
A Parallel Tensor Network Contraction Algorithm and Its
Applications in Quantum Computation

by

Fang Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2020

Doctoral Committee:

Professor John P. Hayes, Co-Chair
Professor Yaoyun Shi, Co-Chair
Professor Christopher J. Peikert
Professor Kai Sun

Fang Zhang

fangzh@umich.edu

ORCID iD: 0000-0002-0000-7101

©Fang Zhang 2020

To the entrancing boundary between Truth and trivia

ii

ACKNOWLEDGMENTS

I would like to thank my co-advisor (formerly my advisor), Professor Yaoyun Shi, both for
academic guidance throughout the Ph.D. program, and for giving me the opportunity to be
a research intern at Alibaba Quantum Lab (AQL), since most of the work in this thesis was
done either at AQL or in collaboration with AQL. I would also like to thank my other co-
advisor, Professor John Hayes, who gave me a lot of helpful advice during the few months
he has been my co-advisor.

I would like to thank my supervisor during my internship at AQL, Jianxin Chen, who has
also been a personal friend of mine ever since we met. Dynamic slicing, the very idea
underlying the algorithm described in this thesis, has emerged from one of our discussions
near the beginning of my internship. I would like to thank my other colleagues at AQL who
have contributed to the development of the idea, including Professor Yaoyun Shi (again),
Cupjin Huang, Michael Newman, Professor Mario Szegedy, Xun Gao, and many others. I
would also like to thank other colleagues in Alibaba Group who helped with our experiment
on computer clusters.

I would like to thank my lab mates at U-M, including the aforementioned Cupjin Huang
and Michael Newman, as well as Kevin Sung, for valuable discussions even before I started
my internship at AQL. Special thanks to Kevin Sung for introducing me to the Open-
Fermion project, where I implemented a simple functionality that familiarized me with
numpy.einsum, which turned out to be fundamental for this thesis.

I would like to thank other people that have helped me in my study of quantum informa-
tion, including during the Ph.D. program and during my undergraduate study at Tsinghua
University. In particular, I would like to thank Professor Xiongfeng Ma, who was my un-
dergraduate thesis advisor, and Professor Giulio Chiribella, who instructed my first formal
quantum computation course. I would also like to thank my parents, who raised me up
in an environment where I could get to know quantum computation even before going to
university.

I would like to thank my committee members Professor John Hayes, Professor Yaoyun Shi,
Professor Kai Sun, and Professor Christopher Peikert for their service.

I would like to thank NSF and Alibaba Group USA for funding my research.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . viii

Abstract . ix

Chapter

1 Introduction . 1

1.1 Quantum computation, tensor networks, and parallel algorithms 1
1.2 Overview of results . 3

1.2.1 A parallel tensor network contraction algorithm 3
1.2.2 Classical simulation of quantum supremacy circuits 4
1.2.3 Applications to the Quantum Approximate Optimization Algorithm 5
1.2.4 Applications to quantum error correction 5

1.3 Dissertation outline . 6
1.3.1 Works appearing . 6

2 Preliminaries . 8

2.1 Asymptotic notations . 8
2.2 The circuit model of quantum computation 9

2.2.1 Quantum states . 9
2.2.2 Computational basis measurements 10
2.2.3 Unitary operations . 12
2.2.4 Mixed states and density matrices 14

2.3 Tensors and tensor networks . 16

3 A parallel tensor network contraction algorithm 19

3.1 Introduction . 20
3.1.1 Problem and motivation . 20
3.1.2 Tensor network contraction schemes 20
3.1.3 Outline of the contraction scheme finding procedure 22

3.2 Preliminaries . 23
3.2.1 Tensor network contraction . 23

iv

3.2.2 Parallel contraction schemes . 27
3.2.3 Tree decomposition and treewidth 28

3.3 Initial contraction order finding . 30
3.3.1 Initial contraction orders based on treewidth algorithms 30
3.3.2 Initial contraction orders based on hypergraph partitioning 33

3.4 Local optimization . 35
3.5 Dynamic slicing . 37
3.6 GPU implementation of tensor network contraction 40
3.7 Discussion . 42

4 Classical simulation of quantum supremacy circuits 43

4.1 Introduction . 43
4.1.1 Overview of quantum supremacy 43
4.1.2 Random quantum supremacy circuits 44
4.1.3 Solving “supremacy tasks” with tensor network contraction . . . 45

4.2 Preliminaries . 46
4.2.1 Rules for random circuit generation 46
4.2.2 Frugal rejection sampling based on single-amplitude simulation . 51

4.3 Transforming circuits into tensor networks 54
4.4 Benchmark experiments . 56

4.4.1 Rectangular circuits . 57
4.4.2 Bristlecone circuits . 59
4.4.3 Sycamore circuits . 60

4.5 Discussion . 63

5 Applications to the Quantum Approximate Optimization Algorithm 65

5.1 Introduction . 66
5.1.1 Problem and motivation . 66
5.1.2 Applications of classical simulation to QAOA 67

5.2 Preliminaries . 69
5.2.1 Observable operators and Hamiltonian 69
5.2.2 Adiabatic quantum computation 70
5.2.3 Quantum Approximate Optimization Algorithm 71

5.3 Evaluating the energy function . 73
5.4 Sampling from the output distribution 75
5.5 Experiment results . 76

5.5.1 Energy function evaluation on random regular graphs 77
5.5.2 Optimization for small-cycle-free graphs 79

5.6 Discussion . 81

6 Applications to quantum error correction . 82

6.1 Introduction . 82
6.1.1 Quantum error correction and surface codes 82
6.1.2 Realistic error models . 83

6.2 Preliminaries . 84

v

6.2.1 Pauli matrices . 84
6.2.2 Basics of stabilizer codes . 85
6.2.3 Surface code design . 86
6.2.4 Quantum channels . 88

6.3 Base error model . 90
6.3.1 Idle error . 90
6.3.2 Unitary gate errors . 92
6.3.3 Measurement error . 93

6.4 Modeling crosstalk . 94
6.4.1 Overview of crosstalk . 94
6.4.2 Crosstalk in the circuit model 95

6.5 Simulating the surface code with tensor networks 96
6.5.1 Simulating noisy circuits . 96
6.5.2 Defining the logical channel with the optimal decoder 98

6.6 Experiment results . 102
6.6.1 Effect of crosstalk on the logical channel 102
6.6.2 Estimating the discretization inaccuracy 104

6.7 Discussion . 106

7 Summary and conclusions . 107

7.1 A parallel tensor network contraction algorithm 107
7.1.1 Summary . 107
7.1.2 Future work . 107

7.2 Classical simulation of quantum supremacy circuits 108
7.2.1 Summary . 108
7.2.2 Future work . 108

7.3 Applications to the Quantum Approximate Optimization Algorithm . . . 109
7.3.1 Summary . 109
7.3.2 Future work . 110

7.4 Applications to quantum error correction 110
7.4.1 Summary . 110
7.4.2 Future work . 111

Bibliography . 112

vi

LIST OF FIGURES

2.1 Example of a tensor network and its hypergraph representation. 18

3.1 Examples of tensor network contraction and tensor network slicing. 24

4.1 The 8 configurations of CZ gates for rectangular circuits. 47
4.2 Qubit layout of 72-qubit random Bristlecone circuits. 48
4.3 Structure of the 53-qubit random Sycamore circuits. 50
4.4 Estimated 80th percentile running times for rectangular random circuits. 58
4.5 Contraction costs, FLOPS efficiencies, and estimated times to do the “supremacy

task” for Sycamore circuits. 62

5.1 Comparison of the average time to evaluate the energy function on a single set
of parameters, ~γ and ~β, for 3-regular MAX-CUT instances. 78

6.1 Qubit layout of Surface-17. 87
6.2 Comparison of logical Pauli transfer matrices for 2 + 1 rounds of Surface-17

error correction, without and with crosstalk. 103
6.3 Logical error rates of various types as a function of the crosstalk strength. . . . 104
6.4 Comparison of logical Pauli transfer matrices for 1 + 1 rounds of Surface-

17 error correction, without and with one of the CPHASE gates moved to a
different place. 105

vii

LIST OF TABLES

4.1 Estimated and actual running times for Bristlecone-70 circuits. 60

5.1 Time to evaluate the energy function on a single set of parameters, for d-
regular MAX-CUT instances with n = 1000 vertices. 79

5.2 Optimized expected value of each clause for small-cycle-free d-regular graphs,
using various optimizers. 80

6.1 Parameters used in our surface code simulation. 102

viii

ABSTRACT

Tensors are a natural generalization of matrices, and tensor networks are a natural

generalization of matrix products. Despite the simple definition of tensor net-

works, they are versatile enough to represent many different kinds of “products”

that arise in various theoretical and practical problems. In particular, the powerful

computational model of quantum computation can be defined almost entirely in

terms of matrix products and tensor products, both of which are special cases of

tensor networks. As such, (classical) algorithms for evaluating tensor networks

have profound importance in the study of quantum computation.

In this thesis, we design and implement a parallel algorithm for tensor network

contraction. In addition to finding efficient contraction orders for a tensor network,

we also dynamically slice it into multiple sub-tasks with lower space and time

costs, in order to evaluate the tensor network in parallel. We refer to such an

evaluation strategy as a contraction scheme for the tensor network. In addition,

we introduce a local optimization procedure that improves the efficiency of the

contraction schemes we find.

We also investigate the applications of our parallel tensor network contraction

algorithm in quantum computation. The most ready application is the simula-

tion of random quantum supremacy circuits, where we benchmark our algorithm

to demonstrate its advantage over other similar tensor network based simulators.

Other applications we found include evaluating the energy function of a Quantum

Approximate Optimization Algorithm (QAOA), and simulating surface codes un-

der a realistic error model with crosstalk.

ix

CHAPTER 1

Introduction

1.1 Quantum computation, tensor networks, and parallel
algorithms

The role of classical algorithms in quantum computation. Even though it is believed
that BPP 6= BQP — i.e. quantum computers will be able to provide superpolynomial
speedup over classical computers on various problems, and in particular the problem of
simulating quantum systems, which quantum computers themselves are based on — the
truth value of this inequality, like many others in complexity theory, is an open problem
[1]. In general, we know relatively little about the properties of BQP and other quantum-
related complexity classes. As such, the study of classical algorithms for problems that
arise in quantum computation always has theoretical significance.

More importantly, though, currently quantum computers are still only in the develop-
ment phase. There has only been one reported case of “quantum supremacy”, i.e. a quantum
computer supposedly achieving a performance better than classical (exponential time) al-
gorithms on a specific computational task of quantum circuit simulation [2], and a fairly
controversial case at that [3, 4]. Therefore, at this point, classical algorithms for “quantum
problems” have practical significance as well. For example, classical simulation of quan-
tum computers may provide guidance to the design of both quantum software and quantum
hardware [5], and both may help us realize the goal of useful quantum computation. At
least in the short term, classical algorithms would keep playing a major role in the research
of quantum computation.

Tensor networks in quantum computation. A tensor network is a versatile mathemat-
ical object that can represent many concepts in quantum computation. In its most general
form, a tensor network is represented by a hypergraph, where each vertex represents a

1

tensor, and each (hyper)edge a tensor index1. Each edge has a dimension; whenever not
otherwise specified, we assume that all the edge dimensions are 2, meaning that each edge
can be assigned two values, either 0 or 1. Each edge can also be closed or open. The value
of a tensor network is a tensor, computed by multiplying the entries of all the tensors for
each assignment of values to the edges, and then summing over all possible values of the
closed edges. As a special case, if all the edges in a tensor network are closed, then the
value of the tensor network is a scalar.

Quantum states (pure or mixed), measurements, unitary gates, and general channels can
all be represented as tensors, and their combinations all follow the evaluation rules of ap-
propriately constructed tensor networks. The advantage of representing quantum computa-
tion as tensor network is that a tensor network can be evaluated in many ways with varying
space and time complexities, so a tensor network representation may reveal a better method
to compute a value. Furthermore, representing many different concepts as tensors allows a
unified treatment of them, making many evaluation strategies more generally applicable.

Parallelization in classical computation. The idea of parallel algorithms — breaking up
a computational task into several sub-tasks that can be completed with little to no commu-
nication in-between — probably exists even before digital computers exist. While it can
be difficult to increase the computational power of a single computing unit by increasing
the frequency, improving the instruction set, etc., it is always relatively easy to put together
many processor cores or machines for more computational power. The catch, however, is
that parallelizing an algorithm usually requires some structure in said algorithm. Some al-
gorithms are inherently serial because every step depends on the previous one. Some algo-
rithms can only be parallelized on a low level, requiring frequent communication between
sub-tasks, which makes such parallel algorithms suitable only for multi-core processors,
and not for clusters of computers.

The most ideal cases of parallel algorithms are sometimes called “embarrassingly par-
allel algorithms”, where the sub-tasks take approximately the same amount of time to com-
plete, no communication is needed between the sub-tasks except for the initial input and
the final results, and the process to aggregate the final results is simple and has negligible
space and time costs. Such algorithms can be run even on clusters with no special infras-
tructure that allows efficient communication between nodes, which would be needed for
some more communication-intensive distributed algorithms. Obviously, algorithms with
such a structure is highly desirable in the context of high performance computing.

1Note that this is different from the notation in [6], where edges are tensors and vertices are indices.

2

Overview of the thesis. This thesis describes a parallel tensor network contraction algo-
rithm designed and implemented by the author during the graduate program, together with
some variants and extensions of which the author is also involved in design and implemen-
tation. It also summarizes existing and potential applications of said algorithm in quantum
computation. The thesis can thus be divided into two parts.

The first part of the thesis introduces various aspects of the parallel tensor network con-
traction algorithm. We give a definition of tensor networks that generalizes some previous
definitions, and then define (simple) tensor network contraction, contraction orders, and
metrics that characterize “good” contraction orders. We observe that tensor networks can
be sliced to give multiple easier-to-evaluate tensor networks, which naturally gives rise to a
parallel tensor network contraction algorithm. We call the combination of a set of edges to
slice and a contraction order of the resulting tensor network a contraction scheme; the most
difficult part of our algorithm is to find a feasible contraction scheme with as low a time
cost as possible (where both algorithmic and hardware considerations may affect the time
cost). To this end, we employ and combine various optimization algorithms. Despite our
best efforts, and even though the contraction schemes we found already surpass previous
strategies by a lot, we believe that there may still exist better contraction schemes, even for
the tensor networks for which we spent a lot of time on finding them.

The second part of the thesis concerns applications of tensor network contraction in
quantum computation. The most obvious and direct application is “single-amplitude simu-
lation” of a quantum circuit, i.e. computing specific amplitudes of the output state vector of
the quantum circuit. We also identify other potential applications to the quantum approxi-
mate optimization algorithm (QAOA), and to quantum error correction.

1.2 Overview of results

1.2.1 A parallel tensor network contraction algorithm

In Chapter 3, we introduce the parallel tensor network contraction algorithm which is cen-
tral to this thesis. Tensor network contraction is a common way to evaluate a tensor net-
work, which works by repeatedly eliminating closed edges (i.e. indices that are summed
over) and combining adjacent nodes (i.e. tensors) until only a single node with open edges
is left. Different contraction orders result in different ways to evaluate the same tensor
network, usually with different time complexities and space complexities. Finding the op-
timal contraction order for a tensor network is itself a hard problem, but there are heuristic
methods to tackle this problem [7]. However, the naive implementation of tensor network

3

contraction is very difficult to parallelize, because the complicated data dependency be-
tween the tensors would usually require a lot of inter-processor communication. This can
be a bottleneck when trying to contract larger tensor networks with more classical compu-
tational resources.

The basic idea we deal with this problem, introduced in [6], is by slicing the tensor
network, i.e. splitting it into multiple simpler tensor networks that sum to the original ten-
sor network. By slicing k edges, the original tensor network will be split into 2k tensor
networks with identical structure, each with lower space and time requirements to contract
than the original. We define a contraction scheme as the combination of a list of edges to
slice, and a contraction order for the post-slicing tensor network structure. Our main goal,
therefore, is to find a feasible contraction scheme (i.e. one with a space cost low enough to
fit in the available memory) with as low a time cost as possible.

Actually finding such a good contraction scheme is still a hard problem that can only be
solved with heuristic methods. The current version of our contraction scheme finding pro-
cedure consists of hypergraph partitioning based initial contraction order finding, greedy
local optimization, and greedy dynamic slicing. Chapter 4 will show that this procedure
indeed finds good contraction schemes in practice, and thus give evidence that efficient
parallel tensor network contraction is indeed possible under this framework.

1.2.2 Classical simulation of quantum supremacy circuits

In Chapter 4, we report the results of applying our parallel tensor network contraction algo-
rithm to the task of simulating “quantum supremacy circuits”, a class of quantum circuits
that are designed to be hard to simulate classically [5, 8, 2]. This is the most direct appli-
cation of our algorithm, and indeed the one that inspired this work in the first place. The
importance of this problem mainly lies in that there have been several previous works that
attempt to solve the same task with similar methods, so it works well as a benchmark of
our algorithm.

Our experiment results show that our algorithm performs better than all comparable
classical algorithms in terms of running time. For the largest circuits considered in [2],
we achieve a 2000× speedup over our predecessor, Cotengra [9]. For smaller circuits,
our algorithm is able to do the “supremacy task” faster than the quantum device in [2],
potentially challenging the validity of their quantum supremacy claim.

In particular, we note that the methods used in both [8] and [9] fall under our paradigm
of “contraction schemes”, which was first introduced (though not explicitly defined nor
named) in [6]. The significant speedup we achieved in [10, 4] compared to those works

4

shows the advantage of dynamic slicing ([10] vs. [8]) and local optimization ([4] vs. [9]).

1.2.3 Applications to the Quantum Approximate Optimization Algo-
rithm

In Chapter 5, we investigate applications of our algorithm to the Quantum Approximate
Optimization Algorithm (QAOA) [11], one of the most promising potential applications of
near-term quantum computation devices. QAOA is based on quantum adiabatic algorithms,
but instead of simulating changing the Hamiltonian slowly, which would require a circuit
with exponentially many layers of small rotations, it uses a circuit with a reasonable number
p of layers and not necessarily small rotations, with the rotation angles being parameters
of the algorithm. By optimizing over those parameters, nontrivial results can be obtained
even with a small value of p.

The usually proposed method for optimizing the parameters is with a feedback process,
where a quantum processor tries the algorithm with different parameters and a classical al-
gorithm optimizes for the best result. However, due to the inherent randomness in quantum
computation, the classical part would have to be a stochastic optimizer, which is usually
less efficient than optimizers for deterministic functions.

In [12], we directly compute the expected value of the objective function using tensor
networks. By only considering the lightcones of each individual clause, we can efficiently
calculate the expected value for some problems and values of p. We find that our imple-
mentation of this algorithm performs better than existing software packages that solve the
same problem. In the case of small-cycle-free graphs, the speed of our implementation
allows doing the classical parameter optimization completely classically.

In addition to computing the expectation value, we also attempt to sample from the final
state with tensor networks. However, even though we are able to simulate measuring each
qubit individually, we find it infeasible to sample from the joint distribution. Therefore,
when quantum devices become available, it may make sense to still implement QAOA
as a hybrid quantum-classical algorithm, by optimizing over the parameters completely
classically, then using those parameters on a real quantum device to do the actual sampling.

1.2.4 Applications to quantum error correction

In Chapter 6, we use tensor network contraction to study quantum error correction codes.
Quantum error correction codes is an essential component for fault-tolerant quantum com-
putation, which is necessary for universal scalable quantum computation in the near future.
Hence, the study of the properties of quantum error correction codes has both theoretical

5

and practical importance. Existing theoretical analyses are usually based on simplistic error
models such as the Pauli twirling approximation, which can only give crude approximations
of the logical error rate. Realistic error models should give more precise estimations of the
logical error rate, which may provide guidance on quantum hardware design.

In [13], we study a realistic error model based on the one presented in [14], with an
important additional component, crosstalk induced by ZZ-interactions that are present be-
tween neighboring qubits even when they are idle. As our results show, crosstalk can
significantly affect the logical error rate of quantum error correction codes, potentially ne-
cessitating measures to specifically mitigate it.

We focus on the quantum error correction code Surface-17, which involves 9 data qubits
and 8 ancilla qubits. We simulate 3 rounds of error syndrome extraction, the minimum
number of rounds needed for fault tolerant error correction. Therefore, the total number of
syndrome bits measured is 8 × 3 = 24, and we can use a tensor that fits in the memory
to represent the logical error for each of the 224 results. This allows us to figure out the
optimal decoder and exactly compute the logical error rate, without resorting to Monte
Carlo sampling like is done in [14].

1.3 Dissertation outline

This dissertation is divided into seven chapters. Chapter 2 introduces some basic concepts
of quantum information, as well as a general definition of tensor networks. This is supposed
to be a minimal set of definitions and theorems to help understand this thesis. A more
comprehensive introduction of quantum information can be found in [1].

Chapter 3 introduces the concept of contraction schemes, and describes our parallel
tensor network contraction algorithm, which at its core is just a method to find a good
contraction scheme. Chapter 4 reports the benchmark results of our algorithm on “quantum
supremacy circuits”. Chapter 5 and Chapter 6 investigate applications of our algorithm to
QAOA and to quantum error correction, respectively.

Finally, in Chapter 7 we summarize these results, and briefly discuss potential future
work that can be done on this topic.

1.3.1 Works appearing

The work in Chapter 3 and Chapter 4 has been developed in a series of papers [6, 10],
culminating in [4], which is being submitted for publication. The author of this thesis
proposed dynamic slicing in a discussion with Jianxin Chen, and wrote the code for the

6

original algorithm used in [6], which was later refactored by Cupjin Huang. The author
of this thesis was also involved in profiling the program, doing benchmark experiments on
clusters, discussions regarding the improvements to the original algorithm, and writing the
paper.

The work in Chapter 5 is drawn from [12]. The author of this thesis was mainly involved
in discussions regarding the design of the experiments, and the interpretation of the results.

The work in Chapter 6 appears in [13]. The author of this thesis wrote the code to
generate the quantum circuit for a general surface code, and implemented the realistic error
model used in [14].

Other works that the author has contributed to during the Ph.D. program, but do not fit
into the theme of this thesis, can be found in [15, 16, 17, 18].

7

CHAPTER 2

Preliminaries

In this chapter, we review some basic concepts of quantum information and computation.
These definitions and theorems will be used throughout the thesis. For a more compre-
hensive introduction on those topics, we refer to [1]. We will assume that the readers are
already familiar with the basics of linear algebra and graph theory.

At the end of this chapter, we will also review the concept of tensors, and give a general
definition of tensor networks. We note that our definition of tensor networks coincides
with the so-called “Einstein summation convention” evaluated by the einsum function in
NumPy, as well as the opt_einsum package [19]. In fact, this tensor network contraction
algorithm can be regarded as a specialized implementation of einsum.

2.1 Asymptotic notations

We use the following notations to describe the growth rates of functions.

Definition 2.1 (Asymptotic notations). The notations f(n) = O(g(n)), f(n) = Ω(g(n)),
and f(n) = Θ(g(n)) are defined as follows:

• f(n) = O(g(n)) if and only if there exists n0 and c > 0 such that f(n) ≤ c · g(n))

for all n ≥ n0. This means that f grows at most as fast as g.

• f(n) = Ω(g(n)) if and only if there exists n0 and c > 0 such that f(n) ≥ c ·g(n)) for
all n ≥ n0. This means that f grows at least as fast as g. (An alternative definition
is that f(n) = Ω(g(n)) ⇐⇒ g(n) = O(f(n)).)

• f(n) = Θ(g(n)) if and only if both f = O(g(n)) and f = Ω(g(n)) hold. This means
that f grows at the same rate as g.

The big Theta notation defines an equivalence relation, and the big O notation defines a
partial order of the equivalence classes. In unusual cases, the growth rates of two functions
may not be comparable, i.e., neither f = O(g(n)) nor f = Ω(g(n)) holds.

8

Those asymptotic notations are commonly used to describe space and time complexi-
ties of algorithms, because even though the detailed implementation of an algorithm may
affect the exact amount of memory and numbers of instructions it takes, for reasonable
implementations, the difference should be no more than a constant factor, i.e., within the
same big Theta equivalence class. Therefore, asymptotic notations allows us to focus on
the “big picture” behavior of an algorithm as the input size grows, without worrying about
implementation details.

2.2 The circuit model of quantum computation

In this thesis, all instances of quantum computation, except adiabatic quantum computing
which is described in Section 5.2.2, are all based on the circuit model. In this section, we
will review the basics of quantum computation in terms of the circuit model.

2.2.1 Quantum states

The basic unit of quantum information is a qubit, just like the basic unit of classical in-
formation is a bit. Unlike in the classical case, however, the state of a quantum system
containing multiple qubits cannot always be described by a description of the state of each
individual qubit. Therefore, we will first give ways to describe the state of a quantum sys-
tem of any size (although we restrict ourselves to quantum systems of finite dimension),
then discuss how quantum systems combine with each other.

Definition 2.2 (Quantum system of finite dimension and pure state). A quantum system
A of dimension d can be in any pure state |ψ〉, which is mathematically formalized as a
d-dimensional vector with complex entries (α0, . . . , αd−1)T , such that

∑d−1
j=0 |αj|2 = 1.1

To emphasize the nature of |ψ〉 as a vector, we may call |ψ〉 a state vector. The complex
numbers α0, . . . , αd−1 are called the amplitudes of the state vector |ψ〉.

One small “catch” is that the states represented by |ψ〉 and eiθ|ψ〉 are considered the
same, even though |ψ〉 and eiθ|ψ〉 are different vectors. The reason is that, as will be seen in
Section 2.2.2, the only way to extract information from quantum states is by measurement,
and the reader can verify that none of the measurements and other operations described
below gives a way to distinguish between |ψ〉 and eiθ|ψ〉. Such a scalar prefactor like the
eiθ in eiθ|ψ〉 is called a global phase.

1We avoid using i as an index whenever complex numbers may be involved, due to the potential confusion
with the imaginary unit i =

√
−1.

9

A qubit is a quantum system of dimension d = 2, and we give special names to the two
“basis states” below:

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
.

The state |ψ〉 = (α, β)T can therefore also be written as |ψ〉 = α|0〉 + β|1〉. This can be
easily generalized to cases where d > 2. This kind of notation would be convenient for
sparse quantum states, as well as in many other cases.

Combination of quantum systems. Let A and B be two quantum systems of dimension
dA and dB, respectively, Then their combination AB is a quantum system with dimension
dAB = dAdB. If the system A and B are in the states |ψA〉 and |ψB〉 respectively, then the
state of the system AB is given by taking the tensor product of the two states, |ψA〉⊗ |ψB〉.
When there is no danger of confusion, this product is also simply written as |ψAψB〉. For
example, |00〉 = |0〉 ⊗ |0〉 = (1, 0, 0, 0)T .

A state of the system AB that can be written as the tensor product of a states of A and
a state of B is called a product state. As alluded to in the beginning of this section, there
exist pure states of AB that are not product states. A typical example is the Bell state2

|Φ+〉 = (|00〉+ |11〉)/
√

2. Such states are called entangled states.
The reader may wonder what state the system A is in when the system AB is in an

entangled state. The answer is that A is in a mixed state, which can be regarded as a prob-
abilistic mixture of pure states. An understanding of mixed states is not really necessary
in order to understand quantum computation in the circuit model, so we will defer talking
about mixed states until Section 2.2.4, in order to focus on more essential components of
the circuit model for now.

2.2.2 Computational basis measurements

One of the basic postulates of quantum information is that the state of a quantum system
is not directly observable from the outside. Instead, in order to extract information from a
quantum system, one must use measurements, which would not only generate a classical re-
sult, but also affect the quantum state of the system. There is no way to extract information
from a quantum system without disturbing its state.

The simplest kind of measurement is known as a computational basis measurement.
Suppose a system A of dimension d is in the state |ψ〉 =

∑d−1
j=0 αj|j〉. Then a computa-

tional basis measurement on A will give the classical result j with probability |αj|2, and

2There are actually four distinct states of the system composed of two qubits with similar properties that
are collectively called the Bell states, and |Φ+〉 is one of them.

10

after measurement, the quantum state of A will also become |j〉. (Since this state does
not contain any information not contained in the classical result j, there is an alternative
definition of computational basis measurement where the system A vanishes completely.)

As an aside, there is a way to represent the amplitudes αj of a state |ψ〉 without explic-
itly writing down the decomposition |ψ〉 =

∑d−1
j=0 αj|j〉. For this, we need to make use of a

new notation:

Definition 2.3 (“Bra” notation). The notation 〈ψ| is defined as the conjugate transpose of
|ψ〉. (Remember that |ψ〉 represents a column vector; thus 〈ψ| represents a row vector.)

The notation 〈ϕ|ψ〉 represents the inner product of 〈ϕ| and |ψ〉, with one vertical bar
omitted by convention. Below we list some properties of this new notation:

• For any valid quantum state |ψ〉, we have 〈ψ|ψ〉 = 1.

• For 0 ≤ j, k < d, we have 〈j|k〉 = 0 if j 6= k, and 〈j|k〉 = 1 otherwise.

• If |ψ〉 =
∑d−1

k=0 αk|k〉, then 〈j|ψ〉 =
∑d−1

k=0 αk〈j|k〉 = αj .

Therefore, the probability of measuring the state |ψ〉 and getting the result j can be repre-
sented as |〈j|ψ〉|2 = 〈j|ψ〉〈ψ|j〉.

