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ABSTRACT

Dynamic treatment regimes (DTRs) have gained increasing interest in the field

of personalized health care in the last two decades, as they provide a sequence of

individualized decision rules for treating patients over time. In a DTR, treatment is

adapted in response to the changes in an individual’s disease progression and health

care history.

However, specific challenges emerge when applying the current methods of DTR

in practice. For example, a treatment decision often happens after a medical test,

and is thus nested within the decision of whether a test is needed or not. Such

nested test-and-treat strategies are attractive to improve cost-effectiveness. In the

first project of this dissertation, we develop a Step-adjusted Tree-based Learning

(SAT-Learning) method to estimate the optimal DTR within such a step-nested

multiple-stage multiple-treatment dynamic decision framework using test-and-treat

observational data. At each step within each stage, we combine a doubly robust

semiparametric estimator via Augmented Inverse Probability Weighting with a tree-

based reinforcement learning procedure to achieve the counterfactual optimization.

SAT-Learning is robust and easy to interpret for the strategies of disease screening

and subsequent treatments when necessary. We applied our method to a Johns Hop-

kins University prostate cancer active surveillance dataset to evaluate the necessity

of prostate biopsy and identify the optimal test-and-treatment regimes for prostate

cancer patients.
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Our second project is motivated by scenarios in medical practice where one need to

decide on patients radiation or drug doses over time. Due to the complexity of contin-

uous dose scales, few existing studies have extended their methods of multi-treatment

decision making to a method to estimate the optimal DTR with continuous doses. We

develop a new method, Kernel-Involved-Dosage-Decision learning (KIDD-Learning),

which combines a kernel estimation of the dose-response function with a tree-based

dose-search algorithm, in a multiple-stage setting. At each stage, KIDD-Learning re-

cursively estimates a personalized dose-response function using kernel regression and

then identifies the interpretable optimal dosage regime by growing an interpretable

decision tree. The application of KIDD-Learning is illustrated by evaluating the dy-

namic dosage regimes of the adaptive radiation therapy using a Michigan Medicine

liver cancer dataset.

In KIDD-Learning, our algorithm splits each node of a tree-based decision rule

from the root node to terminal nodes. This heuristic algorithm may fail to identify

the optimal decision rule when there are critical tailoring variables hidden from an

imperceptible parent node. Therefore, in the third project, we propose an important

modification of KIDD-Learning, Stochastic Spline-Involved Tree Search (SSITS), to

estimate a more robust optimal dosage regime. This new method uses a simulated

annealing algorithm to stochastically search the space of tree-based decision rules.

In each visited decision rule, a non-parametric smooth coefficient model is applied

to estimate the dose-response function. We further implement backward induction

to estimate the optimal regime from the final stage in a reverse sequential order

to previous treatment stages. We apply SSITS to determine the optimal dosing

strategy for patients treated with Warfarin using data from the International Warfarin

Pharmacogenetics Consortium.
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CHAPTER I

Introduction

Personal health care has gained increasing attention in recent decades (Collins and

Varmus , 2015; Niculescu et al., 2019). Compared with the traditional “one-size-fits-

all” paradigm, this medical approach allows physicians to consider the heterogeneity

of patients and yields more precise treatment recommendations and better disease

management. (Shi et al., 2020)

In particular, when managing a chronic disease, a personalized disease manage-

ment plan may involve multiple cycles of treatments, and the treatment in each cycle

is chosen adaptively based on patients’ history and time-varying characteristics (Lee

et al., 2015). This paradigm is known as a Dynamic Treatment Regime (DTR) (Mur-

phy , 2003; Wang et al., 2012), in which the entire sequence of decisions is evaluated,

rather than evaluating each treatment separately. Identifying optimal DTRs offers

an effective tool for personalized management of diseases, and helps physicians tai-

lor the treatment strategies dynamically and individually based on clinical evidence,

which provides a key foundation for enhanced care of chronic disease. (Murphy , 2003;

Chakraborty and Murphy , 2014).

However, it is challenging to develop a method for identifying the optimal dynamic

treatment regime due to the complex relationship between the clinical outcomes and

the accumulated time-varying treatment information. The time-varying confounders
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should be carefully adjusted because the standard regression methods may fail to

address this complexity. Some pioneering statistical methods have been developed

to estimate the optimal DTRs, such as the G-estimation of structural nested mean

models (Robins , 1986, 1989), the Marginal Structural Model estimated with the in-

verse probability weighting (Robins et al., 2000; Robins , 2004), the Marginal Mean

Model (Murphy et al., 2001; Murphy , 2003), and other likelihood-based methods

(Thall et al., 2007). These methods often require a parametric or semi-parametric

conditional model for the counterfactual outcome as a component and thus can be

vulnerable to model mis-specification, especially when the data are high dimensional.

More recently, as an alternative for parametric or semi-parametric models, ma-

chine learning-based approaches have become increasingly popular because of their

flexibility in model assumptions and their robustness against model misspecification.

Examples include Q-learning (Watkins and Dayan, 1992), A-learning (Murphy , 2003;

Schulte et al., 2014), and the backward outcome weighted learning (Zhao et al., 2015;

Chen et al., 2018), all of which use backward induction to first optimize the decision

rule for the final stage, and then optimize the decisions of the previous stages in a

reversed sequential order.

However, specific research questions in clinical practice cannot be addressed when

applying the current methods of DTR. Therefore, in this dissertation, we aim to

continue this research direction and develop three robust and interpretable statisti-

cal learning methods to estimate the optimal DTR for various types of decisions in

multiple-stage settings. In particular, we use the counterfactual framework of causal

inference (Robins , 1986), and estimate the optimal DTR by maximizing the expec-

tation of the counterfactual outcome. Furthermore, due to the need applying these

innovative statistical learning methods to medical practice, a robust and interpretable

method for estimating the optimal DTR is highly desirable, as it bridges the gap be-

tween the physician’s medical expertise and the data-driven individualized treatment
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regimes, and allows a physician to better understand and apply them.

Our first project as presented in Chapter II considers handling a special but im-

portant test-and-treat decision strategy in the application of DTR. It is motivated by

the example of the active surveillance of prostate cancer (Lange et al., 2018; Tosoian

et al., 2015). For prostate cancer patients, a decision about treatment happens after

the biopsy, and is thus nested within the decision of whether to do the biopsy test.

Considering the substantial side-effects of over-treatment and unnecessary biopsy

screening, the active surveillance, which involves closely watching patients’ disease

conditions but not giving any treatment unless significant progression is found, has

been increasingly recommended to patients with low risk prostate cancer (Denton

et al., 2019). However, the one-size-fits-all active surveillance plan is not individual-

ized for patients with heterogeneity. For example an older male in good health might

tolerate the invasive biopsy test, while a younger man might not be appropriate to

be monitored under the same active surveillance schedule because of his comorbidi-

ties (Loeb et al., 2014). A personalized sequence of an active surveillance plan, i.e.,

the biopsy test and definitive treatment plan, is a paradigm that actually resembles

a DTR, as it accounts for patients’ time-varying characteristics. However, the cur-

rent DTR methods cannot accommodate such a naturally embedded property of the

treatment decision within the test decision. Therefore, we developed a new statistical

learning method to evaluate DTRs within such a nested multi-stage dynamic decision

framework using observational data. At each step within each stage, we combined the

robust semi-parametric estimator via Augmented Inverse Probability Weighting with

a tree-based reinforcement learning method to deal with the counterfactual optimiza-

tion. The proposed method can handle test-and-treat observational data and estimate

an interpretable and robust optimal DTR for the strategies of disease screening and

subsequent treatments if necessary.

The second (Chapter III) and third project (Chapter IV) focus on estimating the
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optimal DTR with continuous treatment options in a multiple-stage setting. This re-

search direction is motivated by the study of Michigan Medicine liver cancer adaptive

stereotactic body radiation therapy (SBRT). In this study, the liver cancer patients

were treated with adaptive SBRT with an intra-treatment evaluation (Feng et al.,

2018). The previous data analysis of this study has shown the benefit of this innova-

tive adaptive SBRT in terms of improving overall survival probability and controlling

the incidence of local progression (Feng et al., 2013). Physicians are now interested

in the optimal personalized dose schema for a future trial under this adaptive SBRT

framework. That is, what dose should be given for patients for the first stage, and

should patients terminate the SBRT after the first stage due to high toxicity? If the

treatment continues, what is the radiation dose for the second stage, based on the

patients’ individualized time-varying characteristics?

How to estimate the optimal dosage regime within a multiple-stage setting is a

common research question in oncology when treating cancer patients with radiation

or drug doses over time. However, it is complex to extend the existing methods for

multiple-treatment to personalized dose-finding because of the sparse nature of the

observed data, i.e., the dose level follows a continuous distribution – of which the

probability of observing a specific dose is zero (Chen et al., 2016). Although consid-

erable research has been devoted to estimating multiple-stage DTRs with multiple

treatments in the literature, less attention has been paid to the estimation of DTRs

with continuous treatment options (Lee et al., 2015; Chen et al., 2016; Rich et al.,

2016; Schulz and Moodie, 2020). In Chapter III and Chapter IV, we develop two

methods, Kernel-Involved-Dose-Decision Learning (KIDD-Learning) and Stochastic

Spline-Involved Tree Search (SSITS), to estimate the optimal DTR with continuous

doses. In particular, in KIDD-Learning, a non-parametric kernel regression is uti-

lized to estimate a robust continuous dose-response function while in SSITS a flexible

smooth coefficient model is applied to evaluate the continuous dose effect. Both of

4



the non-parametric methods are combined with flexible dose-search statistical learn-

ing methods to identify the optimal continuous dosage regime in the setting of a

multiple-stage DTR.

In addition to the robust non-parametric estimation of the dose-response func-

tion, the choice of dose-search methods of SSITS and KIDD-Learning is another

critical contribution of this dissertation. Since an interpretable treatment regime is

straightforward for physicians to understand, we believe a tree-based decision rule

is an appropriate choice for the desired interpretability. Therefore in the second

project (Chapter III), we use a tree-based dose-search algorithm to identify the op-

timal dosing strategy. This algorithm, which is derived from the Classification and

Regression Tree (CART) (Breiman et al., 1984; Laber and Zhao, 2015), yields a tree-

based dose decision rule by categorizing patients into different sub-population based

on their characteristics. When combining the algorithm with the estimation of the

dose-response function as the KIDD-Learning method, the satisfactory performance

is illustrated by comprehensive simulation studies .

However, from the simulations studies, we found that in some cases, when there

are strong predictors hidden from a relatively weak parent node, KIDD-Learning may

end up estimating a sub-optimal tree-based decision rule. This limitation is derived

from the heuristic nature of the CART, which is used in the dose-search algorithm

in KIDD-Learning. Such a top-down algorithm generates a sequence of trees, each of

which is a direct extension of the previous decision tree, which will inevitably result

in a locally optimal tree if the parent node is an imperceptible variable. Therefore,

in Chapter IV, we propose an improvement of KIDD-Learning based on a stochastic

dose-search algorithm, SSITS, for estimating the optimal dosage regime. Rather than

searching heuristically for the optimal dose from the root node to the terminals, SSITS

stochastically visits a broader binary decision tree space via the simulated annealing

algorithm and then determines the optimal dosing strategy. Compared to its CART

5



counterpart, SSITS can efficiently search tree space more widely to escape from a

local optimal decision rule while still delivering the optimal DTR with satisfactory

interpretability. The outstanding stable performance of SSITS is well demonstrated

in the simulation studies.
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CHAPTER II

Step-adjusted Tree-based Reinforcement Learning

for Evaluating Nested Dynamic Treatment

Regimes with Test-and-Treat Observational Data

2.1 Introduction

Dynamic treatment regimes (DTRs) have gained increasing interest in the field

of precision medicine in the last decade (Chakraborty and Murphy , 2014). This re-

search direction generalizes the individualized medical decisions into a time-varying

treatment setting, usually at discrete stages, and thus accommodates the updated in-

formation for each person at each stage (Murphy , 2003; Wang et al., 2012). In DTR,

actions or decisions based on the individualized features are able to lead to more pre-

cise disease prevention and better disease management. However, the current DTR

framework is limited because it only considers choosing the best treatments strate-

gies. In medical practice, the procedures to diagnose and treat patients are much

more complicated. Most diagnosis procedures or tests, e.g., positron emission tomog-

raphy, or a biopsy test, occur prior to the selection of treatment to provide more

information about disease status, then this information would be used to select treat-

ment. Typically, only patients who have taken the test can be treated, and thus the

decision about the treatment assignment is nested within the decision of performing
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the test.

For example, men with early stage asymptomatic prostate cancer who are in

an active surveillance program, would regularly have their prostate-specific antigen

(PSA) and prostate tissue measured via a blood test and core needle biopsy test

respectively (Loeb et al., 2014). Whether to undergo definitive treatment for their

prostate cancer would be strongly influenced by the results from their biopsy test. So

the possible treatment initiation only happens after having the biopsy test result, and

is thus nested within the decision of doing a biopsy or not. Such a nested dynamic

clinical decision-making is not limited to prostate cancer. The occult blood test, also

known as a stool test, can also be used as a cheap and easy initial screening test for

colorectal cancer (Itzkowitz et al., 2008). Patients with abnormal finding from the

stool test are then referred for a colonoscopy exam, which is costly and invasive, to

confirm the diagnosis and decide if more definitive treatment for colorectal cancer is

needed. In this scenario the decision of whether to do definitive treatment is nested

in the decision of whether to do a colonoscopy which is nested within the decision to

do a stool test or not. This kind of nested clinical decision also happens with many

other chronic diseases. (US Preventive Services Task Force, 2009; Mandelblatt et al.,

2009; Hanley , 2011)

In such nested test-and-treat scenarios, the impact of the test should also be

considered. For some diseases, the tests used to confirm the diagnosis or decide

on the next step are easy to administer and minimally invasive, e.g., blood test

and physical examination. But some other tests done for confirmatory purposes are

expensive and invasive, including the prostate biopsy and colonoscopy. The potential

side effects include pain, soreness, and infections, which should not be overlooked. For

prostate cancer, even if the test result suggests progressive disease, it is not always

the case that the patient should undergo definitive treatment, which has substantial

comorbidity, since prostate cancer is a slow growing disease and a substantial number
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Figure 2.1: Hypothetical step-adjusted DTR framework with a treatment step nested
within the test step of each intervention stage.

of men may not develop deadly prostate cancer before dying from some other cause.

It is well known that there is overtreatment for prostate cancer, and that a substantial

number of men receive unnecessary cancer treatments (Loeb et al., 2014). Therefore,

careful patient selection for testing is needed to not only reduce the impact on the

patient, but also to save medical resources for the patients who truly need them. The

current one-fits-all active surveillance protocol is not capable of taking the patient’s

personalized medical characteristics into account and then giving an individualized

disease management plan.

As mentioned above, most existing frameworks for evaluating DTRs overlook such

nested structures during the clinical decision making process. The diagnostic test it-

self does not have a direct impact on the disease-related outcome, but the potential

treatment following the test may improve the disease outcome for the patient sub-

stantially (Trikalinos et al., 2009). Overlooking such a test-and-treat nested structure

may result in identifying imprecise and non-realistic decision rules. Therefore, we pro-

pose a new nested dynamic treatment regime (nested-DTR) framework by embedding

the treatment step within the test step of each intervention stage as shown in Fig-

ure 2.1. At each stage, the decision of the test step is made based on the health

history and the treatment decision is made on the basis of previous health history

and the updated history after the test.
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In general, DTRs can be estimated from observational data, provided there is

enough heterogeneity in the patient features and their actions taken. Similarly the

optimal DTR for this new nested-DTR framework can be learned from observational

data provided there is enough heterogeneity in data for both the decision to test and

the decision to treat.

A great number of statistical methods have been developed to estimate the optimal

DTRs using observational data, such as Marginal Structural Model estimated with

inverse probability weighting (Robins , 2004), the Marginal Mean Model (Murphy

et al., 2001) and other likelihood-based methods (Thall et al., 2007). These methods

require a parametric or semi-parametric conditional model for the counterfactual

outcome as a component and thus are vulnerable to model mis-specification, especially

when the data are high dimensional or time-dependent information is accumulated.

More recently, machine learning-based approaches, as a replacement for parametric or

semi-parametric models, have become increasingly popular because of their flexibility

in model assumptions and their robustness (Laber et al., 2014; Zhao et al., 2015).

When identifying the optimal DTRs with multiple stages, the problem resembles the

reinforcement learning (RL) problem (Watkins and Dayan, 1992). Therefore, RL

methods are currently broadly applied in evaluating the optimal DTRs. Some of

this work, which involving reinforcement learning, has focused on developing easily

interpretable DTRs for real-world practice (Shen et al., 2017; Tao and Wang , 2017;

Tao et al., 2018; Schulte et al., 2014; Zhang et al., 2015).

To the best of our knowledge, however, none of the existing methods can be applied

directly to estimate the optimal DTRs when each stage consists of a treatment step

nested within a test step. In this paper, we are trying to fill this gap and develop a

new statistical learning method for identifying the optimal DTR within the nested

dynamic decision framework. At each step within each stage, we combine the robust

semi-parametric estimator obtained using Augmented Inverse Probability Weighting
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(AIPW) with a modified tree-based reinforcement learning method to optimize the

expected counterfactual outcome. The remainder of this paper is organized as follows:

In 2.2 and 2.3, we formalize the problem of identifying the optimal DTR within the

nested DTR framework in a multiple-stage multiple-step setting from observational

data and develop the nested step-adjusted tree-based reinforcement learning method

(SAT-Learning). Section 4 presents the detailed implementation of this new method.

Numerical simulation studies and an application to the Johns Hopkins University

(JHU) prostate cancer active surveillance data are provided in 2.5 and 2.6. We

conclude with a brief discussion in Section 2.7.

2.2 Multi-Stage Nested Step-Adjusted Dynamic Treatment

Regimes

To address the nested decision problem above, we consider a nested multi-stage

multi-step decision framework with S decision stages. In clinical practice, every

regular clinic visit, which might initiate some form of treatment, can be considered as

a stage. Within each stage s, there are J action steps. Let Ksj denote the number of

decision options at step j of stage s (Ksj ≥ 2), let Dsj denote the multiple treatment

indicators of the action taken at step j of stage s in the observed data, and the value

of Dsj is dsj ∈ Dsj. Without loss of generality, we consider two steps within each

stage, i.e., J = 2, to make the presentation easier. We assume the first step of stage

s is the test step (action Ds1) and Ds2 in the treatment step is nested within the

decision of Ds1. For example, only the prostate cancer patients who have had the

biopsy test are considered for further treatment. We denote the patient’s history prior

to action Dsj but after the previous step as Xsj. We will use overbar with subscripts

s and j to denote a vector of a variables’s history up to the step j of stage s. For

example, Xs2 = (X11, X12, X21, . . . , Xs1, Xs2). Similarly, the action history up to the
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treatment step of stage s can be denoted as Ds2 = (D11, D12, D21, . . . , Ds1).

We use Ysj to denote the intermediate reward outcome at the end of step j of

the stage s, and thus the overall rewards vector is (Y11, Y12, . . . YS2) . The outcome of

interest Y is a function of all rewards, i.e., Y = f(Y11, Y12, Y21, . . . YS2), where f(·) is a

pre-specified function (e.g., sum). We also assume that Y is bounded and high values

of Y are desirable. The observed data before stage s step j (1 ≤ s ≤ S, 1 ≤ j ≤ 2)

are

{X11, D11, Y11, X12, . . . , Ds−1,2, Ys−1,2, Xs1}ni=1 ≡ {Xs1, Ds−1,2, Y s−1,2}ni=1

for step 1 , and

{X11, D11, Y11, X12, . . . , Xs1, Ds1, Ys1, Xs2}ni=1 ≡ {Xs2, Ds1, Y s1}ni=1

for step 2. For brevity, we suppress the subject index i in the following text when no

confusion exists. The observed data are assumed to be independent and identically

distributed for n subject from the population of interest. The history Hsj is defined

as the test results and action history prior to the action assignment Dsj. To be more

specific, Hs1 = (Ds−1,2, Xs1, Y s−1,2) and Hs2 = (Ds1, Xs2, Y s1). To illustrate the

method, we also specify two action options in the test step and three options in the

treatment step of every stage, i.e., ds1 ∈ Ds1 = {0, 1}, Ks1 = 2, and ds2 ∈ Ds2 =

{0, 1, 2}, Ks2 = 3. When a patient has dsj = 0, i.e. no treatment or test is given, he/

she will still be kept in the study cohort but not given further treatment until the next

stage s + 1. Thus, the reward is Ysj = 0 when dsj = 0. For the data collected from

the active surveillance study , if the patient receives treatment in some treatment

step, i.e., ds2 = 1 or 2, he will be removed from the study according to the active

surveillance protocol.

With a treatment step nested after every test step within a stage, the nested DTR
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is defined as a personalized test-and-treatment rule sequence. The rule is based on

the observed history Hsj about the patient’s health status up to the action in step j

of stage s. Let g denote the above nested DTR. Formally, g = (g11, g12, . . . , gS2) is

defined by a collection of mapping functions, where gsj is mapped from the domain

of history Hsj to the domain of Dsj, i.e.,

Hsj 7→ gsj(Hsj) ∈ Dsj, 1 ≤ s < S, 1 ≤ j ≤ 2

2.3 Step-adjusted Optimization for Nested DTR

Let Y ∗(g) be the counterfactual outcome if all patients follow g to assign treatment

or test conditional on previous history. The performance of g is measured by the

counterfactual mean outcome E{Y ∗(g)} conditional on the patients’ history. We

denote the optimal regime as gopt. Our goal of identifying the optimal regime is to

find the gopt which satisfies

E{Y ∗(gopt)} ≥ E{Y ∗(g)}

for all g ∈ G, where G is the set of all potential regimes.

2.3.1 Optimization of gS2 and gS1 for the Final Stage S

The approach to finding optimal DTR includes backward induction (Murphy et al.,

2001), therefore we illustrate the mathematical formulation from the last stage S. For

the last step of the stage, let Y ∗S2(dS2) be the counterfactual outcome if a patient makes

treatment decision dS2 conditional on previous history. We denote the optimal regime

as goptS2 , which satisfies E{Y ∗S2(goptS2 )} ≥ E{Y ∗S2(gS2)} for all gS2 ∈ GS2, where GS2 is the
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set of all potential regimes at stage S and step 2.

