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ABSTRACT 

Pancreatic cancer is the third leading cause of cancer-related deaths in the United States. 

Nearly all pancreatic tumors harbor mutations in oncogenic KRAS. Unfortunately, KRAS 

is difficult to target therapeutically, despite decades of efforts. As such, KRAS-dependent 

pathways remain promising targets for the development of new therapeutics. Pancreatic 

cancer extensively reprograms cellular metabolism to support uncontrolled growth and 

proliferation. Mutations in oncogenic KRAS drive metabolic rewiring that PDA cells are 

dependent on to supply biosynthetic precursors and energy. Understanding the metabolic 

dependencies of tumorigenesis and tumor maintenance could reveal targetable 

vulnerabilities for disease detection and/or treatment. 

Acinar cells can give rise to pancreatic tumors through acinar-to-ductal metaplasia (ADM), 

and inhibiting pathways that maintain acinar homeostasis can accelerate tumorigenesis. 

During ADM, acinar cells transdifferentiate to duct-like cells, a process driven by 

oncogenic KRAS, and one that we hypothesized was mediated by metabolic rewiring. 

Transcriptomic analysis revealed global enhancement of metabolic programs in acinar 

cells undergoing ADM. We previously demonstrated that pancreatic cancer cells rewire 

glucose and glutamine metabolism to support growth and survival. Using in vitro models 

of ADM, we found that glutamine availability is not required for ADM. In contrast, glucose 

availability and intact oxidative phosphorylation are required for ADM. A more detailed 

analysis of the pathways downstream of glucose metabolism revealed that disrupting the 

oxidative pentose phosphate pathway accelerates ADM in vitro and tumorigenesis in vivo, 

likely due to heightened oxidative stress. Changes in redox balance can attenuate or 

accelerate ADM in vitro and in vivo. 

Redox homeostasis is also tightly regulated in pancreatic cancer cells by rewiring 

glutamine metabolism through a glutamate oxaloacetate transaminase 1 (GOT1)-

dependent pathway. GOT1 inhibition disrupts redox homeostasis in pancreatic cancer 

cells. These insights were leveraged in PDA, where we demonstrate that radiotherapy 
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potently enhanced the effect of GOT1 inhibition on tumor growth. Understanding the 

metabolic pathways that contribute to pancreatic tumorigenesis and tumor maintenance, 

such as redox homeostasis, could provide biomarkers for diagnosis of early disease or 

development of better therapeutics for treating pancreatic cancer. 
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CHAPTER 1 

Introduction: Pancreatic Cancer, Tumorigenesis, and Metabolic Adaptations 

Pancreatic Ductal Adenocarcinoma 

The pancreas—with both exocrine and endocrine functions—regulates digestion and 

glucose homeostasis1,2. Making up the exocrine compartment are acinar cells that 

produce and secrete digestive enzymes, ductal cells that transport the digestive enzymes 

to the gastrointestinal tract, and the centro-acinar cells that lie between acinar and ductal 

cells. The endocrine compartment is comprised of Islets of Langerhans that consists of 

hormone-secreting cells. The vast majority of pancreatic neoplasias arise from the 

exocrine compartment1. 

Pancreatic ductal adenocarcinoma (PDA), the most common form of pancreatic cancer, 

accounts for approximately 90% of all pancreatic neoplasms1,3. While PDA is the eleventh 

most commonly diagnosed cancer in the United states, it is the third leading cause of 

cancer-related deaths and projected to be the second within the next decade4,5. PDA has 

the lowest overall five-year survival at 10%; median survival is approximately nine months 

for patients diagnosed with late stage disease4,6. The extremely poor prognosis of PDA 

is attributed to no or nonspecific symptoms, difficulty imaging early stage tumors, and lack 

of diagnostic testing1. Diagnosis typically occurs at advanced stages—PDA is an 

aggressive tumor that metastasizes early7—making most patients ineligible for surgical 

resections. The standard of care for advanced and/or metastasized tumors is 

chemotherapy occasionally with radiotherapy; unfortunately, PDA is remarkably resistant 

to therapeutic options. Risk factors for PDA include age, chronic pancreatitis, tobacco 

smoking, heavy alcohol consumption, and obesity1,3. Long-term diabetes mellitus is a 

considerable risk factor, but it can also be a manifestation of PDA. Genetic syndromes 

and a familial history of pancreatic cancer account for 10% of PDA patients. Overall, risk 

factors are associated with approximately 25-35% of PDA cases1. 
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Cell of Origin 

Development of PDA is hypothesized to be a multistep process beginning with acinar-to-

ductal metaplasia (ADM) progressing into pancreatic intraepithelial neoplasia (PanIN)—

from low-grade dysplasia (PanIN1-2) to high-grade/carcinoma in situ (PanIN3)—then 

transforming into invasive carcinoma (Fig. 1.1)2,8. Mucinous cystic neoplasm (MCN) and 

intraductal papillary mucinous neoplasm (IPMN) are other PDA precursor lesions, 

however PanINs are the most common and well-studied. An oncogenic KRAS mutation, 

most commonly KRASG12D, is believed to be the initiating genetic alteration; over 90% of 

pancreatic cancers harbor KRAS mutations9. Additional molecular alterations are needed 

for PanIN progression and carcinoma8. Early genetic events include KRAS mutations and 

loss of tumor suppressor CDKN2A and late genetic events include mutation or loss of 

tumor suppressors TP53 and SMAD4/DPC4 (Fig. 1.1)8. 

 

Genetically engineered mouse models (GEMM) of PDA have been instrumental in 

understanding the progression of the disease10. Generation of a KrasLSL-G12D/+ mouse 

enabled tissue-specific, endogenous expression of mutant Kras11,12. Pancreas-specific 

expression of KrasG12D is achieved by driving expression of Cre recombinase from 

pancreatic progenitor transcription factor promoters Pdx1 (transgenic)13,14 or Ptf1a/p48 

Figure 1.1 Development and progression of pancreatic cancer. Expression of oncogenic KRAS 
mutations in acinar cells initiates acinar-to-ductal metaplasia (ADM) and progression to low-grade 
pancreatic intraepithelial neoplasia (PanIN). Loss of tumor suppressor CDKN2A can induce progression 
to high-grade PanIN. Subsequent loss or mutation of tumor suppressors TP53 or SMAD4 promote 
progression to invasive pancreatic ductal adenocarcinoma (PDA). Created with BioRender.com 
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(knock-in)15. KrasLSL-G12D/+; Pdx1-Cre and KrasLSL-G12D/+; Ptf1a/p48Cre/+ mice, commonly 

referred to as KC, recapitulate the progression of PanINs seen in human disease13. 

Mutant KRAS is critical for driving PDA development and tumor maintenance, however it 

is not sufficient for development of invasive and metastatic cancer13,16,17. Crossing 

additional genetic alterations commonly found in human PDA into the KC model increases 

the penetrance and development of invasive and metastatic PDA: loss of Cdkn2a, 

mutation or heterozygous deletion of Tp53 (referred to as the KPC model), or 

homozygous deletion of Tgfbr2 (dysregulates SMAD signaling)18-22. Interestingly mice 

with loss of SMAD4 in the context of KrasG12D develop IPMN or MCN lesions23,24. 

Determining the PDA cell of origin with mouse models has been challenging25. The KC 

and KPC models, and others based off of them, reflect PanIN development and 

invasive/metastatic PDA seen in human disease13,18. However, because Pdx1 and Ptf1a 

are expressed in pancreatic progenitor cells in utero, recombination of oncogenic Kras 

occurs in all pancreatic epithelial cells (acini, ducts, and islets). Inducible expression of 

Cre recombinase allows expression of mutant Kras in specific cell compartments in adult 

mice. Expression of KrasG12D in adult pancreatic ductal cells (via CK19CreERT/+) gives rise 

to occasional mucinous metaplasia resembling low-grade PanINs, indicating ductal cells 

have the potential to give rise to neoplasia26. Since PDA displays ductal morphology, 

ductal cells are an obvious cell of origin. However, adult acinar cells are highly plastic and 

can dedifferentiate/transdifferentiate into pancreatic progenitors through ADM and 

express ductal markers27. Analysis of KC pancreata show “biphenotypic” cells—

expression of both acinar and ductal markers—are present in ADM and PanIN lesions, 

suggesting acinar cells transdifferentiate and give rise to metaplasia28,29. In addition, 

lineage-tracing and acinar cell specific recombination of KrasLSL-G12D/+ in adult cells (via 

Ela-CreERT2 or Mist1CreERT2/+) show acinar cells are capable of transdifferentiating into 

hyperplastic ductal cells and giving rise to PanIN lesions30-33. 

A study that directly compared recombination of KrasLSL-G12D/+ in adult acinar or ductal 

cells (Ptf1aCreER/+ or Sox9-CreER, respectively) found acinar cells have a 112-fold greater 

propensity to form PanINs than ductal cells34. Morphologically normal KrasLSL-G12D/+; 

Ptf1aCreERT/+ acinar cells express Sox9 indicating activation of a duct-like state prior to 
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transdifferentiating34. PDA tumors arise from both cell types in the context of p53 loss 

(Tp53f/f)35. However, ductal cells have more rapid tumorigenesis and progression to 

invasive PDA. While acinar cells give rise to low-grade PanINs that accumulate and 

progress to high-grade lesions as mice age, ductal cells develop only high-grade lesions 

that readily progress to invasive PDA. Another comparative study had similar findings 

with KrasLSL-G12D and Tp53R172H/+ expression in adult acinar cells (Mist1-CreERT2) or 

ductal cells (Hnf1b-CreERT2)36. Again, acinar cells readily form PanINs and PDA while 

ductal cells are comparatively refractory to transformation. However, biallelic expression 

of mutant p53 (Tp53R172H/R172H) in ductal cells rapidly forms PDA with virtually no evidence 

of PanIN lesions. Although KrasG12D expressing acinar cells have a higher tendency to 

develop PanINs that progress histologically, duct cells with Tp53 alterations more readily 

develop PDA without progression through early PanIN lesions. These studies provide 

evidence that the cell of origin can be both acinar and ductal cells, but acinar cell 

transformation progresses through PanIN stages seen in human PDA. 

Modeling Acinar-to-Ductal Metaplasia 

ADM is a normal response to pancreatic injury or inflammation27,37. Acinar cells 

dedifferentiate/transdifferentiate to proliferative ductal progenitors to regenerate depleted 

acinar tissue. ADM is observed in patients with chronic and acute pancreatitis, an 

inflammatory disease characterized by acinar cell atrophy and fibrosis38-40. Since chronic 

pancreatitis is a predisposing factor for PDA, this lends credence to PDA developing from 

ADM27. In wild-type cells, upon tissue repair, ductal progenitors redifferentiate to acinar 

cells where normal acinar function is resumed41. However, in the presence of oncogenic 

KRAS, ADM is irreversible and metaplasia can transition to PanIN lesions which can 

progress to PDA (Fig. 1.2). 

ADM can be modeled and observed in vivo by inducing acute or chronic pancreatitis in 

mice42,43. A common method for inducing pancreatitis is repeated injections of cerulein, a 

cholecystokinin ortholog that promotes excessive acinar enzyme production and 

premature activation at supraphysiologic concentrations44. Modeling ADM in vitro is 
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achieved by culturing primary acinar cell explants in suspension or a matrix. Lineage 

tracing of primary mouse and human cells under these conditions demonstrate acinar 

cells can transdifferentiate to form ductal structures, repress acinar genes, and express 

ductal genes45-48. To initiate ADM in vitro, wild-type acinar explants can be stimulated by 

TGFα, cerulein, and the milieu of growth factors in Matrigel42,45,49; Kras mutant acinar cells 

spontaneously transdifferentiate49,50. 

Constitutively activate KrasG12D stimulates mitogenic signaling to drive persistent growth 

and proliferation51. Acquisition of oncogenic Kras, along with upregulation of EGFR and 

wild-type KRAS signaling and chronic inflammation, drives ADM and tumorigenesis in 

mouse models.43,45,49,50,52-55. Signaling pathways downstream of EGFR and KRAS 

required for mediating ADM are MAPK/ERK42,49,56,57, PI3K58,59, and RAC1 (ref:60). 

Understanding the pathways that drive ADM are important because 1) it is the first step 

to initiate tumorigenesis, 2) blocking ADM in vitro can translate to impeding ADM in vivo 

and preventing tissue transformation49, and 3) early lesions can be reprogramed back to 

normal tissue by targeting ADM dependencies57. 

Metabolic Reprogramming in Cancer 

Reprogramming metabolic pathways to support aberrant growth, proliferation, and 

survival is a hallmark of cancer cells61. The metabolic requirements of proliferating cells, 

including cancer cells, are vastly different than those of quiescent, differentiated cells62. 

Figure 1.2 Differences in ADM in response to injury or mutant Kras expression. Acinar cells 
transdifferentiate into proliferative ductal progenitor cells (acinar-to-ductal metaplasia [ADM]) in 
response to pancreatic injury or inflammation. Upon tissue repair, ductal progenitors redifferentiate to 
acinar cells, restoring normal acinar function. In the presence of oncogenic KRAS, ADM is irreversible 
and metaplasia can transition to PanIN lesions which can progress to PDA. Created with BioRender.com 
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While the need for ATP generation are relatively the same, cancer cells require a 

continuous supply of building blocks to generate macromolecules for growth and 

proliferation. Nutrients are used by cells for generation of biosynthetic precursors and the 

energy needed to make macromolecules. Glucose, a major fuel source, is broken down 

to pyruvate via glycolysis and, in normal cells, pyruvate fuels mitochondrial metabolism 

to generate ATP. When oxygen levels are insufficient to maintain oxidative 

phosphorylation, fermentation metabolizes pyruvate to lactate. Cancer cells, driven by 

oncogenes, convert glucose to lactate even in the presence of sufficient oxygen, a 

process known as aerobic glycolysis or the Warburg Effect63. Aerobic glycolysis allows 

cancer cells to divert glucose carbon into anabolic pathways—such as the pentose 

phosphate pathway (PPP), hexosamine biosynthetic pathway (HBP), and serine/glycine 

one-carbon metabolism—to produce precursors of ribose, lipids, and amino acids rather 

than supplying oxidative phosphorylation64. The tricarboxylic acid (TCA) cycle and 

oxidative phosphorylation (collectively, mitochondrial metabolism) is maintained by 

anaplerosis. Glutamine is the most abundant amino acid in circulation and is a primary 

anaplerotic substrate that replenishes the TCA cycle, a major biosynthetic hub64. 

Glutamine metabolism generates biosynthetic precursors used in protein, lipid, and 

nucleotide synthesis, energy production, and antioxidant defense. To meet the increased 

demand for nutrients to generate biosynthetic precursors and energy, cancer cells rewire 

nutrient acquisition pathways64. Metabolic reprogramming provides cancer cells with 

increased nutrient availability and promotes anabolic metabolism necessary for 

continuous growth. 

Pancreatic Cancer Metabolism 

Pancreatic tumors characteristically have a low percentage of neoplastic cells, with the 

bulk of the tumor consisting of fibroblasts and immune cells65. Activated fibroblasts 

deposit large amounts of extracellular matrix proteins that contribute to immense 

interstitial pressures66. This extreme pressure collapses vasculature, impairing perfusion 

and limiting oxygen (hypoxia) and nutrient availability67-69. PDA reprograms cellular 

metabolism through oncogenic KRAS to adapt to this harsh microenvironment (Fig. 1.3). 
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Since glucose is in high demand to support continuous growth, PDA cells upregulate 

expression of glucose transporter GLUT1 and hexokinase—mediated by oncogenic 

KRAS—to increase uptake and intercellular retention of glucose16,69. Mutant KRAS and 

hypoxia increase glycolytic gene expression to promote aerobic glycolysis and anabolic 

metabolism. Driven by mutant KRAS, glycolytic intermediates are shuttled into the non-

oxidative branch of the PPP to generate nucleotide precursors and the HBP for protein 

glycosylation16.  

Glutamine plays an important role supporting redox balance in pancreatic cancer. 

Glutamine-derived glutamate is utilized for glutathione (GSH) generation70. Glutamine 

metabolism is also rewired in PDA to supply reducing equivalents in the form of NADPH71. 

Normal cells typically generate NADPH from the oxidative branch of the PPP72. PDA cells 

do not proportionally upregulate oxidative PPP to generate the quantity of NADPH 

Figure 1.3 Pancreatic cancer rewires cell autonomous metabolism to support growth. Mutant 
KRAS increases glucose uptake and channels glycolytic intermediates into the hexosamine biosynthetic 
pathway (HBP) and the non-oxidative branch of the pentose phosphate pathway (non-ox PPP) to 
generate ribose-5-phosphate (R5P), a precursor molecule for DNA and RNA synthesis. KrasG12D 
reprograms glutamine metabolism to generate NADPH to maintain redox homeostasis. Unlike normal 
cells, PDA cells do not utilize the oxidative branch of the PPP (ox PPP) for NADPH generation. PDA 
cells activate macropinocytosis and autophagy for acquisition of amino acids. Created with 
BioRender.com 
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needed for redox homeostasis or fatty acid synthesis16,63. Demand for NADPH is met 

through oncogenic KRAS-mediated reprogramming of the malate-aspartate shuttle to 

generate NADPH via ME1 and maintain redox homeostais71,73. Disruption of redox 

balance by targeting this pathway represents a metabolic vulnerability in pancreatic 

cancer (see Chapter 3)73. 

PDA cells activate and depend on nutrient acquisition pathways, such as recycling and 

scavenging, to supplement cellular metabolism in a nutrient deprived micro-

environment67,69,74. Macroautophagy, generally known as autophagy, is elevated in PDA 

cells to increase the availability of biomolecule nutrients generated from the lysosomal 

degradation of damaged or excessive cellular components75. Oncogenic KRAS induces 

macropinocytosis to engulf extracellular fluid and solutes, which increases intercellular 

nutrient concentrations following lysosomal degradation. In PDA, autophagy and 

macropinocytosis are a source of amino acids to fuel the TCA cycle and oxidative 

phosphorylation67,74-76. 

While metabolic rewiring and dependencies in PDA cells are extensively studied69, much 

less is known about metabolic pathways that govern oncogenic KRAS-induced ADM. The 

following sections discuss metabolic pathways involved in acinar cell homeostasis and 

how manipulation of these pathways can regulate ADM (Fig. 1.4). These studies either 

provide context for my findings in metabolic regulation of ADM or provide hypotheses for 

future investigation (see Chapters 2 and 5). 

Acetyl-CoA Metabolism 

Acetyl-CoA is a central metabolite used as a key substrate for anabolic metabolism and 

the regulation of protein function77. Specifically, acetyl-CoA is involved in bioenergetic 

reactions, biosynthetic pathways, including fatty-acid and cholesterol synthesis, and 

serves as the acetyl donor for lysine acetylation78. Acetyl-CoA concentrations respond to 

different stimuli such as nutrient availability, oxygen availability, and PI3K-AKT 

signaling79,80. Two major enzymes produce acetyl-CoA in the cytosol and nucleus: ACLY 

from mitochondrial-derived citrate and ACSS2 from acetate77. Pancreatic cancer 

increases production of acetyl-CoA through AKT–ACLY signaling to activate gene 
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transcription via histone acetylation79. In human PDA, elevated expression of ACLY and 

ACSS2 and high stroma content contributes to increased histone acetylation81,82. 

 

AKT–ACLY signaling drives pancreatic ADM and tumorigenesis in KC mice (see Table 

1.1) by increasing levels of citrate-derived acetyl-CoA81,83. KrasG12D-expressing acinar 

explants use acetyl-CoA to generate cholesterol through the mevalonate pathway and to 

promote expression of ductal genes through histone acetylation. Mutant KRAS 

reprograms metabolism to increase the availability of acetyl-CoA needed during ADM. 

Isotope-tracing of glucose, palmitate, and leucine revealed leucine is the major carbon 

source of acetyl-CoA in wild-type and KC acinar cells81, consistent with high metabolism 

of branched-chain amino acids in mouse pancreas84. To meet the demand for acetyl-CoA 

during ADM, oncogenic Kras enhances acetyl-CoA generation from glucose and 

palmitate. Acly ablation in KC pancreas (see Table 1.1) impedes tumorigenesis and 

effectively prevents formation of high-grade PanINs81. Deletion of Acly decreases tumor 

burden and significantly extends survival in KPC mice (see Table 1.1). ACLY facilitates 

Figure 1.4 Metabolic regulation of ADM. Mutant KRAS increases acetyl-CoA generation for utilization 
in sterol synthesis and histone acetylation to drive ADM. KrasG12D promotes the generation of oxidative 
phosphorylation-derived reactive oxygen species (ROS) necessary for ADM. Antioxidant pathways are 
activated by oncogenic KRAS and increased oxidative stress to maintain ROS at pro-tumorigenic levels 
and below those that induce senescence or cell death. Autophagy maintains acinar cell homeostasis. 
Inhibition of autophagic flux, possibly mediated by dysfunctional mitochondria, is necessary for 
tumorigenesis. Mutant KRAS-driven induction of endocytosis promotes ADM. Loss of HIF transcription 
factors promotes ADM. Created with BioRender.com 
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but is not required for tumorigenesis in vivo. Since acetyl-CoA is needed for tumor 

progression and maintenance, Acly-deficient PanINs compensate by upregulating 

expression of Acss2. 

This recently published study by Carrer et al was the first to demonstrate Kras-driven 

metabolic reprogramming and nutrient utilization driving ADM81,83. However, metabolic 

regulation of ADM is still largely unknown. Part of my thesis research was conducted to 

address this large gap in knowledge (see Chapter 2). 

Redox Homeostasis 

Reactive oxygen species (ROS) are a byproduct of metabolism typically associated with 

mutagenic and damaging properties on DNA, lipids, and proteins. However, ROS can 

function as signaling molecules to regulate proliferation, survival, and cell death64,85. At 

low concentrations, ROS promotes proliferation by inactivating phosphatases that 

counter the effects of mitogenic kinases. At moderate concentrations, ROS induces 

stress-response gene expression that provide pro-survival signals. At high 

concentrations, ROS can trigger senescence or cell death. Inducible antioxidant 

programs, for example those regulated by transcription factor NRF2 and its repressor 

protein KEAP1, are activated to maintain redox balance and repair oxidative damage due 

to high ROS levels86. NRF2 can be activated by oncogenes, ROS, and hypoxia to control 

the expression of over 200 genes involved in redox homeostasis, bioenergetics, 

metabolism, survival, proliferation, mitochondrial homeostasis, autophagy, and DNA 

repair. 

In cancer, including PDA, ROS levels are elevated to support increased signaling through 

mitogenic pathways needed for metabolic reprogramming and continuous proliferation50. 

The heightened metabolism of cancer cells in turn generates more ROS which is 

accompanied by an increase in antioxidant activity85,87. Oncogenic KRAS, ROS, and 

hypoxia can induce expression of NRF2 and its target genes to aid sustained proliferation, 

biosynthetic metabolic reprogramming, and resistance to cell death86,87. 

ROS promotes KrasG12D-driven tumorigenesis and proliferation50,88. KC mice (see Table 

1.1) display high levels of oxidative stress in acinar cells which is further enhanced in 

ADM and PanIN lesions50. Oncogenic KRAS drives ADM in acinar explants by mediating 
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increased mitochondrial proton leak and elevating mitochondrial ROS (mROS) levels. In 

fact, treating primary wild-type acinar explants with hydrogen peroxide to increase ROS 

induces ADM—although not as strongly as mutant Kras. Cooperation between mutant 

KRAS and oxidative stress to initiate and promote pancreatic tumorigenesis is apparent 

in the absence of TP53INP1, an antioxidant target gene of p53 that promotes autophagy 

of damaged mitochondria (ref:89). The loss of Tp53inp1 in KC mice (see Table 1.1) 

increases oxidative damage and accelerates ADM and PanIN initiation and progression 

of high-grade PanINs90. Antioxidant treatment dramatically reduces the number of ADM 

and PanIN lesions demonstrating increased ROS levels are necessary for efficient 

oncogenic Kras-induced tumorigenesis50,90. Ductal formation in acinar explants is also 

attenuated by decreasing ROS levels with antioxidants50. 

Oncogenic-driven increases in ROS must be balanced by induction of an antioxidant 

response to maintain ROS at pro-tumorigenic levels without surpassing the threshold to 

induce senescence or cell death85. KrasG12D induces Nrf2 expression, increases NRF2 

target gene expression, and enhances GSH pools and the reduced to oxidized 

glutathione (GSSG) ratio (GSH/GSSH)87. Due to heightened ROS levels in KC mice (see 

Table 1.1), Nrf2 expression is reciprocally increased in acinar cells, ADM, and PanIN 

lesions50,87; Nrf2 expression is further increased under enhanced oxidative stress in the 

absence of Tp53inp190. Ablation of Nrf2 in the KC pancreas (see Table 1.1) results in 

fewer PanIN lesions which displayed increased oxidative stress87. Oxidative stress also 

induces expression of TIGAR, a p53 target gene, to reduce glycolytic flux and shuttle 

glycolytic intermediates into the PPP to generate NADPH91-94. TIGAR can also localize to 

the mitochondria to reduce mitochondrial membrane potential and decrease ROS 

production95. Given the ability to modulate ROS, TIGAR is often dysregulated in cancer96. 