In the case where A is a composite system, it is conventional to write the “basis state”
|j〉 as a product state |j1j2 . . . jk〉, and refer to the classical result j in the same way. For
example, when A is the system composed of two qubits, then a computational basis mea-
surement has four possible outcomes: 00, 01, 10, and 11. In general, measuring a system
composed of n qubits will give a bit string of length n.

In fact, it is possible to measure only a part of a composite system according to the
following rule. Without loss of generality, assume that we measure the system A in the
composite system AB. We can decompose the state |ψAB〉 of the system AB as:

|ψAB〉 =
d−1∑
j=0

αj(|j〉 ⊗ |ψB,j〉), 〈ψB,j|ψB,j〉 = 1.

(A state vector |ψ〉 such that 〈ψ|ψ〉 = 1 is also known as a normalized state vector.) The
probability of getting the classical result j is then again |αj|2, and the quantum state of AB
becomes |j〉 ⊗ |ψB,j〉.

One intuitive property of the above definition is that in a system composed of qubits,
measuring the whole system to get a bit string is equivalent to measuring every qubit in any
order, then putting the result bits together in an appropriate order.

11

Finally, we note that here we have only described computational basis measurements.
There are several more complicated kinds of measurements; however, in the circuit model,
they can all be represented as a combination of computational basis measurements and
other allowed operations. Therefore, they are not essential to the circuit model, and are
omitted here.

2.2.3 Unitary operations

One final essential component of quantum computation is unitary operations. Recall that a
unitary matrix is a matrix U such that U †U = I , where U † is the conjugate transpose of U .

Definition 2.4 (Unitary operation). A unitary operation that applies to a quantum system
of dimension d is represented as a d× d unitary matrix U . If the initial state of the system
is |ψ〉, then after applying the unitary operation U , the state becomes |ψ′〉 = U |ψ〉.

Note that the conjugate transpose of |ψ′〉 is 〈ψ′| = 〈ψ|U †, therefore

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 〈ψ|ψ〉 = 1.

Thus |ψ′〉 is also a valid normalized quantum state.
The sequential composition of unitary operations follows the simple rule U2(U1|ψ〉) =

(U2U1)|ψ〉, i.e. first applying U1 then applying U2 to the same system is equivalent to ap-
plying a single unitary operation, U2U1.

Similar to measurements, unitary operations can also be applied to only a part of a
composite system. Without loss of generality, assume that we apply a unitary operation U
to system A in the composite system AB. Then the rule for updating the state of AB is

|ψ′AB〉 = (U ⊗ IdB)|ψ′AB〉.

In other words, applying U to the system A is equivalent to applying U ⊗ IdB (which is
easily seen to be a dAB × dAB unitary matrix) to the system AB.

An important observation is that

(UA ⊗ IdB)(IdA ⊗ UB) = UA ⊗ UB = (IdA ⊗ UB)(UA ⊗ IdB).

Therefore, when we apply unitary operations to distinct components of a composite system,
it does not matter which one we apply first. This is consistent with our physical intuition
of local operations.

12

Circuit model. The essence of the circuit model is to build complicated unitary opera-
tions on many qubits with simple unitary operations that usually only apply on a few qubits.
Such a simple unitary operation used as a building block is also known as a unitary gate,
or a gate for short.

Definition 2.5 (Unitary circuit). A unitary circuit on n qubits is an ordered sequence of
unitary gates, each applying on a subset of those n qubits. The circuit itself represents a
unitary operation on n qubits given by sequentially composing all its gates together.

By the observation above, when two adjacent gates in a circuit apply to disjoint sets
of qubits, then those gates can be exchanged without affecting the value of the circuit.
Therefore, sometimes we divide a circuit into “layers”, or cycles, of gates that all apply to
disjoint sets of qubits, and only care about the order of the cycles. The number of cycles is
sometimes also called the depth of the circuit.

Sometimes we also consider quantum circuits in a more general sense, which are al-
lowed to contain:

• Initial states given for some or all of the qubits.

• Computational basis measurements on some or all of the qubits.

Over the course of a circuit, each qubit will have a number of gates applied to it, and
conceptually each gate change the “state” of the qubit. Even though in a circuit, the state
of all qubits should be considered as a whole, and talking about the “state” of a single qubit
may not be meaningful, we will say that each qubit is divided into m + 1 wires by the m
gates applying to it. We define an input wire as a wire corresponding to the initial state of
a qubit that is not given in the circuit, and an output wire corresponding to the final state of
a qubit that is not measured in the circuit. The rest of the wires are called internal wires.

Below, we list some commonly used gates appearing in this thesis:

H =
1√
2

(
1 1

1 −1

)
, T =

(
1 0

0 eiπ/4

)
,

√
X =

1√
2

(
1 −i
−i 1

)
,

√
Y =

1√
2

(
1 −1

1 1

)
,

√
W =

1√
2

(
1 −

√
i

√
−i 1

)
,

CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , CNOT = CX =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

13

Here the names H, CZ, CNOT, and CX are shorthands for Hadamard, controlled-Z,
controlled-NOT, and controlled-X, respectively.

Convention. It is customary to write the names of gates as though they are English words,
i.e. to typeset them in roman. In this thesis, we will typeset the names of gates in italic only
when we want to explicitly refer to the underlying unitary matrix. Therefore, we will say
“a U gate” when we talk about a gate in a circuit, but “U = · · · ” when we give its explicit
matrix representation.

Commutativity of gates. As we mentioned above, two gates applied in succession on
different components (i.e. qubits) of a composite system can switch places without affecting
the final result. Sometimes, this property holds for two specific gates even though they are
applied to the same qubit or qubits. We say that those two gates commute.

In general, two unitary operations U1 and U2 on the same system commute with each
other if U1U2 = U2U1. Sometimes the commutativity of two gates may depend on how the
set of qubits they apply to overlap. For example, a CNOT gate commutes with a T gate
applied to the first qubit, but not with a T gate applied to the second qubit.

Universality. We will note that the circuit model is a universal model of quantum com-
putation, in the sense that there exist finite sets of gates, called universal gate sets, such
that any computation physically allowed by quantum mechanics can be approximated with
gates from any such gate set to an arbitrary precision. One example of such a gate set is
{CNOT,H,T}; there are many others.

2.2.4 Mixed states and density matrices

In some cases, we would want to describe the state of a system A when it is entangled
with another system B (i.e. AB is in an entangled state). In other cases, it would be
convenient to represent a quantum system that we only have probabilistic information of
(i.e. we only know a probability distribution of the (pure) state of the system) with a single
mathematical object. It would turn out that those two situations are one and the same, and
the mathematical object we need is the density matrix.

Definition 2.6 (Density matrix and probabilistic mixture of quantum states). The state of a
quantum system can also be represented by its density matrix. If a system of dimension d
is in the pure state |ψ〉, then its density matrix is a d× d matrix given by ρ = |ψ〉〈ψ|.

14

A density matrix can also represent a probabilistic mixture of quantum states. If a
system has probability pj to be in the state ρj ,

∑
j pj = 1, then the overall density matrix

of the system is given by
∑

j pjρj .

A quantum state represented by a density matrix ρ that is not a pure state, i.e. that cannot
be written in the form ρ = |ψ〉〈ψ|, is called a mixed state.

All physical operations that can be applied to a state vector can also be applied to a
density matrix:

• If we do a computational basis measurement on a density matrix ρ, then the proba-
bility of getting the result j is given by the diagonal element 〈j|ρ|j〉 of ρ.

– This implies that the diagonal elements of a density matrix are always non-
negative, and they also sum to 1, i.e. Tr(ρ) = 1.

– More generally, if a composite system AB is in the state ρAB, then the effect of
measuring the system A can be found out as follows: First write ρ in the block
matrix form

ρAB =

dA∑
j=1

dA∑
k=1

|j〉〈k| ⊗ ρjk.

The probability of getting the result j is then Tr(ρjj), and after measurement,
the state of the system B becomes ρjj/Tr(ρjj).

• Applying a unitary U to a density matrix ρ results in ρ′ = UρU †.

Now, we can also answer the question of what the state of the system B is when the
system AB is in a general state that can be entangled (or even mixed). We again write
ρAB in the block matrix form above, and measure the system A, but immediately forget the

result. The state of B is now a probabilistic mixture3:

ρB =
n∑
j=1

Tr(ρjj)
ρjj

Tr(ρjj)
=

n∑
j=1

ρjj = TrA(ρAB),

where the notation TrA denotes partial trace over the system A. This “measure and forget”
procedure can be viewed as discarding the system A, or simply setting the system A aside
and doing nothing with it, since physically there should be no way to tell the difference.
Therefore, we will just say that ρB = TrA(ρAB) is the state of the system B.

3The first summation below is only over values of j where Tr(ρjj) 6= 0; for the second summation it does
not matter, because it can be shown that if Tr(ρjj) = 0, then ρjj = 0.

15

One final note is that apparently different probabilistic mixtures of pure states may give
the same mixed state. For example, for any single-qubit unitary U , the equal probability
mixture of U |0〉 and U |1〉 is the same as the equal probability mixture of |0〉 and |1〉:

1

2
(U |0〉)(〈0|U †) +

1

2
(U |1〉)(〈1|U †) =

1

2
UIU † =

I

2
=

1

2
|0〉〈0|+ 1

2
|1〉〈1|.

Operationally, the two mixtures are completely equivalent, so it makes sense to say that
they are really the same state.

2.3 Tensors and tensor networks

Tensors are a natural generalization of vectors and matrices. From a computational view-
point, both vectors and matrices are arrays of numbers indexed by some integer indices
— one index for a vector, and two indices for a matrix. The definition of tensors simply
generalizes the number of indices to any non-negative integer.

Definition 2.7 (Tensor [7]). An order-k tensor g = [gi1,i2,...,ik]i1,i2,...,ik is an array of num-
bers gi1,i2,...,ik , indexed by k indices i1, i2, . . . , ik, which take m1,m2, . . . ,mk values re-
spectively. The number mt is called the dimension of the index it.

As an example, scalars, vectors, and matrices can all be regarded as special cases of
tensors, with order 0, 1 and 2 respectively. For anm×nmatrixA = [Aij]ij , the dimensions
of its two indices i and j would be m and n, respectively.

In order to concisely denote a sequence of indices, we may use the notation ~i. The
range of such a “multi-index” is denoted Π(S), where S is a set of abstract indices. For
example, in the matrix example above, Π({i, j}) = {1, 2, . . . ,m} × {1, 2, . . . , n}.

A tensor network defines a “product” for a collection of tensors, as a generalization of
matrix products, etc.

Definition 2.8 (Tensor network). A tensor network is defined by a collection of input ten-
sors T , together with a list of output indices Sout. Any number of indices in the input tensors
and/or output indices can be written as the same symbol, to signify that they are regarded
as the same index. (An index must have the same dimension in every tensor it appears in.)
The value of a tensor network is a tensor g, and can be evaluated as follows:

g~i =
∑

~j∈Π(S\Sout)

∏
t∈T

t~i~j, ∀~i ∈ Π(Sout).

16

Here S is the set of all indices appearing in the input tensors and/or output indices, and
~i~j ∈ Π(S) is a concatenation that contains all indices in S, but t~i~j should be understood as
only taking those indices needed by the tensor t.

This evaluation rule may be easier to understood in the form of a naive algorithm:

1. For every possible combination of all indices appearing in the input tensors and/or
output indices, take the product of the numbers in each input tensor indexed by those
indices.

2. Sum over all indices not appearing in the output indices.

As a concrete example, a matrix product C = AB can be represented as a tensor
network Cik = AijBjk, which is evaluated as

Cik =
∑
j

AijBjk.

In the tensor network notation, the summation over the index not appearing in the output
indices, j, is implicit.

Most previous works [7] represented a tensor network as a graph, where vertices are
tensors and edges are indices. This creates an implicit limitation: Since each edge in a
graph can only be associated with two vertices, this would mean each index can only appear
twice in the summation. In some practical cases in quantum computation, this may give
rise to tensor network representations less concise than desirable.

For example, consider the matrix product C = ADB, where D is known to be a diag-
onal matrix. This kind of expression can easily arise in quantum computation, e.g. when
simulating a circuit with diagonal gates. Rather than representing D as an order-2 tensor
with off-diagonal elements equal to 0, and write

Cik = AijDjj′Bj′k,

it is more desirable to represent D as an order-1 tensor, and write

Cik = AijDjBjk.

Our definition provides enough flexibility to allow for the second more simple representa-
tion.

In order to represent such a general tensor network, it is necessary to use a hypergraph

instead of a graph.

17

Tbe =
∑
a,c,d

AacBabdCcdeDbc

A

B

C

D

Figure 2.1: Example of a tensor network and its hypergraph representation. Solid lines and
dashed lines represent closed and open edges, respectively.

Definition 2.9 (Hypergraph representation of tensor network). The hypergraph representa-

tion of a tensor network is a hypergraph G = (V,E), where each vertex v ∈ V corresponds
to a tensor in the tensor network, and each (hyper)edge e ∈ E corresponds to an index. An
edge e is associated with a vertex v if and only if the index represented by e appears in the
tensor represented by v. Edges corresponding to output indices are called open edges; the
other edges are called closed edges.

A tensor network with no open edge is called a closed tensor network for short. By
definition, a closed tensor network evaluates to an order-0 tensor, i.e. a scalar.

Figure 2.1 illustrates the correspondence between a simple example tensor network,
Tbe = AacBabdCcdeDbc, and its hypergraph representation. Notice that in the hypergraph,
the yellow hyperedge (corresponding to the index c) is associated with three vertices, and
the purple hyperedge (corresponding to the index e) is only associated with one.

Convention. In the context of quantum computation, it is a common occurrence that the
dimension of each edge is 2 (representing the two states of a qubit). Therefore, for the rest
of this proposal, unless otherwise mentioned, we assume the dimension of each edge (i.e.
each index) is 2.

18

CHAPTER 3

A parallel tensor network contraction algorithm

In this chapter, we describe a parallel tensor network contraction algorithm that allows
efficient evaluation of tensor networks on a computer cluster.

Tensor network contraction is a common way to evaluate a tensor network, which works
by repeatedly eliminating closed edges (i.e. indices that are summed over) and combining
adjacent nodes (i.e. tensors) until only a single node with open edges is left. Different
contraction orders result in different ways to evaluate the same tensor network, usually
with different time complexities and space complexities. Finding the optimal contraction
order for a tensor network is itself a hard problem, but there are heuristic methods to tackle
this problem [7]. However, the naive implementation of tensor network contraction is very
difficult to parallelize, because the complicated data dependency between the tensors would
usually require a lot of inter-processor communication. This can be a bottleneck when
trying to contract larger tensor networks with more classical computational resources.

The basic idea we deal with this problem, introduced in [6], is by slicing the tensor
network, i.e. splitting it into multiple simpler tensor networks that sum to the original ten-
sor network. By slicing k edges, the original tensor network will be split into 2k tensor
networks with identical structure, each with lower space and time requirements to contract
than the original. We define a contraction scheme as the combination of a list of edges to
slice, and a contraction order for the post-slicing tensor network structure. Our main goal,
therefore, is to find a feasible contraction scheme (i.e. one with a space cost low enough to
fit in the available memory) with as low a time cost as possible.

Actually finding such a good contraction scheme is still a hard problem that can only be
solved with heuristic methods. The current version of our contraction scheme finding pro-
cedure consists of hypergraph partitioning based initial contraction order finding, greedy
local optimization, and greedy dynamic slicing. Chapter 4 will show that this procedure
indeed finds good contraction schemes in practice, and thus give evidence that efficient
parallel tensor network contraction is indeed possible under this framework.

19

3.1 Introduction

3.1.1 Problem and motivation

Simulation of quantum systems is a problem that arose naturally with the discovery of
quantum mechanics, and the very idea of quantum computation was born from the obser-
vation that solving this problem classically seems hard. However, quantum computers are
still very much in the development phase: Only recently have there been plausible claims
of programmable quantum computers with a scaling advantage over known classical algo-
rithms on specific problems [2, 20], and it is safe to say that fault-tolerant quantum com-
puters would still require years, if not decades, to develop. Therefore, classical simulators
for quantum systems would remain useful at least in the near future, and many approaches
to them have been proposed for different kinds of quantum systems.

One promising and mathematically interesting approach is simulating quantum systems
with tensor networks, which were first proposed as a model for certain physical systems.
A method to model general quantum circuits as tensor networks is given in [7]. However,
actually evaluating those tensor networks is still a hard problem.

For the particular task of general quantum circuit simulation, most state-of-the-art sim-
ulators make use of some massively parallel computational infrastructure, whether it is a
computer cluster [8] or a supercomputer [21]. This is not a coincidence: As far as we know,
the computational cost of simulating a general quantum circuit necessarily grows exponen-
tially in the size of the circuit, and parallel computation is the most realistic way to have so
much classical computational power.

However, parallelizing quantum circuit simulation is not a trivial task. Many previous
proposals suffer from a huge communication cost, sometimes necessitating using a super-
computer instead of a much more affordable computer cluster. In this work, we try to solve
the problem of parallelization in a much less communication intensive way.

3.1.2 Tensor network contraction schemes

In Definition 2.8 (tensor networks), a naive algorithm for evaluating a tensor network is
given. However, the time complexity of the naive algorithm is often too high to be practical:
Since the definition requires iterating over every possible combination of all indices, the
time complexity is Θ(2mn), where m is the number of edges in the tensor network and
n is the number of vertices. In most cases, a lower time complexity can be achieved by
evaluating the tensor network using a contraction algorithm.

In the (hyper)graph representation of tensor networks, tensor network contraction works

20

by repeatedly “contracting” multiple vertices (i.e. tensors) into a single vertex, until only
one vertex is left. Computationally, each contraction step itself consists of evaluating a sim-
pler tensor network. The contraction algorithm is usually faster than the naive algorithm
because the numbers of edges and vertices involved in each contraction step are usually
significantly smaller than those of the entire tensor network. Detailed definitions of tensor
network contraction can be found in Section 3.2.1.

One important point about tensor network contraction is that the contraction order (also
known as the contraction path), i.e. which vertices to contract in a given contraction step, is
not unique, and indeed different contraction orders may give rise to very different space and
time complexities, which can be measured with the contraction width and the contraction

cost of the contraction order, respectively. Usually, we want to find a contraction order with
the lowest cost, with an upper bound on contraction width given by the space constraint.
This is a hard optimization problem, and the best we can do is to use heuristic algorithms
to find a relatively good order.

For very complex tensor networks, even the best known contraction order still gives
contraction width and cost that are far out of reach for single classical processors. As
mentioned at the beginning of this chapter, normally tensor network contraction is difficult
to parallelize, and thus we slice the tensor network in order to divide the contraction task
into independent sub-tasks.

Definition 3.1 (Slicing tensor networks; Definition 3.9). In a tensor network G, any edge
e with dimension m can be sliced to create m tensor networks with the same structure
(i.e. the same hypergraph), each simpler than G. The hypergraph of the resulting tensor
networks is attained by simply removing the edge e. In the ith resulting tensor network,
each vertex v that was associated with e is replaced by vi; the tensor on vi is a slice of the
tensor on v, by fixing the value of the index represented by the edge e to i.

It is straightforward to slice multiple edges in the original tensor network with dimen-
sionsm1, . . . ,mk, in order to get

∏
imi tensor networks, each with those k edges removed.

As long as each sub-task fits within the available memory for a single processor, they can be
evaluated either in parallel or sequentially depending on the resources available. The value
of the original tensor network can then be calculated by summing and/or concatenating the
results of those sub-tasks (depending on whether the edges sliced are closed edges or open
edges). We call such an evaluation strategy a contraction scheme for the tensor network.

Definition 3.2 (Contraction scheme; Definition 3.10). A contraction scheme for a tensor
networkG is defined as a set of edges to slice S = {e1, . . . , ek}, together with a contraction
order p for the tensor network after slicing, G− S.

21

3.1.3 Outline of the contraction scheme finding procedure

The current version of our contraction scheme finding procedure [4] consists of the follow-
ing components:

• Initial contraction order finding, which is currently done with a heuristic algo-
rithm based on hypergraph partitioning, an idea first introduced in [9]. Compared
with the implementation in [9], we have identified a smaller set of hyper-parameters
that affects the outcome of the heuristic procedure the most, and optimize over those
parameters with CMA-ES [22], a more effective hyper-parameter tuner for this prob-
lem.

• Local optimization, which is done by first finding the stem of a given contraction
order, then randomly taking a short segment of the stem and finding the optimal
contraction order of the corresponding tensor network, which has a small number of
nodes but a high contraction cost. We repeat this procedure for a reasonable number
of times to efficiently reduce the cost of a given contraction order.

• Dynamic slicing, which is a simple but effective greedy algorithm that, given a con-
traction order, finds one edge to slice that would reduce the contraction cost the most,
repeating until the resulting contraction scheme is feasible. In the current version, we
also do a round of local optimization after slicing each edge, which keeps the contrac-
tion order highly optimized and makes the dynamic slicing procedure more efficient
overall.

In addition, we found it necessary in practice to account for peculiarities of the un-
derlying hardware implementation of a single contraction step, especially when trying to
leverage the computational power of GPUs. In some cases, it is necessary to make small
modification to the final contraction order, sacrificing some “theoretical” time cost to make
the best use of GPU kernels, ultimately reducing the real running time of the contraction.

This chapter will focus on describing our algorithm itself, with only a little discussion
about its performance on concrete tensor networks that arise in practice. Chapter 4 will
give some benchmark results of our algorithm on such tensor networks.

22

3.2 Preliminaries

3.2.1 Tensor network contraction

To give a general definition of tensor network contraction, we first define sub-networks of
tensor networks.

Definition 3.3 (Sub-network). A tensor network G′ = (V ′, E ′) is a sub-network of another
tensor network G = (V,E) if the following conditions are satisfied:

• V ′ ⊆ V .

• E ′ = {e ∩ V ′ | e ∈ E} \ {∅} (i.e. G′ contains all edges of G associated with at least
one vertex in V ′, restricted to V ′).

• All closed edges of G′ are closed edges of G that falls inside V ′ completely.

In order to succinctly describe commonly used sub-networks, we also define the con-
cept of induced sub-networks.

Definition 3.4 (Induced sub-network). A sub-network of G = (V,E) induced by a set
of vertices V ′ ⊆ V is the sub-network that contains exactly those vertices in V ′, and as
many closed edges as possible. In other words, all closed edges of G that falls inside V ′

completely are closed edges of the induced sub-network.
A sub-network of G = (V,E) induced by a closed edge e ∈ E is the smallest sub-

network that contains e as the only closed edge. In other words, the induced sub-network
contains exactly all vertices associated with e (and all other edges associated with those
vertices as open edges).

Now we can define tensor network contraction steps, and prove that they preserve the
value of the tensor network.

Definition 3.5 (Contraction step). In a tensor network G, any sub-network H with n ver-
tices can be contracted, to create a new tensor network G′ with n − 1 fewer vertices than
G. To contract a sub-network H , simply replace it with a single tensor (i.e. a single vertex)
that results from evaluating H . All closed edges of H are removed.

A simple example of tensor network contraction is given in Figure 3.1 (b). We will use
the notation G H−→ G′ to represent single contraction steps.

Theorem 3.1. If G H−→ G′, then G and G′ have the same value.

23

A

B

C

D

S

C

D

A(i)

B

C(i)

D(i)

Tbe = AacBabdCcdeDbc Tbe = SbcdCcdeDbc T
(i)
be = A

(i)
a BabdC

(i)
deD

(i)
b

Sbcd = AacBabd T = T (0) + T (1)

(a) (b) (c)

Figure 3.1: Examples of tensor network contraction and tensor network slicing. (a) The
same example tensor network as in Figure 2.1. (b) Contracting the sub-network induced
by the vertex set {A,B}. The blue edge (i.e. the index a) is eliminated from the main
tensor network, as the implicit sum on a is now in the expression for S, rather than in the
expression for T . (c) Slicing the yellow edge (i.e. the index c). The structure of the tensor
network is greatly simplified, but the hypergraph actually represents two tensor networks
T (0) and T (1) that both need to be evaluated.

Proof. Let G = (V,E) and H = (VH , EH). Denote the values of G, G′ and H as g, g′ and
h respectively, and noticing that closed edges of H cannot be associated with vertices in
V \ VH , we have:

g~i =
∑

~j∈Π(Eclosed)

∏
v∈V

v~i~j

=
∑

~j∈Π(Eclosed)

 ∏
v∈V \V ′

v~i~j

(∏
v∈V ′

v~i~j

)

=
∑

~j∈Π(Eclosed\EH,closed)

 ∏
v∈V \V ′

v~i~j

 ∑
~j′∈Π(EH,closed)

∏
v∈VH

v~i~j~j′

=

∑
~j∈Π(Eclosed\EH,closed)

 ∏
v∈V \V ′

v~i~j

h~i~j

= g′~i.

A complete tensor network contraction procedure consists of iteratively contracting rel-
atively small sub-networks until there is only one tensor left. The space and time complex-
ities of a contracting algorithm are generally much lower than those of the naive algorithm,

24

and they depend very much on the contraction order (also known as the contraction path),
i.e. sequence of sub-networks contracted.

Definition 3.6 (Contraction order). A contraction order for a tensor network G is a se-
quence of tensor networks p = (H1, . . . , Ht), such that

G = G0
H1−→ G1

H2−→ G2
H3−→ · · · Ht−→ Gt

is a valid sequence of contraction steps, and Gt only consists of a single tensor.

We have made our definition as general as possible, in order to cover multiple different
definitions of contraction used in previous works. For example, the contraction in [6] can
be regarded as edge contraction, where every Hi (except for the final one) is a sub-network
of Gi−1 induced by an edge.

In this work, we will focus on pairwise contraction orders, where each Hi is a sub-
network of Gi−1 induced by a set of exactly two vertices.

Contraction cost. In [7], the treewidth of a tensor network is used to give an upper bound
on the time complexity of tensor network contraction, TO(1) exp[O(d)], where d is the
treewidth and T is the size of the tensor network. Indeed, in our model, for pure contrac-
tion algorithms, and for an appropriate definition of d, O(2d) is a lower bound for the time
complexity, so the upper bound TO(1)O(2d) is tight up to a polynomial prefactor. However,
we find that, in useful practical cases, 2d is usually already large, so the polynomial pref-
actor actually matters significantly. Furthermore, using d only does not give a fine-grained
enough metric to differentiate between contraction orders with similar, but still noticeably
different, contraction costs. Therefore, we define a contraction cost that allows better esti-
mation of the time complexity of a particular contraction order.

Definition 3.7 (Contraction cost). The contraction cost c of a given contraction order p =

(H1, . . . , Ht) for a tensor network G is defined as

c =
t∑
i=1

2di , where di = |EHi |.

(Here we make use of the assumption that the dimension of each edge is 2. Otherwise,
2di needs to be replaced by the product of the dimensions of all edges in Hi.)

The contraction cost reflects a rough estimate of the time complexity of a general con-
traction order p, by using the naive algorithm for each step. In particular, when p is a
pairwise contraction order, then the estimate is tight up to a constant factor.

25

We note that the cost function used in [6], which only adds up the sizes of the output

tensor from each step, has exactly half the value of the contraction cost as defined above.
The reason is that, since [6] uses edge contraction, each Hi will have exactly one closed
edge (with dimension 2), and the size of the output tensor is the product of the dimensions
of all open edges. Even though [6] did not use the naive algorithm for each step (in fact,
each step was done with the library function numpy.einsum, which itself uses a contrac-
tion algorithm on the sub-network), this ensures that the contraction cost is a lower bound
on the time complexity of the edge contraction procedure.

Contraction width. Apart from lower bounding the time cost of each contraction step,
the size of each output tensor also lower bounds the space cost of the contraction step,
which is also important in determining the feasibility of a contraction order. In fact, we
will estimate the space cost of a contraction order using the contraction width, defined as
follows:

Definition 3.8 (Contraction width). The contraction width w of a given contraction order
p = (H1, . . . , Ht) for a tensor network G is defined as

c =
t

max
i=1

d′i, where d′i = |EHi,open|.

(Again, we make use of the assumption that the dimension of each edge is 2. Otherwise,
the dimensions would also need to be taken into account; a reasonable approach would be
to let d′i be the sum of the base-2 logarithm of the open edges in Hi.)

Obviously, Θ(2w) is a lower bound for the space complexity of the contraction pro-
cedure. A more precise estimate could be computed by considering all the tensors at the
end of each contraction step that would be needed later. However, in practice, we find it
cumbersome and largely unnecessary to consider such details, because for most reason-
able contraction orders, the space complexity is dominated by Θ(2w). Furthermore, since
whenever w increases by 1, 2w doubles, practically w alone determines the feasibility of a
contraction order.

Finally we note that, although sometimes there is a trade-off between the contraction
cost c and the contraction width w, in general, a contraction order with a low cost will also
have a low width, and vice versa. This is because both values are primarily determined
by the sizes of the largest sub-networks involved in the contraction procedure, so methods
that help decrease one of them usually would also help decrease the other. Therefore, we
may simply refer to a contraction order with a low cost or width as a “good” contraction

26

order, without specifying whether it is optimized with respect to cost, width, or a combina-
tion thereof. This is also why the dynamic slicing algorithm described in Section 3.5 can
efficiently decrease the contraction width, even though it only considers the contraction
cost.

3.2.2 Parallel contraction schemes

A tensor network contraction algorithm is usually difficult to parallelize without incurring
a large communication cost. The reasons are:

• Each contraction step will usually depend on most, if not all, of the results of the con-
traction steps before it, so parallelization on the level of contraction steps is unlikely
to be helpful.

