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5.5 Schematic representation of the specific subsystem investigated for robustness. (a)
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are “integrated out” by computing the free energy via Eqn. 5.13. The external
design stress on the system has the form of a constant force ~σext shown with a
purple arrow. (b) Coarse graining procedure leads to the free energy landscape
F (x, y) for the possible positions of the first unit in the part of the domain left
of the bulkhead. Local free energy minima are identified with architecture classes
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5.9 Two-factor robustness (R2) comparison for model-system architecture classes facili-
tates the elimination of non-robust (weak/brittle) architectures. The analysis of the
model system implements the scheme sketched in Fig. 5.4, using the two robustness
factors of ultimate stress (εult, vertical axis) and ultimate strain (σult, horizontal
axis). The three panels depict the architectures and robustness relations among
them at different cost tolerances T (T = 1.2-a, T = 1.5-b, T = 1.7-c). Architec-
tures are represented by circles with size proportional to global design objectives.
At high cost tolerance (c), where design pressure favors flexibility in realizing de-
signs, the architecture C (also marked with a red ×) falls in the shadow of both
architectures A and B. Between architectures A and B there is a trade-off in robust-
ness between strength and ductility. A similar trade-off exists at low cost tolerance
(a) between architectures D and E. At intermediate tolerance (b) where there is
a balance of concern between cost and flexibility, more architectures are possible.
Comparing their robustness, the architecture A is eclipsed by C, the architecture
B falls in the shadow of all other architectures, and a trade-off exists between the
three architectures C, D, and F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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6.8 Early stage design decisions determine the association patterns and design freedom
for subsequent ones. (a) Tensor network used for association computations. Three
out of seven units have already been anchored to specific locations (brown), other
four are pending placement (green). External legs not shown. (b) The units 1,2,6
are anchored at the indicated locations within the ship hull (brown squares). The
units 0,3,4,5 can still be placed in many locations, some demonstrated for an ex-
ample (green circles). (c) Graph of the design freedom Φ for the four units without
anchors across a range of cost tolerance T . Brown brackets on the right indicate
that units with more adjacent anchors have less remaining design freedom. Vertical
dotted lines indicate the T values investigated in more detail in panels (d-g), as
well as in avoidance and adjacency patterns. (d-g) Design stress ∆F patterns for
the placement of each pending unit (rows in order of decreasing design freedom Φ)
at three values of T (columns, color coded). Legend for design stress magnitude
∆F is shown to the left of panel (d). . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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two orthogonal directions of coarse-graining. Horizontal axis represents the reduc-
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full design objective O (Eqn. 6.2) depends on all unit locations and routings. The
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6.10 Tensor networks can be used as information structures as combinations of basic
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ABSTRACT

Modern life increasingly relies on complex products that perform a variety of

functions. The key difficulty of creating such products lies not in the manufacturing

process, but in the design process. However, design problems are typically driven

by multiple contradictory objectives and different stakeholders, have no obvious

stopping criteria, and frequently prevent construction of prototypes or experiments.

Such ill-defined, or “wicked” problems cannot be “solved” in the traditional sense

with optimization methods. Instead, modern design techniques are focused on

generating knowledge about the alternative solutions in the design space.

In order to facilitate such knowledge generation, in this dissertation I develop

the “Systems Physics” framework that treats the emergent structures within the

design space as physical objects that interact via quantifiable forces. Mathemat-

ically, Systems Physics is based on maximal entropy statistical mechanics, which

allows both drawing conceptual analogies between design problems and collective

phenomena and performing numerical calculations to gain quantitative understand-

ing. Systems Physics operates via a Model–Compute–Learn loop, with each step

refining our thinking of design problems.

I demonstrate the capabilities of Systems Physics in two very distinct case stud-

ies: Naval Engineering and self-assembly. For the Naval Engineering case, I focus

on an established problem of arranging shipboard systems within the available hull

space. I demonstrate the essential trade-off between minimizing the routing cost

and maximizing the design flexibility, which can lead to abrupt phase transitions.

I show how the design space can break into several locally optimal architecture
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classes that have very different robustness to external couplings. I illustrate how

the topology of the shipboard functional network enters a tight interplay with the

spatial constraints on placement. For the self-assembly problem, I show that the

topology of self-assembled structures can be reliably encoded in the properties of

the building blocks so that the structure and the blocks can be jointly designed.

The work presented here provides both conceptual and quantitative advance-

ments. In order to properly port the language and the formalism of statistical

mechanics to the design domain, I critically re-examine such foundational ideas as

system–bath coupling, coarse graining, particle distinguishability, and direct and

emergent interactions. I show that the design space can be packed into a spe-

cial information structure, a tensor network, which allows seamless transition from

graphical visualization to sophisticated numerical calculations.

This dissertation provides the first quantitative treatment of the design problem

that is not reduced to the narrow goals of mathematical optimization. Using statis-

tical mechanics perspective allows me to move beyond the dichotomy of “forward”

and “inverse” design and frame design as a knowledge generation process instead.

Such framing opens the way to further studies of the design space structures and

the time- and path-dependent phenomena in design. The present work also benefits

from, and contributes to the philosophical interpretations of statistical mechanics

developed by the soft matter community in the past 20 years. The discussion

goes far beyond physics and engages with literature from materials science, naval

engineering, optimization problems, design theory, network theory, and economic

complexity.
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CHAPTER I

Introduction

1.1 What is design?

In our daily life, we are surrounded by a variety of products that perform various

useful functions. These products are complex arrangements of different atoms on

many scales, which very often we didn’t arrange ourselves. Instead, this arrange-

ment was done by a manufacturing process such as baking, cutting, casting, or

printing. The process might have taken place at a factory on the other side of the

planet, in which case our ability to use the product output also depends on the

logistical network that delivered it to our hands. However, even before the product

could be shipped or manufactured, it had to be conceived by someone, or designed.

Design is a curious inversion of science. In science, we attempt to take the role

of impartial observers of a system who perform measurements and analyses of sys-

tem’s output in order to test theoretical hypotheses about system’s behavior. The

hypotheses of most generality that stand the test of empirical data get entrenched

as scientific laws that are true regardless of our actions.[1] In contrast, design is all

about intervention, about harnessing some principles of the natural world to serve

our interests.

Design starts with a desire for some function embodied in a product. Such de-

1
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sire might be driven by an individual’s idea, by the market demand, or an explicit

brief from an employer or client.[2] At the outset, it is often unclear whether such

a function is even physically possible; it would be nice to have a perpetual motion

machine, but that is unfortunately impossible. Even if realizing the desire is phys-

ically possible, it is not immediately clear how exactly to do that. Design is the

process of figuring out if and how the desire can be realized.

Of course, design exists not in vacuum but in a society, and is subject to political

and economic drivers, availability of technology, and existence of knowledge and

knowhow.[3] These constraints together limit the complexity of products that can

be developed in a given geographical area and explain the existence of technology

hubs.[4] For the most complex products, design is the most expensive part of the

life cycle, far surpassing the cost of crude materials and manufacturing that become

cheap with automation and economies of scale.[5, 6]

The design complexity of modern products is driven by their need to perform

many functions. The device now commonly called just a “phone” can likely ex-

change information in several electromagnetic frequency bands, record and produce

sounds, take photos and videos, display colored images, measure orientation and

acceleration, scan fingerprints, and store enough energy to support all the previous

functions. Creating such a product is a task of systems integration: not only each

function needs to have adequate performance, but the different functions need to

smoothly communicate with one another, and the modules that perform them need

to fit within the available space. Each of the modules is frequently designed by a

separate human designer or team, thus requiring further negotiation of the product

architecture.

As a result of these complications, design is not a noun but a verb. The initial



3

idea does not become the final product. Instead, the initial idea spurs an inves-

tigation of options, clarification of goals and constraints, integration of multiple

functionalities. The output of this process is not a singular solution, but the whole

trove of created knowledge. In order to make this characterization of design more

specific, I would adopt the following operational definition of design from Ref. [7],

itself distilled from preceding studies:

Design is the act of generating knowledge for decision-making through time.

The bold emphases allow me to both highlight the key tenets of the definition,

and later to draw analogies with the natural science investigations. The design

process consists of actions, or deliberate efforts by the designers to conduct analy-

sis, modeling, or computation. The output of these efforts provides us with some

knowledge, or organized information about the designed system. In order to narrow

down the range of considered solutions for the system, we need to make decisions

about certain elements, after which the elements are not considered variable any-

more. Finally, the investigation proceeds throughout time, since at any moment

we can only operate based on the knowledge and decisions preceding the moment.

This definition recognizes design as a study area in its own right, beyond the

design of any specific product. Design is understood to be an essentially “wicked”

problem, with associated difficulties discussed below. The wickedness can be mit-

igated by various approaches that recognize the inherent complex and collective

nature of the problem. In this dissertation I draw an analogy between design prob-

lems and physical phenomena, specifically those of statistical physics. For one of

my case studies, Naval Engineering, the analogy is quite nontrivial and needs to

be developed gradually. The other case study, self-assembly, is already known as a
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physical phenomenon, but a lot of questions of self-assembly design remain open.

For both case studies, I highlight to what degree the design phenomena can be

represented in quantitative terms, and develop dedicated mathematical tools to

analyze them. This investigation both shows novel physical phenomena in design

spaces, and gives general recommendations for design analysis.

1.2 Central problems

The discussion of existing design practices allows me to formulate a list of central

problems to address in this dissertation.

First and foremost, I need to formulate a consistent mathematical framework for

design problems that is alternative to optimization. If we don’t focus exclusively

on the absolute minimum of the objective function landscape, then how do we

navigate this landscape? I show that this can be done in statistical physics terms

that reduce to well-defined computations.

Second, I need to devise a way to automate some of the computations by intro-

ducing the appropriate information structures. In the earlier chapters IV-V a lot

of computations can be performed manually or with ad hoc methods, but for the

later chapters VI-VII the mathematical expressions become too bulky and require

invention of new types of graphical and analytical notation.

Third, I aim to investigate the trade-offs in pursuing different design objectives

simultaneously. A discovered trade-off informs us that achieving two or more out-

comes simultaneously is impossible and therefore reveals a choice between them.

In case of Naval Engineering, one important and incompletely understood trade-off

is between the cost of a solution and its flexibility. In case of self-assembly, the

off-target binding strength and bending entropies puts significant limits on the size
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of structures that can be encoded and assembled with high yields.

Fourth, I want to find out whether the design spaces of my case studies contain

phase transitions, or large-scale reorganizations of the design ensemble. Phase

transitions are typically associated with large fluctuations of the optimal solution

and thus high uncertainty of design, but can belong to different classes.

Fifth, I aim to focus at intermediate-scale structures in the design ensemble and

study their robustness to the changes in the problem statement. Having quantita-

tive robustness metrics would allow a designer to identify aspects of the solution

that remain stable as the problem changes.

Sixth, I am interested in integrating the design degrees of freedom of qualita-

tively different nature. Within the Naval Engineering case study, the ship layouts

have to observe both spatial and topological constraints that result in nontrivial

couplings and require special accounting techniques and information structures.

Within the self-assembly case study, structures can be described at different res-

olution level via their topology, linear size, or particular element sequences, and

efficient design should be able to control high-level topology via low-level binding

energies.

Seventh, I need to relate the design variables that are most convenient for theory

to those measurable in experiments or numerical simulations. While the sheer scale

of ship design problems practically precludes experimentation, the state-of-the-

art of self-assembly experiments is constantly improving. Serving the interest of

these possible experiments would require discussion of which variables are actually

control knobs available to an experimentalist, and which are theoretical constructs.
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1.3 Overview of the dissertation

This dissertation presents a theoretical study of design problems with both an-

alytical and numerical means, and addresses two case studies: Naval Engineering

and self-assembly.

The central theoretical contribution of the dissertation is the Systems Physics

framework that treats emergent structures in design ensemble as physical objects

that interact via measurable forces. Systems Physics is based on statistical physics

ideas and generalizes and reinterprets many statistical physics quantities. The

central focus of Systems Physics is the behavior of the design ensemble, as opposed

to a particular “optimal” solution. In this way, the framework provides a set of

tools to realize the Set-Based Design as a design method by executing the Model–

Compute–Learn loop.

Chapter II develops the qualitative background on the nature of the design prob-

lem. I argue that design problems cannot be solved with optimization techniques

and provide an alternative framework: Systems Physics. In order to justify this

claim, I review the “wicked problem” nature of design and the ways to manage this

wickedness that designers have come up with. I argue that design shares essential

features with physics of collective phenomena, especially well illustrated by design

of self-assembling systems. I develop the qualitative structure of Systems Physics

in form of the Model–Compute–Learn loop and explain the role of each step in that

loop.

Chapter III provides a background on the mathematical methods used in the

dissertation. I review the key tenets of statistical physics from both the Maxi-

mal Entropy and thermal bath perspectives, as well their interpretation in design
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terms and the computation of design outcomes as thermodynamic observables. I

introduce tensor networks, a tool that recently became popular across many fields,

and show how they can serve as information structures for problems where spatial

and topological effects interplay, and for statistical mechanics more broadly. I dis-

cuss several conceptual questions that arise in the classical statistical mechanics of

self-assembly problems, show how these questions are persistently not addressed

in recent textbooks, and lay out a research program towards a consistent classical

theory.

