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fixed X,Y, correlated features, and n = 5000, p = 100 . . . . . . . . 167
A.8 Variable-specific selection probability for each method of generating
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A. Alternative Constructions of Ũ in the Knockoff Filter . . . . . . . . . 153
B. Proofs and Derivations for Chapter IV . . . . . . . . . . . . . . . . . . 172

x



ABSTRACT

The knockoff filter is a variable selection technique for linear regression with finite-

sample control of the regression false discovery rate (FDR). The regression FDR is

the expected proportion of selected variables which, in fact, have no effect in the

regression model. The knockoff filter constructs a set of synthetic variables which are

known to be irrelevant to the regression and, by serving as negative controls, help

identify relevant variables. The first two thirds of this thesis describe tradeoffs be-

tween power and collinearity due to tuning choices in the knockoff filter and provides a

stabilization method to reduce variance and improve replicability of the selected vari-

able set using the knockoff filter. The final third of this thesis develops an approach

for mixed modeling and estimation for sequential multiple assignment randomized

trials (SMARTs). SMARTs are an important data collection tool for informing the

construction of dynamic treatment regimens (DTRs), which use cumulative patient

information to recommend specific treatments during the course of an intervention.

A common primary aim in a SMART is the marginal mean comparison between two

or more of the DTRs embedded in the trial, and the mixed modeling approach is

developed for these primary aim comparisons based on a continuous, longitudinal

outcome. The method is illustrated using data from a SMART in autism research.
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CHAPTER I

Introduction

The knockoff filter is a variable selection technique for linear regression with finite-

sample control of the regression false discovery rate (FDR), the expected proportion

of selected variables which, in fact, have no effect in the regression model. The knock-

off filter constructs a set of synthetic variables which are known to be irrelevant to the

regression and, by serving as negative controls, help identify relevant variables. By

fitting an augmented regression model to the set of observed and knockoff variables,

the estimated effect of each observed variable can be compared to that of a knockoff

variable whose true effect is known to be zero. Variables are selected based on this

measure of variable importance, which will be small when the effect of an observed

variable is indistinguishable from noise (the estimated effect of a knockoff variable).

The first two thirds of this thesis focuses on tuning parameter choices and a stabiliza-

tion technique for the knockoff filter in the low-dimensional, design-based regression

setting, in which there are fewer variables than observations and the design matrix is

treated as fixed.

Chapter II focuses on improvements in a a set of tuning parameters in the knockoff

filter which control correlations between each paired knockoff and original covariate.

The existing method of choosing these tuning parameters seeks to minimize the corre-

lations between each original covariate and its knockoff. However, unless the original
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covariates are nearly orthogonal, this tuning approach leads to an augmented de-

sign matrix (the matrix of original and knockoff variables) with less than full rank,

preventing the use of ordinary least squares regression in the knockoff selection pro-

cedure. Chapter II proposes that these tuning parameters be chosen by maximizing

the determinant of the Gram matrix for the augmented design matrix. This directly

attempts to improve conditioning in the matrix of original and knockoff variables and

permits the use of ordinary least squares when comparing the estimated effect of each

observed covariate to its knockoff counterpart. In some moderate-dimensional regres-

sion scenarios this determinant-based tuning is shown to improve statistical power to

detect truly non-null variables, and in most situations this tuning does not reduce

statistical power.

Chapter III describes a form of non-replicability and variance inflation in the

knockoff filter and proposes a stabilized knockoff filter to mitigate these issues. The

construction of knockoff variables for any fixed set of observed covariates involves ar-

bitrary algebraic choices which can lead to substantial variation in the set of selected

variables, even with a fixed design matrix and response vector. For any fixed design

matrix, there are infinitely many sets of valid knockoff variables, any one of which can

be used to select variables in the knockoff filter. In the knockoff filter, selecting vari-

ables and controlling the FDR is based on the conditional distribution of the response

vector, given the fixed design matrix. In this setting, the non-uniqueness of knockoff

variables for a given design matrix does not affect the distributional properties of

the knockoff filter which lead to FDR control. However, this means that for a fixed

design matrix and response vector, repeatedly applying the knockoff filter can lead

to instability in the resulting inferences. This instability can reduce power, since the

computation of knockoff variables can, by luck or arbitrary computational choices,

lead to very few selected variables. This instability is also a form of non-replicability,

in which the same statistical analysis repeatedly applied to a single, fixed set of ob-

2



servations can lead to non-negligible differences in the obtained inferences.

The stabilized knockoff filter in Chapter III takes advantage of this non-uniqueness

of the knockoff variables, and the resulting variation in the knockoff-based estimates

of variable importance, to reduce variance and improve power. This is achieved by

computing a low-variance estimate of the FDR based on repeatedly generating sets

of knockoff variables for a given design matrix. The low-variance FDR estimate

leads to a low-variance threshold for the knockoff estimates of variable importance.

A stabilized set of selected variables is obtained by selecting those variables whose

importance statistics are most likely to exceed the stabilized threshold. This stabilized

knockoff filter is shown to control the FDR in a wide array of simulation scenarios

while reducing the standard deviation in the number of selected variables by as much

as a factor of two or three. In nearly all simulations, the power of the stabilized

knockoff filter is at least as large as that of the knockoff filter. In many simulations, it

is necessary to use a modified version of the knockoff filter which only approximately

controls the FDR in order to obtain power similar to that of the stabilized knockoff

filter. Using the version of the knockoff filter which always controls the FDR leads to

very low power in moderate-dimensional settings compared to the stabilized knockoff

filter.

Finally, Chapter IV develops a linear mixed effects model for sequential multiple

assignment randomized trials (SMARTs) with a continuous, longitudinal outcome.

SMARTs are an important data collection tool for informing the construction of

dynamic treatment regimens (DTRs), which use cumulative patient information to

recommend specific treatments during the course of an intervention. Primary sci-

entific questions in a SMART can involve the comparison of DTRs based on the

marginal mean of a longitudinal outcome. Existing statistical methods for SMARTs

are similar to generalized estimating equations. Chapter IV develops a linear mixed

modeling and estimation approach appropriate for estimating the marginal mean of

3



a longitudinal outcome for each DTR in a SMART.

In this mixed model, the counterfactual potential outcomes under each DTR are

modeled as a linear combination of the marginal mean and subject-specific random

effects. The model is marginal over the interim variables used to define treatment deci-

sions over the course of the intervention. Parameters in the model are estimated based

on a weighted pseudo-likelihood whose weights permit estimation of the marginal

means of interest. Unlike existing approaches based on generalized estimating equa-

tions, the mixed model distinguishes between-person and within-person variation and

allows for flexible marginal covariance structures in the longitudinal outcome. As in

other modeling approaches based on generalized estimating equations, the estima-

tor for the marginal mean is consistent and asymptotically Gaussian even when the

marginal variance-covariance of the longitudinal potential outcomes is misspecified, in

this case due to misspecification of the random effects structure. Simulation studies

confirm these theoretical results, and an illustrative analysis is provided using data

from a SMART in autism research.
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CHAPTER II

The Role of Collinearity and Tuning Parameters in

the Knockoff Filter

2.1 Introduction

Consider the regression model Y = Xβ+ε where Y is an n-dimensional response

vector, X is an n × p design matrix with columns X1, . . . ,Xp, E (ε |X) = 0 and

Var(ε | X) = σ2I. One goal of a regression analysis may be the identification of

elements of β that are nonzero, that is, covariates Xj that are associated with the

response conditional on the other p− 1 covariates. In this context, the knockoff filter

(Barber and Candès 2015; Candès et al. 2018; Barber, Candès, and Samworth 2018)

controls the regression false discovery rate (FDR) in finite samples, with arbitrary

covariate dependence, when n ≥ p and ε | X ∼ N(0, σ2I). The regression FDR is

the expected proportion of selected covariates that are, in fact, not associated with

the response, conditional on the other covariates. In practice, “controlling” the FDR

means that when a set of relevant variables is identified, we expect that a small

fraction of those variables were identified erroneously.

The knockoff filter constructs a set of p synthetic covariates which mimic the cor-

relation structure of the observed covariates and are constructed without knowledge

of the response. Crucially, these synthetic covariates are correlated with the observed
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covariates. A regression model is fit to this augmented set of 2p variables. By con-

struction, the synthetic variables will behave similarly to the real variables with null

effects in the regression model. If an original variable cannot be distinguished from

its knockoff version in the regression model, it is identified as having a null effect;

variables estimated as having much larger effects than their knockoff counterparts are

selected as non-null.

This chapter examines the effect of collinearity on the statistical power of the

knockoff filter in moderate-dimension regression problems. Specifically, I will describe

how the construction of knockoff variables can exacerbate existing collinearity among

the covariates and lead to a singular design matrix in the augmented regression model

used to compare the original covariates to their knockoffs. I will then suggest an

alternative tuning method for the knockoff filter which alleviates collinearity in the

augmented model. As currently defined, the knockoff filter includes a p-dimensional

tuning parameter s = (s1, . . . , sp), and Barber and Candès (2015) provide a single

criterion for choosing this tuning parameter. Using this criterion, the knockoff filter

produces singular augmented design matrices (the set of 2p original and knockoff

variables) when the original design matrix is not nearly orthogonal. This chapter

describes how this tuning parameter can induce high collinearity or can be used to

reduce collinearity in the augmented model, thereby allowing the knockoff filter to

be applied with non-penalized regression methods when design matrices are not close

to orthogonal. This alternative tuning method maintains FDR control and improves

statistical power in some moderate-p settings.

An alternative, “model-X” knockoff filter (Candès et al. 2018) has been developed

which allows the distribution of Y |X to be arbitrary (for example, when a nonlinear

link function relates X to E (Y |X)) and provides FDR control in the p > n setting.

This model-X knockoff filter requires that the joint distribution of X be known. In

this thesis I focus on “fixed-X” knockoffs, where a linear model for Y is proposed

6



conditionally on X.

2.1.1 FDR and multiple testing in regression

Before describing the knockoff filter, I will review the false discovery rate (FDR)

in the linear regression context. Given a set of D null hypotheses, suppose that R of

them are rejected on the basis of observed data. Of these R rejected hypotheses or

“discoveries”, V are in fact true (incorrectly rejected) and R− V are false. The false

discovery proportion (FDP) is V/max {R, 1}, the proportion of rejected hypotheses

that are actually true. The FDR is the expected false discovery proportion, while

the family-wise error rate (FWER) is the probability that any of the hypotheses

are incorrectly rejected (Efron 2010). For a desired error rate q, a multiple testing

procedure “controls” the FDR (FWER) if FDR (FWER) ≤ q.

The Bonferroni correction (Shaffer 1995, e.g.) uses P -values for the D hypotheses

to control the FWER (with dependent or independent test statistics). Note that any

FWER-controlling procedure also controls the FDR The FDR-controlling procedure

of Benjamini and Hochberg (1995) proceeds as follows. Given ordered p-values p(1) ≤

· · · ≤ p(D) for the D null hypotheses and a desired FDR q ∈ (0, 1), the hypotheses

H(1), . . . , H(k) are rejected, where

k = max
i

{
p(i) ≤

i

D
q

}
(2.1)

This procedure has FDR equal to D0

D
q, whereD0 is the number of false hypotheses, but

requires that the set of test statistics from the D hypotheses are either independent

or have “positive regression dependence on a subset” (Benjamini and Yekutieli 2001).

Both the Bonferroni and Benjamini-Hochberg procedures require P -values, which

may be difficult to obtain based on penalized regression techniques such as the lasso.

Here, we are concerned with p null hypotheses in a regression problem, namely
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H0j : βj = 0, j = 1, . . . , p, and the FDR is the expectation of the false discovery

proportion taken over the distribution of the response vector conditional on the co-

variates. In this case, a discovery is a variable identified as non-null, that is, a variable

Xj (the jth column of X) such that Y depends on Xj conditional on {Xk : k 6= j}.

In many cases, the covariates are correlated, which means that the standard test

statistics for each regression coefficient are not independent. The knockoff filter con-

trols the FDR for the p hypotheses H0j : βj = 0 in the linear regression model

Y |X ∼ N(Xβ, σ2I) and does not require independent test statistics for each hypoth-

esis, unlike the Benjamini-Hochberg procedure.

Testing the hypotheses H0j : βj = 0 is related to the task of variable selection in

regression, but adds to it rigorous control of the error rate through the FDR. Note that

this FDR is different from that of a marginal screening problem in which one hopes to

discover a subset of covariates which all have marginal associations with the response.

Intuitively, control of the regression FDR is a more difficult task than controlling the

FDR for marginal relationships. If two covariates are highly correlated but only one

of them has an effect in the regression, then they both are “true discoveries” in a

marginal screening task whereas one of them is a false discovery in the regression.

The Bonferroni correction and other methods for controlling the FWER were

developed in settings where few hypotheses are being tested, as in agricultural ex-

periments with six or ten pairwise comparisons between treatment groups. Modern

scientific applications, such as observational studies using data from electronic health

records, may require testing thousands of hypotheses (potentially relevant variables).

In this context, guaranteeing that a low fraction of hypothesis rejections are in error

may be more a desirable goal than preventing even a single false rejection, which could

lead to very few rejected hypotheses (Benjamini and Hochberg 1995; Efron 2010).

Wu, Boos, and Stefanski (2007) also proposed a procedure based on synthetic

variables and present simulation studies suggesting it has approximate FDR control.
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In their work, the synthetic variables are uncorrelated with the original variables

and bootstrap-like replications are used to estimate the FDR for a given set of se-

lected variables. Other work on false discovery rates in regression typically relies on

near independence of test statistics (or of covariates) or provides asymptotic FDR

control (Meinshausen, Meier, and Bühlmann 2009; Storey, Taylor, and Siegmund

2004; Storey 2002; Bogdan et al. 2015). The knockoff filter has a theoretical guar-

antee of FDR control in finite samples, with arbitrary covariate dependence, when

Y |X ∼ N(Xβ, σ2I).

2.1.2 Motivating application

Electronic health records (EHR) and medical claims databases provide detailed,

longitudinal data on many variables recorded during encounters with the health-

care system. These databases potentially contain millions of individuals with high-

dimensional measurements collected over time. The data can be sparse and error-

prone, reflecting variation in data entry by individual providers, ambiguous relation-

ships between recorded variables and clinical outcomes of interest, and the primary

use of EHR data for billing and other non-research purposes. These issues can limit

the ability of researchers to exploit the high-volume longitudinal data contained in

EHRs (Weiskopf and Weng 2013; Jensen, Jensen, and Brunak 2012).

While many researchers have focused on predicting clinical outcomes such as the

onset of heart failure (e.g. Wu, Roy, and Stewart 2010; Austin et al. 2013; Choi et

al. 2017), the exploratory goal of identifying relevant variables in claims and EHR

data has been underdeveloped. In this context, statistical methods could be applied

to discover a small set of variables which are relevant to a clinical outcome among

hundreds or thousands of variables contained in medical records or insurance claims.

Although claims and EHR data are high-dimensional, massive numbers of patients

permit the use of methods such as the knockoff filter in which the sample size is
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typically larger than the number of variables. This kind of feature identification

could be useful in the analysis of large claims databases such as MarketScan (IBM

Watson Health 2018).

2.2 The knockoff filter

Next I will describe the fixed-X knockoff filter of Barber and Candès (2015) and the

tuning parameter choices suggested by these authors. Section 2.4 proposes alternative

tuning choices for the knockoff filter.

2.2.1 Definition

Following Barber and Candès (2015), let X be the n× p matrix of mean-centered

covariates with columns denoted by Xj. The columns of X are normalized so that

‖Xj‖ = 1 and denote Σ = XᵀX, which is assumed to be nonsingular. With Y =

(Y1, . . . , Yn)ᵀ, the assumed population model is Y | X ∼ N(Xβ, σ2I). The fixed-X

knockoff filter consists of three steps:

1. Without involving Y, construct the n× p “knockoff” design matrix X̃ so that

G :=
[
X X̃

]ᵀ [
X X̃

]
=

 Σ Σ− S

Σ− S Σ

 (2.2)

is positive semidefinite, where S = diag(s) and s = (s1, . . . , sp) has nonnegative

entries. The vector s is a tuning parameter. The knockoff variables (columns

of X̃) serve as negative controls for the original variables.

2. Given the augmented design matrix
[
X X̃

]
, compute “importance statistics”

Wj, j = 1, . . . , p so that large, positive values of Wj provide evidence that βj

is nonzero. These importance statistics must be a function of G and [X X̃]ᵀY
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and must have the property that swapping X̃j and Xj in the augmented design

matrix changes the sign of the corresponding Wj.

3. Select variables j such that Wj ≥ T , where T is a data-dependent threshold

defined below in equation (2.4).

First note that for any nonsingular Σ, there exists s such that G is positive

semidefinite. As noted in Barber and Candès (2015, Section 2.1), G is positive

semidefinite if and only if S � 0 and 2Σ − S � 0. For any s such that 0 < minj sj

and maxj sj < 2λmin(Σ), where λmin(Σ) is the smallest eigenvalue of Σ, we will have

S and 2Σ−S positive definite (see Section 2.3.1 for details). Since Σ is nonsingular,

λmin(Σ) > 0, so it is possible to choose s satisfying these conditions.

By construction, Xᵀ
jX̃j = 1 − sj, so sj is a tuning parameter which controls the

degree of correlation between the jth covariate and its knockoff. Variable selection

in the knockoff filter is performed by using the statistics Wj to compare the original

variables to their knockoffs, which are known to be independent of the response given

the true covariates. An original variable that cannot be distinguished from its knockoff

using the importance statistic Wj is likely to be a null variable, i.e. a variable j with

βj = 0. Since X̃j is known to have no effect on Y given the other covariates, reducing

correlation between Xj and X̃j prevents the estimated effect of a non-null variable

from being attenuated due to correlation with its knockoff. By this reasoning, the

statistic Wj is more likely to detect a true signal (βj 6= 0) when sj is close to 1. As

will be explored in the next section, the choice of s also affects the degree of linear

dependence in the augmented design matrix
[
X X̃

]
.

The correlation structure of
[
X X̃

]
, along with the computation of Wj as a func-

tion of G and
[
X X̃

]ᵀ
Y, means that # {j : βj = 0,Wj ≤ −t} has the same distri-

bution as # {j : βj = 0,Wj ≥ t} for any fixed t > 0; this allows the false discovery
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proportion (FDP) at a threshold t > 0 to be estimated by

F̂DP(t) =
# {j : Wj ≤ −t}

max {1,# {j : Wj ≥ t}}
, (2.3)

leading to a selection threshold which controls FDR at level q ∈ [0, 1]:

T = min
j

{
t = |Wj| :

1 + # {k : Wk ≤ −t}
max {1,# {k : Wk ≥ t}}

≤ q

}
. (2.4)

Note that the numerator of (2.3) is an estimate of the number of false discoveries,

since # {j : Wj ≤ −t} ≥ # {j : βj = 0,Wj ≤ −t} and this latter quantity has the

same distribution as # {j : βj = 0,Wj ≥ t}, the true number of false discoveries at

threshold t.

The knockoff estimate of FDP given in (2.3) is not monotonic, but will tend to

zero as t increases to maxj |Wj|. The FDR-controlling threshold (2.4) adds 1 to the

numerator of (2.3) before comparing the FDP estimate to the nominal level q. This

is referred to as the “knockoff+” in Barber and Candès (2015). Adding 1 to the

numerator of (2.3) produces a different estimate of the FDP which increases to 1

as t increases. The threshold in (2.4) leads to FDR control of the knockoff filter,

while computing a threshold based on (2.3) only approximately controls the FDR.

See Barber and Candès (2015) for details.

Figure 2.1 compares these two knockoff estimates of the FDP as a function of

candidate thresholds t > 0 in a synthetic dataset with p = 50 orthogonal, multivariate

Gaussian covariates and 25 truly non-null variables. With either FDP estimate, the

threshold is chosen as the smallest t such that the estimated FDP is below the desired

FDR. Figure 2.1 illustrates the conservatism in (2.4), which over-estimates the true

FDP for a given vector of importance statistics. By initially decreasing and then

increasing toward 1, the knockoff+ threshold prevents either too many or too few

discoveries; in fact, based on (2.4), the threshold T which controls the FDR at level

12



q will, by construction, satisfy

# {j : Wj ≥ T} ≥ 1

q
+

1

q
# {j : Wj ≤ −T} , (2.5)

so, based on (2.4), when at least one variable is selected, at least 1
q

variables will be

selected.

The knockoff design matrix has three key properties: the distribution of the knock-

offs approximates the distribution of the observed variables in that they have the same

correlation structure among themselves; the knockoffs are independent of Y given the

observed covariates; and the knockoffs are (in general) correlated with the observed

variables. This last property is critical, as suggested in Barber and Candès (2015,

Section 3.1). Note that Xᵀ
jXk = Xᵀ

jX̃k and Xᵀ
jXk = X̃ᵀ

jX̃k for any j 6= k. When

the estimated effect of a null variable Xj is large due to its correlation with some

other non-null variable, then the estimated effect of X̃j will also tend to be large due

because X̃j is equally correlated with the same non-null original variable. In this way

the correlation between the knockoff and original variables allows the knockoffs to

serve as a negative controls.

In the model-X knockoff filter (Candès et al. 2018), X and X̃ are considered

random, and a joint distribution for (X, X̃) is specified to satisfy two conditions:

the distribution of (X, X̃) is unchanged under pairwise interchanging of columns of

X with their knockoff counterparts; and X̃ is independent of Y, conditional on X.

Then a single X̃ matrix is sampled from the conditional distribution X̃ | X. One

example of a joint distribution with these properties is (X, X̃) ∼ N(0,G), where G is

the augmented Gram matrix defined previously. This random sampling of the knock-

off design matrix will result in lower sample correlations between original variables

and their knockoffs. However, as stated previously the model-X knockoff requires

knowledge of the joint distribution of X.
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2.2.2 Implementation and tuning

Now we can turn to the implementation and tuning choices made by the analyst

when using the knockoff filter. First, the elements of s need to be specified so that G

is positive semidefinite. Then, given a valid choice of s, the knockoff design matrix X̃

can be constructed so that
[
X X̃

]ᵀ [
X X̃

]
= G by first defining CᵀC = 2S−SΣ−1S

and then setting

X̃ = X(I−Σ−1S) + ŨC, (2.6)

where Ũ is an n× p matrix with orthonormal columns such that ŨᵀX = 0. Since Σ

is nonsingular, G is positive semidefinite if and only if CᵀC is positive semidefinite;

hence C exists for any valid s. Note that the matrix Ũ is not uniquely defined given

X and s (e.g., for any orthogonal matrix Q, ŨQ can be used instead of Ũ in (2.6)).

The particular choice of Ũ can lead to wide variation in the set of selected variables

in the knockoff filter. The issue of choosing Ũ to reduce variability in the knockoff

filter is explored in Chapter III.

There are two methods for calculating s given in Barber and Candès (2015): SDP

and equi-correlated. The only restrictions placed on S = diag(s) are that G is posi-

tive semidefinite, which occurs when S � 0 and 2Σ− S � 0. Following the heuristic

argument given earlier, high power may be achieved when 1− sj, the correlation be-

tween Xj and X̃j, is close to zero. With this in mind, Barber and Candès (2015) both

the SDP and equi-correlated constructions seek to minimize the correlations between

the knockoff and original covariates, and, in fact, the equi-correlated construction is

a special case of the SDP construction. In Section 2.3 I will describe how tuning

choices for s can affect both collinearity and power when using the knockoff filter.
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SDP knockoffs are constructed by solving

min
∑
j

(1− sj)

subject to 0 ≤ sj ≤ 1, 2Σ− S � 0,

(2.7)

which is a semidefinite program.

In the equi-correlated construction, sj = min {1, 2λmin(Σ)} for all j, where λmin(Σ)

is the smallest eigenvalue of Σ. Barber and Candès (2015) point out that this equi-

correlated construction minimizes the pairwise correlations between knockoffs and

original covariates. The following proposition states this fact more precisely.

Proposition II.1. Setting sj = min {1, 2λmin(Σ)} for all j is the solution to (2.7)

with the restriction s = s(1, . . . , 1)ᵀ.

Proof. When s = s(1, . . . , 1), then (2.7) is equivalent to

min p(1− s) ⇐⇒ min−ps

s.t 0 ≤ s ≤ 1, 2Σ− sI � 0

⇐⇒ 0 ≤ s ≤ 1, 2λj(Σ)− s ≥ 0 for all j

⇐⇒ 0 ≤ s ≤ 1, s ≤ 2λmin(Σ),

where λj(Σ) is the jth eigenvalue of Σ and λmin(Σ) is the smallest eigenvalue. Taking

s as large as possible while remaining feasible, we obtain s = min {2λmin(Σ), 1}

In certain circumstances the SDP solution will have an equi-correlated form,

s = s(1, . . . , 1), even without restricting the optimization problem to equi-correlated

solutions. To understand when this occurs, define
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M =


I− S

S

2Σ− S


and rewrite the SDP optimziation problem as

min f(s) = −(1, . . . , 1)s = −
∑
j

sj

s.t. M � 0

(2.8)

Following Boyd and Vandenberghe (2004, Exercise 4.4) and Bachoc et al. (2012, Sec-

tion 1.1), solutions to this problem will have the form s(1, . . . , 1) when the objective

function is invariant under permutations of s and, for any feasible s, permutations of

s are also feasible. It is clear that f(s) is invariant under permutation of s. The con-

dition M � 0 is satisfied when sj ∈ [0, 1] for all j and 2Σ−S is positive semidefinite.

If sj ∈ [0, 1] for all j, then this is also true for permutations of s, so the SDP problem

will have an equi-correlated solution s(1, . . . , 1) whenever 2Σ − S remains positive

semidefinite under permutations of s. Future work will attempt to characterize the

class of covariance matrices Σ such that positive definiteness of 2Σ−S is unchanged

under permutation of s.

One example of a case in which positive definiteness of 2Σ− S is invariant under

permutation is when Σ has an exchangeable structure, with all off-diagonal elements

equal to τ . In this case,

2Σ− S =


2− s1 τ τ · · ·

τ 2− s2 τ · · ·
...

. . .