• Within a contraction step, the computation may be easily parallelized by having each
processor compute a different part of the output tensor. However, subsequent steps
are likely to require each processor to have the full data of that tensor, or have the data
sliced in a different way. Therefore, a large communication cost would be required.

However, we note that the naive tensor network evaluation algorithm is easy to paral-
lelize, either by slicing the output tensor as mentioned in the second point above, or, if the
output tensor is small (e.g. when the output is a scalar, it cannot be sliced itself), by having
each processor compute and sum up a part of the summands in the definition, and finally
taking the sum of the outputs of each processor. Since the output tensor is small, the second
approach would only need a small amount of communication.

Of course, those approaches may not necessarily show an advantage over (non-parallel)
contraction algorithms, since the time complexity of the naive algorithm may be huge.
However, we further observe that, if the task is sliced “along one or more indices”, then
each resulting sub-task can still be described as a tensor network evaluation task, which
can then be solved by contraction. If the time complexity of each sub-task is significantly
lower than the original task, then we would have successfully accelerated the evaluation of
the original tensor network by parallelization; and if the space complexity is significantly
lower, then the parallel algorithm may be feasible even though the original contraction task
is not feasible at all due to memory limits.

This idea for parallelization can be easily described in the hypergraph model as “slic-
ing” (i.e. removing) edges. A simple example is given in Figure 3.1 (c).

27

Definition 3.9 (Slicing tensor networks). In a tensor networkG, any edge ewith dimension
m can be sliced to create m tensor networks with the same structure (i.e. the same hyper-
graph), each simpler than G. The hypergraph of the resulting tensor networks is attained
by simply removing the edge e. In the ith resulting tensor network, each vertex v that was
associated with e is replaced by vi; the tensor on vi is a slice of the tensor on v, by fixing
the value of the index represented by the edge e to i.

As mentioned above, a tensor network can be evaluated by evaluating all the tensor
networks resulting from a slice, then either concatenating the results (if the slice is of an
open edge) or adding the results (if it is of a closed edge). Since m is usually a small
number, we usually need to slice the tensor network multiple times, which corresponds to
removing multiple edges from the hypergraph. In fact, by our convention, m = 2 for each
sliced edge, so k slices are needed to divide the original contraction task into 2k sub-tasks.

We will call such a tensor network evaluation strategy — slicing it into multiple sub-
tasks, then using contraction for each sub-task — a contraction scheme.

Definition 3.10 (Contraction scheme). A contraction scheme for a tensor network G is
defined as a set of edges to slice S = {e1, . . . , ek}, together with a contraction order p for
the tensor network after slicing, G− S.

The contraction cost of a contraction scheme is defined as 2kc, where c is the contraction
cost of the final contraction order p. The contraction width of a contraction scheme is the
same as that of the contraction order p.

In the above definition, we define the contraction cost of a contraction scheme as the
total cost of all sub-tasks, which can then be evenly distributed among all available pro-
cessors. This allows dividing the task into more sub-tasks than available processors, which
is frequently necessary because in many cases the space complexity is the bottleneck. The
contraction width of a contraction scheme simply quantifies the amount of memory needed
for a single sub-task, i.e. on a single processor.

3.2.3 Tree decomposition and treewidth

The treewidth of a graph is a number that characterizes how far the graph is from a tree.
Many algorithms in graph theory that has exponential time complexity in general — in-
cluding tensor network contraction — becomes polynomial time if the input graph has low
treewidth. It is closely related to the contraction cost and the contraction width defined in
the previous sections (See Section 3.3.1 for details), and a previous version of our contrac-
tion order finding procedure makes use of it. Therefore, we will give the definition of the
treewidth in this section.

28

The treewidth is usually defined in terms of tree decompositions of a graph.

Definition 3.11 (Tree decomposition). A tree decomposition of a graph G = (V,E) is a
tree T where each vertex is a subset of V (called a “bag”), satisfying the below properties:

• For each vertex v ∈ V , the bags that contain v form a nonempty connected subtree
of T .

• For each edge e = (u, v) ∈ E, there exists a bag that contains both u and v.

The width of a tree decomposition is the size of the largest bag minus one.

Definition 3.12 (Treewidth). The treewidth of a graph G is the minimum width among all
tree decompositions of G.

We note that:

• Every graph G has at least one valid tree decomposition. For example, the trivial tree
decomposition where a single bag contains all vertices of G is always valid. This
means that the treewidth of G = (V,E) is at most |V | − 1.

• The treewidth of a graphGwith at least one edge is at least 1 (i.e. minimum of largest
bag size is 2), and this is achieved when G is a forest.

• More generally, a graph containing a clique of size k has treewidth at least k − 1. In
fact, the clique must be entirely contained in at least one bag, as proved below.

Theorem 3.2. If a graph G contains a clique C = {v1, . . . , vk} of size k, then in any tree

decomposition of G there must be a bag containing all of v1, . . . , vk.

Proof. The proof is by induction on k. The base cases k = 1 and k = 2 are true by the
requirements that the bags that contain v1 form a nonempty connected subtree and that the
edge (v1, v2) must appear in a single bag, respectively.

Suppose k ≥ 3. By induction hypothesis, there must exist bags X1, X2, X3 such that

C \ {v1} ⊆ X1, C \ {v2} ⊆ X2, C \ {v3} ⊆ X3.

Therefore, each vertex in C is in at least two of X1, X2, X3. By the properties of the tree
decomposition, if v ∈ Xi ∩ Xj , then v must also be in all the bags on the path between
Xi and Xj . Since the tree decomposition is a tree, the paths between X1 and X2, between
X1 and X3, and between X2 and X3 must intersect at at least one bag, X . Thus, X must
contain all vertices in C.

29

3.3 Initial contraction order finding

Even though when evaluating a tensor network with a parallel contraction scheme we do
not need a contraction order for the original tensor network, a good initial contraction
order may still be helpful when trying to find a good contraction scheme. In particular,
the dynamic slicing procedure described in Section 3.5 requires a good initial contraction
order to begin with. Therefore, our contraction scheme finding procedure begins with initial
contraction order finding.

One of the problems with tensor network contraction is that it may be hard to find
a contraction order with low enough cost. Indeed, it has been shown that a closely re-
lated quantity, the treewidth of a graph, is NP-hard to compute [23], and we see no reason
that finding the minimum (pairwise) contraction cost or contraction width of a hypergraph
would be any easier. Therefore, the best we could hope for is to have a heuristic algorithm
that finds a contraction order that is “good enough”, similar to what people usually use in
the case of treewidth [24, 25].

3.3.1 Initial contraction orders based on treewidth algorithms

In fact, many heuristic treewidth algorithms, such as those in [24, 25], are directly applica-
ble to contraction order finding. These algorithms all find an explicit upper bound of the
treewidth of a graph by producing an elimination order or tree decomposition. When they
are given the line graph of a tensor network, the elimination order or tree decomposition
would allow constructing an edge contraction order with contraction width equal to the up-
per bound of treewidth found for the line graph. In general, the better (i.e. lower) the upper
bound is, the better the contraction order found this way will be.

The line graph (also known as the “edge-to-vertex dual”) of a hypergraph is defined as
follows.

Definition 3.13 (Line graph). The line graph of a hypergraph G = (V,E) is an (ordinary)
graph G′ = (V ′, E ′), where

V ′ = E, E ′ = {(e1, e2) ∈ E × E | e1 ∩ e2 6= ∅}.

This definition gives a transformation on a hypergraph that transforms edges into ver-
tices, which is a natural idea because in tensor network contraction edges are eliminated
(and vertices are combined), while the treewidth is related to vertex elimination orders, as
defined below.

30

Definition 3.14 (Vertex elimination orders; adapted from Definition 2.3 from [24] (perfect
elimination ordering)). A vertex elimination order for a graph G is simply an ordering of
all vertices in G. It describes an iterative process where in each round one vertex v in G
is removed, and the neighborhood of v replaced by a clique (i.e. edges are added between
every pair of neighbors of v). The final degree of a vertex v is the degree of v when it is
eliminated in this process.

The width of a vertex elimination order is the maximum final degree among all vertices.

Theorem 3.3. For any graph G, if G has a vertex elimination order with width w, then G

also has a tree decomposition with width at most w, and vice versa.

Proof. The proof in both directions is by induction on the number of vertices. Both direc-
tions are trivially true for the null graph.

Suppose that a vertex elimination order of G with width w begins with the vertex v,
and the maximum final degree among all vertices other than v is w′. Then by induction
hypothesis, there exists a tree decomposition of the graph G′, which is the graph that arises
after eliminating v from G, with width w′. Now, since N(v), the neighborhood of v, forms
a clique inG′, there exists a bagX ′ in said tree decomposition such thatN(v) ⊆ X ′. Create
a new bag X = {v} ∪ N(v), and attach it to X ′ in the tree decomposition. The result is a
tree decomposition of G with width max(|X| − 1, w′) = max(|N(v)|, w′) = w.

Conversely, consider a tree decomposition ofGwith width w, and take any leafX from
the tree. Let X ′ be the only neighbor of X , if any; otherwise (when the tree decomposition
only consists of one bag) let X = ∅. There are two cases:

• X ⊆ X ′. In this case, removing the bag X from the tree decomposition still results
in a valid tree decomposition of G, and we can repeat this process.

• There exists a v such that v ∈ X and v /∈ X ′. Since the set of bags v is in must be
connected, it follows thatX is the only bag that contains v, and thus {v}∪N(v) ⊆ X .
Therefore, the degree of v is at most w, and after eliminating v from G, simply
deleting v from X gives a valid tree decomposition for the new graph.

By induction hypothesis, after eliminating one vertex, we can find a vertex elimination
order for the rest of the graph with width at most w. Therefore, this process gives a vertex
elimination order for G with width at most w.

It is straightforward to see the relation between edge contraction orders of a closed
tensor network and vertex elimination orders of its line graph. Contracting an edge e in the
tensor network creates a new vertex associated with all edges that share a vertex with e,

31

which is equivalent to eliminating the corresponding vertex in the line graph and changing
its neighborhood into a clique. The contraction width trivially corresponds with the width
of the vertex elimination order.

The algorithms in [24, 25] outputs a vertex elimination order and a tree decomposition
respectively. Since all the proofs above are constructive, it is easy to transform those into
contraction orders for closed tensor networks. In fact, this approach also works for open
tensor networks with a simple modification, by regarding the designation of open edges
as an extra vertex in the hypergraph, i.e. connecting each pair of vertices in the line graph
corresponding to open edges. We omit the detailed derivation, which is similar to the proofs
above.

Limitations of initial contraction orders based on treewidth algorithms. We used ini-
tial contraction orders based on treewidth algorithms in [6, 10], with fairly good results.
However, in addition to being limited by the performance of treewidth algorithms, this
approach has some inherent problems.

• First, it optimizes the contraction width w, but not the contraction cost c. Even
though in general (especially for edge contraction orders) those metrics agree with
each other, there is the danger of ending up with a “flat” contraction order with more
contractions involving large tensors than necessary.

– Empirically, the treewidth algorithms we used are actually surprisingly good
in this regard, producing solutions with the ratio c/2w significantly lower than
“regular” orders, such as the vertical order used in [5]. We conjecture the reason
is that the min-fill heuristic [24] used in those implementations for the initial
solution already tends to give solutions with low contraction costs. However, in
this regard, they still compare unfavorably with a specialized contraction cost
optimizer like the one in [9].

• Second, it produces an edge contraction order, for which the contraction cost is only
a rough estimate of the running time. Furthermore, there are examples of tensor
networks where edge contraction cannot give the best contraction width (whereas
pairwise contraction can), meaning that this approach is not necessarily good in terms
of the space complexity either.

32

3.3.2 Initial contraction orders based on hypergraph partitioning

The shortcomings mentioned above motivate researchers to find heuristic optimization al-
gorithms specifically designed for contraction orders that does not depend on treewidth
algorithms. One such algorithm based on hypergraph partitioning is introduced in [9].

The algorithm in [9] is essentially a greedy algorithm, where the idea is to first (approx-
imately) optimize the cost of the last contraction step or steps, then consider how to get to
the tensors involved in those last steps. Notice that those tensors must come from contract-
ing disjoint sets of tensors (i.e. vertices) in the original tensor network, so in fact we can use
the same idea on each of those tensors. This gives rise to a top-down divide-and-conquer
strategy that we can keep using all the way down to the input tensors — or in practice, until
the tensor network to contract is so small that its cost is almost negligible compared to the
original tensor network, at which point we can just use a simple bottom-up greedy strategy
to get a reasonable contraction order.

Of course, if we allow all potential “last steps”, then the ones with the lowest cost
are usually the ones where a small tensor is contracted with the rest of the network, from
which most of the closed edges are already eliminated. That would mean many potential
choices would be tied for the lowest cost, and a greedy strategy would not guide our choice.
Moreover, that would also go against the intuition of a top-down strategy, since we would
start with the easy contractions and leave the difficult problems for later.

As shown in [9], a heuristic way to solve this problem is by adding a balance con-

straint. More precisely, at each step, when we partition the set V of all vertices of the
tensor network into k partitions V1, . . . , Vk, we set a parameter ε ∈ [0, k − 1], and ask that

|Vi| ≤
⌈

(1 + ε)
|V |
k

⌉
, i = 1, . . . , k.

Not only does this force a top-down structure, the resulting problem for each step also
coincides with the existing problem of hypergraph partitioning [26, 27]. Of course, the
latter problem is still a hard problem, but again heuristic algorithms are given in [26, 27]
that gives reasonably good solutions for typical hypergraphs. Those algorithms are exactly
what the contraction order finding procedure in [9] is based on.

There are still a few details that need to be filled in for the above approach. First, when
the partitioning algorithm divides the hypergraph into k > 2 partitions, we need to find a
way to contract those k tensors together in order to get a pairwise contraction order. Since
k is chosen to be relatively small, this task can be delegated to opt_einsum [19], with
either an exhaustive search with the help of dynamic programming when k is really small,

33

or a simpler greedy approach when k is larger.
Second, in a “real-life” tensor network, there are usually a lot of small tensors (e.g. di-

agonal matrices) that can be easily “absorbed” into adjacent tensors without increasing their
tensor order or complicating the tensor network in any other way. Such small tensors make
the hypergraph partitioning procedure slower, and also may skew the balance constraint.
Therefore, we follow [9] in simplifying the tensor network beforehand, by contracting such
tensors with their neighbors before beginning the partitioning procedure.

Third, and most importantly, the values of the parameters k and ε need to be determined
for each partitioning step. This is where our initial contraction order finding procedure
diverges from [9] the most. In the implementation of [9], the following rules are used to
determine the values of k and ε at each step:

• The number of parts k is initially k0, and decays in a complex way according to
the size of the tensor network currently considered, the size of the original tensor
network, and a decay parameter β. The minimum value of k is 2.

• The imbalance parameter ε is determined by a global imbalance parameter ε0 ∈
[0, 1], with the simple formula ε = kε0.

The hyper-parameters k0, β, and ε0 are then tuned using “a combination of randomization
and Bayesian optimization [28]”. The optimization also involves a number of other param-
eters, like the cutoff at which to stop partitioning and use a simpler greedy algorithm, which
variant of the partitioning algorithm to use ([26] vs. [27]), and how to take edge dimensions
into account. We find that those other parameters are either irrelevant for a typical tensor
network arising in quantum computation (which usually has dimension 2 for all the edges),
or does not end up matter much in terms of minimizing the contraction cost.

In our experiments, we also noticed that partition step at the top-level is significantly
different from all the others. The reason is that the tensor network we want to evaluate is
usually either a closed tensor network, or one with only a few open edges. On the other
hand, after the first partition step, there are usually many open edges in the larger parts
of the tensor network that needs further partitioning. That makes it clear which small
tensors can be stripped without affecting the overall structure of contraction, so the balance
constraint is less necessary. Therefore, we use different rules to determine k and ε for the
top-level partition step and all the others:

• For the top level, k is still set to k0, and ε is calculated as ε = (k − 1)ε0. (This is
because, as mentioned above, the reasonable range of ε is [0, k−1] rather than [0, k].)

34

• For all other partition steps, k is fixed at 2, i.e. we do bi-partitioning for all steps
except for the top-level one. We also use a different imbalance parameter ε = ε1.

Furthermore, to optimize over ε0 and ε1, we use CMA-ES [22], which is a more recent
and more effective stochastic optimizer than the Bayesian optimizer used in [9]. We also
decide that, since k0 is a discrete parameter with relatively few reasonable values, it is not
suitable to be tuned with the hyper-parameter tuner. Instead, for each run of the algorithm,
we enumerate small values of k0 starting from 3, and find the one that gives the most
optimal contraction cost. We take advantage of the computer we run our algorithm on,
which has 28 CPU cores, to run the partitioning procedure in parallel for those different
values of k.

3.4 Local optimization

The heuristic approach described in the last section still only gives a rough contraction order
that may be easily improvable, even locally. We regard local optimization as an individual
component of our algorithm, because it is used not only to refine the initial contraction
order, but also during the dynamic slicing procedure in order to refine the contraction order
for the sub-tasks.

In order to describe our local optimization algorithm, it is conceptually easier to con-
sider the contraction order as a contraction tree, a representation which is actually already
implicit in the partition-based initial order finding algorithm.

Definition 3.15 (Contraction tree). Every contraction order for a tensor network G can be
transformed into a contraction tree, a rooted tree where each leaf represents an input tensor,
and each internal node represents a contraction step. It can be defined recursively:

• If the contraction order is trivial (i.e. consists of zero steps), then the contraction tree
has only one node representing the only input tensor.

• If the contraction order ends with the contraction Gt−1
Ht−→ Gt, where Ht = Gt−1,

then the root of the contraction tree represents the contraction of Ht, and its children
represents the tensors in Ht. Each immediate subtree is a contraction tree for all the
contraction steps needed to get the corresponding tensor in Ht.

In particular, for a pairwise contraction order, the corresponding contraction tree will
be a regular binary tree.

Compared with the contraction order, the contraction tree loses some information in
that the order between independent contraction steps (i.e. those in disjoint subtrees) is not

35

specified. This is not very important: The exact amount of memory used may be slightly
affected, but the contraction cost and the contraction width remains the same.

The main advantage of the contraction tree is that “local” segments of the contraction
procedure is more evident. Take any connected subgraph of the contraction tree that forms
a regular binary tree. The subgraph can be viewed as a contraction tree. In fact, the original
contraction order can be easily reordered such that all contraction steps corresponding to
internal nodes of the subgraph are performed consecutively. Therefore, if we can find a
contraction order for the underlying smaller tensor network with a lower cost, then we can
reduce the contraction cost of the original contraction order.

For finding the optimal contraction order for the smaller tensor network, we again use
the dynamic programming method implemented in opt_einsum [19]. It can find the
optimal contraction order for tensor networks with up to 14 vertices. Therefore, when
finding subgraphs from the original contraction tree, we limit ourselves to regular binary
trees with up to 13 internal vertices and 14 leaves.

One final problem is which subgraphs to do local optimization on. For a tensor network
with hundreds to thousands of tensors, there are many such subgraphs possible, and it
would be infeasible to run the dynamic programming method on them all. In choosing the
subgraphs, we take into consideration that:

• The parts of the contraction tree we want to optimize the most is the ones that con-
tribute the most to the contraction cost. There is no need to optimize a part that has
negligible cost compared to the total cost to begin with.

• We want those subgraphs to cover as much of the contraction tree as possible. There
may be local segments with as few as 2 internal vertices and 3 leaves that has a more
cost-efficient contraction order, and the more we cover, the more likely we are to find
those.

• We do not want those subgraphs to overlap. On one hand, for a fixed number of
subgraphs, the less the overlap, the more the coverage. On the other hand, non-
overlapping subgraphs are also more convenient to implement, because the program
can first find all the subgraphs, then local optimize all of them (potentially in parallel)
without worrying that the results will interfere with each other.

Based on those considerations, we use the following procedure to find the subgraphs
for local optimization:

• We scan through the contraction order in reverse. For each contraction step s we
encounter:

36

– Build an initial subgraph T that contains s as the only internal node, and the
two children of s as the only leaves.

– Choose a leaf from T that corresponds to the largest tensor. If the order of that
tensor is larger or equal to a threshold (chosen to be 7 in our program), and that
leaf is an internal node in the original contraction tree, then we change the leaf
into an internal node, and add both its children into T as new leaves.

– Repeat the previous step until the size of T is already the maximum that can be
handled (i.e. 13 internal nodes and 14 leaves), or we cannot change the leaf into
an internal node according to the previous rule.

• Continue scanning through the contraction order, ignoring any contraction step that
has already been chosen as an internal node in a previous subgraph.

• Do local optimization on all subgraphs found this way.

We call the above procedure a local optimization round, and do multiple such rounds
to locally optimize a contraction order. In order to cover as much of the contraction tree
as possible, especially when the previous local optimization round results in little or no
change, we further modify the procedure by choosing a random offset between 0 and 12,
and skip over that many leaves to change to internal nodes at the beginning of each local
optimization round. That helps each local optimization round to find different subgraphs
that cover the contraction tree more thoroughly.

The number of local optimization rounds we use varies throughout the overall algo-
rithm. Namely, we do 20 rounds before greedily slicing each edge as described in Sec-
tion 3.5 (including immediately after finding the initial contraction order), and then 100
more rounds for the contraction order to be used in the final contraction scheme.

3.5 Dynamic slicing

The two previous sections have been focused on finding contraction orders for a single
tensor network. In order to make use of our parallel tensor network contraction algorithm,
we need a contraction scheme, which consists of not only a contraction order for the tensor
network after slicing, but also a set of edges to slice. Therefore, finding good choices of
edges to slice is as important as finding a contraction order for the resulting tensor networks.

One basic point to keep in mind is that slicing an edge will not save time complexity,
only divide it into more manageable pieces.

37

Theorem 3.4. Let G be a tensor network, and G− e be the tensor network resulting from

slicing an edge e (with edge dimension 2) in G. Let c and c′ be the minimum pairwise

contraction cost for G and G− e, respectively. Then 2c′ ≥ c.

Proof. Suppose that p′ is a contraction order for G − e with contraction cost c′. Then we
can construct a contraction order p forG by simply contracting the same tensors as p′. Each
contraction step in p will either involve one more edge than the corresponding contraction
step in p′ (if e is involved), or the same number of edges (if e is not involved). Therefore,
the cost of each single step in p would either be twice the cost of the corresponding step
in p′, or the same cost. Let the cost of p be c0, then c0 ≤ 2c′, and since c is the minimum
pairwise contraction cost, we have c ≤ c0. Thus, we have 2c′ ≥ c.

Corollary 3.1. Let G be a tensor network, and c be the minimum pairwise contraction cost

for G. Then every pairwise contraction scheme for G has contraction cost at least c.

Proof. Suppose that the set of edges to slice is S in a given contraction scheme, and let
k = |S| be the number of edges sliced. For i = 1, . . . , k, let ci be the minimum pairwise
contraction cost of the tensor network resulting from removing the first i edges of S from
G. Then we have 2kck ≥ 2k−1ck−1 ≥ · · · ≥ 2c1 ≥ c.

Therefore, the best we could hope for is that 2kck be as close to c as possible. In practice,
we cannot know the actual minimum cost, so we usually take c to be the cost of the initial
contraction order we found, and define the efficiency of a contraction scheme as c′/c, where
c′ is the total cost of the contraction scheme. This is not a very scientific definition, and
in unusual cases, the efficiency calculated this way may be higher than 100% because the
initial contraction order is not optimal, but it does give a way to assess how efficient it is to
slice edges according to a given contraction scheme.

Finding the optimal set of edges to slice is probably as difficult as, if not more difficult
than, finding the optimal contraction order. One strategy is to manually inspect the tensor
network, and choose edges to slice according to a pattern that seems to help reduce the
contraction cost and the contraction width. In fact, this is the strategy used in [8]. Since
the edges to slice are chosen manually beforehand, we call this strategy static slicing. The
problems with static slicing are:

• By definition, it involves human work, and cannot be fully automated. This may be
fine when evaluating many tensor networks with the same structure, but would be
problematic if one want to contract tensor networks with different structures.

• It is difficult for a human to visualize the optimal contraction order for a hypergraph,
and thus even more difficult for a human to choose good edges to slice. In Chapter 4,

38

we will show that the contraction schemes used in [8] is not close to the most efficient
possible for that tensor network.

In [6], we proposed using a greedy algorithm to heuristically and dynamically find good
edges to slice. Later papers like [10, 9, 4] all adapted the same basic idea of greedy dynamic
slicing, with only minor modifications.

The basic idea is simple: Starting from a tensor networkG, we try removing each single
edge e, find out the optimal contraction cost for each resulting graph G− e, and select the
edge that give the lowest contraction cost to slice. Repeat this process to slice more edges,
until the final contraction order is feasible in terms of contraction width.

Of course, in practice, we cannot find out the objectively optimal contraction cost for
anything. We can only heuristically find good contraction orders, and even a reasonably
good contraction order may take a moderately long time; therefore, doing so separately for
each edge in a graph may be impractical.

The strategy we actually use is to just find a contraction order forG, and use it for every
G − e, like in the proof of Theorem 3.4. Empirically, we observe that a good contraction
order for G is usually also a good enough contraction order for G− e. This is exactly why
our algorithm needs an initial contraction order to begin with.

In summary, the procedure we use now for finding contraction schemes for tensor net-
work G is as follows:

1. Use the partition-based algorithm described in Section 3.3.2 to find an initial con-
traction order p for G.

2. Repeat the following steps until the desired number of sub-tasks is reached, or until
the contraction width for each sub-task is low enough:

(a) Run 20 rounds of local optimization to improve the current contraction order p.

(b) For each edge e in G, find the contraction cost of G − e, using the current
contraction order p to determine which tensors to contract in each step.

(c) Select an edge e0 such that G − e0 gives the lowest contraction cost. Remove
e0 from G.

3. Finally, run 100 more rounds of local optimization to get a final contraction order
that is actually used for the sub-tasks.

Reducing the contraction width. In many cases, a tensor network is infeasible to con-
tract even after slicing it into a number of sub-tasks equal to the number of processors

39

available, on grounds of the contraction width being too large. In this case, we simply
keep slicing until the contraction width becomes small enough. It may seem that this could
be inefficient because the dynamic slicing procedure only tries to optimize the contraction
cost, and not the contraction width. However, as noted at the end of Section 3.2.1, just
optimizing the contraction cost would in fact help reduce the contraction width, too. As
the algorithm slices edges that are involved in the most expensive contraction steps, the
contraction width will naturally go down.

The main reason we focus on the contraction cost during the dynamic slicing procedure
is that the contraction width is too discrete, and does not provide enough granularity to
guide the greedy slicing procedure. In many cases, slicing a single edge would not suffice
to reduce the contraction width by 1, and every edge would be the same to the greedy
algorithm if we only focus on the contraction width. Using the contraction cost ensures
that this “tie” is usually broken and a good edge to slice is chosen. The fact that it also
makes every single slice more efficient is a nice bonus.

3.6 GPU implementation of tensor network contraction

In order to implement a complete parallel tensor network contraction algorithm, we need
to not only find a good contraction scheme, but actually implement the contraction process
itself. Of course, we want our underlying implementation to be competitive in terms of per-
formance compared to other similar software packages. Nowadays, GPUs are commonly
present on supercomputers and high performance computing clusters, and for floating-point
computation, they provide a much better performance than CPUs in terms of raw FLOPS.
Therefore, we focus our effort on optimizing our GPU implementation.

Following the implementation in [9], we use the just-in-time compilation capability
of the JAX library [29] to compile the sub-tasks before running them on the GPU. The
compilation process takes a noticeable amount of time. However, since all the sub-tasks
in a contraction scheme are the same except for the input tensors, this compilation process
only needs to be executed once on each GPU node of the cluster1. In use cases where
each node needs to do a large number of sub-tasks, the compilation time can therefore be
ignored.

1We do not know if JAX is capable of outputting “compiled functions” in a format that can be transferred
to other computers with the same GPU, which would allow us to only compile once and use the result on all
GPU nodes, but this does not matter much since the compilation processes are happening in parallel anyway.

40

Inefficient contraction steps and branch merging. On the GPU, a pairwise tensor con-
traction step is usually compiled into an invocation of the GEMM (general matrix multipli-
cation) algorithm. Consider the sub-network H with two vertices u and v that corresponds
with a pairwise contraction step. In most cases, the closed edges of H are exactly the ones
that is shared between its two vertices. Suppose that there arem open edges associated with
u, n open edges associated with v, and k closed edges shared between both. Let M = 2m,
N = 2n, and K = 2k. Then the contraction step can be compiled as follows:

1. Transpose and reshape the tensor represented by u to an M ×K matrix A.

2. Transpose and reshape the tensor represented by v to a K ×N matrix B.

3. Invoke GEMM to compute the matrix product A×B.

The theoretical time complexity of this is O(MK + KN + MKN) = O(MKN) =

O(2m+k+n), which agrees with the contraction cost for this contraction step, according to
Definition 3.7. Therefore, the running time is supposed to be approximately proportional
to the contraction cost.

However, experiment shows that not all GEMM operations have the same efficiency on
the GPU. The reason is that GEMM operations on GPU is usually computed with kernel

functions, which are usually designed to optimize the case where M , N , and K are all
large. In particular, the GPU we used (Nvidia Tesla V100) only achieves its peak efficiency
when M , N , and K are all multiples of 32.

Meanwhile, our contraction scheme finding procedure is likely to output a contraction
order where a number of small tensors are sequentially “absorbed” into a large tensor one
by one. Let the large tensor be u and the small tensor be v, then this is a case where M
is very large, while both N and K are usually 16 or smaller. Therefore, this kind of con-
traction steps have high cost but low efficiency, which negatively affects the performance
of our contraction algorithm.

