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ABSTRACT 

Image-based quantitative analysis (radiomics) has gained great attention recently. Radiomics 

possesses promising potentials to be applied in the clinical practice of radiotherapy and to provide 

personalized healthcare for cancer patients. However, there are several challenges along the way 

that this thesis will attempt to address. Specifically, this thesis focuses on the investigation of 

repeatability and reproducibility of radiomics features, the development of new machine/deep 

learning models, and combining these for robust outcomes modeling and their applications in 

radiotherapy.  
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Radiomics features suffer from robustness issues when applied to outcome modeling problems, 

especially in head and neck computed tomography (CT) images. These images tend to contain 

streak artifacts due to patients’ dental implants. To investigate the influence of artifacts for 

radiomics modeling performance, we firstly developed an automatic artifact detection algorithm 

using gradient-based hand-crafted features. Then, comparing the radiomics models trained on 

‘clean’ and ‘contaminated’ datasets.  

The second project focused on using hand-crafted radiomics features and conventional machine 

learning methods for the prediction of overall response and progression-free survival for Y90 

treated liver cancer patients. By identifying robust features and embedding prior knowledge in the 

engineered radiomics features and using bootstrapped LASSO to select robust features, we trained 

imaging and dose based models for the desired clinical endpoints, highlighting the complementary 

nature of this information in Y90 outcomes prediction.    

Combining hand-crafted and machine learnt features can take advantage of both expert domain 

knowledge and advanced data-driven approaches (e.g., deep learning). Thus, we proposed a new 

variational autoencoder network framework that modeled radiomics features, clinical factors, and 

raw CT images for the prediction of intrahepatic recurrence-free and overall survival for 

hepatocellular carcinoma (HCC) patients in this third project. The proposed approach was 

compared with widely used Cox proportional hazard model for survival analysis. Our proposed 

methods achieved significant improvement in terms of the prediction using the c-index metric 
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highlighting the value of advanced modeling techniques in learning from limited and 

heterogeneous information in actuarial prediction of outcomes.  

Advances in stereotactic radiation therapy (SBRT) has led to excellent local tumor control with 

limited toxicities for HCC patients, but intrahepatic recurrence still remains prevalent. As an 

extension of the third project, we not only hope to predict the time to intrahepatic recurrence, but 

also the location where the tumor might recur. This will be clinically beneficial for better 

intervention and optimizing decision making during the process of radiotherapy treatment 

planning. To address this challenging task, firstly, we proposed an unsupervised registration neural 

network to register atlas CT to patient simulation CT and obtain the liver’s Couinaud segments for 

the entire patient cohort. Secondly, a new attention convolutional neural network has been applied 

to utilize multimodality images (CT, MR and 3D dose distribution) for the prediction of high-risk 

segments. The results showed much improved efficiency for obtaining segments compared with 

conventional registration methods and the prediction performance showed promising accuracy for 

anticipating the recurrence location as well. 

Overall, this thesis contributed new methods and techniques to improve the utilization of radiomics 

for personalized radiotherapy. These contributions included new algorithm for detecting artifacts, 

a joint model of dose with image heterogeneity, combining hand-crafted features with machine 

learnt features for actuarial radiomics modeling, and a novel approach for predicting location of 

treatment failure. 
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CHAPTER 1  
 

Introduction 
 

1.1 Imaging-based Modeling in Radiotherapy 

The exponential growth in the use of various imaging modalities for diagnostic, therapeutic and 

prognostic purposes in noninvasive and quantitative cancer studies has the potential to provide 

individualized treatments for these patients. Radiomics is an emerging area that enables 

quantitative image analysis that aims to relate large-scale extracted imaging information to clinical 

and biological endpoints. The development of quantitative imaging methods along with machine 

learning techniques has enabled the opportunity to advance data science research towards clinical 

translation and provide more personalized cancer treatments. Accumulating evidence has indeed 

demonstrated that non-invasive advanced imaging analytics, i.e., radiomics, can reveal key 

components of tumor phenotype for multiple three-dimensional lesions at multiple time points 

over and beyond the course of treatment. These developments in the use of CT, PET, US and MR 

imaging could augment patient stratification and prognostication buttressing emerging targeted 

therapeutic approaches. In recent years, deep learning architectures have demonstrated their 

tremendous potential for image segmentation, reconstruction, recognition, and classification. 

Many powerful open-source and commercial platforms are currently available to embark in new 

research areas of radiomics.  
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In this work, we focused on the therapeutic utilization of imaging information. Radiotherapy relies 

heavily and often exclusively on medical imaging to determine the extent of disease and spatial 

location of cancer target and the surrounding healthy tissues [1]. There are two main types of 

radiotherapy, external beam radiation and internal radiation therapy. External beam radiation 

contains 3D conformal radiation therapy, intensity modulated radiation therapy (IMRT), 

stereotactic body radiation therapy (SBRT). SBRT uses focused, high-energy beams to treat small 

tumors with well-defined edges outside the brain and spinal cord, often in the liver or lung. Internal 

radiotherapy involves placing radiation sources as close as possible to the tumor site, including 

interstitial brachytherapy, intracavitary brachytherapy, which use solid sources, or inject the 

sources into blood, such as radioembolization with yttrium 90 (Y90). Radioembolization combines 

embolization and radiation therapy to treat liver cancers. Tiny glass or resin beads filled with the 

radioactive isotope Y90 are placed inside the blood vessels that feed the tumor. This can not only 

block the supply of blood to the tumor cells but also treat the tumor with a high dose of radiation. 

Both these radiotherapy methods involve tremendous use of digital images, before, during and 

post treatment. However, most imaging routines assess relative image signals merely to determine 

the location and size of tumors. Radiomic features can describe histology [2] and genetic footprint  

of the tumor [3-5], which are correlated with tumor aggressiveness. Thus, outcomes model 

building is vital to take full advantage of these potentials of multimodality imaging for cancer care.  

Currently, most of the radiomics modeling in radiotherapy tries to answer the question of what 

will happen to the tumor, in terms of local/regional control (classification), or when an event 

(local/regional recurrence of tumors or overall survival) might occur (survival). In our work, we 
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comprehensively present a new framework to answer not only the questions of what and when, but 

also the challenging question where the regional recurrent tumor(s) might occur. Regional 

recurrence is a severe issue for hepatocellular carcinoma (HCC) patients, which is the most 

common type of primary liver cancer. Being able to answer these questions whether the tumor will 

recur, when it might occur and even where within the liver is the riskiest region are of great value 

to design a comprehensive personalized treatment framework and improve the prognosis for these 

patients.  

Quantitative imaging research, however, is complex and key statistical principles should be 

followed to achieve reproducibility and subsequently realize its full potential. The field of 

radiomics, in particular, requires a renewed focus on optimal study design/reporting practices and 

standardization of imaging acquisition, feature selection and rigorous statistical analyses for the 

field to move forward. In this work, machine and deep learning as major computational vehicles 

for advanced model building of radiomics-based signatures were investigated with several 

applications primarily for liver cancer. We also address issues related to common practice 

challenges in medical physics, such as feature robustness and artifacts in head and neck CT images. 

 

1.2 Conventional and Modern Radiomics  

Conventional radiomics-based approach involves extracting a large amount of handcrafted 

features (e.g., intensity, shape and texture parameters), capturing different characteristics of the 

regions of interest, some of which may be difficult or even impossible to discern by human vision, 



4  
 

even by an expert trained one [6]. With the objective of outcome modeling (e.g., classification of 

toxicity, response to treatment, overall or disease-free survival), radiomic features have been 

related to clinical and biological endpoints by feature selection and subsequent machine learning 

models construction. Recently, the rise of computational power due to advanced hardware (e.g., 

GPU, cluster or cloud computing) combined with better algorithms for training neural networks, 

have facilitated the breakthrough of successful application of deep learning algorithms in many 

computer vision and analysis tasks, for both natural and medical images [7-10]. However, machine 

learning, either radiomics or deep learning based methods in medical imaging data, are still in their 

developmental stage in terms of investigation from a systematic perspective; about how we can 

tackle some challenges such as scarcity of available data, noisiness in this data, lack or noisy 

labeling, generalizability and interpretability of the generated models before any patient can 

benefit directly from this research. This thesis will touch most of these challenges and present new 

methodology and experiments that hopefully would provide some ideas for relevant studies.  

To learn the important features from images, two approaches will be introduced: (1) based on 

handcrafted features (a.k.a., conventional radiomics) and automatically or (2) machine learnt 

features from data (a.k.a., modern radiomics with deep learning). The details will be introduced in 

Chapter 2. In addition, other sources of information were investigated and combined with imaging 

features as well, including clinical factors and genomics data.  
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1.3 Outline and Contributions 

Medical image quantitative analyses possess the potential to reveal underlying biological 

mechanisms and to enable a more precise and personalized patient’s healthcare. However, the 

prerequisite is to not only to obtain these images, but also to apply proper algorithms to extract the 

clinically-relevant information. Thus, in this thesis, we give a brief introduction to radiomics and 

deep learning based methods by first explaining the radiomic feature extraction, conventional 

machine learning algorithms (i.e., feature selection and model construction), followed by an 

introduction to deep learning algorithms. Basic theories of survival analysis, segmentation and 

registration, multitask learning and evaluation frameworks typically used for outcome modeling 

(ROC, AUC, c-index, nested cross-validation) will be introduced in Chapter 2 as well.  

Subsequently, this thesis explores conventional machine learning methods using handcrafted 

features (Chapters 3, 4), deep learning methods (Chapter 5) for survival analysis combining 

imaging features (handcrafted and deep learning based), clinical variables and genetic features, 

and deep learning methods (Chapter 6) for deformable registration, tumor location prediction and 

survival net joint training.  

In the first project (Chapter 3), the task is to detect streak artifacts in CT head and neck cancer 

(HNC) images. Streak artifacts are very common in HNC CT images due to dental implants. 

Though various radiomics signatures have been built using these CT images, the contamination of 

these images was seldom considered when these models were developed. Thus, we conducted 

experiments to check how much the model performance will be affected using contaminated 
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dataset and clean dataset. We then developed a method using handcrafted features to automatically 

detect the slices that contains artifacts to prepare a clean dataset for further outcome modeling. 

The second project (Chapter 4) is about Y90, a special type of nuclear medicine treatment, that 

was applied to liver cancer patients. Due to the limited sample size, we extracted handcrafted 

features (prior knowledge) from the PET images and used modified LASSO to build robust 

models. The goal of this work is to make use of the Y90 PET images that patients routinely take 

during treatment and to predict the tumor response to treatment so that we can closely monitor 

patients at higher risk. The third project (Chapter 5) is deep learning based actuarial analysis 

combing machine learnt features, handcrafted features and clinical variables. The tumor is HCC 

and patients were treated with SBRT. We are interested in the intrahepatic recurrence and overall 

survival risk for individual patients based on their liver phenotypes and other characteristics. The 

fourth project (Chapter 6) is an expansion of the third project. Since intrahepatic recurrence is 

common for post SBRT patients, then the question whether it would be possible to predict the 

location of the recurred tumor within liver, it will be beneficial to modify the dose delivered to the 

target and boost the dose to high-risk regions while avoiding functional liver to obtain better 

prognosis. The uniqueness of this study is three folds: multimodality images were available for 

this study, with MRI, CT and dose distribution for each patient; acquisition of the Couinaud 

segment using neural networks; joint training of survival, and location prediction tasks (i.e., multi-

task learning).  

In the medical field, data scarcity and impurity are serious challenges. Especially in a radiation 

oncology department, patients that received certain type of treatment, having certain type of 
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disease are only a subset of the whole patient group, thus, the outcome modeling process would 

suffer immensely due to inadequate training, noise signals, etc. However, the advancement of 

machine learning/deep learning methods show great potential for individualized treatment 

planning, even under these difficulties we affronted. This thesis presents new methodologies and 

experiments that I have tried to tackle these challenges, and they will hopefully help with the 

clinical practice someday. Chapters 2-6 are based on four radiomics projects and Chapter 7 

discusses some current challenges and future directions. 

1.4 Contributions 

In this section, we will introduce each projects’ brief background, contribution, limitations, and 

potential applications. 

It is a known issue that CT head and neck cancer images usually contain streak artifacts due to 

dental implant. There are existing algorithms that aim at correcting these artifacts. However, this 

might introduce artificial noise to the original image and affect the radiomics models built upon. 

Thus, in this work, we aim at detecting the slices containing artifacts and remove these images 

before the radiomics modeling, which has not been studied by others based on our knowledge. 

Hand-crafted features were designed and showed high detection accuracy, which are novel and 

could be used as a preprocessing step before radiomics modeling in CT head and neck cancer based 

analysis.  

Y90 treatment is a new type of internal radiation therapy that is given to patients who are not 

suitable for surgery or external beam radiation. Since this is relatively new, there are few 
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publications in this area. As far as we know, our work represents the first study that combines 

radiomics features and dose metrics to predict the overall response and progression. This is 

clinically relevant since it provides the physicians with better information to select the lesions that 

are not going to respond and could be candidates for other types of treatments. Technically, we 

proposed a modified LASSO approach that copes with very small sample size and build a more 

robust model than directly implementing LASSO. This technique is novel and can be applied to 

other small sample size problems as well. 

Though advance stereotactic body radiation therapy (SBRT) has been shown to improve the 

overall survival rate for hepatocellular carcinoma (HCC) patients, the death rate for HCC patients 

is still increasing since 2000. The prediction of risk for overall survival is of important clinical 

interest. Current existing research for overall survival in HCC mostly uses Cox regression or 

random survival forests models and hand-crafted radiomics features. Our method proposes a 

comprehensive variational autoencoder survival model that incorporates heterogeneous inputs 

(image, radiomics features and clinical variables), which outperformed the Cox regression model. 

This model has the potential application of assisting the physicians in selecting “good” responding 

patients and adapting treatment for risky patients to achieve better prognosis. 

Recurrence of treated HCC tumor is prevalent (>50%), which contributes to patient death. There 

are studies that predict whether a patient will have recurrence using radiomics features. We 

propose a new question – where the recurred tumor might occur in the liver, which by itself is 

novel. This has not been studied but is very meaningful for HCC patient personalized healthcare. 
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The method we proposed is a two-step method that firstly obtains the Couinaud segments, and 

then uses an attention-based CNN to perform recurrence region prediction. This method is first 

proposed by us shows promising predictive results. The potential application of this includes 

assisting the physicians getting Couinaud segments for liver either for surgery or radiation therapy 

purposes, providing more information for physicians about the risky regions, and combining with 

other modalities to improve the treatment planning to achieve personalized dose coverage.  

1.5 Summary of Accomplishments 

1.5.1 Abstracts and Presentations 

Oral Presentations 

“A Multimodality Approach Using Deep Attention Convolutional Neural Networks for 

Localization of Intrahepatic Liver Cancer Recurrence Post-SBRT”, American Association of 

Physicists in Medicine (AAPM), online, the U.S., July, 2020. 

“A Multimodality Approach Using Deep Convolutional Neural Networks for Localization of 

Intrahepatic Liver Cancer Recurrence Post-SBRT”, Great Lakes Chapter American Association of 

Physicists in Medicine (GLCAAPM), online, the U.S., May, 2020. 

“Variational autoencoder and graph-based radiomics modeling of intrahepatic progression risk and 

overall survival for HCC post-SBRT patients,” American Society for Radiation Oncology 

(ASTRO) Annual Meeting, Chicago, Illinois, the U.S., Sep. 2019. 
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“CT-based radiomic analysis for prediction of early intrahepatic progression risk in hepatocellular 

carcinoma patients treated with stereotactic body radiation therapy,” American Association of 

Physicists in Medicine (AAPM), Nashville, TN, the U.S., Aug. 2018. 

“Automatic recognition of streak artifacts in CT regions of interest using gradient direction 

distribution method for radiomics analysis,” American Association of Physicists in Medicine 

(AAPM), Denver CO, the U.S., Aug. 2017. 

 

E-Posters 

“Multitask-based supervised deep learning using contrast-enhanced CT (CECT) images for 

hepatocellular carcinoma (HCC) intrahepatic progression risk analysis,” American Association of 

Physicists in Medicine (AAPM), San Antonio TX, the U.S., Aug. 2019. 

“Variational Autoencoder Graph-based Radiomics Modeling of Intrahepatic Progression Risk and 

Overall Survival for HCC Post-SBRT Patients,” Rogel Cancer Center Spring Symposium, Ann 

Arbor, MI, the U.S., Jun. 2019. 

“Y-90 PET radiomics modeling analysis for response prediction within hours of radioembolization 

in liver cancer patients,” Annual Congress of the European Association of Nuclear Medicine, Oct. 

2018. 
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1.5.2 Book chapters 

Wei, L., and El Naqa, I. "Feature extraction and qualification." Li, Ruijiang, Lei Xing, Sandy 

Napel, and Daniel L. Rubin, eds. Radiomics and Radiogenomics: Technical Basis and Clinical 

Applications. CRC Press, (2019). 

Wei, L., and El Naqa, I. "Fundamentals of radiomics in Nuclear Medicine and Hybrid Imaging," 

Basic Sciences of Nuclear Medicine. Springer Nature, (2019). 

1.5.3 Peer-reviewed Journals 

Wei, L., Owen, D., Mendiratta-Lala, M., Rosen, B., Cuneo, K., Lawrence, T. S., Ten Haken, R. 

K., El Naqa, I., "Variational Autoencoder SurvivalNet Radiomics Modeling of Overall Survival 

for Hepatocellular Carcinoma Patients." Physica Medica (2020), submitted. 

Pfaehler, E., Wei, L., Zhovannik, I., Boellaard, R., Dekker, A., Monshouwer, R., El Naqa, I., 

Gillies, R., Wee, L., Traverso, A., "Repeatability and Reproducibility of Radiomic Features: 

Review and quality of reporting score." International Journal of Radiation Oncology • Biology • 

Physics (2020), submitted. 

Wei, L., Xu, J., Cui, C., El Naqa I., Dewaraja, Y. K., "Prediction of tumor control in 90Y 

radioembolization by bootstapped LASSO using PET radiomics features." Journal of Nuclear 

Medicine, (2019). Under review.  
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Wei, L. Rosen, B., Vallières, M., Chotchutipan, T., Mierzwa, M., Eisbruch, A., and El Naqa, I. 

"Automatic recognition and analysis of metal streak artifacts in head and neck computed 

tomography for radiomics modeling." Physics and Imaging in Radiation Oncology (2019). 

Wei, L., Osman, S., Hatt, M., and El Naqa, I. "Machine learning for radiomics-based multi-

modality and multi-parametric modeling." The Quarterly Journal of Nuclear Medicine and 

Molecular Imaging (2019).  

Luo, Y., Tseng, H., Cui, S., Wei, L., Ten Haken, R. K., and El Naqa, I. "Balancing accuracy and 

interpretability of machine learning approaches for radiation treatment outcomes modeling." The 

British Institute of Radiology, (2019). 

Avanzo, M., Wei, L., Stancanello, J., Vallières, M., Rao, A., Morin, O., Mattonen, S., El Naqa, I. 

"Machine and deep learning methods for radiomics." Medical Physics (2019). 

Tseng, H., Wei, L., Cui, S., Luo, Y., Ten Haken, R. K., and El Naqa, I. "Machine learning and 

imaging informatics in oncology." Oncology (2018). 

Constanzo, J., Wei, L., Tseng, H., and El Naqa, I. "Radiomics in precision medicine for lung 

cancer." Translational Lung Cancer Research, (2017). 
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CHAPTER 2  
 

Background 
 

This chapter is based on the following book chapters and review articles: Wei, L., Osman, S., Hatt, 

M., and El Naqa, I. "Machine learning for radiomics-based multi-modality and multi-parametric 

modeling." The Quarterly Journal of Nuclear Medicine and Molecular Imaging (2019); Avanzo, 

M., Wei, L., Stancanello, J., Vallières, M., Rao, A., Morin, O., Mattonen, S., El Naqa, I. "Machine 

and deep learning methods for radiomics." Medical Physics (2019); and book chapters: "Feature 

extraction and qualification." Li, Ruijiang, Lei Xing, Sandy Napel, and Daniel L. Rubin, eds. 

Radiomics and Radiogenomics: Technical Basis and Clinical Applications. CRC Press, (2019); 

Wei, L., and El Naqa, I. "Fundamentals of radiomics in Nuclear Medicine and Hybrid Imaging," 

Basic Sciences of Nuclear Medicine. Springer Nature, (2019). 

 

The fundamental idea of radiomics is that medical images are much richer in information than 

what the human eye can discern. Quantitative imaging features, also called “radiomic features” 

can provide richer information about intensity, shape, size or volume, and texture of tumor 

phenotypes using different imaging modalities (e.g., MRI, CT, PET, ultrasound, etc.) [1]. Tumor 

biopsy-based assays provide limited tumor characterization as the extracted sample may not 
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always represent the whole heterogeneity spectrum of the patient’s tumor, while radiomics can 

comprehensively assess the three-dimensional tumor landscape by means of extracting relevant 

imaging information and combining these features into mathematical models for associating these 

features with clinical and biological endpoints [2]. It implies that applying well-known machine 

learning methods to radiomic features extracted from medical images, it will make it possible to 

macroscopically decode the phenotype of many physio-pathological structures and, in theory, 

solve the inverse problem of inferring the genotype from the phenotype, providing valuable 

diagnostic, prognostic or predictive information [3, 4].  

