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ABSTRACT 

Historically, reforms designed to transform teaching from rote, teacher-centered 

instruction to progressive student-centered instruction have had varied levels of success. Plentiful 

research juxtaposes teachers’ enacted instruction with the instructional ideals of reform efforts to 

determine the extent to which teachers’ instruction aligns with reform-based science education 

standards. Discrepancies and continuities are frequently explained by the mediating effects of the 

instructional context. While this information is valuable and establishes the strong 

interdependent relationship between context and instruction, little research attends to the capacity 

of specific contexts to support reform-based instruction. In this dissertation, I explore the liminal 

space between science reform adoption and reform implementation in a rural, fifth grade 

classroom. I immersed myself in a veteran teacher’s classroom context for two units of study, the 

solar system and “The Scientific Method.” Using Creswell’s (2013) iterative, inductive approach 

along with tools from content and discourse analysis, I analyzed interview recordings and 

transcripts; classroom observation recordings, field notes, and digital photographs; and 

classroom artifacts to examine how contextual resources and constraints shape the teacher’s 

instructional practices and the extent to which her existing practices align with reform-based 

ideals and practices. Findings indicate that the teacher’s accessible resources (e.g., her own 

education, school provisions) and professional expectations (e.g., previous standards, school 

policies) position science as a set of disciplines comprised of a discrete facts that are learned 

through low-level cognitive tasks of recalling and understanding content and procedural 



 xiv 

knowledge. Nonetheless, in accordance with the National Academies’ call for context-specific 

instructional support, this study identifies existing pedagogical practices that can be leveraged to 

achieve instruction that more closely approximates reform-based instructional practices and 

considers the potential for developing teachers’ instructional practices through zones of feasible 

innovation (Rogan, 2007). I detail the process for identifying zones of feasible innovation for the 

participating teacher’s instruction as a model for designing individual learning trajectories with 

examples from the instructional context analyzed in this dissertation. 

 Findings and conclusions from this study highlight the need for teacher conceptual 

change through reflective practices and dialogic interactions. Moreover, this study also suggests 

school leaders will need to ensure that school structures allow teachers adequate planning and 

instructional time for science as well as access to technology and spaces appropriate for science 

activities. Finally, this study establishes a need for equitable access to professional learning 

opportunities and more research exploring avenues for supporting teachers in their individual, 

diverse contexts (e.g., open-access, virtual educative curriculum materials), particularly those 

with limited resources in isolated locations.  
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CHAPTER I 

Introduction 

 

On a typical Midwestern spring afternoon, Mrs. Poppy, a pseudonym, and her students 

reviewed content from the previous lesson by watching a brief infographic video about the tilt of 

the Earth. Following the video, Mrs. Poppy read aloud a short paragraph from a packet of 

worksheets that students had previously received. She directed their attention to sentences they 

should highlight and asked comprehension questions about the text. Then, using a globe and a 

small lamp, Mrs. Poppy demonstrated the Earth’s tilt and explained misconceptions about the 

cause of the seasons. 

“I want to show you something,” she said. “A lot of people think that as it goes around, 

the tilt stays facing the sun like that, and it like turns so that it’s tilted toward the sun all the 

time…That’s not what happens…If we are tipped like this, and we are going around, it stays like 

this, guys, as it goes around the sun...It’s important that you know that.” 

Taking the globe to one side of the room, Mrs. Poppy continued, “We are going to start 

off over here.” Mrs. Poppy held the globe so the Northern Hemisphere was tilted toward the sun. 

“What do you notice about the Northern Hemisphere right now? Where is it facing?” 

The students did not respond, so Mrs. Poppy answered, “It’s tipped toward the sun…We 

are having summer.”  

After a short discussion about how difficult it is to think that in the Northern Hemisphere 

June is in the summer but in the Southern Hemisphere Christmas is in the summer, Mrs. Poppy 



 2 

explained that the seasons cannot be the result of the distance the Earth is from the sun, “Because 

think of this. If it was because we’re really close to the sun right now, so we’re having summer, 

but doesn’t that mean the bottom [the Southern Hemisphere] would be having summer, too, 

because they’re also really close?” 

The students responded collectively, “Yeah.” 

“They’re a part of the Earth, too, right? But, do they have summer right now? 

“No,” they replied. 

“So, if it dealt with how close the Earth was, then the whole Earth would be having the 

same season, but that’s not what happens. It deals with the tilt and which part is pointing at the 

sun.” 

Mrs. Poppy then explained direct sunlight by holding a pencil to the globe and asking the 

students to consider how much of the lamp light was cast upon the pencil eraser as she held the 

globe and revolved around the lamp. 

“So, if I’m here in Michigan. This is us…Watch my head. When I’m coming around here 

and it’s sunrise, and I can see that sun a little bit…And now, when I’m right here, it’s noon. 

Where’s the sun compared to my head?” 

Before students responded, Mrs. Poppy said, “It’s above my head, right? Point to above 

your head. Is that where the sun is at noon?” 

Students responded with a variety of responses all at once, so Mrs. Poppy revised her 

question, “In the summer, is that where the sun is at noon?” 

“Yeah,” the students responded. 

“Yes. Now, it’s not perfectly above your head…If I wanted to put it directly above my 

head, where would I have to be?” 
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“0 [degrees latitude], lower, Cuba?” a student offered. Several students followed with 

incorrect responses until Mrs. Poppy explained that direct sunlight is at the Equator.  

“If you’re at the Equator or right within this area, it’s directly above your head. Really 

directly.” 

Mrs. Poppy put the pencil on the globe in the area of Michigan and asked again, “So, if 

I’m standing like this, and the sun is nice and high in the sky at noon, am I getting direct light, 

though?” 

The students responded with another collective, “No,” and Mrs. Poppy validated their 

response, “No, not getting direct light. It’s pretty strong, but it’s not direct. But, if I’m in Florida, 

is it a little more direct?” 

“Yes!”  

“So, what do you know about light if it’s a perfect direct light is it going to be…? 

Before Mrs. Poppy could respond, a student chimed in, “Hot,” and Mrs. Poppy agreed, 

“It’s going to be a lot hotter, right? So even though it’s summer for me in Michigan, it’s also 

summer in Florida, but they’re going to have a warmer summer because they have more direct 

light…Does that make sense? 

“Yes!” 

Mrs. Poppy continued to explain that winter does not always mean snow and cold 

because some places on Earth always get direct sunlight, “Even though, it’s called winter, it’s 

still hot.” 

The class period ended. Mrs. Poppy reminded the students to clip their worksheets into 

their science binders. The next day, the students answered the assessment questions on the 

worksheets. 
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In this vignette, taken from data collected for this study, we see an instructional focus on 

understanding science content. Mrs. Poppy presented the same content through various modes– 

written text, an infographic video, and demonstrations–and asked frequent questions to assist and 

gauge students’ comprehension. The students, however, were mostly passive, which is 

characteristic of traditional teacher-centered lessons in which information is transferred from one 

source (i.e., the teacher, the text, the video) to the students (Freire, 1998). We also see a 

conceptualization of science as a static assemblage of facts to be acquired and retained, a 

conceptualization for which students need only to apply reading and oral comprehension skills.  

 In contrast, in the following hypothetical vignette, students are collaboratively engaged in 

meaningful tasks in which they approximate the disciplinary habits of mind and practices of 

actual scientists. In this classroom, science is conceived as a body of knowledge and a set of 

practices for generating, revising, and sharing scientific knowledge, and students employ 

reading, writing, and language in the service of scientific sense-making. Furthermore, because 

scientific knowledge is understood to be dynamic, students are expected to use evidence to 

support their claims about the nature of scientific phenomena. 

 Mrs. Raymond stopped by a group of students to listen to their nascent understandings 

for explaining why summers in Florida are warmer than are summers in Michigan. For the past 

few months, the students in the class had taken weekly turns documenting the daily times for 

sunset and sunrise, and daily turns for measuring the lengths and directions of their shadows. The 

students used online resources to obtain the same data for Miami, Florida. Then, they made line 

graphs of their findings for both locations. That day, the groups were working to identify patterns 

and consider possible explanations for both the patterns observed at each location and the 

differences between them. 



 5 

 Listening in on the group, Mrs. Raymond heard one member say that he noticed the 

daylight hours in Florida are more consistent than they are in Michigan and he thought that 

maybe the differences were related to the locations’ degrees of latitude. They had been learning 

about longitude and latitude in social studies. One of the group members wrote this potential 

explanation on chart paper to keep track of their ideas. Another group member shared that she 

noticed the lengths of shadows were shorter in September than they were in January but did not 

have an idea for why. Mrs. Raymond asked the group members to brainstorm ideas for how they 

could test the first student’s explanation. She also gave the students a flashlight and encouraged 

them to share ideas for how they might figure out the conditions that cause a shadow to be 

shorter or longer. She suggested the students record their ideas or possible models in their 

science notebooks. 

In the hypothetical vignette, we see reform-based instruction designed to develop 

students’ twenty-first century skills (i.e., innovation, problem solving, collaboration) for 

knowledgeable participation in a democratic society (http://www.p21.org). Embedded in this 

vision for a literate citizenry is the idea that literacy is multifarious. Different academic fields 

have different ways of reading, writing, thinking, and reasoning, and thus, one can have multiple 

literacies. The idea that we should teach these specialized literacies is known as disciplinary 

literacy (Shanahan & Shanahan, 2014).  

According to Fang and Coatum (2013), disciplinary literacy is grounded in four beliefs: 

(a) [S]chool subjects are disciplinary discourses recontextualized for educational 

purposes; 

(b) disciplines differ not just in content but also in the ways this content is produced, 

communicated, evaluated, and renovated; 

(c) disciplinary practices such as reading and writing are best learned and taught within 

each discipline; and 

http://www.p21.org/


 6 

(d) being literate in a discipline means understanding of both disciplinary content and 

disciplinary habits of mind (i.e., ways of reading, writing, viewing, speaking, thinking, 

reasoning, and critiquing). (p. 628) 
 

This understanding of literacy is now the cornerstone of recent science education reforms, such 

as A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas 

(National Research Council, 2012), the Next Generation Science Standards (NGSS; NGSS Lead 

States, 2013), and the Michigan Science Standards (MSS; Michigan Department of Education 

[MDE], 2015). A disciplinary literacy approach to science represents a conceptual and 

instructional shift from traditional understandings of what it means to be literate and to do 

science (Gee, 2015; MDE, 2015). Thus, teachers will need support for enacting instruction that 

aligns with the demands of the new standards (National Academies of Sciences, Engineering, 

and Medicine, 2015). 

 Because meaning is situated (Gee, 2015), diverse settings shape and are shaped by the 

educational goals, policies, practices, and outcomes of each individual teacher and the students in 

the classroom. Therefore, the nature of support needed to help teachers meet the new 

expectations is dependent upon the extent to which current instructional practices reflect, and the 

educational context in which instruction is enacted supports, the new vision for science 

education. Thus, the goal of this dissertation is to explore how context-specific pedagogical 

resources and constraints shape instructional practices in an elementary teacher’s fifth grade 

science class and the extent to which those practices align with a disciplinary literacy approach 

to science. 

 The remainder of this chapter provides a description of the problem space for this study 

and overviews of the research design, the significance, and the forthcoming chapters. 

Background of Problem 
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In the past two decades, much educational reform in Michigan has focused on reading 

instruction and student reading proficiency. These reform efforts have created many programs 

and plans for increasing reading proficiency across the state, but they have also had an effect on 

science instruction. Current science instruction, shaped to adhere to the literacy reforms, poses 

potential challenges for teachers who are now charged with implementing new science standards. 

In this section, I describe the literacy and science reforms of the past 20 years and their combined 

impact on current science instruction. 

Two Decades of Reforms Emphasizing Elementary Reading Instruction Affected Science 

Instruction 

In 2000, Michigan initiated a multi-tier system of support (MTSS) program with the 

premise that improved reading achievement would correlate with lower incidents of student 

misbehavior. To achieve at least 80 percent of students reading at school proficiency levels, the 

program mandated 90 minutes of uninterrupted reading instruction per day with a focus on the 

“big ideas” of reading: phonemic awareness, alphabetic principle, fluency, vocabulary, and 

comprehension. According to the program, the reading block should not include other elements 

of literacy, such as handwriting, grammar, the writing process, or keyboarding (miblsi.org). The 

program was only available in some districts at the time, but since then, the 90-minute (and 90+ 

minutes) block has become commonplace due to additional policies and programs, such as 

the No Child Left Behind Act of 2001 (No Child Left Behind [NCLB], 2002). 

In 2002, NCLB mandated yearly reading and mathematics assessments for all students in 

Grades 3 through 5. These assessments were used, in part, to determine a school’s yearly 

progress in raising student achievement. Failure to meet adequate yearly progress (AYP) had 

important repercussions, such as loss of funding, state control of the district, or mandatory 
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remedial services. This legislation, as the first national law to impose consequences for student 

performance, changed the way many schools allotted instructional time. For example, in 2007, 

the Center for Education Policy published a report on the state of instruction and curriculum after 

five years under NCLB (McMurrer, 2007). The report was based on a nationally representative 

survey of 349 responding school districts and showed that following the enactment of NCLB, 

58% of responding districts increased instructional time for elementary ELA instruction and 45% 

increased time for mathematics. In the 2006-2007 school year, elementary schools scheduled 

three times as many minutes per week for ELA as for science and social studies and two times as 

much for math. 

In 2010, Michigan adopted the Common Core State Standards (CCSS; National 

Governors Association Center for Best Practices, Council of Chief State School Officers 

[CCSSO], 2010) for ELA and math and drafted the Michigan Statewide Comprehensive Literacy 

Plan (MiLit Plan). The MiLit Plan called for districts to align their instruction with the CCSS and 

to develop district literacy plans in which the district described its methods for implementing 

highly effective literacy instruction and using literacy assessments and diagnostics. The district 

plan was also to detail an MTSS, which commonly recommends a two-hour reading block for 

Tier 1 instruction (Campsen, 2013, para. 2). 

In 2011, the stakes were raised on student achievement by tying student growth, as 

measured by state standardized assessments, to teacher effectiveness (Michigan Assessment 

Consortium, 2018). Currently, state assessments only report elementary student achievement for 

English Language Arts (ELA) and mathematics (Grades 3-7) and fifth grade social studies (This 

will change this year to include fifth grade science.). With teachers’ employment partially 
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dependent upon how well their students can perform on ELA and math assessments, teachers and 

schools prioritized ELA and math instruction, often at a cost to science instruction. 

First, little classroom time is allotted for science instruction. According to the most recent 

National Survey of Science and Mathematics Education [NSSME+] (Banilower et al., 2018), 

elementary teachers in Grades 4-6 spend an average of 82 minutes and 63 minutes per day on 

reading and math instruction, respectively, yet only 27 minutes per day on science instruction. 

Secondly, the little time dedicated to science is often spent reading and discussing science texts 

(Banilower et al., 2018; Barber, 2019) To help students access the science texts, teachers provide 

explicit instruction in generic reading skills and strategies, an instructional practice known as 

content-area literacy (Barber, 2019; Cervetti & Pearson, 2012; Chauvin & Theodore, 2015; Fang 

& Coatum, 2013; Moore, Readence, & Rickelman, 1983). Content-area literacy (CAL) mediates 

the high instructional demands for ELA with those for teaching science. Moreover, the approach 

aligned well with the state’s standards for science and ELA. In the next section, I describe the 

congruence between the demands of these two sets of standards and CAL as a pedagogical 

approach for meeting them. 

Content-Area Literacy a Match for the GLCEs for Science and the CCSS for ELA  

Content-area literacy is a pedagogical approach centered on strategies for supporting 

students in reading and writing content area texts (Moore, Readence, & Rickelman, 1983; Moss, 

2005). This approach aligned well with the state standards for science, which focused on 

understanding content, and the state standards for ELA, which call for cross-disciplinary and 

informational text reading. In this section, I describe those standards and CAL as appropriate for 

meeting them.  
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 In 2007, Michigan adopted the Grade Level Content Expectations for Science (GLCEs; 

MDE, 2007). The GLCEs were organized by discipline and by grade level. In the GLCEs, there 

were four disciplines: science processes, physical science, Earth science, and life science. Each 

discipline had at least one standard for K-7. Table 1.1 contains the standards for two disciplines, 

science processes and Earth science. 

Table 1.1 

GLCEs for Science Processes and Earth Science 

Standards for Science Processes Standards for Earth Science 

Develop an understanding that scientific inquiry and 

reasoning involves observing, questioning, 

investigating, recording, and developing solutions to 

problems. 

Develop an understanding of the warming of the Earth 

by the sun as a major source of energy for phenomenon 

on Earth and how the sun’s warming relates to weather, 

climate, seasons, and the water cycle. Understand how 

human interaction and use of natural resources affect the 

environment. 

Develop an understanding that scientific inquiry and 

investigations require analysis and communication of 

findings, using appropriate technology. 

Develop an understanding that the sun is the central and 

largest body in the solar system and that Earth and other 

objects in the sky move in a regular and predictable 

motion around the sun. Understand that those motions 

explain the day, year, moon phases, eclipses and the 

appearance of motion of objects across the sky. 

Understand that gravity is the force that keeps the planets 

in orbit around the sun and governs motion in the solar 

system. Develop an understanding that fossils and layers 

of Earth provide evidence of the history of Earth’s life 

forms, changes over long periods of time, and theories 

regarding Earth’s history and continental drift. 

Develop an understanding that claims and evidence 

for their scientific merit should be analyzed. 

Understand how scientists decide what constitutes 

scientific knowledge. Develop an understanding of 

the importance of reflection on scientific knowledge 

and its application to new situations to better 

understand the role of science in society and 

technology. 

 

 As Table 1.1 shows, the standards called for students to “develop an understanding” and 

“understand.” According to Anderson et al. (2001), understanding is a product of 

comprehension, which the National Reading Panel defines as the construction of meaning 

through interaction with texts (Eunice Kennedy Shriver National Institute of Child Health and 

Human Development, 2000, p. 14). Therefore, a reasonable interpretation of the goal for the 

science GLCEs was that students should learn to read texts and understand science content. 
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Decidedly, in 2010, when the CCSS (CCSSO, 2010) for ELA were adopted, this interpretation 

aligned well with the CCSS.  

 The CCSS for ELA “define general, cross-disciplinary literacy expectations” (CCSSO, 

2010, “Introduction,” para. 1) designed to help students become college and career ready by the 

conclusion of high school. But, standards are variously interpreted (Ball & Cohen, 1996) and 

thus, according to Dickinson and Young (1998), “cross-disciplinary” has had many meanings. In 

elementary school, cross-disciplinary usually means embedding literacy skills into content 

learning. An example of this is a lesson called “RAFTing with Raptors” created by the 

University of South Carolina’s Writing Project (Senn, McMurtie, & Coleman, 2013), specifically 

to meet CCSS for ELA and “focus on science literacy” (p. 53). After reading bird field guides 

and visiting a raptor center, students are tasked with demonstrating their understanding through 

creative writing using RAFT. RAFT is a writing strategy for which students choose a Role, such 

as writing from the perspective of an owl pellet or a tree branch, an Audience, such as a mouse 

or a logger, a Format, such as an obituary or a want ad, and a Topic, such as “why I’m important 

to you” and “I like to get my nails done” (pp. 53-55). The lesson’s creators explain that this 

lesson is a way to fulfill the demands for ELA instruction by offering a way to employ ELA 

strategies for learning content.  

Further, the CCSS (CCSSO, 2010) for elementary ELA demand that students spend equal 

amounts of time with informational texts as with fictional narratives. Informational texts, 

however, pose another challenge because they are information-dense, use abstract language and 

technical vocabulary, and are presented in an authoritative tone (Fang, 2005). Indeed, many 

teachers report students’ struggles to understand content-area texts as one of the biggest 

challenges to learning (Chauvin & Theodore, 2015). To remedy this issue, teachers embraced 
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materials such as Do I Really Have to Teach Reading? (Tovani, 2004) and Content Area 

Writing: Every Teacher’s Guide (Daniels, Zemelman, & Steineke, 2007) which promoted the use 

of generic comprehension and writing strategies for supporting students’ understanding of 

content-area texts, or content-area literacy.  

Together, these two sets of standards, the GLCEs (MDE, 2007) for science and the CCSS 

(CCSSO, 2010) for ELA reasonably suggested that science instruction could be met by reading 

science texts (see Table 1.2, using 5th grade standards). 

Table 1.2 

Congruency of GLCEs and CCSS 

GLCE for 5th Grade Science CCSS for 5th Grade  

Reading: Informational Text 

P.FM: Develop an understanding that the position and/or 

motion of an object is relative to a point of reference. 

Understand forces affect the motion and speed of an object 

and that the net force of an object is the total of all of the 

forces acting on it. Understand the Earth pulls down on objects 

with a force called gravity. Develop an understanding that 

some forces are in direct contact with objects, while other 

forces are not in direct contact with objects. 

  

CCSS.ELA-LITERACY.RI.5.2 Determine two 

or more main ideas of a text and explain how 

they are supported by key details; summarize the 

text. 

  

CCSS.ELA-LITERACY.RI.5.3 Explain the 

relationships or interactions between two or 

more individuals, events, ideas, or concepts in a 

historical, scientific, or technical text based on 

specific information in the text. 

  

CCSS.ELA-LITERACY.RI.5.4 Determine the 

meaning of general academic and domain-

specific words and phrases in a text relevant to a 

grade 5 topic or subject area. 

  

CCSS.ELA-LITERACY.RI.5.5 Compare the 

overall structure of events, ideas, concepts, or 

information in two or more texts. 

  

CCSS.ELA-LITERACY.RI.5.7 Draw on 

information from multiple print or digital 

sources, demonstrating the ability to locate an 

answer to a question quickly or to solve a 

problem efficiently. 

  

CCSS.ELA-LITERACY.RI.5.8 Explain how an 

author uses reasons and evidence to support 

particular points in a text, identifying which 

reasons and evidence support which point(s). 

L.OL: Develop an understanding that plants and animals 

(including humans) have basic requirements for maintaining 

life which include the need for air, water and a source of 

energy. Understand that all life forms can be classified as 

producers, consumers, or decomposers as they are all part of a 

global food chain where food/energy is supplied by plants 

which need light to produce food/energy. Develop an 

understanding that plants and animals can be classified by 

observable traits and physical characteristics. Understand 

tha[t] all living organisms are composed of cells and they 

exhibit cell growth and division. Understand that all plants and 

animals have a definite life cycle, body parts, and systems to 

perform specific life functions. 

  

L.HE: Develop an understanding that all life forms must 

reproduce to survive. Understand that characteristics of mature 

plants and animals may be inherited or acquired and that only 

inherited traits can be influenced by changes in the 

environment and by genetics. 
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L.EV: Develop an understanding that plants and animals have 

observable parts and characteristics that help them survive and 

flourish in their environments. Understand that fossils provide 

evidence that life forms have changed over time and were 

influenced by changes in environmental conditions. 

Understand that life forms either change (evolve) over time or 

risk extinction due to environmental changes and describe 

how scientists identify the relatedness of various organisms 

based on similarities in anatomical features. 

  

  

CCSS.ELA-LITERACY.RI.5.9 Integrate 

information from several texts on the same topic 

in order to write or speak about the subject 

knowledgeably. 

  

CCSS.ELA-LITERACY.RI.5.10 By the end of 

the year, read and comprehend informational 

texts, including history/social studies, science, 

and technical texts, at the high end of the grade 

4-5 text complexity band independently and 

proficiently. E.ES: Develop an understanding of the warming of the Earth 

by the sun as a major source of energy for phenomenon on 

Earth and how the sun's warming relates to weather, climate, 

seasons, and the water cycle. Understand how human 

interaction and use of natural resources affects the 

environment. 

E.ST: Develop an understanding that the sun is the central and 

largest body in the solar system and that Earth and other 

objects in the sky move in a regular and predictable motion 

around the sun. Understand that those motions explain the day, 

year, moon phases, eclipses and the appearance of motion of 

objects across the sky. Understand that gravity is the force that 

keeps the planets in orbit around the sun and governs motion 

in the solar system. Develop an understanding that fossils and 

layers of Earth provide evidence of the history of Earth's life 

forms, changes over long periods of time, and theories 

regarding Earth's history and continental drift. 

 

Table 1.2 shows that most of the fifth grade CCSS (CCSSO, 2010) for informational 

texts, if applied to texts that correspond with the science content (GLCE standards), would fulfill 

both science and informational reading goals. For example, in her book, Reading Science: 

Practical Strategies for Integrating Instruction, Jennifer L. Altieri (2016) offers many generic 

strategies for reading science texts, such as prereading for unfamiliar vocabulary words, using T-

charts to compare information from sources, and annotating texts with symbols. When used 

while reading a field guide about birds, for example, these strategies contribute to the goal of 

reading and comprehending science texts independently (CCSS.ELA.LITERACY.RI.5.10) and 

understanding that animals have observable characteristics that help them to survive 

(GLCE.L.EV). If combined with a task, such as the RAFT lesson above (Senn, McMurtie, & 
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Coleman, 2013), or writing an acrostic poem about the animals (i.e., Frye, Trathen, & Schlagal, 

2010) additional standards are fulfilled, such as integrating information from multiple sources to 

write about a topic (CCSS.ELA-LITERACY.RI.5.9). 

CAL helped teachers to bolster reading comprehension instruction–the aim for the 

literacy reforms, read informational texts–a requirement of the CCSS, and understand science 

content–the goal of the GLCEs. However, because Michigan has now replaced the GLCEs with 

new science standards that call for engaging students in disciplinary literacy practices, a CAL 

approach to science instruction is no longer sufficient. In the next section, I explain the new 

standards. 

New Standards: New Ways of Doing Science 

In 2012, the National Research Council (NRC) published A Framework for K-12 Science 

Education: Practices, Crosscutting Concepts, and Core Ideas (National Research Council, 2012; 

hereafter referred to as the Framework), which articulates a vision for science education in which 

students actively engage in scientific practices and apply crosscutting concepts in the context of 

understanding disciplinary-based core ideas. The Framework served as a guide for the 

development of the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). The 

NGSS are student performance expectations that specify, by grade level, the knowledge and 

practices necessary for students to become disciplinary literate by the end of high school. In 

2015, Michigan adopted the NGSS standards as the Michigan Science Standards (MSS; 

Michigan Department of Education [MDE], 2015). The MSS mirror the NGSS with the addition 

of Michigan-specific performance expectations in second, fourth, and fifth grades. 

The MSS are arranged by grade level and then by topics. Within each topic are three or 

four standards. For example, in fifth grade, there are 16 standards within 5 topics: Structure and 
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Properties of Matter (4); Matter and Energy in Organisms and Ecosystems (3); Earth’s Systems 

(3); Space Systems: Stars and the Solar System (3); and Engineering Design (3).  

In accordance with the Framework (National Research Council, 2012) and the NGSS 

(NGSS Lead States, 2013), the MSS (MDE, 2015) call for students to engage in science at the 

intersection of three dimensions: science practices (processes), crosscutting concepts (unifying 

themes), and core ideas (content) (see Appendix A); the nexus of these three dimensions 

encompasses disciplinary literacy in science (Houseal, Gillis, Helmsing, & Hutchison, 2016). 

The first dimension, science practices, reflects the actual work of scientists and describes what it 

means to “do science.” These eight practices (see Figure 1.1) support the generation and revision 

of scientific knowledge. 

Figure 1.1 

Screenshot of 3 Dimension 1: Scientific and Engineering Practices 

(National Research Council, 2012, p. 42) 

 

 

The second dimension describes the scientific concepts that transcend science disciplines: 

patterns; cause and effect; scale, proportion, and quantity; systems and systems models; energy 

and matter: flows, cycles, and conservation; structure and function; and stability and change. 
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These crosscutting concepts create a coherent scientific understanding of phenomena and are 

found in all areas of science. The third dimension, core ideas, “prepare[s] students with sufficient 

core knowledge so that they can later acquire additional information on their own” (National 

Research Council, 2012, p. 31). The core ideas help students to be producers and critical 

consumers of scientific information.  

The hypothetical vignette at the beginning of this chapter helps us to see how these three 

dimensions work in tandem to help students make sense of natural phenomena. In Mrs. 

Raymond’s hypothetical fifth grade, the project objective was to prepare students to meet the 

standard, “Represent data in graphical displays to reveal patterns of daily changes in length and 

direction of shadows, day and night, and the seasonal appearance of some stars in the night sky” 

(MDE, 2015, p. 19). Specifically, this standard requires students to engage in Practice 4: 

Analyzing and interpreting data to make sense of celestial patterns (the crosscutting concept) 

related to Earth’s rotation, revolution, and tilt (core ideas). In the process of meeting this 

expectation, students also obtained information (Practice 8) by collecting observational data and 

analyzed and interpreted data (Practice 4) by organizing the information into graphs and looking 

for patterns. They were also in the beginning stages of developing models (Practice 2) for 

conceptualizing their current explanations (Practice 6) for the relationship between hours of 

daylight and a location’s latitude. In addition, they were working collaboratively, a component of 

Practice 8. 

The MSS (MDE, 2015) require a paradigm shift in how teachers and students 

conceptualize and engage in science. In the past, science has been thought of as a body of 

knowledge attainable by reading texts. The MSS present science as a culture of practice 

(Shanahan & Shanahan, 2014) that is both a body of knowledge and a set of practices. Therefore, 
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in order for teachers to enact instruction that aligns with the new vision for science teaching, they 

will need support for understanding and engaging students in the practices, concepts, and core 

ideas that are inherent in doing science. The type and extent of that support depends on teachers’ 

instructional contexts. This study explores the resources of constraints of one teacher’s 

instructional context prior to her school’s adoption of the MSS (MDE, 2015). 