In KC and KPC mouse models, loss of TIGAR in the pancreas (see Table 1.1) slows 

progression of PanIN lesions and increases mROS levels in PanIN lesions and PDA97.  

At first, these studies seem to be contradictory: the absence of an antioxidant should 

allow increased pancreatic tumorigenesis from the consequential increases in ROS. 

However, the levels of unbalanced KRAS-induced ROS from lack of an antioxidant 

response become detrimental and induce cellular senescence87,98. Indeed, Nrf2 null KC 
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PanINs display increased senescence and a lower proliferative index; both are rescued 

by decreasing ROS levels with an antioxidant87. Also, despite slower tumorigenesis in the 

absence of TIGAR in KPC mice, there is accelerated tumor onset and increased 

metastatic disease97. Elevated ROS due to loss of TIGAR or NRF2 in KPC mice (see 

Table 1.1) promotes metastasis by inducing an epithelial-to-mesenchymal transition 

(EMT)97,99. Human and mouse PDA samples show dynamic fluctuations in TIGAR 

expression, demonstrating ROS and antioxidant programs are tightly regulated to 

promote different stages of disease progression97. 

Autophagy 

Autophagy is a general term for pathways that deliver cellular materials to the lysosome 

for degradation100. There are three classes of autophagy: macroautophagy, 

microautophagy, and chaperone-mediated autophagy. Macroautophagy, usually 

referenced as autophagy, sequesters cytoplasmic materials in a double-membrane 

autophagosome that fuses with a lysosome for degradation. In microautophagy, the 

lysosome itself engulfs cytoplasmic components. Chaperone-mediated autophagy 

directly delivers proteins across the lysosomal membrane. These processes are essential 

for cellular homeostasis, survival, differentiation, and development. 

Autophagy plays a dual role during cellular stress. Autophagy is elevated during nutrient 

deprivation, oxidative stress, hypoxia, and genotoxic stress to balance the cellular 

demands for energy and building blocks needed to sustain survival and to turn over 

damaged cellular components101. However, if attempts to promote survival fail, autophagy 

can lead to cell death. An important factor in mediating this balance is p62 (ref:102). p62 

forms aggregates of damaged organelles and misfolded proteins and interacts with LC3. 

p62 along with its cargo becomes incorporated into the autophagosome and degraded. 

The level of p62 inversely correlates with autophagic flux, so the other roles of p62 can 

affect the survival-death balance: forming aggregates of proteins involved in survival or 

apoptotic signaling. p62 can also interact with KEAP1 to prevent sequestering NRF2 and 

tagging it for degradation103.  

Impaired autophagy is implicated in many human diseases101, including pancreatitis104. 

The exocrine pancreas has one of the highest rates of autophagy to maintain proteostasis 
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under the high demands for protein synthesis, highlighting the importance of autophagy 

in preserving acinar cell homeostasis and function104. Characteristics of pancreatitis are 

accumulation of large vacuole formation and increased trypsinogen activation in acinar 

cells104,105. These vacuoles have a double membrane and contain partially degraded 

cellular material—both hallmarks of autophagic vacuoles101. Experimental models of 

acute pancreatitis in rodents show increased accumulation of large vacuoles in acinar 

cells105,106. Increased vacuolization could be the result of either enhanced autophagy or 

impaired autophagic flux. The observation that protein degradation is decreased 

demonstrates pancreatitis-induced vacuolization is a result of dysfunction in autophagic 

flux and not enhancement of autophagy105. Key characteristics of impaired autophagy are 

increased cytoplasmic vacuolization, improperly formed autophagosomes that contain 

undegraded cellular components, decreased protein degradation, increased expression 

of p62, accumulation of LC3-I, and decreased LC3-II expression107-110. Staining for the 

two forms of LC3, mammalian homolog of yeast Atg8, can indicate levels of autophagy. 

LC3-I is cytosolic whereas LC3-II is membrane bound and correlates with the extent of 

autophagosome formation111. Atg genes are key components of autophagic machinery 

and are essential for the formation of autophagosomes. 

Since acinar cells depend on autophagy to maintain homeostasis, it is not surprising that 

autophagy impairment causes damage to the pancreas. Pancreas-specific loss of Atg5 

(ref:107) or Atg7 (ref:108,109) via Cre expression from Ptf1a or Pdx1 (see Table 1.1) causes, 

impaired autophagy. Ultimately, these mice develop chronic pancreatitis with features of 

severe acinar cell degeneration, ADM lesions, fibrosis, inflammation, necrosis/apoptosis 

with compensatory proliferation, and tissue atrophy. Pancreas tissue from these mice 

display increased ROS, ER stress, expression of p62, NRF2, and p53, and accumulation 

of damaged mitochondria. Atg5-deficient pancreata resemble human chronic pancreatitis 

patient samples107. A conflicting study where Atg5 was deleted using Cre recombinase 

driven by the elastase promoter (Ela-Cre; Atg5f/f) saw no pancreatic injury and concluded 

cerulein-induced pancreatitis was diminished106. This is surprising because experimental 

models of pancreatitis show impaired autophagic flux causes pancreatic damage105. The 

differences may be due to the recombination efficiency of the Cre-driver used112. 
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Pancreata in Ela-Cre; Atg5f/f mice were noted to have incomplete recombination106; 

lineage-tracing revealed Cre activity in about 70% of acinar cells107. 

Autophagy plays conflicting roles in tumor progression by suppressing tumorigenesis but 

supporting the metabolic needs of malignant tumors113. Impaired autophagy accelerates 

tumorigenesis but inhibits malignancy. In established tumors, autophagy promotes 

growth and survival by providing energy and nutrients114. Elevated autophagy is a feature 

of PDA and important for maintaining tumor viability and integrity115,116. A central mediator 

of metabolism, autophagy provides cells glucose, amino acids, and fatty acids; while this 

is certainly important in normal cells, PDA cells are dependent on autophagy to provide 

these substrates for growth and survival117. Interestingly, autophagy was recently shown 

to contribute to immune evasion in PDA118. 

Atg5 or Atg7 deletions accelerate accumulation of low-grade PanIN lesions in KC 

pancreata (see Table 1.1). However, late-stage PanINs rarely manifest and progression 

to PDA does not occur110. PanIN lesions, regardless of autophagy status, have elevated 

p53 expression and stain strongly for senescence markers; those deficient for Atg5 or 

Atg7 have increased caspase-3 activation and growth arrest which impede PDA 

progression119. Wild-type p53 likely blocks PDA progression when autophagy is impaired. 

When p53 is concomitantly deleted (see Table 1.1), PDA tumors form in the context of 

impaired autophagy110. In this KPC model, impaired autophagy accelerates 

tumorigenesis and tumor onset and decreases survival, implying autophagy plays a tumor 

suppressive role throughout tumor development. 

Another study utilized the p53 loss of heterozygosity (LOH) model to study the effect of 

autophagy during pancreatic tumorigenesis75. These mice (see Table 1.1) also have 

accelerated PanIN formation, but significantly less had invasive PDA which contributed 

to longer overall survival with significantly more long-term survivors75. These tumors show 

decreased proliferation with elevated apoptosis and DNA damage. In the context of Tp53 

LOH, autophagy is tumor suppressive during tumorigenesis but is needed in later stages 

in established tumors. This KPC model supports the dual roles of autophagy during tumor 

progression, likely because the Tp53 LOH model closely resembles Tp53 alterations that 

occur in human PDA: loss of function during tumor progression18,75,113. 
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Defective lysosomal function is a possible mechanism of impaired autophagic flux105,120. 

Acinar cell trypsinogen activation is balanced by efficient lysosomal degradation during 

homeostasis. In pancreatitis, deficient protein degradation increases trypsinogen 

activation. Improper processing/maturation of lysosomal cathepsin enzymes that regulate 

trypsinogen activation and degradation promote intra-acinar accumulation of premature 

trypsinogen activation, causing pancreatic damage105,120-122. Mice deficient for LAMP-2 

develop spontaneous pancreatitis with the characteristic features of impaired 

autophagy120. LAMP-2, a major component of lysosome membranes that facilitates fusion 

with autophagosomes, is downregulated in mouse and human pancreatitis120,123. 

Since all these studies genetically ablate autophagic or lysosomal machinery, it is difficult 

to determine how autophagy becomes dysregulated during natural disease progression. 

Recent evidence from experimental pancreatitis models indicate mitochondrial 

dysfunction causes autophagy impairment124. As a tumor suppressor, autophagy can 

mediate oncogenic-induced senescence, which may be bypassed in acinar cells via 

mutant Kras-driven mitochondrial dysfunction50,125. 

Endocytosis 

Endocytosis consists of many different processes that internalize extracellular materials 

within endosomes126. Lysosomal degradation of endosomes and its cargo releases 

biosynthetic building blocks into the cell. Endosomes are also sites for signal 

transduction—activated EGFR can be internalized by endocytosis and Ras/MAPK 

signaling can occur on endosomes127. Dysregulated endocytosis has emerged as feature 

of malignant cells to support growth and survival128. 

Fluid-phase endocytosis (FPE) is distinguished by internalizing fluid phase markers, such 

as horseradish peroxidase and dextran129. FPE, in a manner dependent on EGFR and 

RAC1-driven actin polymerization, is required for ADM in vitro and in vivo130. FPE is 

elevated in KC pancreatic acinar cells prior to any histological changes130. Mouse and 

human acinar explants increase FPE as acinar cells undergo ADM. KC mice (see Table 

1.1) with pancreas-specific deletion of N-Wasp—(the homolog of human WASL) a factor 

of F-actin that regulates endosomal internalization of EGFR—have dramatically reduced 

rates of FPE resulting in fewer ADM lesions, no PanIN lesions, and no ERK activation in 
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acinar cells130,131. Endocytosis, mediated by actin, may support ADM by enhancing ERK 

activity through internalization of EGFR and signal transduction on endosomes42,49,56,57.  

Macropinocytosis is an endocytic pathway where large volumes of extracellular fluid and 

solutes are internalized into vesicles called macropinosomes. Macropinocytosis is a 

method for cells to obtain nutrients to support cellular metabolism and growth130. Many 

different types of cancer cells upregulate macropinocytosis—typically by oncogene 

activation—as a means to scavenge nutrients from the microenvironment to support 

growth. Human PDA samples and mouse PDA models display robust mutant KRAS-

driven activation of macropinocytosis in order to scavenge proteins and maintain 

intercellular amino acid levels, importantly glutamine67,74,132. KPC mice (see Table 1.1) 

display elevated macropinocytic uptake in mid- to late-stage PanIN lesions74. Acinar cells 

or ADM lesions were not analyzed in this KPC model to determine macropinocytosis 

status. However, it is possible that the FPE that drives ADM is macropinocytosis130. 

Oncogenic KRAS-induced FPE depends on EGFR, RAC1, and N-WASP, all of which are 

represented in a classic example of macropinocytosis126. Also, FPE in acinar cells and 

ADM was measured with dextran which is also used in macropinocytosis assays74,130. 

Activation of macropinocytosis may support ADM by scavenging extra nutrients to support 

metabolic reprogramming, by increasing endosomes to support mitogenic signaling, or 

by assisting Rac1-dependent actin reorganization to support morphological changes60. 

HIF Signaling 

Hypoxia, the state of low oxygen tension, occurs in both physiological and 

pathophysiological conditions133. Hypoxia inducible factors (HIFs) are the major players 

involved in the hypoxic response. The HIF transcription factors—HIF1α, HIF2α, and 

HIF3α—are activated in low cellular oxygen levels. Upon activation, HIFs can no longer 

associate with their negative repressor VHL, which would otherwise target these proteins 

for proteasomal degradation. Over 100 target genes are controlled by HIFs, most 

regulating oxygen and energy homeostasis134. Not only do HIFs participate in embryonic 

development and normal cellular proliferation and differentiation, they are important 

factors in cancer133,135. Solid tumors, including PDA, contain hypoxic environments due 

to decreased vascularity68,69. Expression of HIF1α and HIF2α in tumors support growth 
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by regulating cellular metabolism, the inflammatory response, angiogenesis, and 

metastasis69,135,136 . 

Basal levels of HIF1α are very low while HIF2α is undetectable in human and mouse 

exocrine pancreas137-140. Mice with pancreas-specific deletion of HIF1α or HIF2α (see 

Table 1.1) develop histologically normal pancreata137,138. Expression of an oxygen-stable 

form of HIF1α in acinar cells (see Table 1.1) has no effect on pancreas morphology or 

function139. However, expression of an oxygen-stable form of HIF2α in acinar cells (see 

Table 1.1) causes spontaneous pancreatitis manifested by decreased acinar cell 

numbers, increased ADM, loss of amylase expression, exocrine cell atrophy, increased 

ER stress, and fibrosis139,140. This phenotype correlates with overexpression of HIF2α 

seen in chronic pancreatitis patient samples139. 

In PDA, hypoxia and HIF1α stabilization are detected early in ADM and PanIN stages of 

PDA development and persist throughout carcinogenesis137. Loss of HIF1α in KC mice 

(see Table 1.1) accelerates pancreatic tumorigenesis, demonstrating a tumor 

suppressive role for HIF1α137. Deletion of HIF1α augments PanIN number and grade, 

however, there is no difference in survival or tumor incidence137. Tumor progression may 

decelerate due to impaired metabolic reprogramming of glycolysis via expression of 

HIF1α target genes. 

HIF2α expression is high in human and mouse ADM and low-grade PanIN lesions and 

gradually declines during PDA progression138. Like HIF1α deletion, loss of HIF2α in KC 

mice (see Table 1.1) accelerates pancreatic tumorigenesis137. However, HIF2α-deficient 

PanIN lesions fail to progress to more advanced PanIN stages and PDA138. Interestingly, 

concurrent expression of oncogenic KrasG12D and HIF2α stabilization drives formation of 

MCN lesions rather than PanINs139. PanIN lesions in the HIF2α knockout model and MCN 

lesions in the HIF2α stabilization model display dysregulated Wnt signaling. Although β-

catenin/Wnt signaling is restrained during Kras-induced ADM reprogramming, it is 

reactivated during PanIN progression41 and MCN formation141. Both studies indicate a 

role for HIF2α modulating Wnt signaling during tumorigenesis. 
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Conclusions 

In addition to the work described above, important interactions among these pathways 

are also likely to impact pancreas ADM and tumorigenesis. Oncogenic KRAS 

orchestrates metabolic reprogramming to drive ADM in a currently under-appreciated 

manner. Characterizing transforming, enabling, or neutral metabolic activities142 involved 

in KRAS-induced ADM could lead to the development of early detection methods or 

targeted therapies to treat PDA, both of which are desperately needed. This concept was 

demonstrated by Carrer et al with treatment of acinar explants or PDA xenografts with 

atorvastatin and JQ1 to inhibit the mevalonate pathway and histone acetylation, 

respectively, effectively blocked ADM in vitro and suppressed tumor growth in immune 

competent mice81. Similarly, redox homeostasis plays an important role during pancreatic 

tumorigenesis50,87,97 (see Chapter 2) and in tumor maintenance (see Chapter 3). 

Disrupting redox balance in PDA tumors is a promising target for the development of new 

therapeutics that could improve standard of care therapies. Characterizing the metabolic 

dependences for ADM could reveal metabolic vulnerabilities in PDA tumors for 

therapeutic targeting or early disease detection. 
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Table 1.1: Variations of mouse models  

Study Ref. Kras status Cre driver 
Tp53 
status 

Study specific 
gene 

Acetyl-CoA 
Metabolism 

     

Carrer, et al. (2019) 81 KrasLSL-G12D/+ Pdx1   

  KrasLSL-G12D/+ Pdx1  Aclyf/f 

  KrasLSL-G12D/+ Pdx1 Tp53f/+ Aclyf/f 

ROS      

Liou, et al. (2016) 50 KrasLSL-G12D/+ Ptf1a/p48   

DeNicola, et al. (2011) 87 KrasLSL-G12D/+ Ptf1a/p48   

  KrasLSL-G12D/+ Ptf1a/p48  Nrf2-/- 

Al Saati, et al. (2013) 90 KrasLSL-G12D/+ Pdx1  Tp53inp1-/- 

Cheung, et al. (2020) 97 KrasLSL-G12D/+ Pdx1  Tigarf/f 

  KrasLSL-G12D/+ Pdx1 Tp53f/+ Tigarf/f 

  KrasLSL-G12D/+ Pdx1 Tp53R172H/+ Tigarf/f 

  KrasLSL-G12D/+ Pdx1 Tp53R270H/+ Nrf2-/- 

Autophagy      

Diakopoulos, et al. 
(2015) 

107  Ptf1a/p48  Atg5f/f 

Antonucci, et al. (2015) 108  Pdx1  Atg7f/f 

Iwahashi, et al. (2018) 109  Pdx1  Atg7f/f 

Rosenfeldt, et al. (2013) 110 KrasLSL-G12D/+ Pdx1  Atg5f/f or Atg7f/f 

  KrasLSL-G12D/+ Pdx1 Tp53f/f Atg5f/f or Atg7f/f 

Yang, et al. (2014) 75 KrasLSL-G12D/+ Pdx1 Tp53f/+ Atg5f/f 

Endocytosis      

Commisso, et al. (2013) 74 KrasLSL-G12D/+ Ptf1a/p48 Tp53f/+  

Lubeseder-Martellato, 
et al. (2017) 

130 KrasLSL-G12D/+ Ptf1a/p48  N-Waspf/f 

HIF      

Lee, et al (2016) 137  Ptf1a/p48  Hif1αf/f 

  KrasLSL-G12D/+ Ptf1a/p48  Hif1αf/f 

Criscimanna, et al. 
(2013) 

138  Ptf1a/p48  Hif2αf/f 

  KrasLSL-G12D/+ Ptf1a/p48  Hif2αf/f 

Schofield, et al (2018) 139  Pdx1 or 
Ptf1a/p48 

 Rosa26LSL-HIF1α/+ 

(stable) 

   Pdx1 or 
Ptf1a/p48 

 Rosa26LSL-HIF2α/+ 
(stable) 

  KrasLSL-G12D/+ Pdx1 or 
Ptf1a/p48 

 Rosa26LSL-HIF2α/+ 
(stable) 

Flores-Martínez, et al. 
(2018) 

140  Pdx1  HIF2dPA (stable) 
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CHAPTER 2 

Metabolic Regulation of Acinar-to-Ductal Metaplasia 

Summary 

Activating mutations in KRAS extensively reprogram cellular metabolism to support the 

continuous growth, proliferation, and survival of pancreatic tumors. These metabolic 

dependencies are attractive targets for treating established tumors. However, metabolic 

reprogramming begins during tumorigenesis to provide transforming cells selective 

advantage towards malignancy. Acinar cells can give rise to pancreatic tumors through 

acinar-to-ductal metaplasia (ADM), and inhibiting pathways that maintain acinar 

homeostasis can accelerate tumorigenesis. During ADM, acinar cells transdifferentiate to 

duct-like cells, a process driven by oncogenic KRAS, and one that we hypothesized was 

mediated by metabolic rewiring. We performed transcriptomic analysis on acinar cells 

undergoing ADM and found metabolic programs are globally enhanced. Indeed, we and 

others have recently demonstrated how inhibiting metabolic pathways necessary for ADM 

can prevent transdifferentiation and tumorigenesis. We previously demonstrated that 

PDA cells rewire glucose and glutamine metabolism to support growth and survival. Using 

in vitro models of ADM, we found that glutamine availability is dispensable for ADM. In 

contrast, glucose availability and intact oxidative phosphorylation are required for ADM. 

A more detailed analysis of the pathways downstream of glucose metabolism revealed 

that disrupting the oxidative pentose phosphate pathway accelerates ADM in vitro and 

tumorigenesis in vivo. Together, this work demonstrates metabolic dependencies can 

differ during tumorigenesis and tumor maintenance. 

Introduction 

The majority of patients with pancreatic ductal adenocarcinoma (PDA) are diagnosed with 

advanced or metastasized disease1. Lack of early detection methods and effective 

therapies contributes to a dismal 10% five-year survival rate2. Oncogenic KRAS mutation 

is the initiating event in PDA and found in over 90% of pancreatic tumors3. Tumorigenesis 
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is hypothesized to progress stepwise from acinar-to-ductal metaplasia (ADM) to 

pancreatic intraepithelial neoplasia (PanIN) to invasive carcinoma. Lineage tracing 

studies of pancreatic cancer mouse models demonstrate PDA can arise from mutant 

KRAS-expressing acinar cells that undergo ADM4,5. ADM is a normal wound healing 

response to pancreatic injury or inflammation where acinar cells transdifferentiate to 

ductal progenitor cells and repopulate tissue lost due to injury6. Upon healing, ductal 

progenitor cells redifferentiate to acinar cells and resume normal acinar function. 

Oncogenic Kras mutations hijack the healing process to where ADM can progress into 

neoplastic lesions and PDA. Previous studies have demonstrated ADM can be blocked 

by inhibiting signaling pathways necessary for transdifferentiation7-10. In fact, targeting 

pathways that drive tumorigenesis can revert ADM and PanIN lesions back to normal 

tissue7,9. 

Cancer cells, including PDA, require a continuous supply of biosynthetic precursors and 

energy to generate macromolecules necessary for growth and proliferation11,12. To meet 

this demand, oncogenic KRAS reprograms cellular metabolism to promote aerobic 

glycolysis (the Warburg Effect) where glucose is diverted into anabolic pathways to 

generate biosynthetic precursors and energy13. Glutamine metabolism is rewired to 

maintain anaplerosis and redox homeostasis14,15. We hypothesized global shifts in 

metabolism occur during ADM that reflect metabolic reprogramming required for PDA 

maintenance. However, metabolic changes that drive ADM are not well characterized. 

Using well established in vitro models of ADM, we demonstrate dependencies of ADM on 

different nutrients and metabolic pathways that could be leveraged as therapeutic targets. 

Results 

Broad changes in metabolic programs during ADM 

Oncogenic KRAS regulates metabolic reprogramming in PDA cells13,14. To investigate 

KRAS-driven changes that occur during tumorigenesis, we performed transcriptomics on 

acinar cells undergoing ADM. Since mutant KRAS elicits an inflammatory response in 

pancreatic tissue16, we activated oncogenic Kras ex vivo as to identify Kras-driven 

changes and control for differences in inflammation between mutant Kras-expressing and 

wild-type pancreas. As such, we isolated acinar cells from KrasLSL-G12D/+ mice and infected 
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the cells with either control adenovirus (ad-GFP) or adenovirus that expresses Cre 

recombinase (ad-CRE) to induce expression of mutant KrasG12D. RNA was isolated 24 

hours after plating ad-GFP infected acinar cells (ad-GFP day 1) and 24, 48, and 72 hours 

after plating ad-CRE infected cells (ad-CRE day 1/2/3, respectively). Gene Set 

Enrichment Analysis (GSEA)17,18 demonstrated signatures known to be enhanced during 

ADM are present in our transcriptome data from ad-GFP day 1 and ad-CRE day 2 acinar 

cells—prior to ductal formation (Fig. 2.1a). Genes upregulated by KRAS signaling are 

enriched in KrasG12D-expressing acinar cells and genes downregulated by KRAS 

signaling are enriched in control cells. In addition, epithelial-to-mesenchymal transition 

(EMT), hypoxia, p53 activity, and inflammation signatures are consistent with previous 

studies showing these pathways are involved in ADM19-24. GSEA revealed metabolic 

signatures are highly enriched in KrasG12D-expressing acinar explants (Fig. 2.1b, Tables 

2.1, 2.2). Our transcriptomics data is consistent with studies demonstrating elevations in 

cholesterol metabolism, reactive oxygen species (ROS), and antioxidant programs during 

mutant Kras-driven ADM25-27. However, the regulation of other metabolic pathways during 

ADM is uncharacterized. 