To connect the counterfactual outcome with observed data {XS2, DS2, Y S2}, we

make the following standard causal inference assumptions (Murphy , 2003; Orellana

et al., 2010):

1. Consistency. The observed outcome coincides with the counterfactual outcome

under the treatment a patient is actually given, i.e.,

YS2 =
∑

dS2∈DS2

Y ∗S2(dS2)I{gS2(HS2) = dS2}I{dS1 = 1},

where I(·) is the indicator function that takes the value 1 if · is true and 0

otherwise. The indicator function I(dS1 = 1) implies only the subjects who

decided to take the previous test, i.e., dS1 = 1, can have their YS2 observed.

2. No unmeasured confounding. The observed action DS2 is independent of poten-

tial counterfactual outcomes conditional on the history HS2, i.e.,

DS2 ⊥ {Y ∗S2(0), Y ∗S2(1), Y ∗S2(2)} | HS2,

where ⊥ denotes statistical independence. This assumption implies that the

potential confounders are fully observed and included in the dataset.

3. Positivity. For the observational data, the propensity score πdS2
(HS2), the

probability of receiving a certain treatment conditional on history, is bounded

away from 0 and 1, i.e., πdS2
(HS2) = Pr(DS2 = dS2 | HS2) ∈ [c1, c2], where

0 < c1 < c2 < 1.

For the subjects who do not have the test in the previous step, i.e., dS1 = 0, their test

result that the further treatment decision is based on cannot be observed. Therefore,

only the subjects with dS1 = 1 is able to contribute to the optimization of gS2. Under

the three assumptions, the optimization problem for the treatment of the last stage
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becomes

goptS2 (HS2) = arg max
gS2∈GS2

EHS2

( ∑
dS2∈DS2

E(YS2 | DS2 = dS2,HS2)

I[gS2(HS2) = dS2]I(dS1 = 1)
)
,

(2.1)

where EHS2
(.) denotes the expectation with respect to the marginal joint distri-

bution of the observed history HS2. To derive the optimal goptS1 for whether to

take the test, i.e., one step before the treatment step within the same stage S,

we utilize the backwards induction (Murphy , 2003). In addition to the counter-

factual outcome of stage s step j Y ∗sj defined in the last section, we also define a

nested step-adjusted future optimized counterfactual outcome Ỹ ∗S1. More specifi-

cally, we have Ỹ ∗S1 = {Y ∗(DS−1,2, gS1, g
opt
S2 )}, where the treatment for stage S step

2 has been optimized. To determine the optimal goptS1 , we propose to maximize

the expected nested step-adjusted future optimized counterfactual outcome Ỹ ∗S1, i.e.,

goptS1 = arg maxgS1∈GS1
EHS1

[{Y ∗(DS−1,2, gS1, g
opt
S2 )}].

Similarly, we assume No Unmeasured Confounding, DS1 ⊥ {Ỹ ∗S1(0), Ỹ ∗S1(1)} |

Hs1 , if dS1 = 1, and if dS1 = 0, DS1 ⊥ {Y ∗S1(0), Y ∗S1(1)} | Hs1 ; Positivity πdS1
(HS1) =

Pr(DS1 = dS1 | Hsj) ∈ [c1, c2], where 0 < c1 < c2 < 1; and then the optimization

problem of stage S step 1 can be written as

goptS1 = arg max
gS1∈GS1

EHS1

[ ∑
dS1∈DS1

{
E[Ỹ ∗S1 | DS1 = dS1,HS1]I(dS1 = 1)

+ E[Y ∗S1 | DS1 = dS1,HS1]I(dS1 = 0)
}
I{gS1(HS1) = dS1}

]
.

(2.2)

Different from Eqn (2.1), the optimization process Eqn (2.2) of goptS1 is conducted

within all eligible subjects, while the optimization of goptS2 is conducted only within

the patients who have the test at the previous step. Although the whole cohort

contributes to the optimization step in Eqn (2.2), Ỹ ∗S1 or Y ∗S1 used in Eqn (2.2) actually

depends on the test decision, i.e., dS1. The subjects who had the test, i.e., dS1 = 1,
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essentially have one more chance to optimize their rewards through stage S step 2

compared to those without test, and this chance is nested within the positive exam

decision within the same stage.

2.3.2 Optimization of gs2 and gs1 for Any Stage Before S

For the steps of stage s before the last stage (1 ≤ s < S), the optimal regime

gopts1 and gopts2 is expressed via backward induction as well. Ỹ ∗sj is defined as the nested

step-adjusted future optimized counterfactual reward, which is given that all future

stages’ and steps’ actions are already optimized. More specifically, we have Ỹ ∗s1(gs1) =

{Y ∗(Ds−1,2, gs1, g
opt
s2 , . . . , g

opt
S2 )} and Ỹ ∗s2(gs2) = {Y ∗(Ds1, gs2, g

opt
s+1,1, . . . , g

opt
S2 )}. Similar

to the assumptions for the last stage, we assume No Unmeasured Confounding and

Positivity. Under these assumptions, the optimization problems at stage s step j can

be written as

gopts1 = arg max
gs1∈Gs1

EHs1

[ ∑
ds1∈Ds1

E[Ỹ ∗s1 | Ds1 = ds1,Hs1]I{gs1(Hs1) = ds1}
]

(2.3)

and

gopts2 = arg max
gs2∈Gs2

EHs2

[ ∑
ds2∈Ds2

E[Ỹ ∗s2 | Ds2 = ds2,Hs2]I{gs2(Hs2) = ds2}I(ds1 = 1)
]
.

(2.4)

2.4 Step-adjusted Tree-based Reinforcement Learning and

its Implementations

Given the observational data with test-and-treat nested decision structure, we pro-

pose to solve Eqn (2.1), Eqn (2.2), Eqn (2.3), and Eqn (2.4) through the step-adjusted

tree-based learning (SAT-Learning) method. In this method, the step-adjusted future

optimized pseudo-outcome is iteratively inducted backwards. We further assume, for
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stages and steps before the last step, i.e., for any s < S, j = 1 or 2,, the effect of

intermediate outcome reward Ysj will be cumulatively carried forward to the final

outcome (Huang et al., 2015), and denote a nested step-adjusted future optimized

pseudo-outcome of stage s step j as POsj. Let µsj,dsj(Hsj) = Ê[POsj | Dsj = dsj,Hsj]

be the estimated mean pseudo-outcome of stage s step j. Because of the cumulative

property of the reward outcome and the nested connection between the test step and

the treatment step, for any s < S, j = 1 or 2, POsj can be expressed in a recursive

form as POs1 = Ys1 +
∑S

r=s µr2,goptr2
(Hr2) × I(dr1 = 1) +

∑S
r=s+1 µr1,goptr1

(Hr1) and

POs2 = Ys1 +
∑S

r=s+1[µr2,goptr2
(Hr2) × I(dr1 = 1) + µr1,goptr1

(Hr1)]. Obviously, when

evaluating the pseudo-outcome in last stage, we have POS2 = YS2 for the second step

and POS1 = Ys1 + µS1,goptS1
(HS1)× I(dS1 = 1) for the first step.

To reduce the accumulated bias from the conditional mean models, instead of

using the model-based values under optimal future treatments µ̂sj,dsj(Hsj) = Ê[POsj |

Dsj = dsj,Hsj] from POsj, we use the actual observed intermediate outcomes plus

the expected future loss (or gain) due to the sub-optimal treatments as the modified

pseudo-outcome PO′sj (Huang et al., 2015). Specifically, the modified pseudo-outcome

of the last stage is PO′S2 = YS2, PO′S1 = YS1 +µS2,goptS2
(HS2)−µS2,DS2

(HS2) +YS2 and

for any s < S, j = 1 or 2,

PO′sj =
S∑

r=s+1

[
µr1,goptr1

(Hr1)− µr1,Dr1(Hr1) + Yr1

+ I[dr1 = 1][µr2,goptr2
(Hr2)− µr2,Dr2(Hr2) + Yr2]

]
+ Ysj + I[j = 1]I[dsj = 1]

[
µs2,gopts2

(Hs2)− µs2,Ds2(Hs2) + Ys2
]

(2.5)

In particular, if the subject undergoes the test at stage s, i.e., ds1 = 1, he/she might

benefit from the potential subsequent treatment within that stage via the optimization

of the future treatment step. If the subject does not receive the test at stage s, then

his/her future optimized counterfactual outcome can only be optimized through the
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optimal actions of the future stages.

We propose to implement SAT-Learning through a modified version of a tree-

based reinforcement learning method (T-RL) (Tao et al., 2018), which employs the

classification and regression tree (CART) proposed by Breiman et al. (1984). In the

nested DTR setting, we need to include the step-wise adjustment to account for the

nested test-and-treat nature. Thus, we developed a modified tree-based algorithm to

implement SAT-Learning for estimating the optimal nested DTR. Traditionally, the

decision tree of CART is built to choose a split that would have the purest child nodes.

The purest node means having the lowest misclassification rate among all possible

nodes. Thus, purity is a crucial measure to grow a decision tree. Different from

CART, SAT-Learning at each node selects the split to improve the counterfactual

mean reward, which can serve as a measure of purity in nested DTR trees, and then

maximizes the population’s counterfactual mean reward of interest. Similarly as in T-

RL, to estimate the optimal DTR, we use a purity measure for SAT-Learning based on

the augmented inverse probability weighting (AIPW) estimator of the counterfactual

mean outcome.

In the process of partitioning of this tree-based reinforcement learning method,

for a given partition ω and ωc of node Ω, let gsj,ω,d1,d2 denote the decision rule that

assigns a single test/treatment action d1 to all subjects in ω and treatment d2 to

subjects in ωc at stage s step j (1 ≤ s ≤ S, j = 1, 2). Then the purity measure can

be defined as

Psj(Ω, ω) = max
d1,d2∈Dsj

Pn
[ Ksj∑
dsj=1

µ̂AIPWsj,dsj
(Hsj)I{gsj,ω,d1,d2(Hsj) = dsj}I(Hsj ∈ Ω)

]
,

(2.6)

where Pn is the empirical expectation operator and Pn{µ̂AIPWsj,dsj
(Hsj)} is the AIPW
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estimator of the counterfactual mean outcome with

µ̂AIPWsj,dsj
(Hsj) =

I(Dsj = dsj)

π̂sj,dsj(Hsj)
Ysj +

{
1− I(Dsj = dsj)

π̂sj,dsj(Hsj)

}
µsj,dsj(Hsj). (2.7)

In Eqn (2.7), the propensity score model is denoted as πsj,dsj(Hsj) and the conditional

mean model is denoted as µsj,dsj(Hsj). Under the foregoing three causal inference

assumptions, Pn{µ̂AIPWsj,dsj
(Hsj)} is a consistent estimator of the counterfactual mean

outcome E{Y ∗(dsj)} if either the propensity score model πsj,dsj(Hsj) or the conditional

mean model µsj,dsj(Hsj) is correctly specified. Thus this AIPW estimator is doubly

robust for estimating the counterfactual mean outcome of the population (Tao and

Wang , 2017).

In our nested step-adjusted multi-stage setting, for the last step of the last stage,

S2 , we have YS2 in Eqn (2.7) as the observed reward of the last step of the last stage.

For other stage s step j before the last one (1 ≤ s < S, j = 1, 2 ors = S , j = 1),

Ysj in Eqn (2.7) is replaced with PO′sj, the corresponding pseudo-outcome defined in

Eqn (2.5).

In the process of maximizing Psj(Ω, ω), the possible split ω of a given node Ω

should be either a subset of a categorical covariate categories or values that are not

larger than the threshold. The best criteria ω̂opt to split a given node is a partition

that is able to maximize the improvement in the purity, Psj(Ω, ω) − Psj(Ω), where

Psj(Ω) is for the situation where we assign the same single test/treatment action to

all subject in Ω, i.e., no splitting. To control the overfitting and also make practical

and meaningful splits, a positive integer n0 is specified as the minimal node size and

a positive constant λ is also provided as a threshold for the meaningful improvement.

Besides the two given constant values λ and n0, we apply similar Stopping Rules as

in Tao et al. (2018) to grow and split the tree. Our Stopping Rules can be found

in the Appendix as Algorithm 5. The depth of a node mentioned in the stopping
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rules is defined as the number of edges from the node to the tree’s root node, and

a root node has a depth of 0. The nested SAT-Learning algorithm given the above

purity measures and stopping rules of the partitioning is presented in Algorithm 1

with details. Note the essential difference between steps j=2 and j=1 is that different

subjects are included into the calculation of the AIPW estimator. Only the subjects

who have taken the test at stage s, i.e., ds1 = 1, contribute to the optimization of

their subsequent treatments.

Algorithm 1 Implementation Steps of SAT-Learning

Stage s Start the algorithm with s = S Within Stage s:

(1.1) Set j = 2 and only use the data with dsj = 1

(1.2) Obtain AIPW estimates µ̂AIPWsj,dsj
(Hsj), dsj = 1, . . . , Ksj

(1.3) Set m = 1 at root node Ωsj,m

(1.4) At node Ωsj,m, evaluate the Stopping Rules. If stop, assign a

single best treatment

arg max
dsj∈Dsj

Pn[µ̂AIPWsj,dsj
(Hsj)I(Hsj ∈ Ωsj,m)]

to all subject in Ωsj,m. Otherwise, split Ωsj,m into child nodes

Ωsj,2m and Ωsj,2m+1 by ω̂opt.

(1.5) Set m = m+ 1 and repeat (1.4) until all nodes are terminal.

(2.1) Set j = 1 and use the full data and restrict the available nodes’

values according to Ps2(Ω, ω)

(2.2) Repeat Steps (1.2)-(1.5)

Next Stage: Set s = s− 1 and repeat Stage s: (1.1)-(2.2), stop if s = 1.

When implementing SAT-Learning process, the propensity score π̂sj,dsj(Hsj) in

Eqn (2.7) can be estimated by a multinomial logistic regression model. This working

model could incorporate linear main effect terms from history Hsj and summary
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variables or interaction terms based on prior scientific knowledge from individual

history Hsj. For continuous outcome, the conditional mean estimates µ̂sj,dsj(Hsj) in

Eqn (2.7) could be obtained either from a linear parametric regression model or from

other off-the-shelf non-parametric machine learning methods, such as random forests

or support vector regression, depending on the history Hsj and the test/treatment

action Dsj. For estimating the conditional mean model for binary or other count

outcomes, one could use a generalized linear models or other generalized classification

tools in machine learning.

2.5 Simulation Studies

2.5.1 Simulation Studies to Evaluate the General Test-and-treat Nested

DTR

We generate simulation study data that mimic the real-world observational test-

and-treat study. We assume a two-stage two-step nested dynamic treatment regime,

using Dsj with subscript value s = 1, 2 to represent the stage and j = 1, 2 to represent

the test and treatment action within each stage. More specifically, we set two options

in the test step as ds1 = 1 or 0 to indicate receiving the test or not, and three

treatment options in the treatment step as ds2 = 0, 1 or 2. We further define the

outcome of interest as the sum of intermediate rewards from each stage and step,

i.e., Y = Y11 + Y12 + Y21 + Y22. The underlying optimal treatment is supposed to

have the largest expected reward. The other two sub-optimal treatments have lower

expected rewards. We further consider two cases. One is that the expected reward

from the two sub-optimal treatments are equal while in the other case, the expected

reward of the two sub-optimal treatments are different. Therefore, in the second case,

the sub-optimal reward losses are different because patients may lose more treatment

benefit due to choosing one sub-optimal treatment compared to another.
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When the test step initiating each intervention step is not expensive or invasive,

more patients tend to choose such a test because they might benefit from knowing

the test result for the long term disease control purpose. However, when the lab test

is unpleasant and costly, such as a prostate biopsy test, the patients would hesitate

to take it. Therefore, when generating data we consider three scenarios based on

the patients’ willingness to receive the exam by modifying the parameters to set the

ratio of having or not having the test as 1:1, 2:1, and 1:2, which correspond to the

equal preference, more likely and less likely to take the exam, respectively. For these

three scenarios, three covariates, X1 to X3, generated as the baseline covariates fol-

low N(0, 1). Two correlated covariates, X4 and X5, are generated as time-varying

biomarkers which are measured just before the decision time of the test step within

each stage. (X4, X5)
′ ∼ N(µ,Σ), where µ = (0, 0)

′
and Σ =

 1 0.1

0.1 1

. After

the test step of each stage, the covariates X12 and X22 mimic the test results that

contribute to the treatment decision nested within each test decision with other co-

variates. Typically, the test results, such as biopsy results, are of great importance

to the treatment decision making. X12 and X22 follow the distribution of N(0, 1).

Details of parameter setting are as follows:

Stage 1: The test decision variables, D11 ∼ Bernoulli(π11,1) with π11,1 = exp(0.6X3−

0.2X2 +X4)/(1 + exp(0.6X3 − 0.2X2 +X4)). The reward of step 1 of stage 1 is gen-

erated as Y11 = X2
4 + (0.5X3 + 3)2 × I[gopt11 (H11) = D11]− 3|X1|I(D11 = 1) + ε11 with

optimal regimes defined as

gopt11 (H11) =


I(X1 > −0.5)I(X4 ≤ 0.3) for Scenario 1

I(X1 > −0.8)I(X4 ≤ 1) for Scenario 2

I(X1 > 0.3)I(X4 ≤ 1.3) for Scenario 3,

and ε11 ∼ N(0, 1). The Scenarios 1, 2, and 3 corresponds to patients’ equal preference,
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more likely, and less likely to take the test, respectively. For patients who have

taken the test, i.e., D11 = 1, we further generate the treatment assignment D12

for them as D12 ∼ Multinomial(π12,0, π12,1, π12,2) with π12,0 = 1/(1 + exp(0.5X12 −

0.2X2)+exp(0.2X4 +0.3X3)), π12,1 = exp(0.5X12−0.2X2)/(1+exp(0.5X12−0.2X2)+

exp(0.2X4 + 0.3X3)) and π12,2 = exp(0.2X4 + 0.3X3)/(1 + exp(0.5X12 − 0.2X2) +

exp(0.2X4 + 0.3X3)). Also, Y12 = I[D12 = gopt12 (H12)](2X12 + 3X2)2 + (X1 +X3 ∗ 2 +

X4) + Y11/3 + ε12 for equal sub-optimal reward loss; and

Y12 =I[D12 = gopt12 (H12)](2X12 + 3X2)2 + (X1 +X3 ∗ 2 +X4) + Y11/3

+ 0.5I(D12 = 1)[I(gopt12 (H12) = 1)− 1] + 1.2I(D12 = 2)[I(gopt12 (H12) = 2)− 1]

+ ε12

for unequal sub-optimal reward loss with ε12 ∼ N(0, 1). The tree-type optimal regime

at step 2 is specified as

gopt12 (H12) =


0 X12 > 0.2

1 X1 > −0.7, X12 ≤ 0.2

2 otherwise.

Stage 2: We generate the test decision of stage 2, D21 ∼ Bernoulli (π21,1) with

π21,1 = exp(0.5X1− 0.6X2 +X3)/(1 + exp(0.5X1− 0.6X2 +X3)). The reward of stage

2 step 1 is generated as Y21 = X2
5 + 2X1 + (X3 + 3.2)2I[gopt21 (H21) = D21]− 3I(D21 =

1) + ε21 with ε21 ∼ N(0, 1). The optimal regime gopt21 (H21) is specified as

gopt21 (H21) =


I(X1 ≤ −0.3) + I(X1 > −0.3)I(X5 ≥ 1) for Scenario 1

I(X1 ≤ 0.4) + I(X1 > 0.4)I(X5 ≥ 1.2) for Scenario 2

I(X1 ≤ −0.8) + I(X1 > −0.8)I(X5 ≥ 1) for Scenario 3.
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Among the patients who have had the test, i.e., D21 = 1 we generate their treat-

ment assignment D22 for the second step of stage 2. Specifically, we generate treat-

ment D22 ∼ Multinomial(π22,0, π22,1, π22,2) with π22,0 = 1/(1 + exp(0.35X22 −X5) +

exp(0.3X2 +0.2X3)), π22,1 = exp(0.35X22−X5)/(1+exp(0.35X22−X5)+exp(0.3X2 +

0.2X3)), and π22,2 = exp(0.3X2+0.2X3)/(1+exp(0.35X22−X5)+exp(0.3X2+0.2X3)).

The reward of stage 2 step 2 is generated as Y22 = 3I[D22 = gopt22 (H22)] + Y21 + (2 +

X4X5 +X3) + ε22 for equal sub-optimal reward loss; and

Y22 =(3 +X22)I[D22 = gopt22 (H22)] + Y21 + (2 +X4X5 +X3)

+ 2I(D22 = 1)[I(gopt22 (H22) = 1)− 1] + I(D22 = 2)[I(gopt22 (H22) = 2)− 1] + ε22

for unequal sub-optimal reward loss, and ε22 ∼ N(0, 1). The optimal treatment regime

for stage 2 gopt22 (H22) is specified as

gopt22 (H22) =


0 X22 > 0.5

1 X22 ≤ 0.5, X5 < 0.3

2 otherwise.

Table 2.1 summarizes the simulation study results across different scenarios as

described above. Our SAT-Learning method for estimating the optimal DTR in-

volves a doubly robust semi-parametric estimator, therefore our simulations also try

to demonstrate such robustness. In addition to having one estimation scheme with the

conditional mean model and the propensity score model both correctly specified, we

consider two more schemes with either the propensity score model or the conditional

mean model mis-specified by omitting some of the covariates of the true form. We

consider a sample size of either 1000 or 2000 for the training dataset, and a sample

size of 2000 for the validation, and repeat the simulation 500 times. The training

dataset is used to estimate the optimal regime and then predict the optimal test-and-
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Table 2.1: Simulation results for the general test-and-treat case for the equal and
unequal reward loss for sub-optimal treatment options: two intervention
stages, three treatment options at each stage nested within the exam at
each stage with 500 replications, and n=1000 or 2000.