 

2.1 Radiomics Features 

2.1.1 Preprocessing  

Prior to radiomics analysis, preprocessing steps need to be applied to the medical images, which 

aim at reducing image noise, enhancing image quality, enabling the reproducible and comparable 

radiomic analysis. For some imaging modalities, such as PET, the images should be converted into 

a more meaningful representation (standardized uptake value, SUV). Image smoothing can be 

achieved by averaging or Gaussian filters [5]. Voxel size resampling is important for datasets that 

have variable voxel sizes [6]. Specifically, an isotropic voxel size is required for some texture 

feature extraction. There are two main categories of interpolation algorithms: Polynomial and 

spline interpolation. Nearest neighbor is a zero-order polynomial method that assigns grey-level 

values of the nearest neighbor to the interpolated point. Bilinear or trilinear interpolation and 
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bicubic or tricubic interpolation are often used for 2D in-plane interpolation or 3D cases. Cubic 

spline and convolution interpolation are third order polynomial method that interpolates smoother 

surface than linear method, while being slower in implementation. Linear interpolation is a rather 

commonly used algorithm, since it neither leads to the rough blocking artifacts images that are 

generated by nearest neighbors, nor will it cause out-of-range grey levels that might be produced 

by higher order interpolation [7].  

In the context of feature-based radiomics analysis, as discussed below, computing of textures 

requires discretization of the grey levels (intensity values). There are two ways to do the 

discretization: fixed bin number N and fixed bin width B. For fixed bin number, we first decide a 

fixed number of N bins, and the grey levels that will be discretized into these bins using the formula 

below:  

𝑋𝑋𝑑𝑑,𝑘𝑘 = �
�𝑁𝑁𝑔𝑔

𝑋𝑋𝑔𝑔𝑔𝑔,𝑘𝑘−𝑋𝑋𝑔𝑔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑔𝑔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑔𝑔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚
� + 1         𝑋𝑋𝑔𝑔𝑔𝑔,𝑘𝑘 < 𝑋𝑋𝑔𝑔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚      

𝑁𝑁𝑔𝑔                                          𝑋𝑋𝑔𝑔𝑔𝑔,𝑘𝑘 = 𝑋𝑋𝑔𝑔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 
,                                                       (2.1) 

 

where 𝑋𝑋𝑔𝑔𝑔𝑔,𝑘𝑘 is the intensity of 𝑘𝑘th voxel.  

 

For fixed bin width, starting at a minimum 𝑋𝑋𝑔𝑔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚, a new bin will be assigned for every intensity 

interval of 𝑤𝑤𝑏𝑏.  Discretized grey levels are calculated as follow: 
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𝑋𝑋𝑑𝑑,𝑘𝑘 = �𝑋𝑋𝑔𝑔𝑔𝑔,𝑘𝑘−𝑋𝑋𝑔𝑔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚

𝑤𝑤𝑏𝑏
� + 1.                                                                                                                (2.2) 

The fixed bin number method is better when the modality used is not well calibrated. It maintains 

the contrast and makes the images of different patients comparable, but loses the relationship 

between image intensity, while fixed bin size method keeps the direct relationship with the original 

scale. Some investigations about the effect of both methods have shown that fixed bin size method 

gave better repeatability and thus may be suitable for intra- and inter- patient studies, however, 

this remains the subject of ongoing research [8, 9]. In CT-radiomics, the image pixel intensity is 

mapped into the HU values and thus is much more directly comparable and interpretable. MRI-

related modalities are more challenging since the pixel intensities are not directly interpretable, 

rather need to be normalized relative to some standard reference (e.g., contralateral brain, or 

normal appearing white matter in neuroimaging, psoas muscle in abdominal imaging, etc.). The 

art of appropriate normalization to ensure high fidelity for the remainder of the analysis pipeline 

remains a subject of ongoing research.  

 

2.1.2 Static Features 

Static features are based on intensity, shape, size (volume), texture and wavelet, describing the 

geometric property and the distribution of intensities of the ROIs in relation to their spatial 

distribution. 

2.1.2.1 Morphological Features 
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These are geometrical shape characteristics of ROIs, such as compactness (representing how 

compact the region is), eccentricity (a measure of non-circularity, describing tumor growth 

directionality); Euler number (the number of connected objects in a region minus the solidity (this 

is a measurement of convexity), which may be a characteristics of benign lesions [10, 11].  

2.1.2.2 First Order Intensity Features  

First-order features are based on first-order histograms that shows the distribution of the voxel 

intensities in the ROIs. These features summarize the large number of voxel values in ROIs into 

single values, such as mean, minimum, skewness, etc. 

2.1.2.3 Texture features 

Broadly speaking, there are three categories for texture analysis: statistical (e.g., second and higher 

order features), model-based (e.g., Gaussian Markov random fields, Gabor filter and wavelet) and 

structural methods (e.g., Topological texture descriptors, Invariant histogram). The performance 

of texture approaches is not affected by tumor position, orientation, size, and brightness. It takes 

into account the local intensity-spatial distribution, and is also invariant to translation, rotation, 

affine and perspective transform [12-15]. Among these features, statistical methods have been 

widely used in the field of radiomics for cancer outcome modeling. Second-order features provide 

statistical interrelationships between voxels and capture special patterns in the ROIs, which make 

up for the loss of information associated with the first-order features. Haralick et al. introduced 

the idea of using textural features for image classification [16]. Several texture matrices formed 

the basis of statistical approaches: the grey level co-occurrence matrix (GLCM) [16], 
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neighborhood gray tone difference matrix (NGTDM) [17], run-length matrix (RLM) [18], and grey 

level size-zone matrix (GLSZM) [19]. GLCM illustrates the distribution of the combinations of 

grey levels of neighboring voxels (pixels) along certain direction, entropy, angular second 

moment, correlation, contrast, inverse difference moment are commonly used [13]. GLRLM was 

first proposed by Galloway. It is defined as the frequency of occurrence of contiguous voxels with 

some run length along certain direction that have the same grey level. It characterizes the 

distribution of combination of grey levels in different directions. Example features includes 

short/long run emphasis, low/high grey level run emphasis, etc. GLSZM gives the statistics of 

groups of voxels that are connected and have a specific grey level, with features such as small/large 

size zone emphasis. The NGTDM is thought to provide more human-like perception of texture 

such as: coarseness, contrast, busyness, and complexity.  

2.1.2.4 Dynamic features 

For dynamic imaging protocols, such as 4D MRI, CT and PET, features based on kinetic analysis 

using tissue compartment models and parameters related to transport and binding rates can be 

extracted [20]. Compartmental modeling is used to describe systems varying in time but not in 

space. In the case of FDG, a 3-compartment model could be used to depict the trapping of FDG-

6-Phosphate (FDG6P) in tumor [21-23]. Glucose metabolic uptake rate could be evaluated from 

compartmental modeling. Values of influx rate constant from compartment modeling was shown 

to be able to offer an assessment for inflammations at different locations of the body for non-small 

cell lung carcinoma [24]. For dynamic contrast enhanced MRI, the Toft and Kermode (TK) model 

is one of the most popular compartment models, providing information about the influx forward 
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volume transfer constant from plasma into the extravascular-extracellular space [25-28]. Lee et al. 

found that three dynamic parameters were correlated with the dose of radiation delivered to the 

parotid gland and the degree of radiation-induced parotid atrophy during the treatment of head and 

neck cancer [29]. 

The radiomic features are in general defined independently of the image modality. Yet, there are 

some variations in the nomenclature used depending on the different imaging techniques. For 

instance, the use of SUV in PET image quantitative analysis, which are used instead of the raw 

counts intensity values. Therefore, basic features such as maximum, minimum, mean, standard 

deviation (SD), and coefficient of variation (CV) are usually expressed as SUVmax, SUVmean, etc. 

Total lesion glycolysis (TLG) is defined as the product of volume and mean SUV [30-32].  

 

2.2 Machine and Deep Learning Algorithms for Radiomics 

Machine and deep learning algorithms provide us with powerful modeling tools to mine the huge 

amount of image information available, reveal underlying complex biological mechanisms, and 

make personalized precision cancer diagnosis and treatment planning possible. Here, we will 

briefly introduce two main types - feature-engineered (conventional radiomics) and machine learnt 

(deep learning-based) radiomics modeling methods. Generally speaking, machine learning 

methods can also be divided into supervised, unsupervised and semi-supervised for both feature-

based and featureless methods. We will discuss briefly each of these categories in the following 
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sections. A workflow diagram illustrating the radiomics analysis process after image acquisition 

is shown in Fig. 2.1.  

2.2.1 Feature-Engineered Radiomics Methods 

Traditionally, the radiomic features being extracted are hand-crafted features that capture 

characteristic patterns in the imaging data, including shape-based, first-, second-, and higher order 

statistical determinants, model-based (e.g., fractal) and dynamic features as briefly discussed 

above. Feature-based methods require a segmentation of the region of interest (ROI), either 

through a manual, semi-automated, or automatic methods.  
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Fig. 2.1 Workflow for radiomics analysis with feature-based (conventional machine learning) and featureless (deep learning) 
approaches. 
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Hundreds or even thousands of radiomic features are not uncommon when we deal with outcome 

modeling. Feature selection and/or extraction thus is a crucial step that aims at obtaining the 

optimal feature subset or feature representation that correlates most with the endpoint and 

meanwhile correlates least between each other. After the feature subset is obtained, various 

machine learning algorithms can be applied based on them. Sometimes, the feature selection and 

model construction can be implemented together, called the embedded method, such as LASSO 

[33]. In contrast, wrapper methods select the features based on the models’ performance for 

different subsets of features, for which we need to rebuild the model again after features are 

selected, for instance, recursive feature elimination SVM (SVM-RFE). Filter methods also 

separate the feature selection and the model construction processes, the uniqueness of it is their 

independence of the classifier being used for the subsequent model building, such as Pearson 

correlation-based feature ranking. In any feature selection method, it is essential to ensure that 

there is no “double dipping” into the training data for both feature selection, hyperparameter 

optimization and model selection. Rather the methods of “nested cross-validation” should be used 

in order to prevent overfitting or incorrect estimates of generalization. 

According to whether or not the labels (ground truths) are used, feature selection and extraction 

can be divided into supervised, unsupervised and semi-supervised ways. The three feature 

selection methods discussed above are mostly supervised. Examples of unsupervised methods are 

principal component analysis (PCA) [34], clustering and t-Distributed Stochastic Neighbor 

Embedding (t-SNE) [35]. PCA uses an orthogonal linear transformation to convert the data into a 

new coordinate system so that large variances are projected to orthogonal coordinates. Clustering 
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is another feature extraction algorithm, which aims at finding relevant features and combining 

them by their cluster centroids based on some similarity measure, such as K-means and 

hierarchical clustering [36]. tSNE is a dimension reduction method that is capable of retaining the 

local structure (pairwise similarity) of data, while revealing some important global structure.  

In the medical field, two types of questions are mainly investigated, binary problems 

(classification), such as whether or not a disease has recurred, the patient is alive beyond certain 

time threshold, etc.; and survival analysis, that is able to show if a risk factor or treatment affects 

time-to-event. For the classification problem logistic regression fits the coefficients of the variables 

to predict a logit transformation of the probability of the presence of the event. SVM, frequently 

used in CAD [37] and radiomics [36, 38-40], learns an optimal hyperplane that separates the 

classes as wide as possible, while trying to balance with misclassified cases. SVM can also perform 

nonlinear classification using the “kernel trick” -- different basis functions (e.g., radial basis 

function), mapping to higher dimensional feature space. The hyperplane maximizes the margin 

between the two classes in a nonlinear feature space. SVM also tolerates some points on the wrong 

side of the boundary, thus improving model robustness and generalization [41]. Random forests 

(RF) is based on decision trees, a popular concept in machine learning especially in the field of 

medicine, because their representation of hypotheses as sequential “if-then” resembles human 

reasoning [42]. RF applies bootstrap aggregating to decision trees and improve the performance 

by lowering the high variance of the trees [43]. 
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Neural networks, though usually used in the one step context, can also be used in conventional 

feature selection and modeling [40, 44, 45]. These algorithms are mainly for supervised learning, 

while in particular in the medical field, there are a lot of data without labeling, in these cases, semi-

supervised learning can be applied to make use of the unlabeled data combined with the small 

amount of labeled data. The self-training is bootstrapped with additional labelled data obtained 

from its predictions [46]. The transductive SVM (TSVM) tries to keep the unlabeled data as far 

away from the margin as possible [47]. Graph-based methods construct a graph connecting similar 

observations and enable the class information being transported through the graph [48]. 

For the survival analysis, Cox regression [49], random survival forests [50] and support vector 

survival [51] methods are also available to investigate the presence of a set of variables that may 

affect survival time.  

2.2.2 Machine Learnt Radiomics Methods 

Though hand-crafted features introduced above provide prior knowledge, they also suffer from the 

tedious designing process and may not faithfully capture the underlying imaging feature 

information. Alternatively, with the development of deep learning technologies based on multi-

layer neural networks, especially convolutional neural networks (CNN), the extraction of machine 

learnt features is becoming widely applicable recently. In deep learning, the processes of data 

representation and prediction (e.g., classification or regression) are performed jointly [52]. In such 

a case, multi-stack neural layers of varying modules (e.g., convolution or pooling) with linear/non-

linear activation functions perform the task of learning the representations of data with multiple 
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levels of abstraction and subsequent fully connected layers are tasked with classification, for 

instance. A typical scenario to get such features is to use the data representation CNN layers as 

feature extractor. Each hidden layer module within the network transforms the representation at 

one level. For example, the first level may represent edges in an image oriented in a particular 

direction, the second may detect motifs in the observed edges, the third could recognize objects 

from ensembles of motifs [52]. Patch-/pixel-based machine learning (PML) methods use 

pixel/voxel values in images directly instead of features calculated from segmented objects as in 

other approaches [52, 53]. Thus, PML removes the need for segmentation, one of the major sources 

of variability of radiomic features. Moreover, the data representation removes the feature selection 

portion eliminating associated statistical bias in the process.  For the CNN network, either self-

designed (from scratch) or existing structures, e.g., VGG [54], Resnet [55], can be used. Depending 

on the data size, we can choose to fix the parameters or fine tune the network using our data, also 

called transfer learning. Instead of using deep networks as feature extractors, we can use them 

directly for the whole modeling process. Similarly, to the conventional machine learning methods, 

there are also supervised, unsupervised and semi-supervised methods. CNN are similar to regular 

neural networks, but the architecture is modified to fit to the specific input of large-scale images. 

Inspired by the Hubel and Wiesel’s work on the animal visual cortex [56], local filters are used to 

slide over the input space in CNNs, which not only exploit the strong local correlation in natural 

images, but also reduce the number of weights significantly by sharing weights for each filter. 

Recurrent neural networks (RNN) can use their internal memory to process sequence inputs and 

take the previous output as inputs. There are two popular types of RNNs – Long short-term 
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memory (LSTM) [57] and Gated recurrent units (GRUs) [58]. They were invented to solve the 

problem of vanishing gradient for long sequences by internal gates that are able to learn which 

data in the sequence is important to keep or discard. Deep autoencoders (AE), which are 

unsupervised learning algorithms, have been applied to medical imaging for latent representative 

feature extraction. There are variations to the AEs, such as variational autoencoders that resemble 

the original AE and variational Bayesian methods to learn a probability distribution that represents 

the data [58], convolutional autoencoders that preserve spatial locality [59], etc. Another 

unsupervised method is the restricted Boltzmann machine (RBM), which consists of visible and 

hidden layers [60]. The forward pass learns the probability of activations given the inputs, while 

the backward pass tries to estimate the probability of inputs given activations. Thus, the RBMs 

lead to the joint probability distribution of inputs and activations. Deep belief networks (DBNs) 

can be regarded as a stack of RBMs, where each RBM communicates with previous and 

subsequent layers. RBMs are quite similar with AEs, however, instead of using deterministic units, 

like RELU, RBMs use stochastic units with certain distribution. As mentioned above, labeled data 

is limited, especially in the medical field. Neural network based semi-supervised approaches 

combine unsupervised and supervised learning by training the supervised network with an 

additional loss component from the unsupervised generative models (e.g. AEs, RBMs) [61].  

Machine learning methods are highly effective with large number of samples; however, they suffer 

from overfitting pitfalls with limited training samples. For deep learning, data augmentation (affine 

transformation of the images) during training is commonly implemented. Transfer learning is 

another way to reduce the difficulty in training. Using deep models trained on other dataset (natural 
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images) and then fine-tune on the target dataset. The structures of the networks can also be 

modified to reduce overfitting, such as, by adding dropout and batch normalization layers. Dropout 

randomly deactivates a fraction of the units during training and can be viewed as a regularization 

technique that adds noise to the hidden units [62]. Batch normalization reduces the internal 

covariate shift by normalizing for each training mini-batch [63]. 

Comparing with feature-based methods, deep learning methods are more flexible and can be used 

with some modifications in various tasks. In addition to classification, segmentation, registration, 

and lesion detection are widely explored by deep learning techniques. Fully CNN (FCN), trained 

end-to-end, merge features learnt from different stages in the encoders and then upsampling low 

resolution feature maps by deconvolutions [64]. Unet, built upon FCN, with the pooling layers 

being replaced by upsampling layers, resulted in a nearly symmetric U-shaped network [65]. 

Skipping structures combines the context information with the unsampled feature maps to achieve 

higher resolution. 

Selecting the proper methods for each task is important. Basically, it is the art of balancing the 

information obtained from data and prior knowledge, and balancing the complexity of the models 

(capacity), which determines the bias and the variance. The more complex a model is, the less bias 

there will be, but the more variance as well. Thus, in practice, we need to deal with these trade-

offs and there is no onetime answer. Conventional machine learning and deep learning methods 

both have their advantages and disadvantages. If the sample size is too small, using complex 

models will easily lead to overfitting and poor performance on new data. On the other hand, with 
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adequate data, complex models can represent the underlying relations of the data comprehensively 

and give better results. In terms of data-driven analysis and using prior knowledge, when the data 

size is small, it is usually beneficial to take advantage of the prior knowledge (radiomics features), 

if the prior knowledge is not misleading. With more data, we can rely more on the data and learn 

the information we need, which will avoid the risk that the prior knowledge is incorrect or 

irrelevant.  

2.3 Software Tools for Radiomics 

In most published research studies in radiomics, in-house developed methods are used. However, 

some research groups developed image analysis/radiomic software tools, both commercial or open 

source, available to the scientific community. The main goals of these tools are: 1) to speed up the 

development of competences based on more recent skills on radiomics; 2) to allow reproducibility 

and comparability of results from different research groups, and 3) to standardize both feature 

definitions and computation methods to guarantee the reliability of radiomic results [66, 67]. 

Table 2.1 shows a list of the software, web platforms, and toolkits available free of charge for the 

extraction of radiomics features, along with some of their main functionalities and relevant 

information. Given the high pace of radiomic developments, the list is not exhaustive and does not 

intend to cover all possible solutions. Furthermore, considering recent and increased interest in the 

radiomic field, many other dedicated tools are under development. All the open source solutions 

shown in this overview have been implemented by research teams and are capable of analyzing 
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CT, MRI, and PET, some of them can process also other medical images, such as mammography, 

radiography, or ultrasound. 

Four software programs (MaZda [68], LifeX [69], ePAD [70], IBEX [71]) offer the possibility of 

manually or automatically segmenting medical images. Three toolkits (HeterogeneityCAD [2], 

PyRadiomics/Radiomics [72], QIFE [73]) are designed exclusively for the extraction of features. 

They can be embedded in more complete solutions (e.g. 3D Slicer [74]).  Morphological, first, 

second and third order statistical features can be extracted by all software solutions, except for 

ePAD. Four of them (TexRAD, MaZda, PyRadiomics/Radiomics, IBEX) offer also the possibility 

of extracting features from filtered images. Of note, MEDomicsLab is an open-source software 

currently being developed by a consortium of research institutions, which will be available in the 

second half of 2019. 

Table 2.1 Open access software programs for radiomics analysis. 

Software/ 

Toolbox 
MaZda lifeX  ePAD QIFE HeterogeneityCAD  

PyRadiomics 

/ Radiomics  
QuantImage  

Texture 

Analysis 

Toolbox 

IBEX MEDomicsLab 

Research 

group 

Institute of 

Electronics, 

Technical 

University of 

Lodz, Poland 

IMIV, 

CEA, 

Inserm, 

CNRS, 

Univ. 

Paris-Sud, 

Université 

Rubin Lab, 

Stanford 

University 

Sandy 

Napel, 

Stanford 

University 

V.Narayan,  

J. Jagadeesan 

Dana-Farber 

Cancer 

Institute, 

Brigham 

Women's 

Hospital 

Harvard 

Medical 

University of 

Applied 

Science and 

Arts, 

Western 

Switzerland 

M. 