Acinar cell survival and ADM is dependent on glucose 

Based on the upregulation of glycolysis and pathways that utilize glycolytic 

intermediates—including the pentose phosphate pathway (PPP), serine metabolism, 

pyruvate metabolism, and the tricarboxylic acid (TCA) cycle—in our GSEA analysis 

(Table 2.2), we first focused on the role of glucose during ADM. Glucose is a major fuel 

source for cancer cells, and in previous work we reported PDA cell lines are dependent 

on glucose for proliferation13. We also wanted to determine the dependence of ADM on 

glucose. Primary acinar cells were isolated from wild-type mice, embedded in a collagen 

matrix, and treated with TGFα to induce ADM. Acinar explants were sensitive to the 

absence of glucose in the culture media. Not only did acinar cells not undergo ADM 

without glucose supplementation, but they died within two days of plating (Fig. 2.2a). We 

next tested if a lower concentration of glucose was sufficient to support ADM. Surprisingly, 

glucose supplementation at 1:100 the concentration used in culture media—and 

approximately 1:20 to 1:30 the concentration found in plasma28,29—was adequate for 
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Figure 2.1 Metabolic signatures are enriched in KrasG12D-expressing acinar cells undergoing 
ADM. GSEA analysis of transcriptomics from ad-GFP day 1 and ad-CRE day 2 acinar explants. (A) 
Selected confidence building enrichment plots of GSEA Hallmark signatures enriched in KrasG12D-
expressing acinar cells. Genes upregulated by KRAS signaling are enriched in KrasG12D-expressing 
acinar cells (CRE2) while genes downregulated by KRAS signaling are enriched in control acinar cells 
(GFP). The other enrichment plots demonstrate signatures found in our system are consistent with 
previously reported data of ADM. (B) Selected enrichment plots of metabolic signatures enriched in 
KrasG12D-expressing acinar cells from GSEA Hallmark signatures listed in Table 2.1. Enrichment score 
(ES) signifies the degree a gene set is overrepresented at the top or bottom of a ranked list of genes. 
The black vertical bars show where genes within the signature appear in the ranked list of genes. The 
waterfall plot represents a gene’s correlation with a phenotype17,18. 
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Figure 2.2 ADM requires exogenous glucose but not glutamine. (A) Representative images of wild-
type acinar cells treated with TGFα and cultured with or without glucose (Glc). Acinar cells completely 
devoid of glucose supplementation died by day 2. (B) Representative images of ductal formations from 
day 5 wild-type acinar cells treated with TGFα and cultured in full DMEM media or supplemented with 
1:100 (250 µM) the amount of glucose. (C) Quantification of ductal structures formed in collagen. Each 
point represents a technical replicate from one mouse. (D) Representative images of KC acinar cells 
cultured with or without glutamine (Gln). Acinar explants undergo ADM over the course of 5 days. (E) 
Quantification of ductal structures formed in collagen. Each point represents a technical replicate from 
one mouse. (F) GSEA enrichment plot of TCA cycle signature in KrasG12D-expressing acinar cells. (G) 
Representative images of ductal formations from day 5 wild-type acinar cells treated with TGFα and 
cultured with or without branched-chain amino acids (BCAA). Scale bar = 50 µm. 
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acinar cells to transdifferentiate (Fig. 2.2b,c). We postulate minimal glucose 

concentrations are required to maintain anabolic pathways, such as the PPP and TCA 

cycle, that generate biosynthetic precursors for fatty acids, nucleotides, and amino acids. 

Anaplerotic substrates are not required for ADM 

Glutamine, like glucose, is a major fuel source for PDA cell proliferation and survival14. 

Given that so little glucose was needed, and together with the PDA data, we hypothesized 

acinar cells also utilized glutamine during ADM. Isolated acinar cells from KrasLSL-G12D/+; 

Ptf1aCre/+ (KC) mice cultured without glutamine survived and transdifferentiated at the 

same rate as acinar cells in full media (Fig. 2.2d,e). This was unexpected because 1) 

proliferating cells increase demand for glutamine to replenish the TCA cycle, 2) ex vivo 

KC ductal structures stain positive for Ki67, a common proliferative marker, and 3) PDA 

cell lines are dependent on glutamine to grow and proliferate in culture30,31. Although 

previous studies have shown dependencies that are present in PDA tumors are also 

required to drive ADM in vitro25,26, our data illustrates that exogenous glutamine is 

dispensable for acinar cell transdifferentiation in vitro.  

Since glutamine may not be used as an anaplerotic substrate to replenish the TCA cycle 

and the TCA cycle is enriched in KrasG12D-expressing acinar cells (Fig. 2.2f), we tested if 

dropping out other anaplerotic substrates effected ADM. Branched-chained amino acids 

(BCAA) were recently reported to be major anaplerotic substrates in the normal mouse 

pancreas and used more than other tissues32. Further, leucine is catabolized during 

ADM25. However, wild-type acinar explants treated with TGFα form ductal structures in 

the absence of BCAAs (Fig. 2.2g)4. Together, this data suggests glucose may be the 

main source that feeds into the TCA cycle and metabolic reprogramming to promote 

aerobic glycolysis may not occur as acinar cells transdifferentiate. 

Acinar cells are profoundly sensitive to oxidative phosphorylation inhibition 

The TCA cycle generates biosynthetic precursors for anabolic pathways and the reducing 

equivalents NADH and FADH2 that are used as electron sources for the electron 

transport chain (collectively, oxidative phosphorylation) to generate ATP33. The TCA cycle 

and oxidative phosphorylation metabolically regulate each other. Since ADM can occur 

with very low concentrations of glucose and no glutamine or BCAA supplementation, we 
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wanted to determine how reliant acinar cells are on oxidative phosphorylation. KC acinar 

cells were embedded in collagen and treated with low nanomolar (nM) concentrations of 

oligomycin, an ATP synthase/complex V inhibitor that prevents ATP generation and backs 

up the electron transport chain. Whereas PDA cells can survive in low micromolar 

concentrations34, acinar cells were exquisitely sensitive to oligomycin and died within 24 

hours of treatment with low nM doses (Fig. 2.3a). We next asked whether stronger ADM 

activation could overcome oligomycin sensitivity. KC acinar cells embedded in Matrigel 

undergo ADM at an accelerated rate and form larger ductal cysts than when plated in 

collagen. However, acinar cells were equally as sensitive to oligomycin even when 

stimulated with growth factors found in Matrigel (Fig. 2.3b). This data suggests acinar 

cells require oxidative phosphorylation for survival, consistent with the seemingly limited 

utilization of ATP generated in glycolysis, based on the glucose-dependence data. 

 

Figure 2.3 Acinar cells are sensitive to oligomycin treatment. (A) Representative images of 
Live/Dead staining on day 3 KC acinar cells treated with 20nM oligomycin. Fluorescein diacetate (FDA) 
was used to mark live cells and propidium iodine (PI) stains dead cells. Control acinar explants 
transdifferentiated by day 3. (B) Representative images of KC acinar cells embedded in Matrigel and 
treated with 20nM oligomycin. Control acinar explants undergo ADM over the course of 5 days. Scale 
bar = 100 µm (a) or 50 µm (b). 
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KrasG12D increases expression of NADPH-producing enzymes 

Not only is mitochondrial metabolism and oxidative phosphorylation a major source of 

ATP, it is also the largest generator of ROS35. ROS levels must be tightly regulated as to 

not damage cellular components and induce senescence or cell death. However, cancer 

cells, including PDA, enhance basal levels of ROS to promote proliferation and survival36. 

During tumorigenesis, KrasG12D induces mitochondrial ROS (mROS) production in acinar 

cells, and this has been reported to drive ADM26. To prevent exceedingly high levels of 

ROS, antioxidant programs are activated during tumorigenesis and maintained in 

malignant cells26,27. Indeed, treatment with antioxidant N-acetylcysteine (NAC) slows the 

rate of acinar cell transdifferentiation (Fig. 2.4a). 

A major cofactor that maintains cellular redox homeostasis is NADPH, which is used in 

the generation of the antioxidants glutathione (GSH) and thioredoxin37. Cytosolic NADPH 

is mainly generated by four enzymes: glucose-6-phosphate dehydrogenase (G6PD), 6-

phosphogluconate dehydrogenase (PGD), malic enzyme 1 (ME1), and isocitrate 

dehydrogenase 1 (IDH1)37,38. Recent evidence demonstrates serine and folate 

metabolism can contribute to NADPH pools via methylenetetrahydrofolate 

dehydrogenase 1 (MTHFD1)39,40. Analysis our transcriptomics data revealed significantly 

increased expression of G6pd and Me1 48 and 72 hours after KrasG12D expression (ad-

CRE d2 and d3, respectively) and, to a lesser extent, increased expression of Idh1 and 

Mthfd1 (Fig. 2.4b). 

G6PD mutation decreases oxidative PPP flux in KrasG12D-expressing acinar cells 

The PPP shunts off glycolysis and consists of two branches: oxidative and nonoxidative. 

In normal cells, both branches produce nucleotide precursors and the oxidative branch is 

a major source of NADPH via G6PD and PGD. We sought to determine the effects of 

oxidative PPP metabolism on ADM because 1) expression of KrasG12D mediated a 

significant expression increase of G6pd (Fig. 2.4b), the first and rate limiting step of the 

oxidative PPP and a NADPH-producing enzyme, 2) primary acinar explants depend on 

glucose for survival (Fig 2.2a), 3) the PPP is in the top 10 Kyoto Encyclopedia of Genes 

and Genomes (KEGG) signatures from our GSEA analysis (Fig. 2.4c, Table 2.2), and 4) 

PDA cells downregulate oxidative PPP and compensate for NADPH production through 
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Figure 2.4 KrasG12D induces expression of NADPH-producing enzymes and enhances the PPP. 
(A) Representative images of wild-type acinar cells treated with TGFα and 5 mM NAC. Control acinar 
cells transdifferentiate by day 5. NAC-treated acinar explants transdifferentiate by day 7. (B) Relative 
expression of NADPH-producing enzymes in control (ad-GFP) or KrasG12D-expressing (ad-CRE) acinar 
cells collected days 1-3. n=3. (C) GSEA enrichment plot of PPP signature in KrasG12D-expressing acinar 
cells. (D) Schematic of KCGmut mice. (E) Relative amount of 14C-labeld CO2 derived from 1-14C glucose. 
1-14CO2 is generated from either oxidative PPP or the TCA cycle. (F) Relative amount of 14C-labeld CO2 
derived from 6-14C glucose. 6-14CO2 is only generated from the TCA cycle. Each point in E and F 
represents technical replicates from one mouse. G6PD, glucose-6-phosphate dehydrogenase; IDH1, 
isocitrate dehydrogenase 1; ME1, malic enzyme 1; MTHFD1, methylenetetrahydrofolate 
dehydrogenase 1, PGD, 6-phosphogluconate dehydrogenase. *, P < 0.05; **, P < 0.01; ***, P < 0.001; 
ns, not significant. One-way ANOVA (B). 
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rewired glutamine metabolism13. We generated a KC mouse model with G6PD-

deficiency41: KrasLSL-G12D/+; Ptf1aCre/+; G6PDmut (KCGmut) (Fig. 2.4d). G6PD-deficiency is 

an X-linked disorder and the most common gene mutation in the world42. Since oxidative 

PPP is the only source for NADPH in red blood cells, oxidative stressors can cause 

hemolytic anemia in patients. G6PD-deficient mouse models demonstrate enzyme 

activity with hemizygous, heterozygous, and homozygous mutations as 15-20%, 50-60%, 

and 15-20%, respectively41,43. 

To determine if oxidative PPP activity was decreased in our KCGmut mice, we traced 

radioactive carbon incorporation into carbon dioxide (CO2) that is produced from oxidative 

PPP and decarboxylation of pyruvate into the TCA cycle13. 1-14C glucose labels CO2 

derived from oxidative PPP and the TCA cycle; 6-14C glucose labels CO2 derived from 

the TCA cycle and used as a control to determine oxidative PPP activity. As expected, 

G6PD-deficiency in KCGmut acinar cells have decreased oxidative PPP flux, as measured 

by 1-14CO2, compared to mice with wild-type G6PD (KCGwt), (Fig. 2.4e). TCA cycle flux 

was not affected, as measured by 6-14CO2, by G6PD status (Fig. 2.4f). 

Decreasing oxidative PPP flux accelerates ADM and tumorigenesis 

Since basal levels of ROS are increased during pancreatic tumorigenesis, glycolytic flux 

is reduced to shuttle intermediates into the oxidative PPP for NADPH generation, which 

is used to produce GSH and reduce ROS26,44-47. We hypothesized that decreasing 

oxidative PPP activity via mutant G6PD would promote KrasG12D-driven ADM and 

tumorigenesis through increased ROS levels. Using primary acinar cells from KCGmut and 

KCGwt mice, we determined the rate of ADM is accelerated when oxidative PPP flux is 

decreased (Fig. 2.5a,b). We next determined whether the phenotype we saw in vitro 

recapitulates in vivo, as seen in other studies8,9,26. Mice from both cohorts were aged to 

26 weeks—when low-grade PanINs (typically PanIN1a/b and occasionally PanIN2) are 

abundant in KC models48—and PanIN lesions were graded to determine the extent of 

tissue transformation. Like the accelerated rate of ADM in acinar explants, transformation 

of KCGmut pancreata was significantly increased, although there is variability, consistent 

with previous reports using the KC model48 (Fig. 2.5c,d). KCGmut pancreata, unlike 
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Figure 2.5 G6PD-deficiency accelerates KrasG12D-driven ADM and tumorigenesis.  
(A) Representative images of KCGwt and KCGmut acinar cells. Acinar explants undergo ADM over the 
course of 5 days. (B) Quantification of ductal structures formed in collagen. Each point represents 
average of 3 technical replicates from independent mice. (C) Lesion grading of pancreata from 26-week-
old KCGwt and KCGmut mice. KCGwt n=5; KCGmut n=7. (D) Representative hematoxylin and eosin (H&E) 
staining of pancreas tissue from 26-week-old KCGwt and KCGmut mice. (E) Percent ratio of pancreas 
mass to body mass (% PM/BM) from KCGwt and KCGmut mice collected at 8, 16, 26, and 52 weeks (wk). 
Scale bar = 50 µm unless otherwise noted. *, P < 0.05. Student’s t-test (unpaired, two-tailed) (B,E); 
Two-way ANOVA (C). 
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KCGwt, contain PanIN2 and high-grade PanIN3 lesions (Fig. 2.5c). Additional cohorts 

were aged to 8, 16, and 52 weeks. While there is no difference in the ratio of pancreas 

mass to body mass (PM/BM)—an indirect measure of tissue transformation—between 

KCGmut and KCGwt mice (Fig. 2.5e), detailed histological analysis needs to be completed 

to determine if accelerated tumorigenesis due to G6PD-deficiency is consistent at other 

time points during tumor development. Taken together, this data suggests decreasing 

oxidative PPP through G6PD mutation accelerates ADM in vitro and tumorigenesis in 

vivo. 

G6PD-deficiency does not affect PDA survival 

Most KC mice do not develop invasive carcinoma48. Pancreas-specific expression of 

KrasG12D and an additional loss of tumor suppressor Tp53—KrasLSL-G12D/+; Tp53LSL-R172H/+; 

Ptf1aCre/+ (KPC)—increases tumorigenesis, promotes invasive carcinoma and 

metastasis, and decreases survival49. We generated KPC mice with G6PD-deficiency 

(Fig. 2.6a) to determine if accelerated tumorigenesis enhances invasive PDA and 

decreases survival. At 90 days old, there is no difference in the PM/BM ratio between 

KPCGmut and KPCGwt mice (Fig. 2.6b) and there is no statistically significant difference 

in survival (Fig. 2.6c). Longitudinal studies are still on-going and histological analysis of 

90-day-old mice will reveal if there are differences in tumor development. While G6PD-

deficiency accelerates tumorigenesis KC mice, our current data indicate overall survival 

is not affected in the accelerated KPC background. 

Discussion 

In this study, we determined metabolic requirements for ADM. We used an in vitro ADM 

model to show that primary acinar cells require glucose to survive and undergo ADM. 

Surprisingly, acinar cells only need subphysiological concentrations of glucose to 

transdifferentiate. We also found that glutamine or BCAA supplementation is dispensable 

ADM, indicating these anaplerotic substrates may not be fueling the TCA cycle at this 

early point in tumorigenesis, that intracellular fuel sources (e.g. generated by autophagy) 

predominate, or that considerable redundancy in metabolic fuel selection exists. Since 

ADM needed very low concentrations of glucose, and did not require glutamine or BCAA, 

we questioned how reliant acinar cells were on mitochondrial metabolism, specifically 
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oxidative phosphorylation. When we blocked oxidative phosphorylation with oligomycin, 

primary acinar cells died within 24 hours, even when embedded in Matrigel which elicits 

a strong ADM response. Our data indicates glucose may be feeding into the TCA cycle 

and acinar cells are profoundly sensitive to disruptions of oxidative phosphorylation. Since 

acinar cells require glucose and recent evidence has shown the oxidative PPP plays an 

important role during ADM44, we impeded oxidative PPP flux by introducing G6PD-

deficiency into KC mice. KCGmut acinar cells transdifferentiate at an accelerated rate in 

vitro, which was reproduced in vivo with KCGmut mice showing augmented tumorigenesis. 

Although G6PD-deficiency accelerates tumorigenesis, we cannot yet conclude whether 

this impacts overall survival. 

Figure 2.6 G6PD-deficiency does not decrease overall survival. (A) Schematic of KPCGmut mice. 
(B) Percent ratio of pancreas mass to body mass (% PM/BM) from 90-day-old KPCGwt and KPCGmut 
mice. KPCGwt n=8; KPCGmut n=9.  (C) Kaplan–Meier survival curve of KPCGwt and KPCGmut mice. 
KPCGwt n=9; KPCGmut n=6. 
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Metabolic reprograming in PDA cells, mediated by mutant KRAS, increases glucose 

uptake to fuel anabolic pathways that shuttle off glycolysis and rewire glutamine 

metabolism to fuel the TCA cycle13,14. We sought to understand how metabolism supports 

ADM. Compared to the metabolic reprogramming needed for PDA tumor maintenance12, 

much less is known about metabolic requirements of tumorigenesis. Like PDA cells, 

primary acinar cells require glucose to survive. Surprisingly, 1:100 the concentration of 

glucose used in culture media was sufficient for acinar cell survival and 

transdifferentiation. This concentration is also well below physiological levels of 

glucose28,29. Mutant KRAS has been shown to rewire acetyl-CoA metabolism to support 

ADM by utilizing glucose to generate acetyl-CoA for cholesterol synthesis and histone 

acetylation. Lack of glucose likely negatively affects these processes that are required for 

ADM25. 

Cultured PDA cells are dependent on glutamine and rewire glutamine metabolism to fuel 

mitochondrial metabolism and maintain redox homeostasis14. In contrast, we found 

primary acinar cells not only survive without glutamine supplementation, they also do not 

require it for transdifferentiating. Glutamine, along with glucose, is a major fuel source for 

cells and contributes to biosynthetic precursors used in protein, lipid, and nucleotide 

synthesis and energy production. Although not required for ADM, glutamine likely 

becomes an important substrate during tumorigenesis to support tumor maintenance. 

BCAAs are another anaplerotic source that can fuel the TCA cycle in normal cells. BCAAs 

are also used to generate precursors for fatty acid synthesis and can be directly 

incorporated into proteins50. Similar to glutamine, we found exogenous BCAAs are 

dispensable for ADM of acinar explants. This was somewhat surprising because 

KrasG12D-expressing acinar cells utilize leucine as a major source for generating acetyl-

CoA to support ADM25. Recent evidence shows differentiating adipocytes catabolize 

BCAA to fuel the TCA cycle and generate acetyl-CoA for lipogenesis, while pre-

adipocytes utilize glucose and glutamine51. In the absence of BCAAs, dedifferentiating 

acinar cells may be able to catabolize glucose and/or glutamine to generate acetyl-CoA. 

Similar to the differentiated state of adipocytes, normal pancreatic tissue shows high rates 

of BCAA metabolism and incorporation of BCAAs into the TCA cycle32,52.  
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Normal cells utilize glucose to fuel mitochondrial metabolism for ATP generation. Since 

ADM occurred with very low concentrations of glucose and did not require glutamine or 

BCAA supplementation, we wanted to determine how reliant acinar cells are on oxidative 

phosphorylation. We found acinar cells are extremely sensitive to ATP synthase inhibition 

with low nanomolar concentrations of oligomycin, in stark contrast to the low micromolar 

concentrations PDA cells can tolerate34. Interestingly, a subpopulation of tumor-initiating 

cells (TICs) that survive KRAS ablation in PDA tumors are more dependent on 

mitochondrial metabolism and are unable to compensate for ATP generation through 

glycolysis upon oxidative phosphorylation inhibition53. This subpopulation is as sensitive 

to nanomolar concentrations of oligomycin as acinar explants—dramatically reducing cell 

viability within 24 hours. This may suggest metabolic pathways that govern mutant Kras-

driven ADM are relevant in TICs that give rise to tumor recurrence. Oligomycin is 

generally well tolerated in in vivo mouse models53,54 so the sensitivity seen in treated 

KrasG12D-expressing acinar cells could be from heightened demand of energy or 

increased induction of ROS resulting in death. 

While basal ROS levels are elevated in malignant cells for increased mitogenic signaling 

and from increased metabolism, antioxidant programs must be initiated to maintain pro-

tumorigenic levels of ROS. KrasG12D elevates both ROS production and antioxidant 

pathways during ADM and pancreatic tumorigenesis26,27. We and others show antioxidant 

treatment impedes ADM in vitro and tumorigenesis in vivo by lowering ROS levels26,55. In 

contrast, abrogating antioxidant response through genetic deletion of NRF2, a primary 

antioxidant regulator, causes exceedingly high levels of ROS that induce cellular 

senescence27. An important effector of the antioxidant response during pancreatic 

tumorigenesis is TP53-induced glycolysis and apoptosis regulator (TIGAR), which 

maintains ROS levels by promoting glycolytic flux into the oxidative PPP for NADPH 

generation44. We inhibited oxidative PPP flux through mutation of G6pd, the first and rate 

limiting step of oxidative PPP. G6PD-deficiency increased the rate of ADM in acinar 

explants and tumorigenesis in KC mice. We believe this acceleration is due to increased 

oxidative stress from decreased production of NADPH-derived glutathione, though further 

analysis is required. Mutant G6PD accelerates tumorigenesis in KC mice and has a 

modest, but non-statistically significant, impact on overall survival in KPC mice. PDA cells 
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display less dependence on the oxidative PPP by rewiring glutamine metabolism to 

generate NADPH and uncoupling the nonoxidative PPP branch to generate nucleotide 

precursors13,14. In more advanced stages of tumor development, G6PD-deficiency may 

no longer provide an advantage once glutamine metabolism is reprogrammed to produce 

NADPH. 

Pancreatic cancer is among the most lethal cancers2. There is a need for early disease 

detection methods and more effective therapies to improve the dismal prognosis patients 

face. Historically, KRAS has proven notoriously difficult to target pharmacologically56. 

However, a recently developed inhibitor against KrasG12C has shown promise in preclinical 

models and clinical trials57,58. Unfortunately, G12C mutations are found in only 2% of PDA 

patients59. Since oncogenic KRAS is the driving mutation for PDA development and 

maintenance, KRAS-dependent pathways, including metabolic, remain promising targets 

for the development of new therapeutics60,61. Understanding the metabolic pathways that 

initiate PDA could reveal vulnerabilities in established tumors that can be exploited for 

treatment or reveal biomarkers for diagnosis of early disease25,62. 

Materials and Methods 

Mouse Strains 

All animal studies were performed in accordance with the guidelines of Institutional 

Animal Care and Use Committee (IACUC) and approved protocols. KrasLSL-G12D/+, 

Ptf1aCre/+, Tp53LSL-R172H/+, and G6PDmut mice have been previously described41,43,48,63,64. 

KrasLSL-G12D/+; Ptf1aCre/+ (KC) mice were maintained on a C57BL/6 background. KrasLSL-

G12D/+; Ptf1aCre/+; G6PD (KCG) and KrasLSL-G12D/+; Tp53LSL-R172H/+; Ptf1aCre/+; G6PD 

(KPCG) mice were maintained on a mixed background. 

RNA isolation and purification from primary acinar cell cultures 

Primary acinar cell cultures were harvested by pelleting the cells by centrifugation for 2 

minutes at 300 g. The pellet was washed once with ice cold DPBS. Then the pellet was 

lysed in RLT+ buffer containing 1% β-mercaptoethanol (Sigma, M6250), which was then 

passed through a Qiashredder column (Qiagen, 79654). RNA was then purified using an 

RNeasy Plus Mini Kit (Qiagen, 74136) using gDNA eliminator columns to remove 

genomic DNA. RNA was then analyzed on a Nanodrop 2000c (Thermo Scientific) 



46 

 

spectrophotometer for quantification, and purity was assessed based on the A260/A280 

ratio. RNA quality was further assessed using a total RNA kit on a 2100 Bioanalyzer 

(Agilent Technologies) and using the generated RIN number to determine quality, and all 

samples sequenced had a RIN greater than 7.5. 1ug of each sample was submitted to 

the Mayo Clinic Genome Analysis Core, and transcriptomics libraries and data were 

generated and processed through their core pipelines. Raw gene counts were normalized 

to RPKM (Reads Per Kilobase of transcript, per Million mapped reads) for GSEA and 

expression analysis. 

Gene Set Enrichment Analysis (GSEA)  

Transcriptomic data was analyzed with GSEA 4.0.3 software using Hallmark Pathways 

h.all.v7.1, KEGG Signaling Pathways c2.cp.kegg.v7.1, and Mouse Gene Symbol 

Remapping to Human Orthologs MSigDB.v7.1 chip. 