Sample Size Sub-optiomal Scenario 1 (1:1) Scenario 2 (2:1) Scenario 3 (1:2)
Reward opt% opt% opt%

N=1000

(a) 90.1(7.4) 86.1(9.2) 91.9(6.3)
Equal Loss (b) 84.7(7.5) 81.0(7.9) 86.9(6.4)

(c) 90.1(7.6) 86.3(9.3) 92.1(6.4)
(a) 96.2(3.8) 96.3(4.0) 97.7(2.0)

Unequal Loss (b) 92.0(6.1) 87.5(12.5) 94.7(4.1)
(c) 96.0(4.1) 96.2(4.4) 97.6(2.2)

N=2000

(a) 91.2(7.5) 86.8(9.3) 93.2(6.4)
Equal Loss (b) 85.8(6.6) 81.9(6.3) 88.2(6.1)

(c) 91.1(7.5) 86.9(9.3) 93.2(6.4)
(a) 96.9(3.4) 97.7(2.7) 98.2(1.8)

Unequal Loss (b) 96.6(3.6) 93.8(8.8) 97.7(1.7)
(c) 96.9(3.4) 97.7(2.6) 98.1(1.8)

a. opt% show the empirical mean and standard deviation (SD) of the percentage of subjects
correctly classified to their underlying true optimal treatments
b. The optimal regimes are estimated by the proposed method when (a) the conditional mean
model and the propensity score model are both correctly specified, (b) the conditional mean model
is mis-specified and the propensity score model is correctly specified, and (c) the conditional mean
model is correctly specified and the propensity score model is mis-specified.
c. Scenarios 1,2 and 3, correspond to the cases when the true ratios of preference for having the
exam v.s. not having the exam among all patients are 1:1, 2:1 and 1:2.

treat decision in the validation dataset, where the underlying true optimal regimes

are already known. The percentages of subjects correctly classified to the optimal

test-and-treatment decision in both stages combined is denoted as opt%. The aver-

age opt% and the empirical standard deviation (SD) among the repetitions evaluate

the performance.

In Table 2.1, the results of equal sub-optimal reward case demonstrate the loss

due to sub-optimal equally inferior compared to the optimal choice. In scenario 1,

where the subjects have an even preference of having test, under the sample size

n=1000, 90.1% of the patients are correctly assigned to their optimal DTRs for both

stages when both the conditional mean model and the propensity score model are

correctly specified. When either the conditional mean model or the propensity score

model is mis-specified, but not both, the overall performances are slightly worse,
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but still reasonably satisfactory. More specifically, when either the propensity score

model or the conditional mean model is incorrectly specified, we still get 90.1% and

have 84.7% respectively. Similar trends are found in Scenario 2 and Scenario 3,

and results improve as sample size goes to N=2000. However, when the reward

loss is unequal among sub-optimal treatment options, the optimal regimes stand out

among the candidate treatments more obviously according to our data generating

process, therefore, it is easier for our proposed method SAT-Learning to distinguish

the optimal treatment from sub-optimal ones. Thus, the simulation performance

with varying sub-optimal loss is better than when the sub-optimal loss is equal, as

expected.

2.5.2 A Special Case when the Treated Patients no Longer Need Further

Test or Treatment

We conduct another simulation study for a special case when the treated pa-

tients no longer need test and treatment again. This simulation better mimics the

monitoring and management in active surveillance for prostate cancer. Because of

the significant side-effects of curative intervention and the asymptomatic nature of

prostate cancer, according to the American Society of Clinical Oncology, patients

with low-risk prostate cancer can consider active surveillance (Tosoian et al., 2011;

Klotz et al., 2014). Active surveillance involves monitoring prostate cancer by regular

exam in its localized stage until further treatment is needed to halt the disease at a

curable stage. More specifically, the patients who have taken the biopsy test, only

a small proportion of them would switch from the active surveillance to curative in-

tervention. In the active surveillance, the patients who have been treated should be

removed from the active surveillance cohort, because physicians consider that they

no longer need to be treated and additional treatment is not provided and they are

not eligible for the active surveillance. Therefore they should not be considered to
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evaluate the subsequent test or treatment decision. We generate data under a two-

stage nested DTR with two treatment options at each stage. We also modify the

parameters in the data generating models to make the rates of taking the curative

treatment equal to 5%, 15%, 20% and 25% in both stage. The higher the rate is, the

more patients take the treatment and thus more patients will be removed from the

surveillance afterwards. The detailed information of data generation can be found in

the Appendix

The simulation results are summarized in Table 2.2. As the results show, because

of the nice doubly robust property, the percentages of subjects correctly classified to

their underlying truth both yield satisfying results even when either the propensity

score model or the conditional mean model is mis-specified, but not both. Considering

sample size N=1000 as an example, when 5% of tested patients have the curative

treatment and then are removed from the active surveillance, 92.8% of them are

correctly assigned to their optimal DTR for both stages when both the conditional

mean model and the propensity score model are correctly specified. We also have

91.8% and 91.6% of the patients correctly classified to their optimal DTR when the

propensity score model or the conditional mean model is misspecified respectively. As

the treatment rate increases, we are able to estimate better optimal treatment rules

from larger heterogeneous samples with more information. Therefore, it is easier for

our proposed SAT-Learning to estimate the optimal regime from this more informative

sample. Thus, the simulation performance with a higher treatment rate is slightly

better than that for the lower rate case.

2.6 Application to Prostate Cancer Active Surveillance Data

We illustrate SAT-Learning using the prostate cancer Active Surveillance dataset

from Johns Hopkins University (Tosoian et al., 2011; Inoue et al., 2018; Lange et al.,

2018). In this active surveillance study, enrollment of men with low risk prostate
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Table 2.2: Simulation to mimic the monitoring and management of prostate cancer:
two intervention stages, two treatment options at each stage nested within
the exam at each stage with 500 replications, and n=1000 or 2000.

Treatment Rate 5% 15% 20% 25%
opt% opt% opt% opt%

N=1000
(a) 92.8(4.9) 93.8(4.8) 94.9(4.5) 95.3(4.6)
(b) 91.6(2.1) 93.2(1.9) 93.9(1.5) 94.3(1.4)
(c) 91.8(5.6) 93.2(5.8) 94.0(5.9) 94.6(5.5)

N=2000
(a) 93.7(4.7) 94.9(4.6) 95.7(4.4) 96.7(3.7)
(b) 92.6(1.9) 94.0(1.4) 94.5(1.2) 94.7(1.1)
(c) 92.2(6.5) 93.9(6.6) 94.6(6.5) 95.5(6.1)

a. opt% show the empirical mean and standard deviation (SD) of the percentage of subjects
correctly classified to their underlying true optimal treatments

b. The optimal regimes are estimated by the proposed method when (a) the conditional mean
model and the propensity score model are both correctly specified, (b) the conditional mean model
is mis-specified and the propensity score model is correctly specified, and (c) the conditional mean

model is correctly specified and the propensity score model is mis-specified.
c. Different treatment rates correspond to different proportions of patients who switch from active

surveillance to curative treatment among those who have taken the biopsy test.

cancer started in 1995 and ended in 2015. Eligible subjects need to have PSA density

less than 0.15 µg/L per mL, clinical stage T1c disease or lower, the Gleason score

between 2 and 6, at most 2 positive biopsy cores, and at most 50% tumor in any single

core, all of which made them low risk. The Johns Hopkins active surveillance protocol

includes semiannual PSA and annual prostate biopsy. In the protocol, the primary

reason that patients would be recommended to undergo definitive curative radiation

therapy or surgery is if the biopsy result showed an adverse change compared to

previous biopsies.

There is sufficient evidence that the approach of active surveillance, i.e. delaying

curative treatment, for low-risk patients is safe (Denton et al., 2019). The issue we

will be considering is how it should be implemented. That is, rather than having an

annual biopsy, as in the protocol, should it be more individualized, with the decision

of whether to undergo a biopsy based on the available data at that time for that

patient.

Not all the patients in the study followed the protocol. In the dataset we analyzed,
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22% of patients did not have the scheduled biopsy of the first year and 5% of them

did not have the biopsy in the first two years. Similarly for curative therapy, quite a

number of patients did not follow the protocol. Such heterogeneity in the observed

data allows us to apply the nested DTR method via our proposed SAT-Learning to

decide at each stage whether the patient should have the biopsy, and if so, whether

the treatment should be recommended based on the patients’ individualized charac-

teristics. In the analysis presented below we restrict the observational period to be

from the diagnosis to year 4 and we make a two-year time unit for each stage, making

two stages, stage 1 being from diagnosis to year 2 and stage 2 being from year 2 to

year 4. We use D with subscript value s = 1, 2 to denote the decisions of the two

stages, and j = 1, 2 to denote the biopsy and treatment actions within the stage.

Thus, if the subject had a biopsy at the first stage, we denote D11 = 1, otherwise,

D11 = 0. For those with biopsy i.e., D11 = 1, the treatment choice is recorded as D12,

1 for treated and 0 for no treatment, and similarly for D21 and D22. We note that

once the patient is treated, no further biopsy or treatment will be observed. After the

data preprocessing, 863 patients are kept in the dataset for the analysis, and of these

230 did receive curative treatment. More information regarding data preprocessing

can be found in Appendix.

Although patients, in reality, are subject to different categories of treatments, such

as prostatectomy, radiation therapy or hormone therapy, in this analysis, we combine

all different kinds of treatments into one category (treated) to preserve a sufficient

sample size for the treated subjects. Other patient characteristics, including age,

race, baseline biopsy results, and baseline PSA were collected at the enrollment. As

the active surveillance proceeded, the corresponding PSA changes and the follow-up

biopsy results were also collected. In particular, the quantity of cancer, as measured

by biopsy results, is based on both the number of needle cores containing cancer and

the characteristic of the cancer tissue found within each single core (Gleason score).
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How the individualized data was formatted to match the two year time interval for

each stage is described in the Appendix. The reward outcome of interest was chosen to

reflect long term disease status, and is defined as the proportion of PSA values which

are less than 5 out of all the PSA observations collected from the end of year 4 after

diagnosis to the end of study. This reward ranges from 0 to 1, with the lower values

implying more undesirable risk of prostate cancer progression. This reward outcome

only considers the disease prognosis based on PSA, and ignores the potential side

effects brought by frequent biopsy and unnecessary intervention. Thus, we include

penalties to discount the patient’s reward to take into account possible side effects.

More specifically, if the patient had a biopsy in either one of the two stages, his reward

is reduced by a factor of 87% compared to the original reward. For the patient who

has ever had treatment, the reward is reduced by a factor of 80% compared to his

original reward.

To apply the proposed SAT-Learning algorithm to the active surveillance data

described above, we use random forests for the conditional mean model and a logistic

regression model for the propensity score model of every step within each stage. The

estimated optimal test and treatment DTR of the two stages are shown in Figure 2.2

According to the estimated optimal DTR, at the first stage, men older than 56 are

recommended for a biopsy test. Among those who are younger than 56 years old, the

patients with most recent PSA higher than 3.6 are also recommended for a biopsy test.

Among those doing the biopsy test, patients with the most recent PSA higher than

3.1 and having biopsy test showing any cancer are recommended for the treatment.

At the second stage, the men whose PSA change from beginning of year 2 is larger

than 1.3 are recommended for the biopsy test. For those who take the biopsy, if their

most recent PSA is higher than 3.2 or the biopsy result has more than one biopsy

core needle showing cancer positive, we recommended the physician to offer them

the treatment. The standard practice in deciding on curative treatment depends
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Figure 2.2: Estimated optimal DTR for JHU prostate cancer active surveillance data
via SAT-Learning algorithm. The trees show how to provide optimal
regime at every step based on the individualized characteristics for (A)
stage one biopsy decision, (B) stage one treatment decision if biopsy was
taken in stage one,(C) stage two biopsy decision and (D) stage two treat-
ment decision if the biopsy was taken in stage two.
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primarily on whether the Gleason grade on the biopsy is greater than or equal to

7. In contrast, the DTR we estimated involves more variables and changes from

one stage to the next, so is more individualized. It is also notable that the Gleason

thresholds in the above DTR are lower than in standard practice, which is consistent

with a suggestion in the literature (Moyer , 2012). The reward we use, long run

low PSA values, certainly does influence the estimated DTR, which involves lots of

decisions based on the current PSA values. The estimated tree-based DTR presented

in Figure 2.2 is also sensitive to the discount factor 87% and 80% which are used to

penalize the reward. Other rewards would have given different DTRs. The reward

we use of long-run PSA values can be considered as a proxy for clinical meaningful

“good” outcome. An ideal reward would have involved long term good quality of life

and absence of prostate cancer recurrence. But data to construct such a reward is not

available for this study. A sensitivity analysis with a modified reward is presented in

the Appendix.

2.7 Discussion

Motivated by the embedded nature of the diagnosis and treatment procedures, we

have developed a nested DTR framework, with the treatment decision nested within

the test decision in a multi-stage setting, and implemented the estimation of the

optimal nested DTR using a step-adjusted tree-based reinforcement learning method

(SAT-Learning). This nested DTR framework considers the test decision and the

nested treatment decision in the same stage and develops the optimal nested DTRs

to maximize the expected long-term rewards, such as disease control. This kind of

test-and-treat strategy has been considered previously in the health policy literature

(Trikalinos et al., 2009). These methods discussed the importance of the problem,

and the need to accumulate data. They also suggested solutions that focused on

the population level, but not in a rigorous mathematical framework. Our proposed
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method follows the framework of DTR, which enables physicians to repeatedly tailor

test and treatment decisions based on each individual’s time-varying health histories,

and thus provides an effective tool for the personalized management of disease over

time.

SAT-Learning, our proposed method to solve the nested step-adjusted DTR prob-

lem, can potentially be implemented via modifying other learning methods that have

been considered in DTR literature. However, by using a modified T-RL algorithm

(Tao et al., 2018), SAT-Learning is more straightforward to implement, understand

and interpret, and capable of handling various data without distributional assump-

tions. Additionally, the doubly robust AIPW estimator that we utilize in the purity

measure in the tree structure also helps improve the robustness of our method against

model mis-specifications.

Several developments and extensions can be explored in future studies. One pos-

sible exploration lies on dealing with potentially contradictory multiple outcomes.

In SAT-Learning, we consider a nested step-adjusted DTR to reduce the pain and

potential infections from frequent biopsy tests, but maintain an effective and in-time

treatment to control disease progression. If efficacy is the only purpose, one would

expect more frequent tests and more aggressive treatment regardless of possible side

effect, but in the meantime, patients might experience more side effects. The desire

for efficacy and the desire for less side effects in fact contradict each other. In clinical

practice, physicians are often interested in balancing multiple competing clinical out-

comes, such as overall survival, patient preference, quality of life and financial burden

(Butler , 2016). In order to balance these multiple potentially contradictory objec-

tives, we applied a different discount factor to the patient rewards for different side

effects in the application to the JHU Prostate Cancer Active Surveillance data. Other

statistical methods have been developed to trade-off between multiple contradictory

outcomes (Laber et al., 2014; Lizotte and Laber , 2016). One can further incorporate
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these multiple objective optimization functions into our framework of nested DTR for

future research. Another possible exploration may be considering all available actions

when the preference of multiple outcomes varies (Lizotte et al., 2012), which would

give more comprehensive information about how the optimality of an action would be

changed if the preference is modified. Sensitivity analyses can be done on the optimal

regimes and would provide further guidance for the decision maker on developing a

more flexible regime among all the available intervention strategy choices.
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CHAPTER III

Kernel-Involved-Dosage-Decision Learning Method

for Estimating the Optimal Dynamic Treatment

Regimes

3.1 Introduction

Dose-finding has a critical role in clinical research. The optimal dose for a drug

should be balanced between the safety and efficacy requirements (Schmidt , 1988).

There has been a great deal of literature on the dose-finding methods for clinical

studies. (Braun et al., 2016; Cheung , 2011; Thall and Russell , 1998; Thall and Cook ,

2004; Thall et al., 2007; Thall , 2008). Moreover, as the interest in precision medicine

increases (Collins and Varmus , 2015), scientists realize that a one-size-fits-all optimal

dose recommendation is not appropriate for treating heterogeneous patients. Recent

dose-finding methods have also evolved to account for the patients’ characteristics

and estimate the personalized optimal dose for each individual (Li et al., 2019; Guo

and Yuan, 2017; Thall et al., 2008; Xu et al., 2018; Rich et al., 2016).

In addition to a more personalized dose assignment, treating patients with chronic

disease often includes more than one cycle of treatments. Physicians may treat pa-

tients routinely in every stage based on the current status of the time-varying biomark-

ers and other health characteristics. Typically, a sequence of decision rules should
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be considered as a whole treatment regime, rather than several independent decision

rules. This kind of sequence of treatments is not only a strategy for the management

of chronic disease, but also a device for achieving better efficacy while controlling the

toxicity (El Naqa et al., 2018). For example, patients with liver cancer were treated

at Michigan Medicine with adaptive stereotactic body radiation therapy (SBRT) with

an intra-treatment evaluation. Instead the total radiation dose at the beginning of

radiation therapy,only 60% of the total planned dose is given during the first month,

with the remaining 40% dose given or partially given after a one-month break, dur-

ing which the toxicity and the patient’s tolerability were carefully evaluated (Feng

et al., 2013). This novel adaptive treatment paradigm showed its benefit in achieving

lower toxicity while maintaining a comparable local tumor progression compared to

the non-adaptive radiation therapy (Feng et al., 2018). In this adaptive SBRT study,

there is not only one decision, but a sequence of two decision rules, one per stage,

where the second one is determined by considering the observed updated medical

characteristics after the first treatment dose. Such a paradigm is known as a dy-

namic treatment regime (DTR) (Murphy et al., 2001; Murphy , 2003; Wang et al.,

2012), which consists of decision rules, one per stage, mapping individualized patient

characteristics to a dose. However, most multiple-stage dose-finding clinical studies,

while using the individualized adaptive treatment paradigm, only evaluate the dose

response as if the patient’s outcome was due to a certain stage alone, rather than

the entire DTR (Lee et al., 2015). In addition, these studies do not take full ad-

vantage of the intra-treatment information between treatment stages (El Naqa et al.,

2018). Overlooking this dynamic treatment regime structure may result in identifying

a suboptimal dosage regime. Therefore, there is a need for a new statistical learn-

ing method that is capable of estimating the optimal dynamic dosage regime within

the setting of a DTR. In the remaining part of the article, we will refer to dynamic

treatment regimes with continuous dose treatments as dynamic dosage regime.
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Extensive statistics literature exists on estimating the optimal DTR under the

setting of multiple-stage multiple-treatment (Zhang et al., 2015; Laber and Zhao, 2015;

Tao and Wang , 2017; Schulte et al., 2014; Zhang et al., 2013). However, extending

the current methods to estimate an optimal dynamic continuous dosage regime is

not trivial. Using the observed outcomes from the patients whose dose assignment

follows a specific rule is not applicable for continuous doses, because there could be

an infinite number of treatment options for a given dose interval. Specifically, unlike

the multiple-treatment DTR problem, only a few patients may be observed using the

given dose level because that the dose level follows a continuous distribution – of which

the probability of observing a certain rule-assigned dose is zero. Thus, inadequate

methods have been developed for estimating the optimal continuous dosage regime

in a multiple-stage setting.

Analogous to the DTR problem in a multiple-treatment multiple-stage setting,

Lee et al. (2015) extended the Q-Learning (Watkins and Dayan, 1992), a commonly

used reinforcement learning method, to estimate the dynamic treatment regime for

continuous treatment. Q-Learning involves a two-step regression-based approach with

a regression model fitted in the first step. In the second step, by maximizing the ex-

pected mean outcome from the first step, the optimal treatment for a given history

can be predicted. However, Q-learning is susceptible to potential over-fitting of the

first step regression model, which may lead to a sub-optimal DTR (Lee et al., 2015).

Moreover, several modifications to outcome weighted learning (OWL) (Zhao et al.,

2012), a well-known direct method in the setting of finite treatment-option DTR, have

also been developed to accommodate the estimation of the optimal dosage regime. To

deal with the individualized treatment rule problem in an ordinal treatment setting,

Chen et al. (2018) proposed the Generalized Outcome Weighted Learning (GOWL),

which could potentially be applied for estimating the optimal dosage regime. How-

ever, the dose options dealt by GOWL remain restricted within a finite number of
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options while most dose treatment options observed in practice are on a continuum.

Chen et al. (2016) also modified the OWL for estimating a personalized optimal dose

in a continuous scale (denoted as CZK hereafter). However, analogous to its origi-

nated method, OWL, CZK is susceptible to attempting to retain the actual observed

dose, because only an observation in which the observed dose is close to the esti-

mated optimal dose can contribute to the loss function. In addition, the estimated

individualized dosage decision is affected by a simple shift of the outcome. Moreover,

the CZK and GOWL are flexible in their forms but difficult to interpret since the

dosage decisions are derived from “black boxes.” Therefore, it is more desirable to

have interpretable dosage regimes for physicians to understand and apply. Laber and

Zhao (2015) also developed a method to solve this dosage strategy problem by using a

tree-based method (denoted as LZ hereafter). LZ is capable of providing interpretable

tree-based decision rules. However, it relies on the correct specification of the outcome

regression model, and therefore LZ is fragile due to model mis-specifications.

To overcome the limitations of the existing methods, we propose a robust and in-

terpretable personalized dose-finding method, kernel-involved-dosage-decision learn-

ing (KIDD-Learning). At each stage, KIDD-Learning combines a non-parametric

estimation of the dose-response function with an interpretable tree-based decision

rule, to estimate the optimal dynamic dosage regimes in a multiple-stage setting, us-

ing observational data. The whole dynamic dosage regime is estimated by backwards

inductions.

The remaining parts of this paper are organized as follows: In section 3.2, we

formalize the problem of identifying the optimal dynamic dosage regime using the

counterfactual causal inference framework in a multiple-stage setting. Section 3.3

develops the KIDD-Learning method to solve the dose-finding problem and describes

the detailed implementation of KIDD-Learning. Section 3.4 extends the methods

to handle a time-to-event outcome to accommodate the censored data we used in
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the application section. The simulation studies and an application to the Michigan

Medicine SBRT liver cancer patient dataset are provided in section 3.5 and 3.6. A

discussion concludes this method in section 3.7.

