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2.2 Growth costs and lag times for isolates selected by differ-
ent antibiotics A. Example optical density (OD) time series for
single isolates selected by each of the 15 drugs. Blue or red circles
correspond to the isolate, black circles to ancestral strains. Light
green lines show fits to logistic growth function [60] given by g(t) =
g0 +K (1 + exp(4µ(λ− t)/K + 2))−1, where µ is the maximum spe-
cific growth rate, λ is the lag time, and K is the carrying capacity.
To reduce the number of free parameters, we fix K = 0.5 to match
that of the ancestral strain. B. Maximum specific growth rate (µ,
left) and lag time (λ, right) in drug-free media for isolates from each
of the four populations selected by each drug. All values are normal-
ized by the values measured in the ancestral strain. Errorbars are
standard errors of the mean estimated from 3 technical replicates for
each isolate (cont’d on next page). . . . . . . . . . . . . . . . . . . . 19
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3.2 Correlations between collateral effects under different se-
lecting or testing conditions A. Left panel: Pearson correlation
coefficient between collateral profiles (i.e. columns of the matrix in
Figure 1C) selected under different conditions. Dark squares high-
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4.1 Adaptation to alternating landscapes may depend on inter-
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4.3 Modulated fitness in alternating landscapes depends on intra-
landscape ruggedness and inter-landscape correlations. A.
Difference in average fitness (at steady state) between populations
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Average fitness of shared maxima (blue) and average fitness of non-
shared maxima (orange). Dashed line is average fitness of all local
maxima in landscape A. E. Normalized entropy of the steady state
genotype distribution following adaptation to alternating landscapes.
Curves correspond to the full landscape pair ensemble (blue) and a
reduced ensemble consisting only of landscapes that contain a shared
maximum (red), bottom, and a reduced ensemble consisting only of
landscapes with no shared maxima (red, top). . . . . . . . . . . . . 137

xix
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ABSTRACT

Drug resistance is an ever-growing threat to successful treatment of bacterial,

cancer and viral infections. As pathogens and cancers continue to find evolutionary

solutions to the drugs we treat them with, scientists have begun to focus on more

evolutionary-based therapies such as drug cycling. These therapies aim to constrain

or control evolution in a particular way such that intractable resistance never evolves.

In the same vein, recent work has revealed collateral sensitivity as a promising av-

enue to guide evolution away from untreatable resistance states. Collateral evolution

occurs when a population evolves resistance to the selecting drug and this mechanism

of resistance confers “collateral” effects to different drugs it is not exposed to. In

this work we show how collateral profiles might be used to slow the acquisition to

resistance in a simplified laboratory-based evolution experiment. We demonstrate

that intuitive cycling protocols often fail over long time periods, whereas mathe-

matically optimized protocols maintain long-term sensitivity at the cost of transient

periods of high resistance. We then extend this work to include nonantibiotic stres-

sors such as pH, salt and food preservatives. This extension highlights that more

work is necessary to understand the role these common environments have on the

development of multidrug resistance. Finally, using the well-known fitness landscape

paradigm, we explore how collateral effects influence the evolutionary dynamics of

a pair of landscapes with tunable correlations. We show that alternating evolution

in highly correlated environments can lead to higher mean fitness than evolution in

either landscape alone, while alternating between two anti-correlated landscapes re-

sults in a lower mean fitness. We demonstrate this is due to the location and number

xxiv



of shared maxima between the two correlated landscapes, which change as a function

of ruggedness (epistasis) and paired landscape correlation. Taken together, these re-

sults begin to answer many of the important questions required to translate collateral

sensitivity into clinical treatments.
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CHAPTER I

Introduction
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For decades we have generously deployed the use of antibiotics to cure all bacterial

ailments. Antibiotics have been seen as a “miracle” drug giving us the ability to

cure the incurable almost overnight. Over the last near-century, antibiotics have

become intertwined with more than just human health. Antibiotics are regularly and

prophylactically used to maintain the agriculture and trade industries worldwide.

However, the steady rise of antibiotic-resistant bacteria threatens to usher our world

into a post-antibiotic era. A growing number of infections such as gonorrhea and

tuberculosis are becoming harder or impossible to treat [1, 2].

With this growing threat challenging effective treatments for viral infections, bac-

terial infections and cancer [3, 4, 5, 6, 7, 8], the scientific community has turned to

evolutionary-based strategies for constraining or reversing resistance. These strate-

gies include optimal dose scheduling [9, 10, 11], antimicrobial stewardship [12, 13],

drug cycling [14, 15, 16], exploitation of spatial dynamics [17, 18, 19], cooperative

population dynamics [20, 21, 22, 23], phenotypic resistance [24, 25, 26], and drug

combinations [27, 28, 29, 30, 31, 32, 33, 34]. One of the most promising recent

strategies is the exploitation of collateral sensitivity [35, 36, 37, 38, 39, 40]. Collateral

evolution is a term for the unintended increases and decreases in resistance as a direct

result of acquiring resistance to the drug applying selection pressure. For example,

if a population treated by the fluorquinolone antibiotic ofloxacin were to evolve a

general-purpose efflux pump that pumps out both ofloxacin in addition to doxycy-

cline, we would call that additional resistance to doxycyline “collateral resistance”.

If instead, the conferred mutation altered the way the DNA super-coiled in order to

protect itself from ofloxacin, and as a side effect altered its gene expression such that

the population became more susceptible to ampicillin, we would call that additional

sensitivity to ampicillin “collateral sensitivity”.

As a result, it has been proposed that collateral sensitivity can be used to re-

verse acquired resistance, or to constrain the population from evolving resistance in
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the first place via judicious drug scheduling. However, many challenges remain be-

fore the exploitation of collateral effects can be used clinically. Collateral profiles to

the same selecting drug have been shown to be highly heterogeneous, time-sensitive,

and too few studies exist to confirm if these effects differ between species [41, 42, 43].

With these questions in mind, this research seeks to answer several of these questions.

We begin with a large systematic study of the collateral profiles in the opportunistic

pathogen E. faecalis (Chapter 2). A combination of parallel experimental evolution

with high-throughput dose-response measurements allow us to measure the collateral

profile of 61 different strains evolved to 15 different antibiotics, over 900 strain-drug

combinations. We find that collateral effects are pervasive and heterogeneous, even

within mutants evolved to the same selecting drug. However, we observe a statistical

structure in the collateral profiles, as these profiles cluster into groups characterized

by their drug class. In an attempt to exploit this structure, we develop a mathemati-

cal framework based based on a Markov Decision Process (MDP) in order to identify

the optimal antibiotic schedule that minimizes resistance. Excitingly, we show exper-

imentally that these optimal policies constrain resistance better than more intuitive

single, two and four drug cycles. Subsequently, we extend this work on collateral sen-

sitivity by demonstrating that collateral effects between antibiotic and nonantibiotic

conditions (pH, acidic, basic, high salt, etc.) are surprisingly common (Chapter 3).

While some research has been done looking at the collateral effects from one individ-

ual stressor [44, 45, 46, 47, 48, 49, 50, 51, 52, 53], there has yet to be a broader study

of the collateral network between antibiotics and nonantibiotics. The prevalence of

cross-conditional collateral effects highlight the need for further research on the un-

intended consequences of food additives, preservatives, biocides, or common natural

environments in spreading multidrug resistance. We conclude our experimental col-

lateral sensitivity work by demonstrating that populations evolved to two conditions

sequentially can induce increased sensitivity to a larger selection of conditions than

3



adaptation to either individual stressor alone.

As a model system, all our experiments focus on Enterococcus faecalis, a gram-

positive opportunistic nosocomial pathogen. E. faecalis are found in the gastrointesti-

nal tracts of humans and are known to cause urinary tract infections and between

5 and 15 percent of endocarditis infections [54, 55, 56, 57, 58]. For our own work,

E. faecalis is a convenient choice of pathogen because it readily evolves resistance

to a wide range of antibiotics [59, 60], and much of the current collateral sensitivity

literature focuses on gram-negative bacteria. Finally, fully sequenced genomes are

available for the common strains such as our preferred strain, V583 [61].

Finally, inspired by the ideas of collateral evolution, we turn to a more abstract

evolutionary question: how does evolution proceed when the population is alternat-

ing between two environments with a specific correlation (Chapter 4)? Much work

has been done investigating evolution on a single fitness landscape, or between many

landscapes of no specific correlation [62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. However,

we seek to understand the evolutionary dynamics of asexual populations in alternat-

ing environments described by a pair of fitness landscapes with some tunable inter-

landscape correlation. Interestingly, we find that rapid switching can either increase

or decrease the final fitness when compared to evolution in either landscape alone.

The resulting fitness is largely governed by shared fitness maximums, or genotypes

where both landscapes share a fitness maximum. We show that the location and

number of shared fitness maximums are governed by the correlation and ruggedness

(epistasis) of the landscapes.
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This chapter was amended from: Jeff Maltas and Kevin B. Wood. ‘Pervasive

and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic

resistance’ PLOS Biology 17(10), e300515, 2019.

2.1 Introduction

As mentioned briefly in the introduction, the rapid emergence of drug resistance

is an urgent threat to effective treatments for bacterial infections, cancers and many

viral infections [1, 2, 3, 4, 5, 6]. Unfortunately, the development of novel drugs

is a long and arduous process, underscoring the need for alternative approaches to

forestall resistance evolution. Recent work has highlighted the promise of evolution-

based strategies for optimizing and prolonging the efficacy of established drugs, in-

cluding optimal dose scheduling [7, 8, 9], antimicrobial stewardship [10, 11], drug

cycling [12, 13, 14], consideration of spatial dynamics [15, 16, 17], cooperative dy-

namics [18, 19, 20, 21], or phenotypic resistance [22, 23, 24], and judicious use of

drug combinations [25, 26, 27, 28, 29, 30, 31, 32]. In a similar spirit, a number of

recent studies have suggested exploiting collateral sensitivity as a means for slowing

or even reversing antibiotic resistance [33, 34, 35, 36, 37, 38]. Collateral evolution

occurs when a population evolves resistance to a target drug while simultaneously ex-

hibiting increased sensitivity or resistance to a different drug. From an evolutionary

perspective, collateral effects are reminiscent of the trade-offs inherent when organ-

isms are required to simultaneously adapt to different tasks, an optimization that

is often surprisingly simple because it takes place on a low-dimensional phenotypic

space [39, 40]. If similarly tractable dynamics occur in the evolution of multi-drug

resistance, systematic optimization of drug deployment has the promise to mitigate

the effects of resistance.

Indeed, recent studies in bacteria have shown that the sequential [41, 42, 43, 44,

45, 38, 46] or simultaneous [47, 48] deployment of antibiotics with mutual collateral
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sensitivity can sometimes slow the emergence of resistance. Unfortunately, collateral

profiles have also been shown to be highly heterogeneous [49, 50] and often not re-

peatable [51], potentially complicating the design of successful collateral sensitivity

cycles. The picture that emerges is enticing, but complex; while collateral effects offer

a promising new dimension for improving therapies, the design of drug cycling pro-

tocols is an extremely difficult problem that requires optimization at multiple scales,

from dynamics within individual hosts to those that occur at the hospital or com-

munity scale. Despite many promising recent advances, it is not yet clear how to

optimally harness collateral evolutionary effects to design drug policies, even in sim-

plified laboratory scenarios. The problem is challenging for many reasons, including

the stochastic nature of evolutionary trajectories and–at an empirical level– the rela-

tive paucity of data regarding the prevalence and repeatability of collateral sensitivity

profiles in different species.

In this chapter, we take a step towards answering these questions by investigating

how drug sequences might be used to slow resistance in a simplified, single-species

bacterial population. We show that even in this idealized scenario, intuitive cycling

protocols–for example, sequential application of two drugs exhibiting reciprocal col-

lateral sensitivity–are expected to fail over long time periods, though mathematically

optimized policies can maintain long-term drug sensitivity at the price of transient

periods of high resistance. As a model system, we focus on Enterococcus faecalis, a

gram-positive opportunistic bacterial pathogen. E. faecalis are found in the gastroin-

testinal tracts of humans and are implicated in numerous clinical infections, ranging

from urinary tract infections to infective endocarditis, where they are responsible for

between 5 and 15 percent of cases [52, 53, 54, 55, 56]. For our purposes, E. faecalis is

a convenient model species because it rapidly evolves resistance to antibiotics in the

laboratory [57, 58], and fully sequenced reference genomes are available [59].

By combining parallel experimental evolution of E. faecalis with high-throughput
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dose-response measurements, we provide collateral sensitivity and resistance profiles

for 60 strains evolved to 15 different antibiotics, yielding a total of 900 mutant-drug

combinations. We find that cross resistance and collateral sensitivity are pervasive

in drug-resistant mutants, though patterns of collateral effects can vary significantly,

even for mutants evolved to the same drug. Notably, however, the sensitivity profiles

cluster into groups characterized by selecting drugs from similar drug classes, indicat-

ing the existence of large scale statistical structure in the collateral sensitivity profiles.

To exploit that structure, we develop a simple mathematical framework based on a

Markov Decision Process (MDP) to identify optimal antibiotic policies that mini-

mize resistance. These policies yield drug sequences that can be tuned to optimize

either short-term or long-term evolutionary outcomes, and they codify the trade-offs

between instantaneous drug efficacy and delayed evolutionary consequences. While

clearly too simple to capture evolution in realistic clinical scenarios, the model points

to new conceptual strategies for mitigating resistance by balancing short-term growth

inhibition with infrequent use of drugs intended to steer pathogen populations to a

more vulnerable future state.

2.2 Results

2.2.1 Collateral effects are pervasive and heterogeneous

To investigate collateral drug effects in E. faecalis, we exposed four independent

populations of strain V583 to increasing concentrations of a single drug over 8 days (a

maximum of roughly 60 generations) using serial passage laboratory evolution (Fig-

ure 2.1). We repeated this laboratory evolution for a total of 15 antibiotics spanning

a wide range of classes and mechanisms of action (Table 2.2). Many, but not all, of

these drugs are clinically relevant for the treatment of enterococcal infections. As a

control, we also evolved 4 independent populations of the ancestral V583 strain to
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Figure 2.1: Collateral effects are pervasive and vary across parallel evolution
experiments in E. faecalis. A. E. faecalis strain V583 was exposed to
increasing concentrations of a single antibiotic over an 8-day serial pas-
sage experiment with daily 200-fold dilutions (maximally 60 generations
total; see Methods). The evolution was performed in quadruplicate for
each drug and repeated for a total of 15 drugs (Table 2.2). After 8 days,
a single mutant was isolated from each population. B. The half maxi-
mal inhibitory concentration (IC50) for each of 15 drugs was estimated
for all 60 mutants by nonlinear fitting of a dose response curve (relative
OD) to a Hill-like function (Methods). C. Main panel: resistance (red)
or sensitivity (blue) of each evolved mutant (horizontal axis; 15 drugs
x 4 mutants per drug) to each drug (vertical axis) is quantified by the
log2-transformed relative increase in the IC50 of the testing drug relative
to that of wild-type (V583) cells. While the color scale ranges from a
4x decrease to a 4x increase in IC50, it should be noted that both resis-
tance to the selecting drug (diagonal blocks) and collateral effects can be
significantly higher. Each column of the heat map represents a collat-
eral sensitivity profile for one mutant. Right panel: enlarged first column
from main panel. Mutants isolated from replicate populations evolved
to daptomcyin exhibit diverse sensitivity profiles. While all mutants are
resistant to the selecting drug (daptomycin), mutants may exhibit either
sensitivity or resistance to other drugs. For example, the first and last
replicates exhibit cross resistance to ceftriaxone (CRO), while replicate 2
exhibits collateral sensitivity and replicate 3 shows little effect.
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media (BHI) alone. After a maximum of 60 generations, we isolated a single colony

(hereafter termed a “mutant”) from each population and measured its response to

all 15 drugs using replicate dose-response experiments (Figure 2.1B). To quantify

resistance, we estimated the half maximal inhibitory concentration (IC50) for each

mutant-drug combination using nonlinear least squares fitting to a Hill-like dose re-

sponse function (Methods; see Figure 2.7 for examples). A mutant strain was defined

to be collaterally sensitive if its IC50 had decreased by more than 3σWT relative to the

ancestral strain (σWT is defined as the uncertainty–standard error across replicates–of

the IC50 measured in the ancestral strain). Similarly, an increase in IC50 by more than

3σWT relative to the ancestral strain corresponds to cross-resistance. As a measure

of cross resistance / sensitivity, we then calculate C ≡ log2 (IC50,Mut/IC50,WT ), the

(log-scaled) fold change in IC50 of each mutant relative to wild-type (WT); values of

C > 0 indicate cross resistance, while values of C < 0 indicate collateral sensitivity

(Figure 2.1C). For each mutant, we refer to the set of C values (one for each testing

drug) as its collateral sensitivity profile C̄.

Our results indicate that collateral effects–including sensitivity–are pervasive, with

approximately 73 percent (612/840) of all (collateral) drug-mutant combinations ex-

hibiting a statistically significant change in IC50. By contrast, none of the four V583

strains propagated in BHI alone showed any collateral effects. The isolates exhibit

collateral sensitivity to a median of 4 drugs, with only 3 of the 60 mutants (5 per-

cent) exhibiting no collateral sensitivity at all; on the other hand, mutants selected

by ceftriaxone (CRO) and fosfomycin (FOF) exhibit particularly widespread collat-

eral sensitivity. Cross resistance is similarly prevalent, with only 2 strains failing

to exhibit cross resistance to at least one drug. Somewhat surprisingly, 56 of 60

mutants exhibit cross resistance to at least one drug from a different class (e.g. all

mutants evolved to ciprofloxacin (CIP), a DNA synthesis inhibitor, show increased

resistance CRO, an inhibitor of cell wall synthesis). The collateral effects can also
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Figure 2.2: Growth costs and lag times for isolates selected by different an-
tibiotics A. Example optical density (OD) time series for single isolates
selected by each of the 15 drugs. Blue or red circles correspond to the iso-
late, black circles to ancestral strains. Light green lines show fits to logistic
growth function [60] given by g(t) = g0+K (1 + exp(4µ(λ− t)/K + 2))−1,
where µ is the maximum specific growth rate, λ is the lag time, and K
is the carrying capacity. To reduce the number of free parameters, we
fix K = 0.5 to match that of the ancestral strain. B. Maximum specific
growth rate (µ, left) and lag time (λ, right) in drug-free media for isolates
from each of the four populations selected by each drug. All values are
normalized by the values measured in the ancestral strain. Errorbars are
standard errors of the mean estimated from 3 technical replicates for each
isolate (cont’d on next page).
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Figure 2.2: C. Left panel: variability in replicates for all 15 drugs vs the (log2-scaled)
fold increase in IC50 to the selecting drug (Spearman correlation of 0.58,
p = 0.03 including the SPT mutants; 0.82 p <10−3, without the SPT
mutants.). Variability is defined as V ≡

∑m
i=1 di/m, where m = 4 is the

number of replicates and di is the Euclidean distance between mutant i
and the centroid formed by all vectors corresponding to a given select-
ing drug (Figure 2.8). Right panel: histogram of Euclidean distances
between collateral profiles in pairs of isolates selected by the same (red)
or different (blue) drugs. To emphasize collateral, rather than direct,
effects, the component(s) of each collateral profile corresponding to the
selecting drug(s) were removed prior to calculating variability (panel C)
and pairwise Euclidean distances (D).

be quite large; we measured 8 instances of collateral sensitivity where the IC50 de-

creases by 16 fold or more. We observe a strong, repeatable collateral sensitivity to

rifampicin (RIF) when mutants were selected by inhibitors of cell wall synthesis, an

effect that–to our knowledge–has not been reported elsewhere. More typically, how-

ever, collateral effects are smaller than the direct effects to the selecting drug, with 46

percent (384/840) exhibiting more than a factor 2 change in IC50 and only 7 percent

(61/840) exhibiting more than a factor 4 change.

2.2.2 Isolates exhibit variability in fitness costs and collateral profiles

To investigate the potential impact of resistance selection on fitness, we estimated

the specific growth rate and the lag time in drug-free media for isolates selected

from each of the 60 populations (4 populations per selecting drug). Our measured

growth costs, or the difference between drug-free growth of the wild-type and mutant,

exhibit significant variability, even across different populations selected by the same

drug (Figure 2.2, similar to results in other species [49]. In some isolates–such as

those selected by oxacillin (OXA) or nitrofurantoin (NIT)–growth rate and lag times

are indistinguishable from those of the ancestral strains. On the other hand, isolates

selected by CRO and FOF–selecting conditions that frequently result in collateral

sensitivity–show dramatically reduced growth and an increased lag time, suggesting
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Figure 2.3: Collateral effects can lead to frequent or high-level resistance to
non-selecting drugs. A. Estimated dose response curves (fit to Hill-like
function) for all mutants tested against daptomycin. Strains evolved to
daptomycin (blue) and all other drugs (red) frequently exhibit increased
resistance to daptomycin relative to wild-type (black, individual repli-
cates; dotted black line, mean IC50). Right inset: Approximately 64
percent of all drug-evolved mutants exhibit increased daptomycin resis-
tance, while only 11 percent exhibit collateral sensitivity. B. Fractional
change in chloramphenicol (CHL) IC50 for mutants evolved to linezolid
(blue). The width of the green line represents the confidence interval (±
3 standard errors of the mean measured over 8 replicate measurements)
for the (normalized) choramphenicol IC50 in wild-type cells. For compar-
ison, the red lines represent the final (day 8) CHL resistance achieved
in populations evolved directly to CHL. Inset: Schematic depicting two
hypothetical paths to different CHL resistance maximums.
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Figure 2.3: The green circle represents the sensitive wild-type. Evolution can occur
to CHL directly (red line) or to CHL collaterally through LZD resistance
(blue line). The LZD evolution depicts early collateral sensitivity before
ultimately achieving a higher total resistance. C. CHL resistance (log2-
scaled change in IC50 relative to ancestor) for LZD-selected isolates at
day 5 (purple) and day 8 (blue), and for individual colony isolates (4)
for each of the four CHL-selected populations (black). Arrows indicate
12 isolates chosen for Sanger sequencing. D. Mutations observed in four
different genes associated with LZD-resistance in each of the 12 selected
isolates from panel C. E. CHL resistance and number of 23S mutations
in LZD isolates on days 5 and 8.

that the selected resistance determinants are associated with strong pleiotropic effects

even in drug-free media.

