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ABSTRACT

This dissertation investigates the determinants and consequences of labor mobility across

geographic areas and firms. It is motivated 1) by the singular potential for such mobility

to increase welfare; 2) by troubling macroeconomic declines in labor mobility and business

dynamism in the U.S.; and 3) by recent literature that allows us to better-understand how

differences across firms mediate labor market outcomes.

Its first chapter argues that firm entry and exit play critical roles in determining how

immigrant workers are absorbed into and affect local economies. It first documents a

positive relationship between immigrant workers and business presence, with inflows driving

small-to-medium sized firm creation and reducing exit by older, large firms. It finds that

these responses play a dominant role in immigrant worker absorption, accounting for more

than two-thirds of immigrant-induced job creation. Using observed proxies for productivity,

it then uncovers a critical heterogeneity: while firms are less likely to exit on average,

low-productivity firms are more likely to shut down in response to immigrant inflows. The

resultant increases in creative destruction are driven by immigrant workers, as opposed to

immigrant consumer demand. Placed in the context of a theoretical framework that accounts

for firm heterogeneity, these results imply that firm entry and exit drive local production

responses to immigration, leading to substantially larger estimates of immigrant-generated

economic surplus than canonical models of labor demand.

The second chapter is co-authored with Dhiren Patki. Using linked employer-employee

administrative data from Germany, we find that cohorts entering the labor market during a

recession experience a 4.9 percent reduction in wages cumulated over the first decade of labor

market experience. While 40 percent of the wage loss is due to reductions in employer-specific

pay, we use a revealed preference-based algorithm to show that fully three-fourths of the losses

in employer-specific pay are compensated for by non-pay amenities. The higher non-pay

amenities that we associate with recessionary labor market entrants are consistent with

the view that employers that hire during business cycle downturns exhibit less cyclically

sensitive labor demand and provide greater long-term job security. Our findings show that

the welfare cost of labor market entry during recessions can be less severe than pecuniary

estimates would imply.

xiii



The final chapter is co-authored with Dean Yang. It studies the interplay between

negative shocks in origin countries and migrant networks in destination countries. Specifically,

we examine the impact of hurricanes on a quarter-century of international migration to

the United States and find that hurricanes increase migration to the U.S., with the effect

dominated by working-aged individuals and magnitude increasing in the size of prior migrant

stocks. We provide new insights into how networks facilitate legal, permanent U.S. immigration

in response to origin country shocks, a matter of growing importance as climate change

increases natural disaster impacts.
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CHAPTER I

Immigration and Local Business Dynamics: Evidence

from U.S. Firms

1.1 Introduction

The Census Bureau estimates that by 2030, immigration will overtake natural increase

(births minus deaths) as the primary driver of population growth in the United States.1

A workforce that will increasingly rely on foreign-born workers requires a comprehensive

understanding of how they are absorbed into and ultimately shape local economies.2 Recent

advances to data and theory have dramatically expanded our insight into how this process

occurs on the firm side of the labor market, with a particular focus on the form and choice of

production technique.3 Nonetheless, most of this burgeoning literature has either implicitly

or explicitly restricted its attention to representative firm models of production that, by

definition, do not feature differences across firms in input use or total factor productivity.

Furthermore, the empirical work that has studied individual firm responses to immigration

has largely centered on changes to existing firms in non-U.S. settings.4

In contrast, broader study of the U.S. economy—the largest immigrant worker destination

in the world—finds that firm entry and exit dynamics are crucial drivers of job creation

and productivity growth, particularly when firm entry is accompanied by the exit of less

productive firms.5 Furthermore, immigrant workers appear to be especially active in changing

firm entry and shut down decisions: immigrants have a higher propensity to start businesses

1See Vespa and Armstrong (2018).
2This chapter will use the term workers to encompass both the self-employed and employees.
3See, e.g., Lewis (2005, 2012); Clemens et al. (2017); Dustmann and Glitz (2015); Peri (2012); Mitaritonna

et al. (2017); Lewis (2011); D’Amuri et al. (2010); Peri and Sparber (2009); Gonzalez and Ortega (2011).
4See, e.g., Mitaritonna et al. (2017); Malchow-Moller et al. (2012).
5See, e.g., Foster et al., 2008; Bartelsman and Doms, 2000; Baldwin, 1995.
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than natives6, are relatively more likely to work for new businesses7, and have been found

to prevent establishment exit in non-U.S. contexts.8 When viewed through this lens, the

question of how local economies generate enough jobs to absorb immigrant inflows naturally

leads us to consider firm entry and firm exit. When we accordingly open the door to

differences in productivity and factor use across firms, such entry and exit introduces a new

channel through which immigrants alter a local economy: by changing its firm composition.

In this chapter, I thus argue that immigrant absorption into local labor markets and the

subsequent effects immigrant workers have on local economies are predicated on firm entry

and firm exit. I use several empirical analyses to illustrate this proposition. As a proof of

concept, I first pool together two sources of plausibly exogenous variation using a method

proposed in Dube and Zipperer (2015)—the Mariel Boatlift and the Legal Arizona Workers

Act—and document a causal, positive relationship between immigrant inflows and increased

business presence.

To more fully characterize the sources and consequences of this relationship, I next turn

to a detailed commuting zone-industry-decade panel that utilizes administrative data from

the Census Bureau’s Longitudinal Business Database (LBD) and the universe of survey

responses to Long-Form Decennial Censuses. To resolve endogeneity concerns, I develop a

new instrument for geography-by-industry immigrant presence that exploits data on bilateral

stocks of emigrants in non-U.S. OECD member nations to isolate exogenous migration pushes

from sending countries. I then use previous compatriot locational choices to distribute pushed

immigrants into specific commuting zones, and compatriot industry choices in other Census

regions to distribute pushed immigrants into specific industries. I once again find a robust

positive effect of immigrant inflows on firm presence within commuting zone-industry pairings

over time. Each immigrant added roughly 0.05 additional firms to the commuting zone and

industry in which they worked in the decades spanning 1980 through 2010, driven by the

entry of small-to-medium sized firms and the prevention of exit among large, older firms.

These margins are at the crux of two novel empirical results on immigrant absorption

in U.S. economies. First, firm entry and the prevention of firm exit account for more than

two-thirds of immigrant-induced job creation, while the expansion of continuing firms plays

a minimal role over the span of a decade. Second, the prevention of firm exit, on average,

masks a key moderator: using a set of productivity correlates and following a panel of over

four million firms over time from 2000 to 2010, I find that increased exposure to immigrant

workers culls lower-productivity firms from the market while making higher-productivity

6See, e.g., Borjas (1986); Fairlie and Lofstrom (2015); Kerr and Kerr (2018); Hunt (2011).
7See, e.g., Kerr and Kerr (2016).
8See, e.g., Mitaritonna et al. (2017).
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firms far less likely to shut down. These results suggest a productive reallocation through

creative destruction. A second panel that follows over 500,000 firms covered by the 2007

Survey of Business Owners adds nuance to this primary finding: shut-down probabilities

in response to immigrant inflows are lower for all high-productivity firms, regardless of

ownership nativity; however, among lower-productivity firms, those owned by natives are

much more likely to shut down than those owned by immigrants. These results are highly

suggestive of ties between immigrant entrepreneurs and employees.

In order to synthesize these results and evaluate their consequences in general equilibrium,

I develop a model of the U.S. economy that incorporates elements from workhorse labor and

trade models (e.g., Melitz, 2003; Ottaviano and Peri, 2008). The production side of the

economy features fixed operating costs and entrepreneurs with heterogeneous ability while

the consumption side demands variety, giving rise to a non-trivial productivity distribution

across firms. The production function allows for imperfect substitutability across immigrant

and native workers within the same education group. In the spirit of Bustos (2011), I then

incorporate another, crucial heterogeneity: some firms pay additional fixed costs to access

a technology that allows them to better utilize immigrant employees. Because these firms

must pay an additional cost, they are positively selected on productivity. When immigrant

exposure increases, these immigrant-heavy firms see larger reductions in labor costs than

their lower productivity, immigrant-light counterparts. The resulting increase in competition

forces the lowest productivity firms to shut down. I show that the effect of immigration on

native welfare—the “immigration surplus”—in this model hinges on firm entry and firm

reallocation. Immigrant-induced changes to the productivity composition and mass of firms

generate first-order welfare benefits. In comparison, second-order effects that also arise in

canonical, representative firm models of production are relatively muted.

The rest of this chapter is organized as follows: Section 1.2 provides a brief literature

review. Section 1.3 documents the positive relationship between immigrant inflows and

increased business presence and culminates by showing how this relationship drives immigrant

absorption. Section 1.4 analyzes firm shut down decisions, stratified by correlates of initial

firm productivity. Section 1.5 synthesizes the results from Sections 1.3 and 1.4 and discusses

welfare implications using a theoretical model. Section 1.6 concludes.

1.2 Related Literature

The empirical analyses presented in this chapter add to a growing literature that utilizes

advances in data availability to study firm-level responses to immigration. Three important,

related papers contain results regarding the effect of immigration or foreign-born workers
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on the number of establishments in local labor markets. Olney (2013) presents evidence

that low-skilled immigrants generate increased establishment presence in the 30 largest U.S.

metropolitan areas using a yearly panel that covers 1998 through 2008. These findings

are consistent with those presented in Section 1.3, and help motivate the expanded set

of empirical analyses I present below. Section 1.3 documents a broad-based relationship

between immigrant workers and net firm entry, including in non-tradable industries where

Olney (2013) finds no effect. Beerli and Peri (2015) and Ruffner and Siegenthaler (2016)

both find that the abolition of restrictions on cross-border commuters in Switzerland led to

increased establishment presence in areas most affected by the policy. Unlike this study, the

workers they analyze are not immigrants since they continue to live in foreign countries and

were mostly high-skilled. Nonetheless, their results illuminate another context in which the

effect of foreign workers on establishment creation is not likely due to consumer demand,

given that they still live abroad. This chapter makes a similar argument regarding inflows

of immigrants into the U.S. that are relatively low-skilled.

Two studies utilize employer-employee linked data to study how firms mediate and are

ultimately affected by immigrant absorption. Dustmann and Glitz (2015) use employer-employee

linked data from Germany to test the importance of alternative immigrant absorption

mechanisms. As in this chapter, they focus on adjustment mechanisms other than wage

changes. They find that 15 percent of immigrant absorption in the tradable sector can

be accounted for by net firm creation. This result provides important motivation for the

decomposition exercise presented in Section 1.3.5, though results are not directly comparable

because my analysis includes non-tradable industries, is conducted fully within-sector, and

takes place in the U.S. Mitaritonna et al. (2017) study the effect of immigration on existing

firm productivity in France. They find that exposure to immigrants increases firm productivity

and decreases the probability of firm exit, the latter of which is also found in Section 1.4

here. However, Mitaritonna et al. (2017) do not find that exit prevention is stratified

by firm productivity. Once again, this discrepancy may be caused by their focus on the

manufacturing sector, differences between the French and U.S. economies as a whole, the

fact that immigrant inflows were skill-intensive in their setting, or differences in how initial

firm productivity is measured. Future work reconciling these differences will help clarify the

external validity of the results contained in this chapter.

Two aforementioned papers are also related to Section 1.4. Peri (2012) analyzes a

state-decade panel and finds that immigrant inflows into the workforce generate increases

in total factor productivity, resulting in an immigration surplus that is augmented by

endogenous technological change. At least half of this technological change is mediated

by task reallocation and increased specialization by native workers in response to immigrant
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inflows. In conjunction with the aforementioned literature on the importance of firm entry

and exit to productivity gains, the empirical results presented in this chapter suggest that

some of this task specialization may occur through reallocations that are enabled by firm

entry. Hong and McLaren (2015) find that immigrant inflows lead to spillover job creation—specifically,

that each immigrant generates 1.2 jobs in local labor markets that they arrive in. They also

find that effects are primarily driven by the nontradable industries, which leads them to

conclude that immigrant consumer demand is responsible for local spillover job creation. In

contrast to their motivation (but not their results), my empirical specification attempts to

control for the effect of immigrant-specific consumer demand, instead focusing on adjustments

to immigration that are made on the supply side of the product market.

In general, my results also suggest that entrepreneurship plays an important mediating

role in how immigration affects a local economy’s dynamics. This notion is broadly in line

with Beaudry et al. (2018), who reintroduce the importance of entrepreneurship to labor

demand using a search theoretic framework. It also relates to recent work by Karahan et al.

(2019) and Hopenhayn et al. (2018), who model and test for the importance of population

growth declines in explaining declining entrepreneurship in the U.S. economy. The results

contained in Section 1.3.1 imply that immigration can help alleviate the declining start-up

rate simply by replenishing population growth. However, this chapter’s focus is on the

unique extensive margin labor demand responses to immigration shocks, motivated by unique

features that immigrants bring to local economies. For example, results in Section 1.3.4

indicate that immigrant inflows increase firm presence, even when controlling for overall

employment growth. Additionally, results in Section 1.4 imply that immigrant-owned firms

benefit the most from access to immigrant employees, consistent with previous evidence

that immigrant employees disproportionately work at immigrant-owned firms (Garcia-Perez,

2009). This chapter is thus also related to a budding literature on immigrant entrepreneurship

in general (Kerr and Kerr, 2016, 2018; Fairlie and Lofstrom, 2015), which has recently

broadened its previous focus from only the high-tech sector and the sciences (e.g., Kerr 2013;

Hunt 2011; Hunt and Gauthier-Loiselle 2010; Peri et al. 2015; Kerr et al. 2016). However, as

discussed in Section 1.3, the magnitude of the effect of immigrant presence on firm presence

means that immigrant entrepreneurship alone cannot be the only mechanism. Thus, this

chapter also relates to literature on how the presence of immigrant workers can spur native

entrepreneurship (e.g., Duleep et al., 2012).

Section 1.5 develops a theoretical model in which heterogeneous firms distinguish between

immigrant and native workers. Simply allowing for these heterogeneities clarifies the large

role individual firms play in determining the effects immigrant workers have on local economies.

In particular, increased firm presence benefits native consumers by increasing product variety,
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and reallocation from less to more productive firms (through culling of the former and entry

by the latter) reduces prices. Seminal work by George Borjas (see, e.g., Chapter 7 in Borjas,

2014) motivated these “immigrant surplus” calculations—where immigrant surplus is defined

as the effect of immigration on native welfare. As in his calculations, immigrants in my model

generate increases in average native welfare when they arrive with a different skill mix than

the incumbent population. Ottaviano and Peri (2012), meanwhile, show that immigrants can

further increase native welfare when they are imperfect substitutes in production for native

workers of the same skill and experience. I show that both of these results are amplified

when we account for heterogenous firm responses. Waugh (2017) also studies firm dynamics

in response to immigration in a model with monopolistic competition. While his focus

is high-skilled immigration and the H1-B visa program, he similarly finds that immigrant

inflows result in net firm creation. However, the mechanisms through which this occur

are increased scale and an endogenous relationship between productivity and high-skilled

labor. Motivated by Bustos (2011)—who introduces endogenous technological change to

the Melitz framework by allowing a subset of firms to pay a higher fixed cost to access a

better production technology—and Blaum et al. (2018)—who show how heterogeneity in

imported input use can dramatically alter the effect of shocks on firm prices—I instead

allow for heterogeneity in the ability of firms to utilize immigrant labor. This introduces an

alternate channel through which immigrants spur net firm creation and increase productivity.

Resulting price decreases that increase consumer welfare have been studied by Cortes (2008)

(through a wage reduction channel) and di Giovanni et al. (2014) (through an increased

variety channel). The productive reallocation channel is a novel addition to this theoretical

literature.

1.3 Immigration, Firms, and Local Labor Markets

A bevy of previous literature indicates that firm entry is integral to job creation in

the overall U.S. economy (e.g., Decker et al., 2014), and that immigrant workers—both as

entrepreneurs and employees—tend to be over-represented in new firms (e.g, Kerr and Kerr,

2016). This section probes the relationship between immigrants and firm presence, then

details its characteristics and its importance to immigrant-induced job creation.

1.3.1 Evidence from Case Studies

In order to establish a causal empirical relationship between immigration and business

presence, I separately analyze, then pool together, two well-known case studies from the

immigration literature—the 1980 Mariel Boatlift in Miami and the 2008 enactment of the

6



Legal Arizona Workers Act (LAWA). The structure of the analyses presented in this sub-section

can be thought of as mimicking an indirect least squares approach to instrumental variable

estimation. In each case, I establish a “first stage,” in which an event brought an economically

significant inflow (or outflow) of immigrants into (or out of) a local geography, either using

existing estimates in the literature or through my own estimation. I then estimate “reduced

form” effects of these events on the counts of establishments in those geographies using the

Synthetic Control Method (SCM) (Abadie et al., 2010). Finally, using a pooling method

proposed by Dube and Zipperer (2015), I combine the case studies and generate harmonized

estimates of the dynamic effects of immigration on net firm presence. The case studies that

I focus on broadly represent two distinct push factors for immigration that are common in

the U.S.—shocks originating in sending countries and policies meant to deter undocumented

immigration. Continuing the analogy to instrumental variables, these case studies will thus

estimate different local average treatment effects, and pooling them together will generate

an average of these different effects.

Despite its numerous benefits, because of the wide range of covariates that can be used

in a given SCM model, the methodology can be susceptible to cherry-picking (Ferman et al.,

2016). In order to circumvent these concerns, I choose the predictor variables for each

synthetic control model for establishments per worker using a cross-validation procedure,

also proposed by Dube and Zipperer (2015). Briefly, the procedure selects the set of

control variables that best predicts donor unit outcomes in the post-treatment period.9

The utility of this methodology can be seen in selection of sector shares for inclusion

in the model. Geographic areas, including Arizona, that had high concentrations in the

construction industry because of the housing bubble were harder hit by the Great Recession.

These shares, then, serve as key control variables because they ensure that Arizona and its

metropolitan areas are compared to other areas that were hard-hit by the Great Recession for

the same underlying reason. Additional outflows of immigrants that occurred in Arizona after

2008, relative to these other hard-hit areas, are then more credibly claimed to be the result

of LAWA rather than the Great Recession. The cross-validation procedure selects sector

shares for inclusion precisely because they help accurately predict post-recession (post-2008)

local economic paths in donor geographies. Section A.1.1 provides a more detailed overview

of SCM, while Section A.1.2 provides additional details of the cross-validation procedure.

9 “Donor” units are all geographies other than the treated unit. Each receives a non-negative weight.

The weighted sum of donor unit outcomes, using these weights, is the “synthetic control” outcome.
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1.3.1.1 Background and Data

The first case study I examine is the Mariel Boatlift, representing variation generated by

push factors that occur abroad. The Mariel Boatlift saw roughly 125,000 Cubans immigrate

to Miami between May and September of 1980 after Fidel Castro announced that he would

open the ports of Mariel, Cuba to those seeking to leave the country. Beginning with

the seminal work of Card (1990), the literature has gone back and forth regarding the

consequences of this labor supply shock on the wages of substitutable workers in Miami,

where a majority of “Marielitos” ended up settling (Peri and Yasenov, 2015; Borjas, 2017;

Clemens and Hunt, 2017). Taking advantage of this existing literature, I rely on previous

estimates of the size of the Mariel inflow shock rather than estimating it myself: the “first

stage” effect of the Mariel Boatlift was to increase Miami’s foreign-born workforce by 6.6

percent relative to initial employment (Card, 1990). However, I follow a more recent

literature in examining how the Mariel Boatlift affected alternate adjustment channels,

beyond wage changes (e.g., Anastasopoulos et al., 2018). I seek to extend this work by

examining its effect on establishment presence in the Miami metropolitan statistical area.

The second case study I consider is the introduction of the Legal Arizona Workers Act

(LAWA) in 2008, representing variation generated by sub-national legislation meant to curb

the presence of undocumented immigrants in local areas. LAWA attempted to achieve this

aim by requiring all employers to verify the eligibility of their new hires using the national

E-Verify system. Bohn et al. (2014) previously studied LAWA, and found that it produced a

robust and statistically significant drop in the number of Hispanic residents with less than a

high-school degree in Arizona—the group most likely to contain undocumented immigrants.

Unlike the Mariel case, I estimate the “first stage” affect of LAWA on overall immigrant

presence since direct analogs have not been previously estimated.10 This first stage model is

estimated using the same covariates selected for the “reduced form,” establishment outcome.

In order to keep geographies consistent across cases, I specifically study Arizona’s largest

metropolitan statistical area, Phoenix-Mesa-Scottsdale, and drop the remaining Arizona

cities from the analysis. Full results for the Arizona case at the state level can be seen in

Section A.1.4.

The data for the case study analyses come from IPUMS-USA and the County Business

Patterns. Using IPUMS-USA (Ruggles et al., 2019a), I construct measures of immigrant

10Bohn et al. (2014) study the change in the proportion of residents that are Hispanic with less than
a high-school degree—a proxy for the proportion of residents that are undocumented. In order to retain
consistency with the Mariel case and with the independent variable studied in Section 1.3, I study the change
in the overall immigrant workforce relative to 2007 employment in Arizona. Nonetheless, the results of this
exercise are wholly consistent with Bohn et al. (2014)—both find that LAWA generated a severe drop in
immigrant presence.

8



presence for 1980, 1990, and 2001 through 2004 at the state level and 2000 and 2005 through

2014 for both the state and MSA level. Data for the years 1980, 1990, and 2000 are from

public-use Decennial Long-Form Census microdata, while data for 2005 onward are from

public-use American Community Survey microdata. The County Business Patterns (CBP)

contains counts of establishments by industry and size at the county level going back to the

1960s. For consistent coverage, I use the CBP from 1970 forward. The CBP also generates

key control variables: log employment as a proxy for market size and sector shares. These

data were accessed directly from the Census Bureau and from the University of Michigan’s

Inter-university Consortium for Political and Social Research (ICPSR). These counts, divided

by employment in the year before treatment (t∗ − 1) serve as the outcomes in the analysis

described below.

1.3.1.2 Individual Case Results

Figure 1.1 shows standard SCM results for the two events examined in this chapter.

Along with plotting the treated unit’s outcome (ygt,treated for a given outcome variable y

and treated geography g) and the synthetic control outcome (ygt,synthetic) in the top row, the

bottom row also shows the evolution of the difference-in-differences estimates between the

two ([ygt,treated − ygt,synthetic] − [yg,t∗−1,treated − yg,t∗−1,synthetic], where t∗ − 1 is the year before

treatment) compared to this same difference for each potential donor unit, after constructing

a “placebo” synthetic control for each donor unit in its bottom row. Comparing the thick

black line (which plots the evolution of the treated unit) to the gray lines (one for each donor

unit) generates a visual test of how unique the treated unit is in its behavior both before

and after the event. The predictor variables include every-five-year pre-treatment averages

of the outcome11, along with log employment, sector shares, the under-40 year-old share, the

self-employed share, and the college share at time t∗−1. These variables were selected using

the cross-validation procedure described above.

As found in Bohn et al. (2014) for Arizona, Phoenix shows a stark decrease in its

immigrant workforce after the passage of LAWA in Figure 1.1. This is true both for the

state as a whole and for its largest metropolitan area, Phoenix-Mesa-Scottsdale.12 Note

that immigrant workers can be employees or self-employed, so this outflow captures actual

decreases in the number of immigrants relative to the counterfactual, not just the also-sizable

response of switching to self-employment documented in Bohn and Lofstrom (2012).

11i.e., 1970-1974 and 1975-1979 for Miami and 1970-1974, 1975-1979,...,1995-1999, and 2000-2007 for
Phoenix/Arizona.

12See Figure A.1 for Arizona as a whole. Results do not change qualitatively when considering
Phoenix compared to Arizona as a whole. From this point forward, I will use “Phoenix” and
“Phoenix-Mesa-Scottsdale” interchangeably.
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For the Phoenix cases, I define

δ1S ≡ (Itreated,t∗+5 − Isynthetic,t∗+5)− (Itreated,t∗−1 − Isynthetic,t∗−1)

where Igt is the immigrant worker count in year t and geography g divided by the overall year

t∗ − 1 worker count in g. I use five years later as a benchmark to define permanent changes

to the labor force induced by LAWA and to retain consistency with similar estimates for the

Mariel Boatlift in Card (1990). For Phoenix, Table 1.1 shows these estimates along with

“empirical” p-values, generated after conducting exact inference based on the rank of the

δ1S for the treated unit relative to the rank of the same parameter estimated after creating

a synthetic control for all donor units (see Abadie et al., 2010 for details of this inference

procedure). This manner of inference formalizes the aforementioned visual placebo tests in

the bottom rows of Figures 1.1.

Miami’s first stage is not included in Figure 1.1 because the Mariel Boatlift occurred

before yearly estimates of immigrant populations are available for the U.S.13 However, as

mentioned above, the number of Marielitos and total employment in Miami in 1979 are

well-documented in Card (1990). These allow me to construct an estimate of δ1S for Miami,

shown in Table 1.1. As a numerator, I use Card’s estimate that the Mariel Boatlift generated

a permanent increase of 45,000 foreign-born workers in Miami. As a denominator, I use his

tabulated estimate of the 16-61 year-old Miami labor force in 1979, 678,200.14 Comparing the

first column in Figure 1.1 to the second two columns reveals that both Miami and Phoenix

appear to feature a positive relationship between firm presence and immigrant inflows. This

is despite the fact that the origins of these inflows are substantively different, as described

above.

1.3.1.3 Pooling Cases

Despite the suggestive nature of the point estimates, the reduced form results presented

in the second and third columns Figure 1.1 come from distinct first stages—both in terms of

size and sign. In order to harmonize these analyses and double my statistical power, I pool

cases and conduct an exercise similar to two-stage least squares. This approach is motivated

by Dube and Zipperer (2015), who pool SCM cases to study the effects of minimum wage

changes. As a first and aforementioned step, I focus on the largest metropolitan area in

Arizona—Phoenix—rather than the state as a whole and drop the other Arizona cities from

13Peri and Yasenov (2015), for example, use the “Hispanic” variable in the CPS to get around this.
14Note that in Card (1990), Miami is only defined as Miami-Dade County, and both the numerator and

denominator here reflect that county only. My outcome and control variables include Ft. Lauderdale and
West Palm Beach—the entire Miami commuting zone.
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the analysis.15 This harmonizes the geographies being studied to the MSA level while keeping

the number of events being studied to two.

I then define

δRFt ≡ (ytreated,t − ysynthetic,t)− (ytreated,t∗−1 − ysynthetic,t∗−1)

where ygt stands for the number of establishments in year t and geography g divided by

year t∗− 1 employment in g. Where δ1S can be thought of as a “first stage” in instrumental

variable parlance—the causal effect of a given event on immigrant inflows five years after—we

can similarly think of δRFt as a “reduced form”—the causal effect of that same event on net

establishment entry in year t.

I can then utilize the indirect least squares formula and define

βet ≡
δRFt
δ1S

where e stands for a given event (i.e., e ∈ {Mariel Boatlift,LAWA}). Then, following Dube

and Zipperer (2015), I estimate an average across events to recover a single estimate of the

effect of immigrant inflows on net firm creation in year t

βt ≡
1

E

∑
e

βet

where E is the total number of events (E = 2 here). I estimate βt for t ≤ 5 to retain

consistency with δ1S and to avoid confounding factors that can arise over longer horizons.

The interpretation of β5 is then the number of firms associated with each exogenously pushed,

permanent immigrant over the five year period after the initial shock. β1 through β4 show

us how the generation of β5 evolves.

As described above, individual SCM results generally utilize exact inference based on

the rank of the difference-in-difference estimator for the treated unit relative to the rank of

the same parameter estimated after creating a synthetic control for all donor units. This

percentile rank has a uniform distribution, enabling simple calculation of empirical p-values.

Dube and Zipperer (2015) extend this concept to pooled case studies, where inference of the

mean of these difference-in-difference estimates (such as βt) estimated by SCM is facilitated

by the fact that the sum of uniform random variables has a known (Irwin-Hall) distribution.

Further details on inference used in this section can be seen in Appendix Section A.1.3 and

15An alternate strategy is to expand our focus from Miami to the state of Florida and pool case studies
at the state level. The results from this pooling exercise can be seen in Section A.1.4.
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Dube and Zipperer (2015).16

The primary result of this harmonized, pooled SCM exercise at the metropolitan level

can be seen in Figure 1.2. Pooled estimates from Miami and Phoenix in pre-treatment

years hover around and are not statistically distinguishable from zero, passing the standard

event study pre-trends test. Five years after the immigration shock, the estimated effect of

immigrant inflows on establishment presence is roughly 0.08. This number is economically

meaningful: if we were to apply it to overall immigrant inflows into the U.S. between 1980 and

2010, it would indicate that immigrants were responsible for 40 percent of net establishment

creation in that period despite only being responsible for 30 percent of net workforce growth.

As expected, this number is also greater than the estimated effects found below in Section

1.3, where any effects of consumer demand are limited by comparing across industries within

commuting zones. However, it is strikingly similar to estimates in Section 1.3 that do not

control for consumer demand. Unlike the decade-by-decade analysis featured in Section

1.3, however, Figure 1.2 also sheds light on the dynamic responses of local labor markets

to immigration shocks. These responses start relatively rapidly, but continue to show an

upward trend throughout the analysis window.

1.3.1.4 Discussion

The results in this section imply a causal link between immigrant inflows and establishment

presence. They also raise a new set of questions regarding its nature. In particular, that

more immigrants lead to more firms may be the result of increased overall consumer demand,

immigrant-specific consumer demand, general labor cost reductions, or immigrant-specific

characteristics from the supply side of the product market. Due to data limitations, they

are also unable to shed light on whether the link between immigration and firm presence

comes from firm entry, the prevention of firm exit, or a combination of the two.17 Thus,

while the results contained in this section provide clear identification, they ultimately serve

16Note that I only use δ1S as a scaling factor here—I do not account for variance in its estimation in the
pooling exercise. The confidence intervals should be understood as only applying to the reduced form.

17Previous drafts of this chapter used the U.S. Census Bureau’s Business Dynamics Statistics (BDS) at
the metropolitan statistical area (MSA) level for this analysis. The BDS has substantial advantages over the
CBP: it counts firms as well as establishments, and counts firm entry and exit separately, allowing researchers
to study the flows that change the firm stock. However, two disadvantages regarding the Miami case study
render it currently ill-suited for use here. First, the synthetic control method is suited for cases with many
pre-treatment years, whereas the Mariel Boatlift occurred in 1980 and the BDS starts in 1977. Second,
the BDS appears to have a significant discrepancy with the CBP regarding establishment and employment
counts for the Miami MSA. In 1980, the BDS measures 524,350 employees, whereas the Decennial Census
measures 1,057,240 and the CBP measures 982,983. Future drafts plan to resolve this discrpenacy and
combine information from the CBP and BDS to both give the SCM enough pre-treatment years to properly
find a synthetic control unit for Miami, and to be able to take advantage of the rich data contained in the
BDS.
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more as a proof of concept. The rest of this section, then, utilizes detailed data to probe

1) whether the effect found here is broad-based beyond the specific cases of Arizona and

Miami; 2) whether some of it can be accounted for by the effect immigrants have on the

production side of the economy, as workers and entrepreneurs as opposed to as consumers;

3) its heterogeneous nature in terms of firm age, size, and other characteristics; and 4) how

much it matters for immigrant absorption.

1.3.2 A Broader View: Data and Sample

These further analyses are facilitated by access to confidential data from the U.S. Census

Bureau’s Longitudinal Business Database (LBD), which contains survey responses that are

mandated by law from each U.S. non-farm, employee-hiring, private-sector establishment.

Establishments are assigned unique, consistent identifiers that can be linked over time to

create a true panel. Crucially, the LBD also contains unique firm identifiers, which allows me

to aggregate establishments to their owning firms. The focus on firms is distinct from a focus

on establishments because it carries the possibility of a new “variety” from the perspective of

the consumer and an additional outside option from the perspective of a worker.18 Fort and

Klimek (2018) provide consistent North American Industrial Classification System (NAICS)

codes over time for these firms which I then map to industry groups described below. This

facilitates within-industry analyses that more credibly isolate the effect of immigrant workers

on firm entry and exit decisions.

The LBD allows me to go beyond the publicly-available, overall counts of establishments

in a given geography—studied in Section 1.3.1—by allowing for firm counts within geography

and industry group by various firm characteristics. The most important of these characteristics

is firm age. Haltiwanger et al. (2013) find that much of the public attention paid to small

businesses and their role in job creation should be transferred to young businesses, which

are generally but incidentally small. Furthermore, as documented in Decker et al. (2014),

new firm creation also appears to play a particularly crucial role in both job creation and

productivity. That the longitudinal linkages in the LBD facilitate the construction of within

sector-geography firm counts by age bin allows me to understand whether immigrant inflows

are preventing continuing firm deaths, spawning new (under 10 years of age) firm activity,

or both. In addition, the LBD also allows for within industry group-geography firm counts

in size-by-age bins. These splits facilitate a more complete characterization of the increased

firm presence that arises with immigrant inflows and lead to specific hypotheses regarding its

consequences that are tested in Sections 1.3.5 and 1.4. A firm is counted in a given commuting

18For additional reasons to favor the study of firms over establishments in a similar context, see
Haltiwanger (2015).
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zone and industry if it owns at least one operating establishment in that commuting zone

and industry. This means the same firm can be counted multiple times, if it operates in

multiple locations and/or industries.

In order to study the effect of immigrant presence on these outcomes, I also exploit

restricted-access U.S. Census Bureau demographic data from the 1980, 1990, and 2000

Long-Form Decennial Censuses and the 2005 through 2012 American Community Survey.

These data allow for unusually precise measures of immigrant inflows, not just into geographies,

but into relatively detailed industry groups within geography by country of origin. These

elements are crucial to the identification strategy presented in Section 1.3.3. Because industry

classifications differ between the Census and NAICS, I construct aggregated industry groups

using the 1990 Decennial Census industry codes as a bridge between Census industry codes

in other years and 3-digit NAICS codes contained in the LBD.19 In some cases, the 1990

industry classification corresponds to more than one 3-digit NAICS code, and in some cases a

3-digit NAICS code corresponds to more than one 1990 industry classification. The industry

groups I use therefore generally represent the smallest possible mutually-exclusive sets of

industry classifications.20 Some additional aggregations are made to ensure that industry

groups do not vary excessively in size. The agriculture, mining, and public sectors are

dropped from the analysis due to relatively less reliable coverage in the LBD. The final set

of industry groups can be seen in Table 1.4.

The analyses presented in Section 1.3.4 and Section 1.4 are thus based on immigrant

exposure in commuting zone-industry pairs over time, where industry is defined in Table 1.4.

Commuting zone groupings are provided by David Dorn, as used in Autor and Dorn (2013).

In order to limit the impact of measurement error and take full advantage of the precision

allowed for by the restricted-access demographic data, I make two sample restrictions.

First I keep commuting zone-industry pairs with at least 100 workers in 1980. Second, I

regress LBD-measured employee counts on measured private sector employee counts from

the demographic data across decades at the commuting zone-industry group level. These two

measures should correspond closely, and outliers indicate reason for caution in combining

the data sources for further regression analysis. I thus eliminate commuting zones-industry

pairs with maximum squared residuals (across decade) above the 75th percentile.

19Crosswalks provided by IPUMS-USA between the 1990 and other Census year classifications, as well as
between the 1990 Census industry classifications and NAICS codes, were crucial to this process.

20For example, 1990 Census Industry classification code 132 is “Knitting mills” and corresponds to NAICS
Codes 315 and 313. However, NAICS code 313 also covers “Yarn, thread, and fabric mills,” which is
1990 Census Industry classifiction code 142. Additionally, NAICS code 315 also includes manufacturing of
“Apparel and accessories other than knitting.” Manufacturing of apparel and accessories, knitting mills, and
yarn, thread, and fabric mills are therefore all covered in the same industry grouping in my analysis.
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1.3.3 A Broader View: Identification

The primary specification for the analyses in Section 1.3.4 is

∆ygkt = α + β (∆Igkt) + ΓXgkt + αgt + αkt + εgkt (1.3.1)

where g indexes a commuting zone, k indexes an industry group21, t indexes a year, and

the ∆ operator represents a ten-year change within a commuting zone and industry group

(change within gk). For example, in Columns 2 and 3 of Table 1.5, ∆ygkt is the change in firm

presence in commuting zone g and industry group k during a given decade, divided by the

start-of-decade workforce in gk. The independent variable of interest, ∆Igkt, is the change

in immigrant worker stock in gk between year t − 10 and t, divided by the start-of-decade

workforce in gk. In that specification, the coefficient of interest β measures the number of

firms created, on net, per immigrant—the same interpretation as the results from Section

1.3.1. Xgkt is a vector of control variables that can include 1980 commuting zone-industry

characteristics interacted with year dummy variables and a Census region-industry-year fixed

effect. The analyses covered by this specification span three decades (1980-2010), in which

there were large immigrant inflows to the U.S., and covers nearly the entire geography of

the U.S. (more than 700 commuting zones). Thus, it dramatically expands on the external

validity and policy relevance of the results found in Section 1.3.1.

Even with the rich fixed effect structure contained in Equation (1.3.1), however, endogeneity

concerns regarding immigrant industry choices within geographies and geographical choices

within industry remain. Immigrant employees, for example, may choose to work in booming

industries, generating biased estimates of β. Immigrant employees may also be more adept

than native workers at locating to areas that are booming, as found in Cadena and Kovak

(2016), even if they work in the same industry. Meanwhile, if immigrant entrepreneurs are

attracted to geographies where they face less competition or if immigrant employees are

linked to large firms in more concentrated markets, ordinary least squares (OLS) estimates

of β with firm presence as an outcome may contain a downward bias. Measurement error

may also play a role here, even with our sample restrictions, given that immigrant inflows can

be small (and thus estimated from relatively few unweighted sample observations) within

commuting zone-industry group and that Equation (1.3.1) is a panel model. This could

generate substantial attenuation bias in any OLS estimate of β. In short, even in a relatively

saturated model, isolating exogenous variation that pushes immigrants into commuting

zone-industry pairings substantially strengthens causal interpretation of β at the cost of

21When noted, k may index a 1-digit SIC Sector. However, when not noted, it references the industry
groups listed in Table 1.4.
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reducing estimate precision.

A standard shift-share instrument for immigrant stock Igt in a panel with commuting

zone-year observations would take the following form:

zgt ≡
1

Eg,1980

∑
o

πgo,1980 × Io(−g)t

where 1980 serves as the base year and o indexes a worker’s origin country. πgo,1980 is the

share of origin country o’s stock of immigrants in 1980 that was located in commuting zone

g, Io(−g)t is the overall stock of immigrants from country o in year t for all commuting zones

other than g, and Eg,1980 is the 1980 workforce in commuting zone g. ∆zgt would then serve

as an instrument for ∆Igt, the overall change in immigrant presence in commuting zone

g between t − 10 and t, by distributing immigrant inflows to commuting zones based on

network effects operating through initial stocks πgo,1980.

Previous literature has recognized that replacing ∆Io(−g)t with variables that capture

exogenous push factors from sending country o in ∆zgt can make the exclusion restriction

more plausible. This notion accords with recent work by Borusyak et al. (2018), who

demonstrate that when shift components are as good as randomly assigned conditional on

shares, shift-share instruments do not violate the exclusion restriction. Llull (2017) thus uses

conflict, natural disasters, changes in per capita income, and changes to political regimes

as aggregate push factors. He takes the additional step of replacing πgo,1980 with distance

because he works in a setting with cross-country migrant destinations.22 Monras (2015) hones

in on one sending country, Mexico, and uses the Peso Crisis of 1995 as an exogenous push

factor, interacting it with 1980 state shares of Mexican immigrants to generate exogenous

variation in Mexican inflows. Angrist and Kugler (2003) interact distance from Bosnia and

Kosovo with indicators for years in which wars were taking place in those locations.

In this chapter, I follow a modified version of this strategy that also borrows from Autor

et al. (2013). I take advantage of the German Institute for Employment Research (IAB)

Brain-Drain Data, a unique source that contains counts of bilateral emigrant stocks from

more than 150 sending countries worldwide residing in OECD member nations (Brücker

et al., 2013). I am thus able to replace Io(−g)t with Mnon-US
ot , a measure of emigrants from

origin country o living in all OECD member nations other than the United States:

zEmigrants
gt =

1

Eg,1980

∑
o

πgo,1980 ×Mnon-US
ot

22That is, distance serves as an appropriate time-invariant, destination-specific interactor for Llull (2017)
because it creates enough variation in how much it pushes sending country emigrants to different countries
or different broad regions in North America. Distances between U.S. commuting zones and sending countries
do not create enough variation for me to replace πgo,1980 here.
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∆zEmigrants
gt generates plausibly exogenous variation in immigrant locational decisions

within the U.S. under the assumption that outflows from origin countries to non-U.S. OECD

countries are unrelated to local economic outcomes in the U.S. (Borusyak et al., 2018), or if

base-year shares πgo,1980 do not affect local economies during the study period (Goldsmith-Pinkham

et al., 2018). Just as Autor et al. (2013) claim that Chinese exports to non-U.S. countries

reflect increases in Chinese export productivity rather than product demand in the U.S., I

claim that these outflows are much more likely to reflect migration push factors in sending

countries rather than labor demand in the U.S.

Because Equation (1.3.1) is identified from within commuting zone-year variation, it

requires an instrument that varies at the industry level as well. The standard shift-share

approach accommodates this disaggregation by constructing:

zStandard
gkt ≡ 1

Egk,1980

∑
o

πgo,1980 × I(−g)okt

Here, the initial shares remain the same, but the aggregate component I(−g)okt is now the

number of immigrants from origin country o working in sector k in all commuting zones

other than g at time t. Note that

I(−g)okt ≡ [ρ(−g)okt × Io(−g)t]

where ρ(−g)okt is the proportion of origin o immigrants working in sector k in all commuting

zones other than the commuting zone of interest, g. Thus, it still utilizes the network effects

provided by πgo,1980 for relevance, but does so separately by sector. While the IAB data does

not separate emigrant outflows by sector, the restricted-access demographic data from the

Census Bureau does contain detailed information on both the country of origin and industry

of workers. Thus, in order to turn zEmigrants
gt into a geography-industry level instrument, I

make the following adjustment:

zEmigrants
gkt =

1

Egk,1980

∑
o

πgo,1980 × ρ(−r)okt ×Mnon-US
ot (1.3.2)

where r is the Census Region that commuting zone g resides in. This strategy takes

advantage of the fact that immigrants from particular countries tend to specialize in certain

industries due to comparative advantage, separate from demand in a particular local industry.

Ultimately, zEmigrants
gkt then predicts the number of immigrants residing in a given commuting

zone g based on network-induced locational preference, working in industry k due to country-specific

comparative advantage, and pushed into the U.S. by factors stemming from their country of
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origin.