Three-dimensional Acinar Cell Explant Culture 

Pancreas was harvested and rinsed twice in 5 mL cold HBSS (Gibco, 14170112). Tissue 

was minced with sterile scissors into 1-5 mm sized pieces then centrifuged for 2 minutes 

at 300 g and 4ºC. Media was aspirated and minced tissue was digested with ~5 mg of 

Collagenase P (Roche) in 5 mL cold HBSS for 15-18 minutes, shaking at 100 rpm at 

37ºC. Collagenase P was inhibited by addition of 5 mL cold 5% FBS in HBSS. Cells were 

centrifuged for 2 minutes at 300 g and 4ºC then washed with 5 mL cold 5% FBS in HBSS. 

This was repeated twice more. Cells were passed through 500 µm polypropylene mesh 

(Pluriselect, Fisher, NC0822591). Mesh was washed with 5 mL cold 5% FBS in HBSS. 

Cells were passed through 100 μm polypropylene mesh (Fisherbrand, 22363549) then 

pelleted through 10 mL of 30% fetal bovine serum gradient. Cells were resuspended in 

media and incubated at 37ºC for 2-4 hours prior to embedding. All media was 

supplemented with 0.4 mg/mL soybean trypsin inhibitor (Gibco, 17075-029), 1 ug/mL 

dexamethasone (Sigma, D4902), and 0.5% gentamicin (Lonza, 17-519L). All media was 

adjusted to final pH 7.2-7.4 at 37ºC and sterilized through a 0.22 μm PVDF membrane 

(Millipore, Stericup Filter Unit, SCGVU01RE; Steriflip Filter Unit, SE1M179M6). Unless 

indicated, cells were cultured in 1x Waymouth’s media (Sigma, W1625) supplemented 

with 2.2 g/L sodium bicarbonate (Sigma, S5761). Glucose and glutamine dropout media 
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were prepared from DMEM powder without glucose or glutamine (Sigma, D5030) 

supplemented with 3.7 g/L sodium bicarbonate and 25 mM D-glucose (Sigma, G7021) or 

4 mM L-glutamine (Gibco, A2916801). Branch-chained amino acid (BCAA) dropout media 

was prepared using DMEM base powder (US Biological Life Sciences, D9800-26) 

supplemented with 25 mM D-glucose, 4 mM L-glutamine, 30 mg/L glycine (Sigma, 

G8790), 84 mg/L L-arginine (Sigma, A8094), 63 mg/L L-cystine (Sigma, C6727), 42 mg/L 

L-histidine (Sigma, H5659), 146 mg/L L-lysine (Sigma, L8662), 30 mg/L L-methionine 

(Sigma, M5308), 66 mg/L L-phenylalanine (Sigma, P5482), 42 mg/L L-serine (Sigma, 

S4311), 95 mg/L L-threonine (Sigma, T8441), 16 mg/L L-tryptophan (Sigma, T8941), and 

104 mg/L L-tyrosine (Sigma, T1145). Control media contained 105 mg/L L-isoleucine 

(Sigma, I7403), 105 mg/L L-leucine (Sigma, L8912), and 94 mg/L L-valine (Sigma, 

V0513). Acinar cells were embedded in bovine collagen (Culturex, 344205001) according 

to the manufacturer’s protocol or in Matrigel (Corning, 354234). Culture media was added 

on top of solidified matrix and changed on days 1, 3, and 5 after plating. Oligomycin A 

(Sigma, 75351) and N-acetyl cysteine (Sigma, A9165) were used at indicated 

concentrations. 

Live/Dead Staining of Acinar Explants 

Media was removed from wells containing collagen-embedded acinar explants. 

Embedded explants were washed twice with 500 µL PBS (Gibco, 10010023). Cells were 

incubated with 0.015 mg/mL fluorescein diacetate (FDA) (Sigma, F7378-5G) and 0.0046 

mg/mL propidium iodide solution (PI) (Sigma, P4864) in PBS for 10 minutes at 37ºC. 

Wells were washed twice with 500 µL PBS. 500 µL PBS was added to the well prior to 

imaging. This procedure was performed on two wells at a time. 

14C glucose incorporation into CO2 

Cells were treated with 1 µCi 1-14C (Perkin Elmer, NEC043X050UC) or 6-14C glucose 

(Perkin Elmer, NEC045X050UC) and incubated at 37ºC for 4 hours. To release 14CO2, 

150 mL of 3 M perchloric acid (Sigma, 244252) was added to each well and immediately 

covered with phenylethylamine (Sigma, P6513) saturated Whatman paper and incubated 

at room temperature overnight. The Whatman paper was then analyzed by scintillation 

counting (Beckman, LS6500) and normalized to surrogate protein quantification. 
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Histology 

Mice were sacrificed by CO2 asphyxiation then tissue was quickly harvested and fixed 

overnight at room temperature with zinc formalin fixative (Z-Fix, Anatech LTD, 174). 

Tissues were processed using a Leica ASP300S Tissue Processor (Leica Microsystems 

Inc), paraffin embedded, and cut into 5 μm sections. Hematoxylin and eosin (H&E) 

staining was performed using Mayer's hematoxylin solution and Eosin Y (Thermo Fisher 

Scientific, HT110116). Slides were scanned with a Pannoramic SCAN scanner (Perkin 

Elmer). For tissue grading, 3 images were taken per slide at 20x magnification in a blinded 

manner and graded by a pathologist in a blinded manner. 

Statistical Analysis 

Statistics were calculated using GraphPad Prism 7. Groups of 2 were analyzed with two-

tailed students t-test, groups greater than 2 with a single variable were compared using 

one-way ANOVA analysis with Tukey post hoc test, and groups greater than two multiple 

variables were compared with two-way ANOVA with Tukey post hoc test. A Student’s t-

test (unpaired, two-tailed) was performed when comparing two groups to each other. 

Survival analysis was performed using log-rank (Mantel–Cox) test. All data are presented 

as mean ± s.d. (standard deviation). 
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Table 2.1 GSEA Hallmark Signatures Enriched in KrasG12D-driven ADM 

Rank Gene Set NES FDR 

1 ANGIOGENESIS 1.51 0.37 

2 EPITHELIAL_MESENCHYMAL_TRANSITION 1.50 0.23 

3 FATTY_ACID_METABOLISM 1.41 0.34 

4 APICAL_SURFACE 1.41 0.27 

5 COAGULATION 1.40 0.24 

6 HYPOXIA 1.40 0.20 

7 MYOGENESIS 1.40 0.18 

8 GLYCOLYSIS 1.40 0.17 

9 REACTIVE_OXYGEN_SPECIES_PATHWAY 1.37 0.18 

10 OXIDATIVE_PHOSPHORYLATION 1.37 0.17 

12 MTORC1_SIGNALING 1.36 0.16 

14 PEROXISOME 1.34 0.17 

20 P53_PATHWAY 1.27 0.25 

21 CHOLESTEROL_HOMEOSTASIS 1.27 0.24 

24 INFLAMMATORY_RESPONSE 1.24 0.24 

25 KRAS_SIGNALING_UP 1.24 0.23 

Table 2.2 GSEA KEGG Pathway Signatures Enriched in KrasG12D-driven ADM 

Rank Gene Set NES FDR 

1 O_GLYCAN_BIOSYNTHESIS 1.90 0.06 

2 GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 1.83 0.06 

3 BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS 1.72 0.09 

4 OTHER_GLYCAN_DEGRADATION 1.70 0.08 

5 ECM_RECEPTOR_INTERACTION 1.70 0.08 

6 GLYCOSAMINOGLYCAN_DEGRADATION 1.66 0.08 

7 GALACTOSE_METABOLISM 1.63 0.09 

8 TYPE_I_DIABETES_MELLITUS 1.62 0.08 

9 NITROGEN_METABOLISM 1.58 0.09 

10 PENTOSE_PHOSPHATE_PATHWAY 1.57 0.09 

15 GLYCEROPHOSPHOLIPID_METABOLISM 1.50 0.14 

17 PYRUVATE_METABOLISM 1.47 0.15 

20 LYSOSOME 1.46 0.14 

22 FATTY_ACID_METABOLISM 1.45 0.15 

28 OXIDATIVE_PHOSPHORYLATION 1.43 0.14 

32 GLYCEROLIPID_METABOLISM 1.41 0.16 

35 LYSINE_DEGRADATION 1.39 0.17 

39 ARGININE_AND_PROLINE_METABOLISM 1.38 0.18 

44 GLYCOLYSIS_GLUCONEOGENESIS 1.36 0.18 

52 CALCIUM_SIGNALING_PATHWAY 1.33 0.20 

53 CITRATE_CYCLE_TCA_CYCLE 1.32 0.21 

56 GLYCINE_SERINE_AND_THREONINE_METABOLISM 1.31 0.20 

59 AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 1.31 0.20 

60 GLUTATHIONE_METABOLISM 1.30 0.21 

65 PEROXISOME 1.29 0.23 

74 CYSTEINE_AND_METHIONINE_METABOLISM 1.25 0.25 

Top 10 plus selected GSEA Hallmark (Table 2.1) and KEGG Pathway (Table 2.2) signatures enriched in 
KrasG12D-expressing acinar cells undergoing ADM. GSEA analysis of transcriptomics from day 1 ad-GFP 
and day 2 ad-CRE acinar explants. Gene sets ranked according to their normalized gene enrichment score 
(NES), signifying the degree a gene set is overrepresented at the top or bottom of a ranked list of genes. 
The false discovery rate (FDR) is the estimated probability a gene set with a given NES represents a false 
positive finding.  
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CHAPTER 3 

Tissue of Origin Dictates GOT1 Dependence and 

Confers Synthetic Lethality to Radiotherapy# 

Summary 

Metabolic programs in cancer cells are influenced by genotype and the tissue of origin. 

We have previously shown that central carbon metabolism is rewired in pancreatic ductal 

adenocarcinoma (PDA) to support proliferation through a glutamate oxaloacetate 

transaminase 1 (GOT1)-dependent pathway. Here we tested if tissue type impacted 

GOT1 dependence by comparing PDA and colorectal cancer (CRC) cell lines and tumor 

models of similar genotype. We found CRC to be insensitive to GOT1 inhibition, 

contrasting markedly with PDA, which exhibit profound growth inhibition upon GOT1 

knockdown. Utilizing a combination of metabolomics strategies and computational 

modeling, we found that GOT1 inhibition disrupted glycolysis, nucleotide metabolism, and 

redox homeostasis in PDA but not CRC. These insights were leveraged in PDA, where 

we demonstrate that radiotherapy potently enhanced the effect of GOT1 inhibition on 

tumor growth. Taken together, these results illustrate the role of tissue type in dictating 

metabolic dependencies and provide new insights for targeting metabolism to treat PDA. 

Introduction 

Metabolic processes are rewired in cancer to facilitate tumor survival and growth1. 

Accordingly, there is interest in defining the metabolic pathways utilized by cancer cells 

to design new drug targets and therapies. A wealth of studies in the past decade have 

detailed cell autonomous metabolic reprogramming and associated liabilities centering 

on those processes activated by oncogenes or upon loss of tumor suppressors2. More 

recent studies have built upon this work to describe how the cell of origin influences 

metabolic programs and liabilities in cancer3,4. In addition to these intrinsic programs, 

 
#  Nelson, B. S. et al. Tissue of origin dictates GOT1 dependence and confers synthetic lethality to 

radiotherapy. Cancer & metabolism 8, 1, doi:10.1186/s40170-019-0202-2 (2020). 
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properties of the tumor microenvironment can also influence metabolic programs and 

liabilities in cancer cells5. Collectively, these studies have revealed that a common set of 

genetic alterations can lead to different metabolic dependencies contingent on the tissue 

type, tumor location, and/or properties of the tumor microenvironment6-10. 

Previously we found that expression of mutant KRAS, the signature transforming 

oncogene in pancreatic ductal adenocarcinoma (PDA), rewires central carbon 

metabolism to support tumor maintenance11-13. This includes the diversion of glucose-

derived carbon into anabolic pathways that branch from glycolysis and enhanced 

utilization of glutamine-derived carbon to support anaplerosis in the mitochondria. Of 

note, these studies demonstrated that oncogenic KRAS enhances activity of the non-

oxidative pentose phosphate pathway (PPP), which results in diminished activity of the 

NADPH-generating oxidative PPP11. NADPH is required for the biosynthesis of lipids and 

deoxynucleotides while simultaneously also serving as an important co-factor to support 

redox homeostasis. To account for the decreased flux through the oxidative PPP, we 

reported on a rewired form of the malate-aspartate shuttle that PDA cells utilize to 

maintain NADPH levels (Fig. 3.1a). This pathway is mediated by the mutant KRAS-driven 

activation of glutamate oxaloacetate transaminase 1 (GOT1) expression.  

Importantly, our previous work demonstrated that PDA cells use the NADPH from the 

GOT1 pathway to manage reactive oxygen species (ROS) through the maintenance of 

reduced glutathione (GSH) pools12. Further, we illustrated that PDA cells were dependent 

on GOT1 activity for growth in culture, whereas non-transformed fibroblasts and epithelial 

cells tolerated GOT1 knockdown without consequence. In an effort to leverage these 

findings about metabolic dependencies in PDA to design new therapies, we recently 

developed novel small molecule inhibitors that target GOT114,15. Furthermore, GOT1-

metabolic pathways have also been shown to play a role in other cancers16-19, indicating 

that GOT1 inhibitors may have utility beyond PDA. However, a rigorous comparison of 

GOT1 sensitivity in different cancer types has not been performed. 

In the current study, we set forth to determine whether the tissue of origin impacts GOT1 

dependence to understand which cancers are most likely to benefit from this emerging 

therapeutic strategy. We found that colorectal cancer (CRC) cell lines harboring KRAS 



56 

 

Figure 3.1 GOT1 dependence exhibits tissue specificity in vitro. (A) Schematic of the GOT1 
pathway in PDA. (B) Colony number after dox treatment in PDA (red) and CRC (blue) cell lines 
expressing dox-inducible (iDox) shRNAs against GOT1 (two independent hairpins; shGOT1 #1, 
shGOT1 #3) relative to a non-targeting hairpin (shNT). Error bars represent s.d. from biological 
replicates (n=3). Mutations in KRAS, BRAF, and TP53 are presented in the table below. WT, wildtype; 
SM, silent mutation. (C) Representative wells from colony forming assays of cells expressing the iDox-
shNT, iDox-shGOT1 #1, and iDox-shGOT1 #3 hairpins +/-dox. (D) GOT1 mRNA expression, as 
determined by qPCR. Error bars represent s.d. from biological replicates (n=3). (E) Western blots for 
GOT1 and vinculin (VCL) loading control from iDox-shNT, iDox-shGOT1 #1, and iDox-shGOT1 #3 PDA 
and CRC cell lines +/- dox treatment. (F) Relative aspartate levels in iDox-shGOT1 PDA and CRC cell 
lines, as determined by LC/MS. Error bars represent s.d. from biological replicates (n=4). AcCoA, acetyl-
CoA; αKG, alpha-ketoglutarate; Asp, aspartate; Cit, citrate; Fum, fumarate; Glu, glutamate; GOT1, 
glutamate oxaloacetate transaminase 1; GOT2, glutamate oxaloacetate transaminase 2; Iso, isocitrate; 
Mal, malate; MDH1, malate dehydrogenase 1; ME1, malic enzyme 1; NADP+, oxidized nicotinamide 
adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; OAA, 
oxaloacetate; Pyr, pyruvate; Suc, succinate. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Student’s t-
test (unpaired, two-tailed). 
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and TP53 mutations, two of the most common mutations in PDA patients20, were 

insensitive to GOT1 inhibition in vitro and in vivo. This was in dramatic contrast to the 

PDA models. We then utilized liquid chromatography-coupled mass spectrometry 

(LC/MS)-based metabolomics strategies, including isotope tracing flux analysis and 

computational modeling of metabolomics data, to dissect the metabolic consequences of 

GOT1 knockdown and to contrast how these differed between CRC and PDA cells and 

tumors. This analysis revealed that GOT1 inhibition uniquely disrupted glycolysis, 

nucleotide metabolism, and redox homeostasis pathways in PDA. Based on these results, 

we then designed a combination treatment approach consisting of GOT1 inhibition and 

radiotherapy. This provided a considerable increase in the efficacy of either single arm 

treatment uniquely in PDA. Together, these results suggest that the clinical investigation 

of therapies targeting GOT1, either as monotherapy or in combination with radiation, 

should begin in PDA. Finally, our data also highlight the importance of tissue of origin in 

PDA and CRC when studying metabolic wiring and associated dependencies. 

Results 

GOT1 dependence exhibits tissue specificity 

To determine whether the tissue of origin impacts GOT1 dependence, we compared 

GOT1 knockdown in a panel of PDA and CRC cell lines that similarly exhibit mutant KRAS 

(or BRAF) and mutant TP53 expression (Fig. 3.1b,c). We standardized GOT1 inhibition 

across experiments by developing doxycycline (dox)-inducible (iDox)-shRNA reagents 

that target the coding region of GOT1 (shGOT1 #1), the 3’ untranslated region of GOT1 

(shGOT1 #3), or a non-targeting shRNA (shNT). shRNA activity was validated after dox 

administration by assessing GOT1 mRNA and protein expression and intracellular 

aspartate (Asp), a product of the GOT1 reaction (Fig. 3.1d-f). Additionally, shRNA 

specificity was validated by rescue with a GOT1 cDNA construct (Fig. 3.2). These 

constructs were then used to assess GOT1 sensitivity in the panel of PDA and CRC cell 

lines (Fig. 3.1b,c). As we observed previously with constitutive shRNA targeting GOT1, 

the colony forming potential of PDA lines was significantly blunted upon inducible GOT1 

inhibition. In stark contrast, the CRC cell lines were entirely resistant to growth inhibition 

in this assay. Importantly, this occurred despite efficient protein knockdown and Asp 

accumulation in both the PDA and CRC cell lines (Fig. 3.1e,f). 
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Next, we examined how GOT1 inhibition affected established PDA and CRC tumors. To 

this end, cells were implanted in the flanks of mice and tumors were allowed to establish 

for 1 week. Dox was then administered in the chow to initiate GOT1 knockdown (Fig. 

3.3a). PDA tumors exhibited a profound retardation of tumor growth (Fig. 3.3b-d). 

Consistent with our in vitro observations, CRC lines were insensitive to GOT1 knockdown 

in vivo (Fig. 3.3e-g). Xenografts expressing shNT, to control for hairpin and dox effects, 

showed no difference in growth in either PDA or CRC (Fig. 3.3h-k). The results from 

these data indicated that, unlike PDA, CRC cell lines and tumors are not dependent on 

GOT1 for growth. 

Figure 3.2 Validation of GOT1 knockdown system. (A) Western blots for GOT1 and VCL from iDox-
shGOT1 #1 and iDox-shGOT1 #3 MIA PaCa-2 PDA cells +/- dox treatment, +/- rescue with an ectopic 
shRNA-resistant GOT1 cDNA. (B) GOT1 mRNA expression in MIA PaCa-2 PDA cells +/- dox treatment, 
+/- rescue with an ectopic shRNA-resistant GOT1 cDNA. Error bars represent s.d. from biological 
replicates (n=4). (C) Representative wells from colony forming assays and (D) associated quantitation 
in MIA PaCa-2 PDA cells +/- dox treatment, +/- GOT1 cDNA rescue. Error bars represent s.d. from 
biological replicates (n=3). ****, P < 0.0001; Student’s t-test (unpaired, two-tailed). 
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Figure 3.3 GOT1 dependence exhibits tissue specificity in vivo. (A) Western blots (left) and 
quantification (right) for GOT1 and vinculin (VCL) loading control from iDox-shGOT1 #1 PDA and CRC 
tumors. (B) Tumor growth curves, (C) final tumor mass, and (D) final tumor volume from subcutaneous 
PDA xenografts (n=8, BxPC-3 +/- dox tumors; n=6, PA-TU-8902 +/- dox tumors). Error bars represent 
s.d. (E) Tumor growth curves, (F) final tumor mass, and (G) final tumor volume from subcutaneous CRC 
xenografts (n=5, DLD-1 +/-dox, HCT 116 +dox tumors; n=4, HCT 116 -dox tumors). Error bars represent 
s.d. (H) Subcutaneous xenograft tumor growth, (I) final tumor mass, and (J) final tumor volume of PDA 
and CRC cells expressing iDox-shNT in mice administered chow with or without dox (n=8, BxPC-3 +dox 
tumors; n=6, BxPC-3 -dox, PA-TU-8902 +/- dox, DLD-1 +/-dox tumors; n=4 HCT 116 +/- dox tumors). 
(K) Western blots for GOT1 and VCL from iDox-shNT PDA and CRC tumors. *, P < 0.05; **, P < 0.01; 
***, P < 0.001; ****, P < 0.0001; Student’s t-test (unpaired, two-tailed).  
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Expression of GOT1 pathway components does not distinguish PDA from CRC 

Next, we tested if GOT1 dependence was due to lack of, or major differences in, the 

expression of GOT1-pathway components. Aside from ME1, which showed a modest but 

statistically significant higher expression in CRC, the GOT1-pathway components 

examined were expressed at similar levels in the PDA and CRC cells (Fig. 3.4). 

Importantly, GOT1 is biochemically active in both PDA and CRC cells, as knockdown led 

to Asp accumulation (Fig. 3.1f). Notably, the Asp build up occurred to a lesser extent in 

CRC cells compared to PDA cells, suggesting CRC cells may be utilizing compensatory 

pathways upon GOT1 knockdown. Collectively, these results indicated that while the 

pathway machinery in PDA and CRC are intact and functional, the differential 

dependence on GOT1 may result from distinct metabolic pathway activity, rather than 

enzyme expression, between these two tumor types. 

 

Differential metabolic pathway activity between PDA and CRC 

In order to determine differences in the basal metabolic state between PDA and CRC 

cells, we used LC/MS-based metabolomics21-24 to profile a panel of 3 PDA and 3 CRC 

parental cell lines in exponential growth phase. Analysis of statistically significant 

Figure 3.4 GOT1 pathway expression. (A) Western blot (left) and quantification (right) for GOT1 
pathway components from Fig. 3.1a in wild type PDA and CRC cell lines. (B) Relative mRNA expression 
level of the GOT1-pathway members, homologues, and adjacent components in PDA and CRC cells. 
Data obtained from the Cancer Cell Line Encyclopedia (CCLE). Data for the PDA and CRC cell lines 
used herein are highlighted in darker shades of red and blue, respectively. GLS, glutaminase; GLUD1, 
glutamate dehydrogenase 1; GOT1, glutamate oxaloacetate transaminase 1; GOT2, glutamate 
oxaloacetate transaminase 2; GPT, glutamate pyruvate transaminase; GPT2, glutamate pyruvate 
transaminase 2; MDH1, malate dehydrogenase 1; MDH2, malate dehydrogenase 2; ME1, malic enzyme 
1; ME2, malic enzyme 2; ME3, malic enzyme 3. n.s., not significant; *, P < 0.05; **, P < 0.01; ***, P < 
0.001; ****, P < 0.0001; Student’s t-test (unpaired, two-tailed). 



61 

differences in the relative abundance of the steady state metabolite pools indicated that 

the PDA lines had more glucono-delta lactone-6 phosphate (GdL6P) and 6-phospho 

gluconate (6PG), metabolites in the oxidative arm of the PPP, and smaller metabolite 

pools of alanine and lactate (Fig. 3.5). Many additional differences were observed that 

did not reach statistical significance, and collectively these revealed an inflection point in 

glycolysis at the level of aldolase (ALDO). 

 

Thus, we set out to further interrogate the metabolic differences between GOT1 

dependent and independent cells, and to determine differential central carbon utilization. 

To this end we performed isotope tracing metabolomics using either uniformly-labeled 

13C (U-13C) glucose (Glc) or glutamine (Gln)22-24 in the parental PDA and CRC lines. 