Our results indicate that collateral profiles can vary significantly even when mu-

tants are evolved in parallel to the same drug (Figure 2.1C). For example, all 4

mutants selected by daptomycin (DAP) exhibit high-level resistance to the selecting

drug, but replicates 1 and 4 exhibit collateral resistance to CRO, while replicate 2

exhibits collateral sensitivity and replicate 3 shows little effect (Figure 2.1C, right

panel). To quantify the variation between replicates selected by the same drug, we

considered the collateral profile of each mutant (i.e. a column of the collateral sensi-

tivity matrix) as a vector in 15-dimensional drug resistance space. Then, for each set

of replicates, we defined the variability V ≡
∑m

i=1 di/m, where m = 4 is the number of

replicates and di is the Euclidean distance between mutant i and the centroid formed

by all vectors corresponding to a given selecting drug (Figure 2.8). Variability differs

for different selecting drugs, with DAP and RIF showing the largest variability and

NIT the smallest (Figure 2.8). We find that the variability is significantly correlated

with average resistance to the selecting drug, even when one removes contributions

to variability from the selecting drug itself (Figure 2.2C, left), indicating that collat-

eral (rather than direct) effects underlie the correlation. Such a correlation might be

expected if, for example, resistance arises from an accumulation of stochastic events
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following a Poisson-like distribution, where the mean is proportional to the variance.

We do note, however, that selection by spectinomcyin (SPT) represents a notable ex-

ception to this trend. These results suggest that the repeatability of collateral effects

is sensitive to the drug used for selection. As a result, certain drugs may be more

appropriate for establishing robust antibiotic cycling profiles.

To further quantify the variability within and between isolates selected by different

drug, we calculated the pairwise Euclidian distance between collateral profiles of

isolates selected in the same drug and pairs of isolates selected in different drugs

(Figure 2.2C, right). We see the distributions do have some overlap; that is, pairs

of isolates selected by the same drug are sometimes more distinct from one another,

by this metric, than pairs selected by different drugs. However, the distribution for

different selecting drugs (blue) is shifted significantly to the right, indicating that

isolates selected by the same drug are more similar to one another (on average) than

to isolates selected by different drugs.

2.2.3 Cross resistance to daptomycin appears frequently under selection

by different drugs

Daptomycin is a lipopeptide antibiotic sometimes used as a last line of defense

against gram-positive bacterial infections, including vancomycin resistant enterococci

(VRE). While DAP resistance was initially believed to be rare [61], it has become

increasingly documented in clinical settings [62]. Recent work in a related enterococ-

cal species has shown that cross resistance to DAP can arise from serial exposure to

chlorhexidine, a common antiseptic [63], but less is known about DAP cross resistance

following exposure to other antimicrobial agents. Surprisingly, our results indicate

that DAP resistance is common when populations are selected by other antibiotics,

with 64 percent of all evolved lineages displaying DAP cross resistance and only 11

percent displaying collateral sensitivity (Figure 2.3A).
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2.2.4 Selection by LZD leads to higher CHL resistance than direct selec-

tion by CHL

Surprisingly, we found that isolates selected by linezolid (LZD) developed higher

resistance to chloramphenicol (CHL) than isolates selected directly by CHL (Fig-

ure 2.3B). The isolates from LZD and from CHL exhibit similar growth and lag-time

distributions in drug-free media (Figure 2.2), suggesting that this effect is not driven

by fitness costs alone. To investigate further, we isolated LZD-selected mutants at

days 2, 4, 6 and 8 of the laboratory evolution and measured the resistance of each to

CHL. We find that early-stage (days 4-6) mutants exhibit low level CHL sensitivity

just prior to a dramatic increase in cross resistance around day 8. These findings

suggest LZD selection drives the population across a CHL fitness valley, ultimately

leading to levels of resistance that exceed those observed by direct CHL selection

(Figure 2.3B, inset).

To further investigate the repeatability of this phenomenon, we exposed 32 addi-

tional populations to increasing LZD concentrations in parallel over 8 days. Using the

four initial LZD mutants as a guide, we measured the CHL susceptibility of isolates

from each population at day 5 (Figure 2.3C, purple) and day 8 (Figure 2.3C, blue).

In addition, to account for potential heterogeneity in the original populations, we

measured CHL susceptibility in three different (single colony) isolates from each of

the original four populations selected in CHL (Figure 2.3C, black). Nine of the pop-

ulations became contaminated between days 5 and 8, and were thus excluded from

the day 8 analysis. On day 5, almost a third (10 of 32) of the LZD-selected strains

exhibited CHL resistance greater than that of any day 8 CHL-selected strains, while

25 percent (8 of 32) were more CHL-sensitive than even the ancestral strains. By

contrast, on day 8 the vast majority of isolates (17 of 23) were highly CHL-resistant,

with only a few strains (2 of 23) exhibiting small levels collateral sensitivity.

To identify genes that may be responsible for collateral CHL resistance, we PCR-
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amplified and (Sanger) sequenced seven genes (rpsJ, L3, L4, which are genes for

ribosomal proteins, and four genes for 23S rRNA, 23SA, 23SB, 23SC, 23SD) previ-

ously associated with LZD resistance [64] in a subset of 12 isolates. We selected the

most CHL-resistant isolate from each CHL population, two pairs of day 5/day 8 LZD-

selected isolates that exhibited collateral sensitivity on day 5 and cross resistance on

day 8, two LZD-selected isolates with high-level collateral sensitivity to CHL on day

5, and two LZD isolates with large cross resistance on day 8 (Figure 2.3C; specific

isolates marked by black arrows). We did not observe mutations in rpsJ, L3 or 23SB

in any strain. In addition, the four LZD-selected isolates showed no mutations in any

of the sequenced genes on day 5 (Figure 2.3D). By contrast, all 4 of the LZD-selected

strains contained at least 3 mutations in the 23S rRNA genes on day 8. Two of the

CHL-selected isolates had mutations in L4 and one had a single mutation in the 23SC

gene.

We observe a strong correlation between the level of CHL resistance and the total

number of 23S rRNA mutations, similar to the dosing behavior previously observed

for LZD [64]. This correlation suggests that the 23S mutations found in LZD-selected

(and CHL-resistant) isolates from day 8–but missing in the CHL-sensitive isolates

from day 5– may be responsible for the later-stage, high-level cross resistance to

CHL. Elucidating the precise evolutionary dynamics underlying differential selection

for these mutations in LZD and CHL remains an open question, though the early (day

5) CHL-sensitivity observed in LZD-selected isolates suggests it may be necessary to

cross a fitness valley in CHL resistance in order to eventually achieve higher CHL

resistance.
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Table 2.1: Mutations identified in selected populations. Check marks indicate
the same mutation was also identified in clonal isolates from the same
population.
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2.2.5 Whole-genome sequencing reveals known resistance determinants

and mutations in genes previously linked with collateral sensitivity

To investigate the genetic changes in drug-selected populations, we sequenced

population samples from one evolved population per drug. In addition, we isolated

and sequenced a single clone from each population. As controls, we sequenced two

different isolates from the ancestral V583 stock as well as both single isolates and

a population sample propagated in drug-free media. We then used breseq [65], an

established computational pipeline capable of mutant identification in both clonal

and population samples (Methods). To minimize potential artifacts from sample

preparation or analysis, we excluded from further analysis four populations where

variants identified by clonal and population samples did not overlap. In addition, we

limit our focus to those mutations estimated to occur with frequency greater than 30

percent in the population samples.

This analysis revealed a total of 29 mutations in the 11 populations (Table 2.1; note

that the population selected in NIT contained no identifiable mutations). The control

strain propagated in BHI contained no mutations relative to the ancestral strains. For

9 of the 11 selecting drugs, we identified mutations that likely confer resistance to the

selecting drug. For example, we observed mutations in drug targets associated with

protein synthesis inhibitors (rpsJ [66], rpsE [67]), fluoroquinolones (parC, gyrA [68]),

and RNA synthesis inhibitors (rpoB [68]). We also identified mutations in a sensor

histidine kinases [69, 70] (EF 3290) in populations selected by cell-wall inhibitors and

mutations in 23S rRNA genes in the LZD-selected population [64, 71]. Surprisingly,

the DAP-selected population did not contain mutations in genes previously identi-

fied with DAP resistance [57, 58], though we observe a mutation in rpsJ in both the

clonal and population sequences. While previous experiments have shown rpsJ not

to confer DAP resistance in one genetic background of E. faecalis strain S613 [66], it

may underlie the observed cross resistance to other antibiotics. Finally, we observe
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no mutations in either the clonal or population sequencing for the Nit1 population,

despite repeated experiments confirming increased resistance to NIT. Because the re-

sistance is relatively low-level (IC50 increases by approximately 50 percent relative to

ancestor), it is possible the observed resistance corresponds to transient phenotypic

resistance, similar to the post-antibiotic effect or the cellular hysteresis observed when

drugs are rapidly cycled [46]. Finally, the TGC-selected population contains a muta-

tion in EF 0926, the response regulator in a two-component signaling system (TCS)

with the sensor kinase EF 0927. While this specific system has not been implicated

in tigecycline (TGC) resistance, similar TCS have been linked to TGC resistance in

A. baumannii [72].

Several of the mutations we identified occur in genes previously linked with col-

lateral effects in other species. For example, mutations in the topisomerase gene gyrA

have been posited to induce collateral sensitivities via global transcriptional changes

induced by modulated DNA supercoiling [35, 73, 74]. Similarly, mutations in riboso-

mal genes, such as rpsE, have been linked with multi-drug resistance modulated by

large-scale changes in the transcriptome [75].

2.2.6 Sensitivity profiles cluster into groups based on known classes of

selecting drug

Our results indicate that there is significant heterogeneity in collateral sensitiv-

ity profiles, even when parallel populations are selected with the same antibiotic.

While the genetic networks underlying these phenotypic responses are complex and,

in many cases, poorly understood, one might expect that selection by chemically or

mechanistically similar drugs would lead to profiles with shared statistical properties.

For example, previous work showed (in a different context) that pairwise interactions

between simultaneously applied antibiotics can be used to cluster drugs into groups

that interact monochromatically with one another; these groups correspond to known
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Selecting Drug (Mutant)

Testing D
rug

Figure 2.4: Hierarchical clustering of collateral sensitivity profiles partitions
mutants into groups selected by known drug classes. Heatmap
with ordering of rows (testing drug) and columns (4 replicate experiments
with the same selecting drug) determined via hierarchical clustering. Col-
ormap and scale are identical to those used in Figure 1. Collateral profiles
(columns) for mutants selected by drugs from known drug classes (here
labeled A-G) cluster together; if clusters are defined using the dashed
line (top), there are 7 distinct clusters, each corresponding to a particular
drug class: A. Cell-wall synthesis inhibitors (AMP, OXA, CRO, FOF),
B. Tetracyclines (TET, DOX, TGC), C. Lipopeptides (DAP), D. Oxa-
zolidinones (LZD), E. Fluoroquinolones (CIP, LVX), F. Aminocyclitols
(SPT), and G. Antimycobacterials (RIF). When clustering the testing
drugs (rows), drugs from the same class are frequently but not always
clustered together. For example, cell-wall drugs such as AMP, OXA, and
CRO form a distinct cluster that does not include FOF (bottom 4 rows).
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drug classes [76], highlighting statistical structure in drug interaction networks that

appear, on the surface, to be extremely heterogeneous. Recent work in bacteria has

also shown that phenotypic profiles of mutants selected by drugs from the same class

tend to cluster together in P. aeruginosa [38] and E. coli [77].

Similarly, we asked whether collateral sensitivity profiles in E. faeaclis can be

used to cluster resistant mutants into statistically similar classes. We first performed

hierarchical clustering (Methods) on collateral profiles of 52 different mutants (Fig-

ure 2.4, x-axis; note that we excluded mutants selected by CHL and NIT, which did

not achieve resistance of at least 2x to the selecting drug). Despite the heterogeneity

in collateral profiles, they cluster into groups characterized–exclusively–by selecting

drugs from the same drug classes before grouping mutants from any two different drug

classes. For example, inhibitors of cell wall synthesis (AMP, CRO, FOF, OXA) cluster

into one group (noted by A in Figure 3), while tetracycline-like drugs (TET, DOX,

TGC) cluster into another (noted by B). This approach also separates spectinomycin

(SPT, aminoglycoside antibiotic class) from the tetracycline class of antibiotics (TET,

DOX, TGC) despite the fact that they both target the 30S subunit of the ribosome,

suggesting that it may help identify drugs with similar mechanisms but statistically

distinct collateral profiles.

We then performed a similar clustering analysis of the collateral responses across

the 14 different testing drugs (Figure 2.4, y-axis), which again leads to groupings the

correspond to known drug classes. One drug, FOF, provides an interesting exception.

Mutants selected for FOF resistance cluster with those of other cell-wall synthesis

inhibitors (Class A, columns). However, the behavior of FOF as a testing drug (last

row) is noticeably distinct from that of other cell-wall synthesis inhibitors (the 3 rows

directly above FOF). Taken together, the clustering analysis reveals clear statistical

patterns that connect known mechanisms of antibiotics to their behavior as both

selecting and testing agents.
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2.2.7 A Markov decision process (MDP) model predicts optimal drug

policies to constrain resistance

Our results indicate that collateral sensitivity is pervasive, and while collateral

sensitivity profiles are highly heterogeneous, clustering suggests the existence of sta-

tistical structure in the data. Nevertheless, because of the stochastic nature of the

sensitivity profiles, it is not clear whether this information can be leveraged to design

drug sequences that constrain evolution. It is important to note that our goal, at

this stage, is not to design specific drug sequences that might be transferred directly

to the clinic, but instead to evaluate–in a simple setting–the feasibility of slowing

resistance in even the most optimized cases. Given that resistance to the selecting

drugs is often larger in magnitude than collateral (off-diagonal) effects, it is not clear

a priori that a feasible strategy exists that prevents the inevitable march to high-level

resistance, even in a highly idealized setting.

To address this problem, we develop a simple mathematical model based on a

Markov decision process (MDP) to predict optimal drug policies. MDP’s are widely

used in applied mathematics and finance and have a well-developed theoretical ba-

sis [78, 79, 80]. In a MDP, a system transitions stochastically between discrete states.

At each time step, we must make a decision (called an “action”), and for each state-

action combination there is an associated instantaneous “reward” (or cost). The

action influences not only the instantaneous reward, but also which state will occur

next. The goal of the MDP is to develop a policy–a set of actions corresponding to

each state–that will optimize some objective function (e.g. maximize some cumulative

reward) over a given time period.

For our system, the state st at time step t = 0, 1, 2, ... is defined by the resistance

profile of the population, a vector that describes the resistance level to each available

drug. At each time step, an action at is chosen that determines the drug to be applied.

The system–which is assumed to be Markovian–then transitions with probability

31



Pa(st+1|st, at) to a new state sti+1, and the transition probabilities are estimated

from evolutionary experiments (or any available data). The instantaneous reward

function Ra(s) is chosen to be the (negative of the) resistance to the currently applied

drug; intuitively, it provides a measure of how well the current drug inhibits the

current population. The optimal policy π∗(s) is formally a mapping from each state

to the optimal action; intuitively, it tells which drug should be applied for a given

resistance profile. The policy is chosen to maximize a cumulative reward function

Rc ≡ 〈
∑∞

t=0 γ
tRπ(st)〉, where brackets indicate an expectation value conditioned on

the initial state s0 and the choice of policy π. The parameter γ (0 ≤ γ < 1) is a

discount factor that determines the timescale for the optimization; γ ≈ 1 leads to a

solution that performs optimally on long timescales, while γ ≈ 0 leads to solutions

that maximize near-term success.

To apply the MDP framework to collateral sensitivity profiles, we must infer from

our data a set of (stochastic) rules for transitioning between states (i.e. we must

estimate Pa(st+1|st, at)). While many choices are possible–and different rules may be

useful to describing different evolutionary scenarios–here we consider a simple model

where the resistance to each drug is increased/decreased additively according to the

collateral effects measured for the selecting drug in question. Specifically, the state

st+1 following application of a drug at time t is given by st + C̄, where C̄ is one

of the four collateral profiles (see Figure 2.1) measured following selection by that

drug. Because resistance/sensitivity is measured using log-scaled ratios of IC50’s,

these additive changes in the resistance profile correspond to multiplicative changes

in the relative IC50 for each drug. For instance, if one selection step increases the IC50

by a factor of 3, then two consecutive selection steps would increase IC50 by a factor

of 9. This model assumes that selection by a given drug always produces changes

in the resistance profile with the same statistical properties. For example, selection

by DAP increases the resistance to DAP (with probability 1) while simultaneously
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either increasing resistance to AMP (with probability 1/4), decreasing resistance to

AMP (with probability 1/4), or leaving resistance to AMP unchanged (probability

1/2). Repeated application of the same drug will steadily increase the population’s

resistance to that drug, but the process could potentially sensitize the population to

other drugs. This model implicitly assumes sufficiently strong selection that, at each

step, the state of the system is fully described by a single “effective” resistance profile

(rather than, for example, an ensemble of profiles that would be required to model

clonal interference). While we focus here on this particular model, we stress that this

MDP framework can be easily adopted to other scenarios by modifying Pa(st+1|st, at).

For numerical efficiency, we discretized both the state space (i.e. the resistance to

each drug is restricted to a finite number of levels) as well as the measured collateral

profiles (exposure to a drug leads to an increase/decrease of 0, 1, or 2 resistance

levels; Figure 2.5A, Figure 2.9). In practice, this means that resistance will eventually

saturate at a finite value if a single drug is applied repeatedly. In addition, we restrict

our calculations to a representative subset of six drugs (DAP, AMP, FOF, TGC, LZD,

RIF). The set includes inhibitors of cell wall, protein, or RNA synthesis, and five of

the six drugs (excluding RIF) are clinically relevant for enterococcus infections. We

note, however, that the results are qualitatively similar for different discretization

schemes (Figure 2.10) and for different drug choices (Figures 2.11-2.13).

2.2.8 Drug policies can be tuned to minimize resistance on different

timescales

The optimal policy π∗(s) is a high-dimensional mapping that is difficult to directly

visualize. For intuition on the policy, we calculated the frequency with which each

drug is prescribed as a function of resistance to each of the six individual drugs

(Figures 2.14, 2.15; top panels). Not surprisingly, we found that when resistance

to a particular drug is very low, that drug is often chosen as optimal. In addition,
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Figure 2.5: Simulated optimal drug sequences constrain resistance on long
timescales and outperform simple collateral sensitivity cycles A.
Discretized collateral sensitivity or resistance Cd ∈ {−2,−1, 0, 1, 2} for
a selection of six drugs. For each selecting drug, the heat map shows
the level of cross resistance or sensitivity (Cd) to each testing drug (the
subscript d indicates the profiles are discretized) for nr = 4 independently
evolved populations. See Figure 2.1 for original (non-discretized) data. B.
Average level of resistance (〈R(t)〉) to the applied drug for policies with
γ = 0 (red),γ = 0.7 (black),γ = 0.78 (magenta), and γ = 0.99 (blue).
Resistance to each drug is characterized by 11 discrete levels arbitrary
labeled with integer values from -1 (least resistant) to 9 (most resistant).
At time 0, the population starts in the second lowest resistance level
(0) for all drugs. Symbols (circles, triangles, squares) are the mean of
103 independent simulations of the MDP, with error bars ± SEM. Solid
lines are numerical calculations using exact Markov chain calculations
(see Methods).
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Figure 2.5: Light red line, long-term optimal policy (γ = 0.99) calculated using the
data in A but with collateral sensitivity values set to 0. Black shaded
line, randomly cycled drugs (± SEM). C. The time-dependent probabil-
ity P(Drug) of choosing each of the six drugs when the optimal policy
(γ = 0.99) is used. Inset, steady state distribution Pss(Drug). D. The
probability P(Resist) of the population exhibiting a particular level of re-
sistance to the applied drug when the optimal policy (γ = 0.99) is used.
Inset, steady state distribution Pss(Drug). E. Steady state joint proba-
bility distribution P(current drug, next drug) for consecutive time steps
when the optimal policy (γ = 0.99) is used. F. Average level of resistance
(〈R(t)〉) to the applied drug for collateral sensitivity cycles of 2 (dark
green, LZD-RIF), 3 (pink, AMP-RIF-LZD), or 4 (dark green, AMP-RIF-
TGC-LZD) drugs are compared with MDP policies with γ = 0 (short-
term, red) and γ = 0.99 (long-term, blue). For visualizing the results of
the collateral sensitivity cycles, which give rise to periodic behavior with
large amplitude, the curves show a moving time average (window size 10
steps), but the original curves are shown transparently in the background.

the specific frequency distributions vary significantly depending on γ, which sets

the timescale of the optimization. For example, the long-term optimal policy (γ =

0.99) yields a frequency distribution that is approximately independent of the level

of resistance to FOF (Figure 2.14, upper right panel). By contrast, the frequency

distribution for a short-term policy (γ = 0.1) changes with FOF resistance; at low

levels of resistance, FOF is frequently applied as the optimal drug, but it is essentially

never applied once FOF resistance reaches a certain threshold (Figure 2.15, upper

right panel). Both the short- and long-term optimal policies lead to aperiodic drug

sequences, but the resulting resistance levels vary significantly (Figures 2.14, 2.15,

bottom panels). These differences reflect a key distinction in the policies: short-

term policies depend sensitively on the current resistance level and maximize efficacy

(minimize resistance) at early times, while long-term policies may tolerate short-term

performance failure in exchange for success on longer timescales.
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2.2.9 Optimal policies outperform random cycling and rely on collateral

sensitivity

To compare the outcomes of different policies, we simulated the MDP and calcu-

lated the expected resistance level to the applied drug over time, 〈R(t)〉, from 1000

independent realizations (Figure 2.5B). All MDP policies perform significantly better

than random drug cycling for the first 10-20 time steps and even lead to an initial

decrease in resistance. The long-term policy (γ = 0.99, blue) is able to maintain

low-level resistance indefinitely, while the short-term policy (γ = 0) eventually gives

rise to high-level (almost saturating) resistance. Notably, if we repeat this calculation

on an identical data set but with all collateral sensitivities set to 0, the level of resis-

tance rapidly increases to its saturating value (Figure 2.5B, light red line), indicating

that collateral sensitivity is critical to the success of these policies. We note that the

timescales used here are not necessarily reflective of a clinical situation, and instead

our goal is to understand the performance of the optimization over a wide range of

timescales.