Chapter IV introduces the foundations of the Systems Physics approach and

demonstrates it on an example arrangement problem. I show that small changes in

the design objectives can result in large-scale phase transitions within the solution

space. When two different design objectives apply simultaneously, they give rise to

a more complex phase diagram with a variety of design phases. This chapter also

introduces the notions of design stress and strain that drive the design solutions at

the intermediate scale.

Chapter V studies the patterns of design stress and strain further. Instead

of focusing on whole-ensemble behaviors, I instead identify discrete architecture

classes that demonstrate specific design stress–strain responses. I compare these

stress–strain relationships to those found in materials physics. These comparisons

show that robustness is not a one-dimensional, but a two-dimensional quantity. I

provide the diagrams of this two-factor robustness for several design objectives.

Chapter VI focuses on the interplay of two types of ship architecture: Logical

and Physical. The Logical Architecture is represented by the topology of functional

connections among shipboard system functional units, and the Physical Architec-

ture is represented by the spatial location of those units. I show that the whole
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design space is efficiently encoded in tensor networks that serve as information

structures. Specific queries to those information structures can be both shown

graphically and performed numerically as tensor network operations. These oper-

ations reveal a variety of emergent couplings between the two Architectures in the

design process.

Chapter VII switches to the self-assembly case study and builds a framework for

encoding the target structures in specific interaction matrices. I study self-assembly

of two classes of structures of distinct topology: linear chains and rings. I show

how the set of building blocks can be characterized and designed collectively by

studying the spectra of interactions matrices. Via combinatorial tricks I count all

possible self-assembled structures, derive the partition function, and compute yields

of target structures. This work illustrates many fundamental trade-offs between

interaction cross-talk and size and complexity of target structures. Additionally,

it provides an attempt at constructing a classical statistical mechanical theory

and gives extensive interpretations of statistical weights, partition functions, and

divergences.

Chapter VIII summarizes the dissertation by detailing what we learned about

each stage of the Model–Compute–Learn loop. I propose several extensions to the

presented work, and introduce newly opened questions about quantitative studies

of design.



CHAPTER II

Design is not an Optimization Problem

2.1 Wicked problems in design

1In Chapter I describe above the general traits of the design problem. But what

kind of a problem is it? Is it addressable with quantitative techniques we have

in physics and math? Is it similar to problems that occur elsewhere in human

experience?

Design is an intrinsically complex task that is not fully specified at the outset of

the design process. Initial investigations in the design process lead to the discovery

of new information and that new information leads, in turn, to new questions that

require subsequent investigation. Because of that, ship design is an engineering

task that involves discovery, like science. To use the words of a former Secretary

of Defense, it involves both known-unknowns and unknown-unknowns.[8] However,

just as we don’t rely on an optimization algorithm to generate new forms of scientific

understanding, we should not expect optimization algorithms to design an entire

system. Like science, design is fundamentally a richer form of investigation than

can be captured in a completely, a priori, well-defined mathematical optimization

algorithm.

Though complex system design is not a mathematical problem, it does fall
1This chapter is based on an upcoming paper coauthored with D.J. Singer and G. van Anders.

9
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into a more general class of “Wicked Problems”.[9, 10] Wicked problems contrast

with “tame”, or well-defined and well-behaved problems. A problem is classified as

“wicked” by the presence of one or several of the following factors:

1. A wicked problem is never completely specified at the outset. The formula-

tion gets continuously refined as a certain form of solution is considered and

investigated.

2. A wicked problem is driven by multiple stakeholders, who often have compet-

ing goals and constraints. These goals and constraints might be political in

nature, or economical, or technological.

3. A wicked problem does not have a natural stopping criterion, i.e. it is unclear

when it has been solved correctly.

4. The scale of the problem often prevents conducting experiments and trial runs,

or producing prototypes. This creates a pressure to understand solution as

well as possible before implementing it in order to get it right on the first try.

The intrinsic wickedness of a design problem is compounded by the sheer physi-

cal scale of the designed object.[11] Multifunctional devices such as consumer elec-

tronics or home appliances might be manufactured in the thousands or millions

of units. Even if it is expensive to produce the first trial unit, after the product

design is finalized, it can be mass-produced reaching economies of scale. This is

not the case for products that are important but only occur in small copy num-

bers. An example of such a product is a naval battleship, which would serve as an

important case study further in the dissertation.[12] Typically no more than 2-3

(O(100)) copies of a battleship would be produced, but unit cost reaches up to a

billion dollars (O(109) USD).[13] This seemingly leaves no margin of error, but of

course large-scale mistakes occur that can render the battleship unusable.[14]
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The characterization of a problem as wicked has to do with several limitations of

the agents trying to solve it – i.e. human beings.[2] Human beings are finite in their

individual and collective capacity of processing information.[3] At the same time,

the design problems are essentially complex in terms of scale, cascading effects, and

feedback loops. The obtained solutions have different normative evaluation from

the point of view of different stakeholders. The trio of finitude, complexity, and

normativity limitations drives the wicked nature of design problems.[2]

Importantly, the above limitations apply to the human participants of the design

process and seemingly cannot be fully lifted. However, humans are aided in design

process by inanimate entities, such as general-purpose computing hardware and

specialized software and computational methods. The limitations of these inani-

mate companions are continuously relaxed, first by Moore’s law of the scale of a

single chip,[15] more recently by the advent of massive parallel computing,[16] and

in the near future perhaps by the availability of quantum computing.[17] However,

relaxing the computational constraints just allows pushing the boundary of brute-

force approaches to the wicked problems further, but would never eliminate the

essential, human-limited wickedness.

If the wickedness is insurmountable, why at all can we achieve quantitative

solutions to the wicked problems? The resolution lies in taming the problem, or ef-

fectively ignoring its essential complexity in order to reduce it to a mathematically

tractable form (see Fig. 2.1).[10] The taming process itself is not a mathematically

rigorous procedure since it relies on the human judgment. However, once a prob-

lem is tamed, it is amenable to any number of mathematical treatments, such as

constraint satisfaction,[18] genetic algorithms,[19] mathematical optimization,[20]

or heuristics such as simulated annealing.[21] The solution of the tame problem is
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Figure 2.1: Schematic illustration of the taming process, in which a fuzzy and ill-defined wicked
problem is represented as a clearly stated tame problem. The tame problem can then
be addressed by any of the mathematical techniques available.

typically identified with the solution to the original wicked problem.

However, such an identification is problematic, since sone essential complexity

of the wicked problem has been ignored. The goal of the design process was to

create a product, not solve equations. The result of solving equations needs to

be re-contextualized in the original wicked problem. In other words, we need to

complement the taming process with its reverse and thus form a loop (see Fig. 2.2).

The essential elements of this loop are model (taming), compute (solving the tame

problem), and learn (relating the tame solution to the wicked problem). Upon

each iteration of this loop, we gain some knowledge about the original problem

that allows us to refine the model and go more prepared into the next loop.

This dissertation introduces a framework of “Systems Physics” that addresses

all three stages of the loop (Fig. 2.3). In modeling, I focus on the quantitative

components of the tame problem and vary them in order to explore the space of

possible design problems. In computing, I provide qualitative concepts and develop
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Figure 2.2: Schematic illustration of the loop design process. The fuzzy and ill-defined wicked
problem is modeled as a tame problem, upon which computation can be performed.
The results of the computation allow us to learn something about the wicked problem.

Systems
Physics

Model

Com
pu

teLearn

Figure 2.3: Systems Physics implements the loop design process through the stages of Model, Com-
pute, and Learn.
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analytical methods and software packages to extract quantitative conclusions for

the tame problem. In learning, I show novel visualizations of the analysis that

have not been used in industrial design problems before. Throughout the whole

loop, I rely on physics-based causal modeling that aims to answer not just what

solutions should be chosen, but why they emerge when the solution space and the

design objectives interplay on multiple scales. While some of the techniques allow

combing through extremely large design spaces quickly and efficiently, I want to

emphasize that the novel parts of this dissertation cannot remove the essential

wickedness of the design problem. All that I can aim for is making the design loop

tighter and execute it more efficiently.

While we previously established design as having the opposite goals to science,

the two rely on principally similar cognitive processes, such as exploration and dis-

covery.[2] Since the cognitive processes are not too different, they are subject to

the same human limitations of finiteness, complexity, and normativity. A single

research paper may address a particular tame problem via theory, computation, or

empirical data. However, science at large does not form a logically closed system;

instead, it was argued by Popper to resemble an ecosystem of theories under the se-

lective pressure of empirical data.[1] This view does not rely on posing fundamental

laws, and instead refines the theory as the empirical base grows.

A researcher interested in addressing a big open science problem needs to first

narrow down the scope to a feasible level, similar to a funnel. At the feasible

level, analysis can be performed. The conclusions of the analysis need to be related

back to the broader problem in a reverse funnel, so that the results are useful for

a broader range of other researchers. On one side, this algorithm is remarkably

similar to a single iteration of the wicked problem loop (Fig. 2.2). On the other
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side, it is very similar to the structure of effectively written research papers.[22] In

this way, the practice of science on a large scale is quite similar to the practice of

design. In other words, while the goals are somewhat different, both science and

design belong to the class of wicked problems.

2.2 Design approaches

How are the wicked design problems addressed in practice? They are not a new

phenomenon, and the design of complex systems is not a brand new challenge. The

abstract study of design has long been a discipline in its own right. Of course, the

way one would characterize design approaches depends on the design problem space

and one’s professional training. In order to illustrate how the problem space affects

our discussion of design, this dissertation explores two different design spaces: that

of Naval Engineering and that of self-assembly.

Naval Engineering is centered on design of naval ships: huge, complex, expensive

objects with high impact per unit and high potential for loss of human life. The full

life cycle of design, construction, and usage of a ship involves thousands of people

and billions of dollars. Consequently, ship design is a long multi-stage process that

can be described on multiple scales. To account for those scales, Ref. [23] proposed

the following hierarchical taxonomy of Naval Engineering design practices:

1. Design Approach: the overarching principle of a design effort.

2. Design Process: a particular sequence of steps to implement the principle.

3. Design Method: the way in which design alternatives are created, analyzed,

and selected.

4. Design Tools: the way to get information that supports design decisions.

This taxonomy allows us to more precisely trace the history of design studies,



16

and more precisely position the innovation of the present dissertation.

The first consistently formulated design approach in Naval Engineering is the

Design Spiral, formulated in the 1950s.[24] A Design Spiral prescribes considering

different subsystems of the ship in a specific sequence; at each stage, the subsystem

needs to be optimized to the limit of available information. After the sequence of

subsystems finishes, it can restart for the next loop, building on the information

generated earlier. After enough iterations the design is expected to converge on

the optimal solution, though not guaranteed.[25] The converging trajectory looks

like a spiral, hence the name. The design spiral model was originally developed

at a similar time and under similar academic influences as the waterfall model of

software development.[26] In both cases it is presumed that the necessary design

steps and their sequence of actions are known a priori, and they just need to be

executed.

A Design Spiral specifies both the design approach (local optimization) and the

design process (order in which the design elements are considered). The most

common method of such design is mathematical optimization.[20] The core idea of

optimization is to select several design variables, introduce equality or inequality

constraints that limit the range of those variables, and search for the global mini-

mum of some cost function in the space of design variables. Importantly, the global

minimum is implicitly identified with the final design solution; the output of the

optimization algorithm is typically the end of the design process.

Both the broader design spiral approach and the specific mathematical opti-

mization method focus on a single solution, the current vision of the product that

is iterated upon. This is called the product-centric perspective, which is sufficient

for simple cases. However, in design of more complex products issues start to crop
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up: the global optimum of the system might not coincide with local optima of

separate subsystems;[27] backtracking any changes leads to expensive rework;[28]

lastly, the integration of all systems might be completely impossible due to emer-

gent knowledge failures.[29]

The failures of product-centric approaches can be mitigated in knowledge-centric

approaches, such as Concurrent Engineering.[30] Concurrent Engineering prescribes

pursuing several solutions in parallel from the outset. While there are several pro-

cesses that implement it for different problems, a particularly important method is

Set-Based Design (SBD).[31] Under SBD, each subsystem is developed by a team

that considers a set of feasible solutions. Instead of focusing on promoting the

good solutions, SBD focuses on eliminating the bad ones that are either strictly

Pareto-dominated by others, or incompatible with other subsystems. Since the sub-

systems are typically coupled, the design teams need to periodically convene and

negotiate the joint feasibility of their solutions; that is, search for the intersection of

solution sets. This iterative negotiation produces knowledge about subsystem cou-

plings, thus delaying the decisions on design elements and reducing the likelihood

of integration failures.