Supporting Teachers in Making Instructional Change Requires Knowledge of Context 

Moving from the current approach to science instruction to an approach that foregrounds 

the practices of scientists cannot be achieved simply by changing standards. Teachers’ 

instructional practices shape and are shaped by their contexts (Ball & Cohen, 1996; Bloome, 

Carter, Christian, Otto, & Shuart-Faris, 2005; National Academies of Sciences, Engineering, and 

Medicine, 2015). Specifically, enacted instruction is influenced by and influences what teachers 

think about their students’ familiarity, potential, and struggles with the content and tasks 

presented; their own understandings of the content and pedagogy; their available materials and 

instructional resources; the intellectual and social dynamics of the class; and institutional and 

community expectations and policies (Ball & Cohen, 1996).  

Thus, understanding the potential for teachers to adopt a disciplinary understanding of 

science and to adapt their instructional practices accordingly requires understanding their 

instructional contexts. The goal of this dissertation is to inquire deeply into one teacher’s context 

and practices to explore the extent to which they align with a disciplinary approach.  

Statement of Purpose and Research Question 

Michigan’s new science standards, the Michigan Science Standards (MSS; MDE, 2015) 

call for instruction in disciplinary literacy, tasking teachers with understanding, or becoming 

literate in, and teaching the practices and habits of mind inherent in engaging in science 



 18 

disciplines. The new standards are markedly different from the previous standards, and therefore, 

teachers will need help to enact instruction consistent with the new standards. According to the 

National Academies of Sciences, Engineering, and Medicine (2015), helping teachers to bridge 

the differences between current instruction and the new way of teaching science will require 

attending to teachers’ individual, context-specific needs (pp. 4-6). The purpose of this case study 

is to explore the context-specific needs of an elementary teacher in the teaching of fifth grade 

science. The research question guiding this inquiry is How do pedagogical resources and 

constraints shape a teacher’s instructional practices in the teaching of elementary science, and 

to what extent do these practices conform with a disciplinary approach to science?  

Research Approach 

This qualitative, microethnographic (Bloome, Carter, Christian, Otto, & Shuart-Faris, 

2005; Spradley, 2009) research is a common case study (Yin, 2014) of one elementary teacher’s 

practices in the teaching of two units of science. Common case study research is a deep 

investigation into the circumstances of an everyday situation (Yin, 2014), science instruction, 

within its natural context, the elementary classroom, through the collection of data from multiple 

sources and several different methods. For this study I collected data from two main sources, an 

interview with the participating teacher and classroom observations. From these two sources, I 

have audio recordings, detailed field notes, classroom artifacts, and digital photographs.  

Consistent with microethnographic and case study research, I treat the boundaries 

between the context and the phenomenon as indistinct. In the elementary science class, the 

teacher, the learners, the content, and the environment interact (Cohen, Raudenbush, & Ball, 

2003) and through those interactions construct both the conditions under which instructional 
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practices are enacted and the instructional practices. Linda Darling-Hammond (2006) describes 

this inseparable nature of teaching and context:  

[R]ecent research has made it clear that all teaching and all learning are shaped by 

the context in which they occur – by the nature of the subject matter, the goals of 

instruction, the individual experiences, interests, and understandings of learners 

and teachers, and the settings within which teaching and learning take place. (115) 

 

In other words, instruction is a conglomerate of personal (i.e., the teacher’s 

knowledge and preparation), local (i.e., school schedules and curricula), and institutional 

(i.e., policies, reforms, and standards) dynamics and influences. In turn, instruction 

shapes the context as ideas and communities evolve from it.  

Significance of Study 

Historically, reforms designed to transform teaching from rote, teacher-centered 

instruction to progressive student-centered instruction have had varied levels of success (Cohen, 

2011; Cuban, 2013; Loeb, Knapp, Elfers, 2008). Plentiful research juxtaposes teachers’ enacted 

instruction with the instructional ideals of reform efforts to determine the extent to which 

teachers’ instruction aligns with reform-based instruction (e.g., Bismack, Arias, Davis, & 

Palincsar, 2014; Brezicha, Bergmark, & Mitra, 2015; Charalambous, Hill, & Mitchell, 2012; 

Cohen, 1990; Concannon-Gibney & McCarthy, 2012; Glen & Dotger, 2013; Remillard & 

Bryans, 2004; Roychoudhury & Rice, 2010; Vo, Forbes, Zangori, & Schwarz, 2015). The 

discrepancies and continuities are frequently explained by mediating effects of the instructional 

context. While this information is valuable and establishes the strong interdependent relationship 

between context and instruction (Ball & Cohen, 1996; Bloome et al., 2005), little research 

attends to the capacity of specific contexts to support reform-based instruction prior to the roll-

out of reforms. This study addresses a need for assessing the compatibility of existing 
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instructional contexts by studying the liminal space between fifth grade science instruction 

aligned with the GLCEs (MDE, 2007) and that intended by the MSS (MDE, 2015).  

Furthermore, in Michigan, the annual teacher evaluation process requires teachers to set 

individual performance goals for improving their instruction. Currently, though, teacher 

professional learning opportunities are most likely to be one-size-fits-all professional 

development models focused on skills assumed to be widely applicable. The findings of this 

study support the growing body of research literature calling for differentiated professional 

learning, or professional learning that addresses teachers’ individual weaknesses and capitalizes 

on their strengths relative to their instructional contexts (Chard, 2004; Hill, 2009; National 

Academies of Sciences, Engineering, and Medicine, 2015) and proposes a process for 

scaffolding current instructional practices toward reform-based practices.  

Organization of the Dissertation 

In Chapter 2, I develop the conceptual framework for this dissertation establishing 

disciplinary literacy for science instruction as a paradigm shift that will require significant 

conceptual and instructional changes to teacher practice, context as a mediator for enacting 

instruction congruent with reform ideals, and the need for attending to the capacity of 

instructional contexts to support future reform ideals. Chapter 3 describes the context, the 

participants, and the data collection and analytic methodology I employed to iteratively analyze 

the observation and interview data from a range of analytic perspectives. 

 In Chapter 4, I show how this analysis reveals the conceptualizations of science 

presented by the resources and constraints of the participating teacher’s instructional context and 

how these conceptualizations are manifested in instructional practices. I describe the extent to 
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which these instructional practices conform with the disciplinary literacy approach to science 

called for in the Michigan Science Standards (MDE, 2015).  

 Chapter 5 describes the conceptual process through which I identified instructional 

scaffolds for leveraging current instructional practices in transitioning to reform-based 

instructional practices. I present this process as a potential model for designing differentiated 

professional learning. Finally, I synthesize the findings, putting them into conversation with 

recent literature, and present the implications and limitations of this research.  
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CHAPTER II 

Review of Literature 

 

The Next Generation Science Standards (NGSS; NGSS Lead States, 2013), adopted in 

Michigan as the Michigan Science Standards (MSS; Michigan Department of Education [MDE], 

2015) are based on A Framework for K-12 Science Education: Practices, Crosscutting Concepts, 

and Core Ideas (National Research Council, 2012), which calls for science instruction in which 

students use knowledge of, and generate scientific ideas through, authentic scientific practices. 

This disciplinary literacy approach to science instruction acknowledges that reading, writing, and 

using language are integral to scientific practice (Hand et al., 2003; Yore, Florence, Pearson, & 

Weaver, 2006). This new vision for science education represents a paradigm shift in how science 

is understood, taught, and learned.  

In the past, reforms similar to the NGSS and the MSS designed to change how teachers 

teach and what students do have resulted in only modest modifications in instructional practice 

(Cohen, 2011; Cuban, 2013; Fenstermacher & Richardson, 2005; Kennedy, 2005; Payne, 2008). 

Studies exploring the reasons reforms have not effected widespread and substantial change point 

to the complex (Cuban, 2013), fragmented (Cohen, 2011) systems in which classrooms exist and 

to the resources and constraints of individual classroom contexts that shape how reforms are 

actualized. In this chapter I review what is known about the role of context in the implementation 

of reform-based practices. I argue that despite the plethora of research in this area, few studies 

explore the liminal space between current instructional practice and upcoming reforms and the 
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extent to which contextual resources and constraints are compatible with reform expectations. 

This knowledge is essential for discerning the nature of support necessary for teachers within 

specific contexts to begin implementing instruction aligned with the demands of new reforms.  

Let me begin by exploring the paradigm shift.  

The Paradigm Shift from Content-Area Literacy to Disciplinary Literacy Instruction 

 As described in the first chapter, a disciplinary literacy approach to science education is a 

conceptual and instructional shift from the previous standards and their associated instructional 

practices. The previous pedagogical approach to science instruction, Content-Area Literacy  

(CAL) instruction is insufficient for meeting the disciplinary literacy demands of the NGSS and 

MSS. In this section, I describe the theoretical perspectives undergirding disciplinary literacy, 

distinguish between CAL and disciplinary literacy, and review the expectations for disciplinary 

literacy in science.  

The Sociocultural Foundations and Implications of Disciplinary Literacy 

Disciplinary literacy is based on sociocultural theories of language (Gee 2001, 2004, 

2015; Schleppegrell, 2004) that posit that literacy practices are used in particular ways in 

particular contexts. This conception of literacy contrasts with the traditional understanding of 

literacy as the ability to read and write. In this section, I describe the theoretical foundation of 

disciplinary literacy. 

Theoretical Understanding of Disciplinary Literacy 

According to Gee (2015), “We are all multiple kinds of people” (p. 173) because we 

assume different identities and participate in a variety of activities based on our contexts. In each 

context, we establish who we are–what socially-situated identity we are assuming–and what we 

are doing–what socially-situated activity we are engaged in (p. 172).  
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Likewise, all language is situated (Gee, 2004, 2015; Halliday, 1994); words and deeds 

have specific meanings and purposes relative to the context in which they are shared. For 

example, the word meter brings different images in the context of a literature class than it does in 

a science or mathematics class. Therefore, English is not just one general language; it is 

comprised of many different socially-constructed languages known as social languages (Gee, 

2015, p. 101). Social languages are the unique ways with oral and written words that make 

manifest socially-situated identities and activities of a community of practice (Gee, 2004). They 

are intrinsically tied to the doing (Gee, 2001). For example, someone who identifies as a Catholic 

parishioner must know the words of the responses as well as the cadence with which they are 

recited at a service.  

When members of the community of practice are able to produce and consume the social 

language, they are then recognized as socialized into what Gee (2015) calls a “Discourse with a 

capital ‘D’” (p. 172). Discourses include social languages as well as the habits of mind and 

cultural tools that are characteristic of the community, as Gee (2015) explains, 

Being in a Discourse is being able to engage in a particular sort of ‘dance’ with 

words, deeds, values, feelings, other people, objects, tools, technologies, places 

and times so as to get recognised as a distinctive who doing a distinctive sort of 

what. Being able to understand a Discourse is being able to recognise such 

‘dances.’ (p. 172) 

 

Disciplines, such as science, are Discourses, with their own unique ways for using 

language and participating in the practices that define the Discourse. This perspective is the basis 

for disciplinary literacy. To be literate in the Discourse of science requires understanding the 

specialized language and norms of participation inherent in doing science.  

Differences Between Content-Area Literacy and Disciplinary Literacy 
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A common misconception is that disciplinary literacy is synonymous with content-area 

literacy (Shanahan & Shanahan, 2012). In this section I describe content-area literacy and the 

problematic nature of applying “content-free” (Cervetti & Pearson, 2012, p. 582) strategies in 

disciplinary studies. Then, I describe the disciplinary literacy expectations of the new standards. 

Metacognitive Studies, Strategy Instruction, and Content-Area Literacy 

In 1978, the National Institute of Education [NIE] requested the creation of a center for 

studying best practices in reading instruction. The NIE based its request on three assumptions: 

reading comprehension can be taught, it is being taught, but it is not being taught well (Durkin, 

1978-1979). Dolores Durkin, who identified herself as “a veteran observer of elementary 

classrooms” (p. 483) was surprised by the assumption reading comprehension was being taught, 

so she conducted a study to determine the prevalence and foci of comprehension instruction. The 

study was comprised of sub-studies. For the first sub-study, she observed fourth grade reading 

and social studies instruction in 24 classrooms from 13 school systems, and in the second those 

subjects in 3-6 grades in 4 classrooms from 3 schools. The third sub-study involved observations 

of three students, one child from each Grade 3, 5, and 6. She found that there was no 

comprehension instruction occurring in classrooms except to assess student comprehension 

through interrogation. Reading instruction largely involved phonics, word analysis, definitions, 

and assignments (Durkin 1978-1979). 

Despite these results, Durkin’s study prompted additional research into how to best 

support students’ independent comprehension abilities. This line of research focused on 

metacognition, or “the process of thinking about one’s own thinking” (Tracey & Morrow, 2012, 

p. 71). Metacognition studies indicated that good readers use a variety of metacognitive 

strategies to aid their reading comprehension.  
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Good readers activate their relevant background knowledge to make connections between 

old and new information and make inferences. They ask themselves clarifying questions when 

they do not understand and have a metacognitive toolkit of strategies for remedying confusion. 

Good readers summarize by separating main ideas and details and synthesize their thinking. 

They also use sensory images to enhance understanding (Tovani, 2004, p. 5).  

By identifying what good readers do, teachers can help struggling readers to make sense 

of texts by teaching them how to use the metacognitive strategies that support the reading 

comprehension of good readers. Strategy instruction is taught through a gradual release of 

responsibility model in which the teacher provides explicit instruction in how and when to use a 

strategy, models the strategy in use, and gradually helps students to assume responsibility for 

using the strategy independently (Duke & Pearson, 2002). Teachers who are well-prepared to 

teach strategy instruction in this way have a positive effect on student reading comprehension 

(Eunice Kennedy Shriver National Institute of Child Health and Human Development, 2000).  

Content-area literacy instruction applies the tenets of strategy instruction to the content 

areas. The premise of content-area literacy instruction is teachers can help students to access 

complex, content-area texts, such as science texts, by using literacy strategies to support 

comprehension (Moore, Readence, & Rickelman, 1983; Moss, 2005). For example, content-area 

literacy instruction assumes that vocabulary learning is the same across school subjects 

(Shanahan & Shanahan, 2012), and therefore strategies for understanding vocabulary area are 

universally applicable. One strategy for helping students remember and understand vocabulary 

words is creating vocabulary cards using the Frayer Model (Fisher, Brozo, Frey, & Ivey, 2011). 

This before reading strategy requires students to divide a card into quadrants and put specific 

information in each box: the definition, characteristics or a description of the vocabulary word, 
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examples of the word, and nonexamples. According to Fisher et al., (2011), this vocabulary 

routine helps students by relating what they do not yet know to what they do know and it 

requires students to interact with the words for a longer period of time thereby improving 

memory (p. 135). This strategy seems less useful for words like photosynthesis, tectonic plate, 

and Asteroid Belt than for words like amorous, strutted, or even parallelogram. Shanahan and 

Shanahan (2012) assert that what would be helpful for helping students to learn science words, 

for example, would be to analyze the Greek and Latin roots because science words are purposely 

constructed with these derivatives, so as to “offer a more complete and precise description of 

concepts than is possible with vernacular terms” and to make the words “more resistant to 

meaning changes and to the morphological shifts that occur across time and across languages” 

(p. 9). Shanahan and Shanahan (2012), of course, are advocating for a disciplinary literacy 

approach to vocabulary instruction. 

Disciplinary Literacy in Three Dimensions 

As mentioned in the first chapter, according to the Framework (National Research 

Council, 2012), disciplinary literacy is realized at the intersection of three dimensions: practices 

(disciplinary processes), crosscutting concepts (big ideas), and core ideas (content). In this 

section I provide a brief overview of each of these dimensions. 

The eight scientific practices (Appendix A) refer to the processes that construct scientific 

knowledge. The Framework (National Research Council, 2012) claims that the focus on 

scientific practices contributes to better conceptualizations of science by extinguishing the 

mistaken notions that the work of scientists can be reduced to a set of linear steps, commonly 

referred to as “The Scientific Method,” and that all scientists use a universal approach. Below I 

list the practices and their overall intent: 
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• Asking questions about a phenomenon: Students should have experience formulating 

questions that can be answered empirically. 

• Developing and using models: Students should use physical and conceptual models to 

help them develop explanations about phenomena. 

• Planning and carrying out investigations: Students should carry out investigations for 

which they have carefully planned the data to be collected, the measures and levels of 

accuracy, and variables, if necessary. 

• Analyzing and interpreting data: Students should organize data into graphical 

representations to derive meaning from data. 

• Using mathematics and computational thinking: Students should use tools from math and 

computation to collect and analyze data. 

• Constructing explanations: Students should construct and propose hypotheses, which are 

probable explanations for phenomena. 

• Engaging in argument from evidence. Argumentation is an integral practice for 

advancing scientific work (Palincsar, 2013, p. 11), and students should have experience 

with reasoning, collecting evidence, presenting and supporting claims, and critiquing. 

• Obtaining, evaluating, and communicating information: Students should communicate 

their scientific arguments and findings and engage in thoughtful critique. 

 

As evident, reading, writing, speaking, thinking, and reasoning are embedded in these 

practices. 

The crosscutting concepts refer to the ways scientists organize ideas. Two of these 

crosscutting concepts are “fundamental to the nature of science” (National Research Council, 

2012, p. 84): observed patterns can be explained and science seeks to explain cause-and-effect 

relationships. Additional crosscutting concepts include: scale, proportion, and quantity; systems 

and systems models, energy and matter: flow, cycles, and conservation; structure and function; 

and stability and change.  

Finally, the core ideas–matter and its interactions, stability: forces and interactions, 

energy, and waves and their applications in technologies for information transfer answer broad 

questions inherent in scientific work: What is everything made of? and Why do things happen? 

Disciplinary literacy instruction presents these dimensions as intricately woven, and that 

to unwind them is to suggest that science is either about content or about practices rather than an 

interplay of both. This understanding of science, reflected in the new science standards, 
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drastically changes expectations for how science is taught and learned, representing a paradigm 

shift in science education. 

 Historically, reform efforts aimed at conceptual and instructional change have had varied 

levels of success (Cuban, 2013; Cohen, 2011; Judson, Ernzen, Krause, Middleton, & Culbertson, 

2016, Payne, 2008). Research examining the differences in reform implementation suggests that 

contextual resources and constraints of individual classrooms in which teachers teach mitigate 

the effectiveness of instruction. In the next section, I explore what is known about how 

instruction shapes and is shaped by context. 

The Interplay of Instruction and Context 

All educational reforms center on teaching (Shulman, 1992). However, according to 

Shulman (1992) measures of reform that attend only to observable teaching performance neglect 

“other critical aspects of teaching” (p. 14). Cuban (2013) argues that learning is the sum of 

classroom environment and events, the school setting, and teacher quality. Fenstermacher and 

Richardson (2005) concur that the actions of the teacher are but one element necessary for 

successful teaching: “For teaching to be both good and successful, it must be conjoined with 

factors well beyond the range of control of the classroom teacher” (p. 186). Specifically, they 

argue that in addition to good teaching, successful teaching is dependent upon willing and 

effortful learners, supportive environments, and opportunities for teaching and learning (p. 190).  

Kennedy (2005) asserts that teachers are aware of the intentions and goals of reforms, but those 

ideals are among many factors dictating instruction. She found that classroom events and 

“routine conditions of classroom life” (p. 2)–materials, time, students, student ideas, 

accessibility, and disruptions, for example–are the real drivers of instructional practice. In sum, 

these scholars acknowledge the important role of context in realizing reform-based teaching. 
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In this section, I explore the interplay of context and instruction. First, I present the 

theoretical perspective that guides my understanding of the relationship between context and 

instruction. Then, I present examples from research that show the challenges teachers face in 

enacting reform-based practices that are incoherent with their instructional contexts. Finally, I 

make the case for proactive inquiries into the liminal space between existing instruction and 

reform-based practices. 

Implied Personhood and Foregrounding Events 

Classrooms contexts construct and are constructed by interactions. This theoretical 

perspective is based on two tenets, implied personhood and the foregrounding of events (Bloome 

et al., 2005). Personhood is socially constructed and includes the characteristics that are assumed 

to define a person. Bloome et al. (2005) foreground three aspects of personhood for the study of 

classroom events. First, people are agentive and resist feeling out of control. They intentionally 

negotiate their personhood by grappling with meanings, relationships, and ideas. Second, people 

are situated; they influence and are influenced by their contexts. Third, people and what they do 

are indistinguishable boundaries, for example a teacher teaches.  

Foregrounding events means focusing on the social events of a classroom. A social event 

is a theoretical construct for “making an inquiry into how people create meaning through how 

they act and react to each other” (Bloome et al., 2005, “Focusing on Events,” para. 1). This 

notion is explained through several understandings of events. One, people act and react to each 

other in various ways and in response to actions happening in the present, to previous actions, or 

to future actions. Two, reactions and actions are not necessarily simultaneous, but they can be, 

and the reactions and actions might manifest from a sequence of actions or an individual action. 

Finally, meaning and significance reside in the actions and reactions people share. 
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According to Bloome et al. (2005), in the classroom, these two elements mean that  

Together teachers and students address the circumstances in which they find themselves, 

and together they construct their classroom worlds. They often do so with creativity, 

adapting the cultural practices and social structures thrust on them in ways that may 

undercut or eschew the ideological agenda of the broader social institutions within which 

classrooms are embedded. (Chapter 1, para. 4) 
 

This perspective forms the foundation for this dissertation; to understand the teacher’s 

instruction, I must also understand the context in which she teaches. 

The Challenge of Incoherence Between Context and Reform-Based Interventions 

Instruction is situated (Remillard & Heck, 2014) and jointly and reciprocally shaped by 

“teachers, students, and materials in particular contexts” (Ball & Cohen, 1996, p. 7). Teachers 

enact instruction across five contextual domains: what they think to be true about their students’ 

ideas, aptitudes, and learning; their own understandings of material and content; their resources 

and requirements for lessons; the intellectual and social environment of the class; and broader 

community and policy contexts in which teachers work (Ball & Cohen, 1996). In this section, I 

explore the relationship between context and reform efforts, specifically highlighting research 

demonstrating the challenge of realizing reform ideals when associated practices do not cohere 

with existing resources and constraints of specific contexts. 

Teachers’ prior experiences; beliefs about curriculum, instruction, and students; and their 

understanding of materials and standards influence their instructional practices (Ball & Cohen, 

1996; Glen & Dotger, 2013; Judson et al., 2016; Vo, Forbes, Zangori, & Schwarz, 2015). An 

iconic case study by Cohen (1990), describes the discontinuities between the goals of a new 

progressive mathematics reform in the state of California and the mathematical knowledge of an 

early elementary teacher, Mrs. Oublier. Mrs. O held a traditional understanding of mathematics 

as a static body of knowledge while the reform centered mathematics teaching and learning on 

conceptual ideas and explanations of mathematical thinking and evidence. Mrs. O attended a 
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workshop and understood the reform’s vision for mathematics education and was eager to adapt 

her instruction and use the new mathematics curriculum and materials. Nonetheless, Mrs. O’s 

pre-existing understanding of mathematics and her limited conceptual knowledge of math 

allowed for only surface level adaptations to her instruction. For example, Mrs. O engaged the 

students with new manipulatives, but she facilitated their use in mechanical and algorithmic 

ways. By refashioning the new instructional practices into her previous, Mrs. O continued to 

present mathematics as an exercise in right and wrong answers rather than as an act of inquiry, 

collaboration, and reasoning and evidence, as the reform intended.  

Similarly, Roychoudhury and Rice (2010) found that teachers’ epistemic science 

knowledge contributed to the extent to which they could enact pedagogical practices aligned 

with reform-based science instruction. The study involved 21 elementary teachers from seven 

urban and 14 suburban schools who were enrolled in a three-credit physical science course as 

part of a summer institute. The course design was such that the teachers learned through the very 

practices the instructors hoped the in-service teachers would use to teach their students. The in-

service teachers were successful in learning the science objectives for the course (p. 196) yet 

many did not understand the benefit of taking the pedagogy as an instructional whole. Eight of 

the 21 in-service teachers indicated via survey responses that they would take up some of the 

practices embedded in the pedagogy, such as group work or the hands-on activities, but not, for 

example, practices related to argumentation (pp. 196-197). The researchers speculated that the 

in-service teachers’ “lack of clear understanding of the epistemic facets of the pedagogy 

indicates that teachers may find it difficult to learn both content and pedagogy at the same time” 

(p. 200). Roychoudhury and Rice’s (2010) and Cohen’s (1990) studies, consistent with other 

research (e.g., Charalambous, Hill, & Mitchell, 2012), show that despite supports for enacting 
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reform-based instruction, teachers without the prior experiences and knowledge of disciplinary 

science struggle to integrate reform-based instructional practices. 

In addition to teachers’ ideas and experiences, as part of the instructional context, 

students and their aptitudes, needs, and understandings also shape (and are shaped by) instruction 

(Cohen, 2011; Fenstermacher & Richardson, 2005; Kennedy, 2005). Jung, Brown, and Karp 

(2014) used data from the Early Childhood Longitudinal Study-Kindergarten to examine the 

relationship between school resources, teacher characteristics, and early mathematics learning. 

One resource the researchers analyzed was the use of manipulatives for kindergarten 

mathematics instruction. Manipulatives are commonly associated with reform-based practices for 

increasing students’ conceptual understanding. Analyses indicated that schools that used math 

manipulatives for kindergarten instruction had significantly higher mean achievement measures 

at the end of kindergarten than did schools that did not use math manipulatives for instruction. 

However, for individual students, engagement with manipulatives did not lead to significant 

progress. Specifically, for students who entered kindergarten with high mathematical abilities, 

manipulatives were not as beneficial as they were for students who entered kindergarten with 

little mathematical knowledge. This study indicates that students’ diverse achievement levels 

affect the success of reform-based instructional practices.   

Cohen (2011) asserts that the success of reforms is particularly difficult because teachers’ 

efforts can only be successful if their students “strive for and achieve success” (p. 10). Yet, as he 

explains, students “regularly fear improvement, doubt its possibility, are indifferent, or prefer 

something other than what [teachers] offer” (p. 11). Students’ reluctance to adopt new learning 

habits and participate productively in learning activities challenged teachers’ in Concannon-

Gibney and McCarthy’s (2012) study efforts to implement reform-based science instruction. The 
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researchers examined how teachers took up knowledge from a professional development seminar 

on science-literacy integration. Seven elementary and middle school science teachers from Long 

Island, New York, participated in 12 weekly hour-long workshops to learn how to use the 

science-literacy integration routine, Do-Read-Do. The workshop instructors taught using Duke 

and Pearson’s (2002) five-step model for the gradual release of responsibility for comprehension 

development. In doing so, the instructors also intended to model for the teacher attendees how to 

use this practice in their own classrooms during the “Read” segment of the instructional routine.  

 The Do-Read-Do routine starts with a brief science investigation, a “do,” and is followed 

by a reading activity. During the reading activity, the teacher uses the gradual release of 

responsibility model to teach students how to use one of four comprehension strategies: 

activating prior knowledge, generating questions, clarifying, and using visual summaries (p. 76). 

The Model’s sequence begins with the teacher offering an explicit description of the reading 

strategy to be used. Next, the teacher models and invites collaborative use of the strategy. Then, 

students practice using the strategy with teacher guidance. Finally, the students independently 

use the strategy (p. 75). The Do-Read-Do routine then wraps up; the class uses the knowledge 

gained from the reading activity to revise the first investigation and carry out the new “do.” 

 The researchers’ case study explored the teachers’ experiences with implementing the 

Do-Read-Do routine. In general, the researchers claim the teachers had interest in the new 

routine and gained confidence with using it over the course of the workshop. Unfortunately, the 

teachers reported many difficulties with implementing the new routine. One, the teachers found 

student behaviors to be hindering proper implementation. For some, the collaborative 

participation structures involved in the routine were too different for students who were not 

accustomed to working as teams and listening to their peers (p. 82). Other teachers found the 
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activities in the lessons promoted off-task behaviors. Another challenge the teachers encountered 

was the students’ reluctance to participate in the new routine. Specifically, the teachers 

mentioned the difficulty with trying to get students to restructure their learning habits to spend 

time thinking about their thinking when using comprehension strategies (p. 83). Moving forward 

with science instruction in these classrooms likely will require the teachers and students to 

“negotiate and renegotiate” (Cohen, 2011, p. 11) the goals for science instruction. Those goals 

might drive instruction that does not adequately resemble the intentions of the Do-Read-Do 

routine.  

 As previously mentioned, enacted instruction reflects a plethora of contextual factors that 

are beyond teachers’ control (Fenstermacher & Richardson, 2005; Kennedy, 2005), including 

schedules, policies, resources, and social capital, and that are not always coherent with reform-

based practices. For example, the teachers in Concannon-Gibney and McCarthy’s (2012) study 

felt they did not have enough time in their schedules for using the Read-Do-Read routine with 

regularity. They reported the lessons took longer than the posited instructional time necessary, 

state testing interfered, and/or the preparation time was too consuming. These time conflicts 

meant most teachers only included the Read-Do-Read routine as part of their practices six or 

seven times over a four-month period. 