3.2 Data and Formulation of Dynamic Dosage Regime

3.2.1 Statistical Problem for Optimizing Dynamic Dosage Regime

To address the dynamic continuous dosage regime problem above, we consider a

multiple-stage continuous dosage decision framework with T decision stages. At each

stage t, let Dt ∈ Dt denote the continuous dose value of the treatment taken at stage

t with observed value dt. Without loss of generality, we further assume Ds = [0, 1],

and dt ∈ Dt.

The patient’s accumulated history between stage t−1 and t is denoted as Xt. We

use the over bar with subscripts t to denote a vector of a variables’ history up until

stage t, i.e., Xt = (X1,X2, . . . ,Xt). Similarly, the treatment history until stage t can

be denoted as Dt = (D1, . . . , Dt−1). We use Yt to denote the intermediate outcome

at the end of stage t, and thus the overall outcome vector is (Y1, Y2, . . . , YT ) and the

outcome history Yt−1 = (Y1, . . . , Yt−1). The outcome of interest Y is a function of all

intermediate outcomes, i.e., Y = f(Y1, Y2, . . . , YT ), where f(·) is a prespecified func-

tion (e.g., sum). Y is assumed to be bounded and higher value of Y is more desirable.

The history Ht is defined as the treatment and medical history prior to treatment

decision Dt. Specifically, we denote Ht = {(Dt,Xt,Yt−1)}ni=1. The observed data

consist n i.i.d. trajectories are therefore denoted as {Dt,i,Ht,i, Yt,i}Tt=1 across patient

index i. For brevity, we suppress the subject index i in the following text when no

confusion exists. The goal of our method is to use the observed data to find the opti-

mal dosage regime that determines what dose a patient should received at each stage

based on his/her medical history. Formally, the dynamic dosage regime for the contin-
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uous treatment is defined as a personalized decision rule sequence g = (g1, g2, . . . , gT )

that maps the observed history Ht about the patient’s health characteristics to the

dose assignment at stage t, i.e.,

Ht 7→ gt(Ht) ∈ Dt, 1 ≤ t ≤ T

To identify the optimal dynamic dosage regime from the observed data, we fol-

low the counterfactual framework of causal inference proposed by Robins (1986).

Let Y ∗(g) be the counterfactual outcome if a patient follows the dynamic treatment

regime g. E{Y ∗(g)} is the expectation of the counterfactual outcome with respect

to the distribution of patients’ history if the entire population had follow the dosage

regime g. The optimal gopt is a sequence of decision rules that leads to the optimal

value of E{Y ∗(g)}, such that,

E{Y ∗(gopt)} ≥ E{Y ∗(g)}, ∀g ∈ G, (3.1)

where G is the set of all potential dosage regimes under consideration.

3.2.2 Using the Observational Data to Estimate the Optimal Dosage

Regime gopt

According to the problem described in Eqn (3.1), the expectation of counterfactual

is used to estimate the optimal dose. However, the counterfactual outcomes of sub-

jects are not available in most observational studies. Therefore, we have to apply the

framework of causal inference to connect the counterfactual outcome we desire with

the observational study data we observe. Specifically, the method to find the whole

optimal dynamic dosage regime includes backward induction; therefore, we start the

mathematical formulation from the final stage T in a reverse sequential order to the

previous treatment stages.
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At the final stage, let Y ∗(D1, D2, . . . , DT−1, dT ), or Y ∗(dT ) for brevity, be the coun-

terfactual outcome if a patient makes decision dT conditional on his/her previous his-

tories. To connect the counterfactual outcome with the observed data {DT ,HT , Y },

we make the following standard causal inference assumptions:

Assumption 1 Consistency : DT = dT implies Y = Y ∗(dT ). This assumption

ensures the observed outcome is the same as the counterfactual outcome under

the treatment actually assigned;

Assumption 2 Exchangeability : Y ∗(dT ) ⊥ DT | HT , ∀ dT ∈ DT , where ⊥

denotes statistical independence. Conditional on the previous history HT , the

counterfactual outcome under a certain dose dT is independent of the dose choice;

Assumption 3 Positivity : π(dT | HT ) ≥ πmin > 0 for all possible HT , where

π(dT | HT ) = ∂P (DT≤dT |HT )
∂dT

is the conditional treatment density given history

HT and πmin is a given positive number. It ensures that every patient has some

chance of receiving a certain treatment dT .

Under the assumptions above, we are able to identify the optimal regime using the

observed data. At the final stage T , the expectation of counterfactual outcome Y ∗(dT )

can be identified with observed data as

E{Y ∗(dT )} = E{E(Y | DT = dT ,HT )} =

∫
HT

E(Y | DT = dT ,HT = hT ) dP (hT ).

When studying the continuous exposure, especially using observational study dataset,

dose-response function is a natural way visualizing the dose-response relationship

and describing the dosage effect, rather than using a scalar (Kennedy et al., 2017).

Therefore, we denote θT (dT ) = E{Y ∗(dT )}, and θT (·) be the dose-response function of

the entire population we are interested in. To ensure the identification of the optimal

dose for the population, we further assumme:
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Assumption 4 Concavity : θT (·) is continuous on the closed interval of DT

and differentiable on the open interval of DT , and the second derivative θ′′T (·)

exists throughout the domain DT and θ′′T (dT ) < 0 ∀ dT ∈ DT . This assumption

guarantees the existence of the local maximum of the dose-response function

within the domain DT .

Let θT{gT (HT )} denote the dose-response of the outcome under regime gT . According

to Eqn (3.1), the optimal decision rule of the final stage goptT (HT ) satisfies

E[Y ∗{goptT (HT )}] ≥ E[Y ∗{gT (HT )}], ∀ gT ∈ GT ,

i.e.

goptT (HT ) = arg max
gT∈GT

∫
HT

E{Y | DT = gT (HT ),HT = hT}dP (hT )

= arg max
gT∈GT

θT{gT (HT )}.
(3.2)

For the intermediate stage t ∈ {1, 2, . . . , T − 1}, the optimal regime goptt is ex-

pressed in a reversed sequential order. It is not meaningful to compare the outcome

of the regime of the intermediate stage when the dosage regime after the current

stage are different. Therefore, we desire to compare the dosage regime of the cur-

rent stage while assuming their future dosage have been optimized. We consider

{Y ∗(D1, . . . , Dt, g
opt
t+1, . . . , g

opt
T )Dt=dt}, for brevity Ỹ ∗t (dt), the future optimized coun-

terfactual outcome when a patient receiving treatment dt at stage t and all future

stages dosages are under the optimal regime. Under the foregoing causal infer-

ence assumptions, the expectation of the future optimized counterfactual outcome

can be identified with observed data as E{Ỹ ∗t (dt)} = E{E(POt | Dt = dt,Ht)},

where the pseudo-outcome of stage t, POt is the calculated future optimized coun-

terfactual outcome assuming optimal regimes are followed in all the stages after

stage t. Specifically, POt can be defined recursively using Bellman’s optimality as
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POt = Ê{POt+1 | Dt+1 = goptt+1(Ht+1),Ht+1}, t ∈ {1, 2, . . . , T − 1} and POT = Y

for the final stage. We can similarly denote θt(dt) = E(Ỹ ∗t (dt)), and θt(·) is the

dose-response function of the entire population at stage t, and the concavity of θt(·)

should be assumed throughout the domain of Dt. Thus, this function at stage t un-

der the dosage regime gt(Ht) is denoted as θt(gt(Ht)). The optimal regime goptt (Ht)

satisfies θt(g
opt
t ) ≥ θt(gt), ∀ gt ∈ Gt. In other words, the optimal regime goptt satisfies

E(Ỹ ∗t (goptt (Ht))) ≥ E(Ỹ ∗t (gt(Ht))), ∀ gt ∈ Gt, i.e.,

goptt = arg max
gt∈Gt

∫
Ht

E{POt | Dt = gt(Ht),Ht = ht}dP (ht)

= arg max
gt∈Gt

θt{gt(Ht)}
(3.3)

3.3 KIDD-Learning with Tree-based Dose-search Algorithm

Given the observational data with continuous dosage, we propose solving Eqn

(3.2) and Eqn (3.3) through KIDD-Learning to estimate the optimal individualized

dynamic dose decision rule by accounting for patients’ heterogeneity.

The tree-based method has been used in personalized medicine primarily (Laber

and Zhao, 2015; Tao et al., 2018; Zhu et al., 2015) because it is the foundation of

exploratory analysis and a classical example of a model with interpretability and

predictive ability. As we also desire to obtain interpretable dosage decision rules,

the tree-based method becomes an ideal candidate. At each node of a tree-based

decision rule, the population is split into two subpopulations based on their medical

characteristics; therefore, we can assume that patients can be classified into different

sub-population based on their characteristics, and patients who fall into the same

sub-population are homogeneous in terms of response to treatment doses. Thus for a

given patient, the dose-response information can be inferred by borrowing information

from other patients in the same group.

Therefore, the optimal tree-based dosage decision rule is estimated in the fol-
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lowing steps at each treatment stage: (1) For a given split of a node, calculate the

dose-response functions of the population and the two subpopulations after split-

ting; (2) Use a tree-based dose-search algorithm to determine whether the splitting

should happen by comparing the expectation of the counterfactual dose-response out-

come of the whole population. The steps are repeated iteratively until obtaining a

reasonably satisfactory tree-based decision rule. In the first step, a non-parametric

kernel-involved regression is applied to estimate robust dose-response functions and

identify the optimal dose of the specific population. In the second step, the tree-

based dose-search algorithm, which is used to evaluate the splittings and identify the

tailoring variables, is able to yield an interpretable tree-based decision rule.

3.3.1 Estimating the Dose-response Function

For a given node, we denote ω as a subpopulation of the entire population Ω of the

parent node. For a certain stage t ∈ {1, 2, . . . , T}, we denote the causal dose-response

function for a subpopulation ω at stage t as θω,t(·) , and θω,t(dt) ,∀dt ∈ Dt, is the dose

response of the subpopulation ω when the entire subpopulation receiving dose dt. To

guarantee the optimal dose is available from θω,t(·), we further assume that θω,t(·)

should be concave throughout the domain of Dω,t. Therefore, the optimal dose of the

subpopulation ω at stage t is denoted as doptω,t = arg maxdω,t∈Dω,t θω,t(dω,t) For brevity,

we suppress ω in the remaining part of this subsection when no confusion exists.

3.3.1.1 Mapping Function for the Dose-response Function

At the final stage T , let CT ({DT ,HT , Y }) be the mapping function of the observed

data such that,

E[CT ({DT ,HT , Y }) | DT = dT ] = θT (dT ). (3.4)

Given the mapping between CT ({DT ,HT , Y }) and the dose-response function θT (dT ),

θT (dT ) can be estimated by regressing CT ({DT ,HT , Y }) on treatment dT by using the
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off-the-shelf non-parametric regression model or machine learning methods (Kennedy

et al., 2017).

At the intermediate stage t ∈ {1, 2, . . . , T − 1}, the intermediate future optimized

counterfactual outcome Ỹ ∗t (dt) is not directly available from the dataset. Therefore,

we use the pseudo outcome as defined above to replace Y in Eqn (3.4). In particular,

the mapping function before the final stage become E[Ct({Dt,Ht, POt}) | Dt = dt] =

θt(dt).Since POT = Y , we suppress the difference between the final stage T and any

intermediate stage in the following text and use E[Ct({Dt,Ht, POt}) | Dt = dt] =

θt(dt), t ∈ {1, 2, . . . , T} for all stages. The following method works for any stage

t ∈ {1, 2, . . . , T}.

The mapping function Ct({Dt,Ht, POt}) determines the quality of the estimated

dose-response function, and thus the quality of the estimated optimal decision rule.

Therefore, we consider constructing a class of mapping functions Ct({Ht, Dt, POt})

for estimating the dose-response function θt(dt). To avoid relying on the paramet-

ric assumptions or the correctly specified parametric models, we follow the semi-

parametric method for continuous treatment proposed by Kennedy et al. (2017). We

further denote that Pn is the empirical measure, π(dt | ht) = ∂
∂dt
P (Dt ≤ dt | Ht = ht)

is the conditional treatment density given history and µ(ht, dt) = E(POt | Ht =

ht, Dt = dt) is the conditional mean pseudo outcome given covariates and treatment

assignment. The mapping function can be estimated by

Ĉt({Dt,Ht, POt}) =
POt − µ̂(Ht, Dt)

π̂(DT | Ht)

∫
Ht

π̂(Dt | Ht = ht)dPn(ht)

+

∫
Ht

µ̂(ht, Dt)dPn(ht).

(3.5)

In particular, at the final stage T , when either of µ(Ht, Dt) or π(DT | HT ) is correctly

specified, the estimator C({DT ,HT , Y }) satisfies the property of double-robustness,

i.e., E[C({Dt,Ht, Y }) | DT = dT ] = θT (dT ). In our implementation, the conditional
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treatment density model, and the conditional mean model are fitted by the method

of random forest (Breiman, 2001).

3.3.1.2 Kernel Regression

Given such a mapping function Eqn (3.5), θt(dt) can be estimated by first esti-

mating the mapping function Ĉt(Ht, Dt, POt) and then regressing Ĉt(Ht, Dt, POt)

on treatment Dt. The construction of the regression can be done by using various

flexible methods. In this paper, we uses the local linear kernel regression.

The local linear kernel version of our estimator is θ̂h,t(dt) = gh,dt(dt)
T β̂h(dt), where

gh,dt(z) = (1, (z − dt)/h)T and

β̂h(dt) = arg min
β∈R2

Pn[Kh,dt(Dt){Ĉt(Ht, Dt, POt)− gTh,dt(Dt)β}2],

where Kh,dt(z) = K{(z − dt)/h}/h with K is a standard kernel function and h is a

scalar bandwidth parameter.

The bandwidth h is essential for the kernel regression method, because too little

smoothness may produce substantial variance while too much smoothness may yield

large bias. In KIDD-Learning, we use the data-driven cross-validation to choose

the bandwidth h for the kernel regression. Specifically, we treat the estimated

Ĉt({Dt,Ht, POt}) as known and use the leave-one-out cross-validation to select the

optimal bandwidth hopt, i.e.,

ĥopt = arg min
h∈H

=
n∑
i=1

{
Ĉt({Dt,Ht, POt})− θ̂t,h(Dt,i)

1− Ŵh(Dt,i)

}2

,

where θ̂t,h(Dt,i) is the estimated dose response for patient i when the bandwidth

equals to h, and Ŵh(Dt,i) = (1, 0)Pn{ghdt(dt)Kh,dt,i(Dt)gh,dt(dt)
T}−1(1, 0)Th−1K(0) is

the ith diagonal of the hat matrix. We expect that this approach of selecting optimal

bandwidth hopt is asymptotically equivalent to using the oracle bandwidth selector
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(Kennedy et al., 2017).

3.3.2 Tree-based Dose-search Algorithm for KIDD-Learning

The algorithm of dose search is a modified method of the tree-based reinforcement

learning method (Laber and Zhao, 2015), which uses the classification and regression

tree (CART) proposed by Breiman et al. (1984). CART explores the relationship

between the directly observed or given classification label and the covariates, and

then builds a decision tree with the purest child nodes, which means having the

lowest mis-classification rate among all possible splits. In this dose-search problem,

the optimal dose, i.e., the label, is unknown and only available indirectly through the

counterfactual outcome. Therefore, to make use of this indirect information, we use

the expected counterfactual outcome as the purity measure, and build the tree-based

decision rules by maximizing the expected counterfactual outcome. Since the tree-

based dose-search algorithm of KIDD-learning involves infinite dose options within

the given dose range, the purity measure should be modified accordingly using the

estimation the dose-response function.

3.3.3 Implementation of KIDD-Learning

3.3.3.1 Purity Measure

A measure of node purity is used to facilitate the recursive splitting procedures

when growing a decision tree. For a given partition ω and ωc of a node Ω, we evaluate

the dose-response function separately for Ht ∈ ω as θω,t(dω,t) and for Ht ∈ ωc as

θωc,t(dωc,t). We first define the purity measure of stage t as

Pt(Ω, ω) = θ̂ω,t(dω,t)Pn[I(Ht ∈ ω)] + θ̂ωc,t(dωc,t)Pn[I(Ht ∈ ωc)],
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where Pn is the empirical expectation operator. Under the causal assumptions,

θ̂ω,t(dω,t) is the estimator of the expected dose response of subpopulation ω if all

the subjects in ω takes dose dω,t. However, comparing the purity by enumerating

all possible dω,t and dωc,t is not efficient to find the best partition. Instead, we first

maximize each partition’s purity by plugging in the optimal dose of each partition

ω and ωc, and then accept the partition with the highest purity as ωopt. Based on

the assumption of the concavity of the dose-response function, for a given partition

ω and ωc, the purity measure can be re-written as

Pt(Ω, ω) = θ̂ω,t(d
opt
ω,t)Pn[I(Ht ∈ ω)] + θ̂ωc,t(d

opt
ωc,t)Pn[I(Ht ∈ ωc)], (3.6)

where doptω,t = arg maxdω,t∈Dω,t θ̂ω,t(dω,t) and doptωc,t = arg maxdωc,t∈Dωc,t
θ̂ωc,t(dωc,t).

3.3.3.2 Recursive Partitioning

When maximizing the purity measure Pt(Ω, ω) as Eqn (3.6), a split ω can be

either a category level of a categorical covariate or values of continuous covariates that

are not larger than the threshold. The best partition ωopt, which leads to the dose

assignments doptω,t and doptωc,t , should maximize the improvement of Pt(Ω− ω)−Pt(Ω),

where Pt(Ω) means no splitting; i.e., all the subjects in Ω are assigned the same dose.

It is obvious that Pt(Ω− ω)− Pt(Ω) ≥ 0. To provide a practically meaningful split,

the improvement of purity should exceed a positive threshold λ . In addition, to avoid

overfitting and prune a feasible decision tree, we define the minimal node size n0, the

minimum number of subjects of a terminal node, and depthmax, the maximal number

of edges from the node to a tree’s top root node. If n0 is too small or depthmax is too

large, we will end up with an overfitted, overly precise dosage decision rule. Given

the hyper-parameters, λ, depthmax and n0, the following Algorithm 2 is implemented

as the stopping rules to split each node and stop while the rules are violated. Note
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here, nΩ is the total number of subjects in the parent node Ω.

Algorithm 2 Stopping Rules

if the current tree depth reaches the pre-specified depthmax then

Do not split the node

else

Calculate the best split by

ω̂opt = argmax
ω

[Pt(Ω, ω) : min{nΩPnI(Ht ∈ ω), nΩPnI(Ht ∈ ωc)} ≥ n0] .

if the maximum purity improvement Pt(Ω, ω̂opt)− Pt(Ω) < λ then

Do not split the node

else

Split Ω into ω̂opt and ω̂opt
c

end if

end if

3.3.3.3 Implementation

KIDD-Learning is implemented by a backward induction in a reversed sequential

order. At each stage, the optimal dosage decision is made by recursively evaluating

the dose-response function θt(dt) of each stage. Before determining the dose-response

function of each stage t, we have to calculate the pseudo outcome POt, which is

the replacement of the outcome Y in the intermediate stages. At the final stage

t = T , POT = Y , and thus POT can be used directly from the observed outcome.

In the stage t ∈ {1, . . . , T − 1}, the pseudo-outcome POt requires that the estimated

dosage decision rules of the future stages have been already optimized, as POt =

Ê{POt+1 | Dt+1 = goptt+1(Ht+1),Ht+1}. We further assume the dosage effect of the

intermediate outcome Yt is cumulatively carried forward to the final outcome Y . To

reduce the accumulated bias of each stage, we calculate the pseudo outcome POt by
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using actual observed outcomes at stage t, plus the predicted pseudo outcome gain

due to the optimized future dose assignment of the stages after t (Huang et al., 2015);

that is

POt = Y +
T∑

j=t+1

{E(POj | Hj, Dj = goptj (Hj))− E(POj | Hj, Dj = dj)},

where POT = Y and the conditional outcome of POt is calculated by using the off-

shelf machine-learning method “eXtreme Gradient Boosting” (Chen and Guestrin,

2016). In practice, the intermediate outcomes Yt can be different measures of a

patient’s disease status, such as toxicity or efficacy, due to different priorities of treat-

ment during the progression of the disease. Therefore, we should standardize the scale

of different intermediate measurements before aggregating them from different stages

into the final outcome. In some particular stage where the intermediate outcome

cannot be directly observed but the effect of the outcome is carried forward, we can

specify these outcomes as zero. The implementation of KIDD-Learning is outlined in

Algorithm 3, where m ∈ {1, 2, . . . , 2depthmax − 1} is the index of the node.

3.4 Extension to Survival Outcome

A time-to-event outcome, such as overall survival or local progression, is com-

monly used in oncology studies to evaluate the treatment performance. However, a

patient may have been censored from the study before the event happens, and the

observed censored time for the patient cannot be directly used as a continuous out-

come. Therefore, we extend the proposed method from using continuous outcomes

to using survival outcomes, following the recursive imputed survival time (RIST)

method proposed by Zhu and Kosorok (2012). We modify RIST to transform the

actual censored time into the expected conditional survival time, and then use it as

a continuous outcome for KIDD-Learning.
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Algorithm 3 Implementation of KIDD-Learning

Result: gopt = gopt1 , . . . , goptT

Set t = T and POT = Y

while t ≥ 1 do

Set m = 1 at root node Ωt,m

while m ≤ 2depthmax − 1 do

Use subjects with history Ht ∈ Ωt,m

if Stop at the Stopping rules at node Ωt,m then

Assign a single best treatment doptt = arg maxdt∈Dt θt,Ωt,m(dt) to all subject

in Ωt,m

else

Split Ωt,m into child nodes Ωt,2m and Ωt,2m+1 by ω̂opt

end if

m = m+ 1

end while

t = t− 1

Set POt = Y +
∑T

j=t+1{E(POj | Hj, Dj = goptj (Hj))− E(POj | Hj, Dj = dj)},

end while
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For brevity, we suppress the stage subscript t in the following derivation when no

confusion exists. Let Ti be the event (death) time for of the ith patient, let Ci be

the censoring time for the ith patient, and let δi = I(Ti ≤ Ci) be the non-censoring

indicator, 1 as event (death) and 0 as censored. We further define the observed

survival time Ri = min(Ti, Ci), and let Xi be the patient’s history and Di be the dose

assignment of the patient i. The observed data consist n i.i.d. {Ri, δi, Xi, Di}ni=1.