With our instrument fully detailed, we can now fully describe the utility of each fixed

effect in Equation (1.3.1). For the decade ending in year t, αgt removes any effects immigrant

inflows have at the commuting zone level as a whole. Under the premise that immigrants

do not solely demand goods in the industry in which they work, αgt insulates β from being

identified by changes in consumption patterns that can result from immigration (e.g., Hong

and McLaren, 2015). This premise is strengthened by the fact that we compare across 40

industry groups within a commuting zone—a level of detail allowed for by the granularity in

each Census Bureau data source. Absent αgt, an inflow of immigrants into the “Hospitals”

industry group can generate an increase in economic activity in other nontradable industry

groups because the new immigrant workers in the “Hospitals” industry group also consume

goods and services locally. By including αgt and thus inducing comparison across industry

groups within a given commuting zone and decade, β measures the increase in economic

activity in the “Hospitals” industry group above and beyond what other industry groups

experienced due to this consumer demand effect.

αkt plays an important role in ensuring instrument validity. ρ(−r)okt allocates immigrants

from origin country o into industry group k based on national level trends of industry choice

for origin country o immigrants (excluding region r). In the absence of αkt, national level

shocks to industry k would naturally allocate all workers towards industry group k, regardless

of origin. αkt precludes these shocks—which would induce both an increase in economic

activity in sector k across all commuting zones and in ∆zEmigrants
gkt —from contaminating β.

Instead, with the inclusion of αkt (or further, region-industry-year fixed effects), workers

from origin country o must be locating in industry group k above and beyond the national

trend, and in regions where they are not affected by labor demand shocks in commuting zone

g. Thus, ∆zEmigrants
gkt is more credibly sourced from immigrants’ comparative advantages in

certain industries through ρ(−r)okt when αkt is included.

It is also useful to think through an example of how ∆zEmigrants
gkt precludes reverse causality

from identifying β. A simple and relevant example of labor demand pulling immigrants into

specific geographies and industries comes from the housing bubble that metastasized between

2000 and 2005, largely in the South and West of the U.S. The housing bubble created a large

labor demand shock for construction workers in the South and West Census Regions of the

U.S., and induced immigrant workers from Mexico to fill this demand—the kind of inflow

an instrumental variable should not use for identification of β. As seen in Panel A of Figure

1.4, Mexican inflows into the construction sector between 2000 and 2005 were more than 10

times larger than from the next closest country. As seen in Panel B of Figure 1.4, general

immigrant inflows into the construction sector across commuting zones predominantly took
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place in housing bubble cities throughout the South and West regions of the country. On

the other hand, there is no reason to believe that the U.S. housing bubble would cause large

outflows of Mexican emigrants to non-U.S. OECD countries. Furthermore, relative to the

national trend, the change in propensity of Mexican immigrants to locate in the construction

sector, outside of the South and West regions is not unusually strong. Thus, the aggregate

component of ∆zEmigrants
gkt between 2000 and 2005

[
ρ(−r)ok,2005 ×Mnon-US

o,2005 − ρ(−r)ok,2000 ×Mnon-US
o,2000

]
should not reflect the labor demand shocks in construction that were occurring in the South

and West of the country at that time. These two factors are illustrated in Panel A of Figure

1.5, where Mexico has a much more modest aggregate component for the construction sector

between 2000 and 2005. The ultimate result of these corrections can be seen in Panel B,

where the instrument-predicted immigrant inflows are far less concentrated in bubble cities.

Results presented below, along with a series of analyses in Section A.2 test several

many aforementioned and additional considerations regarding the validity of ∆zEmigrants
gkt more

systematically, with a particular focus on recently-formalized concerns regarding shift-share

instrumentation. Table 1.5 and Section A.2.4 address instrument validity using various

pre-trends tests. Section A.2.2 compares ∆zEmigrants
gkt to ∆zStandard

gkt along with another plausibly

exogenous replacement for the “shift” component in a typical migration instrument—lagged

birth rates in origin countries. It finds results from this third instrument, ∆zBirths
gkt , and

∆zEmigrants
gkt are nearly identical.23 Section A.2.3 demonstrates that migrant outflows to

non-US OECD countries are a relevant predictor of immigration to the U.S. at the origin

country level. Section A.2.5 addresses concerns regarding correlated outcomes across observations

with similar “share” components that can undermine inference when using shift-share instrumentation

(Adao et al., 2019). It finds no evidence of such a problem in my triple-difference, commuting

zone-sector level regressions. Section A.2.6, along with Column 6 of Table 1.5, alleviates

concerns about serial correlation in the “shift” component of the instrument (Jaeger et al.,

2018). All told, the emigrants-based instrument passes a battery of tests meant to vet its

validity for use. ∆zEmigrants
gkt and zEmigrants

gkt therefore become the instruments of choice for

23∆zBirths
gkt utilizes lagged birth counts in sending countries of individuals who are of prime migration age

by the time of our study period as a push factor. Because these are predetermined relative to the analysis,
they can be considered a better source of exogenous variation. The reason this chapter does not use ∆zBirths

gkt

as its preferred instrument, then, is out of practical rather than validity concerns. The demographic changes
represented in ∆zBirths

gkt take years to unfold, making them much more amenable to decade (or longer horizon)
level analyses. Meanwhile, the analyses in Section 1.4 require an instrument at a five-year frequency. Thus,
Section A.2.2 shows that ∆zBirths

gkt delivers near-identical results to ∆zEmigrants
gkt . With this check in hand, I

proceed with the emigrants instrument for the rest of the chapter.
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Sections 1.3.4, 1.3.5 and 1.4.

1.3.4 Immigrant Workers and Firm Presence: a More Complete Accounting

1.3.4.1 Educational Content of Immigrant Inflows

Before delving into estimates from Equation (1.3.1), it is important to understand the skill

content of the immigrant inflows represented by ∆Igkt, particularly when it is instrumented

for by ∆zEmigrants
gkt . As described in Borjas (1999), the more immigrants differ from natives in

their skill content, the larger the potential economic surplus that is generated by immigrants

in the long run. This insight is built into the model presented in Section 1.5 as well,

generating a supply-side channel through which immigration can increase firm presence.

Educational attainment is perhaps the most important way through which a connection

between immigration and economic activity can arise in a manner that does not just reflect

general population growth, though it is far from the only. The notion that some production is

specifically tied to foreign-born workers would not arise if immigrants were identical to natives

in all aspects other than their country of birth. Rather, these ties are plausible because many

immigrants have characteristics that are different than natives on average—e.g., extreme

levels of education (known as the “twin peaks” phenomenon) or increased propensity to

start businesses. The average set of native skills thus becomes more scarce when immigrants

enter the economy, generating a surplus for natives. This is the key insight in Borjas (1999)

that has been built upon in much subsequent work. Here, I consider this idea in the context

of firm heterogeneity: some firms particularly rely on these different skills that immigrants

bring to the economy, and when immigrants arrive into a local area, firm composition tilts

towards these types of firms.

Figure 1.3 provides substantial evidence that immigrant workers differ in their education

levels, a proxy for skill, relative to native workers. On average, a smaller proportion

of foreign-born workers have more than a high school degree. This gap has increased

over time, indicating that immigrant inflows have tended to be relatively concentrated

among workers with less education. Table 1.2 confirms this intuition by analyzing the

effect of immigrant inflows on the education distribution using Equation (1.3.1) and the

change in the low-education share as the outcome. The results also illuminate an important

feature regarding the interpretation of the results below: ∆zEmigrants
gkt does not tend to

disproportionately push immigrants of a certain education level to the U.S., relative to the

average immigrant inflow. Table A.4 provides additional analysis to support this point.
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1.3.4.2 The Effect of Immigration on Firm Presence Within Commuting Zone

and Industry Group

Table 1.5 displays first stage, OLS, and IV results from estimating Equation (1.3.1) using

a full set of controls and fixed effects. In it, I find a strong, positive effect of immigrant

worker presence on firm presence that is larger when corrected for endogeneity. Each

immigrant generates roughly 0.05 new firms, on net, when they enter a commuting zone

and industry group (Column 3). This estimate survives flexible controls for any confounding

factors that may affect firm presence in the commuting zone as a whole through αgt (e.g.,

general immigrant inflows into the commuting zone or overall population growth) and any

confounding factors that may affect firm presence in the industry group nationally through

αkt (e.g., secular growth in services sectors).

Previous research has documented that immigrants tend to migrate towards economic

opportunity (e.g., Cadena and Kovak, 2016), which may lead to concern about the fact

that IV estimates are more positive than their OLS counterparts in Table 1.5. However,

comparison with results fully explained in Section 1.3.5 alleviates some of these concerns.

Table 1.7 finds that IV estimates of immigrant-induced job creation are smaller than OLS

estimates, wholly in line with the notion that immigrants migrate towards labor demand.

This result, using the same independent variable and instrument as that used here, also

argues against measurement error as a determinant of the relationship between OLS and IV

estimates seen in Table 1.5. An alternate explanation is that immigrant entrepreneurs may

be attracted to areas with lower net firm entry if these areas feature lower entry costs in the

form of decreased potential competition. Another is that areas and industries with fewer,

larger firms are more likely to attract immigrants.

Table 1.6 demonstrates the stability and robustness of the estimate in Column 3 of Table

1.5. First, moving from Column 1 to Column 2 indicates the utility of including αkt and αgt

relative to a traditional first differences approach (just including αt). Nearly half of the first

difference estimate disappears when we compare across industry groups within a commuting

zone, relative to when we simply compare across commuting zone-industry group pairs.

These are effects likely explained by consumer demand, either through immigrant inflows that

are correlated within geography across industry groups or through general population growth

in the commuting zone. Columns 2 through 6 then display a stable estimate, regardless of

control and fixed effects sets (note that Column 4 replicates Column 3 of Table 1.5). Of

particular note, the estimate in Column 5 survives the inclusion of an endogenous control

variable for overall growth in the number of workers, indicating that the effects found in
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Table 1.5 and 1.6 are immigrant-specific, and not simply a general labor supply shock.24 This

column also implicitly controls for any non-nativity-specific, within-industry group demand

that may generate β, and still finds essentially the same effect. Additionally, the estimates in

Column 6 implement the double-instrumentation strategy proposed in Jaeger et al. (2018) to

account for serial correlation that can undermine shift-share-based estimate interpretation.

The relative strength of the F statistic and continued stability of the contemporaneous effect

estimate indicate that Equation (1.3.1) passes this test. Finally, in all columns other than

Column 6, I cannot reject the null hypothesis of no pre-trends based on a panel version of

the test, described further in Section A.2.4.

Overall, Tables 1.5 and 1.6 generate the first benchmark result in this chapter—a broad-based,

positive effect of immigration on firm presence within local markets defined by a commuting

zone and industry group. It finds that each immigrant worker (employee or self-employed)

leads to the creation of roughly 0.05 firms, on net. Because of the way Equation (1.3.1) is

set up, and because there are over 40 industry groups, I contend that this effect primarily

originates from the supply side of the product market, with changes in consumer demand

largely soaked up by αgt. In addition, the magnitude I estimate is economically significant.

Back-of-the-envelope calculations using Table 1.3 help make this point, albeit at the SIC

sector level. The mean of ∆Igkt is 0.0474. Supposing these inflows are exogenous and

multiplying this figure by β ≈ 0.05 generates the estimate that an average immigrant inflow

generates 0.00237 new firms. Using a benchmark mean for the change in firm presence from

the change in establishment presence reflected in Table 1.3 (0.0112) implies that immigrant

workers, through their effects on production, were responsible for roughly 21 percent of

net firm entry within commuting zone and sectors between 1980 and 2010. Meanwhile,

immigrants only made up 11 percent of the workforce during this period. Finally, while ∆Igkt

includes both employees and self-employed immigrants, back-of-the-envelope calculations

also tell us that the effects found here are unlikely to be fully explained by immigrant

entrepreneurship. Section A.4.1 shows that each immigrant pushed by ∆zEmigrants
gkt leads

to roughly 0.14 additional self-employed workers. It also shows that each self-employed

worker is associated with 0.16 additional establishments. Interacting these two implies

an immigrant-entrepreneurship effect of 0.022, less than half of the estimated β ≈ 0.05.

Immigrant employees appear to play a co-equal, if not central, role in generating the effects

found here, and this motivates their role in the model presented in Section 1.5.

24The model presented in Section 1.5 hypothesizes that this is due to the variety of reasons immigrant
and native workers may be imperfect substitutes, including educational attainment.
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1.3.4.3 Decomposing the Effect: Entry and Exit

Figure 1.6 characterizes the results contained in Column 3 of Table 1.5 by separating the

change in the stock of firms into its flow components::

∆Firmsgkt = FirmsAge<10
gkt − FirmsShut down by time t

gk,t−10 + Residual (1.3.3)

That is, the change in the number of firms in commuting zone g and industry group k between

t− 10 and t can be split into its relative contributions from firms that started between time

t−10 and t and are operating in gk, firms that were operating in gk at t−10 that have shut

down by time t, and a residual term that primarily captures net relocations and expansions

into a given gk pair from other gk pairs.25 This decomposition is only enabled through the

longitudinal linkages provided in the LBD. Here and throughout the rest of the chapter, firm

age is measured as the age of its oldest establishment.

Figure 1.6 plots the results of estimating Equation (1.3.1) using these disaggregated

outcomes, each divided by Workersgk,t−10, such that they add up to 0.0527, the primary

estimate of interest from Table 1.5. This figure demonstrates that 80 percent of immigrant-induced

increase in firm presence comes from the creation of new firms, though there is also a

non-trivial prevention of firm death. The residual term plays a negligible role, indicating

that the extensive margin firm response to immigrant inflows is largely localized. Of note,

the estimate marked “Survived to t+5” in gray indicates that immigrant-induced entrants

are not necessarily short-lived. In fact, more than half of the firms in this category survive

well past a firm’s usual “critical period,” until 5 years after the decade end represented by

time t.

1.3.4.4 Decomposing the Effect: Firm Size

I next estimate Equation (1.3.1) by employee size bin (within gk), with two outcomes for

each bin. The first is simply firm growth in that size bin:

∆FirmsSize Bin
gkt

FirmsSize Bin
gk,t−10

25Shut down is defined as all of a firm’s national establishments having shut down. If all a firm’s
establishments in a given commuting zone and industry have shut down, but the firm is still in operation
nationally, this firm would be counted negatively in the residual term.
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The second only reflects the portion of that growth that came from firm entry:

FirmsSize Bin, Age<10
gkt

FirmsSize Bin
gk,t−10

I switch to growth rates as the outcome because the overall firm size distribution is heavily

skewed right. As seen in Figure A.4, when purely accounting for the primary estimate of

interest from Table 1.5, the smallest firm size bin dominates.26 However, this is true for the

overall firm size distribution in the economy. Thus, to know if immigrant-induced net firm

entry is particularly driven by small firms, it is more useful to look at within-bin growth

rates.

Figure 1.7 contains some of the most important results in this sub-section. It finds

a robust, large effect of immigrant inflows on net firm entry throughout the firm size

distribution, and one that is largest at both tails when viewed in within-bin terms. That

is, when we account for the fact that most firms are small, immigrant-induced increases in

firm presence are not disproportionately seen in the lower end of the firm size distribution.

In addition, new firm creation almost entirely drives this effect through firms up to 99

employees. Starting with firms of at least 100 employees, a divergence emerges in which the

increase total firm presence is also driven by older firms. These results are consistent with

the notion that new firms tend to be smaller, but also illustrate a novel connection between

immigrant workers and large firm death prevention.

1.3.4.5 Additional Heterogeneity

Figure 1.8 plots the results of additional heterogeneity analyses across industry groupings

and geographic region. The top grouping provides evidence that the effects found thus far

are not driven by one particular region. In particular, based on the coefficient in the West

Census Region, California is not the driving force behind the results in this section. The

next set of analyses designates each industry group (Table 1.4) as tradable or non-tradable,

then estimates Equation (1.3.1) separately for each set of industry groups. I generate this

designation by aggregating 1980 traded and non-traded employment within each industry

group based on the Porter (2003) classification system for 6-digit NAICS codes. Each

industry group is then designated as tradable if it had more tradable employment in 1980,

and vice versa. The result of this exercise finds a larger effect in nontradable industry groups,

but a large effect for tradable industry groups as well. The latter is found in Olney (2013),

while the former is not. Finally, I also designate industry groups based on whether they

26Note that firms with “0” employees are usually births in year t.
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tend to hire higher- or lower-educated workers. Similar to Doms et al. (2010), I do this by

assigning industry groups with below the median share (across industry groups) of college

equivalent27 workers in 1980 the “low-education hiring” designation and industry groups

with above the median share the “high-education hiring” designation. This exercise shows a

slightly higher effect of immigrant workers on firm presence in low-education hiring industry

groups.

1.3.4.6 Summary and Discussion

Immigrants appear to generate non-trivial increases in firm presence from the supply

side of the product market, as workers. The various heterogeneities that underlie this effect

set up the analyses that follow in Sections 1.3.5 and 1.4. Figures 1.6 and 1.7 introduce

two important channels through which immigrant absorption can occur. The majority

of the effect immigrant workers have on increasing firm presence comes in the form of

small-to-medium-sized, new firms. While smaller firms may seem prone to less absorption

capability, Decker et al. (2014) use the LBD to document that new firm creation plays a

crucial role in job creation nationally, with start-up firms alone accounting for almost 20

percent of gross job creation in a given year. They also find that firms that grow by more

than 25 percent year-over-year are disproportionately small and young, and yet account for

almost 50 percent of job creation in a given year. Additionally, that there is a robust presence

of new, medium-sized firms mitigates concerns that immigrants tend to primarily own and

support “subsistence” entrepreneurship (Schoar, 2010). Meanwhile, Figures 1.6 and 1.7 also

show a small effect on the prevention of firm exit, but one that is concentrated among larger

firms, where the majority of workers are employed. This opens up a channel to the prevention

of job loss. Understanding the distinct roles of firm entry and exit prevention in immigrant

absorption, and comparing them to intensive margin firm growth responses, is the primary

motivation behind Section 1.3.5. Meanwhile, understanding whether the prevention of firm

death either prevents productive firm turnover from taking place, or reflects the preservation

of more productive firms—which tend to be larger28—is the focus of Section 1.4.

That the effect is driven by firm creation and has a larger magnitude in nontradable

industries also carries the possibility of new final goods varieties for local consumers, which

enhances welfare in models like the one presented in Section 1.5. However, the existence of

a large, positive, and precisely estimated effect in tradable industries also validates the

interpretation that the effects detected using Equation (1.3.1) are driven by immigrant

270.5 times the number of workers with “Some College” plus all workers with at least a four-year college
degree.

28See, e.g., Bernard and Jensen (1999); Leung et al. (2008); Baldwin et al. (2002); van Ark and Monnikhof
(1996).
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workers on the supply side of the product market.29 In addition, the existence of a larger

effect in industries that primarily utilize lower-educated labor conforms with evidence that

lower-educated immigrant and native workers are less substitutable than higher-educated

immigrant and native workers (see, e.g., Peri and Sparber, 2009).

1.3.5 Immigrant Absorption

Thus far, this section chronicles a broad, heterogeneous relationship between immigration

and net firm entry that stems from both gross firm entry and the prevention of firm exit.

Previous literature, meanwhile, has documented the importance of business creation to job

creation and overall labor demand (e.g., Decker et al., 2014; Beaudry et al., 2018). In

particular, both the entry of small-to-medium sized firms and the prevention of large firm

exit open up substantial channels to job creation and the prevention of job loss, respectively.

The question of how immigrants are absorbed into labor markets—or, put differently, how

the economy creates enough jobs to keep pace with immigrant inflows—may thus hinge on

firm entry and firm exit. This sub-section conducts a decomposition exercise to test how

important extensive margin firm responses—entry and exit—are to immigrant-induced job

creation.

This decomposition is motivated by Dustmann and Glitz (2015), but with a particular

focus on the separate margins that go into net firm entry, without restricting the analysis to

the tradable sector, and in the context of U.S. local economies. Additionally, I study the effect

of immigrant inflows on job creation fully within commuting zone and sector, using Equation

(1.3.1) for estimation. Thus, unlike Hong and McLaren (2015), my results are unlikely to

stem from immigrant-specific consumer demand. I utilize the following decomposition of

employment, enabled by the longitudinal structure of the LBD:

∆Employmentgkt =− EmploymentDead at time t
gk,t−10 + EmploymentAge<10

gkt + ∆EmploymentContinuers
gkt

+ Residual

where the first term represents job loss from firm deaths between t− 10 and t in commuting

zone g and industry group k, the second term represents gross job creation at firms that were

born between t− 10 and t, and the third term represents employment growth at firms that

were alive in both t−10 and t and in operation in gk. The final term represents employment

growth that came from net relocations or expansions into gk from other commuting zones

and sectors between t − 10 and t. As in section 1.3.4.3, each term in this decomposition

is divided by the Census-measured workforce in gk at time t − 10 to retain consistency

29Under the assumption that local demand for locally produced tradable goods is not strong.
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with independent variable ∆Igkt. Thus, the effect of ∆Igkt on ∆Employmentgkt measures

the number of LBD jobs each immigrant worker generates when they arrive and work in a

commuting zone and industry group.

The results of this decomposition are seen in Table 1.7. As a starting point, Column 1

provides estimates of the number of LBD jobs generated by each immigrant. There are two

key findings from Column 1. First, and as discussed in Section 1.3.4.2, the OLS estimate

in Panel A is substantially larger than the IV estimate in Panel B (more than 40 percent).

This accords with the notion that immigrants are attracted to industries and geographies

with increasing labor demand and with my claim that ∆zEmigrants
gkt corrects for some of this

endogeneity. Second, the headline estimate from Panel B indicates that each immigrant

leads to 0.6 new LBD jobs in the commuting zone and industry group she enters.

Additional context helps interpret this estimate. For a variety of reasons, the number

of workers represented in Decennial Census-measured counts like ∆Igkt is likely to be larger

than the number of employees represented in LBD-measured counts like ∆Employmentgkt.

Most notably, ∆Igkt includes self-employed individuals, but additionally, employees who do

not work for establishments covered by the Census Bureau’s Business Register. Because

the County Business Patterns (CBP) uses the same source data as the LBD, a useful

comparison using publicly-available data is one between Decennial Census worker counts

from IPUMS-USA and employment from the CBP. Appendix Section A.4.2 shows that each

Decennial Census worker is associated with 0.64 CBP jobs, with a coefficient of 0.6 rejected

at the 10 percent level. Thus, given that the LBD universe is slightly larger than the CBP

(Jarmin and Miranda, 2002), it is reasonable to conclude that Column 1 in Panel B of

Table 1.7 indicates near-full, but incomplete, absorption of immigrant workers into a given

commuting zone and industry group. There is no evidence for spillover job creation, which

is entirely consistent with results in Hong and McLaren (2015), who find that spillover

job creation is likely the result of increased immigrant consumer demand. When consumer

demand spillovers are controlled for, as they are here, scope for some displacement is in fact

to be expected, especially when looking within the fine industry groups used in the analysis

and described in Table 1.4. A bevy of previous literature has documented native mobility

across occupations in response to immigrant inflows, and Burstein et al. (2017), for example,

document substantial native displacement in non-tradable industries.

I next turn to Columns 2–5 in Panel B, which represent the first benchmark result in this

chapter. They show clear evidence that localized, extensive margin firm responses play the

dominant role in immigrant absorption, with the prevention of firm exit on its own accounting

for nearly 50 percent. Overall, point estimates indicate that the extensive margin (including

net relocation and expansion) accounts for more than 85 percent of immigrant-induced job
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creation, leaving only a statistically insignificant 15 percent for the growth of existing firms.

Estimates in Columns 2 and 3 accord naturally with results from Figure 1.7. While there are

more new, small-to-medium sized firms in the market, death prevention plays an outsized

role in immigrant absorption because the firms that are pushed to survive by immigrant

worker inflows are large. Nonetheless, that firm creation accounts for around a quarter of

immigrant-induced job creation is also consistent with its overall importance to job creation

in the U.S. economy.

Comparing Columns 2–5 across Panels A and B also suggests interesting conclusions

regarding immigrant locational and industry choices. Immigrants appear attracted to geographies

and industries that are experiencing relocations, expansions, within-firm growth, and firm

entry. The stronger negative effect on firm death in Panel B relative to Panel A indicates

that immigrants may also be attracted to more dynamic local economies, in which productive

turnover is taking place.

In total, this sub-section makes important contributions to the literature on immigrant

worker absorption into U.S. local economies. Even when comparing across industries within

the same commuting zone, local labor markets exhibit substantial absorbtion capacity for

immigrant inflows. Strikingly, I cannot reject the null hypothesis that this capacity is

entirely driven by firm entry and the prevention of firm exit. Table 1.7 is perhaps the

clearest illustration that extensive margin firm responses drive local production’s response

to immigration. Given the particular importance of death prevention found here, I next turn

to understanding the heterogeneous effects immigrants have on firm shut down decisions.

1.4 The Exit Margin

An empirical literature finds that firm turnover can play a critical role in redistributing

resources from less to more productive firms, with less productive firms exiting the market

(Foster et al., 2008). While Section 1.3.5 demonstrates that the prevention of firm death is

overwhelmingly important in absorbing immigrant workers, it could also imply a mechanism

through which immigration may stunt productive reallocation—by preventing the exit of

low productivity firms. In this section, I test for this mechanism, stratifying a firm-level

analysis of survival by correlates of initial firm total factor productivity. Contrary to these

concerns, I find that immigrant inflows tend to benefit more productive firms by reducing

their shut down probabilities, while culling lower productivity firms from the market. This

heterogeneity implies a novel channel from extensive margin firm responses to increased local

productivity in response to immigration.
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1.4.1 Full Panel: Data and Methods

The analyses in this section utilize two panels of firms from the LBD. The first, termed

the “Full Panel,” covers all (over 4 million) firms that were in operation in 2000 in the

commuting zones and industries covered by the analysis from Section 1.3. It follows these

firms in 2005 and 2010, assigning each an indicator variable 1[Shut Down]ft a value of one if

the firm has shut down by year t. Shut down is defined as all establishments of the owning

firm having died nationally by time t. The panel is fully balanced, with one observation

per firm in each g and k in which it operates for 2000, 2005, and 2010.30 The restriction to

2000, 2005, and 2010 is necessitated by two constraints: 1) sub-state (e.g., commuting zone),

annual estimates of the foriegn-born workforce are only available in 2000 (Decennial Census),

and 2005 onwards (ACS); and 2) the instrumental variable zEmigrants
gkt relies on emigrant counts

that are available in the IAB Brain Drain dataset only in 2000, 2005, and 2010.

The LBD contains two correlates of productivity, employment and mean labor earnings

(payroll divided by employment), which I adjust to generate measures of initial productivity.

The adjustment process takes a simple form, in which I log each variable (to ensure a

relatively normal distribution of residuals) and remove firm age-by-5-digit NAICS code fixed

effects. In the case where productivity is being measured by employment for example, this

step is motivated by the fact that productive, young firms may still be small as they settle

into the market and by the fact that different detailed industries feature different labor input

needs. Firms are then deemed “high productivity,” if the residual from this initial regression

is positive:

log(Prod. Measure)f,2000 = α + αk′a + uf,2000 (1.4.1)

1[High Prod.]f ≡ 1[ûf,2000 ≥ 0]

where a indexes firm age, k′ indexes a 5-digit NAICS code, and f indexes a firm.

I then estimate the following linear probability models to test how immigrant presence

heterogeneously affects firm shut down probabilities within commuting zones and industry

30Note that in the “Full Panel,” this means the same firm can appear as a “firm” multiple times if it
operates in multiple industries or geographies.
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groups:

1[Shut Down]ft = α + βtotal (Igkt) (1.4.2)

+ ΓXgkt + αf + αa + αgt + αk′t + εft

1[Shut Down]ft = α + βmain (Igkt) + βmod (Igkt × 1[High Prod.]f ) (1.4.3)

+ ΓXgkt + αf + αa + αgt + αk′t + εft

with t ∈ {2000, 2005, 2010}. Igkt is the immigrant stock of workers in commuting zone g and

industry group k at time t, divided by the 2000 worker count in gk. It is instrumented for

by zgkt, defined as in Equation (1.3.2), except with a denominator of the 2000 worker count

in gk instead of the 1980 worker count in gk.31,32

Equation (1.4.2) can simply be thought of as breaking down one decade from Equation

(1.3.1) to the firm level—with the crucial inclusions of firm fixed effects αf and firm age fixed

effects αa.
33 Given our findings in Section 1.3.4.3, we therefore expect βtotal < 0. Estimating

Equation (1.4.3) serves the primary purpose for this section, extending our understanding

by stratifying the analysis based on initial firm productivity. In particular, βmain indicates

the extent to which marginal, lower productivity, firms are sustained (βmain < 0) or pushed

out (βmain > 0) by immigrant worker inflows.

1.4.2 Full Panel: Results

Table 1.8 presents the results of estimating (1.4.2) and (1.4.3) on the “Full Panel.”

Columns 1-3 first confirm preliminaries and priors: zgkt has a very similar effect on Igkt

here as ∆zgkt had on ∆Igkt in Section 1.3 (Column 1), and immigrant inflows prevent firm

death in this modified specification that hones in on the 2000s (Columns 2 and 3). Once

again, extensive margin firm responses are stronger after immigrant exposure is corrected

for endogeneity.

Columns 5 and 7 deliver the second benchmark result in this chapter: immigrant inflows

into commuting zones and sectors cull lower productivity firms from the market while

sustaining and reducing the chances higher productivity firms exit. This is true whether

productivity is measured in terms of employment or earnings. Column 5, for example, finds

that an average immigrant inflow across a decade (0.04 from Table 1.3) increases the 5-year

31The base year is still 1980 for shares πog,1980.
32The primary utility of using emigrants to non-US countries over other exogenous push factors is the use

of zgkt in this specification, where it is available at a high (every-five-year) frequency and still strong enough
to be a relevant instrument.

33For example, αf subsumes commuting zone-industry group fixed effects αgk and therefore the first
difference seen in (1.3.1).
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exit probability for low productivity firms by a full percentage point, while reducing the

5-year exit probability for high productivity firms by more than two percentage points.

These results run directly counter the notion that immigrants prevent productive reallocation

by sustaining marginal firms. Instead, not only do the most productive firms benefit, but

the least productive firms exit—immigrants generate increased productive firm turnover.

Section 1.5 posits one potential reason this could take place: some firms can better utilize

immigrant labor, but at a cost that makes them positively selected on productivity. Other

possibilities include Becker-style discrimination among lower productivity firms and frictions

that prevent lower productivity firms from directing search to immigrant workers they may

want to hire. Regardless, the empirical results contained in Table 1.8 provide novel evidence

that immigrants increase productive reallocation across firms in local U.S. economies. They

also provide yet another piece of evidence that immigrants are generating these effects from

the supply-side of the product market, under the premise that increased consumer demand

alone should sustain rather than cull marginal firms.

1.4.3 SBO Panel: Data and Methods

The remainder of this section employs a second panel that links LBD firms to employee-hiring

firms (over 600,000) that were in operation and eunmerated in the 2007 Survey of Business

Owners (SBO), following them until 2012—the “SBO Panel.” The SBO is another restricted-access

Census Bureau survey that allows for two additional advantages at the cost of a shorter

and less extensive panel. First, it contains reports of firm revenues at the national level,

allowing for additional and more standard measures of firm productivity. These additional

productivity measures are generated in the same way as above, using Equation (1.4.1).

Second, starting in 2007, the SBO began asking about firm owner nativity. This allows for

an enriched understanding of the distributional consequences of immigrant worker inflows

for firm owners.

A first set of specifications for this analysis take the form:

1[Shut Down]ft = α + βtotal (Igk,t−2) (1.4.4)

+ ΓXgk,t−2 + αf + αa + αgt + αk′t + εft

1[Shut Down]ft = α + βmain (Igk,t−2) + βmod (Igk,t−2 × 1[High Prod.]f ) (1.4.5)

+ ΓXgk,t−2 + αf + αa + αgt + αk′t + εft

with t ∈ {2007, 2012}. The replacement of Igkt with Igk,t−2 is necessitated by the availability

of zEmigrants
gkt for t ∈ {2005, 2010}. Estimating equations (1.4.4) and (1.4.5) serves two
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purposes: first, they add additional evidence of the productive reallocation result using more

conventional productivity measures; and second, they ensure that this modified specification

delivers similar results as estimating Equations (1.4.2) and (1.4.3).

This latter reason then validates the use of the following models to further understand

the heterogeneity of immigrant-induced firm shut down decisions:

1[Shut Down]ft = α + βnative (Igk,t−2) (1.4.6)

+ βimmi (Igk,t−2 × 1[Immi Owned]f )

+ ΓXgkt + αf + αa + αgt + αk′t + εft

1[Shut Down]ft = α + βnative main (Igk,t−2) (1.4.7)

+ βnative mod (Igk,t−2 × 1[High Prod.]f )

+ βimmi main (Igk,t−2 × 1[Immi Owned]f )

+ βimmi mod (Igk,t−2 × 1[Immi Owned]f × 1[High Prod.]f )

+ ΓXgkt + αf + αa + αgt + αk′t + εft

Equation (1.4.6) illustrates the differential shut down responses of immigrant- and native-owned

firms, on average, an analysis uniquely available by combining the SBO and LBD. Equation

(1.4.7) then combines the analyses in Equations (1.4.5) and (1.4.6) by stratifying firm shut

down responses on both ownership nativity and productivity.

These specifications test several hypotheses regarding firm ownership and productivity.

βimmi, for example, is ambiguous in sign: while there may be linkages between immigrant

owners and employees that would suggest βimmi > 0, immigrant firm owners may face more

intense competition from other immigrant entrants if immigrant-owned firms are distinct

from native-owned firms in terms of employee pool or output within 5-digit NAICS codes.

Similar considerations apply to the immigrant-specific coefficients in Equation (1.4.7).

1.4.4 SBO Panel: Results

Column 1 of Table 1.9 shows a still-negative, but imprecise relationship between immigrant

presence and firm shut down probability in the SBO Panel. Columns 2–5, however, embody

no such ambiguity, and additionally find that revenue-based measures of productivity deliver

the same pattern found in Table 1.8: increased immigrant presence sustains higher productivity

firms and culls lower productivity firms.

Table 1.10 builds on these results. First, Column 1 indicates that, on average, the entire

negative relationship between immigrant worker presence and shut down probability is due
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to immigrant-owned firms. Given that my specifications flexibly control for commuting

zone-wide factors like a larger immigrant customer base, this is highly indicative of linkages

between immigrant firm owners and immigrant employees that are advantageous to immigrant-owned

firms. Columns 2–5 add a substantial degree of nuance to this result. Among lower

productivity firms, those that are owned by immigrants are significantly less likely to shut

down in response to increased exposure to immigrant workers than those owned by natives.

However, this is a relative gain; low-productivity immigrant-owned firms either do not change

their shut down behavior or are still more likely to shut down in response to increased

exposure to immigrant workers as a whole (adding up coefficients in the first two rows of

Panel B). Furthermore, the advantage among high-productivity firms does not appear to be

heterogeneous across owner nativity. Thus, among firm owners, a more complete picture

emerges: high productivity firm owners are much less likely to exit, regardless of nativity,

while native owners of lower-productivity firms are far more likely to exit in response to

increased immigrant worker presence. Figure 1.9 summarizes these results, plotting the

point estimates of changes in shut down probability for each nativity-productivity pair given

a one percent increase in the workforce due to immigration.

1.4.5 Summary and Discussion

The results found in this section regarding the heterogeneous way in which firms’ shut

down decisions respond to increased immigrant exposure have substantial implications for

the overall effect of immigrant workers on local economies. In conjunction with the large

increases in firm entry found in Section 1.3, they provide novel evidence that immigrants

increase local business dynamism—creative destruction—on the extensive margin. In the

context of models that incorporate firm heterogeneity and a non-trivial firm mass, this

dynamism has important welfare implications. Next, in Section 1.5, I use one such model to

describe how these results can arise in general equilibrium, then show it generates welfare

increases from immigration that a canonical model of local production would not.

This increased dynamism is not without distributional consequences, however. Just as

the literature on how immigration affects employees has focused on natives at risk of being

substituted for in production, it appears that there is a subset of natives who own low

productivity firms that are most at risk of having to shut down their business in response

to increased immigrant presence. This likely arises because of direct competition with

immigrant entrepreneurs and because of advantages immigrant entrepreneurs have in hiring

and utilizing immigrant workers that translate to a competitive advantage.

It is also important to note caveats that stem from data limitations that force me to use

proxies for firm total factor productivity rather than more direct measures. The measure I
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employ that has the most in common with the literature is revenues per worker. At best,

this is a measure of labor productivity, but at worst simply a measure of the dispersion

in use of non-labor inputs by different firms. The key assumption for the validity of this

measure, based on my methodology, is that firms within the same 5-digit NAICS code

have comparable non-labor input requirements. Even in the case where this is true, some

imperfection in the labor market must exist for there to be a direct link between labor

and total factor productivity. In models with competitive labor markets—including the one

presented below—revenues per worker are independent of total factor productivity. These

models, instead, have a direct link between firm size (both employment and revenues) and

firm total factor productivity, which is why I prefer size-based measures here. Nonetheless, in

practice, firms can differ in size because of total factor productivity or because of idiosyncratic

differences in the demand for goods across firms (e.g., due to a foothold in the market). The

key assumption for my preferred productivity measures, then, is that 5-digit NAICS code

by firm age fixed effects remove enough of the variation in idiosyncratic demand differences

across firms such that the remaining variation primarily measures differences in firm total

factor productivity.

1.5 Synthesis Through Theory

The previous two sections have delivered key empirical insights into how immigrant

workers affect local economies in partial equilibrium (i.e., comparing across sectors within

the same commuting zone). This section relies on theory to show how accounting for the kind

of firm heterogeneity implied by the partial equilibrium results ultimately impacts general

equilibrium analyses of immigration.

1.5.1 Motivation

By definition, models featuring perfect competition are not compatible with firm heterogeneity

in the final goods markets, and models featuring both perfect competition and perfect

substitutability in the market for foreign-born and domestic labor are not compatible with

immigrant-specific effects on firm outcomes. Melding a Melitz (2003) framework with imperfect

substitutability in the labor market across immigrant and native workers allows immigrant

employees to generate distinct effects on firm outcomes relative to native employees and

potentially change the productivity distribution of firms.

However, this combination alone does not capture specific linkages between higher-productivity

firms and immigrant employees. Such linkages are both directly implied by the results

in Section 1.4 and indirectly by previous work. Mitaritonna et al. (2017), for example,

34



find that manufacturing firms in France employing immigrant workers are more than 11

percent more productive than their counterparts that do not. Kerr and Kerr (2018) find

that immigrant-owned firms in the U.S. feature higher sales per employee than native-owned

firms in the same state and two-digit sector. This result only gets stronger with the inclusion

of finer sector definitions, gender, ethnicity, age, and education of firm owners. Under the

premise that immigrant-owned firms are more likely to hire immigrant employees, their

results also imply that firms with more immigrant employees are more productive.

Linkages between immigrant employees and higher-productivity firms can arise if firms

have to pay higher fixed operational costs in order to access immigrant employee networks

and retain immigrant workers for production. These costs can include (but are hardly limited

to) hiring translators and liaisons to be able to enter into immigrant job search networks and

direct search for immigrants34, hiring lawyers to work on visa issues, and paying enforcement

costs (in expectation) when hiring undocumented immigrants. In the presence of such costs,

firms with direct ties to immigrants will be positively selected on productivity because they

must be able to afford them.

In order to capture productivity-related reallocative responses to immigration, I thus

add an additional heterogeneity to my theoretical framework. In the spirit of Bustos (2011),

I introduce two technology types—one of which is more suited to utilize immigrant labor.

As motivated in the discussion above, firms must pay an additional fixed operating cost to

access this technology, which means they are positively selected on productivity relative to

their counterparts using the less-immigrant-heavy technology. Immigrant-heavy firms save

more on labor costs when immigrants enter the labor market, pass through their savings

to consumers, and thus gain market share by competing it away from firms who do not

have special ties to immigrant workers. Their counterparts are forced to exit, a culling of

the lowest-productivity firms in the market as a whole. In sum, this model shows how firm

entry and exit can drive immigrant-induced endogenous technological change by changing

the composition of firms in the economy.

1.5.2 Setup

Individuals are consumer-employees of type i ∈ {Ie, Ne}, with I representing foreign-born

individuals and N representing native-born individuals and e ∈ {L, S}, where L stands for

high school degree or Less and S stands for at least Some college. The mass of each labor

type in the economy is fixed and employees supply their labor inelastically—the primary

comparative static will increase immigrant mass by increasing both IS and IL (as an average

34See e.g., this Center for American Progress report about Tyson Fresh Meats and its willingness to hire
translators, liaisons, and chaplains in order to utilize immigrant labor.
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immigrant inflow into the U.S. does). Entrepreneurs are indexed by j with j ∈ {0, 1}. Type

1 entrepreneurs choose to produce with a technology that is more immigrant-dependent.

1.5.2.1 Consumer Preferences

Consumer preferences are uniform across consumers. Preferences across firms are of the

form presented in Dixit and Stiglitz (1977):

U =

[
F

η−1
µ

∑
j

∫
Fj

Q(f)
µ−1
µ

] µ
µ−1

where Fj is the mass of firms owned by entrepreneurs of type j, F =
∑

j Fj, Q(f) is the

amount demanded by consumers at firm f , which is a single firm in the local economy. µ > 1

is the elasticity of substitution of consumption across firms. When η = 1, consumers have a

taste for variety, as the original Dixit and Stiglitz (1977) model of monopolistic competition

dictates. This taste for variety generates external scale effects through which an increasing

market size increases welfare. When η = 0, we shut down this channel and focus on the firm

productivity distribution (see, e.g., Egger and Kreickemeier, 2009).

This results in the following demand curves for each firm, which are downward sloping

due to product differentiation and substitutability across goods:

Qj(f) = Y F η−1P µ−1pj(f)−µ (1.5.1)

where pj(f) is the price charged by firm f of type j and Y is total consumer spending, and

the price index P is given by P 1−µ ≡ F η−1
∑

j

∫
Fj
pj(f)1−µ.

1.5.2.2 Firms

Firms have some market power but are non-strategic and take their downward-sloping

demand curves as given—a typical monopolistic competition setup. Firm production functions

are given by

Qj(z) = zqj(z)

qj(z) =
[
a (Lj(z))

σE−1

σE + (Sj(z))
σE−1

σE

] σE
σE−1

Lj(z) =
[
bj (ILj(z))

σI−1

σI + (NLj(z))
σI−1

σI

] σI
σI−1

Sj(z) = ISj(z) +NSj(z)
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where z is a draw of total factor productivity, qj(z) is a CES aggregator of less-educated

labor (Lj) and more-educated labor (Sj), and the lower education labor group is itself a

CES aggregator of immigrant and native labor. I consider high education workers to be

indistinguishable across nativity.35 The elasticities σE and σI govern how substitutable

workers of different education and different nativities are, respectively. z is drawn from

the same Pareto distribution regardless of entrepreneur type, with shape parameter φ and

minimum valuem. The parameter a governs relative productivity across less- and more-educated

workers.