SBD was arguably invented at Toyota, a major Japanese automobile manu-

facturer, in the 1980s, and reported in the seminal works by Liker et al.[32, 33]

Significant evidence of SBD practices was found in a survey of aerospace indus-

try.[34] SBD has also become an established method in the Naval Engineering

community.[31] However, while the name of Set-Based Design suggests that the

definition and accounting of solution sets should be at the focus, a recent meta-

analysis suggests that the implementation of SBD is quite inconsistent.[35] We note

that the inconsistency of implementation is not an issue of SBD per se; instead, it
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is an artifact of the design pipeline. SBD is a design method within the Concurrent

Engineering approach, but for a complete design cycle it needs to be proceed ac-

cording to a proper design process and using various tools. The tools are analysis

methods, frequently embodied in software packages, that are the primary sources

of knowledge.

However, generating knowledge in isolated pieces is not enough. For knowledge

pieces to aid in taking design decisions, they need to be cognitively linked into

a knowledge structure.[36] Such links are missing in many design software tools

that act as databases of analysis results that can be filtered by the user to distill

relationships.[37] Other approaches, such as the Knowledge-Action-Decision frame-

work, focus on tracking the development of a knowledge structure throughout the

design process to help in backtracking the reasons for design decisions.[7]. The

Knowledge-Information framework focuses on organizing the knowledge structure

to be conceptually robust: that is, to ensure that knowledge pieces obtained later

does not invalidate those obtained earlier.[38]

One important knowledge structure recently introduced in Naval Engineering is

a framework that distinguishes several kinds of ship architecture, such as Physical,

Logical, and Operational.[39] The Physical Architecture accounts for the spatial

location of ship’s subsystems. The Logical Architecture describes the pattern of

interconnections and interdependencies of the subsystems in form of networks. The

Operational Architecture describes the temporal dynamics of ship systems during

different routine or emergency operations. All of these architectures need to be

considered in the design of a complete ship, but using such a framework allows

decomposing the problem into parts and communicating about their interactions

more efficiently.
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The knowledge structures described above give an account of what solutions

were selected and how they can be described from different perspectives. However,

we need to know why certain solutions are preferred before they are selected, and

before the objective landscape is even fully specified. In other words, we need to

find a leading indicator of the solutions.[40] In this dissertation, I show how to

compute such indicators in form of physical causal relationships. These relation-

ships function as knowledge structures not previously used for design problems,

but ubiquitous in physics: phase diagrams, stress–strain curves, and free energy

landscapes to give a few examples. All of these are computed for large design

spaces in accordance with the SBD method and rely on the computational tools of

statistical physics. Still, as we shall see later, the physics-inspired analyses provide

substantial commentary not only on the lower part of design practices, but also on

the design approach and process.

Before we proceed to building the quantitative Systems Physics framework, we

still need to explore the broader phenomenology of design problems, the view of

design in self-assembly, and conceptual connections between design process and

physics investigation.

2.3 Design as a collective phenomenon

The discussion so far mostly followed the terms used in the design community.

However, there are significant analogies that can be drawn by someone trained in

collective phenomena, statistical physics, and complex systems. In further chapters

I build up these analogies quantitatively, but first they need to be introduced

conceptually.

We start with introducing the notion of solution space, or the set of all feasible
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design solutions that we need to choose between. This set is spanned by the values

of design degrees of freedom, or variables. For example, let a design solution α

be fully described by specifying three variables α = {a, b, c}. Let’s assume that

the variables are discrete and a can take 2 different values, b can take 10 different

values, and c 6 different values. In this case the solution space consists of all

possible {a, b, c} combinations and thus has 2×10×6 = 120 different options. This

number is very conservative since we did not consider many variables or many

options for each variable. For some problems it might be possible to compare 120

options by hand, but if the analysis of each option were more complicated, even

120 is a prohibitively large number.

In order to speed up the evaluation, we introduce a quantitative design objective

O(α). The same objective function would have been required for mathematical

optimization, so this is not a requirement of specifically the SBD method. If we

were following the design spiral approach, we could use one of the optimization

tools to find the solution α out of the 120 options that gives the lowest objective

function value.

Note that the objective function directly encodes the interactions between the

degrees of freedom. A non-interacting objective function can be decomposed into

a sum of independent functions of each variable:

(2.1) O(α) = O1(a) +O2(b) +O3(c).

Note that varying the choice of the variable a does not affect the other terms,

same for the other variables. We say that the solution space is then factorized into

three separate parts. In this case the search for the minimum is much simpler: one

merely needs to consider all options for each of the variables separately, for a total

of 2 + 10 + 6 = 18 � 120 options. This enumeration can be done much faster and,
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importantly, the options for each variable can be considered by different designers

or different decoupled tools.

Unfortunately, all useful, interesting, and challenging design problems involve

interacting design objectives and thus force us to deal with combinatorially large

design spaces that do not factorize. I discuss the specific design degrees of freedom,

solution spaces, and objective functions in much more detail in further chapters that

develop quantitative design tools. While the design objective includes interaction,

it is typically not dense, i.e. not all-to-all coupling. Instead, the interactions are

usually pairwise, that is, the terms of the objective function include two variables

at a time. The whole pattern of pairwise interactions frequently forms a complex

network,[41] which becomes a major theme later.

Most commonly, the objective function is treated as a precursor to the optimiza-

tion algorithm. The minimum of the objective function is identified with the desired

solution, often somewhat uncritically.[20] This identification comes in tension with

other needs of the design process. On one side, in order to turn a conceived design

into a physical product, one needs to use a manufacturing process that always has

finite tolerance. In other words, the manufactured product is never exactly the

same as designed, and whether it still performs the intended function is an open

question. It is possible to incorporate the finite tolerance into the optimization

algorithm by searching not for a point solution but a ball of predefined size.[42, 43]

These so-called robust optimization techniques account for manufacturing imper-

fections, but don’t give us the crucial information about the objective landscape.

The objective landscape is the other side of the tension between design and

optimization. The design of complex systems occurs in stages, and it is important

to ensure that the early decisions do not over-constrain the later ones.[27, 11] To



22

O
b

je
ct

iv
e 
O

Design Variable α

a

O
b

je
ct

iv
e 
O

Design Variable α

b
O

b
je

ct
iv

e 
O

Design Variable α

c

O
b

je
ct

iv
e 
O

Design Variable α

d

Figure 2.4: Qualitative types of objective function landscapes. Brown marker indicated the absolute
minimum. (a) Rough landscape with many local minima. (b) Flat landscape with low
variation of the objective around the minimum. (c) Smooth landscape with a single
very narrow minimum. (d) Smooth landscape with a single finite-width minimum.

achieve that, we need to build in the need for flexibility and redundancy of design

into our tools early on. In order to quantify this design freedom we need to look

at the whole shape of objective landscapes and not only at their absolute minima.

Objective landscapes are widely discussed in the optimization literature in terms

of how difficult it is to find the global minimum (or maximum).[44] The typical vil-

lains of these stories are rough landscapes that appear in over-constrained problems,

with lots of local minima that make gradient descent optimization impractical.

Rough landscapes routinely occur in physical systems such as structural and spin
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glasses,[45, 46] as well as problems such as the layout of integrated circuits.[21] This

abundant discussion of rough landscapes might occlude the difficulties associated

with other kinds of landscapes.

Fig. 2.4 illustrates several qualitatively different kinds of optimization land-

scapes. A rough landscape (panel a) has many local minima that compete with

the single global minimum. A special optimization algorithm might be required to

find the true minimum of this landscape, such as simulated annealing.[21] At the

other extreme, the minimum of the flat landscape (panel b) is trivially easy to find.

However, the minimum is barely different from the surrounding area, so choosing

the solution at exactly the minimum is not particularly meaningful. The mini-

mum can also be narrowly isolated within an otherwise smooth landscape (panel

c). This minimum is also easy to locate, but it is so narrow that any manufacturing

imperfections might lead to a radically different objective function value. By this

logic, the ideal landscape is then a minimum that is fairly easy to find and has

a reasonably wide basin of attraction (panel d). Across these four examples, it is

already evident that we need some tools to characterize them.

The discussion of landscapes such as in Fig. 2.4 is seductive, but in certain ways

quite oversimplified. The landscapes attempt to classify the optimal points of a

complex system, but any such discussion needs to pay attention to typical caveats,

such as the following:

1. A landscape might have multiple “well-behaved” minima of comparable value,

and the way to decide between them is unclear.

2. Frequently design needs to follow several objectives at the same time, which

can be represented as terms in the function O(α). Depending on the balance of

these terms, the locations and basins of the minima might shift, or completely
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disappear or appear.

3. The designed systems have high-dimensional solution spaces, but Fig. 2.4

presents one-dimensional landscapes. The high-dimensional spaces have a lot

of structure on multiple scales, which might be represented by a landscape in

terms of some collective coordinates.

4. Since the shape of the landscape is dominated by the interactions between

design variables, the network topology of such interactions becomes extremely

important.

These properties are quite reminiscent of collective behaviors in complex sys-

tems: meta- or multi-stability,[47] criticality,[48] multiscale structure,[49] and com-

plex network topology.[50] Such an analogy can be carried further in a quantitative

fashion, but that requires abandoning the optimization perspective. The minima

of the objective function would still play an important role, but the absolute min-

imum is not immediately taken as the correct design solution. In accordance with

the knowledge-centric design paradigm, the design tools we develop would draw on

the techniques of collective phenomena and would serve to provide information to

inform the designer decisions, rather than supplant those decisions.

2.4 Design for self-assembly

In order to complement the intuitions of Naval Engineering design of large struc-

tures, we turn attention to something much smaller by linear scale: self-assembly.

Self-assembly is the phenomenon of microscopic particles self-organizing from an

initially disordered state without changing their identity.[51] It is driven by weak,

non-covalent interactions that compete with thermal noise. The importance of

thermal noise closely relates self-assembly to soft matter, or the study of systems
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large enough for quantum effects to be negligible, but small enough for thermal

fluctuations to be still significant.[52] The soft matter umbrella accounts for many

bulk materials we encounter on daily basis, such as gels, polymers, paints, and

glasses, which are all disordered or semi-ordered.

Highly ordered structures are, however, unique to self-assembly. Self-assembly

might be the only method that reliably fills the gap between nanometer scale as-

sembly with chemical methods and millimeter scale assembly with conventional

machinery.[51] A notable exception is, of course, the deterministic top-down pho-

tolithography process for manufacturing integrated circuits,[53] but it is strictly

limited to planar, two-dimensional structures, whereas self-assembly is more flex-

ible. Self-assembly can produce not only static, but also dynamic structures such

as collectively acting robots.[54, 55]

The most common dynamic self-assembling system is any biological organism

at sub-cellular level. Many cellular structures find their proper configurations by

themselves, since top-down guidance is unavailable. Top-down guidance is not

required to correctly produce even the most complicated macromolecular machine,

the ribosome, which reliably self-assembles from its constitutive parts in vitro.[56]

This remarkable robustness of biological self-assembly inspired studies of synthetic

systems with life-like behaviors, such as self-replication,[57, 58] time keeping,[59]

and formation of membranes.[60] Self-assembly studies are partially responsible of

expanding the reputation of DNA from merely a genetic information repository in

biological organisms to a programmable building block in its own right.[61]

Since self-assembly is a collective phenomenon in a system of classical (non-

quantum) particles, it is naturally treated by classical statistical mechanics. Sta-

tistical mechanics was originally developed to account for collective behavior of
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atomic and molecular systems in which individual units are both governed by quan-

tum mechanics and too small to be seen directly. However, we can directly observe

micron-scale self-assembling building blocks with optical microscopes. This obser-

vation of individual particles raises direct theoretical questions about their distin-

guishability,[62] the role of solvent and particle masses,[63] and symmetry numbers

of “colloidal molecules”.[64] Self-assembling systems are efficient test beds for ques-

tions about less accessible atomic systems, such as the nature of solid-solid phase

transitions [65], the nature of topological order long thought to be an exclusively

quantum phenomenon,[66] and the distribution of entropy across the system.[67]

More broadly, using self-assembling systems as a case study allows us to refine our

understanding of statistical mechanics more broadly.