We try to deal with this problem by branch merging, i.e. changing the contraction order
such that the small tensors are merged together before being absorbed into the large tensor.
As an example, consider the following tensor network:

Tijkl1l2...lm = Ai′j′k′l1l2...lmBii′Cjj′Dkk′ , m� 5.

If we absorb the small tensors B, C and D sequentially into A, then the contraction cost is
2m+4 + 2m+4 + 2m+4 = 3 ·2m+4. Meanwhile, if we contract B, C, and D together and then
contract the result with A, then the contraction cost is 16 + 64 + 2m+6 = 4 · 2m+4 + 80.
Therefore, in terms of contraction cost, the first contraction strategy is better.

41

However, in reality, on the GPU due to the way the kernel functions are designed,
absorbing an 8 × 8 tensor into A takes no more time than absorbing one 2 × 2 tensor.
Meanwhile, because B, C, and D are small in all dimensions, the time cost for contracting
them together can be ignored. Therefore, the second contraction strategy actually performs
better on the GPU.

We scan through our final contraction order to detect contraction structures of the first
kind, and change it into the second kind. This usually goes against the direction that local
optimization takes the contraction order to, so obviously this procedure needs to be done
after the last round of local optimization.

We note that branch merging is only an ad hoc solution to the problem of inefficient
contraction steps. In fact, it is likely that specialized kernel functions can be designed in
order to do the “small tensor into large tensor” type of GEMM operations without so much
loss of efficiency, which would render the use of branch merging unnecessary, and also
significantly improve the overall performance of our algorithm.

3.7 Discussion

As can be seen from this chapter, designing and implementing an efficient parallel tensor
network contraction algorithm that makes use of dynamic slicing is a huge project. The
core of our algorithm, the contraction scheme finding procedure, has three components,
and each component has a number of plausible alternatives. With only a limited amount
of benchmarking, it is usually hard to say which alternatives are better. Even peripheral
modules like the implementation of single contraction steps can be tricky, as evidenced
by the inefficiency problem described in Section 3.6. There is almost certainly room for
improvement on our algorithm; if nothing else, the factor of randomness introduced by
the hypergraph partitioning algorithm, by the hyper-parameter tuner CMA-ES, and by the
random offset in the local optimization procedure leaves something to be desired.

Above all, we feel that our intuitive understanding of tensor network contraction is
still somewhat lacking. It is difficult to visualize tensor network contraction, so at times
it can be hard to tell what our algorithm is doing under the hood. Many key ideas in
our algorithm were found out essentially by trial-and-error on a specific kind of tensor
network (see Chapter 4), rather than with an underlying intuition that applies to general
tensor networks. We hope that this would be changed in the future.

42

CHAPTER 4

Classical simulation of quantum supremacy
circuits

In this chapter, we report the results of applying our parallel tensor network contraction
algorithm to the task of simulating “quantum supremacy circuits”, a class of quantum cir-
cuits that are designed to be hard to simulate classically [5, 8, 2]. This is the most direct
application of our algorithm, and indeed the one that inspired this work in the first place.
The importance of this problem mainly lies in that there have been several previous works
that attempt to solve the same task with similar methods, so it works well as a benchmark
of our algorithm.

Our experiment results show that our algorithm performs better than all comparable
classical algorithms in terms of running time. For the largest circuits considered in [2],
we achieve a 2000× speedup over our predecessor, Cotengra [9]. For smaller circuits,
our algorithm is able to do the “supremacy task” faster than the quantum device in [2],
potentially challenging the validity of their quantum supremacy claim.

In particular, we note that the methods used in both [8] and [9] fall under our paradigm
of “contraction schemes”, which was first introduced (though not explicitly defined nor
named) in [6]. The significant speedup we achieved in [10, 4] compared to those works
shows the advantage of dynamic slicing ([10] vs. [8]) and local optimization ([4] vs. [9]).

4.1 Introduction

4.1.1 Overview of quantum supremacy

Even though the idea of quantum computers having an exponential advantage over clas-
sical computers dates back all the way to the 1980s, when the concept of “quantum com-
puters” was first introduced [30], the phrase “quantum supremacy”, a concrete goal meant
to capture the same idea, was only coined a few years ago in [31]. Basically, quantum

43

supremacy means a programmable1 quantum device solving a specific computational task
that arguably cannot be feasibly solved on any existing classical computing device, not
even costly supercomputers. Whether the specific computational task is actually useful is
not taken into consideration in the definition of quantum supremacy.

The obvious candidate for this easy-for-quantum computational task is the simulation
of a quantum system — even easier, simulation of the quantum computer itself. Even then,
the task is not entirely trivial on the quantum side. To make the computational task well-
defined, there needs to be an ideal model of the quantum computer, which the behavior
of the real quantum device would unavoidably deviate from. Therefore, it is necessary to
allow some margin of error in the definition of the computational task, but that would make
the task easier to classical computers, too.

From the other side, it is surprisingly difficult to argue that simulating a specific class of
quantum circuits that can be executed on a quantum device is infeasible for classical com-
puters. Quantum devices that can be built in the near term would all have some constraints,
such as connectivity constraints, on the class of quantum circuits that can be executed. The
existence of noise also means that the circuit cannot be too large, as otherwise any informa-
tion about the output distribution of the circuit would be drowned in the noise. Specifically
designed classical algorithms may be able to exploit those constraints, and solve the task in
a reasonable time even though the theoretical time complexity is exponential.

4.1.2 Random quantum supremacy circuits

In [5], it is suggested that random quantum circuits should be used for the purpose of
demonstrating quantum supremacy. More precisely, the topology of the circuit is fixed,
as dictated by hardware considerations, but each individual gate in the circuit is randomly
chosen according to certain rules. The advantage of random circuits is that, in terms of
gate pattern, they do not have any apparent structure that could potentially be exploited by
a classical simulator. This is also based on the intuition that quantum simulation is a hard
problem in general, and not only for a small fraction of hard instances. Later, [8, 2] give
revised definitions of random circuits, both to reflect the topology of quantum chips built
and in response to potential classical simulation strategies, but they are all based on the
same principle.

A problem with defining quantum supremacy tasks based on random circuits is that it
is difficult to measure how well a (quantum or classical) device is performing the task. Un-
like “conventional” computational tasks like integer factoring (which could be solved by

1This specification is necessary so that one cannot claim, for example, that a chemical molecule achieves
quantum supremacy.

44

Shor’s algorithm [32] if fault tolerant quantum computers existed) which has well-defined
outcomes of success and failure, the output of sampling an n-qubit random circuit is a prob-
ability distribution spread over the set of all bit strings of length n, and typically no single
bit string has a non-negligible probability. This makes it hard to define the computational
task so that it can be verified that a quantum computer can indeed do it.

To solve this problem, [5] proposes using the cross entropy between the experimental
distribution and the ideal distribution to assess how close the former is to the latter. Given
a sequence of experimental samples, the cross entropy can be estimated if single-amplitude

simulation of the ideal circuit is feasible, i.e. the probability of each individual bit string can
be computed efficiently. When this is not possible, the best one can do is to extrapolate the
cross entropy from small-scale experiments, and validate the extrapolation results through
theoretical models of quantum device fidelity.

4.1.3 Solving “supremacy tasks” with tensor network contraction

Despite not having any apparent structure, it turns out that random circuits also have a
weakness that can be exploited by the classical computer. The weakness is related to the
problem mentioned in the previous section: As demonstrated in [33], since the output
distribution of a random circuit is typically not concentrated on any single string, it can be
efficiently sampled with negligible error using the technique of frugal rejection sampling,
if only single-amplitude simulation for the random circuit is available. Therefore, the same
algorithm that would allow estimating the cross entropy without resorting to extrapolation
would also allow the “supremacy task” to be solved classically, invalidating the claim of
quantum supremacy.

Of course, even single-amplitude simulation of quantum circuits is far from easy for
intermediate-size quantum circuits that may be possible to execute on current quantum
devices. The most promising framework for single-amplitude simulation of quantum circuit
is tensor network evaluation, the very problem that our algorithm in Chapter 3 tries to
solve. Each amplitude of the output state of a quantum circuit can be represented as a
closed tensor network, which can be evaluated with our parallel contraction algorithm on a
classical supercomputer or computer cluster, with space and time complexities depending
on the width and cost of the contraction scheme. The probability of a bit string can then be
easily evaluated as the square of the absolute value of the amplitude.

Furthermore, the capability to evaluate open tensor networks may also help accelerate
the speed the “supremacy task” can be solved classically. From a quantum circuit, we
can construct open tensor networks with k open edges that correspond to a “batch” of 2k

45

amplitudes. As noted in [8], the time required to evaluate such an open tensor network is
often not much more than the time required to evaluate a closed tensor network for a single
amplitude, while having the batch of amplitude instead of a single amplitude can remove
a 10× overhead incurred by the frugal rejection sampling method in [33]. Therefore, by
evaluating open tensor networks instead of closed ones, we can solve the “supremacy task”
even faster using our algorithm.

Supremacy circuits as a tensor network contraction benchmark. Thanks to the promi-
nence of the quantum supremacy proposal in [5], there have been many attempts to simulate
the random supremacy circuits classically, and many of them make use of some variant of
tensor network contraction, including [6, 10, 4] by us and [34, 8, 35, 9] by other researchers.
Therefore, those circuits and their associated tensor networks work well as a benchmark,
both for optimizing the performance of our algorithm and for comparing with other algo-
rithms. Because the class of circuits are designed to be as hard to simulate classically as
possible, we believe that methods that perform well on those circuits would also perform
well in general.

4.2 Preliminaries

4.2.1 Rules for random circuit generation

Several versions of random supremacy circuits has been proposed. In this chapter, we
report the benchmark results of different versions of our parallel tensor network contraction
algorithm on three different versions of those circuits. They differ in topology, in the gate
set, and also in the rule to randomly choose each gate from the gate set. Some of those
changes reflect the architecture details of existing or prospective quantum devices, and
others are meant to defeat previously proposed classical simulation strategies.

Rectangular circuits. In [6], we simulate an early version of random circuits inspired by
[5]2. The rules for circuit generation are as follows:

• The qubits are arranged in a regular rectangular lattice, and all initialized to |0〉.

• There are 1+m cycles (i.e. layers) of gates arranged according to the following rules:

2The circuits are not exactly the same because the description of them in [5] was somewhat ambiguous,
and the circuit files are never published.

46

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3 (d) Configuration 4

(e) Configuration 5 (f) Configuration 6 (g) Configuration 7 (h) Configuration 8

Figure 4.1: The 8 configurations of CZ gates for rectangular circuits [5]. This example is
for a circuit with 8× 7 = 56 qubits, but the pattern is the same for all circuit sizes.

1. The first cycle consists of one Hadamard gate applied to each of the qubits.
(The different nature of this cycle from the other cycles is why we do not count
it in the cycle count m.)

2. For each of the rest of the cycles, first place two-qubit CZ gates in one of 8

possible configurations, which repeat in a fixed sequence through the cycles,
as shown in Figure 4.1. Each cycle covers approximately 1/8 of all pairs of
(horizontally or vertically) adjacent qubits. Note that each qubit is only involved
in one CZ gate per cycle, and furthermore no two adjacent qubits are involved
in different CZ gates in the same cycle. This is due to a hardware restriction: In
the proposed quantum device architecture, adjacent CZ gates would suffer from
large crosstalk noise.

3. Place single-qubit gates in those same m cycles. For each qubit, we place a
single-qubit gates only in cycles where the qubit is not occupied by a CZ gate,
but the previous cycle does has a CZ gate on that qubit. (The intuition is that
two consecutive single-qubit gates does not make classical simulation harder,
but increases the noise level in the quantum device.) The single-qubit gate is
chosen according to the following rules:

47

(a) (b)

Figure 4.2: (a) Qubit layout of 72-qubit random Bristlecone circuits. Notice that this layout
can be seen as a rectangular lattice rotated by 45 degrees and trimmed. Bristlecone circuits
with less qubits use a sub-lattice of this lattice; for example, 70-qubit Bristlecone circuits
has the two qubits in the upper left corner and the lower right corner removed. See [8] for
all the lattices used. (b) An example configuration of CZ gates. Notice the similarity with
the configurations in Figure 4.1.

(a) If there is no single-qubit gate on the same qubit in previous cycles (except
for the initial Hadamard gate), place a T gate.

(b) Otherwise, choose the gate uniformly at random from {
√

X,
√

Y,T}.

The rule to force T gates is meant to prevent simulation strategies based on
Clifford circuit simulation [36].

• Finally, a computational basis measurement is applied to all qubits.

The final measurement will generate a bit string of length n equal to the number of
qubits in the circuit. The probability distribution of this bit string will vary depending on
the random choices of gates in the circuit. The “supremacy task” is, loosely speaking, to
sample from this ideal distribution.

Bristlecone circuits. In [8], a second version of supremacy circuits is proposed based on
the architecture of the Google Bristlecone GPU. The main difference between this version
of supremacy circuits and the rectangular circuits described above are:

• The qubits are now arranged in a “Bristlecone lattice”, where only half of the qubits
in a rectangular lattice is present, and the connections between qubits are diagonal,
instead of horizontal and vertical, as shown in Figure 4.2. Alternatively, the new
lattice can also be regarded as a regular rectangular lattice, trimmed into a diamond
shape by cutting off all four corners, then rotated by 45 degrees.

48

• There are now an additional cycle of Hadamard gates after all the other cycles, before
the final measurement.

• The sequence of CZ gate configurations is adjusted. The new order is (b), (g), (f),
(d), (a), (h), (e), (c) from Figure 4.1. Note that now the layers alternate between
horizontal and vertical CZ gates.

• The rule for adding single-qubit gates are changed as follows:

1. In each cycle, if a qubit is not occupied by a CZ gate, but the previous cycle
has a CZ gate on the qubit, then add a gate chosen uniformly at random from
{
√

X,
√

Y}.

2. In each cycle, if a qubit is not occupied by a CZ gate, but the previous cycle has
a
√

X,
√

Y, or H gate on the qubit, then add a T gate.

This change is in response to the revelation in [6] that, since the T gate is a diagonal
gate, it can give rise to tensor networks that are easier to evaluate, especially when it
appears following (or preceding) a CZ gate.

The circuit files generated by this set of rules are published by Google [37], and we directly
use those published circuits to benchmark our algorithm.

A variant of the Bristlecone circuits is also proposed in [8], where iSWAP gates given
by the unitary |00〉〈00|+ |11〉〈11|+ i|01〉〈10|+ i|10〉〈01| are used instead of CZ gates, but
the circuit structure is otherwise the same. However, neither [8] nor [10] used this variant
for benchmarking.

Sycamore circuits. In [2], the latest version of supremacy circuits is proposed based on
the architecture of the Google Sycamore GPU, and it is claimed that quantum supremacy
is achieved using those circuits. The qubit arrangement of the Sycamore GPU is actually
pretty similar to that of the Bristlecone GPU, as shown in Figure 4.3 (a), with one qubit
removed from a regular 54-qubit lattice due to a hardware defect. Apart from the qubit
arrangement, this version of supremacy circuits also has several important differences from
its predecessors:

• The circuit now consists of m + 1 cycles of single-qubit gates and m cycles of two-
qubit gates in alternation. The circuit itself is still called an “m-cycle” circuit, where
each cycle can be thought of as being composed of two “sub-cycles”.

• Thanks to the previous modification, every cycle of single-qubit gates now can con-
tain one gate applied to each qubit.

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

5152

(a)

|0〉

A B C D C D A B

|0〉

|0〉

|0〉

|0〉

(b)

Figure 4.3: Structure of the 53-qubit random Sycamore circuits. (a) Layout of the 53 qubits
and the 4 configurations of two-qubit gates, represented by lines in different colors. (b)
Schematic diagram of an 8-cycle circuit.

50

1. In the first cycle, each single-qubit gate is chosen uniformly at random from
{
√

X,
√

Y,
√

W}.

2. In subsequent cycles, each single-qubit gate is chosen uniformly at random
from {

√
X,
√

Y,
√

W} \U, where U is the gate applied to the same qubit in the
previous cycle of single-qubit gates.

Since
√

W is neither a diagonal gate nor a Clifford gate, this helps make the circuit
harder for simulation strategies based on (computational basis) tensor networks as
well as those based on Clifford circuit simulation.

• The Sycamore architecture allows two-qubit gates in the same cycle adjacent to each
other. As a result, each configuration of two-qubit gates can now cover approximately
1/4 of the adjacent qubit pairs, and we only need 4 of them, as shown in Figure 4.3.
The four configurations are named A (red in the figure), B (blue), C (cyan), D (green),
and they repeat in the sequence ABCDCDAB.

• Finally, the two-qubit gates used are the so-called “fSim gates” (short for “fermionic
simulation gates”), which are given by the unitary

1 0 0 0

0 ei(∆++∆−) cos θ −iei(∆+−∆−,off) sin θ 0

0 −iei(∆++∆−,off) sin θ ei(∆+−∆−) cos θ 0

0 0 0 ei(2∆+−φ)

 .

Those gates are the “natural two-qubit gates” for the Sycamore architecture. In ad-
dition, unlike the CZ gates, fSim gates are not diagonal, which also adds to the diffi-
culty of classical simulation.

Using those circuits, [2] did experiments on a Sycamore quantum device, and claimed that
this achieved quantum supremacy. The circuits used are released with [2], and again we
use those circuits for benchmarking.

4.2.2 Frugal rejection sampling based on single-amplitude simulation

We distinguish between single-amplitude simulation and true simulation of a circuit.

Definition 4.1 (Single-amplitude simulation and true simulation). Let |ψ〉 be a pure state
of n qubits.

• Single-amplitude simulation of |ψ〉 means finding the amplitude αs = 〈s|ψ〉, given
any single n-bit string s.

51

• True simulation |ψ〉 means sampling from the probability distribution arising from
doing a computational basis measurement on |ψ〉, P (X = s) = |αs|2.

Given a unitary circuit C, single-amplitude simulation (resp. true simulation) of C is
defined as single-amplitude simulation (resp. true simulation) of the output state of C on a
given input, C|0〉 (without loss of generality, we usually assume that the given input is |0〉).

In the literature, single-amplitude simulation is sometimes also known as “strong simu-
lation”, and true simulation “weak simulation”. We find those terms misleading and confus-
ing in the context of this thesis, because the capability to (efficiently) “strongly simulate”
a circuit does not necessarily imply the capability to (efficiently) “weakly simulate” the
same circuit (and neither is the converse true). In fact, as described in Section 4.3, ten-
sor network based methods are better at single-amplitude simulation than true simulation.
Meanwhile, for a fair comparison with quantum devices, it is necessary to have a way to
do true simulation.

The “missing link” between single-amplitude simulation and true simulation is given
by [33], which shows that true simulation can be reduced to single-amplitude simulation
with a frugal rejection sampling procedure.

The validity and efficiency of frugal rejection sampling rely on the properties of the out-
put distribution of a random circuit. As shown in [5], for large enough random circuits, the
distribution of output probabilities p(s) = |αs|2 approaches the Porter-Thomas distribution

Ne−Np, where N = 2n is the number of all possible bit strings. In other words,

Pr
s∼U({0,1}n)

[p(s) > p0] ≈
∫ ∞
p0

Ne−Npdp = e−Np0 .

When p0 � 1/N , the right-hand side is a very small number. Therefore, we can use the
following frugal rejection sampling procedure to sample from a distribution p̄(s) that is
very close to p(s):

1. Choose a parameter M . The larger M is, the closer p̄(s) is to p(s), but the less
efficient the sampling procedure will be.

2. Sample s0 ∼ U({0, 1}n), and compute p(s0) with single-amplitude simulation.

3. Accept s0 with probability min{1, p(s0)N/M}. Otherwise, repeat this process until
one s0 is accepted.

52

The probability P that we accept s0 in one round of this process can be estimated as follows:

P =
∑

s0∈{0,1}n

min{1, p(s0)N/M}
N

=
∑

s0∈{0,1}n

p(s0)

M
−

p(s0)>M/N∑
s0∈{0,1}n

p(s0)−M/N

M

=
1

M
− N

M

∫ ∞
M/N

Pr
s∼U({0,1}n)

[p(s) > p0]dp0

≈ 1

M
− N

M

∫ ∞
M/N

e−Np0dp0

=
1

M
− e−M

M
.

We then have p̄(s0) = min{1, p(s0)N/M}/NP . Since P ≤ 1/M , the only case where
p(s0) > p̄(s0) is when p(s0) > 1/NP . The statistical distance between p̄(s) and p(s) can
then be estimated as:

p(s0)>p̄(s0)∑
s0∈{0,1}n

(p(s0)− p̄(s0)) =

p(s0)>1/NP∑
s0∈{0,1}n

(p(s0)− 1/NP) ≈ e−1/P = exp

(
− M

1− e−M

)
.

If we take M = 10, then this statistical distance is about 4.5 × 10−5, which is low
enough to be negligible compared to the noise level in current quantum devices. The over-
head caused by this sampling progress (i.e. the expected number of times single-amplitude
simulation needs to be used to truly simulate a sample) is 1/P . Since P is very close to
1/M , 1/P is very close to M = 10. Therefore, we conclude that true simulation can be
satisfactorily reduced to single-amplitude simulation with a 10× overhead.

Batch of amplitudes. Suppose that we have a procedure that is slightly stronger than
single-amplitude simulation, in that it can compute a “batch” of NC amplitudes instead of
one amplitude at a time. The amplitudes in the same batch correspond to bit strings that are
related (e.g. same except for the last log2NC bits). It is argued in [8] that this would give a
more efficient way to do the frugal rejection sampling. The idea is simple: When we reject
one s0, we do not choose another s0 uniformly at random from {0, 1}n, but pick the new
s0 from the same batch of bit strings. We change batch when we accept a bit string, so that
there is no correlation between the samples.

Assuming that amplitudes in a batch are independent of each other, the probability that
there is at least one bit string accepted from a batch is 1−(1−P)NC , which is approximately

53

99.88% when M = 10 and N = 64. This is high enough that the overhead of sampling
is now negligible. Of course, for this estimate to be sound, and for this procedure to not
skew the distribution too much, the correlation between amplitudes in a batch must be low
enough, which has been empirically tested in [8].

The bottom line is that, if we can compute a batch of 64 amplitudes as fast as we
compute a single amplitude, then we can get rid of the 10× overhead incurred by frugal
rejection sampling. In Section 4.3, we will show how we could do this.

Sampling with lower fidelity. As can be seen in this section, the rejection sampling
procedure actually gives a distribution with negligible distance to the ideal distribution.
This is not the case for current quantum devices, which still suffer from a high level of
noise, causing the fidelity between the experimental distribution and the ideal distribution
to be low. It can be argued that this is unfair in the context of quantum supremacy.

In order to make the comparison fair, the classical algorithm should be allowed to do
true simulation just with the same fidelity f � 1 as the quantum device, and this should
translate to a time save. A simple method to do this is to sample from a statistical mixture

of p(s) and the uniform distribution:

p̄(s) = fp(s) + (1− f)
1

N
.

This can be done by doing the frugal sampling procedure only with probability f , and
otherwise just outputting an s chosen uniformly at random. This reduces the average time
needed by a factor of 1/f . For example, when f = 0.2%, the classical algorithm can be
500 times faster compared to sampling with fidelity 1.

4.3 Transforming circuits into tensor networks

As we alluded to in Section 1.1, it is easy to transform quantum circuits into tensor net-
works, because most basic concepts in quantum computation can be described as either
matrix product or tensor product, both of which are easy to represent as tensor networks.
Below, we give a general procedure for doing this transformation.

• Each input qubit in the circuit becomes an order-1 tensor, i.e. a 2-dimensional vector,
corresponding to the initial state vector |ψ〉 of the qubit.

• In general, each unitary gate applied to k qubits becomes an order-2k tensor, i.e. a
2k × 2k matrix, corresponding to the unitary matrix of the gate.

54

– However, diagonal gates (i.e. gates with a diagonal matrix) can be handled
specially to simplify the tensor network. A diagonal gate applied to k qubits
becomes an order-k tensor, i.e. a 2k-dimensional vector, corresponding to the
diagonal elements of its matrix.

– Block diagonal gates, which usually represent “controlled” versions of gates
(such as the CNOT gate), can also be simplified. If the 2k × 2k matrix of a
k-qubit gate can be written as a matrix of 2l × 2l blocks that is block diagonal,
then the gate becomes an order-(k+ l) tensor, corresponding to the 2k−l blocks
of size 2l × 2l.

• Each internal wire of the circuit becomes a closed edge, and they are connected to
the aforementioned tensors in a natural way. When diagonal gates (or block diagonal
gates) are involved, multiple different internal wires may become the same edge.

• Similarly, each output wire of the circuit becomes an open edge.

The above procedure does not take measurements into account, and it returns a tensor
network with n open edges, whose value is an order-n tensor corresponding to the output
state of the circuit. For large n, such a tensor network would usually be inherently too
costly to evaluate in terms of both space and time.

The difficulty of computing whole state vectors is the reason why we consider single-
amplitude simulation an easier problem to solve classically than true simulation. In single-
amplitude simulation, we only need to evaluate a single amplitude αs, so we can consider
each measurement result known in advance. Therefore, we can add the following rule:

• A computational basis measurement on a qubit that is known to yield the result i ∈
{0, 1} becomes an order-1 tensor, corresponding to the row vector 〈i|.

When we add such “measurement” tensors to all the output wires of the circuit, the result
becomes a closed tensor network, with value equal to the amplitude αs. In many cases,
this closed tensor network will have a much lower contraction width and cost, making it
feasible to do single-amplitude simulation on circuits where full state vector simulation is
out of reach.

Special handling of computational basis vectors. In the above “measurement” rule, we
make use of a row vector 〈0| or 〈1|. Furthermore, in supremacy circuits, all qubits are
initialized to the state |0〉. Those are all 2-dimensional computational basis vectors, with
one component being 1 and the other component being 0. Such a tensor v can be handled
specially to further simplify the tensor network.

55

The easiest way to explain the simplification is to consider what happens if we slice the
only edge connected to v. The order-1 tensor v would be sliced into two scalars, one being
1 and the other being 0. Since tensor network is essentially a type of multiplication, one
zero tensor in the inputs will make the whole result zero. Therefore, one of the slices can
be discarded, and the other slice becomes a simplification of the original tensor network.
This can be done for each computational basis vector in the tensor network.

The effectiveness of this simplification depends highly on the structure of the circuit.
If the computational basis state or measurement is connected to a non-diagonal gate, then
only that one tensor is sliced, and the effect on the contraction width and cost of the ten-
sor network would be negligible. On the other hand, if the computational basis state or
measurement is connected to one or more diagonal gates (since tensor network edges “go
through” diagonal gates), not only will all of those tensors be sliced, but the connection
between them would also be broken, which can significantly lower the contraction width
and cost. The rectangular circuits described in Section 4.2.1 is especially susceptible to this
simplification, because the final measurements are often preceded with CZ and/or T gates.

Computing a batch of amplitudes. In fact, there is no need to add measurement tensors
to all the output wires. Instead, we can leave out k of the measurement tensors, making the
result of the corresponding measurements “unknown”. The entire tensor network will then
have k open edges, and evaluating it gives all 2k amplitudes corresponding to varying the
measurement results of those k measurements and fixing the rest. Therefore, this gives a
way to compute a “batch” of amplitudes, which, as shown in Section 4.2.2, can remove the
10× overhead associated with frugal rejection sampling.

“Opening” edges of the tensor network like this will make it harder to evaluate. How-
ever, when k is relatively small, those open edges would not become a bottleneck, and the
increase in contraction width and cost may be negligible. This is confirmed in our exper-
iments in Section 4.4.3, where we use k = 6 to compute a batch of 64 amplitudes at a
time.

4.4 Benchmark experiments

In [6, 10, 4], we did “complete” benchmark experiments that start from the raw circuits,
and end with running sub-tasks. The only caveat is that in most cases we did not run all
the sub-tasks needed to calculate an amplitude or a batch of them. Instead, we extrapolated
the running time for a complete task (here a “task” means an amplitude or a batch, not
the entire supremacy task) by multiplying the average running time for one sub-task by

56

the number of sub-tasks that need to be run on each node of the cluster. This is justified
because each sub-task has exactly the same structure, and takes almost exactly the same
time to finish. This is also necessary because the cost of the computational power needed
to do a complete task, we must admit, is still high enough that we would not be able to
afford to do it for every one of our experiments.

We did run a few experiments that really went the full distance and computed actual
amplitudes on a computer cluster, as described in Section 4.4.2. We believe that those
experiments are proof enough that, under our framework, the costs of scheduling and com-
munication, as well as other potential hidden costs (such as loss of efficiency when the
cluster is overloaded), are manageable.

We also do not include the time spent on preprocessing in the reported total time for
a task, although in each case we separately give a bound on the preprocessing time. The
justification is that, once we found a contraction scheme, it can be used to simulate multiple
circuits with the same structure, or calculate multiple amplitudes or batches for the same
circuit. This approach is also consistent with other papers that use similar methods for the
same task, such as [34, 9].

4.4.1 Rectangular circuits

In [6], we did single-amplitude simulation on the rectangular version of supremacy circuits.
Since there was no version of supremacy circuit publicly available at the time of [6], we
generated the circuits ourselves according to the rules described in Section 4.2.1. Therefore,
there is unfortunately no other work that we can compare our results in [6] directly with.