The key difference across firms of type j is the parameter bj within the low-education

aggregator. I assume type j = 1 firms depend more on, and better use immigrant labor:

∆b ≡ b1 − b0 > 0

This assumption stands in for a variety of reasons why firms that are more productive

are more adept at using immigrants in production. They may be better at allocating

immigrants and natives to different tasks, have better access to search networks where there

are immigrant job-seekers, or may be less discriminatory toward (suffer less distaste from

hiring) immigrant workers.

The cost function is given by (cj
z

)
Qj(z) + cjκ

f
j

where

cj ≡
[
aσE (cLj)

1−σE + (wS)1−σe] 1
1−σE

and

cLj ≡
[
bσIj (wIL)1−σI + (wNL)1−σI] 1

1−σI

and wie represents the wage for a worker nativity i and education e and wS ≡ wNS = wIS

because of perfect substitutability among higher-educated workers. κfj is a fixed operating

cost that is allowed to vary by entrepreneur type for reasons mentioned above—immigrant-linked

firms often appear to pay additional fixed operational costs in order to utilize immigrant

labor. Thus, in order to access the immigrant-specific production boost represented by

b1 > b0 , they must pay a proportional cost every period, τ , such that κf1 = τκf0 .

The cost function leads to a familiar pricing rule in models of monopolistic competition

and Dixit and Stiglitz (1977) preferences:

35There is more robust evidence for imperfect substitutability among low-education workers. See, e.g.,
Peri and Sparber (2009).
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pj(z) =

(
µ

µ− 1

)(cj
z

)
(1.5.2)

That is, the firm still charges a constant markup over its marginal cost, but the firm’s

marginal cost reflects the two different types of labor it aggregates. Firms compete through

prices, and so firms that are able to pass on declines in cj to consumers through p are able

to gain in market share.

1.5.3 Equilibrium Definition

Entrepreneurs only stay in the market if they are profitable. This defines a cutoff

productivity for type 0 firms:

π0(z∗0) ≡ 0 (1.5.3)

A second cutoff exists, at which marginal producers are indifferent between the immigrant-heavy

(type 1) and immigrant-light (type 0) production mode:

π0(z∗1) ≡ π1(z∗1) (1.5.4)

Entrepreneurs with productivities below z∗0 exit the market, entrepreneurs with productivities

in [z∗0 , z
∗
1 ] produce with technology 0, and entrepreneurs with productivities above z∗1 produce

with technology 1. Entrepreneurs do not know their z prior to entry, and must pay an entry

cost. The next equilibrium condition is free entry:

E[π(z)] = E[π(z)|z > z∗0 ]P[z > z∗0 ] = c0κ
e (1.5.5)

where κe is a sunk (entry) cost entrepreneurs pay to take productivity draws, denominated

in units of output. When profits are high enough, entrepreneurs enter until they no longer

expect to recover their entry costs.36 The price level, P is given by

P ≡ ne

[∫ z1∗

z0∗
p0(z)1−µg(z)dz +

∫ ∞
z1∗

p1(z)1−µg(z)dz

]
(1.5.6)

where ne is the endogenous mass of entrepreneurs who take productivity draws. Consumer

spending Y is set equal to labor payments, and the final equilibrium conditions occur in the

labor market, setting labor supply and labor demand equal for low-education immigrant and

36Note that the assumption that entry costs scale with c0 (instead of c1 or a combination) is mostly made
for analytical convenience. However, a simple, plausible justification is that producers do not invest in the
costs to access immigrant labor until after entry activities have been completed and they find out they have
a draw of z above z∗1 . Thus, the entry activities are paid for using type 0 technology.
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native workers. High-education worker wages are set to be the numeraire, wS ≡ 1.

1.5.4 Equilibrium

The key items of interest revolve around z∗0 . First, I define

Rz ≡
z∗1
z∗0

=

[
(c0)µ

(
c1τ − c0

(c1)1−µ − (c0)1−µ

)] 1
µ−1

(1.5.7)

and

θ ≡ 1 +R−φz

(
c1τ − c0

c0

)
(1.5.8)

Solving Equations (1.5.3) through (1.5.6) then yield

z∗0 = m

[(
κf0
κe

)(
µ− 1

φ− (µ− 1)

)
θ

] 1
φ

(1.5.9)

F = Y

(
1

c0κ
f
0

)(
φ− (µ− 1)

φµ

)
(1.5.10)

The key variable in this solution is θ, which sets Equation 1.5.9 apart from standard

productivity cutoff expressions derived in similar models (e.g., Melitz, 2003). It introduces

the notion that entry and exit decisions for marginal type 0 firms depend on type 1 firms,

through their ability to steal away market share when their costs go down. If c1 goes down

by more than c0 in response to a shock, θ rises, which causes z∗0 to rise as well. The rise in

z∗0 forces marginal type 0 firms to exit the market.

This mechanism drives the results below because of how it relates to the labor market.

Section A.5.2 derives equilibrium in the labor market, with the upshot that demand curves

slope downward. Thus, when a low-education tilted inflow of immigrants occurs, the wages

of less-educated immigrants deteriorate the most of any group. In turn, c1 falls by more than

c0 because b1 > b0.

1.5.4.1 Value Added of the Model: P

Price index P is inversely proportional to welfare. With z∗0 in hand, we can show37

P 1−µ = [Const.](c0)1−µF η(z∗0)µ−1θ

37Const.] =
(

µ
µ−1

)1−µ (
φ

φ−(µ−1)

)
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where F stands for firm mass. We then have

−d log(P )

dI
= −d log(c0)

dI︸ ︷︷ ︸
Analogous to rep. firm model

+

(
η

µ− 1

)
d log(F )

dI︸ ︷︷ ︸
Increased variety through more firms

+
d log(z∗0)

dI︸ ︷︷ ︸
Culling of marginal firms

+

(
1

µ− 1

)
d log(θ)

dI︸ ︷︷ ︸
Technology switching

(1.5.11)

This expression clarifies the value added of this modeling framework. First, in a canonical,

representative firm model of production in which all firms have access to type 0 technology,

the welfare impact of immigrants on native workers through prices would be defined only by

the first term of Equation (1.5.11). This expression contains three additional avenues that

this canonical framework misses.

The next two terms are driven by extensive margin changes: firm mass and the productivity

level at the shut down margin. Sections 1.3 and 1.4 each delivered evidence that these reduced

form parameters are positive in sign in partial equilibrium. Setting ∆b = 0, τ =1, and

c0 = c1 implies a model that simply melds monopolistic competition in the output market

with imperfect substitutability in the labor market. In such a model, Equations (1.5.7)

through (1.5.9) show that θ = 1 and that z∗0 is therefore constant. Thus, such a model would

open up an avenue from firm mass to welfare through product variety—as long as consumers

demand variety (η = 1)—but would not affect the firm productivity distribution. A model

with ∆b > 0 and τ > 1 opens the door to additional increases in welfare through a rising

θ—which increases welfare both independently and through z∗0 . Simulation results below

separate these channels.

1.5.5 Simulations

1.5.5.1 Calibration

Table 1.11 shows key model calibrations, set to match the U.S. economy in 2000, which

had an immigrant share of 0.12 (55 percent of which has at most a high school degree)

and 0.07 establishments per employee. Two calibrations are particularly difficult without

employer-employee linked data. The first is the difference between b1 and b0, ∆b. I will show

results that vary this difference in order to demonstrate how big it has to be for θ to rise

and for there to be productive reallocation across firms. For a given ∆b, b0 is pinned down

by the immigrant-native wage gap among low-education workers.

The second difficult parameter is τ , which controls the cost firms pay to obtain ∆b,

and determines how selected on productivity firms that pay it end up being. I also vary
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τ in simulations rather than set an arbitrary calibration, but this process revealed that

τ < 1.5 leads to unstable simulations and τ ≥ 1.6 leads to simulations that are essentially

indistinguishable, when all other parameters are held fixed. I thus set τ to 2 for the figures

presented below (see Table 1.12).

Under these calibrations, I run an experiment that increases the immigrant stock in the

workforce in a specific way that matches the empirical content of the immigrant inflows in

this chapter. Each additional immigrant represents 0.65 additional immigrants with no more

than a high school degree and 0.35 immigrants with at least some college (see Table A.4).

As with a general immigrant inflow to the U.S. over the last 30 years, this experiment tilts

the labor force towards lower educational attainment workers.

1.5.5.2 Results

Figure 1.10 shows the results from an example simulation with ∆b = 0.3 and τ = 2.

The top left figure shows that labor costs fall more for type 1 firms. This mechanism filters

through to the rest of the results: because type 1 firms see lower marginal costs, the cutoff

for switching to type 1 technology moves down. The same is not true for type 0 firms, even

through immigrant entry does lower their production costs. This is because type 1 firms are

able to price compete away market share, leading to a higher productivity bar for type 0

firms to be able to stay in the market. The result is more entry overall (of both types, but

particularly of type 1 firms), exit by marginal type 0 firms, and an increase in native welfare.

An immigration shock equivalent to a one percent increase in the population generates a

0.49 percent increase in native welfare. We can then use (1.5.11) to decompose this effect

results into its component parts. Specifically,

WI ≡
d log(Real Native Income)

dI

=
d log(wNUNU + wSNS)

dI
− d log(P )

dI

=
d log(wNUNU + wSNS)

dI
− d log(c0)

dI︸ ︷︷ ︸
Standard

+

(
η

µ− 1

)
d log(F )

dI︸ ︷︷ ︸
Variety

+
d log(z∗0)

dI︸ ︷︷ ︸
Culling

+

(
1

µ− 1

)
d log(θ)

dI︸ ︷︷ ︸
Switching

where NL and NS are the fixed stock of native workers with at most a high school degree

and more than a high school degree, respectively. This expression simply adds changes to

native nominal income, (wNLNL + wSNS), to Equation (1.5.11).

The results of model simulations over a range of ∆b are captured in Figure 1.11.38 Three

important findings emerge: first, the “standard” portions of the immigrants surplus that

accrue to natives through wage and price changes, d log(wNLNL+wSNS)
dI

− d log(c0)
dI

(in blue), are a

38Note that when ∆b = 0, τ is set to 1. Otherwise, τ = 2 as usual.
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relatively small component of the immigrant surplus when we account for firm heterogeneity—less

than 20 percent in the simulations conducted here. Gains from variety through increased firm

presence,
(

1
µ−1

)
d log(F )
dI

(in gray), are the largest component of the immigrant surplus—insofar

as consumers value variety. See Table 1.13 for more details on the decomposition.

However, productive reallocation across firms,
d log(z∗0 )

dI
+
(

1
µ−1

)
d log(θ)
dI

(in red), particularly

through the culling of marginal firms,
d log(z∗0 )

dI
(in darker red), plays a significant role as

well—at least 30 percent of the immigrant surplus comes from productive reallocation.

Returning to a primary motivation in this chapter, these general equilibrium reallocation

effects stem from the supply side of the product market—they occur due to immigrant

characteristics as employees (making labor costs cheaper) and because they induce and

increase entrepreneur mass ne, which ultimately raises z∗0 through increased competition.

Even if we are to believe that gains through variety are over-stated in models of monopolistic

competition, taking firm heterogeneity into account is critical to understanding how immigration

affects the economy. Specifically, the bifurcation in productivity that is generated by allowing

firms to pay a cost to better-utilize immigrant workers more than doubles the native welfare

gain that is associated with immigration.

1.5.6 Discussion

These exercises, placed in the context of the empirical results presented above, demonstrate

why accounting for heterogeneous firm responses can lead to estimates of immigrant-generated

welfare that are substantially larger than those that come from canonical models of labor

demand. By allowing for dispersion of productivity across firms, models with the Melitz

(2003) structure open a channel to welfare through the productivity distribution. In particular,

a rising productivity cutoff increases welfare by lowering prices—a first-order welfare gain

analogous to shifting out the production possibilities frontier. Yet another first-order welfare

gain—not modeled here—could arise if competition among firms raised the elasticity of

substitution across products (see, e.g., Blanchard and Giavazzi, 2003). Welfare gains that

arise from changes to wages and firm input costs, by contrast, are small because the labor

market is characterized by perfect competition. This is also the case with accounting exercises

conducted when both the labor market and the product market are characterized by perfect

competition (see, e.g., Borjas, 1999 and Ottaviano and Peri, 2008).

1.6 Conclusion

This chapter documents several empirical relationships that reveal the critical role firm

entry and exit play in absorbing immigrants into and mediating the effects immigrants have
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on local economies. A plausibly causal positive relationship between immigrants and business

presence drives small-to-medium sized firm creation and prevents exit by older, large firms

within commuting zone-industry pairings over three decades in which immigration was a

defining feature of demographic change in the U.S. These extensive margin firm responses

were responsible for the majority of job creation that absorbed immigrants into local labor

markets. Contrary to what we would expect if these effects were driven solely by consumer

demand or uniformly lower labor costs across firms, immigrant inflows appear to cull lower

productivity firms from a local economy, increasing average local productivity but generating

disparate consequences for firm owners of different nativity.

At its broadest point of view, this chapter considers the importance of placing immigration

in the context of firm heterogeneity. This requires us to move away from models of perfect

competition and towards models that feature market failures—such as the model of monopolistic

competition presented in Section 1.5. In these models, increased competition among firms

move economies closer to a first-best world, eliminating dead-weight loss in the process.

When viewed in this context, the empirical results found in this chapter generate direct

channels to first-order welfare gains. They also speak to a burgeoning literature on non-wage

immigrant absorption, implying that 1) within-industry, immigrant-absorbing endogenous

technology adoption as an immigrant absorption mechanism and 2) connections between

immigration and total factor productivity may be tightly linked to firm entry and turnover

in the U.S.

Future work will seek to delve into and contextualize these links. Employer-employee

linked data, for example, can help test the model’s assertion that more productive firms

within U.S. industries tend to both hire more immigrant workers and benefit more from

immigrant inflows. Additionally, cross-geographic comparisons that stratify immigrant absorption

outcomes—including wage changes, native displacement, and productivity—by variables that

reflect the ease of starting and shutting down a business can help validate this chapter’s

suggestion that flexibility on the extensive margin is a key determinant of the relative success

in U.S. immigrant labor market assimilation.
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Figure 1.1: Individual Synthetic Control Results—Measures per Initial (t∗ − 1) Worker

Phoenix MSA: Immigrants Phoenix MSA: Establishments Miami MSA: Establishments
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Source: Author’s calculations from IPUMS-USA and County Business Patterns.
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Figure 1.2: Pooled SCM Results, Establishments per Immigrant (βt)
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Source: Author’s calculations from IPUMS-USA and County Business Patterns.
Notes: 95% confidence intervals represented by gray area around point estimates indicated by solid black line.
These confidence intervals only apply to the “reduced form”—“first stage” only used as a scaling factor. Combined
estimates reflect the cases of Phoenix-Mesa-Scottsdsale, AZ with 2008 as year 0 and Miami, FL with 1980 as year
0.
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Figure 1.3: Educational Attainment of U.S. Workers—Shares by
Nativity
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Figure 1.4: Endogenous Immigrant Inflows into the Construction Industry, 2000–2005

Panel A: Net Immigration by Country, k=Construction
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Figure 1.5: Exogenous Immigrant Inflows into the Construction Industry, 2000–2005

Panel A: Emigration Shock, k=Construction[
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Figure 1.6: The Effect of Immigration on Firm Presence—Flow Decomposition (IV
Results)
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Notes: See Equation (1.3.1) for specification. See Section 1.3.4.3 for details on outcome variables. Data accessed and
analyzed in Michigan Census Research Data Center.
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Figure 1.7: The Effect of Immigration on Firm Presence—Within Size Bin (IV
Results)
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Notes: See Equation (1.3.1) for specification. See Section 1.3.4.4 for details on outcome variables. Data accessed
and analyzed in Michigan Census Research Data Center.
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Figure 1.8: The Effect of Immigration on Firm Presence—Heterogeneity (IV
Results)
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Figure 1.9: Change in Shut-Down Probability from a 1% Immigration Shock (IV
Results)
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Figure 1.10: Example Simulation with ∆b = 0.2 and τ = 2
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Figure 1.11: Simulations—Percent Change in Native Welfare from a 1% Immigration
Shock
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Table 1.1: “First Stage” Scaling Factors δ1S

Case Treatment Start (t∗) Variation Source ∆DD
I Empirical p-value

Phoenix-Mesa-Scotsdale, AZ 2008 Arizona LAWA -0.052 0.056
Miami-Fort Lauderdale-West Palm Beach, FL 1980 Mariel Boatlift 0.066 —

Source: First row—author’s calculations from IPUMS-USA and County Business Patterns. Second row—Card (1990) p. 248 and Table 1.
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Table 1.2: Educational Content of Immigrant Inflows (Publicly Available Data, k = SIC Sector)

Outcome: Change in High Education Share of Labor Force
(1) (2) (3) (4)

∆Igkt: Immigrant Inflows per Initial Worker -0.0913*** -0.0888*** -0.0706*** -0.1020***
(0.0161) (0.0303) (0.0156) (0.0327)

High Education Definition H.S. Degree+ H.S. Degree+ College Equiv. College Equiv.
Instrument None—OLS Emigrants None—OLS Emigrants
Within R2 0.016 0.016 0.015 0.012
αgt, αkt X X X X
Region × SIC Sector × Year FE X X X X
1980 Controls × Year FE X X X X
Observations 15,162 15,162 15,162 15,162

Notes: See Equation (1.3.1) for specification. College equivalent refers to 0.5 times workers with Some College plus all workers with a College Degree or More—see, e.g., Doms
et al. (2010). All specifications include control variables for 1980 log employment, 1980 establishments per worker, 1980 self employment share, 1980 college share, and 1980
under-40 share in the commuting zone-sector interacted with year fixed effects. Observations weighted by 1980 workforce size. Standard errors clustered at the commuting
zone-sector level. Data obtained from IPUMS-USA.
* p < 0.1 ** p < 0.05 *** p < 0.01
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Table 1.3: Summary Statistics (Publicly Available Data, k = SIC Sector)

Workers Immigrants ∆ Establishments ∆Igkt: Immigrant Inflows
per Establishment per Worker per Initial Worker per Initial Worker

SIC Sector Mean Mean Mean Std Dev Mean Std Dev

Construction 10.68 0.1227 0.0172 0.0285 0.0926 0.1113
Finance, Insurance, Real Estate 13.30 0.0974 0.0180 0.0186 0.0340 0.0360
Manufacturing 64.25 0.1310 -0.0001 0.0037 0.0176 0.0404
Retail Trade 14.07 0.1194 0.0078 0.0129 0.0528 0.0554
Wholesale Trade 14.04 0.1117 0.0015 0.0217 0.0282 0.0502
Services 15.66 0.1024 0.0177 0.0128 0.0556 0.0499
Transportation & Utilities 28.31 0.0915 0.0034 0.0080 0.0389 0.0475

Total 25.53 0.1132 0.0112 0.0160 0.0474 0.0571

Notes: Data obtained from IPUMS-USA and County Business Patterns. Weighted by 1980 workers in SIC-commuting zone pair.
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Table 1.4: Industry Groups

Grouping 1990 Census Codes 2007 NAICS Codes
Construction 60 23
Management of companies 710 55
Utilities 422, 450, 451, 470–472 22, 486, 562
Manufacturing – Food 100, 101, 102, 110 , 111, 112, 120, 121, 122, 130, 610 311–312
Manufacturing – Clothing 132, 140, 142, 150, 151, 152, 220, 221, 222 313–316
Manufacturing – Wood & Furniture + 160–162, 231, 232, 241, 242, 250–252, 261, 262 321, 322, 327, 337
Manufacturing – Plastics + 180–182, 190–192, 200, 201, 210–212 324–326
Manufacturing – Metals & Machinery 270–272, 280–282, 290–292, 300, 301, 310–312, 320, 321, 331, 332, 380 331–333
Manufacturing – Electrical & Household 322, 340–342, 350, 371, 372, 381, 390, 391 334, 335, 339
Manufacturing – Transportation 351, 352, 360–362, 370 336
Wholesale Trade – Durable 500, 501, 502, 510–512, 521, 530–532 423
Wholesale Trade – Nondurable 540–542, 550–552, 560–562 424
Retail Trade – Vehicles 612, 620, 622 441
Retail Trade – Household Durables 580–582, 631–633 442–444
Retail Trade – Food & Gas 601, 602, 611, 621, 650 445, 447
Retail Trade – Misc. 590, 640, 642, 651, 652, 661, 662, 681, 682 446, 451, 453
Retail Trade – Apparel 623, 630, 660 448
Retail Trade – Dept. & Variety Stores 591, 592, 600 452
Retail Trade – Fuel, Catalog, Vending 663, 670–672 454
Transportation 400, 420, 421 481–483
Trucking 410 484, 492
Bus & Taxi 401, 402 485
Warehousing & Storage 411 493
Non-Telephone Communication 440, 852 515, 519
Telecomm & Data Processing 441, 442, 732 517, 518
Savings Institutions 700–702 521, 522
Insurance 711 524
Real Estate 712 531
Professional Services 12, 721, 741, 841, 882, 890–893 541, 711
Admin. & Support Services 20, 432, 722, 731, 740 561
Educational Services 842, 850, 851, 860 611
Health Services excl. Hospitals 812, 820–822, 830, 840 621
Hospitals 831 622
Nursing & Residential Care Facilities 832, 870 623
Social Services 861–863 624
Entertainment Services 742, 800–802, 810, 872 512, 532, 712, 713
Lodging 762, 770 721
Eating & Drinking Places 641 722
Repair Services 750–752, 760, 782, 790 811
Personal Services 771, 772, 780, 781, 791 812
Unions & Religious Organizations 873, 880, 881 813
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Table 1.5: The Effect of Immigration on Firm Presence

Outcome: ∆Igkt Outcome: ∆Firmsgkt

(1) (2) (3)

∆zEmigrants
gkt : Emigrants Instrument 0.2410***

(0.0204)

∆Igkt: Immigrant Inflows per Initial Worker 0.0322*** 0.0527***
(0.0030) (0.0055)

Specification Type 1st Stage OLS Emigrants IV
Within R2 0.1211 0.0260 0.0348
αgt, αkt X X X
Region × Industry Group × Year FE X X X
1980 Controls × Year FE X X X
Observations 59,000 59,000 59,000

Notes: See Equation (1.3.1) for specification. Outcome variable ∆Firmsgkt is divided by initial workforce in gk to retain consistent scaling with ∆Igkt. All specifications
include control variables for 1980 log employment, 1980 establishments per worker, 1980 self employment share, 1980 college share, and 1980 under-40 share in the commuting
zone-sector interacted with year fixed effects. Observations weighted by 1980 workforce size. Standard errors clustered at the commuting zone-industry group level. Data
accessed and analyzed in Michigan Census Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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Table 1.6: The Effect of Immigration on Firm Presence—Stability and Robustness of IV Estimates

∆Firmsgkt: Net Firm Entry per Initial Worker

(1) (2) (3) (4) (5) (6)

∆Igkt: Immigrant Inflows per Initial Worker 0.0835*** 0.0448*** 0.0481*** 0.0527*** 0.0464*** 0.0569***
(0.0070) (0.0057) (0.0059) (0.0055) (0.0059) (0.0122)

∆Igk,t−10: Lagged Immigrant Inflows per Initial Worker -0.0157
(0.0146)

Instrument(s) ∆zEmigrants
gkt ∆zEmigrants

gkt ∆zEmigrants
gkt ∆zEmigrants

gkt ∆zEmigrants
gkt

(
∆zEmigrants

gkt

∆zEmigrants
gk,t−10

)
Panel Pre-Trends Test p-value 0.3244 0.7193 0.7620 0.2697 0.3750 0.0820
Kleibergen-Paap Wald 1st Stage F Statistic 261.8 81.80 88.74 140.1 129.7 29.30
Within R2 0.0482 0.0305 0.0506 0.0348 0.0674 0.0315
αgt, αkt X X X X X
1980 Controls × Year FE X X X X
Region × Industry Group × Year FE X X X
Control for ∆Workerst

Workerst−10
X

Observations 59,000 59,000 59,000 59,000 59,000 40,000

Notes: See Equation (1.3.1) for specification. Observations weighted by 1980 workforce size. Standard errors clustered at the commuting zone-industry group level. Data
accessed and analyzed in Michigan Census Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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Table 1.7: Decomposition of Immigrant-Induced Job Creation

Jobs Created at Firm Type (per Initial Worker):

Total Deaths Entrants Continuers
Net Relocations
& Expansions

(1) = – (2) + (3) + (4) + (5)

Panel A: OLS

∆Igkt: Immigrant Inflows per Initial Worker 0.8558*** -0.1106*** 0.2906*** 0.1850*** 0.2695***
(0.0700) (0.0352) (0.0347) (0.0344) (0.0413)

Percent of Total 100 12.92 34.00 21.62 31.49

Panel B: Emigrants IV

∆Igkt: Immigrant Inflows per Initial Worker 0.6014*** -0.2573*** 0.1572*** 0.0857 0.1012
(0.1186) (0.0828) (0.0575) (0.0721) (0.0800)

Percent of Total 100 42.78 26.14 14.25 16.83

Notes: See Equation (1.3.1) for specification. See Section 1.3.5 for details on outcome variables. All specifications include control variables for 1980 log employment, 1980
establishments per worker, 1980 self employment share, 1980 college share, and 1980 under-40 share in the commuting zone-sector interacted with year fixed effects. Observations
weighted by 1980 workforce size. Standard errors clustered at the commuting zone-industry group level. Data accessed and analyzed in Michigan Census Research Data Center.
* p < 0.1 ** p < 0.05 *** p < 0.01
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Table 1.8: Immigrant Presence and Firm Exit, Stratified by Productivity (Full Panel)

Outcome: Igkt Outcome: 1[Shut Down]ft

(1) (2) (3) (4) (5) (6) (7)

zgkt: Emigrants Instrument 0.2732***
(0.0265)

Igkt: Immigrants per Initial Worker -0.0336*** -0.0709*** 0.1911*** 0.2604*** 0.3327*** 0.5273***
(0.0041) (0.0269) (0.0131) (0.0339) (0.0213) (0.0521)

Igkt × 1[High Prod.] -0.5001*** -0.8494*** -0.7073*** -1.067***
(0.0315) (0.0642) (0.0431) (0.0797)

Effect for High Prod. Firms -0.5890*** -0.5393***
(0.0515) (0.0526)

Specification Type 1st Stage OLS Emigrants IV OLS Emigrants IV OLS Emigrants IV

Productivity Measure (logged) — — — Employment Employment
Payroll per Payroll per
Employee Employee

αgt, αkt X X X X X X X
Region × Industry Group × Year FE X X X X X X X
2000 Controls × Year FE X X X X X X X
Within R2 0.0616 0.0001 <0.0001 0.003 0.0014 0.0059 0.0044
Observations 15,000,000 15,000,000 15,000,000 15,000,000 15,000,000 15,000,000 15,000,000

Notes: See Equations (1.4.2) and (1.4.3) for specification and (1.4.1) for productivity definitions. All specifications include control variables for 2000 log employment, 2000
establishments per worker, 2000 self employment share, 2000 college share, and 2000 under-40 share in the commuting zone-sector interacted with year fixed effects. Standard
errors clustered at the commuting zone-industry group level. Data accessed and analyzed in Michigan Census Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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Table 1.9: Immigrant Presence and Firm Exit, Stratified by Productivity (SBO Panel)

Outcome: 1[Shut Down]ft

(1) (2) (3) (4) (5)

Panel A: OLS

Igk,t−2: Immigrants per Initial Worker -0.0269* 0.1433*** 0.1854*** 0.0620** 0.1806***
(0.0161) (0.0314) (0.0373) (0.0247) (0.0384)

Igk,t−2 × 1[High Prod.] -0.5617*** -0.4687*** -0.3214*** -0.5049***
(0.0861) (0.0730) (0.0641) (0.0826)

Panel B: Emigrants IV

Igk,t−2: Immigrants per Initial Worker -0.1080 0.8044*** 1.168*** 0.3494*** 1.225***
(0.0763) (0.1446) (0.1843) (0.1077) (0.2048)

Igk,t−2 × 1[High Prod.] -2.630*** -2.407*** -1.681*** -2.557***
(0.2876) (0.2882) (0.2023) (0.3289)

Productivity Measure (logged) — Employment
Payroll per

Revenues
Revenues per

Employee Employee
αgt, αkt X X X X X
Region × Industry Group × Year FE X X X X X
2000 Controls × Year FE X X X X X
Observations 611,000 611,000 611,000 611,000 611,000

Notes: See Equations (1.4.4) and (1.4.5) for specification and (1.4.1) for productivity definitions. All specifications include control variables for 2000 log employment, 2000
establishments per worker, 2000 self employment share, 2000 college share, and 2000 under-40 share in the commuting zone-sector interacted with year fixed effects. Observations
weighted by SBO survey weights. Standard errors clustered at the commuting zone-industry group level. Data accessed and analyzed in Michigan Census Research Data Center.
* p < 0.1 ** p < 0.05 *** p < 0.01
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Table 1.10: Immigrant Presence and Firm Exit—The Role of Immigrant Entrepreneurship

Outcome: 1[Shut Down]ft

(1) (2) (3) (4) (5)

Panel A: OLS

Igk,t−2: Immigrants per Initial Worker 0.0097 0.1816*** 0.2130*** 0.1108*** 0.2136***
(0.0175) (0.0326) (0.0351) (0.0271) (0.0406)

Igk,t−2 × 1[Immi Owned] -0.1422*** -0.1456*** -0.1254* -0.1753*** -0.1277**
(0.0358) (0.0479) (0.0642) (0.0443) (0.0509)

Igk,t−2 × 1[High Prod.] -0.5530*** -0.4821*** -0.3424*** -0.4900***
(0.0831) (0.0675) (0.0651) (0.0857)

Igk,t−2 × 1[Immi Owned]× 1[High Prod.] -0.0470 0.0737 0.0377 -0.0611
(0.1085) (0.1029) (0.0906) (0.0802)

Panel B: Emigrants IV

Igk,t−2: Immigrants per Initial Worker 0.0223 1.198*** 1.553*** 0.6582*** 1.710***
(0.0846) (0.1721) (0.2088) (0.1296) (0.2419)

Igk,t−2 × 1[Immi Owned] -0.2790*** -0.8495*** -0.9173*** -0.6581*** -1.052***
(0.0908) (0.1356) (0.1469) (0.1255) (0.1776)

Igk,t−2 × 1[High Prod.] -3.128*** -2.919*** -2.059*** -3.101***
(0.3426) (0.3280) (0.2585) (0.3781)

Igk,t−2 × 1[Immi Owned]× 1[High Prod.] 1.219*** 1.272*** 0.9445*** 1.289***
(0.2347) (0.2296) (0.2330) (0.2590)

Productivity Measure (logged) — Employment
Payroll per

Revenues
Revenues per

Employee Employee
αgt, αkt X X X X X
Region × Industry Group × Year FE X X X X X
2000 Controls × Year FE X X X X X
Observations 611,000 611,000 611,000 611,000 611,000

Notes: See Equations (1.4.6) and (1.4.7) for specification and (1.4.1) for productivity definitions. All specifications include control variables for 2000 log employment, 2000
establishments per worker, 2000 self employment share, 2000 college share, and 2000 under-40 share in the commuting zone-sector interacted with year fixed effects. Observations
weighted by SBO survey weights. Standard errors clustered at the commuting zone-industry group level. Data accessed and analyzed in Michigan Census Research Data Center.
* p < 0.1 ** p < 0.05 *** p < 0.01

64



Table 1.11: Key Calibrations

Parameter Value Target Moments Source

Panel A: Individually Calibrated

σE 1.5 — Ottaviano and Peri (2012)

σI 10 — Ottaviano and Peri (2012)

µ 4 Average U.S. Markup = 32% Christopoulou and Vermeulen (2012)

φ 3.1 φ > µ− 1 —

κe 3 — —

m 1 — —

Panel B: Jointly Calibrated

a 0.64 wNU
wS

= 0.52 2000 Census

b0 [0.15, 0.55] wIU
wS

= 0.4 2000 Census

κf0 0.25 F = 0.05 2000 Business Dynamics Statistics
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Table 1.12: Percent Change in Native Welfare for a 1% Increase in Workforce Due to
Immigration

∆b

0.1 0.2 0.3 0.4 0.5

τ

1.6 0.479 0.495 0.497 0.498 0.498
1.7 0.479 0.495 0.497 0.498 0.498
1.8 0.479 0.495 0.497 0.498 0.498
1.9 0.479 0.495 0.498 0.498 0.498
2 0.479 0.495 0.498 0.498 0.498
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Table 1.13: Components of Immigrant Surplus

∆b

0.1 0.2 0.3 0.4 0.5

Standard: d log(wNUNU+wSNS)
dI

− d log(c0)
dI

0.176 0.152 0.149 0.148 0.148

Firm Mass (η = 1):
(

η
µ−1

)
d log(F )
dI

0.518 0.476 0.470 0.470 0.470

Culling:
d log(z∗0 )

dI
0.230 0.279 0.286 0.286 0.286

Switching:
(

1
µ−1

)
d log(θ)
dI

0.077 0.093 0.095 0.095 0.095

Total: 1 1 1 1 1
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CHAPTER II

Bad Times, Bad Jobs? How Recessions Affect Early

Career Trajectories

2.1 Introduction

The state of the business cycle at labor market entry has substantial and persistent effects

on the earnings and career trajectories of young workers.1 Because of the strong element of

chance associated with labor market entry during a recession, the popular press has labeled

cohorts with the misfortune of being exposed to years of earnings losses as “unlucky.”2

Initial wage losses for unlucky cohorts stem from the fact that availability of high-wage

jobs is strongly procyclical (see, e.g., Okun, 1973 and McLaughlin and Bils, 2001); however,

the translation of short-term fluctuations in wages into long-term scarring effects is a product

of several different factors. First, search frictions can hinder the movement of workers

between employers thereby extending the duration of recession-induced losses. Second, when

these frictions rise with tenure, they can generate long-term human capital mismatch if

recession entrants do not find work in jobs, occupations, and industries for which they have

already specialized (see, e.g., Oreopoulos et al., 2012). Third, employers may be slow to

learn about the true quality of recession entrants relative to expansion entrants because of

greater initial mismatch. Finally, the fact that much of the labor market is characterized

by long-term wage-setting rather than a spot market slows down the convergence between

recession entrants and expansion entrants (see, e.g, Beaudry and DiNardo, 1991).

In this chapter, we make two advances relative to the literature. First, we provide a

precise estimate of the importance of employer-specific and non-employer-specific factors

1See, e.g., Kahn (2010) and Altonji et al. (2016) for evidence from the United States and Oreopoulos
et al. (2012) for evidence from Canada.

2See, e.g., during a recession: Catherine Rampell, “Many With New College Degree Find the Job Market
Humbling,” New York Times, May 8, 2011. In contrast, during an expansion: Ben Casselman, “This Year’s
College Grads Are The Luckiest In A Decade,” FiveThirtyEight, May 6, 2016.
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in explaining the long-term impact of recessions on the wages of labor market entrants.

While prior studies have found that employer and occupational characteristics play a role

in explaining recession-induced penalties (see, e.g., Oyer, 2006, Oyer, 2008, Oreopoulos

et al., 2012, and Rinz, 2019), the precise, quantitative role employers play in generating

scars for recessionary entrants remains unknown. Our approach relies on the two-way

fixed effect wage decomposition developed in Abowd et al. (1999) (AKM), which we use

to partition recession-induced wage losses into components that are employer-specific and

non-employer-specific. This exercise provides a more concrete comparison of between- versus

within-employer explanations of the long run consequences of entering the labor market

during a recession relative to existing literature.

Second, and perhaps more importantly, we provide the first evidence regarding how

non-pecuniary compensation changes for unlucky cohorts relative to lucky cohorts. We

estimate the value of working for each employer in our dataset by implementing a revealed

preference-based estimator of job utility developed in Sorkin (2018). Within this framework,

non-pay amenities are measured as variation in employer-specific pay holding employer value

fixed, whereas rents accruing to workers are measured as variation in employer-specific pay

that is explained by employer value.3 From a welfare perspective, this exercise facilitates a

more holistic accounting of recession-induced scarring because utility losses depend not only

on losses in pay but also on changes to non-pay amenities (see, e.g., Rosen, 1987).

Our analysis uses linked employer-employee administrative data from Germany and

studies the trajectories of new graduates of vocational training programs. Over two-thirds

of the German workforce holds a vocational training degree, making our results relevant for

a large proportion of the labor market—including a variety of skill types, occupations, and

industries. Using these data, we establish three central findings. First, we show that the

broad story of recession-induced scarring exists even in an economy with strong active labor

market programs for employment and re-training. The typical recession in Germany lowers

wages for new entrants by 4.9 percent cumulated over a 10 year horizon.4 Second, we show

that 1.9 percentage points (40 percent) of the total loss is explained by workers matching to

lower paying firms. The remaining 3 percentage points (60 percent) of the total loss comes

from non-employer-specific factors, including human capital mismatch, slow market-wide

employer learning, and infrequent wage renegotiation. Our results therefore indicate that

3Under the revealed preference approach, job utility combines all unobserved amenities including such
factors as job security, hours flexibility, commuting convenience, etc.

4The magnitude of recession-induced losses for unlucky cohorts in Germany is approximately equal to
that found in Canadian data. Oreopoulos et al. (2012) find that a typical recession results in a 5 percent
loss of earnings cumulated over 10 years. Estimates for recession-induced losses on unlucky cohorts in the
United States are substantially larger. For each percentage point increase in the unemployment rate, Kahn
(2010) finds a 6-7 percent loss in wages that decays to 2.5 percent after 15 years.
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the majority of recession-induced losses in pay come from factors that are not specific to

employers but rather a product of the labor market in general.

Finally, we show that 1.5 percentage points of the 1.9 percentage point employer-specific-pay

penalty is compensated for by non-pay amenities whereas only 0.4 percentage points reflect

losses from rent sharing. Thus, fully three-fourths of the employer-specific pay penalty is

explained by higher non-pecuniary compensation. After netting out relative gains in non-pay

amenities, the cost of recessions for young German labor market entrants drops by 30 percent

from 4.9 percent of wages cumulated over 10 years to 3.4 percent. These estimates indicate

that the welfare costs of labor market entry during a recession are overstated by a non-trivial

margin if evaluated using only pecuniary losses.5

Using rich data on workers and establishments, we then assess the mechanisms that drive

disparate career trajectories in the face of differing entry conditions. We show that low-pay,

high-amenity employers are more likely to make job offers during recessions. Young workers

in unlucky cohorts are beholden to the offer distribution they face upon entry, and their set of

options are tilted towards towards employers that offer amenities in lieu of pay. This finding

is consistent with prior research that links compensating differentials to unemployment risk

(see, e.g., Abowd and Ashenfelter, 1981). It is also consistent with the observation that

sectors which feature cyclically stable labor demand, such as education or healthcare, are

often associated with higher job satisfaction than sectors which feature cyclically sensitive

labor demand, such as construction or finance.

In addition, we show that recessionary entrants are much less likely to work at the same

employer, in the same occupation, or in the same industry for which they trained. Our

findings therefore suggest that much of the wage penalty faced by unlucky cohorts owes

to losses in employer-, occupation-, and industry-specific human capital, analogous to the

experience of workers who face involuntary job loss.6 By illustrating the importance of

changes in pay and amenities over the business cycle, our results also provide new evidence

for the view that wage gains associated with industry switching during expansions are partly

driven by lower non-pay amenities.7

The rest of the chapter is organized as follows: Section 2.2 provides a simple theoretical

5It is important to add that our conclusion on welfare implications relates only to employer-specific utility
and may not capture other welfare relevant consequences of young workers’ exposure to adverse aggregate
conditions. For instance, Maclean (2013) and Schwandt and von Wachter (2016) find evidence of worse
health and increased mortality among unlucky cohorts in the United States.

6See, e.g., Neal (1995) emphasizing the importance of industry-specific human capital in displacement
scarring. See von Wachter and Bender (2006) emphasizing the importance of firm-specific human capital
especially in the context of German vocational trainees.

7McLaughlin and Bils (2001) conjecture that such a phenomenon is possible but do not verify it
empirically.
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framework that formalizes the role of labor market risk in generating compensating differentials

and explains how cyclical shocks alter the relative composition of wages and amenities

available in the labor market. Section 2.3 describes linked employer-employee data from

the Institute for Employment Research (IAB) of the German Federal Employment Agency,

and how we utilized this data to construct our variables of interest. Section 2.4 describes

our empirical strategy and presents our main results along with robustness checks. Section

2.6 concludes.

2.2 Theoretical Framework

This section outlines a simple model of compensating wage differentials generated by

variation in unemployment risk across firms . The model formalizes one important channel

through which workers who enter the labor market during recessions obtain higher non-pay

amenities relative to those who enter during expansions.

2.2.1 Setup

Consider an economy with homogenous risk-averse workers and two types of firms: type

R firms and type S firms. The production function for each firm type j ∈ {R, S} in period

tis

yjt = zjtF (h, k), Fh > 0, Fk > 0, Fhh < 0

where zjt is an firm-specific productivity draw and F is a production function whose argument

h represents hours employed in production and whose argument k represents capital. Fhh <

0 simply operationalizes a diminishing marginal product of labor. From an employment

perspective, type R firms are deemed to be risky whereas type S firms are deemed to be safe

in the sense that: [
zRt

zSt

]
∼ N

([
z̄

z̄

]
,

[
σ2
R ρRS

ρRS σ2
S

])
(2.2.1)

ρRS > 0 (2.2.2)

σ2
R > σ2

S (2.2.3)

In equation (2.2.1), the mean productivity level z̄ represents the steady state. Although the

shocks are positively correlated, type R firms exhibit greater variance in productivity than

type S firms. A cyclical shock is defined to occur when both firm types obtain productivity
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draws that are jointly above or jointly below the steady state level. In recessions, zjt < z̄

and in expansions, zjt > z̄ for each j. For any realization of firm-specific productivity shocks

and for fixed capital stock k̄, equilibrium labor demand, h, can be generically written using

the firm’s first order condition for profit maximization as

Fh(h
∗
jt, k̄) =

w

zjt
, (2.2.4)

where w is the equilibrium wage rate and h∗j is the optimal hours demand for the firm.

Fhh < 0 guarantees that
∂h∗jt
∂zjt

> 0.

2.2.2 Wage determination

We assume that the labor market does not function as a spot market. Instead, as in

Azariadis (1975) and Abowd and Ashenfelter (1981), workers and firms agree to long-term

implicit contracts where wages are fixed but hours are variable. The key element of these

long-term implicit contracts is that they insure risk averse workers against future labor

market shocks that are propagated through firms’ productivity draws.8 The wage associated

with each contract can be ascertained as follows. First, define the indirect utility for a worker

who receives a wage w at firm j as V (w, hj), with utility an increasing, concave function of

earnings, U(w ·hjt). At a common wage rate, w, the expected indirect utility associated with

a type R contract will be lower than the expected utility associated with a type S contract.