 (2.9)
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If 2Σ− S is positive semidefinite, then for any v ∈ Rp,v 6= 0, vᵀ(2Σ− S)v ≥ 0, and

vᵀ(2Σ− S)v =

p∑
j=1

v2j (2− sj) + τ

(
p∑
j=1

vj
∑
k 6=j

vk

)
≥ 0. (2.10)

Let sπ be a permutation of s with Sπ = diag(sπ). Let vπ be the result of applying

the same permutation to v. Then from (2.10) we have

vᵀ(2Σ− Sπ)v = vᵀ
π(2Σ− S)vπ, (2.11)

which is nonnegative since vπ is a nonzero element of Rp. Thus when Σ is exchange-

able, positivity of 2Σ− S is invariant under permutations of s and the SDP solution

will have the equi-correlated form s(1, . . . , 1).

Given s and the resulting knockoffs X̃, the next step of the knockoff filter is to

compute importance statistics W = (W1, . . . ,Wp), which compare each Xj to its

knockoff. Large, positive values of Wj provide evidence against H0j : βj = 0, and the

variable Xj is selected as a non-null variable (H0j is rejected) when Wj exceeds the

threshold (2.4). As described previously, W must be a function of G and
[
X X̃

]ᵀ
Y,

and must have the property that swapping Xj with X̃j in the augmented design ma-

trix
[
X X̃

]
changes the sign of Wj. These two properties defining the importance

statistics, given in Barber and Candès (2015, Sec. 2.2), allow # {j : Wj ≤ −t} to be

used as an estimate of the number of false discoveries at threshold t. One example of

a statistic of this type is the difference in coefficient magnitudes for each knockoff and

original variable: Wj = |β̂j(λ)| − |β̂j+p(λ)|, where λ is the fixed value of a regulariza-

tion parameter in a penalized least squares fit. Another example is |β̂j| − |β̂j+p|, the

difference in coefficient magnitudes for an ordinary least squares (OLS) regression.

However, as will be explored in Section 2.3, in many cases linear dependence in the set

of original and knockoff variables will prevent direct use of OLS importance statistics.

One final example of a valid Wj statistic is Wj = |Xᵀ
jY| − |X

ᵀ
j+pY|, the difference in
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sample correlation magnitudes between each original and knockoff variable.

2.3 Collinearity in the knockoff design matrix

As noted above, correlation between the knockoff and original variables allows

the knockoffs to serve as negative controls and is necessary for FDR control. But

this correlation between knockoffs and original variables can amplify existing linear

dependence in the original design matrix. Note that the off-diagonal elements of

Σ − S are equal to the off-diagonal elements of Σ, so, for any j 6= k, we have

Xᵀ
jX̃k = Xᵀ

jXk. So even when the jth knockoff variable X̃j can be constructed so

that Xᵀ
jX̃j = 1 − sj = 0, collinearity in the augmented design matrix is increased

due to correlation between Xj and X̃k for any j 6= k. Here I focus on how the tuning

parameter s influences collinearity, but I do not explore whether correlations between

Xj and X̃k, j 6= k could be reduced while maintaining FDR control. Specifically, I

describe how the SDP objective of minimizing pairwise correlations between Xj and

X̃j often leads to a linearly dependent augmented design matrix, or, equivalently, a

singular Gram matrix G. In some cases, this collinearity in the augmented design

matrix can reduce the power of the knockoff filter.

2.3.1 Feasible choices of s

To understand the tuning parameter s we can start by examining the constraints

imposed on the choice of s by the requirement that the augmented Gram matrix

G is positive semidefinite. In Section 2.3.2 I describe how these constraints, when

combined with the SDP or equi-correlated tuning choices, can lead to a singular G.

The knockoff filter requires that the 2p× 2p Gram matrix G, defined in (2.2), is

positive semidefinite, which occurs when S � 0 and 2Σ−S � 0. Equivalently, G � 0

if and only if 2S − SΣ−1S � 0. Thus, collinearity in the original design matrix X

constrains the choice of s through the conditions 2Σ − S � 0 and 2S − SΣ−1S � 0
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(recall the notation Σ = XᵀX). In addition, since the columns of X are standardized,

the diagonal elements of Σ are equal to 1 and therefore it is necessary that sj ≤ 1 to

satisfy 2Σ− S � 0.

Let λj(Σ) denote the jth eigenvalue of Σ and let smin = min {s1, . . . , sp}. Using

Weyl’s inequalities (Bhatia 1997, Theorem III.2.1), we have

2λj(Σ) + λmin(−S) ≤ λj(2Σ− S) ≤ λj(2Σ) + λmax(−S) (2.12)

⇐⇒ 2λj(Σ)− smax ≤ λj(2Σ− S) ≤ 2λj(Σ)− smin (2.13)

for all j. These inequalities lead to the following proposition.

Proposition II.2.

If smin > 2λmin(Σ), then 2Σ− S (hence G) is not positive semidefinite. (2.14)

If 0 < smin ≤ smax < 2λmin(Σ), then S � 0 and 2Σ− S � 0. (2.15)

Proof. Follows from the Schur complement relationship between G, S, and 2Σ − S,

along with (2.12)–(2.13).

Statement (2.14) provides an upper bound on smin as λmin(Σ) approaches zero,

while (2.15) shows that for any Σ such that λmin(Σ) > 0, there exists s so that G � 0.

2.3.2 Singular G in SDP and equi-correlated constructions

We can now relate the general constraints on s imposed by the requirement that

G � 0 to the SDP and equi-correlated choices of s. The affine objective functions in

the SDP and equi-correlated tunings of s cannot have extreme values on the interior

of the feasible set. Thus, by using an affine objective function, the SDP and equi-

correlated tuning of s lead to solutions on the boundary of the feasible set for s, which

in many cases causes G to be singular.
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As stated above, the constraints of the SDP problem can be written as M � 0

where

M =


I− S

S

2Σ− S

 .
Since the SDP objective function is affine with convex constraints, the solution will be

on the boundary of the feasible set. That is, at least one of the constraints I−S � 0,

S � 0 or 2Σ− S � 0 will be active at the solution. Since

det(G) = det(S) det(2Σ− S), (2.16)

we can relate the constraints in the SDP problem to conditioning of the Gram matrix

G. Specifically, we can attempt to find conditions on Σ which lead to each of the

constraints being active at the SDP solution, and describe how each active constraint

influences the conditioning of G.

First, if S � 0 is active, then at least one sj = 0, which by (2.16) means that

G is singular. Knowledge that I − S � 0 is active at the solution does not provide

information about the conditioning of G unless I−S � 0 is the only active constraint,

in which case 2Σ−S has positive eigenvalues and G is guaranteed to be nonsingular

by (2.16). If at the solution, sj ∈ (0, 1) for all j, then 2Σ− S � 0 is the only active

constraint, meaning that at least one eigenvalue of 2Σ−S will be equal to zero. Then,

by (2.16), G is singular in this case.

The constraints on I − S and S do not involve the observed data; only through

2Σ − S � 0 does collinearity in the observed covariates restrain the SDP solution

for s. Proposition II.2 suggests that when λmin(Σ) > 1/2, the SDP solution is s =

(1, . . . , 1)ᵀ, even if we do not restrict to equi-correlated s. In this case, collinearity

in the original variables is low enough so that s is unconstrained by the requirement

that G � 0, and we can set sj = 1 for all j to achieve minimal correlation between
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each knockoff and original variable.

With the equi-correlated construction of s, a more definitive statement is possible

about conditions under which G is singular.

Proposition II.3. Solving (2.7) with the restriction that s = s(1, . . . , 1)ᵀ (equi-

correlated) produces singular G whenever λmin(Σ) ≤ 1
2
.

Proof. Rewriting (2.16) with s = s(1, . . . , 1)ᵀ, we have

det(G) = det(sI) det(2Σ− sI) (2.17)

= sp det(2Σ− sI) (2.18)

= sp det(B) det(2Λ− sI) det(B), (2.19)

where Σ = B∆Bᵀ is the eigendecomposition of Σ. Since B is orthogonal, its deter-

minant is either 1 or −1. So

det(G) = sp
∏
j

(2λj(Σ)− s). (2.20)

The equi-correlated solution to (2.7) is s = min {2λmin(Σ), 1}. Plugging this solution

into (2.20) shows that G is singular whenever λmin(Σ) ≤ 1
2
.

Combining Propositions II.2 and II.3, we see that λmin(Σ) determines how collinear-

ity in X constrains the SDP and equi-correlated constructions of s. When λmin >
1
2
,

the SDP solution will be sj = 1 for all 1 and G will be nonsingular. When λmin(Σ) ≤
1
2
, then the equi-correlated and SDP solutions can differ, and when sj = 0 for some

j or 2Σ − S has an eigenvalue equal to zero, G will be singular. To better under-

stand these conditions, Figure 2.2 displays P (λmin(Σ) > 0.5) when X ∼ N(0,Γ) with

n = 1000 and Γ has either an autoregressive or exchangeable structure Even with

p as low as 10 and moderate correlation, only rarely will λmin(Σ) be larger than 1
2
,

allowing SDP tuning of s without leading to a singular G.
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As a concrete example of how the SDP knockoff construction affects conditioning

of G, Figure 2.3 displays the log-determinant of G as a function of the correlation

τ when Σ = XᵀX is fixed to have an exact autoregressive or exchangeable structure

and p = 25. The SDP and equi-correlated constructions for s lead to the same

log-determinant of G in these covariance structures. Even in this low-dimensional

setting, moderate correlation of 0.5 will lead to a singular augmented design matrix.

This suggests that near orthogonality of X is needed to prevent the SDP knockoff

construction from inducing a singular augmented Gram matrix, G.

2.3.3 Variance inflation factors

In addition to the determinant of G, Variance inflation factors (VIFs) can serve

as an measure of the degree of collinearity in the augmented design matrix in the

knockoff filter. In ordinary least squares regression, the variance inflation factor for

Xj measures how linear relationships between Xj and the other columns of X inflate

the variance of the jth least squares coefficient, β̂j.

The VIFs for a design matrix X can be derived as follows. Recall that in the model

Y = Xβ + ε with ε |X ∼ N(0, σ2I), we have Var
(
β̂j |X

)
= σ2(XᵀX)−1jj . Without

loss of generality, take Xj as the last column of X and partition X = [X−j Xj], where

X−j is the n× (p−1) matrix which results from removing the jth column of X. Then

(XᵀX)−1 =

 L−1 + L−1BF−1CL−1 −L−1BF−1

−F−1CL−1 F−1

 (2.21)

where

L = Xᵀ
−jX−j B = Xᵀ

−jXj

C = Bᵀ F = Xᵀ
jXj −Xᵀ

jX−jL
−1Xᵀ

−jXj = ‖(I−P−j)Xj‖2
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and P−j is the projection matrix onto the column space of X−j. This shows that

(XᵀX)−1jj , the jth diagonal element of (XᵀX)−1, is equal to F−1, defined above.

The multiple R2 for the regression of Xj on X−j is

R2
j = 1− ‖(I−P−j)Xj‖2

‖Xj −Xj‖2
. (2.22)

Thus

Var
(
β̂j |X

)
= σ2(XᵀX)−1jj (2.23)

(2.21) =⇒ Var
(
β̂j |X

)
= σ2 1

‖(I−P−j)Xj‖2
(2.24)

(2.22) =⇒ Var
(
β̂j |X

)
= σ2 1

‖Xj −Xj‖2
1

1−R2
j

. (2.25)

The jth VIF is defined as 1
1−R2

j
∈ [1,∞) and reflects the contribution to Var

(
β̂j |X

)
of correlations between Xj and the other columns of X. Thus when ‖Xj −Xj‖2 = 1

(i.e. with standardized covariates), we have that the jth VIF is the jth diagonal

element of the inverse Gram matrix in an ordinary least squares fit.

In the knockoff filter, the augmented Gram matrix is

G =
[
X X̃

]ᵀ [
X X̃

]
=

 Σ Σ− S

Σ− S Σ

 , (2.26)

and, using blockwise inversion, the upper p × p block of G−1 is equal to (2S −

SΣ−1S)−1. By construction, G is unchanged when Xj and X̃j are swapped, so the

VIF for the jth covariate is equal to the VIF of the jth knockoff. Thus, for the

augmented design matrix in the knockoff filter,

VIFj =
[
(2S− SΣ−1S)−1

]
jj

(2.27)
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for both the jth original and knockoff variable.

As an example, Figure 2.4 displays the average VIF for equi-correlated and SDP

tuning of s using the same autoregressive or exchangeable structures for Σ from

Figure 2.3. Comparing Figure 2.4 with Figure 2.3, we see that the VIF and log-

determinant of G contain similar information about the conditioning of the aug-

mented design matrix with SDP knockoffs. The VIFs become infinite at the same

values of τ at which the determinant of G becomes zero.

2.4 Collinearity-reducing knockoff constructions

Here I propose two alternative methods of constructing the knockoff features via

the choice of s which explicitly reduce collinearity in the augmented knockoff design

matrix.

2.4.1 Maximizing the determinant of G

As we have seen, using the SDP tuning to maximize sj in order to reduce corre-

lation between Xj and X̃j often leads to poor conditioning in the augmented design

matrix. One alternative tuning method is to choose s to maximize the determinant

of G, the augmented design matrix. Recall that

G =
[
X X̃

]ᵀ [
X X̃

]
=

 Σ Σ− S

Σ− S Σ

 , (2.28)

with

det(G) = det(Σ) det(2S− SΣ−1S) = det(S) det(2Σ− S). (2.29)

Proposition II.4. log det(G) is convex in the vector s ∈ Rp.

Proof. This follows a similar proof in Boyd and Vandenberghe (2004, Section 3.1.5).
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First consider f(s) = log det(2Σ−S) where S = diag(s). One can prove convexity of

f by restricting f to a line. Let W = 2Σ− S and consider

g(t) = log det(2Σ− S− tV)

= log det W + log det
(
I− tW−1/2VW−1/2)

= log det W +
∑
j

log(1 + tλj)

where λj is the jth eigenvalue of −W−1/2VW−1/2.

Then g′(t) =
∑

j
λj

1+tλj
and g′′(t) = −

∑
j

λ2j
(1+tλj)2

so g is concave and hence

log det(2Σ− S) is concave. Since log det(G) = log det(S) + log det(W) is the sum of

concave functions, it is concave.

Starting with (2.29), the gradient of log det(G) can be computed as

log det(G) =

p∑
j=1

log sj + log det(W) (2.30)

∂ log det(G)

∂sj
=

1

sj
+
∂ log det(W)

∂sj
(2.31)

∂ log det(W)

∂sj
= Tr

[
∂ log det(W)

∂W

∂W

∂sj

]
(2.32)

= Tr
[
(W−1)ᵀ(−Jjj)

]
(2.33)

where Jjj is the single-entry matrix with a 1 in the (j, j) position and zeroes elsewhere.

Thus

∂ log det(G)

∂sj
=

1

sj
+ Tr

[
W−ᵀ(−Jjj)

]
(2.34)

=
1

sj
−
[
W−1]

j,j
(2.35)

These gradient calculations allow numerical optimization of log det(G), leading to

choices of s which will reduce linear dependencies among the columns of the aug-
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mented design matrix.

As an initial example of how this maximum-determinant tuning reduces collinear-

ity in the augmented design matrix, Figure 2.6 displays the ratio of the OLS standard

errors in the augmented design matrix to those of the original design matrix when Σ

has an autoregressive correlation structure and we fix σ2 = 1. These ratios are given

by

[(2S− SΣ−1S)−1]jj

Σ−1jj
(2.36)

In this case, setting σ2 = 1 and with standardized covariates, the OLS standard errors

are equal to the VIFs. So Figure 2.6 can also be regarded as the ratio of the VIFs

with and without the knockoff augmentation. The log-determinant tuning nearly

eliminates the penalty in the OLS standard errors (or VIFs) due to augmenting the

design matrix with the knockoff variables. The equi-correlated and SDP constructions

of s quickly inflate the VIFs (or OLS standard errors) of the original design matrix

as feature correlation increases.

2.4.2 Example: exchangeable population with equi-correlated knockoffs

As a special case, suppose Σ is exchangeable with diagonal entries equal to 1 and

all off-diagonal entries equal to τ . As discussed previously, minimizing the average cor-

relation between each pair of knockoff and original covariates leads to equi-correlated

solutions, s = s(1, · · · , 1), when Σ is exchangeable. As derived in Proposition II.3,

we have

det(G) = sp
p∏
j=1

(2λj − s) (2.37)
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whenever s = s(1, . . . , 1)ᵀ. Seeking to maximize log det(G), we obtain

∂ log det(G)

∂s
=
p

s
− p− 1

2(1− τ)− s
− 1

2 + 2(p− 1)τ − s
(2.38)

because the eigenvalues of Σ are 1− τ with multiplicity p− 1 and 1 + (p− 1)τ with

multiplicity one.

The only critical point which lies in the interval [0,min {2λmin(Σ), 1}] (required

so that G is positive semidefinite) is

s =
1

2

(
−
√

4p2τ 2 − 8pτ 2 + 4pτ + 8τ 2 − 8τ + 1 + 2pτ − 4τ + 3
)
. (2.39)

Figure 2.5 displays the value of log det(G) as a function of s when Σ is exchange-

able, comparing the maximum-determinant equi-correlated construction to the equi-

correlated construction in Barber and Candès (2015), where sj = min {2 minλ(Σ), 1},

along with the minimum-VIF solution for s (described in the following section). First,

we can see that the maximum-determinant and minimum-VIF choices for s lead to

the same solution (it remains to determine whether this equivalence holds in general).

The SDP-based solution is always at least as large as the maximum-determinant solu-

tion, which should lead to greater power according to the logic of Barber and Candès

(2015). However, the instability in the importance statistics due to collinearity in

the augmented design as a result of SDP or equi-correlated tuning of s could lead to

reduced power. In order to improve the overall conditioning in the augmented design

matrix, the maximum-determinant tuning of s tends to permit greater correlation

(smaller sj) between Xj and its knockoff.

2.4.3 Minimizing variance inflation factors

Alternatively, the VIFs in the augmented design matrix could be minimized as a

function of s to reduce dependence in the augmented design matrix. Here I describe
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the gradient calculations necessary to implement this optimization.

Let R = 2S− SΣ−1S and g(R) = R−1. The jth VIF, j = 1, . . . , p is

gjj := VIFj = eᵀjg(R)ej = Tr
[
g(R)eje

ᵀ
j

]
(2.40)

where ej = (0, . . . , 0, 1, 0, . . . , 0)ᵀ is the jth standard basis vector. The objective is

min
s

p∑
i=j

gjj = Tr
[
R−1

]
. (2.41)

We have

∂R−1

∂sjj
= −R−1

∂R

∂sjj
R−1 (2.42)

and

∂R

∂sjj
= 2Jjj −

(
SΣ−1Jjj + JjjΣ−1S

)
, (2.43)

where Jjj is the p× p matrix with 1 in the j, j position and zeroes elsewhere.

The derivative of the ith VIF with respect to the jth entry of s is

∂gii
∂sjj

= Tr

[
∂g(R)

∂sjj
eie

ᵀ
i

]
=

[
∂g(R)

∂sjj

]
ii

(2.44)

=

[
−R−1

∂R

∂sjj
R−1

]
ii

(2.45)
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and

∂

∂sjj

p∑
i=1

VIFi =
∂

∂sjj
Tr
[
R−1

]
(2.46)

=

p∑
i=1

∂gii
∂sjj

=

p∑
i=1

[
∂g(R)

∂sjj

]
ii

=

p∑
i=1

{
−R−1

∂R

∂sjj
R−1

}
ii

(2.47)

= Tr

[
−R−1

∂R

∂sjj
R−1

]
. (2.48)

Initial numerical experiments suggest that the minimum-VIF choice of s has similar

behavior in the knockoff filter as the maximum-determinant s. In the simulations

that follow I will focus on the maximum-determinant tuning for s.

2.5 Simulation results

These numerical simulations compare the power and FDR control of the SDP

knockoff construction with that of the maximum-determinant construction defined in

Section 2.4.1 under various population structures and choices of importance statistics.

Following Barber and Candès (2015), simulations of the knockoff filter were per-

formed as follows. Fixing (n, p) = (5000, 100) or (n, p) = (3000, 1000), the rows of

X were generated as n independent samples from N(0,Γ), where Γ had either an

exchangeable or autoregressive (AR) structure, with correlation parameter τ > 0:

Exchangeable Autoregressive (AR)
1 τ τ · · ·

τ 1 τ · · ·
...

. . .




1 τ τ 2 τ 3 · · ·

τ 1 τ τ 2 · · ·

τ 2 τ 1 τ τ 2


(2.49)

The columns of X were then normalized. The k nonzero βj had magnitude 3.5 and

the indices j such that |βj| = 3.5 were selected uniformly from {1, 2, . . . , p}. This
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signal magnitude is roughly equal to the expected maximum least-squares coefficient

under an orthogonal design with all true coefficients equal to zero. The nominal FDR

was set at 0.1 for p = 100 and 0.2 for p = 1000.

Recall that, given the knockoff threshold T defined in equation (2.4), variable j is

selected by the knockoff filter when Wj ≥ T . The false discovery rate (FDR) is

FDR = E
(

# {j : Wj ≥ T and βj = 0}
max {1,# {j : Wj ≥ T}}

)
, (2.50)

and power in this context is defined as the expected proportion of the k non-null

variables that are selected by the knockoff filter.

The SDP, equi-correlated, and maximum-determinant tuning choices for s were

combined with four different importance statistics: Wj = |Xᵀ
jY|− |X

ᵀ
j+pY|, the cross

product difference (difference in sample correlation magnitudes); Wj = |β̂j(λ)| −

|β̂j+p(λ)|, the difference in magnitude of the lasso regression coefficients (degree of

penalization λ chosen by cross validation); Wj = |β̂j|−|β̂j+p|, the difference in magni-

tude of ordinary least squares (OLS) coefficients; and the difference in ridge regression

coefficients (degree of penalization chosen by cross validation). If the augmented de-

sign matrix was numerically singular, a minimum-norm solution was used to compute

the OLS importance statistics. As described previously, without the log-determinant

tuning for s, it will often be the case that the OLS-based importance statistics can

only be computed with a minimum-norm solution to the OLS normal equations due

to to exact singularity in the augmented design matrix.

First, for illustration, Figure 2.7 displays the distribution of smin = min {s1, . . . , sp}

and smax = max {s1, . . . , sp} over 500 simulation replicates for each correlation struc-

ture and five levels of feature correlation. The maximum-determinant choice of s

tends to have smaller smin and smax than the other two constructions. This allows

each original variable to be more correlated with its knockoff variable than in the
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equi-correlated or SDP constructions. However, with autoregressive correlation of

0.6 or 0.8, the the maximum-determinant construction has larger smin than the SDP

construction, so in these cases there is less correlation between knockoff and original

variables using the maximum-determinant construction. There is generally less vari-

ance in smin and smax when using the maximum-determinant construction compared

to the equi-correlated or SDP constructions.

To understand the performance of each combination of tuning method and im-

portance statistic, I display FDR and power as a function of feature correlation in

Figures 2.8–2.10 for p = 100 and Figures 2.11–2.12 for p = 1000. All tuning choices

for s control FDR at the nominal level, and greater correlation among columns of X is

associated with more conservative FDR control (lower rate of false discovery). With

p = 100 and larger signal magnitude (with |βj| = 4.5 for all nonzero βj) or in a less

sparse setting (k = 40 non-null variables out of p = 100), the log-determinant tuning

of s is less conservative in controlling the FDR. Here we can also observe that, in

general, the lasso coefficient importance statistics have higher power than the other

importance statistics. However, I will make comparisons among the tuning methods

for s within a fixed choice of importance statistic (e.g. OLS or lasso).

In the p = 100, k = 10, |βj| = 3.5 setting in Figure 2.8, there is little or no

reduction in power due to tuning s with the log-determinant of the augmented Gram

matrix. In this low-signal setting (maximum power of approximately 0.3 achieved by

any method), the log-determinant tuning neither harms nor improves power to detect

true signals. With k = 40 out of p = 100 (Figure 2.9), the log-determinant tuning

for s leads to some gain in power using the ridge, lasso, or OLS coefficient differences

as importance statistics. For example, with exchangeable population correlation of

0.5 among the features, using lasso coefficient differences as importance statistics, the

log-determinant tuning has power of about 0.53, while the equi-correlated tuning has

power of about 0.38. When k = 10 but the true signal strength is large (|βj| = 4.5 in
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Figure 2.10), there is a smaller power gain achieved by the log-determinant tuning.

For p = 1000 and n = 3000, Figures 2.11 and 2.12 display the FDR and power

of the equi-correlated and log-determinant tuning of s with autoregressive feature

correlation. In this setting, the log-determinant tuning improves power when using

OLS coefficient differences as the importance statistics. However, the log-determinant

tuning of s with lasso coefficient differences has lower power than the equi-correlated

tuning across all levels of feature correlation. In addition, the lasso coefficient dif-

ferences (with either tuning approach for s) has much greater power than either the

simple cross products or OLS importance statistics.

Overall, comparing the SDP or equi-correlated tuning to the log-determinant tun-

ing for s for a fixed choice of importance statistic, the log-determinant construction

allows larger correlations between Xj and its knockoff variable but only slight re-

ductions in power when p is large or there are very few true signals. Little or no

power reduction was observed with p = 100 and a slight or moderate reduction in

power was observed with p = 1000. When p = 1000, the log-determinant tuning

improves the power of OLS importance statistics. When k is large relative to p,

at least in moderate-dimension settings, these simulations suggest the potential for

power gains using the log-determinant tuning of s. In most settings, the lasso impor-

tance statistics had greater power than the OLS, ridge or cross product importance

statistics. If it is desired to use OLS importance statistics with the knockoff filter,

the log-determinant tuning is recommended to avoid computing these statistics using

a singular augmented design matrix.

2.6 Discussion

To achieve FDR control with synthetic variables in regression requires that these

synthetic variables reproduce correlations among the observed variables and are them-

selves correlated with the observed variables. This chapter showed that this technique,
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implemented in the knockoff filter, can amplify existing collinearity in a set of observed

variables and that this collinearity can reduce statistical power in some settings. But

one of the tuning choices in the knockoff filter, namely, the degree of correlation be-

tween each knockoff and observed variable, can be used to mitigate collinearity in the

knockoff design matrix, which can improve statistical power in some circumstances.