Metabolites were collected from log phase cell lines grown overnight in labeled media, 

and fractional labeling patterns (Figs. 3.6, 3.7) and metabolite pool sizes (Figs. 3.8, 3.9) 

were analyzed.  
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Figure 3.5 Steady-state metabolic profile of PDA and CRC. Relative metabolite levels as determined 
by LC/MS for glycolysis, pentose phosphate pathway (PPP), and serine metabolism in parental PDA 
(red) and CRC (blue) cell lines. Error bars represent s.d. from biological replicates (n=3). 3-pSer, 3-
phosphoserine; 3PG, 3-phosphogycerate; 6PG, 6-phosphogluconate; Ala, alanine; B(1,3)PG, 1,3-
bisphosphoglycerate; B(2,3)PG, 2,3-bisphosphoglycerate; DHAP, dihydroxyacetone phosphate; E4P, 
erythrose 4-phosphate; F6P, fructose 6-phosphate; FBP, fructose-1,6-bisphosphate; G3P, glycerol-3-
phosphate; G6P, glucose 6-phosphate; GA3P, glyceraldehyde 3-phosphate; GdL6P, glucono-delta-
lactone 6-phosphate; Lac, lactate; PEP, phosphoenolpyruvate; PHP, phosphohydroxypyruvate; PRPP, 
phosphoribosyl pyrophosphate; Pyr, pyruvate; R5P, ribose 5-phosphate; S7P,  sedoheptulose-7 
phosphate; SBP, sedoheptulose-1,7-bisphosphate; Ser, serine. *, P < 0.05; **, P < 0.01; ***, P < 0.001; 
****, P < 0.0001; Student t-test (unpaired, two-tailed). 
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Figure 3.6 Steady state fractional labeling patterns of TCA cycle and branching metabolites from 
glutamine carbon tracing in PDA and CRC cell lines. Fractional labeling patterns reflect the 
percentage of a given metabolite pool labeled by an input metabolic substrate (in this case, glutamine 
carbon). Isotopologue distributions presented as fractional enrichment from overnight labeling with 13C-
glutamine (Gln) in PDA (red) and CRC (blue) cell lines, as determined by LC/MS, except for  pyruvate, 
lactate, alanine, asparagine, and proline, which were generated by gas chromatography (GC)/MS. In 
the schemes at top left, filled circles represent 13C-labeled carbon, and open circles represent unlabeled 
carbon. The labeling pattern for one turn of the TCA cycle is presented. Citrate data previously published 
in a methods paper22. Error bars represent s.d. from biological replicates (n=3). Ac-CoA, acetyl-CoA; 
αKG, alpha-ketoglutarate; Ala, alanine; Asn, asparagine; Asp, aspartate; Cit, citrate; Fum, fumarate; 
Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, malate; OAA, oxaloacetate; Pro, proline; Pyr, pyruvate; 
U13C, uniformly labeled carbon. 
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Figure 3.7 Steady state fractional labeling patterns of TCA cycle and branching metabolites from 
glucose carbon tracing in PDA and CRC cell lines. Fractional labeling patterns reflect the percentage 
of a given metabolite pool labeled by an input metabolic substrate (in this case, glucose carbon). 
Isotopologue distributions presented as fractional enrichment from overnight labeling with 13C-glucose 
(Glc) in PDA (red) and CRC (blue) cell lines, as determined by LC/MS, except for  pyruvate, lactate, 
alanine, asparagine, and proline, which were generated by gas chromatography (GC)/MS. In the 
schemes at top left, filled circles represent 13C-labeled carbon, and open circles represent unlabeled 
carbon. The labeling pattern for one turn of the TCA cycle is presented. Citrate data previously published 
in a methods paper22. Error bars represent s.d. from biological replicates (n=3). Ac-CoA, acetyl-CoA; 
αKG, alpha-ketoglutarate; Ala, alanine; Asn, asparagine; Asp, aspartate; Cit, citrate; Fum, fumarate; 
Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, malate; OAA, oxaloacetate; Pro, proline; Pyr, pyruvate; 
U13C, uniformly labeled carbon. 
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The fractional labeling patterns between the PDA and CRC cell lines displayed 

remarkable similarity (Figs. 3.6, 3.7). In contrast, several notable changes were observed 

among the relative pool sizes. Similar to our steady state metabolomics (Fig. 3.5), we 

observed less lactate (Fig. 3.10a) and alanine (Fig. 3.10b) in the PDA lines, with the 

majority of this being derived from glucose. Further consistent with the steady state 

profiling in Fig. 3.5, the CRC lines have more active serine biosynthetic pathway activity, 

as illustrated by glucose-derived labeling of serine and glycine (Fig. 3.10c,d). In contrast 

to these differences, obvious differences in the abundance of Asp, glutamate and alpha-

ketoglutarate, the substrates and products of the GOT1 reaction, were not evident 

between GOT1 dependent and independent lines (Figs. 3.8, 3.9). This was consistently 

Figure 3.8 Steady state pools of TCA cycle and branching metabolites from glutamine carbon 
tracing in PDA and CRC cell lines. Pool sizes reflect the relative abundance of a given metabolite. 
Herein, these are presented as the total of labeled and unlabeled metabolite. Isotopologue distributions 
presented as total metabolite pools from overnight labeling with 13C-glutamine (Gln) in PDA (red) and 
CRC (blue) cell lines, as determined by LC/MS. In the schemes at top left, filled circles represent 13C-
labeled carbon, and open circles represent unlabeled carbon. Labeling pattern for one turn of the TCA 
cycle is presented. Citrate data previously published in a methods paper22. Error bars represent s.d. 
from biological replicates (n=3). Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; Ala, alanine; Asn, 
asparagine; Asp, aspartate; Cit, citrate; Fum, fumarate; Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, 
malate; OAA, oxaloacetate; Pro, proline; Pyr, pyruvate; U13C, uniformly labeled carbon. 
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observed in the glucose and glutamine tracing studies. Similarly, the relative abundance 

of other TCA cycle intermediates did not exhibit notable differences between the PDA 

and CRC lines, with the exception of citrate, which is lower in the PDA lines (Fig. 3.10e). 

These data are summarized together with the unlabeled metabolomic profiling in Fig. 

3.10f. 

GOT1 inhibition impairs glycolysis in PDA 

It was our expectation that differential GOT1 dependence would be reflected by 

differences in the baseline wiring of intermediary metabolism between GOT1 dependent 

and independent parental cell lines. However, given that the steady state profiling data 

for the unperturbed cells were largely similar (Figs. 3.6-3.9), we then examined how the 

Figure 3.9 Steady state pools of TCA cycle and branching metabolites from glucose carbon 
tracing in PDA and CRC cell lines. Pool sizes reflect the relative abundance of a given metabolite. 
Herein, these are presented as the total of labeled and unlabeled metabolite. Isotopologue distributions 
presented as total metabolite pools from overnight labeling with 13C-glucose (Glc) in PDA (red) and CRC 
(blue) cell lines, as determined by LC/MS. In the schemes at top left, filled circles represent 13C-labeled 
carbon, and open circles represent unlabeled carbon. Labeling pattern for one turn of the TCA cycle is 
presented. Citrate data previously published in a methods paper22. Error bars represent s.d. from 
biological replicates (n=3). Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; Ala, alanine; Asn, 
asparagine; Asp, aspartate; Cit, citrate; Fum, fumarate; Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, 
malate; OAA, oxaloacetate; Pro, proline; Pyr, pyruvate; U13C, uniformly labeled carbon 
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Figure 3.10 Isotope tracing metabolomic profile of PDA and CRC. Uniformly labeled (M+3, hashed 
bars) and unlabeled (M+0, solid bars) metabolite pools derived from U-13C-glucose (Glc, left) or U-13C-
glutamine (Gln, right) for (A) lactate (Lac) and (B) alanine (Ala) as determined by LC/MS. (C) Relative 
U-13C-Glc-labeling of serine (Ser) and (D) glycine (Gly), as determined by gas chromatography 
(GC)/MS. (E) Ion currents for isotopologue distribution of citrate (Cit) derived from U-13C-Glc (left) or 
U-13C-Gln (right) in PDA and CRC cell lines. (F) Schematic summary of metabolic patterns observed 
in parental PDA and CRC cells. Red represents increased pool sizes in GOT1-sensitive PDA cells and 
blue represents increased metabolite pools in GOT1-insensitive CRC cells. 3PG, 3-phosphogycerate; 
6PG, 6-phosphogluconate; Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; BPG, bisphosphoglycerate; 
DHAP, dihydroxyacetone phosphate; F6P, fructose 6-phosphate; FBP, fructose-1,6-bisphosphate; 
Fum, fumarate; G6P, glucose 6-phosphate; GA3P, glyceraldehyde 3-phosphate; GdL6P, glucono-delta-
lactone 6-phosphate; Iso, isocitrate; Mal, malate; OAA, oxaloacetate; PHP, phosphohydroxypyruvate; 
Pyr, pyruvate; Suc, succinate. Error bars represent s.d. from biological replicates (n=3). Stacked P-
values are presented for isotopologues in 3.10a-c correspond by color. *, P < 0.05; **, P < 0.01; ***, P 
< 0.001; ****, P < 0.0001; Student t-test (unpaired, two-tailed). 
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metabolome of GOT1 dependent and independent lines responded to knockdown using 

3 PDA and 3 CRC iDox-shGOT1 cell lines. In this analysis, we found that Asp increased 

in all 6 lines and malate decreased in most (Fig. 3.11a), reflecting inhibition of the GOT1 

pathway12. In addition, all 6 lines showed a consistent accumulation of glycolytic 

intermediates between the ALDO-catalyzed and pyruvate kinase (PK)-catalyzed steps of 

glycolysis (Fig. 3.11b,c). Despite these consistencies, extracellular acidification as 

measured by Seahorse Metabolic Flux Assay, a readout for glycolytic flux, was only 

impaired in GOT1 knockdown PDA (Fig. 3.11d). 

 

Figure 3.11 Steady state metabolic profile of PDA and CRC following GOT1 inhibition. (A) Relative 
aspartate (Asp) and malate (Mal) pools as determined by LC/MS in iDox-shGOT1 #1 PDA and CRC, 
presented as GOT1 knockdown over mock (+dox/-dox). (B) Relative glycolysis metabolite pools, as 
presented in 3.11a. (C) Summary of changes to central carbon metabolism upon GOT1 knockdown 
PDA cells. Red represents increased pool sizes in PDA cells upon GOT1 knockdown and gray 
represents decreased metabolite pools. (D) Basal extracellular acidification rate (ECAR) levels in iDox-
shGOT1 #1 and control shNT PDA and CRC cells, as determined by Seahorse Metabolic Flux Analysis. 
3PG, 3-phosphogycerate; Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; Ala, alanine; B(1,3)PG, 1,3-
bisphosphoglycerate; B(2,3)PG, 2,3-bisphosphoglycerate; Cit, citrate; DHAP, dihydroxyacetone 
phosphate; F6P, fructose 6-phosphate; FBP, fructose-1,6-bisphosphate; Fum, fumarate; G6P, glucose 
6-phosphate; GA3P, glyceraldehyde 3-phosphate; Iso, isocitrate; Lac, lactate; OAA, oxaloacetate; PEP, 
phosphoenolpyruvate; Pyr, pyruvate; Suc, succinate. Error bars represent s.d. from biological replicates 
(n=3, a, b; n=5, d). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Student t-test (unpaired, 
two-tailed). 
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To further interrogate these metabolic differences, we also employed 13C-Glc and Gln 

tracing analyses following GOT1 knockdown in the PA-TU-8902 PDA and DLD-1 CRC 

lines (Figs. 3.12-3.15). In cells of both tissue types, glycolytic intermediates were entirely 

Glc-derived, TCA cycle intermediates were predominantly Gln-derived, and GOT1 

knockdown did not promote differential nutrient utilization to fuel these pathways (Figs. 

3.12-3.15). As expected, pronounced accumulation of Asp was observed, and, as we 

have seen previously12, this is predominantly derived from Gln in cultured cells (Fig. 3.16). 

Again, the fractional labeling data indicate largely consistent patterns of metabolite 

changes and nutrient utilization in glycolysis and the TCA cycle, and yet despite this, 

glycolytic activity and proliferation are only impaired in the PDA cells (Fig. 3.1b, 3.11d). 

GOT1 inhibition disrupts nucleotide metabolism in PDA cells 

The growth inhibitory activity of GOT1 knockdown in PDA has prompted ongoing efforts 

to develop small molecule GOT1 inhibitors14,15. To further harness the GOT1 selective 

dependence of PDA, we sought to identify metabolic pathways that could be targeted in 

combination with GOT1. Thus, to look more broadly at how GOT1 knockdown impacts 

metabolism between GOT1-dependent PDA and -independent CRC cell lines, we 

analyzed the unlabeled metabolomics data, as follows. The ~250 metabolites across 

central carbon metabolism were plotted as the average of the 3 PDA lines (dox/mock) 

over the average of the 3 CRC lines (dox/mock) (Fig. 3.17a). We identified pathways that 

are uniquely disrupted upon GOT1 knockdown in the PDA lines by analyzing metabolites 

with a greater than 2-fold change via MetaboAnalyst Pathway Analysis25. Among the 

differentially represented pathways, we observed that pyrimidine and purine metabolism 

were the most significantly enriched between PDA and CRC cell lines (Fig. 3.17b). 

Metabolites from PDA and CRC xenografts were analyzed in a similar manner with 

pyrimidine and purine metabolism also significantly enriched (Fig. 3.17c). We also found 

that several nodes in nucleotide metabolism were deregulated in PDA cells upon GOT1 

inhibition by modeling our metabolomics data with the Recon1 genome-scale network 

model26,27 with dynamic flux analysis (DFA)28,29 (Fig. 3.17d,e). Given the importance of 

nucleic acid metabolism in proliferation and the response to damage, we hypothesized 

that GOT1 inhibition would modulate the cellular response to additional perturbations to 

these pathways. 
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GOT1 inhibition protects PDA cells from cytotoxic chemotherapy 

Gemcitabine and 5-fluorouracil (5-FU) are pyrimidine analogs and front-line 

chemotherapies used to treat PDA patients30-32. Inspection of pyrimidine metabolism in 

our datasets revealed that it scored among the top differentially active pathways in both 

the MetaboAnalyst and DFA. Accordingly, we analyzed the unlabeled metabolomics data 

for nucleobase, nucleoside, and nucleotide pool levels after GOT1 knockdown and found 

Figure 3.12 Steady state fractional labeling patterns of TCA cycle and branching metabolites 
from glutamine carbon tracing in PDA and CRC after GOT1 knockdown. Isotopologue distributions 
presented as fractional enrichment from overnight labeling with 13C-glutamine (Gln) in iDox-shGOT1 #1 
PA-TU-8902 PDA (red) and DLD-1 CRC (blue) cell lines. GOT1 was knocked down for 5 days via dox 
treatment; metabolites patterns determined by LC/MS. In the schemes at top left, filled circles represent 
13C-labeled carbon, and open circles represent unlabeled carbon. Labeling pattern for one turn of the 
TCA cycle is presented. Error bars represent s.d. from biological replicates (n=4, except n=3 for DLD-1 
-dox Gln labeling). Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; Ala, alanine; Asn, asparagine; Asp, 
aspartate; Cit, citrate; Fum, fumarate; Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, malate; OAA, 
oxaloacetate; Pro, proline; Pyr, pyruvate; U13C, uniformly labeled carbon. 
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that many are increased in PDA cells compared to CRC cells (Fig. 3.18a). We 

hypothesized that the increase in these metabolites upon GOT1 inhibition may serve to 

compete with anti-metabolite based therapies, as we have seen in other contexts24,33,34. 

To test this hypothesis, we treated PDA and CRC lines with a dose response of 

gemcitabine and 5-FU in the presence or absence of GOT1 inhibition. We also included 

oxaliplatin, a mechanistically distinct alkylating agent used in PDA front-line therapy. In 

line with our hypothesis, GOT1 knockdown in PDA cells promoted resistance to 

Figure 3.13 Steady state fractional labeling patterns of TCA cycle and branching metabolites 
from glucose carbon tracing in PDA and CRC after GOT1 knockdown. Isotopologue distributions 
presented as fractional enrichment from overnight labeling with 13C-glucose (Glc) in iDox-shGOT1 #1 
PA-TU-8902 PDA (red) and DLD-1 CRC (blue) cell lines. GOT1 was knocked down for 5 days via dox 
treatment; metabolites patterns determined by LC/MS. In the schemes at top left, filled circles represent 
13C-labeled carbon, and open circles represent unlabeled carbon. Labeling pattern for one turn of the 
TCA cycle is presented. Error bars represent s.d. from biological replicates (n=4, except n=3 for DLD-1 
-dox Gln labeling). Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; Ala, alanine; Asn, asparagine; Asp, 
aspartate; Cit, citrate; Fum, fumarate; Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, malate; OAA, 
oxaloacetate; Pro, proline; Pyr, pyruvate; U13C, uniformly labeled carbon. 



71 

gemcitabine and 5-FU, whereas knockdown did not similarly impact resistance to 

chemotherapy in the CRC lines (Fig. 3.18b,c).  

GOT1 inhibition decreases GSH and sensitizes PDA cells to radiation therapy 

Cysteine and sulfur metabolism were the next most deregulated pathways between 

GOT1 inhibited PDA and CRC cells (Fig. 3.17b). In tumors, cysteine metabolism was the 

third most significantly enriched pathway (Fig. 3.17c) and DFA shows GSH metabolism 

Figure 3.14 Steady state pools of TCA cycle and branching metabolites from glutamine carbon 
tracing in PDA and CRC after GOT1 knockdown. Isotopologue distributions presented as total 
metabolite pools from overnight labeling with 13C-glutamine (Gln) in iDox-shGOT1 #1 PA-TU-8902 PDA 
(red) and DLD-1 CRC (blue) cell lines. GOT1 was knocked down for 5 days via dox treatment; 
metabolites patterns determined by LC/MS. In the schemes at top left, filled circles represent 13C-labeled 
carbon, and open circles represent unlabeled carbon. Labeling pattern for one turn of the TCA cycle is 
presented. Error bars represent s.d. from biological replicates (n=4, except n=3 for DLD-1 -dox Gln 
labeling). Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; Ala, alanine; Asn, asparagine; Asp, aspartate; 
Cit, citrate; Fum, fumarate; Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, malate; OAA, oxaloacetate; 
Pro, proline; Pyr, pyruvate; U13C, uniformly labeled carbon. 
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is a vulnerability in PDA (Fig. 3.17d,e). Cysteine is the rate limiting amino acid in GSH 

biosynthesis, and in our previous studies, we observed a drop in GSH pools following 

GOT1 knockdown12. Thus, we directed our attention to changes in GSH between PDA 

and CRC lines. Here, as determined by LC/MS, we found that both GSH and the reduced 

to oxidized glutathione (GSSG) ratio (GSH/GSSG), were uniquely decreased in PDA cells 

(Fig. 3.19a). The decrease in the GSH/GSSG ratio was similarly observed using a 

Figure 3.15 Steady state pools of TCA cycle and branching metabolites from glucose carbon 
tracing in PDA and CRC after GOT1 knockdown. Isotopologue distributions presented as total 
metabolite pools from overnight labeling with 13C-glucose (Glc) in iDox-shGOT1 #1 PA-TU-8902 PDA 
(red) and DLD-1 CRC (blue) cell lines. GOT1 was knocked down for 5 days via dox treatment; 
metabolites patterns determined by LC/MS. In the schemes at top left, filled circles represent 13C-labeled 
carbon, and open circles represent unlabeled carbon. Labeling pattern for one turn of the TCA cycle is 
presented. Error bars represent s.d. from biological replicates (n=4, except n=3 for DLD-1 -dox Gln 
labeling). Ac-CoA, acetyl-CoA; αKG, alpha-ketoglutarate; Ala, alanine; Asn, asparagine; Asp, aspartate; 
Cit, citrate; Fum, fumarate; Glu, glutamate; Iso, isocitrate; Lac, lactate; Mal, malate; OAA, oxaloacetate; 
Pro, proline; Pyr, pyruvate; U13C, uniformly labeled carbon. 
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biochemical assay in our panel of 3 PDA and 3 CRC cell lines (Fig. 3.19b). Furthermore, 

we also observed that the GSH/GSSG ratio decreased as a function of the duration of 

GOT1 knockdown, which similarly paralleled with increasing levels of Asp (Fig. 3.19c-g). 

Radiotherapy is a pro-oxidant treatment modality frequently used to treat locally advanced 

PDA, but its efficacy can be limited by both the intrinsic treatment resistance of PDA and 

the risk of inducing toxicity in the nearby small bowel35,36. Given that radiation induces 

cell death through oxidative damage to DNA, and its effects can be mitigated by high 

levels of antioxidants such as GSH, we hypothesized that GOT1 inhibition would 

selectively radiosensitize PDA with minimal effects in other tissues that do not depend on 

GOT1 to maintain redox balance. To test this, we first examined the response of PDA to 

radiation using an in vitro clonogenic assay (Fig. 3.20a). This demonstrated that PDA 

cells were sensitized to radiation after dox-induced GOT1 knockdown, whereas no effect 

was observed in CRC cells (Fig. 3.20b,c). Importantly, this effect was not observed in 

controls (Fig. 3.20d). GOT1 knockdown provided a radiation enhancement ratio of 1.4, a 

similar score observed with classical radiosensitizers37-39 (Fig. 3.20c). 

Based on these results, we then explored the utility of GOT1 inhibition as a 

radiosensitizing strategy in PDA and CRC tumor models in vivo. PDA or CRC tumors 

were established as in Fig. 3.3b,e, with radiation treatment administered in 6 daily doses 

beginning on day 10. GOT1 knockdown significantly impaired tumor growth in PDA but 

Figure 3.16 Metabolic profile of Asp in PDA and CRC following GOT1 inhibition. Ion currents for 
isotopologue distribution of aspartate (Asp) derived from U-13C-Glc (left) or U-13C-Gln (right) in iDox-
shGOT1 #1 PA-TU-8902 PDA and DLD-1 CRC cell lines. Error bars represent s.d. from biological 
replicates (n=3). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; Student t-test (unpaired, two-
tailed). 
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Figure 3.17 Metabolic pathways associated with GOT1 inhibition. (A) Fold-change versus p-value 
are plotted per metabolite as the average from 3 iDox-shGOT1 #1 PDA lines (+dox/-dox) over the 
average from 3 iDox-shGOT1 #1 CRC lines (+dox/-dox). Metabolites with filled circles were used for the 
pathway analysis in (b). Metabolites identity is indicated for those with P < 0.05 and fold change +/- 2. 
(B) Pathway Analysis of metabolites from (a) with greater than 2-fold change, as determined using the 
Metaboanalyst web tool (https://www.metaboanalyst.ca/). Hits reflects number of metabolites that were 
significant over total of metabolites considered for a given pathway. FDR, false discovery rate. (C) 
Pathway Analysis via Metaboanalyst of metabolites determined by LC/MS with greater than 2-fold 
change from PA-TU-8902 and HCT 116 tumors from Fig. 3.3b,e. Pathways highlighted in red were 
observed in vitro and in vivo. (D) Schematic overview of Dynamic Flux Analysis (DFA) approach for 
constructing genome-scale metabolic models of timecourse intracellular and extracellular metabolites 
from iDox-shGOT1 #1 PA-TU-8902 cells (+/- dox) as determined by LC/MS. In the schemes, circles 
represent metabolites connected in a metabolic pathway. DFA uses 3744 reactions, 2771 metabolites 
and 1487 genes. The network represented as the stoichiometric matrix (S) and is used to solve the 
reaction flux vector (v), determined by change of metabolite concentration over time (d[M] / dt or b). See 
Methods for further description. (E) Systematic reaction knockout analysis using DFA identifies 
differentially active metabolic reactions in PDA +/- GOT1 knockdown. “Knocked-out” reactions with 
negative Z-scores resulted in a computationally predicted decrease in PDA “growth” in cells under +dox 
conditions, while reactions with positive Z-scores decreased PDA “growth” in cells under -dox 
conditions. The y-axis shows the total number of reactions in each Z-score bin. Select KEGG pathways 
from +/- dox DFA with related enzymes that reached statistical significance are shown to the right and 
bottom. Reactions shown have P < 0.05 (two-sample t-test).  
 

https://www.metaboanalyst.ca/
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Figure 3.18 GOT1 inhibition disrupts nucleotide metabolism in PDA. (A) Relative nucleic acid pools 
as determined by LC/MS in iDox-shGOT1 #1 PDA and CRC, presented as GOT1 knockdown over mock 
(+dox/-dox). (B) Relative IC50 of gemcitabine, 5-fluorouracil (5-FU) and oxaliplatin in iDox-shGOT1 #1 
PDA and CRC cells upon GOT1 knockdown. (C) Relative viability of iDox-shGOT1 #1 PDA and CRC 
cells treated with a dose response of gemcitabine (top), 5-FU (middle), and oxaliplatin (bottom). IC50s 
in (b) were derived from dose response curves. ADP, adenosine diphosphate; AMP, adenosine 
monophosphate; ATP, adenosine triphosphate; CDP, cytidine diphosphate; CMP, cytidine 
monophosphate; CTP, cytidine triphosphate; dAMP, deoxyadenosine monophosphate; dATP, 
deoxyadenosine triphosphate; dCDP, deoxycytidine diphosphate; dCMP, deoxycytidine 
monophosphate; dCTP, deoxycytidine triphosphate; dGDP, deoxyguanosine diphosphate; dGMP, 
deoxyguanosine monophosphate; dGTP, deoxyguanosine triphosphate; dTDP, deoxythymidine 
diphosphate; dTMP, deoxythymidine monophosphate; dTTP, deoxythymidine triphosphate; dUMP, 
deoxyuridine monophosphate; GDP, guanosine diphosphate; GMP, guanosine monophosphate; GTP, 
guanosine triphosphate; IDP, inosine diphosphate; IMP, inosine monophosphate; UDP, uridine 
diphosphate; UMP, uridine monophosphate; UTP, uridine triphosphate; XMP, xanthosine 
monophosphate. Error bars in represent s.d. from biological replicates (n=3). n.s., not significant; *, P < 
0.05; **, P < 0.01; Student t-test (unpaired, two-tailed). 
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not CRC (Fig. 3.21a-d). Radiotherapy was efficacious as a single agent in both models 

and delayed tumor growth. However, GOT1 inhibition uniquely increased the time to 

tumor tripling in PDA (Fig. 3.21e,f). Together with our mechanistic studies above, these 

results demonstrate that GOT1 inhibition promotes redox imbalance uniquely in PDA, 

which results in a drop in GSH levels and the GSH/GSSG ratio, leading to 

radiosensitization of PDA cells in vitro and PDA tumors in vivo.  