This conclusion follows from the fact that zRt is drawn from a distribution that second order

stochastically dominates zSt and that higher variability in productivity translates directly

into higher variability of hours demand through (2.2.4). Consequently, risk aversion on the

part of workers implies that

E[V (w, hRt)] < E[V (w, hSt)].

Figure 2.1 illustrates this gap in expected indirect utility over a range of potential hours

realizations around the steady state level h̄. In a competitive labor market, workers will

demand a wage premium to compensate for the additional risk associated with employment at

type R firms. Define the risk premium as the compensating wage differential ∆ ≡ wR−wS >
0 where wR is the wage rate for a type R firm and wS is the wage rate for a type S firm. The

equilibrium wage rates are those which ensure that the expected indirect utility associated

8See Rosen (1985) and references therein on other models of risk premia in long-term implicit labor
market contracts.
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with employment at each firm type is equalized:

E [V (wS + ∆, hRt)] = E [V (wS, hSt)] .

2.2.3 Effect of cyclical shocks

Cyclical shocks re-order the expected relative productivity of each firm type. In expansions

the following condition holds due to (2.2.1) and (2.2.3)9:

E[zRt|zRt > z̄] > E[zSt|zSt > z̄].

That is, risky firms are expected to be more productive than safe firms. Conversely, in

recessions10:

E[zRt|zRt < z̄] < E[zSt|zSt < z̄].

That is, safe firms are expected to be more productive than risky firms. Combining the

productivity shifts over the cycle with the labor demand equation (2.2.4) generates the

following implications. First, expansions generate an increase in hours demanded by risky

firms relative to safe firms. Thus,

E[hRt|zRt > z̄] > E[hSt|zSt > z̄]. (2.2.5)

Second, recessions generate an increase in hours demanded by safe firms relative to risky

firms. Thus,

E[hRt|zRt < z̄] < E[hSt|zSt < z̄]. (2.2.6)

Finally, combining (2.2.5) and (2.2.6) shows us how the state of the economy affects hours

demanded by risky relative to safe firms11:

|E[hRt|zRt < z̄]− E[hRt|zRt > z̄]|︸ ︷︷ ︸
Drop in hours demanded by R during recession

> |E[hSt|zSt < z̄]− E[hSt|zSt > z̄]|︸ ︷︷ ︸
Drop in hours demanded by S during recession

.

This simple framework illustrates two key implications for the observed wages of labor

9Specifically, E[zjt|zjt > z̄] = z̄ + σj

√
2
π because zjt is distributed normally for each j.

10Specifically, E[zjt|zjt > z̄] = z̄ − σjt
√

2
π .

11The same intuition holds in extensions with multiple firm types and firms with different average
productivities (and therefore different levels of hours demand during steady state).
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market entrants. First, the potential for cyclical shocks generates compensating wage differentials

that are designed to indemnify workers against risk. Second, the state of the economy

materially influences the share of hours demanded by risky firms relative to safe firms. This

generates a composition effect in which recessions see relatively more hours demanded by

safe firms compared to risky firms. Thus, we should expect labor market entrants to be

relatively more likely to receive offers from low-wage/low-risk firms during a recession. We

work toward an empirical test of this hypothesis in the following sections.

2.3 Data and Construction of Key Variables

Our analyses are based off the Sample of Integrated Labor Market Biographies (SIAB)

(vom Berge et al., 2013). These data comprise a longitudinal two percent random sample

of all individuals in Germany that ever worked, claimed unemployment insurance benefits,

or sought job seeking assistance. In total, the sample describes the labor market histories of

just over 1.6 million workers starting in 1975 and ending in 2010.12

The SIAB is a linked establishment-worker dataset that is organized in terms of spells.

For employed individuals, each spell enumerates a match between a given worker and a

given establishment. For non-employed individuals, a spell can enumerate a period of

unemployment benefit receipt or a period of participation in an active labor market program.

Spell lengths are measured at daily precision. In addition to demographics, data on individuals

include average daily wages, educational qualifications, occupation, and state of residence.

Establishment information is available at annual frequencies and includes industry codes,

location, size, and median wage rates.

Because vocational training earnings are subject to Social Security contributions, spells

of young workers who are apprentices in Germany’s vocational training system are fully

enumerated in the SIAB. With precise information on the occupation, wage rate, and start

and end dates of training, the SIAB provides us with an unusually detailed set of information

on workers both before and after they graduate from vocational training. In addition to

exploiting the linked worker-establishment nature of the data, we rely on the timing of labor

market entry made possible by observing workers before and after their training is complete.

Before delving further into how we estimate the impact of business cycle shocks on the

career trajectories of young German workers, we first discuss how we use the SIAB to estimate

variables that are critical inputs in our analyses. These variables include establishment-specific

12The data exclude employment in the civil service as well as self-employment. Marginal part time
employment or so called “mini-jobs” are tracked in the SIAB starting in 1999. Mini-jobs are low-wage jobs
with a monthly income threshold of 450 euro. Participation in active labor market programs is tracked
starting from 2000.
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measures of wage premia, utility, compensating differentials, rents, and occupation-specific

unemployment rates at the state level.

2.3.1 Wage Decomposition

Following AKM, Card et al. (2013) (CHK) use the Integrated Employment Biographies

(IEB)—which is the universe of data from which the SIAB sample is drawn—to estimate

person and establishment fixed effect components of daily average wages. For worker i

employed at establishment j in year t, the decomposition can be summarized as

log(wageit) = αi + ψj1{i works at j in t}+ x′itβ + rit (2.3.1)

Person fixed effects, αi, incorporate individual specific skills that are rewarded equally across

employers. The establishment fixed effect, ψj, is a proportional premium that is paid by

establishment j to all its employees. xit is a vector of unrestricted year dummies as well

as quadratic and cubic terms in age fully interacted with educational attainment. These

controls account for aggregate and life-cycle determinants of wages. Consistency of the

parameter estimates requires that the error term, rit, is uncorrelated with αi, ψj and the xit.

CHK provide a detailed discussion about the validity of the identifying assumptions.

The CHK person and establishment fixed effects are identified only within the connected

set of establishments—i.e., the set of establishments that either hire from or lose workers to

other establishments in the set. CHK find that the largest connected set encompasses 95

percent of establishments in the IEB. Because the SIAB is a two percent random sample

of worker histories drawn from IEB, the set of connected employers is relatively small.

Fortunately, the original CHK person and establishment fixed effects are provided as supplements

to the SIAB dataset, precluding the need for analysts to re estimate (2.3.1) within a sparsely

connected dataset.

2.3.2 Estimating Establishment Values

Much of the literature that builds on the AKM decomposition treats the establishment

fixed effect as a measure of economic rents shared by workers. However, a long tradition

in economics has posited that employer-specific components of pay (ψj) can vary not only

because of factors such as rent sharing or efficiency wages, but also because of amenities that

are priced in the labor market as compensating differentials.13

13See, e.g, Rosen (1974) and Rosen (1987) for theory, and Lucas (1977), Freeman (1978), and Brown
(1980) for empirical evidence.

75



Building on this tradition, Sorkin (2018) proposes a novel methodology to estimate

employer-specific utility, exploiting the voluntary movements of workers between employers

in order to infer the relative utility of each employer, which is also referred to as employer

value. Implementing this revealed preference argument requires three key assumptions.

First, all workers have the same ex-ante preferences over jobs. Second, all jobs within

an employer are deemed to be identical from the standpoint of non-pay characteristics.

Finally, all workers—both employed and non-employed—search randomly from the same

offer distribution.

Taking these assumptions to linked employer-employee data, Sorkin develops an estimator

that aggregates the choices of workers into unique establishment values, the utility an

employee derives from working at a particular establishment. Intuitively, the estimator

rewards employers for making more hires from other high-quality employers and penalizes

them for voluntary departures. Akin to the connectedness requirement in AKM and CHK,

values are only calculable within the strongly connected set of employers. Strong connectivity

is defined as a set of employers who both gain and lose workers to other employers in the

set.

Because the establishment values are estimated using a revealed preference argument, a

crucial step in this procedure is to separate voluntary from involuntary movements of workers.

This distinction is required both for employer-to-employer movements (EE moves) and

movements from employment to non-employment (EN moves).14 Sorkin’s methodology relies

on the notion that workers who separate from establishments that are shrinking are more

likely to be involuntarily displaced, whereas workers separating from growing establishments

are more likely to be voluntary departures. Thus, comparing the rate of worker exit from

shrinking and growing establishments provides a benchmark for the probability that a given

move from a shrinking establishment is involuntary.15 We mimic this procedure in our

establishment value estimation.

Unlike Sorkin (2018), whose analyses are based on the universe of U.S. workers covered by

unemployment insurance in the Longitudinal Household Employer Dynamics (LEHD) data,

we rely on the set of establishments that employ workers in our two percent longitudinal

sample. Differences across these data settings necessitate additional modifications to Sorkin’s

methodology. First, while he limits strong connectivity to firms linked only by EE flows,

14Note that unemployment and labor force non-participation are taken to be the same for the purposes
of this estimation procedure.

15The rate of worker separation from growing establishments represents “expected” turnover that is fueled
by worker quits. Then, the rate of worker separation from shrinking establishments that is above and beyond
this “expected” rate disciplines the probability that a given worker move from a shrinking establishment is
involuntary. The methodology thus assumes that all moves from growing establishments are voluntary. The
likelihood of voluntary exit is separately estimated for EE and EN moves.
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we expand the set to include employers linked both by EE flows as well as transitions of

workers through non-employment. Because of the ubiquity of movements in and out of

non-employment, this modification expands the scope of strong connectivity and makes the

computation of values feasible even within a two percent random sample like the SIAB.16

This modification is fully consistent with the estimating equations in Sorkin’s model which

allow non-employment to obtain its own relative value.17 Second, when coding EE and

EN transitions, Sorkin reduces the quarterly LEHD data where workers potentially have

multiple employers in a given year, into a data set where each worker is associated with

a single employer—also known as the annual dominant employer—in a given year. In the

SIAB, job spell lengths are measured at daily precision, allowing us to take advantage of a

more complete set of job-to-job transitions. When a worker has two or more overlapping

job spells in a given year (i.e. works for multiple employers at the same time), we select

the spell associated with the highest total earnings. We treat periods between jobs that are

longer than 90 days as non-employment spells regardless of whether an individual received

unemployment benefits or sought job seeking assistance. Third and finally, unlike Sorkin, we

do not impose any earnings or age restrictions on workers in our sample in order to maximize

the number of establishments that we can include in the strongly connected set.

2.3.3 Decomposing Establishment Fixed Effects into Rents and Compensating

Differentials

Within the framework of the utility posting job-search model he proposes, Sorkin assumes

that the value of being employed at employer j (Vj) can be written as an additively separable

function of the employer-specific component of pay and an employer-specific non-pay amenity:

Vj = ω(ψj + aj). (2.3.2)

where ω is utility per log euro, ψj is the employer-specific component of pay, and aj is

the employer-specific non-pay amenity. Using establishment value estimates and CHK

establishment fixed effect estimates, we re-arrange equation (2.3.2) to estimate

ψj = πVj + εj (2.3.3)

16We rely on the MATLAB package MatlabBGL provided by David Gleich to find the largest strongly
connected set in the SIAB.

17Put differently, workers who make EN and NE transitions help to identify both the estimate of
non-employment value as well as estimates of employer values.
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and then obtain the residual terms ε̂j = ψj− π̂Vj. Because the residuals are orthogonal to Vj

by construction, they capture components of aj that generate variation in pay holding utility

constant. As such, they correspond to the non-pecuniary amenities defined as compensating

differentials in Rosen (1987). The fitted value, π̂Vj, is an estimate of rents accruing to

workers because it captures variation in pay that is correlated with utility.18

Figure 2.2 shows the relationship between studentized values and establishment fixed

effects in the SIAB replicating a Figure 5 from Sorkin (2018), but with German data. The

blue circles plot average establishment value and average fixed effects within each ventile of

the establishment value distribution. The red lines show one standard deviation bands of the

establishment fixed effect distribution within each value ventile. The upward slope of the line

of best fit shows that workers typically value employers that pay more, thereby indicating

the importance of rents. Nevertheless, there is a wide spread of establishment-specific pay

variation conditional on a given level of establishment utility, thereby indicating the presence

of compensating differentials.19

Figure 2.3 plots average values and establishment fixed effects across firms within broad

industry categories. The line depicting the overall relationship between Vj and ψj across

firms is the same as that in Figure 2.2, but the scatter plot across industries gives us further

information about which sectors are associated with high pay and/or high amenities. As

expected, sectors associated with higher pay and low amenities (above the line) include

Mining, Construction, and Finance. Meanwhile, establishments in the Health & Social Work

sector impart roughly the same value to their employees as Manufacturing establishments

despite paying substantially lower, on average. This indicates that Health & Social work

establishments offer more non-pay amenities to their workers, consistent with our prior beliefs

about relative work satisfaction in these sectors. In total, we view Figure 2.3 as important

qualitative validation that the values we have estimated have economic meaning.

18The CHK establishment fixed effects are estimated separately by gender, giving us two observations per
establishment. Due to sample size limitations, we pool together worker flows of both genders when estimating
establishment values. Thus, we additionally include a dummy variable for gender on the right-hand side of
equation (2.3.3) to remove average differences in establishment-specific pay between men and women.

19Our estimates of establishment value are based off a 2 percent sample of workers and therefore embody
measurement error. As a consequence, the slope of the line of best fit shown in Figure 2.2 is attenuated.
In Appendix B.2, we use a split-sample instrumental variable (IV) approach to evaluate the quantitative
impact of measurement error in our analyses. We find that OLS-based estimates of equation (2.3.3) are indeed
attenuated relative to the IV estimates. However, correcting for this bias has no economically substantive
impact on our key findings. Given that ε̂j (compensating differentials) and πVj (rents) are ultimately used
as outcome variables, this is to be expected as long as the measurement error is classical.
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2.3.4 Occupation-Specific Unemployment Rates

In order to capture variation in business cycle conditions relevant to the young workers we

study, we take advantage of the SIAB’s extensive data and large sample size to estimate two

customized unemployment rates. Our preferred measure is the state- and occupation-specific

unemployment rate. This measure provides an effective representation of labor demand,

especially for workers entering the labor market in a given state with training in a given

occupation. In addition, we calculate the occupation-specific national unemployment rate.

This unemployment rate provides a broader measure of labor demand that allows us to test

whether our results are driven by endogenous migratory responses.

Each unemployment rate is calculated using a similar methodology. We first assign

every worker in our dataset a status of employed, unemployed, or out of the labor force

on the 15th of each month using the SIAB’s labor market status variable.20 We assign

employed individuals the occupation of their current job and unemployed workers their

last known occupation. For employed workers who are currently in multiple jobs with

multiple occupations, we assign them the occupation of the job that paid higher daily

wages. Using the state of residence variable included in the SIAB, we then aggregate these

observations into monthly, occupation-specific unemployment rates. Finally, we aggregate

monthly unemployment rates into yearly unemployment rates by averaging across months

and weighting monthly rates by the underlying number of observations associated with each

month.

The primary value of using the SIAB to construct unemployment rates is to better

characterize the state of the business cycle specific to young workers as they enter the labor

market. Given that the data come directly from administrative sources, they also have the

advantage of capturing the the unemployment rate as well as, or better than, survey-based

unemployment rates. Nonetheless, to demonstrate that unemployment rates calculated

directly from the SIAB match publicly-available unemployment rate measures for Germany,

we present a comparison between our estimates of the national unemployment rate from

the SIAB and two measures provided by the Organization for Economic Co-Operation and

Development (OECD) in Figure 2.4. The first OECD unemployment measure is survey-based

while the second is the registered unemployment rate, calculated from administrative data

by counting the number of individuals who register with the government as unemployed in

order to receive unemployment benefits, auxiliary benefits like community assistance and

health assistance, or to signal the need for assistance with job search. The administrative

data-based OECD measure more closely aligns with the SIAB-based estimates in levels

20The SIAB provides detailed information about worker status that we aggregate to three simple
categories.
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because both use registration for unemployment benefits rather than survey self-reports to

ascertain unemployment.21

The trends of these three measures track each other closely, which is the relevant check

for our panel data-based analysis. Furthermore, at the sub-national level, a within-state

regression of survey-based OECD unemployment rates on unemployment rates estimated

from the SIAB produces a coefficient of 0.978 (t =16.39).22 In sum, while the OECD does not

report occupation-specific unemployment rates for direct comparison, we are confident that

our measure identifies relevant changes to business cycle conditions. Meanwhile, constructing

the unemployment rate with administrative data allows us to define an individual’s labor

market based on both occupation and state, which more accurately represents the conditions

they face when entering the labor market.

2.3.5 Sample Construction

An important characteristic of the SIAB is that it distinguishes between employment

spells associated with vocational training from those that are not. Since this distinction

is crucial for the implementation of our identification strategy, our most important sample

restriction is to only consider workers whose first spell in the SIAB is in vocational training.

We make four additional restrictions to hone in on the career paths of young trainees during

the first ten years of their labor market experience. First, we limit our sample to those who

complete their training before turning 30. Second, in order to keep comparisons consistent

over time, we restrict our sample to April 1999 and later, after which the SIAB began

enumerating mini-job work spells.2324 Third, we drop observations in occupation-state-years

from which unemployment rates were computed with 20 or fewer observations. Finally, in

order to avoid shifting composition based on outcome variables, we restrict the analysis

21The difference in levels between the two OECD sources arises for two reasons. First, non-employed
survey respondents may indicate that they are job-seekers even though they are not registered as unemployed
(if, for example, they are not eligible for unemployment benefits and thus see no advantage in registering).
Second, survey respondents who have registered to receive unemployment benefits may indicate that they
are not seeking a job when responding to the survey (if, for example, they register primarily to get auxiliary
benefits such as health or community assistance). The latter group outweighs the former in our study period
and likely also accounts for the fact that unemployment rates estimated from the SIAB are higher than the
survey-based measure. In addition, unemployment rates obtained from the SIAB are higher in levels because
these data exclude civil servants and self-employed workers who likely exhibit lower rates of joblessness than
the rest of the labor force.

22The specification is UOECD survey-based
st = α + ρUSIAB

st + θs + εst where s is a state. Registered
unemployment rates are not available at the state level from the OECD.

23Data drawn before and after this period are difficult to compare because of the change in enumeration.
24CHK estimate Equation (2.3.1) using different time windows in the IEB. We rely on estimates from the

2002-2009 time window and extrapolate these backward to 1999 and forward to 2010 to cover our sample
window.
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dataset to those individuals who are employed at establishments where establishment fixed

effects and values are available, when they are employed. As noted in Sections 2.3.1 and

2.3.2, this restriction amounts to analyzing workers who are employed by establishments in

the strongly connected set.

In order to align the timing of the analysis, we assign each worker a dominant employer

for each year. The dominant employer is defined as the employer that pays a given worker the

most in earnings for a calendar year. We obtain earnings for a given job spell by multiplying

daily wages by spell length, then sum within employer to determine the total earnings from

each employer for a given worker within a year. The employer with the highest earnings is

given “dominant” status, and it is this employer’s value, daily wage, and other associated

characteristics that are used as outcomes below.25

2.4 Identification

Our identifying assumptions exploit key features of Germany’s apprenticeship training

system. Before proceeding to the empirical analysis, we first provide some institutional

background on how the system works and why it lends itself to our estimation strategy.

Apprenticeship training in Germany is also known as dual vocational training because

it combines workplace and classroom training in a roughly 60-40 split. The typical young

worker begins her vocational training after secondary schooling by starting an employer-sponsored

apprenticeship in one of approximately 350 officially recognized occupations. Employers,

unions, and government agencies jointly regulate the course content and program length

associated with training in each of the occupations to meet quality standards. Trainee wages

are set by collective bargaining agreements which vary both by state and by occupation

(Kuppe et al., 2013). Apprenticeships are the most common form of higher education in

Germany, with over two-thirds of the workforce holding a vocational training degree.

Two aspects of the German apprenticeship system are particularly important for our

analyses. First, occupational segmenting of the German labor market is a natural consequence

of a system that is designed to promote occupation-specific skills among young workers. This

feature makes between-occupation heterogeneity a more important dimension of youth labor

market sorting in Germany than the United States, for example. Second, the duration of

training programs are regulated, with the typical course taking about 3 years and culminating

in a qualifying examination. The pre-set training duration makes it less likely that young

workers can selectively enter the labor market when cyclical conditions are favorable. Even

25In cases where there is more than one spell with the dominant employer, the daily wage is a weighted
average across spells where the weight is the number of days.
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so, we use the mode within detailed training occupation to measure expected, rather than

observed, training duration. This allows for a reduced form strategy in which we assign

individuals a date of labor market entry based on expected training duration rather than

their true labor market entry date, which could be subject to limited manipulation. Year of

entry is thus defined by the training start date plus the modal training duration time in a

given occupation.

Given this institutional setting, our identifying assumption is that occupation-specific

unemployment rates prevailing at the time of expected labor market entry are unrelated

to the timing of labor market entry. Given that we assign the timing of labor market

entry based on the modal training duration within an occupation, this assumption rests

on the notion that individuals do not change their training occupation or the timing of

their training start based on labor market conditions that manifest (usually 3) years later.

This broad assumption encompasses two important points: first, workers with particular

unobserved characteristics cannot manipulate their initial labor market conditions through

selective entry; and second, that the introduction of a particularly poor cohort in terms of

unobserved variables is not responsible for adverse aggregate conditions.

Under this framework, we estimate the effect of initial aggregate conditions on labor

market outcomes by exploiting variation in the occupation-state-cohort (osc) specific unemployment

rate Uosc using the following specification:

yit = βeUosc + ΓXi + θs(i) + θo(i) + θc(i) + θe(i) + θt + εit (2.4.1)

In equation (2.4.1), i represents an individual, θs(i) is a vector of state of training fixed effects,

θo(i) is a vector of training occupation fixed effects, θc(i) is a vector of year-of-expected-entry

(training start + modal training duration in the detailed occupation) fixed effects, θe(i) is a

vector of potential experience (year minus year of expected entry) fixed effects, θt is a vector

of year fixed effects, and Xi is a vector that contains a constant term, a dummy for the

individual’s gender, a dummy for whether the individual is a German citizen, and a vector

of fixed effects for the individual’s age at start of training.26 We use βe to trace out the

average effect of initial labor market conditions Uosc on outcomes yit for the first ten years of

young workers’ careers, where career start is defined by predicted training end. We cluster

standard errors at the occupation-state-cohort level.

Table 2.1 provides initial evidence for the validity of our identifying assumptions by

showing that workers are similar in terms of age, training wages, nationality, gender, and

successful completion of apprenticeships whether they enter the labor market when the

26As in Oreopoulos et al. (2012), we identify θc(i), θe(i), and θt by dropping an extra year fixed effect.
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unemployment rate is below or above the median of a given occupation-state cell. To the

extent that they are economically meaningful, any differences in these observed characteristics

are eliminated because we include them in the conditioning set Xi.

To provide further evidence for our identification strategy, we formally test whether young

workers are able to speed up or delay entry based on aggregate labor market conditions by

re-estimating Equation (2.4.1) using training duration as the outcome:

[Training Duration]i = βUosc + ΓXi + θs(i) + θo(i) + θc(i) + θe(i) + εit (2.4.2)

We do this under two scenarios: in the first, c(i) is an individual’s actual year of entry,

and in the second, c(i) is expected year of entry based on modal training duration within

occupation—our preferred measure. Table 2.3 shows the results from this validation exercise.

Two key points emerge. First, there appears to be some ability for workers to manipulate

training duration based on the business cycle, but on average, this ability is very small. When

entry is defined by the last day of an individual’s training, a one standard deviation increase

in Uosc generates 12 day increase in training duration, on average. In contrast, when entry

is defined by training start date plus the modal training completion time in an occupation,

there is no relationship between Uosc and training duration. We take this as evidence that

our reduced form strategy corrects a small endogeneity bias relative to assigning individuals

their true date of training completion.

2.5 Effect of Cyclical Shocks on Pecuniary and Non-Pecuniary

Outcomes

2.5.1 Primary Results

The four panels of Figure 2.5 show the effect of a 1 percentage point increase in Uosc

at expected labor market entry on daily wages, establishment fixed effects, rents, and

compensating differentials over 10 years of potential experience. The top left panel illustrates

that young workers face an initial wage loss of about 0.6 percent, a gap that steadily narrows

over the next 10 years. The wage losses incurred in these first 10 years are economically

meaningful: our estimates imply that a one standard deviation increase in Uosc at the time

of labor market entry induces a 4.9 percent present discounted value (PDV) loss in daily

wages cumulated over the next decade.27 Assuming away differences in earnings arising from

the number of days worked, our PDV daily wage loss estimate from Germany is similar to

27To conduct this calculation, we use the mean daily wage at each potential experience year, w̄e, the
standard deviation of Uosc, σU = 7.34, a discount rate r = 0.05, and the βe coefficients in the following
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the 5 percent earnings loss accrued over 10 years for the average Canadian recession graduate

estimated in Oreopoulos et al. (2012).28

Establishment fixed effects, shown in the top right panel, drop by about 0.2 percent

on impact, and slowly rise. Taken on its own, the establishment fixed effect result hides

important dynamics that would be invisible were they not decomposed into rent and compensating

differential components. The effect of adverse entry conditions on these sub-components of

wages are shown in the lower two panels. The initial gap in rents is small and closes steadily

over time, with no statistically significant that it still exists after 10 years. In contrast,

non-pay amenities (or negative compensating differentials) rise by about 0.15 percent on

impact and then slowly converge by year 10. These results imply that unlucky workers

start their careers in lower-paying jobs that feature higher non-pay amenities compared to

their lucky counterparts. Over time, these workers are successful in transitioning to higher

paying establishments and closing the gap in rents. However, they continue to work at

establishments that provide a relatively higher share of non-pay amenities until year 10.

2.5.2 Career Paths of “Lucky” and “Unlucky” Cohorts

Figure 2.6 illustrates the career paths of young workers in absolute rather than relative

terms. Establishment value (V ) is shown on the horizontal axis and establishment fixed

effects (ψ) are shown on the vertical axis. The lines show the first 10 years of career

trajectories in (V, ψ) space for two different initial conditions, obtained by plotting the

predicted values of V and ψ from Equation (2.4.1) for each level of potential experience

using counterfactual values of Uosc. The “Low U” group faces initial unemployment rates

at the 10th percentile of within occupation-state unemployment rates, while the “High U”

group faces initial unemployment rates at the 90th percentile. Lastly, the gray dashed lined

plots a fitted line estimated from Equation (2.3.3) showing the average relationship between

establishment fixed effects and establishment values for employers in the SIAB.

Both “Low U” and “High U” groups move to the northwest, gaining in value and in

employer specific pay on essentially the same line—an approximation of the early-career job

ladder in (V, ψ) space. Workers who face low initial unemployment rates begin their careers

at higher paying, higher value firms. However, a part of this pay gap comes from lower

non-pay amenities (this is evidenced by the fact that the “Low U” career path is further

expression: 100×

(
1−

∑10
e=0

[
w̄e(1+σUβe)/(1+r)e

]
∑10
e=0

[
w̄e/(1+r)e

] )
.

28Oreopoulos et al. (2012) construct their estimate assuming that recessions induce a 5 percentage point
change in the regional unemployment rate. During our study period (1999-2010), the regional unemployment
rate in Germany exhibited a standard deviation of 4.9 percentage points.
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above the dashed line than the “High U” career path in any given year). Both types of

workers retain the higher-pay/lower-amenity trade off as they gain experience, but “High

U” workers start from a lower level. In general, the career path has a higher slope than the

average relationship between establishment fixed effects and establishment values indicating

that individuals trade non-pay amenities for pecuniary compensation as they move up the

job ladder.

2.5.3 Decomposition of Recession-Induced Losses

We next decompose recession-induced losses into four major categories in Table 2.4.29

Appendix B.1 provides details on how we calculate the various estimates presented in the

table. As mentioned above, the total pecuniary loss for cohorts who enter the labor market

during a recession is estimated as a 4.9 percent reduction in the present value of wages,

cumulated over a decade.

The subsequent rows of the table illustrate various novel decompositions that we are

able to calculate by applying unique data and empirical techniques. The first row shows

that 1.9 percentage points, or 40 percent, of the total loss is attributable purely to the fact

that unlucky cohorts match with lower paying employers. These employer-specific losses

are further split into rents and amenities in the second and third rows of the table. The

1.9 percentage point reduction in employer-specific pay arises from a 0.4 percentage point

reduction in rents and a 1.5 percentage point gain in amenities. Thus, fully three-quarters

of employer-specific pay reductions are compensated for by relative gains in amenities. The

final row of the table shows that 3 percentage points, or 60 percent, of the total loss is not

explained by employer-specific factors. This 60 percent incorporates losses due to factors

such as human capital mismatch, changes in outside offers, slow market-wide learning, and

infrequent wage re-negotiation.

Taken together, the results shown in Figure 2.5, Figure 2.6, and Table 2.4 present new

perspective about the effects of cyclical conditions on the early career outcomes of young

workers. The welfare cost of recession entry, when viewed only in pecuniary terms, is a 4.9

percent reduction in the present value of wages. However, when we account for the fact that

1.5 percentage points of that loss is compensated for by relative gains in non-pay amenities,

the overall impact of typical recession is effectively a 3.4 percent reduction in the present

value of wages. Consequently, using pecuniary measures alone overstates the overall loss by

about 30 percent. In other words, a purely pecuniary comparison between the two cohorts

presents an incomplete picture about the welfare losses imposed by initial labor market

29These estimates reflect a one standard deviation increase in unemployment rates at entry which is
intended to simulate a recession.
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conditions.

2.5.4 Mechanism 1: Heterogeneity in Job Creation Over the Cycle

Having illustrated the major implications of cyclical shocks on young workers’ career

trajectories, we now turn to investigate the mechanisms that drive the results we discussed

above. The first of these mechanisms is based on the model we presented in Section

2.2which explicitly incorporates a compensating differential for employment stability (lack of

unemployment hazard) into the competitive equilibrium wage rate. In this framework, some

establishments are less cyclical in their hiring and firing decisions, and can therefore offer

lower equilibrium wages. The overall composition of hiring establishments would tilt toward

these stable establishments during a contraction, decreasing the average establishment fixed

effect measured for contractionary entrants and increasing the average measured compensating

differential. This divergence across firms could occur for a variety of reasons, including both

cross- and within-sector differences in the cyclicality of productivity.

Here, we investigate whether firms with higher measured non-pecuniary amenities are less

cyclical in their hiring by relating establishment growth to the business cycle, stratified by an

establishment’s measured time-invariant amenity value, aj. The regression model generally

takes the form

gjst = α + γU(Ust) + γa(a
CD
j ) + γint(Ust × aCDj ) + αs + αt + εjst (2.5.1)

where gjst represents establishment growth between year t and t + 1, Ust is the state-year

unemployment rate, and aCDj is a studentized version of −ε̂j from Equation (2.3.3) — our

measure of non-pecuniary amenities that generate variation in pay holding utility constant.

γint is our key coefficient of interest, measuring the extent to which establishments with

higher non-pecuniary amenities are more (γint > 0) or less (γint < 0) cyclical in their hiring.

The results from estimating Equation (2.5.1) can be seen in Table 2.5. They offer evidence

that establishments that provide higher non-pay amenities are less cyclical in their net

employment growth. This suggests a direct link between the amenities we measure and an

establishment’s hiring decisions: those establishments that are more likely to hire during a

recession naturally offer more job security, and this job security is itself an amenity. Workers

are naturally more likely to receive job offers from more stable establishments (and industries)

when they enter the labor market during an economic contraction, which naturally increases

their non-pecuniary compensation and decreases their wage rate.
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2.5.5 Mechanism 2: Displacement-Induced Human Capital Mismatch

We further use the rich structure of the SIAB to uncover patterns of worker mobility

that underpin the results from Section 2.5. The four panels of Figure 2.7 summarize these

mechanisms by showing the impact of a one percentage point increase in Uosc at labor

market entry on the probability of remaining in one’s training industry and the probability

of remaining in one’s training occupation. As with the previous results, we show these

impacts over a 10 year horizon.

Figure 2.7 indicates that adverse initial conditions have the effect of displacing newly

trained workers from their training industries and training occupations. Because training

employers are important contributors to wage growth in the German context, the displacement

we see in these figures suggests that there are strong parallels between labor market entry

during adverse cyclical conditions and the unemployment scar that follows involuntary job

loss (e.g. Jacobson et al., 1993, Davis and von Wachter, 2011, and Krolikowski, 2017).

Furthermore, mismatch in industry- and occupation- specific human capital engendered by

this displacement likely explains some of the wage penalties, which also has analogs in the

literature that proposes mechanisms for earnings losses following job loss (e.g. Jarosch, 2015

and Krolikowski, 2017).

However, focusing purely on pecuniary losses as much of the prior literature has, would

have led one to conclude that the cumulative effect of these mobility scars is overwhelmingly

negative. In contrast, we find that affected cohorts recover completely in terms of rents and

values even though they are more likely to work outside of the industries and occupations in

which they trained. These displacements also shed light on the nature of cyclical upgrading

in the career paths traversed by lucky and unlucky cohorts. For example, McLaughlin and

Bils (2001) note that the wage gains obtained by workers who enter high-wage industries

during expansions could, in fact, be attributable to a compensating differential channel.30

While they do not seek to empirically verify this possibility, the patterns we present here

provide evidence both of its existence and of its magnitude. Taken together, the evidence

on outcomes and mechanisms suggests that the overall costs of industry and occupational

displacement may not be as damaging as one might have been led to conclude in the absence

of richer measures of compensation.

2.5.6 Robustness Checks

In this section we investigate the robustness of our identification strategy to a variety of

potential threats. We consider the effect of potential simultaneity that arises from estimating

30McLaughlin and Bils (2001) focus on a Roy-model and a queuing model to explain cyclical upgrading.
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values as well as regression coefficients with the same underlying sample of worker mobility.

Next, we examine the extent to which connectedness restrictions required for the estimation

of establishment fixed effects and values generate selection bias in our sample. We find that

our results remain robust to these concerns.

2.5.6.1 Simultaneity of Value and Regression Model Estimation

A potential concern about our empirical strategy comes from the fact that identification

of the βe coefficients in Equation (2.4.1) exploits some of the same worker moves that identify

establishment values as described in Section 2.3.2. If rents and compensating differentials,

dependent variables in Equation (2.4.1), are estimated using the same underlying source

of variation as the βe coefficients, then our estimates could exhibit simultaneity bias. In

particular, the establishments that employ the workers in our sample could have higher

values precisely because the workers in our sample chose to work there.

In order to purge our econometric analysis of such a bias, we re-estimate the establishment

values by dropping all individuals who were trainees as of April 1999 or later from the set

of worker moves. The results of this exercise are presented in Figure 2.8. The upper panel

shows results based on values estimated from the restricted sample, whereas the lower panel

duplicates the results from Figure 2.5 based on values estimated from the full sample. It

appears that there is some scope for upward bias in estimated coefficients from Equation

(2.4.1) on value-related outcomes. However, this bias does not alter the basic patterns of

our results: workers who face worse initial aggregate conditions recover in terms of rents but

not in terms of compensating differentials eight years later.

2.5.6.2 Sample Selection Bias

As discussed in Section 2.3.1 and 2.3.2, our analysis is restricted to the set of establishments

for which establishment fixed effects and establishment values are estimable. The first

restriction requires connectedness and the second requires strong connectedness. While

these restrictions allow us to estimate Equation (2.4.1) using a variety of outcomes for a

fixed sample, we want to ensure that our results are not influenced by endogenous sample

selection. To do so, we take advantage of the fact that daily wages are available for all

individual-establishment observations in our data, regardless of whether the establishments

are in either of these connected sets.

Figure 2.9 contrasts our Figure 2.5 results for log wages from the restricted sample in the

left panel to an unrestricted sample of all young workers in our data in the right panel.31

31These estimates are obtained using actual year of entry and Uosc (our preferred specification from Section
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Comparing the two panels, we see that adverse initial labor market conditions have a very

similar effect on log wages across the restricted and unrestricted samples, starting from a 0.6

percent dip for each percentage point increase in Uosc and recovering to around 0.4 percent by

the eighth year of an individual’s post-training career. Thus, while our analysis is confined

to the 115,673 individuals represented by the left panel, this test provides good evidence

that their labor market experience reflects the broader early career paths of young German

workers.

2.6 Discussion and Conclusion

This chapter provides a new perspective on the costs imposed by cyclical shocks on

young workers. Using rich employer-employee linked data from Germany we replicate the

major finding of existing research showing that adverse cyclical conditions at labor market

entry generate persistent wage losses on affected workers. Implementing a revealed preference

based method of measuring compensating differentials across a large sample of establishments,

we find that low wages for unlucky cohorts are explained by reduced rents and by offsetting

compensating differentials, with the latter accounting for the majority. We offer suggestive

evidence that employers hiring workers during downturns provide more long-term job security

than those who hire workers during expansions, which explains part of the offsetting compensating

differential that unlucky cohorts obtain. Our findings indicate that focusing on earnings

losses alone overstates the long-term welfare losses of labor market entry during recessionary

periods.

We find that cyclical shocks in Germany displace workers away from the occupations and

industries in which they gained specialized apprenticeship training. As such, the wage losses

that unlucky workers face is explained by the mismatch in human capital similar to that

experienced by workers who suffer involuntary job loss. Nevertheless, our results indicate

that these unlucky workers continue to climb the utility ladder of job quality by accruing

returns in the amenity rather than rent component of establishment-specific pay. These

findings shed new light on the role that compensating differentials play in cyclical upgrading

and downgrading.

The sample of newly trained workers that we study includes a wide variety of skill

types, broadening the relevance of our results beyond college graduates. Nevertheless, our

conclusions are specific to the German labor market which differs substantially in terms

of employment protections, unemployment benefits, healthcare provision, and re-training

2.5), but the comparative results are qualitatively similar within any of the robustness checks discussed in
this section.
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programs relative to the United States and Canada which are the two other countries in which

recession-induced wage losses have been studied. Furthermore, the utility consequences that

we focus on are isolated to job specific components and do not speak to factors such as health

or consumption.
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Figure 2.1: Compensating Wage Variation Due to Hours Volatility
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Notes: Thresholds illustrated on the horizontal axis represent the bounds of potential hours demand at risky (R) and safe
(S) firms. h̄ is the steady state level of hours demand associated with productivity z̄. Underbars represent average values of h
conditional on z < z̄. Overbars represent average values of h conditional on z > z̄.
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Figure 2.2: Relationship Between Establishment Values and Compensation

-2
-1

0
1

2
E

st
ab

lis
hm

en
t f

ix
ed

 e
ffe

ct
 (ψ

)

-2 -1 0 1 2
Value (V)

Notes: The value and establishment fixed effect estimates shown in this graph are studentized. The blue circles show the
average establishment fixed effect and average establishment value within each ventile of the establishment value distribution.
The red lines show one standard deviation bands of the establishment fixed effect distribution.
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Figure 2.3: Relationship Between Establishment Values and Compensation Across
Industries
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Notes: The value and establishment fixed effect estimates shown in this graph are studentized.
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Figure 2.4: OECD versus SIAB National Unemployment Rates
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Notes: OECD unemployment rate obtained from OECD Stat. See Section 2.3.4 for details of of how unemployment rates are
estimated using the SIAB.
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Figure 2.5: The Effect of Entry Conditions (Uosc) on Early Career Outcomes
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Notes: See Equation (2.4.1). All estimated coefficients are in log wage units. Sample size for each specification is 115,673. 95% confidence intervals represented by bars, with
standard errors clustered at the state-cohort-occupation level. Uosc is the unemployment rate in a given individual’s training occupation and training state in the individual’s
year of entry. Controls included are potential experience fixed effects, year fixed effects, year of entry fixed effects, training occupation fixed effects, state of training fixed effects,
median wage paid by training firm during last year of training, age at start of training fixed effects, a German national indicator variable, and a female indicator variable.
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Figure 2.6: Implied Career Paths of Young Workers
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Figure 2.7: The Effect of Entry Conditions (Uosc) on Early Career Mobility
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Notes: See Equation (2.4.1). All estimated coefficients are in log wage units. Sample size for each specification is 115,673. 95% confidence intervals represented by bars, with
standard errors clustered at the state-cohort-occupation level. Uosc is the unemployment rate in a given individual’s training occupation and training state in the individual’s
year of entry. Controls included are potential experience fixed effects, year fixed effects, year of entry fixed effects, training occupation fixed effects, state of training fixed effects,
median wage paid by training firm during last year of training, age at start of training fixed effects, a German national indicator variable, and a female indicator variable.
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Figure 2.8: Simultaneity Bias Robustness
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Notes: Sample size for “Out-of-Sample Value Estimation” figures is 119,988. Sample size for “Full Sample Value Estimation” figures is 125,363. 95% confidence intervals
represented by dashed lines. Uosc is the unemployment rate in a given individual’s training occupation and training state in the individual’s year of entry. Controls included
are potential experience fixed effects, year fixed effects, year of entry fixed effects, training occupation fixed effects, state of training fixed effects, median wage paid by training
firm during last year of training, age at start of training fixed effects, a German national indicator variable, and a female indicator variable.
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Figure 2.9: The Effect of Entry Conditions (Uosc) on Log Wages—Restricted versus Unrestricted Sample

Restricted to Connected Sets (N=115,673) Unrestricted (N=401,982)
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Notes: 95% confidence intervals represented by dashed lines. Uosc is the unemployment rate in a given individual’s training occupation and training state in the individual’s
year of entry. Controls included are potential experience fixed effects, year fixed effects, year of entry fixed effects, training occupation fixed effects, state of training fixed effects,
median wage paid by training firm during last year of training, age at start of training fixed effects, a German indicator variable, and a female indicator variable.
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Table 2.1: Mean Individual Characteristics by Aggregate Entry Conditions

Uosc < UMED
os Uosc ≥ UMED

os

Age at start of training 17.4 17.3
Median wage at training firm 87.9 86.2
German national (=1) 0.94 0.95
Female (=1) 0.41 0.43
Obtained vocational training certification (=1) 0.79 0.78

Notes: UMED
os refers to the median occupation-state-specific unemployment rate

during the study sample, 1999-2010. Median wage at training firm refers to median
wage at individual’s training firm in the year of training completion.
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Table 2.2: Identifying Variation—Unemployment Rates Faced by Young Workers at Time of Entry

Percentile
Independent Variable Description Mean St. Dev. 10 25 50 75 90

Uosc State-Occupation Unemployment Rate 10.88 7.34 4.05 5.56 8.85 14.20 21.05
Uoc National Occupation Unemployment Rate 9.94 3.80 6.18 7.67 9.57 11.24 12.86

Notes: Occupation assigned to individuals based on the occupation of their training apprenticeship. Unemployment rates
calculated as described in Section 2.3.4.
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Table 2.3: Identification Strategy—Validation Tests

Training Duration (yrs) Training Duration (yrs)
Uosc 0.0044** -0.0015

(0.0021) (0.0030)

Year of Entry Definition Last day of training
Predicted last day of training

based on occ. mode

Notes: See Equation (2.4.2). * p<0.1 ** p<0.05 *** p<0.01.
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Table 2.4: Decomposition of Recession-Induced Losses

∆ PDV wage (10 years)
Losses in employer-specific pay 1.9%

Due to losses in rents 0.4%
Due to relative gains in non-pay amenities 1.5%

Other losses 3.0%
Total wage loss 4.9%
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Table 2.5: Establishment Growth over the Business Cycle

(1) (2) (3)
Establishment Establishment Log Establishment

Growth Growth Size
Ust: State-Year Unemployment Rate -0.0050*** -0.0051** -0.0079***

(0.0012) (0.0024) (0.0018)
aCDj : Non-Pay Amenities 0.0019 — -0.0035

(0.0054) — (0.0069)
Ust × aCDj 0.0017*** 0.0088** 0.0015**

(0.0005) (0.0011) (0.0007)
Establishment FE No Yes No
Lagged Log Establishment Size No No Yes

Notes: All models include state and year fixed effects. aCDj is studentized.
* p¡0.1 ** p¡0.05 *** p¡0.01.
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CHAPTER III

Taken by Storm: Hurricanes, Migrant Networks, and

U.S. Immigration

Moving from one’s country of origin is among the most consequential decisions a person

can make. Substantial numbers of people migrate internationally: estimates of migration

over the five-year periods between 1990-95 and 2006-10 range from 34 to 41 million international

migrants, or roughly 0.6 percent of world population (Abel and Sander, 2014). Substantially

larger numbers—more than 600 million adults—express a desire to move permanently to

another country (Pelham and Torres, 2008). Labor migration to the developed world leads

to large income gains for migrants (McKenzie et al., 2010),which benefit not only the migrants

themselves but also those remaining behind in origin countries. Remittances sent by migrants

to their home countries amounted to $432 billion in 2015, far exceeding official development

assistance (World Bank Group 2016), with substantial benefits for recipient households.1

It is also important to understand the economic impacts of natural disasters, and how

those affected cope in their aftermath. Disasters cause extensive human losses and economic

damages worldwide. Hurricanes are among the most damaging, accounting for roughly 40

percent of deaths and 38 percent of monetary damages caused by all natural disasters from

1995-2015 (CRED 2016). Migration in response to a natural disaster can help affected

populations escape worsened living conditions in their home areas (Piguet et al., 2011).