Vallières 

The 

University 

of Texas 

MD 

Anderson 

Cancer 

Center, 

MEDomics 

consortium 
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Paris 

Saclay 

School, 

Boston 

Houston, 

Texas 

Image 

modalities 

CT, MRI, 

PET 

CT, MRI, 

PET, 

ultrasound 

CT, MRI, 

radiography 

CT, MRI, 

PET 
CT, MRI, PET 

CT, MRI, 

PET 
 

CT, MRI, 

PET 

CT, MRI, 

PET 

 

CT, MRI, PET 

Segmentation YES YES YES NO NO NO NO NO YES NO 

Segmentation 

methods 

manual, 

automatic 

(threshold, 

flood-filling) 

manual, 

automatic 

(threshold, 

snake) 

Manual / / / / / 

manual, 

automatic 

(threshold) 

/ 

Radiomic 

features: 

morphology 

YES YES NO YES YES YES YES YES YES YES 

statistical 1° 

order 
YES YES YES YES YES YES YES YES YES YES 

statistical 2° 

order 
YES YES YES YES YES YES YES YES YES YES 

statistical 3° 

order 
YES YES NO YES YES YES YES YES YES YES 

Filtering YES NO NO NO NO YES NO NO YES YES 

Feature 

selection 
YES NO NO NO NO NO NO YES NO YES 

Feature 

selection 

methods 

Fisher score, 

classification 

error, corr. 

/ / / / / / 

Maximal 

information 

coefficient   

/ 

 False discovery 

avoidance, 

Elastic Net, 
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coeff, 

mutual 

informat., 

minimal 

classification 

error 

minimum 

Redundancy 

Maximum 

Relevance 

Stratification NO NO NO NO NO NO NO NO NO YES 

 

 

2.4 Deep Learning Based Survival Analysis  

Marrying deep learning with survival analysis has become a trend in the actuarial analysis. There 

are mainly two ways of conducting deep learning based survival analysis, one is the proportional 

hazard based continuous method, the other is discrete time survival analysis.  

Faraggi and Simon first extended Cox regression with neural networks in 1995 by replacing the 

linear predictor of the Cox regression model with formula by a one hidden layer multilayer 

perceptron (MLP), as shown in Eqn. (2.3) [75]. Katzman et al. in 2018 then modified previous 

work using novel neural network structure (DeepSurv), which outperformed the traditional Cox 

model:  

ℎ(𝑡𝑡|𝑥𝑥) = ℎ0(𝑡𝑡) exp[𝑔𝑔(𝑥𝑥)] , 𝑔𝑔(𝑥𝑥) = 𝛽𝛽𝑇𝑇𝑥𝑥, (2.3) 
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Zhu et al. extended the work to pathology images by replacing the MLP to convolutional layers 

[76]. This neural network-based Cox model still has the proportionality assumption. Kvamme et 

al. introduced non-proportional Cox model by making the relative risk function depend on time:  

ℎ(𝑡𝑡|𝑥𝑥) = ℎ0(𝑡𝑡) exp[𝑔𝑔(𝑡𝑡, 𝑥𝑥)] , (2.4) 

The 𝑔𝑔(𝑡𝑡, 𝑥𝑥) handles time as a regular covariate, so that the loss function is still the same partial 

likelihood as classical Cox model [77].  

An alternative approach is to discretize the time and compute the survival function on the time 

grid. In this way, no assumptions are made about the underlying stochastic processes and the 

distribution of survival times are directly learned. Lee et al. proposed a method called DeepHit 

that uses a deep neural network to learn the probability mass function by log-likelihood and a 

ranking loss [78]. Fotso et al. used a multi-task logistic regression with a neural network to 

calculate the survival probabilities [79].  

2.5 Validation and Benchmarking of Radiomics Models 

Once models are developed using the selected predictors, quantifying the predictive ability of the 

models (validation) is necessary. Based on the TRIPOD criteria, there are 4 types of validation: 

1a. Developing and validating on the same data, which gives apparent performance. This 

evaluation is usually optimistic estimation of the true performance. 1b. Developing the models 

using all the data, then using resampling techniques to evaluate the performance. 2a. Randomly 

split the data into 2 groups for development and validation separately. 2b. Split the data non-
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randomly (e.g., by location or time), which is stronger than 2a. 3 & 4. Develop the model using 

one data set and validate on separate data [80]. It is ideal if there is a separate dataset for external 

validation, however, in the frequent case that only a single data set is available, internal validation 

(1b) is required. Two popular resampling methods are bootstrapping and cross-validation. Feature 

selection, which is required before machine learning, should precede cross-validation, or it will 

lead to a selection bias due to the leak of information by the pre-filtering of the features [81]. In 

practice, nested cross-validation is also commonly used, which is a stronger version of TRIPOD 

type 1b.  

Radiomic classifiers output a score that indicates the likelihood of one event to happen, and a 

threshold, to generate positive or negative predictions according to the task at hand. For example, 

fewer FPs would be required if we are implementing a conservative experiment, thus larger 

threshold will be preferred. Classifiers are evaluated using either a numeric metric (e.g., accuracy), 

or the so-called confusion matrix, or a graphical representation of performance, such as a receiver 

operating characteristic curve (ROC), a two-dimensional graph with TP rate being the Y axis, and 

FP rate the X axis. It has the advantage that they show classifier performance without regard to 

threshold and class distribution, thus widely used in model evaluation. The area under an ROC 

curve (AUC) is more convenient when comparing, and is equivalent to the probability that the 

classifier will rank a randomly chosen positive instance higher than a randomly chosen negative 

instance [82]. For survival analysis, Harrell’s c-index [83] is commonly used to measure 

discrimination ability of the model, which is motivated by Kendall’s tau correlation.  Harrell 

defines the overall c-index as the proportion of all usable pairs in which the predicted risk 
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probabilities and outcomes are concordant (Usable pairs are two cases that at least one of them is 

event) [84]. 

Kaplan-Meier (KM) curves is used to estimate the survival function from lifetime data, and also 

used to compare different risk groups. The risk groups can be patients that are treated with certain 

plan and the control group, or they can be the outputs from a survival model (e.g., Cox model) that 

divides the patients into high and low risk groups. It is highly recommended to visualize confidence 

intervals of the curves. The log rank test gives a quantitative evaluation of the statistical 

significance of the difference for different curves, which is also widely provided for KM curves 

[85].  

Prediction accuracy is important, however, in the medical field, due to limited sample size, 

noisiness in the data, and intrinsic uncertainty rooted in the complex system, understanding the 

correlation and contribution of different components (imaging features, clinical factors, genomic 

data, etc.) might be more important clinically, which unfortunately, is not adequately addressed in 

current studies in our field. In this thesis, we will present some preliminary results in terms of the 

interpretation of the developed models in Chapters 5 & 6 in addition to the widely used evaluation 

metrics described previously. 
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2.6 Repeatability and Reproducibility of Radiomic Features 

In radiomics, repeatability is measured by extraction of features from repeated acquisition of 

images under identical or near-identical conditions and acquisition parameters [86], whereas 

reproducibility, is assessed when measuring system or parameters differ. These can be assessed 

by use of digital or physical phantoms.  

Radiomic features are more and more used in clinical research, but before a clinical 

implementation is possible, a standardization of image pre-processing, image discretization, and 

feature aggregation across centers is necessary. Moreover, a consensus about which features are 

repeatable and reproducible needs to be drawn as only these features should be used in the clinic. 

It is difficult to draw a general conclusion about which features are repeatable and reproducible. 

This is due to the large variability of settings and tumor types which were analyzed. Moreover, the 

variability in metrics used for assessing repeatability/reproducibility makes it almost impossible 

to compare studies between each other. However, most studies reported on the robustness of first-

order and local textural features such as GLCM and GLRLM features, while global textural 

features (such as GLSZM features) were found to be less robust.  

In general, reconstruction settings and image noise have a high impact on radiomic feature values 

for all imaging modalities. This implies that multi-center radiomic studies require harmonized 

images in terms of image reconstruction setting and signal-to-noise ratio. This harmonization can 

be achieved by, e.g., harmonizing image reconstruction methods as well as image post-processing 

across centers.  
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Moreover, there was a consensus that the segmentation method has an impact on radiomic feature 

values. Therefore, it is important to use an accurate as well as repeatable segmentation in the 

radiomics workflow. At the moment, most segmentations are performed manually what comes 

with a high inter-observer variability as well as with a low repeatability. The identification of an 

automatized segmentation algorithm most suitable for tumor segmentation is important.  

Due to the sensitivity of radiomic features to various factors, it is crucial to report in detail each 

step performed during radiomic analysis. Only a detailed report makes a study reproducible itself 

and gives the opportunity to compare different studies.  
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CHAPTER 3  
 

Automatic Recognition and Analysis of Metal Streak Artifacts in 

Head and Neck Computed Tomography for Radiomics Modeling 
 

This chapter developed a new algorithm for automatic recognition and analysis of artifacts for 

radiomics modeling and is based on the paper: Wei, L. Rosen, B., Vallières, M., Chotchutipan, T., 

Mierzwa, M., Eisbruch, A., and El Naqa, I. "Automatic recognition and analysis of metal streak 

artifacts in head and neck computed tomography for radiomics modeling." Physics and Imaging 

in Radiation Oncology (2019). 

 

3.1 Introduction   

With recent advances in medical imaging technologies, contrast enhanced computed tomography 

(CT), magnetic resonance (MR), and positron emission tomography (PET) imaging are being 

routinely acquired during the diagnosis, staging and radiotherapy treatment planning of head and 

neck cancers (HNC). The most widely used imaging modality for diagnosis and therapy is CT, 

which can assess the tissue/ lesion density, shape and texture, and has been a good image-based 

data resource for patient’s outcome modeling (e.g., radiomics) [1]. A large number of imaging 

features can be extracted from CT images for such radiomics analysis. These features are widely 
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explored in HNC CT image analysis (e.g., segmentation, predictive and prognostic biomarkers, 

etc.). Aerts et al. found that the CT radiomic signature constructed from non-small cell lung cancer 

(NSCLC) patients preserved significant prognostic performance for head and neck squamous cell 

carcinoma (HNSCC). Significant associations were discovered between the radiomics features and 

gene-expression patterns [2]. Zhang et al. found that CT texture features such as primary mass 

entropy and histogram skewness were independent predictors of overall survival in a dataset of 72 

HNSCC patients [3]. However, it is sometimes overlooked that the existence of metal artifacts in 

CT HNC images, due to dental implants, may corrupt the reliability and the precision of such 

radiomics analysis and may cause misleading results. Metal artifacts in the original images can 

lead to changes in underlying texture features, which form the basis of radiomics analysis [4, 5]. 

Large amounts of promising studies were carried out for CT-based HNC radiomic analysis. 

Artifacts influence was not taken into account or at least wasn’t mentioned in these articles. Until 

recently, less attention was paid into this critical issue in CT HNC image analyses. Bogowicz et 

al. conducted studies aimed to predict tumor local control (LC) after radiochemotherapy of 

HNSCC and human papilloma virus (HPV) status using CT radiomics. In their study, contours 

were manually removed from artifact-affected slices. Scans with more than half of the contoured 

slices affected by metal artifacts were excluded in the analysis [6]. Elhalawani et al. also excluded 

slices with metal artifacts in their HPV prediction model [7]. For these studies that excluded the 

artifact-affected slices or patients, manual filtering was applied, which is a very time-consuming 

process. There are also some approaches proposed for the metal artifacts reduction (MAR) [8-12]. 

Yet, these methods are likely to introduce new artifacts to images, degrade their resolution, and 
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influence the statistical distribution of the original images, rendering them detrimental to any 

subsequent radiomic analysis [13, 14]. To overcome these challenges, we proposed a novel method 

that enabled the classification of artifact-affected slices/ROIs using extracted features 

automatically and efficiently, which has the potential to simplify the preprocessing and make the 

radiomic signatures more reliable. We have applied our algorithm on an external dataset to 

investigate the impact of artifacts on radiomics modeling as well. Our current approach aims to 

flag images with artifacts so as to build more robust radiomic models with artifact-free images. 

3.2 Methods and Materials 

A total of 131 oropharyngeal squamous cell carcinoma patients (3513 slices, among which 360 

slices had visually identified metal artifacts in the regions of interest [ROIs]), treated at the 

University of Michigan Department of Radiation Oncology, and a set of 220 head and neck 

squamous cell carcinoma patients (17956 slices) from a previously published dataset, treated at 

four hospitals in Canada were included in this study [15]. The two datasets will be referred to as 

UM data and the Canadian data, respectively. We determined the ground truth non-artifact slices 

by visually inspecting all slices in the UM data set and only looking at the tumor ROI. This means 

that if the tumor ROI on a given slice did not contain metal artifacts, it would be considered as a 

negative sample even if other parts of that same ROI contained artifacts, which will help save 

valuable data. For the Canadian data, due to the very large amount of slices, we visually determined 

if any ROI contained artifacts, as opposed to slice-by-slice. For this case, after we obtained 

predicted slice label, if for a ROI, there was at least one slice that was labeled to contain artifact, 
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the whole ROI would be labeled as artifact-present. Fig. 3.1 shows an example slice of the artifact-

affected ROI. The UM data was randomly and equally split into training and test sets. Training set 

was used to train a random forests artifacts detection model (all hyper-parameters and parameters), 

then applied to the holdout test set. The Canadian data was split by hospital: 148 patients from 

Hôpital général juif (HGJ) and Centre hospitalier universitaire de Sherbrooke (CHUS) were used 

as training set for the proposed radiomics model for distant metastases in Vallières et al. study 

[15]. Seventy-two patients from Hôpital Maisonneuve-Rosemont (HMR) and Centre hospitalier 

de l’Université de Montréal (CHUM) combined were used as test set for evaluation. Fig. 3.2 shows 

a brief workflow. Table 3.1 gives more details about the datasets. 

 

 

 

(c) (b) (a) 

Fig. 3.1 (a) whole field CT image containing metal artifacts; (b) ROI (tumor) without artifacts; (c) ROI (tumor) with 
artifacts.  
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Table 3.1 Datasets information. 

Data sets Patients ROIs 
ROIs with 

artifacts 

ROIs 

without 

artifacts 

Slices 
Slices with 

artifacts 

Slices 

without 

artifacts 

UM 131 131 63 68 3515 360 3155 

Canada 220 344 105 239 17956 NA NA 

 

3.2.1 Features design and extraction 

3.2.1.1 Total variation based-feature 

The concept of total variation (TV) was introduced first by Rudin et al. [16] for noise removal in 

image processing using first-order norms, since noisy images tended to have a high TV value 

compared with noise-free images. Similarly, metal artifacts led to an increased TV value relative 

to that of the regions of interest (ROIs) without artifacts, so the TV score could be taken as a 

measure of the artifacts. Below is the formula for calculating the TV (feature 1): 

Fig. 3.2 Brief workflow for artifacts detection and impact on radiomic model performance. 
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𝑇𝑇𝑇𝑇(𝐼𝐼) = (��|𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥 − 1,𝑦𝑦)| + |𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥,𝑦𝑦 − 1)|)/𝑁𝑁ROI

𝑁𝑁𝑚𝑚

𝑚𝑚=1

𝑁𝑁𝑦𝑦

𝑦𝑦=1

 (3.1) 

 

where 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the intensity for pixel (𝑥𝑥,𝑦𝑦), 𝑁𝑁𝑚𝑚,𝑁𝑁𝑦𝑦 are number of pixels along the two directions, 

𝑁𝑁ROI is the number of pixels in the ROI. TV sums the absolute values of two-dimensional gradients 

for each pixel point of an image 𝐼𝐼(𝑥𝑥,𝑦𝑦), here we are referring to in-plane directions. Additionally, 

TV values were normalized by dividing by the number of pixels in ROIs to exclude the influence 

of image size. 

3.2.1.2 Gradient direction distribution (GDD) based features 

Compared with TV gradient magnitude information, GDD features extracted gradient direction 

information. Some image preprocessing procedures were necessary prior to the extraction. The 

aim of pre-processing was to improve the image data quality by suppressing unwanted distortions 

and enhance the metal artifacts for preparation of the feature extraction. As shown in Fig. 3.3(a), 

the raw ROI images were noisy and the artifacts were hard to detect directly. We cropped and 

resized the original ROIs so that they had comparable size to provide a good estimate of the 

distribution. First, we resized ROIs to 25 × 25 pixels (median size of ROI slices in UM dataset), 

then cropped outer pixels to remove any edge effects, such that all images had the same size of 16 

× 16. With size-modified ROIs, the gradient direction of each pixel point in the ROIs was 

approximated using the Sobel operator [17]. The direction ranged from −180° to 180° 

counterclockwise from the positive x-axis. In Fig. 3.3(b) and (e), the gradient direction map of the 
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ROIs was plotted. In these plots, the streak artifacts were more pronounced than in the original 

images. Histograms provided useful information about image statistics, from which we could 

extract discriminant features to help with artifacts detection. For ROIs with artifacts there should 

be a dominant direction of the gradient orientation distribution, while the ROIs without artifacts 

would tend to have more uniform distribution. We extracted the maximum gradient direction 

percentage (feature 2) from the histogram of angles for the gradient 𝐻𝐻(𝜃𝜃) with 36 bins (bin width 

of 10°): 

Max gradient direction =
max�𝐻𝐻(𝜃𝜃𝑚𝑚)�
∑ 𝐻𝐻(𝜃𝜃𝑚𝑚)𝑚𝑚

 (3.2) 

where 𝑖𝑖 is the bin index. Due to varying tumor shapes, even though the bounding ROI box was 

modified, there were still some non-tumor parts of the original images included in the analyzed 

region. To remove shape effects, another complementary feature was calculated (feature 3): 

ratio of pixels in tumor ROI =  
𝑁𝑁ROI

16 × 16
(3.3) 
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3.2.1.3 Grey-scale Hough transform based features 

Conventional Hough transform is a well-known method for line detection [18-20]. However, 

conventional Hough transform (CHT) requires input images to be edge-enhanced binary images, 

which are obtained by edge detection algorithms followed by thresholding or thinning. This will 

lead to loss of information and it requires selecting a threshold (harder for rich contrast, blurry, 

and band structure images). In our case, the artifacts were not obvious, and they were dispersed 

band structures. We used an extended Hough transform algorithm that dealt specifically with grey-

scale images and avoided the thresholding process encountered in the conventional Hough 

transform [21]. Keck et al. proposed the use of direct output from the edge operator [22]. Thus, 

there was no threshold used to suppress the edges. Instead, the intensities in the edge image was 

considered to be the weighting coefficient for the Hough transform – grey-scale Hough transform 

(a) (b) (c) 

(d) (e) (f) 

Fig. 3.3 (a) Original ROI with artifacts; (b) corresponding Gradient direction map of 
the ROI; (c) detected lines by modified Hough transform; (d)–(f) are similar with (a), 
(b), (c), while without artifacts. 
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(GSHT). However, the traditional edge operators performed poorly in the ROIs in our application, 

since the lines in our case were dispersed with relatively gradually changing intensities. Instead of 

applying the edge operators, we input the gradient direction map for GSHT. Subsequently, we 

applied a local maxima filter to the obtained Hough map. The modified GSHT algorithm was 

summarized in Table 3.2. We used the GSHT as feature extractor instead of directly line detection 

because of dispersive characteristic of the artifacts. As shown in Fig. 3.3(f), if there were too many 

lines detected, it indicated high noisiness of the image and also absence of artifacts. Hence, the 

number of lines detected was a distinctive feature (feature 4). Since most of the artifact lines 

extended through the whole tumor, the ratio of the line length detected over the length of the tumor 

along that same direction should be close to one for artifact lines (feature 5). 

maximum ratio of detected lines = max�
𝐿𝐿detected lines 

𝐿𝐿tumor along the same direction 
� (3.4) 

For tumors with artifacts, the length of detected lines should be relatively large. Thus, the number 

of lines with ratios larger than a priori threshold was another distinct feature: 

feature 6 = number of lines, if �
𝐿𝐿detected lines 

𝐿𝐿tumor along the same direction 
� > 0.6 (3.5) 

The threshold for large lines we used here was empirically found to be 0.6 using our training data. 

For ROIs with artifacts, the lines detected were expected to have similar orientations, while those 

false lines had directions without any regular pattern. We counted the number of lines that had 
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similar orientations with the maximum ratio line in one ROI. Here, we defined similar orientation 

as angle difference smaller than 𝛿𝛿 (20°) using prior knowledge.  

feature 7 = number of lines, if �𝐷𝐷line − 𝐷𝐷
argmax� 𝐿𝐿detected lines 

𝐿𝐿tumor along the same direction �
� <  𝛿𝛿 (3.5) 

where D represents the direction of a line. After designed these seven features, we did principal 

component analysis (PCA) for these features to explain the variance in the data. 

Table 3.2 Modified Hough transform for artifact detection. 

(1) Obtain GDD map as input;  

(2) Initiate the accumulators 𝐻𝐻(𝜌𝜌,𝜃𝜃) to all zeros;  

(3) For each point (𝑥𝑥, 𝑦𝑦) in GDD map: 

𝜃𝜃 = gradient direction at (𝑥𝑥, 𝑦𝑦) 

𝜌𝜌 = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃 + 𝑦𝑦𝑥𝑥𝑖𝑖𝑦𝑦𝜃𝜃 

𝐻𝐻(𝜌𝜌, 𝜃𝜃) = 𝐻𝐻(𝜌𝜌,𝜃𝜃) + 𝐼𝐼(𝑥𝑥,𝑦𝑦) 

(4) Non-maxima suppression to get the local maxima, then thresholding (m fraction of the maximum, m=0.1) 

to eliminate non-candidates, followed by selection of connected regions (pixels in the group larger than n, 

n=4 in our case). 