Since the event time is not always observed, we use a replacement of the observed

event time while maintaining a similar outcome. Therefore, we denote Yi as the

outcome, which is defined as the expectation of survival time Ti conditional on the

covariates Xi, and Di, censoring status δi and the observed survival time Ri. We

further assume that the censoring is independent of the survival time conditional on

the covariates (Cui et al., 2017). We also assume that there is a maximum length of

follow-up time τ . Since the survival time of event patients, i.e., δi = 1, is known, we

focus on estimating the conditional expectation of T which is truncated at τ as,

Yi = E(Ti | Xi, Di, Ri, δ)

= I(δi = 1)Ri + I(δi = 0)E(Ti | Xi, Di, Ti > Ri)

Next, we can calculate the conditional survival time for the censored patients by

taking the integral of the conditional survival function, and the conditional survival

function can be estimated by fitting survival decision trees (Ishwaran and Lu, 2019).

To have a more stable conditional survival function, we repeat the survival tree

splitting for K times and then average over all K trees. For each terminal node in

kth tree, we calculate a Kaplan-Meier estimate of the survival function within each

node, which is denoted by Ŝk(t). Every patient will only fall into one terminal node

for each fitted decision tree. Therefore, we denote the single-tree survival function

by Ŝik for the ith subject. By averaging K trees, we have the “forest-level” survival

function Ŝi(t) = 1
K

∑K
k=1 Ŝ

i
k(t). Given a subject i who is censored at time Ri, we can
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approximate the conditional probability of survival, Pr(Ti > t | Xi, Di, Ti > Ri, ), by

Pr(Ti > t | Xi, Di, Ti > Ri, ) =


1 if t ∈ [0, Ri]

Ŝi(t)/Ŝi(Ri) if t ∈ (Ri, τ ],

where τ is the pre-specified maximal length of follow-up time of the study.

3.5 Simulation Studies

We conduct simulation studies to investigate the performance of KIDD-Learning

under different scenarios. At first, to facilitate the comparison with existing methods,

in particular CZK (Chen et al., 2016), Q-learning regression-based SVR, and LZ

(Laber and Zhao, 2015), we consider single-stage scenarios and two-stage scenarios.

For each scenario, we consider sample sizes of 500, 800 or 1000 for the training dataset

and evaluate the performance on a test dataset with a sample size N=1000, and

replicate them 500 times.

The training datasets are used to estimate the optimal dosage regime and then

predict the optimal dosage decision in a separate test dataset, where the underlying

true optimal dosage regime is already known. The opt% shows the average pro-

portion of subjects correctly classified to their true optimal dose according to the

estimated optimal dosage regime. The expectation of the estimated counterfactual

dose-response outcome Ê(Y ∗(ĝopt)), i.e., the expected dose response under the esti-

mated dosage regime ĝopt, is also used to evaluate the performance. This expected

value is calculated by plugging the estimated optimal dose into the true pre-specified

underlying value function. Since the results of opt% and Ê(Y ∗(ĝopt)) are not normally

distributed (Tao et al., 2018), the results shown in Table 3.1 and 3.2 are medians and

the interquartile range from 25th quartile to 75th quartile.
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3.5.1 Single-Stage Scenarios

We consider a single-stage case with a continuous dose and implement KIDD-

Learning in the training dataset, of which the sample size is 500, 800 or 1000. We first

generate three baseline covariates X1, X2, X3 according to N(0, 1). The treatment

D1 is set within the range of D1 = [0, 1], and we generate it from Beta(α, 1−α) with

α = 1/{1 + exp(0.3X1 + 0.2X2 + 0.1X3)}, which makes D1 depend on the observed

covariates.

The continuous outcome Y1 has the form of Y1 = m(D1)+βH1 +ε1, where βH1 =

0.5X1 + 0.3X2 + 0.7X3 and ε1 is an independent standard normal variate that follows

N(0, 1). In addition, m(d1) ∝ I(gopt1 = 0.5)F24,24(d1) + I(gopt1 = 0.2)F6.75,24(d1) +

I(gopt1 = 0.8)F24,6.75(d1), where Fp,q(d1) is a unimodal function within the domain

to ensure the existence of the maximal dose response. Here, Fp,q(d1) = (d1)p−1
1 (1 −

d1)q−1Γ(p+ q)/{Γ(p)Γ(q)} is the probability density function of Beta(p, q).

We consider two forms of the underlying optimal dosage assignment, one is a

tree-type dosage regime and the other one is a non-tree-type regime, to study the

impact of underlying model specification has on the performance of KIDD-Learning.

The underlying tree-type is consistent with the dosage assignment model when using

the proposed tree-based dose-search algorithm, while the underlying model is “mis-

specified” for the non-tree-type regime. In particular, the underlying optimal dose

for the tree-type dosage regime is specified as gopt1 (H1) = 0.8I(X1 > 0.4) + 0.2I(X1 ≤

0.4)I(X2 ≤ 0) + 0.5I(X1 ≤ 0.4)I(X2 > 0). The optimal dosage regime for the non

tree-type is specified as gopt1 (H1) = 0.8I(X1 +X2 > 0.6)+0.2I(X1 +X2 ≤ 0.6)I(X2 ≤

−0.3) + 0.5I(X1 +X2 ≤ 0.6)I(X2 > −0.3).

For comparison, three methods, CZK, SVR, and LZ, are considered. CZK, pro-

posed by Chen et al. (2016), is a non-linear version of the modified outcome weighted

learning method to estimate the individualized dosage regime, a special case of DTR.

It uses a non-convex loss function for optimization and provides a difference of convex
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functions to solve the optimization problem. SVR includes a two-step procedure sim-

ilar to Q-learning: in the first step, the non-linear relationship between the outcomes

and the dosage decision, and relationship between covariates and dose are evaluated

by a Gaussian kernel. The parameters of SVR are tuned by five-fold cross-validation.

In the second step, since the closed-form expression of the optimal dosage regime is

not available, we choose 200 equally distributed grids within the dose interval (0, 1)

and find the optimal dose, and thus the optimal dosage regime. In addition, we use

the a non-parametric method for CZK and SVR, as presented in Chen et al. (2016),

to estimate the density of having a certain dose conditional on the covariates. LZ is

another tree-based reinforcement learning method that uses CART to estimate the

optimal DTR for continuous dose. Comparing with KIDD-Learning, LZ calculates

the purity measure by using the kernel density and evaluates the purities of given

doses to yield the optimal dosage regime. These comparison are implemented using

R packages “kernlab” (Karatzoglou et al., 2018), “SVMW” (Chen et al., 2016) and

“np” (Hayfield and Racine, 2008).

Table 3.1 summarizes the result for the single stage scenario. It shows that KIDD-

Learning outperforms CZK, SVR and LZ in all settings. Specifically, when sample size

N=1000, KIDD-Learning correctly estimates 97.3% subjects into their optimal dosage

regime, and the median of the estimated estimated mean counterfactual outcome

is 9.72, which is very close to the pre-specified true value 10. When the sample

size decreases, the performance of KIDD-Learning decreases as expected. When the

sample size N=500, the performance decreases but is still superior to CZK, SVR

and LZ with the median of the estimated counterfactual outcome equals 9.06 with

90.65% of the subjects correctly classified. CZK uses more information from the

observations who have higher observed outcome; if the received doses of a large part

of the population are close to their optimal doses, the performance of CZK should be

satisfactory. However, it is not the case in our simulation study and not common in
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the observational study either. Therefore, the compromised performance of CZK is

to be expected (Chen et al., 2016).

We further consider a setting that mimics a situation when the tailoring variables

that interact with the dose assignment are not clear to the researchers. Specifically, it

is a setting with 7 additional baseline variables,X4, . . . X10, simulated independently

from N(0, 1), and the outcome Y1 = m(D1) + βH1 + ε1, follows the previous setting,

where βH1 = 0.5X1 + 0.3X2 + 0.7X3 +
∑10

i=4 0.2Xi. In this setting, we intend to

see how the noise interference may affect the performance of the four methods under

different sample sizes and different underlying optimal dosage regimes.

The results of simulation study including more noise baseline covariates are shown

in Table 3.2. In general, KIDD-Learning has the highest performance of the methods

compared. Although all methods in all cases have worse performance than the results

shown in Table 3.1, the regression-based SVR is the most sensitive to the increase

of the dimension of noise covariates. When the sample size is 1000 and under the

pre-specified tree-type dynamic dosage regime, the median of estimated expectation

of counterfactual outcome E{Y ∗(ĝopt)} of SVR is 3.10, which is almost half of that

in the case with fewer noise variables. Compared with Table 3.1, KIDD-Learning has

a decreased performance in opt% and Ê(Y ∗(ĝopt)) in general, but the performance

is still reasonably satisfactory when we have a sufficient sample size, i.e., N=1000

or N=800. Specifically, the median of expectation of counterfactual outcome when

N=1000 is 9.60, and opt% is 96.2%, which is only decreased by 1% from its counterpart

in Table 3.1. In general, the performance gets worse when the sample size decreases,

but the performance of KIDD-Learning is still much better than that of CZK,SVR

and LZ.
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3.5.2 Two-Stage Scenarios

To mimic the multiple-stage dynamic dosage regime, data under a two-stage con-

tinuous dynamic dosage regime are generated and evaluated at sample sizes of 500,

800 or 1000. The outcome we are interested in is the sum of the intermediate out-

comes of each stage, i.e., Y = Y1 + Y2. Similar as the single stage scenarios, we also

consider the underlying true optimal dosage regime as tree-type or non tree-type.

To help make decisions in the second stage, we generate two time-varying biomark-

ers X4 and X5, in addition to three baseline covariates X1, X2, X3 as the setting of

the single-stage scenario; X1, X2, . . . , X5 are simulated independently from N(0, 1).

For the first stage, we generate D1 from Beta(α, 1−α) with α = 1/{1 + exp(0.3X1 +

0.2X2 + 0.1X3)}. The continuous outcome of the first stage Y1 has the form as

Y1 = m1(D1) + βH1 + ε1, where βH1 = 0.5X1 + 0.3X2 + 0.7X3 and m1(d1) ∝

I(gopt1 = 0.5)F24,24(d1) + I(gopt1 = 0.2)F6.75,24(d1) + I(gopt1 = 0.8)F24,6.75(d1). We

also assume the independent standard normal variate ε1 ∼ N(0, 1). Specifically,

the underlying optimal dosage regime of stage 1 for the tree-type dosage regime is

specified as gopt1 (H1) = 0.8I(X1 > 0.4) + 0.2I(X1 ≤ 0.4)I(X2 ≤ 0) + 0.5I(X1 ≤

0.4)I(X2 > 0). The optimal dosage regime for the non tree-type is specified as

gopt1 (H1) = 0.8I(X1 +X2 > 0.6)+0.2I(X1 +X2 ≤ 0.6)I(X2 ≤ −0.3)+0.5I(X1 +X2 ≤

0.6)I(X2 > −0.3). At the second stage, the treatment assignment D2 is also generated

from Beta(α, 1−α) with α = 1/{1+exp(0.3X5+0.2X5+0.1X3)}. The continuous out-

come Y2 = m2(D2)+βH2+ε2, where βH2 = 0.3X1+0.2X2+0.5X3+0.6X4+0.2X5 and

m2(d2) ∝ I(gopt2 = 0.5)F24,24(d2) + I(gopt2 = 0.2)F6.75,24(d2) + I(gopt2 = 0.8)F24,6.75(d1).

Again, we assume ε2 ∼ N(0, 1). The underlying optimal dosage regime of stage 2

for the tree-type dosage regime is specified as gopt2 (H2) = 0.8I(Y1 > 1) + 0.2I(Y1 ≤

1)I(X4 ≤ −0.1) + 0.5I(Y1 ≤ 1)I(X4 > −0.1). The optimal dosage regime for the non

tree-type is specified as gopt1 (H1) = 0.8I(Y1 +X5 > 1.3) + 0.2I(Y1 +X5 ≤ 1.3)I(X4 ≤

0) + 0.5I(Y1 +X5 ≤ 1.3)I(X4 > 0)
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Since the performances of CZK from the single-stage scenarios is consistently infe-

rior to other methods, we only modify the regression-based SVR and LZ for compar-

ison in the two-stage scenario. Specifically, to use SVR in this two-stage scenario, we

apply the multiple-stage Q-learning and use support vector regression as the regres-

sion model. The search for optimal dosage regime is similar to that of the single-stage

scenarios.

Results for different sample sizes and underlying optimal dosage regimes are shown

in Table 3.3. Given a tree-type underlying dynamic dosage regime with a sample size

N=1000, the median of the estimated mean counterfactual outcome of KIDD-Learning

is 19.56, which is fairly close to the optimal value of 20. For both stages, 96.0% of the

patients are correctly assigned to their optimal dosage regime, with 96.4% for stage 1

and 99.9% for stage 2. In contrast, SVR only has 7.81 in the median of the estimated

mean counterfactual outcome, and the opt% is only 9.6% for both stages, and LZ is

better than SVR with Ê(Y ∗(ĝopt)) = 14.77 and opt%=22.25%. A similar superiority

of KIDD-Learning is also found under different types of underlying dynamic dosage

regimes and different sample sizes. Moreover, when the sample size decreases, the

performance of all methods is compromised. Specifically, the convergence rate of

the dose-response function using kernel regression is much slower than that of the

parametric case; therefore, the relatively worse performance with a smaller sample

size is to be expected. In particular, when the underlying true dynamic dosage regime

is correctly specified, i.e., under the tree-type setting, the performance of KIDD-

Learning with sample size N=500 is still reasonably satisfactory, with Ê(Y ∗(ĝopt)) =

17.51 and 77.2% of patients correctly assigned to their optimal dosage regimes.
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3.6 Application to Liver Cancer Adaptive Stereotactic Body

Radiation Therapy Data from Michigan Medicine

In radiation therapy, higher doses of radiation therapy (RT) are often associated

with improved tumor control but also increased risk of toxicity. At the same time,

by splitting the treatment into multiple stages, with a break in between, the radiated

normal cells may recover better from the treatment and reduce the risk of toxicity

(Jackson et al., 2019). Thus, selection of the optimal dose requires a tradeoff be-

tween efficacy and toxicity when planning the optimal treatment dosage, accounting

for individual patient characteristics. Patients vary in terms of their sensitivity to

radiation therapy (Lawrence et al., 1995), so splitting an RT plan into two stages

provides the opportunity to identify the more sensitive patients based on early mea-

sures following the first stage of treatment. However, to our knowledge, there are

no existing applications of a dynamic treatment regime framework in the setting of

radiation oncology.

We apply the proposed KIDD-Learning method to a Michigan Medicine liver

cancer dataset comprised of several clinical trials using adaptive SBRT (Feng et al.,

2018, 2013). In these studies, patients were treated with an initial RT plan followed by

an assessment of liver function after a one-month break. After the treatment break,

additional doses were given depending upon the change in measures of liver function.

The dataset we used consisted of 202 patients treated with a range of doses during

stage 1 due to physician preference, tumor size and tumor location. 84 patients

stopped RT after stage 1 with no further dose, 21 patients received a lower than

planned dose for the second stage, and 97 continued with the planned dose for the

second stage. Such heterogeneity of treatment allowed us to apply KIDD-Learning

to estimate a optimal personalized dosage regime; in other words, we consider what

dose should be given for patients for the first stage using baseline covariates and what
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is the optimal radiation dose for the second stage, using both baseline covariates and

updated covariates observed after stage 1.

Patients’ RT tumor dose ranged from 29 Gy to 119 Gy for the first stage, and from

0 Gy (no further RT) to 71 Gy for the second stage. Patients’ baseline characteristics,

including age, gender, cancer history, tumor size, gross tumor volume, mean liver

dose, and other biomarkers (ALBI raw score, Child-Pugh score, ECOG.PS score,

AST, ALT and Alkphos), were collected. The key concept underlying the two-stage

dosage regime is that the full planned course of treatment may be too toxic for some

patients. Thus the plan was to give 60% of the total planned dose during stage 1

and then, based on the resulting change in liver function, possibly give an additional

dose, but no greater than initially planned. Exactly how the stage 2 dose was selected

varied across patients.

To consider the trade-off between efficacy and toxicity, overall survival becomes

an appropriate outcome to be maximized when estimating the optimal dosage regime,

because severe toxicity damages the normal liver function, which then impacts the

long-term life expectancy; on the other hand, better efficacy on the cancer cells avoids

patients suffering from cancer progression, leading to a longer and better life. Overall

survival also matches our method as we assume higher outcome values are preferable.

In particular, when using the overall survival as the final outcome, we are assuming

all intermediate outcomes as zero and only the overall survival after the final stage

can be used as the final outcome. We use the RIST (Zhu and Kosorok , 2012) as

described in section 3.4 to impute the conditional survival time for the patients who

were censored from the study before their death. This conditional time is truncated

at 3821 days, which is the longest observing time of this adaptive SBRT study.

The estimated optimal dosage regime of this two-stage adaptive SBRT is shown in

Figure 3.1. In particular, after consulting with radiologists, the dose recommendation

of the estimated optimal regime is one of the pre-specified candidate dose levels that
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uses 10-quantiles from the observed dose, instead of an overly precise dose on a

continuum. According to the estimated optimal dosage regime, at the first treatment

stage, patients whose ALT baseline was larger than 58 should be given 29 Gy. Patients

whose ALT baseline was larger than 50 but less than 58 were recommended for 55 Gy

at the first stage. This splitting rule that gives patients with a worse baseline liver

condition a lower dose has been suggested in the literature (Lawrence et al., 1995).

Moreover, for patients with ALT baseline less than 50, but AST baseline larger than

39, 55 Gy should also be given. For the remaining patients with lower ALT (<50)

and lower AST (<39), their dose recommendations were based on their tumor size;

i.e., a larger tumor size would be given 84 Gy while a smaller tumor size would be

given 119 Gy. At the second stage, in addition to the baseline risk factors, we also

included the ALBI change from the baseline as a covariate. The estimated optimal

dosage regime shows that, for patients with a lower planned dose of the first stage

(<78 Gy), 55 Gy should be given. For patients with a higher planned dose (>78 Gy),

the patients with larger ALBI change should be given a lower dose (25 Gy), and vice

versa (44 Gy with smaller ALBI change).

Our recommendation that giving patients with a larger ALBI change a lower

second stage dose is consistent with what has been reported in the literature, including

that mid-treatment ALBI change in the analysis improved the ability to predict the

liver toxicity (Jackson et al., 2019) and greater mid-treatment increases in ALBI

were associated with decreased overall survival (Morris et al., 2019). ALBI is also

recommended in practice since it is easily obtained from standard lab tests and is

more sensitive than other commonly used biomarkers (Mohammadi et al., 2018). Our

results revealed some potential predictive biomarkers on which the optimal dosage

regime should depend, such as AST and ALT at baseline and ALBI change at the

second treatment stage. These results give radiologists a way to design randomized

dose-response studies in the future to confirm the findings and to better treat patients.
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Figure 3.1: The estimated optimal dosage regime for patients with liver cancer from
Michigan Medicine adaptive stereotactic body radiation therapy dataset

In addition to the consistent findings with clinical experience, the patients from

this study would benefit from our estimated regimes by increasing their overall sur-

vival time when receiving the estimated optimal dosage regime. According to our

model, the mean overall survival (in days) of the population would increase from 997

to 2190 days after utilizing the estimated optimal dosage regime at both treatment

stages.

3.7 Discussion

To overcome the limitations of current methods when dealing with the dose-finding

problem within the framework of a dynamic dosage regime, we developed the KIDD-

Learning to estimate the personalized optimal dosage regime by accommodating pa-
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tients’ time-varying medical characteristics. The results from simulation studies have

shown that KIDD-Learning has consistently superior performance compared to ex-

isting methods, in terms of maximizing the expect ed counterfactual outcomes and

correctly assigning the optimal dosage regimes. Unlike other flexible dosage rules

assignment methods (Chen et al., 2016, 2018), the tree-based decision rules are eas-

ily interpreted and implemented. In particular, with the estimated decision rule,

when a patient is newly presented at a clinic, a physician can easily determine the

recommended dose for this patient based on his/her characteristics without addi-

tional calculation. Compared with LZ, a method also yields tree-based decision rules,

KIDD-Learning is more robust under different scenarios when using observational

data.

We also illustrate the potential application of KIDD-Learning to a Michigan

Medicine liver cancer SBRT dataset. The dosage decision for each stage of a multiple-

stage adaptive radiation therapy is currently more experience-based rather than based

on evidence-based, quantitative tools, with no previous statistical methods to handle

such a problem. KIDD-Learning uses a kernel-involved decision learning approach to

estimate the optimal dosage strategy backwards from the second stage; therefore, the

optimal dose assignment for the first stage is determined conditional on the already

optimized outcome of the second stages. In this way, KIDD-Learning is an effective

tool for physicians to provide optimal personalized radiation therapy over time.

There are a few directions for future work. One possible direction concerns the

limitation of the dose-search algorithm we used to estimate the tree-based decision

rule of each treatment stage. This tree-based dose-search algorithm, which splits the

nodes from the top root node to terminal nodes, is based on a greedy algorithm, be-

cause the optimal decisions are made at each node without looking ahead to further

child nodes. If there are strong predictors hidden from relatively weak imperceptible

nodes, this top-down greedy algorithm may fail to find the optimal splitting rules
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and fall into some sub-optimal rules. One way potentially to eliminate this greedi-

ness is “lookahead” (Murthy and Salzberg , 1995) by evaluating the future child nodes

before splitting on their parent node. We tried “lookahead” in our preliminary simula-

tion studies; the improvement of performance was moderate while the computational

time increased substantially. To reduce the potential local optimality brought by the

greedy top-down algorithm, some alternative search methods have been developed

in computer science literature, such as stochastic tree search using the methods of

Markov chain Monte Carlo (Denison et al., 1998; Chipman et al., 1998; Wu et al.,

2007; Wang et al., 2017) and evolutionary algorithm (Papagelis and Kalles , 2001).