2.2.10 Optimal policies highlight new strategy for minimizing resistance

To understand the optimal policy dynamics, we calculated the time-dependent

probability distributions P(Drug)–the probability of applying a particular drug–and

P(Resist)–the probability of observing a given level of resistance to the applied drug–

for the MDP following the long-term policy (γ = 0.99, Figure 2.5C-D). We also

calculated the (steady state) joint probability distribution characterizing the pre-

scribed drugs at consecutive time steps (Figure 2.5E). The distributions reveal highly

non-uniform behavior; after an initial transient period, RIF is applied most often,

followed by FOF, while DAP is essentially never prescribed. Certain patterns also

emerge between consecutively applied drugs; for example, FOF is frequently followed

by RIF. Somewhat surprisingly, the distribution of resistance levels is highly bimodal,
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with the lowest possible resistance level occurring most often, followed by the highest

possible level, then the second lowest level, and then the second highest level (Fig-

ure 2.5D). The policy achieves a low average level of resistance not by consistently

maintaining some intermediate level of resistance to the applied drug, but instead by

switching between highly-effective drugs and highly-ineffective drugs, with the lat-

ter occurring much less frequently. In words, rare periods of high resistance are the

price of frequent periods of very low resistance. These qualitative trends occur for

other drug choices (Figures 2.11-2.13) and are relatively insensitive to the number of

discretization levels chosen (Figure 2.10). The results suggest a new conceptual strat-

egy for minimizing resistance: interspersing frequent steps of instantly effective drugs

(low resistance)–which provide short-term inhibition of pathogen growth–with rare

steps of relatively ineffective drugs (high resistance), which provide little short-term

inhibition but shepherd the population to a more vulnerable future state.

2.2.11 Optimal policies maintain lower long-term resistance than collat-

eral sensitivity cycles

The resurgent interest in collateral sensitivity was sparked, in part, by innovative

recent work that demonstrated the successful application of collateral sensitivity cy-

cles, where each drug in a sequence promotes evolved sensitivity to the next drug [41].

To compare the performance of the MDP to that expected from collateral sensitivity

cycles, we identified all collateral sensitivity cycles for the six drug network and calcu-

lated 〈R(t)〉 for 100 time steps of each cycle. We then determined the “best” cycle of

a given length–defined as the cycle with the lowest mean value of 〈R(t)〉 over the last

ten time steps–and compared the performance of those cycles to the short- and long-

term MDP policies (Figure 2.5F). The MDP long-term optimal solution (γ = 0.99)

maintains resistance at a lower average value than for all of the collateral sensitivity

cycles. For MDP policies with shorter time horizons (e.g. the instant gratification
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cycle, γ = 0), however, the collateral sensitivity cycles of 3 and 4 drugs (as well

as the long-term MDP solution) lead to lower resistance at intermediate or longer

time scales, reflecting the inherent trade-offs between instantaneous drug efficacy and

long-term sustainability. One advantage of the MDP optimization is that it allows

for explicit tuning of the policy (via γ) to achieve maximal efficacy over the desired

time horizon.

2.2.12 Optimized drug sequences improve growth inhibition and reduce

adaptation rates in lab evolution experiments

The MDP-based optimal policies perform well in stochastic simulations and high-

light new strategies for potentially slowing resistance. However, the model contains a

number of assumptions that lead to an oversimplified picture of the true evolutionary

dynamics. As a result, it is not clear whether optimized drug sequences from this

model will be effective in real, evolving pathogen populations.

To test the performance of MDP-based drug cycles, we designed a lab evolution

experiment comparing inhibitory effects of different drug cycling protocols over 20

days. For experimental feasibility, we restrict our focus to a subset of four drugs

(FOF, RIF, AMP, TGC) and reduced the length of each evolutionary time step from 8

days–as in the original collateral sensitivity experiment (Figure 2.1)– to 2 days. First,

we experimentally measured the collateral sensitivity matrix for the four drug set

following 2 days of lab evolution in eight replicate populations per drug (Figure 2.6A).

We then calculated the optimal policy for two different values of γ (γ = 0.9, γ = 0.78),

both corresponding to timescales commensurate with the planned experiment. In

both cases, the steady state distribution of drug application P(Drug) calls for frequent

use of TGC and relatively rare use of FOF, though the specific distribution depends

on the particular choice of γ (Figure 2.6B, top panel; see also Figure 2.16).

An exact application of the optimal policy requires measuring the full sensitiv-
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Figure 2.6: Optimized drug sequences reduce cumulative growth and adap-
tation rates in lab evolution experiments. A. Resistance (red) or
sensitivity (blue) of each evolved mutant (horizontal axis; 4 drugs x 8
mutant per drug) to each drug (vertical axis) following 2 days of selection
is quantified by the log2-transformed relative increase in the IC50 of the
testing drug relative to that of wild-type (V583) cells. B. Top: distribu-
tion of applied drug at time step 20 (approximate steady state) calculated
using an optimal policy with γ = 0.9. Bottom: sequence of applied drug
from one particular realization of the stochastic process with the optimal
policy (γ = 0.9). C-E. Cumulative population growth over time for pop-
ulations exposed to single drug sequences (C, blue), two-drug sequences
(D,magenta), a four drug sequence (E, red), or the optimal sequence from
panel B (black curves, all panels).
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Figure 2.6: Transparent lines represent individual replicate experiments and each
thicker dark line corresponds to a mean over replicates. Dashed line,
drug-free control (normalized to a growth of 1 at the end of the exper-
iment). F. Adaptation rate for single drug (blue), two-drug (magenta),
four drug (red), and optimal sequences (black). Error bars are standard
errors across replicates. Adaptation rate is defined as the slope of the
best fit linear regression describing time series of daily growth (see Fig-
ure 2.20).

ity profile at each step and using that profile, in accordance with the policy, to

choose the next drug in the sequence. However, simulations suggest that choosing

a pre-determined drug cycle–that is, a cycle drawn from a particular realization of

the stochastic process–is expected to perform near-optimally on the timescale of the

experiment (Figures 2.17, 2.18). For experimental convenience, we choose a single

MDP-derived cycle for each value of γ. For example, for γ = 0.9 the sequence

involves ten 2-day time steps, with drugs applied in the following order: AMP-FOF-

RIF-TGC-AMP-TGC-AMP-TGC-FOF-TGC (Figure 2.6B, bottom; see Figure 2.16

for γ = 0.78 example). To evaluate the efficacy of the MDP-derived cycle, we ex-

posed a total of 60 replicate populations to one of 13 different drug cycle protocols

(including the two MDP-derived cycles) over a 20-day serial passage lab evolution

experiment. Every 40 hours, we measured the optical density of each population and

then diluted each into fresh media containing the prescribed drug (added after a brief

drug-free outgrowth phase, see Methods). Drug concentrations were chosen to be just

above the MIC for ancestral populations–with MIC determined by complete absence

of growth in ancestral strains after 24 hours under identical conditions–and the same

concentration was applied at every time step calling for the associated drug. As a

measure of drug efficacy, we defined the cumulative growth of a population at time t

as the sum of the optical density measurements up to and including time t. Note that

because drug-resistant populations often reach a steady-state carrying capacity–in our

case, about OD=0.6–considerably faster than the 40-hour time window, cumulative
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growth is a conservative measure that underestimates differences in population size

that would occur in exponentially-growing populations (for example, in a chemostat).

In addition to the two MDP-derived drug protocols, we also tested protocols

calling for repeated application of each drug alone (Figure 2.6C), each of the six

possible 2-drug cycles (Figure 2.6D), a four drug cycle consisting of repeated appli-

cation of RIF-FOF-TGC-AMP ((Figure 2.6E), and a drug-free control (dashed lines,

Figure 2.6C-E). In all cases, cumulative growth was normalized to the value of the

drug-free control at the end of the 20-day experiment. To compare results from the

model with experiment, we mapped each of the discrete resistance levels to an OD

value, with the highest level of resistance corresponding to drug-free growth (OD≈ 0.6

each day) and the lowest resistance level corresponding to no growth (OD=0); see

Figures 2.17, 2.18. We found experimentally that cycles involving sequential appli-

cation of drugs with (on average) mutual collateral sensitivity–for example, cycles of

RIF-FOF or RIF-AMP (see (Figure 2.6A)–are among the best-performing two-drug

cycles, as predicted by previous studies [41]. However, the MDP-derived protocols

led to a significant reduction in cumulative growth, outperforming every other proto-

col, often by significant margins (Figure 2.6; Figure 2.16). In addition to cumulative

growth, we characterized each trajectory by calculating the adaptation rate, which

is defined as the average rate of increase of instantaneous growth over time (i.e. the

slope of the best-fit regression line for instantaneous growth vs time over days 2-20,

Figures 2.19-2.20). Adaptation rate, which is essentially an estimate of the average

convexity of the cumulative growth curves, provides no information on the magnitude

of the growth at each step, but instead measures how rapidly that growth is increasing

over time (starting with the first measurement after day 2). In addition to reducing

cumulative growth, the MDP-derived sequences led to lower rates of adaptation than

nearly every other protocol (Figure 2.6F; Figure 2.16F). A notable exception is the

TGC-AMP cycle, which exhibits a (small) negative adaptation rate, reflecting that
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fact that growth at day 2 has already achieved relatively high levels–roughly 60 per-

cent of drug-free growth–suggesting that adaptation largely occurs in that first period

but is nearly absent after that.

2.3 Discussion

Our work provides an extensive quantitative study of phenotypic and genetic

collateral drug effects in E. faecalis. We have shown that cross resistance and collateral

sensitivity are widespread but heterogeneous, with patterns of collateral effects often

varying even between mutants evolved to the same drug. Our results contain a number

of surprising, drug-specific observations; for example, we observed a strong, repeatable

collateral sensitivity to RIF when mutants were selected by inhibitors of cell wall

synthesis. Additionally, cross-resistance to DAP is particularly common when cells

are selected by other frequently used antibiotics. Because the FDA/CLSI breakpoint

for DAP resistance is not dramatically different than the MIC distributions found in

clinical isolates prior to DAP use [81], one may speculate that even small collateral

effects could have potentially harmful consequences for clinical treatments involving

DAP. In addition, we found that selection by one drug, LZD, led to higher overall

resistance to CHL than direct selection by CHL. While choramphenicol is rarely used

clinically, the result illustrates that 1) collateral effects can be highly dynamic, and

2) indirect selection may drive a population across a fitness valley to an otherwise

inaccessible fitness peak.

Our findings also point to global trends in collateral sensitivity profiles. For exam-

ple, we found that the repeatability of collateral effects is sensitive to the drug used for

selection, meaning that some drugs may be better than others for establishing robust

antibiotic cycling profiles. On the other hand, despite the apparent unpredictability of

collateral effects at the level of individual mutants, the sensitivity profiles for mutants

selected by drugs from known classes tend to cluster into statistically similar groups.
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As proof-of-principle, we show how these profiles can be incorporated into a simple

mathematical framework that optimizes drug protocols while accounting for effects of

both stochasticity and different time horizons. Within this framework, drug policies

can be tuned to optimize either short-term or long-term evolutionary outcomes. The

ability to systematically tune these timescales may eventually be useful in design-

ing drug protocols that interpolate between short-term, patient-centric outcomes and

long-term, hospital-level optimization.

Our results complement recent studies on collateral sensitivity and also raise a

number of new questions for future work. Much of the previous work on collat-

eral networks in bacteria has focused on gram-negative bacteria and highlighted the

role of aminoglycosides in collateral sensitivity [41, 36]. Many gram-positive bacte-

ria, including enterococci, are intrinsically resistant to aminoglycosides [82], and we

therefore included only one (SPT) in our study. In that case, however, we did ob-

serve collateral sensitivity to cell wall inhibitors (AMP and FOF) in SPT-selected

populations, consistent with findings in other species [41, 36], though it is not clear

from our results whether aminoglycoside resistance would be associated with more

widespread collateral sensitivity in E. faecalis. Recent work demonstrates that col-

lateral profiles may be largely conserved across a wide range of E. coli isolates [77],

offering hope that large scale analysis of clinical isolates may soon identify similar

patterns in enterococci.

Multiple studies have shown that collateral profiles are heterogeneous [49, 50], and

optimization will therefore require incorporation of stochastic effects such as likelihood

scores [51]. These likelihood scores could potentially inform transition probabilities in

our MDP approach, leading to specific predictions for optimal drug sequences based

on known fitness landscapes. While we have quantified the variability in evolved

populations in several ways (e.g. variability scores, interprofile distance, popula-

tion sequencing), we cannot definitely comment on the source of that variability; it
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could arise, for example, from different fixation events in independent populations or,

alternatively, from clonal interference and random sampling in isolating individual

clones. Indeed, population sequencing does suggest some measure of heterogeneity,

even when we limit our analysis to mutations occurring at greater than 30 percent. In

any event, our results point to a rich collection of possible collateral profiles, meaning

that successful approaches for limiting resistance will likely require incorporation of

variability and heterogeneity.

Several previous studies have indicated that cycles involving mutually collaterally

sensitive drugs may be chosen to minimize the evolution of resistance [41, 42]. In

the context of our MDP model, these cycles fall somewhere between the short-time-

horizon optimization and the long-term optimal strategy, and in some cases, the

collateral sensitivity cycling can lead to considerable slowing of resistance. However,

our results indicate that the MDP optimizations on longer time-horizons lead to

systematically lower resistance, a consequence of intermixing (locally) sub-optimal

steps where the drug is instantaneously less effective but shepherds the population

to a more vulnerable evolutionary state. We also find experimentally that mutual

collateral sensitivity cycles with two drugs do generally outperform most other two-

drug and single-drug protocols–as predicted by previous studies–but they generally

underperform the MDP-based sequences.

It is important to keep in mind several limitations of our work. Designing effective

drug protocols for clinical use is an extremely challenging and multi-scale problem.

Our approach was not to develop a detailed, clinically accurate model, but instead

to focus on a simpler question: optimizing drug cycles in single-species host-free pop-

ulations. Even in this idealized scenario, which corresponds most closely to in vitro

lab experiments, slowing resistance is a difficult and poorly understood problem (de-

spite much recent progress). Our results are promising because they show systematic

optimization is indeed possible given the measured collateral sensitivity profiles.
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We have chosen to focus on a simple evolutionary scenario where collateral effects

accumulate over time based on the history of drug exposure. By using a simple model

that can be analyzed in detail, our goal was to identify new conceptual strategies–and

with them, experimentally testable predictions–for exploiting correlations in pheno-

typic resistance profiles. While we have focused on an extremely simple model, the

MDP framework can be readily extended to account for different evolutionary scenar-

ios and to incorporate more complex clinically-inspired considerations. For example,

it would be straightforward to include fitness costs associated with different resistance

profiles; in turn, the model might be extended to allow for drug-free periods (“drug

holidays”), which potentially exploit these fitness costs to minimize resistance [50].

In addition, the current model inherently assumes that the dominant collateral effects

are independent of the genetic background. In fact, collateral sensitivity profiles in

cancer have been previously shown to be time-dependent [83, 50], epistasis certainly

occurs [49, 84], and population heterogeneity could limit efficacy of this strategy un-

der some conditions [85]. Unfortunately, the frequency and relative impact of these

confounding effects are difficult to gauge. However, the relative success of the MDP-

inspired sequences in lab evolution experiments underscores the potential of the ap-

proach. In particular, our findings offer hope that strategies combining frequent use

of highly effective drugs with rare periods of “evolutionary steering” by less effective

drugs may be promising even when the detailed assumptions of the model do not

strictly hold.

Our future work will focus on experimentally characterizing dynamic properties

of collateral effects and expanding the MDP approach to account for time-varying

sensitivity profiles and epistasis. It may also be interesting to investigate collateral

effects in microbial biofilms, where antibiotics can have counterintuitive effects even

on evolutionarily short timescales [86]. On longer timescales, elegant experimental

approaches to biofilm evolution have revealed that spatial structure can give rise to
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rich evolutionary dynamics [87, 88] and potentially, but not necessarily, divergent

results for biofilm and planktonic populations [89]

Finally, our results raise questions about the potential molecular and genetic mech-

anisms underlying the observed collateral effects. The phenotypic clustering analysis

presented here may point to shared mechanistic explanations for sensitivity profiles

selected by similar drugs, and the full genome sequencing identifies candidate genes

associated with increased resistance. However, fully elucidating the detailed genetic

underpinnings of collateral sensitivity remains an ongoing challenge for future work.

At the same time, because the MDP framework depends only on phenotypic measure-

ments, it may allow for systematic optimization of drug cycling policies even when

molecular mechanisms are not fully known.
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2.4 Materials and Methods

2.4.1 Strains, antibiotics and media

All resistant lineages were derived from E. faecalis V583, a fully sequenced vancomycin-

resistant clinical isolate [90]. The 15 antibiotics used are listed in Table 2.2. Each

antibiotic was prepared from powder stock and stored at -20°C with the exception of

ampicillin, which was stored at -80°C. Evolution and IC50 measurements were con-

ducted in BHI medium alone with the exception of DAP, which requires an addition

of 50 mM calcium for antimicrobial activity.

2.4.2 Laboratory evolution experiments

Evolution experiments to each antibiotic were performed in quadruplicate. Evo-

lutions were performed using 1 mL BHI medium in 96-well plates with maximum

volume 2 mL. Each day, populations were grown in at least three different antibiotic

concentrations spanning both sub- and super-MIC doses. After 16-20 hours of incu-

bation at 37°C, the well with the highest drug concentration that contained visual

growth was propagated into 2 higher concentrations (typically a factor 2x and 4x in-

crease in drug concentration) and 1 lower concentration to maintain a living mutant

lineage (always half the concentration that most recently produced growth). A 1/200

dilution was used to inoculate the next day’s evolution plate, and the process was

repeated for a total of 8 days of selection. On the final day of evolution all strains

were stocked in 30 percent glycerol. Strains were then plated on a pure BHI plate

and a single colony was selected for IC50 determination. In the case of LZD mutants,

days 2, 4, and 6 were also stocked for further testing.

47



Table 2.2: Table of antibiotics used in this study and their targets.

Drug Name (abbreviation) Drug Class Mechanism of Action

Daptomycin (DAP) Lipopeptide Cell membrane insertion

Ampicillin (AMP) β-lactam Inhibits cell wall synthesis

Oxacillin (OXA) β-lactam Inhibits cell wall synthesis

Ceftriaxone (CRO) β-lactam Inhibits cell wall synthesis

Fosfomycin (FOF) Fosfomycin Inhibits cell wall synthesis

Tetracycline (TET) Tetracycline 30S protein synthesis inhibitor

Doxycycline (DOX) Tetracycline 30S protein synthesis inhibitor

Tigecycline (TGC) Tetracycline 30S protein synthesis inhibitor

Spectinomycin (SPT) Aminoglycosides 30S protein synthesis inhibitor

Linezolid (LZD) Oxazolidinone 50S protein synthesis inhibitor

Chloramphenicol (CHL) Amphenicol 50S protein synthesis inhibitor

Ciprofloxacin (CIP) Quinolone DNA gyrase inhibitor

Levofloxacin (LVX) Quinolone DNA gyrase inhibitor

Nitrofurantoin (NIT) Nitrofuran Multiple mechanisms

Rifampicin (RIF) Rifamycin RNA polymerase inhibitor
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2.4.3 Measuring drug resistance and sensitivity

Experiments to estimate IC50 were performed in replicate in 96-well plates by

exposing mutants to a drug gradient consisting of 6-14 points–one per well–typically

in a linear dilution series prepared in BHI medium with a total volume of 205 uL (200

uL of BHI, 5 uL of 1.5OD cells) per well. After 20 hours of growth the optical density

at 600 nm (OD600) was measured using an Enspire Multimodal Plate Reader (Perkin

Elmer) with an automated 20-plate stacker assembly. This process was repeated for

all 60 mutants as well as the wild-type, which was measured in replicates of 8.

The optical density (OD600) measurements for each drug concentration were nor-

malized by the OD600 in the absence of drug. To quantify drug resistance, the

resulting dose response curve was fit to a Hill-like function f(x) = (1 + (x/K)h)−1

using nonlinear least squares fitting, where K is the half-maximal inhibitory concen-

tration (IC50) and h is a Hill coefficient describing the steepness of the dose-response

relationship. A mutant strain was defined to be collaterally sensitive if its IC50 had

decreased by more than 3σWT relative to the ancestral strain (σWT is defined as the

uncertainty–standard error across replicates–of the IC50 measured in the ancestral

strain). Similarly, an increase in IC50 by more than 3σWT relative to the ancestral

strain corresponds to cross-resistance.