(5) Each selected region corresponds to a line candidate. Several features can be extracted for these 

candidates: 𝜌𝜌 the distance to the image origin; 𝜃𝜃 the orientation of the line; number of line candidates; the 

ratio of detected line length and the length of tumor at the same position (𝜌𝜌,𝜃𝜃). 
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3.2.2 Random forests artifacts detection classifier construction 

In summary, we have devised 7 features for the automatic detection of artifacts which were 

summarized in Table 3.3. Tree-based methods are commonly used in machine learning to build 

predictive models by partitioning the feature space into a set of rectangles. We randomly split UM 

data into training and testing sets (with equal samples). Random forests were implemented on the 

training set to construct the detection model. A Bayesian optimizer was used to optimize the 5-

fold cross-validated loss objective function to tune the hyper-parameters (minimum leaf size and 

number of trees used) to control the tree depth. Then, we fixed the hyper-parameters to re-train the 

model. The trained model was applied to the testing set, with 10 times 5-fold cross-validation to 

provide the confidence interval for the training results. Feature importance was computed as well. 

Slice level artifacts detection model was trained and tested on the training and testing sets of UM 

data, while ROI level detection was trained on the UM data and tested both on the testing sets of 

UM data and externally on the Canadian data. Furthermore, based on the variance explained using 

principal component analysis (PCA), we tried different models using all the 7 features and less 

features to examine whether we could simplify the features we used and still obtain a generalizable 

model. 
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Table 3.3 Extracted features. 

Extraction 
Method 

Total 
variation GDD Modified grey-scale Hough transform 

Feature 
index 1  2  3 4 5 6 7 

Name Total 
variation 

Maximum 
gradient 
direction 

Ratio of pixels 
inside ROIs  

Number 
of lines 
detected 

Maximum 
ratio of 
detected 

lines 

Number 
of lines 
larger 
than a 
certain 

threshold 

Number 
of lines 

with 
similar 

orientation 
with the 
longest 

line 
detected 

 

3.2.3 Evaluation of impact of artifacts in tumor ROIs on radiomic prediction 

performance 

For all the 148 train and 72 test ROIs, we implemented the feature extraction method described 

above. A random forests classifier (that classifies the presence of metal artifacts in each slice) 

using all the samples of UM data (131 patients, 3513 slices) was constructed, and applied to the 

Canadian data (220 patients, 344 ROIs, 17,956 slices) to obtain the predicted labels for whether or 

not one slice has artifacts and then determine if the ROI contains artifacts. The ground truth for 

these data are visually determined. Radiomic models for distant metastases were built on three sets 

of data: (1). all 148 train samples; (2). samples without artifacts based on the algorithm; (3) samples 

without artifacts based on visual detection. The three models were further tested on test set (72 

patients containing no metal artifacts). For the model construction details, please refer to the paper 

[15]. The prediction results were presented by plotting the receiver operating characteristic (ROC) 
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curve and calculating the corresponding area under the curve (AUC). The clinical patient 

characteristics were evaluated for patients without artifacts and all the patients in Canadian data to 

make sure the subgroup (without artifacts) clinical characteristics were not biased. For categorical 

variables, Pearson’s Chi-squared test was carried out, and for continuous variables, pairwise t-test 

was used to check if there was significant bias or deviance for the subgroup compared to the whole 

set. 

3.3 Results 

Fig. 3.3(a) showed the training of objective function in terms of number of trees and minimum leaf 

size. The optimal values for these two parameters were 42 trees and 9 minimum number of leaf 

node observations. Fig. 3.3(b) showed that the training AUC achieved 0.91 (95% CI: 0.89–0.94), 

testing 0.89. The out-of-bag feature importance, measured by bootstrapping technique in random 

forests algorithm, was also calculated and presented in Fig. 3.3(c) [23]. The ranking showed that 

first four important features were total variation, max GDD, number of lines detected by Hough 

transform and ratio of valid pixels in the images and contributed to 99% of the unexplained 

variation using PCA. Since the first 4 features could explain most of the variance, we examined 

the models using less features. The slice level AUC on UM data saturated after 4 features (∼0.90), 

details are summarized in Table 3.4. The confusion matrix for ROI level performance on UM and 

Canadian data using different features (4–7) was shown in Table 3.5. The results for 5–7 features 

were the same for UM (combined in the table), with an accuracy of 0.70/0.77, specificity of 

0.66/0.83, sensitivity of 0.74/0.71, F1 score 0.73/0.77 for 4 feature and 5–7 feature models, 
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respectively, as shown in Table 3.6. Since a 4-feature model didn’t perform well for ROI level 

classification, we tested only 5 and 7 feature models on Canadian data.  

Table 3.4 AUC vs. feature number being used in UM data of slice level artifacts detection. 

# of features 3 4 5 6 7 

Train AUC 

(95% CI) 

0.86 (0.83-

0.89) 

0.90 (0.88-

0.93) 

0.92 (0.88-

0.93) 

0.91 (0.88-

0.93) 

0.91 (0.90-

0.93) 

Test AUC 0.87 0.91 0.92 0.91 0.92 

 

Table 3.5 Confusion matrices for UM and Canadian data of ROI artifacts. 

UM (4 features/5~7 features) Positive Negative 

Predicted positive 26/25 10/5 

Predicted negative 9/10 19/24 

Canada (5 features/7 features) Positive Negative 

Predicted positive 81/73 47/29 

Predicted negative 24/32 192/210 

 

Table 3.6 Performance for UM and Canadian data of ROI artifacts. 

 Feature # Accuracy Specificity Sensitivity F1 score 

UM 
4 features 0.70 0.66 0.74 0.73 

5-7 features 0.77 0.83 0.71 0.77 

Canada 
5 features 0.79 0.80 0.77 0.69 

7 features 0.82 0.88 0.70 0.71 
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The confusion matrix and corresponding metric results were shown in Tables 3.5 and 3.6 as well, 

with an accuracy of 0.79/0.82, specificity of 0.80/0.88, sensitivity of 0.77/0.70, F1 score 0.69/0.71 

for 5 feature and 7 feature models, respectively. After checking the clinical characteristics, we 

found that none of the characteristics showed significant deviance from the original dataset. Fig. 

3.4(d) showed the results for the radiomic models. Radiomic model constructed using samples 

(a) 

(c) ((d) 

(b) 

Fig. 3.4 (a) Optimization of hyper-parameters for random forests: number of trees (41) and 
minimum leaf size (17); (b) ROC curve for test data, with AUC of 0.89; (c) Out-of-bag feature 
importance; (c) Radiomic model test results for distant metastases using: all train samples (148 
patients, yellow); samples filtered by our artifacts detection algorithm (107 patients, blue) and 
samples filtered visually (100 patients, green).  
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without artifacts, either filtered by our algorithm or visually, yielded a substantially better 

performance than using the original training set, which included 32% (48/148) artifacts patients. 

The AUC were 0.64 (95% CI: 0.63–0.65), 0.71 (95% CI: 0.69–0.73), and 0.75 (95% CI: 0.74–

0.76) for the radiomic models trained on all train samples, samples excluding artifacts affected 

ones by our algorithm and by visual detection, respectively. 

3.4 Discussion 

In this study, a set of features extracted from total variation, gradient direction distribution and 

grey-scale Hough transform algorithm was designed. UM testing AUC of 0.89 showed that the 

proposed approach was able to accurately classify slices with metal artifacts. The robustness of 

these features was further validated by relatively good performance on external Canadian data. 

Confusion matrix for external validation was used since the slice-by-slice labels in Canadian data 

were not obtained due to the large sample size (17,596 slices). A ROI would be labeled positive, 

if one or more slices contained artifacts. Though first 4 features explained most of the variance 

and slice level AUC saturated after 4 features, adding feature 5 increased the ROI level 

performance (accuracy, specificity, and F1 score) for UM data, due to less false positive, and 

similar true positive cases. This was reasonable since the last few features were mainly designed 

to regularize or reduce the false positive classification. Similar trend was captured in the Canadian 

data as well, the specificity increased from 0.80 to 0.88 with more features. While, the decrease of 

sensitivity (0.77–0.70) for 7 features-model was due to less true positives. In all, 5 features-model 

was comparable for slice-by-slice detection to the 7 features-model. For the ROI level detection, 
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5 features-model resulted in less artifacts dataset, while 7 features-model tended to reserve more 

samples but with more artifacts cases as well. The slice level model generalizability was not 

harmed by adding more features, probably because random forests algorithm is able to select the 

most robust features for the task. AUC around 0.90 suggested the probability of correctly ranking 

a positive – negative pair was 0.90. In general, it is pretty good performance for a classification 

task. To the best of our knowledge, we did not find literature implementing this kind of metal 

artifacts detection, thus it was hard to compare how good the accuracy of 0.82 was. However, the 

UM data ROI level accuracy was 0.77, with the slice level AUC 0.90. Thus, we could infer that 

the slice level AUC for external data was probably comparable. In addition, the artifact-free subset 

filtered by our algorithm showed improvement of performance, which also proved the goodness 

of this level of classification accuracy for radiomics modeling. Based on the context that 

researchers usually remove the slices affected when building models not the ROIs, our technique 

should be applicable and meaningful. Another thing to notice was the lower UM ROI accuracy, 

which could be due to the different artifacts proportion, with UM having 55% and Canada having 

31% artifact-affected ROIs. Hence, it made sense that the specificity as well as the accuracy would 

be lower, with comparable sensitivity for UM data. Leijenaar et al. tested a radiomics signature 

derived from non-small cell lung cancer (NSCLC) patients on an external dataset of oropharyngeal 

squamous cell carcinoma (OPSCC) patients (n = 542) [24]. They visually identified ROIs with 

artifacts, and resulted in a subset of 275 patients with artifacts. Their radiomics signature was 

validated on all the data, subset of patients with and without artifacts within the delineated tumor 

regions. They found that the features preserved discriminative value on both with and without 
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artifacts subsets, however, they still suggested that there was an influence of CT artifacts on the 

model fit, which indicated a need for remodeling excluding samples with artifacts. This was 

consistent with our finding. Their research focused on validating the radiomics signature on head 

and neck tumor ROIs with and without artifacts to see the robustness of the features. We 

investigated the influence of presence of artifacts for the model construction and corresponding 

test performance on artifact-free data. Another study related to ours is the one by Ger et al. [5]. 

They investigated metal artifacts caused by dental fillings and beam-hardening artifacts caused by 

bone. They found at least 73% of feature values were affected by the streak artifacts. And almost 

all features were robust with removal of up to 50% of the original GTV. In summary, they showed 

that metal artifacts affect radiomic feature values, suggesting that regions containing such artifacts 

should not be included in radiomics data set. Their research provided further support for the 

necessity of removing artifact-affected images before radiomics modeling. We were also interested 

in understanding the nature of the misclassified cases. Some examples of both false negatives and 

false positives were shown in Fig. 3.5. The main challenge we met with in this detection task was 

the subtleness of the metal artifacts or small signal to-noise ratio (SNR) of the ROIs. A lot of the 

misses were the cases with artifacts that were subtle and hard to detect. The false positive cases 

were some slices with line-like structures inside while not being a true artifact. Finally, one thing 

to point out is that if the radiomic features are from 3D ROIs, we might have to remove the artifact-

affected patients. Given the fact that around 30–50% of patients have metal artifacts, the radiomic 

models developed in this way might be suitable for not affected patients only. However, if we 

extract features from 2D slices, then we can remove the affected slices without excluding the 
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patient. While, we do acknowledge that the artifact classification can be more beneficial to develop 

radiomics models which are more robust against the streak artifacts, which is out of our scope for 

this study.  

 

3.5 Conclusion 

In conclusion, we have developed a new method for CT artifacts detection in tumor regions for 

head and neck patients; achieved UM test dataset prediction AUC of 0.89 using random forests 

algorithm and investigated the impact of presence of artifacts for head and neck CT images using 

internal and external datasets. We recommend using the proposed automatic algorithm to filter 

samples before CT head and neck radiomics analysis. 

 

 

Fig. 3.5 Misclassified images: Top row 
shows misses and bottom row shows false 
positive cases. 
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CHAPTER 4  
 

Tumor Response Prediction in Y90 Radioembolization with PET-

based Radiomics Features and Absorbed Dose Metrics 
 

This chapter is developed a radiomics algorithm for tumor response prediction in 90Y PET images 

and is based on the paper: Wei, L., Xu, J., Cui, C., El Naqa I., Dewaraja, Y. K., "Prediction of 

tumor control in 90Y radioembolization by bootstrapped LASSO using PET radiomics features." 

European Journal of Nuclear Medicine and Molecular Imaging, Physics (2019). Under review.  

 

 

4.1 Introduction 

Delivering external radiation to multifocal/large liver tumors is a challenging task due to the 

damage of surrounding normal liver parenchyma. Hence, when disease burden is high, selective 

internal radiation delivery is preferred. Transarterial radioembolization (RE), with preferential 

delivery of glass or resin microspheres embedded with beta-emitting 90Y to hepatic tumors is an 

established treatment for unresectable hepatocellular carcinoma (uHCC) and liver metastases [1, 

2]. Ability to predict lesion-level response immediately after therapy can facilitate adaptive 
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therapies following RE by selecting lesion(s) predicted to be non-responding to the initial 

treatment for subsequent highly focal external stereotactic radiation.  

Radiomics, a branch of quantitative image analysis, can capture heterogeneity characteristics of 

regions of interest (ROIs) by extracting relevant features from medical images (CT, MR, PET) has 

been widely explored in the literature and shown to provide predictive capability of treatment 

response in different cancers [3-11]. Specifically, in patients undergoing transarterial 90Y 

radioembolization in uHCC, Blanc-Durand et al. showed that pre-treatment FDG-PET derived 

radiomics features (strength for PFS, variance, strength, low intensity run short emphasis and 

contrast for OS) for whole liver are independent negative predictors for progression-free survival 

(PFS) and overall survival (OS) [12]. Gensure et al. found tumor contrast-enhanced CT based 

texton and local binary pattern (LBP) features both achieve high accuracy in discriminating patient 

response to radioembolization (RE) with 90Y resin microspheres in terms of serologic response 

and survival status [13]. Recent studies, by our group and others have reported on the association 

between post-therapy 90Y imaging derived lesion absorbed dose and outcome (response, survival) 

in patients treated with 90Y radioembolization for primary and metastatic liver cancer [14-18]. 

However, to our knowledge, our current study is the first investigation to combine lesion radiomics 

features with absorbed dose metrics to predict outcome. Furthermore, our study relies on radiomics 

features from post-treatment 90Y PET imaging, unlike prior studies that used conventional FDG 

PET-derived features, which makes it unique in this respect. Compared with FDG-PET, 90Y PET 

is considerably more noisy due to the low true coincidence rate associated with a low yield-

positron in the presence of high random coincidence rates [19]. However, recent 90Y PET/CT 
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studies have reported good quantitative accuracy and contrast-to-noise for dosimetry applications, 

using time-of-flight (TOF), longer acquisitions, optimized reconstruction parameters and partial 

volume correction [18, 20]. Although 90Y can also be imaged by bremsstrahlung SPECT, the poor 

spatial resolution and challenges of correcting for bremsstrahlung scatter, makes 90Y PET 

potentially better suited for radiomics analysis. 

A major challenge of radiomics modeling especially with limited data is the robustness of the 

extracted features, as highlighted in recent review articles [21-23]. Variabilities can result from 

contouring, reconstruction algorithms, filtering, even different scans with the same setting. 

Another challenge is the risk of overfitting when dealing with relatively small datasets. Therefore, 

in this study both issues are addressed by: (1) conducting a phantom study to identify robust 

features, particularly to assess reconstruction and variability issues; and (2) applying a modified 

LASSO approach with bootstrap resampling for robust modeling. To mitigate analysis bias, nested 

cross-validation was used to train (feature selection, model construction) and test the outcome 

model (evaluation).  

 

4.2 Methods and Materials 

4.2.1 Patient cohort 

The study included patients with primary and secondary intrahepatic malignancies who had 90Y 

PET/CT imaging performed after 90Y radioembolization with glass microspheres (Theraspheres) 

at University of Michigan (UM) Medical Center as part of an ongoing dosimetry research study. 
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Selection criteria for 90Y PET/CT imaging were: well defined lesions >2 mL, ability to undergo 

imaging, follow-up at UM and informed consent. The patient and lesion characteristics for the 36 

lobar treatments (30 patients, 105 lesions, 6 patients had treatment to right and left lobes at different 

time points.) are summarized in Table 4.1. The treating physician followed standard guidelines to 

deliver 80-150 Gy to the treated liver with empirical adjustments within this range based on clinical 

factors. The 90Y PET/CT imaging was approved by the institutional review board, and all subjects 

signed an informed consent form. 

4.2.2 90Y PET/CT Imaging and dosimetry 

Images were acquired on a Siemens Biograph mCT PET/CT within a couple of hours of the RE 

procedure (prior to discharge) with an acquisition time of ~30 minutes to cover the entire liver and 

partial lung. PET reconstruction parameters were selected based on phantom studies considering 

both activity recovery and noise: 1 iteration, 21 subsets of 3D OS-EM with time-of-flight and 

resolution recovery and a 5 mm Gaussian post-filter [18]. The PET matrix size was 200×200 with 

a pixel size 4.07×4.07 mm and a slice thickness of 3 mm. The CT was performed in low dose mode 

(120 kVp; 80 mAs) during free-breathing. The CT matrix size was 512×512 with a pixel size of 

0.97×0.97 mm and a slice thickness of 2 mm. 

Table 4.1 Patient/lesion characteristics of the cohort and sub-cohort (HCC and metastasis). 

 Cohort 
Disease  

Primary HCC 13 (43%) 
Liver Metastasis 17 (57%) 

Total Patients 30 
Total Therapies 36 
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PET images were transformed to CT-space and the CT-derived density map were input to our 

DPM Monte Carlo code [18] to generate dose-rate maps that were converted into absorbed dose 

maps by accounting for 90Y physical decay. Mean absorbed doses to segmented lesions were 

reported following partial volume correction based on volume-dependent recovery coefficients, 

determined from a phantom study [18]. 

4.2.3 Radiomics: lesion segmentation, PET data preprocessing and feature extraction 

Lesion segmentation was performed on diagnostic quality contrast enhanced baseline CT or MRI 

by a radiologist specializing in hepatic malignancies (RK), which is considered a gold standard. 

Note that variability due to contouring can be a source of error, but has been addressed in several 

previous studies [6, 24, 25]. The diagnostic scan was then rigidly registered to the CT of the 90Y 

PET/CT and the contours were transformed with fine tuning when mis-registration was evident on 

MIM (MIM Software Inc, Cleveland, OH). In some cases, where the lesions were well visualized 

  
Number of lesions  

HCC 35 (33%) 
Liver Metastasis 70 (67%) 

Total Lesions 105 
  
Cirrhotic livers 11 (37%) 
  
Lesion volume (mL) Median [range] 

Primary HCC 11.5 [2.1-204] 
Liver Metastasis 9.3 [2.2-833] 

  
Number of lesions per patient 3 [1-5] 
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on the non-contrast low-dose CT of the PET/CT they were directly defined on this CT in order to 

minimize mis-registration effects. Up to 5 (largest) lesions > 2 mL were segmented per patient. 

Lesion contours and 90Y PET images were input to an in-house developed (Matlab, MathWorks 

Inc., Natick, MA) radiomics toolbox (benchmarked by image biomarker standardization - ISBI) 

that run as an extension on MIM. Our radiomics code is shared at 

https://github.com/mvallieres/radiomics. All subsequent analyses were performed in MATLAB. 

First, a root-squared transform was applied to the PET images to reduce quantum noise effects 

[26]. 

The full intensity range of the tumor region was quantized to a smaller number of gray levels (Ng) 

before computation of the features. The quantization algorithm used is Lloyd-Max algorithm, 

which attempts to minimize the mean-squared quantization error of the output. Ng was 

experimentally chosen as 32 [27]. The features were extracted from 3D 90Y PET images, which 

were interpolated to isotropic voxel size (0.97 mm). 46 features, including volume, one shape 

feature (sphericity), 4 global features, and 40 texture features from gray-level co-occurrence matrix 

(GLCM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and 

neighborhood gray-tone difference matrix (NGTDM), were extracted. All the feature extraction 

followed the Image biomarker standardization initiative (IBSI) guidance [28]. These features 

represent the spectrum of commonly used features, especially in PET imaging [6, 29, 30]. We 

further opted for extraction parameters following the ISBI guidelines due to the limited sample 
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size, we didn’t explore further parameterization or less commonly used features. Table 4.2 presents 

the list of radiomics features used in this study.  