In a future study, we will improve KIDD-Learning by incorporating these alternative

search methods and providing more robust optimal decision rules.

Another possible exploration would address the potentially competing outcomes

for determining the optimal dosage regime, such as efficacy, toxicity, side-effects and

cost burden. In the data illustration of Michigan Medicine Liver SBRT dataset,

we consider the overall survival as the outcome, as it is a combination of treatment

effectiveness and toxicity. However, when a composite outcome, like overall survival, is

not available, a method that is capable of balancing multiple contradictory objectives

is desirable (Butler et al., 2017). Some statistical methods have been developed

to compromise between multiple contradictory outcomes (Lizotte and Laber , 2016;

Wang et al., 2019), but none is able to estimate the optimal dose on a continuum

within the framework of dynamic dosage regime. One potential future direction is to

further incorporate these multiple objective optimization functions and extend our

KIDD-Learning.
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CHAPTER IV

Stochastic Spline-Involved Tree Search for

Optimizing Personalized Multi-stage Dosing

Strategy

4.1 Introduction

Determining the optimal dosage is of paramount importance in drug development

and personalized medicine (Schmidt , 1988; Thall et al., 2007; Thall , 2008; Guo and

Yuan, 2017; Xu et al., 2018). An optimal treatment dose usually balances effectiveness

and side-effects. Increasing the drug dose can intensify the treatment effect at the cost

of damaging the function of normal organs, while a low drug dose may result in a lack

of efficacy. Moreover, as the interest in precision medicine has emerged (Collins and

Varmus , 2015), scientists are more interested in providing individualized doses for

patients with heterogeneity, rather than giving a one-size-fits-all optimal treatment

recommendation. Recently, statistical methods have been developed to accommodate

the need for estimating the personalized optimal dose for each individual (Li et al.,

2019; Guo and Yuan, 2017; Thall et al., 2008; Xu et al., 2018; Rich et al., 2016).

Moreover, when treating chronic diseases, such as cancer or diabetes, clinical de-

cision making often involves the determination of overall dose level and the allocation

of drug doses over several treatment stages. Doctors routinely provide treatments
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based on patients’ baseline covariates and time-varying characteristics. For exam-

ple, in treating patients with diabetes, insulin dose titration has become a common

practice to balance the desired sufficient insulin effectiveness and a patient’s toler-

ance of vomiting and nausea (Scarpello, 2001; Qu et al., 2019). Dose titration allows

patients to start from a low insulin dose and gradually escalate to higher dose levels

according to their tolerance to the drug. Such a treating process involves a sequence

of dose assignments chosen based on up-to-date patient information. This kind of

idea of personalizing treatment decisions over time has been formalized as the Dy-

namic Treatment Regimes (DTRs) (Murphy et al., 2001; Wang et al., 2012). DTRs

generalize the individualized medical decisions into a time-varying treatment setting

and thus accommodate the updated information for each person at each stage. In

the remaining part of this article, we will refer to dynamic treatment regimes with

continuous dose treatments as dynamic dosage regimes.

There has been a rapidly growing literature in estimating the optimal multiple-

stage DTR with binary treatment or finite multiple treatments (Zhang et al., 2015;

Laber and Zhao, 2015; Chen et al., 2018). However, it is complex to extend existing

methods to personalized dose-finding because of the sparse nature of the observed

data, i.e., the dose level follows a continuous distribution – of which the probability

of observing any specific dose is zero. Estimating the optimal DTR for continuous

treatment has received less attention in the literature; some examples include Lee

et al. (2015); Chen et al. (2016, 2018); Schulz and Moodie (2020). However, many

of these methods have limited interpretability, which hinders their potential impact.

Laber and Zhao (2015) (denoted as LZ hereafter) proposed a tree-based method for

estimating optimal DTR with continuous treatments, and demonstrated the promis-

ing performance under various scenarios. However, these methods require specifying

the parametric working model for the treatment assignment mechanism, or the con-

ditional outcome, or both. The quality of estimated DTRs is tied to how adequately
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the working models approximate the true data-generating mechanism. In practice, it

is difficult to correctly specify the outcome regression model even with background

knowledge of the observed population.

In Chapter III, KIDD-Learning and implemented it using a modified tree-based

reinforcement learning method. KIDD-Learning can estimate the optimal tree-based

dosage regime. However, when implementing KIDD-Learning, the tree-based decision

rules are constructed using a modified Classification and Regression Tree (CART)

dose search algorithm. In CART, as the decision tree grows from the root node,

a split is determined when the expected counterfactual outcome increases, and the

splitting process stops after reaching the prespecified stopping criteria. However, the

CART dose search algorithm is limited by its greedy nature, because splits are myopic

and may fail to account for the possible impact of future partitions. Such a top-down

algorithm generates a sequence of trees, each of which is a direct extension of the

previous decision tree, and inevitably results in a locally optimal tree if the previous

tree is already sub-optimal.

In addition, most of the existing methods listed above limit their application to

data from randomized dose trials, where the confounders have been well-adjusted.

Real world observational data are more common, because of the cost and the ethical

concerns (Wallace et al., 2018). Applying the methods designed for randomized trials

directly without carefully adjusting for confounders may lead to a sub-optimal dosage

regime. Specifically, in the method developed by Chen et al. (2016) (denoted as CZK

hereafter), it was claimed that CZK remained valid by using an inverse weight of the

density model conditional on the covariates from the observed data. However, their

simulation results showed that the performance of CZK did not change much with or

without adjusting for confounders. CZK’s potential extension to using observational

data thus needs further exploration and validation.

Therefore, a robust and interpretable method for estimating the optimal dynamic
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dosage regime using observational data is highly desirable, as it bridges the gap be-

tween the clinician’s medical expertise and data-driven dosage regimes, and allows a

clinician to better understand and trust the regimes. In this article, we propose a

stochastic spline-involved tree search learning method, SSITS for estimating the op-

timal dosage regime, which is an extension of KIDD-Learning. This new method

combines a robust non-parametric estimation of the dose-response function with

an efficient simulated annealing tree search algorithm for estimating interpretable

dose decision rules over multiple decision stages. At each treatment stage, our pro-

posed method stochastically searches the binary decision tree space and then pro-

vides the optimal decision rule by comparing the maximum value of each estimated

dose-response function. Compared to its CART counterpart, SSITS can search the

tree space more efficiently and is more capable of escaping the local optimality. In

the cases of multiple-stage multiple-treatment DTR, the effectiveness of the stochas-

tic search has been demonstrated by Sun (2019). Similar superiority is expected in

SSITS when estimating the continuous dose DTR. In addition, unlike KIDD-Learning

where the dose-response function has to be fitted to evaluate every possible splitting,

this proposed method only fits the non-parametric regression model in the resulting

terminal nodes for each visited tree and therefore is more computationally efficient

than KIDD-Learning.

This article is organized as follows: Section 4.2 formalizes the continuous dose

treatment DTR problem and connects it with observational data; Section 4.3 and

4.4 describes the proposed stochastic spline-involved tree search learning method for

estimating the optimal dosage regime and outlines its implementation; Section 4.5

presents the numeric results from simulation studies; Section 4.6 illustrates the data

application of SSITS using data from the International Warfarin Pharmacogenetics

Consortium. Section 4.7 concludes the study with a discussion.
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4.2 Data and Mathematical Formulation of Dynamic Dosage

Regime

4.2.1 Notation and the Statistical Problem

We assume there are T stages in total. At each stage t ∈ {1, 2, . . . , T}, we denote

the continuous dose value of the drug taken at stage t by Dt ∈ Dt, and the observed

value of Dt is dt. Without loss of generality, we further assume the domain of the

dose assignment Ds = [0, 1], and dt ∈ Dt. Let Xt denote the patient information

accumulated between stage t − 1 and t, and the patient history up to stage t can

be denoted as Xt = (X1,X2, . . . ,Xt). Similarly, the treatment history until stage

t can be denoted as Dt = (D1, . . . , Dt−1). The outcome of interest is denoted by

Y . In practice, the reward outcome we are interested in might be a combination of

some intermediate outcomes, or the outcomes happen after some intermediate stages

may have an impact on the final outcome. Thus, the overall outcomes vector is

(Y1, Y2, . . . , YT ) and the outcome history Yt−1 = (Y1, . . . , Yt−1). We further denote

that the final outcome of interest Y is a function of all intermediate outcomes, i.e., Y =

s(Y1, Y2, . . . , YT ), where s(·) is a pre-specified function (e.g., sum). We assume Y to

be bounded and higher value of Y is more desirable. We define the history prior to the

dose treatment at stage t Dt as Ht. which includes the dose assignments Dt−1 history,

the history happened before stage t, Xt, and the intermediate outcomes. Specifically,

Ht = {(Dt−1,Xt,Yt−1)}ni=1. Therefore, across patient index i, the observed data

consist n i.i.d. trajectories are denoted as {Dt,i,Ht,i, Yt,i}Tt=1. For brevity, we suppress

the subject index i in the following text when no confusion exists.

The goal of our method is to use the observed data to find the optimal dosage

regime that determines, based on a patient’s medical history, what dose he/she should

receive at each stage. We formally define a personalized decision rule sequence

g = (g1, g2, . . . , gT ) as the dynamic dosage regime, where gt, the decision rule of
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stage t, maps the observed history Ht about the patient’s health history to the dose

assignment, i.e.,

Ht 7→ gt(Ht) ∈ Dt, t ∈ {1, 2, . . . , T}

The counterfactual framework of causal inference proposed by Robins (1986) is

followed to identify the optimal dynamic dosage regime from the observed data. The

counterfactual outcome if a patient follows the dynamic treatment regime g is denoted

by Y ∗(g). E(Y ∗(g)) is the expectation with respect to the distribution of patients’

history of the counterfactual outcome if the entire population had followed the given

dosage regime g. The optimal dosage regime gopt should be a sequence of decision

rules that is able to make the entire population benefit from it. Therefore, we formally

define the optimal gopt as a sequence of decision rule that can lead to the optimal

value of E{Y ∗(g)}, such that,

E{Y ∗(gopt)} ≥ E{Y ∗(g)}, ∀g ∈ G, (4.1)

where G is the set of all potential dosage regimes under consideration.

4.2.2 How to Use the Observational Data

In Eqn (4.1), the expectation of counterfactual is utilized to estimate the opti-

mal dosage regime. Considering the limited accessibility of counterfactual outcome,

which often comes from the data of randomized clinical trials, we have to connect the

counterfactual outcome with the data we observe by applying the framework and as-

sumptions of causal inference (Robins , 1986). In particular, the method to estimate

the whole optimal dynamic dosage regime includes backward induction; therefore,

we start formulating this optimization problem from the final stage T in a reverse

sequential order. At the final stage T , let Y ∗(D1, D2, . . . , DT−1, dT ), or Y ∗(dT ) for

brevity, denote the counterfactual outcome if a patient takes dose dT conditional on
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his/her previous medical characteristics. In order to better connect the counterfactual

outcome Y ∗(dT ) with the observed data {DT ,HT , Y }, we make the following causal

inference assumptions:

Assumption 1 Consistency : DT = dT implies Y = Y ∗(dT ). This assumption

ensures the observed outcome is the same as the counterfactual outcome under

the dose actually assigned.

Assumption 2 Exchangeability : Y ∗(dT ) ⊥ DT | HT , ∀ dT ∈ DT , where ⊥

denotes statistical independence. This assumption guarantees that the coun-

terfactual outcome under a certain dose dT is independent of the dose choice,

conditional on the previous history HT .

Assumption 3 Positivity : π(dT | HT ) ≥ πmin > 0 for all possible HT , where

π(dT | HT ) = ∂P (DT≤dT |HT )
∂dT

is the conditional treatment density given history

HT and πmin is a given positive number. It ensures that every patient has some

chance of receiving a certain treatment dT

Under the assumptions above, the expectation of counterfactual outcome Y ∗(dT ) can

be identified from the observed data as

E{Y ∗(dT )} = E{E(Y | DT = dT ,HT )} =

∫
HT

E(Y | DT = dT ,HT = hT ) dP (hT ).

Dose-response function is a natural way to visualize the dose-response relationship

and researching the continuous dose effect (Kennedy et al., 2017; Zhao et al., 2020),

therefore, we denote θT (dT ) = E(Y ∗(dT )), and θT (·) is the dose-response function of

the population we are interested in. To guarantee that the optimal dose is identifiable

within the domain, we have another assumption:

Assumption 4 Concavity : θT (·) is continuous on the closed interval of DT

and differentiable on the open interval of DT ; the second derivative θ′′T (·) exists
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throughout DT and θ′′T (dT ) < 0 ∀ dT ∈ DT . This assumption ensures the existence

of the local maximum of the dose-response function within the domain DT .

Let θT{gT (HT )} denote the dose response of the outcome under regime gT . According

to Eqn (4.1), the optimal regime of the final stage goptT (HT ) satisfies

E[Y ∗{goptT (HT )}] ≥ E[Y ∗{gT (HT )}], ∀ gT ∈ GT .

i.e.

goptT (HT ) = arg max
gT∈GT

E{E(Y | DT = gT (HT ),HT )}

= arg max
gT∈GT

∫
HT

E(Y | DT = gT (HT ),HT = hT )dP (hT )

= arg max
gT∈GT

θT{gT (HT )}.

(4.2)

At the intermediate stage t ∈ {1, 2, . . . , T − 1}, it is important to compare the

decision rules of a intermediate stage when the decision rules after the current stage

are the same, unless the comparison becomes meaningless. Thus, we compare the

decision rule of the current stage while assuming their future dose assignments have

been optimized. We denote the future optimized counterfactual outcome with all fu-

ture stages dose assignments under the optimal decision rules, when a patient at stage

t receiving treatment dt as {Y ∗(D1, . . . , Dt, g
opt
t+1, . . . , g

opt
T )Dt=dt}, for brevity Ỹ ∗t (dt).

Under similar causal inference assumptions, the expectation of the future opti-

mized counterfactual outcome can be identified through observed data as E(Ỹ ∗t (dt)) =

E{E(POt | Dt = dt,Ht)}, where POt denotes pseudo-outcome of stage t. Specifically,

we define POt recursively using Bellman’s optimality as POt = Ê{POt+1 | Dt+1 =

goptt+1(Ht+1),Ht+1} and POT = Y .

Similarly, we can define at any stage θt(dt) = E{Ỹ ∗t (dt)}, where θt(·) is the dose-

response function of the entire population at stage t, and the concavity of θt(·) should
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be assumed throughout the domain of Dt. Thus, the dose-response function at stage

t under a decision rule gt(Ht) is denoted as θt{gt(Ht)}. goptt (Ht) should satisfy

E[Ỹ ∗t {g
opt
t (Ht)}] ≥ E[Ỹ ∗t {gt(Ht)}], ∀ gt ∈ Gt, we have the optimization problem at

the intermediate stage t becoming

goptt (Ht) = arg max
gt∈Gt

∫
Ht

E{POt | DT = gt(Ht),Ht = ht}dP (ht)

= arg max
gt∈Gt

θt{gt(Ht)}.
(4.3)

4.3 Stochastic Spline-Involved Tree Search for Optimizing

Personalized Multi-stage Dosage Regime

Decision tree is one of the most popular models for interpretable statistical learn-

ing. To estimate a tree-based decision rule, the tree-based reinforcement learning

method (Laber and Zhao, 2015; Tao et al., 2018) can be a natural option. LZ recur-

sively splits the patient feature space by maximizing the purity measure at each split.

Such a top-down, greedy algorithm may end up estimating a local optimal decision

rule when there are strong predictors hidden from imperceptible parent nodes. One

way to alleviate the greediness is lookahead by finding new splits based on optimizing

deeper trees rooted at the current terminal node, rather than just optimizing a single

split (Murthy and Salzberg , 1995; Tao et al., 2018). However, lookahead is still heavily

limited by its local move, since it generates a sequence of trees, each of which is an

extension of the previous tree. It does not resolve the problem of local optimality

while increasing the computational burden substantially (Bertsimas and Dunn, 2017;

Tao et al., 2018).

Constructing an optimal decision tree is known to be NP-complete (Laurent and

Rivest , 1976), here we propose to use stochastic tree search to expand the search scope

and to better balance the exploration and the exploitation. Within each terminal

node, a flexible smooth coefficient model is used to model the dose-response function
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while adjusting for confounders.

4.3.1 Estimating the Dose-response Function

The estimator of the dose-response is vital in assessing the quality of estimated

dosage strategy. To estimate the dose-response function using observational study

data, the key is to adjust for the confounding variables. Rosenbaum (1987) developed

the propensity score method to address the confounding bias for binary treatment

assignment, and other statisticians have proposed generalizations of the propensity

score method to deal with continuous treatment (Imai and Van Dyk , 2004; Hirano

and Imbens , 2005; Flores et al., 2012). In particular, the propensity function (PF)

used a generalized propensity score-based method for causal inference with continuous

treatments (Imai and Van Dyk , 2004).

The propensity function πψ(Dt | Ht) is defined as the conditional density function

of a dose assignment given the observed history at stage t ∈ {1, . . . , T}, where ψ

parameterizes this distribution. We further fit the parametric model of the propensity

function as eψ(· | Ht) = πψ(· | Ht). In addition to the assumptions from Section 2

above, we make another assumption to simplify the representation of PF. We assume

a Uniquely Parameterized Propensity Function. In particular, for every value of Ht ∈

Ht, there exists a unique finite-dimensional parameter φ ∈ Φ, such that eψ(· | Ht)

depends on Ht only through φψ(Ht). In other words, the propensity function e(· |

φψ(Ht)) can be uniquely represented by φ. Therefore, we can rewrite PF as e(· | φ),

where φ = φψ(Ht). This parametrization assumption that uses φ to represent Ht

can decrease the dimension in future calculations when adjusting for confounders, as

φ has typically much lower dimension than Ht. Without loss of generality, we specify

φ as univariate, and rewrite φ as φ. In the case of continuous treatment, we can

assume the treatment Dt ∼ N(βHt, σ
2), where ψ = (β, σ2). Finally, φψ(Ht) = βHt

can uniquely represent the propensity function e(· | φψ(Ht)).
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4.3.1.1 Use a smooth coefficient model to estimate the dose-response

function

The dose response can be estimated by matching or subclassifying on the propen-

sity function. However, the method we may use in subclass models may be con-

strained due to the dependency on the parametric assumptions within the subclass

models; therefore, to better understand the dose-response relationship in practice,

we prefer estimating a robust and flexible dose-response function. We further fit the

dose-response model using a smooth coefficient model (SCM), also known as vary-

ing coefficient model (Hastie and Tibshirani , 1993; Zhao et al., 2020). This model

allows the regression coefficients to vary smoothly and systematically in more than

one dimension as a function of the propensity function and the dose assignment Dt.

At the final stage T , according to the uniquely parameterized assumption of the

propensity function, the dose-response function can be re-written as

θT (dT ) = E(Y ∗(d)) = E{E(Y | DT = dT ,HT )} = E{E(Y | DT = dT , φT )}, (4.4)

where φT = φψ(HT ) is the propensity function at the final stage T . We can model

the rightmost part of Eqn 4.4, E(Y | DT = dT , φT ) using a smooth coefficient model,

i.e.,

E(Y | DT = dT , φT ) = f(φT , DT ),

where f(·) is a smooth function of φT and DT . In practice, φT is replaced by φ̂T

from the fitted propensity function. Therefore, we can average over the empirical

distribution of φT to obtain an estimate of the dose-response function using a SCM

of the PF, such as

θ̂T (dT ) = Ê[Y ∗(dT )] =
1

n

n∑
i=1

f̂(φ̂T,i, dT ), (4.5)
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where f̂(·) is the fitted SCM and φ̂T,i is from the fitted propensity function. The

dose-response function can be evaluated in Eqn 4.5 separately, using a pre-specified

grid of dose values within the domain DT .

At any intermediate stage t ∈ {1, 2, . . . , T − 1}, the future optimized Y ∗t (dt)

is not observable and needs to be replaced with the future optimized pseudo out-

come as defined previously. The estimation of θ̂T (dT ) above works for any stage

t ∈ {1, 2, . . . , T − 1} prior to the final stage T . In the implementation, the SCMs

are fitted using the R package “mgcv” (Wood , 2017), and the smooth functions are

represented as a weighted sum of known basis functions, which are penalized cubic

regression splines with the number of knots equal to 5. Cubic spline is utilized as it is

flexible but also smooth enough to capture the curve. According to our preliminary

simulation studies, we varied the number of knots from 5 to 10, and the estimation

of the dose-response function stayed robust.

4.3.2 Simulated Annealing Algorithm for Stochastically Searching the

Optimal Dosage Regime

Simulated annealing is an algorithm inspired by a powerful optimization process

that happens during the cooling of physical systems (Salter and Pearl , 2001; Wang

et al., 2017). The goal of the cooling process is to obtain a solid that has minimal

energy. This intuition can be generalized to other optimization goals; in our case, the

goal is to find an optimal dosage regime that maximizes the expected counterfactual

dose response outcome of the whole population. In practice, the optimal decision

rule of each treatment stage within the dosage regime is estimated backwards in a

reverse sequential order; therefore, in the following derivation, the algorithm works

for any treatment stage t; for convenience, we suppress the stage subscript t when no

confusion exists. Formally, we denote a tree-based continuous dose decision rule as

g. g can be evaluated using a value function F (g), which is intended to be optimized
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to identify the optimal decision rule. The simulated annealing algorithm proceeds by

walking stochastically through the tree space in such a way that a decision rule g that

increases the value of F (g) is always accepted while those that decrease the value can

be accepted with a specific probability. This probability depends on the number of

iterations and other pre-specified hyper parameters. The simulated annealing algo-

rithm may accept a worse solution in order to help the optimization process proceed

and avoid being trapped in a local optimality.