Specifically, these tuning parameters can be chosen to maximize the log-determinant

of the augmented Gram matrix G. This tuning maintains FDR control in the knockoff

filter and improves statistical power in some moderate-dimension and dense regression

problems. In many settings, statistical power is unchanged when using this alterna-

tive tuning. In large-dimension, sparse problems, the determinant tuning incurs minor

reductions in statistical power compared to existing tuning approaches.

The SDP construction of the tuning parameter s focuses only on each of the

pairwise correlations, Xᵀ
jX̃j = 1−sj. This is not surprising, since the statistics which

identify non-null variables compare the effect estimate for each Xj to the paired effect

estimate for X̃j. However, those effect estimates are affected by all of the correlations

among the augmented set of variables, not just Xᵀ
jX̃j = 1 − sj, unless the design

is nearly orthogonal. Hence by permitting greater pairwise correlations Xᵀ
jX̃j while

attempting to reduce instability in those effect estimates as measured by collinearity,

we do not sacrifice, and sometimes improve, statistical power.

This is only one of the potential tuning parameters in the knockoff filter which

may impact its performance with correlated covariates. For example, the correlations

Xᵀ
jX̃k for j 6= k also induce greater collinearity in the augmented set of variables. It

may be possible to shrink the magnitude of these correlations while maintaining the

exchangeability properties of the knockoff variables.

It is apparent in the simulation results from Section 2.5 that different importance

statistics Wj in the knockoff filter can affect statistical power and the knockoff filter’s

sensitivity to choices of s. These results suggest that lasso-based importance statis-
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tics are less sensitive to the choice of s and have higher power than ridge or OLS

statistics. As in the lasso, ridge regression importance statistics are also based on pe-

nalized regression coefficients, which should themselves be less sensitive to collinearity.

However, broadly speaking, the ridge coefficients had lower power than the lasso co-

efficients when used as importance statistics. The simple cross products were not

sensitive to the choice of tuning method for s and had lower power than other impor-

tance statistics, even with weak feature correlation.
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Figure 2.1:
Example knockoff estimates of FDP(t), for a single simulated pair (X,Y)
with p = 50, n = 2000 and 25 truly non-null variables. (See equations
(2.3) and (2.4).) Solid line is the true false discovery proportion for this
fixed vector (W1, . . . ,Wp) at a given threshold.
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Figure 2.2:
P
(
λmin(Σ) ≥ 1

2

)
for Gaussian features, where Σ = XᵀX. Features gener-

ated as X ∼ N(0,Γ) when Γ has either an autoregressive or exchangeable
structure (see equation (2.49) for definitions). Computed from 200 simu-
lation replicates with n = 1000.
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Figure 2.6:
Ratio of augmented (knockoff) OLS standard errors to non-augmented
OLS standard errors. Displayed for a Gram matrix XᵀX = Σ with an
exact autoregressive structure and p = 20.
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n = 5000. Each panel corresponds to the degree of feature correlation and
contains 500 simulation replicates.
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Figure 2.8:
Power and FDR of each tuning method with p = 100, k = 10. Displayed
as a function of feature correlation.39
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Figure 2.9:
Power and FDR of each tuning method with p = 100, k = 40. Displayed
as a function of feature correlation.40
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Figure 2.10:
Power and FDR of each tuning method with p = 100, k = 10, |βj| = 4.5.
Displayed as a function of feature correlation.
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Figure 2.11:
Power and FDR of each tuning method with p = 1000, k = 30. Displayed
as a function of feature correlation.
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Figure 2.12:
Power and FDR of each tuning method with p = 1000, k = 30, |βj| = 4.5.
Displayed as a function of feature correlation.
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CHAPTER III

A Stabilized Knockoff Filter

3.1 Introduction

Performing variable selection while controlling the false discovery rate (FDR) can

be seen as a way of ensuring replicability. In the context of linear regression with

p covariates, an FDR-controlling variable selection method ensures that the subset

of variables identified as having an association with the response will contain only a

small proportion of variables whose population regression coefficient is, in fact, zero.

This property exists on average over repeated sampling from the process generating

the observed data. When repeatedly applying a FDR-controlling variable selection

procedure to future studies of the same process, with measurements of the same

candidate variables and response variable, one would hope for substantial overlap

between the sets of selected variables across studies.

In the case of variable selection with the knockoff filter (Barber and Candès 2015),

however, there exists an additional source of instability or non-replicability, above and

beyond the inherent study-to-study variation due to repeated sampling from the same

data-generating process. As described in Chapter II, the knockoff filter controls the

FDR when selecting variables in the linear regression model Y = Xβ + ε, where

Y is the n-dimensional response vector, X is the n × p fixed design matrix, and

ε ∼ N(0, σ2I). A false discovery in this context is a selected variable j where, in fact,
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βj = 0. For a given, fixed data set, repeated applications of the knockoff filter can

lead to wide variation in the number of variables selected and in the identity of the

selected variables. The knockoff filter, restated in Algorithm III.1, constructs an n×p

matrix of “knockoffs”, X̃, which are compared to the original covariates in order to

select variables. Even with fixed X and Y, there are many valid matrices of knockoffs

variables which can be used in the knockoff filter, each of which can lead to a distinct

set of selected variables.

A matrix of knockoffs for X involves an arbitrary choice in Step 3 of Algorithm

III.1, in which Ũ is chosen so that ŨᵀX = 0 and ŨᵀŨ = I. The matrix of knockoffs

is constructed via X̃ = X(I − Σ−1S) + ŨC. The diagonal matrix S, discussed in

the previous chapter, is a p-dimensional tuning parameter fixed by a given tuning

method (e.g. equivariant or log-determinant tuning) and design matrix. The matrix

C is a function of S and X. But the matrix of knockoffs X̃, and hence the statistics

W, vary as functions of the arbitrary matrix Ũ. Variables are selected based on the

vector W, and this variation in W due to Ũ leads to non-negligible instability in the

set of selected variables.

To illustrate this instability, I generated a single design matrix X and a single

response vector Y from the model Y = Xβ + ε with n = 5000, p = 100, ε ∼

N(0, In), and 10 non-null variables j with magnitude |βj| = 3.5. The matrix X

was generated with independent, mean-zero Gaussian rows with an autoregressive

covariance structure (population correlation 0.4) in the columns. The matrix Ũ was

generated 500 times (as described below, in Algorithm III.3) to complete Step 3 of

Algorithm III.1. For each Ũ, the knockoffs and importance statistics (lasso coefficient

differences) were computed and variables were selected, as described in Steps 5–7 of

Algorithm III.1, with target FDR q = 0.1. Figure 3.1 shows that for this fixed

dataset, some truly null variables are selected in about 50 percent of trials while some

truly non-null variables are selected in between 60 and 100 percent of trials. The
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histogram in the right panel of Figure 3.1 shows that between zero and 16 variables

were selected, with a mean of approximately 9.3 variables selected per trial (standard

deviation approximately 3.3). This example shows how the arbitrary choice of Ũ in

the construction of the knockoff variables can lead to drastically different inferences

when repeatedly applying the knockoff filter to a single fixed dataset.

Algorithm III.1 Fixed-design knockoff variable selection (Barber and Candès 2015)

Require: X ∈ Rn×p, Y ∈ Rn, ‖Xj‖ = 1, Σ := XᵀX, q ∈ (0, 1)
1: Choose S := diag(s1, . . . , sp) so that all sj ≥ 0 and 2Σ− S � 0
2: Compute C satisfying CᵀC = 2S− SΣ−1S
3: Choose Ũ ∈ Rn×p so that ŨᵀŨ = I and ŨᵀX = 0.
4: X̃← X(I−Σ−1S) + ŨC
5: Compute W = (W1, . . . ,Wp) so that Wj >> 0 suggests βj 6= 0, satisfying the

following two properties:

(a) W is a function of
[
X X̃

]ᵀ
Y and

[
X X̃

]ᵀ [
X X̃

]
(b) Swapping the columns Xj and X̃j changes the sign of Wj

6: Compute threshold,

T+ ← min
j

{
t = |Wj| :

1 + # {k : Wk ≤ −t}
max {1,# {k : Wk ≥ t}}

≤ q

}
(knockoffs+)

or

T ← min
j

{
t = |Wj| :

# {k : Wk ≤ −t}
max {1,# {k : Wk ≥ t}}

≤ q

}
(knockoffs)

7: Select variables {j : Wj ≥ T} (knockoffs) or {j : Wj ≥ T+} (knockoffs+)

An FDR-controlling procedure such as that of Benjamini and Hochberg (1995)

(referred to below as BH) does not have this additional source of indeterminacy for

a fixed pair (X,Y). Given (X,Y) and a chosen test statistic, such as the Wald

statistics for each ordinary least squares coefficient, the set of selected variables using

the BH procedure is obtained from a deterministic function of the P -values computed

from those test statistics. With the same design matrix and population parameters

depicted in Figure 3.1, Figure 3.2 compares the distribution in the number of selected

variables for the knockoff filter and BH procedure using ordinary least squares Wald

tests across 500 samples of Y |X. The entries of X were chosen so that XᵀX = I, so
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the test statistics for BH were independent. The BH procedure selected an average

of 9.1 variables, with a standard deviation of 2.0, while the knockoff filter selected

an average of 9.7 variables, with a standard deviation of 3.4. For this design matrix

there is nearly twice as much variation in the selected variables using the knockoff

filter as there is using BH. With a single response vector Y, there is no variation

in the variables selected by BH, while the knockoff filter selects between one and 16

variables depending on the arbitrary choice of Ũ (as depicted in Figure 3.1).

This chapter focuses on reducing this algorithmic instability in the knockoff filter

so that there is little or no variation in the set of selected variables for a fixed dataset.

There are at least three goals of reducing this instability in the knockoff filter: to

improve power by reducing the likelihood of selecting very few variables due to an

“unlucky” set of knockoffs; to enhance replicability; and to prevent misuses of the

knockoff filter in which the procedure is performed repeatedly until a desired result

is achieved. The rest of this chapter is organized as follows. After reviewing related

work, I describe in Section 3.3 how instability in variable selections based on the

knockoff filter results from indeterminacy in Ũ. Section 3.4 proposes a stabilized

knockoff filter based on a collection of knockoffs generated for a single design matrix,

where each set of knockoffs is constructed using a distinct matrix Ũ. Section 3.5.1

presents simulation results comparing the stabilized knockoff filter to the standard

knockoff filter, and Section 3.5.2 presents simulations comparing the knockoff filter

to variable selection with ordinary least squares P -values Benjamini-Hochberg or

Bonferroni corrections for multiple comparisons.

3.2 Related work

In the high-dimensional setting with p > n, Barber and Candès (2019) extend

the knockoff filter to control the “directional FDR”, in which a false discovery is a

selected variable j whose estimated sign is not equal to the true sign of βj. This

47



definition of a false discovery includes type S errors (Gelman and Carlin 2014), in

which a variable is identified as non-null but the estimated sign is incorrect, as well

as the classical definition of a false discoveries. Su, Qian, and Liu (2015) aggregate

knockoff statistics over a set of m independent linear models Y(i) = X(i)β(i) + ε(i),

testing the hypotheses H0j : β
(1)
j = · · · = β

(m)
j for j = 1, . . . , p and controlling a

modified FDR using randomized decision rules. Here we focus on a single sample

with population structure Y = Xβ + ε and n > 2p, and seek to reduce variance and

maintain FDR control across repeated sampling of Y |X.

Other recent work on the knockoff filter has focused on the “model-X” framework

(Candès et al. 2018; Barber, Candès, and Samworth 2018), in which the rows of X are

treated as independent random vectors whose probability distribution is known. In

this framework, the knockoff variables (X̃1, . . . , X̃p) are constructed so that the dis-

tribution of (X, X̃) is unchanged when swapping original variables with their knockoff

pairs and X̃ is independent of Y given X. This simple definition of model-X knockoffs

belies the difficulty of actually computing these knockoffs for many covariate distri-

butions, and ongoing research is tackling this problem (Sesia, Sabatti, and Candès

2018; Romano, Sesia, and Candès 2019, e.g.).

In this model-X framework, Roquero Gimenez and Zou (2018) discuss instability

in the set of selected variables due to random sampling of the knockoff variables; the

set of selected variables depends on a particular sample X̃ (drawn from its population

distribution), which is used to compute importance statistics and a threshold for those

importance statistics. These authors define a set of “multi-knockoffs” (X̃1, . . . , X̃K),

such that the joint distribution of (X, X̃1, . . . , X̃K) is exchangeable under permuta-

tions within a given feature, across the knockoff and original variables for that feature,

and (X̃1, . . . , X̃K) is independent of Y given X. Statistics estimating each variable’s

magnitude, such as the absolute lasso regression coefficients, are computed for each

of the K knockoffs for each feature. These K + 1 statistics are used to generalize
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the thresholding procedure for the importance statistics in the standard fixed-X and

model-X knockoffs, thus obtaining a set of selected variables. As will be discussed be-

low, this multi-knockoff thresholding cannot be directly applied in the fixed-X setting

under discussion in this chapter.

The stabilized knockoff filter proposed in Section 3.4 involves aggregating vectors

of test statistics, each of which could individually be used to select variables with

FDR control. Pyne, Futcher, and Skiena (2006) study a related task in a different

modeling context, describing how to aggregate independent P -values from several

studies of a single set of genetic features. They focus on FDR control based on inde-

pendent, identically distributed P -values from each experiment, which are screened to

control the FDR within each experiment before being combined across experiments;

the overall test statistic for each feature is the product of those P -values which met

their experiment-specific cutoffs.

3.3 Unstable selection in fixed-X knockoffs

As noted previously, instability in the knockoff filter within a fixed dataset is a

result of the arbitrary computation of Ũ in Step 3 of Algorithm III.1. This matrix

satisfies ŨᵀX = 0 and ŨᵀŨ = I. These two properties of Ũ are required to obtain

the following structure in the 2p× 2p Gram matrix

G =
[
X X̃

]ᵀ [
X X̃

]
=

 Σ Σ− S

Σ− S Σ

 . (3.1)

Variable selection with the knockoff filter, for a single sample (X,Y), is performed

using the importance statistics W = (W1, . . . ,Wp), which are functions of G and the

cross products
[
X X̃

]ᵀ
Y. Instability in the selected variables due to Ũ can therefore

be understood by examining the effect of Ũ on W via G and
[
X X̃

]ᵀ
Y.
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The requirements that ŨᵀŨ = I, ŨᵀX = 0, and CᵀC = 2S−SΣ−1S can be seen

as a solution to the following problem: find n×p matrices A,B so that X̃ = XA+B

satisfies (3.1). Setting A = (I − Σ−1S) and B = ŨC satisfies (3.1). With this

construction, G does not depend on Ũ, and the structure of G is what permits

the importance statistics to be used in estimating the number of false discoveries.

Specifically, the knockoff filter is able to estimate the number of false discoveries

at the threshold t > 0 because # {j : βj = 0,Wj ≤ −t} has the same distribution

as # {j : βj = 0,Wj ≥ t} over repeated sampling of Y |X (See Lemma 1 in Barber

and Candès (2015) for details). The distribution of # {j : βj = 0,Wj ≤ −t} does

not depend on Ũ because the elements of
[
X X̃

]ᵀ
Y corresponding to βj = 0 follow

Gaussian distributions whose parameters are elements of G (See Lemmas 2 and 3 in

Barber and Candès (2015)).

While G does not depend on Ũ, the cross products
[
X X̃

]ᵀ
Y do vary as a function

of Ũ. Using the notation A = I−Σ−1S, we can write

[
X X̃

]ᵀ
Y =

 XᵀY

AᵀXᵀY + CᵀŨᵀε

 (3.2)

=

 Σβ + Xᵀε

(Σ− S)β + ((I− SΣ−1)Xᵀ + CᵀŨᵀ)ε

 . (3.3)

For any fixed X, we have that
[
X X̃

]ᵀ
Y is multivariate Gaussian and

Cov
(
CᵀŨᵀε,XᵀY |X

)
= Cov

(
CᵀŨᵀε,XᵀXβ + AᵀXᵀε |X

)
(3.4)

= σ2CᵀŨᵀXA = 0 (3.5)
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Thus,

[
X X̃

]ᵀ
Y

distr.
=

 XᵀY

AᵀXᵀY + z

 (3.6)

where z ∼ N(0p, σ
2CᵀC) is a Gaussian random vector generated independently of

XᵀY. Based on (3.3) or (3.6), one observes that for any fixed (X,Y), the importance

statistics vary as a function of Ũ through only the cross products
[
X X̃

]ᵀ
Y. In

addition, (3.6) shows that the distribution of
[
X X̃

]ᵀ
Y, given X, is the same for any

Ũ. Whether the cross products are generated by sampling z in (3.6) or by calculating

Ũ in Algorithm III.1, the importance statistics W are random for any fixed (X,Y).

This discussion shows how the ability of the knockoff filter to control the FDR by

estimating the number of false discoveries at a given threshold t > 0 is not affected

by randomness in W, for fixed (X,Y), due to the computation of
[
X X̃

]ᵀ
Y via Ũ

or (3.6). But since
[
X X̃

]ᵀ
Y is random, even for fixed (X,Y), this means that the

knockoff filter outputs a random set of selected variables for any fixed dataset.

This chapter focuses on instability in the knockoff filter based on the computation

of Ũ in Algorithm III.1. Another strategy for stabilizing the knockoff filter, not

pursued in this thesis, is to focus on the distribution of the cross products in (3.6).

Before illustrating empirically instability in the knockoff filter due to the construction

of Ũ, I will review specific numerical algorithms for computing Ũ.

In words, Ũ consists of p orthonormal vectors from the left null space of X. This

means that Ũ is an element of the Stiefel manifold, the set of n× p matrices U with

p ≤ n and UᵀU = I. In the knockoff filter, Ũ is an element of the Stiefel manifold

with the additional restriction that ŨᵀX = 0. Four possible methods of computing

Ũ are provided in III.2, III.3, III.4 and III.5.
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In Algorithm III.2, Ũ is equal to Q0 in the QR decomposition

[X 0n×p] = [Qx Q0] R, (3.7)

where [X 0n×p] is the n× 2p column-wise concatenation of X and an n× p matrix of

zeroes. With Ũ = Q0, we have ŨᵀŨ = I by definition of the QR decomposition, and

ŨᵀX = 0 because Qᵀ
x

Qᵀ
0

[ X 0

]
=

 Qᵀ
xX Qᵀ

x0

Qᵀ
0X Qᵀ

00

 =

 Qᵀ
xX 0

Qᵀ
0X 0

 = R, (3.8)

and R is upper triangular. This algorithm is deterministic in that for a fixed X,

a given numerical algorithm for the QR decomposition will return the same result

when repeatedly computing (3.7). However, since [X 0] does not have full rank, its

QR decomposition is not unique, so this algorithm provides a deterministic, but still

arbitrary, choice of Ũ. In contrast, Algorithms III.3–III.5 compute Ũ as a function

of a randomly generated Gaussian matrix. Algorithm III.3 projects a random n × p

Gaussian matrix away from the columns of X and then orthogonalizes the result.

Algorithm III.4 performs the same computation as Algorithm III.2 and then rotates

the result based on the QR decomposition of a random p×p Gaussian matrix. Finally,

Algorithm III.5 draws a sample from the uniform distribution on the Stiefel manifold

(Chikuse 2012, Theorem 2.2.1) before projecting away from X and orthogonalizing.

Algorithm III.2 Compute a deterministic Ũ

Require: n× p design matrix, X
1: Perform the QR decomposition [X 0n×p] = [Qx Q0] R
2: Ũ← Q0

Instability in the knockoff filter, that is, substantial variation in the set of selected

variables, can be illustrated by fixing the design matrix and response vector and

repeatedly applying the knockoff filter. The following simulation results fix X and Y
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Algorithm III.3 Compute random Ũ, method 1

Require: n× p design matrix, X
1: Generate Zn×p with i.i.d. N(0, 1) entries.
2: Perform the QR decomposition X = QxRx

3: Ũ(0) ← (I−QxQ
ᵀ
x)Z

4: Perform the QR decomposition Ũ(0) = QuRu

5: Ũ← Qu.

Algorithm III.4 Compute a random Ũ, method 2

Require: n× p design matrix, X
1: Generate Zp×p with i.i.d. N(0, 1) entries.
2: Perform the QR decomposition Z = QzRz

3: Perform the QR decomposition [X 0n×p] = [Qx Q0] R
4: Ũ← Q0Qz

Algorithm III.5 Compute a random Ũ, method 3

Require: n× p design matrix, X
1: Generate Zn×p with i.i.d. N(0, 1) entries.
2: U0 ← Z(ZᵀZ)−1/2

3: Perform the QR decomposition X = QxRx

4: Perform the QR decomposition (I−QxQ
ᵀ
x)U0 = QuRu

5: Ũ← Qu

53



and illustrate how the arbitrary choice of Ũ leads to substantial variation in the set

of variables selected by the knockoff filter. With n = 5000, p = 100, a single design

matrix X was generated with mean-zero Gaussian rows. Given X, a single response

vector Y was drawn from Y = Xβ + ε where ε ∼ N(0, I) and β had k = 10 nonzero

elements, all of which had magnitude |βj| = 3.5 or |βj| = 4.0. In these simulations,

X and Y are fixed and the knockoff filter is performed repeatedly. Since X and Y

were fixed, W1, . . . ,Wp, and therefore the set of selected variables, changed in each

simulation replicate due only to the changing value of Ũ in Algorithm III.1.

The third and fourth columns in Figure 3.3 display the distribution of the number

of selected variables, for fixed (X,Y), over repeated generation of Ũ using Algo-

rithms III.3 and III.5. These histograms illustrate that repeated application of the

knockoff filter to a single dataset can lead to wide variation in the resulting infer-

ences (selected variable sets) due to the chosen value of Ũ. This variation exists

across choices of importance statistics, although the specific degree of instability may

depend on the chosen statistic (e.g. lasso coefficients or simple cross products). Fig-

ure 3.4 displays the frequency with which each null and non-null variable was selected

across the 200 simulation replicates. Using a variable selection method without any

indeterminacy for a fixed (X,Y), the set of selected variables would be exactly the

same in each trial. Instead, when the effect magnitude is 4, (|βj| = 4 for all non-

null j), most of the non-null variables are selected approximately 40–50 percent of

the time using Algorithms III.3 and III.5 to generate Ũ in the knockoff filter. Some

of the null variables are selected about 25 percent of the time. Figures 3.5 and 3.6

display similar histograms and variable-specific selection probabilities for a fixed de-

sign matrix whose rows were drawn from a Gaussian distribution with autoregressive

covariance (population correlation 0.4). In this more challenging regression setting,

similar within-dataset variation due to Ũ is observed. The knockoff filter controls

the FDR on average across sampling of Y |X, but in a given (X,Y) sample, one can
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obtain an “unlucky” set of knockoffs due to the arbitrary choice of Ũ and detect very

few signals.

Figures 3.7–3.10 present similar simulation results, for fixed (X,Y), but with

k = 50 nonzero βj. In this non-sparse setting, many more features are selected,

and the proportion of the time the non-null features are selected approaches one

with stronger effect magnitude, uncorrelated features, and lasso importance statistics.

However, there is still wide variation in the number of selected features and in the

proportion of the time in which each null variable is selected, especially with correlated

features (Figure 3.10). Figures 3.11–3.14 display similar results for p = 1000 and

n = 3000 with k = 30 nonzero βj. In this large-p, sparse setting, we can still observe

wide variation in the probability of selecting a given variable and in the number of

selected variables. In all of these simulations, we can also notice greater power to

detect signals using the lasso importance statistics, and no difference in instability

between Algorithms III.3 and III.5.

These simulated results show that repeatedly applying the knockoff filter to a

single dataset can lead to wide variation in the set of selected variables, with an

unknown probability that a given variable will be selected. That is, due only to

randomness in the (arbitrary) choice of Ũ, the probability of selecting a given non-

null variable is not equal to one or zero, as it would be with a deterministic procedure

such as Benjamini-Hochberg. In its basic form, the knockoff filter requires us to

choose a single, arbitrary Ũ in order to control the FDR across repeated sampling

of Y given X. However, the desire to control FDR also suggests a desire to produce

reliable or reproducible inferences, and this additional source of variation means that

two analyses of the same data set using the knockoff filter can lead to very different

conclusions.

The goal of this chapter is to maintain the average behavior of the knockoff filter,

which controls FDR across sampling of Y |X, while reducing variance in the set of
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selected variables. Secondarily, the potential to improve statistical power by reducing

this source of variation will be explored. Specifically, the variation across repeated

applications of the knockoff filter in the set of selected variables could provide addi-

tional information about which variables are likely to be null or non-null. Presumably,

variables which appear more often in the selected sets, across repeated generation of

Ũ, are more likely to be non-null variables.

Before developing the stabilized knockoff filter, described in the following section,

I also explored whether it is possible to choose a single Ũ for use in the knockoff filter

in order to reduce variation in the selected variable set. These approaches included a

deterministic (but arbitrary) computation of Ũ (see Appendix A.1); a validation set

approach in which a single Ũ is chosen to maximize the number of selected variables on

one half of the observations in (X,Y) (see Appendix A.2); and a choice of Ũ designed

to control the average geometric alignment between Y and a randomly computed Ũ

(see Appendix A.3). These approaches either did not reduce variation in the set of

selected variables or reduced statistical power to near zero.
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3.4 Stabilized knockoff filter

The previous section described how the knockoff filter selects a random set of

variables with non-negligible variation even for a fixed dataset (X,Y). This random-

ness does not affect FDR control in the knockoff filter because the distribution of

the importance statistics, conditional on X, does not depend on the arbitrary com-

putation of Ũ in Algorithm III.1. The stabilized knockoff filter developed in this

section takes advantage of the variation in the importance statistics across repeated

applications of the knockoff filter in order to stabilize an estimated FDR-controlling

threshold and to determine a consensus set of variable selections. Specifically, for

fixed (X,Y), the stabilized knockoff filter generates Ũb, b = 1, . . . , B using Algorithm

III.3, III.4 or III.5. For each Ũb, we compute the corresponding matrix of knockoffs,

X̃b = X(I−Σ−1S) + ŨbC, and the corresponding vector of importance statists, Wb,

as a function of
[
X X̃b

]ᵀ [
X X̃b

]
and

[
X X̃b

]ᵀ
Y. The collection W1, . . . ,WB is used

to compute a stabilized FDR-controlling threshold and to output a set of variables j

whose corresponding importance statistics Wj are estimated to exceed this threshold

with high probability.