2.4.4 Hierarchical clustering

Hierarchical clustering was performed in Matlab using, as input, the collateral

profiles C̄ for each mutant. The distance between each pair of mutants was calculated

using a correlation metric (Matlab function pdist with parameter ‘correlation’), and

the linkage criteria was chosen to be the mean average linkage clustering.
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2.4.5 Markov decision process (MDP) model

The MDP model consists of a finite set of states (S), a finite set of actions (A),

a conditional probability (Pa(s
′|s, a)) describing (action-dependent) Markovian tran-

sitions between these states, and an instantaneous reward function (Ra(s)) asso-

ciated with each state and action combination. The state of the system s ∈ S

is an nd-dimensional vector, with nd the number of drugs and each component

si ∈ {rmin, rmin + 1, ..., rmax} indicating the level of resistance to drug i. The ac-

tion a ∈ A ≡ {1, 2, ..., nd} is the choice of drug at the current step, and we take the

reward function Ra(s) to be the (negative of the) resistance level to the currently ap-

plied drug (i.e. the a-th component of s). The goal of the MDP is to identify a policy

π(s), which is a mapping from S to A that specifies an optimal action for each state.

The policy is chosen to maximize a cumulative reward function Rc =
∑∞

t=0 γ
t〈Rπ(st)〉,

where t is the time step, st is the state of the system at time t, Rπ(st) is a random

variable describing the instantaneous reward assuming that the actions are chosen

according to policy π, and brackets indicate an expectation value. The parameter

γ (0 ≤ γ < 1) is a discount factor that determines the relative importance of in-

stantaneous vs long-term optimization. In words, we seek an optimal policy–which

associates the resistance profile of a given population to an optimal drug choice–that

minimizes the cumulative expected resistance to the applied drug.

The MDP problem was solved using value iteration, a standard dynamic pro-

gramming algorithm for MDP models. Briefly, the optimization was performed by

first computing the optimal value function V (s), which associates to each state s the

expected reward obtained by following a particular policy and starting in that state.

Following the well-established value iteration algorithm [80, 78, 79], we iterate ac-

cording to Vi+1(s) = max{a} (Ra(s) + γ
∑

s′ P (s′|s, a)Vi(s
′)). Given the optimal value

function, the optimal policy is then given by the action that minimizes the optimal

value function at the next time step.
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Once the optimal policy π = π∗ is found, the system is reduced to a simple

Markov chain with transition matrix Tπ∗ = Pπ∗(s)(s
′|s, π∗(s)), where the subscript

π∗ means that the decision in each state is determined by the policy π∗ (i.e. that

a = π∗(s) for a system in state s). Explicitly, the Markov chain dynamics are given

by Pt+1(s) = Tπ∗Pt(s), with Pt(s) the probability to be in state s at time step t. All

quantities of interest–including P(Drug), P(Resist) (see Figure 2.5), and 〈R(t)〉–can

be calculated directly from Pt(s). For example, 〈R(t)〉 =
∑

s∈S Pt(s)Rπ∗(s), with

Rπ∗(s) the instantaneous reward for a system in state s under optimal policy π∗.

2.4.6 Experiments to evaluate different drug sequence protocols

Experiments to evaluate different drug sequence protocols were performed in repli-

cate in 96-well plates by exposing populations to antibiotic concentrations just above

the wild-type MIC value, determined by an absence of measurable growth after 24

hours. Seed populations were grown overnight from single colonies and then diluted

1:200 into fresh BHI plates with appropriate antibiotic concentration according to

each prescribed policy. Populations were left to grow inside a plate reader for 40

hours, while OD readings were taken every 20 minutes for at least the first 6 hours.

To estimate daily growth, we took a final OD reading for each population after 40

hours. The populations were then diluted 1:200 into fresh BHI media, following a

brief 2-hour outgrowth phase, populations were then diluted immediately into pre-

prepared plates containing the appropriate drug concentrations. The purpose of the

outgrowth phase is to minimize drug-drug interactions and post-antibiotic effects that

may occur if the population were to be diluted into the next drug-plate immediately.

To avoid contamination, each plate was covered during growth phase. In addition,

each experimental plate contained 36 control wells with BHI alone – no cells. If any of

these wells displayed visible growth, the plate was considered to be contaminated and

discarded; the experiment was then started again from the previous night’s stock.
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During the 20 day experiment, only one such restart was required. Strains were

stocked at -80C in 15 percent glycerol at the end of each 40 hour growth.

2.4.7 Whole-genome sequencing

To identify any genomic changes that contributed to the measured collateral phe-

notypes identified, we sequenced 15 independently evolved drug mutants along with

two V583 ancestors as well as a control V583 strain propagated in BHI for the 8

days. Each of the 15 drug-selected mutants and BHI-control were subjected to both

clonal and population sequencing. Populations were streaked from a frozen stock,

grown up in BHI, triple washed in PBS and DNA was isolated using a Quick-DNA

Fungal/Bacterial Kit (Zymo Reserach). The clonal samples were sequenced in two

batches via the University of Michigan sequencing core while the population samples

were sequenced via the Microbial Genome Sequencing Center (MiGS) at University

of Pittsburgh.

The resulting genomic data was analyzed using the high-throughput computa-

tional pipeline breseq, with default settings. Average read coverage depth was about

50 on batch 1, 300 on batch 2 and 200 on the population sequencing batch. Briefly,

genomes were trimmed and subsequently aligned to E. faecalis strain V583 (Accession

numbers: AE016830 - AE016833) via Bowtie 2. A sequence read was discarded if less

than 90 percent of the length of the read did not match the reference genome or a

predicted candidate junction. At each position a Bayesian posterior probability is

calculated and the log10 ratio of that probability versus the probability of another

base (A, T, C, G, gap) is calculated. Sufficiently high consensus scores are marked

as read alignment evidence (in our case a consensus score of 10). Any mutation that

occurred in either of the 2 control V583 strains was filtered from the results.
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2.5 Appendix
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Figure 2.7: Example dose response curves for each drug Optical density
(OD) of V583 cultures after 12 hours of incubation at various drug
concentrations (blue circles). All drug concentrations are measured in
µg/mL. Lines: fit of normalized dose response curve to Hill-like function
f(x) = (1 + (x/K)h)−1, with K the IC50 and h a Hill coefficient.
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Figure 2.8: Variation within replicate populations. A. Variability in collateral
profiles between mutants selected by the same drug is defined by first rep-
resenting each mutant’s collateral profile as a vector C̄ in 15-dimensional
drug space. Dimension i represents the log2-scaled fold increase in IC50

(relative to wild-type) for drug i. The variability for a set of mutants
evolved to the same drug is then given by the average Euclidean distance
di for a mutant from the centroid. B. Variability in replicates (defined in
panel A) for all 15 drugs used for selection.

54



-6 -4 -2 0 2 4 6
Collateral Effects (C)

0

50

100

150

200

250

C
ou

nt
s Sta

te
 -2

Sta
te

 -1

Sta
te

 +
1

Sta
te

 +
2

Figure 2.9: Discretization of collateral effects Histogram of collateral effects
(C > 0 resistance, C < 0 sensitivity). Shaded regions indicate the
five levels of discretization chosen for the MDP model (C < −2, red;
−2 ≤ C < −0.25, light red; −0.25 ≤ C ≤ 0.25, white; 0.25 < C ≤ 2,
light blue; C > 2, dark blue). The discretized values range from -2 (reduc-
ing resistance by two levels) to +2 (increasing resistance by two levels).
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Figure 2.10: MDP models with different numbers of states show similar
qualitative behavior In all panels, the MDP is solved for a selection
of six drugs: daptomycin (DAP), ampicillin (AMP), fosfomycin (FOF),
tigecycline (TGC), linezolid (LZD), and rifampicin (RIF). Left column:
Average level of resistance (〈R(t)〉) to the applied drug for policies with
γ = 0 (red),γ = 0.7 (black),γ = 0.9 (magenta), and γ = 0.99 (blue). Re-
sistance to each drug is characterized by 4 (top row), 6, 8, or 10 (bottom
row) discrete levels. At time 0, the population starts in the second lowest
resistance level (0) for all drugs. Symbols (circles, triangles, squares) are
the mean of 103 independent simulations of the MDP, with error bars ±
SEM.
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Table 2.3: Mutant Number Table For Dendrograms.

Mutant Number Drug Name

1-4 Daptomycin

5-8 Ampicillin

9-12 Oxacillin

13-16 Ceftriaxone

17-20 Fosfomycin

21-24 Tetracycline

25-28 Doxycycline

29-32 Tigecycline

33-36 Spectinomycin

37-40 Linezolid

41-44 Ciprofloxacin

45-48 Levofloxacin

49-52 Rifampicin

53-56 Chloramphenicol

57-60 Nitrofurantoin

Figure 2.10: Solid lines are numerical calculations using exact Markov chain calcula-
tions (see Methods). Black shaded line, randomly cycled drugs. Mid-
dle column: The probability P(Resist) of the population exhibiting a
particular level of resistance to the applied drug when the optimal pol-
icy (γ = 0.99) is used. Right column: The time-dependent probabil-
ity P(Drug) of choosing each of the six drugs when the optimal policy
(γ = 0.99) is used.
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Figure 2.11: Optimal drug sequences constrain resistance on long timescales
and outperform simple collateral sensitivity cycles A. Average of
discretized collateral sensitivity or resistance Cd ∈ {−2,−1, 0, 1, 2} for a
selection of six drugs: daptomycin (DAP), ampicillin (AMP), ceftriaxone
(CRO), tigecycline (TGC), linezolid (LZD), and rifampicin (RIF). For
each selecting drug, the heat map shows the average value of Cd from
nr = 4 independently evolved populations. See Fig 1 for original (non-
discretized) data. B. Average level of resistance (〈R(t)〉) to the applied
drug for policies with γ = 0 (red),γ = 0.7 (black), γ = 0.9 (magenta),
and γ = 0.99 (blue). Resistance to each drug is characterized by 11
discrete levels ranging from -1 (least resistant) to 9 (most resistant).
At time 0, the population starts in the second lowest resistance level
(0) for all drugs. Symbols (circles, triangles, squares) are the mean of
103 independent simulations of the MDP, with error bars ± SEM. Solid
lines are numerical calculations using exact Markov chain calculations
(see Methods).
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Figure 2.11: Black shaded line, randomly cycled drugs. C. The probability P(Resist)
of the population exhibiting a particular level of resistance to the applied
drug when the optimal policy (γ = 0.99) is used. D. The time-dependent
probability P(Drug) of choosing each of the six drugs when the optimal
policy (γ = 0.99) is used. E. Steady state joint probability distribution
P(current drug, next drug) for consecutive time steps when the optimal
policy (γ = 0.99) is used. F. Average level of resistance (〈R(t)〉) to the
applied drug for collateral sensitivity cycles of 2 (dark green, CRO-RIF),
3 (pink, RIF-CRO-TGC), 4 (light green, TGC-LZD-AMP-RIF), and
5 (orange, AMP-RIF-CRO-TGC-LZD) drugs are compared with MDP
policies with γ = 0 (short-term, red) and γ = 0.99 (long-term, blue).
For visualizing the results of the collateral sensitivity cycles, which give
rise to periodic behavior with large amplitude, the curves show a moving
time average (window size 10 steps), but the smoothed curves are shown
transparently in the background.
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Figure 2.12: Optimal drug sequences constrain resistance on long timescales
and outperform simple collateral sensitivity cycles A. Average of
discretized collateral sensitivity or resistance Cd ∈ {−2,−1, 0, 1, 2} for a
selection of six drugs: daptomycin (DAP), ampicillin (AMP), tigecycline
(TGC), linezolid (LZD), levofloxacin (LVX), and rifampicin (RIF). For
each selecting drug, the heat map shows the average value of Cd from
nr = 4 independently evolved populations. See Fig 1 for original (non-
discretized) data. B. Average level of resistance (〈R(t)〉) to the applied
drug for policies with γ = 0 (red),γ = 0.7 (black), γ = 0.9 (magenta),
and γ = 0.99 (blue). Resistance to each drug is characterized by 11
discrete levels ranging from -1 (least resistant) to 9 (most resistant).
At time 0, the population starts in the second lowest resistance level
(0) for all drugs. Symbols (circles, triangles, squares) are the mean of
103 independent simulations of the MDP, with error bars ± SEM. Solid
lines are numerical calculations using exact Markov chain calculations
(see Methods).
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Figure 2.12: Black shaded line, randomly cycled drugs. C. The probability P(Resist)
of the population exhibiting a particular level of resistance to the applied
drug when the optimal policy (γ = 0.99) is used. D. The time-dependent
probability P(Drug) of choosing each of the six drugs when the optimal
policy (γ = 0.99) is used. E. Steady state joint probability distribution
P(current drug, next drug) for consecutive time steps when the optimal
policy (γ = 0.99) is used. F. Average level of resistance (〈R(t)〉) to the
applied drug for collateral sensitivity cycles of 2 (dark green, TGC-RIF),
3 (pink, LZD-AMP-LVX), 4 (light green, RIF-TGC-LZD-AMP), and
5 (orange, AMP-LVX-RIF-TGC-LZD) drugs are compared with MDP
policies with γ = 0 (short-term, red) and γ = 0.99 (long-term, blue).
For visualizing the results of the collateral sensitivity cycles, which give
rise to periodic behavior with large amplitude, the curves show a moving
time average (window size 10 steps), but the smoothed curves are shown
transparently in the background.
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Figure 2.13: Optimal drug sequences constrain resistance on long timescales
and outperform simple collateral sensitivity cycles A. Average of
discretized collateral sensitivity or resistance Cd ∈ {−2,−1, 0, 1, 2} for a
selection of six drugs: daptomycin (DAP), ampicillin (AMP), tigecycline
(TGC), linezolid (LZD), levofloxacin (LVX), and rifampicin (RIF). For
each selecting drug, the heat map shows the average value of Cd from
nr = 4 independently evolved populations. See Fig 1 for original (non-
discretized) data. B. Average level of resistance (〈R(t)〉) to the applied
drug for policies with γ = 0 (red),γ = 0.7 (black), γ = 0.9 (magenta),
and γ = 0.99 (blue). Resistance to each drug is characterized by 11
discrete levels ranging from -1 (least resistant) to 9 (most resistant). At
time 0, the population starts in the second lowest resistance level (0) for
all drugs.
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Figure 2.13: Symbols (circles, triangles, squares) are the mean of 103 independent
simulations of the MDP, with error bars ± SEM. Solid lines are numer-
ical calculations using exact Markov chain calculations (see Methods).
Black shaded line, randomly cycled drugs. C. The probability P(Resist)
of the population exhibiting a particular level of resistance to the applied
drug when the optimal policy (γ = 0.99) is used. D. The time-dependent
probability P(Drug) of choosing each of the six drugs when the optimal
policy (γ = 0.99) is used. E. Steady state joint probability distribution
P(current drug, next drug) for consecutive time steps when the optimal
policy (γ = 0.99) is used. F. Average level of resistance (〈R(t)〉) to the
applied drug for collateral sensitivity cycles of 2 (dark green, AMP-LVX)
drugs are compared with MDP policies with γ = 0 (short-term, red) and
γ = 0.99 (long-term, blue). For visualizing the results of the collateral
sensitivity cycles, which give rise to periodic behavior with large ampli-
tude, the curves show a moving time average (window size 10 steps), but
the smoothed curves are shown transparently in the background.
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Figure 2.14: Optimal policy statistics and sample trajectories for γ = 0.99
The optimal policy π∗(s) is a mapping from the set of all possible re-
sistance profiles (S) to the set of drugs (A). The policy associates each
resistance profile with a unique (optimal) drug. Top panels: Frequency
with which each drug is prescribed (according to the optimal policy) as a
function of the level of resistance to an individual drug (horizontal axis).
More specifically, for each of the six panels, the state space is partitioned
into eleven distinct subsets, with each subset containing all states char-
acterized by a given level of resistance to the particular drug in question
(horizontal axis). The colored bars then show how frequently each of
the six drugs is prescribed (according to the optimal policy) across all
states within that subset. Bottom left panel: single simulated trajectory
showing drug choice over time. Bottom right panel: single simulated
trajectory of the instantaneous reward R, which corresponds to the re-
sistance level to the applied drug. Blue curve is the specific trajectory;
black curve is a moving average of the trajectory with a window size of
20.

64



Lowest Highest
Resistance to DAP

0

0.2

0.4

0.6

0.8

1

O
pt

im
al

 D
ru

g

Lowest Highest
Resistance to AMP

0

0.2

0.4

0.6

0.8

1

O
pt

im
al

 D
ru

g

Lowest Highest
Resistance to FOF

0

0.2

0.4

0.6

0.8

1

O
pt

im
al

 D
ru

g

Lowest Highest
Resistance to TGC

0

0.2

0.4

0.6

0.8

1

O
pt

im
al

 D
ru

g

Lowest Highest
Resistance to LZD

0

0.2

0.4

0.6

0.8

1

O
pt

im
al

 D
ru

g

Lowest Highest
Resistance to RIF

0

0.2

0.4

0.6

0.8

1

O
pt

im
al

 D
ru

g

RIF LZD TGC FOF AMP DAP

0 20 40 60
time step

DAP

AMP

FOF

TGC

LZD

RIF

A
pp

lie
d 

D
ru

g

0 20 40 60
time step

Lowest

Highest

R
es

is
ta

nc
e 

R
(t

)

Figure 2.15: Optimal policy statistics and sample trajectories for γ = 0.1 Top
panels: Frequency with which each drug is prescribed (according to the
optimal policy) as a function of the level of resistance to an individual
drug (horizontal axis). In each of the six panels, the state space is parti-
tioned into eleven distinct subsets, with each subset containing all states
with a given level of resistance to the particular drug in question. The
colored bars then show how frequently each of the six drugs is prescribed
across all states within that subset. Bottom left panel: single simulated
trajectory showing drug choice over time. Bottom right panel: single
simulated trajectory of the instantaneous reward R, which corresponds
to the resistance level to the applied drug. Red curve is the specific tra-
jectory; black curve is a moving average of the trajectory with a window
size of 20.

65



BA

C

D E

F

FOF RIF AMP TGC
Selecting Drug

FOF

RIF

AMP

TGC
T

es
tin

g 
D

ru
g

-2

-1

0

1

2

FOF RIF AMP TGC
Drug

0

0.5

1

P
(D

ru
g)

0 5 10 15 20
time (days)

FOF
RIF

AMP
TGC

A
pp

lie
d 

D
ru

g

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

RIF

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

FOF

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

TGC

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

AMP

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

RIF-AMP

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

FOF-AMP

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

TGC-AMP

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

FOF-TGC

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

RIF-TGC

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

RIF-FOF

Optimal

0 10 20
time (days)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

G
ro

w
th

R-F-T-A

Optimal

S
in

gl
e 

D
ru

g

T
w

o 
D

ru
gs

F
ou

r 
D

ru
gs

O
pt

im
al

-0.01

0

0.01

0.02

0.03

0.04

A
da

pt
 R

at
e

Figure 2.16: Optimized drug sequences reduce cumulative growth and adap-
tation rates in lab evolution experiments. A. Resistance (red) or
sensitivity (blue) of each evolved mutant (horizontal axis; 4 drugs x 8
mutant per drug) to each drug (vertical axis) following 2 days of selec-
tion is quantified by the log2-transformed relative increase in the IC50

of the testing drug relative to that of wild-type (V583) cells. B. Top:
distribution of applied drug at time step 20 (approximate steady state)
calculated using an optimal policy with γ = 0.78. Bottom: sequence
of applied drug from one particular realization of the stochastic process
with the optimal policy (γ = 0.78). C-E.
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Figure 2.16: Cumulative population growth over time for populations exposed to sin-
gle drug sequences (C, blue), two-drug sequences (D,magenta), a four
drug sequence (E, red), or the optimal sequence from panel B (black
curves, all panels). Transparent lines represent individual replicate ex-
periments and each thicker dark line corresponds to a mean over repli-
cates. Dashed line, drug-free control (normalized to a growth of 1 at the
end of the experiment). F. Adaptation rate for single drug (blue), two-
drug (magenta), four drug (red), and optimal sequences (black). Error
bars are standard errors across replicates. Adaptation rate is defined as
the slope of the best fit linear regression describing time series of daily
growth (see Figure 2.20).
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Figure 2.17: Optimized drug sequences reduce cumulative growth and adap-
tation rates in numerical simulations of the laboratory evolu-
tion experiments. Compare to Figure 2.6 (main text). A. Resistance
(red) or sensitivity (blue) of each evolved mutant (horizontal axis; 4
drugs x 8 mutant per drug) to each drug (vertical axis) following 2 days
of selection is quantified by the log2-transformed relative increase in the
IC50 of the testing drug relative to that of wild-type (V583) cells. The
profile is then discretized into 4 levels of resistance. B. Top: distribution
of applied drug at time step 20 (approximate steady state) calculated
using an optimal policy with γ = 0.9. Bottom: sequence of applied drug
from one particular realization of the stochastic process with the optimal
policy (γ = 0.9). C-E.
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Figure 2.17: Cumulative population growth (simulations) over time for popula-
tions exposed to single drug sequences (C, blue), two-drug sequences
(D,magenta), a four drug sequence (E, red), or the optimal sequence
from panel B (black curves, all panels). Black circles correspond to the
true optimal (i.e. applying the MDP policy directly) and performs only
slightly better, on average, than the fixed sequence in panel B. At each
time step, resistance level to each drug is converted to an OD value us-
ing a linear conversion with the highest resistance level corresponding
to growth of drug-free cells (OD≈ 0.6) and the lowest resistance level
corresponding to OD=0. Transparent lines represent individual repli-
cate experiments and each thicker dark line corresponds to a mean over
replicates. Dashed line, drug-free control (normalized to a growth of 1
at the end of the experiment). F. Adaptation rate for single drug (blue),
two-drug (magenta), four drug (red), and optimal sequences (black). Er-
ror bars are standard errors across replicates. Adaptation rate is defined
as the slope of the best fit linear regression describing time series of daily
growth.
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Figure 2.18: Optimized drug sequences reduce cumulative growth and adap-
tation rates in numerical simulations of the laboratory evolu-
tion experiments. Compare to Figure 2.16. A. Resistance (red) or
sensitivity (blue) of each evolved mutant (horizontal axis; 4 drugs x 8
mutant per drug) to each drug (vertical axis) following 2 days of selec-
tion is quantified by the log2-transformed relative increase in the IC50

of the testing drug relative to that of wild-type (V583) cells. The pro-
file is then discretized into 4 levels of resistance. B. Top: distribution
of applied drug at time step 20 (approximate steady state) calculated
using an optimal policy with γ = 0.78. Bottom: sequence of applied
drug from one particular realization of the stochastic process with the
optimal policy (γ = 0.78). C-E.
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Figure 2.18: Cumulative population growth (simulations) over time for popula-
tions exposed to single drug sequences (C, blue), two-drug sequences
(D,magenta), a four drug sequence (E, red), or the optimal sequence
from panel B (black curves, all panels). Black circles correspond to the
true optimal (i.e. applying the MDP policy directly) and performs only
slightly better, on average, than the fixed sequence in panel B. At each
time step, resistance level to each drug is converted to an OD value us-
ing a linear conversion with the highest resistance level corresponding
to growth of drug-free cells (OD≈ 0.6) and the lowest resistance level
corresponding to OD=0. Transparent lines represent individual repli-
cate experiments and each thicker dark line corresponds to a mean over
replicates. Dashed line, drug-free control (normalized to a growth of 1
at the end of the experiment). F. Adaptation rate for single drug (blue),
two-drug (magenta), four drug (red), and optimal sequences (black). Er-
ror bars are standard errors across replicates. Adaptation rate is defined
as the slope of the best fit linear regression describing time series of daily
growth.
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Figure 2.19: Estimated adaptation rate in lab evolution experiments based
on γ=0.9 MDP policy. Daily growth, which is defined as the OD
measured at the end of each 48-hour period (normalized to drug-free
control), for populations exposed to single drug (blue), two-drug (ma-
genta), four-drug (red), and optimal (black) drug sequences. All time
series start at day 2 (i.e. following 48 hours of adaption). Transaprent
curves correspond to individual replicate experiments; solid dark lines
show the (average) best fit linear regression. Adaptation rate is defined
as the slope of the regression line.
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Figure 2.20: Estimated adaptation rate in lab evolution experiments based
on γ=0.78 MDP policy. Daily growth, which is defined as the OD
measured at the end of each 48-hour period (normalized to drug-free
control), for populations exposed to single drug (blue), two-drug (ma-
genta), four-drug (red), and optimal (black) drug sequences. All time
series start at day 2 (i.e. following 48 hours of adaption). Transparent
curves correspond to individual replicate experiments; solid dark lines
show the (average) best fit linear regression. Adaptation rate is defined
as the slope of the regression line.
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This chapter was amended from: Jeff Maltas, Brian Krasnick, and Kevin B.