 

4.2.4 Lesion-level Study Endpoints 

Two endpoints applied at the lesion-level were considered: overall response (OR) classification at 

first follow-up and time to progression at lesion level. For OR assessment, diagnostic CT or MR 

at first follow up was used by a radiologist (RK) to measure percentage reduction in lesion diameter 

relative to baseline according to RECIST criteria [31]. Lesions that met the RECIST criteria of 

partial or complete response were classified as responding (OR = 1) and others (stable or 

progressive disease) were classified as non-responding (OR = 0). For time to progression, clinical 

follow-up images and records were assessed by a radiologist (RK) and was defined as the time in 

months from the date of 90Y therapy to date of local progression. Lesions without evidence of 

progression were right censored at the last date of hepatic imaging. This included lesions that had 

not progressed at the time of death. Any lesion that had additional liver lesion directed therapy 

after 90Y treatment were also right censored at the date of the additional treatment.  

 

4.2.5 Phantom study to assess radiomics feature repeatability and reproducibility 

A 90Y PET/CT study with a liver/lung torso phantom consisting of a ‘warm’ liver compartment 

and three ‘hot’ lesion inserts (29 mL ellipsoid, 16 mL sphere, 8 mL sphere) with an insert-to-liver 
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activity concentration ratio of 5:1 was performed. The total activity in the phantom was 1.9 GBq 

and the activity concentrations in the inserts were 6.0-7.3 MBq/mL and liver minus inserts was 1.2 

MBq/mL. To assess radiomics feature repeatability 5 consecutive 30 min acquisitions under 

identical conditions were performed on the same PET/CT system as in the patient studies. To 

assess sensitivity to reconstruction parameters and filtering, each of the 5 scans were reconstructed 

with 1 and 2 OS-EM iterations (21 subsets) and with and without Gaussian post-filter. The activity 

concentrations, acquisition time and parameters used in the phantom study were chosen to reflect 

conditions for imaging following 90Y RE, hence, the noise-level was clinically relevant.  

 

4.2.6 Statistical Analysis 

4.2.6.1 Phantom feature robustness study 

Concordance correlation coefficient (CCC) metric assumed each observation was independent as 

has been commonly reported in repeatability/reproducibility studies [22, 32]. Thus, in the 

robustness study of our extracted radiomics features, CCCs were computed for the different scans, 

different iterations, and with/without Gaussian filtering. For each of the 45 radiomics features 

(without volume), the resulting CCCs were averaged, and features with larger than 0.85 [22, 33-

36] average CCC -robust radiomics feature set, were further investigated in the patient radiomics 

modeling.  
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4.2.6.2 Lesion overall response and progression modeling studies 

Univariate analysis 

Univariate association between the features (or absorbed dose) and OR classification was 

investigated using Spearman’s rank correlation. Univariate analysis for the features (or absorbed 

dose) and progression was investigated by Cox regression. 

Multivariate analysis -- modified Be-LASSO 

In order to select robust features, build generalized models and evaluate unbiased model 

performance, a nested cross-validation (CV) framework has been employed (details are shown in 

Fig. 4.1). In the outer loop, 10 times 5-fold cross validation was used to estimate the model 

performance. On the training set of each inner loop, N times bootstrap was performed. For each 

resampling training set, optimal lambda 𝜆𝜆 hyper-parameter for LASSO was tuned by another 

cross-validation process. Subsequently, features with non-zero coefficients were recorded. With N 

resampled training sets, N sets of features were recorded. The frequency of a certain feature being 

selected by LASSO was calculated and thus a ranking list of the features was obtained. Then, M 

times bootstrap logistic regression modeling was used to estimate the model order. Specifically, 

models using top 𝑖𝑖 (𝑖𝑖 = 1, … ,𝑦𝑦 = number of features)  ranked features were developed and 

mean AUC/c-index for each model order with confidence interval was obtained and the model 

order corresponding to highest AUC/c-index within one standard error was selected [37]. After we 

obtained the model order and top selected features, final model in each outer loop was obtained by 

retraining on the training set and applied on the outer test set (Here, N and M were both 100). 
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With the developed method, models were constructed using the 15 robust radiomics features set, 

lesion volume and mean absorbed dose (AD) (15+1+1=17). Since there are two subgroups in this 

patient cohort, the developed models were applied to both subgroups to assess if the tumor 

response correlated differently for primary HCC and metastatic lesions. The ROC curve (AUC) 

and c-index were used to evaluate the lesion OR and progression model performance, respectively. 

The confidence intervals were calculated by the bootstrap method [38]. The statistical analysis was 

performed using MATLAB R2019a and RStudio 1.1.463. The Bonferroni correction was applied 

to account for the family-wise error rate [39]. Overall, 17 features (dose + volume +15 radiomics 

features) were tested; therefore, p-values < 0.05/17=0.003 was considered significant. For the 

whole set of features (dose + volume + 45 radiomics features), p- values < 0.05/47=0.001 were 

considered significant. Meanwhile, due to the existence of unbalance in the dataset, especially for 

progression analysis (events 14/103), Adaptive Synthetic Sampling Approach (ADASYN) was 

applied for the multivariate analysis to see if it can improve the performance [40].  
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4.3 Results 

4.3.1 Phantom based reproducibility and robustness of radiomics features 

Table 4.2 shows the mean CCC values from the liver phantom radiomics studies, assessed over 

the 5 repeat scans, OS-EM iterations 1/2, with/without Gaussian filtering and across all conditions 

(scans and parameters). CCC for sphericity is always 1 because the shape feature does not depend 

on the PET scan. There are in total 15 features that have mean CCC > 0.85: 1 global feature 

sphericity, 1 GLCM feature correlation, 2 GLRLM features grey level nonuniformity (GLN), and 

run length nonuniformity (RLN), 7 GLSZM features large zone emphasis (LZE), grey level 

nonuniformity (GLN), zone size nonuniformity (ZSN), zone percentage (ZP), large zone low grey 

Fig. 4.1 Summary of radiomics model construction and evaluation. 
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level emphasis (LZLGE), large zone high grey level emphasis (LZHGE), grey level variance 

(GLV), 4 NGTDM features coarseness, busyness, complexity and strength. The average CCCs for 

repeatability (same conditions, different scans) and reproducibility (different iterations and 

filtering) have similar results as shown in Table 4.2. Comparing with the mean CCC for both 

repeatability and reproducibility, there is 1 more robust feature for repeatability (dissimilarity), 6 

more robust features (variance, contrast, dissimilarity, LGRE, SRLGE, GLV_GLRLM) and 2 less 

robust features (LZHGE, GLV_GLSZM) for different iterations, 2 less robust features (ZSN, 

LZHGE) for with/without filtering.  

Table 4.2 Mean CCC for 5 repeat scans of the liver phantom, OS-EM iterations 1/2, with/without Gaussian filtering 
and across all conditions.  

 Radiomics and 
other metrics 

Mean CCC 
for 5 scans  

Mean CCC 
for iterations 
1/2 

Mean CCC 
for 
with/without 
Gaussian 
filtering  

Mean CCC 
across all 
conditions 

 Volume NA  NA NA NA 

Global Sphericity 1.000 1.000 1.000 1.000 

Variance 0.465 0.957 0.439 0.621 

Coefficient of 
variation 

0.567 0.689 0.499 0.585 

Skewness 0.384 0.724 0.855 0.654 

Kurtosis 0.228 0.415 0.501 0.381 

GLCM Energy 0.183 0.747 0.144 0.358 

Contrast 0.825 0.931 0.695 0.817 

Entropy 0.239 0.712 0.336 0.429 

Homogeneity 0.682 0.835 0.732 0.750 

IDM 0.627 0.821 0.717 0.722 

Correlation 0.897 0.967 0.922 0.929 
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SumMean 0.158 0.686 0.134 0.326 

Variance_GLCM 0.689 0.640 0.485 0.604 

Dissimilarity 0.869 0.912 0.806 0.845 

GLRLM SRE 0.517 0.787 0.642 0.648 

LRE 0.629 0.788 0.537 0.651 

GLN 0.998 0.998 0.996 0.997 

RLN 0.997 0.997 0.991 0.995 

RP 0.611 0.814 0.654 0.693 

LGRE 0.056 0.867 0.186 0.370 

HGRE 0.145 0.706 0.174 0.342 

SRLGE 0.051 0.885 0.152 0.363 

SRHGE 0.279 0.811 0.269 0.453 

LRLGE 0.077 0.814 0.302 0.398 

LRHGE 0.280 0.333 0.184 0.266 

GLV 0.674 0.934 0.679 0.762 

RLV 0.633 0.845 0.500 0.659 

GLSZM SZE 0.046 0.370 0.441 0.286 

LZE 0.948 0.910 0.879 0.912 

GLN 0.953 0.985 0.988 0.975 

ZSN 0.928 0.895 0.839 0.887 

ZP 0.880 0.919 0.927 0.909 

LGZE -0.023 0.703 -0.174 0.169 

HGZE 0.384 0.606 0.556 0.515 

SZLGE 0.091 0.832 -0.161 0.254 

SZHGE 0.042 0.342 -0.067 0.106 

LZLGE 0.885 0.978 0.949 0.937 

LZHGE 0.877 0.834 0.719 0.850 

GLV 0.880 0.782 0.870 0.862 

ZSV 0.541 0.724 0..659 0.641 
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NGTDM Coarseness 0.920 0.982 0.922 0.941 

Contrast 0.733 0.841 0.424 0.666 

Busyness 0.940 0.958 0.909 0.936 

Complexity 0.893 0.988 0.924 0.935 

Strength 0.958 0.983 0.921 0.954 

Dose Mean absorbed 
dose 

NA NA NA NA 

 

4.3.2 Lesion dosimetry and outcome data 

A total of 105 lesions > 2 mL were segmented. The average lesion volume was 45 mL (median:10 

ml, range:2 - 833). The average lesion absorbed dose was 336 Gy (median: 265, range:1-1271). 

The response rate according to RECIST applied at the lesion level was 31% (32/105). The number 

of metastasis and primary HCC lesions are 70 and 35, respectively, with lesion specific response 

rate being 26% (9/35) and 33% (23/70) for the 2 groups. There are 103 lesions that have 

progression data, two metastatic lesions were excluded due to lack of follow-up. The number of 

progression events for all the lesions was 14 (4 HCC, 10 metastatic). The mean time-to-event are 

322 days (median: 229 days, range: 44-1174 days). The mean time-to-event was 342 days (median: 

309, range: 50-1174) for metastatic lesions and 284 days (median: 199 days, range: 44-860 days) 

for HCC. Kaplan Meier analysis showed that the time to progression for HCC and metastasis was 

not statistically significantly different (p-value=0.49)  
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4.3.2 Outcome models: Radiomics, absorbed dose, and combined models 

4.3.2.1 Univariate analysis 

The univariate results for volume, radiomics features and absorbed dose are shown in Table 4.3 

and Table 4.4 (with Table 4.3 showing all the features and Table 4.4 showing only the 15 robust 

radiomics features). These are the Spearman correlation between specific features (or absorbed 

dose) and OR, and the univariate Cox regression results for progression. Volume has been shown 

to correlate with patient prognosis for different cancer types [41]. In our study, the Spearman 

coefficients of volume in terms of OR is -0.215 (p-value = 0.028). Among the 46 radiomics 

features (including volume), 10 features are significant (p-value < 0.001) for OR: 2/9 GLCM 

features, 3/13 GLRLM features, 4/13 GLSZM features and 1/5 NGTDM features. Among the 15 

robust radiomics features, 8 features are significant for OR: LZE (p-value= 0.0005), ZP (p-value= 

0.0004), LZLGE (p-value= 0.001), LZHGE (p-value= 0.002), GLV (p-value= 0.0009), Coarseness 

(p-value= 0.003), Busyness (p-value= 0.001), and Strength (p-value= 0.003). Absorbed dose is a 

significant predictor of the OR (p-value= 0.0003). In comparison, among the 46 radiomics features 

(including volume), no features are significant for progression. ZSN, a robust feature, is the most 

significant one (p-value= 0.063) for progression. Absorbed dose is a marginally significant 

predictor for progression (p-value= 0.005).  
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Table 4.3 Spearman correlation coefficients between lesion-level overall response and all radiomics features/absorbed 
dose with corresponding p-values (with Bonferroni correction). Univariate Cox regression with c-index, hazard ratio 
and corresponding p-values for progression are also indicated. 

 Radiomics and 
other metrics 

Spearman 
correlation 
for OR 

P value for 
OR 

C-index for 
progression 

Hazard Ratio 
for 
progression 

P value for 
progression 

 Volume -0.215 0.028 0.565 0.282 0.417 

Global Sphericity 0.142 0.148 0.590 0.728 0.313 

Variance -0.128 0.193 0.789 0.193 0.002 

Coefficient of 
variation 

-0.241 0.013 0.657 1.129 0.298 

Skewness -0.161 0.100 0.741 1.298 0.116 

Kurtosis 0.133 0.177 0.657 1.147 0.226 

GLCM Energy -0.137 0.164 0.537 1.103 0.333 

Contrast 0.247 0.011 0.484 0.885 0.711 

Entropy 0.212 0.030 0.484 0.837 0.158 

Homogeneity -0.348 0.0003 0.489 1.275 0.233 

IDM -0.351 0.0002 0.488 1.280 0.240 

Correlation -0.216 0.027 0.438 1.019 0.950 

SumMean 0.206 0.035 0.747 0.651 0.023 

Variance_GLCM -0.069 0.487 0.704 0.588 0.037 

Dissimilarity 0.277 0.004 0.484 0.858 0.609 

GLRLM SRE 0.368 0.0001 0.532 0.744 0.169 

LRE -0.374 8.321e-05 0.482 1.109 0.361 

GLN -0.269 0.006 0.600 0.297 0.323 

RLN -0.236 0.015 0.639 0.213 0.201 

RP 0.366 0.0001 0.507 0.791 0.197 

LGRE -0.121 0.218 0.702 1.140 0.213 

HGRE 0.183 0.061 0.775 0.538 0.011 

SRLGE -0.055 0.578 0.737 1.299 0.073 

SRHGE 0.213 0.029 0.754 0.532 0.015 
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LRLGE -0.226 0.021 0.644 1.077 0.481 

LRHGE -0.031 0.753 0.820 0.674 0.136 

GLV 0.269 0.006 0.633 0.507 0.097 

RLV 0.295 0.002 0.563 0.577 0.169 

GLSZM SZE 0.072 0.465 0.745 0.558 0.006 

LZE -0.333 0.0005 0.562 0.415 0.629 

GLN -0.121 0.218 0.734 0.326 0.088 

ZSN -0.081 0.412 0.752 0.358 0.063 

ZP 0.341 0.0004 0.491 0.804 0.502 

LGZE -0.010 0.920 0.663 1.438 0.156 

HGZE -0.034 0.732 0.629 0.919 0.733 

SZLGE 0.039 0.691 0.613 1.194 0.453 

SZHGE -0.004 0.970 0.764 0.586 0.058 

LZLGE -0.317 0.001 0.460 0.872 0.760 

LZHGE -0.300 0.002 0.676 0.006 0.348 

GLV 0.320 0.0009 0.549 0.491 0.136 

ZSV -0.233 0.017 0.601 1.383 0.007 

NGTDM Coarseness 0.285 0.003 0.601 1.027 0.930 

Contrast 0.228 0.020 0.518 0.725 0.448 

Busyness -0.307 0.001 0.482 0.522 0.585 

Complexity 0.244 0.012 0.609 1.124 0.657 

Strength 0.284 0.003 0.669 1.110 0.321 

Dose Mean absorbed 
dose 

0.345 0.0003 0.819 0.121 0.005 

 

Inter-feature correlation is shown in the correlation heat map of Fig. 4.2. GLN, RLN, LZE, LZHGE 

are highly correlated with volume (Spearman coefficients > 0.85). In general, the radiomics 

features are highly correlated with each other (except sphericity). Though most of the radiomics 
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features are still significantly correlated with dose (except sphericity, GLN, and ZSN), the 

correlation of radiomics features with dose is generally lower than radiomics features amongst 

them, as shown in Table 4.4.   

 

Table 4.4 Summary of statistical analysis for volume, the 15 robust radiomics features and absorbed dose with 
Bonferroni correction. 

 Features Spearman 
correlation 

with 
absorbed 

dose 

P value for 
dose 

correlation 

Spearman 
correlation 
with OR 

P value for 
OR 

C-index 
for 

progressio
n 

Hazard 
Ratio for 

progressio
n 

P value for 
progressio

n 

 Volume -0.262 0.007 -0.215 0.028 0.565 0.282 0.417 

Global Sphericity 0.061 0.539 0.142 0.148 0.590 0.728 0.313 

GLCM Correlation -0.340 3.882e-4 -0.216 0.027 0.438 1.019 0.950 

GLRLM GLN -0.362 1.45e-4 -0.269 0.006 0.600 0.297 0.323 

RLN -0.252 0.010 -0.236 0.015 0.639 0.213 0.201 

GLSZM LZE -0.482 1.989e-7 -0.333 0.0005 0.562 0.415 0.629 

GLN -0.078 0.427 -0.121 0.218 0.734 0.326 0.088 

ZSN -0.057 0.565 -0.081 0.412 0.752 0.358 0.063 

ZP 0.483 1.828e-7 0.341 0.0004 0.491 0.804 0.502 

LZLGE -0.548 1.485e-9 -0.317 0.001 0.460 0.872 0.760 

LZHGE -0.293 0.002 -0.300 0.002 0.676 0.006 0.348 

GLV 0.467 5.104e-7 0.320 0.0009 0.549 0.491 0.136 

NGTDM Coarseness 0.379 6.789e-5 0.285 0.003 0.601 1.027 0.930 

Busyness -0.509 2.862e-8 -0.307 0.001 0.482 0.522 0.585 

Complexity 0.324 7.596e-4 0.244 0.012 0.609 1.124 0.657 
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Strength 0.245 0.012 0.284 0.003 0.669 1.110 0.321 

DOSE Mean absorbed 
dose 

NA NA 0.345 0.0003 0.819 0.121 0.005 

 

 

4.3.2.2 Multivariate analysis 

Given the limited sample size, we included both primary and metastasis cases in the modeling. For 

the subset of robust features, the model order is 2 for both OR and progression endpoints, with top 

2 features for OR being absorbed dose and zone percentage (ZP), and for progression being 

absorbed dose and ZSN. Fig. 4.3 shows the model order determination for the robust features and 

absorbed dose. The top 5 features are shown in Table 4.2 for OR and progression models. (Model 
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order determination and the top 5 features using all the radiomics features and absorbed dose are 

presented in the supplemental materials Fig. 4.4 and table 4.3). 

 

Fig. 4.2 Spearman correlation heat map for radiomics features, volume and 
absorbed dose. 
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Fig. 4.4 Radiomics_robust+dose model order determination for OR (left) and progression (right): average 
AUC/c-index vs. number of top features included. 

Fig. 4.3 Radiomics_all+dose model order determination for OR (left) and PFS (right). Average AUC/c-index vs. 
number of top features included. When using all the radiomics features, the average model order calculated using 
nested cross validation is 2 for OR classification and 3 for PFS, with top 2 features being variance and absorbed 
dose and top 3 features being variance, absorbed dose and LRHGE, respectively. The nested CV AUCs for 
radiomics_all+dose is 0.672 (0.620-0.716) for OR and 0.791 (95%CI: 0.740-0.825) for progression.  
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Table 4.5 Top 5 features for the combined models with robust radiomics features, volume and absorbed dose. 

OR Progression 
Mean absorbed dose  Mean absorbed dose  

ZP ZSN 
Sphericity Strength 

GLV Complexity 
Coarseness Sphericity 

 

 

Table 4.6 Top 5 features for the combined models with all radiomics features, volume and absorbed dose. 

OR Progression 
Variance Variance 

Mean absorbed dose  Mean absorbed dose  
Sphericity LRHGE 

SZE SZHGE 
LRHGE Kurtosis 

 

After the model order and top features were decided, nested cross-validation was applied to 

estimate the performance of the final model. Table 4.5 lists the results for models with ZP only, 

ZSN only, absorbed dose only and the combined models (radiomics robust + dose). When 

considering the entire cohort, for the combined models the average AUCs for OR (0.729 (95% CI: 

0.702-0.758)), and the average c-indexes for progression (0.803 (95% CI: 0.790-0.815) are 

superior to the corresponding values for the absorbed dose only and ZP/ZSN only models. The 

results for the subgroups of primary and metastasis cases are shown in Table 4.5 as well. For the 

OR model in the subgroup of HCC, the radiomics only model shows the best performance with 

average AUC of 0.762 (95% CI: 0.680-0.834), and in the subgroup of metastasis, the absorbed 

dose only model shows the best performance with average AUC of 0.696 (95% CI: 0.654-0.737). 

However, for the progression analysis, in both subgroups the combined model outperforms the 
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individual models. Fig. 4.5 shows the ROC curve for OR using radiomics alone, dose alone and 

combined models, and Fig. 4.6 shows the Kaplan-Meier plot for progression for the combined 

models, respectively. Log-rank test was used for the comparison of high and low risk groups for 

progression. The cutoff was median value of the predicted Cox survival probability. The weights 

of OR model and progression models are shown below. Artificially increasing the number of cases 

using ADASYN was evaluated as well, but found no substantial difference.  