Understanding the effects of weather-related disasters becomes additionally important due

to climate change. Anthropogenic warming of the climate has been linked to increased

frequency and intensity of Atlantic hurricanes from the 1970s to the present (Walsh et al.,

2016). Climate models predict increases in the frequency of the most intense hurricanes, and

the intensity of accompanying rainfall, as the planet continues to warm (Kossin et al., 2017).

A better understanding of the impacts of hurricanes on migration, and the extent to which

1Studies include Yang and Martinez (2006), Yang (2006), Yang (2008b), Gibson et al. (2014), Ambler
et al. (2015), Clemens and Tiongson (2017), and Theoharides (2018).
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such impacts are heterogeneous across storm-affected areas, can be an important input into

estimates of the economic and human impacts of climate change.

In this context, a number of interrelated questions are of interest. Do negative shocks in

migrant-origin countries encourage or inhibit international migration? What roles do prior

migrant networks play in facilitating the outmigration response to origin-country shocks? If

the effect on migration is positive, does it occur via legal or illegal (undocumented) channels?

To what extent is any resulting migration temporary or permanent? None of these questions

have obvious answers from a theoretical standpoint, and past empirical findings are either

nonexistent or point in different directions across studies.

We estimate the impact of hurricanes on international migration to the U.S. from 159

origin areas over a quarter-century, examine how this response is moderated by the existence

of prior migrant networks, and assess the extent to which migration responses operate

via legal or undocumented (illegal) channels. Theoretically, the impact of hurricanes on

migration, and the extent to which the effect of hurricanes is heterogeneous with respect to

prior migrant networks, is unclear. Consider individuals choosing whether to stay in home

locations or to bear a fixed cost and migrate to a more attractive destination. Home-location

negative shocks have an ambiguous effect on migration: while they raise the return to

migration, they also can raise the fixed cost of migration (or make it more difficult to

finance migration fixed costs). In addition, the extent to which prior migrant networks

stimulate additional migration in response to home-country shocks is unclear. On the one

hand, prior migrant networks can reduce the fixed cost of migrating, making migration more

responsive to negative shocks at home. On the other hand, insurance provided by prior

migrants (remittances sent in the wake of shocks) can reduce the desire to migrate.

Our empirical work aims to resolve these theoretical ambiguities in an important international

migration context. Our outcome of interest is annual U.S. immigration rates from 1980-2004

for each observable origin location, as constructed from U.S. Census data. We exploit

exogenous variation in the returns to migration, as well as substantial cross-sectional variation

in a key determinant of the fixed cost of migration. Variation over time in the return to

migration from home locations is generated by hurricanes, which exogenously lower the

attractiveness of remaining at home.2 Variation in the fixed cost of migration is generated

by the size of migrant networks in the U.S. (the stock of previous migrants). We examine

whether increases in the returns to migration driven by origin-country hurricanes have larger

impacts on migration from countries that have larger pre-existing migrant networks in the

U.S.

2Yang (2008a), Noy (2009), Strobl (2011), Imberman et al. (2012), Hsiang and Jina (2014), Boustan
et al. (2017), and Franklin and Labonne (2019) among others.
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We find that hurricanes cause immediate and substantial increases in U.S. immigration on

average. A one-standard-deviation increase in our measure of hurricane affectedness increases

migration to the U.S. (as a share of the home country population) by 0.021 percent, which

is 11.8 percent of the sample mean annual migration rate. This effect is magnified among

origin countries with larger pre-existing stocks of U.S. immigrants. The effect of hurricanes

on migration is positive for countries with a migrant stock in the U.S. (as share of 1980

population) of at least 0.86 percent—roughly the 70th percentile across countries.3 For a

country at the 90th percentile of the prior migrant stock (5.6 percent of origin population),

a one-standard-deviation increase in our measure of hurricane affectedness causes an inflow

amounting to 0.029 percent of the origin population.

A key question is whether the migrant stock should be interpreted primarily as affecting

migration-related fixed costs, or whether it stands in for some other omitted variable. We

take two approaches to address this issue. First, we seek evidence for mechanisms behind

the heterogeneous effect. We find that a key role played by migrant stocks is formally

sponsoring relatives for legal, permanent immigration. If we replace our dependent variable

of interest with legal immigration counts from the U.S. Department of Homeland Security

(DHS), our coefficient estimates are very similar in magnitude. There is clearly a substantial

legal, permanent immigration response to hurricanes. This legal, permanent immigration is

driven primarily by different forms of family sponsorship. These findings strongly suggest

that migrant stocks reduce the fixed cost of migration by facilitating legal immigration.

Our second approach to addressing omitted-variable concerns is to gauge the stability

of our key parameter, the coefficient on the hurricane-migrant stock interaction term, to

the inclusion of additional control variables for other origin country characteristics, such

as per capita GDP, distance from the U.S., and land area.4 We show that the coefficient

on our interaction term of interest is highly robust to inclusion of interaction terms with

these other country characteristics. Hurricanes appear to have heterogeneous effects across

countries due to migrant stocks themselves, and not some other origin-country characteristic

correlated with migrant stocks.

This chapter presents a set of interrelated empirical findings that, to our knowledge, are

new to the literature. It is among the first to test whether the migration response to negative

home-country shocks is larger when the stock of prior migrant compatriots is larger. Previous

work has examined the relationship between migration and prior migrant stocks,5 on the one

3In the regression where the effect of hurricanes is allowed to vary with respect to the size of a country’s
prior U.S. migrant stock, the main effect of hurricanes is negative (although not statistically significantly
different from zero).

4Because our coefficient of interest is on an interaction term with hurricanes, these predetermined control
variables must also be included as interaction terms in the same way.

5Studies using “shift-share” instruments (e.g., Card (2001) and many others) have established that
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hand, or between migration and home-country shocks, on the other, but not the interaction

(how the migration response to shocks is affected by prior migrant stocks).6 This is an

important question whose answer is not theoretically obvious. Our findings help us better

understand the risk-coping role of prior migrant stocks. They also can help policy-makers

predict how migration may be affected by future shocks affecting populations of potential

migrants, as such responses will vary with the size of their prior migrant stocks.

While prior research highlights multiple ways in which migrant networks might facilitate

new migration, our work contributes by providing clear evidence of a particular mode of

assistance: providing a less costly, legal route to immigration for their compatriots through

family reunification immigration policies. This was not obvious ex-ante; prior studies have

highlighted other factors such as financial assistance, information provision, and social

support.7 In addition, no prior work has shed light on the extent to which shock-induced

migrants enter via legal or undocumented channels, or shown that home-country shocks

affect new migration on both permanent (green card) and temporary (non-immigrant visa)

margins.

Another distinguishing feature of our work is that our focus is the U.S., the world’s

largest migration destination country. Migration to the U.S. accounted for 18.5 percent

of international migration flows from 1990-2010 (Abel and Sander, 2014). Our U.S. focus

reduces concern about external validity of the findings. One of our empirical results that

is not as new or unique takes on added relevance due to the importance of the U.S. as a

migration destination. While other studies have estimated how negative shocks in home areas

affect outmigration, it is important to know that, on average across all origin countries, a

very important type of negative shock (hurricanes) increases migration to the world’s largest

migration destination.8

This study also makes advances related to data. To our knowledge, this is the first

empirical analysis of U.S. immigration that uses restricted-access U.S. Census data to construct

aggregate immigration inflows tend to be apportioned to sub-national locations based on the geographic
distribution of previous migrants. In contrast to most studies using shift-share instruments, we examine an
aggregate shifter, hurricanes, which is clearly exogenous. That said, in this chapter we are not instrumenting
for total immigration into particular labor markets. Hurricanes are not likely to provide sufficient statistical
power for analyzing impacts of immigration on local labor market outcomes.

6Clemens (2017) finds that previous migration facilitates new migration of Central Americans in response
to violence in home localities.

7Key references include Hatton and Williamson (1994), Massey (1988), Orrenius (1999), Munshi (2003),
Amuedo-Dorantes and Mundra (2007), Dolfin and Genicot (2010), Beaman (2012), Docquier et al. (2014),
and Blumenstock et al. (2018). None of these other factors are ruled out, of course, and our study is not
well-positioned to shed light on these other factors.

8Focusing on the U.S. also has the advantage of providing us considerable cross-sectional and temporal
variation across countries in hurricane-induced shocks to migration returns, as well as cross-sectional variation
in migrant networks across origin locations.
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country-by-year inflow estimates. Based on 1-in-6 long-form Census responses, our migration

measures are more precise than any previous survey-based estimates used to examine the

causal determinants of U.S. immigration. Relatedly, we are able to analyze migration flows

from a larger sample of countries than is available in the public U.S. Census data, and this

provides additional identifying variation because many small countries (e.g., island nations)

are also hurricane-prone. We supplement these data with administrative immigration data

from the DHS, which are also rarely used in economic analyses of migration. Finally, we

construct hurricane-affectedness measures from satellite-based meteorological data, which

are less prone to measurement error and biases than other disaster data sources (Yang,

2008a).

Our work is related to research on migration responses to the returns to migration,

and in particular to work emphasizing causal identification. Past studies have found that

increases in the returns to migration, driven by shocks in either sending or receiving areas,

do increase net outmigration. In some studies the identifying variation comes from shocks

in the source locations,9 while in others the variation in returns is generated by shocks in

destination locations.10 Other studies have found the opposite—that increases in the returns

to migration driven by negative shocks in home areas lead to less outmigration (Halliday,

2006; Yang and Choi, 2007; Yang, 2008c)—which may reflect the importance of migration

fixed costs in combination with liquidity or credit constraints.11

We proceed next to Section 3.1, where we outline a simple theoretical framework to guide

interpretation of findings. Section 3.2 then provides an overview of relevant U.S. immigration

policy. Section 3.3 describes the data used in the analyses, and Section 3.4 reports empirical

results. Section 3.5 concludes.

9For example, Hatton and Williamson (1993), Munshi (2003), Hanson and McIntosh (2012), Hornbeck
(2012), Marchiori et al. (2012), Bohra-Mishra et al. (2014), Gröger and Zylberberg (2016), Abarcar (2017),
Baez et al. (2017), Boustan et al. (2017), Clemens (2017), Kleemans and Magruder (2018), and Minale
(2018).

10For example, Yang (2006), Wozniak (2010), McKenzie et al. (2014), Bertoli et al. (2016), Fajardo et al.
(2017).

11Consistent with liquidity constraints inhibiting migration, Ardington et al. (2009), Bryan et al. (2014),
and Angelucci (2015) find that cash transfers increase migration. Chernina et al. (2014) similarly find
that the easing of liquidity constraints generated by titling reforms in early 20th Century Russia facilitated
outmigration. Stecklov et al. (2005) and Imbert and Papp (2018) find contrary results to these. Bazzi (2017)
finds that positive income shocks in origin areas in Indonesia lead to less migration in wealthier areas and
more in poorer ones. Boustan et al. (2017) find that hurricanes in the U.S. lead to more internal migration,
particularly among those with higher incomes.
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3.1 Conceptual Matters

We first take a moment to consider theoretically how hurricanes might affect outmigration

decisions, and how the effects of hurricanes might differ with respect to the size of prior

migrant networks. We discuss these issues qualitatively here, and provide a simple theoretical

framework in the Online Appendix.

Consider individuals in a migrant-origin area choosing whether to stay in home locations

or to bear a fixed cost and migrate to a more attractive destination (which in practice we

will take to be the U.S.) The fixed cost of migration is a function of the size of a migrant’s

network. Prior research suggests that the fixed cost of migration is lower when an individual

has a larger migrant network (e.g., Bauer et al., 2005), for a number of potential reasons.

Networks could help reduce search and information costs (e.g., related to legal and illegal

modes of entry, employment, housing, etc.), provide social support during adjustment (a

reduction in psychic costs), and sponsor relatives for legal immigration (allowing migrants

to avoid costlier illegal entry routes and costly wait times imposed by quotas).12

Now consider a negative shock to economic conditions in the home country, such as

a hurricane, which makes the destination country more attractive in relative terms. If the

negative home-country shock has no effect on migration costs, the prediction is straightforward:

migration will increase.

However, the hurricane’s effect becomes ambiguous if the negative shock to the home

country does affect migration costs. It is most plausible that negative home-country shocks

would raise migration costs. Increased demand for legal migration assistance as well as

illegal migration services (migration smugglers or coyotes) could raise equilibrium prices for

those services. In addition, loss of assets due to hurricanes could make it more difficult

for credit-constrained households to pay fixed migration costs. Negative shocks at home

could make it more difficult to obtain credit to pay for the fixed costs of migration (Yang,

2008c), or could raise the opportunity cost of departure (Halliday, 2006). Negative aggregate

shocks could also have general equilibrium effects that make it more difficult to pay fixed

migration costs, such as reductions in asset prices (Rosenzweig and Wolpin, 1993) or wages

(Jayachandran, 2006).

So far, we have emphasized migrant networks helping those in the home country respond

to shocks by helping them migrate. But migrants can of course also assist in other ways.

Migrants’ geographic separation means their shocks are less correlated with those in the home

12These points have been emphasized by Massey (1988), Jasso and Rosenzweig (1989), Orrenius (1999),
Orrenius and Zavodny (2005), Dolfin and Genicot (2010), and Comola and Mendola (2015). Networks could
also provide financial assistance with paying fixed migration costs, which would be important in contexts
where potential migrants are liquidity or credit constrained.
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area, and so they are valued as members of the informal insurance network.13 Migrants are

therefore in a good position to provide insurance, by sending financial assistance (remittances)

in response to negative shocks at home.14 Better insurance at home can reduce the impact

of home-area shocks on migration, because those affected by a shock can cope “in place,”

without migrating to escape the consequences (Morten, 2019). The extent of insurance (the

fraction of the loss replaced) is likely to be larger when the migrant network is larger (as a

share of home country population): when migrant networks are larger, more individuals in

the home country should have a migrant social network member, and the financial burden

of supporting disaster-affected home-country residents can be spread across more migrants.

Therefore, the possibility of migrants sending shock-coping remittances attenuates the effect

of shocks on new migration.

In sum, then, the theoretical predictions are ambiguous: negative shocks to economic

conditions in the home country could increase migration by increasing the return to migration.

It is also possible for negative home-country shocks to reduce migration, if such shocks

themselves increase the fixed costs of migration or reduce ability to pay migration fixed

costs. Even if the shocks themselves do not make it more difficult to pay migration fixed

costs, the extent to which migrant networks facilitate migration in response to shocks is

unclear, because prior migrants can send remittances to those in the home country instead

of helping them migrate in response to shocks.

To resolve these theoretical ambiguities, we turn to empirical tests in Section 3.4.

3.2 Immigration Policy During the Sample Frame

Before moving to our analysis, we summarize U.S. immigration policy from 1980 through

2004. The workings of U.S. immigration policy help us highlight features of immigrant stock

networks that have the potential to facilitate immigration.

The outline of today’s U.S. immigration policy regime has its origins in the 1965 Immigration

and Nationality Act. This legislation abolished preferential treatment for Europeans and

created a system in which a majority of visas were allocated to relatives of U.S. citizens

or residents. It was also the first law to distinguish between immediate relatives (spouses,

children under age 21, and parents) of U.S. citizens, who became exempt from quotas, and

other types of immigrants who fell into one of seven new preference tiers subject to numerical

13There is a large body of work on how households in developing countries cope with risk (Morduch,
1995). Lucas and Stark (1985), Rosenzweig and Stark (1989), and Munshi and Rosenzweig (2016) have
emphasized the role of migration and remittances for informal risk-coping strategies.

14Jayachandran (2006), Yang and Choi (2007), Yang (2008a), Jack and Suri (2013), Blumenstock et al.
(2016), De Weerdt and Hirvonen (2016), and Clemens (2017).
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limitations (Kandel, 2016). Further, by 1979, all country-specific quotas were abandoned in

favor of an overall quota. In 1981, the overall quota stood at 270,000 for all those subject to

the cap (Clark et al., 2007). Among the capped tiers, first preference goes to unmarried adult

sons and daughters of U.S. citizens, second preference goes to spouses and children of green

card holders (LPRs), third preference goes to married sons and daughters of U.S. citizens,

and fourth preference goes to siblings of U.S. citizens. Thus, while green card holders can

sponsor a limited set of relatives from home, they are substantially constrained in this ability

relative to naturalized immigrants.

The major change to policy that occurred during our sample period was the Immigration

Act of 1990, which increased allowable total immigration to 675,000 and increased the

limit of family-based immigrants subject to quotas from 290,000 to 480,000 (Kandel, 2016).

Technically, immediate relatives of U.S. citizens came under this 480,000 cap for the first

time, but in practice, the cap is “permeable” and inflows of such migrants remain de facto

uncapped to the present day. The remaining 195,000 allotments are slotted for employment

visas (140,000) and a new category of “diversity” visas (55,000) allocated to countries that

did not send many migrants to the U.S. between 1965 and 1990 (Clark et al., 2007).

An additional change that occurred during our sample period was the 1986 Immigration

Reform and Control Act (IRCA), which granted legal status to millions of undocumented

workers. While this legislation had many consequences, it mainly affects our results through

its disproportionate legalization of migrants from certain countries, perhaps creating a positive

shock in the effective stock of network capital in the United States for these countries. This

is especially true given how important legal status and citizenship are to being able to serve

as a beach head for compatriots under the current regime. A more minor point is that the

legal permanent resident (LPR) status granted to these previously undocumented workers

clearly did not result from new entries into the United States. We will thus subtract these

“inflows” from our overall measure of LPR admissions in the DHS data.

3.3 Data

3.3.1 Sample Definition

Our sample consists of foreign territories listed in Table 3.1. Given how often many of

these areas are hit by hurricanes and because of the level of detail our data affords us, we treat

many non-sovereign territories as separate countries (e.g., Guadeloupe or Martinique).15 We

drop countries that are U.S. territories because of their preferential treatment in immigration

15From this point forward, use of the word “country” includes these non-sovereign territories.
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policy. We also drop countries from the former Soviet Union and the European land mass.16

North Korea and Eritrea are excluded because of a lack of reliable migration information for

the entire sample period. Additionally, some countries that contain inconsistent migration

information due to border redefinition are combined to retain consistency throughout the

sample period. These include the Netherlands Antilles minus Aruba,17 Sudan,18 and Guadeloupe.19

Finally, we also drop any country without an immigrant stock estimate from the 1980 Census.

This left us with a balanced panel of 159 countries.

3.3.2 Hurricane Index

Hurricanes are storms that originate over tropical oceans with wind speeds above 33

knots.20 These severe storms create damages through storm surges, strong winds, and

flooding, and their radius of impact can be anywhere from 60 to 900 miles. Thus, depending

on the severity of the storm, there is a wide scope for hurricanes to inflict extensive damage,

particularly when infrastructure is weak and production is agriculture-oriented. Hurricanes

occur in six basins: Atlantic, East Pacific, West Pacific, South Pacific, South Indian, and

North Indian. Yang (2008a) provides a more detailed definition of hurricanes and their

architecture.

We construct a hurricane index representing the average hurricane exposure of residents

in a given country-year following Yang (2008a). This index uses data from meteorological

records, rather than impact estimates compiled from news reports, governments, or other

similar sources due to concerns about measurement error and potential misreporting of

hurricane damages (motivated, for example, by a desire to attract greater international

disaster assistance). The meteorological data on hurricanes consists of “best tracks” compiled

by Unisys from the National Oceanic and Atmospheric Administration’s Tropical Prediction

Center (for the Atlantic and East Pacific hurricane basins) and the Joint Typhoon Warning

Center (for the West Pacific, South Pacific, South Indian, and North Indian hurricane

basins). The best tracks contain information on the hurricane’s maximum wind speed and

the geographic coordinates of its center (or “eye”) at six-hour intervals. Figure 3.1 displays

all hurricane best tracks from 1980 through 2004.

16The splitting of the Soviet Union does not enable us to have reliable migration information for these
countries throughout the sample period. Europe is rarely hit by hurricanes, and because it contains mostly
developed countries is not likely to provide a useful migration counterfactual.

17Curacao, Bonaire, Saba, St. Eustatius, and Sint Maarten. The Netherlands Antilles was not dissolved
until 2010.

18South Sudan and Sudan. South Sudan broke off from Sudan in 2011.
19Guadeloupe and St. Barthelemy. St. Barthelemy broke off from Guadeloupe in 2003.
20Hurricanes are also known in different regions as typhoons and cyclones. For simplicity, in this chapter

hurricanes, typhoons, and cyclones will all be referred to as hurricanes.
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The best track data naturally take hurricanes as the unit of analysis, and so in their raw

form give no indication of countries affected. The Online Appendix describes in detail how

we turn this best track data into a country-by-year index. Other papers have utilized similar

hurricane indices to study their impacts on various outcomes on land masses (Belasen and

Polachek, 2009; Hsiang, 2010; Strobl, 2011; Hsiang and Jina, 2014). All use a model based

on best tracks to simulate the wind speed faced by geographical areas a certain distance

away from the best track line.21

The resulting index can be described as “intensity-weighted hurricane events per capita,”

in which intensity is a nonlinear function of hurricane-force wind speed. The key features

of this index are that it measures the average “affectedness” by hurricanes for residents of a

country in a given year. It rises in the number of hurricanes affecting a country, the share of

the population affected, and in the intensity (wind speed) of the hurricanes to which people

were exposed. In Table 3.2 we provide basic summary statistics of the hurricane index. Out

of 3,895 country-year observations, 641 have non-zero values of the index. The standard

deviation of the non-zero values is 0.0542.

3.3.3 Immigrants in the United States: Stocks and Inflows

3.3.3.1 U.S. Census Bureau

The primary source for our immigration data is confidential data provided by the U.S.

Census Bureau, who granted us access to the full set of responses from the 1980 and 2000

Long Form Censuses along with the 2005 through 2015 American Community Survey (ACS)

1-year files. The 1980 and 2000 Census Long Form provide 1 in 6 counts of all persons

living in the United States along with demographic information.22 The ACS 1-year files

provide a one percent sample of all persons living in the United States in a given year.

The Online Appendix describes how we utilize these data sources to construct two key

variables: sending-country-by-year estimates of migration inflow rates (mjt) and sending

country estimates of 1980 U.S. immigrant stocks (sj,1980).

21Strobl (2011) uses population weights when measuring the effect of hurricanes on economic activity,
while Hsiang and Jina (2014) do not.

22In 1970, the Census Bureau began sending both a Short and Long Form questionnaire to households.
The Long Form is sent to roughly 1 in 6 households, and remaining households are sent the Short Form. Many
demographic variables of interest are only contained in the responses to Long Form questionnaires—the recent
controversy surrounding a 2020 citizenship question on the Short Form notwithstanding. Most importantly
here, the 1980 Long Form Census questionnaire contained questions on place of birth and citizenship, while
the 1980 Short Form Census questionnaire did not.
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3.3.3.2 Department of Homeland Security (DHS)

Our second source of migration inflow data comes from the DHS. In addition to producing

the annual Yearbook of Immigration Statistics (1996-2015), the DHS houses the records of

the former Immigration and Naturalization Service (INS), who produced similar publications

for past years titled the Statistical Yearbook of the Immigration and Naturalization Service

(prior to 1996). Starting in 1982, these annual publications contain counts of legal permanent

residence (LPR) statuses granted by country of last residence, which we use to construct an

alternate measure of migration inflows. They also contain information on non-immigrant

entries into the U.S. by country of birth and class of admission starting in 1983, which

we use to construct a new panel that measures potentially temporary migration.23 Data

through 1996 are available only as hard-copy portable documents. We thus double-entered

and cross-checked each relevant table to ensure accuracy in these outcome variables.24

The DHS data provides some important advantages over our confidential Census data

beyond their use as a robustness check. First, the counts were all taken officially during the

year of a given immigrant’s receipt of LPR status or non-immigrant entry and thus do not

suffer from attrition due to death or return migration. Second, in the case of LPR entries,

country of last residence provides a more direct indicator of hurricane-induced migration

than country of birth. Third, the DHS data allows us to separate classes of LPR admission,

such as uncapped family reunification, capped family sponsorship, and refugees. This allows

us to examine whether eligibility for immigration due to family-reunification policies is a

mechanism through which our effects operate.

Finally, the non-immigrant entry panel allows us to understand two additional facets of

hurricane-induced migration into the United States. First, it helps us assess whether there is

a component of such migration that is potentially temporary. Second, it helps us elucidate

the phenomenon of conditional entry followed by either a switch of status or an overstay

on a temporary visa, a process through which much legal and illegal permanent migration

occurs.

There are, however, also drawbacks to the DHS data that highlight its complementarity

with our estimates from the confidential Census Bureau data. First, the DHS LPR measures

do not distinguish between new inflows and changes in status from temporary to permanent

residence. Second and relatedly, backlogs and backlog reduction efforts create uncertainty

around how reliably the DHS estimates can be used to measure changes in actual entries—as

23According to the DHS Office of Immigration Statistics, non-immigrant data is not available in 1997 due
to concerns about data quality in that year.

24The hard copies are available at in the U.S. Citizenship and Immigration Services (USCIS) Historical
Library’s General Collection.
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compared to switches in status from temporary to permanent—over time. Third, the DHS

data cannot shed light on undocumented entries, while these may be captured by the Census

and ACS surveys (which purposely do not inquire about legal status).25 Fourth, while it

contains information about class of admission, the DHS does not allow us to examine many

other important demographic characteristics of migrants, such as age. Finally, neither the

Census nor the DHS data can correct for migrants who still live abroad but whom obtain a

green card (LPR status) to engage in repeated circular migration.

3.4 Analysis

3.4.1 Specification

In order to test the theoretical implications described in Section 3.1, we exploit the

exogeneity of our objective hurricane index and conduct reduced form analyses that test

its impact on migration inflows to the U.S. For this purpose, we rely primarily on two

specifications:

yjt = β0 + β1Hjt + ηj + δt + φjt+ εjt (3.4.1)

yjt = γ0 + γ1Hjt + γ2(Hjt × sj,1980) + ηj + δt + φjt+ εjt (3.4.2)

where yjt is an outcome and t runs from 1980 through 2004. Our primary results are for

yjt = mjt where mjt is the number of immigrants from country j to the U.S. in year t as a

proportion of country j’s population in 1980. Analogously, sj,1980 is the stock of immigrants

from country j already in the U.S. in 1980 as a proportion of country j’s population in 1980.

Including stocks as a proportion of 1980 population also allows us to interpret sj,1980 as a

rough measure of likelihood a given migrant knows someone in the U.S. Hjt is the hurricane

index for country j in year t.

The inclusion of year fixed effects (δt) accounts for time-varying changes in the overall

ability of foreigners to migrate to the United States. Common issues such as changing

demand in the U.S. economy and back-logs in the immigration system that are not country-specific

are important components of δt. Country fixed effects (ηj) control for fixed factors that affect

how likely denizens of country j are to migrate to the U.S., such as distance. They also absorb

the main effect of sj,1980. We also allow for differential country-specific linear time trends

with the inclusion of φjt, which account for long-run linear trends in migration from country

25Individuals who are captured in the DHS non-immigrant data may enter legally and then later overstay
their visas, becoming undocumented.
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j to the U.S. Standard errors are clustered at the country level .

A key coefficient of interest is β1, the average effect of hurricanes across all origin

countries. In addition, we are interested in γ1 and γ2. γ1 is the effect of hurricanes on

migration in countries with zero prior migrant stock. γ2 captures the heterogeneity in the

effect of hurricanes on migration with respect to a country’s prior migrant stock. As discussed

in Section 3.1, the signs of all these coefficients are theoretically ambiguous, motivating our

empirical analysis.

3.4.2 Results

In the Online Appendix, we first establish that our hurricane index captures events that

create economically relevant losses in potential sending countries. In the context of our

theoretical framework from Section 3.1, we interpret these losses as an increase in the return

to migration to the U.S. by generating asset losses, personal harm, and longer-run declines in

economic growth. We focus here on our primary results, with mjt—immigrant inflows from

country j in year t as a proportion of country j’s 1980 population—as the outcome of interest.

As described in the Online Appendix, mjt is created using access to confidential data from

the U.S. Census Bureau. These data allow us to create accurate counts of immigrant inflows

to the U.S., even for small countries that often go overlooked in such studies.

3.4.2.1 Primary Results on Migration

Table 3.3 presents the results of estimating Equations (3.4.1) and (3.4.2) with mjt as the

outcome. Column 1 of Panel A demonstrates that, on the whole, hurricanes induce positive

levels of migration across our sample of 159 countries (β1 > 0, statistically significantly

different from zero at the 5 percent level). Column 2 illustrates that this effect operates

largely through the stock channel: γ2 > 0 (statistically significantly different from zero at

the 5 percent level), suggesting that the ability of sending-country denizens to use migration

as an ex-post response to hurricanes relies heavily on the presence an established network.

This indicates a potentially crucial role for family reunification and other forms of sponsorship

from within the U.S. in response to natural disasters abroad, motivating further investigation

along these margins below.

We further split mjt into separate age bins to investigate the characteristics of these

hurricane-induced migrants. Table 3.4 shows that the youngest migrants—aged 0 to 12—as

well as prime-aged migrants—aged 18 to 44—account for the majority of the effect seen

in Table 3.3. Qualitatively, this aligns with the notion that working-aged adults and their

children are most likely to respond to the combined impetus of an income shock and the
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pre-existence of a migration network.

The average effect of hurricanes in the first column implies that a one-standard-deviation

hurricane (0.054) would increase migration to the U.S. by 0.00022 as a share of the home-country

population (22 individuals per 100,000, or 0.022 percent). This is a substantial effect

compared to sample statistics of the annual migration rate (Table 3.2), amounting to 11.8

percent of the sample mean (0.00183), 7.3 percent of the standard deviation (0.00296), and

10.8 percent of the inter-quartile range (0.002).

Column 2 of Table 3.3 reveals that the effect of hurricanes is magnified among origin

countries with larger pre-existing stocks of U.S. immigrants. In this regression, the main

effect of hurricanes is negative (but not statistically significantly different from zero at

conventional levels). The effect of hurricanes on migration becomes positive for countries with

a migrant stock in the U.S. (as share of 1980 population) of at least 0.86 percent—roughly

the 70th percentile across countries. For a country at the 90th percentile of the prior migrant

stock (6.1 percent of origin population), a one-standard-deviation increase in our measure of

hurricane affectedness causes an inflow amounting to 0.033 percent of the origin population.

This is also a substantial effect compared to sample statistics of the annual migration rate. It

is 18.2 percent of the sample mean, 11.2 percent of the standard deviation, and 16.7 percent

of the inter-quartile range.

3.4.2.2 Citizenship Status of Stock

To begin exploring how these networks operate, we exploit the fact that citizenship

of respondents was recorded in the 1980 Long Form Census. We thus examine how the

citizenship status of the 1980 stock affects the response to hurricanes. Differences in the

ability of citizens versus non-citizens in promoting immigration allow us to roughly distinguish

between different types of migrant network benefits. While both citizens and non-citizens

can provide informational, financial, or psychic benefits, prior migrants who are citizens have

the greatest ability to sponsor relatives for legal immigration (legally enshrined in the 1965

Amendments to the Immigration and Nationality Act.) For example, in 2004, 42.9 percent

of the 946,142 legal immigrants admitted to the U.S. were able to bypass numerical quotas

because they were immediate relatives of U.S. citizens. Another 12 percent were subject

to numerical limitations, but also gained entry due to family sponsorship by a U.S. citizen

(Department of Homeland Security 2006).26 Thus, in the specification

26Note that these “admissions” include new arrivals and changes of status.
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mjt = π0 + π1Hjt + π2(Hjt × scitizen
j,1980 ) + π3(Hjt × snon-cit

j,1980 ) + ηj + δt + φjt+ εjt (3.4.3)

we expect π2 > π3. Table 3.5 shows evidence for this differential effect: only the interaction

term on the U.S.-citizen portion of the migrant stock has a positive and statistically significant

coefficient. This motivates a deeper look into how different classes of legal entrants respond

to natural disasters.

3.4.2.3 DHS Results

For this purpose, we turn to data from the DHS Yearbook of Immigration Statistics,

and the former Immigration and Naturalization Service’s annual Statistical Yearbook of the

Immigration and Naturalization Service, which allow us to separately examine entries of

legal permanent residents (LPR) and legal non-immigrants—those who are only granted

temporary visas. This generates two new outcome variables, mDHS
jt whereDHS = {LPR, non-imm}.

Our specification remains the largely the same, with one exception. The DHS data does not

allow us to distinguish between new entries and changes of status. Well-known back-logs

in the immigration processing system can therefore create lag between shocks in sending

countries and the enumeration of a migrants who gain LPR status if they enter as temporary

residents first. In 2013, for example, 54 percent of family-based immigrants adjusted status

from temporary to LPR compared to 46 percent who actually represented new entries

(Kandel, 2016). We therefore increase the lag order in our specification by taking a simple

average of Hjt and Hj,t−1, which we denote Hj,t,t−1. Our modified specifications become:

mDHS
jt = β0 + β1Hj,t,t−1 + ηj + δt + φjt+ εjt (3.4.4)

mDHS
jt = γ0 + γ1Hj,t,t−1 + γ2(Hj,t,t−1 × sj,1980) + ηj + δt + φjt+ εjt (3.4.5)

The results from these models are presented in Table 3.6, where Panel A presents the results

using our restricted-access estimates of migration inflows for comparison.27

There is a robust, positive effect of the stock interaction term on legal migration: γ2 is

estimated to be positive for both immigrant and non-immigrant entries.

In the row titled “Prop. of Census Inflows” of each panel, we calculate the proportion of

inflows implied by the second column, produced by restricted-access migration counts mjt in

Panel A, that can be explained by inflows reflected in Panels B and C, produced by data from

27The set of countries has been restricted to be the same across all estimated specifications. We lose three
countries to lack of data availability from the DHS.
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the DHS (mDHS
jt ). This is done by obtaining predicted values from Equation (3.4.5), then

multiplying by 1980 country population and summing over these fitted values to produce

aggregate inflow estimates implied for each outcome. We then divide these aggregate inflow

estimates by the result of the same calculation from the second column of Panel A.

This calculation reveals that DHS-recorded entries immediately following hurricanes are

larger than those that are enumerated in later Census data. LPR hurricane-driven entries

account for 2.47 times the corresponding number of entries in the Census data. We interpret

this ratio of 2.47 to indicate that the hurricane-responsive migration effects that we observe

in the Census data can be fully explained by entries of legal permanent residents. The fact

that this ratio exceeds unity should not be cause for concern, because individuals who enter

as LPRs immediately following hurricanes could fail to appear in later Census data for a

number of reasons. Most prominently, large shares of immigrants to the U.S. do return to

their home countries (or remigrate to third countries). Jasso and Rosenzweig (1982) estimate

that up to 50 percent of the 1971 U.S. immigrant cohort had remigrated by January 1979.28

On top of this, there is simple mortality, which we would expect to lead roughly one in ten

LPR entries seen in the DHS results to not appear in the Census data from 2000 and after.29

Another contributing but smaller factor is undercount of minorities in the Census.

The combination of these factors can bring the initial ratio of 2.47 very close to 1. If

we then consider statistical noise and measurement error (e.g., incorrect reported years of

entry or country of origin), the magnitude of the migration impacts on LPR entries seen

in the DHS data are quite consistent with magnitudes in regressions using Census data.

We conclude that the effects found in Table 3.3 and the second column of Table 3.6 are

not in contradiction with one another, particularly when one considers the that these point

estimates are each accompanied by 95 percent confidence intervals.

It is also important to keep in mind that the immediate impact of hurricanes on non-immigrant

(mainly tourist and business visa) entries (Panel C of Table 3.6) is 50.51 times greater than

the magnitudes seen in the regressions using Census data. We interpret this very high ratio

as implying that the vast majority of the individuals (essentially all, to a first approximation)

who enter the U.S. on non-immigrant visas in the wake of hurricanes stay only temporarily

in the U.S., eventually returning to their home countries (or perhaps to going to third

countries).

The detail of the DHS data allows us to further probe some of the mechanisms implied by

our results thus far. In particular, the citizenship results from Table 3.5, the large response

28Similarly high return or remigration rates from the U.S. have been estimated in earlier decades of the
20th century as well (Chiswick and Hatton, 2003; Bandiera et al., 2013).

29Assuming an age-adjusted annual mortality rate of 1 percent, and immigrants entering the U.S. relatively
uniformly over the 25-year period of analysis.
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of legal, permanent inflows from Table 3.6, and the realities of the U.S. immigration system

described in Section 3.2 suggest that family sponsorship may play a crucial role in allowing

immigration to serve as an ex-post response to natural disaster shocks in sending countries.

Table 3.7 suggests that this is the case. More than a third of the network interaction

effect detected for LPRs in Table 3.6 can be traced to parents, spouses, or children of U.S.

citizens—classes of immigrants who are not subject to numerical limitations. We further find

that among immigrants who are subject to numerical limitations (“Capped Categories”), the

network effect is especially salient for family-sponsored entrants.30 Meanwhile, the effects

of hurricanes on categories of entry that should not be affected by hurricanes in sending

countries, such as employer-sponsored immigrants or diversity lottery winners, do not show

the same heterogeneity with respect to migrant stocks.

3.4.3 Robustness and Mechanisms

The findings presented in Section 3.4 are consistent with immigrant stocks reducing the

fixed cost of migration, allowing for a greater migratory response to hurricanes from source

countries. There is, however, a concern of interpretation: the migrant stock could simply

be correlated with omitted variables that are responsible for this observed heterogeneity. To

gauge the robustness of our network-driven interpretation of the results to omitted variable

concerns, we estimate regressions with the following specification

mjt = γ0 + γ1Hjt + γ2(Hjt × sj,1980) + γc(Hjt × cj) + ηj + δt + φjt+ εjt (3.4.6)

This estimating equation is a modifies of our main specification, (3.4.2), by adding an

additional set of interaction terms with time-invariant control variables cj.
31

Control variables cj include a range of potential omitted variables. For example, sj,1980

may proxy for sending country incomes (log real 1980 GDP per capita). Countries with

higher incomes may be expected to both have higher sj,1980 and more responsiveness to

hurricanes if income makes credit constraints less binding for paying migration fixed costs.

Financial development, measured by domestic credit as a proportion of GDP, may play a

30Note that these data are only available starting in 1992.
31We also include interaction terms with cmissingj , dummy variables that account for some of these variables

being unavailable for certain countries. When a variable is missing for a certain country, cmissingj = 1 (and is

0 otherwise). When cmissingj = 1, we replace the missing value of cj with 0. The coefficient on the interaction

term with cmissingj then represents heterogeneity in the responsiveness to hurricanes among all countries for
which that variable is missing. Note the vector of main effects are not included in the regression because
they are absorbed by the country fixed effects.
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similar role. Migrant stocks may also proxy for distance to the U.S., with closer countries

having both a higher sj,1980 and lower migration fixed costs. We may expect that immigrant

communities that are more concentrated geographically (say in migrant enclaves) may be

better able to facilitate new immigration, perhaps due to closer social network connections.

We thus include a measure of within-U.S. geographic concentration of immigrant stocks in

1980. Larger countries, either in population or area, may naturally offer more opportunities

for internal migration, thus creating lower sj,1980’s and lower responsiveness to hurricanes.

Similarly, countries that have more alternate international migration destinations, such as

those connected to popular destinations in Europe, may feature lower stocks and lower

responsiveness, so we utilize a measure of 1990 immigrant stocks in non-U.S. destinations as

a control variable.

The Online Appendix details the construction of each of these variables. Here, we focus

on Table 3.8, which displays the results of estimating Equation (3.4.6) with each individual

control variable as well as with the complete set. The estimated coefficient γ̂2 remains

remarkably stable, and statistically significant, in each regression. There appears to be

a robust effect of the stock of immigrants itself, as opposed to the many factors it may

additionally proxy for. Additional results in the Online Appendix demonstrates that this

robustness also applies to the results from Table 3.5, regarding the citizenship of the 1980

proportional stock.

The Online Appendix also conducts placebo exercises, demonstrating that future values

of the hurricane index do not predict migration in prior years. Event-study specifications

further confirm these placebo exercise results and validate our choice to employ either 0 or

1 lag in the estimating equations above.