Wood. ‘Using selection by nonantibiotic stressors to sensitize bacteria to antibiotics’

Molecular Biology and Evolution 37(5), May 2020.

3.1 Introduction

As noted and demonstrated in the previous chapter, the emergence of drug re-

sistance is continually shrinking an ever-smaller pool of drugs necessary for the suc-

cessful treatment of infectious disease [1, 2, 3, 4, 5, 6, 7]. Interestingly, in addi-

tion to antibiotics, many studies have shown that exposure to non-antibiotic con-

ditions, such as heavy metals, biocides, extreme temperatures, acidic or osmotic

stress, and even growth media may also lead to reduced susceptibility to antimi-

crobials [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. For example, adaptation to the antiseptic

chlorhexidine (CHX) was recently shown to be associated with collateral resistance to

daptomycin, a lipopeptide antibiotic used to treat multidrug-resistant Gram-positive

infections [12]. On the other hand, antibiotic resistant strains may exhibit increased

sensitivity to antimicrobial peptides [18], and bacteria undergoing long-term evolu-

tion without drug generally show decreased antibiotic resistance [19]. As a whole,

these studies point to overlapping evolutionary constraints that govern adaptation to

a large and chemically diverse collection of deleterious environments. In turn, they

raise the question of whether non-antibiotic stressors–which are frequently encoun-

tered in both clinical and natural environments–might play an important role in the

evolution of drug resistance and, at the same time, represent an untapped set of

environmental “levers” for steering evolutionary trajectories [20].

While there has been extensive progress identifying the molecular mechanisms

governing cross-resistance between specific pairs of antibiotic and non-antibiotic stres-

sors, relatively little is known about the systems-level properties of these evolutionary

trade-offs. Phenotypic studies may complement mechanistic approaches by identify-
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ing statistical relationships between large collections of stressors, offering new insights

into questions that are difficult to answer from molecular information alone. For

example, does adaptation to non-antibiotic stressors frequently lead to modulated

antibiotic resistance, or are these effects relatively rare, restricted–perhaps–to struc-

turally or mechanistically similar agents? When these collateral effects appear, are

they dominated by cross-resistance, pointing to an ever-accelerating march to resis-

tant pathogens with broad multi-agent resistance? Or do these conditions co-select

for increased sensitivities, potentially leading to multi-agent environmental sequences

that trap cells in evolutionarily vulnerable states? Recent evolution-based approaches

have revolutionized our view of multidrug therapies [21]. Non-antibiotic stressors may

offer a complementary set of unappreciated selective forces for simultaneously sensi-

tizing pathogens to multiple drugs.

In this work we start to answer some of these questions using laboratory evo-

lution and phenotypic profiling in an opportunistic bacteria pathogen. Specifically,

we investigate phenotypic collateral effects arising during bacterial adaptation to 6

antibiotics and 7 non-antibiotic environments, including common biocides, extreme

pH, and osmotic stress. As a model system, we focus on E. faecalis, a Gram-positive

bacterial species frequently found in the gastrointestinal tracts of humans. E. faecalis

can survive in a range of harsh environments, making it a good candidate for adapta-

tion to many different environmental conditions. At the same time, E. faecalis is an

important clinical pathogen that contributes to multiple human infections, including

urinary tract infections and infective endocarditis [22, 23, 24, 25].

In the work done in Chapter 2, we used laboratory evolution to characterize

the phenotypic collateral sensitivity profiles between multiple antibiotics in E. fae-

calis [26]. In this study, we show that collateral resistance and sensitivity are also

surprisingly common between more general environmental stressors, both between

different non-antibiotic stressors and between antibiotics and non-antibiotic condi-
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tions. While the specific resistance profiles vary between independent populations,

even when selected by the same condition, the collateral sensitivities remain common.

For example, 25 of 32 isolates selected by the antimicrobial triclosan (TCS) exhib-

ited increased sensitivity to at least one of the 6 antibiotics tested. Finally, we show

experimentally that populations evolved to a sequence of two conditions (the antibi-

otic linezolid and the preservative sodium benzoate (NaBz)) can induce increased

sensitivity to more conditions than adaptation to either stressor alone. The results

demonstrate how sequential adaptation to drug and non-drug environments can be

used to sensitize bacterial to antibiotics and highlight new potential approaches for

leveraging evolutionary trade-offs inherent in adaptation to diverse environments.

3.2 Results

3.2.1 Collateral effects between antibiotic and non-antibiotic stressors are

common.

To investigate collateral effects between antibiotic and non-antibiotic conditions,

we exposed populations of E. faecalis strain V583, a clinical isolate [27], to increasing

concentrations of a single condition for up to 60 days (approximately 450 genera-

tions) via serial passage evolution (Figure 3.1A, Methods). We repeated this labo-

ratory evolution for 13 different selecting conditions, including extreme pH, osmotic

stress, biocides, preservatives and traditionally known antibiotics (Table 2). Follow-

ing laboratory evolution, we isolated a single colony (“mutant”) from each population

and measured its susceptibility to all 7 conditions as well as to 6 antibiotics span-

ning multiple classes via high-throughput dose-response experiments. In addition,

we measured susceptibility of 6 previously isolated strains (one for each antibiotic;

strains were originally isolated in [26]) to all 7 non-antibiotic stressors. To quantify

resistance to each condition, we estimated the half maximal inhibitory concentration
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Figure 3.1: Laboratory evolution reveals collateral sensitivity and cross re-
sistance between antibiotics and environmental stressors in E.
faecalis. A. Populations of E. faecalis V583 were exposed to increasing
concentrations of a single selecting condition over multiple days via serial
passage experiments (Methods). The evolution was repeated for 13 differ-
ent selecting conditions, including six antibiotics and seven non-antibiotic
stressors (Table I). At the end of the evolution experiment, a single colony
was isolated from each population and tested for modulated sensitivity to
each of the 13 environmental conditions.
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Figure 3.1: B. Example dose response curves for isolates selected by TCS (left) and
chlorhexidine (right). Vertical line represents estimated half-maximal in-
hibitory concentration (IC50), with shaded regions confidence intervals
(95%). C. Resistance (red) or sensitivity (blue) to each condition is
quantified using the (log2-transformed) fold change in the IC50 for the
selected isolate relative to that of ancestral (V583) cells. Dashed regions
correspond to antibiotic susceptibilities of non-antibiotic selected isolates
(lower left) and, conversely, non-antibiotic susceptibilities of antibiotic
selected isolates (upper right).

(IC50) for all 13 isolates, as well as isolates from the ancestral populations, to each

of the 13 conditions (Methods; Figure 3.1B). In total, we estimated the IC50 for 170

isolate-condition combinations (each performed in technical replicates of 3). For each

isolate-condition combination, we then calculate c ≡ log2 (IC50,Mut/IC50,WT ), the log-

scaled fold change in IC50 of the mutant (relative to ancestral strains) (Figure 3.1C).

Resistance therefore corresponds to c > 0 and sensitivity to c < 0. To minimize

false positives, only c values larger than three σWT were deemed to have collateral

sensitivity or collateral resistance, where σWT corresponds to the standard error of

the mean across three technical replicates of the wild-type.

We find that isolates selected by antibiotics frequently exhibit modulated sensi-

tivity to non-antibiotic conditions, and conversely, isolates selected by non-antibiotics

often exhibit modulated sensitivity to antibiotics (Figure 3.1C). Sensitivity was al-

tered in 62 percent (104/169) of condition-mutant pairs, with 58 percent (91/156)

corresponding to collateral effects (i.e. modulated resistance to a stressor other than

that used for selection). Collateral sensitivity is more common (58 percent, 53/91)

than collateral resistance (42 percent, 38/91), though all 13 isolates exhibited both

collateral resistance and collateral sensitivity to at least 2 distinct conditions. A his-

togram of all measured c resistance values (Figure 3.8), as well as the fraction of

collaterally sensitive and resistant observations over a wide range of different cut-off

values is available in the Supplementary files (Figure 3.8B). NaCl and KCl appear

to have only acquired modest resistance. It is possible that resistance acquisition
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may be slower to accumulate as enterococcus is naturally tolerant to many harsh

environments including osmotic stress [28, 29].

We next asked whether the resistance profiles selected by different conditions show

statistical similarities. Here, a resistance profile of a selecting condition is defined by

a column in Figure 3.1C. One might hypothesize, for example, that profiles selected

by chemically similar stressors would be strongly correlated with one another. On

the other hand, correlations between profiles could also arise if different stressors are

associated with molecularly promiscuous resistance determinants–for example, mul-

tidrug efflux pumps [30] that extrude unrelated chemical stressors. Indeed, we found

strong correlations between the resistance profiles selected under many different pairs

of conditions (Figure 3.2A). For example, profiles selected by NaCl are significantly

correlated with those selected by acidic conditions, basic conditions, and NaBz. In

addition, profiles selected by doxycycline, a protein synthesis inhibitor, are corre-

lated with those selected by other structurally dissimilar compounds, including two

antibiotics (LZD and ciprofloxacin (CIP)) as well as the antiseptic CHX. Overall,

correlations between pairs of selecting conditions are dominated by positive corre-

lations (62/78 pairs), including in all 9 pairs eclipsing the significance (p < 0.01)

threshold. Similarly, we asked whether resistance levels between pairs of different

testing conditions were correlated across different isolates. Here, a resistance profile

of a testing condition is defined as a row in Figure 3.1C. We found positive corre-

lations to also be slightly more common between testing conditions (45/78 pairs),

though two of the three pairs eclipsing significance (p < 0.01) exhibited negative

correlations. Specifically, we found negative correlations between resistance to NaCl

and basic conditions and between CIP and TCS, but positive correlations between

CIP and spectinomycin (SPT) (See also Figure 3.5 and Figure 3.6 for scatter plots

between all pairs of selecting and testing conditions, respectively).
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Figure 3.2: Correlations between collateral effects under different selecting
or testing conditions A. Left panel: Pearson correlation coefficient be-
tween collateral profiles (i.e. columns of the matrix in Figure 1C) selected
under different conditions. Dark squares highlight significant correlations
(p < 0.01), which are also shown as scatter plots. Right panels: pair-
wise scatter plots of resistance profiles selected by different conditions
(i.e. scatter plots comparing columns of the matrix in Figure 1C; only
pairs with significant correlations, p < 0.01, are shown). Each point rep-
resents the measured resistance to a single stressor in isolates selected by
the conditions on the horizontal and vertical axes. That is, each point is
the resistance value c in each of the two conditions labeled by the axis.
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Figure 3.2: B. Left panel: Pearson correlation coefficient between resistance levels to
a particular testing condition (i.e. rows of the matrix in Figure 1C) across
the ensemble of isolates. Dark squares highlight significant correlations
(p < 0.01). Right panels: pairwise scatter plots of resistance levels to
different conditions (i.e. scatter plots comparing rows of the matrix in
Figure 1C; only pairs with significant correlations, p < 0.01, are shown).
Each point represents a single isolate and shows the resistance of that
isolate to the pairs of testing conditions on the horizontal and vertical
axes. Put another way, each point represents the value c to each condition
on the axis. To remove the effects of direct selection, which are typically
larger in magnitude and may bias the correlations, the diagonal entries
of the collateral sensitivity matrix (corresponding to resistance to the
selecting condition) are removed prior to calculating all correlations. In
all cases, resistance is measured in units of (log2-scaled) fold change in
IC50 relative to ancestral strain. See Figure 3.5 and Figure 3.6 for scatter
plots for all pairs.

3.2.2 Strains selected by non-antibiotic pressures often carry mutations

in genes known to confer antibiotic resistance or sensitivity.

To identify candidate genes that may underlie changes in sensitivity to one or

more environments, we performed whole genome sequencing on both single isolates

(a single colony selected from an agar plate) and population samples (well-mixed

200 µL samples) from the evolved populations. Specifically, we sequenced single iso-

lates from each evolved population, an isolate evolved in media (BHI) only for 8

days, and also two individual isolates from the ancestral strains. In addition, we

performed population sequencing on a sample from each population, including the

media-selected control. Because the number of variant calls rises rapidly for small

mutation frequencies (Figure 3.7), we limit our analysis to variants estimated to occur

with frequency greater than 30 percent (Methods). Note that samples from four of

the antibiotic-selected populations (those selected by AMP, DOX, NIT, SPT) and

the BHI-population were sequenced for a previous study [26] and their results are in-

cluded here for comparison. In addition, we exclude sequencing from the acid-selected

population, which was contaminated during preparation for sequencing, and exclude
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variants occurring in all sequenced strains. As a final control, we also confirmed a

small number of mutations (in rpsJ in the DOX-selected isolate and in parC in the

CIP-selected isolate) via PCR amplification and Sanger sequencing.

Overall, we observe significant agreement between population and single isolate

sequencing; every mutation that occurs in the clonal sample also occurs with at least

68 percent frequency in the corresponding population sample (Table 1). Similarly, all

mutations occurring at a frequency of at least 90 percent in the population samples

also occurs in the clonal sequences. Despite this agreement, we do observe apparent

heterogeneity in several populations (e.g. LZD).

This consistency suggests that the phenotypic measurements, performed on single

clones isolated from each population, are generally representative of the entire pop-

ulation, though more substantial population heterogeneity is apparent in a several

cases (e.g. LZD).

This analysis reveals 54 mutations achieving at least 30 percent frequency in at

least one population. All mutations identified were non-synonymous. Using this 30

percent threshold, we see as many as 9 mutations in a strain (KCl) and as few as

zero (NIT). While we observe no mutations in the NIT strain, repeated experiments

confirm increased resistance. Because the resistance is relatively small (less than a

factor two increase), it is possible the observed resistance stems from transient phe-

notypic resistance related to the post-antibiotic effect or cellular hysteresis observed

when rapidly cycling drugs [31]. The control population selected by media alone

showed no mutations above 30 percent frequency. 52 of the 54 mutations occurred

on the choromosome, while both prgB mutations occured on the pTEF2 plasmid. In

addition, we see several mutations present in genes known to confer resistance to the

selecting drug. For example, the CHX-selected population contains two previously

identified mutations responsible for CHX resistance, one in EF 1608, a cardiolipin

synthetase, and one in EF 2227, an ABC transporter [12, 32]. The TCS isolate con-
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Table 3.1: Mutations identified in selected populations. Mutations listed in
red have been previously linked with resistance to the selecting condition,
while genes listed in blue are genes previously identified with resistance
to environments other than the selecting condition. Asterisk (*) identifies
strains evolved and sequenced for previous work.
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tains a mutation in fabI, a common TCS resistance gene and the drug’s target [33],

as well as EF 0142, an efflux multi-drug resistance transporter [34]. We identify a

shared mutation between KCl and NaCl in vicK, a sensor histidine kinase known to

confer resistance to environments such as osmotic stress, pH and temperature [35]. In

addition, the DOX-selected population contains two mutations in rpsJ, a gene known

to confer resistance to the tetracycline class of antibiotics [36], and the CIP-selected

population contains a parC mutation, a gene known to confer high levels of CIP

resistance [37], both of which were reported previously [26].

In addition to mutations present in genes linked with resistance to the selecting

condition, we also identified mutations in genes potentially responsible for modulated

sensitivity to non-selecting conditions, including mutations to genes known to confer

antibiotic resistance in populations selected by non-antibiotic stressors. For example,

the NaCl- and KCl-selected populations harbor a mutation in EF 2886, a marR

family transcriptional regulator. The marR system is known to regulate efflux pump

activity and underlies resistance to a wide range of structurally diverse drugs [38,

39, 40]. Recent work indicates that increased efflux activity comes with a trade-

off, as corresponding changes in the proton-motive force can induce sensitivity to

aminoglycoside antibiotics [41]. Consistent with these findings, we find that an isolate

selected by NaCl exhibited increased sensitivity to the aminoglycoside SPT. The

marR system is also known to confer resistance to oxidative stress, similar to TCS [42,

40]; it is perhaps not surprising, then, that we observe TCS resistance in populations

selected by either NaCl or KCl. We also identify a mutation in EF 1148, a penicillin

binding protein (PBP), in isolates selected by NaBz. Mutations in PBPs are known to

confer resistance to β-lactam antibiotics [43], and indeed we observe cross-resistance

to AMP in isolates from the NaBz-selected population.

Finally, we identify mutations in genes that have been previously linked with

collateral sensitivity or resistance to antibiotics, though we observe phenotypes that
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differ from those expected. For example, the marR mutation in KCl and NaCl, the

EF 2227 mutation in CHX, and the EF 0142 mutation in TCS are all related to

efflux pumps, which are known to confer resistance to a wide array of antibiotics

and biocides, especially tetracyclines and quinolones [41, 39]; surprisingly, we see no

increased resistance to these antibiotics in the corresponding isolates (Figure 3.1).

Additionally, NaCl and KCl share a mutation in galU which is known to confer

pleiotropic effects [44] and AMP resistance [45], though we see no increase in AMP

resistance in isolates from the same population (Figure 3.1). These discrepancies

could arise for several reasons. First, while we observe mutations in genes linked with

drug resistance, the specific mutations are not necessarily the same. For example,

the study of EF 2227 focuses on the full gene knockout while we observe a single

nonsynonymous substitution [32]. On the other hand, the discrepancies could also be

explained by epistatic effects that potentially differ in different genetic backgrounds,

giving rise to variable phenotypes [46, 47, 48, 49, 50, 51, 52, 53]. It is possible that

the isolate selected for phenotyping represents a rare variant of the population and

therefore is not well-described by the population sequencing, though the relatively

high frequencies estimated for most variants suggests this explanation is unlikely in

many cases. A full list of all identified mutations is available with more details in the

SI.

3.2.3 Selection by chlorhexidine or triclosan frequently sensitize bacteria

to at least one antibiotic.

Previous studies have shown that collateral profiles may be highly variable, even

when selection is performed multiple times under the same conditions [54, 26]. To

estimate this variability for non-antibiotic stressors, we evolved 32 replicate popula-

tions to each of two antimicrobials, TCS and CHX, for a total of 22 days (approxi-

mately 170 generations). TCS is an antimicrobial agent found in numerous consumer
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Figure 3.3: Isolates selected by CHX or TCS are variable but often exhibit
increased sensitivity to antibiotics Collateral resistance profiles for
32 independent populations evolved to either CHX (A) or TCS (B). Left
panels: Resistance (red) or sensitivity (blue) to each condition (rows) is
quantified using the (log2-transformed) fold change in the IC50 for the
selected isolate relative to that of ancestral (V583) cells. Color scale
ranges from -2 (4x decrease in IC50, blue) to +2 (4x increase in IC50,
red). Top right: Histogram of variability in collateral profiles for isolates
selected by CHX / TCS (red) or for the isolates in Figure 3.1 (spanning
all conditions, blue). Variability for each collateral profile is defined as the
Euclidian distance between that profile and the centroid formed by the
relevant ensemble of profiles. Mean variability differs between isolates
selected by CHX and all isolated mutants, as well as between isolates
selected by TRC and all isolated mutants, each with p < 0.001 (t-test with
unequal variance). Bottom right: Pearson correlation coefficient between
resistance levels to a particular testing condition across the ensemble of
isolates.