The fundamental advances in statistical mechanical theory,[63, 68] computer

simulations,[69] and particle synthesis and imaging [70, 71] allow us to shift from

merely understanding existing self-assembling systems to designing new ones. The

design of atomic systems is limited by the discreteness of chemical elements, a di-

rect consequence of their quantum nature.[72] However, quantum mechanics does

not constrain larger building blocks, which then can have continuously adjustable

parameters, such as shape and size,[73] interaction patterns,[74] and specific bind-

ings.[75] The latter have already been implemented on both biologically-inspired

platforms such as DNA and proteins,[76, 77] and synthetic platforms such as mag-

netic dipole patterning.[78] Together, specific interactions and particle geometry

open up a wide design space, in which lots of self-assembly behaviors are possi-

ble.[79]

One avenue of designing self-assembling behaviors is focusing on the space of

particle shapes. Particle shape is the dominant parameter that governs the be-
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havior of hard particles that don’t have any interaction apart from prohibition of

overlap. With lack of energetic interactions, their collective behavior is fully driven

by entropy maximization. However, maximizing entropy in dense systems gener-

ically causes the particles to form ordered structures.[80] The formed structures

depend sensitively on particle shape and span crystals,[81] glasses,[82] liquid crys-

tals,[83] and quasicrystals.[84] The effective entropic interactions governing these

structures can not only be quantified, but directly designed.[73] Treating particle

shape as a design parameter, one can formulate and solve the inverse design prob-

lem: find the shape that forms a target desired self-assembled structure.[72, 85]

Similar arguments allow designing not only structural but functional behaviors,

such as tunable photonic crystals.[86]

The other avenue of self-assembly design is via specific, heterogeneous binding in-

teractions. These interactions can be tuned to form diverse crystal structures,[75] or

control the transition between crystal and gas phases.[87] Introducing many species

of particles with controlled interactions allows self-assembling finite structures of

complex geometry, with dozens of particle types finding their proper place.[88] In

practice, the yield of complete complex structures would be limited by multiple

factors. An important limitation is the weak binding between building blocks that

should not be interacting, known as cross-talk or off-target binding.[89] If the con-

trast between on-target and off-target binding is too low, heterogeneous building

blocks collectively behave as homogeneous ones, limiting structural control.[90] The

yield of heterogeneous self-assembly might be improved by manipulating the con-

centrations of different types of monomers.[91] Different concentration profiles also

allow extracting several structures encoded in the interaction matrix.[92]

The studies of heterogeneous self-assembly mostly focused on dense colloidal
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clusters or bulk crystal structures. However, it might be possible to encode a wider

range of structures distinguished by topology. What is the shape of the design space

of the specifically interacting building blocks? To what degree can we control the

topology of self-assembled structures via interaction energies and concentrations?

How is this assembly limited by cross-talk? What kind of mathematical tools are

required to account for these structures? How do we design complete sets of self-

assembling building blocks with collective properties? Answering these questions

would both inform important aspects of design at large and widen our control of

self-assembly. Self-assembly offers the possibility of creating dynamic, evolving,

adaptable, controllable and programmable materials, and the ultimate limits of

what is possible are currently only imagined in science fiction.[93]

As we see, self-assembly is a burgeoning field that rests on an ever firmer theoret-

ical foundation but still presents an abundance of open questions, both fundamental

and practical. In the next section I show that both self-assembly and Naval Engi-

neering design can be seen through the same lens of statistical mechanics theory.

2.5 Why is design physics?

2.5.1 Model–Compute–Learn loop

The overview of self-assembly research shows that a lot of important behaviors

are explained by physics theory, especially statistical physics. But why is the design

process itself physical? And how can it encompass the case studies as disparate as

self-assembly and Naval Engineering? To answer this question, we return to our

previous definition of design, with the same key terms highlighted:

Design is the act of generating knowledge for decision-making through time.

I would argue that the highlighted terms are directly comparable to concepts in
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physics. The act is a deliberate computation performed by a physicist or a designer

in the interests of learning something about the system. The outcome of that

computation contributes to our knowledge of the system by clarifying relationships

between its parts. We can act upon that knowledge by making decisions that

narrow the design space down to its preferable part; this can be done for instance

by freezing certain design variables at desired values. Lastly, the time concept is

key in study of any dynamical or non-equilibrium systems.

In many collective physical systems time runs forward; that is, the dynamics

of the system are irreversible.[94] In design we proceed irreversibly from states of

low knowledge and high freedom to states with larger amount of knowledge and

less freedom due to the decisions made. The specific trajectory along which design

knowledge and freedom evolve depends significantly on the chosen design process.[7]

The design process might lead to a well-constrained and well-understood design, or

an ill-specified and poorly characterized design, also known as a design failure.[29]

These variability of design outcomes has to do with the nature of design as

a wicked problem. As I argued previously, to make any progress with a wicked

problem, we inevitably need to turn it into a tame problem. Of course, a tame

problem is not selected once and for all. In order to understand the wicked problem

via quantitative analysis, we need to turn it into a tame one many times over. More

formally, within the scope of Systems Physics, we need to perform the three-stage

loop of Model–Compute–Learn. Each stage of this loop serves as a milestone that

asks questions about the designed system. All of these questions can be asked (and

often answered) in a uniquely physical way.
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2.5.2 Model: the spaces of design

Intuitively, design investigations should care about the connection between our

design decisions and their results. There are many decisions that could be made

and many results that could come out, both of those form spaces. However, I want

to set up two important dichotomies in the characterization of these spaces.

The first dichotomy is between what I would call the solution space and the

design space. The solution space is the set of states in which the designed system

can be (“state space” or “phase space” in statistical physics language [62]). The

design space is the set of states among which we, external designers, can make our

choices. The difference between the two spaces is akin to the difference between

tame and wicked problems. The solution space is defined exactly and fully; picking

the solution space is an essential modeling choice in moving from a wicked problem

to a tame one. In contrast, the shape of design space is often not known from the

outset. We start with an idea of a few design options, but as the design process

proceeds, we understand the space of design choices better and better.

The difference between the solution and design spaces is best illustrated for our

case studies. In the case of Naval Engineering, we are going to be primarily con-

cerned with arrangement problems that ask questions about locations of functional

units and connections. Our solution space consists of all possible unit locations; at

the same time, our decisions are also directly concerned with unit locations. For

this case study, the design space and the solution space essentially coincide.

The picture is different for case of self-assembly. The solution space spans all

possible spatial configurations and binding combinations of building blocks. The

building blocks explore the solution space driven by thermal fluctuations. Because

of fluctuations, we don’t have direct control over the exact position of each building
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block as in the case of directed assembly. In self -assembly we control the specific

interactions and concentrations of the building blocks, which in turn bias them to

preferentially bind into the structures we desire. The self-assembly design space is

thus much smaller than the solution space.

The second dichotomy is between the objective space and the outcome space.

A design objective is what drives us to choose one point in solution space over

another. Typically, for every solution α we would define one or several objective

functions O(α), which in statistical mechanics directly affect the probability of

choosing that solution. In contrast, the design outcome is a quantitative metric of

the resulting design, typically an average over the solution space. The distinction

of objectives and outcomes again has to do with the wicked and tame aspects of

the problem: while we pick the objective exactly, finding the right outcome metrics

requires more exploration.

It might be counter-intuitive why the outcome metric is not exactly the same

as the objective. After all, isn’t the point of design to reach the stated objective?

As I argued above, the point of design is instead to generate knowledge. It might

be informative to consider different outcome metrics to find whether the pursuit

of the stated objectives also leads to unintended side consequences. The difference

between outcomes will become apparent across the Naval Engineering studies in

the dissertation.

The design objective of self-assembly is even more restricted. The probability

of observing different configurations of building blocks is directly driven by the

energy of such configurations. While we can manipulate the energy landscape, we

cannot change the selection factor from energy to something else. At the same

time, the interesting outcome of self-assembly is not the minimal possible energy,
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but maximal possible yield of the target structure. There are still several possible

ways to define the “yield” that have different merits, discussed in more detail in the

corresponding chapter.

With these dichotomies of solution vs design space and objective vs outcome

space, the Model stage of the Systems Physics loop becomes more clear. In order

to move from the original wicked problem to a well-defined tame problem, we need

to make choices about each of these spaces. What objectives are we pursuing and

how much do we care about each of them? What is the resolution of considered

spatial arrangements? What is the shape and size of the box in which all functional

units or building blocks are to be placed? What constraints do we have on the on-

target and off-target binding? These are the kinds of questions that need to be

answered to get a specific formulation of a tame problem. We then need to discuss

how to compute something useful about this problem, and how to learn from the

results of the computations.

2.5.3 Compute: forward, inverse, and in between

In this “physical” picture, in order to connect the design space with the out-

come space, we need to account for all of solutions appropriately weighted by the

objectives. I will flesh out this connection mathematically in specific case studies,

but here it can be qualitatively illustrated by quoting self-assembly examples. A

traditional way, which we would call forward design, is asking what outcomes cor-

respond to a given point of design space. For instance, what structure (outcome)

would be self-assembled by hard particles of a given shape (a point in the design

space)?

Answering this question requires special computational techniques, but is pos-

sible on a case-by-case basis. The solution space has to be set a priori: the set
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of all positions and orientations of particles in a 3D box. The design objective is

also set a priori in form of an algorithm that detects the overlap of particles and

prohibits all configurations with such an overlap (e.g. Ref [95]). The study by

Damasceno et al. picked heuristically a set of shapes out of the design space of all

possible shapes, and showed that these shapes can self-assemble a wide variety of

structures, including very exotic ones.[81] This result is significant and gives us a

lot of knowledge about the shape–structure relationship, even though neither the

design space of all shapes nor the outcome space of all structures were mapped out

before running the algorithm.

If one wants instead to assemble a particular structure, it might be impractical

to keep guessing the proper shape and running the forward design computation re-

peatedly. Instead, a better way is to turn the shape–structure relationship around

and perform inverse design. For hard particle self-assembly such method was pro-

vided in form of the “digital alchemy” method, which allows for smooth changes

not only in the solution space of particle positions and orientations, but also in

the space of particle shapes.[72, 85] This method also provides knowledge about

the shape–structure relationship, but inverts the relationship of the known and the

unknown.

Forward and inverse design are thus two complementary perspectives on the

relationship between design and outcome spaces. While one of them might be more

useful in solving a given practical (tame) problem, neither is inherently superior

to the other one in understanding the whole wicked problem. For most cases of

interest, neither forward nor reverse map can be performed analytically, but rather

requires expensive computations. As computations get cheaper and algorithms

for a particular problem improve, more and more parameter–outcome pairs can
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be reported per study, from one,[84] to a hundred,[81] to a two-parameter shape

family,[96] to millions of shapes in a hundred-dimensional space.[85] Each such

study expands the boundaries of the charted region of either design or outcome

space.

However, knowledge about a design problem does not boil down to the correspon-

dence of points in the design and outcome spaces (essentially the what question).

A typical surprising phenomenon in this mapping is a small change in the design

leading to a large change in the outcome. For example, in context of self-assembly,

the particles of slightly different shape might assemble into a very different crystal

structure [65], or not assemble at all.[82] To understand why this happens, and

whether such behavior occurs elsewhere, a more detailed investigation is required.

In order to understand the reasons for strange collective behaviors, one needs to

look at an intermediate scale structure of the solution space, between the individual

points and the average over the whole space.[73] In statistical physics, such interme-

diate scale structure can be accessed via lumping together many solutions, known

as coarse-graining. Coarse-graining allows characterizing the groups of solutions,

specific motifs, or mesoscale design solutions with an effective design objective,

known as free energy. The patterns of free energy give an intuitive understanding

of the intermediate-scale precursors of large-scale changes in behavior. Both the

mathematical description of free energy and many examples of its usage are found

further in the dissertation. In Naval Engineering I group together solutions that

share the same design feature, while in self-assembly I group together structures

that share the same length or the same topology, in a hierarchical fashion.

The computations of free energy and the averages across the whole solution

space rely on a set of mathematical techniques described elsewhere. However, in
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those computations we will encounter specific pieces that encode large amounts

of information in a structured form, often mirroring the statement of the design

problem. All across statistical physics, the partition function encodes information

about conjugate averages over the solution space, but the partition function is not

the only useful object. In condensed matter physics, the object of central attention

is the correlation function which contains a lot of signatures of system’s behavior,

phase transitions, and universality.[97] Similarly, in this dissertation tensor net-

works will play a similar role, and manipulations with tensor networks will help us

generate knowledge about the intermediate scale behaviors in the system.

I would refer to such pieces of computations as information structures. Infor-

mation structures technically contain answers about all, or at least a majority, of

interesting system behaviors. However, extracting a specific answer requires con-

structing a specific “query” to the information structure, such as a specific deriva-

tive of the partition function, or a modification of tensor network topology. These

queries are the deliberate acts mentioned in the definition of design, and it is pre-

cisely such acts of the designer that convert raw information into knowledge.

2.5.4 Learn: physics knowledge structures

Information structures store extensive descriptions of both forward and inverse

relationships in the designed system that can be extracted via computations. How

do the results of these computations turn into useful knowledge? These results

form a set of related facts, i.e. the knowledge structure of the behaviors of the sys-

tem. In Naval Engineering-driven studies, such structures have been represented in

the language of networks that record the results of analyses in form of relations of

parameters and outcomes.[7, 38] Understanding the parameter–outcome relation-

ship for the broadest range is a goal of physical science. In studies of nonlinear
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dynamical systems, the goal is not in precisely computing the trajectory, but delin-

eating the regimes dominated by attracting fixed points, limit cycles, or chaos.[98]

In statistical physics, the goal is often in producing a phase diagram of the possi-

ble macroscopic regimes.[62] These phase or bifurcation diagrams do not have the

character of foundational, broadly valid physical laws. Instead, they describe a

specific system; they are the shape of an answer. I present such answers in each of

the case studies of the dissertation, most frequently with graphical diagrams.

Phase diagrams presenting the macroscopic relationships between design space

and outcome space. Knowledge of this relationship answers the what questions of

design. In order to answer the why questions, I use the information structures to

analyze the free energy landscapes. If free energy is the effective potential energy

for the system, then its gradient, which I call design stress, is the effective force.