OR model (Generalized linear regression model): 

    logit(y) ~ -0.892 + 0.520 ZP + 0.488 Dose 

    Distribution = Binomial 

Progression Cox model: 

h(t) ~ h0(t) * exp(-0.530 ZSN + -1.707 Dose) 

Table 4.7 Average AUC/c-index for individual and combined models with all the lesions, HCC lesions and metastasis 
lesions 

 

OR Model 

Average AUC (95 % confidence intervals) 

All (105) Primary HCC (35) Metastasis (70) 

Radiomics (ZP) 0.713 (0.685-0.741) 0.762 (0.680-0.834) 0.658 (0.623-0.693) 

Absorbed Dose 0.713(0.678-0.746) 0.717 (0.642-0.786) 0.696 (0.654-0.737) 

Combined (Dose + ZP) 0.729 (0.702-0.758) 0.734 (0.660-0.802) 0.692 (0.653-0.723) 

 

Progression Model 

Average c-index (95 % confidence intervals) 

All (103) Primary HCC (35) Metastasis (68) 
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Radiomics (ZSN) 0.694 (0.676-0.710) 0.565 (0.528-0.598) 0.656 (0.629-0.680) 

Absorbed Dose 0.754 (0.742-0.766) 0.613 (0.585-0.635) 0.719 (0.700-0.737) 

Combined (Dose+ZSN) 0.803 (0.790-0.815) 0.638 (0.610-0.661) 0.762 (0.740-0.780) 

 

 

4.4 Discussion 

Uncovering robust radiomics features is an important task for building robust models for 

identifying responders and non-responders and prediction of cancer progression. Thus, radiomics 

features extracted from repeated PET scans, different number of OS-EM PET iterations, 

Fig. 4.5 ROC curves for overall response (OR) at first follow-up with the combined model, radiomics alone model, 
and dose alone model. 
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with/without Gaussian post-filtering were evaluated for robustness using CCC. Despite the higher 

noise associated with 90Y PET compared with FDG PET, 15 radiomics features were identified as 

robust with CCC > 0.85. In general, the robust features for different scans (repeatability), OS-EM 

iterations 1/2 and with/without filtering largely overlap, which indicates that robust features tend 

to be consistent for different imaging settings. The results also showed that more features are robust 

to different iteration setting and less features are robust to application of Gaussian filtering. In a 

study of intratumor FDG PET uptake heterogeneity quantification by Hatt et al., zone percentage 

(ZP) was found to be robust with respect to the delineation method used and the partial volume 

effects. This feature also demonstrated high differentiation power for prediction of response in 

esophageal carcinoma [42]. In a study by Doumou et al., ZP presented substantial agreement 

across different segmentation and different levels of smoothing [43]. A study by Ashrafinia et al. 

showed that ZSN extracted from ⁹⁹ᵐTc-Sestamibi Myocardial-Perfusion SPECT (MPS) images 

showed high reproducibility [44]. Another recent study by Li et al. on FDG PET radiomics 

analysis, showed that ZSN is a stable feature [45]. The phantom repeatability and reproducibility 

study provides robust features for further radiomics modeling that has the potential to generalize 

to PET images reconstructed at other institutions where different reconstruction settings might 

have been applied. While this phantom study focused on reconstruction settings, there are other 

sources of variability as mentioned that we did not evaluate here, such as segmentation, 

interpolation, preprocessing, which are investigated in other literatures [22, 23, 33, 46] and 

reviewed in [47, 48]. 
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The aim of this work is to find radiomics signature that can facilitate dose metrics in the prediction 

of tumor response. The final model order is small being 2 (dose+ZP and dose+ZSN), which is 

reasonable considering the high correlation between most radiomics features (Figure 4.2). The 

correlation between ZP and absorbed dose is 0.483 (p-value = 1.828e-7) and ZSN and absorbed 

dose is -0.057 (p-value= 0.565) (Table 4.4), which indicates that ZSN could provide more 

complementary information to the combined model than ZP. This is consistent with the substantial 

higher c-index for the combined absorbed dose and ZSN model (0.803) compared with ZSN only 

(0.694) and absorbed dose only (0.754) models for progression, but only slightly higher AUC for 

the combined absorbed dose and ZP model (0.729) compared with the ZP only (0.713) and 

absorbed dose only (0.713) models for OR (Table 4.5). In Fig. 4.5, the ROC curves for radiomics 

alone, dose alone and combined models did present some overlap. However, it still showed 

consistent trends in the data, that the combined model performs better than individual models.  

Access to larger Y-90 PET imaging data sets is required to independently validate these findings 

and to reach statistical significance for the improvement of the performance of the combined model 

over the individual models. Further studies, such as obtaining radiomics features from FDG-PET, 

CT, or MRI, could potentially add more complementary information and further improve the 

performance [49].  

ZP is a feature from GLSZM matrix, quantifying the coarseness of the texture by the ratio of 

number of zones and number of voxels. The higher the value is, the finer the texture is, and 

according to our results the higher the probability the tumor will respond. Fig. 4.7 (a), (b) show 

example lesions with large/small ZP, that were classified as responder/non-responder; (c), (d) 
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show lesions with large/small ZSN, that did not progress for a long follow-up time (1174 days) 

and progressed in a short time (44 days). Smaller ZP values correspond to coarser appearance and 

worse response. In another study by Ha et al., ZP was one of the features used to characterize 

locally advanced breast cancer [50]. The trend is consistent with what we found in our study, that 

larger ZP is associated with better response. ZSN measures the variability of size zone volumes in 

the ROIs, higher the value, larger the variance of the size zone volumes. The hazard ratio for ZSN 

is smaller than 1, which means the higher the ZSN, the better the lesion prognosis.  

 

 

(Days) 

Fig. 4.6 Kaplan-Meier plot of the combined model for progression (absorbed dose + ZSN). This is the 
result of 10 times 5-fold cross validation, the test set for each fold were combined to evaluate the overall 
performance. High and low risk lesions for progression were stratified by median value of the Cox model 
output, with high risk group lesions having shorter time to progression, vice versa. 
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(c) ZSN = 340, status = no progression, time = 1174 days 

(a) ZP = 0.07, responder at first follow-up 

(b) ZP = 0.02, non-responder at first follow-up 
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The modified LASSO method we developed was inspired by R. Bach’s work on Bolasso, which 

showed that the Lasso selects all the variables that should enter the model with probability tending 

to one exponentially fast [51]. So, if we run the Lasso for multiple bootstrapped replications of a 

given sample, then intersecting the supports of the Lasso (i.e., non-zero coefficients) leads to 

consistent model selection. However, the direct application failed since the intersection of the 

supports lead to null for some datasets. Bunea et al. came up with similar variants of bootstrap 

enhanced LASSO (Be-LASSO) [52]. The percentage of times each predictor was selected 

(variable inclusion probability) was recorded and user-defined threshold (50%) was used to 

determine the variables. V. Abram et al. built upon Bunea’s method of Be-LASSO [53]. Instead 

of user-defined probability for feature selection, they used the quantiles of the bootstrap 

distribution of the coefficients of variables to determine the significance of that variable. In our 

study, we developed a new way to select features, still based on the bootstrap LASSO. Instead of 

using predefined probability or the distribution quantile, we obtained a ranking of the features 

based on the frequency of being selected in the bootstrap, then, we performed cross validation to 

calculate the AUC/c-index vs. number of top features included in the model. In this way, we 

obtained the most parsimonious model, which is desired when small sample size is unavoidable.  

In summary, absorbed dose is a strong predictor for tumor control, both in terms of OR at first 

follow-up and time to progression, which is consistent with recent reports [14-16]. The radiomics 

Fig. 4.7 Example 90Y PET/CT images with CT-defined lesion contours (left: PET/CT axial slice showing the 
anatomical position within liver, right: magnified lesion on PET). (a) Lesion with large ZP value corresponding 
to responder; (b) Lesion with small ZP value corresponding to non-responder; (c) lesion with large ZSN value 
corresponding to no progression at 1174 day; (d) Lesion with small ZSN value corresponding to progression in 
44 days. 
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feature signals the complimentary value of texture to improve the absorbed dose only model 

prediction. It is interesting to explore the underlying biological mechanism of the reason for higher 

ZP and ZSN leading to better prognosis, which should be investigated on larger dataset in the 

future. The two features model can be interpreted as: given the dose being fixed, the change in 

ZP/ZSN will help to predict tumor control (OR/progression). Using this information, additional 

attentions would be given to the lesions that possess lower ZP/ZSN value, which have a higher 

risk of failure (in terms of OR/progression), which is potentially informative for clinical decisions. 

Immediate prediction of response, based on radiomics features and dose metrics both of which can 

be derived from 90Y PET/CT performed immediately after RE, has clinical utility. Instead of 

waiting for the first follow up morphologic imaging that typically occurs at > 2 months, the 

potential to predict non-responding lesions immediately after therapy would facilitate adaptive 

therapy to selected lesions where 90Y RE is followed by further treatment such as stereotactic body 

radiation therapy or microwave ablation. Limitation of our study include the heterogeneous patient 

cohort and the small sample size. Patient 90Y imaging data is scarce because post-therapy imaging 

is not routinely performed after RE, but studies reporting 90Y SPECT/CT and PET/CT imaging is 

rising and is expected to become more readily available, enabling studies with larger cohorts.  

 

4.5 Conclusion 

In this study, radiomics only, absorbed dose only and combined models showed predictive ability 

for tumor OR and progression in 90Y radioembolization patients. The final tumor OR model 
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consisting of the robust radiomics feature ZP and mean absorbed dose achieved a nested CV AUC 

0.729 while the final progression model consisting of the robust radiomics feature ZSN and mean 

absorbed dose achieved a c-index of 0.803. Further validation on large external cohorts will be 

necessary for clinically applicable models. Nonetheless, this study showed the potential of 

combining 90Y PET derived radiomics and absorbed dose for improved model building to predict 

tumor OR and progression in 90Y radioembolization treatment.  
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CHAPTER 5  
 

Variational Autoencoder SurvivalNet Radiomics Modeling of 

Overall Survival for Hepatocellular Carcinoma Patients 
 

This chapter developed a new radiomics actuarial model for liver cancer patients post radiotherapy 

and is based on the paper: Wei, L., Owen, D., Mendiratta-Lala, M., Rosen, B., Cuneo, K., 

Lawrence, T. S., Ten Haken, R. K., El Naqa, I., "Variational Autoencoder SurvivalNet Radiomics 

Modeling of Overall Survival for Hepatocellular Carcinoma Patients." Physica Medica (2020), 

submitted. 

 

 

5.1 Introduction   

Liver cancer is a leading cause of cancer related deaths worldwide, with increasing incidences [1]. 

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Surgical 

resection and liver transplantation are used with curative intent for selected patients [2]. However, 

the majority of HCC patients are ineligible for surgery due to the location of the tumor or poor 

liver function [3]. There are several non-surgical liver-directed treatments including 

radiofrequency ablation (RFA), microwave ablation (MWA), trans-arterial chemoembolization 
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(TACE) and, more recently, stereotactic body radiotherapy (SBRT). RFA/MWA can be limited 

by lesion size and proximity to critical organs; TACE is non-curative, with limitations such as poor 

neovascularization of some tumors or portal vein involvement [4]. Recently, with the development 

of advanced radiotherapy delivery technologies, more precise partial liver irradiation using SBRT 

has become an important option for HCCs that are not suitable for resection [5, 6]. 

Although over 90% of tumors will be controlled by SBRT [5, 7], intrahepatic progression within 

the liver, remote from the treatment zone is common, with failure rates reported at 50% [3, 8]. 

SBRT treatment improved the overall survival rate as well, but the current survival rate is still not 

satisfying [9]. Radiomics may aid in developing models to predict the risk of intrahepatic 

progression and overall survival. Radiomics is a field of medical image analytics by which images 

are converted into a large number of quantitative features with subsequent datamining that relates 

these features to biological and clinical endpoints. Radiomics has been widely applied in cancer 

research and has shown to be able to capture distinct phenotypic differences and be associated with 

clinical prognosis in many cancer types [10-13]. Although various studies have been conducted to 

identify key radiomic features which predict overall survival and local control for HCC, little has 

been done to stratify the major intrahepatic risk after SBRT treatment. These current studies in 

overall survival use mostly Cox models or random survival forests. 

This study focuses on pre-SBRT arterial phase contrast-enhanced computed tomography (CECT) 

images, involving a relatively large data set of 167 patients. The novelty of our work can be 

summarized as: (1) development of a comprehensive model based on radiomics (features from 
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both gross tumor volume (GTV) regions and liver exclusive of the GTVs (liver-GTV)), clinical 

features and raw CT images; (2) novel VAE based survival model combining different sources of 

information; (3) investigations of correlation and contribution of clinical, radiomics, image 

features and miRNA data, providing possible interpretation of underlying mechanism; (4) patch-

based training that augmented data and improved the performance. This manuscript contributes to 

providing a better understanding of the HCC heterogeneity across patients, guidance for 

personalized HCC treatment planning in clinical practice and development of new methods that 

fuse conventional and deep learning based radiomic analyses. 

5.2 Methods and Materials 

A brief description of the workflow presented in this study is shown in Fig. 5.1. Details are 

provided in the following. 

 

 

Fig. 5.1 Workflow for the modeling. 
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5.2.1 Patient cohort 

After IRB approval, a HIPAA compliant retrospective analysis of HCC patients treated with SBRT 

was performed. A total of 303 HCC patients treated with SBRT were reviewed. Patients without: 

(1) contrast-enhanced CT (CECT) images; (2) gross tumor or liver contour in the database were 

excluded from analysis. A total of 167 HCC patients met the inclusion criteria. The endpoint of 

the intrahepatic recurrence-free survival was whether or not patients with HCC developed 

intrahepatic tumors after SBRT. This was defined by the presence of new tumor outside the 

planning target volume (PTV) of the previously treated tumor(s). The ground truths were 

determined by experienced clinicians based on CECTs, MRI, and relevant clinical records for each 

patient. The IRS and OS events were right censored if no recurrence or death till the last follow-

up date.  

Univariate Cox model c-index for clinical, radiomics and miRNA were investigated. Overall, 37 

clinical features, 56 radiomics and 84 miRNA features were tested. P-values of 0.05 was 

considered significant. The radiomics features extracted in this study is the most commonly used 

and robust signatures based on a thorough literature review [14-18].    

 

5.2.2 CT Images Acquisition and Processing 

Arterial phase images and structure sets including liver, GTV, and liver-GTV from CECT were 

exported from an Eclipse treatment planning system (Varian Medical Systems Inc, Palo alto, CA). 

Contouring had been performed by experienced clinicians. The resolution of raw images ranged 
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from 0.80 to 1.37 mm in-plane with 3 mm slice thickness. In order to extract texture features from 

the 3D volumes, the images were resampled to isotropic voxel sizes of 1*1*1 mm to obtain 

rotationally invariance and also the consistency across different patients. Trilinear interpolation 

algorithm was used for the resampling. Gray level quantization is required for the calculation of 

texture features (tractability). We applied Lloyd-Max quantization. Lloyd-Max quantization is a 

method that tries to find a quantizer that minimizes the mean squared error (MSE) of original and 

new images, which can conserve most information in the images while discretizing.  

 

5.2.3 Neural Network based Survival Model Construction 

Models were trained separately using clinical, radiomics and imaging data. Then, the individual 

models were fused and evaluated. For comparison, Cox regression [19] was examined for survival 

analyses. These models were trained and evaluated by strictly splitting data into train, validation 

and test sets with a 10 times 5-fold scheme. The metric used was the Harrel’s c-index [20], Kaplan-

Meier plot for high and low risk groups for survival. The risk groups were determined by a criterion 

using the median value of the outputs from the survival model. Confidence intervals were 

calculated by bias-corrected and accelerated (BCa) bootstrap interval algorithm [21]. 
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5.2.4 Patch-based Variational Autoencoder Survival Joint Model for Radiomics and 

Clinical Features  

For feature selection, algorithms such as Relief-F [22], SVM-RFE [23], mRMR [24], etc., are 

available. However, these methods might cause selection bias and lead to over-optimistic results 

if the data is not split correctly. In addition, it is more tedious with two steps in the analysis - 

feature selection and subsequent model building. In comparison, the VAE-SurvNet methods 

automatically learns a latent space to represent the important signals and train the survival model 

in one step efficiently. 

Kingma et al. [25] introduced the Variational Autoencoders (VAEs) that resemble the naive AEs 

and variational Bayesian methods. Instead of learning a function that represents the data, 

variational autoencoders are able to learn a probability distribution from the data. The short coming 

of a pure VAE for a classification problem is that it is unsupervised and the features obtained from 

the latent space might be irrelevant to the endpoint of interest. Thus, a supervised joint training 

network was designed that contains a classification part, which takes the latent space features as 

an input, goes through a fully-connected layer and outputs the risk probability. By this technique, 

the latent features learned by VAE is more specific to the desired task. 

Specifically, the VAE consists of an encoder which takes the input and converts it into two latent 

vectors (a vector of means, µ, and a vector of standard deviations, 𝜎𝜎) that parameterize a Gaussian 

distribution and a decoder that reconstructs a latent space sample 𝑧𝑧 back to the original space. The 

loss function of the VAE model is defined by two parts: a reconstruction loss that measures how 
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similar is the output comparing with the input and a regularization loss determined by Kullback-

Liebler divergence (KL divergence), that measures how closely the latent variables match 

Gaussian distributions.  

Considering the ith input sample 𝑥𝑥𝑚𝑚, the output from the encoder is a hidden representation 𝑧𝑧, which 

has weights and biases 𝜃𝜃 . The encoder can be denoted as 𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥). For the decoder network, a 

value 𝑧𝑧 is denoted as input, and a reconstructed output 𝑥𝑥(∗) is generated from some conditional 

distribution 𝑝𝑝𝜑𝜑(𝑥𝑥|𝑧𝑧) , which represents the decoder network. Thus, the loss function can be 

expressed as follows: 

𝑥𝑥𝑚𝑚(𝜃𝜃 ,𝜑𝜑)  =  −𝐸𝐸𝑧𝑧 𝑞𝑞𝜃𝜃�𝑧𝑧�𝑥𝑥𝑚𝑚�[𝑥𝑥𝑥𝑥𝑔𝑔𝑝𝑝𝜑𝜑(𝑥𝑥𝑚𝑚|𝑧𝑧)] + 𝐾𝐾𝐿𝐿(𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥𝑚𝑚)|�𝑝𝑝(𝑧𝑧)�, (5.1) 

where 𝑥𝑥𝑚𝑚  is the loss for a single data point. The first term is the reconstruction loss, which 

encourages the network to reconstruct the input data; the second term is the KL divergence 

between the encoder’s distribution and the prior distribution 𝑝𝑝(𝑧𝑧), which measures how much 

information is lost during the compression. This term also serves as a regularizer that prevents the 

network from simply copying the input and leading to overfitting. 

The VAE architecture was determined by minimizing the validation loss with respect to different 

networks (latent space dimension and layer number). To determine the network structure, first, the 

classification part was ignored and only the VAE part was tuned. The number of layers and nodes 

in the layers were grid-searched based on the loss function. Once the VAE part was fixed, the 

whole network (including the survival part) was jointly-trained by optimizing the total loss 

function that consists of VAE and survival loss. A key point here is the ratio between VAE and 
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survival losses, which regulates the supervised and unsupervised portions. This hyper-parameter 

was tuned on the training set. 

Radiomics and clinical features are 1D vectors with 56 and 37 variables for each sample, while 

the CT image input is 3D matrix, which was resized to (224,224,48) to be fed into the CNN 

network. Another important technique we used is the patch-based training, which can augment the 

data and improve the performance. The random crop dimension we used is (80,80,40), which was 

determined by experiments.  

 

5.2.5 Neural Network based Survival Analysis 

Cox proportional hazard model (CPH) is the most commonly used survival analysis method to 

explore the relationships between patients’ covariates and the survival time. It assumes that the 

log-risk of failure is a linear combination of the covariates. The hazard function is represented as 

the formula below: 

𝜆𝜆(𝑡𝑡|𝑥𝑥) = 𝜆𝜆0(𝑡𝑡) exp�ℎ(𝑥𝑥)� , ℎ(𝑥𝑥) = 𝛽𝛽𝑇𝑇𝑥𝑥, (5.2) 

ℎ(𝑥𝑥) is a linear function of variables 𝑥𝑥. The weights 𝛽𝛽 are tuned by optimizing the Cox partial 

likelihood, which is the product of the probability at each event time 𝑇𝑇𝑚𝑚 that the event has occurred 

to subject 𝑖𝑖, given the subject is still at risk at time 𝑇𝑇𝑚𝑚, as shown below: 

𝐿𝐿𝑐𝑐(𝛽𝛽) = �
�̂�𝑟𝛽𝛽(𝑥𝑥𝑚𝑚)

∑ �̂�𝑟𝛽𝛽�𝑥𝑥𝑗𝑗�𝑗𝑗∈𝑅𝑅(𝑇𝑇𝑚𝑚)
= �

exp (ℎ�𝛽𝛽(𝑥𝑥𝑚𝑚))
∑ exp (ℎ�𝛽𝛽(𝑥𝑥𝑗𝑗))𝑗𝑗∈𝑅𝑅(𝑇𝑇𝑚𝑚)𝑚𝑚:𝐸𝐸𝑚𝑚=1𝑚𝑚:𝐸𝐸𝑚𝑚=1

, (5.3) 
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𝑇𝑇𝑚𝑚 is the duration, 𝐸𝐸𝑚𝑚 is the event indicator, and 𝑥𝑥𝑚𝑚 is the input feature for subject 𝑖𝑖. The risk set 

𝑅𝑅(𝑇𝑇𝑚𝑚) = (𝑖𝑖: 𝑇𝑇𝑚𝑚 ≥ 𝑡𝑡) is the set of patients that are still at risk at time 𝑡𝑡.  

