

tistical methodology and computational algorithms have been investigated for their

theoretical guarantees and examined numerically via extensive simulation studies.

The proposed RenewQIF has been shown to be much more computationally efficient

with no loss of inferential power in comparison to the oracle GEE or oracle QIF.

Additionally, we added a monitoring procedure to detect abnormal data batches in

data streams for the proposed RenewQIF. The utilization of a goodness-of-fit test in

the QIF framework enabled us to check the compatibility of two adjacent data batches

effectively and efficiently. The proposed monitoring procedure has been integrated
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into an extended Lambda architecture with an additional monitoring layer.

The formulation of RenewQIF is under the assumption that clusters arrive inde-

pendently over data streams, and when cluster size m = 1, it reduces to generalized

linear model as a special case. A direction of interest is to consider the case of

inter-correlated batches; for example, serially dependent data streams generated by

individual wearable devices. Such types of data streams are pervasive in healthcare

where thousands of physiological measurements are recorded per second, such as body

temperature, heart rate, respiratory rate and blood pressure (Priyanka and Kulen-

navar , 2014). Therefore, the analytic tools for the analysis of serially dependent data

streams is an important future research as part of new analytics for handling massive

data volumes and making decisions of medical treatment.
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CHAPTER IV

Online Multivariate Regression Analysis with

Heterogeneous Streaming Data

4.1 Introduction

The advent of distributed cluster-computing paradigms such as Apache Spark (Bifet

et al., 2015) has motivated new developments in data analytics for large-scale data

processing. Such innovation enables effective analyses of streaming data assembled

through, for example, national disease registries, mobile health consortia and infec-

tious disease surveillance programs. One of the defining features for these streaming

data is that observations become available sequentially over time at high velocity in

some occasions. Researchers would utilize the sequence of data batches to answer sci-

entific questions of interest including assessing disease biomarkers, monitoring product

safety, validating drug efficacy and side-effects. In these scenarios, it is essential for

practitioners to apply certain analytic tools to process data streams sequentially as

part of real-time monitoring and decision-making.

This paper is motivated by a large-scale electronic health records (EHR) database

managed by the Scientific Registry of Transplant Recipients (SRTR) since 1984. The

EHR data is constantly updated at SRTR in which new patients are added to the

transplant waiting list in the US every ten minutes, resulting in a yearly average over
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25,000 transplants entered into SRTR since the mid-2000s. Due to the lack of suitable

data analytic methods, such data collected in real-time have been analyzed in a static

fashion, leading to latency in the transition of data to clinical knowledge. Also, this

conventional data analysis approach is often challenged by limitations in data storage,

data maintenance and computational capacity when dealing with data of such fast

growing volumes. These analytic and computational challenges call for reliable and

efficient real-time statistical methodology that promotes timely processing of data to

improve clinical decision-making.

Our motivating data in this paper consists of a sequence of yearly updated EHR

datasets of kidney transplants during the period from 1987 to 2017. Our analysis uses

a total of 221,337 kidney transplant recipients in the USA with complete personal

clinical information collected by SRTR. A primary analytic interest is to update

estimation and inference for effects of the important risk factors on the outcome of

post-transplant serum creatinine, an important biomarker of renal function to monitor

the graft condition of the new organ. Thus, we aim to update these estimated effects

on a regular basis shortly after the arrival of data each year. Traditional static

analysis would first create a very large data file comprised of both old and new data,

and then analyze a large dataset using suitable statistical methods and software.

This traditional static approach is not efficient; if we plan to run the same analysis

annually over the next 30 years, we need to acquire such continually growing data in

each of the 30 years, and repeat 30 times the same data cleaning, pre-processing, and

analysis procedures with the expanded data. This process is laborious, expensive,

and time-consuming. Thus, it is appealing to develop a smarter solution to this type

of data analysis task, in particular for streaming data that arrive at a fast rate with

a large volume, such as mobile health data.

Most existing online streaming data analytics such as stochastic gradient descent

(SGD) are built under the homogeneous assumption that all data batches are gen-
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erated with the same underlying data generation mechanism. Additionally, each

observation arriving over time is treated as being independently sampled. Arguably,

such an i.i.d. assumption is only for mathematical convenience and may be violated

in many real-world applications. In practice, different data batches are often hetero-

geneous and correlated over the sampling points. In the SRTR dataset, it is clinically

more so that associations between some of the risk predictors and post-transplant

serum creatinine may evolve dynamically, rather than remaining constant over the

30-year period due to many factors such as better organ-matching strategies. Im-

provements in medical care or facilities over years, for example, may be modeled as

temporal confounding variables while the risk factors (e.g. age, sex, BMI) of main in-

terest may be assumed as fixed effects. In the literature, continuous data streams are

structured as time series data. For instance, traffic sensors (Chen et al., 2005), health

sensors (Dias and Cunha, 2018), transaction logs (Zhang et al., 2009), and activity

logs (Ciuciu et al., 2008). Incorporating dynamic heterogeneity and correlation in

the analysis of data streams leads to increased complexity in modeling and statistical

inference, which is known as a difficult problem even in offline settings (L’Heureux

et al., 2017; Sadik et al., 2018).

State space models, also termed as dynamic models, are a very flexible class of

models for analyzing time series data or longitudinal data when the number of re-

peated observations is too large (West and Harrison, 1997; Kitagawa, 1987; Jørgensen

et al., 1999). It is widely used in many areas, such as economics, engineering, and

biology. The classical state space models refer to a class of hierarchical models in

that the observation process is driven by a latent state process that may incorporate

trend, seasonal, or time-varying covariate effects.

To analyze streaming data, state space models appear very flexible in the modeling

of certain stochastic behaviors where the latent state process may account for both

inter-data batch correlation and time-varying heterogeneity in a sequence of observed
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data batches. This latent process represents evolving batch-specific effects, either

temporally or spatially. In most cases, learning the latent states, say“filtering” and

“smoothing”, is a primary goal of statistical analyses. However, our analytic need in

streaming data analysis is based on real-time regression, where we focus primarily on

parameter estimation and inference on the fixed effects of risk factors that are shared

by the sequence of data batches. This type of state space model with the addition of

fixed effects is termed as state space mixed models by Czado and Song (2008).

In applications with a large volume of streaming datasets, existing offline ap-

proaches to fit state space models require large amounts of computing memory on

data storage, and fitting such models repeatedly over time may become computa-

tionally expensive and even infeasible. In the case where the sample space of the

latent state is finite such as hidden Markov model, an efficient online Expectation-

Maximization (EM) algorithm (Dempster et al., 1977) based on sufficient statistics

has been developed by Cappé (2011). But this algorithm is greatly challenged from

a computational perspective in the state space models in that the sample space of

the latent process is infinite, leading to the invocation of Monte Carlo computation

approximation (Cappé and Moulines , 2009). It is worth noting that most online

methods for fitting state space models are built in a Bayesian paradigm where the

inference on the latent process, rather than on the fixed effects, is of primary interest.

One such example is streaming variational Bayes method (Broderick et al., 2013) that

is developed in a Gaussian process state space model (Frigola et al., 2014). There is

a lack of online regression analysis (MORA) via state space models with the focus on

the estimation and inference for fixed effects, adjusting for dynamic effects governed

by the latent process. In a regression analysis, fixed effects are of primary interest

to examine the relationship between an outcome and covariates. State space regres-

sion models that contain both deterministic and random predictors have been widely

studied in many static settings, for example, in the analysis of longitudinal count
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data by Jørgensen et al. (1999) and binomial response by Czado and Song (2008).

In this paper, we develop a Kalman filter on online estimation procedure for linear

state space mixed models. This new method enables to update real-time estimation

of both fixed effects and their standard errors. In an online regression paradigm

based on the linear state space mixed models (LSSMM), renewable estimation and

incremental inference methodology (Luo and Song , 2020) on fixed effects will gain

efficiency along the utility of streaming data. In the meanwhile, the inter-data batch

heterogeneity is modeled by a latent batch-specific effect that follows a stationary

Gaussian AR(1) process. A crucial step in the proposed MORA is to obtain the

conditional distribution of state variables given the data and other model parameters,

similar to the E-step in the EM algorithm. Calculating the maximum likelihood

estimation (MLE) is challenging due to the lack of closed form expressions whose

likelihood function typically involves high-dimensional integrals. In the setting of

MORA, these integrals become infinite where data batches arrive perpetually over

time. Thus, certain approximations are inevitable.

Approximation based on Monte Carlo is less appealing as far as the computa-

tion burden concerns. An analytic solution to the approximation based on the best

linear unbiased predictor (BLUP) is our choice in this paper, which is given as an

extension of the classical Kalman filter recursions (Harvey , 1981; Song , 2007). The

Kalman filter is a computation efficient method that utilizes the first-order Marko-

vian properties of the latent state to calculate conditional moments recursively. The

resulting recursive estimation method fits well to the need of sequentially processing

MORA with the historical subject-level data being not retrievable and thus not used.

The proposed inference essentially resembles the offline version of Kalman Estimating

Equation (KEE) (Song , 2007). KEE is a generalization of the EM algorithm, in which

the E-step is based on a recursive BLUP, and the M-step solves an augmented esti-

mating equation. KEE avoids the use of Monte Carlo in the E-step, it instead adopts
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an analytic recursive BLUP to carry out the Kalman filter. Our proposed multivari-

ate online regression analysis (MORA) method generalized further those offline ideas

to add in heterogeneity in streaming data. Our generalization consists of two new

technical elements: the first is to use Kalman filter in the E-step to recursively update

mean of dynamic latent states, and the second is to update the fixed effects using

summary statistics of historical data rather than historical individual-level data (Luo

and Song , 2020). In the setting of linear state space mixed models, solving KEE for

the fixed effects has a closed-form solution that is linearly separable by data batches.

This separability makes the generalization of the offline KEE into online KEE feasible

for streaming data.

The organization of this paper is as follows. Section 4.2 begins with a brief

overview of modeling assumptions, and relevant recursive formulas to the Kalman

filter which are needed for recursive updating of the latent state variables and quanti-

ties concerning inference. Section 4.3 presents key analytic derivations and establishes

theoretical guarantees for our proposed MORA. Section 4.5 concerns the architec-

ture and pesudo code for the implementation of MORA via the Rho architecture

in Sparks (Luo and Song , 2020). Simulation experiments are given in Section 4.6

to evaluate the performance of MORA. We apply MORA to analyze the EHR data

example, adjusting for some time effects in Section 4.7. Finally we make some con-

cluding remarks in Section 4.8. Detailed proofs of the large sample properties are

included in the Appendix.

4.2 Model

4.2.1 Formulation

At a time point b ≥ 2, a sequence of b data batches arriving sequentially with a

cumulative sample size Nb =
∑b

j=1 nj, each with sample size nj, j = 1, . . . , b. The
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j-th data batch is denoted by Dj = {yj,Xj,Zj} where yj = (yj1, . . . , yjnj
)T , Xj =

(xj1, . . . ,xjnj
)T and Zj = (zj1, . . . ,zjnj

)T , j = 1, . . . , b are the vector of response and

the matrices of associated covariates in the observed and latent processes, respectively.