Let T0 be the initial temperature parameter, and let Niter be the total number

of iterations. These two hyper parameters and the formula of temperature change

control the rate of identifying the optimal solution and are critical for obtaining a

robust optimal solution. In particular, if the temperature decreases too quickly, the

algorithm might be trapped within a local optimal point, while the slower temperature

decrease can require excessive computational efforts. In our implementation, we set

T0 = 100. Let m be a specific iteration, m ∈ 1, 2, . . . , Niter, let gm be the tree-based

decision rule at iteration m, and let Tm be the temperature at iteration m. The

following steps are repeated until m reaches Niter:

1. For the current dose decision rule gm, generate a potential decision rule gm′ from

gm according to the generation procedure;

2. Calculate F (gm′);

3. Accept gm+1 = gm′ with probability min{1, exp(F (gm′)−F (gm)
Tm )}, otherwise gm+1 =

gm;

4. Update the temperature Tm = T
1− m

Niter
0 .

We further specifically denote the dose decision rule g as (P ,R), where P is the

parameter set that describes a tree topology, and R is the optimal dose assignment

rule for each terminal node of P . At each iteration m, the new solution can be
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generated via two steps: first generate a tree topology Pm , and then identify the

dose assignment ruleRm based on Pm. Thus, gm can be evaluated and the acceptance

can be determined accordingly.

When generating gm′ from the current solution gm, we have to first generate the

tree topology Pm′ from Pm. In particular, a tree topology consists of three elements:

tree arrangement, splitting variables and splitting thresholds. Our algorithm proposes

generating Pm′ from a solution that is neighboring to Pm, rather than generating it

uniformly. To be more specific, the neighboring tree topology we use is generated

by five different proposals, namely, GROW, PRUNE, CHANGE, SWAP and RE-

STRUCTURE (Denison et al., 1998; Chipman et al., 1998; Wu et al., 2007). The

GROW proposal randomly picks one terminal node from the current tree P and splits

it into two new terminal nodes. The PRUNE proposal is the reverse of GROW as

it randomly picks one parent node with two terminal nodes and collapses its termi-

nal nodes and turns the parent node into a terminal node. The CHANGE proposal

randomly picks a non-terminal internal node and resamples the splitting rule. The

SWAP proposal randomly picks a pair of parent-child internal nodes and swaps their

splitting rules. Considering the restricted change these proposals make to the current

Pm, we also propose a more radical change of the tree structure, called RESTRUC-

TURE (Wu et al., 2007). The RESTRUCTURE proposal modifies the structure of

the internal nodes while maintaining the number of terminal nodes and the partition

of the subjects. This radical change helps the proposed decision tree escape from the

local optimality and search more efficiently within the tree topology space. The five

proposals are implemented with pre-specified probabilities.

For a given tree topology P , the next step is to identify the optimal dose assign-

ment rule R. Let b(P) denote the set of all terminal nodes and v ∈ b(P); R denote

the dose assignment rule that assigns specific dose dv to each terminal node v. We

can further define the objective function F (g) as a sum of each subpopulation dose
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response, such as, F (g) =
∑

v∈b(P) θ̂v(dv)Pn[I(H ∈ v)], where Pn is the empirical ex-

pectation operator, and θ̂v(dv) is the estimated expected counterfactual dose response

if all subjects in terminal node v take dose dv. Since the identification of the optimal

decision rule happens by maximizing the expected counterfactual dose response, as-

signing any random dose dv to each terminal node v is reasonable but not efficient.

In this case, a large proportion of the population does not receive their optimal dose,

and thus the random dose assignment does not maximize our objective in the given

tree topology. Alternatively, in order to maximize F (g), R assigns dose doptv to each

terminal node v, where doptv = arg maxdv∈D θv(dv). Thus, F (g) can be re-written as

F (g) =
∑
v∈b(P)

θ̂v(d
opt
v )Pn[I(H ∈ v)]. (4.6)

Since the concavity of θv(·) ensures the existence of the maximum of the dose-response

function, the treatment assignment of each terminal node v can be uniquely deter-

mined. Thus the optimal tree-based decision rule can be identified from the stochas-

tically generated rule sequence via the simulated annealing algorithm. The details

are summarized as in Algorithm 4 below.

4.4 Implementation of SSITS

The proposed method is implemented by backward induction. At each stage,

the optimal dose decision is determined by stochastically evaluating the expected

counterfactual dose response outcome of the proposed tree-based decision rule. Before

estimating the dose-response function of each stage t, we have to estimate the pseudo

outcome POt first, which is the replacement of Y in the intermediate stage. At the

final stage t = T , POt = Y , and it can be used directly to estimate the dose-response

function, thus to estimate the regime. At any intermediate stage t ∈ {1, 2, . . . , T −1},

the pseudo-outcome POt depends on an estimated dosage regimes where the dose
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assignment of the future stages have been already optimized, as POt = Ê{POt+1 |

Dt+1 = goptt+1(Ht+1),Ht+1}. We further assume the dose effect Yt is cumulatively

carried forward to the final outcome Y . To reduce the accumulated bias, we calculate

the pseudo outcome POt by using Yt, the actual observed intermediate outcome at

stage t plus the difference of the expected optimal dose-response pseudo outcome and

the expected pseudo outcome of actual observed of the stages after t; that is

POt = Y +
T∑

j=t+1

{E(POj | Hj, Dj = goptj (Hj))− E(POj | Hj, Dj = dj)},

where POT = Y and POt is calculated by using off-shelf machine-learning method

“eXtreme Gradient Boosting” (Chen and Guestrin, 2016). Note here, the interme-

diate outcomes Yt might be different measures of patient’s disease status, such as

toxicity or efficacy, because of the different priority of assigning a dose during the

progression of disease. Therefore, before aggregating various intermediate outcomes

from different stages, the scale should be standardized by clinician’s suggestion. The

implementation of Stochastic Spline-Involve Tree Search for estimating the optimal

dosage regime with T treatment stage is outlined in Algorithm 4. Note here, Niter is

the pre-specified total number of simulated annealing iterations. In practice, to yield

a more robust estimated dosage regime, the Niter iterations can be repeated in mul-

tiple chains using different initial P1. To further promote randomness, in each chain

we start from a random tree sampled from tree-generating process π(P). Details on

how to generate the initial tree topology can be found in the Appendix.

4.5 Simulation Studies

We conduct a number of simulation studies to assess the performance of SSITS.

To facilitate the comparison with existing methods, we conduct simulation scenarios,

and estimate the optimal dosage regime using methods proposed by CZK (Chen et al.,
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Algorithm 4 Stochastic Tree Search for the optimal dosing in T -stage decision rules

Result: ĝopt = ĝopt1 , . . . , ĝoptT

Set t = T , POT = Y .

while t ≥ 1 do

Set m = 1

Initialize P1 ∼ π(P) for stage t

while m ≤ Niter do

1. Propose Pm′ from Pm;

2. Estimate the dose-response functions θ̂t,v(dv) using POt for v ∈ b(Pm′) ;

3. Calculate F (gm′) =
∑

v∈b(Pm′) θ̂t,v(d
opt
v )Pn[I(Ht ∈ v)]);

4. Accept gm+1 = gm′ with probability min{1, exp(F (gm′)−F (gm)
Tm )}, otherwise

gm+1 = gm;

5. Update the temperature Tm+1 = T
1− m

Niter
0 ;

m = m+ 1.

end while

Estimate the optimal decision rule using ĝoptt = arg maxgi:i∈{1,2,...,m} F (gi)

t = t− 1

Set POt = Y +
∑T

j=t+1{E(POj | Hj, Dj = goptj (Hj))− E(POj | Hj, Dj = dj)},

end while
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2016) and LZ (Laber and Zhao, 2015). CZK is derived from outcome weighted learn-

ing (Zhao et al., 2012) using non-linear kernels. It uses a non-convex loss function

for the dose assignment optimization and solves the optimization problem by using

the difference of convex functions. To accommodate the observational data, we use

support vector regression, as presented by Chen et al. (2016), to estimate the condi-

tional density of having one certain dose treatment. LZ is a tree-based reinforcement

learning method that uses CART to estimate the optimal dosage regime. The purity

measure of LZ is calculated by the kernel estimation using a plug-in bandwidth. The

comparison with CZK and LZ is implemented using R packages “kernlab” (Karat-

zoglou et al., 2004), “SVMW ” (Chen et al., 2016), “gbm” (Ridgeway and Ridgeway ,

2004) and “np” (Hayfield and Racine, 2008). A variety of single- and two-stage sce-

narios are considered. For each scenario, we apply each method on a training set with

a sample size N=300 or 500, and evaluate the estimated regimes on a separate test

set with a sample size N=1000.

4.5.1 Single-Stage Scenarios

We consider single-stage scenarios with a continuous dose and generate baseline

covariates X1, · · · , Xk according to uniform(0, 1). k is the number of baseline vari-

ables. In practice, when the tailoring variables are known by investigators, k can

be small. When the tailoring variables are not fully understood, k will be relatively

large. The dose assignment D1 is set within the range of D1 = [0, 1], generated from

Beta(α, 1−α) with α = 1/{1+exp(0.3X1 +0.2X2 +0.1X3)}, which makes D1 depend

on the observed covariates.

To study the impact of underlying model specification on the performance of

SSITS, two forms of the underlying optimal dosage regimes gopt1 (H1) are considered,

one a tree-type dosage regime (Scenario 1, 2, 3), the other a non-tree-type regime

(Scenario 4, 5, 6 and 7). The underlying tree-type is consistent with the dose as-
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signment model when using the proposed stochastic tree search algorithm, while the

models with underlying non-tree-type are “mis-specified.” The detailed specification

of gopt1 (H1) can be found in Table 4.1

These various non-tree-type scenarios can evaluate the robustness of SSITS against

model mis-specification. In particular, the setting of Scenario 5 is inspired by Chen

et al. (2016); the relationship between observed covariates and the optimal dose is

non-linear and far away from a tree-type regime.

Our continuous outcome Y1 has the form of Y1 = m(D1) + βH1 + ε1, where

βH1 = a
∑k

i=1 Xi + b and ε1 is an independent standard normal variate that follows

N(0, 1); m(d1) = 1.1× F24,6.75[0.8− (gopt1 − d1)], and Fp,q(d1) is a unimodal function

within the domain to ensure the existence of the maximum dose effect. Specifically,

Fp,q(d1) = (d1)p−1
1 (1 − d1)q−1Γ(p + q)/{Γ(p)Γ(q)} is the probability density function

of Beta(p, q).

In the data generation process, when the underlying true optimal dose is already

known, we use the training dataset to estimate the optimal regimes and predict the

optimal dose in the testing dataset. We use | dopt− d̂opt | and Ê(Y ∗(ĝopt)) to evaluate

the performance of the methods, where dopt is the known true optimal dose under the

pre-specified underlying optimal regime gopt, and d̂opt is the estimated optimal dose

calculated from the estimated optimal dosage regime ĝopt. | dopt − d̂opt | shows the

average of how close the estimated optimal dose is to the true optimal dose; smaller is

better. Ê(Y ∗(ĝopt)) is the expectation of the estimated mean counterfactual outcome,

which indicates how much the whole population would benefit from the estimated

optimal dose regimes if all subjects were to receive the estimated optimal dose. Since

the results of Ê(Y ∗(ĝopt)) and | dopt − d̂opt | are not normally distributed Sun (2019);

Tao et al. (2018), we present the results of medians with the interquartile range from

25th quartile to 75th quartile.

Table 4.2 shows the single-stage performance of SSITS across the different sce-
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narios described above. In particular, we set k = 5 to mimic the scenarios where

the tailoring variables are clear to clinicians. Thus, a=1.41 and b=0.46. When the

underlying dosage regime is correctly specified, i.e., tree-type, SSITS has consistently

superior performance than LZ and CZK in all settings. Specifically, when sample

size N=500, SSITS correctly assigns most of the patients into their optimal dose, as

| dopt − d̂opt | is close to 0 in Scenario 1, 2, and 3, respectively. The medians of the

estimated mean counterfactual outcome of these three scenarios are also close to the

pre-specified true value 10. When the sample size decreases to N=300, the perfor-

mance gets worse but still outperforms LZ and CZK. The compromised performance of

CZK is to be expected, as this method makes better use of the information of patients

whose observed dose is close to the predicted optimal dose. In other words, if received

dose is not close to the optimal dose for most subjects in the observed data, which

is common in an observational study and is also the case in our simulation setting,

CZK’s performance is substantially undermined. In addition, the worse performance

of LZ might be due to its fragility with severe model misspecification. LZ requires a

correct specification of the conditional density of the model of treatment assignment,

and also a correct specification of an outcome regression model. Mis-specification of

these models may result in estimating a sub-optimal dosage regime.

When the underlying dosage regimes are mis-specified (Scenario 4, 5, 6, and 7),

the performance of SSITS is undermined, but is still better compared to other existing

methods. Furthermore, In scenario 5, 6 and 7 when SSITS largely outperform LZ and

CZK in E{Y ∗(ĝopt)}, the values in | dopt − d̂opt | are close to their counterparts. The

difference of performance is because SSITS identifies the optimal dosage regime by

maximizing the expected counterfactual outcome. In other words, instead of directly

identifying the optimal dose for each individual, SSITS tries to find the optimal regime

that can result in a higher expected counterfactual outcome for the whole population,

which makes a large part of the population benefit from the estimated optimal dosage
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regime.

We further set k = 20, thus a=0.71 and b=-3.07, to mimic a situation when the

tailoring variables that interact with the dose assignment are not clear to clinicians.

In this setting, we intend to see how the noise interference may affect the performance

of our proposed method. The results are summarized in Table 4.3. The comparison

with existing methods shows similar trends as in Table 4.2. SSITS clearly outperforms

the existing methods in most cases, especially in the cases with tree-type underly-

ing dosage regimes. However, SSITS is more sensitive to the increase of covariates

dimension, compared to the existing methods. In particular, CZK performs competi-

tively in Scenario 5 when N=300, which is a complex non-tree-type underlying dosage

regime where the pre-specified optimal dose of each patient cannot be classified to

limited categories. The simulation studies from Chen et al. (2016) also demonstrated

its capability of dealing with some non-linear dosage regime cases, especially with

a small sample size. Our findings here are consistent with their results. The com-

promised performance of SSITS may derive from the lower convergence rate of the

non-parametric method we used in the dose-response model. This is an issue that we

plan on investigating more in the future.

4.5.2 Two-Stage Scenarios

In the setting of dynamic dosage regimes where the treatment decisions are made

at multiple stages, SSITS can be utilized sequentially. Specifically, to apply in a two-

stage scenario, suppose the outcome of interest is the sum of intermediate outcomes

at each stage, i.e., Y = Y1 + Y2. d

Like the single stage scenarios, we also consider the underlying true optimal

dosage regime as tree-type or non-tree-type. The data are generated by extending

the parameter specifications of the single-stage scenarios (Scenario 1 and 4 from the

single-stage scenarios). To help make decisions in the second stage, we generate two
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Table 4.2: Simulation results for single-stage scenarios that use 5 baseline covariates
(100 replications, N=300 or 500). 7 scenarios belong to two types of pre-
specified underlying dosage regime: tree-type dosage regime (I) and non-
tree-type dosage regime(II). E{Y ∗(ĝopt)} = 10

Scenario Method N=300 N=500

E{Y ∗(ĝopt)} | dopt − d̂opt | E{Y ∗(ĝopt)} | dopt − d̂opt |

I

1
LZ 5.86(5.65, 6.34) 0.12(0.10, 0.13) 6.10(5.90, 6.53) 0.11(0.09, 0.11)

CZK 6.44(6.28, 6.62) 0.14(0.13, 0.15) 6.61(6.47, 6.72) 0.13(0.12, 0.13)
SSITS 9.70(9.56, 9.92) 0.02(0.01, 0.03) 9.83(9.65, 9.92) 0.01(0.01, 0.02)

2
LZ 6.32(6.04, 6.65) 0.13(0.11, 0.14) 6.63(6.40, 7.20) 0.11(0.09, 0.12)

CZK 6.34(6.18, 6.46) 0.14(0.13, 0.14) 6.48(6.36, 6.56) 0.13(0.12, 0.13)
SSITS 8.11(7.56, 8.52) 0.10(0.07, 0.12) 9.10(8.37, 9.36) 0.05(0.03, 0.09)

3
LZ 6.13(5.78, 6.55) 0.12(0.11, 0.14) 6.64(6.35, 6.96) 0.10(0.09, 0.11)

CZK 6.56(6.44, 6.66) 0.12(0.12, 0.13) 6.64(6.52, 6.76) 0.12(0.11, 0.12)
SSITS 7.97(7.25, 8.53) 0.08(0.06, 0.11) 9.54(9.41, 9.68) 0.02(0.01, 0.03)

II

4
LZ 5.64(5.46, 5.85) 0.14(0.13, 0.16) 5.77(5.62, 6.01) 0.13(0.12, 0.14)

CZK 6.55(6.40, 6.65) 0.13(0.12, 0.14) 6.63(6.50, 6.77) 0.13(0.12, 0.13)
SSITS 9.20(9.06, 9.28) 0.05(0.04, 0.06) 9.23(9.12, 9.31) 0.05(0.04, 0.05)

5
LZ 6.46(6.18, 6.79) 0.13(0.11, 0.14) 7.11(6.87, 7.32) 0.10(0.09, 0.11)

CZK 7.13(6.88, 7.31) 0.10(0.09, 0.11) 7.26(7.11, 7.37) 0.09(0.08, 0.09)
SSITS 7.22(6.74, 7.61) 0.10(0.08, 0.13) 7.55(7.33, 7.82) 0.09(0.08, 0.10)

6
LZ 6.03(5.69, 6.40) 0.17(0.14, 0.18) 6.42(6.17, 6.77) 0.14(0.13, 0.15)

CZK 6.55(6.41, 6.72) 0.12(0.11, 0.13) 6.71(6.59, 6.84) 0.12(0.11, 0.12)
SSITS 7.24(6.82, 7.62) 0.13(0.11, 0.16) 8.63(8.46, 8.80) 0.08(0.07, 0.08)

7
LZ 6.44(6.07, 6.74) 0.16(0.14, 0.18) 6.90(6.58, 7.12) 0.14(0.13, 0.15)

CZK 6.39(6.26, 6.51) 0.13(0.13, 0.14) 6.55(6.36, 6.67) 0.12(0.12, 0.13)
SSITS 7.34(6.98, 7.84) 0.13(0.12, 0.17) 7.64(7.13, 8.15) 0.12(0.10, 0.15)

a. | dopt − d̂opt | shows the median and its interquartile range of the difference between the true
optimal dose and the estimated optimal dose.
b. Ê{Y ∗(ĝopt)} shows the median and the interquartile range of the estimated mean counterfactual
outcome obtained using the true outcome model and the estimated optimal dynamic dosage
regime.
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Table 4.3: Simulation results for single-stage scenarios that use 20 baseline covariates
(100 replications, N=300 or 500). 7 scenarios belong to two types of pre-
specified underlying dosage regime: tree-type dosage regime (I) and non-
tree-type dosage regime(II). E{Y ∗(ĝopt)} = 10

Scenario Method N=300 N=500

E{Y ∗(ĝopt)} | dopt − d̂opt | E{Y ∗(ĝopt)} | dopt − d̂opt |

I

1
LZ 5.69(5.50, 6.08) 0.13(0.12, 0.15) 5.96(5.76, 6.45) 0.11(0.10, 0.12)

CZK 5.89(5.77, 6.01) 0.18(0.17, 0.19) 6.05(5.92, 6.16) 0.16(0.16, 0.17)
SSITS 9.66(9.56, 9.76) 0.02(0.02, 0.03) 9.70(9.65, 9.76) 0.02(0.02, 0.02)

2
LZ 6.16(5.85, 6.43) 0.14(0.12, 0.16) 6.53(6.20, 6.78) 0.11(0.10, 0.13)

CZK 5.83(5.76, 5.94) 0.17(0.16, 0.18) 5.97(5.87, 6.06) 0.16(0.15, 0.17)
SSITS 7.39(6.94, 8.04) 0.13(0.11, 0.16) 8.28(7.86, 8.79) 0.09(0.06, 0.12)

3
LZ 6.17(5.84, 6.51) 0.13(0.11, 0.15) 6.65(6.25, 6.99) 0.10(0.09, 0.11)

CZK 6.00(5.76, 6.15) 0.16(0.15, 0.18) 6.16(6.05, 6.29) 0.14(0.14, 0.15)
SSITS 7.73(6.88, 8.15) 0.09(0.07, 0.13) 9.17(8.46, 9.40) 0.04(0.03, 0.06)

II

4
LZ 5.47(5.34, 5.71) 0.15(0.14, 0.16) 5.70(5.56, 5.91) 0.14(0.13, 0.15)

CZK 6.02(5.85, 6.11) 0.17(0.16, 0.18) 6.19(6.04, 6.31) 0.15(0.14, 0.16)
SSITS 9.07(8.84, 9.26) 0.05(0.05, 0.07) 9.17(8.95, 9.28) 0.05(0.04, 0.06)

5
LZ 6.36(6.04, 6.57) 0.14(0.12, 0.16) 6.95(6.72, 7.19) 0.10(0.09, 0.12)

CZK 6.32(6.15, 6.45) 0.14(0.13, 0.15) 6.63(6.48, 6.77) 0.12(0.11, 0.12)
SSITS 6.02(5.57, 6.58) 0.18(0.14, 0.22) 6.86(6.41, 7.16) 0.11(0.10, 0.14)

6
LZ 5.94(5.63, 6.27) 0.17(0.16, 0.19) 6.21(5.94, 6.49) 0.15(0.14, 0.17)

CZK 5.97(5.85, 6.07) 0.16(0.15, 0.17) 6.19(6.06, 6.31) 0.14(0.14, 0.15)
SSITS 6.67(6.17, 7.37) 0.16(0.12, 0.19) 7.84(7.54, 8.60) 0.10(0.08, 0.11)

7
LZ 6.17(5.80, 6.53) 0.18(0.16, 0.20) 6.66(6.31, 6.87) 0.15(0.14, 0.17)

CZK 5.92(5.78, 6.03) 0.17(0.16, 0.18) 6.12(6.01, 6.20) 0.15(0.15, 0.16)
SSITS 6.53(6.13, 7.02) 0.20(0.15, 0.23) 6.78(6.31, 7.21) 0.18(0.15, 0.21)

a. | dopt − d̂opt | shows the median and its interquartile range of the difference between the true
optimal dose and the estimated optimal dose.
b. Ê(Y ∗(ĝopt)) shows the median and the interquartile range of the expected mean counterfactual
outcome obtained using the true outcome model and the estimated optimal dynamic dosage
regime.
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time-varying biomarkers X4 and X5, simulated independently from Uniform(0, 1),

in addition to three baseline covariates X1, X2, X3. For the first stage, we gener-

ate D1 from Beta(α, 1 − α) with α = 1/{1 + exp(0.3X1 + 0.2X2 + 0.1X3)}. The

continuous outcome of the first stage Y1 has the form of Y1 = m1(D1) + βH1 + ε1,

where βH1 = 0.5X1 + 0.3X2 + 0.7X3 and m1(d1) = 1.1 × F24,24(0.5 − (dopt1 − d1));

and dopt1 is the optimal dose under the optimal dosage regime gopt1 . We assume

the independent standard normal variate ε1 ∼ N(0, 1). Specifically, the under-

lying optimal dosage regime of stage 1 for the tree-type dosage regime is speci-

fied as gopt1 (H1) = 0.8I(X1 > 0.7) + 0.2I(X1 ≤ 0.7)I(X2 ≤ 0.5) + 0.5I(X1 ≤

0.7)I(X2 > 0.5).The optimal dosage regime for the non tree-type is specified as

gopt1 (H1) = 0.8I(X1 +X2 > 1.2) + 0.2I(X1 +X2 ≤ 1.2)I(X2 ≤ 0.5) + 0.5I(X1 +X2 ≤

1.2)I(X2 > 0.5). At the second stage, the treatment assignment D2 is also generated

from Beta(α, 1− α) with α = 1/{1 + exp(0.3X5 + 0.2X5 + 0.1X3)}. The continuous

outcome Y2 = m2(D2)+βH2+ε2, where βH2 = 0.3X1+0.2X2+0.5X3+0.6X4+0.2X5

and m2(d2) = 1.1×F24,24(0.5− (dopt2 − d2)). Again, we assume ε2 ∼ N(0, 1). The un-

derlying optimal dosage regime of stage 2 for the tree-type dosage regime is specified

as gopt2 (H2) = 0.8I(Y1 > 4) + 0.2I(Y1 ≤ 4)I(X4 ≤ 0.5) + 0.5I(Y1 ≤ 4)I(X4 > 0.5).The

optimal dosage regime for the non tree-type is specified as gopt2 (H2) = 0.8I(Y1 +X5 >

4.2) + 0.2I(Y1 +X5 ≤ 4.2)I(X2 ≤ 0.5) + 0.5I(Y1 +X5 ≤ 1.2)I(X2 > 0.5).