 Similarly, in a study by Bismack, Arias, Davis, and Palincsar (2014) exploring two 

fourth-grade teachers’ use of educative curriculum materials–curriculum materials designed to 

support teacher learning–for enacting NGSS-aligned (NGSS Lead States, 2013) instruction, 

teachers cited time constraints as a reason for deviating from the lesson plans. Interview analyses 

revealed that the teachers found engaging students with science phenomena as described in the 

curriculum required a great deal of instructional time (p. 506). To compensate for the time 
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demands, teachers either omitted the practice, such as eliminating a field trip around the 

schoolyard to observe science phenomena, or eliminated other activities in the lesson plans. 

Typically the eliminated activities involved the scientific practices of constructing arguments and 

communicating understanding of scientific phenomena, activities found in the final steps of the 

lesson plans for which teachers had run out of instructional time. 

 Other research points to the relationship between policy demands and instruction as an 

obstacle for the enactment of reform-based practices. For example, Remillard and Bryans (2004) 

conducted a 5-year study on the implementation of a new mathematics curriculum in a small 

urban elementary school. To support implementation, teachers attended monthly professional 

development meetings focused on the lessons and concepts as well as educative curriculum 

materials. Specifically, the materials included “information for the teacher in the form of 

mathematical explanations, examples of student work and talk, summaries of relevant research, 

and suggestions for assessment” (p. 357). Yet, because standardized tests required adept 

computational skills, one of the teachers, Mr. Jackson, used a traditional textbook and focused 

his lessons on rote algorithmic practice. 

 School-level policies also inhibit reform-based practices. Several previously mentioned 

studies (Bismack, et al., 2014; Concannon-Gibney & McCarthy, 2012) described the extensive 

time required to implement reform-based science instruction, but as mentioned in the first 

chapter, in response to reading and mathematics expectations, many elementary schools have 

established rigid reading blocks (Campsen, 2013) and decreased instructional time for science 

and social studies (Banilower et al., 2018). School policies that limit science instructional time 

also likely limit the success of reform-based science instruction. 

 Finally, teachers enact instruction that reflects the accessibility and intensity of their 
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social resources, which foster or limit the success of reform-based practices. According to Cohen 

(2011) equally adept teachers encounter different risks and opportunities due to their social 

resources. For example, Brezicha, Bergmark, and Mitra (2015) conducted a 3-year study 

examining the relationship between school leadership and teachers’ understandings of a new 

school reform to foster civic engagement. The school’s principal presented the reform’s structure 

and goals to the teachers and tasked them with working together to design instruction aligned 

with the goals. Analysis of interview and observational data indicated that teachers’ 

understandings and their subsequent enactments of the civics reform were, in part, reflective of 

each teacher’s social supports. For example, while one of the participating teachers worked 

closely with the principal and assumed a leadership role in helping other teachers, another 

teacher expressed frustration that she did not have a “‘strong network of peers to rely on for 

support’” (p. 112) and struggled to design and implement appropriate civics instruction (p. 112).  

 As evidenced in the Brezicha et al. (2015) study, as part of the instructional context, 

principals can be a positive or negative social resource for teachers implementing reform-based 

practices, but a small study by McNeill, Lowenhaupt, and Katsch-Singer (2018) suggests the 

latter. The researchers interviewed 26 K-8 principals from six districts in an urban area in the 

Northeastern United States regarding their conceptions of good science instruction. The 

interview also included video analyses in which principals viewed two short clips of classroom 

science instruction and described what they noticed about the instruction and how they would 

evaluate what they saw. Data analyses indicated that the majority of the participating elementary 

principals were unprepared for leading science reforms and evaluating teachers’ reform-based 

science instruction. When describing “good” science instruction, few principals mentioned the 

NGSS (NGSS Lead States, 2013) practices related to sensemaking, such as analyzing data, 
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constructing explanations, and developing models, or those related to critiquing, such as 

constructing arguments. In contrast, the majority of principals described good science instruction 

as including “hands-on” activities. Despite this agreement, principals expressed varied 

definitions for “hands-on.” Some principals associated hands-on with conducting experiments 

while for others the term was used a vague descriptor for any activity that got students “‘moving 

and active’” (p. 446).   

 When noticing and evaluating classroom science instruction, principals noticed general 

pedagogical aspects and student engagement but not elements of instruction associated with the 

science practices or disciplinary-core ideas outlined in the NGSS. For example, in Video 1, 

which was a clip of instruction aligned with NGSS practices and disciplinary core ideas, students 

were sitting in a circle engaged in argumentation. Nonetheless, a participating principal, 

Principal 24, attended only to how many voices could be heard rather than the content of the 

students’ discussions. The principal saw the activity as unstructured and therefore, evaluated the 

teacher’s instruction as ineffective. Cuban (2013) describes the relationship between contextual 

factors and enacted instruction as “entangled and crucial” (p. 117), and McNeill et al.’s (2018) 

study epitomizes that description. If principals like Principal 24 do not have the expertise and 

experience to evaluate reform-based practices, it is possible teachers will not risk their 

evaluations by deviating from traditional instructional practices. 

Summary 

Taken together, these studies underscore the interdependent relationship of instruction 

and instructional context. As the above studies indicate, despite instructional supports such as 

professional development and educative curriculum materials, the contexts in which teachers 

work can hinder or distort the enactment of reform-based instruction. Enacted instruction reflects 
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teachers’ understandings and beliefs, which can limit the success of reform efforts. For Mrs. O 

(Cohen, 1990), that meant using new materials in old ways. For the teachers in Roychoudhury 

and Rice’s (2010) study, that meant the teachers dismissed reform-based practices they did not 

understand as important to doing science. For the teachers in Concannon-Gibney and 

McCarthy’s (2012) study, it was not their ideas that derailed reform-based instruction; teachers’ 

efforts were challenged by students who had their own ideas about what it means to do and 

participate in science. Finally, teachers encounter struggles with implementing reform-based 

instruction when the instructional context does not provide adequate time (Bismack et al., 2014; 

Concannon-Gibney & McCarthy, 2012), resources (Brezicha et al., 2015), or leadership 

(McNeill et al., 2018). 

Need for Research Prior to Reform Adoption and Implementation 

 As evident, there exists a wealth of research that examines the extent to which 

instructional practice aligns with reform-based practices and expectations (e.g., Bismack et al., 

2014; Brezicha et al., 2015; Charalambous et al., 2012; Cohen, 1990; Concannon-Gibney & 

McCarthy, 2012; Glen & Dotger, 2013; Remillard & Bryans, 2004; Roychoudhury & Rice, 

2010; Vo et al., 2015). This line of research studies instruction after reforms have been adopted 

and explains instructional (in)congruencies by analyzing the contextual factors that support (e.g., 

features of educative curriculum materials that aid teacher understanding) and constrain (e.g., 

students’ understandings for participation) successful reform-based instruction. While this 

research is valuable, it assumes a reactive response to reform policies. Little research assumes a 

proactive approach, examining the feasibility of successful reform implementation by 

considering the extent to which a teacher’s existing instructional context is conducive to 

supporting the enactment of reform-based instructional practices prior to the adoption of the 
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reforms. A level of compatibility based on contextual resources and constraints will help teachers 

and school leaders determine appropriate measures for rolling-out new reforms in their schools.  

Summary 

 The Next Generation Science Standards (NGSS Lead States, 2013), based on A 

Framework for K-12 Science Education: Practices, Crosscutting skills, and Core Ideas (National 

Research Council, 2012) and adopted in Michigan as the Michigan Science Standards (MDE, 

2015) denote a paradigm shift in science education. The traditional conception of science as a 

body of knowledge aligned with instructional practices centered on comprehending and recalling 

scientific facts. The new standards call for science instruction that fosters students’ disciplinary 

science literacy by conceptualizing science as both a set of practices and an established body of 

knowledge.  

 In the past, reforms of this magnitude have effected only modest changes in classroom 

instruction (Cohen, 2011; Cuban, 2013; Judson et al., 2016). Research indicates that the 

“sluggish” (Judson, et al., 2016, p. 2) change is at least partially attributable to reform ideals that 

are incongruent with elements of the instructional context. Therefore, helping teachers to enact 

reform-based instruction requires a thorough understanding of how the resources and constraints 

of the current context shape current practices and the extent to which those practices align with 

the goals of the new reforms. This study addresses this need by exploring the liminal space 

between a rural elementary teacher’s existing practices in the teaching of fifth grade science and 

the school’s adoption of the MSS (MDE, 2015).  
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CHAPTER III 

Research Methods and Design 

 

This dissertation is a qualitative, microethnographic, common case study of one rural 

elementary teacher’s practices in the teaching of science. In the tradition of microethnography, 

this study foregrounds daily classroom interactions (Bloome et al., 2005, “Introduction,” para. 3) 

with the understanding that complex interactions influence and are co-constructed by contextual 

dynamics. As a case study, it investigates a real-world phenomenon, science instruction, in its 

natural context, the rural classroom, where the boundaries between the context and the 

phenomenon are not distinct (Yin, 2014). This single-case study is a common case because it 

“capture[s] the circumstances and conditions of an everyday situation” (p. 52), science 

instruction in a rural teacher’s fifth grade classroom.  

  The goals of this research were to explore the pedagogical resources and constraints that 

shape the instructional practices employed by a rural elementary teacher in the teaching of 

science and the extent to which those practices conform with a disciplinary approach to science 

as called for in the Michigan Science Standards (MSS; Michigan Department of Education 

[MDE], 2015). To meet these goals, I interviewed a fifth grade teacher from a rural elementary 

school and observed in her classroom over two semesters, collecting extensive data on 

instructional units on the solar system and the scientific method. I analyzed the data using 

qualitative methods, including inductive coding, content analysis, and discourse analysis. In this 
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chapter, I present the details of the study’s context and participants, data collection and analysis, 

and limitations. 

Research Context and Participants 

Context  

Lake School is located in a rural town, Nibiing, in the Midwest. Like other regional 

public districts (excluding those on tribal reservations), students in the Nibiing district are 

majority white only (94%) and speak only English (~98%) (nces.ed.gov). However, at nearly 

2,300 students, the Nibiing school district is one of the largest in the region. Lake School, the 

only upper elementary school in the district, houses approximately 500 students in Grades 4, 5, 

and 6. Lake School is one of the most resourced schools in the area. For this reason, I consider 

the site to be optimal for this study because one of the most resourced area schools still 

powerfully illuminates the challenges of reforms. 

 Lake School does not currently have a science curriculum. The teachers use a set of 

compact discs with printable worksheets that was purchased from a textbook company as their 

guide for what to teach. As of the writing of this chapter, the school has not yet adopted the 

state’s new science standards, the Michigan Science Standards (MDE, 2015), which are based on 

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas 

(National Research Council, 2012) and adopted in 2015 because the principal did not have 

resources to support teachers in enacting instruction aligned with the MSS. The school does not 

have a curriculum director or science consultant at any level–school, district, nor intermediate 

school district–so when the school does adopt the standards, teachers will enact instruction that 

coheres with their available resources. 

Participant 
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 I wanted to study a teacher who had expertise in both science and literacy. Thus, I 

purposely sought participants who are teacher consultants (TCs) for the National Writing Project 

(NWP), a professional development organization that focuses on the effective teaching of writing 

and learning. Since TCs incorporate reading and writing throughout the day, I knew such a 

teacher would represent the best case for studying disciplinary literacy. I asked in a regional 

NWP forum for volunteers; Mrs. Stella Poppy, a pseudonym, volunteered. Mrs. Poppy received 

consent from her building principal with the caveat that I would not video record during 

observations or take photographs of students. I agreed to the terms and was granted permission to 

record audio, take other photographs, and write notes. With this agreement, I began visiting Mrs. 

Poppy’s classroom in May of 2017. Neither Mrs. Poppy nor the school received any monetary 

compensation for participation. However, I did buy fancy sugar cookies decorated to look like a 

galaxy for all of the students in her classes before the end of the observations as a thank you for 

welcoming me into their classroom. 

 Mrs. Poppy is a nine-year veteran teacher and had been teaching fifth grade and fifth 

grade science for four years. She holds a Bachelor’s degree in elementary education with two 

content area certifications, social studies (K-8) and science (6-8) and a Master’s degree as a 

reading specialist. Mrs. Poppy has been ambitious in seeking out her own professional 

development outside of her school community. In addition to the NWP, she applied for and 

received a grant-funded summer professional development trip abroad for science teachers. Mrs. 

Poppy, therefore, is an ideal case for this study, as her professional focus since earning her 

teaching certificate has been on developing herself as a teacher of both literacy and science. 

 Mrs. Poppy and her grade level colleagues all arrange for their students’ instruction in 

different ways. Some pair up in teams of two, switching students for some subject areas while 
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others teach their own students all subjects. Mrs. Poppy and one of her grade level colleagues 

share students for science and social studies; she teaches both classes science, and he teaches 

both classes social studies. Each science class was roughly 40 minutes in duration. In total, 

during the 2016-2017 school year, Mrs. Poppy taught 51 students science four days per week. 

The other day of the week, the two classes’ itinerants (music, art, etc.) did not align; thus, 

students had neither science nor social studies on that day. In the next chapter, I discuss how 

Mrs. Poppy navigates her professional responsibilities and personal knowledge in planning for 

her science lessons. 

Data Sources and Collection 

Semi-Structured Interview 

A tenet of microethnography is the idea that people are situated. People create and 

recreate their contexts, yet they are cognizant of the broader contexts that influence what they do. 

Bloome et al. (2005) explains, 

[People] are not unaware that there are broader contexts and dynamics that 

influence and are influenced by what they do in their daily lives. They talk about 

these broader contexts and dynamics, care about them, struggle and argue with 

others about them, and use them in part to give meaning and value to what they 

do…People can and do take actions based on their understanding of broader 

contexts and dynamics. (Chapter 1, “Implied Personhood,” para. 6). 

 

In the context of the classroom, this means teachers enact instruction that influences and is 

influenced by multiple intersecting contexts. 

To explore how Mrs. Poppy understands and works within these contexts Mrs. Poppy 

met me at a local coffee shop on a Saturday prior to the start of observations for an interview. I 

explained to her that as a former rural elementary teacher I was aware that new reform efforts, 

such as the new science standards, put a lot of pressure on rural teachers; therefore, I was 

interested in learning what teachers will need to meet new demands while at the same time 
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highlighting areas in which teachers are doing very well. Mrs. Poppy agreed to help me with this 

research, and with her consent, the interview was audio recorded while I took notes. Over the 

course of the 1 hour and 40 minutes we spent together, I asked Mrs. Poppy about many facets of 

her science instruction, including her development as a teacher of science, her thoughts about 

reading and writing in science, and the way she plans for a science unit (The complete interview 

protocol as well as the questions added during the process is located in Appendix B). Mrs. Poppy 

had brought along worksheets and other materials as reminders of her planning process.  

 The interview forecasted much of what I would see during observations. Mrs. Poppy was 

very straightforward and open; for example, with few exceptions, her descriptions of the solar 

system unit were as I observed it. The interview provided another means of understanding the 

context of the observations and analyses that were to come and the challenges of science 

instruction for this rural teacher. 

Classroom Observations  

 Mrs. Poppy’s classroom is a vibrant room decorated with images of wildlife and full of 

natural light. A sandwich board at the door greets students hello and lists the items they will need 

for the day. I visited Mrs. Poppy’s classroom for a unit on the solar system from May 8, 2017, 

until June 5, 2017, and for the majority of a unit on the scientific method from September 11, 

2017, to September 18, 2017. During observations, I sat in the back of the room either at a table 

or a student desk. On two occasions, the lessons were outside of the classroom. On those days, I 

served as an additional chaperone as well as a researcher. 

 The original intent of my research, as per my proposal, was to explore how teachers in 

rural schools currently use texts during science instruction, how those uses (mis)align with 

authentic uses for texts as outlined by Cervetti and Barber (2009), and how knowledge of those 
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uses can inform professional development designed to meet the demands of disciplinary literacy.  

With this intent in mind, I created an observation template for recording field notes. 

Accordingly, the focus for observations was texts. Thus, I ordered each text in sequence during a 

lesson, its title, and the class participation structure in which it was used. I also took very detailed 

notes about what happened following the introduction of each text, including direct quotes from 

the discussion surrounding the text and descriptions of Mrs. Poppy’s actions in relation to the 

texts (i.e., draws circle on screen, spins globe, highlights on worksheet). I frequently cited in 

field notes the time on the audio recorder. During transcriptions, I was then able to cross-

reference the time stamps on the audio recordings with those recorded in field notes. Mrs. Poppy 

provided me with copies of classroom handouts, so in addition to writing field notes, I completed 

text tasks along with the students. For example, Mrs. Poppy always projected the lessons’ 

worksheets, and students followed along as she wrote notes, highlighted, and completed 

assessment questions. I, too, followed along, making the same drawings, highlighting, and 

annotating as directed. I took digital photographs of non-static texts, such as texts on the 

projector screen, texts for which I did not have a copy, and the other available classroom texts. I 

noted the picture numbers on the camera and wrote those numbers in the field notes as I took 

them. In total, I have 20 days of field notes; 12 hours, 24 minutes, and 21 seconds of audio 

recordings; and 161 digital photographs from two units of study, the scientific method and the 

solar system. 

Data Coding and Analysis 

 Data coding and analysis began the moment the study started with a plan for organizing 

field notes, audio recorders, and photographs. Once collected, data from the interview and 

classroom observations were transcribed into workable units of analysis. Interview data were 
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analyzed using tools from discourse analysis, and classroom observation data were analyzed 

through a recursive process of organizing, memoing, coding, and content analysis. 

Observations 

 Creswell (2013) argues that data analysis is not a process achieved through the 

progression of linear steps. It is a process of phases that are “interrelated and often go on 

simultaneously” (p. 182) and is best illustrated as a spiral (see Figure 3.1). The spiral starts with 

data collection and ends with an account of findings. In between, the researcher engages in many 

iterative analytic exercises. 

Figure 3.1 

The Data Analysis Spiral  (Creswell, 2013, p. 183) 

 
 

 The first loop in the data analysis spiral is data management and organization (Creswell, 

2013). Once data are transcribed, organized, and stored securely, analysis continues with a 

recursive process of reading and memoing, the second loop. Reading through the entire data 

collection several times allows a researcher to get a sense of the data, which allows the 
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researcher to organize them into more meaningful, workable chunks. Memos, according to 

Creswell (2013), “are short phrases, ideas, or key concepts that occur to the reader” (p. 183) and 

are written in the “margins of field notes or transcripts or under photographs” (p. 183). Margin 

notes and highlights prompt larger thoughts, which are elaborated in longer and more detailed 

analytic memos. These memos fall at the intersection of the reading and memoing loop and the 

describing, classifying, and interpreting loop, as the memos delve into deeper, contextualized 

description.  

 Analytic memos converge with the third loop, for in this loop, researchers “describe what 

they see” (Creswell, 2013 p. 184) and “provide interpretation in light of their own views or views 

of perspectives in literature…within the context of the setting of the person, place, or event” (p. 

184). Analytic memos allow for the exploration of data episodes with respect to the research 

questions and to elaborate on the perceived significance of the episodes. The memos prompt a 

new lens with which to return to the data in search of similar or disconfirming episodes. Thus 

begins the process of “lean coding” (p. 184), identifying nascent codes from common episodes. 

Iteration of these three loops of the data analysis spiral result in the expansion and addition of 

codes and ultimately to themes, conglomerates of several codes that denote one idea. 

 The final phase of the spiral is representing and visualizing the data. Researchers share 

findings in a variety of modes, and often in more than one mode. Examples include diagrams, 

flow charts, tables, and texts. 

 I cannot imagine a better representation of my analysis process than the spiral, for I 

journeyed through the loops repeatedly, and at times, with great frustration, in my process of 

understanding. My analyses evolved as I explored different aspects about what I could learn 

from Mrs. Poppy and about what science is. In the following, I describe my analytic journey 
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through the loops of the data analysis spiral as I made sense of and interpreted data collected 

from observations in Mrs. Poppy’s classroom. 

Organizing the Data 

This process actually began during observations when I dated and numbered all field 

notes, artifacts, and photographs and set the audio recorder to store recordings by date. After 

observations, I transcribed audio recordings using InqScribe® and oTranscribe, and as I 

transcribed, I consulted the field notes for details about the actions and photographs that 

accompanied the audio. Actions and photograph numbers were included in brackets with the 

audio transcriptions. Transcribed dialogue was divided into episodes based on a change in 

speaker or a new-episode tag (Swales & Malczewski, 2001). A new-episode tag is a linguistic 

resource used to shift participation, such as from whole group to small group discussion, or to 

change the direction of a discussion. Examples of frequently used new-episode tags are “So,” 

“All right,” “So then,” and “Okay.” To make coding easier, I created two-column charts; the left 

column contained empty cells for handwritten codes, and the right column contained the 

transcriptions, split into rows by episode. This organizational structure was optimal for coding 

according to my original inquiry, as described in the next section. 

Looping 

My first journey through the spiral attempted to end with an account of the uses for texts 

during science instruction in light of the authentic uses of texts as outlined by Cervetti and 

Barber (2009). Cervetti and Barber identified five functions a text can serve during a science 

investigation as well as several illustrations of each function. I numbered each use described by 

Cervetti and Barber (2009) as a way to streamline data coding (see Figure 3.2). 
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Figure 3.2 

Excerpt from Data Analysis Log based on Cervetti & Barber (2009) 

 
 

After reading through the transcripts several times, I realized there were not any science 

investigations that could be understood as akin to the investigations that Cervetti and Barber 

(2009) use as the basis for analysis using their framework; thus, there were not any authentic 

uses of texts. This was an early indication that my originally intended framework might not be 

adequate for finding meaning in my data. However, given I also wanted to determine how 

knowledge of text use could inform professional development in the area of disciplinary literacy, 

I decided to code text use despite the lack of investigations in order to consider how those uses 

might be built upon for professional learning. For example, during an episode on phases of the 

moon and eclipses, Mrs. Poppy drew a picture and asked students to identify the type of eclipse 

it represented (see Figure 3.3). This was coded as #14, “providing data for the reader to 

interpret” (Cervetti & Barber, 2009). 
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Figure 3.3 

Excerpt from Observation Log #8 

 
 

However, I felt these codes extended the scope of Cervetti and Barber’s (2009) work to 

distortion. Mrs. Poppy’s intent in the review was to assess students’ retention of previously 

covered content. Assessment is not akin to providing data, such as a table of observational data, 

for students to interpret by describing patterns. It became apparent that I was trying to impose the 

work of Cervetti and Barber (2009) on the data. I needed a new angle. 

 Thus, in the next analysis cycle, I tried two approaches. First, I read through the 

transcripts again and marked episodes I found interesting. I wrote detailed memos about those 

episodes, describing my own interpretations of the events and connecting my thoughts and 

observations to literature. I used these memos as starting points for lean inductive coding 

(Creswell, 2013; Yin, 2014). Then, rather than identify the uses for texts, I considered the types 

of texts being used during the solar system unit and how students engaged with them (see Figure 

3.4). 
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Figure 3.4 

Screenshot of Table of the Solar System Unit Texts 

 

The chart revealed some helpful data. One, Mrs. Poppy’s resourcefulness is evident; she used 

materials from a variety of sources to supplement the worksheets from Prentice Hall. Secondly, 

there was a limited variety of text modes and tasks. Thirdly, classroom participation was largely 

whole group instruction followed by independent work time. These observations led to a more 

nuanced inspection of the task of responding. Perhaps I could learn something from the kinds of 

questions to which students responded. 

 Ergo, next I made a table that listed all the different types of tasks found on the classroom 

worksheets in one column and an example of each in the second (see Appendix C). There were 

twelve kinds of tasks: asking students to add to a diagram, answer questions regarding a diagram, 

label a diagram, match vocabulary words with definitions, define vocabulary words, fill in the 

blank with a word from a word bank, fill in the blank (no word bank), circle the correct response, 

circle the correct responses, answer true or false, complete a table, and write a short answer. As 
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was the case with Mrs. Poppy’s drawings of the eclipse and moon phases, these questions were 

intended to assess students’ retention of previously covered content. Therefore, I decided to take 

a deeper look at content. To do that, I considered similar information at a different grain size. 

 In the next loop, I reread the transcripts, and I divided lessons by sequence (e.g., 

reviewing, reading, assessment, etc.) and wrote the content foci for each part of the sequence in 

the margins (see Figure 3.5). 

Figure 3.5 

Marginal Notes on Transcripts 

 
 

I identified the text, modality, and student tasks for each content focus (see Figure 3.6) in order 

to identify patterns in patterns in instruction or interactions with texts. 
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Figure 3.6 

Excerpt from Lesson Sequences Table 

 
 

In Figure 3.6, I noticed an overt pattern of teacher questioning. Mrs. Poppy asked 

students considerable questions during each lesson sequence, and the majority of questions were 

presented in an initiate-response-evaluate (IRE) format (Nystrand & Gamoran, 1991). I coded all 

the IRE cycles in the transcripts and explored some literature on IRE questioning and the role of 

questioning in science learning (Cervetti, DiPardo, & Staley, 2014; Krajcik & Sutherland, 2010; 

Nystrand & Gamoran, 1991; Ruiz-Primo & Furtak, 2007; Vo, Forbes, Zangori, & Schwarz, 

2015). I found Mrs. Poppy’s instruction to be akin to Rob’s instruction in Ruiz-Primo and 

Furtak’s (2007) study of three teachers. Like Rob, Mrs. Poppy continually checked students’ 

understandings of content using IRE cycles of questioning, and her speaking turns were long in 

comparison to students’. At the time, I had not identified any occasions when students discussed 

among themselves; students were not engaged in sense-making activities. Instruction focused on 

understanding content presented in texts – comprehension. 
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 Positioning Mrs. Poppy’s instruction as science comprehension instruction necessitated a 

review of both my research questions and existing literature. My ultimate goal was still the same: 

What do I see that can be leveraged in professional development aimed at meeting the new 

demands for disciplinary literacy in science? However, my focus had changed. Rather than 

examine text use, I focused on practices. Specifically, I focused on her literacy practices used in 

the comprehension instruction I observed, and in order to identify what practices could be built 

upon for achieving a disciplinary literacy approach to science, I needed to also explore the 

science demands of the Michigan Science Standards (MDE, 2015). Thus, I sought literature for 

exemplars of both comprehension practices, particularly within content-areas, and science 

practices. These two lenses required several types of work.  

First, I returned to the data and started another round of lean inductive coding (Creswell, 

2013; Yin, 2014), or open coding (Merriam, 2009). My codes reflected the literature dive I had 

conducted into comprehension instruction. For example, I coded episodes focused on defining 

vocabulary words and those in which Mrs. Poppy conducted a demonstration of the content. 

Following this coding, I sought to understand the relationship among these codes and the story 

they describe. This led to a series of codes that I was able to gather into four themes: 

comprehension aids, attention to foundational literacy skills, missed opportunities, and critiques. 

These themes characterize Mrs. Poppy’s instructional practices. 

Second, according to A Framework for K-12 Science Education: Practices, Crosscutting 

Concepts and Core Ideas (National Research Council, 2012), the new vision for science 

education suggests all students should have opportunities to frame scientific questions, conduct 

investigations, seek scientific arguments and data, evaluate and apply arguments, and 

communicate their understandings and arguments to others (National Research Council, 2012, p. 
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278), all of which are higher-order processes. To determine how these expectations compare to 

the tasks being asked of students in Mrs. Poppy’s class, I coded the worksheet tasks (Appendix 

D), and the previous standards, the Michigan Grade Level Content Expectations (GLCEs; MDE, 

2007), according to the revised version of Bloom’s Taxonomy (Krathwohl, 2002). The revised 

version contains two dimensions, the Knowledge dimension and the Cognitive dimension. The 

Knowledge dimension identifies four types of knowledge that transcend subject areas: factual, 

conceptual, procedural, and metacognitive. The Knowledge dimension of an objective (or 

standard or task) is determined by considering the noun phrase. The Cognitive domain is a 

hierarchy of six categories of cognitive processes that increase in complexity from the lowest 

level to the sixth level: remember, understand, apply, analyze, evaluate, and create. These six 

categories are further explained by 19 total subcategories. The Cognitive process is identified by 

the objective’s verb. For example, for the objective “Name the 50 states,” the noun phrase (the 

50 states) indicates factual knowledge and the verb (name) requires the cognitive process of 

remembering.  

In this process, I considered the GLCEs holistically. The GLCEs are organized by grade 

level and then by discipline, of which there are four, science processes, physical science, life 

science, and Earth science. For each discipline, there is at least one broad K-7 standard. These 

broad standards are then explained and narrowed by grade level into content statements and 

specific content expectations, referred to as GLCEs. In determining the Knowledge and 

Cognitive dimensions of the GLCEs, I considered the overall standard as well. For example, the 

following table contains a broad K-7 standard (S.IP), a content statement (S.IP.M.1), and a 

GLCE (S.IP.05.15) for the discipline of Science Processes. 
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Figure 3.7 

Excerpt from Knowledge and Cognitive Dimensions of GLCEs (MDE, 2007) 

Content Statement by Standard: 

Science Processes 

Specific Content Expectation Knowledge and Cognitive 

Dimension 

S.IP Develop an understanding that 

scientific inquiry and reasoning 

involves observing, questioning, 

investigating, recording, and 

developing solutions to problems. 

 C. Procedural 

2.0 Understand 

S.IP.M.1 Inquiry involves 

generating questions, conducting 

investigations, and developing 

solutions to problems through 

reasoning and observation. 