3.4.4 Migration demand vs. migration “supply”

An important question is whether hurricane-induced migration should be thought of as

occurring on the “demand” or “supply” sides of the migration “market”. We argue that our

findings should be interpreted as primarily a demand-side phenomenon: hurricanes induce

greater desire to migrate (with a greater likelihood of actual migration from countries with

larger stocks of prior migrants). But it is also important to ask whether the “supply” of

migration possibilities may also similarly respond to hurricanes. One might imagine that the

U.S. government could loosen immigration restrictions to make it possible for more people

to migrate in response to hurricanes. If the hurricane-induced increase in the supply of

immigration slots occurred differentially more when countries had larger migrant stocks in

the U.S., this could provide an alternative (or complementary) explanation for our findings.

There are two mechanisms though which the U.S. government could increase the supply
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of migration slots: Temporary Protected Status (TPS) and Deferred Enforced Departure

(DED).32 These are temporary statuses granted by the executive branch of the federal

government to nationals of select countries due to an adverse event (most commonly natural

disasters, political unrest, or conflict) in their home country, and allow beneficiaries to live

and work in the U.S. for a defined, limited period of time. While many entrants covered by

these programs end up staying in the U.S. for multiple years, they are officially classified as

non-immigrants. TPS and DED entries should therefore not affect our regression estimates

for LPR entries in the DHS data.

It is also of note that in only one instance have either of these statuses been designated

in response to a hurricane: TPS for Hondurans and Nicaraguans in the wake of Hurricane

Mitch in 1998. Thus, to directly test whether increases in migration slots made available by

TPS or DED are affecting our results, we reestimated Equations (3.4.2) and (3.4.5) dropping

Honduras and Nicaragua from our estimation sample. Results in the Online Appendix shows

that dropping these countries has a minimal effect on our estimated effects. This is true for

LPR inflows (DHS), for which we shouldn’t see any changes, but also for non-immigrant

entries (DHS) and overall entries (using the U.S. Census RDC data).

In sum, then, there is no evidence that migration-supply-side responses are an important

channel through which the immigration effects of hurricanes are operating. The hurricane-induced

migration we document in this chapter appears to be a demand-side phenomenon.

3.4.5 The Role of Restricted-Access Census Data and of Small Countries

As noted in the Introduction, one of our key contributions is the use of restricted-access

U.S. Census data. These data allow us to expand the sample of analysis to include small

countries that are not included for confidentiality reasons in publicly available Census data

(as discussed in the Online Appendix).

To illustrate the importance of these data, we estimate Equations (3.4.1) and (3.4.2)

using publicly-available Census data in the Online Appendix. For both the average effect

of hurricanes and the heterogeneity in this effect with respect to prior migrant stocks,

coefficient estimates from publicly-available data are much smaller in magnitude compared

to corresponding estimates presented in Table 3.3 (and are far from being statistically

significantly different from zero at conventional levels).

The difference in results from analyses using restricted-access versus public-use Census

data derives from the inclusion of small countries. Small countries added to the analysis

provide key identifying variation. As small countries, they have higher hurricane indices on

32Prior to 1990, DED was called Extended Voluntary Departure (EVD). While similar in their practical
aspects, the two programs are separate because they are implemented under different executive powers.
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average: the index takes into account the share of land area covered by a hurricane, and

so small countries can have larger hurricane indices. They also happen to have on average

higher population shares of prior migrants in the US, but with substantial heterogeneity

that also provides identifying variation. That is, they have significant “leverage” in our

specifications. To aid in getting a picture of these small countries, the Online Appendix lists

all countries in our sample, sorted by 1980 population, and provides the value of their mean

hurricane index and population share of prior migrants in the U.S.

To directly explore the role of small countries in contributing to the estimated effects, we

provide additional regression results in the Online Appendix. We show that small countries

play a central role. There is no large or statistically significant effect of network-facilitated

migration in response to hurricanes when we weight by population or restrict the sample to

quartiles of countries above the bottom quartile of 1980 population. (That said, our main

results are robust to weighting by log 1980 population).

Additionally, in the Online Appendix, we estimate our main regression specification when

dropping progressively more smaller countries from the sample, starting with countries with

the very smallest 1980 populations. The point estimate on the migrant stock interaction

term does become smaller when more and more of the small countries are dropped from

the regression. But the main results are not contingent on the presence of outliers in the

sample, only disappearing when the smallest 20 countries (approximately) are dropped from

the sample.33

Given that the key identifying variation is coming from small countries, one might raise

concerns about external validity (whether empirical patterns identified off migration flows

from the smallest countries would also be seen elsewhere). From a statistical standpoint, large

countries could simply not be contributing to our estimated effects because we cannot split

them into smaller administrative areas for analysis—we do not have data on migration from

sub-national origin areas. A hurricane occurring in a large country (such as China, India,

Mexico, or the Philippines) affecting a particular sub-national locality of a few thousand

people may similarly generate migration to the U.S. (with heterogeneity with respect to

prior migrant stocks from that locality) along the lines of what we see in our regressions, but

this will not be detected by our estimation procedure because migration flows of the country

as a whole will dwarf this response in the data.

33The U.S. Census does not allow us to specify exactly how many countries were excluded from each
regression, for confidentiality reasons, so the number of dropped countries is approximate.
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3.5 Conclusion

We examine how international migration responds to changes in the returns to migration,

and how this response depends on the costs or barriers that migrants face in moving. We

examine this question in the context of a quarter-century of migration to the U.S., the

world’s largest migration destination, from 159 origin locations worldwide. In our analysis,

we exploit the occurrence of hurricanes, which exogenously increase the returns to migration

by making origin areas less attractive, and ask whether the migration response to hurricanes

depends on the size of prior migrant stocks from the same country. Our migration outcomes

are unusually precise, measured either from from restricted-access U.S. Census data or actual

legal immigration counts from U.S. government administrative data. We find that, on

average, countries more affected by hurricanes see more migration to the U.S. This migration

response is indeed larger (as a share of origin-country population) among countries with larger

stocks of prior U.S. migrants. A key role played by previous migrant networks appears to

be sponsoring relatives for legal immigration. There is also a substantial effect of hurricanes

(and similar heterogeneity of effects with respect to migrant stocks) on legal entries via

temporary or non-immigrant visas.

This study is among the first to test whether the immigration response to disasters in

migrants’ origin areas is larger when origin areas have larger stocks of prior migrants. We

document an important role played by migrant networks: helping compatriots in the home

country migrate themselves as a way of coping with negative shocks. We provide unique

evidence that hurricane-induced flows of new migrants enter via legal, statutory immigration

channels, and that there is an identifiable effect on permanent (not just temporary) migration.

These findings are of substantial policy interest. Immigration has long been one of the

most contentious issues in the public realm, while at the same time shocks in migrant-source

countries are pervasive. Of particular interest are shocks to economic and social conditions

generated by climate change. The policy debate should be informed by a better understanding

of how and when increasingly severe natural disasters in migrant-origin countries will actually

lead to increased migration. Policy-makers in destination countries would benefit from an

improved understanding of the determinants of migrant inflows that may result from such

shocks.
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Figure 3.1: Hurricane Best Tracks: 1980-2004

Source: Unisys Weather data, formerly available at http://weather.unisys.com/hurricane/. Raw data available upon request.
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Table 3.1: List of Countries in Sample

Afghanistan French Polynesia Nigeria
Algeria Gabon Niue
Angola Gambia Oman
Anguilla Ghana Pakistan
Antigua & Barbuda Grenada Panama
Argentina Guadeloupe Papua New Guinea
Aruba Guatemala Paraguay
Australia Guinea Peru
Bahamas Guinea-Bissau Philippines
Bahrain Guyana Qatar
Bangladesh Haiti Reunion
Barbados Honduras Rwanda
Belize Hong Kong Samoa
Benin India Sao Tome & Principe
Bermuda Indonesia Saudi Arabia
Bhutan Iran Senegal
Bolivia Iraq Seychelles
Botswana Israel Sierra Leone
Brazil Ivory Coast Singapore
British Virgin Islands Jamaica Solomon Islands
Brunei Japan Somalia
Burkina Faso Jordan South Africa
Burma (Myanmar) Kenya South Korea
Burundi Kiribati Sri Lanka
Cambodia Kuwait St. Helena
Cameroon Laos St. Kitts-Nevis
Canada Lebanon St. Lucia
Cape Verde Lesotho St. Vincent & the Grenadines
Cayman Islands Liberia Sudan
Central African Republic Libya Suriname
Chad Macau Swaziland
Chile Madagascar Syria
China Malawi Taiwan
Colombia Malaysia Tanzania
Comoros Maldives Thailand
Congo Mali Togo
Cook Islands Martinique Tokelau
Costa Rica Mauritania Tonga
Cuba Mauritius Trinidad & Tobago
Cyprus Mexico Tunisia
Democratic Republic of Congo (Zaire) Micronesia Turkey
Djibouti Mongolia Turks & Caicos Islands
Dominica Montserrat Uganda
Dominican Republic Morocco United Arab Emirates
East Timor Mozambique Uruguay
Ecuador Namibia Vanuatu
Egypt Nauru Venezuela
El Salvador Nepal Vietnam
Equatorial Guinea Netherlands Antilles Wallis & Futuna Islands
Ethiopia New Caledonia Western Sahara
Falkland Islands New Zealand Yemen
Fiji Nicaragua Zambia
French Guiana Niger Zimbabwe

Notes: See Section 3.3 for details on sample selection.
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Table 3.2: Summary Statistics

Percentile
Mean Std. Dev. 10 25 50 75 90 N Source

Hurricane Index 0.00402 0.02373 0 0 0 0 0.00064 3,895 Unisys

Hurricane Index (if > 0) 0.02451 0.05417 0.00001 0.00014 0.00190 0.01903 0.07709 639 Unisys

1980 Population (thousands) 21,627 96,379 60 250 3,027 11,095 38,124 159 UN &
Census IDB

As a Proportion of 1980 Population:

Annual Migrants 0.00183 0.00296 0.00004 0.00010 0.00039 0.00210 0.00625 2,200 IPUMSa

Annual Immigrants 0.00133 0.00339 0.00001 0.00005 0.00020 0.00112 0.00418 2,582 DHS

Annual Non-Immigrant Entries 0.06127 0.22229 0.00019 0.00059 0.00413 0.02101 0.11062 2,214 DHS

Annual Immediate Family Immigrants 0.00051 0.00109 <0.00001 0.00002 0.00009 0.00046 0.00175 2,582 DHS

Annual Family-Sponsored Immigrants 0.00099 0.00246 0.00001 0.00003 0.00013 0.00078 0.00316 1,511 DHS

1980 Stock of Immigrants 0.01594 0.03100 0.00020 0.00037 0.00250 0.01573 0.06160 150a IPUMSa

1980 Stock of Citizen Immigrants 0.00615 0.01471 0.00004 0.00009 0.00068 0.00469 0.02099 150a IPUMSa

1980 Stock of Non-Citizen Immigrants 0.00979 0.01746 0.00012 0.00029 0.00165 0.01113 0.03320 150a IPUMSa

Notes: See the Online Appendix for details on creation of hurricane index. The second row shows summary statistics for the hurricane index conditional on it being greater
than zero. “Immediate Family” refers to parents, children, or spouses of U.S. citizens—these admissions are uncapped. “Family-Sponsored” immigrants are those whose
admissions are capped, but who enter through family sponsorship.
Sources: DHS data obtained from electronic copies of the Yearbook of Immigration Statistics for 1996-2004 (Department of Homeland Security, 2004) and the Statistical
Yearboook of the Immigration and Naturalization Service for prior to 1996 (Immigration and Naturalization Service, 1995). UN data obtained from the United Nations
Population Division (United Nations, 2017). Census IDB data obtained from the Census Bureau’s International Data Base (U.S. Census Bureau, 2).
aStatistics constructed using Census public-use microdata obtained from IPUMS-USA (Ruggles et al., 2019b) rather than RDC data to avoid confidentiality issues, which
explains the loss in sample size. These are not the data used in regression model estimation.
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Table 3.3: The Effect of Hurricanes on Migration, 1980-2004

As a Prop. of 1980 Population
Migrants(t) Migrants(t)

(1) (2)
Hurricane Index(t) 0.0040 -0.0010

(0.0020) (0.0010)

Hurricane Index(t) × 1980 Proportional Immigrant Stock 0.1163
(0.0451)

Country-Years 3,900 3,900
R2 0.4319 0.4409
Countries 159 159

Notes: Each column refers to an OLS specification with a constant term, country fixed effects, year fixed effects, and country-specific time trends along with the variables
displayed. Standard errors clustered at the country level. See Equations (3.4.1) and (3.4.2). “Migrants” and “1980 Proportional Immigrant Stock” constructed using
restricted-access data from the Census Bureau’s Research Data Center.
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Table 3.4: The Effect of Hurricanes on Migration by Age Group, 1980-2004

Panel A: Children As a Prop. of 1980 Population
Age Group of Migrants(t): 0 to 12 0 to 12 13 to 17 13 to 17

Hurricane Index(t) 0.0014 -0.0007 0.0006 0.0004
(0.0007) (0.0004) (0.0005) (0.0006)

Hurricane Index(t) × 1980 Proportional Immigrant Stock 0.0481 0.0057
(0.0138) (0.0076)

Country-Years 3,900 3,900 3,900 3,900
R2 0.2293 0.2461 0.1794 0.1798
Countries 159 159 159 159

Panel B: Prime-Aged As a Prop. of 1980 Population
Age Group of Migrants(t): 18 to 24 18 to 24 25 to 44 25 to 44

Hurricane Index(t) 0.0009 -0.0005 0.0010 -0.0004
(0.0007) (0.0003) (0.0007) (0.0004)

Hurricane Index(t) × 1980 Proportional Immigrant Stock 0.0329 0.0306
(0.0185) (0.0150)

Country-Years 3,900 3,900 3,900 3,900
R2 0.2953 0.3010 0.3123 0.3155
Countries 159 159 159 159

Panel C: Older As a Prop. of 1980 Population
Age Group of Migrants(t): 45 to 64 45 to 64 65 and older 65 and older

Hurricane Index(t) 0.0002 0.0006 -0.0001 -0.0005
(0.0004) (0.0006) (0.0002) (0.0004)

Hurricane Index(t) × 1980 Proportional Immigrant Stock -0.0083 0.0072
(0.0076) (0.0047)

Country-Years 3,900 3,900 3,900 3,900
R2 0.1884 0.1906 0.1359 0.1403
Countries 159 159 159 159

Notes: Each column within a panel refers to an OLS specification with a constant term, country fixed effects, year fixed effects, and country-specific time trends along with
the variables displayed. Standard errors clustered at the country level. See Equations (3.4.1) and (3.4.2). “Migrants” and “1980 Proportional Immigrant Stock” constructed
using restricted-access data from the Census Bureau’s Research Data Center.
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Table 3.5: The Effect of Hurricanes on Migration by Citizenship of Stock, 1980-2004

As a Prop. of 1980 Population
Migrants(t) Migrants(t)

Hurricane Index(t) -0.0010 -0.0005
(0.0010) (0.0009)

Hurricane Index(t) 0.1163
× 1980 Proportional Immigrant Stock (0.0451)

Hurricane Index(t) 0.4044
× 1980 Proportional Immigrant Citizen Stock (0.2245)

Hurricane Index(t) -0.1444
× 1980 Proportional Immigrant Non-Citizen Stock (0.1661)

Country-Years 3,900 3,900
R2 0.4409 0.4429
Countries 159 159
p-value: Equal Interaction Effect 0.1540

Notes :Each column refers to an OLS specification with a constant term, country fixed effects, year fixed effects, and
country-specific time trends along with the variables displayed. Standard errors clustered at the country level. See Equations
(3.4.2) and (3.4.3). “Hurricane Index” refers to the hurricane index for a given country in year t. “Migrants”, “1980 Proportional
Stock,” “1980 Proportional Citizen Immigrant Stock,” and “1980 Proportinal Non-Citizen Immigrant Stock” constructed using
restricted-access data from the Census Bureau’s Research Data Center.
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Table 3.6: The Effect of Hurricanes on Migration—Comparing Census to DHS Data

Panel A: Census, 1980–2004 As a Prop. of 1980 Population
Migrants(t) Migrants(t)

Hurricane Index(t, t− 1) 0.0046 -0.0012
(0.0021) (0.0016)

Hurricane Index(t, t− 1) × 1980 Proportional Immigrant Stock 0.1235
(0.0427)

Country-Years 3,800 3,800
Countries 156 156
R2 0.4426 0.4475
Prop. of Census Inflows 1

Panel B: DHS, 1982–2004 As a Prop. of 1980 Population
LPR(t) LPR(t)

Hurricane Index(t, t− 1) 0.0023 -0.0035
(0.0040) (0.0039)

Hurricane Index(t, t− 1) × 1980 Proportional Immigrant Stock 0.1266
(0.0402)

Country-Years 2,600 2,600
Countries 156 156
R2 0.2954 0.2966
Prop. of Census Inflows 2.47

Panel C: DHS, 1983–2004 As a Prop. of 1980 Population
Non-Immi(t) Non-Immi(t)

Hurricane Index(t, t− 1) 0.2193 -0.0627
(0.0788) (0.0689)

Hurricane Index(t, t− 1) × 1980 Proportional Immigrant Stock 5.7883
(2.3536)

Country-Years 2,200 2,200
Countries 156 156
R2 0.4485 0.4495
Prop. of Census Inflows 50.51

Notes: Each column within a panel refers to an OLS specification with a constant term, country fixed effects, year fixed
effects, and country-specific time trends along with the variables displayed. Standard errors clustered at the country level.
See Equations (3.4.1) and (3.4.2). “Migrants” and “1980 Proportional Immigrant Stock” constructed using restricted-access
data from the Census Bureau’s Research Data Center. “LPR(t)” refers to the number of individuals granted lawful permanent
resident status from a given country in year t. “Non-Immi(t)” refers to the number of individuals that entered the U.S.,
enumerated by the DHS, from a given country in year t that were not granted lawful permant residence (e.g., tourists and
those on student visas). “Hurricane Index(t, t − 1)” refers to the average of a hurricane index for a given country across
years t and t − 1. “Prop. of Census Inflows” calculated by multiplying the estimated coefficients by each country’s specific
“Hurricane Index(t, t− 1)” and 1980 Proportional Immigrant Stock, summing them across country-years, then dividing by the
same calculation made using the results from the second “Census” column.
Sources: Outcomes in Panels B and C obtained from electronic copies of the Yearbook of Immigration Statistics for 1996-2004
(Department of Homeland Security, 2004) and the Statistical Yearboook of the Immigration and Naturalization Service for prior
to 1996 (Immigration and Naturalization Service, 1995).
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Table 3.7: The Effect of Hurricanes on LPR Entries by Category—DHS Data

Panel A: Uncapped, Immediate Relatives of U.S. Citizens Legal, Permanent Immigration by Category
As a Prop. of 1980 Population

Parents, Spouses,
Parents Spouses Children and Children

Hurricane Index(t, t− 1) -0.0002 -0.0007 -0.0007 -0.0014
(0.0003) (0.0006) (0.0008) (0.0014)

Hurricane Index(t, t− 1) × 1980 Proportional Immigrant Stock 0.0130 0.0150 0.0234 0.0457
(0.0069) (0.0065) (0.0167) (0.0189)

Country-Years 2,600 2,600 2,600 2,600
R2 0.1609 0.1970 0.1200 0.1435
Years 1982 to 2004 1982 to 2004 1982 to 2004 1982 to 2004
Countries 156 156 156 156

Panel B: Capped Categories Legal, Permanent Immigration by Category
As a Prop. of 1980 Population

Family Employer Diversity
Refugee Sponsored Sponsored Lottery

Hurricane Index(t, t− 1) 0.0003 -0.0019 0.0001 -0.0001
(0.0002) (0.0029) (0.0002) (0.0003)

Hurricane Index(t, t− 1) × 1980 Proportional Immigrant Stock -0.0013 0.1630 -0.0225 -0.0005
(0.0027) (0.0660) (0.0054) (0.0044)

Country-Years 2,600 1,500 1,500 1,500
R2 0.3309 0.1667 0.4223 0.4218
Years 1982 to 2004 1992 to 2004 1992 to 2004 1992 to 2004
Countries 156 156 156 156

Notes: Each column within a panel refers to an OLS specification with a constant term, country fixed effects, year fixed effects, and country-specific time trends along with
the variables displayed. Standard errors clustered at the country level. See Equations (3.4.1) and (3.4.2). “Hurricane Index(t, t− 1)” refers to the average of a hurricane index
for a given country across years t and t− 1. “1980 Proportional Immigrant Stock” constructed using restricted-access data from the Census Bureau’s Research Data Center.
Sources: Outcomes obtained from electronic copies of the Yearbook of Immigration Statistics for 1996-2004 (Department of Homeland Security, 2004) and the Statistical
Yearboook of the Immigration and Naturalization Service for prior to 1996 (Immigration and Naturalization Service, 1995).
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Table 3.8: Robustness

Outcome for all columns: Migrants(t) as a Prop. of 1980 Population
Hurricane Index(t) -0.0018 0.0124 0.0094 -0.0045 -0.0034 -0.0010 -0.0028 -0.0012 0.0541

(0.0010) (0.0175) (0.0064) (0.0030) (0.0034) (0.0010) (0.0021) (0.0022) (0.0334)

Hurricane Index(t) × 0.1199 0.1213 0.1001 0.1249 0.1175 0.1159 0.1291 0.1032 0.1094
1980 Proportional Immigrant Stock (0.0453) (0.0494) (0.0369) (0.0462) (0.0428) (0.0451) (0.0483) (0.0399) (0.0331)

Hurricane Index(t) × 0.3709 -0.0122
Immigrant Concentration Index (0.2488) (0.0088)

Hurricane Index(t) × -0.0015 -0.0049
log(1980 Real GDP Per Capita) (0.0020) (0.0033)

Hurricane Index(t) × -0.0802 -0.1165
log(1980 Population) (0.0517) (0.0717)

Hurricane Index(t) × -0.0474 -0.2181
[1970s Remittances as Prop. of GDP] (0.0700) (0.1040)

Hurricane Index(t) × 0.0040 0.0034
1[Missing: Remittances] (0.0030) (0.0043)

Hurricane Index(t) × -0.0015 0.0026
[1970s Dom. Credit as Prop. of GDP] (0.0061) (0.0088)

Hurricane Index(t) × 0.0038 0.0126
1[Missing: Dom. Credit] (0.0038) (0.0064)

Hurricane Index(t) × -0.0014 0.0102
[Land Area (mil. sq. km)] (0.0041) (0.0080)

Hurricane Index(t) × 0.1952 0.2579
[Distance to U.S. (mil. km)] (0.1618) (0.1686)

Hurricane Index(t) × 0.0055 -0.0117
[1990 Prop. non-U.S. Emigrant Stock] (0.0068) (0.0079)

Hurricane Index(t) × 0.0004 -0.0122
1[Missing: non-U.S. Emigrant Stock] (0.0029) (0.0056)

Country-Years 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900
R2 0.4412 0.4413 0.4422 0.4423 0.4424 0.4409 0.4412 0.4412 0.4495
Countries 159 159 159 159 159 159 159 159 159

Notes: This table is intended for comparison with Column 2 of Table 3.3. Each column refers to a different OLS specification with a constant term, country fixed effects, year
fixed effects, and country-specific time trends along with the variables displayed. Standard errors clustered at the country level. See Equation (3.4.6). 1970s Domestic Credit
as Prop. of GDP and 1970s Remittances as a Prop. of GDP divide averages of non-missing data of Domestic Credit and Remittances from 1970 through 1979 by 1980 GDP.
“Migrants” and “1980 Proportional Immigrant Stock” constructed using restricted-access data from the Census Bureau’s Research Data Center.
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APPENDIX A

Appendix to Chapter 1

A.1 Case Studies: Details

A.1.1 Synthetic Control Method: an Overview

The Synthetic Control Method (SCM) is a data driven approach for constructing control

groups when treatments occur in specific geographies. By incorporating elements of matching,

it relaxes the traditional difference-in-differences assumption that confounding factors must

be time invariant in order to estimate unbiased treatment effects. It allows common shocks

across regions to affect different regions differently. In short, SCM utilizes the information

at its disposal, including pre-event outcomes, to generate a control group most similar to

the treated unit in its pre-treatment behavior. Specifically, given a set of untreated, “donor”

geographies, D, a set of M control variables for each of these donors, XM×1, and a year of

treatment t∗, SCM solves

W ∗(V ) = arg min
W

||Xtreated,m −X′W ||vm

where XD×M stacks the vectors of control variables over donors. W ∗(V )(D×1) is a set of

weights for donor units that minimizes the distance between the control variables in the

treated and donor units. Like with matching, X can and should include pre-treatment

outcomes, but should not include the full set of pre-treatment outcomes (Kaul et al., 2015).

Denoting yt as the outcome of interest and yDt as the (D × 1) vector of outcomes in the

donor units at time t,

W ∗(V )′ × yDt ≡ yt,Synthetic
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gives the synthetic control value at each time t. In order to trace out year-over-year dynamic

responses to shocks, the parameters of interest for a given outcome y take the form

δyt ≡ (ytreated,t − ysynthetic,t)− (ytreated,t∗−1 − ysynthetic,t∗−1) (A.1)

For t < t∗ − 1, δyt serves as a test for parallel trends and for t ≥ t∗, δyt is akin to an event

study treatment effect estimate. At t∗ − 1, the estimate is normalized to 0.

A.1.2 Choosing Predictors Using Cross-Validation

Because of the wide range of covariates that can be used in a given SCM model, the

methodology can be susceptible to cherry-picking in terms of which variables go into X

(Ferman et al., 2016). In order to circumvent these concerns, I choose each synthetic

control model using a cross-validation procedure proposed by Dube and Zipperer (2015).

The procedure is essentially a pseudo-out-of-sample test of how well a given candidate set of

predictors does in forecasting post-treatment outcomes for donor (untreated) geographies. It

creates these forecasts by constructing a synthetic control for each of the donor units. That

is, in order to select X, the following procedure is implemented:

1. Choose a candidate X

2. Run the synthetic control method for each donor unit d and each event e

3. Choose the X∗ such that X∗ = arg minX
∑

e

∑D
d=1

∑
t≥t∗

(
Ydt −

∑
q 6=dw

∗
q(X)Yqt(X)

)2

where the term
∑

q 6=dw
∗
q(X)Yqt(X) represents the synthetic control constructed for donor

unit d. The treated units are excluded from this entire process. Additionally, I only run this

process on the reduced form outcome establishments per t∗ − 1 worker. The first stages for

Phoenix and Arizona are estimated using the chosen X∗ from the cross-validation procedure

run on the reduced form.

The chosen X∗ for SCM estimation were: sector shares, the under-40 year-old share, the

self-employed share, and the college share, all in t∗−1. I include log employment in the year

before the event and five-year pre-treatment averages of the outcome, establishments per

time t∗ − 1 worker, in all models. Note that the under-40 year-old share, the self-employed

share, and the college share are only able to be included for Phoenix and Arizona. The

chosen donor units and their weights can be seen below, in Table A.1.
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Table A.1: Synthetic Control Weights

Geography Weight
Panel A: Phoenix MSA, Immigrants per Initial Worker*
Cape Coral-Fort Myers, FL 0.280
Daphne-Fairhope-Foley, AL 0.159
Santa Fe, NM 0.105
Merced, CA 0.057
Madera, CA 0.023
Port St. Lucie, FL 0.010
Salinas, CA 0.010
Panel B: Phoenix MSA, Establishments per Initial Worker
Austin-Round Rock-Georgetown, TX 0.595
Salisbury, MD-DE 0.094
Cape Coral-Fort Myers, FL 0.089
Port St. Lucie, FL 0.066
Ocala, FL 0.053
San Diego-Chula Vista-Carlsbad, CA 0.047
Riverside-San Bernardino-Ontario, CA 0.036
Barnstable Town, MA 0.021
Panel C: Miami MSA, Establishments per Initial Worker
San Diego-Chula Vista-Carlsbad, CA 0.381
San Francisco-Oakland-Berkeley, CA 0.205
New York-Newark-Jersey City, NY-NJ-PA 0.145
Houston-The Woodlands-Sugar Land, TX 0.132
Sacramento-Roseville-Folsom, CA 0.084
Ocean City, NJ 0.052

*The Phoenix MSA has several other donor units with weights of less than 0.01 that are not listed here.
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A.1.3 Inference

In order to conduct inference and construct confidence intervals for the pooled SCM case

studies, I harmonize the analysis to a set of 214 metropolitan statistical areas delineated by

the Office of Management and Budget in 2013. Note that all Arizona cities are excluded

from the SCM estimates for Miami and all other Arizona cities and Miami are excluded from

the SCM estimates for Phoenix. I then once again follow procedures laid out in Dube and

Zipperer (2015).

First, for each event e, I calculate δRFt for the treated unit as well as a “placebo” version of

this estimator for each donor unit as if the donor unit was treated in the same year, δRFt,donor.
1

I then divide all of these estimates by the δ1S from the treated unit. The result is an actual

estimate of the effect of immigrant inflows on firm presence in the treated unit, βet as well

as a set of placebo estimates, βet,donor that are used to construct an empirical distribution for

inference.

The first step in the inference process involves ranking the estimates of βet among the

212 estimates of βet,donor. The estimated rank percentile is this rank divided by 213. The

test statistic for combined inference is then simply the average of these percentile ranks.

The critical values needed to conduct inference are given in Table A1 of Dube and Zipperer

(2015) for N = 2. Inverting this hypothesis test to generate confidence intervals, like those

shown in Figure 1.2, simply involves finding the mean of the empirical distributions at these

critical values, 1
E

∑
e β

e
t,donor(crit). For example, the lower bound of the 95 percent critical

value is the estimate βt plus this mean at the 2.5 percent critical value (0.111) from the

aforementioned Table A1 of Dube and Zipperer (2015).

A.1.4 Results from State-Level Case Studies

As described in Section 1.3.1, one way to pool the Mariel and Arizona cases is to focus

on Arizona’s largest city, Phoenix, and Miami. The other alternative is to consider Arizona

and Florida together. This section conducts this alternative for completeness.

Interestingly, Florida shows a stronger relationship in the state case study than Miami

did in the individual city case study. This somewhat aligns with previous evidence stemming

from the Mariel Boatlift case study. Card (1990), for example, documents that Florida as a

whole experienced less population decline than did Miami in the years following the Boatlift.

Indeed, most previous Mariel Boatlift studies find that the absorption of Marielitos was only

accompanied by a short run increase in population, wholly consistent with net emigration

to (or less inmigration to Miami from) the rest of Florida (see, e.g., Figure 2 in Peri and

1I exclude the treated unit when calculating the placebo estimates.
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Yasenov, 2015). These relative expansions in the rest of the state could mean that it was

really the state of Florida that more completely absorbed the Marielitos rather than Miami

itself (see here for anecdotal evidence that the whole state was affected). This, in turn,

would lead to larger establishment presence in the rest of the state. Relative to the rest of

this chapter, this provides moderate caution regarding the magnitudes of the effects found in

Section 1.3. Given the possibility population displacement, particularly when immigration

shocks are large, these estimates should be viewed as a lower bound. Smaller shocks that

are most likely used for identification from the instrumental variable are less likely to create

these issues (see, e.g., Card and DiNardo, 2000).

Table A.2: Synthetic Control Weights

Geography Weight
Panel A: Arizona, Immigrants per Initial Worker
Alaska 0.066
Delaware 0.025
Florida 0.05
Georgia 0.111
Maryland 0.043
Nevada 0.566
Utah 0.138
Panel B: Arizona, Establishments per Initial Worker
Alaska 0.088
Maryland 0.155
Nevada 0.613
Tennessee 0.01
Utah 0.134
Panel C: Florida, Establishments per Initial Worker
Alaska 0.035
Arizona 0.057
Hawaii 0.230
Maine 0.002
Maryland 0.086
Nebraska 0.008
Rhode Island 0.272
Wyoming 0.300
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Table A.3: Synthetic Control First Stage ∆DD
I

Case Treatment Start (t∗) Variation Source ∆DD
I Empirical p-value

Arizona 2008 Arizona LAWA -0.043 0.038
Florida 1980 Mariel Boatlift 0.036 —

Source: First row—author’s calculations from IPUMS-USA and County Business Patterns. Second row—Card (1990) p. 248
and author’s calculations from Current Population Survey (CPS) Merged Outgoing Rotation Group accessed using IPUMS-CPS;
assumes all 125,000 Marielitos stayed in Florida in order to be conservative.
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Figure A.1: Individual Synthetic Control Results—Measures per Initial (t∗ − 1) Worker

Arizona: Immigrants Arizona: Establishments Florida: Establishments
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Source: Author’s calculations from IPUMS-USA and County Business Patterns.
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Figure A.2: Pooled SCM Results, Establishments per Immigrant (βt)
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Source: Author’s calculations from IPUMS-USA and County Business Patterns.
Notes: 95% confidence intervals represented by gray area around point estimates indicated by solid black line.
These confidence intervals only apply to the “reduced form”—“first stage” only used as a scaling factor. Combined
estimates reflect the cases of Arizona with 2008 as year 0 and Florida with 1980 as year 0.
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A.2 Instrument Vetting

This section presents a variety of analyses and visualizations that bolster the case for

zEmigrants
gkt as a relevant and valid instrument in Sections 1.3 and 1.4. As of this draft,

these analyses are done using publicly-available data in order to limit the size of disclosure

requests from the U.S. Census Bureau. That means independent variables like Igkt are

measured from IPUMS-USA (Ruggles et al., 2019a) and industry groups k are simply

1-digit SIC classifications to accommodate the loss in precision and retain consistency over

time. Estimated specifications are from Equation (1.3.1), but with ygkt corresponding to

establishment presence, as measured in the County Business Patterns (CBP), instead of

LBD-measured firm presence.

A.2.1 Educational Decomposition of Inflows

The following table decomposes immigrant inflows in ∆Igkt into three education categories:

high school degree, some college, and college degree or more. As with the Results seen

in Table 1.2, it demonstrates that immigrant inflows tend to be tilted towards workers

with lower educational attainment, and that the push represented by ∆zEmigrants
gkt does not

substantially differ from the general inflow represented by ∆Igkt on this front. Each immigrant

pushed by ∆zEmigrants
gkt , for example, pushes 0.654 immigrants with at most a high school

degree into a commuting zone-sector on average (Column 4), while this number is 0.745 for

general inflows that may be contaminated by pull factors (Column 1).
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Table A.4: Educational Content of Immigrant Inflows (Publicly Available Data, k = SIC Sector)

OLS Emigrants Instrument
(1) (2) (3) (4) (5) (6)

∆Igkt: Immigrant Inflows per Initial Worker 0.745*** 0.121*** 0.134*** 0.654*** 0.167*** 0.180***
(0.023) (0.009) (0.016) (0.023) (0.010) (0.019)

Education ≤H.S. Deg. Some College College+ ≤H.S. Deg. Some College College+

Within R2 0.849 0.381 0.221 0.836 0.328 0.195
αgt, αkt X X X X X X
Region × SIC Sector × Year FE X X X X X X
1980 Controls × Year FE X X X X X X
Observations 15,162 15,162 15,162 15,162 15,162 15,162

Notes: See Equation (1.3.1) for specification. Data obtained from IPUMS-USA. College equivalent refers to 0.5 times the number of workers with Some College plus all workers
with a College Degree or More—see, e.g., Doms et al. (2010). All specifications include control variables for 1980 log employment, 1980 establishments per worker, 1980 self
employment share, 1980 college share, and 1980 under-40 share in the commuting zone-sector interacted with year fixed effects. Observations weighted by 1980 workforce size.
Standard errors clustered at the commuting zone-sector level. * p < 0.1 ** p < 0.05 *** p < 0.01
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A.2.2 Comparability of Results: Immigration and Establishment Presence Using

Publicly-Available Data

This section compares results from regressions using publicly-available data in a commuting

zone-SIC sector panel both to results in Table 1.5 and across use of different instruments. Of

note, I introduce a third instrument along with zStandard
gkt and zEmigrants

gkt . The new instrument

is ∆zBirths
gkt :

∆zBirths
gkt =

1

Eg,1980

[∑
o

πgo,1980 × ρ(−g)okt ×

(
t−31∑
s=t−40

Birthsos

)]

The impetus behind this instrument comes from Hanson et al. (2017), who demonstrate that

birth cohort sizes in foreign countries relative to those in the U.S. explain migration of young,

Central American workers to the U.S. Here, I expand this idea to cover how differential timing

of demographic transitions abroad can generate pushes to migrate to the U.S., given that

the U.S. is the largest immigration destination in the world. Given that lagged births in

sending countries present a compelling case for satisfying random assignment, even relative

to the emigrant instrument (e.g., if there are concerns about correlated demand across OECD

countries), results using ∆zBirths
gkt serves as a natural benchmark for results from Equation

(1.3.1). However, using long-run factors like demographic transitions to instrument for

immigration inflows can only be utilized for decadal or longer-horizon specifications. Thus,

the primarily utility of ∆zBirths
gkt is to show that it delivers similar results to ∆zEmigrants

gkt .Then,

zEmigrants
gkt can be utilized in Section 1.4 where the time horizon shortens to every 5 years.

Table A.5 demonstrates that this is the case. Results using ∆zEmigrants
gkt and ∆zBirths

gkt

cluster around 0.55, while results using ∆zStandard
gkt are substantially attenuated. Of note,

the results from ∆zEmigrants
gkt and ∆zBirths

gkt are nearly identical, but slightly larger than results

from Table 1.5, which utilizes smaller industry groups, restricted access demographic data

and firms instead of establishments as the outcome. Thus, while future drafts will conduct

the checks contained in Section A.2 using restricted-access data, Table A.5 indicates that

the checks using publicly-available data presented in this draft are likely still informative.
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Table A.5: Results Across Instruments (Publicly Available Data, k = SIC Sector)

Outcome: Change in Establishments per Initial Worker
(1) (2) (3) (4)

∆Igkt: Immigrant Inflows per Initial Worker 0.0393*** 0.0539*** 0.0563*** 0.0224**
(0.0044) (0.0062) (0.0073) (0.0107)

Instrument None—OLS Emigrants Lagged Births Standard
1st Stage F Statistic — 63.42 24.76 20.67
Within R2 0.056 0.048 0.045 0.045
αgt, αkt X X X X
Region × SIC Sector × Year FE X X X X
1980 Controls × Year FE X X X X
Observations 5,054 5,054 5,054 5,054

Notes: See Equation (1.3.1) for specification. Data obtained from IPUMS-USA and County Business Patterns. All specifications include control variables for 1980 log
employment, 1980 establishments per worker, 1980 self employment share, 1980 college share, and 1980 under-40 share in the commuting zone-sector interacted with year fixed
effects. Observations weighted by 1980 workforce size. Standard errors clustered at the commuting zone-sector level. * p < 0.1 ** p < 0.05 *** p < 0.01
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A.2.3 Country-Level Pushes

In order for zEmigrants
gkt to provide a good source of exogenous variation for Igkt, we not

only need it to be randomly assigned, but also to be relevant. In this section, I show simple

evidence that Mnon-US
ot is a relevant predictor of Iot—total immigrant stock in the U.S. from

country o. Crucially, this is true both in levels and changes (including a country fixed

effect)—outflows to non-U.S. OECD countries predict inflows to the U.S. Thus, zEmigrants
gkt

is not simply replacing the “shift” component of the “shift-share” instrument with noise.

Instead, it is replacing it with a relevant factor that is plausibly exogenous relative to

commuting zone-industry level outcomes in the U.S. The Regressions take the form of

f(Iot) = α + βPushf(Mnon-US
ot ) + g(αo, αt) + εot

where f(x) either logs x, keeps x level, or divides x by origin o’s 1980 population. g(·)
represents a linear combination. Table A.6 presents the results. Note that because these

results use publicly-available they do not reflect the full set of over 150 countries used to

generate zEmigrants
gkt in the main results using restricted-access data. Future drafts will update

these results accordingly.

Table A.6: Push Factors

Outcome: Iot
Populationo,1980

Outcome: log(Iot) Outcome: Iot

(1) (2) (3) (4) (5) (6)

Mnon-US
ot

Populationo,1980
0.6861*** 0.7719***

(0.1196) (0.1128)
log(Mnon-US

ot ) 0.4430*** 0.5516***
(0.0666) (0.0616)

Mnon-US
ot 0.1883** 0.3724**

(0.0748) (0.1889)

Within R2 0.413 0.400 0.247 0.377 0.017 0.012
Year FE X X X X X X
Country FE X X X
Observations 420 420 420 420 420 420
Countries 105 105 105 105 105 105

Notes: Dependent variables obtained from IPUMS-USA. Indpendent variables obtained from the IAB, and the United Nations’
World Population Prospects 2017 for population denominator. Standard errors clustered at the country level. * p < 0.1 **
p < 0.05 *** p < 0.01
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A.2.4 Pre-Trends and Balance Tests

A distinct advantage of the County Business Patterns (CBP) relative to the restricted-access

Longitudinal Business Database (LBD) is that the CBP stretches farther back in time. This

enables a pure pre-trends test that is not often available in panel, shift-share settings. This

pre-trends test takes the following regression form:

∆Establishmentsgk,1980 = α + πPure
t [∆zgkt] + ΓXgkt + εgkt

where a rejection of the null hypothesis πPure = 0 indicates the presence of pre-trends in the

instrumental variable. In addition, and as seen in Table 1.5, I operationalize a pre-trends test

within the analysis panel, following suggestions made in Borusyak et al. (2018). This version

of the pre-trends test first runs the reduced form regression implied in Equation (1.3.1):

∆Establishmentsgkt = α + βRF [∆zgkt] + ΓXgkt + αgt + αkt + ugkt

and collects residuals ûgkt. Then, the pre-trends test is conducted through the regression

ûgkt = α + πPanel [∆zgk,t+10] + ηgkt

where rejection of the null hypothesis πPanel = 0 is once again evidence of deleterious

pre-trends. Table A.7 presents the p-values from these tests. ∆zEmigrants
gkt out-performs

∆zStandard
gkt across the two tests, and ∆zBirths

gkt performs well, as expected. Notably ∆zStandard
gkt

displays evidence of pre-trends that could confound analysis.

Table A.7: Pre-Trends Test p-values (Publicly Available Data, k = SIC Sector)

Standard Emigrants Births

Pure Pre-Trends Test p-value, 1980s (H0 : πPure
t=1990 = 0) 0.046 0.320 0.081

Pure Pre-Trends Test p-value, 1990s (H0 : πPure
t=2000 = 0) <0.001 0.053 0.135

Pure Pre-Trends Test p-value, 2000s (H0 : πPure
t=2010 = 0) 0.735 0.141 0.158

Panel Pre-Trends Test p-value (H0 : πPanel = 0) 0.098 0.241 0.710

Notes: Data obtained from IPUMS-USA and County Business Patterns. Standard errors that underly p-values in final row
have not yet been bootstrapped to account for two-step estimation.
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A.2.5 Correlated Shocks Across gk with Similar Shares (Adao et al., 2019)

Adao et al. (2019) find that regression residuals can be substantially correlated across

areas with similar “share” components in shift-share instruments, invalidating standard

inference procedures. Importing their concerns to the current study, any industry-country

level shocks that affect outcomes through the presence of base year shares πgo,1980, even if

not related to immigration itself, can generate correlated outcomes across areas with similar

πgo,1980.