Figure 3.19 GOT1 inhibition induces redox imbalance. (A) Relative reduced glutathione (GSH), 
oxidized glutathione (GSSG), and the ratio (GSH/GSSG) pools upon GOT1 knockdown in iDox-shGOT1 
#1 PDA and CRC cells. Data were obtained by LC/MS and are normalized as GOT1 knockdown over 
mock (+dox/-dox). (B) Relative GSH/GSSG upon GOT1 knockdown as determined by enzymatic assay 
in PDA and CRC and normalized as GOT1 knockdown over mock (+dox/-dox). (C) Timecourse of 
relative GSH/GSSG pools upon GOT1 knockdown in iDox-shGOT1 #1 PA-TU-8902 PDA cells. Data 
were obtained by LC/MS and are normalized as GOT1 knockdown over mock (+dox/-dox). (D) GOT1 
protein expression during dox-mediated knockdown timecourse in iDox-shGOT1 #1 PA-TU-8902 cells. 
GAPDH serves as the protein loading control. (E) Total aspartate (Asp) pools in PA-TU-8902 cells, as 
determined by LC/MS and plotted as GOT1 knockdown over mock (+dox/-dox). Timecourse of total (F) 
reduced glutathione (GSH) and (G) oxidized glutathione (GSSG) pools in iDox-shGOT1 #1 PA-TU-8902 
cells, as determined by LC/MS. Error bars represent s.d. from biological replicates in a,c,e-g (n=3) and 
in b (n=4, iDox-shGOT1 #1 PA-TU-8902, PA-TU-8988T, HCT 116, DLD-1; n=3, iDox-shGOT1 #1 MIA 
PaCa-2, LoVo and iDox-shGOT1 #3). n.s., not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, 
P < 0.0001; Student t-test (unpaired, two-tailed) (a); one-way ANOVA (b,c,e-g). 
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Discussion 

Precision oncology aims to assign new medicines based on the genotype of a patient40. 

In PDA and CRC, activating mutations of the MAPK pathway (e.g. in KRAS and BRAF) 

and loss of tumor suppressor TP53 are common41,42, and these mutations play important 

roles in the reprogramming of cancer metabolism11,18,43. Yet, despite this, metabolic gene 

expression programs in tumors more closely resemble their cell of origin rather than their 

oncogenotype44. Our results similarly add to the growing body of literature that metabolic 

dependencies exhibit tissue specificity3,4. Herein, we report that among typically mutant 

KRAS-expressing PDA and CRC lines, PDA cells are uniquely responsive to GOT1 

knockdown. This is manifest as profound growth inhibition in vitro and in tumor xenografts 

in vivo. Through an integrated analysis utilizing multiple metabolomics profiling 

approaches together with computational modeling, we demonstrate that GOT1 

Figure 3.20 GOT1 inhibition sensitizes PDA to radiation therapy in vitro. (A) Surviving fraction from 
clonogenic cell survival assays of radiation-treated iDox-shGOT1 #1 PA-TU-8902 and (B) HCT 116. Gy, 
Gray. (C) Enhancement ratio of radiation treated iDox-shGOT1 #1 PDA and CRC cells. (D) Surviving 
fraction from clonogenic assay of radiation-treated iDox-shNT PA-TU-8902 (left) and HCT116 (right), 
+/- dox. Error bars represent s.d. from biological replicates (n=3). Gy, Gray. n.s., not significant; **, P < 
0.01. Student t-test (unpaired, two-tailed).  
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knockdown uniquely impacts glycolysis, nucleotide metabolism, and GSH-mediated 

redox regulation in PDA. Based on the disrupted GSH profile, we demonstrated that 

GOT1 knockdown can serve as a radiosensitizing strategy for PDA. 

Despite observing a stark difference in the GOT1 dependence between our PDA and 

CRC cell lines, the baseline metabolic profiles and nutrient utilization in central carbon 

metabolism was surprisingly comparable (Figs. 3.5-3.9). This similarity may reflect 

adaptations that have occurred during prolonged exposure of these cell lines to culture, 

which serve to meet an optimal metabolic flux program to facilitate maximal proliferation. 

Regardless, metabolic dependences remain hard-wired. Upon GOT1 inhibition, unique 

shifts in metabolism are observed between the two tissue types, which account for the 

growth inhibition of PDA cells and tumors upon GOT1 knockdown.  

Figure 3.21 GOT1 inhibition sensitizes PDA to radiation therapy in vivo. (A) Tumor growth of iDox-
shGOT1 #1 PA-TU-8902 or (B) iDox-shGOT1 #1 HCT116 xenografts treated with dox (solid arrow; 
maintained for the duration of the experiment) and/or radiation (rad; dashed arrows). Error bars 
represent s.d. n=12 tumors per arm, except for dox HCT 116 tumors where n=10. Western blot (left) 
and quantification (right) for GOT1 expression in iDox-shGOT1 #1 (C) PA-TU-8902 and (D) HCT116 
xenograft tumors treated with dox and/or radiation (rad). Error bars represent s.d from n=12 tumors per 
arm except n=10 dox HCT 116 tumors. (E) Time to tumor tripling of iDox-shGOT1 #1 PA-TU-8902 or 
(F) iDox-shGOT1 #1 HCT116 xenografts. n.s., not significant; **, P < 0.01; ***, P < 0.001; ****, P < 
0.0001; Student t-test (unpaired, two-tailed) (a-d); one-way ANOVA (e,f). 
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A disruption of nucleotide metabolism was the most notable metabolic change across 

PDA lines upon GOT1 knockdown (Fig. 3.17b, 3.18a). Generally, this led to the 

accumulation of numerous phosphorylated nucleic acid species. We also observed that 

GOT1 knockdown reduced the sensitivity of PDA cells to the anti-metabolite 

chemotherapies gemcitabine and 5-FU. Our proposed explanation for these results is that 

the increase in the pool of deoxycytidine and uracil species, respectively, decreases the 

relative intracellular concentration of the anti-metabolite therapies and thereby their 

activity24,33. This explanation, however, does not apply to oxaliplatin, whose cytotoxic 

activity is similarly impaired upon GOT1 knockdown in PDA cells. Thus, a non-mutually 

exclusive explanation for the chemoprotective effect of GOT1 is that GOT1 knockdown is 

cytostatic in PDA cells and tumors (Fig. 3.1b, 3.3b). Chemotherapy is thought to work by 

selectively targeting dividing cells. Given that GOT1 knockdown impairs proliferation, the 

chemoprotective effect may simply result from impairing cycling, an effect not observed 

in GOT1 inhibition resistant CRC. It is also curious to note that GSH, which is diminished 

in GOT1 knockdown PDA cells, can protect cells from cytotoxic chemotherapy. Despite 

having lower GSH, the GOT1 knockdown PDA cells are less sensitive to the 

chemotherapies tested. Collectively, these results indicated that the use of chemotherapy 

in conjunction with GOT1 is not a practical therapeutic strategy and highlights the need 

to test combination treatment strategies in the preclinical setting. 

PDA is an extremely aggressive disease and therapeutic options are largely ineffective45. 

The odds of surviving the first year are only 24%, and the five-year survival rate is a dismal 

9%46. One of the main factors underscoring this low survival rate is the lack of effective 

clinical treatments47. KRAS mutations are observed in >90% of PDA, yet despite great 

efforts, current means to inhibit RAS are limited to the G12C mutation48, which is only 

observed in 2% of patients41. Immunotherapy, while promising in other types of cancer, 

has proven ineffective to treat PDA49,50. Thus, improving current therapeutic modalities 

represents the best immediate hope for PDA patients. Radiotherapy is a standard of care 

for PDA in many institutions, although this remains controversial51. For patients that have 

undergone surgical resection for PDA, the receipt of adjuvant radiation (in combination 

with chemotherapy) is associated with a survival benefit in large institutional series, and 

this is currently being evaluated in a phase III randomized trial (RTOG 0848, 
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ClinicalTrials.gov NCT01013649)52,53. Despite these encouraging results, nearly 40% of 

patients receiving adjuvant radiation experience treatment failures within the irradiated 

field, indicating that PDA radiation resistance remains an important barrier to improving 

outcomes in the adjuvant setting54. Radiation also plays an important role for patients with 

locally advanced PDA that cannot be resected55,56. As in the adjuvant setting, nearly 40% 

of patients receiving radiation for locally advanced PDA will experience local tumor 

progression, again highlighting the clinical challenge of radiation resistance in PDA57.  

Our findings suggest that GOT1 inhibition could improve outcomes in PDA by overcoming 

this radiation resistance. Importantly, this strategy is unlikely to increase the normal tissue 

toxicity that often limits the intensification of radiotherapy-based treatment regimens. This 

potential therapeutic window is supported by our previous reports that GOT1 inhibition is 

well tolerated in non-transformed cells, as radiation dose is often limited so as not to harm 

nearby normal tissues. The GOT1 independence of CRC cell lines provide further support 

that a therapeutic window may exist for systemically targeting GOT1 in a subset of cancer 

types. To this end, we and others have engaged in developing GOT1 inhibitors14,15. 

Future work on optimized GOT1 drugs will be required to test the activity of these agents 

in combination with radiotherapy.  

Metabolic programs in malignant cells are determined by the cell of origin and the 

oncogenotype. Here, we show that PDA and CRC lines respond differently to GOT1 

inhibition, even though both groups harbor oncogenic KRAS and P53 mutations. Upon 

GOT1 knockdown, growth of PDA cells and xenografts is profoundly impaired, while CRC 

remains insensitive. Metabolic profiling of PDA and CRC cell lines following GOT1 

inhibition revealed that glycolysis, nucleotide metabolism, and redox homeostasis were 

uniquely perturbed in PDA. Due to the disruption in redox balance in PDA, GOT1 inhibition 

enhanced sensitivity to radiotherapy, a standard of care for PDA patients. These results 

demonstrate a prominent role of cell of origin dictating metabolic dependencies and 

reveals new insights for targeting metabolic vulnerabilities to treat PDA. 
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Materials and Methods 

Cell culture 

Cell lines were obtained from the American Type Culture Collection or the German 

Collection of Microorganisms and Cell Cultures: PDA cell lines PA-TU-8902 

(RRID:CVCL_1845), BxPC-3 (RRID:CVCL_0186), MIA PaCa-2 (RRID:CVCL_0428), and 

PA-TU-8988T (RRID:CVCL_1847); and CRC cell lines HCT 116 (RRID:CVCL_0291), 

DLD-1 (RRID:CVCL_0248), LoVo (RRID:CVCL_0399), and HT-29 (RRID:CVCL_0320). 

All cell lines were routinely tested for mycoplasma contamination (Lonza MycoAlert Plus, 

LT07-710). BxPC-3 cells were cultured in RPMI-1640 (Gibco, 11875-093) with 10% FBS 

(Corning, 35-010-CV). All other cell lines were cultured in DMEM (Gibco, 11965-092) with 

10% FBS. 

shRNA constructs and iDox-shRNA stable cell lines 

The lentiviral vector containing tetracycline inducible system Tet-pLKO-puro (a gift from 

Dmitri Wiederschain) was engineered to contain the following shRNAs: GOT1 coding 

region (shGOT1 #1, TRCN0000034784) or GOT1 3’UTR (shGOT1 #3, 5’-

CCGGTTGGAGGTCAAAGCAAATTAACTCGAGTTAATTTGCTTTGACCTCCAATTTTT

-3’). Oligonucleotides were obtained (Integrated DNA Technologies Inc.), annealed and 

cloned at AgeI and EcoRI sites in tet-pLKO-puro (Addgene, 21915; 

http://www.addgene.org/21915, RRID:Addgene_21915)58 following the Wiederschain 

Protocol (https://media.addgene.org/data/plasmids/21/21915/21915-attachment 

_Jws3xzJOO5Cu.pdf). A tet-pLKO non-targeting control vector (shNT, 5’-

CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTT

T-3’; or shLUC, TRCN0000072259) was constructed similarly. Tet-pLKO-shGOT1 and 

tet-pLKO-shNT lentiviruses were produced by the University of Michigan Vector Core 

using the purified plasmids. Parental PDA and CRC cell lines were then transduced with 

optimized viral titers and stable cell lines were established post puromycin selection.  

Colony forming and clonogenic cell survival assays 

Colony forming assays (CFA) were performed as previously described with slight 

modifications12. Briefly, cells were plated in 6-well plates at 300-600 cells per well 

(dependent on the cell line) in 2 mL of media. 24 hours after seeding, dox was added at 
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1 ug/mL and culture medium was changed every 48 hours. After 8-13 days, colonies were 

fixed with 100% methanol and stained with 0.5% crystal violet solution. Colonies in 

triplicate wells were counted in ImageJ and graphed. Statistical analyses performed using 

GraphPad Prism7 software. 

For radiotherapy studies, clonogenic assays were performed as described previously59,60. 

Briefly, 3 to 4 days after dox-induced shRNA expression, cells were irradiated with varying 

doses of radiation and then replated at clonal density. After 10 to 14 days of growth, 

colonies of 50 or more cells were enumerated and corrected for plating efficiency using 

unirradiated samples. Cell survival curves were fitted using the linear-quadratic equation. 

Enhancement ratios were calculated as the ratio of the mean inactivation dose under no 

dox conditions divided by the mean inactivation dose under +dox conditions. 

cDNA rescues 

Direct mutagenesis of shGOT1 #1 in pDONR223 resulted in GOT1 cDNA (sequence 

GCGGTGGTATAACGGCACCAA) resistant to shRNA targeting. GOT1 cDNA was 

Gateway cloned into DEST vector pLVX-GW-Hygro. 

qPCR 

RNA was extracted using RNeasy Mini Kit (Qiagen, 74104) according to manufacturer’s 

instructions. cDNA was generated using SuperScript III CellsDirect™ cDNA Synthesis Kit 

(Invitrogen, 18080300). RT–PCR was done using SYBR Green PCR Master Mix (Applied 

Biosystems, 4309155) on a ViiA 7 Real-Time PCR System (Applied Biosystems). Relative 

mRNA levels were normalized to expression of human β-actin. RT–PCR was performed 

in quadruplicate. 

Western blot analysis 

Stable shNT and shGOT1 cells were cultured with or without dox media and protein 

lysates were collected after five days using RIPA buffer (Sigma, R0278) containing 

protease inhibitor cocktail (Sigma/Roche, 04 693 132 001). Samples were quantified with 

Pierce BCA Protein Assay Kit (ThermoFisher, 23225). 10 to 40 µg of protein per sample 

were resolved on NuPAGE Bis-Tris Gels (Invitrogen, NP0336) and blotted to PVDF 

membranes (Millipore, IPVH00010). Membranes were blocked in Tris-buffered saline 

(Bio-Rad, 170-6435) containing 0.5% of Tween 20 (Sigma, P2287) (TBS-T buffer) and 



83 

5% non-fat dry milk (LabScientific, M0841) then incubated with primary antibody overnight 

at 4oC. The membranes were then washed with TBS-T buffer followed by exposure to the 

appropriate horseradish peroxidase-conjugated secondary antibody for 1h and visualized 

on either Kodak X-ray film (GeneMate, F-9023-8x10) or BioRad ChemiDoc Imaging 

System using either SuperSignal West Pico Chemiluminescent Substrate (Thermo 

Scientific, 34080) or ECL Prime Western Blotting Detection Reagent (Amersham, 

RPN2232). The following antibodies were used: anti-aspartate aminotransferase (anti-

GOT1) at a 1:1,000 dilution (Abcam, ab171939), anti-GOT2 at a 1:1,000 dilution (Atlas 

Antibodies Sigma-Aldrich, HPA018139), anti-ME1 at a 1:1,000 dilution (Santa Cruz, sc-

100569), anti-MDH1 at a 1:10,000 dilution (Abcam, ab180152), and loading control 

vinculin at a 1:10,000 dilution (Cell Signaling Technology, 13901) or GAPDH at a 1:1,000 

dilution (Cell Signaling Technology, 2118). Anti-GOT1 at a dilution of 1:1,000 (Abnova, 

H00002805-B01P) was used in Fig. 3.19d and Fig. 3.2a. Anti-rabbit IgG, HRP-linked 

(Cell Signaling Technology, 7074) and anti-mouse IgG, HRP-linked (Cell Signaling 

Technology, 7076) secondary antibody was used at a 1:10,000 dilution. Protein 

expression was quantified with ImageJ. 

Mass Spectrometry-Based Metabolomics 

Unlabeled targeted metabolomics: Cells were plated at 500,000 cells per well in 6-well 

plates or ~1.5 million cells per 10 cm dish. At the end of indicated time points, 1 mL of 

medium was saved for metabolite extraction. Cells were lysed with dry-ice cold 80% 

methanol and extracts were then centrifuged at 10,000 g for 10 min at 4°C and the 

supernatant was stored at -80°C until further analyses. Protein concentration was 

determined by processing a parallel well/dish for each sample and used to normalize 

metabolite fractions across samples. Based on protein concentrations, aliquots of the 

supernatants were transferred to a fresh micro centrifuge tube and lyophilized using a 

SpeedVac concentrator. Dried metabolite pellets from cells or media were re-suspended 

in 35 μl 50:50 methanol:water mixture for LC–MS analysis. Data was collected using 

previously published parameters (ref:22).  

Raw data were pre-processed with Agilent MassHunter Workstation Software 

Quantitative QqQ Analysis Software (B.07.00). Additional statistical analyses were 
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carried out in Excel (Microsoft) where each sample was normalized by the total intensity 

of all metabolites to reflect the protein content as a normalization factor. We then retained 

only those metabolites with at least 2 replicate measurements. The remaining missing 

value in each condition for each metabolite was filled with the median value of the other 

replicate measurements. Finally, each metabolite abundance level in each sample was 

divided by the median of all abundance levels across all samples to obtain relative 

metabolites. Significance testing was a two-tailed t-test with a significance threshold level 

of 0.05. 

13C-tracing analysis: Cells were cultured in DMEM lacking Glc or Gln (ThermoScientific, 

A1443001) and supplemented with 10% dialyzed FBS (ThermoScientific, 26400036), the 

appropriate labeled substrate U-13C-Gln (Cambridge Isotope Laboratories, CLM-1822-H) 

or U-13C-Glc (Cambridge Isotope Laboratories, CLM-1396), and the appropriate 

complementary substrate (unlabeled glutamine or glucose). Cells were plated 24 hours 

prior to labeling at 500,000 cells per well in 6-well plates. Cells were labeled overnight to 

achieve steady-state labeling. Metabolites were extracted and data was collected 

according to previously described procedures (ref:22). Data were processed as described 

in the unlabeled targeted metabolomics section. 

Gas chromatography: Cells were cultured as described above. Metabolite extraction was 

performed as described61. Briefly, cells were lysed with dry-ice cold 80% methanol and 

metabolite extracts were then centrifuged at 20,000 g for 7 min at 4°C. Chloroform 

(stabilized with amylene) was added to each clarified supernatant. Phase separation was 

reached by centrifugation at 20,000 g for 15 min at 4°C. The aqueous phase was 

lyophilized using a SpeedVac concentrator, snap frozen in liquid nitrogen, and stored at 

-80°C for further processing. Samples were dissolved in 30 µl of 2% methoxyamine 

hydrochloride in pyridine (MOX) (Pierce, TS-45950) at 37°C for 1.5 hrs. Samples were 

derivatized by adding 45µl of N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide 

(MBTSTFA) + 1% tert-butyldimethylchlorosilane (TBDMCS) (Pierce, TS-48927) at 60°C 

for 1 hr. 

GC-MS analysis was performed as described62. Briefly, analysis was performed on an 

Agilent 6890 GC instrument that contained a 30m DB-35MS capillary column, which was 



85 

interfaced to an Agilent 5975B MS. Electron impact (EI) ionization was set at 70 eV. Each 

analysis was operated in scanning mode, recording mass-to-charge-ratio spectra in the 

range of 100 – 605 m/z. For each sample 1µl was injected at 270°C, using helium as the 

carrier gas at a flow rate of 1 ml/min. To mobilize metabolites, the GC oven temperature 

was held at 100°C for 3 min and increased to 300°C at 3.5°C/min. 

Xenograft tumors and treatments 

All animal studies were performed in accordance with the guidelines of Institutional 

Animal Care and Use Committee (IACUC) and approved protocols. NOD scid gamma 

(NSG) mice (Jackson Laboratory, 005557), 6-8 or 8-10 weeks old of both sexes, were 

maintained in the facilities of the Unit for Laboratory Animal Medicine (ULAM) under 

specific pathogen-free conditions. Mice were subcutaneously (s.c.) injected in both flanks 

with 0.5x106 total cells (2.0x106 for HCT 116) of iDox-shGOT1 #1 or shNT (n=8, iDox-

shGOT1 BxPC-3 +/- dox, iDox-shNT BxPC-3 +dox tumors; n=6, iDox-shGOT1 PA-TU-

8902 +/- dox, iDox-shNT PA-TU-8902 +/- dox, iDox-shNT BxPC-3 -dox, iDox-shNT DLD-

1 +/- dox tumors; n=5, iDox-shGOT1 HCT 116 +dox, iDox-shGOT1 DLD-1 +/-dox tumors; 

n=4 iDox-shGOT1 HCT 116 -dox, iDox-shNT HCT 116 +/- dox tumors). Stable cells were 

trypsinized (Gibco, 25300-054) and suspended at 1:1 ratio of DMEM (Gibco, 11965-092) 

cell suspension:Matrigel (Corning, 354234) in 150-200 μL/injection. Dox chow (BioServ, 

F3949) was fed to the +dox groups on day 7 post tumor s.c. injection. Tumor size was 

assessed using a digital caliper twice/week after tumor cell implantation. Tumor volume 

(V, mm3) was calculated as V =1/2(length x width2) or V =π/6(length x width2) (ref:63). At 

endpoint, mice were sacrificed, and final volume and mass of tumors were measured prior 

to tissue processing. Tissue was either snap-frozen in liquid nitrogen and stored at -80°C 

until processed for protein or metabolite analysis, or fixed in zinc formalin fixative (Z-Fix, 

Anatech LTD, 174) solution for >24 hours then replaced with 70% ethanol for future 

histological and/or histochemical staining 

For radiotherapy studies, mice were randomized to receive no treatment (mock), dox 

alone (dox), radiation alone (rad), or combined treatment (dox+rad) (n=12 tumors per arm 

except n=10 dox HCT 116 tumors). Radiation (2 Gy/fraction) was administered over 6 

daily fractions, beginning day 10 after implantation) using a Philips RT250 (Kimtron 
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Medical) unit at a dose rate of approximately 2 Gy/minute. Dosimetry was performed 

using an ionization chamber directly traceable to a National Institute of Standards and 

Technology calibration. Animals were anesthetized with isoflurane and positioned such 

that the apex of each flank tumor was at the center of a 2.4 cm aperture in the secondary 

collimator, with the rest of the mouse shielded from radiation60. 

CCLE Dataset Analysis 

The cancer cell line encyclopedia (CCLE) dataset with accession number GSE36133 

(ref:64) was downloaded from the NCBI Gene Expression Omnibus65. The mRNA 

expression value of genes encoding GOT1-related enzymes, i.e. malic enzymes (ME1/2), 

malate dehydrogenases (MDH1/2), transaminases (GOT1/2, GPT1/2), and 

glutaminolysis enzymes (GLS, GLUD1) in PDA cell lines were compared to those of CRC. 

Seahorse Analysis 

Extracellular acidification rates (ECAR) were performed using the XF-96 Extracellular 

Flux Analyzer (Agilent Technologies). Cells were treated with dox for four days then 

plated on Seahorse Microplates in DMEM media (+/-dox) at: PA-TU-8902 30,000 

cells/well, PA-TU-8988T 60,000 cells/well, HCT 116 60,000 cells/well, DLD-1 60,000 

cells/well. The next day, media was replaced with Seahorse XF Base DMEM (Agilent, 

103335-100) containing 25 mM glucose and 2 mM glutamine adjusted to pH ~7.4, and 

the plate was allowed to incubate for 1 hour in a non-CO2, 37°C incubator. For the 

mitostress test, ECAR was measured under basal conditions and in response to 

mitochondrial inhibitors: oligomycin (0.5 μM), FCCP (0.25 μM), rotenone (0.5 μM), and 

antimycin A (0.5 μM).  