Clearly, nj = |Dj|. Let D?
b = {D1, . . . , Db} be the cumulative data up to batch b with

Nb = |D?
b |. Note that in a streaming data setting, batch size nb is not supposed to

diverge to infinity, but the cumulative sample size Nb is. For simplicity, Db may be

used as the set of indices for data points involved. In the framework of state space

mixed models, we consider a first-order Markov process {βb, b ≥ 1} to account over-

batch heterogeneity. Moreover, we assume that two series {Db, b ≥ 1} and {βb, b ≥ 1}

follow a dynamic hierarchical system, as shown in Figure 4.1, defined as follows:

(A1) Given βb, yb is conditionally independent of the other yb’s;

(A2) {βb, b ≥ 1} is a first-order Markov process with initial state β1 being assumed

to be a fixed unknown parameter;

(A3) yb = Xbα + Zbβb + εb, with εb
iid∼ N (0, φInb

) where α is the common fixed

effects of covariates Xb, and βb is the random effects of covariates Zb;

(A4) βb+1 = Bbβb+ξb, whereBb is a q×q transition matrix and Gaussian white noise

ξb
iid∼ N (0, δIq). The two random errors ξb and εb are independent. In particular, for a

stationary AR(1) process, Bb = ρIq with |ρ| < 1; for a random walk process, Bb = Iq,

so βb+1 = βb + ξb, where variance δ = 0 leads to the homogeneity case βb+1 = βb, an

assumption extensively used in the current literature of online regression analysis.

Among many state space models, in this paper we focus on a class of linear state

space models with a stationary latent process. That is, we further assume (A3) and

(A4).

4.2.2 Conditional and Marginal Moments

We derive Kalman filter that is essential to establish a recursive BLUP for the pro-

posed MORA. To do so, we first derive the conditional and marginal moments of the
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Observed data batches D1 D2 D3
. . . Db

Batch-specific effects

. . .

β1

1987∼1989

β2

1990

β3

1991

βb

2017

. . .. . .

Common effects α

Age,
sex,
BMI,
...

Figure 4.1:
A comb structure for dynamic hierarchical system. Starting with an initial
effect β1, subsequent βj’s are governed by a sequence of linear transitions
specified in (A4). The observed process {yb, b ≥ 1} includes both common
effect α and varying batch-specific effects {βb, b ≥ 1}.

Gaussian stationary linear model given by (A1)-(A4), when (A4) is an AR(1) process.

(a) The conditional moments of the observed process and the latent process are

respectively

E(yb | βb) = Xbα+Zbβb, var(yb | βb) = φInb
;

E(βb+1 | βb) = Bbβb, var(βb+1 | βb) = δIq.

(b) The marginal moments of the observed process are given by

E(yb) = Xbα+ZbE(βb), var(yb) = φInb
+Zbvar(βb)Z

T
b ,
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where under an AR(1) process for {βb, b ≥ 1},

E(βb) = Bb−1 · · ·B1β1 = ρb−1β1, b ≥ 2

var(βb) = δIq + δBb−1B
T
b−1 + δ(Bb−1Bb−2)(Bb−1Bb−2)

T + · · ·+

δ(Bb−1Bb−2 · · ·B1)(Bb−1Bb−2 · · ·B1)
T

=
δ(1− ρ2b)

1− ρ2 Iq.

(c) The covariances are

cov(yb,βb) = Zbvar(βb),

cov(βb,βb+h) = var(βb)(Bb+h−1 · · ·Bb)
T = ρhvar(βb),

cov(yb,yb+h) = Zbcov(βb,βb+h)Z
T
b+h = ρhvar(βb)ZbZ

T
b ,

cov(yb,βb+h) = Zbcov(βb,βb+h) = ρhZbvar(βb),

cov(yb+h,βb) = Zb+hcov(βb,βb+h) = ρhZbvar(βb).

4.2.3 Kalman Filter

The Kalman filter is used to estimate the conditional mean and variance of latent

state variable or batch-specific effects βb’s. Under the model of (A1)-(A4), given the

prediction at data batch b with the conditional mean mb−1 and covariance Cb−1, the

Kalman filter proceeds recursively as follows:

(i) compute two predictions

βb | D?
b−1 ∼ [Bb−1mb−1;Hb] and Db | D?

b−1 ∼ [fb;Qb],
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where

Hb = var(βb | D?
b−1) = Bb−1Cb−1B

T
b−1 + δIq

AR(1)
== ρ2Cb−1 + δIq,

fb = E(Db | D?
b−1) = ZbBb−1mb−1 +Xbα

AR(1)
== ρZbmb−1 +Xbα,

Qb = var(Db | D?
b−1) = φInb

+ZbHbZ
T
b .

(ii) Let Kb = HT
b Z

T
b Q

−1
b , and update the prediction of βb given D?

b ,

βb | D?
b ∼ [mb;Cb],

where

mb = E(βb | D?
b ) = Bb−1mb−1 +HT

b Z
T
b Q

−1
b (Yb − fb)

AR(1)
== ρmb−1 +Kb(Yb − fb),

Cb = var(βb | D?
b ) = (Iq −KbZb)Hb.

Consequently, the two inferential quantities needed in MORA can be updated by

the Kalman filter of the following form:

E(βb | D?
b , α̃b−1, ζ̃b−1) = mb, var(βb | D?

b , α̃b−1, ζ̃b−1) = Cb, (4.1)

where ζ = (φ, ρ, δ) is the vector of nuisance parameters.

4.2.4 Mean Square Error

Let ~mb = (mT
1 ,m

T
2 , . . . ,m

T
b )T and ~βb = (βT1 ,β

T
2 , . . . ,β

T
b )T . Then

~βb | D?
b ∼ [~mb; Σb],

where Σb = E
{

(~βb − ~mb)(~βb − ~mb)
T
}

is the mean square error matrix of bq× bq di-

mension. Matrix Σb has diagonal elements given by Σb(j, j) = Cj (j = 1, . . . , b), and
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the off-diagonal blocks given by Σb(j, j+h) = ΣT
b (j+h, j) = E

{
(βj −mj)(βj+h −mj+h)

T
}
.

Following Jørgensen and Song (2007), we obtain

Σb(j, j + h) = ρhCj+h

h−1∏

i=0

W−1
j+iCj+i,

where Wj = var(βj+1 − ρmj) = ρ2Cj + δIq/(1 − ρ2). In particular, Σb(j, j + 1) =

ρCj+1W
−1
j Cj.

4.3 Online Regression Analysis

4.3.1 Estimation of Fixed Effects

In this paper, we focus on online estimation and inference on the common fixed

effect α, which will benefit from the accumulation of data batches. For batch-specific

effects βb’s, we just repeat the results from a single batch based analysis.

To proceed with the maximum likelihood estimation, we first write out the marginal

likelihood function for the parameters of interest (α, ζ):

L(α, ζ | D?
b ) =

∫

Rq(b−1)

P (Dj | βj;α, ζ)P (βj | βj−1; ζ)dβ2dβ3 · · · dβb,

where the integral is q(b − 1)-dimensional, and both P (Dj | βj;α, ζ) and P (βj |

βj−1; ζ) are multivariate conditional normal distributions.

Treating βb’s as “missing data”, we obtain the augmented log-likelihood:

`(α, ζ | D?
b , ~βb) =

b∑

j=1

logP (Dj | βj,α, ζ) +
b−1∑

j=1

logP (βj+1 | βj, ζ).

In order to use the EM algorithm to obtain MLE, we maximize the following

Q-function Q(α, ζ | α′, ζ ′) = E{`(α, ζ | D?
b ,
~βb)}, where the expectation is taken

under the conditional distribution P (~βb | D?
b ,α

′, ζ ′). Here α′ and ζ ′ being updated
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parameter values from the previous iteration. This maximization can be carried out

by solving the augmented score equations:

s1(α, ζ) =
b∑

j=1

XT
j {yj −Xjα−ZjE(βj | D?

b ,α
′, ζ ′)} = 0,

s2(α, ζ) =
b−1∑

j=1

{βj+1 −BjE(βj | D?
b ,α

′, ζ ′)} = 0.

(4.2)

Instead of using the Monte Carlo technique to compute the conditional mean E(βj |

D?
b ,α

′, ζ ′), BLUP (Robinson, 1991) is used to speed up computation. An obvious

advantage for the utility of BLUP is that it can be fast carried out via the Kalman

recursive formula. In MORA, since historical subject-level data are not available,

we adopt Kalman filter E(βb | Db, α̃b−1, ζ̃b−1), which is recursively updated with

the use of only individual-level data in current data batch Db, rather than historical

cumulative data D?
b−1. Upon the arrival of one data batch, following Titterington

(1984) and Cappé and Moulines (2009), we perform one-step update recursive formula

via the EM algorithm rather than iteratively till convergence.

To further speed up the algorithm, instead of solving s2 = 0, we propose to use

the method of moments estimators to estimate ζ, as the cumulative sample size Nb

would quickly increase, maybe the choice of the estimator for ζ becomes less critical.

In summary, the estimation procedure proceeds as follows:

• Step 1: Choose initial values for parameters, denoted by α̃0 and ζ̃0.

• Step 2: For b ≥ 1, given
√
Nb−1-consistent estimators (φ̃b−1, ρ̃b−1, δ̃b−1) from

the prior iteration, we update fixed effects α̃b−1 to α̃b by the solution to the

following unbiased aggregated Kalman Estimating Equation (KEE):

Ũb(α) =

Nb∑

i=1

Ui(α) =
b∑

j=1

XT
j (yj −Xjα−Zjmj) = 0, (4.3)
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wheremb = E(βb | Db, α̃b−1, ζ̃b−1) is the Kalman filter obtained upon the arrival

of Db, the previous updates α̃b−1 and ζ̃b−1.

• Step 3: Given α̃b, update the parameter vector ζ̃b−1 to ζ̃b by the method of

moments given in Section 4.3.2.

In the Gaussian linear model, equation (4.3) has a closed-form solution of the

form:

α̃b =

(
b∑

j=1

XT
j Xj

)−1( b∑

j=1

XT
j (yj −Zjmj)

)
.

4.3.2 Estimation of Dispersion and Correlation Parameters

We use the method of moments to estimate both dispersion and correlation pa-

rameters ζ = (φ, ρ, δ)T . First, note that the equation var(yj − Xjα − Zjmj) =

φInj
+ZjCjZ

T
j leads to the following moment estimator for the dispersion parameter

φ,

φ̂?b =
1

Nb

b∑

j=1

(yj −Xjα̂
?
b −Zjmj)

T (yj −Xjα̂
?
b −Zjmj)−

1

Nb

b∑

j=1

∑

i∈Dj

Pj(i, i),

where Pj = ZjCjZ
T
j and Pj(i, i) denote its i-th block diagonal. Additionally, note

that

δIq = var(βj+1 −Bjβj)

= var {βj+1 −mj+1 −Bj(βj −mj)}+ var(mj+1 −Bjmj)

= Cj+1 +BjCjB
T
j − 2Σb(j + 1, j)BT

j + var(mj+1 −Bjmj).
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Similarly, let Ej = Cj+1 + BjCjB
T
j − 2Σb(j + 1, j)BT

j and Ej(i, i) denote its i-th

block diagonal. A moment estimator of δ is given by

δ̂?b =
1

bq

b∑

j=1

(mj+1 −Bjmj)
T (mj+1 −Bjmj) +

1

bq

b∑

j=1

q∑

i=1

Ej(i, i).

√
Nb-consistent estimators of φ and δ are updated by

φ̃b =
Nb−1

Nb

φ̃b−1 +
nb
Nb

φ̂b,

δ̃b =
b− 2

b− 1
δ̃b−1 +

1

b− 1
δ̂b, b ≥ 1

where φ̂b = 1
nb

(yb −Xbα̃b − Zbmb)
T (yb −Xbα̃b − Zbmb) − 1

nb

∑
i∈Db

Pb(i, i), δ̂b =

1
q
‖mb −Bb−1mb−1‖2 + 1

q

∑q
i=1Eb(i, i).