S.IP.05.12 Design and conduct 

scientific investigations. 

C. Procedural Knowledge 

3.1 Apply: Executing 

 

The GLCE (S.IP.05.15) for this science process is coded along the Knowledge dimension 

as Procedural knowledge and along the Cognitive dimension as the third level of the taxonomy, 

Apply, or “carrying out or using a procedure in a given situation” (Krathwohl, 2002, p. 215). 

This GLCE is coded this way for two reasons. One, the broad standard for this GLCE tells us 

that as whole, the GLCEs within this standard are about Understanding (2.0) Procedural 

knowledge (C). The second reason is, as mentioned, within the Grade Level Content 

Expectations, Science Processes is its own discipline, independent from the other disciplines. 

Thus, the primary objective of the Science Processes expectations is to understand the processes-

rather than use the skills for the generation of scientific knowledge in life, Earth, and physical 

sciences. Therefore, the GLCE (S.IP.05.12) suggests that students should use the scientific 

procedure of designing and conducting scientific investigations as a way of understanding that 

inquiry involves investigations.  

By identifying the knowledge and cognitive processes demanded by the current standards 

and classroom tasks, I could discern the overall goals for current science instruction. The next 

step was to repeat the process for the new science standards, the Michigan Science Standards 
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(MSS; MDE, 2015). I identified the Knowledge and Cognitive dimensions of the performance 

expectations for the three standards for fifth grade Space Systems: Stars and the Solar System. 

For additional comparison, I used conceptual content analysis (Busch et al., 1994-2012) 

to compare the GLCEs for fifth grade Earth science and the fifth grade performance expectations 

for Space Systems: Stars and the Solar System. To do this, I created a word cloud for each set of 

standards using the online application TagCrowd (https://tagcrowd.com/). I entered the 

expectations verbatim, and for both clouds, I excluded prepositions (i.e., around, between, from, 

in, of, on, to, with, within), articles (i.e., a, an, the), demonstrative pronouns (i.e., these, those), 

linking verbs (i.e., is, are), and conjunctions (i.e., and, that). I also set a minimum frequency of 

two occurrences. These word clouds provided a visual for word frequencies, providing another 

way to determine what each set of expectations values and deems important.  

From all these analyses, I saw that my research questions could be revised to bring out 

the key findings my research was uncovering. The instruction I observed was not reflective of 

disciplinary literacy, but it was not uninformed and was grounded in some understanding of both 

science and literacy. Therefore, I sought to understand what informed the instruction and what 

conceptualizations were possible given those resources.  

Interview  

 My second major data source was my interview with Mrs. Poppy. Interviews are a 

common means of qualitative data collection. They allow for the collection of data that cannot be 

observed, such as feelings, thoughts, opinions, and personal interpretations of experiences 

(Merriam, 2009), and thus, necessitate analysis of the discourse in which such are shared. To 

analyze the interview transcripts, I used tools from systemic functional linguistics and discourse 

analysis. 

https://tagcrowd.com/
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 According to systemic functional linguistics, language realizes its social contexts through 

three metafunctions: interpersonal, ideational, and textual. Interpersonal reveals relationships, 

ideational construes an experience, and textual organizes discourse (Rose, 2012). For this study, 

I focused my data analyses on ideational and interpersonal metafunctions. 

 Ideation is the content that builds a theory of experience. I wanted to understand Mrs. 

Poppy’s experiences with teaching science, disciplinary literacy, and planning lessons, so I 

coded Mrs. Poppy’s responses to my interview questions for ideational similarity. I coded 

reoccurring references that construed her experience for a particular circumstance. For example, 

I identified all responses in which she spoke of a resource or construct that influences her 

instruction.  

Then, I examined the interpersonal meaning in the data. Recall that interpersonal 

meaning reveals relationships; it also conveys attitudes. To identify Mrs. Poppy’s attitudes, I 

used the discourse analysis tool of Appraisal, which “explores how interpersonal meaning 

permeates a text enabling exploration of resources for evaluative meaning” (Schleppegrell, 2012, 

p. 26). I examined the data for tokens of appraisal: AFFECT, JUDGMENT, and APPRECIATION 

(Martin & Rose, 2003). In the appraisal system, AFFECT is “the resource deployed for construing 

emotional responses” (Martin, 2000, p. 145). Tokens of AFFECT might be present in an 

expression of feelings regarding experiences or processes. For example, in the study, Mrs. Poppy 

expressed POSITIVE AFFECT: HAPPINESS when she shared her pleasure in teaching complex 

vocabulary words, “I love it” (Poppy, personal communication, May 8, 2017)! Tokens of 

JUDGMENT evaluate human behavior or morals (Martin, 2000, p. 145), such as an evaluation of 

students, the school, or oneself. For instance, in appraising her ability to engage students with 

science, Mrs. Poppy judged her capacity to motivate positively (POSITIVE JUDGMENT: CAPACITY), 
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“It works so great. Like, if I’m excited about stuff, they’re excited about stuff.” Finally, tokens of 

APPRECIATION construe “the ‘aesthetic quality of semiotic text/processes and natural 

phenomenon” (Martin, 2000, pp. 145-146); in other words, APPRECIATION expresses how an 

actor feels about things (Martin & Rose, 2003), such as an expression of opinions about 

materials or resources. For instance, “It was really creative!” (POSITIVE APPRECIATION: 

REACTION: QUALITY) expressed Mrs. Poppy’s appreciation for the quality of a student’s final 

project for the fifth grade unit on animal adaptation.  

 According to Mills, Birks, & Hoare (2014), “Explanations of data are presented in 

context and participants’ voices are portrayed as integral to the analysis and presentation of 

findings” (p. 111). Indeed, Mrs. Poppy’s responses to interview questions were integral. I used 

my ideational coding to be able to report about the resources upon which Mrs. Poppy drew for 

her instruction, and I infused the interpersonal analysis into my findings to show her stance 

toward the activities she described. 

Summary of Data Analysis 

The data analysis spiral accurately represents the iterative process through which I 

analyzed data collected through classroom observations and a semi-structured interview. Every 

table, round of coding, and memo highlighted something new in the data and prompted new 

questions that I could ask. Analyses evolved as I explored different aspects about what I could 

learn from Mrs. Poppy. For example, my original inquiry created a deficit understanding (this is 

not disciplinary literacy), but further analyses changed that perspective to an understanding of 

Mrs. Poppy’s teaching as informed instruction based on available resources and in compliance 

with responsibilities. The different lenses and theoretical frameworks enable me in the next 
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chapters to explore the roles of curriculum, classroom interactions, understanding of science, 

teacher practices, and the rationality of Mrs. Poppy’s choices given the context.  

Study Risks and Limitations 

Managing Risks to Participants 

 The purpose for this study depended upon the authenticity of classroom instruction and 

events, and thus, this study (HUM00101397) is exempt from IRB review according to Exception 

#1 of the 45 CFR 46.101.(b), which exempts studies of “normal educational practices, such as (i) 

research on regular and special education instructional strategies, or (ii) research on the 

effectiveness of or the comparison among instructional techniques…”  

 I received consent from the participant and her building principal to conduct the study in 

the participant’s fifth grade classroom. The only participant in this study was the teacher. 

Therefore, I did not interview or photograph students, and I was certain not to photograph any 

texts, such as worksheets, that had student writing already on them. 

 In order to protect the identity of the participant, she was asked to choose a pseudonym 

for herself (Stella Poppy) and her school. However, in any classroom study, the teacher is 

vulnerable, and the vulnerability is not limited to accurate identification.  

 Mrs. Poppy and I knew each other as members of the same cohort of NWP TCs, but we 

did not have a personal relationship prior to the start of the study. However, as happened with 

McCarthey (2001) and her research participant, Mrs. Poppy and I developed a personal and 

social friendship as a result of the time we spent together in her classroom. I consider Mrs. 

Poppy my friend and colleague. This relationship poses a conundrum of sorts. For as Newkirk 

(1996) contends, “Anyone who spends a great deal of time in a teacher’s classroom, particularly 

someone who has experience in a similar teaching situation, will observe practices that seem 
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ineffective. And some of these will probably relate to the issues the researcher is examining” (p. 

13). This is problematic for those with personal relationships because according to Jack Douglas 

(as cited in Newkirk, 1996), with friendship, there is an implicit obligation not to report things 

that might cause our friends distress. I took precautions for managing this risk by informing Mrs. 

Poppy prior to the interview that the intent of the study was to identify what rural teachers would 

need in order to meet the pressures of new science reforms and to highlight the areas in which 

they are doing well. In addition, I frequently talked with Mrs. Poppy about my findings and the 

direction of this dissertation. Further, it was important to me to establish Mrs. Poppy as 

representative of all the science instruction I have ever witnessed in our region – my own 

included. Mrs. Poppy’s approach to science is not unlike the science of my coworkers’ in five 

different school districts or that of the classroom teachers with whom I placed my pre-service 

teachers during my time as an adjunct faculty member.  

Limitations 

 While Mrs. Poppy’s teaching of science is representative of elementary teachers in the 

local rural communities, teachers work in diverse contexts and experience diverse affordances 

and constraints. 

 Furthermore, I observed one teacher for two units, one at the beginning and one at the 

end of the school year. A larger sample would allow for examining patterns of practice across 

cases. It is also possible that other units, perhaps the force and motion unit, involve different 

instructional practices than those I observed.  

 Additionally, there are limitations related to my role as a researcher. I was an observer 

with a background in elementary education, math, Spanish, and literacy. An observer with 

different expertise, particularly in science, might have noticed other aspects of Mrs. Poppy’s 



 63 

teaching to highlight in the findings. Moreover, it is possible that as a member of this 

community, I observe with a slight bias and extend a bit more grace to my colleague than would 

an outside researcher. However, a researcher from outside the community might also propose 

generic strategies for implementing new science practices that are not sufficient or effective in 

helping teachers within this particular context to do just that.  

 My professional goal is to continue to live and work in the community with the aim of 

helping to improve our educational contexts by designing differentiated professional learning 

opportunities. This study allowed me to see instruction from a new perspective, but as a member 

of the community, I can bring recommendations for practice from an understanding and 

appreciation for the advantages and constraints that shape instruction in the local schools. 
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CHAPTER IV 

Findings 

The new Michigan Science Standards (MSS; Michigan Department of Education [MDE], 

2015) are based on A Framework for K-12 Science Education: Practices, Crosscutting Concepts, 

and Core Ideas (National Research Council, 2012), which calls for students to employ 

knowledge of and generate scientific ideas through authentic scientific practices. These new 

standards are vastly different from the previous science standards, the Grade Level Content 

Expectations (GLCEs; MDE, 2007). Therefore, teachers tasked with implementing the MSS will 

need support for transforming their own understanding of science and their subsequent science 

instructional practices. The extent to which current instructional practices conform to the 

expectations of the new standards will determine the type and focus of that support. Therefore, in 

this chapter I report on my analysis of an interview with and observations of a rural fifth grade 

teacher whose school had not yet adopted the MSS. The question guiding my analyses was How 

do pedagogical resources and constraints shape a teacher’s instructional practices in the 

teaching of elementary science, and to what extent do these practices conform with a 

disciplinary approach to science?  

Through a combination of grounded theory, discourse analysis, and content analysis, I 

make the following claims: 

• The participating teacher, Mrs. Poppy, is committed to implementing science instruction 

coherent with her accessible resources. These resources, as identified by her during the 

interview, include the state-mandated standards, school policies and provisions, and her 

own experience and knowledge. These resources also constrain her instructional practices 

by suggesting a conceptualization of science as a static collection of established facts. 
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• Mrs. Poppy’s instruction is constrained by a lack of curriculum and curricular materials 

for teaching fifth grade science and the school’s disorganized system for science 

education.  
• The accessible resources suggest an approach to science instruction and learning that 

prioritizes comprehension and retention of content knowledge and is based on teacher-

centered pedagogy. This instruction is best described as a content-area literacy approach.  
• Attention to content is insufficient for meeting the demands of the MSS which call for 

student sense-making through disciplinary practices that generate, employ, evaluate, and 

share scientific knowledge. 
• Several existing pedagogical practices can be reconceptualized to more closely 

approximate the instructional practices expected of the MSS. 
 

In this chapter, I support these findings in response to the research questions. First, 

however, because every great endeavor starts with the goal in mind, I begin this chapter with a 

brief review of the Michigan Science Standards (MDE, 2015). Then, I share synopses of the two 

units of study I observed in Mrs. Poppy’s fifth grade science classroom as an orientation to the 

readers about the instructional work that is the focus of this chapter.  

The New Vision: The Michigan Science Standards 

 In accordance with A Framework for K-12 Science Education: Practices, Crosscutting 

Concepts, and Core Ideas (National Research Council, 2012; hereafter referred to as the 

Framework) the new Michigan Science Standards (MDE, 2015) call for disciplinary literacy 

instruction, which is instruction at the intersection of the Framework’s three dimensions (see 

Appendix A). The first dimension describes science and engineering practices that lead to the 

generation of scientific knowledge. According to the Framework (National Research Council, 

2012), these eight practices “cultivate students’ scientific habits of mind, develop their 

capabilities to engage in scientific inquiry, and teach them how to reason in a scientific context” 

(National Research Council, 2012, p. 41). The second dimension describes the scientific 

concepts that transcend science disciplines, creating a coherent scientific understanding of 

phenomena. The third dimension, core ideas, describes the necessary conceptual understandings 
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of each science discipline and topic. The Framework asserts that these three dimensions should 

be interwoven into resulting standards, curricula, and lessons, as they are in the MSS. In this 

section, I provide a brief overview of the MSS with particular attention to the standards that are 

most relevant for comparisons with the units I observed for this study. 

As mentioned in the first chapter, the MSS for elementary are arranged by grade level 

and then by topics. In fifth grade, there are five topics: Structure and Properties of Matter; Matter 

and Energy in Organisms and Ecosystems; Earth’s Systems; Space Systems: Stars and the Solar 

System; and Engineering Design. These topics are divided into standards, which are written as 

performance expectations, or authentic disciplinary tasks that employ and generate scientific 

knowledge. Each standard incorporates the three dimensions. For example, the fifth grade 

standard 5-PS2-1, which reads, “Support an argument that the gravitational force exerted by 

Earth on objects is directed down” (MDE, 2015, p. 19), calls for students to develop an argument 

from evidence and to apply the crosscutting concept of cause and effect to deepen their 

conceptual understanding of gravitational force (see Table 4.1) 

Table 4.1 

The 3 Dimensions of a Standard 

Dimension Specifics of Dimension Component of Standard 

1. Science practices Engaging in argument from evidence Support an argument 

2. Crosscutting concepts Cause and effect exerted by Earth on objects 

3. Disciplinary core ideas PS2.B: Types of interactions gravitational force is directed down 

 

The performance expectations are further explained by Evidence Statements, or specific student 

tasks that indicate proficiency of the performance expectation (see Table 4.2). 
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Table 4.2 

MSS Expectations and Evidence Statements 

MSS Performance Expectation Evidence Statement 

5-PS2-1 Support an argument that the 

gravitational force exerted by Earth on objects in 

directed down. 

Students identify a given claim to be supported about a 

phenomenon. The claim includes the idea that the 

gravitational force exerted by Earth on objects is directed 

down toward the center of Earth. 

Students identify and describe the given evidence, data, 

and/or models that support the claim. 

Students evaluate the evidence to determine whether it is 

sufficient and relevant to support the claim. 

Students describe whether any additional evidence is needed 

to support the claim. 

Students use reasoning to connect the relevant and 

appropriate evidence to support the claim with 

argumentation. Students describe a chain of reasoning. 

5-ESS1-1 Support an argument that differences 

in the apparent brightness of the sun compared to 

other stars is due to their relative distances from 

Earth. 

Students identify a given claim to be supported about a 

phenomenon. The claim includes the idea that the apparent 

brightness of the sun and stars is due to their relative 

distances from Earth. 

Students describe the evidence, data, and/or models that 

support the claim. 

Students evaluate the evidence to determine whether it is 

relevant to supporting the claim, and sufficient to describe 

the relationship between apparent size and apparent 

brightness of the sun and other stars and their relative 
distances from Earth. 

Students determine whether additional evidence is needed to 

support the claim. 

Students use reasoning to connect the relevant and 

appropriate evidence to the claim with argumentation. 

Students describe a chain of reasoning. 

5-ESS1-2 Represent data in graphical displays to 

reveal patterns of daily changes in length and 

direction of shadows, day and night, and the 

seasonal appearance of some stars in the night 

sky. 

Using graphical displays (e.g., bar graphs, pictographs), 

students organize data pertaining to daily and seasonal 

changes caused by the Earth’s rotation and orbit around the 

sun. Students organize data. 

Students use the organized data to find and describe 

relationships within the datasets. 

 

 The performance expectations and corresponding evidence statements focus on the 

language and literacy skills that are essential for doing science. They articulate a disciplinary 

approach to science instruction that centers on students generating, using, analyzing, evaluating 
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and sharing scientific information, all higher-order cognitive processes (Krathwohl, 2002). The 

MSS also are intentionally worded to position students as agentive in their learning. Student-

centered instruction that requires higher-order cognitive processing and draws on the language 

and literacy tasks of scientific inquiry is very different than the instruction I observed in Mrs. 

Poppy’s classroom. In the next section, I describe each unit to situate the forthcoming analyses 

and provide a lens for juxtaposing instruction with the GLCEs (MDE, 2007) and the MSS 

(MDE, 2015). 

Observed Units 

 I visited Mrs. Poppy’s classroom for the observation of two units of study, a unit on the 

scientific method (TSM) and a unit on the solar system. The synopses of both units establish the 

context for the analysis results that follow in later sections. 

The Scientific Method Unit 

 The Scientific Method (TSM) unit was an eight-day sequence that explored  “a series of 

steps used by scientists to find answers to questions” (CrazyScienceLady, 2015, slide 1). The 

unit began with a pre-test for which the students cut out the steps of TSM and glued them onto 

another sheet of paper in the order students predicted was correct. This was followed by a 

discussion about, and note taking from, a slideshow presentation (2 days), a penny investigation 

(2 days), and a bouncy ball investigation (3 days). 

 Instruction about TSM revolved around the content from a slideshow Stella downloaded 

from a teacher resource marketplace, Teachers Pay Teachers. Mrs. Poppy read through and 

discussed the slideshow, and as she did, she directed students on filling in an outline that 

corresponded with each slide. The slideshow presented TSM in the following order, using a 
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hypothetical investigation, Does listening to music while studying help you learn? to explain 

each step: 

Step 1: State the Problem 

Step 2: Gather Information 

Step 3: Form a hypothesis 

Step 4: Experiment 

Step 5: Analyze Data 

Step 6: Draw a Conclusion 
 

 The fourth and fifth days of the unit involved a model investigation, an investigation for 

the purpose of following the steps in TSM and verifying the information from the slideshow. 

Each student was given an investigation sheet to record information, regarding the problem 

“How many drops of water can fit on a penny?” Once students copied the problem statement 

onto their sheets, Mrs. Poppy read a paragraph about water that provided the information for 

forming a hypothesis about the number of drops of water that will fit on a penny. Then, students 

were divided into groups to experiment. Students took turns using an eyedropper and counting 

the number of the drops that fit on the penny before the water spilled off the side of the penny. 

To analyze data, Mrs. Poppy convened the whole class and recorded the greatest and fewest 

number of drops. Students recorded these numbers on their sheets. Then, students were 

instructed to write conclusions about why their hypotheses were correct or incorrect.  

 The remaining days of the unit were akin to the previous two with another verification 

investigation. This time, the students answered the question, “What effect does the drop height 

have on how high a bouncy ball will bounce when dropped?”  

The Solar System Unit 

 The Earth Science unit, called the “solar system unit” by Mrs. Poppy, spanned several 

weeks from early May until the end of the school year in June. I observed 18 lessons. The 

lessons were structured around Pearson Prentice Hall worksheets that served as both the mode of 
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learning content and the assessments. Mrs. Poppy projected a copy of the day’s worksheet using 

a document camera and read the text as students followed along. She stopped frequently to note 

important text that the students should highlight, to discuss what had been read, or to draw a 

diagram or picture to illustrate the text. Mrs. Poppy completed all the worksheet tasks with the 

students by reading aloud the task and asking for students to respond orally. The final pages of 

each worksheet packet contained a “Section Summary” of the presented material and at least one 

page of “Review and Reinforce,” which contained assessment items. Students completed these 

pages independently, writing some answers in their science journals and others on the 

worksheets. Students were required to respond to short answer items in complete sentences that 

restated the questions. 

 Mrs. Poppy complemented the worksheets with video clips, demonstrations of the 

movement of the Earth and moon in space, picture books, and other activities, including a 

scavenger hunt and a walk to model the proportional distances between planets. The final project 

was a packet of worksheets titled, “My Planet Report,” which Mrs. Poppy downloaded from a 

teacher resource website, Super Teacher Worksheets©. Students chose a planet, save Pluto, and 

then used picture books and web searches to complete the packets.  

 In the next section, I discuss the resources Mrs. Poppy identified during the interview as 

influencing her instructional decisions, and I analyze the conceptualizations of science afforded 

by these resources using Bloom’s Taxonomy (Krathwohl, 2002). 

Resources that Inform and Constraints that Limit Mrs. Poppy’s Science Instruction 

 Recall that Mrs. Poppy teaches fifth grade at the only upper elementary school in the 

district. The district did not have a formal fifth grade science curriculum nor had it yet adopted 

the MSS. Despite these missing supports, throughout the interview Mrs. Poppy mentioned 
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specific policy, school, and personal resources that guide her instruction. In particular, Mrs. 

Poppy mentioned her teacher preparation courses, the standards for which she is responsible, and 

the materials provided by the school.  

In the following sections, I analyze how the resources available to Mrs. Poppy functioned 

in the context of the two units I observed for this study and show how they set her up for 

instruction that prioritizes understanding. I begin with discussion of the GLCEs. 

Determining What To Teach: The GLCEs Prioritize Understanding 

 During the interview, Mrs. Poppy said she determines what to teach by consulting the 

previous standards, “We still use the GLCEs in our school. We have not adopted [the MSS]. But, 

we start there, of course, because it’s required. We have to go by the standards” (p. 3). When I 

followed up with Mrs. Poppy for the writing of this paper, I inquired as to whether her school 

used the GLCE (MDE, 2007) companion documents, but she said all she has are the GLCEs. The 

GLCEs that correspond with the scientific method and solar system unit are Science Processes 

and Earth Science, respectively. In this section, I discuss the conceptualizations of science 

afforded by these GLCEs by analyzing their knowledge and cognitive demands. 

 The GLCEs are organized by grade level and then by discipline, of which there are four, 

science processes, physical science, life science, and Earth science. For each discipline, there is 

at least one broad K-7 standard; there are three standards for science processes and two standards 

for Earth science. When parsed into sentences and coded according to the revised version of 

Bloom’s Taxonomy (Krathwohl, 2002), the GLCEs for science processes demand only 

procedural knowledge while those for Earth science require only conceptual knowledge. In 

addition, along the Cognitive dimension, all standards statements are only at the level of 
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Understand (2.0) (see Table 4.3), which according to Krathwohl (2002) “is a widespread 

synonym for comprehending” (p. 214).  

Table 4.3 

Science GLCE Standards 

Science Processes  

 Standards Parsed by Statement 

Knowledge 

Dimension 

Cognitive 

Process 

S.IP: Develop an understanding that scientific inquiry and reasoning involves 

observing, questioning, investigating, recording, and developing solutions to 

problems. 

  

C. Procedural 2.0 

Understand 

S.IA: Develop an understanding that scientific inquiry and investigations 

require analysis and communication of findings, using appropriate technology. 

C. Procedural 2.0 

Understand 

S.RS: Develop an understanding that claims and evidence for their scientific 

merit should be analyzed. 

  

C. Procedural 2.0 

Understand 

S.RS: Understand how scientists decide what constitutes scientific knowledge. 

  

C. Procedural  2.0 

Understand 

S.RS: Develop an understanding of the importance of reflection on scientific 

knowledge and its application to new situations to better understand the role of 

science in society and technology. 

C. Procedural 2.0 

Understand 

Earth Systems Standards Parsed by Statement Knowledge 

Dimension 

Cognitive 

Process 

E.ES: Develop an understanding of the warming of the Earth by the sun as a 

major source of energy for phenomenon on Earth and how the sun’s warming 

relates to weather, climate, seasons, and the water cycle. 

B. Conceptual 2.0 

Understand 

E.ES: Understand how human interaction and use of natural resources affect 

the environment. 

B. Conceptual 2.0 

Understand 

E.ST: Develop an understanding that the sun is the central and largest body in 

the solar system and that Earth and other objects in the sky move in a regular 

and predictable motion around the sun.  

  

B. Conceptual 2.0 

Understand 

E.ST: Understand that those motions explain the day, year, moon phases, 

eclipses and the appearance of motion of objects across the sky.  

B. Conceptual 2.0 

Understand 

E.ST: Understand that gravity is the force that keeps the planets in orbit around 

the sun and governs motion in the solar system.  

B. Conceptual  2.0 

Understand 

E.ST: Develop an understanding that fossils and layers of Earth provide 

evidence of the history of Earth’s life forms, changes over long periods of time, 

and theories regarding Earth’s history and continental drift. 

B. Conceptual 2.0 

Understand 

 



 73 

These standards characterize the overarching goals for science education in the state. As 

Table 4.3 shows, the standards identify understanding of conceptual knowledge and 

understanding of procedural knowledge as the principal objectives. 

These broad standards are then explained and narrowed by grade level into content 

statements and specific content expectations, referred to as GLCEs. The content statements 

explain exactly what about the broad standard the students should understand, and the GLCEs 

identify what students need to be able to do to demonstrate their understanding. The 18 content 

expectations for Science Processes and 8 content expectations for Earth science are coded 

according to the revised version of Bloom’s Taxonomy in Tables 4.4 and 4.5, respectively.  

Table 4.4 

Knowledge and Cognitive Demands of Science Process GLCEs 

Content Statement by Standard 

Science Processes 

Specific Content Expectation Knowledge & 

Cognitive 

Dimensions 

Develop an understanding that scientific inquiry and 

reasoning involves observing, questioning, investigating, 

recording, and developing solutions to problems. 

 
C. Procedural 

2.0 Understand 

S.IP.M.1 Inquiry involves generating questions, 

conducting investigations, and developing solutions to 

problems through reasoning and observation. 

S.IP.05.11 Generate scientific 

questions based on 

observations, investigations, 

and research. 

C. Procedural 

3.1 Apply: 

Executing 

S.IP.05.12 Design and conduct 

scientific investigations. 

C - 3.1 

S.IP.05.13 Use tools and 

equipment (spring scales, stop 

watches, meter sticks and 

tapes, models, hand lens) 

appropriate to scientific 

investigations. 

C - 3.1 

S.IP.05.14 Use metric 

measurement devices in an 

investigation. 

C - 3.1 

S.IP.05.15 Construct charts and 

graphs from data and 

observations. 

C - 3.1 

S.IP.05.16 Identify patterns in 

data. 

C - 3.1 
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Develop an understanding that scientific inquiry and 

investigations require analysis and communication of 

findings, using appropriate technology. 

 
C - 2.0 

S.IA.M.1 Inquiry includes analysis and presentation of 

findings that lead to future questions, research, and 

investigations. 

S.IA.05.11 Analyze 

information from data tables 

and graphs to answer scientific 

questions. 

C. Procedural 

2.1 Understand: 

Interpreting 

C - 3.1 

S.IA.05.12 Evaluate data, 

claims, and personal 

knowledge through 

collaborative science discourse. 

C - 2.1 

C - 3.1 

S.IA.05.13 Communicate and 

defend findings of observations 

and investigations using 

evidence. 

C. Procedural 

2.4 Understand: 

Summarizing 

2.7 Understand: 

Explaining 

S.IA.05.14 Draw conclusions 

from sets of data from multiple 

trials of a scientific 

investigation. 

C. Procedural 

2.5 Understand: 

Inferring 

S.IA.05.15 Use multiple 

sources of information to 

evaluate strengths and 

weaknesses of claims, 

arguments, or data. 

C - 2.1 

C - 2.4 

Develop an understanding that claims and evidence for 

their scientific merit should be analyzed. Understand how 

scientists decide what constitutes scientific knowledge. 

Develop an understanding of the importance of reflection 

on scientific knowledge and its application to new 

situations to better understand the role of science in 

society and technology. 

 
C - 2.0 

D - 2.0 

S.RS.M.1 Reflecting on knowledge is the application of 

scientific knowledge to new and different situations. 

Reflecting on knowledge requires careful analysis of 

evidence that guides decision-making and the application 

of science throughout history and within society. 

S.RS.05.11 Evaluate the 

strengths and weaknesses of 

claims, arguments, and data. 

C - 2.1 

S.RS.05.12 Describe 

limitations in personal and 

scientific knowledge. 

D. 

Metacognitive  

2.7 Understand: 

Explaining 

S.RS.05.13 Identify the need 

for evidence in making 

scientific decisions. 

C - 2.7 

S.RS.05.15 Demonstrate 

scientific concepts through 

various illustrations, 

performances, models, 

exhibits, and activities. 

C - 2.7  
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S.RS.05.16 Design solutions to 

problems using technology. 

C - 3.1 

S.RS.05.17 Describe the effect 

humans and other organisms 

have on the balance in the 

natural world. 

C - 2.7 

S.RS.05.19 Describe how 

science and technology have 

advanced because of the 

contributions of many people 

throughout history and across 

cultures. 