The idea of force as a cause for motion, as the “why” of motion, is one of the first

ideas taught in intro physics classes. Per Newton’s laws, to determine whether and

how a body would move one needs to add up all forces of different origin that drive

this body. I show that the same intuition of competing forces, even if the forces

have uncommon origins, answers why certain design solutions are preferable over

others.

The understanding about what and why solutions are preferred under a given

formulation of the tame problem allows us to return and revise this formulation, i.e.

the Model part of the loop. The design space and outcome space maps are expanded

precisely by executing the Learn part. In learning, we discover the unexpected

outcomes, or new design forms that fulfill the objective. The new iteration of the

loop, starting with Model, is possible precisely because the loop is completed and

the last stages feeds into the first.
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The discussion of the Model–Compute–Learn loop highlights what we have to

assume and what we get to learn in modeling the wicked problems as traceable tame

problems. While the solution and objective spaces are parts of the tame problem

and have to be precisely assumed a priori, the design and outcome spaces are part

of the wicked problem and can be gradually mapped out by executing the loop

multiple times. The forward and inverse design paradigms are then two sides of the

same coin as they inform the same parameter–outcome relationship. The reasons

for large-scale shifts in this relationship are typically hidden in the intermediate-

scale behaviors that are all accessible to the statistical physics methods.

In order to show the execution of this loop in example problems and address

the main questions of the dissertation, we need to first convert the qualitative

discussion above into quantitative form in the language of statistical mechanics.



CHAPTER III

Methods

3.1 Statistical Mechanics

In this section I review the central tenets of statistical mechanics from two

axiomatic perspectives, based on maximal entropy and bath exchange. I show how

to compute generic and conjugate observables within the ensemble. I introduce the

concept of coarse graining and the associated computations and interpretations.

Further in the chapter I introduce tensor networks as an information structure for

statistical mechanics and discuss their conceptual and computational properties, as

well as the associated software. Finally, I discuss certain issues of classical statistical

mechanics that are relevant for self-assembly studies but are not adequately covered

by existing textbooks, and lay out a study program to formulate a fully consistent

classical statistical mechanical theory.

3.1.1 Maximal entropy perspective

Here I review the maximal entropy perspective on statistical mechanics. The

maximal entropy principle was first proposed to regularize discussion and inference

in large systems under very sparse measurements.[99] We consider an ensemble of

many mutually exclusive system microstates that can be indexed with a variable α.

The number of microstates has to be large, typically exponential in the number of

38
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particles in the system. We can pick a random state from the ensemble with a prob-

ability distribution pα, but a priori we don’t know anything about the properties

of this probability distribution apart from it being normalized
∑

α pα = 1.

The inference problem is stated as following: given a few measured observables

〈Oi〉, predict the average value of other observables 〈Xj〉. Making this prediction

requires learning something about the underlying probability distribution pα. We

can attempt to write down the equations that constrain the probability distribution

by the known observables:

(3.1) 〈Oi〉 =
∑
α

pαOi(α), ∀i.

However, the number of observables is typically much smaller than the number

of microstates, so this system of equations is severely underconstrained. In order

to make it well-behaved, one needs to add a regularizing principle, some global

constraint that would make the probabilities well-defined, but still subject to the

constraints (3.1).

As evident from the name, we choose the principle of Maximal Entropy. The

“entropy” refers, of course, to Shannon’s entropy,[100] which is a measure of un-

certainty of a probability distribution in the ensemble that fulfills certain desirable

axioms, such as non-negativity, extensivity, and additivity. Shannon showed that

there is a unique functional form that satisfies these properties:

(3.2) S = −
∑
α

pα ln pα.

With this principle, we can formulate the inference task as finding a probability

distribution that maximizes the Shannon entropy (3.2) while satisfying the obser-

vational constraint (3.1). In absence of any constraints, Shannon entropy is maxi-

mized by the uniform distribution, which is not biased to any particular state. In
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the presence of constraints, the distribution would be only biased by the observables

that we put in by hand. In this way, the maximal-entropy probability distribution

is the one least biased by any undesirable influences. Of course, maximal-entropy

probability distributions occasionally display mathematically pathological behav-

iors in certain parameter regimes.[101] However, such behaviors are often model-

specific and thus should be discussed together with the corresponding models.

Let’s derive the maximal-entropy probability distribution. We shall enforce each

of the constraints (3.1) with a corresponding Lagrange multiplier λi, thus getting

the bulky functional:

(3.3) S[pα] = −
∑
α

pα ln pα −
∑
i

λi

(∑
α

pαOi(α)− 〈Oi〉

)
− γ

(∑
α

pα − 1

)
,

where we chose to write the Lagrange multipliers with a minus sign for convention.

The Lagrange multiplier γ is necessary to ensure that the probability distribution

is normalized, i.e. we are guaranteed to randomly pick one of the microstates.

Maximizing this functional is straightforward via functional differentiation:

(3.4) δS

δpα′
= 0 ⇒ pα =

1

Z
e
−

∑
i
λiOi(α)

.

This form reveals the optimal probability distribution to be a nearly local trans-

form of the observables Oi, i.e. only one state α is present. Because of this locality,

we got the probability expression without making any explicit reference to model

parameters, such as the ensemble of the possible states α or the functional form of

the observable functions O. The prefactor Z is the normalization condition that is

computed as sum of all exponential factors:

(3.5) Z ≡
∑
α

e
−

∑
i
λiOi(α)

,
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and is known as the partition function. The partition function turns out to play a

central role in statistical mechanics, but we will discuss that below. The name par-

tition function implies that it is a function of some arguments, even if we suppress

them in notation, and we will address that below too.

3.1.2 Statistical mechanics and statistical physics

Jaynes used the above maximal-entropy argument to argue about the difference

between statistical mechanics and statistical physics.[99] His view, now also known

as subjective statistical mechanics, or statistical inference, is one of multiple ways to

derive quantitatively the same form of expressions. The expressions (3.4)-(3.5) are

the centerpiece of statistical mechanics, which according to Jaynes is nothing else

than glorified accounting of probabilities and a set of mathematical tricks, agnos-

tic of what the probabilities represent. This agnosticism is what makes statistical

mechanics a generic tool, which is valid whenever the maximal entropy assump-

tions are justified. In order to turn it into statistical physics, we need to imbue

the concepts of α,O, λ with physical meaning and interpretation. This freedom of

interpretation is what would allow us to turn statistical mechanics either into Sys-

tems Physics that describes the arrangement problems in design (Chapters IV-VI),

or more conventional statistical physics of self-assembly (Chapter VII).

Let’s start with the more conventional interpretation. In this case, the mi-

crostates α refer to particular configurations of particles. Each particle has a

certain position, orientation, momentum, and angular momentum which can be

specified independently of other particles. Depending on these variables, we can

compute the energy E of the system. The function that evaluates energy of any
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particular state is called the system’s Hamiltonian:

(3.6) E = H(α),

which is the first example of a particular observable O. Note that here we keep

all of the variables of individual particles bundled up inside the Hamiltonian to

preserve its maximally generic form. Typically, energy breaks up into the kinetic

energy dependent only on momenta and angular momenta, and potential energy

dependent only on particle positions and orientations. The potential energy usually

accounts for the interactions between the particles, such as prohibiting them to

overlap. Since the momenta describe movement of particles in space, it is sometimes

possible to connect the statistical description of the system with a kinetic one.[102]

The Lagrange multiplier λ associated with the Hamiltonian is typically iden-

tified with the inverse temperature β = 1/T . With these parameterizations, the

probability takes the familiar Boltzmann form:

(3.7) pα =
1

Z
e−βH(α).

Typically the Hamiltonian H describes the inner interactions within the system,

while the inverse temperature β describes the system’s coupling with an external

bath. I discuss this interpretation below. However, from the perspective of statis-

tical mechanics, the value of β specifies how strongly the probability distribution is

driven by temperature. At low T (high β) this drive is strong and the microstates

with lowest energy have significantly higher probability than ones with high energy.

On the contrary, at high T (low β) the drive gets weaker and the probability is dis-

tributed more uniformly. In the limit T → ∞ (β → 0), the probability distribution

becomes fully uniform and all microstates are equivalent.
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Let’s look at the contrary case of design. The microstates α are the considered

design solutions, such as spatial arrangements of some functional units. Units can

have different orientations, but we typically don’t track their movement. In this

way, the ensemble description is still statistical but not kinetic.

The observables Oi are identified with design objectives and the Lagrange mul-

tipliers λi with design pressures. The relationship between them is analogous to

the Hamiltonian and inverse temperature. The higher the design pressure, the

more the corresponding design objective drives the probability distribution. It is

tempting to make comparisons between the design pressures, such as λ1

?
> λ2.

However, such comparisons cannot be made due to the difference of measurement

units. All design objectives are quantitative properties of design solutions, but they

don’t necessarily have the same units. One design objective might be measured

in dollars, another in seconds, and the third in miles per hour, which are all valid

units of measurement. The corresponding design pressures need to have the inverse

dimensionality so that the product λiOi is dimensionless. In this way, we can talk

about the design pressure space where each axis has different units.

It might be confusing that we maintain many design objectives Oi for the design

case, but only one Hamiltonian H (without an index) for the conventional case.

However, this has to do with the physics convention. In statistical physics systems,

the probability of different states is usually driven by a Hamiltonian that is a

combination of charges and fields:

(3.8) H(α) = φ1Q1(α) + φ2Q2(α) + φ3Q3(α) + . . .

Here, each of the charges Qi (e.g. electric, magnetic, color) typically still de-

pends on all of the design variables α, unlike the separable objective function in

Eqn. 2.1. The parameters φi are the fields acting on each type of charge (e.g.



44

electric, magnetic, color) that determine the relative magnitude of each term in

the Hamiltonian. The separation of the Hamiltonian terms is the same thing as

separation of design objectives, up to the semantics of conversion between design

pressures and fields λi = βφi. I use both separate conventions for consistency with

the different domains of literature within different chapters of this dissertation.

3.1.3 Extensive and intensive parameters

There is a certain sleight of hand committed in proceeding from the entropy

functional (3.3) to the probability distribution (3.4). The entropy functional was

formulated with the expected observable averages 〈Oi〉 and auxiliary Lagrange

multipliers λi. However, the expected observable averages disappeared from the

probability expression, and λi were elevated to the important parameters.

In order to explain this discrepancy, we review the distinction of extensive and

intensive thermodynamic parameters. Here the word “thermodynamic” is meant in

the sense of applying to the whole ensemble, rather than some parts of it. The

distinction of extensive and intensive parameters can be illustrated by system dou-

bling.[102] Next to the system we place a copy of it and treat both as a single system

of two decoupled parts. We then compare the different thermodynamic descriptors

of the combined system. If the descriptor value doubled (like energy or volume),

it is called extensive. If the descriptor value stayed the same (like temperature or

pressure), it is called intensive.

This definition is strictly valid when the two identical systems are decoupled.

It is valid for very large systems that only have short-ranged interactions on the

boundary. For systems with long-range interactions different notions of extensivity

are required.[103] In my Naval Engineering case studies, I always only consider

finite size systems where finite size effects are typically important. In the self-
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assembly case study I only consider systems with short-range interactions which

are extensive in the sense described above.

The parameters {λi,Oi} are known as a conjugate pair, and the index i refers to

different pairs. The design pressure λi is an intensive parameter, the design objec-

tive Oi is an extensive parameter. Within each conjugate pair, we need to pick only

one of the two parameters that we would use as an independent thermodynamic

parameter. However, in each pair i we can make that choice independently. The

choice needs to be made because the two parameters are related to each other via

an equation:

(3.9) 〈Oi〉 =
∂

∂λi

lnZ
∣∣∣∣
{λi}

,

which can be solved for unknown values of λi. I derive this expression below in the

section on observables. For now, note that it depends on the partition function Z,

which requires performing complicated summations that depend on the specifics

of the system model. Note that the partition function depends on all of design

pressures λi in a way that is not typically separable, so solving for their values

is especially hard. Because of these difficulties, while the derivation of maximal

entropy probability distribution requires introducing the constrained averages, we

are not actually going to use them as real values.

On the other hand, working in terms of intensive parameters λi is typically

simple. This is possible because using these parameters, we can write down the

probability distribution (3.4) as a local function of the microstates α and design

pressures λi. It appears that I just introduced the choice within the conjugate

pair {λi,Oi} and immediately took that choice away by calling one of the options

“too difficult”. If we define all the design objectives manually but always choose

to work in terms of intensive design pressures, are there any extensive parameters
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remaining?

We first need to make a distinction between fixing 〈Oi〉 on average, as opposed

to fixing Oi as an exact value. For large systems in thermodynamic limit there

is typically no difference, as the mean and the median of Oi become arbitrarily

close and the relative fluctuations in Oi become arbitrarily small. However, some

aspects of the problem, such as the size of the box, are defined exactly, not up

to fluctuation. Because of the convenience reasons outlined above, we describe

fluctuating design objectives primarily via intensive design pressures λi.

However, explicitly fixed extensive parameters enter our calculations from a

different side, not in the definition of design objectives Oi but in definition of

design ensemble {α}. Every time we consider some system within a finite box,

the size of that box is an extensive parameter. Derivatives with respect to that

parameter would give us the conjugate intensive parameters, or design pressures.