Genome-Scale Metabolic Network Modeling Using Dynamic Flux Analysis 

PA-TU-8902 cells were plated in 6-well plates in triplicate for each timepoint (4, 2, or 0 

days of dox treatment). Media and cells were collected separately for unlabeled targeted 

metabolomics. The metabolomics data were used as constraints in the human metabolic 

reconstruction26 to create a metabolic model using the dynamic flux analysis (DFA) 

approach28,29. DFA determines the optimal metabolic state that satisfies the biomass 

objective function and metabolomic constraints. DFA uses measured rate of change from 

time-course metabolomics data to constrain fluxes. Because subcellular compartment 
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information is lost during metabolomics measurement, we assumed that the measured 

metabolites represent the sum total in the cytoplasm, nucleus, and mitochondrial 

compartments. We used both intracellular and extracellular metabolite measurements to 

construct the metabolic models. Single gene and reaction knockouts were conducted on 

the metabolic models to estimate their impact on cellular growth rate. These models were 

used to identify genes and metabolic reactions that were differentially active between +/- 

dox cells. 

Cell Viability Assay 

PDA and CRC cells were plated at densities for log growth in the presence of dox (or 

mock treatment) for 4 days. On day 4, cells were trypsinized (Gibco, 25300-054) and 

replated in triplicate in 100 μL at 1,000 cells/well for -dox groups (PDA and CRC) and at 

1,000 cells/well (CRC) or 3,000 cells/well (PDA) for +dox groups in white-walled 96 well 

plates (Corning/Costar, 3917). Cells were treated the following day with serial dilution of 

gemcitabine (Cayman Chemical, 9003096), 5-FU (Cayman Chemical, 14416), or 

oxaliplatin (Cayman Chemical, 13106). Cell viability was measured after 3 days using the 

CellTiter-Glo 2.0 Cell Viability Assay (Promega, G9243). Luminescence was measured 

for 500ms using a SpectraMax M3 Microplate Reader (Molecular Devices). IC50 values 

were calculated using GraphPad Prism 7 using three-parameter nonlinear regression 

analysis (except gemcitabine treated PA-TU-8902 used normalized response nonlinear 

regression analysis). 

Glutathione Enzymatic Assay 

Cells were grown in +/- dox media for 3 days then plated in 96-well plates in +/-dox media. 

The following day, GSH/GSSG ratio was measured according to the manufacturer 

instructions (Promega, V6611). 

Statistical Analysis 

Statistics were calculated using GraphPad Prism 7. One-way ANOVA was performed for 

experiments comparing multiple groups with one changing variable. ANOVA analyses 

were followed by Tukey’s post hoc tests to allow multiple group comparisons. A Student’s 

t-test (unpaired, two-tailed) was performed when comparing two groups to each other. 

Metabolomics data comparing 3 PDA and 3 CRC cell lines was analyzed by performing 
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a Student’s t-test (unpaired, two-tailed) between all PDA metabolites and CRC 

metabolites. Time to tumor tripling analysis was performed using log-rank (Mantel–Cox) 

test. Outliers were removed with GraphPad using Grubbs’ test, alpha=0.05. Groups were 

considered significantly different when P< 0.05. All data are presented as mean ± s.d. 

(standard deviation).  
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CHAPTER 4 

Extraneous Results 

Introduction 

Several experimental studies performed during the collection of data from my studies on 

metabolic changes that occur during ADM or in cancer cells revealed insights that were 

outside the scope (or opened up new directions) for these projects. The following sections 

present that data for comprehension and as a future resource for the Lyssiotis lab. Future 

studies will be required to ascertain their importance and utility. 

In vivo oligomycin treatment 

Using in vitro models of ADM, I found acinar cells are profoundly sensitive to oligomycin, 

an oxidative phosphorylation inhibitor (Fig. 2.3). Previous studies have demonstrated that 

targeting pathways necessary for ADM in vitro also inhibit ADM in vivo1-3. As such, I 

hypothesized that oligomycin treatment would inhibit ADM in vivo. I used an experimental 

model of pancreatitis in wild-type mice to stimulate ADM4. Pancreatitis can be induced 

with supraphysiologic concentrations of cerulein, a cholecystokinin ortholog that 

promotes excessive acinar enzyme production and premature activation resulting in 

acinar cell damage and ADM5. Mice were pretreated with either oligomycin or vehicle 

followed by treatment with a cerulein regimen that induces acute pancreatitis or saline as 

a vehicle control (Fig. 4.1a). Pancreas mass relative to body mass (% PM/BM) was similar 

between the groups (Fig. 4.1b) and hematoxylin and eosin (H&E) staining of pancreas 

tissue showed no obvious differences between groups treated with oligomycin (Fig. 4.1c). 

I proceeded with a more severe cerulein treatment that induces chronic pancreatitis in 

mice3. Again, wild-type mice were pretreated with either oligomycin or vehicle; however, 

a cerulein treatment regimen that induces chronic pancreatitis was used (Fig. 4.1d). 

Unlike induction of acute pancreatitis, there was a slight, but non-statistically significant, 

increase in relative pancreas mass of mice treated with oligomycin (Fig. 4.1e). There also 

appears to be an increase of ADM lesions and tissue damage in oligomycin-treated mice 
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Figure 4.1 Oligomycin treatment during experimental pancreatitis induction. (A) Acute pancreatitis 
protocol with oligomycin pretreatment for wild-type mice. (B) Percent ratio of pancreas mass to body 
mass (% PM/BM) of mice on acute pancreatitis protocol. Error bars represent s.d. from biological 
replicates (n=2, Veh/Sal; n=3 Oligo/Sal, Veh/Cer, Oligo/Cer). (C) Representative H&E staining of 
pancreas tissue from mice on acute pancreatitis protocol. (D) Chronic pancreatitis protocol with 
oligomycin pretreatment for wild-type mice. Note, cerulein was administered for 14 consecutive days. 
(E) Percent ratio of pancreas mass to body mass (% PM/BM) of mice on chronic pancreatitis protocol. 
Error bars represent s.d. from biological replicates (n=3 Veh/Cer; n=4, Oligo/Cer). (F) Representative 
H&E staining of pancreas tissue from mice on chronic pancreatitis protocol. Scale bar = 50 µm. Cer, 
cerulein; Oligo, oligomycin, Sal, saline; Veh, vehicle. One-way ANOVA (B); Student’s t-test (unpaired, 
two-tailed) (E). 
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(Fig. 4.1f). These data suggest inhibition of oxidative phosphorylation with oligomycin 

does not prevent chronic pancreatitis-induced ADM, but may accelerate ADM. Since 

oligomycin treatment is systemic the possible increase in ADM could be a result of 

oxidative phosphorylation inhibition in other cell types, such as macrophages which not 

only contribute to pancreatic tumorigenesis, but are also phenotypically altered by 

oligomycin treatment6. 

Pancreatitis induction in KCG model 

Experimental models of pancreatitis accelerate tumor formation in KrasG12D-expressing 

mice7. Following the observation that G6PD-deficiency accelerates ADM in ex vivo acinar 

explants (Fig. 2.5b), I tested whether induction of pancreatic injury affected KrasLSL-G12D/+; 

Ptf1aCre/+ (KC) mice differently depending on G6PD status (KCGmut or KCGwt). Mice were 

intraperitoneally injected with either cerulein to induce chronic pancreatitis or saline as a 

vehicle control (Fig. 4.2a). Relative pancreas mass significantly increased in cerulein-

treated KCGmut mice compared to control mice (Ptf1aCre/+; G6PDmut [CGmut]) and KCGmut 

mice injected with saline (Fig. 4.2b). Although there is no significant difference between 

KCGmut and KCGwt mice treated with cerulein, the trend of decreased pancreas mass in 

KCGwt mice warrants further investigation. Increasing the sample size for the cerulein-

treated KCGwt group and including CGwt and KCGwt saline-injected controls are necessary 

prior to drawing any conclusions. Histological analysis of these pancreas tissue could 

reveal increased ADM or PanIN formation in cerulein-treated KCGmut mice as inferred 

from an increase in relative pancreas mass. 

 

Figure 4.2 Chronic pancreatitis induction in KCG mice. (A) Chronic pancreatitis protocol for KC 
mice. (B) Percent ratio of pancreas mass to body mass (% PM/BM). Error bars represent s.d. from 
biological replicates (n=3, cerulein-treated CGmut, saline-treated KCGmut; n=5, cerulein-treated KCGmut; 
n=2, cerulein-treated KCGwt). *, P < 0.05; **, P < 0.01. One-way ANOVA. 
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Glutamine dropout in KCGmut acinar explants 

It was surprising that KC acinar explants survived and transdifferentiated without 

exogenous glutamine. This is in stark contrast to glutamine dependency of cultured PDA 

cells8. PDA cells downregulate the oxidative branch of the pentose phosphate pathway 

(PPP) and rewire glutamine metabolism to generate NADPH. Since G6PD-deficient KC 

acinar cells presumably generate less NADPH from oxidative PPP, I wanted to determine 

whether they were sensitive to the absence glutamine in culture. I hypothesized that 

KCGmut acinar cells rewired glutamine metabolism for NADPH production, like seen in 

PDA cells. However, there is no difference in transdifferentiation of KCGmut with or without 

exogenous glutamine (Fig. 4.3). This data suggests other NADPH-producing enzymes 

compensate for G6PD-deficiency and the rewiring of glutamine metabolism seen in PDA 

cells may not occur in transdifferentiating acinar cells. Future studies will interrogate the 

roles of NADPH-producing pathways and glutamine metabolism during ADM (see 

Chapter 5). 

 

GOT1 knockout in CRC cell lines 

Compared to PDA cell lines, colorectal cancer (CRC) lines are insensitive to GOT1 

knockdown by short hairpin RNA (shGOT1) (Figs. 3.1b, 3.3e). Although we induced 

strong knockdown of GOT1 (Fig. 3.1e), I hypothesized trace levels of GOT1 may be 

enough for growth and survival of CRC cells. To address this, I attempted to knock out 

GOT1 expression via CRISPR-Cas9. Unfortunately, I was not able to completely 

Figure 4.3 KCGmut acinar cells cultured with or without glutamine. Quantification of ductal structures 
formed in collagen. Each point represents average of 3 technical replicates from independent mice. 
Error bars represent s.d. Student’s t-test (unpaired, two-tailed); no statistical significance between 
groups. 
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knockout GOT1 from HCT116 cells (Fig. 4.4a) even after transfecting the cells a second 

time with the single guide RNA targeting GOT1 (sgGOT1) (Fig. 4.4b). DLD1 cells 

appeared more resistant to GOT1 knockout (Fig. 4.4c). Since protein expression was 

analyzed on the bulk population of CRISPR-Cas9-treated cells, I screened clonal 

populations for GOT1 knockout. All clones had varying amounts of GOT1 expression 

(Fig. 4.4d) and proliferation was not impaired in any clones (Fig. 4.4e). I hypothesize 

GOT1 is an essential gene in CRC cells, where complete knockout is lethal. Presumably, 

the cells that grow out are incompletely edited by CRISPR, allowing expression of GOT1. 

 

Figure 4.4 CRISPR-Cas9-mediated GOT1 knockout in CRC cells. Western blots for GOT1 and 
loading controls HSP90 or β-actin from (A) HCT116 cells transfected with single guide RNA targeting 
GOT1 (two independent guides: sgGOT1 #5 and sgGOT1 #10) or non-targeting single guide RNA 
(sgNT), (B) HCT116 cells transfected a second time with sgGOT1 or sgNT, and (C) DLD1 cells 
transfected with sgGOT1 or sgNT. (D) Western blots for GOT1 and vinculin loading control from HCT116 
clonal populations from the bulk population presented in (A). (E) Relative growth curves of select 
HCT116 clones. Error bars represent s.d. from biological replicates (n=3). 
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Compensation for GOT1 independence in CRC cells 

Because CRC cells are insensitive to GOT1 inhibition, I sought to determine how CRC 

cells compensate for GOT1 independence. Metabolic pathways that could bypass GOT1 

include conversion of citrate to oxaloacetate by ATP citrate lyase (ACLY), mitochondrial 

export of malate via mitochondrial dicarboxylate carrier (SLC25A10), or mitochondrial 

import of malate or glutamate via mitochondrial 2-oxoglutarate/malate carrier 

(SLC25A11) and mitochondrial aspartate glutamate carrier (SLC25A12), respectively, to 

fuel the TCA cycle (Fig. 4.5a). Doxycycline (dox)-inducible shACLY was transduced into 

HCT116 cells expressing dox-inducible shGOT1 or non-targeting control (shNT) (Fig. 

4.5b). Knockdown of ACLY alone or in combination with GOT1 did not inhibit colony 

forming potential (Fig. 4.5c,d). Dox-inducible expression of shSLC25A10, shSLC25A11, 

or shSLC25A12 (Fig. 4.5e) also did not impair colony forming potential of HCT116 cells 

(Fig. 4.5f,g). The metabolic programs that contribute to GOT1 independence in KRAS-

mutated CRC cells remain unknown and could be driven by other genomic or epigenomic 

events of CRC9 beyond the scope of my research. 
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Figure 4.5 Possible mechanisms for bypassing GOT1 in CRC cells. (A) Schematic of mechanisms 
CRC cells may utilize to bypass GOT1 dependence. (B) Western blot for GOT1, ACLY, and β-actin 
loading control from dox-inducible shGOT1, shACLY, and/or shNT HCT116 cells. (C) Relative colony 
number after dox treatment in HCT116 cells expressing shNT or shGOT1 in combination with shACLY. 
Error bars represent s.d. from biological replicates (n=3). (D) Representative wells from colony forming 
assays quantified in (C). (E) Western blots for SLC25A10, SLC25A11, SLC25A12, and β-actin and 
HSP90 loading controls from HCT116 cells expressing the respective dox-inducible short hairpin RNA. 
(F) Relative colony number after dox treatment in HCT116 cells expressing shNT or two independent 
hairpins against shSLC25A10, shSLC25A11, or shSLC25A12. (G) Representative wells from colony 
forming assays quantified in (F). Error bars represent s.d. from biological replicates (n=3). Student’s t-
test (unpaired, two-tailed) (C); One-way ANOVA (F); no statistical significance between groups. 
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Materials and Methods 

Mouse Strains 

All animal studies were performed in accordance with the guidelines of Institutional 

Animal Care and Use Committee (IACUC) and approved protocols. KrasLSL-G12D/+, 

Ptf1aCre/+, Tp53LSL-R172H/+, and G6PDmut mice have been previously described (see 

Chapter 2). KrasLSL-G12D/+; Ptf1aCre/+ (KC) mice were maintained on a C57BL/6 

background. KrasLSL-G12D/+; Ptf1aCre/+; G6PD (KCG) and KrasLSL-G12D/+; Tp53LSL-R172H/+; 

Ptf1aCre/+; G6PD (KPCG) mice were maintained on a mixed background. 

Cerulein Treatment 

Wild-type mice were generated from the KrasLSL-G12D/+; Ptf1aCre/+ (KC) colony. Cerulein 

treatments were performed on mice between 7 and 16 weeks of age. Cerulein (American 

Peptide Company Inc) was dissolved in sterile saline. For chronic pancreatitis, cerulein 

was administered to mice twice daily for 14 days at a concentration of 250 mg/kg body 

weight via intraperitoneal injection. For acute pancreatitis, mice were given hourly 

injections of cerulein for 8 hours for 2 days at a concentration of 75 mg/kg body weight 

via intraperitoneal injection. An equal volume of sterile saline was injected as a control. 

Mice were pretreated with 250 µg/kg oligomycin A (Sigma, 75351) the day prior to starting 

cerulein injections and 1 hour prior to the first daily cerulein injections. 

Histology 

Mice were sacrificed by CO2 asphyxiation then tissue was quickly harvested and fixed 

overnight at room temperature with zinc formalin fixative (Z-Fix, Anatech LTD, 174). 

Tissues were processed using a Leica ASP300S Tissue Processor (Leica Microsystems 

Inc), paraffin embedded, and cut into 5 μm sections. Hematoxylin and eosin (H&E) 

staining was performed using Mayer's hematoxylin solution and Eosin Y (Thermo Fisher 

Scientific, HT110116). Slides were scanned with a Pannoramic SCAN scanner (Perkin 

Elmer). 

Three-dimensional Acinar Cell Explant Culture 

Pancreas was harvested and rinsed twice in 5 mL cold HBSS (Gibco, 14170112). Tissue 

was minced with sterile scissors into 1-5 mm sized pieces then centrifuged for 2 minutes 

at 300 g and 4ºC. Media was aspirated and minced tissue was digested with ~5 mg of 
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Collagenase P (Roche) in 5 mL cold HBSS for 15-18 minutes, shaking at 100 rpm at 

37ºC. Collagenase P was inhibited by addition of 5 mL cold 5% FBS in HBSS. Cells were 

centrifuged for 2 minutes at 300 g and 4ºC then washed with 5 mL cold 5% FBS in HBSS. 

This was repeated twice more. Cells were passed through 500 μm polypropylene mesh 

(Pluriselect, Fisher, NC0822591). Mesh was washed with 5 mL cold 5% FBS in HBSS. 

Cells were passed through 100 µm polypropylene mesh (Fisherbrand, 22363549) then 

pelleted through 10 mL of 30% fetal bovine serum gradient. Cells were resuspended in 

media and incubated at 37ºC for 2-4 hours prior to embedding. All media was 

supplemented with 0.4 mg/mL soybean trypsin inhibitor (Gibco, 17075-029), 1 ug/mL 

dexamethasone (Sigma, D4902), and 0.5% gentamicin (Lonza, 17-519L). All media was 

adjusted to final pH 7.2-7.4 at 37ºC and sterilized through a 0.22 μm PVDF membrane 

(Millipore, Stericup Filter Unit, SCGVU01RE; Steriflip Filter Unit, SE1M179M6). Unless 

indicated, cells were cultured in 1x Waymouth’s media (Sigma, W1625) supplemented 

with 2.2 g/L sodium bicarbonate (Sigma, S5761). Glutamine dropout media was prepared 

from DMEM powder without glucose or glutamine (Sigma, D5030) supplemented with 3.7 

g/L sodium bicarbonate and 25 mM D-glucose (Sigma, G7021). Control media was 

supplemented with 4 mM L-glutamine (Gibco, A2916801). Acinar cells were embedded 

in bovine collagen (Culturex, 344205001) according to the manufacturer’s protocol. 

Culture media was added on top of solidified matrix and changed on days 1, 3, and 5 

after plating.  

Cell culture 

HCT 116 (RRID:CVCL_0291) cell line was obtained from the American Type Culture 

Collection. All cell lines were routinely tested for mycoplasma contamination (Lonza 

MycoAlert Plus, LT07-710). HCT 116 was cultured in DMEM (Gibco, 11965-092) with 

10% FBS. 

shRNA constructs and iDox-shRNA stable cell lines 

The lentiviral vector containing tetracycline inducible system Tet-pLKO-puro (a gift from 

Dmitri Wiederschain) was engineered to contain the following shRNAs: GOT1 coding 

region (shGOT1 #1, TRCN0000034784) or GOT1 3’UTR (shGOT1 #3, 5’-

CCGGTTGGAGGTCAAAGCAATTAACTCGAGTTAATTTGCTTTGACCTCCAATTTTT-
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3’). Oligonucleotides were obtained (Integrated DNA Technologies Inc.), annealed and 

cloned at AgeI and EcoRI sites in tet-pLKO-puro (Addgene, 21915; 

http://www.addgene.org/21915, RRID:Addgene_21915) following the Wiederschain 

Protocol (https://media.addgene.org/data/plasmids/21/21915/21915-attachment_ 

Jws3xzJOO5Cu.pdf). A tet-pLKO non-targeting control vector (shNT, 5’-

CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTT

T-3’; or shLUC, TRCN0000072259) was constructed similarly. Tet-pLKO-shGOT1 and 

tet-pLKO-shNT lentiviruses were produced by the University of Michigan Vector Core 

using the purified plasmids. Parental HCT 116 cells were then transduced with optimized 

viral titers and stable cell lines were established post puromycin selection.  

sgRNA constructs and CRISPR-Cas9 cell lines 

The lentiviral vector lentiCRISPR v2 (Addgene, 52961) was engineered to contain the 

following sgRNAs: sgGOT1 #5 (5’-GAGTTGGGTCAATCCCAGTTGGG-3’) or sgGOT1 

#10 (5’-GATAGGCTGAGTCAAAGAAG-3’) (gifts from Alec Kimmelman). Cells were 

transfected via Lipofectamine LTX Reagent with PLUS Reagent (Invitrogen, 15338100) 

according to the manufacture’s protocol. Stable cell lines were established post 

puromycin selection. 

Colony forming assays 

Colony forming assays (CFA) were performed as previously described with slight 

modifications8. Briefly, cells were plated in 6-well plates at 300 cells per well in 2 mL of 

media. 24 hours after seeding, dox was added at 1 ug/mL and culture medium was 

changed every 48 hours. After 8-13 days, colonies were fixed with 100% methanol and 

stained with 0.5% crystal violet solution. Colonies in triplicate wells were counted in 

ImageJ and graphed. Statistical analyses performed using GraphPad Prism7 software. 

Western blot analysis 

Protein lysates were collected after five days using RIPA buffer (Sigma, R0278) 

containing protease inhibitor cocktail (Sigma/Roche, 04 693 132 001). Samples were 

quantified with Pierce BCA Protein Assay Kit (ThermoFisher, 23225). 10 to 40 µg of 

protein per sample were resolved on NuPAGE Bis-Tris Gels (Invitrogen, NP0336) and 

blotted to PVDF membranes (Millipore, IPVH00010). Membranes were blocked in Tris-
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buffered saline (Bio-Rad, 170-6435) containing 0.5% of Tween 20 (Sigma, P2287) (TBS-

T buffer) and 5% non-fat dry milk (LabScientific, M0841) then incubated with primary 

antibody overnight at 4oC. The membranes were then washed with TBS-T buffer followed 

by exposure to the appropriate horseradish peroxidase-conjugated secondary antibody 

for 1h and visualized on either Kodak X-ray film (GeneMate, F-9023-8x10) or BioRad 

ChemiDoc Imaging System using either SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Scientific, 34080) or ECL Prime Western Blotting Detection Reagent 

(Amersham, RPN2232). The following antibodies were used: anti-aspartate 

aminotransferase (anti-GOT1) at a 1:1,000 dilution (Abcam, ab171939), anti-ATP citrate 

lyase (anti-ACLY) at a 1:500 dilution (ProteinTech, 15421-1-AP), anti-SLC25A10 at 1:250 

(Atlas Antibodies, HPP023048), anti-SLC25A11 at 1:250 (Atlas Antibodies, HPA021167), 

anti-SLC25A12 at 1:250 (Atlas Antibodies, HPA035333), and loading controls β-actin at 

1:10,000 (Santa Cruz Biotech, sc-47778) or HSP90 at 1:1,000 (Cell Signaling Technology 

4874S). Anti-rabbit IgG, HRP-linked (Cell Signaling Technology, 7074) and anti-mouse 

IgG, HRP-linked (Cell Signaling Technology, 7076) secondary antibody was used at a 

1:10,000 dilution. 

Cell Proliferation Assay 

Cells were plated in triplicate in 100 μL at 1,000 cells/well in 3 identical plates. At day 1, 

3, and 6, media was gently removed from the wells and placed at -80ºC. Cell proliferation 

was measured using CyQUANT Cell Proliferation Assay (Molecular Probes, C7026) at 

the same time for all plates. Fluorescence was measured using a SpectraMax M3 

Microplate Reader (Molecular Devices). 
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CHAPTER 5 

Conclusions and Future Directions 

Introduction 

The incidence of pancreatic ductal adenocarcinoma (PDA) is increasing while some other 

major cancers are declining1. Early detection methods and effective treatments are 

needed to improve the dismal 10% five-year survival rate. PDA cells extensively 

reprogram cellular metabolism for growth and survival2. Mutations in oncogenic KRAS 

drive metabolic rewiring PDA cells are dependent on to supply biosynthetic precursors 

and energy. Understanding the metabolic dependencies of tumorigenesis and tumor 

maintenance could reveal targetable vulnerabilities for disease detection and/or 

treatment. I determined metabolic requirements, centering on redox homeostasis, that 

contribute to pancreatic tumorigenesis and could be leveraged for therapeutic strategies 

against PDA tumors.  

Pancreatic Tumorigenesis 

Mouse models of pancreatic cancer have revealed that acinar cells, driven by mutations 

in oncogenic Kras in acinar cells can give rise to PDA3,4. Tumorigenesis can begin with 

acinar cells transdifferentiating into ductal progenitor cells, a process termed acinar-to-

ductal metaplasia (ADM). Using ex vivo models of ADM5, I determined metabolic 

requirements for transdifferentiation of primary acinar explants (Fig. 5.1). I found acinar 

cells require subphysiological concentrations of glucose to survive and undergo ADM. 