A simple example that could apply here would be a sector-specific trade shock in a given

origin country. For example, if Syria experiences a positive trade shock that is independent of

Syrian emigration forces, this can affect firm presence in areas heavily populated by Syrians

in the U.S.—e.g., Detroit and Boston—through trade linkages, but it is unlikely to have any

affect on firm presence in areas like Atlanta or Miami with low Syrian populations. These

correlated shocks would not create a bias in β, but would require a modification of standard

errors beyond clustering at the commuting zone-industry level, since Detroit and Boston are

not even in the same region.

Adao et al. (2019) illustrate this issue by conducting placebo tests in which they replace

the “shift” component with white noise and assessing the resulting false rejection rate after

multiple simulations of the reduced form regression model. Here, the instrumental variable

takes the form

∆zgkt =
1

Eg,1980

∑
o

πgo,1980

(
ρok(−g)t × Pushot − ρok(−g),t−10 × Pusho,t−10

)
Thus, the analogous placebo exercise uses instruments of the form

zPlacebo
gkt

1

Eg,1980

∑
o

πgo,1980 × ωokt

where ωokt is a random draw from a normal distribution with variance of ρok(−g)t×Emigrantsot.

Each placebo instrument is then used in the reduced form estimating equation:

∆Establishmentsgkt
Workersgk,t−10

= α + βPlacebo
[
∆zPlacebo

gkt

]
+ ΓXgkt + αgt + αkt + ugkt

with errors clustered at the commuting zone-sector level, as in the main analysis.

Results from 1,000 placebo simulations are presented in Figure A.3. There is not strong

evidence of any bias in the standard error estimates when clustering at the commuting

zone-industry level. The false rejection rate at the 95% confidence level is 0.0592 (should

be 0.05) and the false rejection rate at the 99% confidence level is 0.0121 (should be
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0.01). While these results are reassuring from the standpoint of the significance levels and

confidence intervals presented in this chapter, future drafts will still incorporate standard

error estimators suggested by Adao et al. (2019) for completeness.

Figure A.3: Distribution of t-Statistics from Adao et al. (2019) Placebo
Simulations (Publicly Available Data, k = SIC Sector)

0
20

0
40

0
60

0
Fr

eq
ue

nc
y

-5 -4 -3 -2 -1 0 1 2 3 4 5
t

False Rejection Rate, 95% = .0592; False Rejection Rate, 99% = .0121

Notes: Data obtained from IPUMS-USA and County Business Patterns. It only applies to sectors
and commuting zones included in analysis presented below. Light red bars are false rejections at the
95% level. Darker red bars are false rejections at the 99% level.

A.2.6 Confounding Short and Long-Run Responses (Jaeger et al., 2018)

Jaeger et al. (2018) broach a concern that arises from the serial correlation in the “shift”

component of “shift-share” instrumentation. When this shift component is excessively

serially correlated, estimated parameters like β in in Equation (1.3.1) can confound short-

and long-run responses to immigrant inflows. Though this concern is particularly deleterious

when wages are the primary outcome variable of interest, it merits consideration in any

setting where prior shocks may affect current outcomes. Jaeger et al. (2018) propose a

data-demanding procedure to both test for and account for such concerns, which is to

include both the independent variable and its lag, and to instrument for both (i.e., here,

include ∆Igkt and ∆Igk,t−10 and use both ∆zEmigrants
gkt and ∆zEmigrants

gk,t−10 as instruments. Table
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Table A.8: Correlations in Instruments

Instrument:

Standard Emigrants Births
(1) (2) (3)

Correlation with:
Lagged Instrument 0.8595 0.7331 0.0469
Immigrant Inflows 0.5120 0.5088 0.4059
Lagged Immigrant Inflows 0.5472 0.4434 0.2033

Notes: Observations weighted by 1980 workforce size.

1.5 already demonstrates that ∆zEmigrants
gkt passes this rigorous test, and additionally provides

evidence that the effect of immigrant inflows on firm presence is largely confined to the

decade of the inflow, at least when comparing across industries within commuting zones.

Here, I present evidence that, within the specification laid out in Equation (1.3.1), this

robustness is a unique feature to instruments that have plausible exogenous components in

the “shift” component, instead of aggregate inflows. In line with Jaeger et al. (2018), I

hypothesize that the reason is that these exogenous components are less serially correlated

over time than aggregate immigrant inflows. Note once again that the results below in

Table A.9 are not identical to Table 1.5 when using ∆zEmigrants
gkt because the results here

use publicly-available data. While both ∆zEmigrants
gkt lose a substantial amount of first stage

relevance, they both retain enough to make reasonable inferential statements about estimated

β coefficients. On the other hand, the specification with ∆zStandard
gkt breaks down on multiple

fronts when employing the double instrumentation strategy.

Table A.8 presents some simple evidence for why this might be the case. As found in

Jaeger et al. (2018), the standard instrument ∆zStandard
gkt is more correlated with ∆Igk,t−10 than

it is with contemporaneous ∆Igkt, which it is supposed to instrument for. The same cannot

be said for either ∆zEmigrants
gkt or ∆zBirths

gkt . ∆zStandard
gkt also has the highest serial correlation

among the three instruments. Interestingly, the relatively small improvements ∆zEmigrants
gkt

make over ∆zStandard
gkt are enough to pass the double-instrumentation test presented in Table

A.9. As expected, ∆zBirths
gkt performs very well on these checks because of varying timing in

demographic transitions in sending countries. This is why it sees the smallest First Stage

F statistic drop-off in Table A.9 between single- and double-instrumentation specifications.

Similar evidence regarding ∆zStandard
gt is shown in Jaeger et al. (2018).
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Table A.9: Results Across Instruments, with Double Instrumentation (Publicly Available Data, k = SIC Sector)

Outcome: Change in Establishments per Initial Worker
(1) (2) (3) (4) (5) (6) (7) (8)

∆Igkt 0.0393*** 0.0427*** 0.0539*** 0.0677*** 0.0563*** 0.0721*** 0.0224** 0.1270
(0.0044) (0.0058) (0.0062) (0.0158) (0.0073) (0.0149) (0.0107) (0.1870)

∆Igk,t−10 -0.0130*** -0.0383* -0.0488** -0.1550
(0.0049) (0.0232) (0.0190) (0.2570)

Instrument None—OLS None—OLS Emigrants Emigrants Lagged Births Lagged Births Standard Standard
1st Stage F Statistic — — 63.42 9.431 24.76 11.98 20.67 0.10
Within R2 0.056 0.064 0.048 0.036 0.045 0.018 0.045 -0.532
αgt, αkt X X X X X X X X
Region × SIC Sector × Year FE X X X X X X X X
1980 Controls × Year FE X X X X X X X X
Observations 15,162 10,108 15,162 10,108 15,162 10,108 15,162 10,108

Notes: See Equation (1.3.1) for specification. All specifications include control variables for 1980 log employment, 1980 establishments per worker, 1980 self employment share,
1980 college share, and 1980 under-40 share in the commuting zone-sector interacted with year fixed effects. Observations weighted by 1980 workforce size. Standard errors
clustered at the commuting zone-sector level. * p < 0.1 ** p < 0.05 *** p < 0.01
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A.3 Firm Size Results in Levels

Figure A.4: The Effect of Immigration on Firm Presence—Size
Decomposition
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Notes: See Equation (1.3.1) for specification. Data accessed and analyzed in Michigan Census
Research Data Center.
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A.4 Helpful Relationships for Back of the Envelope Calculations

A.4.1 Census Self-Employed Workers versus Business Registrar-Based Establishment

Presence

This sections helps us interpret how much of the effect of immigration on firm presence

comes from immigrant entrepreneurship. First, Table A.10 below shows that the emigrants

instrument ∆zEmigrants
gkt brings in roughly 0.86 employees and 0.14 self-employed workers for

every immigrant it pushes into a given gk. Next, in Table A.11 I regress
∆Self-Employedgkt

Workersgk,t−10
(from

the ACS/Census) on
∆Establishmentsgkt

Workersgk,t−10
(from the County Business Patterns) using Equation

(1.3.1) to get a ballpark estimate of how many Longitudinal Database (LBD) establishments

correspond to each self-employed individual measured in the ACS/Census. Note that the

County Business Patterns and the LBD have the same source data: the Business Registrar.

Each self-employed worker is associated with roughly 0.16 CBP establishments. Thus,

a ball-park estimate of the entrepreneurship effect each immigrant has on establishment

presence is 0.14× 0.16 ≈ 0.022.

A.4.2 Census Worker Counts and Business Registrar-Based Employment

This section uses publicly available data from the Decennial Censuses and American

Community Surveys (ACS) to construct the independent variable
∆Workersgkt

Workersgk,t−10
and the County

Business Patterns to construct the numerator of the dependent variable
∆Employmentgkt
Workersgk,t−10

. The

result from estimating equation (1.3.1) using these variables, in Table A.12, is a ballpark

estimate of how many LBD jobs each Decennial Census worker corresponds to. In turn,

this helps us interpret the results in Section 1.3.5. Full absorption of immigrant workers, as

measured by the Decennial Census and ACS would correspond to at least 0.64 LBD jobs per

immigrant worker.
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Table A.10: Class Content of Immigrant Inflows (Publicly Available Data,
k = SIC Sector)

OLS Emigrants Instrument
(1) (2) (3) (4)

∆Igkt: Immigrant Inflows per Initial Worker 0.890*** 0.110*** 0.861*** 0.139***
(0.009) (0.009) (0.019) (0.019)

Class of Worker Employee Self-Employed Employee Self-Employed

Within R2 0.969 0.320 0.968 0.298
αgt, αkt X X X X
Region × SIC Sector × Year FE X X X X
1980 Controls × Year FE X X X X
Observations 15,162 15,162 15,162 15,162

Notes: See Equation (1.3.1) for specification. Data obtained from IPUMS-USA. All specifications include control variables
for 1980 log employment, 1980 establishments per worker, 1980 self employment share, 1980 college share, and 1980 under-40
share in the commuting zone-sector interacted with year fixed effects. Observations weighted by 1980 workforce size. Standard
errors clustered at the commuting zone-sector level. * p < 0.1 ** p < 0.05 *** p < 0.01

Table A.11: Census Self-Employed and CBP Estabs. (Publicly Available Data,
k = SIC Sector)

∆CBP Establishmentsgkt
Census Workersgk,t−10

∆Census Self-Employed Workersgkt
Census Workersgk,t−10

0.1615***

(0.0069)

Within R2 0.2039
αgt, αkt X
Region × SIC Sector × Year FE X
1980 Controls × Year FE X
Observations 15,162

Notes: Data obtained from IPUMS-USA and County Business Patterns. Observations weighted by 1980 workforce size.
Standard errors clustered at the commuting zone-sector level. * p < 0.1 ** p < 0.05 *** p < 0.01
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Table A.12: Census Workers and CBP Employment (Publicly Available Data,
k = SIC Sector)

∆CBP Employmentgkt
Census Workersgk,t−10

∆Census Workersgkt
Census Workersgk,t−10

0.6431***

(0.0222)

Within R2 0.2455
αgt, αkt X
Region × SIC Sector × Year FE X
1980 Controls × Year FE X
Observations 15,162

Notes: Data obtained from IPUMS-USA and County Business Patterns. Observations weighted by 1980 workforce size.
Standard errors clustered at the commuting zone-sector level. * p < 0.1 ** p < 0.05 *** p < 0.01
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A.5 Model Additions and Extensions

A.5.1 Comparing the Immigrant Surplus in a Representative Firm Model to a

Model with Firm Heterogeneity

As a starting point, consider the following, constant elasticity of substitution (CES),

model of production for a representative firm2 in a local economy:

Q = z̄
(
aI

σI−1

σI + N̄
σI−1

σI

) σI
σI−1

(A.1)

where I represents immigrant labor, N̄ represents a fixed stock of native labor, z̄ is total

factor productivity, and σI is the elasticity of substitution between immigrant and native

employees. While a more realistic version of the production function would start with nests

for education and eventually work its way down to nativity (see, e.g., Ottaviano and Peri,

2008), this model delivers much of the intuition for the rest of this section in a simple way.

In this context, σI can be thought of as a reduced form parameter that aggregates all the

different reasons why an average immigrant worker may be different than an average native

worker (including average educational attainment—see Figure 1.3 and Table 1.2).

Let native wages, wN , be the numeraire. There is only one good, so consumer welfare

is simply a function of its price and wages. When I increases in this model, the economy

expands automatically (we can think of this as long run capital adjustment with a fixed

rental rate in the background), but what matters to native workers is how it affects the price

of the good. Denoting immigrant wages as wI , P as the price of the good, taking first order

conditions, and rearranging yields the following expression:

WI ≡ −
d log (P )

dI
= −d log(c)

dI
(A.2)

where

c ≡ (aσIw1−σI
I + 1)

1
1−σI

are labor costs to the firm. WI is proportional to the immigrant surplus—the surplus accruing

to the native workers as a result of immigrant inflows. Here, it is directly tied to the labor

cost savings that occur as immigrant wages decline in response to I rising. Using similar,

CES production function models, both Borjas (2014) and Ottaviano and Peri (2008) find

that WI is small and positive.

Sections 1.3 and 1.4 will show that immigrants have large and heterogeneous effects

on extensive margin decisions by firms. This suggests accounting for these effects in our

2Or, the aggregation of many, small, identical firms.
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theoretical analysis of immigration. This point has been made explicitly by di Giovanni

et al. (2014), who feature gains from variety in their global welfare analysis of immigration.

Melitz (2003) offers a simple way to incorporate extensive margin firm responses in long-run,

steady state, general equilibrium analysis. The key features of this model are 1) consumer

taste for variety, 2) a non-degenerate total factor productivity distribution across firms, and

3) a fixed cost of production. Combined, these features generate monopolistic competition

that results in a non-trivial, but finite, firm mass, with heterogeneity across each firm’s total

factor productivity level.

We can gain simple insights into how our analysis of immigration may change when we

account for these features by placing the production function from (A.1) into the closed

economy Melitz (2003) framework, where each firm is indexed by its own total factor

productivity, z:

q(z) = zL(z)

L(z) =
[
a (I(z))

σI−1

σI + (N(z))
σI−1

σI

] σI
σI−1

Consumers have elasticity of substitution µ across firms, leading to a conventional pricing

rule for each firm:

p(z) =

(
µ

µ− 1

)( c
z

)
(A.3)

where wI is the immigrant wage and we once again set native wages wN to be the numeraire.

The overall price index is given by

P 1−µ = ne

∫ ∞
z∗

p(z)1−µg(z)dz

where ne is the entrepreneur mass and z∗ is the cutoff productivity, below which these

entrepreneurs suffer losses and therefore exit in the long run. g(z) is the distribution of

productivity across firms in the local economy. I follow convention in assuming it is Pareto:

g(z) ≡ φmφz−φ−1

The mass of firms in the local economy is simply F ≡ ne
∫∞
z∗
g(z)dz = nem

φ (z∗)−φ.
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With these simple ingredients in place, we can derive the following expression:

WI ≡ −
d log(c)

dI︸ ︷︷ ︸
Same as above

+

(
1

µ− 1

)
d log(F )

dI︸ ︷︷ ︸
Increased variety through more firms

+
d log(z∗)

dI︸ ︷︷ ︸
Productivity pass-through to prices

(A.4)

In this setup, the immigration surplus has two additional terms compared to the representative

firm model, in Equation (A.2). The first represents welfare gains in the form of increased

consumer variety. The second represents welfare gains that arise from an increase in the

productivity bar that entrepreneurs must cross in order to operate in the market. As seen

in Equation (A.3), firms with higher z charge lower prices to consumers in order to compete

away market share from their competitors. Thu\phi-(\mu-1)s, when z∗ rises and lower

productivity firms exit the market, consumers benefit through lower prices. The signs of

each of these additional reduced form parameters are explored in detail in the empirical

analyses of this chapter. Section 1.3 finds that increased exposure to immigrant workers

generates an increase in firm presence in local labor markets, while Section 1.4 finds that

low productivity firms are culled from the market—in the language of this model, the latter

indicates an increase in z∗.

A.5.2 Derivation of Labor Market Equilibrium

In this section, I derive labor market equilibrium for low-education immigrant labor.

An analogous derivation gives us labor market equilibrium for low-education native labor.

Skilled labor’s price is set to be the numeraire, as described in the text. Firm’s maximize

the following expression for profits:

πj(z) = pj(z)qj(z)−
∑
i

∑
e

wieie − cjκfj

where i ∈ {I,N} and e ∈ {U, S}. They take their demand curves, qj(z) = pj(z)−µP µ−1Y

and their production functions qj(z) = zLj(z) as given. Thus, first order conditions yield:

wIU = cjL
1/σEaU

1/σI−1/σE
j bUjI

−1/σI
Uj (A.5)

wNU = cjL
1/σEaU

1/σI−1/σE
j N

−1/σI
Uj

So, we have the familiar relative wage expression among low-education immigrant and native

workers:
wIU
wNU

=

(
IUj
NUj

)−1/σI

bUj
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Solving for NUj and plugging into the low-education aggregate Uj then yields the following

expression for Uj in terms of IUj:

Uj = IUjb
−σI
Uj w

σI
IUc
−σI
Uj

Plugging this expression back into (A.5) yields the following expression for IUj in terms of

wages and Lj:

IUj = w−σIIU bσIUjc
σE
j cσI−σEUj aσELj ≡ Iunit

Uj Lj

Firms use Lj to produce output and to cover their fixed costs. Thus, integrating across firms

yields the following expression that equates low-education immigrant labor supply, IU , with

labor demand:

IU = ne

[∫ z∗1

z∗0

Iunit
U0

(
q∗0(z)

z
+ κf0

)
g(z)dz +

∫ ∞
z∗1

Iunit
U1

(
q∗1(z)

z
+ κf1

)
g(z)dz

]

where q∗0(z) and q∗1(z) are optimal output choices—plugging in the pricing rule pj(z) =(
µ
µ−1

) ( cj
z

)
into the demand expression. After some algebra, the final expression for IU

becomes:

IU = aσEw−σIIU c−1
0 Y

{
bσIU0c

σE
0 cσI−σEU0

[(
µ

µ− 1

)−1

(θ)−1 (1−R−(φ−(µ−1))
z

)
+

(
φ− (µ− 1)

φµ

)(
1−R−φz

)]
+

bσIU1c
σE
1 cσI−σEU1

(
c1

c0

)−µ [(
µ

µ− 1

)−1

(θ)−1 (R−(φ−(µ−1))
z

)
+ τ

(
(φ− (µ− 1))

φµ

)(
R−φz

)]}
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APPENDIX B

Appendix to Chapter 2

B.1 Decomposition of Recession-Induced Losses

This appendix explains how we decompose recession-induced wage losses into three

different components.

Start with the AKM/CHK decomposition (Equation (2.3.1)) in period t

log(wageit) = αi + ψj1{i works at j in t}+ x′itβ + rit.

Taking averages on both sides of Equation (2.3.1) in period t:

E [log(wageit)] = E [αi] + E [ψj] + E [x′itβ] . (B.1)

Define the average wage in period t if the same group of individuals were to experience a 1

point increase in the unemployment rate at entry as

E
[
log(wageRit)

]
= E

[
αRi
]

+ E
[
ψRj
]

+ E [x′itβ] . (B.2)

In Equation (B.2), αRi and ψRj represent estimated person and establishment fixed effects

estimated for the same underlying individuals if they entered the labor market with a 1 point

higher unemployment rate. Notably, person fixed effects in the AKM/CHK framework are

subject to scarring and will be lower for otherwise identical individuals who, for exogenous

reasons, have lower lifetime earnings.
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Now, we can write E [log(wageit)]− E
[
log(wageRit)

]
as:

βWage
t︸ ︷︷ ︸

% wage differential

= E [αi]− E
[
αRi
]︸ ︷︷ ︸

% due to non-employer factors

+ E [ψj]− E
[
ψRj
]︸ ︷︷ ︸

% due to employer-related factors

. (B.3)

Next, define

βNon-employer
t = E [αi]− E

[
αRi
]
, (B.4)

βEmployer
t = E [ψj]− E

[
ψRj
]
, (B.5)

as the non-employer-specific and employer-specific components of recession-induced wage

differentials. Estimating our main specification (Equation (2.4.1)) using CHK establishment

fixed effects (ψj) on the left-hand-side yields
{
β̂Employer

0 , . . . , β̂Employer
10

}
.

Having defined recession-induced employer-specific losses, we now partition these losses

into rents and compensating differentials using the decomposition in Sorkin (2018). Equation

(2.3.3) splits establishment fixed effects into rents, which are explained by value, and compensation

differentials which are orthogonal to value. Taking expectations on both sides, we can write:

E [ψj] = βE [Vj]− E [aj] . (B.6)

Establishment fixed effects for otherwise identical individuals who enter the labor market

when unemployment rates are 1 point higher can be written as

E
[
ψRj
]

= βE
[
V R
j

]
− E

[
aRj
]
. (B.7)

Subtracting (B.7) from (B.6), the employer-specific pay reduction is

βEmployer
t = β

(
E [Vj]− E

[
V R
j

])︸ ︷︷ ︸
% due to rents

−
(
E [aj]− E

[
aRj
])︸ ︷︷ ︸

% due to amenities

. (B.8)

Next, define

βRent
t = β

(
E [Vj]− E

[
V R
j

])
, (B.9)

βAmenity
t = E [aj]− E

[
aRj
]
, (B.10)
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Combining Equations (B.3) and (B.8) we can write

βWage
t = βNon-employer

t + βEmployer
t

= βNon-employer
t +

(
βRent
t − βAmenity

t

)
(B.11)

Because βWage
t ,βRent

t , and βAmenity
t are estimated for t ∈ {0, . . . , 10}, we can recover βNon-employer

t

using Equation (B.11).

Finally, define the present value of wages for the first decade of labor market experience

as

PV = w̄0 + w̄1(1 + r)−1 + · · ·+ w̄10(1 + r)−10, (B.12)

where w̄t represents the average daily wage earned in year t. The PDV of wages for workers

who face a 1 point increase in the unemployment rate at entry is

PV R = w̄0(1− βWage
0 ) + w̄1(1− βWage

1 )(1 + r)−1 + · · ·+ w̄10(1− βWage
10 )(1 + r)−10 (B.13)

We use our estimates
{
β̂Wage

0 , . . . , β̂Wage
10

}
to quantify the loss in the present value of wages

attributable to a 1 point change in the unemployment rate. We then scale the resulting

estimate by a one standard deviation increase in the unemployment rate which reflects a

typical recession. Similar calculations with
{
β̂Employer

0 , . . . , β̂Employer
10

}
,
{
β̂Non-employer

0 , . . . , β̂Non-employer
10

}
,{

β̂Rent
0 , . . . , β̂Rent

10

}
,
{
β̂Amenity

0 , . . . , β̂Amenity
10

}
yield estimates of the loss in the PV of wages

attributable to employer-specific factors, non-employer specific factors, rents, and amenities.
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B.2 Accounting for Measurement Error in Establishment Values

When estimating equation (2.3.3), we find that almost 96 percent of the variation in

establishment fixed effects is in the residual, which is substantially larger than the 72 percent

estimate obtained by Sorkin using U.S. data. The key reason for this difference is that our

establishment value estimates are derived from a 2 percent sample of workers — and therefore

more likely to be affected by measurement error — while Sorkin’s estimates are obtained

using the full population of workers in several U.S. states.

To evaluate the quantitative implications of measurement error in our estimates, we

randomly partition individuals in the SIAB into two groups and re-estimate the establishment

values using moves within each partition separately. For each establishment, this exercise

yields two different value estimates, each of which is based on an independent sample of

worker moves. Denote the error-free value of establishment j by V ∗j ; the split sample

estimates V 1
j and V 2

j are given by

V 1
j = V ∗j + u1

j (B.1)

V 2
j = V ∗j + u2

j . (B.2)

Because independent samples of worker moves are used to estimate V 1
j and V 2

j , we assume

that

E
[
u1
ju

2
j

]
= 0. (B.3)

We then re-estimate equation (2.3.3) using an instrumental variables (IV) approach by

employing V 1
j as an instrument for V 2

j and vice-versa. Assuming that each value estimate

exhibits classical measurement error (i.e. that E
[
V ∗j u

1
j

]
= E

[
V ∗j u

2
j

]
= 0), one would expect

OLS to yield estimates biased toward zero relative to IV.

Table B.1 presents estimates of β based on the pooled set of workers, as well as estimates

based on sample of establishments for which we estimate two sets of value estimates based

on independent sets of worker moves. Using OLS to estimate β on the pooled sample yields

a coefficient of 0.212. Estimating β using OLS in the smaller sample of establishments for

which we obtain two independent estimates of value, yields coefficients of 0.239 and 0.220

which are similar in magnitude to the pooled sample estimate. In contrast, the IV-based

slope estimates are approximately two times larger than those obtained using OLS, a result

which is consistent with classical measurement error induced attenuation.1

1The two IV-based estimates reverse the order of the instrumental and the instrumented variable which
is arbitrary. Randomly partitioning the pooled sample reduces the number of workers available to estimate
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We also note that our interpretation of Figure 2.6 does not change in the presence of

measurement error. While the average relationship plotted in the dashed line would tilt

upwards when measurement error is corrected for, so would the implied career paths, by

roughly the same amount. This is the visual manifestation of the logic that recessions do

not differentially send workers to firms with more or less measurement error in their estimated

values.

Table B.1: Classical Measurement Error Induced Attenuation
in β

Pooled Sample Split Sample

OLS OLS(1) OLS(2) IV(1) IV(2)

β̂ 0.212 0.239 0.220 0.397 0.432

(0.002) (0.005) (0.005) (0.009) (0.009)

R2 0.04 0.06 0.05 0.03 0.004

N 171,640 59,762 59,762 59,762 59,762

Notes: All models include gender fixed effects. OLS(1) and OLS(2) use the

value estimates obtained using each sample split. IV(1) and IV(2) reverse

the order of the instrumental and instrumented variable which is arbitrary.

values for any given establishment, which disproportionately eliminates smaller establishments since they
may no longer have sufficient flows to be in the strongly connected set. The slightly larger OLS-based
estimates in the split sample versus the pooled sample are a by-product of this selectivity.
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B.3 Additional Analyses

B.3.1 Using Actual Training Duration

This appendix shows results obtained by re-estimating Equation (2.4.1) using actual

rather than predicted year of entry. Actual year of entry is defined by the last day of

vocational training.
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Figure B.1: The Effect of Entry Conditions (Uosc) on Early Career Outcomes Using Actual Year of Entry
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Notes: Sample size for each specification is 125,363. 95% confidence intervals represented by dashed lines. Uosc is the unemployment rate in a given individual’s training
occupation and training state in the individual’s year of entry. Controls included are potential experience fixed effects, year fixed effects, predicted year of entry fixed effects,
training occupation fixed effects, state of training fixed effects, median wage paid by training firm during last year of training, age at start of training fixed effects, a German
indicator variable, and a female indicator variable.
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Figure B.2: The Effect of Entry Conditions (Uosc) on Early Career Mobility Using Actual Year of Entry
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Notes: Sample size for each specification is 125,363. 95% confidence intervals represented by dashed lines. Uosc is the unemployment rate in a given individual’s training
occupation and training state in the individual’s year of entry. Controls included are potential experience fixed effects, year fixed effects, predicted year of entry fixed effects,
training occupation fixed effects, state of training fixed effects, median wage paid by training firm during last year of training, age at start of training fixed effects, a German
indicator variable, and a female indicator variable.
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APPENDIX C

Appendix to Chapter 3

C.1 Theoretical Framework

We follow in the tradition of Sjaastad (1962) by modeling migrants as agents who compare

the present discounted value of net income streams in destination areas and origin areas.

A substantial subsequent literature has built on this starting point with the primary aim

of examining migrant selectivity.1 A subset of the literature explicitly takes account of

migration fixed costs.2 McKenzie and Rapoport (2010) adapt the notation of Chiquiar and

Hanson (2005) to consider migration fixed costs that decline in the size of the migrant network

at destination, and we follow their formulation. The literature tends to focus on implications

of the theory for migrant selectivity (the extent to which the migration decision depends on

relative returns to skill across migrant origin and destination). Instead, we focus on a key

prediction of this model that has been under-emphasized: that the migration response to

changes in the returns to migration will depend on the size of migration fixed costs. Because

it is not our focus, we suppress consideration of migrant selectivity.

1Key previous works include Borjas (1987) seminal adaptation of the Roy (1951) model, as well as
Greenwood (1985), Taylor (1987), Borjas (1991), Stark (1991), Chiswick (1999), Beine et al. (2001), Feliciano
(2005), Chiquiar and Hanson (2005), Orrenius and Zavodny (2005), Clark et al. (2007), Ibarraran and
Lubotsky (2007), Beine et al. (2008), Dolfin and Genicot (2010), McKenzie and Rapoport (2010), Akee
(2010), Abramitzky et al. (2012), Ortega and Peri (2013), Bertoli et al. (2013), and Bertoli et al. (2016).

2Key works in the literature that explicitly consider the fixed cost of migration to be a central aspect of the
migration decision include Borjas (1987), Carrington et al. (1996), Chiquiar and Hanson (2005), Ibarraran
and Lubotsky (2007), Gathmann (2008), McKenzie and Rapoport (2010), Grogger and Hanson (2011),
Bertoli et al. (2013), Belot and Hatton (2012), Bertoli and Rapoport (2015), Kennan and Walker (2011),
Chen et al. (2019), and Boustan et al. (2017). Empirical studies on the association between pre-existing
migrant stocks and subsequent migration flows include Winters et al. (2001), Clark et al. (2007), Pedersen
et al. (2008), Zavodny (1997), Hanson and McIntosh (2012), McKenzie and Rapoport (2010), Collins (1997),
Collins and Wanamaker (2015), and Orrenius and Zavodny (2005).
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C.1.0.1 Basic setup

Consider an individual in their “home” (non-U.S.) country deciding whether or not to

migrate to the “foreign” country (the U.S.). Let wh be the present value of the flow of the

individual’s future income in the home country, and wf be the corresponding value for the

foreign country. To simplify matters, we consider a one-time decision to migrate permanently

to the foreign country. Migration involves a fixed cost C, which we presume is a function of

the migrant’s network n. Let the fixed cost of migration be lower when an individual has a

larger migrant network, meaning C ′ < 0. Express migration costs in “time-equivalent” units

(as a fraction of the present value of income flows in the foreign country):

π (n) =
C (n)

wf
.

Assuming π is small, individuals migrate if:

ln (wf )− π (n) > ln (wh) .

Because migration costs C (n) decrease with migrant network size, so do time-equivalent

migration costs π (n). Express the natural log of time-equivalent migration costs as ln (π) =

µ− γn, where γ > 0. Now, the condition for migration can be written as:

ln (wf )− eµ−γn > ln (wh) . (C.1)

In this set-up, we can represent the individual’s choice graphically. In Figure C.1, the

size of the migrant network n is on the horizontal axis, while the vertical axis is monetary

value in logs. The right hand side of inequality (C.1) is the solid line at ln (w0
h) , which is

horizontal because home-country income does not depend on network size. The left hand

side of inequality (C.1) is represented by the solid upward-sloping curve: because migration

costs decline in n, the net present value of the income stream in the foreign country rises in

n. Individuals who choose to migrate are those with network size above the threshold n0,

whose migration fixed costs are low enough to make migration worthwhile.

Now consider the impact of a negative shock to home economic conditions, so that the

present value of the home income stream declines from w0
h to w1

h. (In the empirics, we

will interpret hurricanes as having this effect.) This is represented by a downward shift of

the horizontal line representing the value of not migrating to the horizontal dashed line at

ln (w1
h).
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C.1.0.2 Negative home shock does not affect migration costs

If the negative home-country shock has no effect on migration costs, the analysis is

straightforward. This leads a new set of individuals to choose to migrate, since now the

threshold network size for migration has fallen from n0 to n1 in Figure C.1. Within the

population of those who had not migrated prior to the negative shock, those migrating will

be those with differentially higher network size (in the range from n1 to n0). Those with

lower network size (below n1) will continue to remain in the home country.

C.1.0.3 Negative home shock affects migration costs

The hurricane’s effect becomes ambiguous if the negative shock to the home economy

does affect migration costs. Imagine simply that the negative shock, a hurricane, raises the

natural log of time-equivalent migration costs by H, so that ln (π) = µ − γn + H. We can

rewrite this as π = eµ−γn+H , so the condition determining migration becomes:

ln (wf )− eµ−γn+H > ln (wh) (C.2)

It now becomes possible for a negative shock to either increase or decrease migration. These

possibilities are also represented in Figure C.1. A negative shock now also leads the curved

line (the left hand side of inequality C.2) to shift downward. If the increase in the log of

time-equivalent migration costs is low (say Hlo), the downward shift is small, illustrated by

the shift to the dashed curve labeled ln (wf )−eµ−γn+Hlo . The net effect is still for migration

to increase: the threshold network size for migration falls from n0 to n2. On the other hand,

if the shift is large enough (such as to the dotted curve in Figure C.1, representing a larger

increase in the log of time-equivalent migration costs Hhi), then, migration can actually

decline—the threshold for migration actually rises from n0 to n3.

C.1.0.4 Migrant networks provide insurance

Now consider the possibility that migrants can provide insurance in the form of remittances

in response to negative shocks such as hurricanes.

In the context of our theoretical framework, we can represent the insurance provided

by the migrant network as replacing a fraction of home-area income losses caused by a

negative shock. The income loss due to a negative shock is the difference between pre- and

post-shock home wages, ln (w0
h)−ln (w1

h). Let α (n) be the fraction of this loss that is replaced

by migrant remittances. Let α′ > 0, to represent that the extent of insurance (the fraction

of the loss replaced) is larger when the migrant network is larger (as a share of home country
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population). This is sensible, because when migrant networks are larger, more individuals in

the home country should have a migrant social network member, and the financial burden

of supporting disaster-affected home-country residents can be spread across more migrants.

After remittances from migrants in the wake of a negative shock, the relevant measure of

well being in the home country is log wages plus remittances, ln (w1
h)+α (n) [ln (w0

h)− ln (w1
h)].

Log wages plus remittances are presented graphically in Figure C.2 as the upward-sloping

heavy dashed line between the horizonal lines at ln (w1
h) and ln (w0

h).
3 It is now the intersection

of this line with the foreign net wage function that determines the threshold network size

above which people in the home country choose to migrate, in this case n4. New migration

occurs for individuals with migrant networks in the range of n4 to n0.

This range is smaller than the range of new migrants if their migrant networks did

not send remittances in response to negative shocks (that range is n1 to n0). Therefore,

the possibility of migrants sending shock-coping remittances attenuates the effect of shocks

on new migration. The attenuation can be arbitrarily large. As α (n) approaches 1, new

migration in response to home-country shocks goes to zero.

C.1.0.5 In sum

Theoretical predictions are ambiguous: negative shocks to economic conditions in the

home country could increase migration by increasing the return to migration. It is also

possible for negative home-country shocks to reduce migration, if such shocks themselves

increase the fixed costs of migration, or reduce ability to pay migration fixed costs. Migrants’

ability to send remittances in response to negative shocks introduces further ambiguity,

potentially attenuating further any positive migration response to hurricanes.

3For the purpose of this figure, we have specified α (n) as a logistic function bounded between ln
(
w1
h

)
and ln

(
w0
h

)
.
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Figure C.1: Negative Shocks and Migration
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Figure C.2: Negative Shocks and Migration, When Migrants Provide Insurance
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C.1.1 Construction of the Hurricane Index

The damage caused by hurricanes depends on the intensity of the hurricane (in particular,

wind speed). In addition, hurricanes should cause more damage if they strike in more

populated areas. An index Hjt for country j in year t that has these features is as follows:

Hjt =

∑
i

∑
s xisjt

Njt

where xisjt is a measure of person i’s “affectedness” by hurricane s in country j, year t.

Affectedness is summed over hurricanes and over individuals, and then divided by total

population Njt. We define a person’s hurricane “affectedness” in a particular storm is a

nonlinear function of the wind speed to which the individual was exposed.4 There is no

data source for individual-level hurricane affectedness (xisjt), and so we approximate the

numerator in the hurricane index Hjt by estimating wind speeds at evenly-spaced points on

a country’s land area, and combining this with population estimates at these points.

The first step in this process is the creation of a 0.25 by 0.25 degree grid of latitude and

longitude points that fall inside large countries and 2.5 minute by 2.5 minute latitude and

longitude points that fall inside small countries.5 Then, we predict the wind speed of each

hurricane segment (a connected set of points from the best tracks) using a model from Dilley

et al. (2005):

pwgjst = 1{wgjst > 33}

[
33 + (wgjst − 33)

(
1− dgjst

pradgjst

)]
(C.3)

Here, pwgjst is the predicted wind speed (in knots) felt at grid point g in country j from

storm s, wgjst is the actual wind speed recorded at the beginning of the storm segment

from the best track, dgjst is the distance between the grid point and the storm segment, and

pradgjst is the predicted radius of the hurricane segment, where we only calculate pwgjst for

grid points for which dgjst < pradgjst.
6

As an example of a pwgjst calculation, consider Figure C.3, which shows both the best

track for Hurricane Mitch and its radius of hurricane-force winds. The black grid points

are points in Honduras that did not experience hurricane-force winds, while the yellow grid

4The pressure exerted by winds is commonly modeled in climatology as rising in the square of wind
speed (Emanuel, 2005).

5“Large” countries are defined as those that have at least two 0.25 by 0.25 degree grid points, and “small”
countries are defined as the converse of this large set of countries. Country delineations are provided by the
maptools package in R.

6pradgjst is calculated based on a model of wind-speed decay given distance from the hurricane, as in
Dilley et al. (2005).
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points did experience such winds. Consider the grid point highlighted in blue, g∗. We

first calculate the shortest distance between this point and the nearest storm segment from

the Hurricane Mitch best track, represented by the blue line from the point to the storm

best track. This distance is dg∗,Honduras,Mitch,1998. Then, since this distance is less than the

predicted radius (pradg∗,Honduras,Mitch,1998) of the closest storm segment—represented by the

red width surrounding the storm best track—we proceed to calculating pwg∗,Honduras,Mitch,1998

using Equation (C.3), where wind speed also comes from this nearest storm segment.

The effect of hurricane s at grid point g in country j during year t is then:

xgjst = 1{pwgjst > 33}

[
(pwgjst − 33)2

(wmax − 33)2

]

where wmax is the maximum wind speed observed in the dataset (166.65 knots). Finally,

to aggregate this information up to a population-weighted, country-year level, we utilize

the 1990 gridded population data for each 0.25 degree and 2.5 minute grid point from

Columbia University’s Socioeconomic Data and Applications Center (SEDAC).7 This allows

us to create the final hurricane index Hjt for country j in year t:

Hjt =

∑
g

∑
s xgsjtNg,1990∑
gNg,1990

where Ng,1990 is the grid point’s population 1990 given from SEDAC. That is, we sum up a

measure of how affected each country grid point is by each storm across storms to get each

grid point’s affectedness, then take a weighted sum of these grid points (by population), to

obtain the intensity-weighted hurricane events per capita measure.

Three additional issues merit mention with respect to the construction if Hjt. First, 1990

is the earliest date for which we have access to worldwide gridded population from SEDAC.

Since our sample period is 1980 to 2004, there is the potential for our estimate to reflect

reverse causality created by hurricane-induced migration from grid points affected in the

1980s. In this case, within-country areas most likely to be hit by hurricanes would receive

weights that are too low, creating values of Hjt that are also too low. This reverse causality

would generate a downward bias on our estimated effect of hurricanes on emigration, making

our estimates conservative. Second, because of a lack of reliable wind speed information in

the best tracks, we only have Hjt for countries affected by North Indian basin hurricanes

starting in 1981 and South Indian and South Pacific basin hurricanes starting in 1983. We

therefore drop any observations from countries affected by North Indian hurricanes prior to

7http://sedac.ciesin.columbia.edu/data/collection/gpw-v3
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1981 and any countries affected by southern hemisphere hurricanes prior to 1983. Finally,

the hurricane season in the southern hemisphere starts in November. For ease of comparison

within year across countries, we include hurricanes from November and December in the

following year’s hurricane index for countries in the southern hemisphere.
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Figure C.3: Hurricane Mitch over Honduras
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Source: Unisys Weather data (http://weather.unisys.com/hurricane/) processed in R.
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C.2 Census Bureau: 1980 Stocks and 1980-2004 Inflows

In order to estimate migration inflows, we construct retrospective estimates using the 2000

Census and 2005 through 2015 ACS 1-year files. This methodology utilizes the combination

of questions that asks survey respondents where they were born and what year they came to

live in the United States. Aggregating person weights by country of birth and year of entry

within a given survey thus generates a set of initial country-year migration inflow estimates

for all years before the survey. That is,

M survey
jt =

∑
i∈survey

[
1{Person i is from country j}×1{Person i entered in year t}×pwgtsurvey

i

]
where i is an individual respondent to a given survey (2000 Census, 2005 ACS, 2006 ACS, ...,

2015 ACS) and pwgti is that individual’s person weight assigned by that survey. Given the

sheer sample size of the 2000 Census, we use these aggregated estimates to infer migration

inflows for the years 1980 through 1999. In order to extend our annual sample to 2004 while

retaining relatively low levels of noise in our estimates, we average the estimates generated

by the 11 ACS surveys from 2005 through 2015 for the years 2000 to 2004:

Mjt =

{
M2000 Census

jt if t ≤ 1999
1
11

∑2015
r=2005M

ACS year r
jt if 2000 ≤ t ≤ 2004

Given this methodology, the key advantage of access to confidential data comes in estimating

migration inflows from small countries. Use of smaller Census samples available publicly

can generate accurate estimates of migrant inflows for large countries with many immigrant

survey respondents that appear consistent across surveys. However, small countries, many of

which are heavily affected by hurricanes, often either contain relatively few observations per

year of entry or are aggregated into categories like “Other Caribbean” in publicly available

data. This would generate substantial imprecision in the annual migration estimates. The

1-in-6 count provided by the confidential 2000 Census and aggregation of multiple ACS

surveys alleviates this issue.