For example, for normal thermal systems the volume derivative is the pressure:

(3.10) P ≡ 1

β

∂

∂V
lnZ.

In some cases we are interested not just in the cost of a global change of volume,

but in the cost of a specific localized change of the box geometry. In that case, more

specific derivatives or finite differences can be taken. A specific example would

be discussed in context of space premium and void free energy in Chapter VI.

It is typically easier to evaluate the cost of reduction of the available ensemble

microstates than extension, since it is easier to deal with subsets than supersets.

3.1.4 Bath perspective

An alternative way to interpret the extensive and intensive thermodynamic pa-

rameters is via the notion of a bath, or a repository external to the system of
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interest with which an extensive parameter O can be exchanged at a unit cost of

the intensive parameter λ.[62]

For instance, a “thermal bath” is a repository of energy that can be exchanged

with the system. If we consider the system+bath ensemble to be closed, then the

total energy has to be conserved. In a system of constant total energy, every state

has the same probability (this either follows from the maximal entropy principle or

can be taken as an axiom). However, every state of the system of interest can be

realized via many bath states. In order to infer the probability of a specific state

of the system of interest, we need to figure out the number of bath states that

correspond to it.

The number of bath states depends on assuming some sort of a bath model.

In the simplest case, the bath can be assumed to be infinitely large and have an

exponential density of states Ωbath in the vicinity of total energy. In other words,

the bath entropy (logarithm of density of states) should be linear in energy. If we

observe the system of interest in the microstate α with energy E(α) (which might

be positive of negative), that energy had to be taken from the bath. As the energy

remaining in the bath changes, so does its entropy, approximately linearly:

(3.11) lnΩbath(α) ≈ lnΩ0 + β(−E(α)).

The linear coefficient β is the derivative of bath entropy with respect to its

energy:

(3.12) β ≡ d lnΩbath

dE
.

The probability of observing a given system state is then proportional to the

number of bath states once system’s energy has been taken away. With proper
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normalization, this probability becomes:

(3.13) Ωbath(α) ∝ pα =
1

Z
e−βE(α),

where we have recovered the same probability exponential in energy, also known

as the Boltzmann distribution.

In principle, the system of interest can be coupled to different baths and ex-

change different extensive quantities, such as energy, volume, magnetization, num-

ber of particles etc. If these bath couplings are independent, then each would just

contribute a linear term within the exponential factor, as in Eqn. (3.4). Since the

resulting functional form for probability is the same, we have two interpretations

of what it means: either as a subjective inference problem, or as an equilibrated

exchange of some extensive quantity with a bath. To make an example relevant to

design, one can imagine the exchange of money between the budget of a particular

project and the broader enterprise. The conjugate design pressure, cost tolerance,

regulates how important is the cost of a particular design solution in determining

whether that solution would be picked.

Throughout this dissertation we assume that the system and the bath are always

in equilibrium. This assumption was required to derive the probability formula,

and consequently the rest of the mathematical formalism. In general there are

many ways to break equilibrium of collective systems, such as transient processes,

explicit external drive or energy injection, and coupling to different thermal baths.

While all these effects constitute a fascinating study of non-equilibrium statistical

mechanics,[104] I am not going to refer to those phenomena within this dissertation.
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3.1.5 Computing observables

So far we detailed how to infer the probability distribution pα from the ob-

servables 〈Oi〉, but to complete the agenda of the inference problem we need to

also specify how to compute the desired new observables 〈X〉. We presume that

the value of observable Xα can be straightforwardly computed for any given mi-

crostate α. In this case, the average of the observable is just as sum over the

ensemble weighted by the probability:

(3.14) 〈X〉 =
∑
α

Xαpα =
1

Z
∑
α

Xαe
−

∑
i λiOi(α).

For a generic observable X, this is the extent we can do. Some clever tricks

might help in computing the sum in α, and I talk below about several such tricks.

Still, before 〈X〉 is computed, one needs to compute the value of the partition

function Z, itself a tricky sum. Given our previous discussion, the partition function

is an explicit function of the intensive thermodynamic variables λi, and also an

implicit function of the extensive variables that restrict the domain of α. Given

that we inevitably need to do the hard work of computing the function to serve

as a probability normalization factor, is there more benefit that can be extracted

from it?

Turns out, the partition function contains a wealth of information on certain

kinds of statistical averages. Specifically, let’s focus on the conjugate averages:

given the design pressures λi, let’s extract the averages of design objectives 〈Oi〉.

Consider the following construct with the partition function log-derivative:

− ∂

∂λi

lnZ =− 1

Z
∑
α

∂

∂λi

e−
∑

i λiOi(α) =
1

Z
∑
α

Oi(α)e
−

∑
i λiOi(α)

=
∑
α

Oi(α)pα ≡ 〈Oi〉(3.15)



50

Turns out, statistical averages are encoded in the derivatives of the partition

function! This is very profound. I am not sure if this is an astute observation or

an incredible coincidence, but popular statistical mechanics textbooks use it in-

strumentally without additional commentary.[62, 102] This property definitely has

to do with the exponential functional form of probability, and would not neces-

sarily hold in more exotic versions of statistical mechanics that don’t use Shannon

entropy.[103]

Additional derivatives reveal additional properties of the averages. For example,

a repeated derivative in the same design objective λi gives the variance of the

observable, and a mixed second derivative gives covariance between two conjugate

observables: (
− ∂

∂λi

)2

lnZ =
〈
O2

i

〉
− 〈Oi〉2 =

〈
O2

i

〉
c
;(3.16) (

− ∂

∂λi

)(
− ∂

∂λj

)
lnZ = 〈OiOj〉 − 〈Oi〉 〈Oj〉 = 〈OiOj〉c .(3.17)

The covariance relationship can be used to quantify the correlation between

two design pressures and determine whether they drive the ensemble to similar,

different, or independent solutions. The repeated derivatives also give rise to an

important relationship::

(3.18)
(
− ∂

∂λi

)2

lnZ = − ∂

∂λi

〈Oi〉 =
〈
O2

i

〉
c
.

This implies that the susceptibility (or sensitivity) of the average of a design

objective is closely related to the fluctuation of that objective. In other words, if

in a certain regime of design pressure the preferred solutions change rapidly, then

they would also fluctuate a lot, which is a generally undesirable trait. I use this

relationship to discuss the cost phase transition in Chapter IV.
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A similar relationship applies to the mixed derivative, given that the order of

derivatives with respect to the two design pressures λi, λj can be interchanged:

(3.19)
(
− ∂

∂λi

)(
− ∂

∂λj

)
lnZ = − ∂

∂λi

〈Oj〉 = − ∂

∂λj

〈Oi〉 .

This is a generalized Maxwell relation, which is useful in cases when computing

certain kinds of derivatives is more convenient than other kinds, especially when

computations involve numerical methods or experimental data.[105, 66]

We derived the probability expression by maximizing its entropy, but in the

process shifted attention away from the entropy itself. We can now compute the

value of the entropy by plugging in the probability expression:

S[pα] = −
∑
α

pα ln pα = lnZ −
∑
i

λi 〈Oi〉 = lnZ +
∑
i

λi
∂

∂λi

lnZ,(3.20)

so that the value of entropy is also encoded within the partition function.

Lastly, the computation of non-conjugate derivativesX can sometimes be stream-

lined by using the observable X as a source term, or another design objective. We

compute a modified partition function with a generic value of associated design

pressure λX , extract the derivative and set the design pressure to zero:

ZX({λi}, λX) ≡
∑
α

e−λXX(α)−
∑

α λiOi(α)(3.21)

〈X〉 = ∂

∂λX

lnZX

∣∣∣∣
λX=0

.(3.22)

The above properties of the partition function allow us to interpret it as a basic

information structure of the design space. The value of the partition function is

usually hard to obtain and not directly useful. However, knowing the function

allows us to take derivatives that directly provide knowledge about macroscopic

relationships in the designed system. While the partition function is certainly
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useful, it is not the only information structure that we shall use, the other one

being tensor networks introduced later.

3.1.6 Coarse graining

The previous discussion concerned two disparate scales: an individual microstate

(or detailed design solution) α or a sum over all possible α. The latter sum allows us

to evaluate various observables that characterize the ensemble as a whole. However,

it proves to be useful to study the ensemble on an intermediate scale, somewhere

between a single microstate and the whole ensemble. These kinds of questions will

arise in all of the main chapters of the dissertation. Here we provide a mathe-

matical backdrop required for such computations, and explore the philosophical

implications of this backdrop.

The microstate index α typically lives in a high-dimensional space. The ob-

jective functions Oi(α) are hard to visualize in that space, and they obscure the

entropic drive (presence of many states at the same objective value). In order to

characterize the system at an intermediate scale, we introduce a function ~x(α),

which in conventional statistical physics is called an order parameter and in design

context I shall call it a design feature. The function ~x(α) is surjective, i.e. for every

possible value in the domain of {~x} there is one or more values in {α}, but each

α maps to exactly one ~x. This function therefore compresses the design ensemble,

sometimes dramatically. Instead of operating with microstates, we operate with

lumps of microstates that share the same value of the feature.

Why is this lumping useful? It is useful because we can compute the effective

objective function, which for consistency with statistical mechanics usage we would

call Landau free energy. Often in earlier statistical physics texts a lot of attention

is paid to a phenomenologically proposed free energy based on system symmetries
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and actually introduced by Lev Landau in the 1930s.[106] However, several texts

such as [107] give an explicit formula and others mention this formula in passing

[62]: 1

(3.23) e−F (~x) =
∑
α

e−
∑

i λiOi(α)δ(~x− ~x(α)).

The delta function corresponds to restricting the summation domain to only

those values of α that map to the same design feature ~x. The resulting function F (~x)

defines the Landau free energy landscape over the domain of ~x. In conventional

statistical physics the free energy is defined with a prefactor of β in order for it to

have the same units as energy. However, since we are going to deal with several

design objectives that have different units, we set the free energy to also be unitless.

In this way, free energy is a sort of “common currency” of different design objectives.

Apart from balancing the design objectives, free energy also accounts for the

entropic drive. In the simplest case, imagine that all n(~x) states α in the same lump

~x have the same value of design objectives. In that case the entropic contribution

to the free energy would be (− lnn(~x)). The more microstates are lumped together,

the lower the Landau free energy becomes, and the more likely such a mesoscopic

state becomes. Chapter IV demonstrates an example of a trade-off between the

design objective drive and the entropic drive.

The procedure of computing the Landau free energy via Eqn. (3.23) is known

as coarse graining, following the procedure introduced by Leo Kadanoff for lattice

spin models.[115] In order for the coarse-grained description to be consistent with
1It is unclear whether the expression of Landau free energy as a restricted sum is due to Lev D. Landau himself. It

appears in the 5th volume of the Landau and Lifshitz Theoretical Physics textbook starting with the 3rd edition in Russian
(1976)[108] which was the base for the 3rd edition in English (1980)[109]. The previous Russian 2nd edition (1964),[110]
the last one published before Landau’s death, does not mention the formula. The 3rd edition, prepared by Landau’s
colleagues and coauthors, quotes the origins of the formula as “This formulation of the problem for the phase transitions
of the second kind is due to L.D. Landau (1958)”, but does not provide a bibliographic reference. Complete collections of
Landau’s works show no relevant papers from 1958 or any time later.[111, 112] The first verifiable appearance of this formula
in a peer-reviewed paper that I managed to track down is from J.S. Langer in 1974,[113] though similar ideas appeared
before in context of long-wavelength hydrodynamic approximations.[114] The formula was popularized in N. Goldenfeld’s
textbook,[107] who in private communication with me confirmed learning it from Langer.
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the microscopic one, the statistical weights of the mesoscale states need to add up

to the original partition function:

(3.24)
∑
~x

e−F (~x) = Z.

The coarse-graining procedure can be repeated, each time leading to a coarser

description. In some cases the functional form of the free energy remains the same

and only the coefficients change. The study of those coefficients with this renor-

malization group procedure gives important insights in the theory of critical phe-

nomena.[107] However, in context of design the functional form would usually have

a different functional form at each scale, so the renormalization group treatment is

not useful for my case.

Computing the full partition function is done via the same formula as an in-

termediate scale coarse graining. Previously we showed that a lot of important

observables are done in terms of lnZ, which can be identified with the free energy

of the whole system.[102] If connection of microscopic to intermediate to macro-

scopic scale is done via a single coarse graining formalism, then none of these scales

have a fundamental meaning. The description at each scale is effective in the sense

that it ignores detail finer than that scale.