Further, I demonstrated that exogenous glutamine or branched-chain amino acids 

(BCAA) are dispensable for ADM. Mutation of glucose-6-phosphate dehydrogenase 

(G6PD) impairs the oxidative pentose phosphate pathway (PPP), resulting in an 

accelerated rate of ADM in vitro and tumorigenesis in vivo. I also found acinar cells are 

profoundly sensitive to oxidative phosphorylation inhibition. Future studies will interrogate 

the role of these processes to determine their therapeutic utility, as outlined below. 
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Steady-State and Isotope Tracing Metabolomics 

Although aerobic glycolysis during ADM may not be reprogramed to the extent seen in 

PDA, as demonstrated by lack of glutamine dependency, mutant KRAS does promote 

oxidative PPP, an anabolic pathway shunting off glycolysis. We hypothesize that 

KrasG12D-expressing acinar cells utilize glucose as a main source feeding into 

mitochondrial metabolism since ADM is not sensitive to the absence of glutamine or 

BCAA (Fig. 5.1). As a future extension of this work, we will employ steady-state and stable 

isotope tracing metabolomics, akin to those we performed in PDA and CRC cells. We will 

characterize metabolism over the course of ADM using the same experimental setup 

done for transcriptomic analysis. Steady-state analysis will determine changes in 

metabolite abundance during ADM while isotope tracing will determine how nutrients are 

Figure 5.1 Metabolic requirements for ADM and select future directions. Acinar cells require glucose 
and oxidative phosphorylation to undergo ADM. Exogenous glutamine and branched-chain amino acids 
(BCAA) are dispensable for ADM, so we hypothesize glucose is a main source feeding mitochondrial 
metabolism. Mutant G6PD (G6PDmut) impairs the oxidative (ox) pentose phosphate pathway (PPP) and 
accelerates ADM. We hypothesize G6PDmut causes decreased levels of NADPH, which reduces 
glutathione (GSH) levels and increases reactive oxygen species (ROS) levels. Other NADPH-producing 
enzymes, such as malic enzyme 1 (ME1) and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), may 
contribute to ADM. Finally, nonautonomous metabolic signals from macrophages, T cells, B cells, and/or 
fibroblasts are unknown and of interest. Non-ox, non-oxidative; R5P, ribose 5-phosphate; TCA, tricarboxylic 
acid cycle .Created with BioRender.com 
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utilized by metabolic pathways. Tracing glucose metabolism with uniformly labeled 13C 

(U-13C) glucose will reveal the extent of glucose utilization of acinar cells by determining 

the proportion of glycolytic intermediates dedicated to the TCA cycle and any shifts into 

anabolic pathways, such as the PPP, hexosamine biosynthetic pathway, and 

serine/glycine metabolism. It is also of interest to trace glutamine metabolism with U-13C 

and uniformly labeled 15N (U-15N) glutamine. Since acinar cells do not require glutamine 

supplementation, metabolic tracing might reveal changes in metabolism that occur during 

ADM but are not required for transdifferentiation—i.e. neutral metabolic activities that are 

dispensable for tumor growth6. It is important to determine these types of pathways since 

they are likely not strong therapeutic targets. 

Pentose Phosphate Pathway 

Further characterization of the KrasLSL-G12D/+; Ptf1aCre/+; G6PDmut (KCGmut) and KrasLSL-

G12D/+; Tp53LSL-R172H/+; Ptf1aCre/+; G6PDmut (KPCGmut) models is needed to determine the 

consequences G6PD-deficiency has on accelerating tumorigenesis (Fig. 2.5b,c). We 

hypothesize G6pd mutation in acinar cells causes decreased production of NADPH, 

which in turn reduces antioxidant levels (e.g. glutathione [GSH]) and enhances the 

abundance of reactive oxygen species (ROS) (Fig. 5.1). ROS increases in KCGmut mice 

may be at slightly higher levels that promote accelerated tumorigenesis but still below the 

levels that initiate senescence. ROS and oxidant stress measurements will be performed 

on both acinar explants and tissues from KCGmut and KCGwt mice7. Levels of NADPH and 

GSH will be measured with our metabolomics platform and with biochemical assays8. 

Tissue collected from mice at 8, 16, 26, and 52 weeks (Fig. 2.4e) will be further analyzed 

to determine differences in number and grade of ADM and PanIN lesions, presence of 

carcinoma, proliferation, cell death, and oxidative stress. Tissue analysis will also be 

performed on 90-day-old KPCGmut and KPCGwt mice (Fig. 2.6b). Longitudinal studies are 

on-going to increase the sample size for survival analysis (Fig. 2.6c); pancreas tissue, 

along with lung and liver tissue—the most common metastatic sites9—will be analyzed 

for differences in tumor differentiation and metastatic burden. 
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Oxidative Phosphorylation 

Mutant KRAS is critical for tumor development, progression, and maintenance10,11. 

However, upon KRAS ablation, a small population of dormant cells survive and contribute 

to tumor recurrence12. The surviving cells have features of tumor-initiating cells and are 

dependent on oxidative phosphorylation for survival, in contrast to the bulk of glycolytic 

tumor cells that succumb to oncogene ablation. The surviving cells show profound 

sensitivity to 200nM oligomycin within 24 hours—like acinar explants at 20nM oligomycin 

(Fig. 2.3)—and are unable increase glycolytic flux to compensate energy production. This 

suggests metabolic pathways needed for acinar cell transdifferentiation may be relevant 

in a quiescent, tumor-initiating cell population. We will treat ex vivo ADM cysts with 

oligomycin to determine if these ductal progenitor cells are as sensitive to oxidative 

phosphorylation inhibition as tumor cells that survive KRAS ablation. Establishing 

metabolic pathways that drive ADM will not only reveal requirements for tumorigenesis, it 

may also reveal metabolic dependencies of tumor-initiating populations that survive 

treatment targeting the bulk tumor and contribute to recurrence. Interestingly, oxidative 

phosphorylation dependence is also observed in leukemia stem and progenitor cells13,14. 

NADPH-Producing Enzymes 

The roles of other NADPH-producing enzymes, such as malic enzyme 1 (ME1) and 

methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), during ADM are unknown and 

of interest (Figs. 2.4b, 5.1). Not only is NADPH used for maintaining redox balance, large 

quantities are required in the generation of lipids15. Importantly, ADM requires both redox 

homeostasis and de novo lipid synthesis, suggesting an important function for NADPH 

during ADM16,17. Transcription factors nuclear factor erythroid 2-related factor 2 (NRF2) 

and the family of sterol regulator element-binding proteins (SREBPs)—which regulate 

expression of genes involved in antioxidant response and lipid homeostasis, 

respectively—upregulate expression of NADPH-producing enzymes18,19. The oxidative 

PPP, via G6PD, is a major producer of NADPH20. Interestingly, serine-driven folate 

metabolism has been shown to be an almost equal contributor of NADPH via MTHFD1 

and oxidative PPP can influence folate metabolism20,21. ME1 is of particular interest 

because it is the enzyme that produces NADPH from rewired glutamine metabolism in 

PDA22. ME1 can compensate for loss of G6PD to maintain redox balance and fatty acid 
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synthesis21. We hypothesize that knockdown or loss of these enzymes in acinar cells will 

phenocopy the acceleration of ADM seen with G6PD-deficiency due to reduced NADPH 

production. Also, the role of serine metabolism during ADM is unknown and may reveal 

metabolic dependencies of tumorigenesis. 

ROS Signaling 

Maintaining elevated redox homeostasis is important for both tumorigenesis and tumor 

maintenance17,23. ROS is more than a metabolic byproduct that damages cellular 

components, as traditionally thought. Rather, it plays important roles in cellular signaling 

that promotes growth and survival24,25. Signal induction of receptor tyrosine kinases, such 

as EGFR, following growth factor binding requires a burst of ROS produced by 

membrane-bound NADPH oxidases (NOX) and facilitated by RAC1 (ref:26-30). This burst 

of ROS transiently inactivates protein tyrosine phosphatases and dual specific 

phosphatases that negatively regulate mitogenic signaling31. One such phosphatase 

inactivated by ROS is PTEN, the negative regulator of PI3K–AKT signaling32,33. ROS 

directly inactivates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pyruvate 

kinase muscle isozyme 2 (PKM2), an isoform expressed in proliferating and cancer cells, 

to promote aerobic glycolysis34-37. When oxidative stress levels are too high, ROS 

inactivates GAPDH and PKM2 to shift glycolysis into the PPP and promote the generation 

of GSH. Of note, PKM2 can also be inactivated by a lack of serine, causing a backup 

glycolytic intermediates that can feed into serine biosynthesis38. Interestingly, PI3K 

signaling, activation of RAC1, and increased expression of EGFR and its ligands by 

nuclear factor kappa B (NF-κB)—a ROS-sensing transcription factor—drive ADM, 

suggesting membrane-localized ROS likely play a role in promoting signal transduction 

during ADM17,39-41.  

Hypoxia 

Insufficient levels of oxygen decrease the efficiency of the electron transport chain, 

amplifying mitochondrial-generated ROS (mROS) production42. mROS regulates the 

stabilization of HIF1α and HIF2α, mediating a metabolic shift to maintain redox 

homeostasis under hypoxic conditions43-45. HIF1α promotes a switch from oxidative 

metabolism to aerobic glycolysis by interacting with coactivator PKM2—a HIF1α target 
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gene—to induce expression of glycolytic genes and by regulating genes that attenuate 

oxygen consumption42,46-48. HIF2α activates expression of antioxidant genes49,50. HIF1α 

and HIF2α also regulate genes in serine and one-carbon metabolism to increase NADPH 

generation51. Analysis of KrasLSL-G12D/+; Ptf1aCre/+ (KC) tissue shows ADM and PanIN 

lesions are hypoxic and express HIF1α and HIF2α52,53. Our ADM transcriptomic analysis, 

in which acinar cells were grown in ambient oxygen, also shows evidence of a hypoxia 

signature, including increased expression of Hif1α and Epas1 (encodes HIF2α) and their 

target genes involved in glycolysis, mitochondrial metabolism, and antioxidant defense 

(Fig. 5.2). This response may be from increased oxidative stress required for 

transdifferentiation. Culturing acinar explants in oxygen tensions observed in the 

pancreas during ADM will more accurately represent in vivo setting and model more 

relevant metabolic changes. Either way, these results illustrate a provocative role for the 

HIF pathways and the associated metabolic reprogramming during ADM. 

Wild-type p53 

Although additional genetic alterations—typically tumor suppressor loss—are required for 

PDA progression, KRAS mutations drive ADM. As such, wild-type p53 is active during 

ADM. The p53 transcription factor is a tumor suppressor long known to initiate cell cycle 

arrest, senescence, and apoptosis54. However studies have uncovered a role for p53 

regulating cellular metabolism to adapt to metabolic stress and promote survival55-57. 

Although p53 can induce oxidative stress to stimulate cellular senescence or death, it can 

also limit ROS by inducing expression of antioxidant genes, stabilizing NRF2, and 

increasing NADPH production through the PPP and serine synthesis pathway56,58-60. In 

mouse embryonic fibroblasts (MEF) and KRASG12D-expressing colorectal cancer (CRC) 

cell line HCT 116, p53 reduces production of NADPH by binding to and inactivating G6PD 

and downregulating the expression of Me1 and Me2 (ref:61,62). This phenotype is likely 

context and tissue dependent, like we saw with metabolic changes between mutant KRAS 

PDA and CRC cell lines. During ADM, TP53-induced glycolysis and apoptosis regulator 

(TIGAR), a p53 antioxidant target gene, promotes the generation of NADPH through the 

oxidative PPP63. We also showed that Me1 expression increases during ADM (Fig. 2.4b) 

and that we can decrease oxidative PPP flux through G6PD-deficiency (Fig. 2.4e), 

suggesting p53 is not negatively regulating Me1 or G6PD in this context. Since wild-type 
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Figure 5.2 Expression of hypoxia target genes. Relative expression of (A) Hif1α, glycolytic target 
genes Pkm2, Slc2a1 (encodes GLUT1), Hk1, Hk2, Ldha, and Pdk1, and mitochondrial complex I 
inhibitor Ndufa4l2, (B) Epas1 (encodes HIF2α) and antioxidant target genes, and (C) serine and folate 
metabolism genes in control (ad-GFP) or KrasG12D-expressing (ad-CRE) acinar cells collected days 1-
3, n=3. # denotes HIF1α and HIF2α target genes. Cat, catalase; Epas1, endothelial PAS domain protein 
1; GLUT1, glucose transporter 1; Gpx1, glutathione peroxidase 1; Gpx8, glutathione peroxidase 8; 
Hif1α, hypoxia-inducible factor 1 alpha; HIF2α, hypoxia-inducible factor 2 alpha; Hk1, hexokinase 1; 
Hk2, hexokinase 2; Hmox1, heme oxygenase 1; Ldha, lactate dehydrogenase A; Mthfd1, 
methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1;  
Mthfd2, methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate 
cyclohydrolase; Mthfd2l, methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-
like;Ndufa4l2, NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2; Pdk1, pyruvate 
dehydrogenase kinase 1; Phgdh, phosphoglycerate dehydrogenase; Pkm2, pyruvate kinase, muscle 
isoform M2; Prdx3, thioredoxin-dependent peroxide reductase, mitochondrial; Psat1, phosphoserine 
aminotransferase 1; Psph, phosphoserine phosphatase; Shmt1, serine hydroxymethyltransferase, 
cytosolic; Shmt2, serine hydroxymethyltransferase, mitochondrial; Slc2a1, solute carrier family 2 
member 1; Sod1, superoxide dismutase 1; Sod2, superoxide dismutase 2. Error bars represent s.d. *, 
P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; One-way ANOVA. 
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p53 is inactivated in later stages of tumorigenesis, these data indicate p53 may play a 

protective role during KrasG12D-driven ADM. Inactivating p53 by deletion or mutation in 

acinar explants will uncover the metabolic effects of wild-type p53 during ADM. 

Nonautonomous metabolic crosstalk 

PDA tumors are comprised mostly of non-malignant cells that make up the dense 

fibroinflammatory stroma2. Metabolic crosstalk between tumor cells and non-malignant 

cells in the tumor microenvironment support tumor growth, survival, and metastasis2,64-67. 

Nonautonomous metabolic signals likely influence ADM since mouse models show early 

immune cell—T cells, B cells, and macrophages—and stromal cell infiltration during and 

contributing to tumorigenesis52,68-70. In vitro cell culturing systems can be used to simplify 

complex in vivo crosstalk between different cell types64,65. Culturing primary acinar cells 

alongside immune or stromal cells, or in conditioned media from these cell types71, could 

reveal signals or metabolites from these infiltrates that promote ADM and tumorigenesis 

through metabolic reprograming (Fig. 5.1). 

Mouse model limitations 

The KC mouse was the first to express endogenous levels of mutant KrasG12D in the 

pancreas and recapitulate tumor progression seen in human PDA72. While the KC model 

is useful for studying pancreatic tumorigenesis, long latency of tumor development and 

infrequent progression to invasive cancer limits its use. An additional mutation of tumor 

suppressor Tp53, generating the KPC model, increases the penetrance and development 

of invasive and metastatic PDA73. Missense mutations R175H and R273H (corresponding 

to mouse R172H and R270H) are the most frequent p53 mutations in pancreatic cancer74. 

The KPC mouse is one of the most widely used and studied models of pancreatic cancer. 

However, this model has its limitations75. Expression of Cre recombinase results in 

recombination of a silencing cassette—“STOP” flanked by two loxP sites (LSL)—which 

allows expression of the mutant alleles. In KPC mice, due to expression of Cre from 

pancreas-specific transcription factor promoters, Ptf1a or Pdx1, mutant Kras and Tp53 

alleles are recombined in pancreatic progenitor cells during embryogenesis. Not only 

does this result in concomitant expression of mutant Kras and Tp53, but all pancreatic 

epithelial cells express these mutant alleles. This greatly differs from human PDA 
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predominantly arising from somatic mutations. Since KrasLSL-G12D and Tp53LSL-R172H are 

knocked into their respective endogenous loci, the LSL cassette causes all non-

recombined cells to be heterozygous knockouts for these genes. Haploinsufficiency of 

nonautonomous cells (those that do not recombine) could have profound effects on 

tumorigenesis and disease progression that differ from human PDA. Also, mutant p53 

greatly accelerates tumor development and progression leading to a median survival of 

5.5 months73, while human PDA tumors take years to develop. This acceleration could 

either mask subtle effects or potentiate modest effects that may or may not be important 

factors in human PDA. 

Although KPC mice recapitulate human disease through stepwise progression of 

premalignant lesions to invasive and metastatic cancer, the embryonic and simultaneous 

genetic insults do not model the biology of human PDA9,73. In PDA, and other cancers 

with multi-step progression, Ras mutations generally occur at early-stages and Tp53 

alterations at mid- or late-stages of tumorigenesis and these genetic insults typically occur 

in adult tissues9,76. Improvements on the KC and KPC models allow temporal expression 

of mutant Kras or Tp53 to better recapitulate genetic alterations of human pancreatic 

cancer77. Expression of mutant Kras and alterations in Tp53 can be induced in adult 

acinar cells, however these genetic insults still occur simultaneously4,10,11,78,79. Other 

models that mimic sequential mutations seen in human PDA development can induce 

Tp53 alterations in mutant Kras-expressing adult acinar cells, however expression of 

mutant Kras is still activated embryonically in pancreatic progenitor cells74,80. Importantly, 

all of these models still generate heterozygous null mice for Kras and p53. Recently a 

mouse model was developed that allows tissue-specific conversion of wild-type Tp53 to 

mutant Tp53 while maintaining two alleles of wild-type Tp53 in the rest of the mouse81. 

Ideally, a mouse model that allows mutant Kras expression in adult acinar cells followed 

by sequential expression of mutant Tp53 would more closely resemble genetic changes 

seen in human PDA and model pathways important for tumorigenesis. Utilization of 

established models that express mutant Tp53 in adult mutant Kras-expressing acinar 

cells or generating a model that allows separate but temporally controlled expression of 

mutant Kras then mutant Tp53 mutations in adult acinar cells—all in the G6PD-deficient 

background—could clarify the discrepancy seen between accelerated tumorigenesis in 
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KCG mice not causing accelerated mortality in KPCG mice. The metabolic influences of 

mutant p53, described below, may provide tumorigenic advantages regardless of G6PD 

status, which would not be a factor if mutant p53 is expressed following transformation of 

KrasG12D-expressing acinar cells. 

Oncogenic mutations in Tp53 possess gain of function activities that promote malignant 

properties, including metabolic changes82-85. Embryonic and simultaneous expression of 

mutant Kras and Tp53 in the mouse pancreas likely has profound metabolic effects that 

influence tumorigenesis differently than sequential mutation in adult cells. Mutant p53 

enhances glycolysis and anabolic metabolism through transcriptional activation of genes 

involved in glucose import, the mevalonate pathway, and lipid and nucleotide biosynthesis 

in cancer cells86-90. Positron emission tomography (PET)-computed tomography (CT) with 

18F-fluorodeoxyglucose (FDG) (FDG PET-CT) scans of pancreatic cancer patient-derived 

xenografts (PDX) show elevated glucose uptake in tumors with mutant p53 compared to 

those with wild-type p53 (ref:91). In cancer cell lines, mutant p53 also elevates oxidative 

phosphorylation, causing increased ROS and oxidative stress levels87,92,93. In response 

to increased oxidative stress, mutant p53 interacts with NRF2 to differentially express 

select NRF2 target genes that promote cell proliferation and survival and protect from cell 

death92-95. Interestingly, a PDA mouse model with an inducible p53 mutation shows 

reduced mitochondrial activity and BCAA catabolism74. Mutant p53 also protects cancer 

cells during glucose, glutamine, or oxygen deprivation by inducing activation of pro-

survival genes and not pro-death genes96-98. 

Many pathways influenced by mutant p53, such as changes in redox homeostasis and 

the mevalonate pathway, are important factors for transdifferentiation of oncogenic Kras-

expressing acinar cells16,17,63,99. Autophagy is another metabolic pathway that plays a role 

during ADM and is influenced by mutant p53. Impairment of autophagy is required for 

ADM100,101, and since mutant p53 inhibits autophagy102, the mechanism by which 

autophagy is impaired in mutant Kras-expressing acinar cells may be masked by 

concomitant expression of mutant p53. Mutant p53 increases EGFR and NF-κB signaling 

pathways—ones required for ADM70—in cancer cells. Mutant p53 regulates microRNAs 

that ultimately lead to increased EGFR expression, enhancing MAPK signaling and 
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proliferation103. Mutant p53 also increases expression of NF-κB and enhances and 

prolongs its activation by TNFα, promoting chronic inflammation104,105. The gain of 

function activities mutant p53 possess likely contribute to accelerated pancreatic 

tumorigenesis seen in KPC mice73, although they may be context dependent. 

Pancreatic Tumor Maintenance 

PDA cells reprogram cellular metabolism to support growth and proliferation2. Mutant 

KRAS diverts glucose-derived carbon into anabolic pathways that branch off glycolysis 

and enhances utilization of glutamine-derived carbon in mitochondrial metabolism10,22. 

Since oncogenic KRAS enhances glycolytic flux into the non-oxidative PPP pathway and 

not the NADPH-generating oxidative PPP, the malate-aspartate shuttle is rewired to 

generate NADPH and maintain redox homeostasis. We found that inhibition of this 

pathway decreases PDA cell and tumor growth and sensitizes cells to oxidative stress via 

radiation treatment, revealing a potential therapeutic strategy. 

GOT1 Inhibitors and Targeted Radiotherapy 

Genetic knockdown of glutamate oxaloacetate transaminase 1 (GOT1) with short hairpin 

RNA (shGOT1) impedes the growth of PDA cell lines and primary cells in vitro and 

subcutaneous and orthotopic xenograft tumors in vivo (Figs. 3.1b,c, 3.3b-d)106. GOT1 

knockdown induces redox imbalance and sensitizes PDA to radiation therapy (Figs. 3.19-

3.21). Since cell lines were genetically manipulated prior to implantation, GOT1 

knockdown only occurs in the cancer cells. However, most treatments are systemic, 

affecting the entire body. We recently developed novel small molecule inhibitors (SMI) 

targeting GOT1 that will enable us to treat xenograft or autochthonous PDA mouse 

models in a more clinically relevant manner107-109. We will be able to determine if these 

SMI are a viable therapeutic option not only for the effect on tumors, but also the effect 

on normal tissues throughout the body. We will also use the GOT1 SMI in conjunction 

with Small Animal Radiation Research Platform (SARRP) (Xstrahl) to treat orthotopic 

xenografts. SARRP accurately identifies tumor tissue with cone beam-CT and 

bioluminescent imaging and delivers targeted radiation in a manner that mimics treatment 

of human tumors. This new technology will allow us to improve upon our results treating 

subcutaneous shGOT1 xenografts with radiotherapy (Fig. 3.21). 
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GOT1 Pathway 

Mutant KRAS mediates metabolic rewiring of the malate-aspartate shuttle to generate 

NADPH and maintain redox homeostasis in PDA cells (Fig. 3.1a). Knockdown of GOT1, 

malate dehydrogenase 1 (MDH1), or malic enzyme 1 (ME1) impair PDA cell line 

proliferation and tumor growth22. We developed mouse models that allows conditional 

deletion of GOT1, MDH1, or ME1 (Got1f/f, Mdh1f/f, and Me1f/f, respectively). These alleles 

are being introduced into the KC model for concomitant expression of KrasG12D and 

deletion of GOT1/MDH1/ME1 in the pancreas to determine how these enzymes affect 

tumorigenesis and tumor progression. 

Conclusions 

KRAS mutations are found in over 90% of PDA tumors and is the driving mutation for 

tumor development and maintenance110. Unfortunately, KRAS has proven notoriously 

difficult to target pharmacologically, so KRAS-dependent pathways remain promising 

targets for the development of new therapeutics111-113. PDA, mediated by oncogenic 

KRAS, extensively rewire cellular metabolism; as such present as metabolic 

vulnerabilities for therapeutic targets2. I found acinar cells require subphysiological levels 

of glucose to survive and undergo ADM, presumably to maintain flux through anabolic 

pathways that contribute to preserving redox homeostasis during heightened oxidative 

stress. Perturbing the oxidative PPP during ADM likely decreases NADPH production 

used to generate antioxidants, raising ROS levels to accelerate tumorigenesis. Redox 

balance is tightly regulated in PDA cells by reprogramming glutamine metabolism to 

generate NADPH22. I found inhibition of GOT1, a key enzyme in this pathway, disrupts 

GSH levels and sensitizes cells to oxidative stress induced by radiotherapy. Radiotherapy 

is a standard of care in many institutions and the addition of GOT1 inhibition could 

overcome radiation resistance seen in PDA patients and improve therapeutic 

outcomes114. Understanding the metabolic pathways that contribute to pancreatic 

tumorigenesis and tumor maintenance, such as redox homeostasis, could provide 

biomarkers for diagnosis of early disease or development of better therapeutics for 

treating PDA. 
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