The rectangular circuits also causes an extra complication compared to the other varia-
tions of supremacy circuits, because the hypergraph structure of tensor networks for those
circuits varies randomly even for the same circuit size. The reason is that each single-qubit
gate is randomly chosen from the set {

√
X,
√

Y,T}; the first two are non-diagonal gates,
while the T gate is a diagonal gate. Therefore, the contraction width and cost for circuits of
the same size can vary wildly depending on the number and positions of T gates.

In order to reflect the typical performance of our algorithm, we randomly generated
1000 circuits for each size, and reported the 80th percentile of running time, i.e. the time
in which 80% of random circuits of a size could be simulated. This means that, for the
remaining 20% of random circuits, either the running time exceeded the reported time, or
the simulator ran out of memory. (We sliced each circuit a fixed number of times regardless
of the contraction width, so running out of memory was normal.)

For this experiment, we used an early version of our contraction scheme finding proce-

57

Figure 4.4: Estimated 80th percentile running times for rectangular random circuits. Here
the circuit depth is defined as the value of m in the circuit definition in Section 4.2.1, i.e.
not counting the initial layer of Hadamard gates.

dure, which implemented dynamic slicing similar to the current version, but the initial con-
traction order was based on a stock implementation of QuickBB [24], a heuristic treewidth
algorithm, and there was no local optimization. Instead, we ran QuickBB again on the
circuit after all rounds of dynamic slicing in order to find a (usually) better contraction or-
der for the final sliced tensor network. We set a time limit of 60 seconds for both runs of
QuickBB, which dominated the preprocessing time; therefore, the preprocessing time for
each circuit is slightly longer than 2 minutes.

We designed our experiments based on having 217 = 131 072 cores available, each core
with 8 GB of memory (1 048 576 GB in total). This assumption is based on the size of the
cluster we had access to at Alibaba group (which has 960 000 cores and 5 120 000 GB of
memory in total). As mentioned above, in each trial of the experiment, we fixed the number
of edges to slice, which was set to 17 in the beginning. If it turned out that the algorithm ran
out of memory on more than 20% of the circuit instances, then we increased this number
until at least 80% of the circuits can be simulated.

The results of those experiments are shown in Figure 4.4. As can be seen, the largest
depth simulated for each circuit size (subject to the 80% rule) are 6 × 6 × 68, 7 × 7 × 53,
8× 8× 44, 9× 9× 40, 10× 10× 35, 11× 11× 31, and 12× 12× 27. Among those sizes,
the hardest in terms of running time is 9 × 9 × 40, where the 80th percentile of running
time is about 50 000 seconds.

58

4.4.2 Bristlecone circuits

In [10], we did single-amplitude simulation on Bristlecone circuits published by Google
[37], which are the same circuits as the ones simulated in [8]. The contraction scheme
finding procedure we used was similar to that used in Section 4.4.1, except that we ran
QuickBB after slicing every edge, instead of only at the beginning and the end. In a sense,
QuickBB played the same role as local optimization plays in the current version of our
algorithm. In addition, we also set a longer time limit for each QuickBB invocation. Those
modifications increased the preprocessing time to about one day for each circuit size. How-
ever, this is justified by the fact that the tensor network structure for each circuit size is now
exactly the same, so the contraction scheme found can now be used for any number of
random circuits of the same size.

Notably, for this class of circuits, we actually computed amplitude values in addition to
estimating the running time by extrapolation. In some experiments, we computed multiple
random amplitudes individually, in order to reduce the communication overhead per ampli-
tude. The experiments were run on 1449 Alibaba Cloud Elastic Computing Service (ECS)
instances, each with 88 Intel Xeon(Skylake) Platinum 8163 vCPU cores @ 2.5 GHz and
160 GB of memory. The total number of cores is 127 512, and the total amount of mem-
ory is 231 840 GB. As a comparison, the experiments in [8] used two different clusters,
each with an assortment of different nodes. The total number of cores and total amount of
memory are respectively 245 536 and 932 864 GB for the Pleiades system, and 124 416 and
589 824 GB for the Electra system.

For the full experiment, we used the OSS (Object Storage Service), which can be un-
derstood as a shared storage that can be accessed by all nodes on the cluster, for commu-
nication between them. We used an agent node (not included in the 1449 nodes mentioned
above) to find the contraction scheme, serialize it into a file, and upload it onto the OSS,
which all worker nodes would query at the frequency of once per second. When the worker
node saw the contraction scheme file, it would use its ID to figure out which sub-tasks in
the contraction scheme were assigned to it, and begin contraction. Similarly, the agent node
would then begin repeatedly querying the OSS, where the worker nodes would upload their
result files (named according to the ID of each worker node) to. The final summation was
performed on the agent node. This model of communication is not particularly efficient,
but our point is that the communication cost is negligible when the number of amplitudes
to compute is large enough.

Table 4.1 shows the estimated and actual running times for each experiment we ran this
way. The estimated times were measured on a single worker node, using approximately

59

m k Ns testimate/Ns (s) tactual/Ns (s) testimate/tactual

28 8 200 000 0.03 0.04 75%
32 10 1 000 0.36 0.43 84%

36 16
10

4.56

7.6 60%
6.6 69%

100
5.6 81%
5.9 77%

40 22 1 480.17 580.7 83%

Table 4.1: Estimated and actual running times for Bristlecone-70 circuits. In each exper-
iment, we sliced k edges of a Bristlecone-70 × (1 + m + 1) circuit, and computed Ns

random amplitudes. For the circuit with depth 36, we ran four separate experiments, two
with Ns = 10 and two with Ns = 100.

the same number of sub-tasks that each node would need to do for the full experiment. As
can be seen, apart from the cases where m = 36 and Ns = 10 (which has artificially low
efficiency because the estimated time was estimated using Ns = 100), the full experiment
had around 80% the efficiency compared to the estimated time. This efficiency loss is
acceptable in the context of challenging quantum supremacy, and we suspect that it is
caused by the computers in the cluster lowering the CPU frequency in response to the
power overload. On the other hand, the results showed a large advantage over [8], which
reported running times of 104 and 128 seconds per amplitude on the HPC Pleiades and
Electra systems, respectively.

4.4.3 Sycamore circuits

In [4], we simulated Sycamore circuits that were used to claim quantum supremacy in [2].
For this class of circuit, we used the most recent version of our contraction scheme finding
procedure described in Chapter 3.

Since our ultimate goal is true simulation with the rejection sampling method in Sec-
tion 4.2.2, following the precedent in [2], we calculate batches of 26 = 64 amplitudes
instead of single amplitudes. The edges we leave open are the ones corresponding to the
output wires of either qubits {0, 1, 2, 3, 4, 5} or qubits {10, 17, 18, 26, 27, 36} in Figure 4.3.
This choice is based on the following considerations:

• We want those qubits to be as close as possible, so that the extra complexity they
introduce is localized.

• Furthermore, we want those qubits to be as disconnected as possible from other
qubits near the output wires. To this end, we note that qubits {0, 1, 2, 3, 4, 5} are

60

only connected to other qubits in two-qubit gate configurations A and B, while qubits
{10, 17, 18, 26, 27, 36} are only connected to other qubits in configurations C and D.
Since the circuits used in [2] have an even number of (two-qubit gate) cycles, we can
choose the “open qubits” so that they are disconnected from other qubits in the last
two layers, i.e.,

– {0, 1, 2, 3, 4, 5} if the number of cycles is 8t+ 4 or 8t+ 6;

– {10, 17, 18, 26, 27, 36} if the number of cycles is 8t or 8t+ 2.

Another modification we do in order to match the setting of quantum supremacy is
that we only estimate the time to simulate each Sycamore circuits to the same fidelity f
achieved by the quantum device in [2] according to cross entropy benchmarking (XEB).
As mentioned at the end of Section 4.2.2, this just means multiplying the running time by
f < 1.

This group of experiments are also the first ones that we run on GPU. In order to match
the estimations for qFlex in [2] which assumed running the classical simulation on the
Summit supercomputer, we used an Nvidia Tesla V100 SMX2 GPU with 16 GB of GPU
memory, which matches the specifications of the GPUs in Summit. We assume that we
have 27 648 of those GPUs, the same number that Summit has. We also do branch merging
in order to improve the GPU efficiency, as described in Section 3.6.

In Figure 4.5, we compare the performance of our algorithm with various other algo-
rithms that are also run on Sycamore circuits, including qFlex, the Schrödinger-Feynman
simulator [2], and Cotengra [9]. Since the experiments in [9] are run on a different GPU,
we redo their experiment using the same methodology. This means that we do not attempt
to apply Cotengra to open tensor networks in order to reduce the rejection sampling over-
head. However, we do give a lower bound on the time that may be achieved with open
tensor networks, by assuming the time needed to evaluate a batch of amplitudes is the same
as that for a single amplitude. The contraction costs we reported for our own algorithm
are the ones achieved before branch merging (which, as mentioned before, increases the
contraction costs), and the FLOPS efficiency is computed with this contraction cost too.

As can be seen, for circuit depths m = 12, 14, 16, 18, 20, our algorithm consistently
outperforms every other classical algorithm that we are comparing with. For shallow cir-
cuits with m = 12 or 14, our algorithm takes less than 90 seconds to do the sampling
task with the same fidelity as the quantum device, surpassing even the quantum device it-
self, which takes 200 seconds regardless of the circuit depth. For the largest circuit depth
m = 20, we can still do the sampling task in 20 days, improving upon the second best
classical algorithm with a concrete implementation, Cotengra, by a factor of over 2000.

61

1013

1015

1017

1019

1021

C
on

tr
ac

tio
n

co
st

qFlex [2] (batch)

Cotengra [9] (amplitude)

Ours (batch)

20%

40%

60%

80%

100%

FL
O

PS
ef

fic
ie

nc
y

qFlex [2] (batch)

Cotengra [9] (amplitude)

Ours (batch)

12
(1.3%)

14
(1.0%)

16
(0.7%)

18
(0.4%)

20
(0.2%)

101

104

107

1010

Number of cycles m and corresponding XEB fidelities

E
st

im
at

ed
tim

e
(s

)

qFlex [2]

SFA [2]

Cotengra [9] (amplitude)

Cotengra LB

Ours

1 year

1 day

Sycamore [2]

Figure 4.5: Contraction costs, FLOPS efficiencies, and estimated times to do the
“supremacy task” for Sycamore circuits. We note that the version of Cotengra [9] we used
cannot evaluate open tensor networks (i.e. batches of amplitudes), which the other tensor
network based algorithms both use. “Cotengra LB” assumes that Cotengra can evaluate a
batch of 64 amplitude as fast as it evaluates a single amplitude.

62

The shape of the running time curve of our algorithm is close to that of Cotengra, which
is expected, since those algorithms are similar. The consistent advantage of our algorithm
over Cotengra shows the advantage of the improvements we have done to the partition-
based initial order finding algorithm, as well as our local optimization procedure.

However, we note that the FLOPS efficiency of our algorithm is consistently lower than
20%, which reduced our advantage in running time somewhat. In fact, they would have
been even lower without the branch merging procedure. The FLOPS efficiency computed
with the contraction cost after branch merging is somewhat higher, but still does not come
close to those achieved by Cotengra. This is disappointing, especially since we do not yet
fully understand why our FLOPS efficiency is so low, but we also see this as an opportunity.
If we could solve the problem of low GPU efficiency — especially if in a way that no longer
require us to use branch merging which is inefficient in theory — then the running time of
our algorithm may be further improved.

4.5 Discussion

The concept of quantum supremacy is a controversial one, and rightfully so. Above all,
it is difficult to convincingly argue that a computational task is infeasible for any classical
algorithm to solve. Statements of this type that are generally accepted usually either are
based on the failure of people to come up with an efficient solution — for decades, de-

spite researchers’ best efforts — or rely on complexity theory reductions to such problems.
Complexity theory reductions tend to prove worst-case hardness, rather than average-case
hardness. Plus, they are less strong in regimes where exponential time algorithms may
be acceptable, since even a polynomial change in input size may exponentially affect the
running time.

Meanwhile, not only is quantum supremacy a relatively recent concept, but the details
of the supremacy tasks themselves change a lot as new prospective architectures for quan-
tum devices are developed. This gives researchers little time to tackle each specific iteration
of the task. Furthermore, the fact that the task does not necessarily have any practical use
also limits the motivation for researchers to solve it. Therefore, even if there were no good
classical algorithms at the time the quantum experiment was run, it would be quite a stretch
to claim that the problem is classically infeasible. Indeed, our results in this chapter, es-
pecially compared with [9] which came out just a little earlier, demonstrates exactly how
shaky the basis of any current “quantum supremacy” claim is.

Regardless, the prominence of the quantum supremacy proposal does give us a good
benchmark for quantum circuit simulation as well as tensor network contraction. While

63

analyzing the performance of our algorithm and trying to find improvements, we have
also noticed some interesting phenomena. For example, the contraction trees we found
usually have a “stem”, a path on which most of the heavy computations happen (see [4] for
details). It would be interesting to see whether this is a peculiarity of our own algorithm,
an idiosyncrasy of the random supremacy circuits (which are supposed to have as little
structure as possible), or a general fact that holds for a wide range of tensor networks.

64

CHAPTER 5

Applications to the Quantum Approximate
Optimization Algorithm

In this chapter, we investigate applications of our algorithm to the Quantum Approximate
Optimization Algorithm (QAOA) [11], one of the most promising potential applications of
near-term quantum computation devices. QAOA is based on quantum adiabatic algorithms,
but instead of simulating changing the Hamiltonian slowly, which would require a circuit
with exponentially many layers of small rotations, it uses a circuit with a reasonable number
p of layers and not necessarily small rotations, with the rotation angles being parameters
of the algorithm. By optimizing over those parameters, nontrivial results can be obtained
even with a small value of p.

The usually proposed method for optimizing the parameters is with a feedback process,
where a quantum processor tries the algorithm with different parameters and a classical al-
gorithm optimizes for the best result. However, due to the inherent randomness in quantum
computation, the classical part would have to be a stochastic optimizer, which is usually
less efficient than optimizers for deterministic functions.

In [12], we directly compute the expected value of the objective function using tensor
networks. By only considering the lightcones of each individual clause, we can efficiently
calculate the expected value for some problems and values of p. We find that our imple-
mentation of this algorithm performs better than existing software packages that solve the
same problem. In the case of small-cycle-free graphs, the speed of our implementation
allows doing the classical parameter optimization completely classically.

In addition to computing the expectation value, we also attempt to sample from the final
state with tensor networks. However, even though we are able to simulate measuring each
qubit individually, we find it infeasible to sample from the joint distribution. Therefore,
when quantum devices become available, it may make sense to still implement QAOA
as a hybrid quantum-classical algorithm, by optimizing over the parameters completely
classically, then using those parameters on a real quantum device to do the actual sampling.

65

5.1 Introduction

5.1.1 Problem and motivation

The utility of current quantum computing devices are still extremely limited, not only due to
the presence of noise, but also due to the engineering challenge of scaling up. As such, they
are also known as “noisy intermediate-scale quantum” (NISQ) devices [38]. While some
researchers consider it meaningful to demonstrate quantum supremacy with such devices,
others strive to find more practical applications for them. Quantum algorithms inspired by
physical models are usually robust against noise to some degree. For example, simulation
of quantum dynamics is likely to give useful insights even on NISQ devices, and adiabatic
quantum computing [39] also works to some extent in the NISQ regime (where it is also
known as “quantum annealing”).

The original proposal of adiabatic quantum computation works by explicitly varying the
Hamiltonian of a physical system over time. Of course, by the universality of the circuit
model, it can always be translated into a quantum circuit. However, the evolution time
needed for adiabatic quantum computation is usually big, potentially even exponential. In
order to translate such a physical process into the circuit model, the depth of the circuit
must be large to limit the approximation error. Meanwhile, NISQ devices usually can
only handle a small depth of circuit before the accumulated noise becomes too large. This
greatly limits the potential of adiabatic quantum computation on NISQ devices based on
the circuit model.

The Quantum Approximate Optimization Algorithm (QAOA) [11] is an interesting
variant of adiabatic computing that works in the circuit model. In order to limit the noise,
it only uses a small number of layers in the circuit, but each layer is parameterized by
two rotation angles, γl and βl. For certain values of those parameters, QAOA is known
to approximate adiabatic quantum computation; however, the idea is that adjusting those
parameters may give a better approximation, and potentially even an improvement on the
time complexity of adiabatic quantum computation. Of course, there are also values for
those parameters that gives completely wrong results. As such, the performance of QAOA
depends heavily on the values of those parameters, which are usually supposed to be opti-
mized for the specific instances of the problem.

The fact that QAOA is designed for NISQ devices means that it may be in the reach
of our tensor network based circuit simulator, and the need to optimize for ~γ and ~β also
makes classical simulation of QAOA more meaningful. Therefore, it is a good problem to
try applying our algorithm to.

66

5.1.2 Applications of classical simulation to QAOA

In this chapter, we apply our parallel tensor network contraction algorithm to two related
tasks: evaluating the QAOA energy function, and sampling from the QAOA output distri-
bution.

Evaluating the energy function. Essentially, QAOA is an optimization algorithm with
the goal of minimizing an objective function on the output bit string resulting from mea-
suring the final state. Since quantum measurement is inherently random, the value of the
objective function achieved would vary randomly even when the number of layers p and
the parameters ~γ and ~β — and thus the final state — remain the same. The QAOA energy

function F (~γ, ~β) is defined as the expectation value of the objective function:

F (~γ, ~β) = 〈~γ, ~β|C|~γ, ~β〉,

where |~γ, ~β〉 is the final state of the QAOA algorithm, and C is the objective function
represented as an observable operator, a diagonal matrix in this particular case.

The energy function is named as such because it corresponds to the energy of the phys-
ical system in adiabatic quantum computation. When p is large enough, there exists values
of ~γ and ~β such that QAOA approximates an adiabatic quantum computation process that is
slow enough to evolve to the final ground state, and the energy function will be equal to the
minimum value of the objective function, i.e. any bit string that results from measuring the
final state achieves this minimum. When p is smaller, such a goal may not be achievable,
but we still want to come as close as possible. Therefore, it is desirable to choose ~γ and ~β
so as to minimize F (~γ, ~β).

The usual proposal for optimizing ~γ and ~β is to run QAOA on a quantum processor with
different values of ~γ and ~β, and use a classical algorithm to tune the values of those pa-
rameters in order to get better results. This would be a complex feedback process between
the quantum device and the classical computer, as well as a difficult classical problem to
solve. However, if there is a way to compute the value of F (~γ, ~β) classically, then we can
get around the feedback process, and we also only need an ordinary optimizer for deter-
ministic functions in order to minimize F (~γ, ~β).

Evaluating F (~γ, ~β) becomes easier when we take into account that QAOA also requires
the objective function C to have a particular structure. Namely, C must be the sum of a
number of clauses Cj , each only depending on a constant number of bits in the bit string,
so that the unitary operators e−iγjC needed by QAOA can be implemented efficiently in
the circuit model. This means that the energy function can also be written as the sum of

67

multiple functions, each only depending on a constant number of qubits in the final state.
As we will see in Section 5.3, rather than trying to evaluate the energy function as a

whole tensor networks, it is much easier to evaluate it as a sum of multiple tensor net-
works, each corresponding to a clause. Those tensor networks are easy to evaluate with
a “lightcone trick”. In fact, the energy function evaluating algorithm can have linear or
even constant time complexity, depending on the structure of the problem and the value of
p. In such cases, it becomes possible to efficiently optimize F (~γ, ~β) entirely on classical
computers, which would help a lot with demonstrating QAOA on NISQ devices.

Sampling from the output distribution. Of course, a more ambitious goal for a classical
simulator is to truly simulate QAOA, i.e. to sample from its output distribution. Unlike in
Chapter 4, single-amplitude simulation would not help much, because in this case the ideal
distribution is concentrated on one or few bit strings that minimizes the objective function.
Indeed, if we want to solve a combinatorial optimization problem, simulating QAOA with
a method like the one in Section 4.2.2 would have no advantage over simply computing the
value of the objective function on randomly chosen bit strings.

As we will see in Section 5.4, there is a method to truly simulate a circuit with tensor
networks, at the cost of doubling the depth of the circuit. It is actually rather similar to
the way we evaluate each component of the energy function, at least for the first qubit
measured. We did not use this method in Chapter 4 because doubling the depth would
increase the contraction width and cost of most supremacy circuits too much, putting them
out of reach for classical simulation. However, for shallow QAOA circuits, the “lightcone
trick” allows us to efficiently compute, and thus sample from, the probability distribution
of any single qubit.

Unfortunately, in order to sample an entire bit string from the output distribution, we
need to also be able to sample the probability distribution of a qubit conditioned on ob-

served values of all previously measured qubits. The only way we know of dealing with
previously measured qubits is by adding them to the lightcone, which increases the com-
plexity of the resulting tensor network quickly. We conclude that sampling from the output
distribution of an instance of QAOA may not be feasible classically, even when evaluating
the energy function is.

68

5.2 Preliminaries

5.2.1 Observable operators and Hamiltonian

In order to describe the idea of adiabatic quantum computation, it is necessary to introduce
a model of quantum computation that is different from the circuit model. We first define
the concept of observable operators.

Definition 5.1 (Observable operator). An observable operator of a quantum system of
dimension d is represented as a d× d matrix A that is Hermitian, i.e. such that A† = A.

If a state |ψ〉 is an eigenvector of A associated with eigenvalue a, i.e. A|ψ〉 = a|ψ〉 for
a scalar number a, then we say the value of A on |ψ〉 is a.

Otherwise, A only has an expected value on |ψ〉, given by 〈ψ|A|ψ〉.

By the spectral theorem in linear algebra, for any Hermitian matrixA, there always exist
a unitary matrix U and a diagonal matrix D = diag(a0, . . . , ad−1), such that A = UDU †.
Then the eigenvectors of A are given by |aj〉 = U |j〉 for j = 0, . . . , d− 1, each associated
with the eigenvalue aj . Furthermore, the value of A can be measured by applying U † to
a state, doing a computational basis measurement, then applying U . If the result of the
computational basis measurement is j, then the measured value of A is said to be aj . It can
be easily verified that the expected value of this measured value is indeed 〈ψ|A|ψ〉. This is
where the name “observable” comes from.

In quantum mechanics, there is a special observable operator H of every quantum sys-
tem called the Hamiltonian. When the Hamiltonian is fixed, the state of the system evolves
according to the rule

|ψ(t)〉 = e−iHt/~|ψ(0)〉,

where

e−iHt/~ =
d−1∑
j=0

e−iEjt/~|Ej〉〈Ej|

is a unitary operator, |Ej〉 are the eigenvectors of H , Ej are the corresponding eigenvalues,
and ~ is the reduced Planck constant. We note that units of time and of the Hamiltonian
can be chosen so that ~ = 1; therefore, we will omit the factor 1/~ hereafter.

The eigenstates |Ej〉 are also known as stationary states because they do not evolve over
time. (Remember that a global phase does not change the quantum state.) The expected
value of the Hamiltonian is called the energy, and is conserved when the Hamiltonian is not
time-dependent. The state with the lowest energy (which is easily seen to be a stationary
state) is called the ground state.

69

When the Hamiltonian does vary over time, but slowly, the evolution of the system is
known as adiabatic, and obeys the following theorem.

Theorem 5.1 (Adiabatic theorem [39]). If the initial state of a system is the ground state

of its initial Hamiltonian H(0), the time-dependent Hamiltonian H(t) varies slow enough,

and there always exists a non-zero gap between the two lowest eigenvalues of H(t) for

t < T , then the state of the system at time T is the ground state H(T).

Essentially, the system remains in the ground state of its Hamiltonian at all times. This
theorem is the basis of adiabatic quantum computation.

5.2.2 Adiabatic quantum computation

Adiabatic quantum computation is a general approach to solve combinatorial optimization
problems (and thus in theory, combinatorial search problems) by the adiabatic evolution of
a quantum system. Let the solution space of a combinatorial optimization problem be the
set of n-bit strings, and the objective function C(z) be defined as the sum of m clauses

C(z) =
m∑
j=1

Cj(z), z ∈ {0, 1}n,

where each clause Cj(z) is a function whose value depends only on a constant number of
bits of z. The goal is to find a z that (approximately) minimizes C(z).

In order to apply the adiabatic theorem, we want to view C(z) as a Hamiltonian of
the system of n qubits, which is easily achieved by making it a diagonal matrix C =

C(z)|z〉〈z|. In addition, we also need an initial Hamiltonian with a non-zero spectral gap
(i.e. gap between the two lowest eigenvalues) that we know the ground state of. For reasons
that would become apparent soon, we will use the Hamiltonian

B = −
n∑
k=1

Xk,

where

Xk = I⊗k−1 ⊗X ⊗ I⊗n−k, X = |0〉〈1|+ |1〉〈0| = |+〉〈+| − |−〉〈−|,

|+〉 = H|0〉 =
1√
2

(|0〉+ |1〉), |−〉 = H|1〉 =
1√
2

(|0〉 − |1〉).

The unique ground state of B can be shown to be |+〉⊗n.

70

Now, we define H(t) = (1 − s)B + sC, where s = t/T to be a Hamiltonian that
changes from B to C when t goes from 0 to T . Note that the off-diagonal elements of H(t)

is equal to that of (1 − s)B, and thus using the Perron-Frobenius theorem on −H(t), it
can be proved that the gap between the two lowest eigenvalues of H(t) is non-zero for all
0 ≤ t < T . Therefore, the adiabatic theorem applies as long as T is large enough.

To summarize, in order to find a z that minimizes C(z):

1. Initialize a system of n qubits into the state |+〉⊗n.

2. Vary the Hamiltonian of the system as H(t) = (1 − s)B + sC, where s = t/T , as
the time t goes from 0 to T .

3. Measure the final state in the computational basis to get the bit string z.

We note that the value of T that is “large enough” depends on the spectral gap of H(t).
Furthermore, even if T is not large enough to ensure that the system ends up at the ground
state, the measurement result is still likely to be one of the lowest energy eigenstates of
H(T) = C. Therefore, adiabatic quantum computation is capable of (and, in practice, is
usually used for) approximate optimization. The detailed proofs are beyond the scope of
this thesis.

5.2.3 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm is an algorithm inspired by adiabatic
quantum computation that can be applied to the same problems, but works in the circuit
model. Depending on its parameters, it can simulate adiabatic quantum computation when
the circuit depth p is large, but may be able to give approximate solutions to an optimization
problem even when p is small.

The form of QAOA can be derived by considering the Trotter approximation of an
adiabatic quantum computation process. The Trotter approximation is given by:

eA1+A2 = lim
r→∞

[
eA1/reA2/r

]r
,

where A1 and A2 are matrices. In the context of quantum state evolution, this is usually
applied in the form of

e−i(H1+H2)t = lim
r→∞

[
e−iH1t/re−iH2t/r

]r
,

71

meaning that applying a Hamiltonian H = H1 + H2 for time t can be approximated by
applying H1 and H2 alternately in r time steps, so that each of H1 and H2 is applied with
total time t. The more time steps we use, the more precise the approximation is.

In order to use the Trotter approximation, we first divide the process into q time steps,
fixing the Hamiltonian in each time step, then apply the Trotter approximation in each step,
dividing each time step further into r sub-steps:

|ψ(T)〉 = lim
q→∞

(
q−1∏
j=0

e−iH(jT/q)T/q

)
|ψ(0)〉

= lim
q→∞

(
q−1∏
j=0

e−i((q−j)B+jC)T/q2

)
|+〉⊗n

= lim
q→∞

lim
r→∞

(
q−1∏
j=0

[
e−i(q−j)BT/q

2re−ijCT/q
2r
]r)
|+〉⊗n.

Even though the coefficients are slightly complicated, the above expression has the
following simple form:

|ψ(T)〉 ≈ |~γ, ~β〉 = e−iβpBe−iγpC · · · e−iβ1Be−iγ1C |+〉⊗n.

Here p = qr, βj and γj are small numbers, and the order is reversed to show the order in
which they appear in the quantum circuit (i.e. the order in which the unitaries are applied
to the initial state). Both e−iβB and e−iγC can be implemented efficiently with local gates:

e−iβB =
n⊗
k=1

e−iβXk , e−iγC =
m∏
j=1

e−iγCj .

Note that, since all Cj correspond to diagonal matrices, the decomposition above is valid,
and indeed the gates e−iγCj can be applied in any order.

The above expression for |ψ(T)〉 gives a faithful approximation of adiabatic quantum
computation in the circuit model. However, in order to simulate changing the Hamiltonian
slow enough, the number of layers p needed is too large to be feasible in NISQ devices.
Therefore, QAOA uses a different strategy, where p is chosen to be small, and the rotation
angles ~γ and ~β are parameters that are not defined a priori. The resulting |~γ, ~β〉 is re-
garded as an ansatz that may or may not correspond to good solutions of the combinatorial
optimization problem.

In order to use QAOA to actually solve a problem, we need to find values for param-
eters ~γ and ~β such that |~γ, ~β〉 does correspond to good solutions. The usual metric is the

72

expectation value of the objective function C, also known as the energy function:

F (~γ, ~β) = 〈~γ, ~β|C|~γ, ~β〉.

The goal of Section 5.3 is to evaluate the energy function classically, so that good values of
~γ and ~β can be found with a classical optimizer.

5.3 Evaluating the energy function

In order to evaluate the energy function F (~γ, ~β) = 〈~γ, ~β|C|~γ, ~β〉 using our tensor net-
work contraction algorithm, we need to represent the value in terms of one or more tensor
networks. One naive idea is to use a single tensor network built as follows:

1. Using the method in Section 4.3, build a tensor network with n open edges that
represents the output of the QAOA circuit, |~γ, ~β〉.