Even the microscopic scale description then is effective, since it depends on the

modeling choices of the observer. This is most apparent in the statistical physics

theories of colloidal particle systems. Statistical physics was first developed to ac-

count for systems of moving atoms and molecules, which are at least chemically

indivisible and indistinguishable.[116] The indistinguishable nature of the atoms

leads to Gibbs’ paradox that is most commonly explained by appealing to an

underlying fundamental quantum principle.[63] On the other side, each colloidal

particle consists of thousands or millions of atoms. It is practically impossible to
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synthesize the particles to be exactly identical, and they can be distinguished with

a good electron microscope. Still, we write extremely similar statistical physics

expressions for both atoms and colloids. The resolution of this apparent paradox

lies in recognizing the observer’s modeling choice to treat the colloidal particles as

undistinguished and rigid particles.[62, 63]. This and other conceptual issues of

statistical mechanics of classical particles in context of self-assembly are discussed

in the last section of this chapter. As for the Naval Engineering case study, I make

a choice of what is the most detailed scale of design solution description that I want

to resolve, specified in each chapter.

3.1.7 Formal definitions of design space

The mathematical techniques developed in the previous pages allow establish-

ing an explicit equivalence between the concepts in design and the concepts in

statistical physics theory.

The ensemble of microstates α is the solution space, which may or may not coin-

cide with the design space as discussed in Chapter I. The goal of the design process

is not in selecting an optimal solution from the solution space, but in understanding

the structure of this space. The structure is encoded in the probability distribu-

tion pα, but the whole space is too large and too high-dimensional to visualize pα

directly. Because of that, we need to supply additional tools to characterize the

ensemble.

The probability distribution is shaped by the design pressures λi imposed on

it. In the Naval Engineering Chapters IV–VI I assume that the design objectives

stay constant and we only vary their relative importance by changing the design

pressures. The objective space of possible problems is then spanned by the variation

of design pressures {λi}, with each λi contributing a space dimension. We explore
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two dimensions of design space in Chapters IV–V and one dimension in Chapter VI.

In chapter VII that discusses the self-assembly problem, there are multiple de-

sign parameters considered. The chief design pressure is the thermodynamic tem-

perature T which I consider fixed. Instead, I vary the concentrations of different

self-assembly building blocks and the binding energies between the blocks, which

jointly form the design space.

In order to evaluate the design outcomes, I compute both conjugate 〈Oi〉 and

non-conjugate 〈X〉 observables averaged over the solution space. The conjugate ob-

servables explain the direct correspondence between the desired design objectives

and the capacity of achieving them. However, the conjugate observables are not

necessarily sufficient. In chapter IV I show that the pursuit of two design objectives

might induce unexpected correlation of design variables, thus reducing the effective

number of design choices that fully determine the solution. In chapter VI I show

how different couplings within the solution space manifest when our observables are

focused on particular degrees of freedom. In chapter VII I show how subtle mod-

ifications in the definition of “yield”, the key observable outcome of self-assembly,

can make theory much more relatable to experimental measurements.

But why do we need to consider non-conjugate observables at all? Why is

it not sufficient to declare a design objective and directly evaluate our capacity

to reach it? The reasons for this are twofold. On one side, in practical design

situations we do not always get an opportunity to regulate the design pressures.

All self-assembly behaviors result from an interplay between the energy landscape

and the thermal fluctuations of the building blocks. As designers, we don’t get to

control the thermal fluctuations, and our control of the energy landscape is limited

by the substrate technology (see Chapter VII for more discussion). On the other
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side, having a narrow view of only goals and outcomes deprives us of the crucial

knowledge about the design space behavior, and gaining that knowledge is a key

feature of design.

Following this knowledge-oriented design philosophy is the main reason to bring

in statistical physics methods. The goal of these methods is not in providing

solutions for well-posed design problems (optimization is fully capable of that), but

in providing an arsenal of tools to study ill-posed, wicked design problems. Pursuing

this study throughout the main chapters of the dissertation focuses our attention

not only on the macroscopic relationship of the design space and design outcomes,

but also on the topography and structure of the solution space on multiple scales.

The ability of statistical physics to investigate collective phenomena on multiple

scales is its most powerful, and arguably its defining feature.

3.1.8 Statistical mechanics computations

The previous sections set up the philosophical principles and the mathematical

backbone of the statistical physics approach, but what is it that we want to com-

pute? Which system-specific computations would actually yield insights into the

design problem structure? The main quantities we are interested in are the parti-

tion function Z, observable averages 〈X〉, and free energy landscapes F (~x) (defined

in Eqns. 3.5,3.14,3.23 respectively). The complicated part that has been glossed

over so far is how to actually perform the sums
∑

α of terms and over domains that

depend on the specific system considered.

The “gold standard” of statistical mechanics calculations is to extract the quan-

tities of interest as analytical functions of the relevant arguments, so-called exact

solutions.[117] Before the large-scale availability of computers this was the main

way to make progress. A lot of the exactly solved models are defined on periodic
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lattices and have highly symmetric Hamiltonians. Because of the universality prop-

erty, analytical results for these highly idealized models turn out to be closely rel-

evant for certain experimentally measurable condensed matter systems, especially

close to phase transitions.[97, 107] Phase transitions are large-scale rearrangements

of the system state caused by minor variation of the thermodynamic parameters

close to a critical point. While we will see phase transitions in design problems,

especially in chapter IV, but they will not be as sharp.

The systems considered in this dissertation, even when defined on periodic lat-

tices, have much less symmetric Hamiltonians, complicated boundary conditions,

and strong finite-size effects. If we can’t look up answers in the book, how do

we actually perform computations of Z, 〈X〉, F (~x)? We rely on a combination of

established and new methods, as detailed below.

Direct and hierarchical summation

The simplest an perhaps naïve way to perform a summation
∑

α is to just

directly add terms in a program loop. This is the main computational method in

Chapters IV-V. The brute force nature of this method is alleviated with two slight

tricks. First, the computation there relies on adding up many routings that have

the same cost. In this case, adding up many identical terms can be replaced by a

multiplication by the number of such terms, which can be computed analytically.

Second, several parts of that sum occur multiple times in a partition function. In

that case, the results can be intermediately stored in a look-up table and later

substituted from there instead of doing the calculation from scratch again.

The obvious disadvantage of such computational tricks is their ad hoc nature

that highly relies on the specific problem considered and is not generalizable.
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Stochastic simulation

A common approach to statistical mechanics systems is stochastic simulation,

such as Markov Chain Monte Carlo methods. Instead of counting all of solutions

{α}, such methods count a random representative subset of solutions and use it to

compute approximate averages across the solution space. Such methods were used

in early investigations that led to Chapter IV, but were ultimately superseded with

exact enumeration methods.

Saddle point approximation

The saddle point approximation method is closely tied to coarse-graining of the

solution space. In terms of the free energy landscape, the partition function is given

by:

(3.25) Z =
∑
{~x}

e−F (x) ' e−F (x∗),

where we approximate the whole sum with its largest term, achieved at the global

minimum of the landscape F in the space of design feature ~x. This approximation

typically becomes better for large system sizes where the fluctuations around the

free energy minimum are negligible. We use this approach in spirit rather than

explicitly in Chapter V. There we compute the free energy landscape F (~x) and

find all of its local minima, not just the global one. We then analyze the shape of

the landscape around these minima to compute the design robustness metrics.

Perturbation theory

Perturbation theory is the idea of separating the Hamiltonian (design objective)

into two parts. One part defines the dominant behavior of the system and is easily

computable. The other part defines a small correction to the dominant behavior
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and can be computed as a perturbative expansion, usually to a low order. We use

a similar idea to model the response of subsystem design to external design stress

in Chapter V. The effect of external design stress is assumed to have an extremely

simple, linear form which nevertheless allows us to get a lot of insight of system

design robustness.

Tensor networks

The major computational innovation of this dissertation is the usage of tensor

networks as statistical mechanics information structures in Chapter VI. Tensor

networks allow us to not only compute the partition function, but also a variety of

marginal and conditional probability distributions via a simple high-level interface.

This makes them a highly adaptable and generalizable tools, unlike the earlier direct

enumeration methods. The next section of this Chapter provides more details about

tensor networks.

Series summation

In some cases statistical mechanics computations involve infinite but structured

series summations. Several of such expressions occur in self-assembly computations

of Chapter VII. The infinite series can then be summed analytically by using special

(or not very special) functions. Since the summed series are expressed in terms of

not scalar, but matrix arguments, I present suitable matrix generalizations of the

expressions. The divergence of such series summations has special physical meaning

discussed there.

Eigenvalues and singular values

While the convergence of scalar series is determined by the value of the argument

scalar, the convergence of a matrix series is determined by the lead eigenvalue of
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the argument matrix. This naturally leads me to consider the spectra of the matri-

ces, where important information is contained in both the leading and subleading

eigenvalues. The implications of this spectral analysis are explored in Chapter VII.

Spectra also enter the computations in a different, implicit way in Chapter VI.

The coupling tensors I use in tensor network methods are essentially large square

matrices. The spectrum of these matrices spans many orders of magnitude, with

the smallest eigenvalues contributing very little to the results of the computation.

Dropping such small eigenvalues, formally known as Singular Value Decomposition

(SVD), drastically simplifies the tensor network contraction. SVD is performed

automatically in the tensor network contractor I use.

Mean field theory and self-consistent expressions

The last method I need to mention is mean field theory. Mean field theory

expresses a statistical mechanics quantity via an auxiliary variable; this variable

itself is computed by averaging over the ensemble. This results in self-consistent

expressions, usually implicit equations in terms of mean field. This technique is

not explicitly used in the dissertation, but can be used to reproduce and generalize

certain combinatorial results of Chapter VII.

3.2 Tensor Networks

3.2.1 Basic notions

In this section I review the central ideas and existing applications of tensor net-

works. As the name suggests, a tensor network is a network where all nodes are

tensors and all edges are contractions of tensors. As any other network, it can be

easily drawn to illustrate the topology. It is this graphic property that motivated

the introduction of tensor networks as a new form of mathematical notation by



62

Penrose in the 1970s.[118] This form of notation can be used in General Relativ-

ity computations where upward and downward pointing edges directly represent

covariant and contravariant indices and can be connected via metric tensors.[119]

Each tensor Aijk... is essentially a multidimensional array that can be addressed

with indices ijk . . . . The number of indices is known as tensor rank (due to his-

torical abuses of terminology it is distinct from matrix rank). A scalar number, a

vector, and a matrix are all special cases of a tensor with ranks 0,1,2, respectively.

The dimensions of different indices don’t have to be the same, as it is easy to imag-

ine an array of dimensions 2× 10× 6, though one then needs to keep track of the

meaning of each index. The fundamental operation of two tensors is contraction,

i.e. a summation of elements over a shared index, which results in a new tensor:

(3.26) AijkBkl = Cijl,

where the k summation is implied. Contraction is only possible between two indices

of same dimension. In some cases it is necessary to keep track of covariant or

contravariant nature of indices and only contract two of opposite type, but such a

distinction is not needed or used in this dissertation. The two indices can belong

to the same tensor, in which case such a contraction is known as trace.

A tensor network is essentially an instruction of the pattern of contractions

between tensors in an arbitrary order that respects the above rules. Some tensors

can have remaining free indices that are not summed over and would remain on

the resulting tensor, just like in Eqn. 3.26. In the tensor network, such indices are

shown with edges that leave from a tensor but don’t connect to another tensor,

also known as external legs. Since all contractions are just linear summations of

elements, the result of a network contraction does not depend on the order in which

the pairwise contractions are performed, so we don’t indicate such an order. The
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computational aspects of tensor network contraction are described below.

It is important to distinguish a tensor network from the single tensor to which

it evaluates. Such evaluation requires computational resources, often prohibitive,

and also frequently loses the special structure built into the network. Delaying

the contraction allows us to perform lots of complex operations on the tensor net-

work, thus treating it as an information structure. We review below the existing

applications of tensor networks as information structures in different domains and

synthesize the best practices that make tensor networks useful to us.

3.2.2 Applications

In order to motivate why contracting a network is not always useful, consider

a network of many tensors indexed with i, each having rank di and typical index

dimension K. The memory required to store all elements of such a network scales

as following:

(3.27) M ∝
∑
i

Kdi .

Note that the scaling is very steep with respect to the dimension and rank of

tensors. On the contrary, the scaling is essentially linear in the number of tensors

of the same type. If in constructing a model one can split a single large tensor into

several smaller ones, it is possible to achieve exponentially large savings in memory.

If storing the large tensor would overwhelm the largest computers available, storing

an assortment of smaller tensors might just about make the problem tractable.

This idea of memory saving underlies all of the modern applications of tensor

networks, including ones in this dissertation. A large multi-linear object of high

rank is split up into many smaller objects that collectively perform the same func-

tion, exactly or as a controlled approximation. The meaning of the individual
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tensors and their contraction patterns needs to be negotiated in each problem on

a case-by-case basis.

Quantum condensed matter

The most common tensor network application is the study of quantum condensed

matter systems such as correlated electrons.[120, 121, 122] This usage is so common

that some sources perceive tensor networks as an inherently “quantum” technique

rather than a general mathematical tool. A typical problem in quantum systems is

representing an entangled multi-particle wavefunction from a large Hilbert space.

Given a fixed basis, this wavefunction becomes a tensor with rank equal to the

number of particles considered – i.e. quickly becoming prohibitively large.