Before describing the stabilized knockoff procedure in greater detail, it is worth

noting that simply averaging many Ũ or X̃ matrices for a single (X,Y), and then con-

tinuing with the knockoff filter as usual, will lead to a loss of FDR control. Similarly,

averaging several vectors of importance statistics, each based on a distinct Ũ, also

leads to a loss of FDR control. In addition, the multi-knockoff procedure (Roquero

Gimenez and Zou 2018), developed for the model-X knockoff filter, cannot be di-

rectly applied in this fixed-X setting. For example, one fails to control the FDR by

generating X̃1, . . . , X̃k from a set of k corresponding randomly generated Ũ1, . . . , Ũk

and then separately fitting each 2p-dimensional regression in order to perform the

multi-knockoff filter. This is likely because the multi-knockoff exchangeability results

in Roquero Gimenez and Zou (2018) are not satisfied by
[
X, X̃1, . . . , X̃k

]
. It may be
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possible to define a fixed-X construction for X̃ which leads to an analog of the Gaus-

sian multi-knockoffs in Roquero Gimenez and Zou (2018) by constructing X̃1, . . . , X̃k

so that the (p+ pk)× (p+ pk) Gram matrix
[
X X̃1 . . . X̃k

]ᵀ [
X X̃1 . . . X̃k

]
has the

following form:



Σ Σ− S · · · Σ− S

Σ− S
. . .

...

Σ− S · · · Σ


(3.9)

This potential extension of the multi-knockoff filter to the fixed-X setting is not

explored in this thesis.

The remainder of this chapter details the stabilized knockoff filter, which in sim-

ulation studies is shown to reduce variance in the set of selected variables and to

improve statistical power in some settings. This stabilized knockoff filter involves two

components: a stabilized threshold for the importance statistics and a stabilized set

of selected variables given that threshold. This section adopts some of the notation

and modeling ideas from Genovese and Wasserman (2004).

3.4.1 Stabilized FDR-controlling threshold

In Algorithm III.1, a single vector of importance statistics (W1, . . . ,Wp) is used to

estimate the FDR, find a threshold T whose estimated FDR is below the nominal level

q, and to select all variables j where Wj ≥ T . As described previously, W1, . . . ,Wp

will vary as a function of Ũ for fixed (X,Y). So repeated sampling of Ũ for a fixed

dataset will lead to a different estimated FDR-controlling thresholds and different sets

of selected variables. The proposed stabilized threshold for the knockoff filter takes

advantage of this variation in W1, . . . ,Wp across repeated sampling of Ũ to compute

a low-variance threshold for the importance statistics.
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For each variable j = 1, . . . , p, let Hj = I [βj 6= 0] be an indicator that the variable

is a true signal. For a fixed threshold t > 0 and importance statistics W1, . . . ,Wp,

the knockoff filter selects variable j if Wj ≥ t. So the FDR at threshold t is

FDR(t) = E

( ∑
j I [Wj ≥ t] (1−Hj)∑

j I [Wj ≥ t] + I [all Wj < t]
|X

)
. (3.10)

For a given (X,Y) sample, and a fixed value of Ũ, the knockoff filter uses

F̂DPKO(t) =

∑
j I [Wj ≤ −t]∑

j I [Wj ≥ t] + I [all Wj < t]
(3.11)

to estimate the FDP at threshold t. The knockoff filter threshold for the importance

statistics is the smallest t such that F̂DPKO(t) is less than or equal to q, the desired

FDR. The first step toward stabilizing this threshold is to use an alternative estimate

for the FDR instead of (3.11) when computing a threshold Specifically, a conservative

estimate (i.e. an upper bound) of the FDR is obtained as follows:

FDR(t) = E

( ∑
j I [Wj ≥ t] (1−Hj)∑

j I [Wj ≥ t] + I [all Wj ≤ t]
|X

)
(3.12)

≈
E
(∑

j I [Wj ≤ −t] (1−Hj) |X
)

E
(∑

j I [Wj ≥ t] |X
)

+ P (all Wj ≤ t |X)
(3.13)

≤
E
(∑

j I [Wj ≤ −t] (1−Hj) |X
)

E
(∑

j I [Wj ≥ t] |X
) (3.14)

≤
E
(∑

j I [Wj ≤ −t] |X
)

E
(∑

j I [Wj ≥ t] |X
) =

∑
j P (Wj ≤ −t |X)∑
j P (Wj ≥ t |X)

(3.15)

The first approximation is a result of computing the expectation of the numerator

and denominator separately and applying the knockoff property that # {j : Wj ≤ −t}

estimates the number of false discoveries at threshold t. The final upper bound,

(3.15), is obtained by noticing that Hj is either zero or one and P (all Wj ≤ t |X) is
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nonnegative, where

P (all Wj ≤ t |X) := P (W1 ≤ t,W2 ≤ t, . . . ,Wp ≤ t |X) .

A stabilized threshold is found by using repeated samples of Ũ to create a set of

pseudo-samples of W1, . . . ,Wp, which are then used to estimate (3.15). This stabi-

lized estimate of an upper bound on the FDR is then used in place of F̂DPKO(t) when

choosing a threshold to control the FDR. To obtain an estimate of (3.15), generate

Ũ1, . . . , ŨB using Algorithm III.3, III.4, or Algorithm III.5 and compute the corre-

sponding vectors of importance statistics W1, . . . ,WB. Let Wjb be the importance

statistic for the jth variable computed using Ũb. Define

P̂B (Wj ≥ t) :=
1

B

B∑
b=1

I [Wjb ≥ t] . (3.16)

Given W1b, . . . ,Wpb, b = 1, . . . , B an estimate of (3.15) is

∑
j P (Wj ≤ −t |X)∑
j P (Wj ≥ t |X)

≈
∑

j P̂B (Wj ≤ −t)∑
j P̂B (Wj ≥ t)

=
1
B

∑B
b=1

∑
j I [Wjb ≤ −t]

1
B

∑B
b=1

∑
j I [Wjb ≥ t]

(3.17)

:= F̂DRB(t). (3.18)

The stabilized threshold T is then

T : = min
{
t : F̂DRB(t) ≤ q

}
. (3.19)

Figure 3.15 displays F̂DPKO(t), F̂DRB(t) and FDR(t) for four fixed (X,Y) pairs

generated from the model Y = Xβ+ε using the difference in lasso coefficient magni-

tudes as importance statistics. For either F̂DPKO(t) or F̂DRB(t), a selection threshold

is chosen by finding the intersection of each curve with a horizontal line at the desired

FDR (e.g. 0.1 or 0.2). The threshold T is stabilized to the extent that F̂DRB(t), its
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corresponding estimate of the FDR, is less variable than F̂DPKO(t). These examples

suggest that F̂DRB(t) is a smooth version of the individual F̂DPKO(t) computed from

a single vector of importance statistics (based on a single Ũ).

Figure 3.16 compares the mean and pointwise variance of F̂DRB(t) and F̂DPKO(t)

to
∑
j P(Wj≤−t|X)∑
j P(Wj≥t|X)

and FDR(t). These were computed from 200 samples of (X,Y) with

X having mean-zero Gaussian rows and Y = Xβ + ε, ε ∼ N(0, I). Figure 3.16

illustrates that

FDR(t) ≤ E
(

F̂DRB(t)
)
≈ E

(
F̂DPKO(t)

)
≈
∑

j P (Wj ≤ −t |X)∑
j P (Wj ≥ t |X)

, (3.20)

and that F̂DRB(t) has lower variance, across repeated sampling of (X,Y), than

F̂DPKO(t). These two properties allow F̂DRB(t) to be used as an FDR estimate

which leads to a stabilized threshold for the importance statistics. First, the quantity∑
j P(Wj≤−t|X)∑
j P(Wj≥t|X)

is an approximate upper bound for the true FDR, and E
(

F̂DRB(t)
)

is

approximately equal to this upper bound. Second, F̂DRB(t) has lower variance than

F̂DPKO(t), meaning that a threshold derived from F̂DRB(t) will have lower variance

than a threshold derived from F̂DPKO(t).

Averaged over datasets, F̂DPKO(t) and F̂DRB(t) provide conservative estimates

of the true FDR and hence can be used to find an FDR-controlling threshold for

the importance statistics. These empirical results suggest that F̂DRB(t) has the

same population mean as F̂DPKO(t) but has lower variance. Both F̂DPKO(t) and

F̂DRB(t) can be thought of as estimates of
∑
j P(Wj≤−t|X)∑
j P(Wj≥t|X)

. Given a single Wj for

each variable, F̂DPKO(t) estimates the marginal probability P (Wj ≤ −t |X) with an

indicator function, while F̂DRB(t) those marginal probabilities using the empirical

distribution function of the B pseudo-samples Wj1, . . . ,WjB.
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3.4.2 Stabilized variable selection

Given a threshold t > 0, the knockoff filter selects all variables j where Wj ≥ t.

This selection is based on the single vector W computed using a single matrix of

knockoffs. As in the construction of a stabilized threshold, here I propose a way of

stabilizing the set of selected variables at a fixed threshold t by taking advantage of

variation in W across repeated sampling of Ũ.

Suppose that, based on (3.15), the threshold t > 0 controls the FDR. That is, we

have ∑
j P (Wj ≤ −t |X)∑
j P (Wj ≥ t |X)

≤ q.

In this case,
∑

j P (Wj ≥ t |X), the expected number of selections at the threshold

t, is calibrated to control the FDR. In a single application of the knockoff filter,

the number of selected variables is
∑

j I [Wj ≥ t]. If we could reduce the variance of∑
j I [Wj ≥ t], without changing its expected value, the number of selected variables

would be stabilized without losing FDR control.

The proposed stabilized variable selection is based on two separate steps: fixing k̂,

the number of selected variables, to be equal to an estimate of the expected number

of selections at the FDR-controlling threshold t; and then identifying the k̂ variables

to be selected in order to maximize power.

The first step is to estimate

V (t) := E

(∑
j

I [Wj ≥ t] |X

)
=
∑
j

P (Wj ≥ t |X) , (3.21)

the expected number of selections at the threshold t. As with the stabilized threshold,

the marginal probabilities P (Wj ≥ t |X) are estimated using the B pseudo-samples

Wj1, . . . ,WjB, where each Wjb is computed from a different sample of Ũb. This
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provides the following estimate for V (t):

V̂B(t) : =
1

B

∑
b

∑
j

I [Wjb ≥ t] (3.22)

In the ideal case in which V (t) were known, we could select exactly V (t) variables in

every sample. Since we have already stipulated that t is an FDR-controlling thresh-

old, selecting V (t) variables with probability one would maintain FDR control while

reducing the variance of the number of selected variables to zero. If V̂B(t) is a good

estimate of V (t), then we can potentially obtain significant reductions in the variance

of the number of selected variables simply by increasing B, the number of samples

of Ũ. This should maintain FDR control, since we are not changing the expected

number of selections at a given threshold, and reduce variance.

Once the number of variables to be selected is fixed at V̂B(t), the V̂B(t) variables

must be chosen among X1, . . . ,Xp, the columns of X. Suppose we had access to

independent, identically distributed W1,W2, . . . based on repeated sampling from

Y | X. Additionally, suppose that t > 0 satisfies (3.15) and V (t) is known. How

can we select V (t) variables to maximize power? Consider again Hj = I [βj 6= 0] and

suppose there are prior probabilities (or frequencies of non-null and null variables)

P (Hj = 1) = π1 and P (Hj = 0) = π0. We obtain high power to detect true signals

when selecting variable j based on I [Wj ≥ t] indicates Hj = 1 with high probability.

In other words, when

P (Hj = 1 |Wj ≥ t,X) (3.23)

is close to one, the variable selection rule has high power. Maximizing this posterior
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probability leads to

arg max
j

P (Hj = 1 |Wj ≥ t,X) = arg max
j

(1− P (Hj = 0 |Wj ≥ t,X)), (3.24)

P (Hj = 0 |Wj ≥ t,X) =
P (Wj ≥ t |Hj = 0,X)P (Hj = 0)

P (Wj ≥ t |X)
. (3.25)

Suppose that π0 = P (Hj = 0) does not depend on j (or simply that there is a fixed

fraction of nulls) and that the distribution of Wj is the same for the null j, i.e. that

P (Wj ≥ t |Hj = 0,X) does not depend on j. Then

arg max
j

P (Hj = 1 |Wj ≥ t,X) = arg min
j

P (Wj ≥ t |Hj = 0,X)P (Hj = 0)

P (Wj ≥ t |X)
(3.26)

= arg min
j

1

P (Wj ≥ t |X)
(3.27)

= arg max
j

P (Wj ≥ t |X) . (3.28)

This argument suggests that, for a fixed number of variables to be selected, we should

select those variables with the largest values of P (Wj ≥ t |X). An analogy can

be made here with the empirical Bayes interpretation of FDR and the Benjamini-

Hochberg procedure (Efron 2010, Ch. 4). The probability P (Hj = 0 |Wj ≥ t,X) is

called the Bayes false discovery rate in Efron (2010), Here, the Wj are analogous to

the z statistics or P -values in the Benjamini-Hochberg procedure. Given V (t), the

fixed number of variables to be selected at threshold t, selecting variables based on

(3.26)–(3.28) is equivalent to selecting variables with minimum posterior probability

of being null, assuming that the test statistics Wj have the same marginal distribution

when βj = 0 (i.e. when the null hypothesis is true). ‘

The stabilized knockoff filter uses the estimate V̂B(t) as the fixed number of vari-

ables to be selected, and the marginal probabilities P (Wj ≥ t |X) are again estimated
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using P̂B (Wj ≥ t). Let τ1, . . . , τp be the permutation of 1, . . . , p so that

P̂B (Wτ1 ≥ t) ≥ P̂B (Wτ2 ≥ t) ≥ · · · ≥ P̂B
(
Wτp ≥ t

)
, (3.29)

where, as before, P̂B (Wj ≥ t) = 1
B

∑B
b=1 I [Wjb ≥ t]. Then the final variable selec-

tions are the first V̂B(t) elements of τ1, . . . , τp (where V̂B(t) is rounded to the nearest

integer).

The stabilized knockoff filter consists of combining the stabilized threshold T

(Section 3.4.1, equation (3.19)) with the stabilized selection procedure outlined above.

That is, we select V̂B(T ) variables, an estimate of the expected number of selections

at the stabilized threshold T . The V̂B(T ) variables selected are those with the largest

values of P̂B
(
Wj ≥ T

)
. This stabilized knockoff filter is summarized in Algorithm

III.6.

Algorithm III.6 Stabilized knockoff filter

Require: X,Y, integer B, nominal FDR q ∈ (0, 1)
1: Compute Ũ1, . . . , ŨB from B repetitions of Algorithm III.3, III.4, or III.5.
2: Compute knockoffs X̃1, . . . X̃B and importance statistics W1, . . . ,WB based on

Ũ1, . . . , ŨB via steps 4–5 of Algorithm III.1.
3: Compute

T = min

{
t :

1
B

∑B
b=1

∑
j I [Wjb ≤ −t]

1
B

∑B
b=1

∑
j I [Wjb ≥ t]

≤ q

}
4: Compute V̂B(T ) = 1

B

∑
b

∑
j I
[
Wjb ≥ T

]
5: Define

P̂B (Wj ≥ t) :=
1

B

B∑
b=1

I [Wjb ≥ t]

and the permutation τ1, . . . , τp of 1, . . . , p so that P̂B
(
Wτ1 ≥ T

)
≥

P̂B
(
Wτ2 ≥ T

)
≥ · · · ≥ P̂B

(
Wτp ≥ T

)
6: Output τ1, . . . , τround(V̂B(T ))
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3.5 Simulation Results

3.5.1 Comparison with knockoff filter

Performance of the stabilized knockoff filter was assessed using similar simulation

scenarios as in Barber and Candès (2015). Rows of the design matrix X were drawn

from a mean-zero multivariate Gaussian distribution with population covariance equal

to the identity (i.e. uncorrelated features) or an autoregressive covariance matrix with

(i, j)th entry equal to ρ|i−j|, i, j ∈ {1, . . . , p}. Given X, the response was generated

from Y = Xβ+ε with ε ∼ N(0, In). The k nonzero elements of β, all had magnitude

|βj| = 3.5 unless otherwise noted.

First, as in Section 3.3, we should examine whether the stabilized knockoff filter

reduces instability in the set of selected variables for a fixed (X,Y) pair. In Figures

3.3–3.14, it is shown that the stabilized knockoff filter can substantially reduce vari-

ation in the selected variables for a fixed (X,Y) dataset even with only B = 50 or

B = 100 pseudo-samples of W. In Figure 3.6, for example, with correlated features,

k = 10 truly non-null signals out of p = 100, and signal magnitude |βj| = 4, the

stabilized knockoff filter with lasso importance statistics selects nine out of ten of

these true signals in all of the simulation replicates; with the standard knockoff filter,

these true signals are selected in about 50 percent of the trials. Qualitatively similar

results are observed with k = 50 and p = 100, or p = 1000 and k = 30. In all of

these fixed-(X,Y) simulations, correlated features or weaker signal magnitude leads

to fewer selections using any method, but the stabilized knockoff filter outperforms

the standard knockoff filter—by selecting non-null variables in a larger proportion of

trials and reducing the variance in the number of selected variables—in all scenarios.

Average behavior of the stabilized knockoff filter and the standard knockoff filter,

over repeated sampling of (X,Y), is displayed in Figures 3.17–3.28. The knockoff+

and knockoff filter are displayed separately; recall that the knockoff+ threshold (see
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Algorithm III.1) controls the FDR while the standard knockoff threshold controls an

approximate FDR. In the p = 100 and p = 1000 simulation settings, the nominal

FDR was set to q = 0.1 and q = 0.2, respectively. With B = 50 or B = 100, the

stabilized knockoff filter controls the FDR in all simulation scenarios, and reduces the

standard deviation in the number of selected variables by a factor of two or three in

some scenarios. In nearly all simulation scenarios, the power of the stabilized knockoff

filter is at least as large as that of the knockoff filter. In many simulation scenarios,

it is necessary to use the knockoff+ threshold to control the FDR with the knockoff

filter, but this threshold leads to very low power. The stabilized knockoff filter has

at least as much power as the knockoff filter with its standard threshold, but this

standard threshold often fails to control the FDR. Thus, the stabilized knockoff filter

can provide similar statistical power as the knockoff filter with its standard threshold

while controlling the FDR and reducing the standard deviation in the number of

selected variables.

In the n = 5000, p = 100 setting with k = 10 non-null variables, the stabilized

knockoff filter has at least twice as much power as the knockoff filter with the knock-

off+ threshold with a small or moderate degree of feature correlation (Figure 3.17). In

this setting, the knockoff filter with the standard threshold, shown in Figure 3.18, has

similar power to the stabilized knockoff filter but with an FDR of about 0.15 (com-

pared to a nominal rate of q = 0.1). As the number of non-null variables increases

from k = 10, the power of the knockoff filter with knockoff+ threshold approaches

that of the stabilized knockoff filter (Figure 3.19). With uncorrelated features, the

stabilized knockoff filter has substantially larger power than the knockoff+ thresh-

old at all signal magnitudes, while the standard knockoff filter again has comparable

power to the stabilized knockoff filter but fails to control the FDR at the nominal

level (Figures 3.21 and 3.22). In many situations, the knockoff filter and the sta-

bilized knockoff filter have a similar average number of selected variables; however,

67



the standard deviation in the number of selected variables for the stabilized knockoff

filter is always smaller than that of the standard knockoff filter, and is often smaller

by a factor of two or three.

In the p = 1000, n = 3000 simulation scenarios (Figures 3.23–3.28), the stabilized

knockoff filter with B = 50 or B = 100 again controls the FDR for any degree of

feature correlation, signal magnitude, or sparsity. The stabilized knockoff filter does

not improve on the power of the standard knockoff threshold as much as it did when

p = 100, but the standard deviation in the number of selected features is again smaller

than that of the standard knockoff filter across all simulation scenarios. For example,

in Figure 3.23, the standard deviation is reduced by approximately one half compared

to the knockoff+ threshold when feature correlation is smaller than about 0.5. The

stabilized knockoff filter compares favorably with the knockoff+ threshold, in that it

also controls the FDR but has similar power to the standard knockoff threshold while

substantially reducing variation in the number of selected variables.

These simulation studies were also performed for two fixed design matrices while

drawing samples from the distribution of Y |X. Figures 3.29–3.35 present the FDR,

power and mean and standard deviation of the number of selected variables for the p =

100, n = 5000 and p = 1000, n = 3000 settings for two fixed design matrices in each

setting. These results are similar to the results averaged over draws of (X,Y), with

FDR control across a range of feature correlations and sparsity levels, and substantial

reductions in the standard deviation of the number of selected variables using the

stabilized knockoff filter.

3.5.2 Comparison with other multiple testing procedures

These simulation studies were also used to compare the performance of the knock-

off filter and stabilized knockoff filter to alternative multiple testing procedures in

the context of linear regression. Specifically, P -values from the Wald tests in ordi-
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nary least squares were corrected for multiple testing using either the Bonferroni or

Benjamini-Hochberg (BH) procedures. The Bonferroni correction controls the fami-

lywise error rate (FWER), the probability of one or more false discoveries. Note that

any FWER-controlling procedure also controls the FDR.

With p = 100, n = 5000, and k = 10 truly non-null variables, the stabilized

knockoff filter achieves FDR control at all levels of feature correlation (Figure 3.37)

and has higher power than the knockoff+ threshold, Bonferroni-corrected P -values

or BH-corrected P -values. The knockoff threshold has FDR of approximately 0.15,

which is greater than the nominal level of q = 0.1. The knockoff+ threshold controls

the FDR at q = 0.1 but has lower power than Bonferroni-corrected or BH-corrected

P -values as well as the stabilized knockoff filter. Furthermore, the standard deviation

in the number of selected variables for the stabilized knockoff filter is approximately

half as large as that of the knockoff filter with the knockoff or knockoff+ thresholds.

With p = 1000 or greater number of non-null variables, selecting variables with

Bonferroni-corrected P -values has lower statistical power than either the knockoff+

threshold or standard knockoff threshold. Using BH-corrected P -values leads to power

and a degree of variation in the number of selected variables comparable to those of

the stabilized knockoff filter when p = 100. When p = 1000 (Figures 3.40–3.42), the

stabilized knockoff filter has slightly higher power than BH-corrected P -values for any

degree of feature correlation, sparsity, or signal magnitude. However, BH-corrected

P -values have a similarly low standard deviation in the number of selected variables

as the stabilized knockoff filter.

3.6 Discussion

The stabilized knockoff filter reduces variance in two ways: by stabilizing the

threshold used to screen the per-variable importance statistics and by stabilizing

the set of selected variables at a given threshold. This is possible because for any
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fixed dataset there is no unique vector importance statistics used to screen variables.

Instead, there is one vector of importance statistics per arbitrary choice of Ũ, the

n× p matrix used to construct knockoff variables to achieve a particular correlation

structure across the 2p original and knockoff variables. This collection of importance

statistics is used to compute a low-variance estimate of the FDR and hence a low-

variance threshold at which the FDR is controlled. Given a fixed FDR-controlling

threshold for the importance statistics a stabilized set of variable selections is obtained

by selecting a number of variables equal to a low-variance estimate of the mean

number of selections at that threshold. The expected number of selections at that

threshold is calibrated (controls the FDR) since the threshold was chosen to control

the FDR. Finally, for a fixed number of selections at a fixed threshold, the variables

can be ranked according to the per-variable evidence against the null hypothesis,

namely an estimate of P (Wj ≥ t |X) for each j.

Based on empirical study of the Gaussian linear model, (Y = Xβ + ε with ε ∼

N(0, σ2I)) for which the original knockoff filter of Barber and Candès (2015) is proven

to control the FDR in finite samples, this stabilized knockoff filter seems to control

the FDR with B = 50 or B = 100 pseudo-samples of the importance statistics.

However, I have not presented any formal argument that the empirical distribution

of the pseudo-samples of (W1, . . .Wp) generated from a set of distinct Ũ do, in fact,

estimate the true marginal distributions Wj | X. Further study of the distribution

of Wj (with fixed X and Y) as a function of the random matrix Ũ (in Algorithms

III.3–III.5) is required to understand the distribution of the pseudo-samples of Wj

based on repeated sampling of Ũ.

Recall that FDR control for the knockoff filter was proved in Barber and Candès

(2015) only for the knockoff+ threshold,

T+ = min
j

{
t = |Wj| :

1 + # {k : Wk ≤ −t}
max {1,# {k : Wk ≥ t}}

≤ q

}
,
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which estimates the FDP using

1 + # {k : Wk ≤ −t}
max {1,# {k : Wk ≥ t}}

.

The additional 1 in the numerator of this FDP estimate is necessary in order to prove

FDR control in Barber and Candès (2015), and the empirical results in Section 3.5

suggest that this adjustment is required to control the FDR in practical regression

scenarios. However, the knockoff+ threshold often has reduced power compared to

the standard knockoff threshold, especially in moderate-p settings, but the standard

knockoff threshold does not always control the FDR. In the stabilized knockoff filter,

the approximate upper bound for the FDR given in equation (3.15) does not include

a similar adjustment as in the knockoff+ threshold. The simulation results in Section

3.5 suggest that the stabilized knockoff filter enjoys similar power to the standard

knockoff threshold while maintaining control of the FDR. Additional work could ex-

plore whether the stabilized knockoff filter enjoys theoretical control of the FDR even

without the knockoff+ adjustment required to control FDR with the knockoff filter.

An alternative approach to stabilizing the knockoff filter is to choose a single Ũ

that stabilizes the computed importance statistics and the set of selected variables.

Three such methods for computing Ũ are described in Appendix A, but none of these

methods are shown to reduce variation in the knockoff variable selections to the extent

possible with the stabilized knockoff filter. Future work on stabilizing Ũ directly

could focus on computing the empirical average of a collection of Ũ on the Stiefel

manifold to which each Ũ belongs (Kaneko, Fiori, and Tanaka 2012). Additionally,

the characterization of the cross products
[
X X̃

]ᵀ
Y in (3.6) could suggest alternative

methods of performing the knockoff filter without actually constructing the matrix

X̃: the importance statistics could be computed from the augmented Gram matrix

and samples of the cross products based on (3.6). A sampling procedure for the
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cross products based on (3.6) could be modified to reduce variance in the importance

statistics.