2. Make a copy of the above tensor network, but take the complex conjugate of every
input tensor. The result represents 〈~γ, ~β|.

3. Build a third tensor network with n open edges representing the diagonal matrix C.

4. Connect the aforementioned tensor networks together by identifying open edges with
each other (according to the qubits in the output state |~γ, ~β〉 they correspond to), and
changing them into closed edges.

It can be verified that such a tensor network would indeed have the value 〈~γ, ~β|C|~γ, ~β〉.
However, the third step above is the problematic part. It is difficult to build a tensor

network forC, becauseC is defined as the sum of multiple clausesCj , and a tensor network
represents a kind of product of the input tensors. However, this does hint that maybe we
should represent the energy function as the sum of multiple tensor networks.

Indeed, the energy function, which is the expectation value of the objective function,
can be computed as the sum of the expectation values of all clauses:

F (~γ, ~β) =
m∑
j=1

Fj(~γ, ~β), where Fj(~γ, ~β) = 〈~γ, ~β|Cj|~γ, ~β〉.

Now, each Fj can indeed be represented as a tensor network using the idea described at the
beginning of this section. Since Cj is a simple function of the value of only a few qubits, it
can be simply represented with a single tensor.

73

Furthermore, there is actually a big advantage of focusing on a single clause. In order
to illustrate the trick we can use to significantly reduce the cost to compute Fj , we write
down tensor network representation of Fj as follows:

(〈+|⊗n)eiγ1Ceiβ1B · · · eiγpCeiβpB · Cj · e−iβpBe−iγpC · · · e−iβ1Be−iγ1C(|+〉⊗n).

We note that, unlike C, Cj is a tensor that is localized on a few qubits. Therefore, when
building the tensor network, there are many open edges from eiβpB that are only connected
to the corresponding open edges from e−iβpB. In addition, eiβpB and e−iβpB themselves are
composed of localizedX gates. Therefore, there are many sub-networks of the above tensor
network that are of the form eiβpXke−iβpXk , which evaluates to I . Those sub-networks can
be contracted and removed from the tensor network.

After removing those sub-networks, there will be some gates from eiγpC and e−iγpC that
are now directly connected to each other, and can be removed. Then, some gates from
eiβp−1B and e−iβp−1B can be removed in the same way. When n is large and p is small, such
cancellations can get all the way to the “outermost layers” eiγ1C and e−iγ1C . The resulting
tensor network would be much smaller, and thus easier to evaluate, than the original.

This phenomenon can be explained by the physical intuition of “lightcone”. In a quan-
tum circuit, information can only be passed between qubits through multi-qubit gates. For
a large but shallow circuit, the “past lightcone” of each output qubit — the part of circuit
which that output qubit can receive information from — only actually covers a small frac-
tion of gates and input qubits. Since each Fj only depends on a few output qubits, it makes
sense that only a small portion of the tensor network is needed to evaluate each Fj .

In summary, by using the “lightcone trick”, we can evaluate each Fj(~γ, ~β) by only
contracting a small tensor network, and then compute F (~γ, ~β) =

∑m
j=1 Fj(~γ,

~β). This
gives an efficient method to evaluate the energy function of a QAOA algorithm when p is
small.

The partial trace interpretation. We note that the way we evaluate the expected value
of a clause Fj and implement the “lightcone trick” can also be regarded as an instance
of density matrix simulation, which we will introduce in Section 6.5.1. The reason why
density matrix simulation is useful for this problem is that it allows discarding a qubit by
taking the partial trace over it, which can be implemented by performing a computational
basis measurement on the qubit, but keeping the edge corresponding to the measurement
result closed rather than making it open. When a qubit falls out of the “past lightcone” of the
clause Fj , we can discard it, so that the size of the resulting tensor network is manageable.

74

It can be shown that this generates a tensor network that is trivially equivalent to the one
generated by the cancellation process described above.

5.4 Sampling from the output distribution

In general, the method described in the previous section is an efficient method for evaluat-
ing the expected value of not only Cj , but any localized observable operator on the output
state of a shallow quantum circuit. In particular, this method can be adapted to the problem
of sampling from the output distribution of such a circuit.

First consider the problem of sampling the output distribution arising from a computa-
tional basis measurement on a single qubit in the output state |~γ, ~β〉. This distribution is a
Bernoulli distribution, so we only need to know the expected value of the outcome (which
is 0 or 1). Importantly, the result of this measurement can be represented as an observable
operator M , and the expectation value is then 〈~γ, ~β|M |~γ, ~β〉. Without loss of generality,
assume that the qubit in question is the first qubit in the system. Then

M = (0 · |0〉〈0|+ 1 · |1〉〈1|)⊗ I⊗n−1 = |1〉〈1| ⊗ I⊗n−1.

Similar to Cj , this observable operator is localized on a single qubit, so the “lightcone
trick” can be applied. The resulting tensor network can be simplified a little further by
representing M as a tensor network consisting of two tensors |1〉 and 〈1|, and applying
the simplification in Section 4.3 for computational basis vectors. This simplification only
moderately reduces the complexity of the tensor network, since the main wayM introduces
connectivity in the tensor network is actually with the I⊗n−1 factor, which connects two
pieces of the “lightcone” together.

The above gives an efficient procedure for simulating the computational basis measure-
ment on any single qubit. However, this alone does not allow true simulation of the circuit,
which required each qubit to be measured sequentially. In other words, we need to sample
the distribution of some qubits while taking previous measurement results into account.

An obvious solution is to add those previous measurement results to the observable
operator. Suppose that the first k qubits are already measured, and the measurement results
form the bit string s ∈ {0, 1}k. Then we take the next observable operator as

M = |s〉〈s| ⊗ |1〉〈1| ⊗ I⊗n−k−1.

The expectation value of M reflects the a priori probability that measuring the first k + 1

qubits give the bit string s|1 (where the vertical bar stands for string concatenation), ps|1.

75

Previously in the sampling process, we should already know the probability ps. Then the
conditional probability of measuring the current qubit to be 1 is ps|1/ps. Knowing this
probability would allow us to sample the current qubit (and compute ps|0 = ps − ps|1 if
necessary).

However, as k grows larger, the operator M becomes less localized, and its lightcone
becomes larger. Even though larger k also makes the tensor network of M less connected
(for example, when measuring the last qubit, the tensor network for 〈~γ, ~β|M |~γ, ~β〉 becomes
two disjoint pieces, and we essentially only need to calculate a single amplitude for the
circuit), it cannot nearly make up for the increase of size of the lightcone. The hardest cases
are when k is large enough that the lightcone covers nearly the entirety of the circuit, but not
so large that the connection between the two pieces of the lightcone becomes insignificant.

We note that we can adjust the order in which we measure the qubits, in an attempt to
make the tensor networks that we need to contract during this procedure simpler. However,
we do not know of a good method to adjust this order, and experimental evidence suggests
that the effect of adjusting this order is limited. As far as we know, there are many QAOA
circuits where evaluating the energy function for hundreds of values of ~γ and ~β is feasible,
but sampling even one bit string from the output distribution is out of reach for classical
computers.

5.5 Experiment results

In [12], we tested evaluating the energy function and optimizing for the parameters ~γ and
~β on MAX-CUT problems on unweighted regular graphs. The MAX-CUT instance on a
graph G = (V,E) is defined by the following objective function:

C(s) =
∑
e∈E

Ce(s), C(u,v)(s) =

−1, su 6= sv,

0, su = sv.

Here we identify positions in the bit string s ∈ {0, 1}n with vertices v ∈ V . As can be seen
from this formulation, n = |V |, m = |E|, and each clause corresponds to an edge in E. In
other words, the goal is to find a way to assign sv ∈ {0, 1} to each vertex v, such that as
many edges possible have different value assigned to both its endpoints.

MAX-CUT is one of the earliest known NP-complete problems [40], and its represen-
tation as a combinatorial optimization problem is about the simplest possible, since each
clause only depends on the values of two bits in s. As such, it is likely to be one of the
first problems usefully solved on a NISQ device with QAOA. Therefore, MAX-CUT is the

76

problem of choice for our experiments.
All experiments below are run on a single Alibaba Cloud ECS instances with 24 Intel

Xeon Gold 6149 CPU cores @ 3.1 GHz and 96 GB of memory.

5.5.1 Energy function evaluation on random regular graphs

We tested evaluating the energy function on random d-regular graphs with up to 1000 ver-
tices, for d = 3, 4, 5, and with the number of layers in the QAOA p ≤ 5. The random
d-regular graphs are generated with the random_regular_graph function from the
NetworkX library, which uses the definition of “random regular graph” and the algorithm
from [41]. The graphs generated do not have any self-loops or parallel edges.

We note that, even when the number of vertices n is large, this size of each lightcone
is still relatively small, as it is primarily determined by d and p rather than n. Therefore,
we opt not to slice each tensor network further into sub-tasks, but to simply regard the
m = nd/2 tensor networks themselves as sub-tasks and evaluate them in parallel.

For comparison, we also do the same task on three other libraries with quantum sim-
ulation functionalities: Cirq [42], Qiskit [43], and qTorch [44]. In each case, we use the
implementation given as an example in the documentation of the library. Cirq and Qiskit
are both general purpose quantum circuit simulation libraries, and their examples are based
on state vector simulation. Therefore, we expect that they would not be able to handle
instances with large n. Meanwhile, qTorch is based on tensor network contraction, similar
to our work, so we expect that the time scaling of qTorch should be similar to ours.

We first compare the performance of the four algorithms on 3-regular graphs with num-
bers of vertices n = 10, 20, 30, 50, 100, 1000. The results are shown in Figure 5.1. As
expected, both Cirq and Qiskit run out of memory when n ≥ 30, which would require
them to store a state vector with at least 230 complex numbers. When n ≤ 20, the perfor-
mance of our algorithm is either better than or comparable to those algorithms.

Meanwhile, qTorch is much less robust than we expected. We find that it is very prone
to random crashes on QAOA circuits with p ≥ 2. Among 5 random instances for each
number of vertices and each p ≥ 2, qTorch only managed to produce an answer for two
of them without crashing, one with n = 10, p = 2 and one with n = 30, p = 2. In the
cases where it succeeds, it constantly takes more than 10× the time our algorithm takes to
compute one value of the energy function.

We also observe that, for smaller n, sometimes the running time may decrease a little
when n increases. For example, when d = 3 and p = 4, the case n = 100 seems to
run faster than n = 50. This is easily explained by the fact that when n is small, the

77

Figure 5.1: Comparison of the average time to evaluate the energy function on a single
set of parameters, ~γ and ~β, for 3-regular MAX-CUT instances. For each problem size, 5
random MAX-CUT instances are drawn. Both Cirq and Qiskit run out of memory when
n ≥ 30; qTorch crashed on all but two instances when p ≥ 2.

78

Time (s) Vertices in a tree
d = 3 d = 4 d = 5 d = 3 d = 4 d = 5

p = 1 2.707 4.318 6.789 6 8 10
p = 2 9.433 20.455 36.913 14 26 42
p = 3 26.450 80.816 * 30 80 170
p = 4 68.651 * * 62 242 682
p = 5 409.022 * * 126 728 2730

Table 5.1: Time to evaluate the energy function on a single set of parameters, for d-regular
MAX-CUT instances with n = 1000 vertices. Numbers in the columns labeled “vertices in
a tree” is the number of vertices that would be involved in the lightcone of a single clause
if the subgraph induced by those vertices is a tree.

random regular graph is more likely to contain small cycles, which causes tensor networks
for single clauses to have a more complex structure, unlike in the large n limit where
the tensor networks are more tree-like. This also explains why the running time in some
cases varies much more with the choice of the random graph. For example, in the case
d = 3, p = 4, n = 30, the running time has a large variance since the local structures of the
random graphs vary greatly.

Next, we study the effects of d and p to the running time. We use d-regular graphs with
1000 vertices for d = 3, 4, 5, and increase the value of p until the evaluation task becomes
infeasible. The results are shown in Table 5.1.

As can be seen, when feasible, the running time roughly scales proportionally to dp,
which can be explained by the hypothesis that most of the lightcones correspond to trees in
the original graph, in which case the number of vertices involved in a lightcone would be
given by

2(d− 1)p+1 − 1

d− 2
.

The case d = 3, p = 5 is an outlier, as well as some of the “*”s in the table that would
be feasible if they followed the scaling. This is probably because that in those cases, the
number of vertices in a “tree lightcone” is too large relative to the total number of vertices,
so it is likely that some of the vertices coincide with another, and the lightcone is no longer
tree-like.

5.5.2 Optimization for small-cycle-free graphs

The above observation naturally gives rise to the idea to study small-cycle-free graphs
specifically. If a graph does not contain cycles with at most 2p + 1 vertices, then all the
lightcones for QAOA with p layers will have exactly the same tree structure, making the

79

d p Vertices Time (s) dlib de FOURIER Procession Grid search
3 1 6 0.0015 0.692 0.692 0.692 0.692 0.692
3 2 14 0.0048 0.738 0.756 0.756 0.756 0.756
3 3 30 0.0129 0.782 0.782 0.782 0.792 0.792
3 4 62 0.0349 0.817 0.805 0.811 0.806 -
3 5 126 0.0945 0.822 - 0.819 0.800 -
4 1 8 0.0019 0.662 0.662 0.662 0.662 0.662
4 2 26 0.0076 0.716 0.716 0.716 0.716 0.716
4 3 80 0.0306 0.737 0.737 0.739 0.735 0.749
4 4 242 0.1432 0.760 0.761 0.751 0.753 -
5 1 10 0.0021 0.643 0.643 0.643 0.357 0.643
5 2 42 0.0113 0.691 0.691 0.691 0.682 0.691
5 3 170 0.0666 0.709 0.709 0.720 0.711 0.720
5 4 682 0.6436 0.731 - 0.736 0.739 -
6 1 12 0.0025 0.629 0.629 0.629 0.629 0.629
6 2 62 0.0160 0.673 0.673 0.673 0.673 0.673
6 3 312 0.1422 0.690 0.690 0.699 0.692 0.699
7 1 14 0.0027 0.619 0.619 0.619 0.619 0.619
7 2 86 0.0218 0.659 0.659 0.659 0.659 0.659
7 3 518 0.2663 0.674 - 0.667 0.667 -

Table 5.2: Optimized expected value of each clause for small-cycle-free d-regular graphs,
using various optimizers. Since the expected value is always in the range −1 ≤ Cj ≤ 0,
we omit the minus sign for all of them; therefore a larger value is better. We also list the
number of vertices in the lightcone and the average time per query.

expectation values of each clause equal and independent of n. In fact, the idea to optimize
~γ and ~β specifically for small-cycle-free graphs is also proposed in [45].

We used various classical numerical optimization algorithms to optimize ~γ and ~β:

• The library function dlib.find_min_global.

• The library function scipy.optimize.differential_evolution, which
we abbreviate as de.

• The FOURIER heuristic from [46].

• The “procession” heuristic from [45], where the parameters gotten from optimizing
p = p0 is used to initialize a local optimizer for p = p0 + 1.

• A grid search over the parameter space, with the most promising result used to ini-
tialize a local optimizer.

All of them queries our tensor network contraction algorithm as a subroutine to evaluate
the energy function for specific values of ~γ and ~β. The results are shown in Table 5.2. As

80

shown in the table, the largest values of parameters we could handle are d = 3, p = 5;
d = 5, p = 4; and d = 7, p = 3. Within the parameter regime that we could handle, each
query takes less than one second.

As expected, grid search always gives the best result when it is feasible. However, it is
also the slowest numerical optimization algorithm, and becomes infeasible quickly when
d and p increase. In general, all methods give similar results, in most cases within 0.02 of
each other, although there are a few unexplained outliers such as 0.357 for the procession
heuristic when d = 5 and p = 1.

5.6 Discussion

In this chapter, we attempt to apply tensor network contraction to two different tasks that
arise in the study of QAOA, evaluating the energy function and sampling from the output
distribution. For the former, we gave a method that solves the task satisfactorily for small
values of d and p. Importantly, depending on the nature of the optimization problem, the
scaling of the time complexity may be only linear in the problem size n, or even indepen-
dent of n. We also demonstrated how to use this solution as a subroutine in order to find
good values of the parameters ~γ and ~β.

For the latter task, however, our solution is far from satisfactory. It can sample the
measurement results of a few qubits efficiently, but if we want to sample a significant
portion of qubits, then the time complexity becomes superpolynoimial in n. It seems that
for classical simulators, evaluating is easier than sampling, since there are many instances
where evaluating the energy function is trivial in terms of space and time costs, yet sampling
with this method is not feasible.

While disappointing, this also gives an interesting idea for a hybrid quantum-classical
implementation of QAOA. Notice that, in evaluating the energy function, it is the quantum

computer that needs a large overhead, since many samples are required to get a good esti-
mation of the energy function, which may be needed so that the optimization on ~γ and ~β is
stable. Therefore, even when NISQ devices become available, it makes sense to optimize
for ~γ and ~β using energy function values evaluated classically, and only use the quantum
device for sampling when a good energy function value is found.

81

CHAPTER 6

Applications to quantum error correction

In this chapter, we use tensor network contraction to study quantum error correction codes.
Quantum error correction codes is an essential component for fault-tolerant quantum com-
putation, which is necessary for universal scalable quantum computation in the near future.
Hence, the study of the properties of quantum error correction codes has both theoretical
and practical importance. Existing theoretical analyses are usually based on simplistic error
models such as the Pauli twirling approximation, which can only give crude approximations
of the logical error rate. Realistic error models should give more precise estimations of the
logical error rate, which may provide guidance on quantum hardware design.

In [13], we study a realistic error model based on the one presented in [14], with an
important additional component, crosstalk induced by ZZ-interactions that are present be-
tween neighboring qubits even when they are idle. As our results show, crosstalk can
significantly affect the logical error rate of quantum error correction codes, potentially ne-
cessitating measures to specifically mitigate it.

We focus on the quantum error correction code Surface-17, which involves 9 data qubits
and 8 ancilla qubits. We simulate 3 rounds of error syndrome extraction, the minimum
number of rounds needed for fault tolerant error correction. Therefore, the total number of
syndrome bits measured is 8 × 3 = 24, and we can use a tensor that fits in the memory
to represent the logical error for each of the 224 results. This allows us to figure out the
optimal decoder and exactly compute the logical error rate, without resorting to Monte
Carlo sampling like is done in [14].

6.1 Introduction

6.1.1 Quantum error correction and surface codes

From a theoretical viewpoint, the ultimate goal of quantum computing would be to build
a universal, scalable quantum computer, so that any problem in BQP could be solved in

82

polynomial time. Currently, since all physical implementations of qubits are noisy, i.e.
error-prone, the most promising approach to building a universal, scalable quantum com-
puter is by utilizing quantum error correction codes. The famous quantum threshold the-
orem [47] states that, as long as the error of each individual quantum operation is below
a certain threshold, then by encoding each logical qubit with an error correction code and
carefully doing error correction, quantum circuits of arbitrary size can be evaluated fault-
tolerantly in principle.

In practice, fault-tolerant quantum computation is a little more complicated. The proof
of the threshold theorem in [47] uses concatenated codes, which are not very efficient,
requiring a large number of qubits for any reasonable error parameters, more than what is
feasible with current technologies. A more efficient family of codes would certainly help
to make fault-tolerant quantum a reality sooner. One example of such a family of codes is
the family of surface codes.

One peculiar characteristic of the surface codes is that their error correcting capaci-
ties are more than their code distance would suggest: Since they are defined on a lattice,
whether a particular set of errors is correctable depends less on the error weight, and more
on the layout of the error on the lattice. Unfortunately, this also means that not much
is known about the actual error correcting capacities of surface codes. Even finding the
optimal correction for a set of error syndromes is a nontrivial problem.

6.1.2 Realistic error models

Most existing studies on quantum error correcting codes are based on simple error models
— either specific ones that does not consider many of the subtle effects on real hardware,
or overly general ones to make sure the results are valid. Therefore, the results of such
studies are either too optimistic or too pessimistic, and they also do not provide much
insight on what could be done with the hardware designs to make them work better with
error correction.

One of the studies that does use a more realistic error model is [14]. It simulated
Surface-17, a code with 9 data qubits and 8 ancilla qubits. Due to the specific way the gates
in the error correction circuit is arranged, it is possible to reorder the computation so that
only one ancilla qubit is active at any time, making a density-matrix simulation feasible
since only a 10-qubit density matrix needs to be maintained. Even then, the size of surface
codes that could be simulated is limited, and some potentially important sources of errors
on real hardware, like crosstalk and leakage, are left out. Moreover, the resulting density
matrix is only for a single error syndrome, so the results are subject to sampling error,

83

necessitating a large number of samples.
In this chapter, we aim to do exact simulation of Surface-17 by a tensor network that

computes the effect of the noise together with the error correction process on the logical
qubit, for each possible error syndrome. This means that our approach cannot handle too
many syndrome extraction rounds: The most we can handle is 24 syndrome bits, which
on Surface-17 corresponds to 3 rounds, the bare minimum needed for fault tolerant error
correction. In return, we can incorporate some more complicated errors into our error
model. We will focus on crosstalk, which is likely to be a significant source of logical error
in near-term implementations of surface codes.

6.2 Preliminaries

6.2.1 Pauli matrices

We start with an introduction to the Pauli matrices, which play a major role in the theory
of quantum error correction.

Definition 6.1 (Pauli matrices). The Pauli matrices are

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

The Pauli matrices are both unitary matrices and Hermitian matrices. They have the
following properties:

X2 = Y 2 = Z2 = I, XY = −Y X = iZ, Y Z = −ZY = iX, ZX = −XZ = iY.

An n-qubit Pauli operator is defined as the tensor product of nmatrices in {I,X, Y, Z},
with a scalar prefactor in {±1,±i}. From the properties of Pauli matrices above, it can be
seen that the set of all n-qubit Pauli operators is a group, called the n-qubit Pauli group.
Furthermore, any two n-qubit Pauli operators P andQ either commute or anticommute, i.e.
either PQ = QP or PQ = −QP , which can be determined as follows:

• Two single-qubit Pauli operators in {I,X, Y, Z} commute if and only if one of them
is I , or they are the same.

• If P = P1 ⊗ P2, and Q = Q1 ⊗ Q2, then P and Q commute if any only if the pairs
P1, Q1 and P2, Q2 either both commute or both anticommute.

• The scalar prefactor does not affect the commutativity of two Pauli operators.

84

Convention. When there is no danger of confusion, sometimes we omit the tensor prod-
uct sign between Pauli matrices. For example, the notation XY usually means X ⊗ Y =

X1Y2, which is a two-qubit operator (i.e. a 4× 4 matrix) where a Pauli X is applied to the
first qubit and a Pauli Y is applied to the second qubit. This is different from the “XY ” in
XY = iZ, where both Paulis are applied to the same qubit sequentially.

6.2.2 Basics of stabilizer codes

We define an [[n, k]] quantum code as a way to encode a state |ψL〉 of a k-qubit system
into a state |ψ〉 of a larger n-qubit system where n > k. The state |ψ〉 can only be in a
limited subset, known as the codespace, of all possible n-qubit states. A stabilizer code is
a quantum code where the codespace can be described by a set of n-qubit Pauli operators.

Definition 6.2 (Stabilizer code). A stabilizer code is an [[n, k]] quantum code where the
code space is defined as

{|ψ〉 | ∀P ∈ S : P |ψ〉 = |ψ〉},

where S is a set of n-qubit Pauli operators. Without loss of generality, we can take S to be
a subgroup of the n-qubit Pauli group, called the stabilizer group. Each element P of S is
called a stabilizer.

There are several properties that S must satisfy. Obviously, S cannot contain−I , which
implies that S cannot contain any anti-Hermitian Pauli operator (i.e. one with a prefactor in
{±i} rather than {±1}), and that every pair of stabilizers in S must commute. It can also
be shown that |S| = 2n−k, i.e. S can be generated by a set of n− k generators.

A stabilizer P can be regarded as an observable operator, as defined in Section 5.2.1.
As such, it can be measured1. The outcome can be +1 or −1, but it should always be +1

for a state |ψ〉 in the codespace. Furthermore, it suffices to measure the n − k stabilizers
in any generator of the stabilizer group S to verify that |ψ〉 is indeed in the codespace. In
general, such a set of n− k measurement results is known as the error syndrome.

We do not discuss in detail the theoretical error correcting capability of stabilizer codes,
which has been studied in a number of previous works, such as [48]. For our purpose, it
suffices to say that any n-qubit state can be “corrected” into the codespace by measuring
the error syndrome, then only applying Pauli gates on individual qubits. For any given error
syndrome, there are multiple ways of doing such “correction”, and they do not necessarily

1In practice, we also want the measurement not to otherwise disturb the code state, i.e. to yield no infor-
mation other than whether the result is +1 or −1, so the method of measurement mentioned in Section 5.2.1
is not applicable. Section 6.2.3 gives a method of measuring specific stabilizers without otherwise disturbing
the code state.

85

give the same code state. The best one to choose is usually the one that needs the fewest
Pauli gates (i.e. that assumes that fewest qubits are affected by the error), but may depend
on the actual error model.

Regardless, it is always possible to define a stabilizer code so that different “correc-
tions” differ by only Pauli gates on the logical state. In Section 6.5.2, we will use this fact
to find an optimal decoder under our error model with tensor networks.

6.2.3 Surface code design

We will focus on the family of surface codes and implementation proposed in [49]. The
surface code consists of three kinds of qubits with a grid-like layout: data qubits, X-ancilla
qubits, and Z-ancilla qubits. The data qubits store information about the logical qubit
encoded, and the ancilla qubits are used to measure the error syndrome without otherwise
disturbing the data qubits. More specifically, we focus on a specific code in this family,
Surface-17, which is a [[9, 1]] quantum code.

In a surface code, there are two types of stabilizers, X-stabilizers and Z-stabilizers, that
form a generator of the stabilizer group. As the name indicates, an X-stabilizer is a tensor
product of Pauli X operators on a subset of the qubits, and the same goes for a Z-stabilizer
and Pauli Z operators. Furthermore, the qubits are laid out on a 2-dimensional surface, with
each stabilizer in the generator only acting on a local subset of qubits. The qubit layout for
Surface-17 is shown in Figure 6.1.

In order to use the surface code to store a logical qubit and protect it against errors, we
first encode it into the data qubits, then repeatedly measure the error syndrome in order to
detect and correct errors. At the end of Section 6.2.2, we have described how “ideal” error
correction works, but in practice it is more complicated because the procedure to measure
the error syndrome is also subject to errors. In theory, the error correcting process can be
made fault tolerant, i.e. resistant to a single error occurring in any one component of the
circuit2, only if we combine the error syndromes measured in at least three consecutive
rounds to determine how to correct the error.

On the other hand, applying Pauli gates to correct errors can be implemented in a way
that is not subject to error, because no physical circuit is needed for those Pauli gates.
Instead, we note that the effect of a Pauli gate P on the measurement results of a stabi-
lizer Q thereafter can be predicted: The measurement result will be unchanged if P and
Q commute, and flipped if P and Q anticommute. Therefore, we can apply Pauli gates
conceptually by adjusting the measurement results thereafter. For preserving the value of a

2The actual definition is a little trickier; see [47] for a rigorous treatment of fault tolerance.

86

(0, 0) (0, 2) (0, 4)

(2, 0) (2, 2) (2, 4)

(4, 0) (4, 2) (4, 4)

(1, 1)

(5, 1)

(−1, 3)

(3, 3)

(1, 3)(1,−1)

(3, 1) (3, 5)

Figure 6.1: Qubit layout of Surface-17. Data qubits are represented by blue squares, and
X-ancilla and Z-ancilla qubits by red and green circles respectively. Each ancilla qubit
is used to measure a stabilizer, as shown by the shaded red and green regions. For ex-
ample, the X-ancilla at (−1, 3) measures X(0,2)X(0,4), and the Z-ancilla at (3, 1) measures
Z(2,0)Z(2,2)Z(4,0)Z(4,2).

logical qubit, the only operation that needs to be implemented on the hardware is extracting
the error syndrome.

The circuit for a round of error syndrome extraction is conceptually simple:

1. For each Z-ancilla qubit, apply CNOT gates to it, with each adjacent data qubit as
the control qubit for each CNOT gate. Then do a computational basis measurement
to measure a Z-stabilizer. (0 and 1 correspond to +1 and −1 respectively.)

2. Apply Hadamard gates to all data qubits to switch to the Hadamard basis.

3. For each X-ancilla qubit, apply CNOT gates to it, with each adjacent data qubit as
the control qubit for each CNOT gate. Then do a computational basis measurement
to measure an X-stabilizer.

4. Apply Hadamard gates to all data qubits to switch back to the computational basis.

87

Note that in this implementation, ancilla qubits are not reset after each measurement
(which may be difficult on hardware). Instead, we assume that measurement simply causes
the qubit to decohere into the computational basis, and its value stays as is, barring errors,
for the next round.

On actual superconducting hardware, the native two-qubit gate is CZ rather than CNOT.
Therefore, the CNOT gates are implemented by sandwiching CZ gates between Hadamard
gates (only two Hadamard gates are needed for each ancilla qubit each round). By the
same token, Hadamard gates can be replaced by Ry(±π/2) = e±iπY/4 = (ZH)±1, which
achieves the same goal of switching between the computational basis and the Hadamard
basis, and is easier to implement on the hardware.