C - 2.7 

 

From this table, we see that the gist of the Science Processes standards is to understand 

skills associated with science by executing them. Hence, the majority of the GLCEs for Science 

Processes are coded along the Knowledge dimension as Procedural knowledge and along the 

Cognitive dimension as the third level of the taxonomy, Apply, or “carrying out or using a 

procedure in a given situation” (Krathwohl, 2002, p. 215). It is important to note that these skills 

are unattached from content because as mentioned above, the GLCEs consider Science Processes 

a discipline independent from the other disciplines of science. Therefore, the primary objective 

of the science process expectations is to understand rather than use the skills for the generation of 

scientific knowledge in life, Earth, and physical sciences.  

For the Earth Science GLCEs, we see a focus not on processes but on content and low-

level cognitive demands for conceptual knowledge (see Table 4.5). 

Table 4.5 

Knowledge and Cognitive Demands of Earth Science GLCEs 

Content Statement by Standard 

Earth Science 

Specific Content Expectation Knowledge & 

Cognitive 

Dimensions 

Develop an understanding of the warming of the Earth by 

the sun as a major source of energy for phenomenon on 

Earth and how the sun’s warming relates to weather, 

climate, seasons, and the water cycle. Understand how 

human interaction and use of natural resources affect the 

environment. 

 
B. Conceptual 

2.0 Understand 
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E.ES.M.6 Seasons- Seasons result from annual variations 

in the intensity of sunlight and length of day due to the tilt 

of the Earth on its axis, and revolution around the sun. 

E.ES.05.61 Demonstrate using a 

model, seasons as a result of 

variations in the intensity of 

sunlight caused by the tilt of the 

Earth on its axis, and revolution 

around the sun. 

B. Conceptual 

2.7 Understand: 

Explaining 

E.ES.05.62 Explain how the 

revolution of the Earth around 

the sun defines a year. 

B - 2.7 

Develop an understanding that the sun is the central and 

largest body in the solar system and that Earth and other 

objects in the sky move in a regular and predictable 

motion around the sun. Understand that those motions 

explain the day, year, moon phases, eclipses and the 

appearance of motion of objects across the sky. 

Understand that gravity is the force that keeps the planets 

in orbit around the sun and governs motion in the solar 

system. Develop an understanding that fossils and layers 

of Earth provide evidence of the history of Earth’s life 

forms, changes over long periods of time, and theories 

regarding Earth’s history and continental drift. 

 
B - 2.0 

E.ST.M.1 Solar System – The sun is the central and 

largest body in our solar system. Earth is the third largest 

planet from the sun in a system that includes other planets 

and their moons, as well as smaller objects, such as 

asteroids and comets. 

E.ST.05.11 Design a model that 

describes the position and 

relationship of the planets and 

other objects (comets and 

asteroids) to the sun. 

B. Conceptual 

2.2 Understand: 

Exemplifying 

E.ST.M.2 Solar System Motion  - Gravity is the force that 

keeps most objects in the solar system in regular and 

predictable motion. 

E.ST.05.21 Describe the motion 

of planets and moons in terms of 

rotation on axis and orbits due to 

gravity 

B - 2.7 

E.ST.05.22 Explain moon 

phases as they relate to the 

position of the moon in its orbit 

around the Earth, resulting in the 

amount of observable reflected 

light. 

B - 2.7 

E.ST.05.23 Recognize that 

nighttime objects (stars and 

constellations) and the sun 

appear to move because the 

Earth rotates on its axis and 

orbits the sun. 

B. Conceptual 

1.1 Remember: 

Recognizing 

E.ST.05.24 Explain lunar and 

solar eclipses based on the 

relative positions of the Earth, 

moon, and sun, and the orbit of 

the moon. 

B - 2.7 
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E.ST.05.25 Explain the tides of 

the oceans as they relate to the 

gravitational pull and orbit of the 

moon. 

B - 2.7 

 

The above table shows that the Earth Systems standards, those that informed Mrs. 

Poppy’s teaching of the solar system unit, focus largely on understanding, specifically 

explaining, conceptual knowledge.  

As mentioned, Mrs. Poppy said she determines what to teach by consulting the GLCEs, 

and her commitment to teaching the Earth science expectations, for which she is responsible, is 

evident in her lessons. Mrs. Poppy’s addressed each GLCE in her lessons and the unit 

assessment (see Appendix E for an alignment chart).  

In this section, we see that Mrs. Poppy’s interview responses show she is attentive to the 

responsibilities bestowed upon her by policy mandates, the GLCEs. In addition, we see how this 

resource, the GLCEs, is also a constraint as it suggests that science processes are a checklist of 

procedures to understand. While knowing how to do specific scientific skills is important, like 

reading comprehension strategies, these skills are a means to sense-making and not the goal 

themselves. Further, because the GLCEs consider science processes as their own discipline 

rather than the foundation for all domains of science, the expectations for Earth science 

instruction are limited in their level of cognitive challenge, requiring only that students 

understand conceptual knowledge. Remembering and understanding are important as the base of 

Bloom’s Taxonomy (Krathwohl, 2002), but in order to meet the demands of the Framework 

(National Research Council, 2012) and the MSS (MDE, 2015), teachers and students will need to 

engage in higher-order cognitive processes, including analyzing (4.0), evaluating (5.0), 

generating (6.1), planning (6.2), and producing (6.3). 



 78 

In the next section, I explore another influence on Mrs. Poppy’s instruction, the materials 

provided to her by the school. 

School Provisions: Worksheets Focus on Remembering and Understanding 

At the interview, I asked Mrs. Poppy about the district curriculum for science. The 

district does not have a formal curriculum framework of goals and activities, but according to 

Mrs. Poppy, it does provide “a pack of CDs [from Pearson Prentice Hall] that we are able to print 

off from” (p. 3). The CDs are important, for as Ball and Cohen (1996) explain, instructional 

materials are the “stuff of lessons and units, or what teachers and students do” (p. 6). Therefore, 

in this section, I describe the CDs’ printables (referred to as “worksheets”) and analyze her 

implementation of the worksheets in her teaching. 

For the solar system unit, Mrs. Poppy used three types of worksheets: “Adapted Reading 

and Study,” “Section Summary,” and “Review and Reinforce.” The “Adapted Reading and 

Study” worksheets divide a textbook chapter into sections. Each section is presented as a series 

of bulleted lists followed by comprehension questions. These worksheets were the crux of the 

unit lessons. The “Section Summary” worksheets provide a review of a textbook chapter while 

the “Review and Reinforce” present a variety of comprehension questions to check for 

understanding. Mrs. Poppy assigned the “Review and Reinforce” as independent work and used 

the scores for documenting student learning of content. 

The school did not provide other materials to support the worksheets. Mrs. Poppy did not 

have a teacher’s manual, pacing guide, or any other ancillary items typical of a textbook 

program. However, the CDs’ worksheets are designed to accompany a student textbook, as 

indicated by the parenthetical page numbers following the headings on the “Adapted Reading 

and Study” worksheets (see Figure 4.1). 
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Figure 4.1 

Worksheet Excerpt with Textbook References 

 

 

Thus, while Mrs. Poppy expressed positive APPRECIATION: COMPOSITION for the CDs, stating, 

“there’s just a ton of information” (p. 3), their condensed information was not always sufficient 

for answering the comprehension questions. For example, during the lesson on moon phases, 

Mrs. Poppy and the students encountered comprehension questions for which the responses were 

not included in the worksheets’ content. Mrs. Poppy expressed frustration with the lack of 

information stating, “You don’t know any of this yet, but then they throw in a question about it. 

Does that make any sense to you?” She helped the students to figure out the answers and 

supplemented the CD worksheets with one from Super Teacher Worksheets© that contained 

pictures and labels of the various moon phases. Without a curriculum and sufficient materials, 

Mrs. Poppy became responsible for locating additional instruction materials. 

As the only school provisions, the learning tasks in the science instructional materials 

provided by the school–the worksheets–represent the school’s aims for science instruction. 

Analyzing these tasks according to the revised version of Bloom’s Taxonomy (Krathwohl, 2002) 

shows the cognitive challenges students encounter are at the lowest levels (see Table 4.6). 
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Table 4.6 

Knowledge and Cognitive Demands of Worksheet Tasks 

Focus of Tasks Details Knowledge 

Dimension 

Cognitive 

Dimension 

Example 

Vocabulary 54 words identified by 

worksheets 

  

9 words defined 

incidentally 

  

7 different types of tasks 

(see Appendix D) 

Factual Knowledge: 

Knowledge of 

Terminology (Aa) 

  

Remember: 

Recognizing (1.1) 

 

Remember: 

Recalling (1.2) 

 

Comprehension 135 tasks 

  

12 different types of 

tasks (see Appendix D) 

Factual Knowledge 

(A) 

Remember (1.0) 
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Understand (2.0) 

 

Conceptual 

Knowledge (B) 

Remember (1.0) 

 

Understand (2.0) 
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For example, over the course of 12 lessons from the solar system unit, the worksheets presented 

and assessed students’ ability to define 54 vocabulary words. Mrs. Poppy explained another nine 

words that appeared incidentally in the worksheets and other texts. Some examples of these 

words are axis, calendar, neap tide, and umbra. The worksheets presented students with a variety 

of tasks for practicing and assessing their vocabulary knowledge; nonetheless, the tasks required 

little cognitive challenge. All of the tasks are classified along the Knowledge dimension at the 

most basic level, Factual Knowledge (A), specifically Knowledge of Terminology (Aa), and 

along the Cognitive dimension, the tasks require only that students Remember (1.0)–the lowest 

level of the taxonomy–by either Recognizing (1.1) or Recalling (1.2). Thus, we see that one of 

the goals of science education at the school is for students to remember the definitions for 

science vocabulary words. 

The worksheets also prioritized retention and recall of content knowledge, or science 

facts. As mentioned, students responded to questions on the “Adapted Reading and Study” 

worksheets as a whole group and on the “Review and Reinforce” worksheets independently. 

Together with the vocabulary tasks, there were 12 different types of tasks for which students 

responded (see Appendix C).  

Again, the classifications of the worksheet tasks indicate low-level cognitive demands of 

science facts. In particular, all of the worksheet tasks were classified along the Knowledge 

dimension as either Factual Knowledge (A) or Conceptual Knowledge (B) and along the 

Cognitive dimension as either Remember (1.0) or Understand (2.0), the least challenging of the 

cognitive processes (see Table 4.6). 

 What we see from the “curriculum” provided by the school is a focus on comprehension 

and remembering, the two bottom levels of Bloom’s Taxonomy, which though important, are not 



 83 

sufficient to meet the disciplinary demands called for in the Framework (National Research 

Council, 2012) and the MSS (MDE, 2015). The materials provided to Mrs. Poppy are designed 

to work with other materials (e.g., textbooks) to which she did not have access. Moreover, as no 

other materials supplied support the worksheets, Mrs. Poppy supplements her instruction with 

information that is readily available and known to her, for example, the Super Teacher 

Worksheets©.  

Teacher Preparation Prepared Mrs. Poppy for Teaching Content and ELA 

In addition to school and policy influences, Mrs. Poppy referenced other influences on 

her instruction. Specifically, at the interview, Mrs. Poppy cited her teacher preparation as playing 

a role in her current instruction. She explained that she had many science education courses, 

having had at least one course for each science domain, Earth, physical, and life, and expressed 

positive JUDGMENT: CAPACITY for her resulting content knowledge: “My classes prepared me for 

content and how to be knowledgeable in what I’m teaching” (p. 1). My subsequent inquiry about 

science education courses at the institution where she was certified as a teacher surfaced a 

university bulletin and the course objectives. According to the bulletin, the science education 

courses were “designed to give the future teacher a strong conceptual understanding of the life 

science [Earth/physical] content he/she will be expected to teach” (archived university bulletin). 

By these accounts, Mrs. Poppy’s preservice preparation courses had the same goals for science 

education as do her school vis-á-vis its provisions and the GLCEs: understand content. 

In addition to my inquiry of her science preparation, I asked Mrs. Poppy about her 

preservice and graduate literacy preparation. Mrs. Poppy has a strong background in elementary 

literacy instruction. According to Mrs. Poppy, she had a wealth of literacy education courses, 

explaining that she had courses on “everything from phonemic awareness...to whole-part-whole 
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versus whole-part-part...to testing...novel units, everything” (p. 1). In addition, as part of her 

Master’s degree program, she participated in the Writing Project, “a four-week long program in 

which we studied implementing effective literacy into our classrooms” (p. 1). The Master’s 

program also included courses on reading disabilities, current children’s literature, and current 

language arts pedagogy. Mrs. Poppy believes she has been well-prepared to teach elementary 

English Language Arts (ELA). 

Together, Mrs. Poppy’s healthy preparation for science content and her strong ELA 

background align well with school and policy expectations that favor an approach to science that 

focuses on comprehension of content, or content-area literacy (CAL). In the next section, I 

explore how accessible resources and professional responsibilities suggest CAL and later, the 

incongruence of CAL and the MSS (MDE, 2015).  

Content-Area Literacy 

 Content-Area Literacy instruction is a common, text- and teacher-dominate pedagogical 

approach intended for helping students overcome the difficulties of subject area (i.e., science, 

social studies, mathematics) texts through explicit instruction in reading skills and vocabulary 

and with hands-on experiences used to verify information from the texts (Chauvin & Theodore, 

2015; Moore, Readence, & Rickelman, 1983). CAL focuses on generalized skills in reading and 

writing to learn and demonstrate command of subject-area content. According to Jacqueline 

Barber (2019), CAL instruction is how most of us were taught: “After reading a portion of the 

textbook, we would listen to the teacher explain what we had read and then respond to 

questions” (p. 6). In this section, I first discuss the professional responsibilities that engender 

CAL. Then, I detail the defining characteristics of CAL as observed in Mrs. Poppy’s classroom 
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and discussed during our interview. Lastly, I take a deep look at how CAL is enacted in science 

and how those enactments will need revisions to meet the demands of the MSS (MDE, 2015). 

Content-Area Literacy Mediates Constraints and Responsibilities 

During the interview, Mrs. Poppy explained that at her school, ELA and mathematics 

have more priority than do science and social studies. The school’s expectations for concentrated 

ELA instruction is a common response to Michigan’s flat reading proficiency scores and the 

many policies and laws specific to reading outcomes (MDE, 2017). At her school, teachers are 

encouraged to spend 90 minutes per day on ELA instruction, and all teachers at each grade level 

are required to teach the same ELA curriculum 80% of the time. Science instruction, on the other 

hand, lacks similar uniformity and guidance, as teachers make instructional decisions by 

themselves or amongst their grade-level colleagues.  

 To mediate the school’s priorities and to give students “double of what they need” (p. 2), 

Mrs. Poppy incorporates ELA into science and vice versa. As she explained, reading and 

vocabulary are important for comprehending science texts. She further noted that reading science 

is good ELA practice, “I really think the ELA aspect of it where they’re reading in science within 

ELA, not just within science is important, too” (p. 2). An example of this overlap is Mrs. 

Poppy’s 30-book challenge, for which she challenges students to read 30 books over the course 

of the school year. As she explained, “[S]tudents have to read multiple genres, like all the 

genres…some of those are informational texts, so they have to fill those boxes with either 

science or social studies” (p. 2). Another example is the final project for the animal adaptation 

unit, which she described during the interview. For this project, students choose a wild animal 

that is native to the local area and respond to ten questions about that animal, based on the fifth 

grade GLCEs (MDE, 2007) for science. Then, the students create a project to share those 10 
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facts about the animal with their classmates. Students are permitted to choose any type of project 

except posters. Mrs. Poppy encourages the students to “be creative” (p. 6) by presenting their 10 

facts in modalities typically associated with ELA, such as poems, songs, and magazines.  

Consistent with CAL, these activities foreground ELA activities, specifically, 

independent reading and creative writing. In contrast, disciplinary literacy, which is expected of 

the MSS (MDE, 2015), “anchors the disciplines” (Chauvin & Theodore, 2015, p. 1) by focusing 

on how language and literacy begets scientific knowledge. However, at Mrs. Poppy’s school, 

where the MSS were not yet adopted, using science texts and content for bolstering reading and 

writing skills is a means of navigating competing demands for instructional time. Next, I share 

other details of Mrs. Poppy’s instruction that characterize it as CAL. 

Characterizing Content-Area Literacy: Reading to Learn 

According to Moore, Readence, and Rickelman (1983), the primary goal of CAL is for 

students to read to learn by helping “students locate, comprehend, remember, and retrieve 

information” (p. 420). This instructional goal mirrors that of Mrs. Poppy’s accessible resources, 

which, as described in previous sections, focus on comprehending content knowledge. This 

objective also emerged as an instructional focus in the interview and during observations. 

Consistent with CAL, Mrs. Poppy shared read-to-learn objectives when asked about the 

role of reading and writing in science. She expressed intensified positive APPRECIATION: 

VALUATION for the importance of reading and writing during science instruction, stating that both 

are of “huge” importance (p. 2) because “students have to be able to understand the content in 

what they’re reading” (p. 2). To this end, Mrs. Poppy plans instruction around questions the 

students should be able to answer correctly by the end of the unit. She clarified that these 

questions are not “Essential Questions” (McTighe & Wiggins, 2013), stating, “it is not one 
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overarching…it’s more like four or five big questions that I’m looking for if they’re able to 

answer when we’re done [with the unit]” (p. 5). She offered examples from the unit the class had 

just finished: “For the one we just did [the heredity and genetics unit], it would be What is 

genetics?, How is it different than heredity?, How do adaptations work?, and How have fossils 

shown that animals have evolved over time? So those are the main things we’re focusing on” (p. 

5). Decidedly, these questions assess students’ recall of content. 

Accordingly, Mrs. Poppy plans instructional activities designed to help students 

understand and recall the answers to the unit questions. The majority of these activities are 

teacher-led read alouds or explanations of texts during which Mrs. Poppy focuses on general 

literacy skills for reading to learn–defining vocabulary words, writing notes, highlighting 

important information, and checking for understanding. She explained her instruction, stating, 

“We do full-group reading together where I have it up on the screen and they have it in front of 

them. So, we’ll read through and highlight what’s important...Any types of notes that we do on 

the board, they’ll put them in their journal and we’ll color-code them” (p. 2-3). Mrs. Poppy’s 

attention to these types of generic reading strategies is typical of CAL instruction. In the next 

section, I describe the extent to which CAL practices conform with disciplinary practices and 

how the CAL practices can be leveraged in transitioning science instruction from CAL to 

disciplinary literacy. 

The Extent to Which CAL Practices Align with Disciplinary Literacy and Leveraging CAL 

Practices in Transitioning to a Disciplinary Approach  

 Content-Area literacy does help students to understand texts by offering generic 

strategies, but according to Barber (2019), it takes too narrow of a view of the roles of literacy 

and language in doing science. Nonetheless, the use of these strategies in instruction indicates a 
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value placed on literacy. Therefore, these strategies, reconceptualized by their role in knowledge 

construction, can be leveraged in transitioning current instruction to disciplinary literacy 

instruction. 

In this section, I describe three comprehension strategies used in Mrs. Poppy’s class to 

help students comprehend texts and the ways in which these tools could contribute to 

disciplinary literacy instruction. 

Visual Representations: Tools for Understanding Versus Tools for Conceptual Thinking  

 The Framework identifies “developing and using models” as a disciplinary practice used 

to construct scientific knowledge (National Research Council, 2012, p. 42). In this section, I 

describe the current uses for models in Mrs. Poppy’s class and show how they help students 

comprehend texts. 

Mrs. Poppy led the students in drawing many pictures throughout the solar system unit 

because the worksheets did not contain any visual representations of described phenomena. For 

example, after reading a section on tides, Mrs. Poppy drew the following diagrams (Figure 4.2) 

and instructed students to copy the diagrams onto their worksheets. 

Figure 4.2 

Visual Representation to Aid Comprehension 
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Mrs. Poppy drew the diagram to help the students understand, an important cognitive task, but 

one at the bottom of Bloom’s Taxonomy (Krathwohl, 2002). 

Mrs. Poppy also used drawings as a means for assessing students’ recall of previously 

read material. For example, during the lessons on the moon and eclipses, Mrs. Poppy drew one 

diagram at a time on her worksheet––which was projected using a document camera––and asked 

the students to collectively label each one. 

T: We learned about a couple of things yesterday. We’re going to review those 

and then we’re going to move on. So, I’d like to ask you if you can please tell me, 

not out loud, please, what this is (Figure 4.3)? 

 

Figure 4.3 

Visual Representation to Assess Understanding 
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S: solar eclipse 

T: Solar eclipse. Very good. (8.1) 
 

In this example, Mrs. Poppy asked students to remember (1.0) conceptual knowledge.  

Diagrams like these and the others that Mrs. Poppy drew throughout the solar system 

unit, are representative of diagrams scientists might construct. The difference lies in their 

cognitive purpose. In Mrs. Poppy’s class, as in many elementary science rooms (e.g., Vo, Forbes, 

Zangori, & Schwarz, 2015), diagrams serve to assist students with understanding and to assess 

their recall or recognition of concepts. Scientists, on the other hand, create and revise visual 

representations within an investigation “to better understand a phenomenon” (p. 56). In other 

words, scientists use visual representations as tools when engaging in higher-order cognitive 

processes, such as generating (6.1), planning (6.2), and producing (6.3). 

The Framework (National Research Council, 2012) particularly stresses the importance 

of student experiences with creating, revising, and critiquing explicit conceptual models that are 

“analogous to the phenomena they represent” (p. 56). Although students did not engage in 

creation, revision, or critique, Mrs. Poppy engaged students with demonstrations and an activity 
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that began to approximate authentic uses for analogous scientific models. During the solar 

system unit, Mrs. Poppy used a globe, a basketball, and a lamp to demonstrate the movement of 

Earth in space and the resulting phenomena of day and night, seasons, and eclipses. During this 

demonstration, Mrs. Poppy was explicit that the globe was a model of the Earth: 

T: So, here we have our trusty glove. A globe is a what? 
 

Ss: [multiple responses at once, including sphere and smaller version] 

 

T: A smaller version of Earth. That’s also called a… 

 

Ss: [multiple responses at once, including globe and map] 

 

T: [Points to a diorama on display in the classroom] This is a smaller version of a 

forest. It’s a what? 

 

S: model 

 

T: It’s a model. So the globe is a model of our Earth, right? (2.1) 
 

However, she was less explicit in explaining that the way she modeled the movement of Earth is 

akin to scientists’ use of models as representations of phenomena that cannot be directly 

observed. Instead, Mrs. Poppy informally called students’ attention to what each object (i.e., the 

globe, the basketball, and the lamp) represented, stating, “Let’s pretend that the sun is over 

here…” (2.1). To suggest that analogous modeling is synonymous with pretending diminishes 

the important role of scientific models. Conversely, according to the Framework (National 

Research Council, 2012), curricula should “stress the role of models explicitly… so that students 

come to value this core practice” (p. 59). 

 Another emergent approximation occurred during the TSM unit at the end of the penny 

investigation when Mrs. Poppy asked the students why a scientist might conduct that very same 

experiment. The students did not know, but Mrs. Poppy offered a practical example of someone 

who would want to know about how much water could fit on something: “If you have a pool and 
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you have a pool cover and it rains, do you need to care about how much water that pool cover 

can hold on top of that pool...Do you think that the engineers that build that care about stuff like 

that” (918.2)? While a scientist certainly could engage in this investigation as a means for 

understanding some properties of water, the analogy between the pool cover and putting water 

on a penny and how the penny experiment would inform the pool cover question were not made 

clear. 

 While the majority of visual representations were employed as reading comprehension 

aids, the demonstrations of the Earth’s movement in space and the hint at analogous modeling 

during the penny investigation show that physical modeling is a strategy that Mrs. Poppy could 

further develop as a disciplinary means for inquiries of science phenomena. 

Vocabulary: Knowing Definitions Versus Understanding Concepts 

During the interview, Stella expressed intensified positive APPRECIATION: VALUATION for 

vocabulary instruction, stating, “Vocabulary is very big…vocab[ulary] is so important” (p. 2). 

Stella’s assertion is supported by abundant and clear research about the strong relationship 

between reading comprehension and vocabulary knowledge (Beck, McKeown, & Kucan, 2013; 

Blachowicz, 2014; Eunice Kennedy Shriver National Institute of Health and Human 

Development, 2000). As such, she gave frequent attention to the bolded vocabulary words on the 

Pearson Prentice Hall worksheets. These key words received the most airtime in her classroom 

because they were prominent on the worksheets in both the information portions and the 

comprehension assessments. Matching words and definitions or defining key words were also 

the most frequently assigned tasks across all of the solar system worksheet sections. 

 In class, attention to vocabulary served several purposes: 

• To review (Remember (1.0)), 

T: Yesterday, we talked about what? We talked about this [spins the globe]. 
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Ss: rotation (3.1) 

• to check for understanding (Recognizing (1.1)), 

T: All right. Let’s take a look at these [number 3]. We’re going to match them. 

The first one, the movement of one object around another object. So, it involves 

two objects. 

Ss: revolution 

T: The imaginary line that passes through Earth’s center and the North and South 

Poles? 

Ss: axis 

T: Axis. And then, the spinning of Earth, is that rotation? 

Ss: yes. 

T: Good. (4.2) 

• and to help students remember (1.0) differences in phenomena: 

o This is how I remember the difference between waxing and waning. When you 

wax something, it gets clearer and clearer and clearer, right? So, when I think of 

that, the more that you wax the moon, the more brighter and shinier it’s going to 

get. (8.1) 

o A good way to remember that is if you were to take a picture of the sun, what 

color would it be? If I take a picture of the sun? Yellow, orange, kind of, right? 

And when you’re seeing that picture, when you are seeing the sun in that photo, 

you are seeing the photosphere. So, it’s a good way to remember that it’s the 

photosphere that you can see. (9.1) 

 

Furthermore, Mrs. Poppy requests students use accurate vocabulary terms during discussions as 

in this example: 

T: So, [bouncy balls] are what shape? 
 

S: circle 

 

T: They are not circles. They are…? 

 

Ss: spheres (918.7) 
 

 During my time in her classroom, Mrs. Poppy attended to a total of 72 vocabulary words. 

Students received a daily work grade for accurately defining or matching 34 of those words and 

an assessment grade for accurately matching 15 terms and definitions on the solar system unit 

test. However, because students were rarely tasked with applying new terms in appropriate 

contexts, as called for by the Framework (National Research Council, 2012), students learned 

definitions but not concepts. According to the American Association for the Advancement of 
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Science (1990), when teachers put too much focus on defining words, teachers “risk being 

misled about what students have learned” (p. 203). Such was the case in Mrs. Poppy’s class as 

illustrated in following example. 

 In the fall, Mrs. Poppy taught a unit on force and motion. Although I did not observe this 

unit, it was obvious students had become very familiar with the vocabulary words from that unit. 

For example, Mrs. Poppy passed out the second packet of worksheets, “Gravity and Motion,” 

and asked the students to skim the first two pages to see if there were any words that they had 

already seen. Students responded with the following words: force, gravity, mass, pull, motion, 

inertia, and Newton’s First Law (5.10). On several occasions, students recited Newton’s first law 

of motion verbatim, and they demonstrated proficiency with defining these reoccurring words as 

well. 

T: Force is what? Go ahead and say it. 
 

Ss: push or pull! 

 

T: Gravity does what? 

 

Ss: attracts an object toward each other! 

 

T: Mass? 

 

Ss: the amount of matter an object has (7.2) 

 

 Despite this ability to define words, students did not always understand the concept of the 

terms. On the third lesson of the “Gravity and Motion” section, the students and Mrs. Poppy 

corrected the Section Summary and Review and Reinforce portions of the worksheet packet as 

per the usual pattern. During this episode, it became apparent that knowing the definition was not 

sufficient for understanding the concept of “inertia” despite the fact the students had learned the 

definition in the fall and had been reciting it repeatedly over the previous two lessons. 
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T: Inertia? [What does it mean?] 

 

S: the tendency of an object to not change motion 

 

T: What does that even mean? Raise your hand and tell me. “The tendency of an 

object to resist its change in motion.” Does that definition help you if you don’t 

know what it means?  

 

S: no 

 

T: No! It doesn’t. What does this mean, “resist a change in motion”? What does 

just that part mean? What does “resist” mean?... 

 

S2: try to go in the same direction 

 

T: Not exactly. Good try, though.  

 

S3: to refuse 

 

T: To refuse, what? 

 

S3: to do 

 

T: To refuse to do what? To refuse to do what? To change motion.  

 

S4: to refuse to change motion, slowing down, turning, or speeding up 

 

T: Yes, so if something is already in motion, what does it want to do? 

 

S5: stay in motion 

 

T: It tends to keep going, right? What if something’s motion is stopped? If their 

motion is stopped, they want to do what? 

 

Ss: stop 

 

T: Well, a ball can’t really want to do anything, can it? So, that’s why we say 

“tendency.” Instead of saying “they want to do it,” we say, “the tendency.” So, it 

tends to stay there unless acted on by what? (7.2) 
 

This excerpt highlights another reason the conceptualization of science as content to recall and 

understand is problematic: Correct definitions are interpreted as mastery of recall.  

Mrs. Poppy understands the importance of vocabulary instruction. However, unlike 

vocabulary words found in narrative texts, science words are not easily understood through 
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context clues or by providing synonyms. Science vocabulary is technical (Fang, 2005) and 

conceptually complex (Hiebert & Cervetti, 2012). The goal for vocabulary instruction in science 

is not to simply define words but to understand the concepts for which the words represent. 