97



products, including soaps, body washes, and toothpastes. It has been linked with

cross-resistance to antibiotics in multiple species [14] and was recently shown to in-

duce resistance to antibiotics both in vitro and in vivo [55]. CHX is an antimicrobial

found in many disinfectants and commonly used as a general antiseptic in hospitals.

CHX exposure has been linked with increased resistance to daptomycin in E. faecium,

a closely related enterococcal species [12]. Following the laboratory evolution to each

condition, we measured the resistance profiles for single isolates from each population

to all 13 environmental conditions (Figure 3.2.2). Surprisingly, isolates selected by

each condition frequently exhibit collateral sensitivity to other agents, with 15/32

CHX isolates and 25/32 TCS isolates showing sensitivity to at least one antibiotic.

In addition, all 32 CHX isolates showed strong sensitivity to TCS, while half of the

32 TCS isolates show cross-resistance to CHX.

To quantify variation within an ensemble of collateral profiles, we considered each

profile as a 13-dimensional vector, with each component representing resistance to a

particular environmental condition. To estimate variability within the ensemble, we

calculated the mean pairwise (Euclidean) distance, 〈dp〉, across all pairs of profiles

in the ensemble. While collateral profiles of isolates selected by TCS (〈dp〉 = 2.2)

and CHX (〈dp〉 = 1.6) both exhibit isolate-to-isolate variability, it is considerably

smaller than the variability observed across all conditions (〈dp〉 = 5.2). In addition,

the distribution of pairwise distances between isolates selected by the same condition

(TCS or CHX) is considerably more narrow that the distribution across all isolates

(Figure 3.2.2, upper right insets). We also tested for correlations between resistance

levels to pairs of stressors across the ensemble of isolates for each condition. Not sur-

prisingly, the correlations between pairs of stressors vary substantially depending on

the selecting conditions used to generate the isolates (compare insets in Figure 3.2.2A,

Figure 3.2.2B). For example, resistance to KCl is correlated with resistance to TCS

following CHX selection (Figure 3.2.2A, lower right) but weakly anticorrelated in
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TCS-selected isolates (Figure 3.2.2B, lower right). On the other hand, there are rare

pairs of environments–such as NaCl and KCl–where resistance is strongly correlated

in all sets of isolates, likely reflecting the extreme chemical similarity between the

stressors.

3.2.4 Sequential rounds of antibiotic and non-antibiotic selection can pro-

mote sensitivity.

Our results indicate that both collateral sensitivity and cross resistance are sur-

prisingly common in the evolved lineages. Selection by one condition (by definition)

leads to resistance to that condition, but it frequently sensitizes the population to

multiple other conditions. In fact, our experiments showed that selection by one stres-

sor led to increased sensitivity to between 3 and 7 other conditions (Figure 3.1B).

Unfortunately, these increased sensitivities are also accompanied by frequent cross-

resistance, placing limits on the number of sensitivities that can be selected by any

one condition.

However, we hypothesized that it might be possible to circumvent those limita-

tions by using a sequence of two stressors. While this sequential selection is likely

to produce resistance to, at minimum, the two selecting conditions, it’s possible that

judiciously chosen conditions could lead to more sensitivities than either condition

alone–in effect harnessing the orthogonal sensitizing effects of particular pairs of se-

lective forces. To guide our search, we first calculated the expected number of sen-

sitivities following sequential selection by each pair of conditions under the naive

assumption that phenotypic effects are purely additive. Because resistance is mea-

sured on a log scale, the assumption of additivity means that relative changes in

IC50 (or similar) are multiplicative; for example, if conditions 1 and 2 each reduce

IC50 to 40 percent of the value in ancestral cells, their sequential application would

reduce IC50 to 16 percent. We note that such null models are imperfect, as they fail
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to capture epistasis and known hysteresis in evolutionary trajectories (see, for exam-

ple, [56]). Here we use the null model only to identify candidate condition pairs for

further experimental investigation. Under these additivity assumptions, the number

of sensitivities is expected to increase for most pairs of stressors; that is, assuming

additivity of the measured sensitivity profiles, sequential exposure to pairs of stres-

sors is often predicted to sensitize the population to more stressors than exposure

to either single agent alone (Figure 3.2.4A). In three cases (LZD-NaCl, LZD-NaBz,

and NIT-SPT), the number of sensitivities is expected to increase by three or more,

providing a substantial benefit over the single agent selecting conditions.

To test these predictions experimentally, we focused on the pair LZD, a protein

synthesis inhibitor, and NaBz, a commonly used food preservative. Our original

selection experiments showed that selection in LZD led to 5 sensitivities and NaBz

led to 4 sensitivities; the sensitivities are largely non-overlapping, and sequential

selection is therefore predicted to an increase in the number of sensitivities. To test

this prediction, we performed experimental evolution on eight replicate populations

to each of 3 conditions: LZD alone, NaBz alone, and a two-phase sequence consisting

of LZD evolution followed by NaBz evolution. For convenience, we limited each

evolution phase to 10 days (70-80 generations), making this considerably shorter than

the original adaption in Figure 3.1. We then tested an isolate from each population

for modulated resistance to each of the 13 environmental conditions (Figure 3.2.4B).

The isolates selected by LZD or NaBz alone had sensitivity profiles that are similar,

but not identical, to those selected in the original experiment (Figure 3.1). For both

conditions, the single agent evolution led to increased sensitivity to an average of

approximately 4 conditions (Figure 3.2.4C). Strikingly, however, evolution in the

LZD-NaBz sequence (“switch”) sensitized the isolates to more than 6 conditions on

average, with some isolates exhibiting sensitivity to eight conditions.

To test the quantitative accuracy of the null model, we generated an ensemble
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Figure 3.4: Selection in alternating environments can induce sensitivity to
more stressors than selection in single environments A. Predicted
change in number of sensitivities following sequential evolution using pairs
of conditions. Change is positive if sequential evolution is predicted to
result in more sensitivities than evolution in either component alone. Pre-
dictions assume additivity of (log-scaled) resistance profiles. A sequence
of LZD and NaBz (white x) is predicted to give the maximum increase
in sensitivities. B. Resistance profiles for replicate evolution experiments
(8 per condition) in LZD only, NaBz only, or a two-step sequence con-
sisting of LZD selection followed by NaBz selection. Resistance (red) or
sensitivity (blue) to each condition (rows) is quantified using the (log2-
transformed) fold change in the half-maximal inhibitory concentration
(IC50) for the selected isolate relative to that of ancestral (V583) cells.
C. Left panel: Isolates evolved in the alternating environment (“switch”
between LZD then NaBz, green) exhibit sensitivity to more environments
than isolates selected in each environment alone (blue and red; p < 0.01,
Wilcoxon rank sum test for pairwise comparisons between LZD and switch
and between NaBz and switch. D. Left: scatter plot comparing the mean
collateral profile of isolates from the alternating selection (“experiment”)
and mean collateral profiles predicted by an average (linear sum) of pro-
files generated in the single environments (“prediction”). Right panel:
heat maps (color scale same as for panel A). Check marks indicate cor-
rectly predicted sensitivity (blue) or resistance (red). X indicates incorrect
prediction.
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of plausible resistance profiles for the sequential selection experiment. Each profile

in the predicted ensemble corresponds to the mean of one pair of profiles, with one

member of the pair drawn from the LZD only selection (Figure 3.2.4B, left) and one

drawn from the NaBz only selection (Figure 3.2.4B, middle). The mean profile in this

ensemble agrees surprisingly well with the mean profile measured in the LZD-NaBz

evolution (Figure 3.2.4D).

3.3 Discussion

These results provide a systems-level picture of the phenotypic trade-offs accom-

panying evolved resistance to antibiotic and non-antibiotic stressors in an oppor-

tunistic pathogen. We find that collateral resistance and collateral sensitivity are

surprisingly pervasive across conditions, underscoring the need to better understand

how adaptation to non-antibiotic environments may contribute to drug resistance.

These widespread collateral effects raise the question of whether frequently encoun-

tered stressors–food additives, preservatives, biocides, or simply common elements of

natural environments–may steer bacteria toward multidrug resistance, and in turn,

whether there may be an unappreciated role for these agents in slowing or reversing

resistance. As proof-of-principle, we showed experimentally that sequential adap-

tation to different environments can be used to sensitize bacterial to antibiotics, a

consequence of the largely non-overlapping sensitivities induced by each agent alone.

The goal of this study was to investigate patterns of resistance between antibi-

otics and non-drug stressors at a phenotypic level. By taking a systems-level view,

we hoped to gauge the prevalence of collateral sensitivity and assess the potential

of non-antibiotic agents for modulating resistance. As the drawbacks of this study

are the same as the previous chapter, they will not be re-stated here. There are

many well-known examples of molecular mechanisms that confer non-specific collat-

eral resistance to structurally unrelated compounds in bacteria, including a number
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of multidrug resistance transporters and efflux pumps [38, 34, 57, 30]. Collateral

sensitivity, on the other hand, remains much less understood, even simply between

antibiotics. Recent evidence suggests these sensitivities may be governed by target

mutations that induce global changes in gene regulation or by mutations altering

drug uptake and efflux [58]. Similar mutations appear in our evolved mutations,

suggesting that these mechanisms may also underlie many of the observed collateral

effects between antibiotic and non-antibiotic stressors. However, definitely linking

particular mutations with phenotypic effects will require considerable follow-up work

to disentangle, for example, the potential effects of mutational epistasis and genetic

background on drug resistance phenotypes. In addition, while we used standard

alignment protocols, identifying repeat sequences or mobile element mutations such

as insertion sequences remains a challenge. Because mobile elements play an impor-

tant role in V583 evolution, it is likely we were unable to identify some important

mutations.

Additionally, it is not clear how these results might change if experiments were

performed in a different ancestral strain. Most notably, strain V583 is highly resistant

to multiple antibiotics,; adaptation dynamics in strains without high level multi-

drug resistance could differ substantially. Indeed, recent work underscores the notion

that the ability to evolve antibiotic resistance depends on genotype (and therefore

potentially history) [48]. Finally, we note that because we have limited the sequencing

analysis to mutations that appear relatively frequently (>30 percent), our analysis

omits some features of population heterogeneity that may play an important role in

the evolution of collateral sensitivity. Future work may aim to further investigate links

between this heterogeneity and the potential for gene-specific variations in mutation

rates and selection.

We have shown experimentally that sequential adaptation to antibiotic and non-

antibiotic conditions can sensitize bacteria to more environments than either agent
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alone. While we focus here on a clinically relevant bacterial species, it is not clear

that these results will generalize to other species. We used a simple additive model to

identify candidate environmental pairs for sequential selection. While the model gave

surprisingly accurate predictions in these experiments, it will clearly fail when effects

of epistasis or evolutionary hysteresis are strong [59]. On the other hand, if epista-

sis effects are approximately symmetric about zero or typically small, additive null

models–similar, in spirit, to those developed for drug combination effects [60]–may

still prove useful for finding environmental pairs that increase the number of sensi-

tivities, though the predictions of specific profiles are likely to become increasingly

inaccurate. Long-term application will therefore require continued experimental map-

ping of the collateral sensitivity profiles selected by increasingly complex and realistic

environmental conditions.
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Table 3.2: Table of antibiotics used in this study and their targets.

Condition (abbreviation) Class Mechanism of Action

Ampicillin (AMP) β-lactam Inhibits cell wall synthesis

Doxycycline (DOX) Tetracycline 30S protein synthesis inhibitor

Spectinomycin (SPT) Aminoglycosides 30S protein synthesis inhibitor

Linezolid (LZD) Oxazolidinone 50S protein synthesis inhibitor

Ciprofloxacin (CIP) Quinolone DNA gyrase inhibitor

Nitrofurantoin (NIT) Nitrofuran Multiple mechanisms

Chlorhexidine (CHX) Biocide Disrupts the cell membrane

Triclosan (TRC) Biocide Inhibits fatty acid synthesis

Sodium Benzoate (NaBz) Preservative Decreases intracellular pH

Alkaline pH (Base) N/A N/A

Acidic pH (Acid) N/A N/A

Potassium Chloride (KCl) N/A N/A

Sodium Chloride (NaCl) N/A N/A

3.4 Materials and Methods

3.4.1 Strains, antibiotics, non-antibiotics and media.

All mutants were derived from E. faecalis V583, a fully sequenced vancomycin-

resistant clinical isolate [61]. The 13 conditions used to select mutants are listed in

Table 1. Antibiotics were prepared from powder stock and stored at -20C with the

exception of ampicillin, which was stored at -80C. TCS, CHX and NaBz were prepared

from powder stock and stored at -20C. Acid (pH≈1.5) and Base (pH> 10.5) stock

solutions were prepared by titrating HCl and NaOH, respectively, into BHI medium.

These stock solutions were mixed in appropriate volumes with standard BHI (pH≈7)

to create selecting media for evolution experiments. Saturated KCl and NaCl stock

solutions were prepared by dissolving KCl and NaCl into BHI medium. As with

acid and base, appropriate mixtures of saturated KCl and NaCl solutions were mixed

with standard BHI medium. Evolution and IC50 measurements were conducted in
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BHI medium alone.

3.4.2 Laboratory evolution experiments

Evolution experiments were performed in 96-well plates with a maximum volume

of 2 mL and a working volume of 1 mL BHI. Each day, at least three replicate

populations were each grown in a different concentrations of the selecting agent. The

concentrations were chosen to include both sub- and super-inhibitory concentrations.

After 20-23 hours of incubation at 37C, aliquots (5 µL) from the population that

survived (OD>0.3) the highest concentration were added to a new series of wells

and the procedure was repeated for 30-60 days (maximum of about 450 generations).

Note that isolates from antibiotic selection experiments were evolved for only 8 days

(maximum of 60 generations), because resistance to antibiotics increased much more

rapidly than resistance to other agents (see [26]). To achieve roughly similar levels

of resistance to the non-antibiotic conditions, we extended the selection time window

until either 1) we observed 2-3 days of growth in a concentration at least two times the

ancestral MIC or 2) until the resistance appeared to plateu. Adaptation experiments

to CHX and TRC lasted for 30 and 50 days respectively, while NaCl, KCl, acid, base

and NaBz experiments continued for a total of 60 days. On the final day of selection,

we plated a sample from each population on BHI agar plates, isolated a single colony

from each plate, and stored the remaining population volume at -80C in 30 percent

glycerol.

3.4.3 Measuring drug resistance and sensitivity

IC50 measurements for each condition/drug were performed in triplicate for each

isolate (except in the case of the ancestral wild-type strain, which was performed

in replicates of 8) in 96-well plates by exposing mutants in different wells to 6-10

concentrations of drug, typically in a linear dilution series prepared in BHI medium.

106



After 12 hours of growth at 37C, the optical density at 600 nm (OD) was measured

using an Enspire Multimodal Plate Reader (Perkin Elmer) with an automated 20-

plate stacker assembly.

Each OD reading was normalized to the OD reading for the same isolate in the

absence of drug. To quantify resistance, the resulting dose response curve was fit

to a Hill-like function f(x) = (1 + (x/K)h)−1 using nonlinear least squares fitting,

where K is the half-maximal inhibitory concentration (IC50) and h is a Hill coeffi-

cient describing the steepness of the dose-response relationship. A mutant strain was

deemed collaterally sensitive (resistant) if its IC50 varied by more than 3σWT from

that of the ancestral strain, where σWT is the uncertainty (standard error across 8

replicates) of the IC50 measured in the ancestral strain. Note that all estimates of

IC50 in the ancestral (“wild-type”) strain, across all replicates and for all conditions,

are contained in this ±3σwT range, which suggests that there are unlikely to be false

positives in designating isolates as sensitive or resistant.

3.4.4 Whole-genome sequencing

We sequenced single isolates and population samples from the 13 evolved popu-

lations and a control V583 strain propagated in BHI for 8 days. We also sequenced

single isolates from two (ancestral) V583 frozen stocks. Samples from each popula-

tion were streaked from a frozen stock, grown overnight in BHI, and triple washed

in PBS. DNA was isolated using a Quick-DNA Fungal/Bacterial Kit (Zymo Reser-

ach) according to manufacturer’s instructions. The clonal samples were sequenced

at the University of Michigan sequencing core using an Illumina MiSeq system, and

the population samples were sequenced at the Microbial Genome Sequencing Center

(MiGS) at University of Pittsburgh using a NextSeq 550 system.

The resulting genomic data was analyzed using the high-throughput computa-

tional pipeline breseq [62], with default settings. Average read coverage depth was
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about 150 for single colony sequencing and 200 on the population sequencing batch.

Briefly, genomes were trimmed and subsequently aligned to E. faecalis strain V583

(Accession numbers: AE016830 - AE016833; see [27]) via Bowtie 2 [63]. A sequence

read was discarded if less than 90 percent of the length of the read did not match

the reference genome or a predicted candidate junction. At each position a Bayesian

posterior probability is calculated and the log10 ratio of that probability versus the

probability of another base (A, T, C, G, gap) is calculated. Sufficiently high consen-

sus scores are marked as read alignment evidence (in our case a consensus score of

10). Any mutation that occurred in either of the 2 control V583 strains was filtered

from the results.

For population sequencing, we limit our analysis to mutations that occur at a

frequency of greater than 30 percent. The choice of a cutoff percentage will always

be slightly arbitrary. Our goal was to minimize false positives while maintaining

the ability to identify mutations that occur at less than 100 percent. Our choice of

30 percent stems from the distribution of mutation frequencies from our population

sequencing sample (See Figure 3.7); below 30 percent, the number of variant calls

rises rapidly. While it is possible, and perhaps likely, that lower frequency mutations

may play a significant role in the evolution and observed phenotypes, additional

experiments would be needed to distinguish true variants from false positives.
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Figure 3.5: Scatter plots for resistance levels selected by different pairs of
conditions. Pairwise scatter plots of resistance profiles selected by dif-
ferent conditions (that is, scatter plots comparing pairs of columns of the
collateral sensitivity matrix). Each point represents the measured resis-
tance to a single stressor in isolates selected by the pairs of conditions on
the horizontal and vertical axes. To remove the effects of direct selection,
which are typically larger in magnitude and may bias the correlations, the
diagonal entries of the collateral sensitivity matrix (corresponding to re-
sistance to the selecting condition) are removed. In all cases, resistance is
measured in units of (log2-scaled) fold change in IC50 relative to ancestral
strain.
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Figure 3.6: Scatter plots for resistance levels to different pairs of testing
conditions. Pairwise scatter plots of resistance levels to different con-
ditions (that is, scatter plots comparing pairs of rows of the collateral
sensitivity matrix). Each point represents resistance to each of the paired
testing conditions (on the horizontal and vertical axes) in a single iso-
late. To remove the effects of direct selection, which are typically larger
in magnitude and may bias the correlations, the diagonal entries of the
collateral sensitivity matrix (corresponding to resistance to the selecting
condition) are removed. In all cases, resistance is measured in units of
(log2-scaled) fold change in IC50 relative to ancestral strain.
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Figure 3.7: Distribution of frequencies from identified mutations via popu-
lation sequencing. A histogram revealing the sample frequency of each
mutation identified via population sequencing. The dotted red lines de-
notes the semi-arbitrary cutoff we have chosen where any mutation with
a frequency below 30 percent is filtered from analysis.
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Figure 3.8: Distribution of collateral observations across all testing condi-
tions. A. Histogram revealing the frequency of measured resistance val-
ues, c, across all 13 mutants where c ≡ log2 (IC50,Mut/IC50,WT ). B. Frac-
tion of measured IC50 values that qualify as collaterally sensitive (blue)
or collaterally resistant (red), as the increase or decrease in IC50 required
to qualify as resistant or sensitive increases. The x-axis represents multi-
ples of the standard error of the mean across three technical replicates of
the wild-type to each condition. Fraction sensitive and fraction resistant
remain similar despite large changes in cutoff value.
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CHAPTER IV

Evolution in Alternating Environments With

Tunable Inter-landscape Correlations
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This chapter was amended from: Jeff Maltas, Douglas M. McNally, and Kevin B.

Wood. ‘Evolution in alternating environments with tunable inter-landscape correla-

tions’ bioRxiv, doi: 10.1101/803619 (2019).

4.1 Introduction

In this chapter we turn from the experimentally-based studies on collateral evo-

lution of the previous two chapters, to a more abstract investigation of collateral

sensitivity based on evolution in fluctuating environments. Natural populations ex-

perience tremendous environmental diversity, and understanding how this spatiotem-

poral diversity influences evolutionary dynamics is a long-standing challenge. A great

deal of work, both theoretical and experimental, has shown that spatial [1, 2, 3, 4, 5,

6, 7, 8, 9, 10] and temporal [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31] heterogeneity play an important role in adaptation of asexual

communities. For example, temporal or spatial fluctuations may lead to increased

fixation probability and adaptation rates [26, 18, 11, 2, 5, 1, 17], a phenomenon that

is also exploited in genetic programming algorithms [32]. In addition, environments

that change in systematic ways may promote facilitated variation [33, 34], allowing

organisms to preferentially harness the beneficial effects of random genetic changes

and rapidly adapt to future perturbations. And when phenotypes themselves fluc-

tuate over time, the frequency of inter-phenotype switching can evolve to match the

timescale of environmental fluctuations [16, 15, 19, 20].