The estimation of ρ is

cov(mb,mb−1) = ρvar(mb−1) +CT
b−1cov(Yb − fb,mb−1) = ρCb−1.

Therefore, the lag-1 autocorrelation of the standardized filtering may serve as an

estimator of ρ. We carry out the updating in the following way:

ρ̃b =

∑b
j=1m

T
jmj+1∑b

j=2m
T
jmj

, b ≥ 2 and ρ̃1 = 0.

4.4 Theoretical Guarantees

In this section, we establish large sample properties under the assumptions (A1)-

(A4). Let a neighborhood around true value α0 be Nε(α0) = {α : ‖α − α0‖2 ≤ ε}.

The sensitivity matrix and variability matrix are given respectively by S̃b(α) =

Eα
{
−∂Ũb(α)

∂αT

}
and Ṽb(α) = Eα

{∑Nb

i=1U i(α)UT
i (α)

}
. We assume the following reg-

ularity conditions:
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(C1) The unbiasedness of KEE: Eα{Ũb(α)} = 0 if and only if α = α0.

(C2) The sensitivity matrix S̃b(α) is Lipschitz continuous for α ∈ Θ.

(C3) The variability matrix Ṽb(α) is positive-definite for α ∈ Nε(α0).

The unbiasedness condition (C1) is not only required for consistency but also

implies the ζ-insensitivity of the estimating equation, namely E
{
∂Ũb(α)
∂ζT

}
= 0. This

property ensures that the efficiency of the nuisance parameter estimators would have

a marginal effect on the estimate of α. Conditions (C2) and (C3) are required to

establish both estimation consistency and asymptotic normality.

Theorem IV.1. Under regularity conditions (C1)-(C3) that hold automatically in

linear models. For fixed ρ, φ and δ, α̃b is consistent and asymptotically normal

√
Nb(α̃b −α0)

d→ Np(0,Σ(α0)), as Nb =
b∑

j=1

nj →∞,

with Σ(α0) = lim
Nb

NbJ̃
−1
b (α0), where J̃b(α0) = S̃Tb (α0)Ṽ

−1
b (α0)S̃b(α0) is the Go-

dambe information matrix of the inference function given in estimating equation (4.3).

where Ũb(α) is the aggregated score function specified in equation (4.3). The

asymptotic covariance matrix is estimated by Σ̃b = NbJ̃
−1
b (α̃b).

The Godambe information matrix is calculated as follows. It is easy to see that

the p× p sensitivity matrix S̃b(α):

S̃b(α) =
b∑

j=1

XT
j {Xj +ZjLj(α)} ,

where Lb(α) = E
{
∂mb/∂α

T
}

= (Iq −KbZb)Bb−1Lb−1(α)−KbXb and L0(α) = 0.

Now we derive the variability matrix. Let ~Xb = (XT
1 , . . . ,X

T
b )T , ~Yb = (yT1 , . . . ,y

T
b )T ,

and ~Zb = (ZT
1 , . . . ,Z

T
b )T . Since E(yj−Xjα−Zjmj) = 0, the p×p variability matrix
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is given by

Ṽb(α) = ~XT
b var(~Yb − ~Xbα− ~Zb ~mb) ~Xb, (4.4)

where var(~Yb − ~Xbα − ~Zb ~mb) is an Nb × Nb symmetric matrix (consisting of b × b

blocks) whose (j, j + h)-th block is

cov(yj −Xjα−Zjmj,yj+h −Xj+hα−Zj+hmj+h)

=





φInj
+ZjCjZ

T
j , h = 0,

−ZjΣb(j, j + h)ZT
j+h, h 6= 0.

Thus,

Ṽb(α) =
b∑

j=1

XT
j (φInj

+ZjCjZ
T
j )Xj − 2

b−1∑

j=1

b−j∑

h=1

XT
j ZjΣb(j, j + h)ZT

j+hXj+h,

where the off-diagonal blocks take the following form:

Σb(1, 2) = ρC2W
−1
1 C1 = ρC2

(
ρ2C1 +

δ

1− ρ2Iq
)−1

C1,

Σb(1, 3) = ρ2C3W
−1
1 C1W

−1
2 C2,

...

Σb(1, b) = ρb−1CbW
−1
1 C1 · · ·W−1

b−1Cb−1.

Therefore, we need to store all W−1
j Cj and XT

j Zj’s in order to calculate all the

off-diagonal blocks. To reduce the data storage burden and speed up computing, we

propose an approximation by considering only the correlation between adjacent data

batches:

Ṽb(α) ≈
b∑

j=1

XT
j (φInj

+ZjCjZ
T
j )Xj − 2

b−1∑

j=1

XT
j ZjΣb(j, j + 1)ZT

j+1Xj+1.

This approximation is legitimate because Cb → δ/(1− ρ2) and W−1
b Cb → 1/(1 + ρ2)
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as b → ∞. Additionally, since the latent process starts with a fixed β1 where C1 is

arbitrarily small, and for such a stationary process, all subsequent Cj’s are bounded,

Σb(1, j) decays with an approximate factor ρ/(1 + ρ2) which is less than 0.5.

4.5 Implementation

Apache Spark is a unified data analytics platform for large-scale data processing.

Built on a distributed computing paradigm, it offers high performance for both batch

and streaming data. Its Lambda architecture is designed to achieve efficient commu-

nication and coordination between batch layer and speed layer to handle streaming

data. To implement our proposed MORA, we expand the speed layer in the existing

Spark’s Lambda architecture to accommodate inferential statistics such as sensitivity

and variability matrices together with other needed quantities in the Kalman filter re-

cursive calculation. Consequently, the resulting architecture consists of a speed layer

and an inference layer responsible for the iterative calculation detailed in Section 4.3.

As shown in Figure 4.2, when a new data batch Db arrives, the inference layer cal-

culates the matrices involved in the Kalman filter and inferential statistics. Then

these quantities are sent to the speed layer to update the point estimates of α and

ζ. Finally, the outputs from both layers are combined to generate online regression

analysis results.

Algorithm 4.3 lists the pseudo code for the implementation of online regression

analysis with dynamic heterogeneity in the expanded Lambda architecture.
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Cb−1

S̃b−1

Ṽb−1

Cb = (Iq − KbZb)Hb

S̃b = S̃b−1 + XT
b (Xb + ZbLb)

Ṽb = Ṽb−1 + XT
b (φ̃b−1Inb

+
ZbCbZ

T
b )Xb − 2XT

b−1Zb−1Σ(b − 1, b)ZT
b Xb

Cb

S̃b

Ṽb

Inference layer

Db

fb = Xbα̃b−1 + ρ̃b−1Zbmb−1

mb = ρ̃b−1mb−1 + Kb(yb − fb)
R̃b = R̃b−1 + XT

b (yb − Zbmb)

α̃b = G̃−1
b R̃b

ρ̃b =
∑b

j=1m
T
j mj+1/

∑b
j=2m

T
j mj

φ̃b = Nb−1

Nb
φ̃b−1 + nb

Nb
φ̂b

δ̃b = b−2
b−1 δ̃b−1 + 1

b−1 δ̂b

α̃b−1

mb−1

R̃b−1

φ̃b−1

δ̃b−1

ρ̃b−1

α̃b

mb

R̃b

φ̃b
δ̃b
ρ̃b

Speed layer

var(α̃b)

α̃b

Figure 4.2:
Diagram of the expanded Lambda architecture in which α̃b−1 and ζ̃b−1 are
updated to α̃b and ζ̃b at the speed layer, and S̃b−1 and Ṽb−1 are updated
to S̃b and Ṽb at the inference layer.
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Figure 4.3: Pseudo code for the implementation of MORA.
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4.6 Simulation Studies

4.6.1 Setup

We conduct simulation studies to assess the performance of the proposed online

multivariate regression methods with streaming datasets. We compare our method

with the naive linear regression model (LM) yielded from the R package glm without

considering either inter-data batch correlation or heterogeneity, and oracle Kalman

Estimating Equation estimator (KEE) obtained by processing the entire data once.

The evaluation criteria in parameter estimation and inference inα include (a) absolute

bias (α.bias), (b) average estimated standard error (α.ASE), (c) empirical standard

error (α.ESE) and (d) coverage probability (α.CP). We only report the absolute

bias in the nuisance parameter ζ = (φ, ρ, δ)T , including to (e) φ.bias, (f) ρ.bias

and (g) δ.bias, respectively, where the latter two are included in KEE and MORA

only. Computation efficiency is assessed by (h) computation time (C.Time) and (i)

running time. C.Time includes time spent on both data loading time and running

the algorithm while R.Time accounts only algorithm execution time.

In simulation experiments, we set a terminal point B. Consider data batch

Db = {yb,Xb} with outcome yb = (yb1, . . . , ybnb
)T , covariates for fixed effects Xb =

(xb1, . . . ,xbnb
)T and batch-specific covariates Zb = (zb1, . . . ,zbnb

)T . Outcomes yb |

Xb,Zb are independently sampled from a Gaussian distribution with mean µb =

(µb1, . . . , µbnb
)T and variance φI such that µbi = E(ybi | xbi, zbi) = xTbiα + zTbiβb and

variance v(ybi | xbi, zbi) = φ. We consider a 2-dimensional vector stationary AR(1)

process to characterize batch-specific heterogeneity with regression coefficients sat-

isfying βb+1 = Bbβb + ξb where Bb = diag(ρ1, ρ2) is the transition matrix with

the respective autocorrelation coefficients ρ1 and ρ2, and the noise ξb
iid∼ N2(0, δ),

b = 1, . . . , B.

We choose the true regression coefficient parameter by generating α0 ∼ N5(0, I5)
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where I5 is the 5 × 5 identity matrix. Set initial value for the dynamic coefficients

β1 = 0. Covariates are independently sampled from xi
iid∼ N5(0,V5) (i = 1, . . . , Nb),

where V5 is a 5×5 compound symmetry covariance matrix with correlation ρx = 0.5.

The variance parameters of the two covariance matrices are set as φ = 1 and δ = 1.

As far as the online procedure concerns, we only consider the correlation between ad-

jacent data batches. Thus, we examine the performances under different correlation

coefficients ρ1 = 0.1, 0.5 and 0.9 while ρ2 is fixed at 0.5.

4.6.2 Evaluation of Parameter Estimation

Scenario 1: fixed NB but varying batch size nb

We begin with evaluating effect of data batch size nb on the performance of our

proposed MORA in parameter estimation and computation efficiency. There are

B data batches, each with data batch size nb, and the total sample size is NB =

|D?
b | = 10, 000. They are generated by data batches from a linear state space mixed

model specified in Section 4.6.1. Table 4.1 reports the evaluation criteria over 500

replications.

Bias and coverage probability in α. In both offline KEE and our proposed

MORA as shown in Table 4.1, it is easy to see that their estimation bias and coverage

probability are very close to each other, and neither of them changes with varying

batch sample size nb. This confirms the theoretical results given in Theorem IV.1.

In other words, the statistical inference by MORA depends only on the cumulative

sample size NB. However, in the LM where outcomes are treated as independent

ones, α.bias is larger than that in KEE or MORA due to the loss of statistical

efficiency. The coverage probability in LM is still around 95% because glm in R

uses the iteratively weighted least squares where the extra variability is accounted by

the empirical weighting matrix. Additionally, considering correlation between only
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adjacent data batches has marginal effects on the inference performance on α: the

coverage probabilities are close to the nominal 95% level under different ρ1.