The stabilized knockoff filter may be especially useful in moderate-p, low-signal

scenarios such as those presented in Figures 3.17 and 3.18, in which the knockoff filter

achieves power similar to that of the stabilized knockoff filter only when the FDR is

not controlled at the nominal level (Figure 3.17).
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Figure 3.1:
Example of knockoff instability for fixed (X,Y). Data generated from
Y = Xβ + ε with n = 5000 and p = 100. Left panel displays the
number of times each variable was selected out of 500 repetitions of Step
3 in Algorithm III.1 (excluding null variables that were never selected)
and the right panel displays the distribution of the number of variables
selected over these trials. Red triangles indicate truly non-null variables.
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Figure 3.2:
Number of selected variables, knockoff filter vs. Benjamini-Hochberg,
with fixed X. Data generated from Y | X, where Y = Xβ + ε with
n = 5000 and p = 100. Benjamini-Hochberg selection performed with
least squares coefficient P -values.
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Figure 3.3:
Number of selected variables for fixed X,Y with n = 5000, p = 100.
Based on 200 knockoff filter replicates, uncorrelated features, and k = 10
nonzero βj.
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Figure 3.4:
Variable-specific selection probability for fixed X,Y with n = 5000, p =
100. Based on 200 knockoff filter replicates, uncorrelated features, and
k = 10 nonzero βj. Red triangles indicate truly non-null variables. Null
variables which were never selected are not displayed.
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Figure 3.5:
Number of selected variables for fixed X,Y with n = 5000, p = 100 and
correlated features. Based on 200 knockoff filter replicates, correlated
features (autoregressive with population correlation 0.4), and k = 10
nonzero βj.
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Figure 3.6:
Variable-specific selection probability for fixed X,Y with n = 5000, p =
100 and correlated features. Based on 200 knockoff filter replicates, corre-
lated features (autoregressive with population correlation 0.4), and k = 10
nonzero βj. Red triangles indicate truly non-null variables. Null variables
which were never selected are not displayed.
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Figure 3.7:
Number of selected variables for fixed X,Y with n = 5000, p = 100, and
k = 50 nonzero βj. Based on 200 knockoff filter replicates and uncorre-
lated features.
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Figure 3.8:
Variable-specific selection probability for fixed X,Y with n = 5000, p =
100, and k = 50 nonzero βj. Based on 200 knockoff filter replicates and
uncorrelated features. Red triangles indicate truly non-null variables.
Null variables which were never selected are not displayed.
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Figure 3.9:
Number of selected variables for fixed X,Y with n = 5000, p = 100,
k = 50 nonzero βj and correlated features. Based on 200 knockoff filter
replicates and autoregressive features with population correlation 0.4.
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Figure 3.10:
Variable-specific selection probability for fixed X,Y with n = 5000, p =
100, correlated features, and k = 50 nonzero βj. Based on 200 knockoff
filter replicates with autoregressive features (population correlation 0.4).
Red triangles indicate truly non-null variables. Null variables which were
never selected are not displayed.
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Figure 3.11:
Number of selected variables for fixed X,Y with n = 3000, p = 1000.
Based on 200 knockoff filter replicates, uncorrelated features, and k = 30
nonzero βj.
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Figure 3.12:
Variable-specific selection probability for fixed X,Y with n = 3000, p =
1000. Based on 200 knockoff filter replicates, uncorrelated features, and
k = 30 nonzero βj. Red triangles indicate truly non-null variables. Null
variables which were never selected are not displayed.
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Figure 3.13:
Number of selected variables for fixed X,Y with n = 3000, p = 1000
and correlated features. Based on 200 knockoff filter replicates, autore-
gressive features (population correlation 0.4) and k = 30 nonzero βj.
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Figure 3.14:
Variable-specific selection probability for fixed X,Y with n = 3000, p =
1000, and correlated features. Based on 200 knockoff filter replicates,
autoregressive features (population correlation 0.4), and k = 30 nonzero
βj. Red triangles indicate truly non-null variables. Null variables which
were never selected are not displayed.
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Figure 3.15:
Knockoff FDR estimates in four fixed (X,Y) samples. Green lines rep-

resent two examples of F̂DPKO(t) based on two different matrices of
knockoffs for a given, fixed design matrix.
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Figure 3.16:
Variability in knockoff FDR estimates. Dotted green lines and shaded

orange regions display the mean ± one standard deviation for F̂DPKO(t)

and F̂DRB(t), respectively, based on 200 simulation replicates. With
n = 5000, p = 100 and k = 10 variables βj with |βj| = 3.5.
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Figure 3.17:
Power and FDR of knockoff+ and stabilized knockoff filter as a function
of feature correlation with n = 5000, p = 100. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 500 simulated (X,Y).
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Figure 3.18:
Power and FDR of knockoff and stabilized knockoff as a function of
feature correlation with n = 5000, p = 100. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 500 simulated (X,Y).
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Figure 3.19:
Power and FDR of knockoff+ and stabilized knockoff as a function of
model sparsity with n = 5000, p = 100. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 500 simulated (X,Y).
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Figure 3.20:
Power and FDR of knockoff and stabilized knockoff as a function of
model sparsity with n = 5000, p = 100. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 500 simulated (X,Y).
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Figure 3.21:
Power and FDR of knockoff+ and stabilized knockoff as a function of
signal magnitude with n = 5000, p = 100. Right column displays the
mean and variance of the number of selected variables in a given sample.
There are k = 10 truly nonzero βj. Averaged over 500 simulated (X,Y).
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Figure 3.22:
Power and FDR of knockoff and stabilized knockoff as a function of signal
magnitude with n = 5000, p = 100. There are k = 10 truly nonzero βj.
Right column displays the mean and variance of the number of selected
variables in a given sample. Averaged over 500 simulated (X,Y).

93



●

●

●
●

● ●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●●●

●

●●●

●

●
●●

●

●
●

●

●
●
●●

●●
●
●

●●●●

●

●
●

●

●
●

●

●

●

●

●

●
●● ●

●●●
●
●
●

●
●●●

●●●
●

●

●
●●

●

●
●

●

●
●
●●

●●●●

●●●●

●
●

●

●
● ●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●●

●

●
●●

●

●
●
●

●

●
●
●

Power SD num. selected

FDR Mean num. selected

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
0

5

10

15

20

3

6

9

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

AR1 feature correlation

● ● ● ● ●Algorithm III.2 Algorithm III.3 Algorithm III.6, B=5 Algorithm III.6, B=50 Algorithm III.6, B=100

Knockoff+ vs. stabilized knockoff
N = 3000, p = 1000, 30 true nonnull variables
nominal FDR=0.2

Figure 3.23:
Power and FDR of knockoff+ and stabilized knockoff as a function of
feature correlation with n = 3000, p = 1000. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 200 simulated (X,Y).
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Figure 3.24:
Power and FDR of knockoff and stabilized knockoff as a function of
feature correlation with n = 3000, p = 1000. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 200 simulated (X,Y).
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Figure 3.25:
Power and FDR of knockoff+ and stabilized knockoff as a function of
model sparsity with n = 3000, p = 1000. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 200 simulated (X,Y).
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Figure 3.26:
Power and FDR of knockoff and stabilized knockoff as a function of
model sparsity with n = 3000, p = 1000. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 200 simulated (X,Y).
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Figure 3.27:
Power and FDR of knockoff+ and stabilized knockoff as a function of
signal magnitude with n = 3000, p = 1000. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 200 simulated (X,Y).
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Figure 3.28:
Power and FDR of knockoff and stabilized knockoff as a function of
signal magnitude with n = 3000, p = 1000. Right column displays the
mean and variance of the number of selected variables in a given sample.
Averaged over 200 simulated (X,Y).
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Figure 3.29:
Power and FDR of knockoff+ and stabilized knockoff as a function of
feature correlation with fixed X, n = 5000, and p = 100. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.
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Figure 3.30:
Power and FDR of knockoff and stabilized knockoff as a function of
feature correlation with fixed X, n = 5000, and p = 100. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.
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Figure 3.31:
Power and FDR of knockoff+ and stabilized knockoff as a function of
model sparsity with fixed X, n = 5000, and p = 100. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.
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Figure 3.32:
Power and FDR of knockoff and stabilized knockoff as a function of
model sparsity with fixed X, n = 5000, and p = 100. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.
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Figure 3.33:
Power and FDR of knockoff+ and stabilized knockoff as a function of
feature correlation with fixed X, n = 3000, and p = 1000. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.
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Figure 3.34:
Power and FDR of knockoff and stabilized knockoff as a function of
feature correlation with fixed X, n = 3000, and p = 1000. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.
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Figure 3.35:
Power and FDR of knockoff+ and stabilized knockoff as a function of
model sparsity with fixed X, n = 3000, and p = 1000. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.

106



●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●●●

●●●

●●● ●●●

●●●
●●●

●●

●●

●●●

●●●

●●●

●
●● ●●●

●
●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●
●●

●●●
●
●●

●
●●

●
●●

●
●●

●●

●
●

●
●●

●
●
●

●
●
●

●

●●

●●●

●
●

● ●●
●

●

●●

●

●
●

●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

1

FDR

1

Mean num. selected

1

Power

1

SD num. selected

0

FDR

0

Mean num. selected

0

Power

0

SD num. selected

50 100 150 50 100 150 50 100 150 50 100 150

50 100 150 50 100 150 50 100 150 50 100 150

5

10

15

20

5

10

15

20

0.4

0.5

0.6

0.7

0.8

0.5

0.6

0.7

0.8

0

50

100

150

200

0

50

100

150

200

0.10

0.15

0.20

0.10

0.15

0.20

True number of nonnull variables

● ● ●Algorithm III.3 Algorithm III.6, B=50 Algorithm III.6, B=100

Knockoff vs. stabilized knockoff
N = 3000, p = 1000
uncorrelated features, nominal FDR=0.2

Figure 3.36:
Power and FDR of knockoff and stabilized knockoff as a function of
model sparsity with fixed X, n = 3000, and p = 1000. Second and
fourth columns display the mean and variance of the number of selected
variables in a given sample. Each row of plots corresponds to a single,
fixed design matrix. Each point is an average over 200 replicates drawn
from the Y |X distribution.
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Figure 3.37:
Power and FDR of stabilized knockoff and BH or Bonferroni adjusted
OLS P -values as a function of feature correlation with p = 100, n = 5000.
Right column displays the mean and variance of the number of selected
variables in a given sample. Each point is an average of 500 simulation
replicates.
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Figure 3.38:
Power and FDR of stabilized knockoff and BH or Bonferroni adjusted
OLS P -values as a function of model sparsity with p = 100, n = 5000.
Right column displays the mean and variance of the number of selected
variables in a given sample. Each point is an average of 500 simulation
replicates.
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Figure 3.39:
Power and FDR of stabilized knockoff and BH or Bonferroni adjusted
OLS P -values as a function of signal magnitude with p = 100, n = 5000.
Right column displays the mean and variance of the number of selected
variables in a given sample. Each point is an average of 500 simulation
replicates.
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Figure 3.40:
Power and FDR of stabilized knockoff and BH or Bonferroni adjusted
OLS P -values as a function of feature correlation with p = 1000, n =
3000. Right column displays the mean and variance of the number of
selected variables in a given sample. Each point is an average of 200
simulation replicates.
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Figure 3.41:
Power and FDR of stabilized knockoff and BH or Bonferroni adjusted
OLS P -values as a function of model sparsity with p = 1000, n = 3000.
Right column displays the mean and variance of the number of selected
variables in a given sample. Each point is an average of 200 simulation
replicates.
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Figure 3.42:
Power and FDR of stabilized knockoff and BH or Bonferroni adjusted
OLS P -values as a function of signal magnitude with p = 1000, n = 3000.
Right column displays the mean and variance of the number of selected
variables in a given sample. Each point is an average of 200 simulation
replicates.
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CHAPTER IV

Linear Mixed Models for Comparing Dynamic

Treatment Regimens on a Longitudinal Outcome

in Sequentially Randomized Trials

4.1 Introduction

A dynamic treatment regimen (DTR) is a pre-specified sequence of decision rules

which map baseline and time-varying measurements on an individual to a recom-

mended set of interventions (Chakraborty and Moodie 2013; Orellana, Rotnitzky, and

Robins 2010; Hernán et al. 2006; Murphy et al. 2001). DTRs are designed to assist

clinicians with ongoing care decisions based on disease progress, treatment history,

and other information collected during the course of treatment. DTRs are also known

as adaptive treatment strategies (Kosorok and Moodie 2016; Murphy et al. 2007) or

adaptive interventions (Almirall et al. 2014; Nahum-Shani et al. 2012).

A sequential, multiple assignment randomized trial (SMART) is a multi-stage trial

design specifically created for comparing or constructing DTRs (Wallace, Moodie,

and Stephens 2016; Kosorok and Moodie 2016; Lavori and Dawson 2014; Lei et

al. 2012; Murphy 2005). Study participants in a SMART may experience multiple

randomizations. These randomizations occur at decision points for which there is a

question about which treatment to provide. By the end of the trial, specific groups
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of study participants will have been subject to the sequence of treatment decisions

corresponding to at least one of a pre-specified set of DTRs. SMARTs enable causal

comparisons among these “embedded” DTRs.

This chapter focuses on scientific questions which involve comparing the embedded

DTRs in a SMART based on the mean of a continuous, longitudinal outcome. Often

this is a primary scientific aim in a SMART (Seewald et al. 2019). One way of answer-

ing these questions involves directly specifying a model for the marginal mean of the

longitudinal outcome under each DTR and estimating the parameters in that model

using weighted estimating equations (Lu et al. 2016; Seewald et al. 2019). Similar

methods are available when the longitudinal outcome is binary (Dziak et al. 2019),

for a survival outcome (Li and Murphy 2011), and for clustered SMARTs where the

embedded DTRs are applied to clusters of people but outcomes are measured on

individuals within each cluster (NeCamp, Kilbourne, and Almirall 2017).

The purpose of this chapter is to develop linear mixed effects models for primary

aim comparisons of the embedded DTRs in a SMART with a continuous, longitudinal

outcome. Mixed models were applied to longitudinal analysis of a specialized SMART

design in Dai and Shete (2016), in which the duration of first-stage treatment is

modeled as a survival outcome. In this case the binary tailoring variable used to define

specific decision rules under the DTRs is a function of this survival outcome. These

authors estimate the mean under each DTR conditional on the first-stage treatment

duration, which is equivalent to estimating the mean conditional on the tailoring

variable. This approach also assumes independence between longitudinal outcomes

and DTR tailoring variables. In contrast, we specify a mixed model, and estimate the

mean under each DTR, marginally over interim tailoring variables without assuming

independence between those tailoring variables and the longitudinal primary outcome.

Other work on longitudinal analysis of two-stage trials has focused on alternative

trial designs with a single randomization at the end of the first stage. In this context,
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Hsu and Wahed (2017) estimate the marginal mean under each DTR using weighted

estimating equations specified separately for each DTR. Miyahara and Wahed (2012)

consider a single-randomization design in which the longitudinal outcomes are mea-

sured only during the second treatment stage. These authors estimate the marginal

mean under each DTR by specifying a mixed model separately for each participant

subgroup receiving a specific sequence of treatment decisions under one of the DTRs.

By assuming that the longitudinal outcome is independent of the tailoring variables

which define these participant subgroups, the group-specific models can be averaged

to estimate the marginal mean under a given DTR.

Here we propose mixed models to analyze SMART designs which, by definition,

have more than one randomization for some participants, and we model the marginal

mean under each DTR without assuming independence between longitudinal out-

comes and the interim variables defining treatment subgroups in a DTR. Mixed effects

models are a well established tool for analyzing longitudinal, clustered, or multilevel

data in the medical, social, and agricultural sciences (Fitzmaurice, Laird, and Ware

2011; Raudenbush and Bryk 2002; Snijders and Bosker 2012; Searle, Casella, and

McCulloch 2006; Goldstein 2011; Hedeker and Gibbons 2006). The methods in this

chapter provide a way for researchers to analyze data from SMARTs using these fa-

miliar statistical tools. We adapt the mixed modeling framework to the SMART trial

design to consistently estimate scientific quantities of interest, namely, the marginal

mean under each DTR, without conditioning on any interim tailoring variables used

to define DTR decision rules. We also propose a weighted prediction for subject-

specific random effects, which may be used to assess subject-to-subject heterogeneity

in the primary outcomes under each DTR.

In addition to broadening the applicability of mixed models to SMART analysis,

we see at least three reasons why scientists might prefer mixed effects models when

analyzing SMARTs.
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First, mixed models provide an intuitive, flexible way to model within-person cor-

relations among longitudinal outcomes. Existing statistical methods for SMARTs

with a continuous, longitudinal outcome (Lu et al. 2016; Seewald et al. 2019) involve

directly specifying a working model for the marginal covariance matrix of the repeated

measures, as in generalized estimating equations (GEE, Liang and Zeger (1986)). In

contrast, our mixed effects model indirectly parameterizes the marginal covariance

using random effects—latent random variables which describe subject-specific change

over time. This specification distinguishes within-subject and between-subject varia-

tion and provides an intuitive and flexible way to model the marginal covariance as

a function of time and other covariates.

Second, modeling the within-person correlation among longitudinal measurements

can improve statistical efficiency in estimating regression parameters (e.g. Diggle et

al. 2002, Section 4.6), and mixed models easily parameterize rich covariance functions

using few parameters, regardless of the number or spacing of measurement occasions

(Fitzmaurice, Laird, and Ware (2011, Chapter 8), Hedeker and Gibbons (2006, Chap-

ter 8)).

Third, mixed models provide predictions of subject-specific outcome trajectories

via prediction of the random effects (Skrondal and Rabe-Hesketh (2009), Hedeker

and Gibbons (2006, Chapter 4), Searle, Casella, and McCulloch (2006, Chapter 7)).

While such predictions do not constitute the primary aim of comparing embedded

DTRs in a SMART, they may be useful in understanding the type and magnitude of

heterogeneity in person-specific change with respect to the embedded DTRs and in

identifying individuals with unusual response trajectories.

This chapter will refer to an example SMART designed to compare three DTRs

for improving spoken language in children with autism. Section 4.2 introduces this

study design and provides a general description of SMARTs and embedded DTRs.

Section 4.3 introduces our proposed mixed model for comparing embedded DTRs
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in a SMART and Section 4.4 describes how we estimate parameters and predict

random effects in this model. In Section 4.6 we report the results of simulation

experiments which investigate the operating characteristics of our estimation method,

and in Section 4.7 we illustrate the method using data from the autism SMART

introduced in Section 4.2.

4.2 Sequential, Multiple-Assignment Randomized Trials

Sequential, multiple assignment randomized trials (SMARTs) are multi-stage ran-

domized trial designs which were developed explicitly for the purpose of building high-

quality DTRs (Murphy 2005; Lavori and Dawson 2000; Dawson and Lavori 2008).

Each participant in a SMART may move through multiple stages of treatment, and

the defining feature of a SMART is that some or all participants are randomized at

more than one decision point. At each decision point, the purpose of randomization is

to address a question concerning the dosage intensity, type, or delivery of treatment

at that decision point. A common primary aim in a SMART is the marginal mean

comparison of two or more embedded DTRs on a longitudinal research outcome. The

following example SMART illustrates these ideas.

4.2.1 An Example SMART in Autism

The SMART shown in Figure 4.1 (Kasari et al. 2014) involved N = 61 children,

between five and eight years old, who had a previous diagnosis of autism spectrum

disorder and were considered “minimally verbal” (used fewer than 20 spontaneous

different words during a baseline 20-minute language test). All eligible children were

initially randomized, with equal probability, to a behavioral treatment, called JASP,

or to JASP together with a speech-generating device, called AAC (augmentative or

alternative communication). Both of these first-stage treatment arms in the SMART

involved twice-weekly sessions with a trained language therapist. The first-stage
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JASP+AAC arm required that the AAC device was used at least 50 percent of the

time during these sessions.

At the end of the first treatment stage, which lasted 12 weeks, all children were

classified as “responders” or “slow responders”. Response was defined, prior to the

trial, as an improvement of at least 25 percent on seven or more language measures

(e.g. words used per minute) by the end of week 12. Children who did not satisfy

this criterion were considered slow responders.

The second-stage treatments were determined as follows. Responders to the initial

intervention were continued on that intervention for an additional 12 weeks. Slow re-

sponders to JASP+AAC were offered intensified JASP+AAC, which involved increas-

ing the number of weekly sessions from two to three. Slow responders to JASP were

re-randomized, with equal probability, to either intensified JASP or to JASP+AAC.

The status of “responder” or “slow responder” in this SMART is known as an em-

bedded tailoring variable, since it is used to restrict subsequent randomizations and

is therefore a part of the embedded DTRs. The primary research outcome in this

SMART was the total number of spontaneous socially communicative utterances in

a 20-minute language sample, measured by an independent evaluator who was blind

to the assigned treatment sequence. This primary outcome was measured four times:

prior to the initial randomization (baseline), prior to the second randomization (at

week 12), at the end of treatment (week 24) and at a follow-up assessment (week 36).

4.2.2 Embedded Dynamic Treatment Regimens

A dynamic treatment regimen (DTR) is a sequence of decisions rules that, for

all individuals in a population of interest, guides the provision of treatment at each

decision point based on information known up to that decision point. In the case of

the autism SMART, a DTR is a sequence of decision rules that guides the first and

second treatment decisions for both responders and slow responders.
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Specifically, the autism SMART has three DTRs embedded within it. These

are listed in Table 4.1. The DTR labeled (AAC, AAC+) starts with JASP and

AAC, continues this treatment for responders and intensifies this treatment for slow

responders. The other two DTRs start with JASP only. For slow responders, (JASP,

JASP+) intensifies JASP alone while (JASP, AAC) augments JASP with AAC. Many

SMARTs use a two-stage design in which only slow responders are randomized at the

start of the second stage (Kidwell 2014; Gunlicks-Stoessel et al. 2016, e.g.). In this

SMART, however, second-stage randomization was restricted based on a combination

of first-stage treatment and response status. We use (a1, a2) to index the DTRs

embedded in the SMART, where aj denotes the treatment provided at the jth decision

point. Table 4.1 enumerates the values of (a1, a2) for each DTR in the autism SMART.

4.3 Linear Mixed Models for Comparing Embedded DTRs

We aim to develop a linear mixed model for primary aim comparisons based on

a pre-specified summary of the mean outcome under each DTR in a SMART. To do

this, we use the potential outcomes framework to describe the sequence of primary

outcome measurements as a function of the embedded DTRs. For simplicity, we focus

on two-stage designs. With slight changes in notation, the methodology presented

here may be generalized to more complex SMART designs.

4.3.1 Potential outcomes and observed data

For each embedded DTR, indexed by (a1, a2) where a1, a2 ∈ {−1,+1}, and for

the ith SMART participant, i = 1, . . . , N , let

Yi(a1, a2) = (Yiti1(a1, a2), Yiti2(a1, a2), . . . , Yitini (a1, a2))
ᵀ
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denote the vector of ni time-ordered, potential outcome repeated measures. The

vector Yi(a1, a2) is simply the set of longitudinal potential outcomes for participant i

under DTR (a1, a2). For example, in the case of the autism SMART, each participant

has three potential values of Yi(a1, a2), corresponding to the three values for (a1, a2)

given in Table 4.1. Note that in the autism study, a2 is undefined for the DTR

beginning with JASP+AAC, since that DTR is fully characterized by a1 = −1 (slow

responders to JASP+AAC were not re-randomized). In the autism SMART and in

many other common designs, the embedded tailoring variable is a binary summary of

the data collected during the first stage and often represents early or delayed response

to first-stage treatment. Let Ri(a1) ∈ {0, 1} be the potential outcome for the binary

embedded tailoring variable under first-stage treatment a1.

During the conduct of a SMART, we collect the following observed data: Yitij , the

observed primary outcome for participant i at time point tij; Ri, the ith participant’s

observed binary tailoring variable; Li, a pre-specified vector of baseline covariates

collected prior to the first randomization; and A1i, A2i, the random treatment assign-

ments in the first and second stage, respectively.

In the autism SMART, the primary outcome was collected for all children at each

of ni = 4 measurement occasions, occurring 12 weeks apart. So in this example we

let tij = tj ∈ {0, 12, 24, 36} denote the time, in weeks, since baseline assessment.

In the autism SMART, A1i is equal to 1 or −1 with equal probability, indicating

randomization to either JASP or JASP+AAC. Among slow responders to JASP,

that is, among all subjects with A1i = 1 and Ri = 0, A2i equals 1 or −1 with

equal probability, denoting randomization to receive either intensified JASP or the

AAC device. In the autism study, A2i is not defined for responders and participants

randomized to A1i = −1.
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4.3.2 The model

For the ith participant and for a fixed DTR (a1, a2), consider the following linear

mixed effects model:

Yi(a1, a2) = Xi(a1, a2)β + Zi(a1, a2)bi + εi(a1, a2), (4.1)

where β is an unknown p-dimensional parameter, bi is a q-dimensional (q ≤ p) la-

tent random vector (the random effects) with E (bi | Li) = 0 and εi(a1, a2) is the

ni-length vector of within-subject residual errors with E (εi(a1, a2) | Li) = 0. We

also assume that εi(a1, a2) is independent of bi, given Li. The ni × p design matrix

Xi(a1, a2) depends on the SMART design and a chosen model for the mean, condi-

tional on the baseline covariate vector Li. The ni × q random effects design matrix

Zi(a1, a2) is a function of time, Xi(a1, a2), and (a1, a2) chosen so that Zi(a1, a2)bi

models subject-specific deviations from the mean over time. Since (a1, a2) indexes

the embedded DTRs and is not a random variable, Xi(a1, a2) and Zi(a1, a2) are ran-

dom variables only as a function of Li. (We do not treat tij as a random variable.)

Note that model (4.1) implies that E (Yi(a1, a2) | Li,bi) = Xi(a1, a2)β + Zi(a1, a2)bi

and E (Yi(a1, a2) | Li) = Xi(a1, a2)β.

With model (4.1), we make primary aim comparisons among embedded DTRs

based on the linear, parametric marginal model for E (Yit(a1, a2) | Li) given by βᵀXit(a1, a2),

where Xit(a1, a2)
ᵀ is the row of Xi(a1, a2) evaluated at tij = t, and β is a p-dimensional

column-vector of unknown parameters. Recall that Li is a vector of baseline covari-

ates and that (a1, a2) indexes the embedded DTRs and is not a random variable.