Results for different sample sizes and underlying optimal dosage regimes are shown

in Table 4.4. Given a tree-type underlying dynamic dosage regime with a sample size

N=300, the median of the estimated mean counterfactual outcome of two stages of

SSITS is 18.21, which is fairly close to the optimal value of 20. The median of

the estimated mean counterfactual outcome is 8.45 for stage 1 and 9.94 for stage 2.

The better performance of the second stage is as expected, because we adapt the

backward induction to start the estimation from the final stage. In contrast, CZK

only has 11.24 in the median of the estimated mean counterfactual outcome, and LZ
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is 10.54. A similar superiority of SSITS is also found under non-tree-type underlying

dynamic dosage regimes and a larger sample size N=500. Moreover, when the sample

size increases, the performance of all methods is better. Specifically, the convergence

rate of the dose-response function using non-parametric models is much slower than

that of the parametric case; therefore, the relatively compromised performance with

a smaller sample size is also to be expected. Moreover, when the underlying true

dynamic dosage regime is misspecified, i.e., under the non-tree-type scenario, the

performance of SSITS is still reasonably satisfactory, with Ê(Y ∗(ĝopt)) = 17.28 when

N = 300 and with Ê(Y ∗(ĝopt)) = 17.33 when N = 500. It shows that SSITS is robust

against mis-specification of the underlying true model.

4.6 Real Data Application: Estimating an Optimal Warfarin

Dosage Regime

We illustrate the application of SSITS by an analysis of the data from The In-

ternational Warfarin Pharmacogenetics Consortium (2009) (IWPC). Warfarin is a

commonly used anticoagulant medicine worldwide, and appropriate Warfarin dosing

is critical in clinical practice. In particular, overdosing patients poses a high risk of

bleeding, while underdosing undermines Warfarin’s treatment effect against throm-

bosis.

Identifying the optimal dose for Warfarin is still an open problem in the clinical

community (Kimmel et al., 2013; Fredrikson et al., 2014). To predict the optimal

Warfarin dose, IWPC proposed three linear regression models, which are modeled by

clinical data, pharmacogenetics-clinical data, and fixed single-dose data, respectively.

Such linear regression models are valid when most of the patients from the training

dataset receive the optimal dose. However, later studies (Holbrook et al., 2005) have

found that these dosage rules might be suboptimal for patients from some certain
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subgroups, e.g., elderly patients.

Therefore, to improve the accuracy of existing dosage algorithms and give clini-

cians more insights into treating patients with heterogeneous characteristics, an indi-

vidualized dosage strategy becomes an ideal solution. In the following analysis, we use

SSITS to estimate the optimal Warfarin dose, and provide an interpretable optimal

dosage regime. According to the previous dose prediction linear regression models, the

pharmacogenetics-clinical model had better performance for predicting the optimal

dose, compared with the two other models. Therefore, we included both pharmaco-

genetics and clinical variables into the analysis, such as age, gender, height, weight,

CYP2C9 genotype, VKOOC1 genotype and the medication status of Cytochrome

P450 enzyme and Amiodarone. Following Wallace et al. (2018); Chen et al. (2016),

after excluding patients with missing values, there remained a total of 1498 patients

with a weekly Warfarin dose ranging from 4.5 mg to 315 mg. In clinical practice, INR

(the international normalized ratio), an index that measures the rapidity of blood

clotting, is used to evaluate the treatment effect of Warfarin. For patients treated

by Warfarin, the target INR is 2-3 and INR=2.5 is the ideal outcome. Thus, we

converted the observed INR into a reward outcome as 2 −
√
| 2.5− INR | for each

patient; larger values were preferable.

We set hyper-parameters of SSITS based on potential clinical needs. In particular,

we set the minimum node size=150. This is a setting where clinicians expect to see

more tailoring variables in a complex tree-based dosage regime, since the number of

patients in the terminal nodes is small.

The estimated dosage regime is shown in Figure 4.1. If a patient is an African

American, it suggests a lower dose of 17.5 mg Warfarin per week. For the patients

who are from other races and are older than 57, they should take 28 mg per week

is recommended if they do not have VKOOC1 AG mutation; otherwise they are rec-

ommended to take 17.5 mg per week. For the patients who are from other races and
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Figure 4.1: The estimated optimal Warfarin dosage regime estimated by SSITS using
observational data from International Warfarin Pharmacogenetics Con-
sortium.

younger than 60, the ones with VKOOC1 AA mutation, it is recommended to take

42.5 mg per week while the remaining patients should take 37.5 mg. These dose sug-

gestions derived from the estimated dosage regime have consistent trends with what

has been reported in the literature (The International Warfarin Pharmacogenetics

Consortium , 2009; Holbrook et al., 2005). In conclusion, SSITS is able to reveal

some potential tailoring biomarkers that an optimal dose should be based on, and

also shows its capability in estimating an individualized interpretable optimal dosage

regime.

4.7 Discussion

Considering the limitations of current methods when estimating the optimal dy-

namic dosage regime, we developed the SSITS method to estimate the personal-

ized optimal dosage regime. SSITS, which combines a robust non-parametric dose-

response function with an efficient simulated annealing stochastic search method, has

shown its consistently superior performance over existing methods in our comprehen-
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sive simulation studies. In particular, even though the underlying optimal dosage

regime of SSITS is not tree-type decision rule, SSITS still shows satisfactory perfor-

mance when the underlying true optimal dosage regimes are mis-specified. In addition

to the robustness, the easy-to-implement SSITS is able to provide interpretable de-

cision rules. These make it particularly useful for clinicians to understand and apply

the estimated regime with confidence. For a newly presenting patient, clinicians do

not need to do extra complicated calculation and they are able to determine a rec-

ommended dose assignment right away.

According to the simulated annealing algorithm, the outcome of the iteration

only depends on the outcome of the previous iteration, but the transition probabili-

ties change with the number of iteration; therefore, the simulated annealing algorithm

creates a time-inhomogeneous Markov chain. Under certain conditions, the discrete-

time discrete-state Markov chain created by simulated annealing has been shown to

converge to a stationary distribution of the optimal solution (Lundy , 1985; Lundy and

Mees , 1986; Granville et al., 1994). In practice, the convergence to global optimal re-

quires excessive computational resource while the satisfactory empirical performance

is straightforward to be obtained. One future research direction lies in further improv-

ing the computational efficiency of simulated annealing algorithm by incorporating

methods from other discrete-space search approaches (Osman, 1995). Moreover, when

increasing the number of covariates, the number of candidate decision trees have to

be visited increases inevitably. Therefore, improving the algorithmic efficiency is also

critical when applying this method in more complex dataset.

In addition, overfitting can be a problem in the procedure of estimation, since it

is non-trivial to make inference for the estimated optimal tree-based decision rule. To

overcome this issue, we may further incorporate the variance of dose response or other

measure of uncertainty into the objective function F (·). That way, the tree with a

high value in the objective function might be penalized for considerable uncertainty,
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and thus the tree with the second or third highest value might be selected as the

optimal one due to a more stable dose response.

Another possible direction is to extend our proposed method to other types of out-

comes, such as binary outcomes, or time-to-event outcomes, as these outcomes are

very common in clinical practice of oncology. How to balance the potentially com-

peting or composite outcomes to determine the optimal dosage regime is also of great

research interest. In clinical practice, clinicians may be interested in determining the

optimal dosage regime according to multiple competing outcomes, such as overall sur-

vival, incidence of local progression, patient preference and quality of life. In order to

balance these contradictory objectives, some statistical methods have been developed

for multi-objective optimization, but none is able to estimate the optimal dosage on a

continuum within the framework of dynamic treatment regime. One potential future

direction is to further incorporate these multiple objective optimization functions and

combine different objectives from different treatment stages, to estimate a practical

and also viable optimal DTR.
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CHAPTER V

Summary and Future Research Directions

In this dissertation, we have developed new statistical learning methods to evaluate

dynamic treatment regimes, including estimating the test-and-treat decision rules

using a new step-adjusted tree-based reinforcement learning method, and developing

methods to estimate a robust and interpretable DTR with continuous dosage options.

The SAT-Learning method outlined in the second chapter is an important addi-

tion to the current DTR research on multi-stage and multi-treatment decision mak-

ing. It provides health-care recommendations for testing and treating patients over

time. We estimated the test-and-treat strategy by evaluating each test step and every

treatment step embedded within each test step over multiple treatment stages. This

step-adjusted DTR framework may have a greater impact with the rise of awareness

of test screening when more screening data is available and more timely decisions

regarding test-and-treat scheduling have to be made (White et al., 2017; Robertson

and Ladabaum, 2019).

In Chapter III and Chapter IV we studied two methods evaluating the dynamic

treatment regimes with continuous treatment dosages. Assigning continuous doses

over time is particularly important in treating patients with chronic diseases. By com-

bining the DTR framework with the optimal individual dosing strategy, our methods

SSITS and KIDD-Learning provide effective tools for physicians to offer more per-
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sonalized doses over time. The stochastic tree search applied in SSITS allows the

consideration of a richer number of candidate decision rules with an acceptable com-

putational effort. In addition, the non-parametric method we used also relaxes the

assumptions about the model of outcome and the structure of the candidate decision

rule, and guarantees the flexibility of our methods.

We used the top-down tree-based reinforcement learning method to split the de-

cision rule to compromise between exploration and exploitation in Chapter II and

Chapter III; this method is improved in Chapter IV by stochastically walking within

a broader space of decision trees. However, the number of decision rules will in-

evitably increase with the increasing number of tailoring variables, and the computa-

tional time will increase accordingly. One future research direction lies in improving

the computational efficiency by incorporating other methods (Cohen et al., 2003; Qin

et al., 2017) when applying our methods in more complex scenarios. Another research

direction lies in further developing a variable selection method to screen potential tai-

loring variables for estimating the optimal DTR using observational datasets when

high-dimension covariates exist (Wallace et al., 2019; Zhu et al., 2015).

Other extensions can also be considered to avoid the overfitting in the process

of evaluating optimal DTR. Currently, the decision rule with the highest expected

counterfactual outcome is chosen as the optimal rule. We might consider incorpo-

rating the uncertainty of this expected counterfactual outcome by penalizing some

decision rules if they have high uncertainty, such as large variance. In this way, a

decision rule with second or third highest expected counterfactual outcome might be

acceptable due to the more stable performance. This can be extremely useful when

the candidate treatment is on a continuous scale.

Another direction is to explore how to effectively balance the potentially contra-

dictory outcomes and then to determine the optimal DTR. In clinical practice, the

multiple competing outcomes may include incidence of local progression, patient pref-
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erence, quality of life and cost burden (Butler et al., 2017). In order to balance these

contradictory objectives according to clinical needs, some statistical methods have

been developed, but none has been generalized the framework of dynamic treatment

regimes (Lizotte and Laber , 2016; Laber et al., 2014). Incorporating these multiple

objective optimization functions and aggregating different objectives from different

treatment stages would be of great research interest in the future to estimate an

optimal and also practical DTR.
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APPENDIX A

Stopping Rules for Chapter II

Algorithm 5 Stopping Rules

if the node size is less than 2n0 then

the node will not be split

end if

if all possible splits of a node result in a child node with size smaller than n0 then

the node will not be split

end if

if the current tree depth reaches the user-specified maximum depth then

the node will not be split

end if

Calculate the best split by

ω̂opt = argmax
ω

[Psj(Ω, ω) : min{nPnI(Hsj ∈ ω), nPnI(Hsj ∈ ωc)} ≥ n0] .

if the maximum purity improvement Psj(Ω, ω̂opt)− Psj(Ω) < λ then

the node will not be split

else

Split Ω into ω and ωc

end if
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APPENDIX B

Simulation Data Generating Process for Chapter

II

Three covariates, X1 to X3, generated as baseline covariates follow N(0, 1). Two

correlated covariates, X4 and X5, are generated as time-varying biomarkers which are

measured just before the decision time of the test step within each stage. (X4, X5)
′ ∼

N(µ,Σ), where µ = (0, 0)
′

and Σ =

 1 0.1

0.1 1

. After the test step of each stage,

the covariates X12 and X22 mimic the test results that contribute to the treatment

decision nested within each test decision with other covariates. Typically, the test

results, such as biopsy results, are of great importance to the treatment decision

making. X12 and X22 follow the distribution of N(0, 1). To make the rates of taking

the curative treatment equal to 5%, 15%, 20% and 25% in both stages, we also modify

the parameters in the data generating models. More details of parameter setting are

as follows:

Data Generation for Stage 1 The test decision variables, i.e., D11 and D21 are

set to be the values of {0, 1} at the first step of each stage. For stage 1 step 1, we

generate D11 from a Bernoulli(π11,1) distribution with π11,1 = exp(0.2X3 + X4 −

0.5)/(1 + exp(0.2X3 + X4 − 0.5)). The reward of the stage 1 step 1 is generated as
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Y11 = X2
4 + (0.5X3 + 4)2 × I[gopt11 (H11) = D11] − 3|X1|I(D11 = 1) + ε11 with optimal

regimes as

gopt11 (H11) = I(X1 > 0.3)I(X4 ≤ 1.3)

and ε11 ∼ N(0, 1).

For patients who have been assigned the test, i.e., D11 = 1, we further generate

the treatment assignment D12 for them as D12 ∼ Bernoulli(π12,1) with different

treatment rates

π12,1 =



exp(0.5X12 −X2 − 3.3)/(1 + exp(0.5X12 −X2 − 3.3)) for rate=5%

exp(0.5X12 −X2 − 2.3)/(1 + exp(0.5X12 −X2 − 2.3)) for rate=15%

exp(0.5X12 −X2 − 1.8)/(1 + exp(0.5X12 −X2 − 1.8)) fort rate=20%

exp(0.5X12 −X2 − 1.5)/(1 + exp(0.5X12 −X2 − 1.5)) for rate=25%

We generate stage 1 step 2 reward as Y12 = I[D12 = gopt12 (H12)](7+2X4)+4X3+Y11/3+

3I(D12 = 1)[I(gopt12 (H12) = 1) − 1] + I(D12 = 1)(X2
12 + 4) + ε12 with ε12 ∼ N(0, 1).

The tree-type optimal regime at step 2 is specified as

gopt12 (H12) = I(X4 > 0.5)I(X12 ≤ 0.3)

Data Generation for Stage 2: In stage 2, we generate the test decision D21 ∼

Bernoulli (π21,1) with π21,1 = exp(−0.7 + 0.1X2 +X5)/(1 + exp(−0.7 + 0.1X2 +X5)).

The reward of stage 2 step 1 is generated as Y21 = X2
1 + 2X2

2 + (8−X5)I[gopt21 (H21) =

D21]− I(D21 = 1) + 4.5I(D21 = 1)[I(gopt21 (H21) = 1)−1] + ε21 with ε21 ∼ N(0, 1). The

optimal regime is specified as

gopt21 (H21) = I(X2 < 0.8)I(X5 > 0.1)
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Among the patients who have had the test in the first step of stage 2, i.e., D21 = 1

we generate their treatment assignment D22 for the second step of the second stage.

Specifically, we generate treatment D22 ∼ Bernoulli(π22,1) with different treatment

rates

π22,1 =



exp(0.5X22 −X2 − 3.3)/(1 + exp(0.5X22 −X2 − 3.3)) for rate=5%

exp(0.5X22 −X2 − 2.3)/(1 + exp(0.5X22 −X2 − 2.3)) for rate=15%

exp(0.5X22 −X2 − 1.8)/(1 + exp(0.5X22 −X2 − 1.8)) for rate=20%

exp(0.5X22 −X2 − 1.5)/(1 + exp(0.5X22 −X2 − 1.5)) for rate=25%

The reward of stage 2 step 2 is generated as Y22 = 3I[D22 = gopt22 (H22)](2X22−X5)2 +

Y21/3 + (2X4 + X1) + ε22 and ε22 ∼ N(0, 1). The optimal treatment for stage 2 is

specified as

gopt21 (H21) = I(X22 < 0.3)I(X5 > 0.5)
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APPENDIX C

Data Preprocessing for Active Surveillance Data

for Chapter II

For the prostate cancer data the exclusion criteria were the following: patients who

did not have any PSA observations in the first 4 years were excluded and patients

who were not followed after year 4 are excluded. For the remaining patients if they

did not have a biopsy, the most recent PSA value that was used in the analysis was

the last PSA within the time window between year 0 and year 2 for stage 1 and the

last PSA value between year 2 and year 4 for stage 2. For patients who had a biopsy

test, the most recent PSA for that test is the PSA value right before the date of

biopsy. If a patient had more than one biopsy within a stage, we used the last biopsy

result.

To assess the sensitivity of the estimated DTR tree in Figure 2.2 to modifications

of the reward, we included an additional discounting factor for the reward of patients

who had an especially high risk of future metastatic prostate cancer. Specifically,

when a patient had his Gleason score ≥ 7 (4+3) during the first four years after

diagnosis, his reward is reduced by a factor of 95%. The new estimated trees were

very similar to the estimated optimal DTR shown in Figure 2.2, the only differences

being small changes is the splitting thresholds at each node.
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APPENDIX D

Generation Process of the Initial Tree P1 for

Chapter IV

In a given iteration m, we assume Pm is sampled from π(P). We further specify

the tree topology model π(P) using a stochastic tree-growing process, which can be

decomposed as

π(P) = π(T )π(ρ | T )π(η | ρ, T ),

where T is the tree topology, which includes the number of terminal nodes and how

they are arranged; ρ denotes the splitting variables; η is the splitting thresholds.

A critical component of the specification of π(P) is the specification of π(T ),

which controls the number of terminal nodes and the skewness of the tree structure.

A simple and intuitive way of growing a tree skeleton includes two steps: (1) sample

the tree size, i.e., number of terminal nodes from a distribution; (2) cascade down

these terminal nodes from the root like pouring pin balls. We draw the tree size k(T )

from a Poisson distribution k(T ) ∼ Pois(λ) + 1. The 1 unit shift from the standard

Poisson distribution avoids generating an empty tree, and the hyper parameter λ

controls the complexity of the resulting tree structure. Moreover, we assume that

an internal node u has ku(T )) terminal nodes; each of these terminal nodes can be
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assigned to the left or the right child node of u following a prespecified distribution.

Thus, we can simplify the process as

π(T ) = α(k(T ))
∏

u∈a(T )

β(ku∗(T ) | ku(T )),

where α(·) is the Poisson distribution that controls the tree size; k(T ) denotes the

tree size. The conditional distribution β(ku∗(T ) | ku(T )) dictates the shape of the

tree, where ku(T )) is the number of available terminal nodes at internal node u and

ku∗(T ) is the number of nodes sent to the left child node u∗ of u. The tree-growing

process stops when ku(T ) = 1 at any node u. In general, β(·) controls the preference

of skewness of a tree and α(·) governs the preference of the tree complexity. More

details of the distribution specification of β(·) and α(·) can be found in Wu et al.

(2007).

For a given tree skeleton T , the distributions of π(ρ | T ) and π(η | ρ, T ) are

set to be uniform; i.e., each variable has equal probabilities of being selected and

the splitting thresholds are determined uniformly within the domain of the selected

variables.
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