Bias in ζ. Similar as estimation performance in α, MORA provides similar level

of estimation bias and empirical standard errors in estimating ζ as the offline KEE.

However, comparing to MORA, φ.bias is much larger with LM, because the dynamic

heterogeneity is accounted by this variance parameter. It also explains why φ.bias

increases with B, namely an increased level of heterogeneity. We also find that the

latent stationary AR(1) process get stabilized with larger B, and therefore gradually

reduces both bias and variability in both ρ and δ. Additionally, if we compare across

the three panels in Table 4.1, we can also see that in LM, as ρ increases, φ.bias

becomes larger while this is not the case with either KEE or MORA. This is because

the increased correlation is ignored by LM. In MORA, only δ.bias increases with ρ1

due to the increased variability of the AR(1) process.

Computation time. Computation efficiency is assessed by “C.Time” and “R.Time”

in Table 4.1 which refer to the total amount of time and algorithm execution re-

spectively. As expected, MORA is more efficient than KEE while providing similar

statistical performance. Besides, while maintaining the similar bias and coverage

probability, MORA is more efficient to process data with a relatively smaller data

batch size nb.

Table 4.1: Simulation results under the linear state space

mixed model are summarized over 500 replications, with

fixed NB = 10, 000 and p = 5 with varying batch sizes

nb.

ρ1 = 0.1, ρ2 = 0.5

B × nb 5× 2000 50× 200 500× 20

LM KEE MORA LM KEE MORA LM KEE MORA
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α.bias×10−3 16.49 10.56 10.96 18.84 10.45 10.55 18.66 10.73 10.76

α.ASE×10−3 20.68 12.92 13.66 23.31 12.97 13.19 23.58 13.58 13.64

α.ESE×10−3 21.14 13.25 13.81 23.51 12.99 13.19 23.38 13.36 13.38

α.CP 0.946 0.945 0.947 0.953 0.953 0.953 0.950 0.952 0.951

φ.bias 1.645 0.012 0.106 2.271 0.021 0.022 2.333 0.176 0.175

φ.ESE 0.999 0.014 0.230 0.405 0.014 0.035 0.130 0.012 0.014

ρ1.bias 0.310 0.337 0.109 0.108 0.037 0.037

ρ1.ESE 0.319 0.325 0.135 0.134 0.046 0.046

ρ2.bias 0.226 0.226 0.101 0.101 0.031 0.031

ρ2.ESE 0.273 0.274 0.127 0.128 0.040 0.039

δ.bias 0.497 0.512 0.117 0.145 0.041 0.047

δ.ESE 0.803 0.672 0.148 0.186 0.047 0.051

C.Time(s) 0.044 44.91 16.47 0.087 1.970 0.573 0.447 1.865 0.488

R.Time(s) 0.028 44.90 16.46 0.041 1.925 0.539 0.038 1.456 0.311

ρ1 = 0.5, ρ2 = 0.5

B × nb 5× 2000 50× 200 500× 20

LM KEE MORA LM KEE MORA LM KEE MORA

α.bias×10−3 16.29 10.55 10.95 19.47 10.45 10.54 19.80 10.73 10.76

α.ASE×10−3 20.50 12.92 13.67 24.24 12.98 13.20 24.66 13.58 13.64

α.ESE×10−3 20.98 13.25 13.81 24.39 12.99 13.19 24.76 13.36 13.38

α.CP 0.946 0.946 0.947 0.952 0.953 0.953 0.948 0.952 0.951

φ.bias 1.599 0.011 0.106 2.537 0.020 0.022 2.648 0.176 0.175

φ.ESE 0.976 0.013 0.231 0.470 0.013 0.035 0.157 0.012 0.014

ρ1.bias 0.232 0.225 0.092 0.096 0.031 0.031

ρ1.ESE 0.259 0.280 0.113 0.120 0.039 0.039

ρ2.bias 0.234 0.234 0.092 0.102 0.031 0.031
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ρ2.ESE 0.285 0.286 0.131 0.130 0.040 0.039

δ.bias 0.600 0.612 0.119 0.176 0.047 0.060

δ.ESE 0.753 0.750 0.155 0.216 0.047 0.053

C.Time(s) 0.059 43.13 17.12 0.103 2.162 0.567 0.513 2.113 0.547

R.Time(s) 0.042 43.12 17.10 0.046 2.104 2.104 0.042 1.642 0.356

ρ1 = 0.9, ρ2 = 0.5

B × nb 5× 2000 50× 200 500× 20

LM KEE MORA LM KEE MORA LM KEE MORA

α.bias×10−3 16.55 10.55 10.94 24.03 10.45 10.55 28.20 10.74 10.77

α.ASE×10−3 20.86 12.92 13.67 30.41 12.97 13.20 34.86 13.58 13.66

α.ESE×10−3 21.38 13.20 13.81 30.61 12.99 13.19 35.31 13.36 13.39

α.CP 0.948 0.946 0.946 0.951 0.953 0.953 0.944 0.952 0.952

φ.bias 1.696 0.011 0.108 4.675 0.020 0.023 6.316 0.176 0.176

φ.ESE 1.029 0.013 0.239 1.845 0.013 0.038 0.963 0.012 0.015

ρ1.bias 0.394 0.366 0.070 0.072 0.017 0.017

ρ1.ESE 0.259 0.254 0.075 0.081 0.020 0.020

ρ2.bias 0.267 0.257 0.106 0.105 0.031 0.032

ρ2.ESE 0.322 0.315 0.135 0.132 0.040 0.040

δ.bias 0.992 0.793 0.150 0.564 0.071 0.151

δ.ESE 1.636 1.279 0.198 0.675 0.050 0.084

C.Time(s) 0.060 43.85 16.39 0.096 2.491 0.637 0.447 1.874 0.497

R.Time(s) 0.043 43.83 16.10 0.042 2.437 0.604 0.037 1.464 0.316
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Scenario 2: fixed data batch size nb but increasing number of data batches

B

Now we consider a scenario where a sequence of data batches arriving with high

speed. For convenience, we fix data batch size nb = 100 but let B increase from 10

to 1000. Table 4.2 summarizes the simulation results under the same model specified

in Section 4.6.1.

Bias and coverage probability in α. Similar to what we observed before, MORA

preserves similar level of bias and coverage probability as KEE: as number of data

batches B increases from 10 to 1000, α.bias decreases at an empirical rate of O(
√
NB)

which further confirms the large sample property in Theorem IV.1. The coverage

probability stays robustly around 95%. Similar to scenario 1, estimation bias and

coverage probability in α in MORA remain robust across different ρ1, but larger ρ1

leads to slightly larger bias in LM due to the ignorance of dependence.

Bias in ζ. First, by looking at Table 4.2 horizontally, we can easily find that in both

KEE and MORA, ρ.bias and δ.bias decrease consistently with increasing B, while

φ.bias first decreases and then gets stabilized. But in LM, φ.bias increases with B

which further confirms what we find in scenario 1. Then if we compare the results

vertically, φ.bias and ρ.bias in both KEE and MORA stay robust against different

ρ1, while LM again shows an increased φ.bias.

Computation time. With a fixed data batch size nb, both C.Time and R.Time

in MORA increase linearly with B. When B is small, LM takes less C.Time than

MORA, but it becomes reversed once B reaches 1000 due to the large data loading

time. It is worth noting that both C.Time and R.Time in offline KEE are almost 10

times the MORA. This further demonstrates the strong computation advantage in

MORA especially when a large sample size has been accumulated over time.
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Table 4.2: Simulation results under the linear state space

mixed model are summarized over 500 replications, with

fixed nb = 100 and p = 5 with B increased from 10 to

1, 000.

ρ1 = 0.1, ρ2 = 0.5, nb = 100

B 10 100 1,000

LM KEE MORA LM KEE MORA LM KEE MORA

α.bias×10−3 56.22 34.00 34.59 18.48 10.50 10.55 5.91 3.32 3.32

α.ASE×10−3 70.13 41.26 43.23 23.46 13.05 13.18 7.46 4.12 4.13

α.ESE×10−3 70.76 42.70 43.83 23.20 13.06 13.12 7.41 4.16 4.17

α.CP 0.947 0.944 0.949 0.955 0.951 0.952 0.949 0.948 0.948

φ.bias 1.985 0.050 0.071 2.305 0.038 0.035 2.343 0.039 0.039

φ.ESE 0.813 0.045 0.122 0.288 0.015 0.018 0.090 0.005 0.005

ρ1.bias 0.210 0.218 0.084 0.084 0.025 0.025

ρ1.ESE 0.260 0.266 0.103 0.103 0.031 0.031

ρ2.bias 0.206 0.207 0.072 0.072 0.025 0.021

ρ2.ESE 0.251 0.256 0.090 0.090 0.027 0.026

δ.bias 0.357 0.412 0.099 0.099 0.026 0.027

δ.ESE 0.550 0.588 0.103 0.124 0.033 0.034

C.Time(s) 0.007 0.076 0.027 0.071 0.621 0.182 5.895 17.63 2.68

R.Time(s) 0.004 0.073 0.022 0.023 0.573 0.153 0.383 12.12 2.26

ρ1 = 0.5, ρ2 = 0.5, nb = 100

B 10 100 1,000

LM KEE MORA LM KEE MORA LM KEE MORA

α.bias×10−3 56.80 34.00 34.55 19.26 10.50 10.56 6.16 3.32 3.32

α.ASE×10−3 70.80 41.26 43.26 24.47 13.05 13.19 7.81 4.12 4.13
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α.ESE×10−3 71.77 42.69 43.76 24.16 13.06 13.12 7.74 4.16 4.17

α.CP 0.947 0.944 0.950 0.960 0.951 0.952 0.952 0.948 0.948

φ.bias 2.047 0.050 0.072 2.598 0.038 0.035 2.664 0.039 0.039

φ.ESE 0.881 0.045 0.127 0.344 0.015 0.018 0.113 0.005 0.005

ρ1.bias 0.204 0.202 0.073 0.073 0.022 0.022

ρ1.ESE 0.242 0.243 0.092 0.092 0.028 0.028

ρ2.bias 0.212 0.215 0.073 0.074 0.022 0.021

ρ2.ESE 0.255 0.263 0.091 0.092 0.027 0.026

δ.bias 0.369 0.496 0.082 0.115 0.026 0.029

δ.ESE 0.547 0.740 0.104 0.136 0.033 0.034

C.Time(s) 0.011 0.113 0.038 0.120 1.065 0.289 4.118 16.51 2.663

R.Time(s) 0.006 0.108 0.032 0.038 0.983 0.242 0.393 11.48 2.245

ρ1 = 0.9, ρ2 = 0.5, nb = 100

B 10 100 1,000

LM KEE MORA LM KEE MORA LM KEE MORA

α.bias×10−3 60.08 34.00 34.55 25.31 10.50 10.56 8.73 3.32 3.32

α.ASE×10−3 74.68 41.26 43.34 32.46 13.05 13.19 11.18 4.12 4.13

α.ESE×10−3 76.37 42.70 43.73 31.95 13.06 13.12 11.01 4.16 4.17

α.CP 0.949 0.944 0.951 0.960 0.951 0.952 0.949 0.948 0.948

φ.bias 2.425 0.050 0.076 5.417 0.038 0.035 6.516 0.039 0.039

φ.ESE 1.286 0.045 0.150 1.684 0.015 0.020 0.743 0.005 0.005

ρ1.bias 0.278 0.273 0.044 0.044 0.012 0.012

ρ1.ESE 0.216 0.217 0.054 0.054 0.015 0.014

ρ2.bias 0.225 0.226 0.074 0.075 0.021 0.021

ρ2.ESE 0.257 0.265 0.091 0.091 0.026 0.026

δ.bias 0.770 1.226 0.094 0.340 0.028 0.063
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δ.ESE 1.631 2.229 0.113 0.351 0.033 0.049

C.Time(s) 0.013 0.131 0.041 0.111 1.019 0.283 5.799 17.78 3.069

R.Time(s) 0.007 0.125 0.034 0.035 0.943 0.239 0.441 12.42 2.595

4.7 SRTR Data Example

In the analysis of the kidney transplant data collected by Scientific Registry of

Transplant Recipients (SRTR), we aim to evaluate the effects of some key risk factors

on the outcome of serum creatinine level one-year post-transplantation. Many studies

have unveiled that post-transplant renal function in the first year is highly related

to long-term kidney transplant survival (Sundaram et al., 2002). We consider the

scenario where the transplant data batches arrive yearly during the period of 31

years from 1987 to 2017, with B = 29 and NB = 221, 337 recipient creatinine level at

the first post-transplant year with no missing data. Note that these are the years of

transplantation and serum creatinine levels are obtained one year later, namely from

1988 to 2018. There are few records prior to 1989, so we combine the data from 1987 to

1989 to form the first data batch. We are interested in assessing population average

effects of the risk factors on the serum creatinine one year after transplantation,

adjusting for dynamic batch-specific heterogeneous effects.