This is a marginal mean model in that E (Yit(a1, a2) | Li) is marginal over both the

embedded tailoring variable, Ri(a1), and any other intermediate random variables

possibly impacted by a1 or (a1, a2). For the autism SMART, an example marginal

mean model used previously (Lu et al. 2016; Almirall et al. 2016) is a piecewise linear
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model with a knot at week tj = 12:

βᵀXit(a1, a2)

= β0 + t[0,12] (β1 + β2a1) + t(12,36] (β3 + β4a1 + β5I [a1 = 1] a2) + β6agei,

(4.2)

where I [·] is the indicator function, t[0,12] = (tI [t ≤ 12] + 12I [t > 12]), t(12,36] = (t −

12)I [t > 12], and Li = agei is the mean-centered age at baseline. In this case,

Xit(a1, a2) = [1, t[0,12], t[0,12]a1, t
(12,36], t(12,36]a1, t

(12,36]I [a1 = 1] a2, agei]
ᵀ.

In this example, the parameters β2, β4, and β5 have a causal interpretation and can be

used to specify the DTR effect estimands of primary interest. An example estimand

of primary interest may be E (Yi24(1, 1))−E (Yi24(−1, ·)) = 12(2(β2+β4)+β5), an end-

of-treatment comparison between the DTR with no AAC, (a1, a2) = (1, 1), and the

DTR with the highest dose of AAC, (a1, a2) = (−1, ·). Other DTR effect estimands

are similarly formed via linear combinations of β2, β4, and β5.

In addition to specifying βᵀXit(a1, a2) as a model for E (Yit(a1, a2) | Li), model

(4.1) implicitly defines a working model for the marginal covariance Vi(a1, a2) :=

Var (Yi(a1, a2) | Li). Since we assume bi and εi(a1, a2) are independent given Li, we

have Vi(a1, a2) = Zi(a1, a2)Var(bi | Li)Zi(a1, a2)
ᵀ + Var(εi(a1, a2) | Li). Previously,

models for SMARTs with a longitudinal outcome involved directly specifying a work-

ing model for Vi(a1, a2) (Seewald et al. 2019; Almirall et al. 2016; Lu et al. 2016).

In contrast, the working model for Vi(a1, a2) in (4.1) is a consequence of separately

modeling within-subject and between-subject variation via Zi(a1, a2)bi and εi(a1, a2).

Together, the variance and covariance structures specified for bi and εi(a1, a2) imply

a working model for Vi(a1, a2).
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4.4 Estimation and prediction

To derive a set of estimating equations for β, we initially consider the following

two distributional assumptions, which are typical for a mixed model like (4.1):

bi | Li ∼ N(0,G) εi(a1, a2) | Li ∼ N(0, σ2Ini) (4.3)

With the addition of the assumptions in (4.3), we have

Yi(a1, a2) | Li ∼ N(Xi(a1, a2)β,Vi(a1, a2)) (4.4)

with Vi(a1, a2) = Zi(a1, a2)GZi(a1, a2)
ᵀ + σ2Ini . Based on this distribution for

Yi(a1, a2) | Li, the log-likelihood for a sample of N participants under DTR (a1, a2)

is

− 1

2

N∑
i=1

log det [Vi(a1, a2)]

− 1

2

N∑
i=1

(Yi(a1, a2)−Xi(a1, a2)β)ᵀVi(a1, a2)
−1(Yi(a1, a2)−Xi(a1, a2)β),

(4.5)

In practice, this log-likelihood cannot be maximized since the potential outcomes

Yi(a1, a2) are not observed for all participants under all DTRs in a SMART. Instead,

we propose a weighted pseudo-likelihood based on the observed data collected in a

SMART.

4.4.1 Pseudo-Likelihood Estimation

The log-likelihood (4.5) is a function of the following parameters: β, σ2 and the

unique parameters in G. We let α denote the vector of unique variance parameters in

Vi(a1, a2) = Vi(a1, a2;α), including σ2. For example, if bi is a scalar random variable

and Zit(a1, a2) = 1 for all a1, a2 and t, then α = (σ2,Var(bi|Li)). For brevity, we often
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suppress notation indicating that Vi(a1, a2) = Vi(a1, a2;α) depends on α. Given the

observed data in a SMART, defined in section 4.3.1, the pseudo-likelihood we use to

estimate β is

l(β,α) = −1

2

N∑
i=1

∑
a1,a2

W̃i(a1, a2)
(
log det [Vi(a1, a2)] + ri(a1, a2)

ᵀVi(a1, a2)
−1ri(a1, a2)

)
,

(4.6)

where ri(a1, a2) = ri(a1, a2;β) = Yi −Xi(a1, a2)β and

W̃i(a1, a2) = I
(a1,a2)
i (A1i, Ri, A2i)W

(a1,a2)
i (Ri).

The indicator I
(a1,a2)
i (A1i, Ri, A2i) is equal to one if and only if the sequence (A1i, Ri, A2i)

is observable under DTR (a1, a2). For example, in the autism SMART, I
(a1,a2)
i (A1i, Ri, A2i) =

I [A1i = a1] (Ri + (1 − Ri)I [A2i = a2]), where I [v] equals 1 if the event v occurs and

equals zero otherwise. The design-specific weightW
(a1,a2)
i (Ri) := P (A1i = a1, A2i = a2 |Ri)

−1

is an inverse probability weight for the DTR (a1, a2) which depends on Ri because

second-stage randomization is restricted according to this binary tailoring variable.

In the autism SMART, and in many two-stage designs, only individuals with Ri = 0

are re-randomized, and

W
(a1,a2)
i (Ri) =

1

P (A1i = a1)

[
Ri +

1

P (A2i = a2 | A1i = a1, Ri = 0)
(1−Ri)

]
. (4.7)

(WhenA2i is not defined for a given value of a1, we set P (A2i = a2 | A1i = a1, Ri = 0) =

1.)

Differentiating (4.6) with respect to β leads to the following p-dimensional set of
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estimating equations:

N∑
i=1

∑
a1,a2

W̃i(a1, a2)Xi(a1, a2)
ᵀVi(a1, a2;α)−1ri(a1, a2;β) = 0, (4.8)

with the solution

β̂(α) =

(
N∑
i=1

∑
a1,a2

W̃i(a1, a2)Xi(a1, a2)
ᵀVi(a1, a2;α)−1Xi(a1, a2)

)−1
(

N∑
i=1

∑
a1,a2

W̃i(a1, a2)Xi(a1, a2)
ᵀVi(a1, a2;α)−1Yi

)
.

(4.9)

Substituting β̂(α) into (4.6), we can obtain estimates of β by first computing α̂ =

arg maxα l(β̂(α),α) and then estimating β with β̂ := β̂(α̂). In the following theorem

we derive the asymptotic properties of β̂.

Theorem IV.1. Define Ui(β,α) =
∑

a1,a2
W̃i(a1, a2)Xi(a1, a2)

ᵀVi(a1, a2;α)−1(Yi−

Xi(a1, a2)β) and let β̂(α) be the solution to
∑

i Ui(β,α) = 0 given in (4.9). Assume

the following:

i. Correctly specified marginal model: E (Yi(a1, a2) | Li) = Xi(a1, a2)β
∗

ii. Sequential randomization: Yi(a1, a2) is independent of A1i given Li; Ri(a1)

is independent of A1i given Li; and Yi(a1, a2) is independent of A2i given

(A1i, Ri,Li).

iii. Consistency: Ri = Ri(A1i) =
∑

a1
I [A1i = a1]Ri(a1) and

Yi = RiYi(A1i) + (1−Ri)Yi(A1i, A2i)

=
∑
a1

I [A1i = a1]Ri(a1)Yi(a1) +
∑
a1,a2

I [A1i = a1] I [A2i = a2] (1−Ri(a1))Yi(a1, a2),

where RiYi(A1i) := RiYi(A1i, a2) for all a2.
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iv. Positivity: P (A1i = a1) > 0 and P (A2i = a2 | A1i, Ri = 0) > 0 for any a1, a2.

v. Regularity conditions: For any given β, α̂ = α̂(β) converges to some α∗ at
√
N rate, and

sup
β

∥∥∥∥∥ 1

N

∑
i

Ui(β, α̂(β))− lim
N→∞

1

N

∑
i

E (Ui(β, α
∗(β)) | Li)

∥∥∥∥∥ P→ 0.

Then β̂(α̂) is consistent for β∗ and
√
N(β̂−β∗) has an asymptotic N(0,B−1MB−1)

distribution, where M = limN→∞
1
N

∑
i E (Ui(β

∗,α∗)Ui(β
∗,α∗)ᵀ | Li) and

B = lim
N→∞

1

N

∑
i

E

(∑
a1,a2

W̃i(a1, a2)Xi(a1, a2)
ᵀVi(a1, a2;α

∗)−1Xi(a1, a2) | Li

)
.

The diagonal entries of 1
N

B̂−1M̂B̂−1 provide approximate standard errors for β̂,

where

M̂ =
1

N

∑
i

ÛiÛ
ᵀ
i ,

Ûi := Ui(β̂, α̂) =
∑

(a1,a2)

W̃i(a1, a2)Xi(a1, a2)
ᵀV̂i(a1, a2; α̂)−1(Yi −Xi(a1, a2)β̂),

and

B̂ =
1

N

∑
i

∑
a1,a2

W̃i(a1, a2)Xi(a1, a2)
ᵀV̂i(a1, a2; α̂)−1Xi(a1, a2).

The proof of Theorem IV.1 is given in Appendix B.1. Note that assumption

(ii) and (iv), above, will be satisfied by design of the SMART, while assumption (iii)

connects the observed data to the potential outcomes. Theorem IV.1 does not require

the two assumptions in (4.3) to be true. These standard distributional assumptions

were used only to motivate the pseudo-likelihood and set of estimating equations

which led to an estimator for β.

Given Vi(a1, a2), the estimating equation (4.8) is identical, with slight changes
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in notation, to the estimating equation in Lu et al. (2016) for the parameters of the

marginal mean model. Estimation of β in Lu et al. (2016) differs from our approach

primarily in its modeling and estimation procedure for Vi(a1, a2) = Var(Yi(a1, a2) |

Li). In Lu et al. (2016), the form of Vi(a1, a2) (e.g. autoregressive) is proposed

by the data analyst and an estimate of Vi(a1, a2) is obtained via the method of

moments. In our case the form of Vi(a1, a2) is a result of specifying Zi(a1, a2)bi

and the variance-covariance of εi(a1, a2) and bi, while the estimate of Vi(a1, a2) is

computed by maximizing a weighted pseudo-likelihood.

As in Lu et al. (2016), Theorem IV.1 implies that β̂ is consistent for β and has an

asymptotic Gaussian distribution, regardless of whether α̂ converges to the true value

of α in model (4.1). This means that the random effects structure can be misspec-

ified and the estimator β̂ will remain unbiased. However, the simulation results in

Section 4.6 show that specifying a random effects structure which more closely mod-

els the true subject-to-subject variation in Yi(a1, a2) can lead to greater efficiency in

estimating β. Before demonstrating the performance of our estimator in simulation

studies, we propose a method for predicting the value of bi in model (4.1) and hence

predicting subject-specific trajectories for the primary outcome in a SMART.

4.4.2 Random Effects Prediction

The estimator for β derived above is all that is necessary for primary aim compar-

isons among the DTRs embedded in a SMART. Recall that a secondary motivation

for using linear mixed models is the prediction of subject-specific outcome trajectories

under specific DTRs. In this section we propose a method of predicting bi in (4.1)

using the weighted pseudo-likelihood in (4.6).

In Theorem IV.1 we do not require knowledge of Vi(a1, a2) or the distributions

of εi(a1, a2) and bi. To predict bi, however, we assume that the distributional as-

sumptions in (4.3) are true in the population of potential outcomes. Specifically,
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under model (4.1), assuming (4.3), (Yi(a1, a2)
ᵀ, bᵀ

i ) | Li has a multivariate Gaussian

distribution, which implies that

bi |Yi(a1, a2),Li ∼ N
(
GZi(a1, a2)

ᵀVi(a1, a2)
−1(Yi(a1, a2)−Xi(a1, a2)β), Σb|Y(a1,a2)

)
,

(4.10)

where Σb|Y(a1,a2) = Var (bi |Yi(a1, a2),Li). If all potential outcomes Yi(a1, a2) were

observed for each participant, a plug-in estimator of E (bi |Yi(a1, a2),Li) based on

(4.10) would serve as a prediction of bi. Instead, motivated by (4.10), we propose the

following:

b̂i(α,β) =

arg max
bi
−1

2

∑
a1,a2

W̃i(a1, a2)
(
bi −GZi(a1, a2)

ᵀVi(a1, a2)
−1(Yi −Xi(a1, a2)β)

)ᵀ
Σ−1b|Y

(
bi −GZi(a1, a2)

ᵀVi(a1, a2)
−1(Yi −Xi(a1, a2)β)

)
(4.11)

=

∑
a1,a2

W̃i(a1, a2)GZi(a1, a2)
ᵀVi(a1, a2);α)−1(Yi −Xi(a1, a2)β)∑

a1,a2
W̃i(a1, a2)

. (4.12)

In practice, the predictions for each participant are obtained by substituting the

estimates α̂ and β̂ into (4.12), so that b̂i := b̂i(α̂, β̂). (Recall that estimates for

the entries of G are given by some of the components of α̂.) This predictor can be

regarded as an empirical Bayes predictor for bi (Skrondal and Rabe-Hesketh 2009;

Carlin and Louis 2000) with weights that adjust for the probability of observing

responders and slow responders under each embedded DTR.
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4.5 Software implementation with integer-valued weights

Next we describe how the mixed model for longitudinal SMARTs can be im-

plemented using standard mixed model software, such as Bates et al. (2015). This

implementation is limited to analyses in which the weights W
(a1,a2)
i (Ri) are integer-

valued. When estimating these probability of treatment weights (Hirano, Imbens,

and Ridder 2003; Brumback 2009) or when randomization probabilities are unequal

across treatment options, the weights may not be integer-valued. Future work will

develop software implementations for use in SMART designs beyond the special case

of integer-valued weights.

Recall that I(a1,a2)(A1i, Ri, A2i) is an indicator of whether subject i is observable

under regimen (a1, a2). For example, in the autism study, I(a1,a2)(A1i, Ri, A2i) =

I [A1i = a1] (Ri + (1 − Ri)I [A2i = a2]). Let f(a1, a2,Yi,Li) be an arbitrary function

of the observed response vector Yi, baseline covariates Li, and the DTR (a1, a2). In

the autism SMART and other common designs, responders (Ri = 1) are observable

under both of the DTRs (A1i, 1), (A1i,−1). In this case,

N∑
i=1

∑
a1,a2

I(a1,a2)(A1i, Ri, A2i)W
(a1,a2)
i (Ri)f(a1, a2,Yi,Li)

=
∑
i:Ri=1

W
(A1i,1)
i (1)f(A1i, 1,Yi,Li) +

∑
i:Ri=1

W
(A1i,−1)
i (1)f(A1i,−1,Yi,Li)

+
∑
i:Ri=0

W
(A1i,A2i)
i (0)f(A1i, A2i,Yi,Li),

(4.13)

since when Ri = 0, subject i is observable under DTR (A1i, A2i) only.
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The weighted pseudo-likelihood is

l(β,α) = −1

2

N∑
i=1

∑
a1,a2

W̃i(a1, a2) log det [Vi(a1, a2)]

− 1

2

∑
i

∑
a1,a2

W̃i(a1, a2)ri(a1, a2)
ᵀVi(a1, a2)

−1ri(a1, a2)

(4.14)

= −1

2

∑
i:Ri=1

W
(A1i,1)
i (1) log det [Vi(A1i, 1)]

− 1

2

∑
i:Ri=1

W
(A1i,−1)
i (1) log det [Vi(A1i,−1)]

− 1

2

∑
i:Ri=0

W
(A1i,A2i)
i (0) log det [Vi(A1i, A2i)]

− 1

2

∑
i:Ri=1

W
(A1i,1)
i (1)(Yi −Xi(A1i, 1)β)ᵀVi(A1i, 1)−1(Yi −Xi(A1i, 1)β)

− 1

2

∑
i:Ri=1

W
(A1i,−1)
i (1)(Yi −Xi(A1i,−1)β)ᵀVi(A1i,−1)−1(Yi −Xi(A1i,−1)β)

− 1

2

∑
i:Ri=0

W
(A1i,A2i)
i (0)(Yi −Xi(A1i, A2i)β)ᵀVi(A1i, A2i)

−1(Yi −Xi(A1i, A2i)β)

(4.15)

This objective function is equivalent to the log-likelihood in a linear mixed effects

model based on an “augmented” data set constructed in the following manner. For all

subjects i whose observed data are observable under more than one DTR, duplicate

the baseline covariates Li and response vectors Yi once for each of those DTRs. In the

autism SMART, subjects with Ri = 1 are observable under (A1i, 1) and (A2i,−1), so

the baseline covariates and response vectors are duplicated twice. The design matrices

Xi(a1, a2) and Zi(a1, a2) for each replicate are formed by plugging in the values of

(a1, a2) corresponding to the DTR under which that replicate is observable. The

weights for these replicates are formed similarly. Thus, for a subject with Ri = 1, the
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augmented data consist of

{
Xi(A1i, 1),Zi(A1i, 1)Li,Yi,W

(A1i,1)
i (1)

}
{

Xi(A1i,−1),Zi(A1i,−1),Li,Yi,W
(A1i,−1)
i (1)

}

For subjects whose observed data are observable only under the DTR (A1i, A2i), their

observed data are unchanged and included in the augmented data set.

Indexing the artificial “subjects” in the augmented data set by s = 1, . . . ,M , we

have, based on (4.15),

l(β,α) = −1

2

M∑
s=1

Ws log det [Vs]−
1

2

M∑
s=1

Ws(Ys −Xsβ)ᵀV−1s (Ys −Xsβ), (4.16)

where Ws,Xs and Vs are the values of W
(A1i,A2i)
i (Ri), Xi(a1, a2) and Vi(a1, a2) eval-

uated under the DTR corresponding to replicate s in the augmented data. Thus,

to find maximum likelihood estimates of the parameters β and α, we can use any

software package which maximizes a weighted log-likelihood of the form (4.16). In

particular, when Ws is an integer, we can maximize (4.16) by duplicating all of the

terms indexed by s a total of Ws times and fitting the mixed model corresponding to

(4.16) without the use of weights.

4.6 Simulation studies

Next we use simulation studies to evaluate the ability of our mixed effects model

to estimate causal estimands of primary interest when comparing embedded DTRs in

a SMART. We also compare our mixed model estimator to the GEE-like estimators

discussed in Lu et al. (2016) and Seewald et al. (2019).

Data were generated from a hypothetical SMART with two treatment stages,

two treatment options for all participants in stage one, and two treatment options

132



for slow responders in stage two, leading to four embedded DTRs with a1, a2 ∈

{1,−1}. This is a common SMART design (Naar-King et al. 2016; August, Piehler,

and Bloomquist 2016, e.g.) and is different from the autism SMART in Figure 4.1, in

which slow responders from only one of the stage-one treatment arms were randomized

at the start of the second stage. In a given simulation replicate, potential outcomes

were generated according to (B.10), below, and observed data were obtained from

these potential outcomes via randomizations satisfying assumptions (ii) and (iii) in

Theorem IV.1. All simulated participants were randomized with equal probability to

either A1i = 1 or A1i = −1, and only slow responders were randomized to A2i = 1 or

A2i = −1 with equal probability.

The potential outcomes in these simulation studies were generated from the fol-

lowing piecewise linear model:

Yit(a1, a2) = θ0 + I [t ≤ κ] t(θ1 + θ2a1) + I [t > κ]κ(θ1 + θ2a1)

+ I [t > κ] (t− κ)(θ3 + θ4a1 + (θ5a2 + θ6a1a2)(1−Ri(a1)))

+ I [t > κ] (t− κ)(ψ(1)I [a1 = 1] + ψ(−1)I [a1 = −1]) [Ri(a1)− P (Ri(a1) = 1 | Li)]

+ θ7Li + γ0i + γ1it+ εit,

(4.17)

where Ri(a1) = I [Yiκ(a1)− θ7Li > c]; c = 1.1; (γ0i, γ1i)
ᵀ | Li ∼ N(0,Γ); εit | Li ∼

N(0, τ 2) with τ 2 = 1; t ∈ {0, 0.5, 1.5, 2, 2.25, 2.5, 3}; and κ = 2.

The binary tailoring variable Ri(a1) is a function of the potential outcome at the

end of the first treatment stage, and the fixed value of c means that P (Ri(a1) = 1 | Li)

varies as a function of a1. The parameters ψ(1) and ψ(−1) induce a marginal association

between Ri(a1) and second-stage outcomes. The random intercepts and slopes, γ0i

and γ1i, induce within-person correlation, and the residual errors εit were generated

independently across i and t. The scalar random variable Li = Li is a binary baseline
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covariate, and the knot κ represents the time when the first treatment stage ends. In

all simulations, half of the participants were assigned Li = 1 and half were assigned

Li = −1. Under (B.10), the marginal mean can be expressed as follows:

E (Yit(a1, a2) | Li) = βᵀXit(a1, a2)

= β0 + I [t ≤ κ] t(β1 + β2a1) + I [t > κ]κ(β1 + β2a1)

+ I [t > κ] (t− κ)(β3 + β4a1 + β5a2 + β6a1a2)

+ β7Li,

(4.18)

where βj = θj for j ∈ {0, 1, 2, 3, 4, 7},

β5 =

{
θ5

(
π(1)

2
+
π(−1)

2

)
+ θ6

(
π(1)

2
− π(−1)

2

)}
,

β6 =

{
θ5

(
π(1)

2
− π(−1)

2

)
+ θ6

(
π(1)

2
+
π(−1)

2

)}
,

and π(a1) := P (Ri(a1) = 0 | Li). Causal estimands of primary interest are expressed

as functions of β2, β4, β5, and β6. Further details of this generative model are given

in Appendix B.

Sections 4.6.1 and 4.6.2 present the results of two simulation studies which differ

in whether or not they misspecify the marginal variance and distribution of Yi(a1, a2).

Section 4.6.3 presents a simulation study with ignorable missing data due to study

dropout. In all simulation studies, the linear model for E (Yi(a1, a2) | Li) is cor-

rectly specified. We report estimation performance for the end-of-study contrast

E (Yi3(1,−1) | Li) − E (Yi3(−1,−1) | Li) = 2κβ2 + 2(3 − κ)β4 − 2(3 − κ)β6, and we

chose simulation parameters so that this contrast had the largest magnitude among

any pairwise contrast between embedded DTRs. Parameter values for the marginal
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mean were chosen to achieve desired values of the standardized effect size

d =
E (Yi3(1,−1) | Li)− E (Yi3(−1,−1) | Li)√

1
2
Var (Yi3(1,−1) | Li) + 1

2
Var (Yi3(−1,−1) | Li)

. (4.19)

4.6.1 Simulation 1

The first simulation study verifies that our estimator β̂ is unbiased in large samples

and that large-sample confidence interval coverage is attained with the standard errors

based on Theorem IV.1. This is accomplished in the ideal setting in which the proba-

bility distribution of Yi(a1, a2)|Li can be correctly specified using our proposed mixed

model. In general, Yi(a1, a2)|Li in (B.10) follows a Gaussian mixture distribution with

mixing probability P (Ri(a1) = 0 | Li). However, in this simulation study we choose

0 = θ5 = θ6 = ψ(1) = ψ(−1), so that Yit(a1, a2) − E (Yit(a1, a2) | Li) = γ0i + γ1it + εit

and the distribution of Yi(a1, a2)|Li is the same as the marginal distribution specified

in the following mixed model:

Yit(a1, a2) | b0i, b1i,Li ∼ N(βᵀXit(a1, a2) + b0i + b1it, σ
2), (4.20)

(b0i, b1i)
ᵀ | Li ∼ N(0,G) (4.21)

where βᵀXit(a1, a2) is the linear parametrization of the mean in equation (4.18). We

compared this “slopes and intercepts” mixed model, in which the joint distribution

of Yi(a1, a2) | Li is correctly specified, to an “intercepts only” mixed model,

Yit(a1, a2) | b0i,Li ∼ N(βᵀXit(a1, a2) + b0i, σ
2), (4.22)

b0i | Li ∼ N(0,Var (b0i)), (4.23)

in which Var(Yi(a1, a2) |Li) is misspecified. We use different notation for the random

effects and variance parameters in (4.21)–(4.23) than we do in (B.10) to distinguish

135



models used for estimation from the true, data-generating probability distribution.

In this simulation study we set Var (γ0) = 0.8,Var (γ1) = 1 and Cov(γ0, γ1) = −0.2.

Table 4.2 contains the bias and standard deviation of the point estimates, the

mean of the approximate standard errors, the coverage probability for a 95-percent

confidence interval, and the root mean squared error (RMSE) computed from 1,000

simulation replicates. In large samples, the bias is approximately two orders of mag-

nitude smaller than the standard deviation of the point estimates, confirming that

the mixed model estimator is unbiased for the linear mean parameters in (4.18). The

standard errors based on Theorem IV.1 provide confidence interval coverage close to

the nominal level in large samples. In addition, note that the intercepts only mixed

model, which misspecifies Var(Yi(a1, a2) | Li), does not introduce bias in large sam-

ples. Instead, the estimator is slightly less efficient than the slopes and intercepts

model, in which both the mean and covariance of Yi(a1, a2) are correctly specified.

4.6.2 Simulation 2

In this second simulation, we investigate whether the estimator β̂ is unbiased

in large samples, and whether this estimator can provide efficiency gains relative

to existing estimators, in a more realistic scenario in which it is not possible to

correctly specify the distribution of Yi(a1, a2) |Li using model (4.1). Data were again

generated from model (B.10), but the coefficients θ5, θ6, ψ
(1) and ψ(−1) were nonzero

and therefore Yi(a1, a2) | Li had a marginal Gaussian mixture distribution.