Therefore, according to Cervetti, Hiebert, Pearson, & McClung (2015), new words must be 

explicitly defined and “bound to hands-on scientific investigations” (p. 12). To learn vocabulary 

in meaningful ways in a disciplinary context, students will need opportunities to discuss the 

concepts represented by the words and experience the concepts firsthand.  

Background Knowledge: Everyday Versus Scientific  

According to the Framework (NATIONAL RESEARCH COUNCIL, 2012) a hypothesis 

“is made based on existing theoretical understanding relevant to the situation and often also on a 

specific model for the system in question” (p. 67). As Galus (2003) stressed, hypotheses are 

formulated only after much observation, calculating, studying, and research. In other words, 

hypotheses require significant, relevant background knowledge. In this section, I show how Mrs. 

Poppy activates students’ background knowledge to support their comprehension. Then, I show 

the nuances of background knowledge in formulating a hypothesis. 

During the interview, Stella expressed APPRECIATION: CAPACITY for her instruction 

because she calls upon students’ background knowledge, knowing that “if they have experienced 

it, they have knowledge about it and then they can share it” (p. 2). Stella was correct; results of 

many studies throughout many decades suggest the activation of prior knowledge to be 

particularly useful with expository text reading (e.g., Coté, Goldman, & Saul, 1998; Laing & 

Kamhi, 2002; Lipson, 1983; Schellings, Aarnoutse,  & van Leeuwe, 2006; Taylor, 1979). During 

observations, I witnessed the many ways in which she engaged students’ schemata when reading 

content texts, including: 
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• priming students’ background knowledge prior to the presentation of new information, 

o “We have rotation, and we have revolution. You will be required to know the 

difference between them. And some of you might already know that because you 

did learn about that last year” (2.1). 

o “Think about our summer. How much of our day is daylight” (3.1)? 

o “Last year, did you do anything with the scientific method” (912.1)? 

• relating information from the science texts to other texts with which students had 

previously engaged, 

o “Remember that video we watched where the moon went in front of the sun and it 

was like that diamond ring effect, that just lit up and you could just see that hazy 

part” (9.1)? 

o T: Venus was the ancient Greek and Roman goddess of love. Venus was her 

Roman name while the Greeks knew her as…Does anyone know? Do I have 

some, oh, what books is it that has all the Greeks and Romans? What’s that series 

of books? 

 

S: Percy Jackson 

 

T: Percy Jackson and the Heroes of Olympus [book series by Rick Riordan],  

anybody read those? It was Aphrodite (10.1). 

 

T: In Alaska, Native people once believed that a raven made the land by diving 

into the ocean and bringing up a clump of mud in its beak. An alternative version 

of this myth describes how a coyote created the land from a floating bird’s nest. 

Do you remember in The Birchbark House [a book by Louise Erdich]? 

 

Ss: Yeah! 

 

T: and what was it that went down? 

 

S: a muskrat! (10.2) 

• and asking about students’ prior experiences with phenomena under study, 

o “How many of you have ever seen them [eclipses]? Even if it’s just a partial 

eclipse, have you ever seen one” (7.6)? 

o “We’re going to talk about the tides. How many of you have got to experience 

tides? That you’ve been able to go to the oceans and see this” (8.2)? 

o “Has anyone ever gotten the opportunity to go to a meteor crater before and see a 

crater that has been caused from that” (12.5)? 

o “Has anyone in here ever done a little science experiment, like where you grew a 

plant or anything like that” (913.1)? 

 

 As evident, Mrs. Poppy was true to her word; she regularly prompts students to think 

about or share background information relevant to the content of the texts they were reading.  
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While general familiarity with a phenomenon can help students to comprehend science texts, 

hypothesizing requires specialized background knowledge. The following episode shows that 

Mrs. Poppy and the students are not sure what background knowledge counts when gathering 

information to form a hypothesis: 

T: I just want to know, tell me anything that comes to mind about a bouncy ball. 

They are this. They do this” (918.6) 

… 

 

S: The weight of the bouncy ball, that how it’s controlled by weight distribution. 

 

T: What do you mean? 

… 

 

S: And if there’s a lot of weight behind it, sometimes that gives it more speed and 

more power to get back up. 

 

T: So, you’re saying if it weighs more, it will have more speed when it bounces. 

Okay. So, does that mean that the big ones, the big bouncy balls, will bounce 

higher than those little ones, because they weigh more? 

 

S: Not always, but most of the time, yes. 

 

T: Okay, I beg to differ because I think that if it’s heavier, those big ones, they 

don’t tend to bounce as high. The lighter ones do, from my past experience, but I 

could be wrong. (918.6) 
 

The second student to contribute stated that bouncy balls are made of rubber. Mrs. Poppy 

added that information to the investigation sheet. However, the third student’s prior 

knowledge was again incongruent with Mrs. Poppy’s intentions. 

S: [I]n my past experiences, the smaller ones, when I throw them harder, they 

bounce all over the place. 

 

T: So, you think the smaller, they’ll bounce higher or harder. Okay? We would 

have to test that to make sure, and everything I want here, I don’t want to have to 

test it. I want this to be all of our prior knowledge, not what we think…I think in 

order to prove what either of you are saying, we’d have to try it. So, let’s stick to 

more basic facts about bouncy balls, something like they are made of rubber, 

okay? (918.6) 
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This same scenario repeated several more times as students attempted to contribute facts they 

thought to be true about bouncy balls (i.e., they cannot bounce if they are frozen; they bounce 

lower if they are thicker; if a bouncy ball is heated up, it will turn into Play-doh). Eventually 

Mrs. Poppy prompted students to provide information suitable for inclusion on the investigation 

sheet and she summarized the information into a concise paragraph: 

They are made of rubber. They come in many sizes. They bounce at different 

heights depending on the circumstance. They are spheres that bounce. They have 

a solid center. They come in different colors. If you throw it, it will bounce back. 

(918) 
 

 These episodes within the bouncy ball investigation illustrate Mrs. Poppy and the 

students’ varied understandings of background information within the context of an 

investigation. Some students seemed to accurately understand that background knowledge 

relevant to the research question should contribute to understanding the relationship between 

characteristics of the bouncy ball and the drop height. Other students seemingly understood that 

the solicitation of background knowledge did not mean they should share just any experience 

with bouncy balls but rather background knowledge that seemed scientific, even if they were not 

sure their contributions were true. 

 Background knowledge is important to comprehension and to learning new information, 

such as science concepts. Mrs. Poppy can advance her practices with background knowledge by 

engaging students in activities that build background knowledge. The penny investigation, for 

example, could help build background knowledge about the properties of water. Bouncing the 

bouncy balls could build background for understanding how they bounce. These experiences can 

then be leveraged in initial explanations of other phenomena.  

Content-area literacy instruction encourages students to engage in generic comprehension 

strategies for the purpose of understanding content-area texts. In Mrs. Poppy’s classroom, CAL 
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meant creating visual representations, attending to vocabulary, and activating background 

knowledge, practices that both advanced and obscured authentic engagement in science. 

However, these current practices can be leveraged in helping to move instruction toward 

disciplinary literacy.  

Chapter Summary 

 Mrs. Poppy is a rural fifth-grade science teacher who is attentive to her professional 

obligations and whose instructional practices are crafted from her experiences in her teacher 

preparation program, the GLCEs (MDE, 2007) for which she is responsible, and the worksheets 

provided by the school, as well as the school’s predilection for ELA instruction. These resources 

and expectations position science as a set of disciplines comprised of a discrete facts that are 

learned through low-level cognitive tasks of recalling and understanding content and procedural 

knowledge. In adhering to this conception, Mrs. Poppy enacts instruction that is best described as 

content-area literacy, an approach to science instruction that does not conform to the 

expectations of the state’s newest standards, the Michigan Science Standards (MDE, 2015). 

The newest standards, the Michigan Science Standards (MDE, 2015), on the other hand, 

expunge CAL in advocating for disciplinary literacy instruction. Disciplinary literacy instruction 

is a markedly different approach to teaching and learning, and therefore, Mrs. Poppy–and other 

teachers making the transition–will need support to enact instruction consistent with the intent of 

the MSS. Leveraging teachers’ current instructional practices is a way to help transition 

instruction toward disciplinary literacy instruction while respecting the teachers’ experiences and 

importantly, the pedagogical context.  
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CHAPTER V 

Supporting Teachers to Develop Disciplinary Literacy: Implications and Discussion of the 

Findings 

 

Introduction 

  In 2015, Michigan made profound conceptual and instructional changes to science 

education with the adoption of the Next Generation Science Standards (NGSS Lead States, 

2013), adopted as the Michigan Science Standards (MSS; Michigan Department of Education 

[MDE], 2015). Unlike previous standards structured around science content knowledge, the MSS 

call for disciplinary literacy, which attends to both content and the discipline-specific literacy 

practices that produce and revise scientific knowledge (Moje, 2008). At the forefront of this 

reform are the teachers tasked with realizing the new vision for science education for whom 

professional development will be critical for bridging the gap between their current instructional 

practices and those called for in the MSS (Allen & Penuel, 2015; Birman, Desimone, Porter, & 

Garet, 2000, p. 28). 

Keenly aware of the need for coherent professional development responsive to the NGSS 

and other similar standards, the Board on Science Education worked with the Teacher Advisory 

Council of the Academies Foundation to study how to best provide support for science teachers 

undertaking the new standards. The committee’s report, Teacher’s Learning: Enhancing 

Opportunities, Creating Supportive Contexts (National Academies of Sciences, Engineering, and 

Medicine, 2015), details 13 conclusions about teacher learning and makes seven 



 102 

recommendations for practice and policy and six recommendations for additional research. 

Among those conclusions and recommendations is a recurrent call for professional development 

designed to build individual teacher capacity for science teaching. For example, the committee 

found that currently in research literature there is little attention “to offering teachers learning 

opportunities tailored to their specific needs” (Conclusion 3, p. 215). In Recommendation 2, the 

committee suggests that professional development should “attend to teachers’ individual and 

context-specific needs” (p. 222). In this chapter, I extrapolate case study data on the individual 

and context-specific needs of an elementary science teacher and apply the construct of Zone of 

Feasible Innovation (Rogan, 2007), drawn from Vygotsky’s Zone of Proximal Development 

(Vygotsky, 1978), in order to propose a scaffolded set of instructional strategies designed to 

bridge current instructional practices with those required by the Michigan Science Standards 

(MDE, 2015).  

I begin this chapter with a review of the literature on professional development, echoing 

the National Academies of Sciences, Engineering, and Medicine’s (2015) call for differentiated 

professional development. 

Features of Effective Professional Development for Achieving the Goals of Educational 

Reforms 

 Timperley, Wilson, Barrar, and Fung (2007) define professional development as “the 

dissemination of information to teachers in order to influence practice” (p. 284). Ideally, 

professional development involves professional learning, or the “internal process by which 

individuals create professional knowledge” (p. 284). Professional development (PD) can take 

many forms from traditional workshops, conferences, and courses to “reform types” (Desimone, 

Porter, Garet, Yoon, & Birman, 2002, p. 82), such as study groups, mentoring, and self-study.  
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 In this century, research on PD is of great interest, but prior to and in the early 1990s, 

professional development research largely considered teacher reports of satisfaction with the 

content and design of professional learning opportunities as the measure for effective 

professional development. While this continues to be the prominent measure for locally-offered 

professional development, since the late 1990s, mainstream research on professional 

development has taken a process-product approach, exploring whether the process, the 

professional development, results in the desired products, teacher knowledge, teacher change, 

and positive student outcomes (Desimone, 2011; Hill, Beisiegel, & Jacob, 2013). Much of this 

research compares various design features of professional development, such as its duration, or 

interactions among features, with measures of teacher change, commonly student assessments 

and teacher evaluations.  

Darling-Hammond, Hyler, and Gardner (2017) reviewed 35 “methodologically rigorous 

studies” (p. v) that indicated a positive relationship between teacher PD, teaching practice, and 

student outcomes to determine common features of effective professional development. Analysis 

indicated that effective PD incorporates most or all of the following seven features: is content-

focused, engages teachers in active learning, supports collaboration, uses models of effective 

practice, provides coaching and expert support, offers feedback and reflection, and is of 

sustained duration. In this section, I consider these features across findings from seven additional 

large studies (see Table 5.1) and in conversation with smaller studies, synthesizing what is 

known about the extent to which each design feature can contribute to effective professional 

development. 
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Table 5.1 

Methods of Studies Included in Synthesis of Research on Features of Effective PD 

Study Methods 

Birman, Desimone, Porter, & Garet (2000) Surveyed nationally representative sample of U. S. teachers of 

1000+ teachers who participated in PD funded in part through a 

federal program 

Desimone, Porter, Garet, Yoon, & Birman 

(2002) 

Surveyed purposefully selected sample of U. S. teachers from 30 

schools in 10 districts in 5 states over three-years; analysis done 

for teachers who returned surveys for all three years (N=207) 

Ingvarson, Meiers, & Beavis (2005) Review of 4 evaluation studies conducted by Australian Council 

for Educational Research; in total data were gathered from 3250 

teachers who participated in over 80 different PD programs 

Timperley, Wilson, Barrar, & Fung (2007) Meta-analysis of 72 studies of professional development that 

contained statistical data for student outcomes 

Wei, Darling-Hammond, & Adamson 

(2010) 

Survey of 35,800 U. S. teachers to gather data on characteristics 

and qualifications of principals and teachers; school hiring 

practices, teacher PD, and more 

Kennedy (2016) Review of experimental studies of PD for K-12 U. S. teachers of 

core academic subjects published since 1975 that met 5 criteria: 

study was only about PD, study included evidence of student 

achievement, study designs controlled for teachers’ motivation for 

learning, study duration was at least 1 year, and researchers 

followed the teachers (not students) over time 

Kraft & Blazar (2018) Meta-analysis of 60 studies evaluating the effects of professional 

coaching; studies were either randomized controlled trials or 

quasi-experimental research designs that isolated the effect of 

coaching and linked coaching to positive teacher practice and 

student achievement 

 

Is Content-Focused 

Effective professional development is content-focused (Birman et al., 2000; Darling-

Hammond et al., 2017; Desimone et al., 2002), building teacher proficiency in content 

knowledge for a specific subject area, how students learn content in that subject area, and 

knowledge of methods for teaching the content (Ingvarson, et al., 2005). Ingvarson et al. (2005) 

found that a content-specific focus is the most important influence on increased teacher 

knowledge while Desimone et al. (2002) found that the relationship between teachers’ 
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implementation of practices in the classroom and professional development that focuses on a 

specific practice or set of practices and has other features of high-quality PD is positive but not 

statistically significant. One reason for the contradictory findings might be that, as Kennedy’s  

(2016) analyses indicated, PD programs that focus exclusively on content are less effective at 

achieving positive student outcomes than programs that embed content within a larger goal, such 

as learning how to engage students in sense-making. 

Engages Teachers in Active Learning 

“Sit and get” (Kraft & Blazar, 2018, p. 70) professional development in which teachers 

listen to lectures–the form of professional development most prominent in PD research from the 

United States–is not sufficient for helping teachers to understand content (Timperley et al., 2007) 

because it only attends to what teachers must learn and not how teachers learn (Darling-

Hammond et al., 2017). Effective professional development, on the other hand, attends to both 

and engages participating teachers in active learning (Birman et al., 20000; Darling-Hammond et 

al., 2017; Desimone et al., 2002; Ingvarson et al., 2005; Masuda, Ebersole, & Barrett, 2013). 

Active learning activities, such as trying specific strategies and looking at teaching artifacts, 

should be aligned with the content goals and should be sequenced to support teacher 

understanding of the relationship between teaching and learning. According to Timperley et al. 

(2007), the typical sequence begins with a rationale or catalyst for participating in the PD 

followed by instruction in the theoretical underpinnings of the desired changes, and ends with 

opportunities for teachers to “translate theory into practice” (p. xxxvi). 

Ingvarson et al. (2005) found that save content knowledge, active learning and teacher 

reflection have the most influence on teacher practice outcomes across all four of the programs 

they studied, and the interaction between active learning and outcomes is statistically significant. 
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Desimone et al., (2002) found a significant increase in teachers’ use of a particular strategy when 

teachers have opportunities to practice the strategy during PD.  

Supports Collaboration 

According to Darling-Hammond et al., (2017), “High quality PD creates space for 

teachers to share ideas and collaborate in their learning, often in job-embedded contexts” (p. v). 

Learning in job-embedded contexts is important because it allows for teachers from the same 

grade level, content area, or school to work collectively, which is shown to have a significant 

effect on teachers’ use of a particular reform strategy (Desimone et al., 2002) and contribute to a 

shared understanding of professional goals (Birman et al., 2000). Timperley et al. (2007) assert 

that effective collaborative communities share two characteristics. First, participants are 

supported in processing new understandings and their implications, which sometimes involves 

discursive negotiation to challenge existing understandings and make sense of new ideas. 

Secondly, the community focuses on how teaching impacts student learning.  

One way a collaborative community can focus on student learning is through 

collaborative evaluations of student work, which Ingvarson et al. (2005) argue is critical for 

effective professional learning because it “de-privatise[s]” teacher practice, allowing for 

colleagues to learn from one another (p. 9). Furthermore, collaborative evaluations of student 

work lead to “deeper understanding of student learning outcomes and greater discrimination 

about what counts as meeting those objectives” (p. 9). Overall, Ingvarson et al. (2005) found 

collaboration to have a significant impact on both teacher knowledge and teacher practice.  

According to Kennedy (2016), however, the relationship between collaboration and 

positive outcomes is not consistently positive. In comparing the effectiveness of professional 

development programs structured around professional learning communities, Kennedy (2016) 
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found mixed results. In fact, participation in one professional learning community actually had a 

negative effect on student learning. Kennedy (2016) cautions that professional learning 

communities, as a structure for collaboration, are effective relative to the content the groups 

discuss and “the nature of the intellectual work they are engaged in” (p. 972).  

Uses Models of Effective Practice 

High-quality professional development includes models of best practices, or what Ball 

(1996) refers to as “models of reform” (p. 507). These models, including models of lesson or unit 

plans, sample student work, peer observations, video footage of teaching, or written scenarios 

(Darling-Hammond et al., 2017, p. v) provide teachers with explicit illustrations of effective 

practices in use. According to results from a survey of 258 teachers from 42 states regarding 

their perceptions of online professional development, the most popular activity–the activity 

online professional development participants found the most beneficial–is accessing videos of 

exemplary instruction from a video library (Parsons et al., 2019). Videos allow for teachers to 

see the feasibility and reality of best practices in classroom contexts upon which they can 

“anchor their own learning and growth” (Darling-Hammond et al., 2017, p. 11). Kennedy (2016), 

however, found that it is not the models alone that contribute to changes in teacher practice and 

improved student learning but rather the dialogue and sense-making regarding the practices 

observed in the models that contributes to positive outcomes. Therefore, models of effective 

practice contribute to positive outcomes when they are combined with other features of high-

quality PD, such as collaboration, active learning, feedback, and reflection. 

Offers Feedback and Reflection 

Effective professional development allots time for teachers to reflect upon, think about, 

and receive feedback on their practice and their progress toward best practices (Ball, 1996; 
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Darling-Hammond et al., 2017; Ingvarson et al., 2005). Ingvarson et al. (2005) found the extent 

to which professional development provides follow-up feedback during the implementation 

phase significantly impacts teacher knowledge. Interestingly, Parsons et al. (2019) found that 

none of teachers’ preferable formats of online professional development included feedback. 

Kennedy’s (2016) findings offer a possible reason for this preference. When feedback is 

presented as evaluative, professional development is less effective in achieving positive 

outcomes than when feedback is offered as a collaborative, problem-solving approach toward 

strategic instruction. It is possible that teachers feel the feedback offered in online PD formats is 

evaluative and not particularly helpful. 

Provides Coaching and Expert Support 

Likewise, according to Darling-Hammond et al. (2017), effective professional 

development involves the sharing of expertise regarding content and best practices through 

professional coaching and expert support (Darling-Hammond et al., 2017). One form of 

professional development that encompasses both of these features is professional coaching. 

Professional coaching is an increasingly common form of job-embedded, differentiated 

professional development (Grierson & Woloshyn, 2013) characterized by Kraft and Blazar 

(2018) as “an observation and feedback cycle in which coaches model research-based practices 

and work with teachers to incorporate these practices into their classrooms” (p. 70); it is 

“individualized, time-intensive, context-specific and focused on discrete skills” (p. 70). 

Professional coaching weaves all characteristics that have already been established as features of 

effective PD into a PD model based on individual teacher needs. Kraft and Blazar’s (2018) meta-

analysis indicated an improvement in the quality of teachers’ instruction as a result of 

professional coaching equal to the difference in effectiveness between a new teacher and a 
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veteran teacher of five to ten years. Darling-Hammond et al. (2017) found that teachers who 

participate in coaching are more likely to implement reform-based practices and enact them more 

appropriately than are teachers who receive more traditional forms of professional development. 

Timperley et al. (2007) found that involvement of external expertise was a feature of 

almost all core studies likely because reform efforts require not just understanding new standards 

but new content, skills, and habit of minds. In order to contribute to positive outcomes, however, 

experts must have provider pedagogical content knowledge, or knowledge of how to “make the 

content meaningful to teachers and manageable within the context of teaching practice” (p. 

xxix). However, external expertise is not always feasible because it usually requires additional 

funding. For this reason, internal coaching and small group workshops are appealing options 

because teachers with a variety of backgrounds and expertise can serve the role of expert 

(Darling-Hammond et al., 2017). 

Is of Sustained Duration 

Changes in teacher knowledge and practices and student achievement are difficult 

(Timperley et al., 2007) and do not happen overnight (Ball, 1996); they are “slow and 

incremental”(Kennedy, 2016, p. 973). Therefore, quality professional development, according to 

Darling-Hammond et al. (2017), “provides teachers with adequate time to learn, practice, 

implement, and reflect upon new strategies that facilitate changes in their practice” (p. vi). 

However, across the studies reviewed here, there are varying definitions of “adequate.” 

According to Wei et al., 2010, adequate PD has an annual duration of 45 – 300 hours. For 

Desimone (2011), high-quality professional development requires 20 or more contact hours 

spread over a semester. Other research (Birman et al., 2000; Ingvarson et al., 2005; Kennedy, 

2016; Timperley et al., 2007) has found that the duration of the PD is not a reliable feature of 
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effectiveness. Rather, programs of longer duration or higher intensity typically also have more 

content-focus and opportunities for active learning. Thus, their research suggests that how PD 

time is used is more positively related to positive outcomes than is duration. 

Summary of Features of Effective Professional Development 

In general, high-quality professional learning occurs when teachers have sufficient time 

to develop content knowledge and teaching strategies for teaching content through job-embedded 

professional development. Effective PD embeds content into larger instructional goals and 

provides teachers with opportunities to engage in collaborative, active learning that allows for 

practice and the sharing of expertise. Effective PD also includes iterative cycles of observations 

and practice, feedback, and reflection. 

 However, the above synthesis also indicates that these design features do not ensure the 

success of professional development opportunities. For example, as described above, even 

though some research considers feedback a feature of effective PD (Ball, 1996; Darling-

Hammond et al., 2017; Ingvarson et al., 2005), other research shows that teachers do not always 

want or find value in feedback (Parsons et al., 2019). According to Kennedy (2016), the 

variability of the impact of specific design features suggests we need a different conception of 

PD, one “that is based on more nuanced understanding of what teachers do, what motivates 

them, and how they learn and grow” (p. 974). Therefore, in the next section I argue that effective 

professional development requires what Timperley et al. 2007 refer to as “effective contexts” (p. 

xxxvii) and that in order for professional development to be effective and result in positive 

outcomes relative to the goals of the MSS (MDE, 2015), it is necessary to have a thorough 

understanding of the affordances and constraints of the context in which the standards and PD 

are to be enacted. In accordance with the National Academies of Sciences, Engineering, and 
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Medicine (2015) professional development must attend to the teachers’ individual and context-

specific needs. 

Contexts that Limit and Support Professional Learning 

 Even well-designed professional development is not guaranteed to produce positive 

outcomes because contextual factors can inhibit or limit the realization of the goals for 

professional development. According to Darling-Hammond et al. (2017) possible contextual 

barriers include “lack of shared vision about what high-quality instruction entails” and  

“conflicting requirements, such as scripted curriculum or pacing guides” (p. 24). This was the 

case for a teacher in Allen and Penuel’s (2015) multi-case study exploring teachers’ responses to 

professional development aimed at supporting teachers in implementing the NGSS (NGSS Lead 

States, 2013). In the first year of the study, professional development focused on understanding 

the tenets of the National Research Council’s A Framework for K-12 Science Education: 

Practices, Crosscutting Concepts, and Core Ideas (2012), and the second year focused on the 

NGSS (NGSS Lead States, 2013) and project-based inquiry science curriculum. The researchers 

found that sources of ambiguity and uncertainty influenced teachers’ perceptions of the extent to 

which the professional development aligned with the goals for science teaching and learning 

within their contexts. The most common source of ambiguity and uncertainty was conflicting 

ideas about the nature of high-quality science instruction. For example, during a lesson on 

energy, the teacher had students explore a variety of toys with various springs and contraptions. 

While the teacher’s goal was to engage students in the scientific practices of observation and 

hypothesizing, the administration thought the lesson lacked rigor. Likewise, the study found that 

“tools and routines increasingly common in schools as devices for ‘tightening’ the coupling of 

policy and practice,” (p. 147) such as standardized lesson planning templates and requirements 
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for all teachers to teach the same lesson every day, actually created ambiguity between the goals 

presented in professional development and the school’s expectations for its teachers.  

In contrast, contexts conducive to professional learning are consistent with wider trends 

in policy and research (Timperley et al., 2007). This consistency is also known as coherence. 

According to Birman et al. (2000),  

Coherence indicates the extent to which professional development experiences are 

part of an integrated program of teacher learning–activities that are consistent 

with teacher goals, build on earlier activities, are followed by additional activities, 

and involve teachers in discussing their experiences with other teachers and 

administrators in the school. Activities are coherent when they support national, 

state, and district standards and assessments. (p. 31) 

 

Coherence is associated with increased teacher learning and improved classroom practice 

(Birman et al., 2000). Therefore, effective professional development must cohere with context-

specific goals and policies.  

 Teachers’ needs are rarely considered in decisions about professional development 

offerings (Darling-Hammond, et al., 2017), but according to Korthagen (2017), “attempts at 

influencing teacher behaviour have to be adjusted to individual teachers in their specific 

circumstances and settings” (p. 393). For example, teachers may lack or have inadequate 

materials and curriculum resources, problematic prevailing discourses, or other instructional 

obstacles. Professional development that offers “differentiation of opportunity” (Allen & Penuel, 

2015, p. 147) accounts for these context-specific sources of conflict and uncertainty. A study by 

Grierson and Woloshyn (2013) illustrates the potential of professional learning when teachers’ 

personal and contextual needs are considered.  

 Grierson and Woloshyn (2013) conducted a qualitative case study of three elementary 

teachers who wanted support with student assessments. Each teacher had different skills or 

practices she wanted to understand or revise. For example, one teacher wanted to improve her 
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assessment strategies while another teacher wanted strategies for enacting effective instruction of 

story elements, a need identified by assessments. Professional learning activities designed to 

address their individual needs and participation in a small professional learning community 

focused on assessments, and instructional coaching supported teachers in improving their 

practice and enhanced their self-efficacy for teaching. One year after this initiative, the changes 

the teachers made were sustained, and the participating teachers had assumed leadership roles in 

leading needs-based professional learning opportunities for their colleagues, thereby building 

internal capacity for change. 

 In this section, I showed that contexts either support or impede the effectiveness of 

professional learning and change. Professional development opportunities that do not address 

teachers’ individual and context-specific needs will likely fail to achieve the coherence necessary 

to improve teacher practice and student outcomes (Hill, 2009). However, when teachers’ needs 

are considered in the design and enactment of professional learning opportunities, contexts are 

not a barrier to adopting reform-based practices. Teachers like Mrs. Poppy need and deserve 

these types of professional learning opportunities for supporting their implementation of the 

MSS (MDE, 2015). However, research on differentiated professional development for science is 

scarce (National Academies of Sciences, Engineering, and Medicine, 2015).  

In the remainder of the chapter, I contribute to this gap in knowledge by proposing a 

research-based, context-specific approach for leveraging current instructional practices in 

elementary science teaching. The approach is tailored to cohere with existing resources and 

teacher practices and scaffolded toward the literacy instruction required by the MSS (MDE, 

2015).  
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Leveraging Current Instructional Practices to Achieve Disciplinary Literacy Instruction in 

a Fifth Grade Classroom 

 In this case study, I explored the pedagogical resources and constraints that shape–and 

are shaped by–the instructional practices in Mrs. Poppy’s rural fifth grade science classroom and 

the extent to which those practices conform with a disciplinary approach to science as required 

by the MSS. Mrs. Poppy’s instruction is constrained by not having a science curriculum or 

curriculum materials, the school’s haphazard organization for science instruction, and policies 

and expectations that privilege English language arts instruction while limiting instructional time 

for science. Her instruction is further limited by her accessible resources. These resources, her 

own understanding of science developed through her preservice education courses and the 

worksheets–provided by the school–around which Mrs. Poppy structures her instruction, present 

a conceptualization of science as a body of knowledge. This conceptualization aligns with the 

requirements of the previous state standards, the Grade Level Content Expectations (GLCEs; 

MDE, 2007) for science, for which she is responsible and uses as an instructional guide. As the 

overarching goals for science education in the state, the GLCEs identified understanding 

conceptual and procedural knowledge as the primary objective. Accordingly, Mrs. Poppy enacts 

instruction designed to support students’ comprehension and recall of science texts and content, 

instruction characterized as content-area literacy. 