We take a logarithm transformation of the serum creatinine level so the result-

ing log-transformed variable is approximately normal, which is analyzed using the

proposed linear mixed state space model with the following set of fixed risk factors:

“donor’s and recipient’s age” (standardized), “donor-recipient sex” (1 for homosexual

pair and 0 otherwise), “donor’s and recipient’s BMI” (1 for obese and 0 for no obese),

“donor-recipient height ratio” (1 for greater than 1 and 0 otherwise), “donor-recipient

weight ratio” (1 for greater than 0.9 and 0 otherwise), “donor-recipient race” (1 for
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homoracial pair and 0 otherwise), and “duration of dialysis” (0 for less than 3 years

and 1 otherwise). A preliminary analysis where we fit a cross-sectional linear regres-

sion model to yearly single data batch separately is shown in Figure 4.4. Based on

the autocorrelation (ACF) and partial correlation (PACF) plots in Figure 4.5, we

choose “time (in year)” and “donor age” as dynamic batch-specific effects that follow

an AR(1) stationary process to account for the underlying heterogeneity over the se-

quence of data batches. Such an analysis work can hardly be done via the offline KEE

method due to the intensive computation burden incurred by both large data batch

size nb and cumulative sample size NB. Therefore, we apply our proposed MORA

method to sequentially update parameter estimates and standard errors.

Table 4.3 reports the results from fitting a linear state space mixed model us-

ing our proposed MORA, at the terminal year 2017. Due to the large cumulative

sample size in this streaming data setting, all p-values are become too small to be

useful for making conclusions. Thus, we focus on point estimates, standard errors

and z-values in this table. The major findings are: (i) “donor-recipient height ratio”

and “donor-recipient weight ratio” are the top two risk factors among others. Such

an association between donor-recipient weight mismatch (donor<recipient) and graft

failure has also been found by Miller et al. (2017); Tillmann et al. (2019); (ii) addi-

tionally, recipients with younger age and matched race transplant are associated with

better graft function; (iii) deceased donor, higher recipient’s or donor’s BMI, homo-

sexual transplantation and longer duration of dialysis may have negative effects on

post-transplant renal function. This may provide health practitioners some insights

on how to correctly analyze these type of cumulative EHR data while accounting for

dynamics and dependence. Additionally, the dynamic changes in “time effect” and

“donor age” are also shown in Figure 4.6. It is clear that baseline serum creatinine

decreases from year 1987 to 2003 before get stabilized, and donor age also shows a

slow decreasing trend. These might be related to the FDA’s approval of immunosup-
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pressive drugs such as CellCept in 1995 and Tacrolimus in 1997 to be used in kidney

transplantation.

Table 4.3: Results from fitting a linear state space mixed model with our proposed
MORA method, at the end of year 2017. The total sample size is NB = 221, 337,
p = 9, q = 2, B = 29.

Estimate Std.Err×10−3 z-value
Recipient’s age -0.015 0.858 -17.55
Donor-recipient sex 0.070 5.010 14.03
Recipient’s BMI 0.050 3.622 13.79
Donor’s BMI 0.020 1.941 10.56
Donor-recipient height ratio -0.118 4.012 -29.48
Donor-recipient weight ratio -0.083 4.619 -17.99
Donor-recipient race -0.041 4.826 -8.501
Donor type 0.058 6.228 9.294
Duration of dialysis 0.025 2.426 10.41
φ 0.111
ρ 0.923, 0.988
δ 0.008

Figure 4.7 shows the trajectories of − log10(p) values over 31 years, the 10-base log

p-values of the z-test for each of the regression coefficient equals to 0. Among all these

risk factors, “donor-recipient height ratio” turns out to have the largest effect. To

characterize the overall significance level for each covariate over the 31-year period,

we calculate a summary statistic as of the area under the p-value curve. For most of

these curves, the ranking of overall significance by these areas is well aligned with the

ranking of p-values obtained at the terminal year 2017, except for “recipient age” and

“donor-recipient weight ratio” that crossover at around year 2014. This also happens

to “donor-recipient race” and “donor type”. By looking into these trajectories rather

than only the end-point p-values, we can see that recipient’s age has an overall higher

significant association with post-transplant renal function than weight ratio. This

summary statistic provides useful evidence besides the terminal p-values.
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Figure 4.4:
Preliminary cross-sectional analysis results showing the trends of individ-
ual regression coefficient estimates by fitting the linear regression model
to each single yearly data batch, respectively.
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Figure 4.5:
Empirical ACF and PACF plots of regression coefficient estimates from
preliminary analysis. It is clear that risk factors “year effect” and “donor
age” follow a stationary AR(1) process.

Figure 4.6:
Trace plots of the dynamic effects of the “time effect” and “donor age”
over 31 years period.
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Figure 4.7:
Trajectories of − log10(p) over yearly data batches from 1987 to 2017, each
for one risk factor. Numbers on the left y-axis are the negative logarithm
p-values obtained by z-test and labels on the x-axis correspond to the end
of each year. The values in the brackets next to covariate names denote
respective areas under the p-value curves.
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4.8 Concluding Remarks

As streaming data becomes one of the most pervasive data collection scheme in

the field of Data Science, there is a surge increase in the number of applications that

require real-time processing of massive data with high velocity. Conventional offline

techniques suffer from many limitations when being applied to streaming data ana-

lytics tasks. Online learning technique is a promising area under exploration to tackle

the emerging challenges of mining data streams. The history of sequential processing

may date back to 1950s when Robbins and Monro (1951) proposed theory of stochastic

approximation, and a variety of online learning methods such as stochastic gradient

descent algorithm are developed thereafter (Sakrison, 1965; Duchi et al., 2011; Toulis

and Airoldi , 2015). However, there are two major issues that are not fully addressed

by the methods along this line of research: (i) most of them are motivated by appli-

cations in the field of engineering where point estimation or prediction rather than

statistical inference is of the main focus. As opposed to needs in the biomedical re-

search; and (ii) there is only a fixed common parameter in model specification so that

the dynamic heterogeneity over the data streams cannot be dealt with. As shown

in the marginal LM analysis, ignoring the sequential heterogeneity may lead to large

estimation bias and low statistical efficiency.

The first gap has been filled by (Luo and Song , 2020) and the second one is the

main focus of this chapter. To account for dynamic heterogeneity, we propose a new

framework of linear state space models, in which the dynamically changed regression

coefficients are governed by an AR(1) process. The main idea of the estimation is

rooted in the EM algorithm where in the E-step, the conditional mean of the batch-

specific effect is calculated using the Kalman recursive technique, and in the M-step,

summary statistics rather than historical subject-level data are used to facilitate the

efficiency of online regression analysis. Both proposed statistical methodology and

computational algorithms have been investigated for their theoretical guarantees and
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examined numerically via extensive simulation studies. The proposed online multi-

variate regression analysis (MORA) method with heterogeneity is computationally

more efficient with smaller data batch size with no loss of statistical efficiency.

A direction worth a further exploration is to consider the case of a non-stationary

latent process such as random walks. One of the challenges pertains to the inter-

data batch correlation that does not decay over the sequence of data batches which is

beyond the φ-mixing process used in this paper to establish large sample properties. A

related problem of interest is to test the stationarity of the underlying latent process,

i.e. H0 : ρ = 1 versus H1 : 0 < ρ < 1 where ρ is the autocorrelation parameter.

Besides, in this paper, we start with the linear state space model with Gaussian

outcomes. This framework may be relaxed to non-Gaussian responses to analyze

other real-world time series data. For example, in biomedical field such as data

streams captured by wearable devices, data may be discrete such activity counts

or binary variables, or physiological measurements that are highly skewed such as

body temperature. Therefore, some extensions to handle non-normal time series is

an important future research area as part of new analytic tools for high frequency

mobile health data.
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CHAPTER V

Summary and Future Work

Motivated by the streaming data collection scheme where data arrives sequentially

and perpetually overtime, this dissertation has focused on transforming important of-

fline statistical methods of parameter estimation and inference to improve online Big

Data analytics. Under the streaming data setting, several of the main challenges

include data storage, re-computation and dynamic heterogeneity in data streams.

Traditional offline methods may no longer be suitable in these scenarios due to the

computation burden and latency in providing real-time analytic results. The main

idea in my proposed methods is rooted in the use of current data and summary statis-

tics of historical data, instead of any historical subject-level data to achieve real-time

estimation and inference. It forms the technical core of Chapter II. Besides, biomed-

ical data may involve correlated clusters, and this has motivated me to carry out

an extension concerning the development of an incremental inference method via

quadratic inference functions in Chapter III. Furthermore, data streams collected

over time may have inter-data batch correlation and heterogeneity. To address the

dynamics in regression coefficients, I utilized the state space model framework and de-

veloped an online multivariate regression analysis method in Chapter IV. The three

methods in this dissertation respectively addressed different statistical challenges,

which includes: data storage and re-computation, correlation and outlier detection,
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and dynamic heterogeneity. Each of the methods can be further extended and im-

proved along in their own framework and settings as have been discussed in each of

the chapters. It is of great interest to further transform offline new methodologies

developed by others to further generalize the streaming data analytical toolbox, and

construct a standard framework that is applicable to a broader range of problems

pertaining to modern streaming data features. Therefore, we conclude this chapter

by pointing out potential directions for future research of modeling for streaming

data.

One promising direction is to work on the quantile regression (QR) model where es-

timating functions are non-differentiable. Smoothing is one of the techniques adopted

by a large body of literature on estimation and inference for QR (Koenker , 2005; Chen

et al., 2018). The method of smoothing the non-smooth QR objective function dates

back to Horowitz (1998) where he used the bootstrap method to obtain asymptotic

refinements. Since the smoothing technique overcomes the difficulty in higher-order

expansion of the estimating equation, it will help to build a connection to the methods

developed for the smooth objective functions in Chapters II and III. An immediate

area of application is obesity research, such as my collaborative project Black Women

Wellness Project (BWWP), where BMI quantiles are used in clinical studies to define

overweight and obesity.