It is increasingly clear that these evolutionary dynamics have practical conse-

quences for human health. The rise of drug resistance, which threatens the efficacy

of treatments for bacterial infections, cancer, and viruses, is driven–at least in part–

by evolutionary adaption occurring in complex, heterogeneous environments. Spatial

heterogeneity in drug concentration has been shown to accelerate the evolution of

resistance [35, 36, 37, 38, 39, 40], though adaptation may also be slowed when fitness
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landscapes [37] or drug profiles [41] are judiciously tuned. Similarly, temporal vari-

ations in drug exposure–for example, drug cycling–can slow resistance under some

conditions, though hospital-level strategies such as mixing may be more effective at

generating the requisite environmental heterogeneity [42, 43]. Our last two chapters

showed how collateral effects can influence evolution. In essence, these strategies force

populations to simultaneously adapt to incompatible evolutionary tasks [44, 45].

Evolutionary adaptation is often modeled as a biased random walk on a high-

dimensional landscape that links each specific genotype with a particular fitness [46,

47, 48]. In the simplest scenario, these landscapes represent evolution in the strong se-

lection weak mutation (SSWM) limit, where isogenic populations evolve step-wise as

the current genotype is replaced by that of a fitter descendant. While these idealized

models are strictly valid only under certain conditions–for example, SSWM typically

holds when mutation rate and effective population size are small–simple models have

contributed significantly to our understanding of evolution [47, 48, 49, 12, 13, 50, 51].

In the context of fitness landscape models, control strategies that exploit collateral

effects force the population to adapt to sequences of distinct, but statistically related,

landscapes. For example, alternating between two drugs that induce mutual collat-

eral sensitivity corresponds to landscapes with anti-correlated fitness peaks. When

environments change in systematic ways–for example, by forcing the population to

adapt to modular tasks comprised of related sub-goals–adaptation may select for

generalists, genotypes that are fit in a wide range of environments at the cost of

suboptimal specialization for any particular task [34, 52]. Relatively recent theo-

retical work also shows that conditional effects of evolutionary history can be cap-

tured by slowly changing landscapes–seascapes–which allow for the incorporation of

time-dependent correlations [21, 10]. In general, however, understanding evolution in

correlated landscapes–and in particular, how the choice of that correlation impacts

fitness adaptation–remains challenging.
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In this work, we investigate evolutionary dynamics of asexual populations in

rapidly alternating environments described by pairs of (potentially rugged) fitness

landscapes with tunable inter-landscape correlations (Fig 4.1). This problem is loosely

inspired by adaptation of microbial communities to 2-drug cycles in which each drug

induces collateral resistance or sensitivity to the other, though the scenario in ques-

tion may arise in many different contexts, including evolution in antibodies [53] and

viruses [54]. Our goal is to understand how the interplay between intra-landscape

disorder (ruggedness) and inter-landscape fitness correlations impact fitness. By for-

mulating the evolutionary dynamics as a simple Markov chain [55, 56], we are able

to efficiently calculate time-dependent genotype distributions and investigate adap-

tation to ensembles of landscape pairs with various levels of epistasis and fitness

correlations–results that would be more difficult to achieve from stochastic simula-

tions alone. We find that rapid switching can either increase or decrease the steady

state fitness of the population, depending on both the correlation between landscapes

and level of intra-landscape ruggedness (i.e. epistasis). On short timescales, mean fit-

ness is generally highest in static landscapes, but rapid switching between correlated

environments can produce fitness gains for sufficiently rugged landscapes on longer

timescales. Surprisingly, longer periods of rapid switching can also produce a genotype

distribution whose fitness is, on average, larger than that of the ancestor population

in both environments, even when the landscapes themselves are anti-correlated. To

intuitively understand these results, we visualized genotype distributions and inter-

genotype transitions as network diagrams, revealing that rapid switching in highly

correlated environments frequently shepherds the population to genotypes that are

locally optimal in both landscapes and, in doing so, fosters escape from the locally

optimal but globally suboptimal fitness peaks that limit adaptation in static envi-

ronments. The dynamics arise, in part, from the fact that rugged landscape pairs

are increasingly likely to exhibit shared maxima as they become more positively cor-
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related, and in turn, for landscapes with positive correlations, the mean fitness of

these shared peaks is higher than that of non-shared peaks. By contrast, evolution

in anti-correlated landscape pairs sample large regions of genotype space, exhibiting

ergodic-like steady-state behavior that results in decreased average fitness.

4.2 Results

4.2.1 Markov chain model of evolution in alternating landscape pairs with

tunable correlations

We consider evolution of an asexual haploid genome with N mutational sites.

Each mutational site can have one of two alleles (labeled 0 or 1), and a single geno-

type can therefore be represented by one of the 2N possible binary sequences of length

N. The fitness of each genotype depends on the specific environment in which evo-

lution takes place. We consider two different environments (“A” and “B”), and in

each environment, every genotype is assigned a fixed fitness value, which defines the

corresponding fitness landscapes (landscape A and landscape B) in each environment.

Each fitness landscape is therefore defined on an N -dimensional hypercubic graph,

with the nodes corresponding to specific genotypes.

To construct the landscape for a given environment, we use a many-peaked “rough

Mt. Fuji” landscape [57, 25, 58]. Specifically, we assume that the fitness of the ances-

tor genotype (0,0,0...0) is zero and that the fitness fi associated with a single mutation

at mutational site i is drawn from a uniform distribution on the interval [-1,1]. Single

mutations can therefore lead to increases (fi > 0) or decreases (fi < 0) in fitness. To

fully specify the base landscape (i.e. the smooth landscape in the absence of epista-

sis), we then assume fitness associated with multiple mutations is additive. Finally,

landscape ruggedness is incorporated by adding to the fitness of each genotype j a

fixed, random variable ξj drawn from a zero-mean normal distribution with variance
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Figure 4.1: Adaptation to alternating landscapes may depend on inter-
landscape correlations A. Schematic fitness landscape, with fitness
varying from less fit (blue) to more fit (red) over the two dimensional
genotype space. Starting from a single genotype (lower right hand cor-
ner), adaptation follows a biased random walk (arrows) toward local fit-
ness maxima (in this case, in the upper left side of the landscape). B
and C. Fitness landscapes A and B are positively (B) or negatively (C)
correlated and do not share a global fitness maximum. Adaptation under
rapid alternation of landscapes A and B leads to an altered evolutionary
trajectory (represented as arrows, with solid arrows indicating steps in A
and dashed arrows steps in B). In this example, the final fitness achieved
in both correlated (panel B) and anti-correlated (panel C) landscapes is
lower than that of static landscape evolution (panel A). Adaptation to
anti-correlated landscapes leads to a particularly significant decrease in
final fitness, as each step in B effectively reverses the progress made the
previous step in A.

126



σ2. The variable σ–the amplitude of the noise–determines the level of ruggedness of

the landscape, which simulates epistasis [59, 60, 61, 62, 63, 64, 65]. In what follows,

we focus on landscapes of size N = 7 (128 total genotypes) for computational con-

venience and limit ourselves primarily to σ = 0 (smooth landscapes) or σ=1 (rugged

landscapes).

Our goal is to investigate evolution in rapidly changing environments that cor-

respond to landscape pairs with correlated fitness peaks. To do so, we generate for

each landscape A a “paired” landscape B with similar statistical properties (identical

fitness mean and variance) but fitness peaks that are, on average, correlated with

those of landscape A in a tunable way. To do so, we represent each landscape A as

a vector Ā of length 2N and use simple matrix algebra to generate a random vector

Ā⊥ orthogonal to Ā; by construction, then, this vector corresponds to a landscape

whose fitness values are, on average, uncorrelated with those of landscape A. It is

then straightforward to generate a vector B̄, a linear combination of Ā and Ā⊥, such

that the fitness values of landscapes A and B are correlated to a tunable degree

−1 ≤ ρ ≤ 1, where ρ is the Pearson correlation coefficient between the two vectors Ā

and B̄. (see Methods).

With the landscapes specified, we then model adaptation in the well-characterized

Strong Selection Weak Mutation (SSWM) limit [46, 47, 48], which can be formally de-

scribed by a Markov chain [56, 55]. During each time step, the population transitions

with uniform probability to one of the neighboring genotypes with a higher fitness

in the current environment. We compare adaptation on a single landscape (single

landscape evolution, SLE) with adaptation to rapid alternation of the two correlated

landscapes A and B, which we refer to as paired landscape evolution (PLE). We fo-

cus here on the limit of rapid environmental switching, where the fitness landscape

changes (A-B-A-B...) at each time step. This corresponds loosely to the rapid envi-

ronmental switching seen in many laboratory experiments [66, 67, 68, 69].
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We are primarily interested in comparing the (average) steady-state fitness of

populations undergoing SLE to that of populations undergoing PLE. The average

fitness, F̄X(p̄) , in environment X can be calculated at any time step t using F̄X(p̄) =

X̄ · p̄(t), where p̄(t) is the vector whose ith component is the probability to be in

genotype i at time t and X̄ is the landscape vector for environment X. Because the

process can be described by a Markov chain, the vector p̄(t) is given by p̄(t) = TM p̄(0),

where the matrix TM describes the sequence of environments over time (e.g. TM = TMA

for M steps in environment A, or TM = (TBTA)M/2 for M consecutive A-B cycles,

with TA and TB the transition matrices corresponding to single steps in environment

A and B, respectively). In what follows, we focus primarily on the mean fitness

difference between the SLE and PLE adaptation, which is given by F̄A
∆ ≡ F̄A(p̄A) −

F̄A(p̄AB), where p̄A is the steady state genotype distribution following adaptation to

environment A, and p̄AB is the steady state genotype distribution following adaptation

to alternating A-B environments. Note that we define this fitness difference, F̄A
∆ , with

respect to landscape Ā (noted by superscript), which allows us to compare adaptation

in environment A with adaptation in the alternating A-B environments. In the drug

cycling analogy, we are measuring the average fitness in the drug A environment–

essentially a measure of resistance to that drug. In all calculations, we consider an

ensemble of 1000 landscapes pairs–with each pair sharing the same mean and variance

in fitness and the same inter-landscape correlations–and we average the results over

this ensemble.

4.2.2 Adaptation in rugged landscapes frequently ends in local, sub-

optimal fitness maxima

While adaptation to static, rugged landscapes is well-understood, we first briefly

discuss the effects of landscape ruggedness in the context of the current model. In

static landscapes, steady state is reached when the genotype corresponds to a lo-
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theoretical maximum (2N/(N+1) = 16). Right panel: fraction of adapted
populations that reach the global fitness maximum value as a function of
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cal fitness maximum. In the case of smooth, purely additive landscapes (σ = 0),

there is a single fitness peak that corresponds to the global maximum, which we

call gMax. However, as the landscape becomes more rugged (σ > 0), the average

number of local maxima increases, eventually reaching the theoretical maximum of

2N/(N + 1) (Fig 4.2A). In turn, the fraction of adaptation trajectories that reach the

global maximum decreases, reflecting the propensity of rugged landscapes to trap evo-

lution in globally sub-optimal genotypes. To visualize these results, we represented

the steady state genotype distributions and inter-genotype transitions as a network

diagram (Fig 4.2B), with each node (circle) representing a genotype. The shading

of each circle represents the relative fitness of that genotype (ranging from less fit,

white, to more fit, black) and the size of the circle indicates occupation probability in

the steady state. Arrows connecting different genotypes indicate nonzero transition

probabilities, with the thickness of the arrow corresponding to its magnitude. We

show only those transitions that can occur when adaptation starts in the ancestor

genotype (top of diagram). In the case of evolution on a smooth landscape (σ = 0,

Fig 4.2B, left panel), all trajectories lead to the single global maximum (indicated by

red “+”). However, in the rugged landscape (σ = 1, Fig 4.2B, right panel), there is

a nonzero probability of settling in each of three local maxima, and the population

frequently ends in a non-optimal genotype. Increasing ruggedness would therefore be

expected to lower the average fitness achieved in an ensemble of landscapes.

4.2.3 Switching between positively correlated landscapes can produce

higher average fitness than adaptation to a static environment

Next, we set out to compare adaptation to landscape A with adaptation to al-

ternating landscapes (A, B) with a tunable level of correlation, ρ, in the absence of

epistasis (σ = 0, Fig 4.3A, blue). On these smooth landscapes, the fitness is single-

peaked [25], and in the absence of switching, the population always reaches this global
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maximum. In alternating environments, adaptation approaches the same average fit-

ness as in static environments (i.e. F̄A
∆ ≈ 0)–implying that it finds the global fitness

maximum–for all but the most negatively correlated landscapes (ρ < −0.85), where

switching leads to steep decreases in fitness. By contrast, when landscapes are rugged

(σ = 1), we find a range of correlations for which switching (PLE) increases the mean

fitness (F̄A
∆ < 0, Fig 4.3A, orange). Furthermore, as ruggedness increases, the range

of correlations leading to increased fitness grows (Fig 4.3B).

4.2.4 Fitness can be maximally increased in either static or alternating

environments depending on the timescale

We find that adaptation to static environments typically occurs on a faster timescale

than adaptation to alternating environments (Fig 4.8). As a result, the protocol

yielding the highest average fitness may differ depending on the timescale over which

the comparison is made. For example, on short timescales (5 evolutionary steps,

(Fig 4.3C, blue), adaptation to static environments always leads to greater fitness

gain, regardless of the correlation between landscapes. On moderate (11 evolution-

ary steps, Fig 4.3C, red) to long (Fig 4.3C, black) timescales, however, we again

see a range of positive correlations for which switching improves fitness–first only

for highly correlated landscapes, and then eventually for a wider range of positively

correlated landscapes. This result indicates that the optimal protocol for increasing

fitness may depend on the chosen timescale. In the context of drug cycling, these

results suggest that different strategies may be called for in scenarios that heavily

weight short-term evolutionary dynamics–for example, the treatment regime for a

single patient–and those associated with long evolutionary time-scales, such as the

emergence of hospital-wide antibiotic resistance over the course of years.
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Figure 4.3: Modulated fitness in alternating landscapes depends on intra-
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4.2.5 Adaptation to alternating landscapes can lead to increased mean

fitness in both landscapes, even when they are anticorrelated

While we have so far focused on mean fitness defined in landscape A, either due

to static (F̄A(p̄A)) or alternating (F̄A(p̄A)) environments, we also asked how fitness

in landscape B was modulated during adaptation. If adaptation occurs to a static

landscape (A), the results are simple: the genotype adapted to A will on average

exhibit increased (decreased) fitness in B when landscape B is positively (negatively)

correlated with A. This scenario is reminiscent of collateral effects between different

drugs, where increased resistance to one drug may be associated with either increased

(cross resistance) or decreased (collateral sensitivity) resistance to a different (unseen)

drug. In the case of alternating environments, however, the outcome is less clear a

priori.

For smooth landscapes (σ = 0), we find that adaptation to the alternating land-

scapes leads to increased fitness in B (F̄B(p̄AB) > 0) when the landscapes are posi-

tively correlated and decreased fitness when they are negatively correlated (Fig 4.3D).

Nonzero epistasis shifts the boundary separating increased and decreased fitness to-

ward negative correlations. As a result, switching leads to increased fitness in both

landscapes for a wider range of correlations–even, counterintuitively, in cases where

the landscapes are (weakly) anti-correlated. In the context of drug cycling, this re-

sult suggests that cross resistance is likely to arise following repeated cycling of two

drugs, even when their fitness landscapes are anti-correlated (i.e. drugs induce mutual

collateral sensitivity).

4.2.6 Alternating between highly-correlated landscapes promotes escape

from local fitness optima

To understand why switching between highly correlated landscapes can increase

fitness relative to single landscape adaptation, we again represented adaptation on a
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simple (N = 4) network representing a particular pair of fitness landscapes (Fig 4.12).

The choice of N=4 allows for a simpler visual interpretation of the results, and

the relevant dynamics are qualitatively similar for a broad range of landscape sizes

(Fig 4.7). The landscape for environment A is characterized by multiple local maxima

(Fig 4.12A, left panel), and in this example, the adaptation dynamics starting from

the ancestral genotype are relatively simple, with only two paths possible (Fig 4.12A,

right panel). With equal probability, the trajectory ends in one of two possible states,

one of which is the global maximum.

If we now introduce rapid alternation with a second, positively correlated land-

scape (ρ = 0.8), the dynamics are much richer (Fig 4.12B). In this example, there

is a single shared (local) maximum between the two landscapes (marked with red

“+”), and adaptation to alternating environments eventually shepherds all trajecto-

ries to this shared maximum, which also happens to be the global maximum. As a

result, alternating between landscapes leads to (on average) greater fitness increases

than that achieved in static landscapes, where trajectories are split between local and

global maxima. Intuitively, this example suggests that one advantage of rapid switch-

ing is that it dislodges trajectories from suboptimal local maxima–that is, switching

between highly (but not perfectly) correlated landscapes provides a source of fluc-

tuations that maximize the likelihood of finding globally optimal genotypes. This

result is reminiscent of the observed “ratchet-like” mechanism of the lac operon in

Escherichia coli [31].

4.2.7 Evolution in highly anti-correlated paired landscapes broadly sam-

ples genotype space resulting in reduced average fitness

We now return to dynamics in strongly anti-correlated landscapes, where shared

maxima may be less likely to occur. To intuitively understand dynamics in this

regime, we visualized the fitness landscape and evolutionary trajectories for a pair of
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simple (N = 4) anticorrelated landscapes (Fig 4.13). In this example, adaptation to

the static landscape leads to considerably higher fitness than adaptation to alternating

landscapes. Interestingly, we see that the genotype distribution remains broad, even

for long times. In fact, the only genotypes that remain unoccupied (pi = 0) are those

five that correspond to local minima in the A landscape. Including an additional

step in landscape B leads to a similarly broad distribution, now with unoccupied

genotypes corresponding to local minima of landscape B (Figure 4.10). In contrast

to adaptation to single landscapes or alternating, positively correlated landscapes,

the steady state distribution is not dominated by local fitness maxima but instead

corresponds to broad genotype distribution and an associated decrease in average

fitness.

4.2.8 Adaptation to alternating landscapes is frequently dominated by

presence or absence of shared fitness maxima

We hypothesized that the increased fitness in alternating landscapes is closely

linked to the expected number of shared maxima between paired landscapes. To

probe this hypothesis, we first estimated what fraction of the local maxima in a given

fitness landscape would (on average) also correspond to local maxima in a second

(correlated) landscape. As intuition suggests, the fraction of shared maxima increases

with correlation, both for smooth and rugged landscapes (Fig 4.4A). In addition, we

estimated the fraction of landscape pairs in the entire ensemble that share at least

one shared maximum (Fig 4.4B). Again we find that this quantity increases with

correlation, but it does so much more rapidly for rugged landscapes. For smooth

landscapes, the latter fraction increases gradually–and the curve is identical to that

in (Fig 4.4A), a result of the fact that smooth landscapes have only a single (global)

maximum.

To link these architectural properties of the landscapes with dynamics, we calcu-
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lated adaptation trajectories under rapid switching of all paired landscapes in these

ensembles (Fig 4.4C). For both smooth landscapes and negatively correlated rugged

landscapes, the fraction of trajectories ending in a shared maximum closely mirrors

the fraction of landscapes pairs that share a maximum. This correspondence suggests

that under these conditions, when landscapes share a local maximum, the adapting

system is likely to settle there. On the other hand, for positively correlated rugged

landscapes, the likelihood of finding a shared maximum is relatively insensitive to

correlation until ρ becomes quite large (> .80), when it rapidly increases (Fig 4.4C).

The further clarify the connection between fitness and shared maxima, we divided

the local fitness maxima from landscape A into one of two categories: those that

also correspond to a local maximum in landscape B, and those that do not. We

found, somewhat counter-intuitively, that the mean fitness differs for the two cat-

egories (Fig 4.4D). For negatively correlated landscape pairs, the fitness of shared

maxima is less than that of non-shared maxima. By contrast, shared maxima in

highly (positively) correlated landscapes have a higher mean fitness than non-shared

maxima. In addition, there is a range of positive ρ where the fitness of shared max-

ima is also greater than the average fitness of maxima in a single A landscape (which

corresponds to the ρ → 1 limit of the curve), offering an explanation for the fitness

increase induced by alternating between highly correlated landscapes. Specifically,

evolutionary trajectories typically settle into a single local maxima for adaptation

to both static and positively correlated, alternating environments; however, for a

range of highly (but not perfectly) correlated landscape pairs, the mean fitness of

those shared maxima is greater than the mean fitness of local maxima in a single A

landscape.
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Figure 4.4: Evolution in alternating landscapes is frequently dominated by
presence or absence of shared fitness maxima. A. Fraction of lo-
cal maxima in landscape A that also correspond to a shared maxima in
landscape B (σ = 0, blue; and σ = 1, red). B. Fraction of landscape
pairs share at least one maximum. C. Fraction of trajectories ending
in a shared maximum as a function of correlation. D. Average fitness
of shared maxima (blue) and average fitness of non-shared maxima (or-
ange). Dashed line is average fitness of all local maxima in landscape A.
E. Normalized entropy of the steady state genotype distribution follow-
ing adaptation to alternating landscapes. Curves correspond to the full
landscape pair ensemble (blue) and a reduced ensemble consisting only of
landscapes that contain a shared maximum (red), bottom, and a reduced
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Figure 4.4: The relative entropy is defined as S(p)/Smax ≡ −
∑

i pi ln pi, where pi is
the steady state probability of being in genotype i and Smax is the entropy
of a uniform distribution. F. Fraction of genotypes that have a nonzero
probability of occupation in either the last A step or last B step at steady-
state. Curves represent the paired landscape ensemble with no shared
maxima (blue), the ensemble where every pair has at least one shared
maximum (red), and the full ensemble (black). G. Difference in average
fitness achieved in static and switching landscapes. Curves correspond
to the full ensemble of paired landscapes (black) or a restricted ensemble
that includes on those pairs that share a fitness maximum (red). H.
Similar to panel F, with curves corresponding to the full ensemble (black)
or a restricted ensemble that includes only those pairs with no shared
fitness maxima (red). Error bars are ± standard error of the mean in the
ensemble of landscapes. Error bars are ± standard error of the mean in
the ensemble of landscapes. N = 7 for all curves, and σ = 1 for all curves
in panels D-H.