In addition to the mixed models (4.21)–(4.23), we also report estimation perfor-

mance of the GEE-like estimator of Lu et al. (2016) and Seewald et al. (2019) in

which only the marginal mean is assumed to be correctly specified and no further

distributional assumptions are made about Yi(a1, a2) | Li. With these GEE estima-

tors, a working model for Vi(a1, a2) (e.g. exchangeable) is specified directly and the

method of moments is used to estimate the parameters in this working model.
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These GEE estimators were implemented as follows. First, an initial least squares

estimate is computed:

β̂(0) =

(∑
i

∑
a1,a2

W̃i(a1, a2)Xi(a1, a2)
ᵀXi(a1, a2)

)−1(∑
i

∑
a1,a2

W̃i(a1, a2)Xi(a1, a2)
ᵀYi

)
.

This initial estimate is used to compute the residual vectors

r
(0)
i (a1, a2) = Yi −Xi(a1, a2)β̂

(0), (4.24)

for all i and (a1, a2). Next we compute method of moments estimators for Vi(a1, a2).

Let D be the number of embedded DTRs, i.e. D =
∑

a1,a2
1. For t 6= s, define the

variance estimators

σ̂2
t (a1, a2) =

∑
i W̃i(a1, a2)r

(0)
it (a1, a2)

2

Nt

, (4.25)

σ̂2(a1, a2) =
Ntσ̂

2
t (a1, a2)∑
tNt

, (4.26)

σ̂2
t =

1

D

∑
a1,a2

σ̂2
t (a1, a2) (4.27)

and

σ̂2 =
1

D

∑
a1,a2

σ̂2(a1, a2), (4.28)
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and define the correlation estimators

ρ̂ts(a1, a2) =
1

Nts

∑
i

W̃i(a1, a2)

[
r
(0)
it (a1, a2)r

(0)
is (a1, a2)

σ̂t(a1, a2)σ̂s(a1, a2)

]
, (4.29)

ρ̂ts =
1

D

∑
a1,a2

ρ̂ts(a1, a2), (4.30)

ρ̂(a1, a2) =
1

N

∑
i

W̃i(a1, a2)

ni(ni − 1)/2

∑
s<t

r
(0)
is (a1, a2)r

(0)
it (a1, a2)

σ̂s(a1, a2)σ̂t(a1, a2)
, (4.31)

ρ̂ =
1

D

∑
a1,a2

ρ̂(a1, a2), (4.32)

ψ̂(a1, a2) =
1

N

∑
i

W̃i(a1, a2)

ni(ni − 1)/2

∑
s<t

r
(0)
is (a1, a2)r

(0)
it (a1, a2)

σ̂2(a1, a2)
, (4.33)

and

ψ̂ =
1

D

∑
a1,a2

ψ̂(a1, a2), (4.34)

where Nt is the number of individuals with an observation at unique time point t and

Nts is the number of individuals with observations at both of the time points t and

s. The estimators defined above are simply the method of moments estimators for

correlation or variance parameters at each observation. They differ in whether the

variances or correlations are assumed to be equal across DTRs and in whether the

variance is assumed to be constant as a function of time. By combining these corre-

lation and variance estimators, we can obtain various working models for Vi(a1, a2).

For example, the unstructured and exchangeable estimates of Vi(a1, a2) have the

following entries, vts(a1, a2):

Unstructured vtt(a1, a2) = σ̂2
t Exchangeable vtt(a1, a2) = σ̂2 for all t

vts(a1, a2) = σ̂sσ̂tρ̂ts vts(a1, a2) = ψ̂σ̂2

for all a1, a2 for all a1, a2
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The independence working model sets all off-diagonal entries of Vi(a1, a2) to zero

and all diagonal entries to σ̂2. Autoregressive working models for Vi(a1, a2) are also

possible using the correlation estimators

τ̂t(a1, a2) =
1

N

∑
i

W̃i(a1, a2)

ni − 1

ni−1∑
s=1

r
(0)
is (a1, a2)r

(0)
i(s+1)(a1, a2)

σ̂s(a1, a2)σ̂s+1(a1, a2)
, (4.35)

τ̂t =
1

D

∑
a1,a2

τ̂t(a1, a2), (4.36)

τ̂(a1, a2) =
1

N

∑
i

W̃i(a1, a2)

ni − 1

ni−1∑
s=1

r
(0)
is (a1, a2)r

(0)
i(s+1)(a1, a2)

σ̂2(a1, a2)
, (4.37)

and

τ̂ =
1

D

∑
a1,a2

τ̂(a1, a2) (4.38)

In this simulation study, all of the models used for estimation correctly specify the

linear model βᵀXit(a1, a2), but none of them correctly specify the marginal covariance

or the distribution of Yi(a1, a2) | Li.

Table 4.3 compares the two mixed models and the GEE estimator with exchange-

able, unstructured, and independence working models for Vi(a1, a2) in their ability

to estimate the end-of-study contrast with standardized effect size d ≈ 0.5. The mag-

nitude of the bias relative to the standard deviation in Table 4.3 indicates that all of

these estimators are unbiased in large samples.

While none of the estimation models in this simulation study correctly specify

Vi(a1, a2), we can see in Table 4.3 that efficiency (measured by RMSE) in estimat-

ing the end-of-study contrast is improved by a working model for Vi(a1, a2) which

more closely resembles the true marginal covariance. Here we report RMSE as a

fraction of the smallest RMSE for a fixed sample size. To measure the performance

of each working model for Vi(a1, a2), we report
‖Vtrue−E(V̂)‖
‖Vtrue‖ , the relative error in
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the Frobenius norm between Vtrue := 1
D

∑
a1,a2

Vi(a1, a2), the true average covariance

matrix of Yi(a1, a2) according to the generative model, and the simulation-based es-

timate of E
(
V̂
)

:= 1
D

∑
a1,a2

E
(
V̂i(a1, a2; α̂)

)
, the large-sample average covariance

matrix implied by the estimation model. The slopes and intercepts mixed model

had both the lowest relative error in estimating Vtrue and the lowest RMSE for each

fixed sample size. For these estimators, RMSE decreases as the working model for

Vi(a1, a2) improves. This simulation study suggests that if the separate specifica-

tion of between-person and within-person variation in a mixed effects model leads to

improved modeling of the marginal covariance, we can expect efficiency gains over

GEE-like approaches when comparing embedded DTRs.

4.6.3 Simulation 3

One potential benefit of mixed models is their ability to provide unbiased pa-

rameter estimates when data are missing at random, assuming that estimation and

inference are based on a correctly specified likelihood for the observed data (Fitz-

maurice, Laird, and Ware, 2011, Ch. 17; Hedeker and Gibbons, 2006, Ch. 14;

Molenberghs and Kenward, 2007, Ch. 7; Gibbons, Hedeker, and DuToit, 2010). In

the case of the mixed model we propose for longitudinal SMARTs, estimation and

inference are based on a weighted pseudo-likelihood, not the true likelihood for the

observed data, so it is not clear whether bias can be avoided with ignorable missing

data in a SMART.

To help understand whether mixed models provide any protection against bias

due to missing data in a longitudinal SMART, this additional simulation study de-

scribes the performance of our mixed model and the GEE-like estimators of See-

wald et al. (2019) and Lu et al. (2016) when data are missing at random (ignor-

able) due to study dropout. In this scenario, if a participant’s observed Yit at

t = 2.25 was less than −3.5, then all observations from that participant at time
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points t ≥ 2.5 were discarded. This results in about 20 percent dropout among

participants with (A1i, A2i, Ri) = (−1,−1, 0); about 17 percent dropout among par-

ticipants with (A1i, A2i, Ri) = (−1, 1, 0); about nine and ten percent dropout among

participants with (A1i, A2i, Ri) = (1, 1, 0) and (1,−1, 0), respectively; and less than

0.1 percent dropout among participants with Ri = 1.

Table 4.4 compares the same estimators from Section 4.6.2 their ability to estimate

an end-of-study contrast with effect size d ≈ 0.5 in the presence of the dropout process

described above. In this scenario, we see bias in large samples, although the degree

of bias decreases as
‖Vtrue−E(V̂)‖
‖Vtrue‖ decreases. This suggests that the ability of a mixed

model to flexibly model Vi(a1, a2), and to efficiently estimate Vi(a1, a2), may provide

some protection against bias due to ignorable missing data. Since we are not able to

fit a mixed model using the true likelihood for the potential outcomes, the purported

benefits of mixed models in the presence of ignorable missing data (compared to GEE

approaches) might not exist when analyzing longitudinal SMARTs.

4.7 Application

Finally, we demonstrate our mixed model using the autism SMART of Kasari et

al. (2014). Our goal here is to compare the three embedded DTRs based on changes

in communication outcomes for the children receiving each DTR. Figure 4.2 displays

the measured primary outcome, the number of socially communicative utterances,

for each participant in this study at baseline and at weeks 12, 24, and 36. For the

marginal mean, we specified the piecewise linear model (4.2), and we specified random

intercepts as the random effects structure.

The parameter vector β = (β0, . . . , β6) was estimated as described in Section 4.4.1

using widely available software for linear mixed models (Bates et al. 2015) applied to

the restructured version of the observed data described in Section 4.5. The estimates

of α and β obtained in this manner were then used to compute estimated standard
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errors as described in Section 4.4.1. Table 4.5 displays the estimated coefficients in

this model with 95-percent confidence intervals, and Figure 4.3 displays the estimated

marginal mean for each DTR at each time point.

To understand whether we have evidence that communication outcomes differ

among children receiving each of these DTRs, we performed an “omnibus” test of

whether the three DTRs differ at all. We tested the hypothesis that the area under

the curve (AUC) for the marginal mean is the same across all three DTRs, which,

in this case, is equivalent to testing H0 : Cβ = 0 for a constant matrix C. Based

on Theorem IV.1, under H0, the statistic (Cβ̂)ᵀ
(
CΣ̂βCᵀ

)−1
Cβ̂, where Σ̂β is the

estimated covariance matrix of β̂, has a χ2 distribution with two degrees of freedom

in large samples. This test statistic was equal to 10.32 with a p-value of 0.006,

suggesting differences in the AUCs among the three DTRs. Following this omnibus

test, we examined pairwise contrasts between each DTR at each time point, given in

Figure 4.4, which suggest that the DTR which starts with the AAC speech device is

superior to the other two DTRs, at least during the first 12 weeks.

For demonstration, Figure 4.5 displays predicted person-specific trajectories,

β̂ᵀXit(a1, a2) + b̂i,

using the intercepts-only mixed model, along with the observed outcomes and the

estimated mean outcome under each DTR. This display could be used to assess

subject-to-subject variation relative to the estimated mean under each DTR or to

identify individuals with outlying trajectories based on the fitted model. In this ex-

ample, random intercepts lead to subject-specific trajectories which are parallel to the

estimated mean under each DTR. The potential high outliers under the DTRs (JASP,

AAC) and (AAC, AAC+) could be investigated to help characterize the variation in

communication outcomes for these study participants.
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4.8 Discussion

In Section 4.4.2 we proposed a method for predicting random effects based on a

weighted pseudo-likelihood. The prediction method we propose is analogous to the

“best linear unbiased predictors” commonly used in standard mixed effects analysis

of longitudinal data (Robinson, 1991; Verbeke and Molenberghs, 2009, Section 7.4).

However, our proposed predictor b̂i is a nonlinear function of (A1i, Ri, A2i) across all i,

and it is unclear whether b̂i has minimum mean squared error (MSE) marginally over

these random variables. Further work is needed to derive a minimum-MSE property

for b̂i which is marginal over (A1i, Ri, A2i) and uses the same statistical and causal

assumptions of Theorem IV.1.

The software implementation used for the analysis in Section 4.7 is limited to cases

where the weights W
(a1,a2)
i (Ri) are integers. Additional work is needed for a general

implementation of the weighted pseudo-likelihood in cases where the weights are not

integers, which may occur when the randomization probabilities are unequal across

treatment options, or when the weights are estimated (e.g. Williamson, Forbes, and

White 2014; Hirano, Imbens, and Ridder 2003).

Although we focused on SMARTs with a longitudinal outcome, the mixed model

developed in this chapter could, in principle, be used to estimate the end-of-study

marginal mean for cluster-level DTRs, as in NeCamp, Kilbourne, and Almirall (2017),

by modifying the marginal mean model βᵀXi(a1, a2) to no longer be a function of

time. An exchangeable correlation structure for clustered end-of-study outcomes

could be modeled with a random intercept for each cluster. Another direction for

future research is to develop a generalized linear mixed model for SMARTs with a

longitudinal binary outcome.

This chapter focused on marginal mean models for the embedded DTRs that are

conditional only on baseline covariates. This is analogous to primary aim analyses

in standard randomized trials. An alternative approach would be to specify a mixed
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model conditional on both the baseline covariates and the embedded tailoring vari-

ables. For example, in the autism SMART, one could propose a mixed effects model

for Yi conditional on A1i, Ri, A2i. Future work will investigate how to obtain consis-

tent estimators for marginal estimands using this kind of conditional modeling of the

observed longitudinal outcome.

In addition to the reasons given in Section 4.1, scientists might prefer mixed effects

models because they may require less restrictive assumptions about missing data, at

least when the true probability distribution for the observed data is correctly specified

(Hedeker and Gibbons, 2006, Ch. 14; Fitzmaurice, Laird, and Ware, 2011, Ch. 17)

Our marginal modeling and weighted, pseudo-likelihood estimation approach does

not require a correct specification of the true probability distribution that generated

the observed data. The simulation results in Section 4.6.3 suggest that our mixed

model may offer some protection against bias in the presence of ignorable missing

data, but additional work is needed to understand whether our marginal model for

longitudinal SMARTs enjoys the purported benefits of standard mixed models in the

presence of missing data.
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DTR label First-stage Status at end Second-stage Cell in Known
(a1, a2) treatment of first-stage treatment Figure 4.1 IPW

(JASP,JASP+)
(1, 1)

JASP
Responder Continue JASP A 2

Slow Responder Intensify JASP B 4

(JASP, AAC)
(1,−1)

JASP
Responder Continue JASP A 2

Slow Responder Augment JASP+AAC C 4

(AAC, AAC+)
(−1, ·) JASP+AAC

Responder Continue JASP+AAC D 2
Slow Responder Intensify JASP+AAC E 2

Table 4.1:
Embedded DTRs in the autism SMART. The last column provides the
known inverse probability weight for subjects in each of the cells A–E in
Figure 4.1.

Method d True value N Bias
Monte

Carlo SD
SE

Estimate
CI

Coverage
RMSE

LMM slopes
and intercepts

0.2 0.600 50 -0.102 1.222 1.119 0.911 1.226

200 -0.018 0.659 0.629 0.931 0.659
1000 0.010 0.296 0.290 0.945 0.296
5000 -0.002 0.132 0.130 0.945 0.132

0.8 2.480 50 0.071 1.228 1.117 0.905 1.229
200 -0.002 0.661 0.623 0.932 0.661

1000 -0.008 0.285 0.286 0.950 0.285
5000 -0.007 0.129 0.128 0.948 0.129

LMM intercepts 0.2 0.600 50 -0.018 1.338 1.196 0.886 1.338
200 0.001 0.748 0.694 0.917 0.748

1000 0.010 0.336 0.323 0.938 0.336
5000 0.002 0.146 0.145 0.951 0.146

0.8 2.480 50 0.148 1.339 1.191 0.888 1.346
200 0.011 0.728 0.682 0.922 0.727

1000 -0.006 0.312 0.317 0.957 0.311
5000 -0.005 0.143 0.142 0.957 0.143

Table 4.2:
Mixed model estimation performance in Simulation 1. Reported for an
end-of-study contrast with two mixed model specifications when the pop-
ulation of potential outcomes exactly follows the marginal distribution
implied by the slopes and intercepts mixed model. The intercepts only
model specifies the correct mean model but is otherwise misspecified. Val-
ues compuuted from 1,000 simulation replicates. The nominal confidence
level was 95 percent.
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N Method Bias
Monte

Carlo SD
SE

Estimate
CI

Coverage
RMSE

Inflation
‖Vtrue−E(V̂)‖
‖Vtrue‖

50
LMM slopes
and intercepts

0.013 1.655 1.505 0.910 1.000 0.051

GEE Unstructured 0.064 1.761 1.452 0.854 1.064 0.107
LMM intercepts only 0.115 1.922 1.656 0.871 1.163 0.640
GEE Exchangeable 0.114 1.924 1.651 0.870 1.164 0.643
GEE Independence 0.182 2.163 1.804 0.861 1.311 0.900

200
LMM slopes
and intercepts

-0.041 0.842 0.839 0.938 1.000 0.015

GEE Unstructured -0.019 0.878 0.822 0.925 1.042 0.028
LMM intercepts only 0.002 0.983 0.951 0.930 1.167 0.638
GEE Exchangeable 0.002 0.984 0.950 0.931 1.167 0.638
GEE Independence 0.016 1.099 1.055 0.936 1.305 0.900

1000
LMM slopes
and intercepts

-0.006 0.396 0.385 0.948 1.000 0.009

GEE Unstructured -0.003 0.410 0.384 0.933 1.034 0.011
LMM intercepts only 0.011 0.442 0.439 0.950 1.115 0.637
GEE Exchangeable 0.011 0.442 0.439 0.949 1.115 0.637
GEE Independence 0.021 0.483 0.489 0.950 1.220 0.900

5000
LMM slopes
and intercepts

0.000 0.172 0.174 0.958 1.000 0.007

GEE Unstructured -0.001 0.178 0.174 0.947 1.039 0.007
LMM intercepts only 0.005 0.204 0.198 0.936 1.191 0.637
GEE Exchangeable 0.005 0.204 0.198 0.936 1.191 0.637
GEE Independence 0.005 0.227 0.221 0.947 1.323 0.900

Table 4.3:
Mixed model and GEE estimation performance in Simulation 2. Reported
for an end-of-study contrast with true value 2.1197 and standardized effect
size d ≈ 0.5. Values computed from 1,000 simulation replicates. The
nominal confidence level was 95 percent. RMSE inflation is the ratio of
the RMSE to the smallest RMSE among the five methods for a fixed sample
size.
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N Method Bias
Monte

Carlo SD
SE

Estimate
CI

Coverage
RMSE

Inflation
‖Vtrue−E(V̂)‖
‖Vtrue‖

200
LMM slopes
and intercepts

-0.066 0.887 0.836 0.929 1.000 0.046

GEE Unstructured -0.127 0.900 0.789 0.906 1.023 0.257
LMM intercepts only -0.401 0.950 0.891 0.900 1.161 0.660
GEE Exchangeable -0.402 0.951 0.890 0.900 1.161 0.663
GEE Independence -0.559 1.047 0.983 0.881 1.335 0.904

1000
LMM slopes
and intercepts

-0.103 0.389 0.381 0.939 1.000 0.044

GEE Unstructured -0.158 0.396 0.366 0.902 1.059 0.246
LMM intercepts only -0.445 0.419 0.408 0.796 1.519 0.659
GEE Exchangeable -0.445 0.419 0.408 0.795 1.519 0.661
GEE Independence -0.612 0.464 0.451 0.699 1.907 0.904

5000
LMM slopes
and intercepts

-0.080 0.177 0.171 0.921 1.000 0.042

GEE Unstructured -0.138 0.178 0.165 0.848 1.157 0.243
LMM intercepts only -0.437 0.187 0.184 0.349 2.448 0.658
GEE Exchangeable -0.437 0.187 0.184 0.350 2.448 0.660
GEE Independence -0.614 0.204 0.203 0.134 3.332 0.904

Table 4.4:
Mixed model and GEE estimation performance in Simulation 3. Reported
for an end-of-study contrast with true value 2.1197, corresponding to a
standardized effect size of d ≈ 0.5. Estimated in the presence of miss-
ing data due to simulated study dropout. Values computed from 1,000
simulation replicates. The nominal confidence level was 95 percent.

Coefficient Estimate SE 95% CI

β0 28.885 3.763 (21.509, 36.261)
β1 1.501 0.315 (0.885, 2.118)
β2 −0.929 0.287 (−1.492,−0.367)
β3 0.112 0.174 (−0.229, 0.452)
β4 0.23 0.174 (−0.111, 0.571)
β5 −0.111 0.137 (−0.38, 0.158)
β6 −4.514 2.777 (−9.957, 0.93)

Table 4.5:
Coefficient estimates for the autism SMART mixed model. Based on the
random intercepts mixed model.

147



Responders

JASP

JASP + AAC

Slow Responders

Responders

Slow Responders

Cell

Continue:
JASP 

Intensify:
JASP

Augment:
JASP + AAC

Continue: 
JASP + AAC

Intensify: 
JASP + AAC

R

So
ci

al
ly

 C
om

m
un

ic
at

iv
e 

U
tt

er
an

ce
sA

B

C

D

E

First-stage 
Treatment

(Weeks 1-12)

Second-stage
Treatment

(Weeks 13-24)
Baseline End of Week 12 

Responder Status
End of Week 24 
Study Outcomes

R

Figure 4.1:
Schematic of an example SMART for children with ASD who are min-
imally verbal. JASP stands for joint attention social play intervention;
AAC stands for alternative and augmentative communication. The encir-
cled R signifies randomization; randomizations occurred at baseline and
at the end of week 12 following identification of responder status. A child
was considered a responder if there is a 25% or greater improvement on 7
or more (out of 14) language measures; otherwise, the child was labeled
a slow responder.
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Figure 4.2:
Observed number of socially communicative utterances in the autism
SMART. There were N = 61 children in this SMART. Responders to
either first-stage treatment continued that treatment. Dashed lines in
the upper-left panel correspond to slow responders to initial JASP who
were randomly assigned to receive JASP+AAC in the second stage. All
other slow responders received an intensified version of the initial treat-
ment.
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Figure 4.3:
Estimated marginal mean under each DTR in the autism SMART. Es-
timated for the population of children at age 6.3 (the average age of
participants in the study).

●

●

●

●

●

●

●

●

● ●
●

●

(AAC, AAC+) vs. (JASP, AAC) (AAC, AAC+) vs. (JASP, JASP+) (JASP, AAC) vs. (JASP, JASP+)

0 12 24 36 0 12 24 36 0 12 24 36

0

10

20

30

Weeks

N
um

. s
oc

ia
lly

 c
om

m
un

ic
at

iv
e 

ut
te

ra
nc

es

Figure 4.4:
Pairwise DTR comparisons in the autism SMART. Vertical bars are 95-
percent pointwise confidence intervals.
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Figure 4.5:
Person-specific predicted trajectories in the autism SMART. Top row con-
tains the predicted trajectories based on the intercepts-only mixed model.
Bottom row contains the observed number of socially communicative ut-
terances. Bold lines are the estimated marginal mean trajectories under
each DTR for children at age 6.3, the average age of the study partici-
pants. Responders to initial treatment with JASP are observable under
both (JASP, JASP+) and (JASP, AAC), and the observed and predicted
trajectories for these participants are displayed for both of these regimens.
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APPENDIX A

Alternative Constructions of Ũ in the Knockoff

Filter

A.1 A deterministic, arbitrary Ũ

First note that in Algorithms III.3–III.5, Ũ is explicitly a function of a random

matrix. In Algorithm III.2, however, Ũ is deterministic, even though it is still ar-

bitrary. With a given computational environment and numerical algorithm for the

QR decomposition, Algorithm III.2 will return the same result every time the matrix

[X 0] is decomposed. However, since [X 0] is not full rank, the QR decomposition

of this matrix is not unique. Indeed, for any p × p orthogonal matrix H, we can

replace Q0 in Algorithm III.2 with Q0H and still obtain a valid QR decomposition.

So Algorithm III.2 provides a deterministic (given X) but arbitrary choice of Ũ based

on our chosen algorithm for the QR decomposition.

A.2 Validation set approach to Ũ

A validation set approach could provide guidance for selecting a single Ũ with the

largest number of estimated true signals. Algorithm A.1 suggests one way of using
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a validation set approach in this manner. In this algorithm, the knockoff filter is

repeatedly applied to one half of the training data. In each application of the knockoff

filter, a single, random Ũ is generated, W is computed, and variables are selected. In

this case, Ũ is an n/2× p matrix constructed so that ŨᵀX1 = ŨᵀX2 = 0, where X1

and X2 are random row-wise partitions of X. As previously demonstrated, the number

of selected variables will vary across these repetitions, and for each repetition, we can

record the number of selected variables. Finally, we use the Ũ matrix corresponding

to the largest number of selected variables to construct knockoffs and output a final

set of selected variables using X2.

Note that this procedure for computing Ũ seems to violate a guiding principle of

the knockoff filter, which requires that the knockoff matrix X̃ is constructed without

knowledge of Y. Choosing the single Ũ which leads to the largest number of selections

means that it is a function of the partitioned response vector Y1. However, the

final variables selections are obtained by applying the knockoff filter to X2,Y2, the

validation set, thereby ensuring that the knockoffs are constructed independently of

the response.

The simulation results in Figures A.1–A.4 compare this validation set approach to

Algorithms III.3 and III.5 for the fixed (X,Y) pair generated as described in Section

3.3. This validation set approach has very limited power to detect signals, and does

not seem to reduce variation in the selected variable set except to the extent that it

causes the knockoff filter to select zero variables with high probability. The average

behavior of this validation set approach, over repeated sampling of X and Y, was

studied in the simulations presented in Section 3.5.1. In short, the validation set

choice of Ũ seems to reduce the power of the knockoff filter to an unacceptably low

level. While Algorithm A.1 is only an initial attempt at implementing a validation

set approach for selecting Ũ, this approach is not pursued further in this chapter.
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Algorithm A.1 Choose a single Ũ using holdout training set

Require: n× p design matrix, X, response vector Y, integer B
1: Partition X row-wise so that X1 and X2 each have n/2 randomly selected rows

of X
2: Partition Y into Y1 and Y2 corresponding to the same partitions X1 and X2

3: Decompose [X1 X2] = QR (note Q is n/2× 2p)
4: Initialize e← −1 and Ũbest ← NULL

5: for j = 1, . . . , B do
6: Zn

2
×p ∼ N(0, 1) with i.i.d. entries

7: Decompose (I−QQᵀ)Z = QuRu

8: Ũ1 ← Qu

9: Perform Algorithm III.1 (knockoff filter), using Ũ1 in step 3, with X1, Y1 as
inputs

10: if # selected variables > e then
11: e← # selected variables
12: Ũbest ← Ũ1

13: end if
14: end for
15: Perform Algorithm III.1 (knockoff filter) with Ũbest in step 3 and X2,Y2 as inputs

A.3 Geometric alignment between Ũ and Y

Another principle to motivate a choice of a single valid Ũ can be found via a

geometric argument. Recall that in a fixed dataset (X,Y), the selected variables

depend on Ũ only through the cross products
[
X X̃

]ᵀ
Y. Consider the decomposition

Y = YX + YU + YR, (A.1)

where YX ∈ Col(X), YU ∈ Col(Ũ) YR is the remainder, YR = Y −YX −YU , and

Col(A) denotes the column space of A. (By construction, Col(X) is orthogonal to

Col(Ũ).) We can argue geometrically that the effect of Ũ on the selected variables

depends on the relative magnitudes of these three components of Y. First recall that

X̃ can be written as X̃ = XA + B where B = Col(Ũ). If ‖YU‖ is large relative to

‖Y‖, then X̃ contains more of the variation in Y that is not present in the columns

of X; If ‖YU‖ = 0, then the component of Y that is contained in the column space
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of X̃ is fully contained in the column space of X. In this latter case, the knockoff

variables have no information about Y beyond that which is contained in X, and

therefore the estimated effects of X̃ will be small compared to those of X, leading

to anti-conservative variable selection. In the former case, when a larger component

of Y lies in the column space of X̃, there is greater “confusion” between X and the

knockoffs, leading to fewer detected signals. That is, the estimated partial effects

of X̃ on Y, in the presence of X, will be comparable to those of X, leading to few

selected variables.