Driven by the recent initiatives of analyzing data collected by wearable devices,

another promising direction and natural extension of my dissertation work is to de-

velop novel statistical methods with emphasis on mobile health analytics. I am greatly

interested in building dynamic statistical models for real-time regression analysis of

mobile health data streams. From my third dissertation project, I have seen a few

promising extensions: (1) using Generalized State Space Models for high-frequency

non-normal time series data; (2) a non-stationary latent process such as random walk.

Another direction concerns the problem of online change-point detection, which
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is critical in tracking outliers and systematic shifts. This topic is not only of great

importance in health data analysis, but also in high-tech companies such as Google.

According to my internship experience, tracking data such as App clicks or downloads

are pervasive in experiment monitoring platforms, and algorithms that can detect

abnormal change-points in a timely fashion are of great need in industry. I plan to

extend the content in Chapter II with the mixture sequential probability ratio test

(mSPRT) (Johari et al., 2016) to develop a real-time estimation and inference method

with change-point detection.

I view collaboration as an imperative channel to apply statistics to solve real-world

problems, and more importantly to generate new ideas on methodology development.

Motivated by my background in biology and experiences in applications, I plan to

collaborate with the Department of Biostatistics at the University of Iowa on applied

projects, especially those related to human diseases, genetics, randomized controlled

trials, and mobile health data. Besides seeking collaborations in academia, I am also

passionate about building connections with industry to work on cutting-edge projects

in data science.
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APPENDIX A

Appendices for Chapter II

Table A.1: In the column Method, “SGD” includes both first-order procedures

and second-order procedures that are based only on the diagonal elements of an

approximated Hessian matrix, not on the full estimated Hessian. In the column

Hessian matrix, “Full” indicates whether the full p × p (approximated) Hessian

matrix is used in an algorithm; “Exact” indicates whether the Hessian matrix is

approximated or obtained by the second-order derivative of the log-likelihood function

(i.e. no approximation). In the column Inference, “Yes” means the availability of

statistical inference. See more details in the Appendix below.

Method

Computational cost

per iteration

Tuning

parameter Hessian-matrix Inference

Full Exact

SGD O(p) Yes No No No

Online Newton O(p2) Yes Yes No No

Online BFGS O(p2) Yes Yes No No

Online LBFGS O(τp), τ < p Yes No No No

Renewable O(nbp
2 + p3) No Yes Yes Yes
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Table A.2: Summary of notations. “SubH.” corresponds to the negative Hessian

matrix for a single data batch Db, and “AggH.” denotes the aggregated negative

Hessian. β̂b (appears only in CEE) denotes the estimator for a single data batch

Db while β̌b (used only in CUEE) is an intermediary estimator similar to the CEE

estimator.

Method Estimator SubH. AggH. Variance

Oracle MLE β̂?b - - V̂ ?
b

AI-SGD βaim
Nb

- - -

OLSE β̃olse
b XT

b Xb

∑b
j=1X

T
j Xj CMSEb ×

(∑b
j=1X

T
j Xj

)

CEE β̃cee
b Acee

b Ãcee
b Ṽ cee

b

CUEE β̃cuee
b Acuee

b Ãcuee
b Ṽ cuee

b

Renewable β̃b Jb J̃b φ̃bJ̃
−1
b

A.1 Chapter II: Proof of Consistency

Proof. Assume the conditions (C1)-(C3) given in Section II.3 hold. The MLE of the

cumulative dataset to time point b is β̂?b = arg max
β∈Rp

`Nb
(β, φ;D?

b ). Under the condition

(C2), i.e., INb
(β) is positive-definite, there exists a unique solution to the unit score

equation
∑b

j=1Uj(Dj;β) = 0, which is the MLE β̂?b for this cumulative dataset.

Let β0 be the true parameter and β̃b be the renewable estimator. Note that for

the prior data batch D1, we have β̃1=β̂
?
1=β̂1, which is consistent by the classical

theory of MLE in the GLMs. Now we prove the consistency of β̃b for an arbitrary

b ≥ 2 by the method of induction.

Define a function fb(β) = − 1
Nb

∑b−1
j=1 Jj(Dj; β̃j)(β− β̃b−1)+ 1

Nb
Ub(Db;β). Accord-

ing to equation (2.15), the renewable estimator β̃b satisfies

fb(β̃b) = 0. (A.1)
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When β̃b−1 is consistent, we have

fb(β0) =
1

Nb

b−1∑

j=1

Jj(Dj; β̃j)(β̃b−1 − β0) +
1

Nb

Ub(Db;β0) = op(1). (A.2)

Taking a difference between equations (A.2) and (A.1), we get

fb(β0)−fb(β̃b) =
1

Nb

b−1∑

j=1

Jj(Dj; β̃j)(β̃b−β0)−
1

Nb

Ub(Db; β̃b)+
1

Nb

Ub(Db;β0) = op(1).

(A.3)

Then, taking the first-order Taylor expansion of term Ub(Db; β̃b) in equation (A.3)

around β0, we obtain

Ub(Db; β̃b) = Ub(Db;β0)− {Jb(Db;β0)− Jb(Db;β0) + Jb(Db; ξb)} (β̃b − β0), (A.4)

where ξb lies in between β̃b and β0. By the Lipschitz continuity in condition (C3),

there exists M(Db) > 0 such that

‖Jb(Db; ξb)− Jb(Db;β0)‖ ≤M(Db)‖ξb − β0‖ ≤M(Db)‖β̃b − β0‖. (A.5)

Using (A.5), we rewrite (A.4) as

Ub(Db; β̃b) = Ub(Db;β0)− Jb(Db;β0)(β̃b − β0) +Op(nb‖β̃b − β0‖2). (A.6)

Combining equations (A.3) and (A.6), we yield

fb(β0)−fb(β̃b) =
1

Nb

{
b−1∑

j=1

Jj(Dj; β̃j) + Jb(Db;β0)

}
(β̃b−β0)+Op

(
nb
Nb

‖β̃b − β0‖2
)

= op(1).

(A.7)

Under the assumption that β̃j is consistent and β̃j ∈ BNj
(δ) for j = 1, . . . , b− 1,

and by condition (C2), we know N−1b

{∑b−1
j=1 Jj(Dj; β̃j) + Jb(Db;β0)

}
is positive-
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definite. It follows that

β̃b − β0
p→ 0, Nb →∞.

A.2 Chapter II: Proof of Asymptotic Normality

Proof. (i) For the first data batch, with b = 1 and n1 = N1, the MLE β̂?1 = β̂1 = β̃1

satisfies 1
N1
U1(D1; β̃1) = 0 and

√
N1(β̃1 − β0)

d→ N (0,Σ0), as N1 = n1 → ∞. In

addition, its unit score function has the following stochastic expression:

1

N1

U1(D1;β0) =
1

N1

J1(D1; β̂1)(β̂1 − β0) +Op

(
n1

N1

‖β̂1 − β0‖2
)
, (A.8)

where we leave n1

N1
= 1 in the expression for the convenience of mathematical argu-

ments used in the subsequent proof.

(ii) Consider updating β̃b−1 to β̃b. The oracle MLE β̂?b for the cumulated dataset D?
b

satisfies: 1
Nb

∑b
j=1Uj(Dj; β̂

?
b ) = 0. Taking the first-order Taylor expansion around β0

leads to

1

Nb

b∑

j=1

Uj(Dj;β0)−
1

Nb

b∑

j=1

Jj(Dj;β0)(β̂
?
b − β0) +Op(‖β̂?b − β0‖2) = 0. (A.9)

From the definition of fb(β), equations (A.1) and (A.7), we know that

fb(β0) = − 1

Nb

b−1∑

j=1

Jj(Dj; β̃j)(β0 − β̃b−1) +
1

Nb

Ub(Db;β0)

=
1

Nb

{
b−1∑

j=1

Jj(Dj; β̃j) + Jb(Db;β0)

}
(β̃b − β0) +Op

(
nb
Nb

‖β̃b − β0‖2
)

= op(1).
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It follows that

− 1

Nb

{
b−1∑

j=1

Jj(Dj; β̃j) + Jb(Db;β0)

}
(β̃b − β0) +

1

Nb

b−1∑

j=1

Jj(Dj; β̃j)(β̃b−1 − β0) +
1

Nb

Ub(Db;β0)

+Op

(
nb
Nb

‖β̃b − β0‖2
)

= 0.

(A.10)

Similar to equation (A.8), at the (b− 1)-th data batch, it is easy to show that

1

Nb−1

b−1∑

j=1

Uj(Dj;β0) =
1

Nb−1

b−1∑

j=1

Jj(Dj; β̃j)(β̃b−1−β0) +Op

(
b−1∑

j=1

nj
Nb−1

‖β̃j − β0‖2
)
.

(A.11)

Plugging equation (A.11) into equation (A.10), we obtain

1

Nb

b∑

j=1

Uj(Dj;β0)−
1

Nb

{
b−1∑

j=1

Jj(Dj; β̃j) + Jb(Db;β0)

}
(β̃b−β0)+Op

(
b∑

j=1

nj
Nb

‖β̃j − β0‖2
)

= 0.

(A.12)

Since according to Theorem II.3, all β̃j are consistent for j = 1, ..., b − 1, and by

condition (C3), the Continuous Mapping Theorem implies that

1

Nb

b∑

j=1

Uj(Dj;β0)−
1

Nb

b∑

j=1

Jj(Dj;β0)(β̃b − β0) +Op

(
b∑

j=1

nj
Nb

‖β̃j − β0‖2
)

= 0.

(A.13)

Furthermore, since φ̃b is a consistent estimator of φ0 due to the weak law of large

numbers (WLLN), we have

1

Nb

φ̃−1b

b∑

j=1

Jj(Dj;β0)
p→ Σ−10 , Nb →∞.

127



By condition (C2), I−1Nb
(β0) exists, and thus the Central Limit Theorem implies

√
Nb(β̃b−β0) =

{
b∑

j=1

Jj(Dj;β0)

}−1
1√
Nb

b∑

j=1

Uj(Dj;β0)+op(1)
d→ N (0,Σ0), Nb →∞.

(A.14)

A.3 Chapter II: Asymptotic Equivalency between the re-

newable estimator and oracle MLE

Proof. Now we prove Theorem II.6. The difference of two equations (A.9) and (A.13)

suggests that

1

Nb

b∑

j=1

Jj(Dj;β0)(β̃b − β̂?b ) = Op

(
b∑

j=1

nj
Nb

‖β̃j − β0‖2 + ‖β̂?b − β0‖2
)

= Op(1/Nb).

Theorem II.4 or equation (A.14) implies that ‖β̃j − β0‖2 = Op(1/Nj), j = 1, . . . , b.

By Condition (C2), it is easy to see that

‖β̃b − β̂?b‖2 = Op(1/Nb).
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Table A.3: Simulation results summarized from 500 replications, under the setting of
NB = 100, 000 and p = 5 for the linear model. Batch size nb varies from 50 to 2000.