4.2.9 Steady-state genotype distributions transition from narrow to broad

as correlation is decreased

To further characterize steady state dynamics, we calculated the entropy of the

steady state genotype distribution, defined as S(p)/Smax ≡ −
∑

i pi ln pi, where pi

is the steady state probability of being in genotype i and Smax is the entropy of a

uniform distribution (Fig 4.4E)–that is, a state where every genotype is equally prob-

able. To capture dynamics associated with potential non-fixed point behavior, for

this analysis we slightly modify the definition of steady state to be pi = (pA + pB)/2,

where pA is the steady state fitness following a step in landscape A (the previously

used definition) and pB the fitness in the same steady state regime but following a step

in landscape B (in words, we average over a full A-B cycle in the steady state). We

find that as correlation (ρ) increases, the entropy of the system decreases, indicating

that the dynamics are confined to an ever smaller set of genotypes–presumably those

corresponding to shared maxima. Indeed, if we restrict the ensemble to only those

landscape pairs that share a maximum, the entropy of the distribution is unchanged

for highly correlated landscapes, suggesting that shared maxima dominate the steady
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state dynamics. By contrast, when landscape pairs are anticorrelated, restricting the

ensemble to pairs without shared maxima closely approximates the results of the full

ensemble, suggesting that dynamics in this regime are dominated by qualitatively dif-

ferent behavior. Consistent with changes in the entropy of the genotype distribution,

we also find that correlation dramatically changes the fraction of genotype space oc-

cupied (with nonzero probability) in the steady state (Fig 4.4F). For highly correlated

landscapes, only a small fraction of the total genotype space is occupied. By contrast,

highly anti-correlated landscapes produce steady state distributions wherein all states

are occupied with non-zero probability, suggesting ergodic-like behavior, consistent

with the example in Fig 4.13. The fact that relative entropy remains less than 1 in

this regime does indicate, however, that the distribution is not fully uniform.

Finally, in Fig 4.4G, we plot the difference in steady state fitness achieved in static

vs alternating environments for both the full landscape pair ensemble (black) and for

a reduced ensemble consisting only of landscapes with shared maxima (red). We

find that the curves are nearly identical over a wide range of correlations σ > −0.4.

Similarly, when correlation is strongly anticorrelated, fitness differences are similar be-

tween the full ensemble and the reduced ensemble with no shared maxima (Fig 4.4H).

Taken together, these results provide evidence that adaptation is frequently domi-

nated by the presence or absence of shared fitness maxima, which in turn depends on

the correlation between landscapes and landscape ruggedness.

4.2.10 A simple phenomenological model suggests these results are ro-

bust to small and moderate clonal interference

We now consider the role of clonal interference. Traditional descriptions of clonal

interference still allow mutations to fix sequentially, however the probability of fixa-

tion is increasingly related to the fitness advantage of the mutant [49]. In order to

investigate the effect of this classical clonal interference we borrow a phenomenolog-
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Figure 4.5: Small and moderate clonal interference slightly reduce the ef-
fects of alternating landscape evolution. A. Difference in average
fitness achieved in static and switching landscapes. Curves correspond
to different strengths of clonal interference (blue: random walker, x = 0,
red: proportional walker, x = 1, green: x = 2, black: x = 5, magenta:
x = 10, orange: x infinite, always steps to largest fitness neighbor). B.
Normalized entropy of the steady state genotype distribution following
adaption to alternating landscapes with different clonal interference. C.
Fraction of trajectories ending in a shared maximum as a function of cor-
relation with different clonal interference. D. Collateral fitness change,
ranging from blue (less fit) to red (more fit), for populations adapted to
alternating environments A and B as a function of clonal interference (x ).

ical model developed by Tan and Gore [25]. In our current model, the population is

treated as a random walker that steps to any nearby genotype with a higher fitness

with equal probability. In the phenomenological model, the population is treated as

a homogeneous greedy walker, where as x becomes larger, the probability of stepping

to the more fit neighbors increases dramatically.

Using this phenomenological model, we observe for small and moderate population

sizes (x ∼ 5, 105 cells) our results remain qualitatively unchanged (Fig 4.5). However,

as the population size gets large (x > 5, > 105 cells) the fitness difference, genetic
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diversity and collateral effects due to switching disappear. These difference can be

seen most dramatically in anti-correlated landscape pairs.

Of course, this classical model of clonal interference has limitations. It assumes

a homogeneous population, thus ignoring the genetic diversity necessary of clonal

interference. In addition, it neglects the possibility for deleterious or multiple simul-

taneous mutations to fix. Still, this model provides insight into a critical aspect of

clonal interference where more fit mutants are more likely to fix.

4.2.11 Consecutive steps in the same landscape before switching changes

the quantitative, but not qualitative results

We now consider how the period of switching may impact our results. To do this,

we varied the amount of consecutive steps in the same landscape before switching

from a single step (identical to the original model) to twenty steps (Fig 4.6). Similar

to the addition of clonal interference, we see a quantitative shift to smaller fitness

differences (Fig 4.6A), however the qualitative behavior, including switching leading

to an increase in fitness at high correlation remains the same.

As with clonal interference, the largest difference occur in anti-correlated land-

scape pairs. As the the number of consecutive mutations in a single environment

grows, the probability of ending in a genotype that is not a maximum in A or B

necessarily shrinks, as evidence by the smaller entropy (Fig 4.6B). Interestingly, ob-

serving collateral resistance in anti-correlated landscapes is robust to period selection

(Fig 4.6D). Importantly, the fitness advantage conferred by switching between corre-

lated landscape pairs is robust to period choice.

4.3 Discussion

Our results indicate that both intra-landscape disorder (ruggedness) and inter-

landscape fitness correlations impact fitness in rapidly alternating fitness landscapes.
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Figure 4.6: Consecutive steps in the same landscape before switching lessens
the effects of alternating landscape evolution. A. Difference in aver-
age fitness achieved in static and switching landscapes. Curves correspond
to different evolutionary steps taken in a landscape before switching (blue:
1 step, red: 2 steps, green: 4 steps, magenta: 8 steps, black: 20 steps). B.
Normalized entropy of the steady state genotype distribution following
adaption to alternating in landscapes with different switching periods.
C. Fraction of trajectories ending in a shared maximum as a function of
correlation with different switching periods. D. Collateral fitness change,
ranging from blue (less fit) to red (more fit), for populations adapted to
alternating environments A and B as a function of switching period.
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Compared with static adaptation, rapid switching can lead to increased or decreased

fitness, depending on both the correlation between landscapes and level of intra-

landscape ruggedness (i.e. epistasis). Perhaps most strikingly, switching between

highly, but not perfectly, correlated rugged landscapes can increase fitness by pro-

moting escape from local fitness maxima, increasing the likelihood of finding global

fitness optima. Furthermore, rapid switching can also produce a genotype distribu-

tion whose fitness is, on average, larger than that of the ancestor population in both

environments, even when the landscapes themselves are anti-correlated. Adaptation

dynamics are often dominated by the presence or absence of shared maxima between

landscapes. Rugged landscape pairs are increasingly likely to exhibit shared maxima

as they become more positively correlated, and in turn, for landscapes with positive

correlations, the mean fitness of these shared peaks is higher than that of non-shared

peaks. By contrast, evolution in anti-correlated landscape pairs samples large regions

of genotype space, exhibiting ergodic-like steady-state behavior that results in de-

creased average fitness. A simple phenomenological model suggests these results are

robust to competition due to small and moderate clonal interference, however they

disappear as population sizes grow excessively large. In addition, while prolonging

the period of switching can alter the dynamics in anti-correlated landscape evolution,

the fitness advantage conferred by alternating evolution in correlated landscape pairs

is robust to the period of switching.

While our results are loosely inspired by antibiotic cycling, the model is highly

idealized and certainly cannot make predictions that apply directly to clinical sce-

narios. At the same time, the simplicity and relative generality of the model means

that it may be relevant for understanding the qualitative behavior of a wide range

of systems, including evolution in antibodies [53], viruses [54], and bacteria, where

ratchet-like mechanisms for rapid adaptation have been observed experimentally [31].

Our model relies on the Strong Selection Weak Mutation (SSWM) limit and also
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neglects potentially relevant dynamics that could arise due to clonal interference,

horizontal gene transfer, and fixation of deleterious mutations. In addition, we focus

on small (N = 7) genotype for tractability, and dynamics could differ for genotypes

of drastically different sizes.

It is important to note that the paired landscapes in our ensembles are constructed

to share certain global features–like mean fitness–and are related by a prescribed

inter-landscape correlation, but they are not statistically identical. For example, the

average number of local maxima can differ between landscape A and B, leading to

different levels of evolved fitness for each landscape individually (Figure 4.11). This

indicates that landscapes A and B have effectively different levels of epistasis, depend-

ing on the desired value of ρ, though these differences are most pronounced when A

landscapes are very smooth (σ ≈ 0). These differences do not seem to be apprecia-

bly impacting fitness dynamics, as removing them by choosing a reduced ensemble

(keeping only the B landscapes the exhibit similar fitness gains as A under static

adaptation) does not appreciably modify the results (Figure 4.11). Nevertheless, it

may be interesting to investigate switching dynamics using landscapes with different

types of statistical similarities–for example, those that differ only in higher-order mo-

ments, or those that fully decouple landscape ruggedness and correlation [52]). In

fact, the results presented here are complementary to recent findings showing that

environmental switching can enhance the basin of attraction for generalists, which

are genotypes that are fit in multiple environments [52]. While the focus of the work

is different–and the timescale of environmental switching and the statistical relation-

ships between landscape pairs differ in their model–our results similarly highlight the

importance of shared landscape maxima in determining adaptation dynamics. Future

work may aim to further elucidate the evolutionary impacts of varying timescale, or-

dering, and temporal correlations in landscape dynamics. In the long run, we hope

results from idealized models like these offer increased conceptual clarity to comple-
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ment the rapidly evolving experimental approaches for mapping landscape dynamics

in living organisms.

4.4 Methods

4.4.1 Construction of the landscapes

We consider evolution of an asexual haploid genome withN mutational sites. Each

mutational site can have one of two alleles (labeled 0 or 1), and a single genotype

can therefore be represented by one of the 2N possible binary sequences of length N.

To construct the landscape for a given environment, we use a many-peaked “rough

Mt. Fuji” landscape [57, 25, 58]. Specifically, we assume that the fitness of the

ancestor genotype (0,0,0...0) is zero and that the fitness fi associated with a single

mutation at mutational site i is drawn from a uniform distribution on the interval

[-1,1]. We then assume fitness associated with multiple mutations is additive, and

landscape ruggedness is incorporated by adding to the fitness of each genotype j a

fixed, random variable ξj drawn from a zero-mean normal distribution with variance

σ2.

To create paired fitness landscapes, we represent each landscape A as a vector

Ā of length 2N , which we center and rescale to achieve a zero mean, unit variance

vector. Then, we generate a Gaussian random vector Ā⊥ (also with zero mean and

unit variance) and subtract from Ā⊥ its projection onto Ā, making Ā⊥ orthogonal

to Ā; by construction, this vector corresponds to a landscape whose fitness values

are, on average, uncorrelated with those of landscape A. It is then straightforward to

generate a vector B̄, a linear combination of Ā and Ā⊥, such that the fitness values

of landscapes A and B are correlated to a tunable degree −1 ≤ ρ ≤ 1, where ρ is the

Pearson correlation coefficient between the two vectors Ā and B̄. At the end of this

procedure, we rescale Ā and B̄ so that both have mean and variance equal to that of
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the original A landscape.

4.4.2 Evolution on the landscapes

The SSWM assumption allows the evolutionary trajectories to be modeled as a

Markov chain [56, 55]. We follow the “random move SSWM model”, which says

that the probability of transitioning between adjacent genotypes i → j is given by

Tij = 1/m, with m the total number of i-adjacent genotypes with fitnes greater than

that of i in the given environment. Each environment (A or B) has its own transition

matrix, which we designate as TA and TB. Evolution in environment A is then given

by

p̄(t) = (TA)tp̄(0) (4.1)

with p̄(t) the vector whose ith component is the probability to be in genotype i at

time step t. We refer to the steady state (t→∞) limit of this process as p̄A. Similarly,

we can describe rapidly alternating landscapes (A-B-A-B...) with

p̄(t′) = (TBTA)t
′/2p̄(0) (4.2)

with t′ ≡ 2t an even time step. We refer to the steady state (t → ∞) limit

of this process as p̄AB. In practice, we define steady state using the condition

‖(p̄(2t+ 1)− p̄(2t− 1))‖ < ε = 0.001. In words, we require the change in p̄ between

consecutive steps in environment A to be sufficiently small. To facilitate compar-

ison with static evolution in landscape A, we always end the process after a step

in landscape A, meaning there are always an odd number of steps. Ending instead

in landscape B results in qualitatively similar behavior, though the fitness is often

shifted, indicating that a single step in A or B–even in steady state–can lead to

significant changes in fitness 4.9.
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4.5 Appendix

N = 3

N = 10

N = 10

N = 3

Figure 4.7: Rugged landscapes of different sizes show qualitatively similar
changes in fitness as a function of correlation. Difference in average
fitness (at steady state) between populations adapted to a single static
landscape (landscape A) or rapidly alternating landscape pairs (A-B cy-
cles) as a function of correlation between landscapes A and B. Average
fitness is defined as the mean fitness of the steady state genotype dis-
tribution (which arises following adaptation to either static or switching
protocols) measured in landscape A. Different curves range from N = 3
to N = 10, and σ = N/12 for each landscape to achieve relatively similar
magnitudes of epistasis as N varies.
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Figure 4.9: Adapted fitness depends on whether final step is taken in land-
scape A or B when landscapes are anticorrleated. A. Difference in
average fitness (at steady state) between populations adapted to a single
static landscape (landscape A) or rapidly alternating landscape pairs (A-B
cycles) as a function of correlation between landscapes A and B. Average
fitness is defined as the mean fitness of the steady state genotypte dis-
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type distribution arising from adaptation to alternating A-B landscapes.
C. Network representation of example fitness landscapes and transition
probabilities following long-term adaptation to uncorrelated (ρ = 0) land-
scapes; adaptation ends either in landscape A (left) or B (right). N = 4
in all panels.
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Figure 4.10: Adaptation to anti-correlated landscapes can produce cycles
that sample large fractions of genotype space. Network represen-
tations of 16 consecutive steps in the steady state for paired landscape
evolution with ρ = −0.88. Each circle represents a genotype (ancestral
genotype at the top), with shading indicating the relative fitness of that
genotype and size representing the occupation probability at that time
step. Arrows represent transitions between genotypes that occur with
nonzero probability and are accessible starting from the ancestor geno-
type. The width of the arrow represents the magnitude of the transition
probability.
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Figure 4.12: Evolutionary dynamics in alternating landscapes with posi-
tively correlated fitness peaks. A. Left panel: network representa-
tion of adaptation on a static landscape (environment A) of size N = 4.
Each circle represents a genotype (ancestral genotype at the top), with
shading indicating the relative fitness of that genotype and size repre-
senting the occupation probability in the steady state. Red + symbols
mark genotypes corresponding to local fitness maxima. Arrows represent
transitions between genotypes that occur with nonzero probability–that
is, the entries of the transition matrix. The width of the arrow repre-
sents the magnitude of the transition probability. Right panel: same
as left panel, but showing only transitions that occur during adaptation
starting from the ancestral genotype (top circle).
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Figure 4.12: B. Network representations of adaptation (at different time points) in al-
ternating landscapes with positively correlated fitness peaks. Red num-
ber above each landscape represents the current evolutionary time point
(ranging from 0 to SS, indicating steady state of approximately 200
steps). Directed arrows represent possible transitions between genotypes
based on the current genotype distribution (indicated by the circle sizes)
and the current landscape (A or B). Average fitness at each time point
(calculated over the current genotype distribution) are listed above each
plot. Even numbered steps correspond to landscape A, odd to landscape
B.
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Figure 4.13: Evolutionary dynamics in alternating landscapes with nega-
tively correlated fitness peaks. A. Left panel: network representa-
tion of adaptation on a static landscape (environment A) of size N = 4.
Each circle represents a genotype (ancestral genotype at the top), with
shading indicating the relative fitness of that genotype and size repre-
senting the occupation probability in the steady state. Red + symbols
mark genotypes corresponding to local fitness maxima. Arrows represent
transitions between genotypes that occur with nonzero probability.
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Figure 4.13: he width of the arrow represents the magnitude of the transition proba-
bility. Right panel: same as left panel, but showing only transitions that
occur during adaptation starting from the ancestral genotype (top cir-
cle). B. Network representations of adaptation (at different time points)
in alternating landscapes with negatively correlated fitness peaks. Red
number above each landscape represents the current evolutionary time
point (ranging from 0 to SS, indicating steady state of approximately 200
steps). Directed arrows represent possible transitions between genotypes
based on the current genotype distribution (indicated by the circle sizes)
and the current landscape (A or B). Average fitness at each time point
(calculated over the current genotype distribution) are listed above each
plot. Even numbered steps correspond to landscape A, odd to landscape
B.
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CHAPTER V

Conclusion
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This research sought to better understand the possibilities and limitations of col-

lateral sensitivity. We began with an extensive quantitative study of the phenotypic

and genetic collateral effects in E. faecalis . We demonstrate that not only are collat-

eral resistance and sensitivity common, but these profiles can be highly heterogeneous

with collateral profiles often times varying between mutants evolved to the same se-

lection pressure. While these results may be discouraging, we also demonstrate that

the variability in collateral profile is sensitive to the selecting drug, suggesting that

some drugs may be better suited for optimal control strategies than others due to

the stability of the evolutionary response. Interestingly, we show that despite the

heterogeneity in collateral profiles of individual mutants, these profiles mutants from

the same drug class tend to cluster into statistically similar groups.

As a proof of principle, using a simple mathematical model inspired by a Markov

Decision Process, we demonstrate how these profiles may inform optimal drug proto-

cols that can account for both the stochasticity of evolution and varying time hori-

zons. Optimizing over these different time horizons may be useful when considering

a single patient (short-term time horizon) or a hospital (long-term time horizon).

We then confirmed these predictions with extensive lab-evolution experiments and

demonstrate the predicted optimal outperforms all single-drug and two-drug cycles

as well as a representative four-drug cycle.

We expand on this work to include nonantibiotic selecting conditions such as acidic

and basic pH, high salt environments, preservatives and disinfectants. These results

provide the first systems-level picture of the collateral effects between antibiotic and

nonantibiotic conditions. Indeed, we see collateral effects between these conditions

are quite common. These collateral effects suggest more work is needed to understand

the role of food additives, preservatives, biocides or common natural environments in

the spread of multidrug resistance. As a proof-of-principle, we showed experimentally

that consecutive adaption to different environments may be used to increase the total
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number of sensitivities than either environment can induce alone.

When taken together we have learned much about the potential of collateral sensi-

tivity as an evolutionary-based therapy, however many questions remain. It is unclear

how our results might differ when performed in a different ancestral strain. V583 is

highly resistant to multiple antibiotics, and as such might differ substantially from

a strain without high native resistance. In addition, our sequencing results are con-

servative and only report mutations with a frequency above 30 percent. It is likely

we are missing mutations that occur at a low frequency, but nonetheless play a large

role in the resistance of the population. In addition, our technique is not sensitive to

mobile elements, and as such we are unable to identify any that may be responsible

for the observed phenotypic changes. Our MDP is not meant to be a detailed, clin-

ically accurate model. Instead, we first focused on proving this approach can work

for in vitro laboratory experiments. Extensions to this work to incorporate host and

immune effects or drug-free periods may help bridge the gap between laboratory evo-

lution and in-patient evolution. In addition, we only measured the collateral profiles

at one time point. It is plausible that the collateral profiles are changing dramatically

over time and more precise time-sensitive measurements are required to fully utilize

this approach therapeutically.

Finally, we sought to understand how collateral effects manifest in the evolution-

ary dynamics between a pair of statistically related fitness landscapes. Collateral

effects manifest themselves in the correlation between a pair of landscapes, where

highly correlated landscapes are analogous to collateral resistance, and anti-correlated

landscapes are analogous to collateral sensitivity. Our results suggest that both intra-

landscape disorder (ruggedness or epistasis) and inter-landscape correlation (collateral

effects) impact the fitness in rapidly alternating fitness landscapes. When compared

to evolution in either landscape alone, we see that highly correlated landscape pairs

reach a higher mean fitness while anti-correlated landscape pairs reach a significantly
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lower mean fitness. Interestingly, we see that higher fitness achieved due to paired

landscapes with positive correlations only occurs in the presence of epistasis. We

show these results are largely driven by the location and prevalence of shared maxima

between landscapes. Rugged, correlated landscapes are much more likely to exhibit

shared fitness maxima than anti-correlated landscapes. In the case of positive correla-

tions, these shared maxima lead to stepping stones to higher fitness as the population

rapidly samples each landscape. In the case of anti-correlations, the absence of shared

maxima results in ergodic-like behavior where the population endlessly wanders the

genotype space.

While our results are inspired and informed by drug cycling, our model is highly

idealized and should not be used to predict clinical outcomes. Our model relies

on the Strong Selection Weak Mutation (SSWM) limit and thus ignores many of the

complicating factors associated with horizontal gene transfer, large clonal interference

effects, and the fixation of deleterious mutants. In addition, practical genotype spaces

can be billions of base pairs long, while our landscape range from 2 to 10. This

approach is impractical for large genotype spaces as the landscape size grows as 2N ,

where N is the length of the genome. Future work may aim to investigate the impact

of large clonal interference, deleterious mutations, or temporally-varying landscapes.
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