Despite this novel use of confidential data, a few concerns merit further consideration

with this methodology. First, by using the 2000 Census and to look at inflows as far back

as 1980, we are focusing on permanent migrants to the U.S.—those who remain living in

the U.S. (or connected enough through repeated return trips) to be enumerated by the

Census Bureau up to 20 years after arrival. As estimates from the 2000 Census roll forward

from the starting point of 1980, underestimation due to death and re-migration give way

to overestimation of permanent migrants due to the presence of more temporary migrants
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closer to the year 2000. Nonetheless, Passel and Suro (2005) find that this methodology

tracks other migration estimates well for large countries in publicly available data, and thus

we find its broader use with confidential data to be appropriate. Furthermore, as described

in Section 3.3.3.2, we complement these estimates with data from the DHS that counts legal

permanent resident entries at the time of entry in order to ensure that our results are robust

to these concerns. In this sense, the results from the Census/ACS panel can be viewed as

incorporating undocumented and temporary migrant response to hurricanes.

Second, as elucidated by Redstone and Massey (2004), in the presence of circular migration,

the interpretation of year of entry provided by survey respondents in the Census is not

clear. Specifically, in cases where immigrants reported multiple entries and exits in the New

Immigrant Survey, Redstone and Massey (2004) find that 45 percent of immigrants report

a “year that they came to live” that was not their first entry, and 54 percent of immigrants

report a “year that they came to live” that was not their final entry.8 The answers to this

Census question appear to largely be a combination (across respondents) of first year of

entry and the mental decision to make the United States their permanent home. Given the

nature of our empirical strategy, we understand this as an issue of interpretation rather than

bias. Any effect found on migrant inflows using the Census data should be interpreted as

an effect on the decision to stay permanently in the U.S.—including both literal, one-time

moves and the decision to turn repeated circular migration into permanent residency in the

United States. Furthermore, remaining, pure noise created by inaccuracy in recalling year

of entry causes larger standard errors in our coefficient estimates, making our estimates of

precision conservative.We also use access to the confidential, full version of the 1980 Census

Long Form responses to construct a measure of immigrant stocks from each country in 1980,

the base year of our analysis:

Sj,1980 =
∑

i∈1980 Census

[
1{Person i is from country j} × pwgt1980 Census

i

]
These estimates have the advantage of producing more accurate stocks for small countries

due to the large, 1-in-5 count sample size of the confidential data and do not suffer from

either of the concerns of year-by-year migration estimates mentioned above.

8The wording “year you came to live in the U.S.” used by Redstone and Massey (2004) exactly mimics
the Census wording in order to make this comparison.
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C.3 Income and Damages in Sending Countries

We establish here that the hurricane index captures events that have tangible, negative

consequences in sending countries. We estimate the long-run response of incomes in sending

countries to hurricane events, as in Hsiang and Jina (2014). We obtain year-by-year real

GDP per capita estimates from the World Bank’s World Development Indicators (WDI),

enabling us to estimate the long-run effect of hurricanes on income.9 Following Hsiang and

Jina (2014), our regression specification is:

gjt = α +
10∑

6̀=−1,`=−5

θ`Hj,t−` + ηj + δt + φjt+ εjt (C.1)

gjt = α +
10∑

6̀=−1,`=−5

α`Hj,t−` +
10∑

6̀=−1,`=−5

αstock` (Hj,t−` × sj,1980) + ηj + δt + φjt+ εjt (C.2)

gjt = log(Real GDP per capita)jt − log(Real GDP per capita)j,t−1

We add the α` coefficients from Equation (C.1) starting at ` =0 to unravel the impulse

response of log real GDP per capita to the hurricane index (calibrated to σH = 0.02).

The results are shown in Figure C.4, where we see a robust, long-run effect. Ten years

later, a one standard deviation increase in the hurricane index leads to 5 to 10 percent lower

in GDP per capita. This kind of permanent economic impact buttresses the notion that

hurricanes can cause the kind of permanent migration we observe. We also estimate Equation

(C.2) in order to determine whether the interaction between hurricanes in sending countries

and immigrant stocks in the United States alters the impact of hurricanes on sending country

economic activity. Figure C.5 shows that the impulse responses of GDP per capita implied

by αstock` coefficients does not contain any evidence of such an interaction.10 Meanwhile,

constructing the impulse response based on the α` coefficients from Equation (C.2) yields

similar results to doing so without the stock interaction effect, as in Equation (C.1). This

strengthens our interpretation of sj,1980 as a pure pull factor for potential migrants. That is,

the stock operates as a network effect, facilitating migration as a response to hurricanes, but

does not appear to alleviate damages at home to the point of dampening the push factor

caused by hurricane-induced income losses.

Note that, for completeness, we can construct similar graphs for our main outcome of

interest, migration mjt. Figures C.6 and C.7 thus show the results of estimating Equations

(C.1) and (C.2) with mjt as the outcome. Because our primary outcome of interest is

9See Table C.2 for summary statistics.
10The impulse responses for the stock interaction effect are multiplied by the standard deviation of sj,1980,

0.03 to retain consistency in units.
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migration flows, we do not cumulate responses in this case, and instead directly plot the

resulting coefficients. As seen from the estimates of θ` in Figure C.6, the only detectable

migration response to hurricanes appears in the year of the hurricane itself. This justifies

our use of a specification without lags in the hurricane index in Equations (3.4.1) and

(3.4.2). Splitting this effect into its interaction through previous migrant stock and a direct,

level effect, Figure C.7 further reveals that this “Year 0” response is entirely driven by the

interaction effect. The lack of response prior to a given hurricane event serves as another

placebo test. The data fail to reject the null hypothesis of no pre-trends.

Another source of data on impact in sending countries is EM-DAT, as described in Section

3.3. Table C.1 presents results from estimating Equations (3.4.1) and ((3.4.2)) with damages

as a proportion of 1980 real per capita GDP, as well as deaths, injuries, and total number

of people affected as a proportion of 1980 population due to meteorological disasters as

outcomes. Table C.1 shows a strong, robust effect of hurricanes on damages reported in

potential sending countries. A one standard deviation increase in hurricane incidence in a

given year corresponds to a 7.80 percent increase in damages as a proportion of 1980 GDP. As

with our results from estimating Equation (C.2), we find no evidence of a stock interaction

effect that mitigates the effect of hurricanes on sending country damages.
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Figure C.4: Long Run Effect of Hurricanes on GDP Per Capita (Cumulated θ`)

-.3
-.2

-.1
0

.1
%

 R
ea

l G
D

P 
Pe

r C
ap

ita
 p

er
 .0

2 
H

I

-5 0 5 10
Years Since Hurricane Event

Notes: This figure represents an impulse response function generated by adding the coefficients α` that are estimated using
Equation (C.1) before being multiplied by the standard deviation of the hurricane index.
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Figure C.5: Long Run Effect of Hurricanes on GDP Per Capita, with Stock Interaction

Level Effect (Cumulated α`) Interaction Effect (Cumulated αstock` )
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Notes: Each figure represents an impulse response function generated by adding the coefficients α` (Left Panel) and αstock` (Right Panel) that are estimated using Equation (C.2)
before being multiplied by the standard deviation of the hurricane index and, in the case of the Right Panel, the standard deviation of the 1980 immigrant stock as a proportion
of 1980 sending country population.
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Figure C.6: Long Run Effect of Hurricanes on Migration (θ`)
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Notes: This figure plots the coefficients that are estimated using Equation (C.1) before being multiplied by 100 times the
standard deviation of the hurricane index.
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Figure C.7: Long Run Effect of Hurricanes on Migration, with Stock Interaction

Level Effect (α`) Interaction Effect (αstock` )
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Notes: This figure plots the coefficients that are estimated using Equation (C.2) (Bottom Panel) before being multiplied by 100 times the standard deviation of the hurricane
index and, in the case of the Right Panel, the standard deviation of the 1980 immigrant stock as a proportion of 1980 sending country population.
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Table C.1: The Effect of Hurricanes on Sending Country Damages, 1980-2004

As Proportion of 1980 Population

Outcome: Damages
1980 GDP

Damages
1980 GDP Deaths Deaths Injured Injured Affected Affected

Hurricane Index(t) 3.8980*** 4.2642*** 0.0004** 0.0002 0.0009 0.0004 0.3492*** 0.3465**
(1.0114) (1.5097) (0.0002) (0.0001) (0.0007) (0.0005) (0.1132) (0.1390)

Hurricane Index(t) × -8.4283 0.0040 0.0128 0.0625
1980 Proportional Immigrant Stock (21.5619) (0.0042) (0.0158) (2.3058)
Country-Years 3900 3900 3900 3900 3900 3900 3900 3900
R2 0.0987 0.0987 0.0443 0.0466 0.1193 0.1194 0.0878 0.0878
Countries 159 159 159 159 159 159 159 159

Notes: Each column refers to a different OLS specification with a constant term, country fixed effects, year fixed effects, and country-specific time
trends along with the variables displayed. Standard errors clustered at the country level. See Equations (3.4.1) and (3.4.2). Outcome variables
obtained from the Center for Research on Epidemiology of Disasters International Disaster Database. “Migrants” and “1980 Proportional Immigrant
Stock” constructed using restricted-access data from the Census Bureau’s Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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C.4 Control Variables and their Sources

This section describes the sources and construction of control variables, used both to

test robustness of the results found in Table 3.3 and to highlight mechanisms. Summary

statistics for these variables are presented below in Table C.2. Note that we have not been

given permission to publish summary statistics on HHIj,1980 (described below).

C.4.1 GDP Per Capita: Avakaov (2015)

Avakov (2015) provides real GDP per capita estimates for the 159 land areas in our

sample, including those that were not yet countries in 1980. These data allow us to assess

robustness of our results to the inclusion of GDP per capita as a control, as well as how the

interaction between migration networks and hurricanes change with sending country income.

C.4.2 World Bank World Development Indicators (WDI)

Beyond GDP per capita, we seek to assess robustness against a bevy of sending country

characteristics that could mitigate the relationship between hurricanes, migrant networks,

and migration to the U.S. The WDI aggregates many of these variables into one database,

including remittances as a proportion of GDP and domestic credit as a proportion of GDP

for 142 of the 159 countries in our sample. Because these variables are often missing for

a given country in the year 1980, we employ a country-level average from 1970 to 1979

(throwing out missing observations) for these variables.

C.4.3 United Nations Population Division (UNDP): non-U.S. Immigrant Stocks

The UNDP estimates the stock of immigrants from a majority of our sending countries

living in various destination countries starting in 1990. They construct this data by combining

governmental estimates of immigration and emigration from each country.11 These estimates

allow us to test whether the primacy of the U.S. as a destination for a given source country

affects our results. That is, if a source country is well-connected in multiple destination

countries, the model presented in Section 3.1 implies that its hurricane-induced migrants

would split their locational decisions between these countries.

11For example, the DHS data is used to generate immigrant stock estimates for the United States. The
data can be found at https://esa.un.org/unmigration/.

188



Table C.2: Summary Statistics of Control Variables

Percentile
Mean Std. Dev. 10 25 50 75 90 N Source

1980 Real GDP Per Capita 8,158 14,776 903 1,554 3,983 9,094 18,691 159 Avakov (2015)

log Real Meteorological Monetary Damages 1.44149 3.81300 0 0 0 0 9.11451 2,983 CRED

Meteorological Monetary Damages per 1980 GDP 0.00001 0.00019 0 0 0 0 <0.00001 2,975 CRED

Meteorological Disaster Deaths per 1980 Population 0.00001 0.00009 0 0 0 0 <0.00001 2,975 CRED

Meteorological Disaster Injuries per 1980 Population 0.00005 0.00191 0 0 0 0 <0.00001 2,975 CRED

Meteorological Disaster Affected Persons per 1980 Population 0.00732 0.05602 0 0 0 0 0.00062 2,975 CRED

gjt: Real GDP per capita growth 0.00142 0.15438 -0.15265 -0.06430 0.01186 0.07772 0.14715 3,221 WDI

Remittances as a Prop. of 1980 GDP (1970-1980 Average) 3.54 9.79 0.04 0.22 0.84 2.93 6.49 74 WDI

Dom. Credit as Prop. of 1980 (1970-1980 Average) 21.82 15.75 6.10 12.94 18.90 28.26 40.18 104 WDI

Non-U.S. Stock of Immigrants as Prop. of 1980 Population 0.11464 0.18869 0.00959 0.01724 0.05316 0.12502 0.30538 158 UNDP

Land Area (sq. km) 591,653 1,431,563 360 5,130 108,430 581,540 1,280,000 159 R maptools

Distance from Capital City to D.C. (km) 9,051 4,150 2,936 5,837 9,968 12,391 13,906 159 R maptools

Notes: Historical real GDP data obtained from Avakov (2015). CRED data obtained from the Center for Research on Epidemiology of Disasters International Disaster
Database. WDI data obtained from the World Bank. R maptools contains land area, and is also used to calculate Distance to Washington D.C.
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C.4.4 Land Area and Distance to the U.S.

Proximity and the absence of undamaged land mass available within country can facilitate

hurricane-induced migration to the U.S. In order to both understand the magnitude of these

mechanisms and ensure they are not wholly driving our results, we construct two measures.

The first the log of land area in squared kilometers and the second is the distance from each

country’s capital city to the U.S.—meant to mimic distance measures used in standard trade

gravity models (e.g., Feenstra et al. (2001)). Each is constructed using data available in the

maptools package in R (distance to Washington D.C. is calculated using this package after

obtaining latitude and longitude coordinates of capital cities from Google Maps).12 For a

subset of countries without land area information available in this package, we employ land

area information provided in the WDI.

C.4.5 Damages: Center for Research on Epidemiology of Disasters (CRED)

In order to verify that our independent hurricane index corresponds to immediate damages

in potential sending countries on a level that could prompt immigration to the United

States, we use data from EM-DAT: the Center for Research on Epidemiology of Disasters

(CRED) International Disaster Database.13 These estimates include monetary damages

in nominal USD and the number of deaths, injuries, and total number of people affected

by meteorological disasters in a given country and year. The sources of disaster impact

data include national governments, UN agencies, non-governmental organizations, insurance

companies, research institutes, and the media. In order to put the monetary damages in

real terms (2010 USD), we employ the U.S. GDP deflator from the World Bank’s World

Development Indicators. The use of these data allow us to establish something akin to a

“first stage” effect, that our objective hurricane index corresponds to monetary and human

damages felt on the ground in potential sending countries. Additionally, we report damages

as a proportion of 1980 real GDP. We obtain the denominator from Avakov (2015), who

collects historic data for land masses small enough to cover our entire country sample.

C.4.6 Restricted-Access Census Bureau: 1980 Immigrant Concentration Index

In theory, we may expect that immigrant communities that are particularly concentrated

in U.S. areas that are close to hurricane-hit countries—Miami, for example—are particularly

suited to absorb hurricane-induced inflows. In order to test whether our stock interaction

effect is solely driven by such concentrated communities, we construct a Herfindhal-style

12Source data for the maptools project is available from https://github.com/nasa/World-Wind-Java/tree/master/WorldWind/testData/shapefiles.
13http://www.emdat.be
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concentration index:

HHIj,1980 =
∑
c

( Sjc,1980∑
c Sjc,1980

)2

where c represents a U.S. county and Sjc,1980 is the number of immigrants from country j

living in county c in 1980. Note that the denominator is the same as Sj,1980 in this chapter’s

notation. The ability to construct this variable at the granular, county level comes from

access to restricted-use Census Bureau data.

C.4.7 Populations: United Nations and U.S. Census Bureau International Data

Base

Finally, in order to make country-year observations comparable, we use population data

from the set of potential sending countries in our base year, 1980. For this, we used data

publicly available data from the United Nations and the U.S. Census Bureau’s International

Data Base, which between them cover our entire sample. For most of the countries in our

sample, estimates of the 1980 population were available from both sources, in which case we

took a simple average. These 1980 population estimates are then used as denominators for

our final migration inflow outcome variables and our 1980 stock estimates:

mjt ≡
Mjt

Nj,1980

sj,1980 ≡
Sj,1980

Nj,1980

mjt is our main outcome of interest from the data constructed using confidential data from

the U.S. Census Bureau.

C.4.8 Predicting the 1980 Stock

We motivate the potential need for these predetermined control variables by using them

to predict our interacting variable of interest: sj,1980. Table C.3 presents the result from

this exercise. Unsurprisingly, countries that are closer to the U.S. had higher proportional

immigrant stocks in 1980. Somewhat surprisingly, larger countries, countries with more

concentrated immigrant populations, and larger countries also featured higher immigrant

stocks in 1980. Real GDP per capita, our best indicator for development, has a positive, but

not statistically significant effect on 1980 proportional stocks.
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Table C.3: Predicting sj,1980, the 1980 Proportional Stock

sj,1980

1980 Immigrant Concentration Index (divided by one million) -0.0360*
0.0183

Log 1980 Real GDP Per Capita 0.0015
0.0017

Log 1980 Population -0.0068***
0.0022

Remittances as a Prop. of GDP (average in 1970’s) -0.0123
0.0237

Domestic Credit as a Prop. of GDP (average in 1970’s) 0.0079
0.0063

Land Area (millions of Sq. KM) 0.0020*
0.0011

Distance from Capital City to D.C. (millions of KM) -2.3294***
0.6525

1990 Proportional Stock in non-U.S. countries 0.0451
0.0316

Indicator: Missing Remittances as Prop. of GDP -0.002
0.0042

Indicator: Missing Domestic Credit as a Prop. of GDP 0.0094**
0.0045

Indicator: Missing p stock1990 in non-US countries -0.0098*
0.0055

Countries 159
R2 0.4776

Notes: Each column refers to a different OLS specification with a constant term, country fixed effects, year fixed effects, and
country-specific time trends along with the variables displayed. Standard errors clustered at the country level. See Equations
(3.4.1) and (3.4.2). Outcome variables obtained from sources described in Section C.4. “1980 Proportional Immigrant Stock”
constructed using restricted-access data from the Census Bureau’s Research Data Center.* p < 0.1 ** p < 0.05 *** p < 0.01
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C.5 Robustness of Stock-by-Citizenship Results

This section combines Equations (3.4.3) with (3.4.6) to test the robustness of the results

presented in Table 3.5. That is, it estimates

mjt = π0 +π1Hjt+π2(Hjt×scitizen
j,1980 )+π3(Hjt×snon-cit

j,1980 )+πc(Hjt×cj)+ηj+δt+φjt+εjt (C.1)

This estimating equation modifies Equation (3.4.3) by adding an additional set of interaction

terms with time-invariant control variables. Online Appendix Section C.4 (above) details the

construction of each of these variables. Table C.4 displays the results of estimating Equation

(C.1) with each individual control variable as well as with the complete set. The estimated

coefficients π̂2 and π̂2 remain stable. The p-vales from the test that π2 = π3 are shown in

the bottom row. They show that there appears to be a robust effect of the citizen stock of

immigrants itself, as opposed to the many factors it may additionally proxy for. When the

“kitchen sink” set of controls is included, this result is only strengthened.
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Table C.4: Robustness

Outcome for all columns: Migrants(t) as a Prop. of 1980 Population
Hurricane Index(t) -0.0005 -0.0014* 0.0181 0.0080 -0.0013 -0.0019 -0.0005 -0.0016 0.0011 0.0665***

(0.0009) (0.0009) (0.0173) (0.0050) (0.0021) (0.0027) (0.0010) (0.0019) (0.0028) (0.0239)

Hurricane Index(t) × 0.4044* 0.4191* 0.4396* 0.3615* 0.4173* 0.3377* 0.4040* 0.4042* 0.5172* 0.6559***
1980 Proportional Citizen Immigrant Stock (0.2245) (0.2266) (0.2552) (0.2030) (0.2329) (0.2023) (0.2243) (0.2266) (0.2976) (0.2502)

Hurricane Index(t) × -0.1444 -0.1491 -0.1631 -0.1311 -0.1388 -0.0773 -0.1449 -0.1300 -0.2225 -0.2736
1980 Proportional Non-Citizen Immigrant Stock (0.1661) (0.1663) (0.1854) (0.1541) (0.1685) (0.1593) (0.1663) (0.1653) (0.2132) (0.1941)

Hurricane Index(t) × 0.0046*** -0.0088
Immigrant Concentration Index (0.0017) (0.0058)

Hurricane Index(t) × -0.0021 0.0023
log(1980 Real GDP Per Capita) (0.0020) (0.0566)

Hurricane Index(t) × -0.0664* -0.0664
log(1980 Population) (0.0400) (0.0566)

Hurricane Index(t) × -0.1111 -0.3682***
[1970s Remittances as Prop. of GDP] (0.0775) (0.1149)

Hurricane Index(t) × 0.0011 -0.0030
1[Missing: Remittances] (0.0023) (0.0048)

Hurricane Index(t) × -0.0024 0.0032
[1970s Dom. Credit as Prop. of GDP] (0.0058) (0.0076)

Hurricane Index(t) × 0.0022 0.0122**
1[Missing: Dom. Credit] (0.0030) (0.0055)

Hurricane Index(t) × -0.0015 -0.0082
[Land Area (mil. sq. km)] (0.0040) (0.0110)

Hurricane Index(t) × 0.1144 0.1667
[Distance to U.S. (mil. km)] (0.1670) (0.1729)

Hurricane Index(t) × -0.0085 -0.0273***
[1990 Prop. non-U.S. Emigrant Stock] (0.0094) (0.0091)

Hurricane Index(t) × -0.0021 -0.0124***
1[Missing: non-U.S. Emigrant Stock] (0.0035) (0.0046)

Country-Years 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900 3,900
Countries 159 159 159 159 159 159 159 159 159 159
p-value: Equal Interaction Effect of

0.1540 0.1430 0.1660 0.1630 0.1590 0.2400 0.1540 0.1650 0.1460 0.0365
Citizen and Non-Citizen Proportional Stock

Notes: Each column refers to a different OLS specification with a constant term, country fixed effects, year fixed effects, and country-specific time trends along with the
variables displayed. Standard errors clustered at the country level. See Equation (C.1). 1970s Domestic Credit as Prop. of GDP and 1970s Remittances as a Prop. of GDP
divide averages of non-missing data of Domestic Credit and Remittances from 1970 through 1979 by 1980 GDP. “Migrants,” “1980 Proportional Citizen Immigrant Stock,” and
“1980 Proportinal Non-Citizen Immigrant Stock” constructed using restricted-access data from the Census Bureau’s Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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C.6 Placebo Tests

In order to verify that the results presented above are not just the result of spurious

statistical noise, we test the following model:

mjt = p0 + p1Hj,t+1 + p2(Hj,t+1 × sj,1980) + ηj + δt + φjt+ εjt

We should not expect hurricanes in the future to affect current migration if they are unexpected,

exogenous events, as the theoretical considerations laid out in Section 3.1 assume. Table C.5

presents the result of this test, and demonstrates that we cannot reject the hypotheses that

p1 = 0 or p2 = 0. This buttresses the notion that Hjt is causing migration through the

negative income and asset shock channels that we propose.
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Table C.5: The Effect of Future Hurricanes on Migration—Placebo Test, 1980-2004

As a Prop. of 1980 Population
Migrants(t) Migrants(t)

Hurricane Index(t+ 1) 0.0017 0.0028
(0.0015) (0.0020)

Hurricane Index(t+ 1) × -0.0266
1980 Proportional Immigrant Stock (0.0281)
Country-Years 3,900 3,900
R2 0.4273 0.4277
Countries 159 159

Notes: Each column refers to a different OLS specification with a constant term, country fixed effects, year fixed effects, and
country-specific time trends along with the variables displayed. Standard errors clustered at the country level. See Equations
(3.4.1) and (3.4.2). “Migrants” and “1980 Proportional Immigrant Stock” constructed using restricted-access data from the
Census Bureau’s Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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C.7 TPS Responses to Hurricane Mitch

The following table displays the sensitivity of our main results to dropping Honduras and

Nicaragua, countries that were granted TPS status in response to Hurricane Mitch.
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Table C.6: Hurricane Mitch Robustness

Panel A: Census, 1980-2004
Full Sample Dropping Mitch-Affected

Hurricane Index(t) 0.0040** -0.001 0.0040** -0.0011
(0.0020) (0.0010) (0.0020) (0.0010)

Hurricane Index(t) × 0.1163** 0.1170**
1980 Proportional Immigrant Stock (0.0451) (0.0452)
Country-Years 3,900 3,900 3,800 3,800
R2 0.4319 0.4409 0.4247 0.4341
Countries 159 159 157 157

Panel B: DHS non-immigrant, 1983-2004
Full Sample Dropping Mitch-Affected

Hurricane Index(t, t− 1) 0.2193*** -0.0627 0.2197*** -0.0608
(0.0788) (0.0689) (0.0788) (0.0699)

Hurricane Index(t, t− 1) × 5.7883** 5.7541**
1980 Proportional Immigrant Stock 2.3536 2.3647
Country-Years 2,200 2,200 2,200 2,200
R2 0.4485 0.4495 0.4489 0.4498
Countries 156 156 154 154

Panel C: DHS LPR, 1982-2004
Full Sample Dropping Mitch-Affected

Hurricane Index(t, t− 1) 0.0023 -0.0035 0.0024 -0.0034
(0.0040) (0.0039) (0.0040) (0.0039)

Hurricane Index(t, t− 1) × 0.1266*** 0.1254***
1980 Proportional Immigrant Stock (0.0402) (0.0408)
Country-Years 2,600 2,600 2,500 2,500
R2 0.2954 0.2966 0.2957 0.2969
Countries 156 156 154 154

Notes: Outcome for each specification is the estimated migrant inflows to the U.S. from a given country in year t as a proportion
of that country’s 1980 population. Each column within a panel refers to an OLS specification with a constant term, country
fixed effects, year fixed effects, and country-specific time trends along with the variables displayed. Standard errors clustered
at the country level. See Equations (3.4.1) and (3.4.2). Outcomes in Panels B and C obtained from electronic copies of the
Yearbook of Immigration Statistics (1996-2004) and Statistical Yearboook of the Immigration and Naturalization Service (prior
to 1996). “Hurricane Index(t, t − 1)” refers to the average of a hurricane index for a given country across years t and t − 1.
“1980 Proportional Immigrant Stock” constructed using restricted-access data from the Census Bureau’s Research Data Center.
LPR: legal permanent resident; “non-imm:” non-immigrant. * p < 0.1 ** p < 0.05 *** p < 0.01
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C.8 Analysis With Publicly-Available Data

The following table displays the results of estimating Equations (3.4.1) and (3.4.2) using

publicly-available data from the Census Bureau. The large differences in coefficient and

standard error estimates display the importance of using restricted-access Census data for

the main analyses presented in this chapter.
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Table C.7: The Effect of Hurricanes on Migration, Public Data, 1980-2004

As a Prop. of 1980 Population
Outcome, Estimated from Public Data: Migrants(t) Migrants(t)

(1) (2)
Hurricane Index(t) 0.0016 0.0003

(0.0015) (0.0019)
Hurricane Index(t)× 0.0267
Public-Data 1980 Proportional Immigrant Stock (0.0343)
Country-Years 2,215 2,215
R2 0.3917 0.3921
Countries 97 97

Notes: Each column refers to a different OLS specification with a constant term, country fixed effects, year fixed effects, and
country-specific time trends along with the variables displayed. Standard errors clustered at the country level. See Equations
(3.4.1) and (3.4.2). “Public-Data 1980 Proportional Immigrant Stock” refers to the immigrant stock from a given country living
in the U.S. in 1980 as a proportion of that country’s 1980 population, estimated from IPUMS-USA (Ruggles et al., 2019b).
“Migrants” refers to the estimated immigrant inflows to the U.S. from a given country in year t as a proportion of that country’s
1980 population, estimated from IPUMS-USA as well. * p < 0.1 ** p < 0.05 *** p < 0.01
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C.9 The Role of Small Countries

This section complements Section C.8 in demonstrating that the primary results in the

chapter—contained in Table 3.3—are driven by smaller countries in our sample. These are

countries for whom 1980 stocks and migration inflows can only be measured accurately using

RDC or DHS data. However, this section also shows that these primary results are not driven

by a very small number of these countries.

Table C.8 demonstrates how the result from Column 2 in Table 3.3 changes with population

weighting and within sub-samples of countries defined by quartiles of 1980 population. When

no lags of the hurricane index are included (Panel A), as in Equation (3.4.2), weighting by

1980 population eliminates the effect. In this specification, India and China receive almost

one-half of the total weight in the regression, and the effects in these countries do not

appear to be large. However, when we weight by log 1980 population instead, the effect

is essentially identical to that found in Table 3.3 (reproduced in the Column 1 here for

convenience). Columns 4-7 show that the effect is driven by countries in the bottom quartile

by population. We also produce results that add an additional lag in the hurricane index to

the model estimated in Equation (3.4.2). These results (in Panel B), largely mirror those in

Panel A, but also show a lagged interaction effect response in the second population quartile.

To provide further insight into the role of small countries, we drop progressively larger

sets of countries (starting with the smallest in terms of 1980 population) from our analysis.

Table C.9 displays these results. The Census Bureau’s rounding rules do not permit us to

disclose the exact number of countries we drop in each column, but this exercise was done in

a systematic way, with the number of dropped countries increasing from left to right in the

table (the number of dropped countries has been rounded to the nearest ten in the table,

and cannot be specified below 15). The point estimate on the migrant stock interaction term

becomes smaller when more and more of the small countries are dropped from the sample.

This pattern is consistent with results in Appendix Table A7: the small countries provide key

identifying variation. But the result is not contingent on the presence in the sample of only

a handful of countries, only disappearing when the smallest 20 countries (approximately) are

dropped from the sample (Column 4 of the table).

Finally, Table C.10 sorts the 159 countries in our sample by 1980 population. It demonstrates

that the smallest countries in the sample tend to have significant “leverage” in our main

regression specifications, with high mean values in the hurricane index. Among the smaller

countries, there is variation in the population share of prior migrants, providing additional

variation for identifying heterogeneity in the impact of hurricanes.
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Table C.8: Alternate Weighting and Unweighted Effect by 1980 Population Quartile

Panel A: No lags in Hurricane Index Outcome for all columns: Migrants(t) as a Prop. of 1980 Population
(1) (2) (3) (4) (5) (6) (7)

Hurricane Index(t) -0.0010 -0.0002 -0.0010 -0.0012 0.000 -0.0010 -0.0001
(0.0010) (0.00020) (0.00080) (0.00210) (0.00060) (0.00450) (0.0003)

Hurricane Index(t) × 0.1163** 0.0092 0.1087** 0.1240** -0.0027 -0.0623 -0.0228
1980 Proportional Immigrant Stock (0.0451) (0.0162) (0.0422) (0.0520) (0.0071) (0.1808) (0.0536)

Weight None 1980 Population Log 1980 Population None None None None
Quartile All All All 1st 2nd 3rd 4th
Country-Years 3,900 3,900 3,900 1,000 1,000 1,000 1,000

Panel B: One lag in Hurricane Index Outcome for all columns: Migrants(t) as a Prop. of 1980 Population
(1) (2) (3) (4) (5) (6) (7)

Hurricane Index(t) -0.0011 -0.0003 -0.0011 -0.0012 -0.0001 -0.0013 0.0000
(0.0010) (0.0003) (0.0008) (0.0022) (0.0005) (0.0049) (0.0004 )

Hurricane Index(t− 1) -0.0009 -0.0006 -0.0009 -0.0005 -0.0016*** 0.0007 0.0007
(0.0008) (0.0006) (0.0008) (0.0019) (0.0006) (0.0054) (0.0006)

Hurricane Index(t) × 0.1175*** 0.0117 0.1103*** 0.1242** 0.0029 -0.0812 -0.0380
1980 Proportional Immigrant Stock (0.0450) (0.0157) (0.0419) (0.0520) (0.0067) (0.1819) (0.0652)

Hurricane Index(t− 1) × 0.0150 0.0171 0.0180 -0.0021 0.0871*** -0.1792 -0.1550
1980 Proportional Immigrant Stock (0.0135) (0.0548) (0.0157) (0.0217) (0.0080) (0.1725) (0.1129)
Weight None 1980 Population Log 1980 Population None None None None
Quartile All All All 1st 2nd 3rd 4th
Country-Years 3,900 3,900 3,900 1,000 1,000 1,000 1,000

Notes: Each column within a panel refers to an OLS specification with a constant term, country fixed effects, year fixed effects, and country-specific time trends along
with the variables displayed. Standard errors clustered at the country level. See Equation (3.4.2). “Migrants” and “1980 Proportional Immigrant Stock” constructed using
restricted-access data from the Census Bureau’s Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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Table C.9: Dropping Small Countries

Panel A: No lags in Hurricane Index Outcome for all columns: Migrants(t) as a Prop. of 1980 Population
(1) (2) (3) (4) (5) (6) (7) (8)

Hurricane Index(t) -0.0010 -0.0015* -0.0007 -0.0003 -0.0002 -0.0001 -0.0005 -0.0005
(0.0010) (0.0009) (0.0007) (0.0007) (0.0007) (0.0007) (0.0004) (0.0004)

Hurricane Index(t) × 0.1163** 0.1283*** 0.0719*** 0.0390 0.0477 0.0592 0.0421* 0.0395
1980 Proportional Immigrant Stock (0.0451) (0.0468) (0.0260) (0.0319) (0.0353) (0.0381) (0.0254) (0.0297)

Country-Years 3,900 3,800 3,600 3,500 3,400 3,300 3,200 3,000
Dropped Countries 0 ¡15 ¡15 20 20 30 30 40

Panel B: One lag in Hurricane Index Outcome for all columns: Migrants(t) as a Prop. of 1980 Population
(1) (2) (3) (4) (5) (6) (7) (8)

Hurricane Index(t) -0.0011 -0.0016* -0.0008 -0.0004 -0.0003 -0.0002 -0.0007 -0.0007
(0.0010) (0.0009) (0.0008) (0.0008) (0.0008) (0.0008) (0.0004) (0.0005)

Hurricane Index(t− 1) -0.0009 -0.0009 -0.0008 -0.0008 -0.0010 -0.0008 -0.0011 -0.0012
(0.0008) (0.0008) (0.0009) (0.0011) (0.0010) (0.0009) (0.0009) (0.0008)

Hurricane Index(t) × 0.1175 0.1298*** 0.0754*** 0.0427 0.0506 0.0617* 0.0442** 0.0417*
1980 Proportional Immigrant Stock (0.0450) (0.0467) (0.0257) (0.0312) (0.0340) (0.0364) (0.0214) (0.0242)

Hurricane Index(t− 1) × 0.0150 0.0170 0.0242 0.0378 0.0217 0.0197 0.0167 0.0176
1980 Proportional Immigrant Stock (0.0135) (0.0142) (0.0210) (0.0362) (0.0390) (0.0390) (0.0411) (0.0493)
Country-Years 3,900 3,800 3,600 3,500 3,400 3,300 3,200 3,000
Dropped Countries 0 ¡15 ¡15 20 20 30 30 40

Notes: Each column within a panel refers to an OLS specification with a constant term, country fixed effects, year fixed effects, and country-specific time trends along
with the variables displayed. Standard errors clustered at the country level. See Equation (3.4.2). “Migrants” and “1980 Proportional Immigrant Stock” constructed using
restricted-access data from the Census Bureau’s Research Data Center. * p < 0.1 ** p < 0.05 *** p < 0.01
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Table C.10: Sample Countries Sorted by Population

Mean Hurricane Index 1980 Proportional

Country 1980 Population 1980–2004 Immigrant Stock a

Tokelau 1,553 0.0001 0.0515

Falkland Islands (Malvinas) 1,856 0 0.2155

Niue 3,402 0.0214 —b

St. Helena 5,899 0 —b

Anguilla 6,607 0.0199 0.0605

Turks and Caicos Islands 7,495 0.0114 0.0507

Nauru 7,599 0 0.0105

British Virgin Islands 11,001 0.0160 0.6836

Wallis and Futuna 11,016 0.0003 —b

Montserrat 11,845 0.0200 0.0912

Cayman Islands 16,623 0.0264 0.0578

Cook Islands 17,817 0.0003 0.0090

St. Kitts and Nevis 43,388 0.0210 0.0438

Kiribati 56,023 0 0.0025

Bermuda 56,067 0.0170 0.1413

Aruba 59,999 0.0001 0.0403

Seychelles 64,817 0 0.0074

French Guiana 67,801 0 0.0006

Antigua & Barbuda 69,424 0.0299 0.0562

Dominica 74,600 0.0034 0.0386

Micronesia 75,024 0.0003 —b

Grenada 89,584 0.0072 0.0804

Tonga 92,407 0.0054 0.0732

Sao Tome & Principe 94,512 0 —b

St. Vincent & the Grenadines 99,323 0.0063 0.0358

Vanuatu 116,213 0.0224 —b

St. Lucia 120,231 0.0087 0.0126

Western Sahara 137,458 0 0.0017

New Caledonia 140,633 0.0350 0.0010

Belize 144,284 0.0037 0.0992

French Polynesia 151,299 0.0015 0.0054

Maldives 153,593 0 0.0033

Samoa 157,298 0.0109 —b

Netherlands Antilles 172,296 0.0003 0.0269

Brunei 189,135 0 0.0041

Bahamas 210,210 0.0199 0.0675

Qatar 226,422 0 0.0046

Solomon Islands 230,691 <0.0001 —b

Equatorial Guinea 238,299 0 0.0004
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Barbados 250,375 0.0089 0.1141

Macau 251,005 0.0122 0.0112

Cape Verde 299,019 0 0.0336

Martinique 325,459 0.0012 0.0030

Comoros 326,678 0.0006 0.0006

Guadeloupe 328,678 0.0381 0.0025

Djibouti 343,060 0 0.0005

Bahrain 353,735 0 0.0020

Suriname 359,850 0 0.0038

Bhutan 429,390 0 0.0053

Reunion 509,259 0.0179 0.0008

Timor-Leste 568,946 <0.0001 0.0004

Swaziland 607,418 0 0.0012

Gambia 628,415 0 0.0006

Fiji 634,881 0.0241 0.0131

Cyprus 657,838 0 0.0132

Gabon 720,141 0 <.0001

Guyana 768,140 0 0.0667

Guinea-Bissau 803,589 0 0.0002

Botswana 949,005 0 0.0006

Mauritius 964,869 0.0163 0.0007

United Arab Emirates 1,007,555 0 0.0006

Namibia 1,035,391 0 0.0002

Trinidad & Tobago 1,087,911 0.0001 0.0616

Oman 1,169,927 <0.0001 0.0003

Lesotho 1,332,988 0 0.0001

Kuwait 1,370,632 0 0.0033

Mauritania 1,539,525 0 0.0003

Mongolia 1,672,445 0 0.0001

Congo 1,735,761 0 0.0001

Liberia 1,874,816 0 0.0017

Panama 1,974,814 0 0.0306

Jamaica 2,180,542 0.0208 0.0908

Jordan 2,235,174 0 0.0093

Central African Republic 2,311,433 0 <0.0001

Costa Rica 2,323,776 <0.0001 0.0128

Singapore 2,414,214 0.0001 0.0021

Togo 2,673,175 0 0.0002

Lebanon 2,753,241 0 0.0194

Uruguay 2,923,111 0 0.0047

Nicaragua 3,026,750 0.0012 0.0145

Papua New Guinea 3,030,944 <0.0001 0.0002

Libya 3,069,342 0 0.0022
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New Zealand 3,147,183 0.0001 0.0039

Paraguay 3,185,226 0 0.0010

Sierra Leone 3,257,631 0 0.0006

Laos 3,272,042 0.0007 0.0157

Honduras 3,519,165 0.0005 0.0106

Benin 3,588,043 0 0.0001

Israel 3,732,547 0 —b

Burundi 4,212,187 0 0.0001

Guinea 4,471,424 0 0.0002

Chad 4,517,575 0 <0.0001

El Salvador 4,615,483 <0.0001 0.0205

Hong Kong 5,058,392 0.0172 0.0157

Rwanda 5,140,312 0 <0.0001

Bolivia 5,405,100 0 0.0025

Haiti 5,587,661 0.0036 0.0165

Senegal 5,590,117 0 0.0001

Zambia 5,693,800 0 0.0003

Dominican Republic 5,761,285 0.0068 0.0288

Somalia 5,941,631 <0.0001 0.0001

Niger 5,963,859 0 0.0004

Malawi 6,247,395 0 0.0001

Tunisia 6,375,640 0 0.0005

Burkina Faso 6,570,515 0 <0.0001

Cambodia 6,793,898 0.0001 0.0027

Mali 6,801,635 0 <0.0001

Guatemala 6,825,347 0.0004 0.0093

Zimbabwe 7,229,519 0.0001 0.0005

Angola 7,421,478 0 0.0001

Ecuador 7,914,966 0 0.0112

Ivory Coast 8,429,406 0 0.0001

Yemen 8,519,761 <0.0001 0.0004

Madagascar 8,718,880 0.0053 0.0001

Cameroon 8,844,030 0 0.0002

Syria 8,848,002 0 0.0025

Cuba 9,741,318 0.0071 0.0633

Saudi Arabia 9,932,392 <0.0001 0.0016

Ghana 10,977,531 0 0.0007

Chile 11,095,449 0 0.0033

Mozambique 12,122,316 0.0008 <0.0001

Uganda 12,284,744 0 0.0003

Iraq 13,443,098 0 0.0023

Malaysia 13,646,914 <0.0001 0.0008

Afghanistan 14,112,360 0 0.0003
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Nepal 14,498,764 0 0.0001

Sudan 14,600,904 0 0.0002

Australia 14,708,323 0.0001 0.0025

Venezuela 14,932,161 <0.0001 0.0021

Sri Lanka 15,044,572 0.0001 0.0004

Kenya 16,299,302 0 0.0004

Peru 17,311,920 0 0.0033

Taiwan 17,848,320 0.0564 0.0042

Tanzania 18,670,128 0 0.0002

Algeria 19,140,632 0 0.0002

Morocco 19,642,988 0 0.0005

Canada 24,511,056 0.0003 0.0344

Colombia 26,782,940 <0.0001 0.0055

Zaire 27,684,130 0 <0.0001

Argentina 28,244,966 0 0.0024

South Africa 29,164,364 0 0.0006

Burma 33,905,584 0.0014 0.0003

Ethiopia 35,638,836 0 0.0002

South Korea 37,787,544 0.0073 0.0077

Iran 39,299,124 0 0.0031

Egypt 43,783,092 0 0.0010

Turkey 44,476,880 0 0.0012

Thailand 47,197,448 0.0001 0.0012

Philippines 47,843,828 0.0263 0.0107

Vietnam 54,306,296 0.0037 0.0044

Mexico 69,350,248 0.0010 0.0316

Nigeria 74,263,440 0 0.0003

Bangladesh 81,826,248 0.0036 0.0001

Pakistan 82,601,704 0.0002 0.0004

Japan 115,912,104 0.0239 0.0019

Brazil 121,402,072 0 0.0003

Indonesia 147,907,968 <0.0001 0.0002

India 691,926,656 0.0007 0.0003

China 985,918,656 0.0013 0.0003

aEstimated using publicly available data from IPUMS-USA (Ruggles et al., 2019b).
bCountry’s 1980 immigrant stock not avaiable in IPUMS-USA.
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