Another detail is that, since the CZ gates all commute with each other, there is some
freedom in the orders of all CZ gates on the Z-ancilla qubits, and all CZ gates on the X-
ancilla qubits. Some of them may also be applied simultaneously. In the superconducting
architecture considered in [49], the CZ gates are implemented by shifting frequencies of
qubits so that the two qubits to apply the CZ on has the same frequency, different from that
of all other adjacent qubits. It requires some careful design to do this in an efficient and
scalable way. For detailed circuit diagrams, we refer to [49] and [14].

6.2.4 Quantum channels

Errors in a quantum device usually happen randomly, and therefore they can take a quantum
system from a pure state to a mixed state. An alternative viewpoint is that errors cause loss
of information, and loss of quantum information can change a pure state into a mixed state.
This means that errors are not unitary operations. However, they can be described in the
circuit model as the interaction between a system and an external environment. In general,
the description will be in the following form:

1. Starting from a quantum system A that stores the quantum information we are inter-
ested in, add another system E representing the environment, conventionally initial-
ized in a fixed state |0〉E .

2. Apply a unitary circuit U on the composite system AE.

3. Discard the system E.

This process can also be written as ρ′A = TrE[U(ρA ⊗ |0〉〈0|E)].
We note that such a process can be used to describe more than just errors. For example,

the entire error correction process, where we measure the error syndrome through ancilla
qubits and apply Pauli gates according to the measurement outcomes, can be described in

88

this form too. In fact, this process can be slightly generalized to give the definition of a
quantum channel.

Definition 6.3 (Quantum channel). A quantum channel C is a mapping from dA × dA

density matrices to dA′ × dA′ density matrices that can be written in the form

C(ρA) = TrE′ [U(ρA ⊗ |0〉〈0|E)].

Where AE and A′E ′ are two decompositions of the same composite quantum system.

As can be seen, the generalization is that the system E ′ to discard is not necessarily the
system E added in the beginning. This allows quantum channels to represent operations
that change the dimension of the system, such as the encoding process and the decoding
process of a quantum code.

From the definition, it can also be seen that a quantum channel C is a linear mapping
from dA × dA matrices to dA′ × dA′ matrices. As such, it can be represented as a dA ×
dA×dA′×dA′ tensor, conventionally written as a dAdA′×dAdA′ matrix known as the Choi

matrix of C. For example, when dA = dA′ = 2, the Choi matrix of C is the following block
matrix:

C =

C

(
1 0

0 0

)
C

(
0 1

0 0

)

C

(
0 0

1 0

)
C

(
0 0

0 1

)
 .

Pauli transfer matrices. There are other ways of representing a quantum channel. For
quantum channels that apply to a single qubit, i.e. when dA = dA′ = 2, one such represen-
tation is the Pauli transfer matrix, which has the advantage of being a real matrix, and also
makes some quantities of interest easier to compute.

The Pauli transfer matrix representation is based on the fact that the single-qubit Pauli
operators {I,X, Y, Z} form a basis for the linear space of 2 × 2 matrices. Indeed, if we
multiply each of them by 1/

√
2, and define the inner product of two matrices A and B as

Tr(A†B), then they form an orthonormal basis. As such, the Pauli transfer matrix R for a
quantum channel C can be defined as

R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

 =
1

2

Tr[C(I)] Tr[C(X)] Tr[C(Y)] Tr[C(Z)]

Tr[XC(I)] Tr[XC(X)] Tr[XC(Y)] Tr[XC(Z)]

Tr[Y C(I)] Tr[Y C(X)] Tr[Y C(Y)] Tr[Y C(Z)]

Tr[ZC(I)] Tr[ZC(X)] Tr[ZC(Y)] Tr[ZC(Z)]

 .

89

Note that we omitted the complex conjugate because I,X, Y, Z are all Hermitian. When
referring to individual entries of R, it is conventional to index the rows and columns with
0, 1, 2, 3 instead of 1, 2, 3, 4, as shown above.

A simple property of Pauli transfer matrices follows from the fact that any valid quan-
tum channel must be trace-preserving, since they should map normalized density matrices
to normalized density matrices. Even though I,X, Y, Z are not normalized density matri-
ces, the linearity of the quantum channel means that their traces are still preserved, so

Tr[C(I)] = Tr(I) = 2,

Tr[C(X)] = Tr[C(Y)] = Tr[C(Z)] = Tr(X) = Tr(Y) = Tr(Z) = 0.

Therefore, the first row of a Pauli transfer matrix for a valid quantum channel must be
(R00, R01, R02, R03) = (1, 0, 0, 0).

6.3 Base error model

The realistic error model we use in our simulation experiments is mostly based on the one
in [14], described in their supplementary material. It is intended to describe the errors that
happen in a superconducting quantum device. Whereas [14] uses Pauli transfer matrices
to represent error channels, we will use Choi matrices, both for the sake of variety and
because they are closer to the tensor representations used in our program.

6.3.1 Idle error

Even when a qubit is idling, i.e. when we do not intend to apply any gate or measurement
to the qubit, interaction with the environment will cause an error on the state of the qubit,
which is the very reason why we need to do error correction just to preserve the value of a
logical qubit. This error is described by the amplitude-phase damping model. As the name
suggests, it consists of two components:

• Amplitude damping, which causes the amplitude of the excited state |1〉A to decay
over time. This happens because a qubit in the state |1〉A can emit a photon into
the environment, and relax to the ground state |0〉A. Suppose that over a timespan
of length t, the emission happens with probability p1. Then the amplitude damping
channel can be modeled as follows:

1. Add an ancillary qubit |0〉E .

90

2. Apply a unitary operation U to the system AE, such that

U |00〉AE = |00〉AE, U |10〉AE =
√

1− p1|10〉AE +
√
p1|01〉AE.

3. Discard the ancilla E.

One interpretation of this model is that |0〉E is the vacuum state of the environ-
ment electromagnetic field, |1〉E is the environment state with a photon emitted, and
whether a photon is emitted is determined by the unitary process U .

• Phase damping, which causes the qubit to dephase, i.e. lose information about the
relative phase between the states |0〉A and |1〉A. Suppose that over a timespan of
length t, complete dephasing happens with probability pφ. Then the phase damping
channel can be modeled as follows:

1. Add an ancillary qubit |0〉E .

2. Apply a unitary operation U to the system AE, such that

U |00〉AE = |00〉AE, U |10〉AE =
√

1− pφ|10〉AE +
√
pφ|11〉AE.

3. Discard the ancilla E.

This can be interpreted as describing interactions between the qubit and the environ-
ment that are too weak to flip the qubit from one energy eigenstate to another, but
strong enough to change the environment state depending on the qubit state.

In the Choi matrix representation:

CΛT1
=

1 0 0

√
1− p1

0 0 0 0

0 0 p1 0
√

1− p1 0 0 1− p1

 , CΛTφ
=

1 0 0

√
1− pφ

0 0 0 0

0 0 0 0√
1− pφ 0 0 1

 .

For each of the two processes, the probabilities that an error does not happen, 1 − p1

and 1− pφ respectively, decay exponentially over time:

1− p1 = e−t/T1 , 1− pφ = e−t/Tφ .

This ensures that each satisfy Λ(t1) ◦ Λ(t2) = Λ(t1 + t2). Furthermore, the two channels
ΛT1 and ΛTφ commute with each other, so ΛT1(t) ◦ΛTφ(t) = ΛTφ(t) ◦ΛT1(t) is the channel

91

that describe the effect of both over a timespan of length t.

Quantum operation with a duration. We note that, even though we call the amplitude-
phase damping channel the “idle error”, in our error model, it is actually applied to the
qubit all the time, no matter whether the qubit is idling. In fact, a quantum operation with
duration t is usually modeled as follows:

1. Idle for a timespan of length t/2.

2. Apply the quantum operation instantaneously.

3. Idle for a timespan of length t/2.

In other words, the operation is modeled as happening at the middle point of its time inter-
val, and the amplitude-phase damping channel is applied before and after the operation.

6.3.2 Unitary gate errors

As mentioned above, even though the gates used in the syndrome extraction circuit have
non-zero durations, we model them as instantaneous, and apply the “idle error” channel
before and after it. However, each gate also has a gate-specific error depending on how the
gate is applied physically, which is modeled as happening at the same time point as the gate
itself.

There are two different kinds of gates in the syndrome extraction circuit, the Ry(±π/2)

gates and the CZ gates. Below we will give the gate-specific error channel for them.

Ry(±π/2) gates. The gate-specific error ofRy(±π/2) gates is modeled as a depolarizing

noise, meaning that an X, Y, or Z gate is applied to the qubit with a certain probability for
each. It is conventional to quantify the strength of a depolarization channel using its effect
on the expectation values of the Pauli operators. The gate-specific error of Ry(±π/2)

shrinks the expectation values of X and Z by a factor of 1− pxz, and the expectation value
of Y by a factor of 1− py, where pxz > py. In Choi matrix representation3:

Cdep =

1− pxz/2 0 0 1− pxz/2− py/2

0 pxz/2 −pxz/2 + py/2 0

0 −pxz/2 + py/2 pxz/2 0

1− pxz/2− py/2 0 0 1− pxz/2

 .

3In [14], pxz and py are named pplane and paxis respectively, referring to the x-z plane and the y axis of the
Bloch sphere.

92

CZ gates. In [14], the gate-specific error of CZ gates is modeled as a unitary phase error
that is “quasi-static”, meaning that the magnitude of the phase error on each adjacent qubit
pair is regarded as constant in a single run of the experiment, but will vary randomly over
multiple runs.

Since the quasi-static error model is inconvenient for our approach that aims to do exact
simulation, we choose not to incorporate it in our error model. This choice is also justified
because the error is modeled as unitary, so it can be compensated for with techniques like
rapid qubit calibrations [50] or coherent error cancellations [51].

6.3.3 Measurement error

In a superconducting quantum device, measurement is implemented by introducing photons
into a readout resonator, which will dephase the qubit completely and yield a measurement
result. Then, the photon must be allowed to deplete from the resonator by waiting for some
time before the qubit can be used again.

In [14], measurement is modeled as a “butterfly gate”, where the joint probability of
each classical outcome in {0, 1} and each output qubit state in {|0〉, |1〉} is given for each
input qubit state in {|0〉, |1〉}. However, they also note that the experimentally observed
parameters are explained well by the following simple assumptions:

• The measurement happens instantaneously at the middle point of the measurement
period, and amplitude-phase damping applies before and after it.

• The classical outcome is further subject to a declaration error εRO, which is itself
independent of the outcome.

In our experiments, for simplicity, we use this model instead of the “butterfly gate” model
for measurement operations in the circuit.

The effect of leftover photons. During the photon depletion period, the amount of pho-
tons in the resonator decays over time, but does not decrease to a level that is completely
negligible. When the qubit is put into a superposition state of |0〉 and |1〉 again, those left-
over photons will cause the qubit to slightly dephase. The underlying mechanics for this
effect is fairly complex, so we just use the expression given in [14]:

pφ,photon = exp

(
2χα(0) exp(κ(tm − tg))

[
e−κt

4χ2 + κ2
[−κ sin(2χt)− 2χ cos(2χt)]

]t2−tg
t1−tg

)
,

93

where [t1, t2] is the time period during which this dephasing applies, tm is the time at which
the measurement starts, tg is the time of the firstRy(−π/2) gate after the measurement, and
κ and χ are constant parameters.

The value pφ,photon has the same meaning as pφ in the phase damping channel ΛTφ de-
scribed in Section 6.3.1. Therefore, in order to take the effect of leftover photons into
account, we use a similar channel with pφ,photon in place of pφ, in addition to the amplitude-
phase damping channel for that time period.

6.4 Modeling crosstalk

6.4.1 Overview of crosstalk

In the context of quantum computation, crosstalk [52] refers to any unwanted coupling
between qubits. Obviously, coupling between adjacent qubits is needed to implement CZ
gates, but in an ideal world, we should be able to turn this coupling on and off at will.
That is not the case in practice, and indeed, in this chapter we will focus on the crosstalk
between adjacent qubits when no CZ gate is being applied to them.

Since CZ is the native two-qubit gate on superconducting quantum qubits, it is not
a surprise that the form of the crosstalk channel is related to the CZ gate. In fact, the
crosstalk in our error model originates from the ZZ coupling between adjacent qubits, and
has the form

eik(Z⊗Z) = eik(|00〉〈00|+|01〉〈01|+|10〉〈10|+|11〉〈11|) = eik(−I⊗I+Z⊗I+I⊗Z+4|11〉〈11|).

The right-hand side decomposes eik(Z⊗Z) into four factors that commute with each other.
Among them, e−ik is a global phase and can be ignored, eik(Z⊗I) and eik(I⊗Z) are both
single-qubit gates (known as PHASE gates), and e4ik|11〉〈11| is known as a CPHASE gate,
which the CZ gate is a special case of, as CZ = eiπ|11〉〈11|.

It is also possible to ignore the PHASE gates by taking them into account during cal-
ibration. In fact, because of the energy difference between |0〉 and |1〉, superconducting
qubits are constantly undergoing a change of relative phase between them, which would
manifest as a PHASE gate. In calibrating the frequencies of the qubits, we account for this
phase rotation, and apply the gates that do not commute with it (Ry(±π/2) gates) with
specific timings so that they do what they need to do. If we calibrate each qubit while other
qubits are in the ground state |0〉, then we are essentially assuming that crosstalk does not
affect the qubit when other qubits are in the state |0〉, which means that we should model

94

the crosstalk error as CPHASE gates rather than eik(Z⊗Z).
Of course, when calibrating the CZ gates, it is easy to also calibrate the crosstalk

strength, and adjust the qubit frequencies so that the eik(Z⊗Z) model is applicable. Re-
gardless, in this chapter, we will stick to the CPHASE model.

6.4.2 Crosstalk in the circuit model

Like amplitude-phase damping described in Section 6.3.1, crosstalk should affect all pairs
of adjacent qubits at all time. In fact, we will start from the assumption that the crosstalk
strength is a constant, independent of the qubit pair and of time. This is likely not the
case in practice because circumstances like the frequency of both qubits would affect the
crosstalk strength, but it works as a rough model.

However, unlike the phase damping channel, the CPHASE gate (or eik(Z⊗Z)) does not
commute with the amplitude damping channel. Therefore, in order to even just simulate
the effect of both on a pair of idling qubits, we would need to make use of the Trotter
approximation or something similar. Doing this on the whole syndrome extraction circuit
would leave us with a very complex tensor network that probably cannot be feasibly evalu-
ated. Therefore, we have to discretize the effect of crosstalk, even at the cost of simulation
accuracy.

To this end, we note that the CPHASE gate is a diagonal gate, so it does commute
with other CPHASE gates and CZ gates regardless of the configuration. While it does not
commute with amplitude-phase damping, the effect of amplitude-phase damping is itself
small, so the commutator of it and crosstalk is a “second-order inaccuracy” that we may
be able to ignore. The only component in the circuit that we absolutely cannot commute a
CPHASE gate through is the Ry(±π/2) gates. Therefore, as a first-order approximation,
we can move CPHASE gates anywhere within regions delineated by Ry(±π/2) gates. (We
also ignore any crosstalk that happens while applying the Ry(±π/2) gates.)

In the circuit of a surface code, data qubits are only adjacent to ancilla qubits, and vice
versa. Furthermore, for each pair of adjacent qubits, the Ry(±π/2) gates divide the circuit
into two types of alternating regions:

• CZ regions, during each of which one CZ gate is applied to that qubit pair, and more
CZ gates are applied to the data qubit and other ancilla qubits of the same type (X-
ancilla or Z-ancilla).

• Measurement regions, during each of which the ancilla qubit is measured, and CZ
gates are applied to the data qubit and ancilla qubits of the other type.

95

In those regions, crosstalk can be handled in different ways.

• In CZ regions, we do not incorporate crosstalk into the circuit at all, because as a
first-order approximation all crosstalk can be moved to the same time point as the
CZ gate. We can therefore calibrate the CZ gates in such a way to compensate for all
the crosstalk in the CZ region that the gate is in. (In fact, when calibrating CZ gates
normally, we probably will already account for the crosstalk that happens during the
CZ gate itself; we just need to “overcompensate” so that the rest of the crosstalk in
the same CZ region is also accounted for.)

• In measurement regions, we move all crosstalk to the same time point, which we
choose to be the end of the measurement region, i.e. just before the next round of
Ry(±π/2) gates are applied (more precisely, just before the amplitude-phase damp-
ing channel associated with the duration of the Ry(±π/2) gates). This way, all the
crosstalk involving the same ancilla qubit (but different data qubits) are moved to
the same time point, which simplifies the tensor network we will need to simulate
since the amplitude-phase damping channel on the ancilla qubit is only split into two
parts. Furthermore, there will be one edge in the tensor network associated with
many tensors, which may help slicing to decrease the contraction cost.

In summary, at the cost of simulation accuracy, we reduce the number of CPHASE
gates that represent crosstalk to one per syndrome extraction round, per adjacent pair of
qubits. In Section 6.6.2, we will estimate the magnitude of the inaccuracy caused by this
approach.

6.5 Simulating the surface code with tensor networks

6.5.1 Simulating noisy circuits

When we take the error model into account, some unitary gates as well as “idle wires”
in the syndrome extraction circuit become non-unitary channels. Simulating such a noisy
quantum “circuit” is slightly different from simulating an ideal quantum circuit, as we have
done in Chapter 4.

It is still possible to represent a noisy “circuit” as a quantum circuit in the strict sense
as defined in Section 2.2.3, since every quantum channel can be described as a process of
“add ancilla, apply unitary, discard ancilla”. However, a circuit generated in this way would
have many measurements of ancilla qubits representing the environment. Since the method
in Section 4.3 can only do single-amplitude simulation, we would need to assign a priori

96

values to the measurement results of those ancilla qubits (as well as ancilla qubits in the
surface code itself) before we could calculate the probability of those measurement results
or anything else. Even if we have a way of sampling those measurement results (probably
with a method like the one in Section 5.4), anything that we care about (in our case, the
logical error rate) would still be subject to the variance caused by sampling, and it would
take many samples to get a reliable result.

Therefore, in this chapter we take a different approach, in that we will do a density

matrix simulation instead of a state vector simulation. This will certainly lead to a tensor
network with a higher contraction width and cost, since the number of entries in a density
matrix is the square of the number of entries in the corresponding state vector. However,
the density matrix also contains all information about classical randomness, so we would
no longer need to worry about sampling. This method allows us to take full advantage of
our parallel tensor network contraction algorithm.

Compared to the simulation method in Section 4.3, a density matrix simulation is dif-
ferent in the following ways:

• Each input qubit becomes an order-2 tensor corresponding to the density matrix ρ of
the initial state, instead of the state vector |ψ〉.

• Each quantum channel applied to k qubits becomes an order-4k tensor corresponding
to the d2 × d2 Choi matrix of the channel, where d = 2k.

• All edges (including closed edges and open edges) are doubled, so that they match
the orders of the tensors they are connected to, but with one exception:

– If we measure a qubit, then we identify the two edges corresponding to the wire
the measurement is on, i.e. let the edge remain single, and connect it to each
adjacent tensor twice. Furthermore, we make that edge an open edge in the
final tensor network, representing the measurement result.

Some of the aforementioned tensors may represent pure objects, i.e. pure states and unitary
gates. Such tensors can be further decomposed into the product of two tensors in order
to simplify the tensor network. In particular, if we apply the above process to a circuit
consisting entirely of pure objects, then the resulting tensor network would consist of two
disjoint parts with identical structure that are the complex conjugate of each other. Intu-
itively, non-pure objects in the circuit connect those two parts together.

With the above procedure, we can generate a tensor network that represents the noisy
syndrome extraction circuit as a quantum channel. The next section will discuss what we
do with the inputs and the outputs.

97

6.5.2 Defining the logical channel with the optimal decoder

The ultimate goal of our surface code simulation is to compute the logical channel of the
error correction process, which conceptually is a quantum channel applied to the underlying
logical qubit while we try to protect it against errors. In order to rigorously define the
logical channel, it is unavoidable to consider the encoding and decoding processes of the
surface code.

However, we note that “encoding” and “decoding” are really just imaginary processes
we use to describe the surface code. In fault-tolerant quantum computation, we would
never actually handle a logical qubit, so it usually makes no sense to implement encoding
or decoding. Instead, the qubits are fault-tolerantly initialized to fixed initial states such as
|0〉, fault-tolerantly operated on, and fault-tolerantly measured to get classical results. The
process we focus on here, preserving the value of a logical qubit, can be seen as a special
case of a fault-tolerant operation, namely the identity operation.

Since our focus is how well the surface code preserves quantum information, rather
than how to fault-tolerantly prepare and measure a logical qubit, we will define an encoding
process and a decoding process, but in a simplistic way. In particular, we assume that both
encoding and decoding are error-free.

Encoding. We first use the following (unrealistic) procedure to get V |0〉, the code state
encoding the logical state |0〉4:

1. Initialize all data qubits in the state |0〉.

2. Measure the values of all four X-stabilizers in the syndrome, using part of the syn-
drome extraction circuit (but without error channels), and assume that the results are

all +1, i.e., just take the corresponding block from the density matrix.

• The probability of each X-stabilizer measurement yielding +1 is 1/2, indepen-
dent of the other measurement results. Therefore, the probability that all four
measurements yield +1 is 1/16.

3. Multiply the resulting density matrix by 16 so that it is normalized.

The resulting state must be a code state, because the value of all Z-stabilizers are already
+1 on the all-|0〉 state, and the X-stabilizer measurements will not change this because the
stabilizers all commute.

4Here V is an isometry, a matrix that is not a square matrix but satisfies V †V = I .

98

In order to fully characterize the encoding channel, we also need to know V |1〉, includ-
ing the relative phase between V |0〉 and V |1〉. To this end, we make use of a logical X

operator, which can be applied to a code state in order to achieve the same effect as apply-
ing an X gate to the underlying logical qubit. There are multiple such operators, and the
one we use is X(0,0)X(2,0)X(4,0), where the qubits are labeled as in Figure 6.1.

In fact, we compute both V |0〉 and V |1〉 with the following trick:

1. Generate the state V |0〉 as above.

2. Add a new “dummy qubit”Q to the system, and initialize it to the state |+〉 = H|0〉 =

(|0〉+ |1〉)/
√

2.

3. Apply CX gates on the following qubit pairs: (Q, (0, 0)); (Q, (2, 0)); (Q, (4, 0)). In
each case, Q is the control qubit.

This procedure generates the state |Ψ〉 = |0〉Q ⊗ V |0〉 + |1〉Q ⊗ V |1〉, which is essentially
a representation of the encoding channel. We can then take its density matrix |Ψ〉〈Ψ|,
and apply the noisy syndrome extraction circuit to it, leaving the qubit Q unchanged to
represent the input of the channel.

Decoding. The decoding process is even more complicated than encoding process, be-
cause after undergoing a noisy syndrome extraction circuit, the state of the code qubits is
likely to be no longer in the codespace. Furthermore, the syndrome extraction circuit will
output error syndromes, which are supposed indicate what errors may have happened, so
the decoder should make use of those to recover the logical qubit as well as possible.

In order to simplify the problem, we will first contrive a process to move the code qubits
back into the codespace. To this end, after r rounds of the noisy syndrome extraction circuit,
we do one more round of error-free syndrome extraction. If the results happen to be all +1,
then we will know that the state is now in the codespace, and we can continue with the
next step. Otherwise, we apply simple “default corrections” by applying Pauli gates to data
qubits to change the value of each stabilizer in the syndrome to +1.

We design a “default correction” for each stabilizer P in the syndrome, which is a
Pauli operator that anti-commutes with P , but commutes with all other stabilizers in the
syndrome. For example, the “default correction” for the X-stabilizer X(0,2)X(0,4) may be
Z(0,4). (Again, refer to Figure 6.1 for the label of each qubit.) Such a Pauli operator, when
applied, will flip only the value of P in the syndrome. Therefore, it suffices to do the
“default correction” for each stabilizer in the syndrome with value −1.

99

We note that the “default correction” for each stabilizer is not unique, and it does not
necessarily give the “correction” with the fewest gates, especially when there are mul-
tiple instances of −1 in the syndrome. However, as we have mentioned at the end of
Section 6.2.2, if we restrict ourselves to “corrections” by Pauli gates, then all such “correc-
tions” will differ by at most one Pauli gate on the logical qubit. Therefore, we will apply
the “default corrections” for now, and maybe switch to a better correction after we have
gotten a logical qubit.

Decoding a state ρ that is known to be in the codespace is relatively simple. Above we
already have the state |Ψ〉 that represents the encoding process V , and it suffices to apply
the reverse process: ρL = V †ρV is a state of the logical qubit that satisfies V ρLV † = ρ.

At this point, there are still two qubits in our system. One of them is of course the
logical qubit L. The other one is the “input” qubit Q, which we introduced in the encoding
process and have not touched since then. In addition, we also have 8(r + 1) classical bits,
which are measurement results from r rounds of noisy syndrome extraction plus one round
of error-free syndrome extraction. Therefore, the total number of open edges in our tensor
network is 8(r+1)+4 — one for each classical bit and two for each qubit. This is the tensor

network we will actually evaluate with our parallel tensor network contraction algorithm.

The value of the tensor network can be regarded as 28(r+1) matrices of size 4× 4. Each
4 × 4 matrix ρs corresponds to a combination of error syndromes s ∈ {+1,−1}8(r+1),
and is an unnormalized density matrix of the two-qubit system QL. Ideally, the sum of
those matrices should be the density matrix |Φ+〉〈Φ+|, where |Φ+〉 = (|00〉 + |11〉)/

√
2.

However, due to the error indicated by the error syndromes, some of those matrices may be
closer to one of |Ψ+〉〈Ψ+|, |Ψ−〉〈Ψ−|, or |Φ−〉〈Φ−|, where

|Ψ+〉 = (I ⊗X)|Φ+〉, |Ψ−〉 = (I ⊗ Y)|Φ+〉, |Φ−〉 = (I ⊗ Z)|Φ+〉.

Those cases mean that the error syndromes indicate that an X , Y , or Z error is likely to
have occurred on the logical qubit, and the corresponding Pauli gate should be applied to
correct it.

In order to measure the closeness between a density matrix ρ and a pure state |ψ〉, we use
the fidelity between them defined as F = 〈ψ|ρ|ψ〉. Therefore, for each s ∈ {+1,−1}8(r+1),
we choose a Pauli correction Ps from {I,X, Y, Z} according to the highest fidelity among
〈Φ+|ρs|Φ+〉, 〈Ψ+|ρs|Ψ+〉, 〈Ψ−|ρs|Ψ−〉, 〈Φ−|ρs|Φ−〉. Pauli corrections chosen this way
will maximize the logical fidelity 〈Ψ+|ρ|Ψ+〉, where

ρ =
∑

s∈{+1,−1}8(r+1)

PsρsP
†
s .

100

We will call the list of Pauli matrices Ps the optimal decoder. The state ρ defined above
represents the logical channel after applying the optimal decoder, which can be extracted
easily.

To summarize, after r rounds of the noisy syndrome extraction circuit, we do the fol-
lowing to get the logical channel:

1. Do one last round of error-free syndrome extraction.

2. For each−1 in the syndrome, apply the “default correction” for that stabilizer to turn
it into +1.

• This can be done in the tensor network with controlled Pauli gates.

3. Apply the reverse of the encoding process V to get the logical state ρL = V †ρV .

4. Evaluate the tensor network to get 28(r+1) unnormalized 4 × 4 density matrices ρs,
where s ∈ {+1,−1}8(r+1).

5. Find the optimal decoder by choosing the best Pauli correction from {I,X, Y, Z}
according to the highest among 〈Φ+|ρs|Φ+〉, 〈Ψ+|ρs|Ψ+〉, 〈Ψ−|ρs|Ψ−〉, 〈Φ−|ρs|Φ−〉
for each s ∈ {+1,−1}8(r+1).

6. Find the logical channel from the two-qubit state ρ =
∑

s∈{+1,−1}8(r+1) PsρsP
†
s .

From the logical channel, it is easy to calculate logical error rates of various types of errors.
In the above process, the output of our tensor network is an order-(8(r+ 1) + 4) tensor,

which greatly limits the number of rounds that can be simulated with this approach. In our
experiments, we take r = 2, giving an order-28 tensor which can still be stored in the main
memory of a single computer, and allows the final steps to be done relatively quickly. If we
increase r to even 3, this will become an order-36 tensor that needs to be sliced to even fit
in the memory, and the corresponding tensor network contraction task would be infeasible.
Therefore, in our experiments, we will stick to r = 2.

Even though we only simulate two rounds of noisy syndrome extraction with r = 2, the
decoder makes use of three rounds of error syndromes to determine how to correct the error,
so in theory the decoder can be used to achieve fault-tolerant quantum computation. Since
it can be said that our simulation is a two-round simulation and a three-round simulation in
different senses, hereafter we will refer to it as a “(2 + 1)-round” simulation.

101

Category Parameter Symbol Value
Scheduling Single-qubit gate time Tg,1Q 20 ns
Scheduling Two-qubit gate time Tg,2Q 40 ns
Scheduling Coherent step time τc 200 ns
Scheduling Depletion time τd 300 ns
Scheduling Measurement time τm 300 ns
Idle error Qubit relaxation time T1 30 µs
Idle error Qubit dephasing time Tφ 60 µs

Ry(±π/2) gates In-axis rotation error py 10−4

Ry(±π/2) gates In-plane rotation error pxz 5× 10−4

Measurement error Readout infidelity εRO 0.15%
Measurement error Photon relaxation time 1/κ 250 ns
Measurement error Dispersive shift χ/π −2.6 MHz

Crosstalk Crosstalk strength k 0.03 to 0.05

Table 6.1: Parameters used in our surface code simulation.