 A content-area literacy approach to science instruction assumes a narrow understanding 

of the role of literacy in doing science, posturing written texts as the locus of scientific 

knowledge and neglecting the “reasoning, argumentation, and inquiry that shape literacy 

practices in the disciplines” (Barber, 2019, p. 7). Therefore, content-area literacy instruction for 

science is incongruent with the disciplinary literacy demands of the new standards.  
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To transition from the content-area literary approach to a disciplinary literacy approach, 

teachers like Mrs. Poppy will need professional learning opportunities that are responsive to the 

resources and constraints of their contexts and their current instructional practices. To fill this 

need and to contribute to the need for better understanding of differentiated professional 

development, I apply the construct of zone of feasible innovation (Rogan, 2007) to propose a set 

of scaffolded strategies designed to incrementally evolve practice from content-area literacy to 

the disciplinary literacy required of the MSS (MDE, 2015). This approach to professional 

learning assumes a social constructivist theory of learning. 

Social constructivism is a learning theory grounded in the viewpoint that learning 

happens through the active mental engagement of integrating old knowledge with new 

knowledge through guided scaffolding (Tracey & Morrow, 2012). While scaffolding has come to 

mean many different things, a common feature is that scaffolding involves a determination of 

learners’ current levels of performance (van de Pol, Volman, & Beishuizen, 2010). Once a level 

of performance has been determined a more knowledgeable other matches the level with learning 

activities that will promote development. Vygotsky (1978) calls the distance between a learner’s 

developmental level and the level attainable the zone of proximal development (p. 86).  

Rogan (2007) applies Vygotsky’s concept to the development of teacher practice, 

proposing a construct he calls, the zone of feasible innovation (ZFI). According to Rogan (2007), 

a ZFI is “a collection of teaching strategies that go beyond current practice, but are feasible given 

the existing resources available to that teacher” (p. 441). The ZFI exists along a continuum of 

practice bounded on the left by practices that are currently routine and on the right by the ideal 

(reform) practices (see Figure 5.1). These boundaries are dynamic; as new strategies become 

routine, the boundaries shift to the right. Teachers who have high levels of support can move the 
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upper boundary farther and farther to the right. 

Figure 5.1 

Location of ZFI on a Continuum (Rogan, 2007, p. 450) 

 

Identifying a ZFI might be a useful construct for supporting the development of teachers’ 

instructional practices toward instruction consistent with the vision of the NGSS (NGSS Lead 

States, 2013) and the MSS (MDE, 2015). I explore this possibility by detailing the process by 

which I identified two potential zones of feasible innovation for Mrs. Poppy. I present the 

identification and development of these zones as a model for how this process could be 

employed in designing differentiated professional development for supporting other teachers 

tasked with enacting new practices. 

Finding Zones of Feasible Innovation 

According to Rogan (2007), the first step in designing a ZFI continuum is to consider the 

capacities of the context, for “the continuum needs to be rooted in reality” (p. 452) by 

determining boundaries that account for all the forces that influence implementation and that are 

feasible at this particular point in time. Thus, in designing continua for Mrs. Poppy, I consider no 

more or less than the provisions available at the time of observations. Recall that Mrs. Poppy 

does not have textbooks, teachers’ manuals, or even a science curriculum. Her school has not 

provided any professional development or resources for implementing the new MSS (MDE, 

2015) and in fact, for that reason had not yet adopted them. Her only provision from the school 

was a set of CDs from which she could print student worksheets that were aligned with the 
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previous standards, the GLCEs (MDE, 2007). The left, or lower boundary of each continuum 

starts with practices I observed during the scientific method and solar system units and that are 

compatible with ideal practices. In choosing practices for the right, or upper, boundaries, I 

referred to practices detailed in A Framework for K-12 Science Education: Practices, 

Crosscutting Concepts, and Core Ideas (NATIONAL RESEARCH COUNCIL, 2012; hereafter 

referred to as the Framework) and the National Research Council’s (2015) recommendations for 

implementing the new science standards, selecting those are attainable given the available 

resources. 

 The second step is to identify and sequence feasible “concrete classroom strategies” 

(Rogan, 2007, p. 453) that will transition from current to ideal practices. In the remainder of this 

chapter, I describe two zones of feasible innovation designed to scaffold Mrs. Poppy’s teaching 

from content-area literacy instruction and practices that focus on developing students’ general 

literacy skills and content knowledge to instruction that engages students in the disciplinary 

literacy practices called for in the MSS (MDE, 2015). I present each ZFI and offer a rationale for 

its potential efficacy. Then, I explore how Mrs. Poppy’s proficiencies with current practices 

make the ideal practice a reasonable aim. To do this, I report on the ways Mrs. Poppy enacted the 

content-area literacy strategies that the ZFI is designed to enhance with disciplinary perspectives 

and practices. Finally, I explain proposed classroom strategies–drawn from research literature–

for scaffolding Mrs. Poppy’s instruction from the lower boundary to the upper boundary. 

ZFI: From I-R-E to Collaborative Sense-Making 

As established in previous chapters, the objectives for fifth grade science identified in the 

GLCEs (MDE, 2007) call for students to comprehend presented content, and accordingly, Mrs. 

Poppy’s current instruction is structured around the presentation of the required content and 
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assessments of comprehension, which has led to text- and teacher-dominated discussion, as 

described in the vignette in chapter one. In contrast, as also previously noted, the MSS (MDE, 

2015) call for students to be agentive in their learning, echoing the NRC’s (2015) call for 

students to be engaged in “collaborative sense-making” (p. 30). Thus, there is an articulate 

expectation for change, and therefore, I propose the following ZFI (Figure 5.2) designed to 

support a transition from teacher-dominated to student-directed discussions. 

Figure 5.2 

ZFI for Collaborative Sense-making 

 

 

 The lower boundary starts with the current practice of teacher-directed cycles of I-R-E, 

initiate-respond-evaluate (Ruiz-Primo & Furtak, 2007). Within teacher-dominated discussion, 

teachers ask, or initiate questions to gauge and encourage students’ comprehension. Students 

respond, and the teacher evaluates the accuracy of the response. I-R-E cycles are the cornerstone 

of classroom talk in Mrs. Poppy’s classroom and typical of many science classrooms 

(Windschitl, 2019). The following excerpt from a lesson on the causes of night and day 

illustrates a typical I-R-E cycle in Mrs. Poppy’s class.  

T: When will be the longest day of the year? When it comes up the earliest and doesn’t 

go down until the latest? 

 

Ss: [multiple responses] 

 

T: Not the 27th, not the 18th 

 

S: the 21st? 
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T: The 21st of June. How close are we to that? 

 

S: close 

 

T: We’re very close to June 21st. We’re only like a month and a half away from that. 

… 

 

T: And then what happens after June 21st? 

 

Ss: goes down 

 

T: Yeah, the amount of daylight hours starts going down. It gets shorter and shorter, until 

what day? What’s the shortest? 

 

S2: September 21st! 

 

T: Nope. Good try. What would be the opposite of June? The opposite of June. Hand on 

your head when you know. What would be the opposite month of June? 

 

Ss: [no response] 

 

T: How many months are there in a year? 

 

Ss: 12 

 

T: What’s half of that? 

 

Ss: Six. 

 

T: So, count six months from June. [Student], what would it be? 

 

S: December 

 

T: December 21st is technically the first day of winter, and that’s the shortest day of the 

year. (3.9) 

 

The upper boundary of the ZFI is collaborative sense-making, which involves students 

constructively “critique[ing], argu[ing] with, and learn[ing] from their peers” (NATIONAL 

RESEARCH COUNCIL, 2015, p. 30) in response to open-ended questions and tasks. This ZFI 

recognizes that teachers are typically fluent in posing questions and their facility with 

questioning can be leveraged in facilitating collaborative sense-making. Students and the teacher 
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can gradually shift from classroom discourse structured around known-answer questions for 

which the teacher is the mediator of responses to student-centered discussion for which the 

expectation is to exchange critiques and arguments in the process of collaborative sense-making. 

Specifically this ZFI recognizes that through her experience with I-R-E, Mrs. Poppy has 

developed an affinity for asking about phenomena suitable for collaborative sense-making, as in 

the following examples: 

•  “Why does it make sense that when it’s 6 a.m. in Florida, that it’s not 6 a.m. as well in 

California” (2.4)? 

• “Who gets the day first” (2.9)? 

• “Every place on Earth gets the season of winter…Why would they [country abroad] not 

get the cold and the snow” (3.8)? 

• “It snows on top of Mount Kilimanjaro…How does that happen” (3.9)? 

• “Do tides happen on [the Great Lakes]” (7.4)? 

• “Who can explain why does that [sometimes you see only part of the moon lit up but you 

can always see the whole moon] happen” (7.5)? 

• “So, if the moon is going around Earth all the time, then how come – the sun is shining 

over here – how come every single time it passes right here, there’s not an eclipse” (7.6)? 

• “So, why do you think it [tides] might affect the oceans but not lakes and rivers and 

streams” (8.2)? 

 

These are the types of questions that can initiate generative student exchanges, for as 

Mercer, Dawes, and Staarman (2009) explain, I-R-E questions, “can be used to provoke pupils’ 

imagination, to explore their wider relevant experience, and to get them to explain their 

reasoning” (p. 361). Mrs. Poppy’s questions are questions that invite students to present 

arguments. 

 Moving along the continuum between the lower and upper ZFI boundaries calls for two 

progressive strategies: establishing classroom discussion norms (Windschitl, 2019) and 

providing examples for conversation moves (Dawes, 2004; Windschitl, 2019). During I-R-E 

cycles, students and teachers have very defined roles in which the teacher asks a question and a 

student or students respond upon permission. This type of organization is the status quo (Colley 
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& Windschitl, 2016; Windschitl, 2019). Thus, to disrupt the familiar, the first step requires a 

clear vision for what collaborative sense-making looks like in the classroom. Therefore, 

Windschitl (2019) suggests the establishment of classroom norms for respecting peers’ 

contributions, intellectual vulnerabilities, and opportunities for participation and for staying on 

topic. Figure 5.3 from Windschitl’s (2019) article “Disciplinary literacy versus doing school,” 

offers examples of constructive classroom norms for discussion. 

Figure 5.3 

“Our Classroom Talk Norms” (Windschitl, 2019, p. 10) 

 

 

Another strategy for approaching the goal of collaborative sense-making is teaching 

students to use discussion moves to advance the conversation. The teacher can introduce and 

model the use of sentence starters and questions to probe for more information, indicate active 

listening, contribute ideas, and elicit contributions from others.  Below (Table 5.2) are examples 

of these discussion moves, organized by purpose.  

 



 122 

 

Table 5.2 

Examples of Discussion Moves 

Purpose Example Prompts 

Probe for more information How did you come to that conclusion? 

Why do you think that? 

What is your evidence? 

What do you mean by…? 

Indicate active listening What I hear you saying is… 

Can you say more about that? 

Contribute to an idea by 

agreeing/disagreeing 

I (dis)agree with…but (and want to add)… 

I (dis)agree with…because… 

I understand your reasoning, but have you considered…? 

I would like to add… 

Building off what…said… 

Elicit contributions Do you agree? 

…,what do you think? 

… ,we haven’t heard your thoughts about… 

 

The teacher can scaffold students’ use of classroom talk norms and sentence stems by 

modeling the structure of classroom talk. To do this, the teacher poses a question about a 

scientific phenomenon and asks a student to share her or his thinking. Then, the teacher revoices 

the student’s response using the language from the discussion moves list and asks another 

student to engage with the previous response. This allows the students practice with deepening a 

discussion regarding a single concept. Another way to scaffold students’ use of classroom norms 

and sentence stems is to give them a “prediscussion task” (Colley & Windschitl, 2016, p. 1016) 

in which students write independently or discuss in small groups to prepare for the whole-class 

discussion. 

ZFI: From Think-Alouds to Designing Investigations 

Planning investigations is identified by the Framework (NATIONAL RESEARCH 

COUNCIL, 2012) as a significant practice of scientists (p. 50), calling for students to have 
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experiences with planning experimental or observational investigations appropriate for 

answering well-defined questions or for testing hypotheses by identifying relevant variables, if 

appropriate; determining how data are to be collected, measured, recorded, and analyzed, and to 

what degree of precision; and determining how many trials are appropriate, if necessary. In Mrs. 

Poppy’s class, students were not tasked with designing investigations for either of the two units I 

observed. Thus, the second continuum (see Figure 5.4) aims to help Mrs. Poppy engage students 

with planning investigations. 

Figure 5.4 

ZFI for Designing Investigations 

 

 

At the lower boundary of the continuum is Mrs. Poppy’s current practice of thinking 

aloud, or making her sense-making process audible. Thinking-aloud is a form of modeling (Duke 

& Pearson, 2002). In the episode described in chapter 4 in which the worksheets did not contain 

sufficient information for responding to the questions, Mrs. Poppy modeled her strategy for 

figuring out the correct responses. 

T: Let’s see if we can figure it out. It says, the new moon, the side of the moon facing 

Earth is dark. So, then what would the opposite of that be? Where the whole side of the 

moon facing Earth is light. What’s that called? When you can see the whole moon? 

 

Ss: full moon 

 

T: Yup, so that would be this one [T talks aloud as she writes in the answer, “The side of 

the moon facing Earth is light.”] All right, so what do you think about first quarter and 

third quarter? If this is all dark, and this is all light, what must this one be? What must 

that one be? 
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S: half 

 

T: It’s half, yup, yup. So, “Half the side of the moon facing Earth is light.” So, then, what 

do you think about third quarter then? It would have to be the same thing except…? 

 

Ss: opposite, other side 

 

T: The opposite half, “The other half of the side of the moon facing Earth is light.” See, 

we don’t need their silly information, do we? We can figure it out! (7.6) 
 

By thinking aloud, Mrs. Poppy models the step-by-step process by which she solves 

problems, a strategy very similar to engaging in a thought experiment. For this reason, I claim 

that thought experiments lie within Mrs. Poppy’s ZFI because they are just beyond her current 

practice of thinking aloud and because thought experiments are possible without any further 

provisions from the school. 

Thought experiments are mental investigations into phenomena (Metz, 2008; Rogan, 

2007) similar to mental training used by athletes. A study by Metz (2008) showed that a 

collaborative thought experiment effectively guided first grade students through their first 

experience with investigations. In the thought experiment, students understood the problem 

presented to them, generated hypotheses and means for testing them, and critiqued ideas 

concerning the investigation. In a study by Windschitl (2004), teacher candidates who already 

held Bachelor’s degrees in science were tasked with designing their own inquiry investigations. 

Two teachers, Erica and Amanda, tested the growth of plants planted in various chemical 

solutions (i.e., bleach and water, floor cleaner, etc.). As they progressed through their 

investigation, they realized they had not planned thoroughly. For example, they had not 

identified a control variable nor determined how they would measure the plant growth. When 

reflecting upon this experience, Amanda suggested that if she were to give students the task of 

designing investigations, she would begin by posing questions about hypothetical investigations: 



 125 

If I wanted to help my students discover what data is relevant, we could work on some 

sample problems in class. I could describe an experiment to my students and we could 

discuss what data answered the question being asked. For instance, if an experiment was 

designed to answer the question on whether light affects plant growth, does data 

collected on the soil pH answer the question being asked? This type of activity seems an 

excellent opportunity for discussion in a group setting. (Windschitl, 2004, p. 499) 
 

 What Amanda described was a thought experiment for plant growth. Amanda sees this 

cognitive planning as a way for ensuring that all the design elements align with the 

investigation’s purpose. I propose that teacher could extend the use of think alouds to scaffold 

student engagement in thought experiments. Below I offer an example of thinking aloud about a 

thought experiment. 

In the winter, I keep pop in the garage rather than taking up room in my refrigerator. 

Well, last night, I was sitting in the living room when I heard a bunch of explosions. It 

has been so cold that my pop froze in the can and then burst! But, interestingly, only the 

diet pop exploded. Why might that be? I think it might be related to the sugar content. 

How could I test that? If put one can of diet and one can of regular pop in the freezer, 

would that give me an explanation? 
 

The above thought experiment charges students with developing hypotheses explaining 

why the pop cans exploded. They must consider their hypotheses to respond to the design 

question posed by the teacher.  

Designing investigations is an important disciplinary practice, but one in which teachers 

do not often engage students. However, as a hallmark of comprehension instruction, elementary 

teachers are typically proficient in thinking-aloud. By extending teachers’ current use of think-

alouds for modeling problem solving (or inferencing) into their ZFI strategy of thought 

experiments, teachers, even teachers with few material resources, may be able to approximate the 

Framework’s (NATIONAL RESEARCH COUNCIL, 2012) and the MSS’s (MDE, 2015) 

expectation that students plan investigations. 

General Conclusions 
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Since the turn of the century, Michigan has placed high priority on improving reading 

proficiency scores statewide. The reform efforts targeting this goal have taken penal approaches 

by attaching student proficiency to school funding and teacher evaluations. In response, schools 

have taken measures to ensure reading instruction is allotted the most daily instructional time 

compared to the other academic subject areas (math, science, and social studies) and have placed 

particular emphasis on the basics of reading–phonemic awareness, phonics, fluency, vocabulary, 

and comprehension.  

In the same time frame, Michigan teachers have been charged with enacting instruction 

aligned with three different sets of science standards. The standards adopted in 2007, the Grade 

Level Content Expectations (GLCEs; MDE, 2007) for science present science as a body of 

knowledge that can be acquired by transmission. The new standards, the Michigan Science 

Standards (MSS, 2015) call for disciplinary literacy, a stark contrast from the previous 

expectations. 

Mrs. Poppy is a teacher who has been well-prepared to teach science content and English 

language arts. She is dutiful in meeting the standards for which she is currently responsible. 

However, her current instructional context is unprepared for supporting a disciplinary literacy 

approach to science instruction. She does not have materials, curriculum, or even her own 

educational experiences to rely upon in making these changes.  

Mrs. Poppy’s current instruction, shaped by the resources and constraints of her context, 

is characteristic of content-area literacy instruction. This type of instruction neglects the 

important role of reading, writing, and language in doing science. Nonetheless, there are current 

practices that can be leveraged in transitioning toward a disciplinary literacy approach. Mrs. 

Poppy values and seeks students’ background knowledge, demonstrates and assesses with visual 
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representations and models, and attends to science vocabulary. These are all worthwhile science 

activities that can be reconceptualized to align with a disciplinary literacy approach. 

The limiting nature of Mrs. Poppy’s context presents context-specific challenges for 

enacting new reforms. Therefore, professional learning opportunities for supporting Mrs. Poppy 

need to cohere with the limitations and affordances of her context. The National Academies of 

Sciences, Engineering, and Medicine (2015) recognize the dire need for differentiated 

professional learning opportunities. A step toward differentiated professional learning is case 

study research such as this study that immerses those in positions to support teachers in the 

learning contexts. 

I am inspired by the potential for designing zones of feasible innovation for individual 

teacher learning. As this study has shown, there is a need for context-specific professional 

learning opportunities; thus, by detailing the creation of zones of feasible innovation for Mrs. 

Poppy’s instruction, I model a process others may choose to emulate in helping teachers 

approximate the demands of reform-based science. 

Recommendations and Implications for Teachers, Curriculum Developers, Professional 

Development and School Leaders, and Teacher Educators 

According to Loeb, Knapp, and Elfers (2008), the development of standards-based 

reform, such as the NGSS (NGSS Lead States, 2013) or the MSS (MDE, 2015), seems a linear 

process. First, standards defining what students should learn are created and agreed upon. Then, 

the standards are connected to an assessment program that is attached to accountability measures. 

This process, though, they argue is rife with embedded assumptions about what teachers will 

think and do in response. Loeb et al. (2008) identify those responses as the following 

assumptions: 
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Assumption One: Teachers will pay attention to the reform and become familiar with the 

standards and what they imply for practice (Wilson & Floden, 2001). 

 

Assumption Two: Teachers will take the reform seriously, as will their supervisors and 

other local leaders, who will exhort teachers to meet the demands of the policy, and offer 

support as needed (Stecher, Chun, Barron, & Ross, 2000). 

 

Assumption Three: Teachers will adjust their instruction to align with the standards and 

associated assessments (including preparation for assessment) (Stecher et al., 2000). In 

the best sense of the phrase, they will “teach to the test.” 

 

Assumption Four: Teachers will expect all of their students to succeed–and believe that 

they are capable of succeeding (Orfield & Kornhaber, 2001). Where students are likely to 

struggle, teachers will adjust their teaching practice to maximize the students’ chances of 

success (Kannapel, Aagaard, Coe, & Reeves, 2001). 

 

Assumption Five: Teachers will have access to appropriate professional learning 

opportunities (Dutro, Fisk, Koch, Roop, & Wixson, 2002; Thompson & Zeuli, 1999). 

What is more, those teachers who are not fully prepared to teach to the ambitious learning 

standards, if not others, will take advantage of these learning opportunities, thereby 

developing the requisite knowledge, skills, and commitment, and their teaching practice 

will improve accordingly. (p. 4) 

 

Embedded within these assumptions are additional assumptions about a natural 

compatibility of instructional contexts with adopted standards. However, the reviews of research 

in this chapter and chapter two established instructional contexts as dynamic, diverse, and often 

problematic. Therefore, it is decidedly unreasonable to assume, for instance, that teachers and 

supervisors who are familiar with the standards know how to translate standards to practice 

(Assumptions One and Two). Studies by Cohen (1990) and McNeill et al. (2018) indicate the 

contrary. Both Mrs. O (Cohen, 1990) and the principals (McNeill et al., 2018) understood the 

standards for which they were charged yet did not have sufficient mathematical knowledge or 

science expertise, respectively, to connect standards to instructional practice.  As an additional 

example, it is equally unreasonable to assume that teachers who are not “prepared to teach the 

ambitious learning standards” (Loeb et al., 2008, p. 4) have access to relevant professional 

learning opportunities. This assumption is misguided. Consider, for instance, that some 
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classrooms are nestled within rural contexts where research-based professional development 

opportunities of any kind are minimal (Harmon, Gordanier, Henry, & George, 2007). The 

scarcity is particularly salient in specific content areas, such as science (Kunz, Nugent, Pedersen, 

DeChenne, & Houston, 2013). Compounding the problem is opportunities farther from home are 

not feasible for rural teachers either, as money for registrations and substitutes as well as the long 

travel distances impede rural schoolteachers’ attendance, resulting in nationally-collected data 

that indicate rural teachers have lower professional development participation than teachers in 

suburban and urban contexts have (Wei, Darling-Hammond, & Adamson, 2010). 

Research, such as this study, that inquires of a teacher’s instructional context prior to the 

adoption of the new reform policies allows for examination of the extent to which these 

assumptions are accurate. While more research examining individual contexts is needed, the 

findings and conclusions from this study inform recommendations for supporting teachers in 

making the pedagogical and conceptual changes required of the new science standards and 

present implications for curriculum developers, professional development and school leaders, 

and teacher educators. 

Supporting Teachers’ Enactment of Science Reforms with Educative Curriculum 

Materials 

Content and discourse analyses of the GLCEs (MDE, 2007), the worksheets used during 

instruction, and course descriptions from Mrs. Poppy’s undergraduate courses indicated an 

explicit focus on science content knowledge. In contrast, the new science standards articulate a 

disciplinary approach to science education that includes both knowledge and scientific practices. 

According to Davis (2017), this paradigm shift reestablishes all teachers as novices in this 

disciplinary approach “because the vision requires sophisticated knowledge and teaching 
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practices not familiar for most teachers” (para. 2). Therefore, pertinent to the success of the 

standards is assisting teachers in acquiring these knew skills and competencies. One innovative 

way to support in-service teachers is through the adoption of educative curriculum materials. 

Educative curriculum materials are grounded in Remillard’s (2005) theory of a 

participatory relationship between teachers and curriculum materials. Remillard (2005) asserts 

that teachers “collaborate” (p. 234) with curriculum materials, an interaction that is shaped by the 

teacher, the materials, and the context. Thus, the content of the curriculum materials plays an 

integral role in influencing the planned and enacted curriculum (Granger, Bevis, Southerland, 

Saka, & Ke, 2019; Remillard, 2005). 

Educative curriculum materials include traditional materials to support student learning 

as well as educative features that support teachers’ subject area knowledge, pedagogical content 

knowledge, and pedagogical knowledge (Ball & Cohen, 1996; Bismack, Arias, Davis, & 

Palincsar, 2014; Davis, 2017). For curriculum materials to be considered “educative,” the 

materials must “make the rationales behind curriculum developers’ decisions visible to teachers 

to help teachers develop flexible knowledge that they can apply to new situations” (McNeill, 

2009, p. 238). Davis (2017) lists examples of science-specific educative features:  

• unit concept maps and core idea maps 

• content storylines (descriptions within each lesson of how the lesson extends the 

learning from the previous lessons and supports the future learning) 

• content boxes that explicate specific disciplinary core ideas within a lesson and how 

the content ideas are worked on within three-dimensional learning 

• features to help teachers recognize why a particular science practice is important in a 

lesson and giving suggestions for how to support students in engaging in it 

• reading and discussion guides 

• guides for anticipating students’ ideas 

• rubrics that show what effective engagement in a science or engineering practice 

looks like in conjunction with a disciplinary core idea, with sample student work 

• narratives that describe how a fictional teacher (based on [Davis, Palincsar, Arias, 

Bismack, Marulis, & Iwashyna’s (2014)] observations in classrooms) adapted a 

lesson and why she made the choices she did. (para. 5) 
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 Several researchers have explored the potential for educative materials to improve both 

teaching and learning. In a large, three-year study, Palincsar and colleagues (for brief overview 

see Davis, Palincsar, Smith, Arias, & Kademian, 2017) conducted a program of research 

exploring “how educative curriculum materials can support teachers’ enactment of science 

instruction around the science practices, and how this [enactment] influences student learning” 

(Bismack, Arias, Davis, & Palincsar, 2015, p. 818). The initial study examined how upper 

elementary teachers use commercially packaged curriculum materials for teaching two units of 

study, one on electric circuits and one on ecosystems, as written–without educative features but 

with many opportunities to engage students in scientific practices (Davis, Palincsar, Arias, 

Bismack, Marulis, & Iwashyna, 2014). Results from this study indicated that the case study 

teachers provided ample time for students to record scientific observations but offered little time 

for students to engage in other scientific practices, such as making scientific predictions and 

constructing evidence-based scientific explanations (Bismack, Arias, Davis, & Palincsar, 2014). 

Researchers used these results and analyses of the curriculum materials to determine the supports 

that are most needed to help teachers understand and engage students in scientific practices. The 

“enhanced” (Davis et al., 2014, p. 45) curriculum materials included the following educative 

features: supplemental and background content knowledge supports; supports for scientific 

practices, including overviews, rationales, and reminder boxes; narratives of a fictional teacher’s 

pedagogical decisions in adapting and enacting specific scientific practices; supports for literacy 

practices to guide the teacher in engaging and advancing text-based discussions; and support for 

assessment practices, including rubrics and sample student work. 

 Subsequent studies exploring the potential for these educative curriculum materials found 

that teachers who attended to the educative features included in the enhanced materials were 
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better able to support students’ engagement in science practices. For example, evidence from 

student work and teacher enactments found that the educative features supported teachers in 

offering students opportunities to make scientific predictions (Bismack et al., 2015), justifying 

predictions (Arias, Davis, Marino, Kademian, & Palincsar, 2016; Arias, Smith, Davis, Marino, & 

Palincsar, 2017), and writing and drawing observations with characteristics of high-quality 

observations (Bismack et al., 2015). These findings align with other studies that have found 

positive relationships between teacher and student learning and educative curriculum materials.  

 In a randomized cluster design study of 125 fourth- and fifth-grade teachers and their 

students, Granger, Bevis, Southerland, Saka, and Ke (2019) found that teachers in the treatment 

condition, those provided with educative curriculum materials and brief professional 

development sessions (approximately 12 hours total), showed increases in science content 

knowledge, beliefs about reform-based science teaching, and science teaching self-efficacy from 

pre- to post-study measures. Similarly, Brunner and Abd-El-Khalick (2019) found that educative 

features added to widely-circulated science trade books contributed to elementary teachers’ more 

informed views on the nature of science and supported teachers in leading effective classroom 

discussions about science processes. 

While educative curriculum materials are promising for assisting in-service teachers, 

studies on their use have nonetheless found that teachers use the educative features in different 

ways and to variable extents (Brunner & Abd-El-Khalick, 2019; Davis et al., 2017; Granger et 

al., 2019; Schneider, Krajcik, & Blumenfeld, 2005) according to their contexts, presenting 

additional implications for school leaders and teacher educators. For instance, in the initial study, 

Bismack et al. (2014) found that due to time constraints, teachers often did not complete all parts 

of the lessons. One of the case study teachers, in particular, Ms. Campbell, did not enact any 
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lesson steps related to the design of investigations or the construction of evidence-based 

explanations and claims, and she often reduced the number of opportunities students had for 

engaging in other scientific practices, such as making predictions. When studying Ms. 