More concretely, we can analyze

‖ŨŨᵀY‖2

‖Y‖2
=

‖ŨŨᵀε‖2

‖ŨŨᵀY‖2 + ‖(I− ŨŨᵀ)Y ‖2
(A.2)

=
‖ŨŨᵀε‖2

‖ŨŨᵀε‖2 + ‖Xβ + (I− ŨŨᵀ)ε‖2
(A.3)

as a measure of the geometric overlap between Ũ and Y. Since ŨᵀŨ = I, the

orthogonal projection of Y onto Col(Ũ) is given by ŨŨᵀY. Thus ‖ŨŨᵀY‖2
‖Y‖2 measures

the relative magnitude of YU in the decomposition (A.1). Based on the previous

argument, we should expect larger values of this fraction to correspond to very few

selected variables, and near-zero values of this fraction to correspond with a large

number of selected variables. To empirically assess this relationship between ‖ŨŨᵀY‖
‖Y‖

and the number of selected variables, I generated 500 replicates of (X,Y), where X

has independent, mean-zero Gaussian rows, and Y is generated from Y = Xβ + ε,

ε ∼ N(0, I), with n = 5000, p = 100 and |βj| = 3.5 for all nonzero βj. In each

replicate, Ũ was computed using Algorithm III.3. Figures A.10 and A.11 demonstrate

modest negative correlations between ‖ŨŨᵀY‖
‖Y‖ and the number of selections, the false

discovery proportion, and the true positive rate (power). This negative correlation

is stronger with lower population correlation among the features and in less sparse

settings.
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This empirical evidence and heuristic argument associating higher values of ‖ŨŨᵀY‖
‖Y‖

with fewer selected variables in the knockoff filter suggests that Ũ should be selected

to minimize this fraction. However, simply decreasing ‖ŨŨᵀY‖
‖Y‖ as much as possible

could lead to a loss of FDR control. One way to obtain a principled choice of Ũ based

on this metric, but without losing FDR control, is to choose a Ũ so that ‖ŨŨᵀY‖
‖Y‖ is

close to its expected value.

An approximation to E
(
‖ŨŨᵀY‖
‖Y‖

)
can be derived as follows. Assume that Y |X

follows the population model Y = Xβ + ε with ε ∼ N(0, σ2I). Generating Ũ

independently of Y (and conditional on X) with Algorithm III.3, III.4, or III.5, we

have that ε and Ũ are independent. Then

E
(
‖ŨŨᵀε‖2 |X

)
= E

(
E
(
εᵀŨŨᵀε |X, Ũ

))
(A.4)

= E
(

tr
[
ŨŨᵀCov (ε)

])
+ E

(
E (ε)ᵀ ŨŨᵀE (ε)

)
(A.5)

= σ2E
(

tr(ŨŨᵀ)
)

(A.6)

= pσ2, (A.7)

since the trace of a projection matrix is its rank. In addition,

‖Xβ + (I− ŨŨᵀ)ε‖2 (A.8)

= βᵀXᵀXβ + βᵀXᵀε + εᵀXβ + εᵀ(I− ŨŨᵀ)(I− ŨŨᵀ)ε (A.9)

= βᵀXᵀXβ + 2εᵀXβ + εᵀ(I− ŨŨᵀ)ε, (A.10)

so

E
(
‖Xβ + (I− ŨŨᵀ)ε‖2 |X

)
= βᵀXᵀXβ + E (εᵀε |X)− E

(
εᵀŨŨᵀε |X

)
(A.11)

= βᵀXᵀXβ +Nσ2 − pσ2 (A.12)
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Then, making the approximation

E

(
‖ŨŨᵀY‖2

‖Y‖2
|X

)
≈

E
(
‖ŨŨᵀY‖2 |X

)
E (‖Y‖2 |X)

, (A.13)

we have

E

(
‖ŨŨᵀY‖2

‖Y‖2
|X

)
≈

E
(
‖ŨŨᵀY‖2 |X

)
E (‖Y‖2 |X)

=
pσ2

(N − p)σ2 + βᵀXᵀXβ
. (A.14)

This can be used to compute a single Ũ so that the sample fraction ‖ŨŨᵀY‖2
‖Y‖2 is

close to its approximated expected value in (A.14). Suppose there existed Ũ1, Ũ2 so

that Ũᵀ
1Ũ1 = Ũᵀ

2Ũ2 = I and Ũᵀ
1Ũ2 = Ũᵀ

1X = Ũᵀ
2X = 0. Then, for any θ ∈ (0, π),

define

Uθ := sin θŨ1 + cos θŨ2. (A.15)

Then Uᵀ
θUθ = I and Uᵀ

θX = 0, so X̃ = X(I − Σ−1S) + UθC is a valid matrix of

knockoffs. Let PX be the n× n projection matrix onto Col(X), and choose the n× p

matrices Ũ1, Ũ2, Ũ3 so that

Ũᵀ
1Ũ1 = I, Ũᵀ

1X = 0 (A.16)

Ũᵀ
2Ũ2 = I, Ũᵀ

1Ũ2 = Ũᵀ
2X = Ũᵀ

2(I−PX)Y = 0 (A.17)

Ũᵀ
3Ũ3 = I, Ũᵀ

3X = Ũᵀ
3Ũ1 = 0, (I−PX)Y ⊂ Col(Ũ3) (A.18)

In other words, Ũ1 is the usual, arbitrary choice of Ũ in the knockoff construction;

Ũ2 is orthogonal to the complement of Y in Col(X); Ũ3 contains the complement

of Y in Col(X); and both Ũ2 and Ũ3 are orthogonal to Ũ1. On the one hand, if we

used Ũ2 to construct X̃, we will eliminate from X̃ any component of Y that is not

already captured by the columns of X. This should induce less confusion between
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X̃ and X and hence more detected signals (which may be false positives). On the

other hand, using Ũ3 to construct X̃ should increase the overlap between Y and

X̃, leading to greater confusion between X̃ and X and hence fewer detected signals.

The parameterization (A.15) allows for an intermediate choice between these two

extremes. Letting

Uθ2 = sin θ2Ũ1 + cos θ2Ũ2 (A.19)

Uθ3 = sin θ3Ũ1 + cos θ3Ũ3 (A.20)

we can either increase (with Uθ3) or decrease (with Uθ2) the proportion of Y that

overlaps with X̃. For example, taking θ2 = 0 means that
‖Uθ2

Uᵀ
θ2

Y‖2

‖Y‖2 = 0.

Figure A.9 displays
‖Uθ2

Uᵀ
θ2

Y‖2

‖Y‖2 and
‖Uθ3

Uᵀ
θ3

Y‖2

‖Y‖2 as functions of θ2 and θ3, respec-

tively, for two realizations of (X,Y). This illustrates how this measure of the overlap

between Ũ1 and Y can be increased, by interpolating between Ũ1 and Ũ3, or de-

creased, by interpolating between Ũ1 and Ũ2. The two realizations of (X,Y) in

this example illustrate that the realized fraction can be greater than or less than the

large-sample value given in (A.14) or the fraction we would expect based only on the

dimensions of each corresponding subspace, i.e. p
N−p .

Based on these arguments, we can choose a desired value for
‖UθU

ᵀ
θY‖

2

‖Y‖2 and achieve

this value using a grid search over θ ∈ (0, π). Algorithm A.2 describes how to use

a grid search over θ ∈ (0, π) to compute Uθ so that
‖UθU

ᵀ
θY‖

2

‖Y‖2 is equal to the plugin

estimate of (A.14). This choice of Ũ was compared with alternative methods in

the fixed-(X,Y) simulation scenario with n = 5000 and p = 100; Figures 3.3–3.10

present these simulation results, with or without feature correlation, and in a sparse

(k = 10 true signals out of p = 100) and non-sparse (k = 50 true signals out of

p = 100) setting. These results show that computing Uθ to control
‖UθU

ᵀ
θY ‖

2

‖Y‖2 des not

appreciably reduce variation in the number of selected variables or in the frequency
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of selecting null and non-null variables for a fixed (X,Y) pair. The simulation studies

presented below, in which (X,Y) are jointly sampled, this choice of Ũ is shown to

control FDR but to have otherwise similar operating characteristics (power, variation

in the number of selected variables) as the standard knockoff filter with Ũ computed

using an algorithm like III.3.

Algorithm A.2 Control geometric alignment of Ũ and Y

Require: n× p design matrix, X, response vector Y
1: β̂ ← (XᵀX)−1XᵀY
2: σ̂2 ← ‖Y −Xβ̂‖2/(n− p)
3: c← pσ̂2

(n−p)σ̂2+β̂ᵀXᵀXβ̂

4: Ũ1 ←result of Algorithm III.3
5: Construct Zn×p with i.i.d. N(0, 1) entries

6: Perform the QR decomposition
[
X Ũ1

]
= QxuRxu

7: Perform the QR decomposition [Qxu, (I−PX)Y] = QxuyRxuy

8: Perform the QR decomposition (I−QxuyQ
ᵀ
xuy)Z = Q2R2

9: Ũ2 ← Q2

10: Perform the QR decomposition (I−QxuQ
ᵀ
xu)
[
(I−PX)Y, Z[0:(p−1)]

]
= Q3R3

11: Ũ3 ← Q3

12: Define Uθ2 := sin θ2Ũ1 + cos θ2Ũ2

13: Define Uθ3 := sin θ3Ũ1 + cos θ3Ũ3

14: Use a grid search to find θ2, θ3 ∈ (0, π) to minimize

∣∣∣∣‖Uθ2
Uᵀ
θ2

Y‖2

‖Y‖2 − c
∣∣∣∣ and∣∣∣∣‖Uθ3

Uᵀ
θ3

Y‖2

‖Y‖2 − c
∣∣∣∣, respectively.

15: Output Uθ2 or Uθ3 with the smallest minimizer from step 14.
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Figure A.1:
Number of selected variables for each method of generating Ũ with fixed
X,Y and n = 5000, p = 100. Based on 200 knockoff filter replicates,
uncorrelated features, and k = 10 nonzero βj.
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Figure A.2:
Variable-specific selection probability for each method of generating Ũ
with fixed X,Y and n = 5000, p = 100. Based on 200 knockoff filter
replicates, uncorrelated features, and k = 10 nonzero βj. Red triangles
indicate truly non-null variables. Null variables which were never selected
are not displayed.
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Figure A.3:
Number of selected variables for each method of generating Ũ with fixed
X,Y, correlated features, and n = 5000, p = 100. Based on 200 knockoff
filter replicates, autoregressive feature correlation with population pa-
rameter 0.4, and k = 10 nonzero βj.
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Figure A.4:
Variable-specific selection probability for each method of generating Ũ
with fixed X,Y, correlated features, and n = 5000, p = 100. Based
on 200 knockoff filter replicates, autoregressive feature correlation with
population parameter 0.4, and k = 10 nonzero βj. Red triangles indicate
truly non-null variables. Null variables which were never selected are not
displayed.
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Figure A.5:
Number of selected variables for each method of generating Ũ with fixed
X,Y, and n = 5000, p = 100. Based on 200 knockoff filter replicates,
uncorrelated features, and k = 50 nonzero βj.
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Figure A.6:
Variable-specific selection probability for each method of generating Ũ
with fixed X,Y, and n = 5000, p = 100. Based on 200 knockoff filter
replicates, uncorrelated features, and k = 50 nonzero βj. Red triangles
indicate truly non-null variables. Null variables which were never selected
are not displayed.
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Figure A.7:
Number of selected variables for each method of generating Ũ with fixed
X,Y, correlated features, and n = 5000, p = 100. Based on 200 knockoff
filter replicates, autoregressive feature correlation with population pa-
rameter 0.4, and k = 50 nonzero βj.

167



● ●

●

●
● ●

●

●
●

●●●

●●

●

●
● ●●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●
●

●
●

●

●●

●
●

●

●
●●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●●

●

●

●●

●

●●

●● ●

W: lasso coefficients
S: log−determinant

Algorithm A.2

W: lasso coefficients
S: log−determinant

Algorithm III.3

W: lasso coefficients
S: log−determinant

Algorithm III.5

W: lasso coefficients
S: log−determinant

Algorithm III.6
B = 100

W: cross products
S: log−determinant

Algorithm A.2

W: cross products
S: log−determinant

Algorithm III.3

W: cross products
S: log−determinant

Algorithm III.5

W: cross products
S: log−determinant

Algorithm III.6
B = 100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Variable, ranked by selection proportion

S
el

ec
tio

n 
pr

op
or

tio
n 

(o
ut

 o
f 2

00
 tr

ia
ls

)
AR1(0.4) correlated features, effect magnitude 3.5, k = 50 true signals

●
●

●

●
●

●

●

●

●●
●●

●

●● ●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●
●

●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
● ●

●

●

●●

●●

●

●●

●
●

●

●
●●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●
●

●● ●

W: lasso coefficients
S: log−determinant

Algorithm A.2

W: lasso coefficients
S: log−determinant

Algorithm III.3

W: lasso coefficients
S: log−determinant

Algorithm III.5

W: lasso coefficients
S: log−determinant

Algorithm III.6
B = 100

W: cross products
S: log−determinant

Algorithm A.2

W: cross products
S: log−determinant

Algorithm III.3

W: cross products
S: log−determinant

Algorithm III.5

W: cross products
S: log−determinant

Algorithm III.6
B = 100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Variable, ranked by selection proportion

S
el

ec
tio

n 
pr

op
or

tio
n 

(o
ut

 o
f 2

00
 tr

ia
ls

)

AR1(0.4) correlated features, effect magnitude 4, k = 50 true signals

● ●

●

●
● ●

●

●
●

●●●

●●

●

●
● ●●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●
●

●
●

●

●●

●
●

●

●
●●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●●

●

●

●●

●

●●

●● ●

W: lasso coefficients
S: log−determinant

Algorithm A.2

W: lasso coefficients
S: log−determinant

Algorithm III.3

W: lasso coefficients
S: log−determinant

Algorithm III.5

W: lasso coefficients
S: log−determinant

Algorithm III.6
B = 100

W: cross products
S: log−determinant

Algorithm A.2

W: cross products
S: log−determinant

Algorithm III.3

W: cross products
S: log−determinant

Algorithm III.5

W: cross products
S: log−determinant

Algorithm III.6
B = 100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Variable, ranked by selection proportion

S
el

ec
tio

n 
pr

op
or

tio
n 

(o
ut

 o
f 2

00
 tr

ia
ls

)
AR1(0.4) correlated features, effect magnitude 3.5, k = 50 true signals

●
●

●

●
●

●

●

●

●●
●●

●

●● ●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●
●

●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
● ●

●

●

●●

●●

●

●●

●
●

●

●
●●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●
●

●● ●

W: lasso coefficients
S: log−determinant

Algorithm A.2

W: lasso coefficients
S: log−determinant

Algorithm III.3

W: lasso coefficients
S: log−determinant

Algorithm III.5

W: lasso coefficients
S: log−determinant

Algorithm III.6
B = 100

W: cross products
S: log−determinant

Algorithm A.2

W: cross products
S: log−determinant

Algorithm III.3

W: cross products
S: log−determinant

Algorithm III.5

W: cross products
S: log−determinant

Algorithm III.6
B = 100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Variable, ranked by selection proportion

S
el

ec
tio

n 
pr

op
or

tio
n 

(o
ut

 o
f 2

00
 tr

ia
ls

)

AR1(0.4) correlated features, effect magnitude 4, k = 50 true signals

Figure A.8:
Variable-specific selection probability for each method of generating Ũ
with fixed X,Y and n = 5000, p = 100. Based on 200 knockoff filter
replicates, autoregressive feature correlation with population parameter
0.4, and k = 50 nonzero βj. Red triangles indicate truly non-null vari-
ables. Null variables which were never selected are not displayed.
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Figure A.9:
Fraction of Y projected onto Uθ. Each column corresponds to one of
the definitions of Uθ defined in equations (A.19)–(A.20). Each row cor-
responds to a single (X,Y) realization. Dotted horizontal lines are equal

to pσ̂2

(N−p)σ̂2+β̂ᵀXᵀXβ̂
.
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Figure A.10:
Correlation between ‖ŨŨᵀY‖/‖Y‖ and knockoff filter performance
metrics as a function of model sparsity.
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Figure A.11:
Correlation between ‖ŨŨᵀY‖/‖Y‖ and knockoff filter performance
metrics as a function of feature correlation.

171



APPENDIX B

Proofs and Derivations for Chapter IV

B.1 Proof of Theorem IV.1

First note that
∑

i Ui(β̂, α̂) = 0, Ri(1−Ri) = 0, R2
i = Ri and (1−Ri)

2 = 1−Ri.

To simplify notation, we suppress dependence of Xi(a1, a2) and Vi(a1, a2;α
∗) on

(a1, a2). Then, by definition of W̃i(a1, a2),

E
(
W̃i(a1, a2)X

ᵀ
iVi(α

∗)−1(Yi −Xiβ
∗) | Li

)
= E

[
I [A1i = a1]

P (A1i = a1)

(
Ri +

I [A2i = a2]

P (A2i = a2 | A1i = a1, Ri = 0)
(1−Ri)

)
×Xᵀ

iVi(α
∗)−1(Yi −Xiβ

∗) | Li

]
,

(B.1)

and, using consistency assumption (ii)

= E
(

I [A1i = a1]

P (A1i = a1)
RiX

ᵀ
iVi(α

∗)−1(RiYi(A1i)−Xiβ
∗) | Li

)
+ E

[
I [A1i = a1]

P (A1i = a1)

I [A2i = a2]

P (A2i = a2|A1i = a1, Ri = 0)
(1−Ri)

×Xᵀ
iVi(α

∗)−1(Yi(A1i, A2i)−Xiβ
∗) | Li

]
.

(B.2)
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Next note that I [A2i = a2] Yi(A1i, A2i) = I [A2i = a2] Yi(A1i, a2) and, by assumption

(iii), A2i |= Yi(a1, a2) | A1i, Ri for any fixed regime (a1, a2). Let

Q = P (A1i = a1)
−1 P (A2i = a2 | A1i = a1, Ri = 0)−1

. Then

E
(
QI [A1i = a1] I [A2i = a2] (1−Ri)X

ᵀ
iVi(α

∗)−1(Yi(A1i, A2i)−Xiβ
∗) | Li

)
(B.3)

= E
{
QI [A1i = a1]E

(
I [A2i = a2] (1−Ri)X

ᵀ
iVi(α

∗)−1(Yi(A1i, A2i)−Xiβ
∗) | A1i, Ri

)
| Li

}
(B.4)

= E
{
QI [A1i = a1]E

(
I [A2i = a2] (1−Ri)X

ᵀ
iVi(α

∗)−1(Yi(A1i, a2)−Xiβ
∗) | A1i, Ri = 0

)
| Li

}
(B.5)

= E
(

I [A1i = a1]

P (A1i = a1)
E
(
(1−Ri)X

ᵀ
iVi(α

∗)−1(Yi(A1i, a2)−Xiβ
∗) | A1i, Ri = 0

)
| Li

)
(B.6)

Substituting into equation (B.2),

(B.2) =E
(

I [A1i = a1]

P (A1i = a1)
RiX

ᵀ
iVi(α

∗)−1(RiYi(A1i)−Xiβ
∗) | Li

)
+ E

(
I [A1i = a1]

P (A1i = a1)
(1−Ri)X

ᵀ
iVi(α

∗)−1(Yi(A1i, a2)−Xiβ
∗) | Li

) (B.7)

=Xᵀ
iVi(α

∗)−1E (Ri(a1)Yi(a1) + (1−Ri(a1))Yi(a1, a2)−Xiβ
∗ | Li) (B.8)

=0 (B.9)

where (B.8) is obtained from the consistency assumption on Ri and independence of

A1i and R(a1). Thus E (
∑

i Ui(β
∗,α∗)) = 0. Under Assumption (v), we have that β̂

is a consistent estimator of β∗. To derive the asymptotic distribution of β̂, note that

√
N(β̂ − β∗) = −

(
1

N

d
∑

i Ui(β, α̂(β))

dβ

∣∣∣
β=β∗

+ oP (1)

)−1
1√
N

∑
i

Ui(β
∗, α̂(β∗))
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The result follows using similar arguments as those in the proof of Theorem 2 in Liang

and Zeger (1986).

B.2 Generative model for simulations in Section 4.6

This section provides more detail about the generative model used in the simula-

tion studies in Section 4.6.

The potential outcomes were generated from the following piecewise linear model:

Yit(a1, a2) =

θ0 + I [t ≤ κ] t(θ1 + θ2a1) + I [t > κ]κ(θ1 + θ2a1)

+ I [t > κ] (t− κ)(θ3 + θ4a1 + (θ5a2 + θ6a1a2)(1−Ri(a1)))

+ I [t > κ] (t− κ)(ψ(1)I [a1 = 1] + ψ(−1)I [a1 = −1]) [Ri(a1)− P (Ri(a1) = 1 | Li)]

+ θ7Li + γ0i + γ1it+ εit,

(B.10)

where Ri(a1) = I [Yiκ(a1)− θ7Li > c]; Li = Li ∈ {1,−1}; c = 1.1; θ7 = −0.2;

(γ0i, γ1i)
ᵀ ∼ N(0,Γ); εit ∼ N(0, τ 2) with τ 2 = 1; t ∈ {0, 0.5, 1.5, 2, 2.25, 2.5, 3}; and

κ = 2.

Under model (B.10),

Yit(a1, a2)− E (Yit(a1, a2) | Li)

= γ0 + γ1t+ εt

+ I [t > κ] (t− κ)θ5a2 [(1−Ri(a1))− P (Ri(a1) = 0 | Li)]

+ I [t > κ] (t− κ)θ6a1a2 [(1−Ri(a1))− P (Ri(a1) = 0 | Li)]

+ I [t > κ] (t− κ)
(
ψ(1)I [a1 = 1] + ψ(−1)I [a1 = −1]

)
[Ri(a1)− P (Ri(a1) = 1 | Li)] ,

(B.11)
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and we can parameterize this marginal mean model as follows:

E (Yit(a1, a2) | Li) = βᵀXit(a1, a2) = β0 + I [t ≤ κ] t(β1 + β2a1) + I [t > κ]κ(β1 + β2a1)

+ I [t > κ] (t− κ)(β3 + β4a1 + β5a2 + β6a1a2)

+ β7Li,

(B.12)

where βj = θj for j ∈ {0, 1, 2, 3, 4, 7},

β5 =

{
θ5

(
π(1)

2
+
π(−1)

2

)
+ θ6

(
π(1)

2
− π(−1)

2

)}
,

β6 =

{
θ5

(
π(1)

2
− π(−1)

2

)
+ θ6

(
π(1)

2
+
π(−1)

2

)}
,

and π(a1) := P (Ri(a1) = 0 | Li).

Next, we derive the marginal covariance and variance of the repeated measures

outcomes under this generative model. These marginal covariances and variances are

used to calculate the population standardized effect size

d =
E (Yi3(1,−1) | Li)− E (Yi3(−1,−1) | Li)√

1
2
Var (Yi3(1,−1) | Li) + 1

2
Var (Yi3(−1,−1) | Li)

.

Let Wit = zᵀ
itγ + εit and zit = (1, t)ᵀ. Then

Cov [Yit(a1, a2), Yis(a1, a2) | Li]

= zᵀ
itΓzis + τ 2I [s = t]

−
(
C

(a1)
1 (s) + C

(a1,a2)
2 (s)− C(a1)

3 (s)
)

(1− π(a1))E (Wit |Ri(a1) = 1,Li)

−
(
C

(a1)
1 (t) + C

(a1,a2)
2 (t)− C(a1)

3 (t)
)

(1− π(a1))E (Wis |Ri(a1) = 1,Li)

+
(
C

(a1)
1 (t) + C

(a1,a2)
2 (t)− C(a1)

3 (t)
)(

C
(a1)
1 (s) + C

(a1,a2)
2 (s)− C(a1)

3 (s)
)
π(a1)(1− π(a1))

(B.13)
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where

C
(a2)
1 (t) = I [t > κ] (t− κ)θ5a2

C
(a1,a2)
2 (t) = I [t > κ] (t− κ)θ6a1a2

C
(a1)
3 (t) = I [t > κ] (t− κ)(ψ(1)I [a1 = 1] + ψ(−1)I [a1 = −1]).

Note that

E (Wit |Ri(a1) = 1,Li) = E (Wit |Wiκ > c− θ0 − κ(θ1 + θ2a1),Li) ,

(Wit,Wiκ)
ᵀ | Li ∼ N


 0

0

 ,
 zᵀ

itΓzit + τ 2, zᵀ
itΓziκ + Cov(εit, εiκ | Li)

· · · zᵀ
iκΓziκ + τ 2


 ,

and since (Wit,Wiκ)
ᵀ|Li is bivariate Gaussian, E (Wit |Wiκ > c− θ0 − κ(θ1 + θ2a1),Li)

can be computed using the truncated multivariate Gaussian distribution.
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