B = 50, nb = 2000 B = 100, nb = 1000
AI-SGD MLE online LSE Renew MLE online LSE Renew

A.bias×10−3 13.48 3.17 3.17 3.17 3.17 3.17 3.17
ASE×10−3 15.08 3.83 3.82 3.83 3.83 3.83 3.83
ESE×10−3 17.24 3.94 3.94 3.94 3.94 3.94 3.94
CP 0.92 0.94 0.94 0.94 0.94 0.94 0.94
C.Time(s) - 0.44 0.06 0.08 0.56 0.08 0.12
R.Time(s) 0.14 0.31 0.02 0.04 0.32 0.02 0.07

B = 200, nb = 500 B = 500, nb = 200
AI-SGD MLE online LSE Renew MLE online LSE Renew

Abs. bias×10−3 13.48 3.17 3.17 3.32 3.17 3.17 3.32
ASE×10−3 15.08 3.83 3.83 4.08 3.83 3.83 4.08
ESE×10−3 17.24 3.94 3.94 3.94 3.94 3.94 3.94
CP 0.92 0.94 0.94 0.95 0.94 0.94 0.95
C.Time(s) - 0.86 0.11 0.17 1.68 0.19 0.34
R.Time(s) 0.14 0.32 0.04 0.11 0.30 0.07 0.24

B = 1000, nb = 100 B = 2000, nb = 50
AI-SGD MLE online LSE Renew MLE online LSE Renew

A.bias×10−3 13.48 3.17 3.17 3.17 3.17 3.17 3.17
ASE×10−3 15.08 3.83 3.83 3.83 3.83 3.83 3.83
ESE×10−3 17.24 3.94 3.94 3.94 3.94 3.94 3.94
CP 0.92 0.94 0.94 0.94 0.94 0.94 0.94
C.Time(s) - 3.012 0.348 0.648 5.906 0.660 1.273
R.Time(s) 0.14 0.29 0.14 0.47 0.29 0.28 0.95

129



Table A.4: Simulation results summarized from 500 replications, under the setting of
NB = 100, 000 and p = 5 for the Binomial logistic model. Batch size nb varies from
50 to 2000.

B = 50, nb = 2000 B = 100, nb = 1000
AI-SGD MLE CEE CUEE Renew CEE CUEE Renew

A.bias×10−3 24.98 6.31 6.33 6.32 6.32 6.40 6.34 6.32
ASE×10−3 27.10 7.82 7.83 7.82 7.82 7.84 7.83 7.82
ESE×10−3 31.14 7.93 7.90 7.92 7.92 7.88 7.93 7.92
CP 0.92 0.95 0.95 0.95 0.95 0.94 0.95 0.95

B = 50, nb = 2000 B = 100, nb = 1000
AI-SGD MLE CEE CUEE Renew CEE CUEE Renew

A.bias×10−3 24.98 6.31 6.66 6.42 6.32 8.31 6.89 6.32
ASE×10−3 27.10 7.82 7.87 7.84 7.82 7.94 7.86 7.82
ESE×10−3 31.14 7.93 7.82 7.99 7.92 7.67 8.43 7.93
CP 0.92 0.95 0.93 0.94 0.95 0.88 0.92 0.95

B = 50, nb = 2000 B = 100, nb = 1000
AI-SGD MLE CEE CUEE Renew CEE CUEE Renew

A.bias×10−3 24.98 6.31 13.01 8.26 6.32 24.50 11.98 6.32
ASE×10−3 27.10 7.82 8.07 7.89 7.82 8.34 7.94 7.82
ESE×10−3 31.14 7.93 7.45 10.01 7.92 7.02 15.64 7.92
CP 0.92 0.95 0.66 0.87 0.95 0.12 0.74 0.95

Table A.5: Simulation results summarized from 500 replications, under the setting of
NB = 100, 000 and p = 5 for the Poisson log-linear model. Batch size nb varies from
50 to 2000.

B = 50, nb = 2000 B = 100, nb = 1000
AI-SGD MLE CEE CUEE Renew CEE CUEE Renew

A.bias×10−3 13.30 2.76 2.80 2.77 2.76 2.87 2.78 2.76
ASE×10−3 15.15 3.42 3.42 3.42 3.42 3.42 3.42 3.42
ESE×10−3 15.99 3.42 3.42 3.42 3.42 3.42 3.43 3.42
CP 0.91 0.95 0.95 0.95 0.95 0.95 0.95 0.95

B = 50, nb = 2000 B = 100, nb = 1000
AI-SGD MLE CEE CUEE Renew CEE CUEE Renew

Abs. bias×10−3 13.30 2.76 3.13 2.86 2.76 4.27 3.20 2.76
ASE×10−3 15.15 3.42 3.42 3.42 3.42 3.42 3.42 3.42
ESE×10−3 15.99 3.42 3.42 3.50 3.42 3.42 3.82 3.42
CP 0.91 0.95 0.91 0.94 0.95 0.78 0.90 0.95

B = 50, nb = 2000 B = 100, nb = 1000
AI-SGD MLE CEE CUEE Renew CEE CUEE Renew

A.bias×10−3 13.30 2.76 6.26 4.01 2.76 10.48 5.98 2.76
ASE×10−3 15.15 3.42 3.41 3.41 3.42 3.41 3.39 3.42
ESE×10−3 15.99 3.42 3.42 4.59 3.42 3.43 6.82 3.42
CP 0.91 0.95 0.76 0.81 0.95 0.67 0.74 0.95
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Figure A.1: Average computation time, average bias and coverage probabilities for
MLE, AI-SGD, online LSE, sequential CEE and CUEE, and Renewable
estimation. AI-SGD is not included in C.Time comparison.
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Table A.6: Empirical size and power of a simple hypothesis test over 500 replications
in the logistic regression model with p = 5, nb = 200, B = 500.

Size Power
β03 0.2 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250
MLE 0.050 0.098 0.358 0.664 0.880 0.980 0.998 0.998 1.000 1.000 1.000
AI-SGD 0.050 0.051 0.058 0.102 0.136 0.196 0.288 0.352 0.452 0.534 0.608
CEE 0.110 0.044 0.082 0.324 0.628 0.876 0.972 0.996 0.998 1.000 1.000
CUEE 0.062 0.072 0.268 0.570 0.830 0.952 0.990 0.998 1.000 1.000 1.000
Renew 0.048 0.094 0.354 0.656 0.878 0.980 0.998 0.998 1.000 1.000 1.000

Figure A.2: Quantiles of the Wald test statistics under H0 with degrees of freedom
equal to 1, 2, 3, 4, 5.
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APPENDIX B

Appendices for Chapter III

B.1 Chapter III: Derivation of Renewable GEE

Proof. The initial estimate β̂1 satisfies estimating equation, ψ1(D1; β̂1, α̂1) = 0.

When D2 arrives, we hope to obtain the renewable estimator, β̂?2, that satisfies the

following estimating equation:

ψ1(D1; β̂
?
2, α̂

?
2) +ψ2(D2; β̂

?
2, α̂

?
2) = 0, (B.1)

where ψb(Db;β, α) =
∑

i∈Db
DT

i Σ−1i (yi−µi) is the estimating function for the current

data batch Db, and the corresponding sensitivity and variability matrices are denoted

by Sb(Db;β, α) =
∑

i∈Db
DT

i Σ−1i Di and Vb(Db;β, α) =
∑

i∈Db
DT

i Σ−1i (yi − µi)(yi −

µi)
TΣ−1i Di, respectively, b = 1, 2, . . . . However, solving (B.1) for β̂?2 involves the use

of subject-level data in both data batches D1 and D2. To derive a renewable version of

estimation, we take first-order Taylor expansion of the first term ψ1(D1; β̂
?
2) in (B.1)

around β̂1,

ψ1(D1; β̂1) + S1(D1; β̂1)(β̂1 − β̂?2) +ψ2(D2; β̂
?
2) +Op(n1‖β̂?2 − β̂1‖2) = 0. (B.2)
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The error term Op(n1‖β̂?2 − β̂1‖2) in (B.2) may be asymptotically ignored because

under some mild conditions, both β̂1 and β̂?2 are consistent estimator of β0. Removing

such term, we propose a new estimator β̃2 as a solution to the equation of the form:

ψ1(D1; β̂1) + S1(D1; β̂1)(β̂1 − β̃2) +ψ2(D2; β̃2) = 0,

where ψ1(D1; β̂1) = 0. Thus, the proposed estimator β̃2 satisfies the following esti-

mating equation:

S1(D1; β̂1)(β̂1 − β̃2) +ψ2(D2; β̃2) = 0. (B.3)

Note that β̃2 approximates the oracle estimator β̂?2 up to the second order asymptotic

errors. Through (B.3), the initial β̂1 is renewed by β̃2. Because of this, β̃2 is a

renewable estimator of β0, and equation (B.3) is termed as an incremental estimating

equation. Numerically, it is rather straightforward to find β̃2 by, for example, the

Newton-Raphson algorithm. That is, at the (r + 1)-th iteration,

β̃
(r+1)
2 = β̃

(r)
2 +

{
S1(D1; β̂1) + S2(D2; β̃

(r)
2 )
}−1 {

S1(D1; β̂1)(β̂1 − β̃(r)
2 ) +ψ2(D2; β̃

(r)
2 )
}

= β̃
(r)
2 +

{
S̃2(β̂1, β̃

r
2)
}−1

ψ̃2(D2; β̃
(r)
2 ),

(B.4)

where no subject-level data of D1, but only the prior estimate β̂1 and the prior sensi-

tivity matrix S1(D1; β̂1) are used in the above iterative algorithm. In equation (B.4),

β̃2 is iteratively solved by using the adjusted estimating function ψ̃2 and the aggre-

gated information matrix
{
S1(β̂1) + S2(β̃2)

}
.
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The oracle estimator of nuisance parameters α and φ are:

α̂?2 = s
{
R̂?

2(β̂
?
2)
}

=
1∑2

b=1

∑nb

i=1mb,i − p
s

(
2∑

b=1

nb∑

i=1

r̂?b,ir̂
T?
b,i

)

φ̂?2 =
1∑2

b=1

∑nb

i=1mb,i − p

2∑

b=1

nb∑

i=1

r̂T?b,i r̂
?
b,i,

where r̂T?b,i = (r̂b,i1, . . . , r̂b,imi
)T =

{
yb,i1−h(xT

b,i1β̂
?
2)

v(xT
b,i1β̂

?
2)

, . . . ,
yb,imi

−h(xT
b,imi

β̂?
2)

v(xT
b,imi

β̂?
2)

}T
is the Pear-

son residual for cluster i in data batch Db, s(·) is the function that links the residual

matrix to the estimator of correlation parameter and it depends on the working corre-

lation structure. R̂ is the unstructured working correlation determined by residuals.

The renewable estimators α̃2 and φ̃2 are calculated using the following equations:

α̃2 =
1∑2

b=1

∑nb

i=1mb,i − p

{
s

(
n1∑

i=1

r̂1,ir̂
T
1,i

)
+ s

(
n2∑

i=1

r̃2,ir̃
T
2,i

)}

=

∑n1

i=1m1,i − p∑2
b=1

∑nb

i=1mb,i − p
s
{
R̂1(β̂1)

}
+

∑n2

i=1m2,i − p∑2
b=1

∑nb

i=1mb,i − p
s
{
R̂2(β̃2)

}

=

∑n1

i=1m1,i − p∑2
b=1

∑nb

i=1mb,i − p
α̂1 +

∑n2

i=1m2,i − p∑2
b=1

∑nb

i=1mb,i − p
α̂2

φ̃2 =
1∑2

b=1

∑nb

i=1mb,i − p

(
n1∑

i=1

r̂T1,ir̂1,i +

n2∑

i=1

r̃T2,ir̃2,i

)

=

∑n1

i=1m1,i − p∑2
b=1

∑nb

i=1mb,i − p
φ̂1 +

∑n2

i=1m2,i − p∑2
b=1

∑nb

i=1mb,i − p
φ̂2,

(B.5)

where r̂1 = r̂1(β̂1) and r̃2 = r̃2(β̃2).