Campbell’s enactment of the unit lessons using the educative curriculum materials (Bismack et 

al., 2015), Ms. Campbell was plagued by similar time constraints and thus, still did not offer 

students opportunities to write predictions with justifications despite the practice being one focus 

of the educative features. Further, Ms. Campbell explained that she had many responsibilities at 

the school, and thus did not have time to comment on students’ work. 

Similarly, contextual constraints limited the effectiveness of the educative curriculum 

materials in Schneider, Krajcik, and Blumenfeld’s (2005) study. The study explored the extent to 

which classroom enactments of educative curriculum materials designed to support reform-based 

science education compared to the intent of the materials. Analyses of observations and materials 

indicated that two of the case study teachers, Mr. Davis and Ms. Turner, limited students’ 

experiences with technology, small group work, and conversations. Although not presented in 

the discussion of the results as a possible contributing factor in these findings, the researchers 

reported in the methods section that these two teachers, unlike the other two teachers in the 

study, did not have classroom access to computers. Their classes could only use computers when 

their schools’ labs were available. Further complicating the situation, the computer lab at Ms. 

Turner’s school shared a space with the library, potentially contributing to the lack of group 

work and conversations.  

Considered together, these studies (Bismack et al., 2015; Schneider, Krajcik, & 

Blumenfeld, 2005) suggest that educative curriculum materials and the corresponding 

professional development are not sufficient for implementing science instruction consistent with 
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the goals of the new science standards. School leaders will need to ensure that school structures 

allow teachers adequate planning and instructional time for science as well as access to 

technology and spaces appropriate for science activities. Future research should explore 

logistical models for school-based scheduling and resource sharing that support science 

instruction. 

Supporting Teachers’ Conceptual Change 

According to Woodbury and Gess-Newsome (2002), “[W]hat teachers do is greatly 

influenced by what teachers think” (p. 770). Therefore, also important to this discussion is 

teachers’ thoughts about science. The new science standards challenge traditional conceptions of 

science; thus, for teachers to enact and maintain reform-based instruction, Gregoire (2003) 

argues that teachers must commit to “significant changes” (p. 149) in their subject-matter beliefs. 

Deeply rooted beliefs about science likely contribute to the difficulty teachers–even those with 

educative curriculum materials–experience with presenting science as both concepts and 

practice. As mentioned in Bismack et al.’s (2014) initial study, teachers rarely engaged students 

in evidence-based scientific practices, a tendency that did not change after the implementation of 

the educative curriculum materials (Arias et al., 2016, p. 1522; Bismack et al., 2015, p. 838). 

Furthermore, Schneider, Krajcik, and Blumenfeld (2005) found that all of the participating 

teachers, regardless of their fidelity to the curriculum materials, tended to emphasize ideas, 

concepts, and accurate answers rather than practices. The teachers participating in these studies 

seemingly held a conceptualization of science in which the practices could be omitted from 

scientific work while still maintaining a semblance of science, and neither the educative 

curriculum materials nor the complementary professional learning opportunities amended those 

conceptions. 
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According to many models of conceptual change, changing teachers’ long-held 

understandings and practices requires a level of pedagogical discontentment and self-efficacy 

(Gregoire, 2003, Southerland, Sowell, Blanchard, & Granger, 2011; Woodbury & Gess-

Newsome, 2002). Southerland, Sowell, and Enderle (2011) argue, “Until teachers become 

discontented with their current understandings of teaching and the results they engender, close 

consideration of new ideas and practices is unlikely” (p. 454). Therefore, the impetus for change 

is tension within a teacher’s current subject-matter perspectives as a result of pedagogical 

discontentment, or the uneasiness felt from the realization that the results of one’s teaching 

practices do not meet one’s teaching goals (Southerland, Sowell, Blanchard, & Granger, 2011). 

The second element of conceptual change is self-efficacy, or the confidence a teacher has in her 

ability to enact instruction that effectively results in student learning. In order to consider ideas 

of reform-based practices, a teacher must have a positive self-efficacy, that is, she must feel she 

is capable of successfully implementing new approaches (Gregoire, 2003). Without pedagogical 

discontentment or sufficient self-efficacy, a teacher is unlikely to attempt new practices. 

Based on their research, Southerland, Sowell, Blanchard, and Granger (2011) describe 

the relationships between pedagogical discontentment and teacher self-efficacy as the 

intersections of low teaching self-efficacy and high teaching self-efficacy with pedagogical 

contentment and pedagogical discontentment. They posit that teachers who are pedagogically 

content are unlikely to take-up reform-based ideas regardless of whether they have high or low 

teaching self-efficacy. Pedagogically content teachers feel successful with their current practices 

and either expect those practices to continue to be successful (high teaching self-efficacy) or 

doubt that they will see as much success with new practices as they do with their current 

approaches (low teaching self-efficacy). Conversely, teachers who are pedagogically 
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discontented and have low teaching self-efficacy might try reform-based ideas and practices. 

They are dissatisfied because their current practices do not align with their goals and feel trying 

reform-based ideas is not any more risky than is continuing with the status quo. On the other 

hand, teachers who are pedagogically discontented and have high teaching self-efficacy are 

seeking change and feel confident that they can successfully implement new ideas. 

Studies on the effectiveness of educative curriculum materials illuminate these 

intersectional relationships. For example, in a study exploring the influence of educative 

curriculum materials and professional development on teacher learning, Granger et al. (2019) 

found that teachers who indicated high levels of science teaching self-efficacy prior to 

participation in the interventions learned significantly less from the educative curriculum 

materials and professional learning opportunities than did teachers who indicated lower science 

teaching self-efficacy at the onset. Granger et al. (2019) suggested that a possible explanation for 

this finding was the teachers’ lack of pedagogical discontentment.  

Although not examined in the discussions of the studies, self-efficacy or pedagogical 

contentment may have also played a role in teachers’ responses to educative curriculum 

materials in studies by Bismack et al. (2014), Bismack et al. (2015), and Schneider, Krajcik, and 

Blumenfeld (2005). In these studies Ms. Campbell (Bismack et al., 2014; Bismack et al., 2015), 

who had previous experience with her grade level science content, and Mr. Davis (Schneider, 

Krajcik, & Blumenfeld, 2005), who earned a chemistry degree prior to entering the education 

field, tended to use the educative curriculum materials more sparingly than did the teachers who 

were less experienced with science knowledge or teaching. Given research by Kahveci, Kahveci, 

Mansour, and Alarfaj (2018) found an association between high self-efficacy and low levels of 

intent to reform and a positive correlation between discontentment and high intentions for 
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reform, it is possible that Ms. Campbell and Mr. Davis felt highly self-efficacious or felt content 

with their current pedagogical goals and outcomes and thus, were less receptive to reforming 

their practices. 

These studies on conceptual change and educative curriculum materials suggest 

important implications for creators of educative curriculum materials, professional development 

leaders, and teacher educators. To achieve the conceptual changes required of the paradigm shift 

in science education standards (MDE, 2015; NGSS Lead States, 2013), professional learning 

opportunities in the liminal space between reform adoption and reform implementation should 

focus on pedagogical discontentment and science teaching self-efficacy. 

Educative curriculum creators, professional development leaders, and teacher educators 

should, according to Southerland, Sowell, and Enderle (2011) “capitalize on” or “catalyze” 

teachers’ pedagogical discontentment “by showing teachers a portrait of what is possible in 

terms of some aspect of their teaching practice and allow them to reflect on their own efforts in 

this area” (p. 454). This recommendation suggests reflective thinking, a process with robust and 

enduring support in literature on teacher professional learning (for a review see Šarić and Šteh, 

2017), is pertinent to fostering pedagogical discontentment.  

Reflective thinking is a “deep and interpretative process that allows for careful 

judgement” (Slade, Burnham, Catalana, & Waters, 2019, p. 1). Research has shown that 

reflective thinking leads to pedagogical discontentment by gently problematizing current ideas 

about, and practices for teaching science (Dam, Janssen, & van Driel, 2018; Danielowich, 2012; 

Slade et al., 2019; Ward & Haigh, 2017; Yost, Sentner, & Forlenza-Bailey, 2000). Danielowich’s 

(2012) study with pre-service teachers (PSTs) of science highlighted the benefits of engaging 

PSTs in structured and scaffolded reflective thinking strategies to problematize current 



 138 

conceptions of science teaching. In the study, PSTs designed reform-based lessons and enacted 

them for their peers or during practicum. Following the enactment, PSTs reflected on discussions 

and video clips of the lessons and their peers’ responses to their lessons, considering the extent to 

which the aims of their teaching, the structure for learning, and their relationships with students 

aligned with reform-based practice. Danielowich’s (2012) study found that PSTs who used 

reflections to reveal dissonances between their existing and possible practices were more likely 

to see those frictions as catalysts for reforming their practice (p. 343). Similarly, Dam, Janssen, 

and van Driel (2018) found that after a reflection intervention, the strength of teachers’ intentions 

to reform increased and their intentions were more specific than at baseline. Dam et al. (2018) 

used a “positive approach” (p. 374) to problematizing. The researchers presented nine 

participating science teachers with lesson segments for a reform-based science curriculum. Then, 

through the use of a reflective thinking interview, the researchers helped the teachers to identify 

previous positive experiences with reform-based ideas and to think about how to move that 

behavior “one step towards” (p. 375) reform-based teaching aligned with the lesson segments, a 

process akin to developing a zone of feasible innovation (Rogan, 2007) discussed in this chapter.  

Dam et al.’s (2018) approach for reforming practice should be explored for its merit in 

creating pedagogical discontentment as well as for building self-efficacy, the other element in 

conceptual change. According to Bandura (1997; as cited in Morris, Usher, & Chen, 2017; Usher 

& Parajes, 2008), one source of teachers’ positive teaching self-efficacy is reflection and 

interpretation of past mastery experiences. Enactive mastery experiences are previous 

performance attainments achieved through “direct, personal action” (Morris et al., 2017, p. 797) 

and are “thought to be the most influential source of self-efficacy” (p. 797). In other words, 

teachers who perceive past experiences with certain practices as successful are more likely to 
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feel confident in enacting similar practices. For example, in a study exploring the influence of 

multimedia educative curriculum materials on teachers’ beliefs about science argumentation, 

Loper, McNell, Gonzáles-Howard, Marco-Bujosa, & O’Dwyer (2019) found that teachers’ self-

efficacy increased as they gained experience teaching the lessons. In Dam et al.’s (2018) study, 

teachers built self-efficacy by considering the strengths of past executions of a practice or idea 

and “rephrasing” (p. 374) them into solutions.  

Thus, to foster pedagogical discontentment and teaching self-efficacy, teachers must have 

ample opportunities to reflect on their ideas and practices. However, “merely asking teachers to 

reflect” (Monet & Etkina, 2008, p. 469) is not effective; educative curriculum developers, 

professional development and school leaders, and teacher educators should provide teachers with 

explicit and reflective strategies (Ward & Haigh, 2017) for problematizing current ideas about 

and practices for teaching science and for interpreting past mastery experiences that could be 

leveraged in meeting reform intentions. Future research should explore the potential of educative 

curriculum materials designed to help professional development leaders and teacher educators to 

scaffold teachers through reflective activities that effectively stimulate pedagogical 

discontentment and build self-efficacy. 

Supporting Teachers with Limited Resources 

As yet, the recommendations for supporting teachers in enacting science instruction 

consistent with the pedagogical and conceptual intentions of the new science standards have not 

addressed supports for teachers like Mrs. Poppy who do not have curriculum materials or access 

to local professional development opportunities. Research on web-based supports offers 

suggestions and implications for supporting all teachers, including those with limited resources. 

Callahan, Saye, and Brush (2014) engaged in a design-based research study with 13 
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teachers from diverse school settings to explore the design of a web-based educative curriculum 

tool, iPlan. The tool provided educative curriculum features for a 4-weeks-long, high school-

level, genetic unit, including reminders, rationales, instructional tips, and possible student ideas. 

iPlan also included a platform for which teachers could enter implementation notes to be shared 

with other teachers using iPlan or to keep privately as a record of practice. Interview data 

indicated that all of the participating teachers found some of the educative features helpful in 

enacting the curriculum. This study suggests the potential for web-based educative curriculum 

materials but did not study the extent to which teachers used the materials or the effectiveness of 

the materials in changing teacher practice. 

 Recently, Loper et al. (2019) took up that line of research, exploring how multimodal 

educative curriculum materials (MECMs) influenced teachers’ beliefs about scientific 

argumentation and the variation in teachers’ use of curriculum materials. The study included 90 

middle school teachers from public, private, and charter schools in cities, suburbs, towns, and 

rural locales from across the United States. All of the teachers in the study received a digital 

edition of a 62-lesson scientific argumentation curriculum. The digital edition provided to 

teachers in the intervention group included educative features that offered teachers multimedia 

representations of practice, such as videos demonstrating scientific argumentation in classrooms, 

explaining lesson structures, and suggesting pedagogical strategies. The MECMs also included 

“an active and reflective learning experience through interactive self-assessment prompts that 

‘pushed’ customised video recommendations based on teachers’ responses” (p. 177). 

Researchers collected data from pre- and post-surveys, backend curriculum analytics, and daily 

self-reports of curriculum use. Analyses indicated that all teachers’ self-efficacy beliefs about 

teaching scientific argumentation increased significantly from pre- to post-survey, and for all 
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teachers the more lessons they taught, the more confident they became in their ability to teach 

scientific argumentation. Despite the positive gains across the conditions, MECM teachers 

experienced smaller self-efficacy gains than did teachers in the control group. Looking deeper, 

researchers found that the more videos MECM teachers watched, the lower their growth. Loper 

et al. (2019) hypothesize that despite the videos’ inclusion of a diverse group students, the videos 

did not “explicitly discuss diverse students” (p. 188). Thus, while the images of diverse students 

were present, supports for helping students with diverse educational backgrounds (e.g., English 

language learners) were not.  

Callahan et al.’s (2014) and Loper et al.’s (2019) research highlight teachers’ desires to 

learn from multimedia materials that feature contexts and circumstances similar to their own. 

Future research should explore web-based educative curriculum materials that offer multimedia 

and hyperlinked features for adapting lessons and connecting with other teachers according to 

individual contexts and student needs.  

Malanson, Jacque, Faux, and Meiri (2014) explored the potential for such individualized, 

contextual support by pairing web-based educative curriculum materials with a virtual mentor. 

The study participants included four teachers, three from Massachusetts and one from Ohio, 

from very different school contexts. One Massachusetts teacher from an urban college-

preparatory high school served as the control. This teacher participated in “gold standard” in-

person, graduate-level professional development and received asynchronous educative 

curriculum materials including narratives for supporting the facilitation of classroom discussions, 

explanations of the critical components of learning objectives, and emphases on the NGSS 

(NGSS Lead States, 2013) three-dimensional learning. The other three teachers (one from an 

urban Massachusetts high school with a high population of English-language learners; one from 
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a suburban Massachusetts public high school, and one from a regional high school in Ohio) 

received a combination of asynchronous and synchronous virtual supports. Synchronous virtual 

support included a virtual mentor who met with the teachers individually over a period of two 

months. The virtual mentor and the teachers worked on building content knowledge, identifying 

science misconceptions, identifying potential student questions, and implementing pedagogies 

and strategies appropriate for each teacher’s context. Teachers also participated in real-time 

reflections. Synchronous virtual support included web-based educative curriculum materials akin 

to those of the control teacher’s but with the addition of videos, a discussion forum, and a news 

blog. Data were collected from pre- and post-measures of student content understanding and 

problem solving reflected in the NGSS’ three dimensions, and student self-efficacy. Analyses 

indicated that students in all participating schools demonstrated large and significant gains on all 

measures regardless of teacher condition. These results suggest that a combination of virtual 

mentoring and web-based educative curriculum materials are as effective as in-person 

professional development relevant to educative materials. Furthermore, these findings suggest 

that virtual mentorships provide teachers in diverse contexts and remote locations with 

personalized, effective professional development that leads to reform-based instruction and 

student achievement. Future research should expand research on virtual mentorships and 

educative curriculum materials to explore options for making these supports available through 

open-access platforms.  

Michigan’s new science standards represent a paradigm shift in science education. 

Findings from this study demonstrate that the current resources informing teachers’ instruction 

are insufficient for meeting the pedagogical and conceptual changes required of the new 

standards. Educative curriculum materials in tandem with corresponding professional 
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development have the potential to support teachers in enacting instruction congruent with the 

new standards, but more research is needed for how these materials and professional 

development leaders can effectively problematize and leverage individual teachers’ current 

instructional practices. Currently educative curriculum materials and professional development 

are not equitably available for all educators. Future research must continue to explore web-based, 

open access educative curriculum materials and professional learning opportunities. Measures 

such as these will support teachers and students in achieving the vision set forth by the Michigan 

Science Standards. 
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APPENDIX A 

 

Three Dimensional Framework 

 

Three Dimensions of the Next Generation Science Standards (NGSS Lead States, 2013) 

Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts 

• Asking questions & defining 

problems 

• Planning & carrying out 

investigations 

• Analyzing & interpreting data 

• Developing and using models 

• Constructing explanations and 

designing solutions 

• Engaging in argument from 

evidence 

• Using mathematics & 

computational thinking 

• Obtaining, evaluating, & 

communicating information 

Physical Science 

PS1: Matter & its interactions 

PS2: Motion & stability: Forces 

& interactions 

PS3: Energy 

PS4: Waves & applications 

 

Life Science 

LS1: From molecules to 

organisms 

LS2: Ecosystems: Interactions, 

energy, & dynamics 

LS3: Heredity: Inheritance & 

variation of traits 

LS4: Biological evolution: Unity 

& diversity 

 

Earth & Space Science 

ESS1: Earth’s place in the 

universe 

ESS2: Earth’s systems 

ESS3: Earth & human activity 

 

Engineering, Technology, & 

Applications of Science 

ETS1: Engineering design 

ETS2: Links among engineering, 

technology, science, & society  

• Patterns 

• Cause & effect: Mechanism & 

prediction 

• Scale, proportion, & quality 

• Systems and system models 

• Energy & matter: Flows, 

cycles, & conservation 

• Structure & function 

• Stability & change 

  



 146 

APPENDIX B 

 

Interview Protocol 

 

Demographics How many years have you been teaching? 

How many years have you been teaching science at this level? 

 

Curriculum How do you determine what to teach in science? 

Does your district have a curriculum? a scope and sequence? 

Do you use a commercial curriculum program? 

What are the science units at your grade level? 

What constitutes a unit? 

Which unit will you teach during my observations? 

Goals/Texts What are your goals for science instruction? 

How do you match curriculum to those goals? 

What do scientists do that you hope students take away from your science instruction? 

What is the role of investigations in science? 

What is the role of texts in science? 

Unit Planning How do you begin to plan for a science unit? 

How do you choose activities? texts? assignments? 

How do you motivate or interest students in the unit? 

What information do students need to know before starting the unit? 

How do you model scientific practices? 

How do students learn content? 

How do you ask students to demonstrate their understanding of content? 
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APPENDIX C 

 

 

Worksheet Task by Type 

 

Task Example 

Add to a 

diagram 

(AD) 
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Answer 

questions 

regarding a 

diagram 

(DQ) 

 

 

Label a 

diagram 

(LD) 
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Match 

vocabulary 

words with 

definitions 

(MV) 

 

Define 

vocabulary 

words 

(DV) 
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Fill in the 

blanks with 

words from a 

word bank 

(WB) 

 

Complete a 

table 

(CT) 
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Fill in the 

blanks (no 

word bank) 

(FB) 

 

Circle the 

correct 

response – one 

correct 

response 

(CR) 

 

Circle the 

correct 

responses 

(MR) 

 

Answer true or 

false 

(TF) 
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Write a short 

answer  

(SA) 
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APPENDIX D 

 

Worksheet Tasks by Item, Coded According to Revised Version of Bloom’s Taxonomy 

(Krathwohl, 2002) 

 

 

Worksheet Participation Structure Question Type Question Taxonomy 

Earth in Space ARS Whole group 

 

 

AD B2 

LD A1 

MV A1 

MR B2 

WB A1 

CT B2 

Earth in Space SS Whole group    

Earth in Space RR Independent 

 

SA* (x2) B2 

DQ*(x3) B2 

MV* (x8) A1 

Gravity & Motion ARS Whole group WB A1 

MR B2 

TF A1 

WB A1 

AD B2 

Gravity & Motion SS Whole group   

Gravity & Motion RR Independent SA* (x5) B2 
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Worksheet Participation Structure Question Type Question Taxonomy 

 DV* (x5) A1 

Phases, Eclipses, & Tides 

ARS 

Whole group 

 

MR B2 

FB A1 

CT B2 

FB A1 

AD B2 

TF B1 

WB A1 

TF B1 

WB A1 

MR B2 

P, E, & T SS Whole group   

P, E, & T RR Independent 

 

SA* (x3) B2 

DQ B2 

DQ  B2 

WB* (x10) A1 

The Sun ARS Whole group 

 

FB B1 

CR B1 

CT w/ WB A1 

MV A1 

TF B1 

CR B2 

WB A1 

FB B2 

The Sun SS Whole group   

The Sun RR Independent LD* (x6) B1 
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Worksheet Participation Structure Question Type Question Taxonomy 

 MV* (x11) A1 

SA* (x3) B2 

The Inner Planets ARS Independent 

 

FB A1 

CR A1 

TF B2 

LD w/ WB B1 

MR B2 

LD A1 

MR B2 

FB B2 

TF A1 

MR A2 

TF A1 

CR A1 

The Outer Planets ARS Independent 

 

CR B1 

FB A1 

AD B1 

MR B2 

TF A1 

CR A1 

TF A1 

LD A1 

MR B2 

MR B2 

TF A1 

TF A1 
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Worksheet Participation Structure Question Type Question Taxonomy 

MR B2 

TF A1 

FB B2 

The Inner Planets SS 

The Outer Planets SS 

Whole group   

The Inner Planets RR Independently 

 

SA* (x2) B2 

LD* (x4) A1 

FB* (x10) B2 

The Outer Planets RR Independently  SA* (x6) B2 

Comets, Asteroids and 

Meteors ARS 

Whole group 

 

WB A1 

TF B1 

FB A1 

CR B1 

TF B2 

MR B2 

TF B1 

CT w/ WB A1 
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APPENDIX E 

 

Solar System GLCE Alignment Chart 

 

Earth Systems Standard Worksheet 

Section in which 

Standard is 

Addressed 

Standard Addressed in Lesson Assessment Item Aligned with Standard 

E.ES.M.6 Seasons- Seasons result 

from annual variations in the 

intensity of sunlight and length of 

day due to the tilt of the Earth on 

its axis, and revolution around the 

sun. 

Section 1: “Earth 

in Space” 

“It deals with the title and which part is 

pointing at the sun” (3.4). 

 

“So even though it’s summer for me in 

Michigan, it’s also summer in Florida, but 

they’re going to have a warmer summer 

because they have more direct light” (3.6). 

Item 1: Multiple choice response to The seasons 

of the Earth are caused by: 

 

Item 30: Short answer response to Explain and 

describe how seasons on Earth happen. 

E.ES.05.61 Demonstrate using a 

model, seasons as a result of 

variations in the intensity of 

sunlight caused by the tilt of the 

Earth on its axis, and revolution 
around the sun. 

Section 1: “Earth 

in Space” 

Model demonstration in observation 3. 

 

“When the Northern Hemisphere is tipped and 

pointing toward the sun, the Northern 

Hemisphere is having summer” (3.2). 

 

E.ES.05.62 Explain how the 

revolution of the Earth around the 

sun defines a year. 

Section 1: “Earth 

in Space” 

“Revolution is the movement of one object 

around another. The path that Earth follows 

around the sun is called an orbit. Earth takes 

Item 2: Multiple choice response to One year on 

Earth is a certain length because: 
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Earth Systems Standard Worksheet 

Section in which 

Standard is 

Addressed 

Standard Addressed in Lesson Assessment Item Aligned with Standard 

one year to travel all the way around the sun in 

its orbit. So that’s what causes one year for us 

is when the Earth goes around the sun one 

time” (3.1) 

E.ST.M.1 Solar System – The sun 

is the central and largest body in 

our solar system. Earth is the third 

largest planet from the sun in a 

system that includes other planets 

and their moons, as well as 

smaller objects, such as asteroids 

and comets. 

Section 4: “The 

Sun” 

Section 5: “The 

Inner Planets” 

Section 6: “The 

Outer Planets” 

Section 7: 

“Comets, 

Asteroids, and 

Meteors” 

“You will need to know the difference between 

all of these, like between a comet, an asteroid, 

meteor, meteorite, meteoroid” (12.4). 

Item 4: Multiple choice response to Which of the 

following puts the celestial objects in the correct 

order, from largest to smallest: 

 

E.ST.05.11 Design a model that 

describes the position and 

relationship of the planets and 

other objects (comets and 

asteroids) to the sun. 

Section 4: “The 

Sun” 

Section 5: “The 

Inner Planets” 

Section 6: “The 

Outer Planets” 

Section 7: 

“Comets, 

Asteroids, and 

Meteors” 

“We’re going to do a mnemonic device for the 

plants in order from the sun outward” (11.2). 

 

“Most asteroids revolve around the sun 

between the orbits of Mars and Jupiter” (12.4). 

Item 3: Multiple choice response to Which of the 

following puts the celestial objects in the correct 

order, from closest to the sun to farthest away 

from the sun: 

 

Item 27: Labeling response to Number the 

planets in order from closest to the sun (1) to 

farthest away from the sun (8) 

 

E.ST.M.2 Solar System Motion  - 

Gravity is the force that keeps 

most objects in the solar system 

in regular and predictable motion. 

Section 2: 

“Gravity in 

Motion” 

“Two factors – inertia and gravity-combine to 

keep Earth in orbit around the sun and the 

moon in orbit around Earth” (6.2). 

 

“Everything has gravitational attraction to 

everything else in our universe” (8.2). 

Item 5: Multiple choice response to Gravity is 

responsible for which of the following: 
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Earth Systems Standard Worksheet 

Section in which 

Standard is 

Addressed 

Standard Addressed in Lesson Assessment Item Aligned with Standard 

E.ST.05.21 Describe the motion 

of planets and moons in terms of 

rotation on axis and orbits due to 

gravity. 

Section 2: 

“Gravity in 

Motion” 

“Two factors – inertia and gravity-combine to 

keep Earth in orbit around the sun and the 

moon in orbit around Earth” (6.2). 

 

E.ST.05.22 Explain moon phases 

as they relate to the position of 

the moon in its orbit around the 

Earth, resulting in the amount of 

observable reflected light. 

Section 3: 

“Phases, Eclipses, 

and Tides” 

“The phase of the moon you see depends on 

how much of the sunlit side of the moon faces 

Earth…The moon reflects light from the sun” 

(7.5). 

 

“new moon, the side of the moon facing Earth 

is dark” (7.6). 

Item 6: Multiple choice response to We 

sometimes see the moon as a crescent because 

 

Item 27: Response to diagram Which letter is the 

position of the moon during the new moon 

phase? 

E.ST.05.23 Recognize that 

nighttime objects (stars and 

constellations) and the sun appear 

to move because the Earth rotates 

on its axis and orbits the sun. 

Section 1: “Earth 

in Space” 

“Our key concept for this section, Earth 

through space in two major ways: rotation and 

revolution” (1.3). 

 

“Earth’s rotation causes day and night. As 

Earth rotates from east to west, the sun appears 

to move across the sky. The sun is not really 

moving. Earth’s rotation makes it appear to 

move” (1.6). 

 

“It looks like the sun is getting bigger, right? 

But it’s not that the sun is getting bigger. We’re 

turning on Earth and are able to see more of the 

sun (1.8). 

Item 7: Multiple choice response to Throughout 

the day the sun moves across the sky, and 

throughout the night the stars move across the 

sky due to 

 

Item 26: Response to diagram At which letter on 

Earth would a person be experiencing 

nighttime? 

E.ST.05.24 Explain lunar and 

solar eclipses based on the 

relative positions of the Earth, 

moon, and sun, and the orbit of 

the moon. 

Section 3: 

“Phases, Eclipses, 

and Tides” 

“A solar eclipse occurs when the moon passes 

directly between Earth and the sun, blocking 

sunlight from Earth” (7.6). 

 

Item 8: Multiple choice response to A lunar 

eclipse is when 

 

Item 9: Multiple choice response to A solar 

eclipse is when  
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Earth Systems Standard Worksheet 

Section in which 

Standard is 

Addressed 

Standard Addressed in Lesson Assessment Item Aligned with Standard 

“Flip it to the back and draw me a lunar 

eclipse…Can you please include the shadow if 

you haven’t already” (8.1)? 

 

“Can you please copy down that solar eclipse 

and then draw the shadow” (8.1)? 

Item 28: Response to diagram At which letter of 

the moon’s position would it be possible for a 

total lunar eclipse to occur? 

 

Item 29: Diagram and description task Draw a 

diagram below in each appropriate box, showing 

both types of eclipse [solar eclipse and lunar 

eclipse]. Please include labels. Give a 

description of each.  

E.ST.05.25 Explain the tides of 

the oceans as they relate to the 

gravitational pull and orbit of the 

moon. 

Section 3: 

“Phases, Eclipses, 

and Tides” 

“Tides are caused mainly by differences in how 

much the moon’s gravity pulls on different 

parts of the Earth” (8.2). 

Item 10: Multiple choice response to Ocean tides 

are caused by 
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