However, this assumption might be too simplistic for complex relationships. To model 

nonlinearity of the features and the risk of failure, NNs are used in Katzman et al.’s work, called 

the DeepSurv [26]. Instead of using ℎ(𝑥𝑥) as shown in Eqn. (5.1), NN was used to estimate the log-

risk function, with the output giving ℎ�𝛽𝛽(𝑥𝑥𝑚𝑚) , where 𝛽𝛽  are the NN parameters. Similarly, the 

objective function of the NN is still the Cox partial likelihood:  

𝑥𝑥(𝛽𝛽) = −
1

𝑁𝑁𝐸𝐸=1
�log��

exp (ℎ�𝛽𝛽(𝑥𝑥𝑚𝑚))
∑ exp (ℎ�𝛽𝛽(𝑥𝑥𝑗𝑗))𝑗𝑗∈𝑅𝑅(𝑇𝑇𝑚𝑚)𝑚𝑚:𝐸𝐸𝑚𝑚=1

� + 𝜆𝜆 ∙ ‖𝛽𝛽‖22 + 𝛾𝛾 ∙ � �ℎ�𝛽𝛽(𝑥𝑥𝑚𝑚)�
:𝐸𝐸𝑚𝑚=1

� , (5.4) 

𝑁𝑁𝐸𝐸=1 is the number of patients that are not censored and contribute to the log-likelihood loss 

calculation. Last two terms are penalty that aim to regularize the loss function, with the first term 

being L2 penalty and third term being a penalty for the prediction to restrain its value not to deviate 

too much and cause overflow during training.  

For the modeling of ℎ�𝛽𝛽(𝑥𝑥𝑚𝑚) , the original work used pure MLP, while in our study, VAE 

architecture was applied with two advantages, (1) the latent features could be obtained; (2) the 

partial likelihood in Eqn.(5.3) for survival and the VAE loss function (KL divergence and 

reconstruction binary cross entropy loss) jointly training makes the generated model more robust. 

The total loss function in the NN is thus: 

𝑥𝑥total = 𝑥𝑥vae + 𝜏𝜏 ∙ 𝑥𝑥Cox, (5.5) 

𝜏𝜏 is a weight that balances the two parts of losses, which is tuned on the training set.  
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5.3 Results  

The univariate analysis of clinical and radiomics for the IRS and OS endpoints are shown in table 

5.1 and 5.2 (miRNA were not included in the table for simplicity). There are 13 significant clinical 

variables: Number of Active Liver Lesions at Time of Treatment (c-index 0.557, p-value 0.009), 

Total Number Fractions (c-index 0.558, p-value 0.009), Pre-RT ICGR15 (c-index 0.568, p-value 

0.003), Na (pre-treatment) (c-index 0.620, p-value 0.005), Albumin (g/DL) (c-index 0.636, p-value 

0.000), Total bilirubin (mg/dL) (c-index 0.601, p-value 0.000), MELD (c-index 0.574, p-value 

0.031), MELD-Na (c-index 0.596, p-value 0.009), Child-Pugh (c-index 0.626, p-value 0.000), 

ALBI Raw Score (c-index 0.624, p-value 0.000), Alkphos CTCAE Liver Toxicity Grade (c-index 

0.549, p-value 0.004), treated (c-index 0.556, p-value 0.016), platelet (c-index 0.535, p-value 

0.028). There are 6 significant radiomics features: correlation_gtv_32 (c-index 0.547, p-value 

0.033), ZSN_liver_gtv_8 (c-index 0.586, p-value 0.008), GLN_liver_gtv_16 (c-index 0.585, p-

value 0.014), ZSN_liver_gtv_16 (c-index 0.596, p-value 0.015), ZSN_liver_gtv_32 (c-index 

0.578, p-value 0.047) and SZHGE_liver_gtv_64 (c-index 0.578, p-value 0.047). There are 3 

significant miRNA features: hsa-let-7i-5p (c-index 0.689, p-value 0.021), hsa-miR-10b-5p (c-

index 0.621, p-value 0.013) and hsa-miR-660-5p (c-index 0.652, p-value 0.047.  

Due to the small size of patients that having miRNA data, we didn’t train models for genetic 

information. Instead, the correlation of miRNA and other significant features were investigated. 

There are 3 miRNA + 13 clinical + 6 radiomics features, in total 22 features. hsa-let-7i-5p is 

significantly correlated with GLN_liver_gtv_16 (-0.5, p-value:0.023), hsa-miR-10b-5p is 
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significantly correlated with total bilirubin (-0.4, p-value:0.035). In general, it was found that the 

three miRNAs are significantly correlated with GLN, SZHGE, ZSN with different gray levels.  

For multivariate analysis, the radiomics, clinical and CT raw image individual models results are 

summarized in table 5.3. The average c-indexes for test sets are 0.554 (0.531-0.577), 0.599 (0.581-

0.617) and 0.546 (0.519-0.573) for radiomics, clinical and combined models, respectively using 

Cox models. The average c-indexes for test sets are 0.579 (0.544-0.621), 0.629 (0.601-0.643), 

0.581 (0.553-0.613) and 0.650 (0.635-0.683) for radiomics, clinical, CT image input and combined 

models, respectively using neural networks. The Cox model cannot handle image input. The 

combined models for NN outperformed the clinical models alone, which indicates the value of 

complementary information that imaging can provide. The VAE and CNN network architectures 

are shown in Fig. 5.2. We used random crop to augment the CT image input network. Different 

strategies were applied, such as transfer learning, it turns out the performance were all pretty 

similar. Thus, we used the basic CNN structure for the CT image data. In order to show the 

effectiveness of the CT image NN model, random image data were fed into the same CNN-

SurvNet. The c-index was random results. Example patient input and random noise data are shown 

in Fig. 5.3. Notice that the architecture presented here might not be the optimal structure, however, 

based on our experiments, the performance is not sensitive to the structure, and the goal of this 

work is to show the concept that VAE-SurvNet model possess predictive power, and not to find 

the optimal solution.  
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Table 5.1 Univariate Analysis for clinical variables 

Clinical Variables c-index for OS p-value for OS 

Sex  0.484 0.811 

Age 0.526 0.589 

Pre-Tx Cirrhosis (0=no, 1=yes) 0.530 0.059 

Portal Vein Thrombosis (0=no, 1=yes) 0.536 0.105 

Number of Active Liver Lesions at Time of 

Treatment 0.557 0.009 

Total Number Fractions 0.558 0.009 

Total EQD2 0.584 0.054 

Tx Break? 0=no, 1=yes 0.523 0.772 

Time Btwn First and Final Fractions (Days) 0.533 0.180 

Pre-RT ICGR15 0.568 0.003 

Tumor_Volume 0.498 0.707 

LIVER-GTV Volume (cc) 0.502 0.928 

LIVER-GTV Mean Dose (Gy) LQ: 𝛼𝛼/𝛽𝛽=2.5 0.481 0.800 

Treatment-related complication (0=no, 

1=yes) 0.485 0.646 

ECOG PS (pre-treatment) 0.506 0.854 

Na (pre-treatment) 0.620 0.005 

Creatinine (pre-treatment; mg/dL) 0.530 0.621 

Albumin (pre-treatment; g/DL) 0.636 0.000 
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ALT (pre-treatment; IU/L) 0.500 0.656 

Alkphos (pre-treatment; IU/L) 0.547 0.269 

Total bilirubin (pre-treatment; mg/dL) 0.601 0.000 

Protime with INR (pre-treatment; s) 0.605 0.131 

AFP (pre-treatment, 0=<2.0) 0.574 0.989 

MELD (baseline) 0.574 0.031 

MELD-Na (baseline) 0.596 0.009 

Child-Pugh (baseline) 0.626 0.000 

Barcelona score (HCC ONLY) 0=0, A=1, 

B=2, C=3, D=4 0.534 0.473 

ALBI Raw Score (Baseline) 0.624 0.000 

ALBI Raw Score (Baseline) 0.521 0.291 

AST CTCAE Liver Toxicity Grade (pre-tx) 0.515 0.459 

ALT CTCAE Liver Toxicity Grade (pre-tx) 0.504 0.729 

Alkphos CTCAE Liver Toxicity Grade (pre-

tx) 0.549 0.004 

Total bilirubin CTCAE Liver Toxicity Grade 

(pre-tx) 0.504 0.794 

Treated 0.556 0.016 

PLATELET_pre 0.535 0.028 

HEMATOCRIT_pre 0.574 0.074 

ABSLYMPH_pre 0.489 0.379 
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ABSNEUT_pre 0.484 0.811 

 

Table 5.2 Univariate Analysis for radiomics variables 

Regions Gray levels Radiomics 

Features 

c-index for OS p-value for OS 

GTV 8 Correlation 0.545 0.056 

GLN 0.539 0.969 

HGRE 0.525 0.275 

SZE 0.540 0.840 

GLN 0.566 0.660 

ZSN 0.581 0.911 

SZHGE 0.504 0.239 

16 Correlation 0.542 0.056 

GLN 0.538 0.983 

HGRE 0.517 0.606 

SZE 0.506 0.222 

GLN 0.560 0.686 

ZSN 0.571 0.925 

SZHGE 0.520 0.813 

32 Correlation 0.547 0.033 

GLN 0.534 0.987 
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HGRE 0.509 1.000 

SZE 0.500 0.310 

GLN 0.566 0.559 

ZSN 0.564 0.913 

SZHGE 0.499 0.877 

64 Correlation 0.542 0.055 

GLN 0.468 0.998 

HGRE 0.504 0.766 

SZE 0.493 0.429 

GLN 0.560 0.595 

ZSN 0.559 0.706 

SZHGE 0.517 0.499 

Liver-GTV 8 Correlation 0.542 0.078 

GLN 0.544 0.106 

HGRE 0.521 0.663 

SZE 0.530 0.911 

GLN 0.524 0.680 

ZSN 0.586 0.008 

SZHGE 0.511 0.325 

16 Correlation 0.523 0.148 
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GLN 0.533 0.221 

HGRE 0.508 0.896 

SZE 0.527 0.246 

GLN 0.585 0.014 

ZSN 0.596 0.015 

SZHGE 0.489 0.431 

32 Correlation 0.537 0.153 

GLN 0.539 0.252 

HGRE 0.512 0.990 

SZE 0.544 0.149 

GLN 0.578 0.196 

ZSN 0.578 0.047 

SZHGE 0.511 0.314 

64 Correlation 0.537 0.096 

GLN 0.536 0.116 

HGRE 0.511 0.917 

SZE 0.540 0.180 

GLN 0.567 0.319 

ZSN 0.551 0.178 

SZHGE 0.532 0.031 
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Table 5.3 C-indexes for radiomics, clinical, raw image CNN and combined models. 

 Radiomics Clinical Image Combined 

Cox 0.554 (0.531-0.577) 0.599 (0.581-0.617) NA 0.546 (0.519-0.573) 

NN 0.579 (0.544-0.621) 0.629 (0.601-0.643) 0.581 (0.553-0.613) 0.650 (0.635-0.683) 

 

 

 

Fig. 5.2 VAE-SurvNet and CNN-SurvNet structure. 
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5.4 Discussion 

Due to the challenges associated with the heterogeneity of livers among different patients and the 

complicated etiologic factors associated with HCC, limited work has been done for the HCC 

prognosis analysis. Cozzi et al. [27] conducted a retrospective study of 138 HCC patients treated 

with VMAT for the prediction of overall survival and local control. They applied univariate and 

logistic regression for clinical response and Cox regression hazards model for survival analysis on 

clinical and radiomic features, which showed significant prediction performance. However, the 

features were extracted from non-contrast-enhanced images, which usually suffer from poor image 

quality, especially for liver with disease. Zhou et al. [14] developed a CT-based radiomics 

signature for preoperatively predicting the early recurrence of HCC using the LASSO algorithm. 

They built a radiomic and clinical combined model with AUC of 0.836 for the prediction of early 

recurrence. It focused on patients who underwent hepatectomy and didn’t consider survival 

analysis. Kiryu et al. [28] investigated the relationship of texture features with filtration at different 

filter levels and the prognosis of HCC 5-year overall survival and disease-free survival using 

Fig. 5.3 Example slice of cropped patient CT image (left) and random input 
(right). 
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preoperative non-contrast enhanced CT images. They showed the KM curves for OS and DFS 

were significantly different between patient groups dichotomized by cut-off values for all CT 

texture features. Bakr et al. [29] explored noninvasive biomarkers of microvascular invasion in 

patients with HCC (28 patients) using quantitative image features extracted from contrast-

enhanced CT. Chaudhary et al. [30] conducted a deep learning study using multi-omics features 

to identify survival subgroups of HCC. The model provides two subgroups with significant 

survival differences and model fit of c-index 0.68. 

Compared to the studies above, this study assessed the prediction potential of radiomic features 

extracted from contrast-enhanced CT pre-treatment images, the original images, and pre-treatment 

clinical factors for risk assessment of intrahepatic progression of HCC in the liver elsewhere from 

the primary tumor site(s) and overall survival using neural networks. The radiomics prediction 

models showed modest performance in our experiments. The possible reasons are: (1) we used a 

relatively strict validation framework that adopted repeated nested cross-validation; (2) survival 

analysis is not uncommon to have lower results than classification; (3) Overall survival is a 

complex target to predict. CT images might not have sufficient predictive power; (4) the data size 

is too small to learn the underlying mechanism; (5) the absolute value might fluctuate for different 

datasets. Nonetheless, the contribution of this work comes in three ways: (1) It showed the 

complementary information from images that could help the clinical factors; (2) We proposed a 

novel VAE-Survnet that could combine multi-omics features including raw images, which 

outperformed the traditional Cox modeling. Another interesting result is the significant correlation 

between miRNA and radiomics features. Various studies have suggested that heterogeneity of 
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tumors is associated with genomic heterogeneity and tumoral microenvironment, thus plays an 

important role in the cancer prognosis [31-33], which is found in our work as well.  

Although this work is able to provide preliminary guidance for the treatment planning based on 

the pre-treatment data, future work on adaptation of treatment plans (e.g., dose distribution) that 

customize better to the patient need to be investigated. Though we have conducted strict cross-

validation to evaluate the performance, these identified biomarkers and clinical factors warrant 

further validation in large external and multi-institutional prospective studies to be applied to 

personalized treatment planning for HCC patients. 

 

5.5 Conclusion 

A new graph-based feature selection method was developed that enables efficient data reduction 

of large-scale radiomics analysis of liver cancer imaging data. Robust survival models were built 

based on supervised learning of imaging and clinical features for risk assessment of HCC 

progression elsewhere in the liver and overall prognosis. Texture features, VAE features in 

combination with clinical factors showed promise for HCC recurrence-free and overall survival 

predictions, which can be used to personalize liver cancer treatment. 
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CHAPTER 6  
 

Multimodality Approach using Deep Attention Convolutional 

Neural Networks for Intrahepatic Recurrence Localization of Liver 

Cancer Post-SBRT 
 

This chapter developed a new radiomics algorithm for localization of intrahepatic failure and is 

based on the paper: Wei, L., Owen, D., Mendiratta-Lala, M., Rosen, B., Cuneo, K., Lawrence, T. 

S., Ten Haken, R. K., El Naqa, I., " Multimodality Approach using Deep Attention Convolutional 

Neural Networks for Intrahepatic Recurrence Localization of Liver Cancer Post-SBRT." (2020), 

under processing. 

 

6.1 Introduction   

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth 

leading cause of cancer-related death worldwide [1]. Surgery either a partial resection or a liver 

transplantation remains the standard treatment for curative purpose [2]. However, only 15% to 

30% are candidates due to the location of the tumor or underlying liver dysfunction [3, 4]. There 

are several non-surgical liver-directed therapies including radiofrequency ablation (RFA), 

microwave ablation (MWA), trans-arterial chemoembolization (TACE) and, more recently, 
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stereotactic body radiotherapy (SBRT). Previously, RT was used cautiously due to the narrow 

window when trading off between tumor control and radiation-induced liver disease (RILD) [4]. 

Recently, with the development of advanced radiotherapy delivery technologies, more precise 

partial liver irradiation using SBRT enables highly conformable dose distributions with a rapid 

dose drop off for HCCs that are not suitable for resection [4, 5]. 

Although over 90% of tumors will be controlled by SBRT [5, 6], intrahepatic progression within 

the liver, remote from the treatment zone is common, with failure rates reported at 50% [3, 7]. 

Deep learning has seen dramatic development recently, which enables computers to automatically 

capture complicated patterns in the datasets. In particular, convolutional neural networks (CNNs), 

a type of neural network, have surpassed human performance in computer vision on the ImageNet 

Large-Scale Visual Recognition Challenge (ILSVRC) [8]. Enormous amounts of multimodality 

imaging data containing valuable signals and information has been generated during cancer patient 

heath care. Deep learning has been widely applied in medical image analysis, ranging from 

classification [9, 10], image registration/reconstruction/synthesis/segmentation [11-14], survival 

analysis [15]. In this study, we take advantage of the advanced deep learning algorithms to predict 

the recurrent HCC tumor Couinaud segment using multimodality pre-SBRT contrast enhanced CT 

and T1 weighted MR images as well as the 3D dose distribution. The novelty of our work can be 

summarized as: (1) using neural networks (VoxelMorph) to automatically obtain liver Couinaud 

segment masks; (2) development of novel Attention Gating U-Net model to predict intrahepatic 

recurrence location of tumors; and (3) investigations of contributions for multimodality images 

and the correlation to treatment dose.  
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6.2 Methods and Materials 

6.2.1 Patient cohort 

After IRB approval, a HIPAA compliant retrospective analysis of HCC patients treated with SBRT 

was performed. A total of 303 HCC patients treated with SBRT were reviewed. Patients without: 

(1) T1-weighted MR images; (2) contrast-enhanced CT (CECT) images; (3) gross tumor or liver 

contour in the database were excluded from the analysis. A total of 102 HCC patients met the 

inclusion criteria. The endpoint of intrahepatic recurrence-free survival was selected whether or 

not patients with HCC developed intrahepatic tumors after SBRT. This was defined by the 

presence of new tumor outside the planning target volume (PTV) of the previously treated 

tumor(s). The ground truths were determined by experienced clinicians based on CECTs, MRI, 

and relevant clinical records for each patient, indicating the recurrence(s) is (are) located in which 

segment(s). Liver segment is based on Couinaud classification, which divides the liver into eight 

functionally independent segments by the vascular branches, as shown in Fig. 6.1.   

 

Fig. 6.1 Couinaud segment for liver. 
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6.2.2 Images Acquisition and Processing 

Arterial phase images and structure sets including liver, GTV, and liver-GTV from CECT were 

exported from an Eclipse treatment planning system (Varian Medical Systems Inc, Palo alto, CA). 

Contouring of the CT images had been performed by experienced clinicians. The resolution of raw 

images ranged from 0.80 to 1.37 mm in-plane with 3 mm slice thickness. 3D dose distributions for 

SBRT treatment were exported from Eclipse, which were co-registered to the CT images. For 

patients who didn’t have MR images in Eclipse, MR images were exported from McKesson and 

imported into Eclipse and registered to the CT images using the built-in function of the software.  

6.2.3 Obtaining Couinaud Segments by Unsupervised Deformable Image 

Registration  

The recurrence ground truth is segment-wise binary vector of length 9 (the eight Couinaud 

segment), with 0 being no recurrence for the segment and 1 being recurrence. In order to predict 

the recurrence of HCC tumors for each segment, it is necessary to obtain the Couinaud segments 

for each liver. However, since Couinaud segments are based on vascular branches, the variability 

across different patients is large. It is very time-consuming and subjective to delineate across 

different people to manually obtain these segments. Thus, we proposed a neural network based 

unsupervised deformable registration method to obtain these segments.  

First, a liver atlas with manually obtained Couniaud segments was acquired from 3D slicers 

(http://www.slicer.org) [16]. The deformable registration was then utilized to register the CT altas 

to each patient liver. The Couinaud segments were then transferred to patient liver CT images. We 

http://www.slicer.org/
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applied VoxelMorph framework for the deformable, pairwise image registration. The 

parameterized registration function was learnt using a convolutional neural network (CNN), with 

input being the atlas CT image and the patient liver CT and output being atlas CT registered to 

patient CT. The objective function is similar to traditional registration algorithms, which tries to 

minimize the dissimilarity between the intensities of the two input images and penalize the spatial 

variation of the deformation as well. Let 𝑚𝑚,𝑓𝑓 denote the two input images (moving and fixed). 