B.2 Chapter III: Consistency and Normality of Renewable

QIF

Proof. The quadratic inference function estimator of the cumulative dataset to time

point b is β̂?b = arg min
β∈Rp

Q?
b(β).

Let β0 be the true parameter and β̃b be the renewable estimator. Note that for
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the prior data batch D1, we have β̃1 = β̂?1 = β̂1, which is consistent by the existing

theory of the generalized method of moments (GMM) estimators. Now we prove the

consistency of β̃b for an arbitrary b ≥ 2 by the method of induction.

Define a function

fb(β) =
1

Nb

{
b−1∑

j=1

Gj(β̃j) +Gb(β)

}T { b−1∑

j=1

Cj(β̃j) +Cb(β)

}−1

×
{
b−1∑

j=1

gj(β̃j) +
b−1∑

j=1

Gj(β̃j)(β̃b − β) + gb(β)

}

The renewable estimator β̃b satisfies:

fb(β̃b) = 0. (B.6)

When β̃j is consistent for j = 1, . . . , b− 1, we have

fb(β0) =
1

Nb

{
b−1∑

j=1

Gj(β̃j) +Gb(β0)

}T { b−1∑

j=1

Cj(β̃j) +Cb(β0)

}−1

×
{
b−1∑

j=1

gj(β̃j) +
b−1∑

j=1

Gj(β̃j)(β̃b − β0) + gb(β0)

}
= Op(N

−1/2
b )

(B.7)
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Taking a difference between equations (B.7)-(B.6), we get

fb(β0)− fb(β̃b) =
1

Nb

{
b−1∑

j=1

Gj(β̃j) +Gb(β0)

}T { b−1∑

j=1

Cj(β̃j) +Cb(β0)

}−1

×
{
b−1∑

j=1

Gj(β̃j)(β̃b − β0) + gb(β0)− gb(β̃b)
}

+
1

Nb



{

b∑

j=1

Gj(β̃j)

}T { b∑

j=1

Cj(β̃j)

}−1

−
{
b−1∑

j=1

Gj(β̃j) +Gb(β0)

}T { b−1∑

j=1

Cj(β̃j) +Cb(β0)

}−1


×
{
b−1∑

j=1

gj(β̃j) + gb(β̃b)

}
= Op(N

−1/2
b ).

(B.8)

Since

gb(β̃b) = gb(β0)−Gb(ξb)(β̃b − β0)

= gb(β0)− {Gb(β0)−Gb(β0) +Gb(ξb)} (β̃b − β0)

= gb(β0)−Gb(β0)(β̃b − β0) + {Gb(β0)−Gb(ξb)} (β̃b − β0).

Since Gb is Lipschitz continuous in Θ, there exists M(Db) > 0 such that ‖Gb(β0)−

Gb(ξb)‖ ≤M(Db)‖ξb − β0‖ ≤M(Db)‖β̃b − β0‖, and it follows that

gb(β̃b)− gb(β0) = −Gb(β0)(β̃b − β0) +Op(nb‖β̃b − β0‖2). (B.9)

Since gb is continuous differentiable, Cb is also continuous in Θ. Plug in (B.9)

into (B.8), we get
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1

Nb

{
b−1∑

j=1

Gj(β̃j) +Gb(β0)

}T { b−1∑

j=1

Cj(β̃j) +Cb(β0)

}−1

×
{
b−1∑

j=1

Gj(β̃j) +Gb(β0)

}
(β̃b − β0)

+Op

(
nb√
Nb

‖β̃b − β0‖2
)

+Op(N
−1/2
b ) = 0.

(B.10)

Under the assumption that β̃j is consistent and β̃j ∈ Nδ for j = 1, . . . , b− 1, and

by condition (C3), Cj(β̃j) is positive-definite, it follows that

β̃b
p→ β0, Nb →∞.

Furthermore, by Theorem III.1, all β̃j are consistent for j = 1, . . . , b− 1, and by

condition (C2), the Continuous Mapping Theorem implies that

1

Nb

{
b−1∑

j=1

Gj(β̃j) +Gb(β0)

}T { b−1∑

j=1

Cj(β̃j) +Cb(β0)

}−1

×
{
b−1∑

j=1

Gj(β̃j) +Gb(β0)

}
p→ J(β0), Nb →∞,

where J(β0) = GT (β0)C
−1(β0)G(β0). By Condition (C3), Cb is positive-definite,

and the Central Limit Theorem implies

√
Nb(β̃b − β0)

d→ N (0,J−1(β0)) (B.11)
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B.3 Chapter III: Asymptotic Equivalency Between the Re-

newable QIF and the Oracle Estimators

Proof. The oracle QIF estimator β̂?b for the cumulative dataset D?
b satisfies:

1

Nb

{
b∑

j=1

Gj(β̂
?
b )

}T { b∑

j=1

Cj(β̂
?
b )

}−1{ b∑

j=1

gj(β̂
?
b )

}
= 0.

Taking the first-order Taylor expansion around β0 leads to

1

Nb

{
b∑

j=1

Gj(β̂
?
b )

}T { b∑

j=1

Cj(β̂
?
b )

}−1

×
{

b∑

j=1

gj(β0) +
b∑

j=1

Gj(β0)(β0 − β̂?b ) +Op

(
b∑

j=1

nj‖β̂?b − β0‖2
)}

= 0.

(B.12)

Since N−1b
∑b

j=1Gj(β̂
?
b ) = G(β0) + op(1) and N−1b

∑b
j=1Cj(β̂

?
b ) = C(β0) + op(1),

equation (B.12) becomes

1

Nb

{
b∑

j=1

Gj(β0)

}T { b∑

j=1

Cj(β0)

}−1

×
{

b∑

j=1

gj(β0) +
b∑

j=1

Gj(β0)(β0 − β̂?b ) +Op

(
b∑

j=1

nj‖β̂?b − β0‖2
)}

= 0.

(B.13)

Since we have

fb(β̃b) =
1

Nb

{
b∑

j=1

Gj(β̃j)

}T { b∑

j=1

Cj(β̃j)

}−1{ b∑

j=1

gj(β̃j)

}
= 0. (B.14)

Taking the first-order Taylor expansion of
∑b

j=1 gj(β̃j) around β0, we obtain

b∑

j=1

gj(β̃j) =
b∑

j=1

gj(β0) +
b∑

j=1

Gj(β0)(β0 − β̃b) +Op

(
b∑

j=1

nj‖β̃j − β0‖2
)

(B.15)
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Plugging (B.15) into equation (B.14), and by the Continuous Mapping Theorem, we

obtain

1

Nb

{
b∑

j=1

Gj(β0)

}T { b∑

j=1

Cj(β0)

}−1

×
{

b∑

j=1

gj(β0) +
b∑

j=1

Gj(β0)(β0 − β̃b) +Op

(
b∑

j=1

nj‖β̃j − β0‖2
)}

= 0.

(B.16)

Take the difference of equations (B.13) and (B.16) implies that

1

Nb

{
b∑

j=1

Gj(β0)

}T { b∑

j=1

Cj(β0)

}−1{ b∑

j=1

Gj(β0)

}
(β̃b − β̂?b )

=Op

(
b∑

j=1

nj
Nb

‖β̃j − β0‖2 + ‖β̂?b − β0‖2
)

=Op(1/Nb).

(B.17)

It is easy to see that

‖β̃b − β̂?b‖2 = Op(1/Nb).
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APPENDIX C

Appendices for Chapter IV

C.1 Chapter IV: Asymptotic Normality

Proof. We take the first-order Taylor expansion of the aggregated estimating equation

Ũb(α̃b) around α0, Ũb(α̃b) = Ũb(α0) + ∂Ũb(α)
∂αT (α̃b −α0) = 0. Therefore, we have

√
Nb(α̃b −α0) =

{
− 1

Nb

∂Ũb(α)

∂αT

}−1{
1√
Nb

Ũb(α0)

}
, (C.1)

where S̃b = E
{
−∂Ũb(α)

∂αT

}
=
∑b

j=1X
T
j {Xj +ZjLj(α)}.

The second term on the right-hand side of equation (C.1) may be written as

follows,

1√
Nb

Ũb(α) =
1√
Nb

b∑

j=1

XT
j (yj −Xjα−Zjmj).

DenoteUj = XT
j (yj−Xjα−Zjmj) =

∑
i∈Dj

uji =
∑

i∈Dj
xji(yji−xTjiα−zTjimj),

then Ũb =
∑b

j=1Uj. Let Fj represent the σ-field generated by D?
j . Since E[Uj |

Fj−1] = 0, then {Uj,Fj, j = 1, 2, . . . } forms a sequence of martingale difference with

mean 0.
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To derive the joint distribution of Ũb, we apply the Cramér-Wold theorem (Cramér

and Wold , 1936). For any nonrandom nonzero vector a = (a1, . . . , ap)
T ∈ Rp. Let

uji = (uji,1, . . . , uji,p)
T , we write

aT Ũb =

Nb∑

i=1

p∑

d=1

adui,d =

Nb∑

i=1

u?i . (C.2)

Since {βb} is a stationary AR(1) process, it is a φ-mixing process Billingsley (1968).

Given βj, {uji} in (C.2) is conditionally independent with E[uji] = 0, and thus the

{uji} is a φ-mixing centered process (Billingsley , 1968). It follows that u?1, u
?
2, . . .

is also a stationary φ-mixing centered stochastic process whose second moments are

given by

σ2
Nb

= var

(
Nb∑

i=1

u?i

)
→∞, as Nb →∞.

Now we check the Lindeberg condition, for any ε > 0,

Nb∑

i=1

E
{

(u?i )
21[|u?i | > εσNb

]
}

=

Nb∑

i=1

E





(
p∑

d=1

adui,d

)2

1

[
p∑

d=1

|adui,d| > εσNb

]


≤
Nb∑

i=1

p∑

d=1

a2dE



u

2
i,d1




p∑

d=1

|ui,d| >
εσNb

max
d
|ad|







Since σNb
→ ∞ and max |ad| < ∞, it follows that 1

[∑p
d=1 |ui,d| >

εσNb

max
i
|ai|

]
a.s.→ 0.

Additionally, E[u2i,d] <∞, and P (ui,d =∞) = 0, it follows that

Nb∑

i=1

E
{

(u?i )
21[|u?i | > εσNb

]
}
→ 0, as Nb →∞.

By the central limit theorem for φ-mixing stochastic process {u?i } (Peligrad , 1986),

we have ∑Nb

i=1 u
?
i

σ2
Nb

d→ N (0, 1),
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where σ2
Nb

= aTvar[Ũb]a. Then by Cramér-Wold, we have

1√
Nb

Ũb
d→ Np(0,V ),

where V = lim
b→∞

1
Nb
X̃T

b var[Ũb]X̃b = lim
b→∞

Ṽb and X̃b = (XT
1 , . . . ,X

T
b )T is a combined

covariate matrix with dimension Nb × p.

Summarizing the above arguments, we finally prove that

√
Nb(α−α0)

d→ Np(0,Σ(α0)), as Nb →∞,

with Σ(α0) = lim
Nb

NbJ̃
−1
b (α0), where J̃b(α0) = S̃Tb Ṽ

−1
b S̃b.
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Cappé, O. (2011), Online em algorithm for hidden markov models, Journal of Com-
putational and Graphical Statistics, 20 (3), 728 – 749.

145
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