6.6 Experiment results

In [13], we did experiments with the methods described in previous sections, with the
goal of roughly assessing the effect of crosstalk to the performance of surface codes. We
adopt all circuit parameters and error parameters used in [14]. The only newly introduced
parameter is the strength k of the crosstalk in each measurement region, represented by the
CPHASE gate e4ik|11〉〈11|. In the experiments with crosstalk, we set k to a value between
0.03 and 0.05. Table 6.1 summarizes the values of the parameters used in our experiments.

6.6.1 Effect of crosstalk on the logical channel

We first qualitatively analyze the effect of crosstalk by fixing the value of the crosstalk
strength k to 0.03. Figure 6.2 shows two logical channels represented as Pauli transfer
matrices, one without crosstalk and one with crosstalk.

It can be clearly seen that the main difference between those two matrices is in the
middle 2 × 2 sub-matrix. For the logical channel without crosstalk, R12 and R21 are both
zero. Meanwhile, for the logical channel with crosstalk, R12 ≈ −R21 has a large absolute
value. This indicates that a coherent Z rotation Rz(θ) is taking place, as the Pauli transfer
matrix

RRz(θ) =

1 0 0 0

0 cos(θ) sin(θ) 0

0 − sin(θ) cos(θ) 0

0 0 0 1

102

1.00 −4.07× 10−18 0.00 −9.42× 10−18

2.88× 10−7 9.92× 10−1 0.00 −2.29× 10−13

0.00 0.00 9.85× 10−1 0.00
6.14× 10−6 −2.31× 10−13 0.00 9.92× 10−1

(a) without crosstalk

1.00 −2.44× 10−18 −5.37× 10−20 5.96× 10−18

3.47× 10−7 9.88× 10−1 2.65× 10−3 2.99× 10−8

4.12× 10−9 −2.63× 10−3 9.80× 10−1 −7.43× 10−6

8.89× 10−6 −6.75× 10−10 7.95× 10−6 9.91× 10−1

(b) with crosstalk

0.00 −1.62× 10−18 5.37× 10−20 −1.54× 10−17

−5.86× 10−8 4.43× 10−3 −2.65× 10−3 −2.98× 10−8

−4.12× 10−9 2.63× 10−3 4.84× 10−3 7.43× 10−6

−2.74× 10−6 6.75× 10−10 −7.95× 10−6 6.54× 10−4

(c) difference between (a) and (b)

Figure 6.2: Comparison of logical Pauli transfer matrices for 2 + 1 rounds of Surface-17
error correction, without and with crosstalk. The crosstalk strength k is set to 0.03. We note
that the first row is supposed to be (1, 0, 0, 0) for all Pauli transfer matrices, but here we
show the actual results output by our program, in order to demonstrate that the numerical
error is negligible.

has the same properties.
In the above matrix, setting sin(θ) ≈ 2.64 × 10−1, we get cos(θ) ≈ 1 − 3.51 × 10−6,

which does not explain the large difference between the Pauli transfer matrices at entries
R11 and R22. Therefore, there is also an extra dephasing channel applied to the logical
qubit, which decreases R11 and R22.

Most of the difference between the Pauli transfer matrices can be explained by the co-
herent Z-rotation and the dephasing. In particular, the difference between the Pauli transfer
matrices at R33 is one order of magnitude smaller than the differences in the middle 2× 2

sub-matrix as well as 1−R33, which means that crosstalk only slightly contributes to logical
bit flip errors.

Next, we study the effect of the crosstalk strength k on the logical channel. We quantify
the three types of errors mentioned above as follows:

• The probability of a phase flip is defined as (1 − R11)/2. (Here we divide by 2

because a phase flip channel with probability 1 would have R11 = −1.)

103

Figure 6.3: Logical error rates of various types as a function of the crosstalk strength.

• The probability of a bit flip is defined as (1−R33)/2.

• The amount of a coherent Z rotation is defined as |R12 −R21|/2.

We vary the crosstalk strength k from 0.03 to 0.05, and plot the probability or amount
of each logical error type in Figure 6.3. The results agree with the above findings: The two
types of errors that increase the most with the crosstalk strength are coherent Z rotation
and phase flip errors, while the probability of a logical bit flip almost does not change with
the crosstalk strength.

Interestingly, despite the apparent symmetry between X and Z in the design of the
surface code, the effect of crosstalk on phase flip errors and bit flip errors turns out to be
very different. It remains to be seen what the cause of this asymmetry is.

6.6.2 Estimating the discretization inaccuracy

In Section 6.4.2, we discretized the effect of crosstalk into instantaneous CPHASE gates by
noting that the commutator of amplitude-phase damping and crosstalk is only a “second-
order inaccuracy”. In this section, we give numerical evidence that this inaccuracy is indeed
negligible compared to the logical error rate.

The discretization we used can be thought of as moving an infinite number of infinites-
imal CPHASE gates in a region all to the same time point. Intuitively, moving a CPHASE
gate within a CZ region should cause an inaccuracy that is approximately proportional with
the distance of the movement. Therefore, we choose a qubit pair where the CZ gate is ap-
plied early in the CZ region, move the CPHASE gate which has been combined with the CZ
gate to the end of the CZ region, and evaluate the difference of the logical channel caused

104

1.00 −1.22× 10−17 −1.57× 10−21 8.56× 10−17

9.90× 10−8 9.99× 10−1 −3.24× 10−6 −2.19× 10−17

−5.52× 10−11 3.17× 10−6 9.98× 10−1 1.52× 10−21

9.50× 10−8 −1.24× 10−11 −6.29× 10−21 9.99× 10−1

(a) without moving the error

1.00 −1.49× 10−17 −2.90× 10−21 −3.31× 10−17

9.90× 10−8 9.99× 10−1 −3.24× 10−6 −4.91× 10−14

−5.52× 10−11 3.17× 10−6 9.98× 10−1 6.04× 10−10

9.50× 10−8 −1.24× 10−11 −6.11× 10−10 9.99× 10−1

(b) with the error moved

8.88× 10−16 −2.67× 10−18 −1.33× 10−21 −1.19× 10−16

1.18× 10−13 −8.57× 10−9 −1.90× 10−12 −4.91× 10−14

9.01× 10−17 1.01× 10−12 −2.21× 10−8 6.04× 10−10

4.15× 10−13 −3.43× 10−16 −6.11× 10−10 −1.53× 10−8

(c) difference between (a) and (b)

Figure 6.4: Comparison of logical Pauli transfer matrices for 1 + 1 rounds of Surface-17
error correction, without and with one of the CPHASE gates moved to a different place
within the same CZ region. The crosstalk strength k is set to 0.03, and the CPHASE
gate moved is between the qubits (3, 3) and (2, 4). It was moved from the time point the
corresponding CZ gate is at to the end of the CZ region.

by the movement. This difference can be seen as an upper bound of the inaccuracy caused
by discretizing the crosstalk in that CZ region on that qubit pair, because the CPHASE
gate is actually composed of an infinite number of infinitesimal parts, and none of the parts
needed to move a longer distance during discretization.

Figure 6.4 shows the result of one such experiment, where the qubit pair chosen is
(3, 3) and (2, 4) (see Figure 6.1 for the labeling). Since moving the CPHASE gate makes
the tensor network slightly more complicated, in order to ensure that we can evaluate the
tensor networks, we only simulate 1 + 1 rounds of syndrome extraction in this experiment.

As shown in Figure 6.4, the difference caused by moving the CPHASE gate is on the
order of 10−8. Even if multiplied by the number of qubit pairs and the number of regions,
such a small inaccuracy is negligible compared to the logical error caused by crosstalk,
which is on the order of 10−3. This shows that our approximation, as well as the proposal
to compensate for the crosstalk in the CZ region when calibrating CZ gates, is indeed valid.

105

6.7 Discussion

Our experiment results show that the effect of crosstalk to the performance of surface codes
can be significant. In particular, a large coherent Z-rotation is applied to the logical qubit,
which does not exist at all in the logical channel without crosstalk. The probability of a log-
ical phase flip error also increases from about 0.4% to about 0.6%. Therefore, when evalu-
ating the prospect of fault-tolerant computation on near-term quantum devices, it would be
necessary to take crosstalk into account.

Fortunately, the error caused by the type of crosstalk considered in this chapter is co-
herent (i.e. unitary), similar to the quasi-static error of CZ gates, so it can be compensated
for with similar techniques. Indeed, we have already shown that, in CZ regions, crosstalk
can be compensated for by combining them with CZ gates applied on the same qubit pair,
with only a small second-order error. Crosstalk in measurement regions can potentially
be compensated for by additional CZ gates, or by resetting the ancilla qubits to |0〉 after
measurement, etc. It may also be possible to correct the coherent effect on the logical qubit
directly by a logical operation, if the rotation angle could be computed with a quantitative
model.

An interesting by-product of the work in this chapter is an “optimal decoder” for 2 + 1

rounds of Surface-17 on this error model. Admittedly, the value of such a decoder is dubi-
ous because the last round of syndrome extraction is modeled as error-free, possibly mak-
ing the decoder place more importance on it and less importance on the first two rounds.
It may also be argued that in practice, a good decoder should combine information from
more than three rounds of syndrome measurements. Still, it is possible that decisions made
by such a decoder reflect general principles that can improve a decoder against a realistic
error model, and such principles may be found by analysis and guide the design of other
types of decoders.

In any case, the work in this chapter demonstrates again the flexibility of the tensor
network model and our parallel tensor network contraction algorithm. In general, the be-
haviour of quantum circuits with non-pure components (like amplitude-phase damping) is
an interesting and potentially useful problem. Even if the exponential space and time com-
plexities of tensor network contraction restrict it to small problem sizes, it can serve as a
convenient research tool to find patterns that may generalize to larger cases.

106

CHAPTER 7

Summary and conclusions

In this thesis, we have introduced a parallel tensor network contraction algorithm based on
tensor network slicing. We applied it to various classical simulation tasks, with different
settings and goals, that arise in quantum computation. Below, we summarize each major
part of this thesis.

7.1 A parallel tensor network contraction algorithm

7.1.1 Summary

In Chapter 3, we looked at the core of our parallel tensor network contraction algorithm,
which is the contraction scheme finding procedure. We identified three components of the
procedure: initial contraction order finding, local optimization, and dynamic slicing. Both
initial contraction order finding and dynamic slicing are essential to our algorithm, and
repeated local optimization helps dynamic slicing to reach its maximum potential.

Within each component, there are various design choices that can affect the perfor-
mance of the whole algorithm. In particular, we described two different methods to find
initial contraction orders, one based on the treewidth and one based on hypergraph parti-
tioning. The latter method has a recursive structure, but the top-level problem is signifi-
cantly different from the lower-level problems, which inspired us to use different parame-
ters for the top level and the lower levels when hyper-optimizing the parameters.

7.1.2 Future work

Hardware-oriented optimizations. In the current implementation of our algorithm, we
specifically optimized the contraction scheme for GPU because the GPU does floating-
point operations much faster than the CPU, and also to compare performance with other
algorithms that has been benchmarked on GPU. However, the FLOPS efficiency on GPU,

107

as benchmarked in Chapter 4, still leaves much to be desired. This can likely be improved
with a deeper understanding of the time cost on GPU, and also by making use of advanced
GPU functionalities such as Nvidia Tensor Cores.

Moreover, there are still many computers and clusters on which GPU is not available,
so it would also be meaningful to optimize the contraction process for CPU. There are
many parameters, like BLAS kernel sizes and cache sizes, on which the CPU differs from
the GPU, and in particular something as simple as transposing one of the input tensors may
greatly affect the time needed for a contraction step.

Approximate contraction. A more ambitious, but potentially useful, feature we could
try to support is approximate contraction. Approximate contraction algorithms are com-
monly used for “natural” physical systems which gives rise to tensor networks with spe-
cial structures and/or properties (e.g. translation invariance), but there has not been much
research on adapting them to generic tensor networks. Hopefully, even though the core
contraction algorithm may be very different, the idea of parallelizing by slicing edges can
still apply.

7.2 Classical simulation of quantum supremacy circuits

7.2.1 Summary

In Chapter 4, we benchmarked our parallel tensor network contraction algorithm on a sim-
ulation task for quantum supremacy circuits, which are designed to be as hard to classically
simulate as possible. Frugal rejection sampling was used to reduce true simulation to either
single-amplitude simulation or batched-amplitude calculation, the latter reduction being
more efficient for tensor network based methods.

We compared the running times with other similar methods, and the results demon-
strated the advantage of our contraction scheme finding procedure. In particular, on 20-
cycle Sycamore circuits, we achieved an estimated running time about 100 to 1000 times
lower than other known tensor network based methods, even with a FLOPS efficiency lower
than 15%.

7.2.2 Future work

Dynamically choosing open edges. Batched amplitude simulation with open tensor net-
works can reduce the overhead of rejection sampling, but open tensor networks themselves

108

can incur a little overhead compared to closed tensor networks. In the context of rejection
sampling, this overhead can be minimized by a good choice of the set of open edges.

In this thesis, we chose open edges both by following precedents [2] and by manually
inspecting the circuit structure. It may be useful if this can instead be done automatically
and dynamically, which would reduce human work that needs to be done for each class of
random circuit, and may also find better choices of open edges than humans could.

Better way to take advantage of the low fidelity requirement. The current supremacy
task only requires sampling the circuits at a relatively low fidelity (1.3% to 0.2%) which the
quantum device could achieve, as estimated with cross entropy benchmarking. Currently,
we restrict ourselves to sampling a mixture of the uniform distribution and the ideal distri-
bution (disregarding the small error caused by rejection sampling), which means that a low
fidelity requirement would only linearly reduce the running time.

However, there is no convincing evidence that the output distribution of the quantum
device is such a mixture, therefore for fairness, the classical distribution should also be
allowed to be any distribution with the same fidelity. It would be interesting to see whether
we can use this extra freedom to design a sampling procedure that further reduces the
running time.

7.3 Applications to the Quantum Approximate Optimiza-
tion Algorithm

7.3.1 Summary

In Chapter 5, we applied our parallel tensor network contraction algorithm to the Quantum
Approximate Optimization Algorithm (QAOA) to classically evaluate the energy function.
Using the “lightcone trick”, we were able to evaluate the energy function in linear or even
constant time with regard to the problem size, for problems with a sparse and/or regular
structure, and a low number of layers p. This allowed us to experiment with various meth-
ods to classically optimize the energy function.

We also tried to classically sample the output distribution of QAOA. With the same
“lightcone trick”, we were able to sample the distribution of any one qubit, or the joint dis-
tribution of any small subset of all qubits. However, the need to account for the correlation
between a large number of qubits makes true simulation of all qubits out of reach.

109

7.3.2 Future work

Simulation of noisy quantum devices. QAOA is usually regarded as a promising po-
tential application of “noisy intermediate-scale quantum” (NISQ) devices, but the most
important characterization of NISQ devices is that they are noisy. Although QAOA tries to
reduce the influence of noise by using a small number of layers, the actual effect of noise
is still largely unknown. Using methods similar to the ones used in Chapter 6, we may be
able to better understand the effect of noise, which in turn may help us determine whether
QAOA would truly be feasible and useful on NISQ devices.

Evaluating the gradient of the energy function. Many efficient numerical optimization
algorithms make use of the gradient of the objective function, in addition to the value of the
function itself. In our experiments, since we can only evaluate the energy function itself,
the gradient must be estimated numerically, which may be inefficient and/or imprecise. If
we can represent the gradient of the energy function also in terms of tensor networks, we
can potentially extract a better performance from the numerical optimization algorithms.

7.4 Applications to quantum error correction

7.4.1 Summary

In Chapter 6, we studied the effect of crosstalk in surface codes using our parallel tensor
network contraction algorithm. In addition to a base error model we adopted from [14],
we modeled crosstalk as CPHASE gates on adjacent qubit pairs. Even though in our initial
model the strength of crosstalk is uniform over time, we ignored the commutator between
CPHASE gates and amplitude damping in order to move all the crosstalk in a region to a
single time point.

In order to simulate the noisy syndrome extraction circuit as a tensor network, we made
use of density matrix simulation, and also defined simplistic models for encoding and de-
coding, which allowed us to find the optimal decoder for 2 + 1 rounds of syndrome extrac-
tion by evaluating an order-28 tensor. The results showed that crosstalk has a significant
effect on logical error rates of certain types of errors, and also that ignoring the commutator
between CPHASE gates and amplitude damping is a valid approximation.

110

7.4.2 Future work

Different modeling of crosstalk. Our modeling of crosstalk was very rough, and there
are a number of refinements and alternatives that may be adopted. For example, in the
text we mentioned that crosstalk can also be modeled as eik(Z⊗Z) depending on how we
calibrate the frequencies of the qubits, and those calibration methods may actually give
different error rates.

Another simplifying assumption we made is that the crosstalk strength is not only uni-
form over time, but also the same between all adjacent qubit pairs. This assumption can be
easily refined by taking into account factors such as qubit frequencies.

Tensor network based decoder. Our approach of finding the optimal decoder based on
all error syndromes means that we could only simulate surface codes in a very limited
parameter regime. In order to do surface code simulations with more qubits or more rounds,
it is necessary to find different ways to handle decoding.

A natural idea is to use a decoder that is itself based on tensor network, like the one
introduced in [53]. Such a decoder will be able to be incorporated into the tensor network
for the entire error correction process, without introducing very large tensors, and thus
potentially leading to a tensor network with a low contraction width and cost.

111

BIBLIOGRAPHY

[1] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum infor-
mation. Cambridge University Press, 10th anniversary edition, December 2010.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
et al. Quantum supremacy using a programmable superconducting processor. Na-
ture, 574(7779):505–510, 2019.

[3] Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh, and Robert Wis-
nieff. Leveraging secondary storage to simulate deep 54-qubit sycamore circuits.
arXiv preprint arXiv:1910.09534, 2019.

[4] Cupjin Huang, Fang Zhang, Michael Newman, Junjie Cai, Xun Gao, Zhengxiong
Tian, Junyin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, et al. Classical simulation of
quantum supremacy circuits. arXiv preprint arXiv:2005.06787, 2020.

[5] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characteriz-
ing quantum supremacy in near-term devices. Nature Physics, 14(6):595, 2018.

[6] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun
Shi. Classical simulation of intermediate-size quantum circuits. arXiv preprint
arXiv:1805.01450, 2018.

[7] Igor L Markov and Yaoyun Shi. Simulating quantum computation by contracting
tensor networks. SIAM Journal on Computing, 38(3):963–981, 2008.

[8] Benjamin Villalonga, Sergio Boixo, Bron Nelson, Christopher Henze, Eleanor Rief-
fel, Rupak Biswas, and Salvatore Mandrà. A flexible high-performance simulator for
the verification and benchmarking of quantum circuits implemented on real hardware.
arXiv preprint arXiv:1811.09599, 2018.

[9] Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction.
arXiv preprint arXiv:2002.01935, 2020.

[10] Fang Zhang, Cupjin Huang, Michael Newman, Junjie Cai, Huanjun Yu, Zhengxiong
Tian, Bo Yuan, Haihong Xu, Junyin Wu, Xun Gao, et al. Alibaba cloud quantum
development platform: Large-scale classical simulation of quantum circuits. arXiv
preprint arXiv:1907.11217, 2019.

112

[11] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate opti-
mization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[12] Cupjin Huang, Mario Szegedy, Fang Zhang, Xun Gao, Jianxin Chen, and Yaoyun Shi.
Alibaba cloud quantum development platform: Applications to quantum algorithm
design. arXiv preprint arXiv:1909.02559, 2019.

[13] Cupjin Huang, Xiaotong Ni, Fang Zhang, Michael Newman, Dawei Ding, Xun Gao,
Tenghui Wang, Hui-Hai Zhao, Feng Wu, Gengyan Zhang, et al. Alibaba cloud quan-
tum development platform: Surface code simulations with crosstalk. arXiv preprint
arXiv:2002.08918, 2020.

[14] TE O’Brien, B Tarasinski, and L DiCarlo. Density-matrix simulation of small surface
codes under current and projected experimental noise. npj Quantum Information,
3(1):39, 2017.

[15] Fang Zhang, Cupjin Huang, Michael Newman, Kevin Sung, and Yaoyun Shi. Limi-
tations on testing quantum theory. QIP 2018, poster session, 2017.

[16] Jarrod R McClean, Ian D Kivlichan, Kevin J Sung, Damian S Steiger, Yudong Cao,
Chengyu Dai, E Schuyler Fried, Craig Gidney, Brendan Gimby, Pranav Gokhale,
et al. OpenFermion: the electronic structure package for quantum computers. arXiv
preprint arXiv:1710.07629, 2017.

[17] Jianxin Chen, Zhengfeng Ji, David W Kribs, Bei Zeng, and Fang Zhang. Minimum
entangling power is close to its maximum. Journal of Physics A: Mathematical and
Theoretical, 52(21):215302, 2019.

[18] Fang Zhang and Jianxin Chen. Optimizing T gates in Clifford+T circuit as π/4 rota-
tions around Paulis. arXiv preprint arXiv:1903.12456, 2019.

[19] Daniel Smith and Johnnie Gray. opt_einsum — A python package for optimizing
contraction order for einsum-like expressions. Journal of Open Source Software,
3(26):753, 2018.

[20] Andrew D King, Jack Raymond, Trevor Lanting, Sergei V Isakov, Masoud Mohseni,
Gabriel Poulin-Lamarre, Sara Ejtemaee, William Bernoudy, Isil Ozfidan, Anatoly Yu
Smirnov, et al. Scaling advantage in quantum simulation of geometrically frustrated
magnets. arXiv preprint arXiv:1911.03446, 2019.

[21] Riling Li, Bujiao Wu, Mingsheng Ying, Xiaoming Sun, and Guangwen Yang.
Quantum supremacy circuit simulation on sunway taihulight. arXiv preprint
arXiv:1804.04797, 2018.

[22] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github.
Zenodo, DOI:10.5281/zenodo.2559634, February 2019.

113

[23] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,
1987.

[24] Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
201–208. AUAI Press, 2004.

[25] Hisao Tamaki, Hiromu Ohtsuka, Takuto Sato, and Keitaro Makii. PACE 2017 Track
A submissions. https://github.com/TCS-Meiji/PACE2017-TrackA,
2017.

[26] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders,
and Christian Schulz. k-way hypergraph partitioning via n-level recursive bisec-
tion. In 18th Workshop on Algorithm Engineering and Experiments, (ALENEX 2016),
pages 53–67, 2016.

[27] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Engineer-
ing a direct k-way hypergraph partitioning algorithm. In 19th Workshop on Algorithm
Engineering and Experiments, (ALENEX 2017), pages 28–42, 2017.

[28] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas.
Taking the human out of the loop: A review of bayesian optimization. Proceedings
of the IEEE, 104(1):148–175, 2015.

[29] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations
of Python+NumPy programs, 2018.

[30] Richard P Feynman. Simulating physics with computers. Int. J. Theor. Phys, 21(6/7),
1982.

[31] John Preskill. Quantum computing and the entanglement frontier. arXiv preprint
arXiv:1203.5813, 2012.

[32] Peter W Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th annual symposium on foundations of computer science,
pages 124–134. Ieee, 1994.

[33] Igor L Markov, Aneeqa Fatima, Sergei V Isakov, and Sergio Boixo. Quantum
supremacy is both closer and farther than it appears. arXiv preprint arXiv:1807.10749,
2018.

[34] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut Neven. Simu-
lation of low-depth quantum circuits as complex undirected graphical models. arXiv
preprint arXiv:1712.05384, 2017.

114

https://github.com/TCS-Meiji/PACE2017-TrackA

[35] Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven, Travis S Humble,
Rupak Biswas, Eleanor G Rieffel, Alan Ho, and Salvatore Mandrà. Establishing the
quantum supremacy frontier with a 281 pflop/s simulation. Quantum Science and
Technology, 5(3):034003, 2020.

[36] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits.
Physical Review A, 70(5):052328, 2004.

[37] Sergio Boixo. Random quantum circuits for circuit sampling with superconducting
qubits. https://github.com/sboixo/GRCS, 2019.

[38] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79,
2018.

[39] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum com-
putation by adiabatic evolution. arXiv preprint quant-ph/0001106, 2000.

[40] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[41] Angelika Steger and Nicholas C Wormald. Generating random regular graphs quickly.
Combinatorics, Probability and Computing, 8(4):377–396, 1999.

[42] The Cirq Developers. Cirq: A python framework for creating, editing, and invoking
Noisy Intermediate Scale Quantum (NISQ) circuits, 2019.

[43] Héctor Abraham, AduOffei, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz,
Thomas Alexander, Gadi Alexandrowics, Eli Arbel, Abraham Asfaw, Carlos Azaus-
tre, AzizNgoueya, et al. Qiskit: An open-source framework for quantum computing,
2019.

[44] E Schuyler Fried, Nicolas PD Sawaya, Yudong Cao, Ian D Kivlichan, Jhonathan
Romero, and Alán Aspuru-Guzik. qtorch: The quantum tensor contraction handler.
PloS one, 13(12), 2018.

[45] Michael Streif and Martin Leib. Training the quantum approximate optimization algo-
rithm without access to a quantum processing unit. arXiv preprint arXiv:1908.08862,
2019.

[46] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D Lukin.
Quantum approximate optimization algorithm: performance, mechanism, and imple-
mentation on near-term devices. arXiv preprint arXiv:1812.01041, 2018.

[47] John Preskill. Fault-tolerant quantum computation. In Introduction to quantum com-
putation and information, pages 213–269. World Scientific, 1998.

[48] Daniel Gottesman. Stabilizer codes and quantum error correction. arXiv preprint
quant-ph / 9705052, 1997.

115

https://github.com/sboixo/GRCS

[49] Richard Versluis, Stefano Poletto, Nader Khammassi, Brian Tarasinski, Nadia Haider,
David J Michalak, Alessandro Bruno, Koen Bertels, and Leonardo DiCarlo. Scalable
quantum circuit and control for a superconducting surface code. Physical Review
Applied, 8(3):034021, 2017.

[50] MA Rol, F Battistel, FK Malinowski, CC Bultink, BM Tarasinski, R Vollmer,
N Haider, N Muthusubramanian, A Bruno, BM Terhal, et al. Fast, high-fidelity
conditional-phase gate exploiting leakage interference in weakly anharmonic super-
conducting qubits. Physical review letters, 123(12):120502, 2019.

[51] Dripto M Debroy, Muyuan Li, Michael Newman, and Kenneth R Brown. Stabilizer
slicing: Coherent error cancellations in low-density parity-check stabilizer codes.
Physical review letters, 121(25):250502, 2018.

[52] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and
Robin Blume-Kohout. Detecting crosstalk errors in quantum information processors.
arXiv preprint arXiv:1908.09855, 2019.

[53] Sergey Bravyi, Martin Suchara, and Alexander Vargo. Efficient algorithms for max-
imum likelihood decoding in the surface code. Physical Review A, 90(3):032326,
2014.

116

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Quantum computation, tensor networks, and parallel algorithms
	Overview of results
	A parallel tensor network contraction algorithm
	Classical simulation of quantum supremacy circuits
	Applications to the Quantum Approximate Optimization Algorithm
	Applications to quantum error correction

	Dissertation outline
	Works appearing

	Preliminaries
	Asymptotic notations
	The circuit model of quantum computation
	Quantum states
	Computational basis measurements
	Unitary operations
	Mixed states and density matrices

	Tensors and tensor networks

	A parallel tensor network contraction algorithm
	Introduction
	Problem and motivation
	Tensor network contraction schemes
	Outline of the contraction scheme finding procedure

	Preliminaries
	Tensor network contraction
	Parallel contraction schemes
	Tree decomposition and treewidth

	Initial contraction order finding
	Initial contraction orders based on treewidth algorithms
	Initial contraction orders based on hypergraph partitioning

	Local optimization
	Dynamic slicing
	GPU implementation of tensor network contraction
	Discussion

	Classical simulation of quantum supremacy circuits
	Introduction
	Overview of quantum supremacy
	Random quantum supremacy circuits
	Solving ``supremacy tasks'' with tensor network contraction

	Preliminaries
	Rules for random circuit generation
	Frugal rejection sampling based on single-amplitude simulation

	Transforming circuits into tensor networks
	Benchmark experiments
	Rectangular circuits
	Bristlecone circuits
	Sycamore circuits

	Discussion

	Applications to the Quantum Approximate Optimization Algorithm
	Introduction
	Problem and motivation
	Applications of classical simulation to QAOA

	Preliminaries
	Observable operators and Hamiltonian
	Adiabatic quantum computation
	Quantum Approximate Optimization Algorithm

	Evaluating the energy function
	Sampling from the output distribution
	Experiment results
	Energy function evaluation on random regular graphs
	Optimization for small-cycle-free graphs

	Discussion

	Applications to quantum error correction
	Introduction
	Quantum error correction and surface codes
	Realistic error models

	Preliminaries
	Pauli matrices
	Basics of stabilizer codes
	Surface code design
	Quantum channels

	Base error model
	Idle error
	Unitary gate errors
	Measurement error

	Modeling crosstalk
	Overview of crosstalk
	Crosstalk in the circuit model

	Simulating the surface code with tensor networks
	Simulating noisy circuits
	Defining the logical channel with the optimal decoder

	Experiment results
	Effect of crosstalk on the logical channel
	Estimating the discretization inaccuracy

	Discussion

	Summary and conclusions
	A parallel tensor network contraction algorithm
	Summary
	Future work

	Classical simulation of quantum supremacy circuits
	Summary
	Future work

	Applications to the Quantum Approximate Optimization Algorithm
	Summary
	Future work

	Applications to quantum error correction
	Summary
	Future work

	Bibliography