First, all the images were resampled to 224*224*48 before being fed to the network. The 

registration function can be denoted as 𝑔𝑔𝜃𝜃(𝑓𝑓,𝑚𝑚) = 𝑢𝑢, where 𝜃𝜃 is the CNN parameters. Thus, the 

mapping was formed by 𝜑𝜑 = 𝐼𝐼𝐼𝐼 + 𝑢𝑢, I is the identity transform. The loss function is shown as 

below: 

𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥total = 𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥similarity(𝑓𝑓,𝑚𝑚°𝜑𝜑) + 𝜆𝜆𝐿𝐿smooth(𝜑𝜑), (6.1) 

The cross-correlation (CC) is used for similarity loss between 𝑓𝑓,𝑚𝑚°𝜑𝜑, since it is more robust to 

intensity variations [17]. A higher CC value means a better alignment - 𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥similarity(𝑓𝑓,𝑚𝑚°𝜑𝜑) =

−𝐶𝐶𝐶𝐶(𝑓𝑓,𝑚𝑚°𝜑𝜑). The similarity loss alone might lead to non-smooth 𝜑𝜑, so a smoothing term shown 

below was added:  

𝐿𝐿smooth(𝜑𝜑) = �‖∇𝑢𝑢(𝑝𝑝)‖2
𝑝𝑝

, (6.2) 

where p is the voxel of the input volumes.  
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Fig. 6.2 shows the overview of this method. Stochastic gradient descent (SGD) was used to find 

optimal parameters. Fig. 6.3 shows the network structure, which is built upon a Unet backbone 

with skip connections. Atlas and patient CT images were concatenated with the dimension of 

224*224*48*2. The convolution kernel size is 3, and stride is 2 to reduce the spatial dimensions.  

Fig. 6.2 Overview of the registration process. 
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6.2.4 Attention Neural Network for Recurrence Segment Prediction  

An attention neural network was applied to predict the recurrence location of the HCC segment-

wise for tumor information localization. Attention gates (AGs) are widely used in natural language 

processing (NLP) [18], image captioning [19], etc. In Oktay’s work, a novel self-attention gating 

module was added to the U-Net framework to reduce the false-positive predictions for small 

objects that shows large shape variations [20]. Attention coefficients, 𝛼𝛼𝑚𝑚 ∈ [0,1], can identify 

salient image regions and prune feature responses to preserve only the activations relevant to the 

specific task. AGs give the element-wise multiplication of input feature-maps and attention 

coefficients: 𝑥𝑥�𝑚𝑚,𝑐𝑐𝑔𝑔 = 𝑥𝑥𝑚𝑚,𝑐𝑐𝑔𝑔 ∙ 𝛼𝛼𝑚𝑚𝑔𝑔, where i, c and l are the spatial, channel and layer index. A single scalar 

Fig. 6.3 VoxelMorph architecture. 

Fig. 6.4 Structure of the AGs with input 𝑥𝑥𝑔𝑔 being scaled by 𝛼𝛼, which is learnt by both the coarser 
signal from g and the activations from x. 
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attention value is computed for each pixel vector with a length of c. The AG is formulated as 

below:  

𝑥𝑥�𝑚𝑚𝑔𝑔 = 𝜎𝜎2(𝜓𝜓𝑇𝑇 �𝜎𝜎1�𝑊𝑊𝑚𝑚
𝑇𝑇𝑥𝑥𝑚𝑚𝑔𝑔 + 𝑊𝑊𝑔𝑔𝑇𝑇𝑔𝑔𝑚𝑚 + 𝑏𝑏𝑔𝑔�� + 𝑏𝑏𝜓𝜓), (6.3)

where 𝜎𝜎2 is the sigmoid function, 𝜎𝜎1is ReLU activation. AGs are parameterized by 𝑊𝑊𝑚𝑚
𝑇𝑇, 𝑊𝑊𝑔𝑔𝑇𝑇, 𝑏𝑏𝑔𝑔, 

and 𝑏𝑏𝜓𝜓. The structure of the AG is shown in Fig. 6.5. The AGs were then incorporated into the 

conventional U-Net structure to highlight the salient regions, which is shown in Fig. 6.4. Deep-

supervision was also used in the network to help the hidden feature-maps to be discriminative at 

each image scale [21]. The basic network architecture will be similar to the standard one used in 

the U-Net framework. The additional deep feedback is brought in by associating a companion local 

output with each hidden layer, which acts as a kind of feature regularization and results in faster 

convergence in practice. The U-Net architecture is shown in Fig. 6.5. The output is a 2 channel 3D 

probability map with the original size as input. One of output channel was multiplied with the 

Couinaud segment masks to obtain scores for each segment to indicate the risk of recurrence. 

Binary cross-entropy with logits was applied to the segment scores to calculate the loss and back 

propagate. The other channel was used to segment the original tumor by calculating the mean 

squared error loss. This is an auxiliary task that takes advantage of the prior knowledge (where the 

primary tumor(s) was(were)) and let the network (AGs) learn the critical regions and help with our 

main task of recurrence prediction.  

The exponential growth in the use of more than one imaging modality for diagnostic, therapeutic 

and prognostic purposes in noninvasive and quantitative cancer studies has facilitated the 
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development of multimodality techniques. The intuition of multimodality imaging is that different 

types of images can provide complementary information and combining them may result in more 

complete characterization of the disease (e.g., a tumor). In this study, CECT, MR and 3D dose 

distributions were available and co-registered. Individual models for each modality were 

developed using the described AGs network. Concatenated 3-channel input model was also trained 

to see if these images could provide complimentary information to the recurrence prediction. 

Lastly, for outcome prediction, which requires much more data than end-to-end tasks, we used 

several image transformations to augment the data, including shifting with range [0.1,0.1], rotation 

within 15 degrees, scaling with range [0.7,1.3] and random flipping probability of 0.5. The learning 

rate is 1e-5, with l2 weight decay of 1e-6, and batch size 16.  

Fig. 6.5 Attention U-Net segmentation model. Attention gates (AGs) filter the features propagated through the skip 
connections. 
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6.3 Results 

59 of the 102 patients developed intrahepatic recurrence elsewhere. There are 85 Couinaud 

segments that had recurred tumors out of the total 9*102=918 segments. The plot in Fig. 6.6 

showed the distribution of the recurred tumors for each of the 9 segments.   

 

Since there is no ground truth for the Couinaud segments, the Dice coefficients for deformable 

registration between atlas and patient CT images were calculated. The mean Dice similarity 

coefficient is 0.80 (std: 0.09), which is satisfying considering the large variation in liver anatomy 

for different patients. Example registration/segmentation result is shown in Fig. 6.7, from left to 

right are patient CT, atlas CT, moved atlas CT, segments, and transformation field. The total time 

used for registration and segmentation for 102 patients was less than 2 minutes, which is 
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Fig. 6.6 Number of recurred cases in each segment. 
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significantly shorter than conventional deformable image registration methods. The loss function 

for VoxelMorph contains two parts: reconstruction and smoothing. The change of total, 

reconstruction and smoothing losses versus epoch numbers was shown in Fig. 6.8.  

 

The individual models using CT, MR and dose were trained and the ROC curves are shown in 

shown in Fig. 6.9, which showed the predictive power for the ACNN model with AUC of 0.676 

(95% CI: 0.538-0.814), 0.608 (95% CI: 0.500-0.740), 0.670 (95% CI: 0.541-0.799) and 0.686 

(95% CI: 0.574-0.797) as computed by the Delong test for  CT, MR, dose and combined models, 

respectively. 

Fig. 6.7 Example registration results: from left to right – patient CT, atlas CT, moved atlas CT, segments, and 
transformation field. 

Fig. 6.8 Loss vs. epochs for VoxelMorph NN. From left to right: total, reconstruction, and smooth losses. 
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6.4 Discussion 

59 out of the 102 enrolled patients have developed intrahepatic recurrence, which is consistent 

with the high progression rates for post-treated HCC patients. Interestingly, the recurred location 

Fig. 6.9 ROC curves for CT, MR, dose and combined models. 

AUC: 0.676 (95% CI: 0.538-0.814) AUC: 0.608 (95% CI: 0.500-0.740) 

AUC: 0.670 (95% CI: 0.541-0.799) 
AUC: 0.686 (95% CI: 0.574-0.797) 
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based on this dataset showed high rates in segments 7, 8, and 4a, while relatively low rates for 

segments 1, 5 and 4b. Segment 1 is anatomically small in volume, which might contribute to the 

low rate. These results need to be further investigated in larger dataset to be confirmed later.  

In terms of the Couinaud segment results, since there is no ground truth for this endpoint. We 

examined the Dice coefficients for fixed and transformed atlas image to help evaluate the 

segmentation. For the ACNN network, the CT-based model gave the largest AUC value for 

individual models, while the MR model gave the smallest AUC, which is contradict to our intuition 

since MR provide better soft tissue contrast. The possible reason might be that MR images need 

to be standardized with more care compared with CT images, which we will continue working on 

in the near future. Though the combined model performed better than the individual models, it is 

not significantly better. It is another work that we will continue, since now the three images were 

only concatenated and fed into the network. Better representation of these multimodality images 

should be investigated.  

Though the prediction is significantly better than random guess, in order to apply this work to 

clinic practice, the interpretation is needed as well, which is next step in this work. Specifically, 

we are investigating gradient-based [22] and deconvolution-based [23] methods to obtain a salient 

map to help understand what critical regions in the images contribute to the endpoint. Other future 

work is to extend this work to the treatment planning system to avoid functional liver and boost 

dose to the high risk regions. In addition, based on visual checking of these images, we found there 

are some cases that the recurred tumor had appeared as low Lirad score lesions even before the 
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treatment. The model might capture these suspicious signals and make the prediction. This 

assumption needs to be investigated later.  

 

6.5 Conclusion 

Using the VoxelMorph network, we are able to register atlas images to patient CT images 

efficiently and accurately. Based on this work, obtaining Couinaud liver segment automatically 

becomes possible. Then, ACNN was trained to predict the recurrence location of the post SBRT 

HCC patients, which showed significant results which has the potential to be used in clinic to help 

realization of precision radiation therapy.   

 

6.6 References 

1. Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, et al. The burden 
of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and 
national level: results from the global burden of disease study 2015. JAMA oncology. 
2017;3:1683-91. 
2. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907-17. 
3. Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, et al. Long-term effect of 
stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local 
ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer. 
2010;10:475. 
4. Schaub SK, Hartvigson PE, Lock MI, Høyer M, Brunner TB, Cardenes HR, et al. 
Stereotactic body radiation therapy for hepatocellular carcinoma: current trends and controversies. 
Technol Cancer Res Treat. 2018;17:1533033818790217. 
5. Wahl DR, Stenmark MH, Tao Y, Pollom EL, Caoili EM, Lawrence TS, et al. Outcomes 
after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin 
Oncol. 2016;34:452. 



135  
 

6. Feng M, Suresh K, Schipper MJ, Bazzi L, Ben-Josef E, Matuszak MM, et al. Individualized 
adaptive stereotactic body radiotherapy for liver tumors in patients at high risk for liver damage: a 
phase 2 clinical trial. JAMA oncology. 2018;4:40-7. 
7. Ohri N, Tomé WA, Romero AM, Miften M, Ten Haken RK, Dawson LA, et al. Local 
control after stereotactic body radiation therapy for liver tumors. International Journal of Radiation 
Oncology* Biology* Physics. 2018. 
8. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional 
neural networks.  Adv Neural Inf Process Syst; 2012. p. 1097-105. 
9. Nie D, Lu J, Zhang H, Adeli E, Wang J, Yu Z, et al. Multi-channel 3D deep feature learning 
for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep. 
2019;9:1-14. 
10. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level 
classification of skin cancer with deep neural networks. Nature. 2017;542:115-8. 
11. Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolutional recurrent 
neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging. 2018;38:280-
90. 
12. Osokin A, Chessel A, Carazo Salas RE, Vaggi F. GANs for biological image synthesis.  
Proceedings of the IEEE International Conference on Computer Vision; 2017. p. 2233-42. 
13. de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Išgum I. A deep learning 
framework for unsupervised affine and deformable image registration. Med Image Anal. 
2019;52:128-43. 
14. Li X, Dou Q, Chen H, Fu C-W, Qi X, Belavý DL, et al. 3D multi-scale FCN with random 
modality voxel dropout learning for intervertebral disc localization and segmentation from multi-
modality MR images. Med Image Anal. 2018;45:41-54. 
15. Zhang Y, Lobo-Mueller EM, Karanicolas P, Gallinger S, Haider MA, Khalvati F. CNN-
based survival model for pancreatic ductal adenocarcinoma in medical imaging. BMC Med 
Imaging. 2020;20:1-8. 
16. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D 
Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson 
Imaging. 2012;30:1323-41. 
17. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image 
registration with cross-correlation: evaluating automated labeling of elderly and 
neurodegenerative brain. Med Image Anal. 2008;12:26-41. 
18. Lin Z, Feng M, Santos CNd, Yu M, Xiang B, Zhou B, et al. A structured self-attentive 
sentence embedding. arXiv preprint arXiv:170303130. 2017. 
19. You Q, Jin H, Wang Z, Fang C, Luo J. Image captioning with semantic attention.  
Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 4651-9. 
20. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al. Attention u-net: 
Learning where to look for the pancreas. arXiv preprint arXiv:180403999. 2018. 
21. Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-supervised nets.  Artificial 
intelligence and statistics; 2015. p. 562-70. 



136  
 

22. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual 
explanations from deep networks via gradient-based localization.  Proceedings of the IEEE 
international conference on computer vision; 2017. p. 618-26. 
23. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks.  European 
conference on computer vision: Springer; 2014. p. 818-33. 

 



137  
 

CHAPTER 7  
 

Discussion and Future Perspective 
 

7.1 Current challenges and recommendations 

7.1.1 Radiomics and model fitting issues  

Outcome modeling for medical images suffers from the insufficient data obstacle, with limited 

samples, noisiness in the labeling, unknown complicated and underlying mechanisms, etc. Though 

there is some low hanging fruit, end-to-end image analysis, such as image 

registration/segmentation, which is less prone to overfitting than outcome modeling that has been 

embedded in commercial softwares already. The reality is that image-based outcome modeling is 

still an essential part for personalized health care and more needs to be done to achieve its promise. 

Among these is better data management (sharing, storing, labeling, etc.), which is necessary but is 

beyond our scope here. Hence, the focus here has been on modifying and developing new 

algorithms that can capture the most relevant and useful signals out of such small and noisy data. 

It is unclear how to decide which kind of methods is better when we deal with a specific task. 

Although quite time-consuming to obtain, hand-crafted features take advantage of domain 

knowledge and tend to outperform CNN methods when the available dataset is too small and noisy. 

In addition, we can choose feature selection and classification models that contain less fitting 
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parameters to avoid overfitting, rather than the CNN methods that usually have thousands or even 

more parameters to fit. Another advantage is that engineered features are easier to interpret, since 

we know what features we extract and feed into the model. CNN methods are attracting more and 

more attention, with the advantage of avoiding tedious feature engineering and higher prediction 

accuracy. For small dataset, transfer learning, data augmentation and GAN have been implemented 

to amplify the dataset size and have shown promising results in image segmentation, disease 

detection and endpoint prediction tasks. Transfer learning is using (part of) pretrained models from 

other datasets to initialize the current neural network on the target dataset. However, this is not 

always helpful, especially in the case of outcome modeling, where the cross-task relationships are 

ambiguous. For the project in Chapter 5, we have experimented with various pretrained models, 

none of them showed better results than training from scratch. The reason might be that the source 

dataset (e.g., ImageNet) might be too different from our medical images for the task at hand. The 

features learnt thus may not transferrable. Another direction to think about is the combination of 

traditional features and CNNs directly applied to images. Features carefully designed can provide 

experts experience that might be hard to learn by CNN based on limited samples, while CNN can 

extract other important information missed by hand-crafted features till larger datasets become 

available.  
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7.1.2 Repeatability and Reproducibility issues 

For CT, inter-scanner variability of image features produces differences in extracted features that 

are comparable to the variability in patient images acquired by the same scanner [1]. The choice 

of methods of reconstruction, such as filtered back projection or iterative algorithm, also affect 

radiomic features [2]. Smoothing of the image and reducing the slice thicknesses can improve 

reproducibility of CT-extracted features [3, 4].  

In PET imaging, textural features are sensitive to different acquisition modes [5, 6], reconstruction 

algorithms, and their user-defined parameters such as the number of iterations, the post-filtering 

level, input data noise, matrix size, and discretization bin size [7, 8].  

Radiomic features extracted from MRI scans depend on the field of view, field strength, 

reconstruction algorithm and slice thickness. Results of the DCE MRI depend on the contrast agent 

dose, method of administration, and the pulse sequence used. The radiomic features extracted from 

DW-MRI depend on acquisition parameters and conditions as k-space trajectory, gradient 

strengths and b-values. The repeatability of MR-based radiomic features has been investigated [9] 

using a ground truth digital phantom of brain glioma patients and an MRI simulator capable of 

generating images according to different acquisition (field strength, pulse sequence, arrangement 

of field coils) and reconstruction methods. It was found that some features are subject to small 

changes, compared with clinical effect size. 
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7.1.3 Standardization and harmonization  

Although research in the field of radiomics has drastically increased over the past several years, 

there still remains a lack of reproducibility and validation of current radiomic models. There are 

currently no guidelines and standard definitions for radiomic features and for constructing these 

features into clinical models. Current initiatives are underway to improve standardization and 

harmonization in radiomic studies.  

As a part of radiomic signature validation, there are efforts to explore distributed feature sharing 

and model development across contributing institutions [10]. A key component in this exercise is 

the assessment and redressal of batch effects [11] and confounding variables across contributing 

sites, so as to ameliorate systematic yet unmeasured sources of variation. Another key component 

is the use of methods to harmonize data as well as model parameters across study sites, with the 

intent of meaningful comparisons across clinical population [12]. Such efforts are necessary to 

enable the widespread and generalizable development of models that are transportable across 

institutions. In addition to the careful calibration and stability analysis of radiomic features within 

predictive models, there is also a need for ensuring model robustness through approaches like noise 

injection [13]. Adversarial training approaches from neural networks can have value in the modern 

deep learning modeling area by incorporating not only positive examples but negative ones too 

[14]. The workflow for computing features is complex and involves many steps, often leading to 

incomplete reporting of methodological information (e.g., texture matrix design choices and gray-
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level discretization methods). As a consequence, few radiomics studies in the current literature can 

be reproduced from start to end. 

To accelerate the translation of radiomics methods to the clinical environment, the Image 

Biomarker Standardization Initiative (IBSI) [15] has the goal to provide standard definitions and 

nomenclature for radiomic features, reporting guidelines, and to provide benchmark datasets and 

values to verify image processing and radiomic feature calculations.  

7.1.4 Interpretability issues 

It is recognized that machine learning algorithms tend to generally trade interpretability for better 

prediction. Hence, clinicians are still reluctant to embrace these methods as part of their clinical 

practice, because they have long been perceived them as “black boxes”, meaning that it is difficult 

to determine how they arrive at their predictions. For example, it is difficult to understand deep 

neural networks due to the large number of interacting, non-linear parts [16, 17]. To improve 

interpretability of radiomics for the clinician, methods based on graph approaches can be utilized 

[18], and in the context of deep learning better visualization tools are being developed such as 

feature maps highlighting regions of the tumor that impact the prediction of the deep learning 

classifier are also being proposed [17]. 
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7.2 Future perspectives 

7.2.1 Interpretable radiomics 

Models giving good prediction and good representation though necessary are not sufficient for 

medical practice, especially for those using deep learning models or other complex methods. For 

the current thesis work, we mainly focused on outcome modeling that gives answers to what, when 

and where questions for tumors. The next step should emphasize better understanding of the model 

decisions and gain more insights into how these models operate. Various techniques have been 

proposed for this purpose, such as DeConvNet, which is composed of deconvolution and 

unpooling layers identifying pixel-wise class labels and predict segmentation masks [19, 20], 

Gradient-based, e.g., Grad-CAM, which uses the gradients of any target concept flowing into the 

final convolutional layer to produce a coarse localization map highlighting the important regions 

in the image for predicting the particular concept [21]. These models are post-hoc ones that achieve 

interpretability by sampling instances and labeling them with the trained neural networks [22]. 

Since we build imaging-based neural network models to predict what will happen to the target and 

healthy tissues, it will be beneficial to investigate these post-hoc interpretability models in the 

future.  

7.2.2 Advanced modeling: Graph Neural Networks 

However, there are also some criticism towards the post-hoc explanation models. Black box 

models with explanations can lead to an overly complicated decision pathway that is ripe for 

human error [23]. Marrying interpretable graph models with neural networks (graph neural 
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networks) have recently emerged in the machine learning and other related areas, and 

demonstrated superior performance in various problems. Graph models encode the structural 

information to model the relations among entities, and furnish more promising insights underlying 

the data. Despite some successes of these embedding methods, many of them suffer from the 

limitations of the shallow learning mechanisms and might fail to discover the more complex 

patterns behind the graphs. Combining GNN with deep learning has the advantage of not only 

encoding structural prior knowledge to the model, but also the large capacity of deep learning 

frameworks. In addition, graphical model is better in interpretation. GNN is also superior with 

heterogeneous input of patient data – the collection of imaging, genetic, clinical features for 

integrating such data. 

7.2.3 Clinical translation: Functional liver avoidance treatment planning 

This topic is an extension of the localization prediction project (Chapter 6). The rule when making 

treatment plans for patients is to give the target (tumor) the desired amount of dose, while sparing 

the normal tissue as much as possible. Considering the high recurrence rate of HCC, if we can 

predict the location of recurrence, we can further modify the treatment regimens to account for 

suspicious/risky locations and improve the patient prognosis post treatment.   
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