Tensor networks in this case serve as a wavefunction ansatz, i.e. a prescribed

functional form that attempts to fulfill the properties expected of the exact wave-

function. Fortunately, such approximation ansatz is very good at representing the

“interesting” corners of Hilbert space, such as the ground state or low-lying excited

states. In order to probe the properties of such states, many optimized algorithms

have been developed that exploit the simple tensor network topologies: the Matrix

Product State or Tensor Train (MPS/TT) for 1D lattices, Projected Entangled

Pair State (PEPS) for 2D lattices, and Multiscale Entanglement Renormalization

Ansatz (MERA) for hierarchical wavefunctions. For these topologies, there are

plenty of off-the-shelf algorithms that find ground states, evaluate observables,

compute entanglement entropy, and perform real or imaginary time propagation.

Quantum chemistry

Another important area of application of tensor networks is precision quantum

chemistry. While the quantum condensed matter studies are interested in the
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general properties of entangled wavefunctions and properties of quantum phase

transitions, quantum chemistry instead focuses on the specific spectra and energy

levels of atoms, molecules, and bulk structures. While popular computational

techniques such as the Density Functional Theory (DFT) are able to account for

a lot of systems of interest, in some cases it is essential to keep track of electron

correlations to get accurate answers, and tensor network based techniques were

developed for that.[123]

Simulation of quantum computing

Tensor networks can also be used to simulate the behavior of quantum com-

puting circuits on classical computers.[124] A typical circuit consists of preparing

several qubits in desired states and, acting on them with unitary logic gates, and

performing measurements. While on a real quantum computer such a gate is an

indivisible operation, it can be represented as a linear operator acting on the wave-

function vectors, at increased computational cost. A combination of such linear

operators acting in a specific order on specific single qubits or pairs of qubits is

then isomorphic to a tensor network. Leaving the remaining external legs uncon-

tracted allows reading out the result of the computation. An additional benefit

of such a notation is that the direction of legs on the tensors simplifies reasoning

about bra and ket vectors, similar to the covariant and contravariant vectors in

General Relativity.

Renormalization calculations

Back in classical physics, tensor networks allow formalizing the heuristic block-

spin renormalization procedure of Kadanoff.[115] In tensor network language, renor-

malization amounts to summing the internal degrees of freedom of a block of spin,
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dropping the small singular values, and relabeling the coarsened tensors to get back

to the original topology. With some extra precautions, such a procedure allows

reconstructing the renormalization group flows and critical exponents of original

studies, while creating a more flexible, interpretable, and computationally efficient

framework.[125, 126]

Machine learning

Tensor networks have also found applications in storing the trained weights of

multi-linear machine learning classifiers.[127] While it is not in general expected

that the correlations between the weights have MPS topology, in practice such a

representation of high-rank data gives good classifier results, while being economical

in memory. Tensor-based structures, though different from our discussion here, are

also used in the linear layers of neural networks to store the trained weights, thus

giving the name to the TensorFlow package.[128] The need to rapidly perform low-

precision tensor arithmetic led to the development of dedicated Tensor Processing

Units, or TPUs.[129]

Constraint satisfaction counting

The inherent combinatorial nature of tensor networks allows using them in solv-

ing #SAT problems, a subset of constraint satisfaction problems where the goal is

not in finding a solution that satisfies a set of constraints, but in counting the num-

ber of all such solutions. The original paper by Penrose shows that the problem of

counting the 3-colorings of a given graph can be solved by contracting Levi-Civita

tensors along the topology of that graph, but did not have a computational method

to actually perform that contraction.[118] More recently, such methods were pro-

posed for general constraint satisfaction problems.[130, 131] These methods rely on
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Figure 3.1: Tensor networks express the relationship between three factors: tensor elements, net-
work topology, and global properties.

bipartite tensor networks, where some tensors encode the variables, others encode

constraints, and variables can only be contracted with constraints. In my own work

outside of this dissertation I used tensor networks to count the number of tilings

of lattice dimers, i.e. the entropy of a discrete hard particle system.[80]

Linear algebra

Tensor train networks have been used to accelerate the numerical linear algebra

computations of large multilinear objects.[132, 133, 134]

Common features

The common feature of the examples above is attempting to express some large-

scale property of the whole tensor network via the entries of separate tensors. I

illustrate this relationship via a triangular diagram in Fig. 3.1. This diagram is

not an expression of a particular algorithm, but rather a framing device to ask

questions about the tensor network. In a particular problem, typically two corners

of the diagram are known or assumed via a modeling choice, and computation is
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required to find the third corner.

The first corner is the global properties encoded by the whole network. Some-

times they are already known, such as the need to find a wavefunction minimizing

a given Hamiltonian, or find a set of weights that best fit a given dataset. In other

cases the global properties are the target, for instance the partition function or cou-

pling flows in the classical renormalization calculations, or the number of solutions

of an #SAT problem.

The second corner is the elements of the tensors within the network. The goal

of quantum condensed matter computations is frequently to find the elements of

the wavefunction that would minimize energy. The goal of machine learning is to

find (or in the jargon, train) the weights in a classifier or a neural network that

best fits the dataset. In other cases the weights are known a priori, such as the

variable and constraint tensors for constraint satisfaction, or the coupling tensors

for classical statistical mechanics.

The third corner is the topology of the tensor network, which is the least dis-

cussed. Most frequently, the topology of the tensor network mimics the actual

or presumed topology of couplings in the system’s Hamiltonian. For a 1D lattice

system where each element in coupled to the next, it is natural to consider a 1D

tensor network (MPS/TT) to encode the wavefunction, even though it is only an

approximation of the real wavefunction. For similar reasons, the 2D systems are

usually described with 2D lattice networks (PEPS). Both of those topologies have

issues with capturing long-range correlations characteristic of near-critical systems,

which led to the development of a hierarchical tensor network (MERA).

However, the tensor network literature is virtually disconnected from network

science literature.[50, 135] The central idea of network science is that the topology
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of connections in real-world systems is neither regular like a lattice, nor fully random

like an Erdös-Rényi graph, nor densely connected like in mean-field or well-mixed

models. Instead, the topology is a complex network that can be described on a

low level with an adjacency matrix, or on a high level via community structure.

Network science aims to explain how the topology of networks originates, and how

it affects processes on networks. However, for our purposes network science gives

us a license, or a task of accounting for systems with complex irregular topology

that we cannot freely approximate.

This ethos drove me to develop the tensor network methods and software to

study emergent couplings of Logical and Physical Architecture, described in detail

in Chapter VI. I treat tensor networks as information structures that encode the

whole design space. I ask questions about this design space via a specific graphical

and computational language. For my system, the tensor elements and the network

topology are known a priori, and the goal is to find the global properties of the

network, i.e. the design outcomes.

However, the macroscopic relationships between design pressures and outcomes

answer the less interesting what question. The more interesting why question is

answered by considering in a lot of detail the emergent structures on the inter-

mediate scales of the design space. This need drove the development of the TenZ

package described below, and the specific set of techniques and questions described

in Chapter VI.

3.2.3 Software solutions

The rising popularity of tensor network methods lead to proliferation of dedi-

cated software across many programming languages, see http://tensornetwork.

org/software/ for a list. The most common low-level operation to be performed

http://tensornetwork.org/software/
http://tensornetwork.org/software/
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on the network is a pairwise contraction of two nodes. A sequence of these con-

tractions can have different high-level aims. Most commonly it aims to reduce the

whole network to a single tensor by contracting all internal links. Occasionally,

however, different operations are called upon by the algorithms, such as variational

optimization.

While tensor networks give us a useful graphical language and a high-level

abstract concept to manipulate, deep down the contraction of a tensor network

amounts to a long sequence of multiplications and additions of real (or complex)

numbers. The result of this sequence of operations does not depend on the order

in which they are performed, so long as the computations are all exact.

However, the time complexity of the whole contraction is known to depend

sharply on the sequence in which the elementary contractions are performed. De-

pending on the application, there exist not only different technical ways to deal

with the contraction sequence, but also different schools of thought towards it.

One school of thought, materialized in the NCON package, comes from the ethos

of the condensed matter community.[136] The central idea of NCON is in finding the

optimal contraction sequence that minimizes the number of operations by searching

the vast but finite space of possible contraction sequences. Finding the optimal

contraction sequence is an NP-hard problem that scales exponentially with system

size. However, the contraction sequence does not depend on the contents of each

tensor, thus the base of time scaling is relatively mild. Finding the full contraction

sequence before the contraction begins is useful if the same network topology is used

many times, perhaps sweeping over a system parameter range. NCON has several

additional features to it, such as an ability to efficiently recycle partial results and

quickly compute the environments of all nodes in the network at the same time, a
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useful trick in variational optimization. NCON is originally implemented in Matlab,

though ports to other languages exist.

An alternative way to deal with the contraction sequence is designing it on

the fly by using some heuristic method, as exemplified by the PyTNR package for

Python.[137, 138] A sequence created this way is not necessarily optimal, but likely

better than random. Additionally, PyTNR dynamically performs approximations

at user-specified accuracy using Singular Value Decomposition (SVD). Thus the

results obtained are not exact but the computation can proceed much faster and

scale much better for large systems. Since the number of singular values preserved

by SVD at given accuracy depends on the tensor contents, the runtime of PyTNR

on a given network actually depends on the tensor entries and not just topology.

PyTNR promotes the ethos of being creative with the network constructions and

performs different calculations by modifying the network topology between con-

tractions. Though a modified topology might lead to a significantly different con-

traction sequence, especially if loops in the network are formed or broken, there

are no resources invested into finding the true optimal sequence, and not using it

does not constitute a large efficiency loss.

3.2.4 TenZ package

In order to facilitate the conversion between physics questions about a partic-

ular system and the tensor network contractions that address those questions, I

developed the TenZ package, short for “Tensor Z”, where Z stands for the partition

function. The package consists of several modules as depicted in Fig. 3.2. The goal

behind TenZ is to encode the basic structure of the tensor network as an informa-

tion structure in a persistent object, and then rapidly create tensor networks with

different small topology modifications to ask specific questions of this information
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Figure 3.2: The TenZ package interfaces physics models with PyTNR contractions. The free_energy
and geometry modules on the left encode the properties of the specific modeled physical
system. The TenZ module (center) encodes the basic topology of the tensor network and
generates the networks with desired on-demand modifications and passes it to PyTNR
for contraction.
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structure in order to generate knowledge.

The topology of the tensor network in form of the adjacency matrix Aij is put

into a TenZ object upon initialization. The TenZ object interfaces with two other

objects: free_energy and geometry modules. Each of these modules has stan-

dard interfaces, but the internals can be changed to model a specific system. The

geometry package encodes the space in which each of the functional units in the

system can be placed, and allows for such high-level commands as conversion be-

tween 2D coordinates in space and 1D index of coupling tensors, as well as drawing

arbitrary scalar fields within the space. The free_energy package computes the

coupling tensor between any pair of functional units. The “free energy” name

was chosen because the coupling tensor already depends on the coarse-grained de-

sign space variables, weighted by effective rather than raw design objective. The

create_network() command allows the user to create a tensor network that de-

scribes the coupling of functional units along the edges of the network, while the

keyword arguments of the command implement the desired modifications of the

topology. Chapter VI gives a more detailed description of modeling a design prob-

lem via tensor networks, the language of basic moves to modify topology, and the

questions asked of this information structure.

We anticipate releasing the source code of the TenZ module along with the paper

based on Chapter VI.

3.3 Statistical mechanics for self-assembly

3.3.1 Scope of theory needed

The subject of this dissertation, as much as design, is statistical mechanics.

In the earlier part of this Chapter I primarily focused on revising the definitions

of state space, design pressures and outcomes. I use a variety of conceptual and
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computational tools such as coarse-graining and Landau free energy, and introduce

new ones, such as the tensor networks. The motivation behind them, and the idea

behind Systems Physics is that the structures that appear in the design space can be

mapped to physical objects, whose interactions can be accounted for with familiar

mental models such as forces and displacements. This is a novel application, and

thus requires a lot of discussion.

Surprisingly, lengthy qualitative discussions are necessary not only for the “novel”

application of statistical mechanics to arrangement problems, but also for the “tra-

ditional” physical systems of interacting colloidal particles exhibiting self-assembly.

A theory of such particles, of completely classical nature, is not readily available in

a complete form. For the theory to be completely interpretable and experimentally

testable, we need to introduce an accounting of building block microstates and

use this accounting to predict yields of desired self-assembled structures. Bits and

pieces of such accounting are available, and the later part of this section lays out

a research program towards a unified theory.

However, before developing such a theory, we need to make sure that we are

not reinventing a standard “textbook” approach. Surprisingly, there is no relevant

textbook to cover the subtle conceptual issues. There are plenty of good textbooks

that emphasize different parts of statistical mechanics and allow quickly looking

up useful formulas.[107, 102, 139, 140, 109] However, in recent years only Sethna’s

textbook [62] radically modernized the order of presentation to emphasize more

modern, interdisciplinary, unconventional applications while skipping the conven-

tional thermodynamics almost entirely. While Sethna’s textbook coins a key notion

of undistinguished particles, it does not pursue building a logically complete clas-

sical statistical mechanics theory.
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3.3.2 Why don’t we have a theory yet?

This lack of a comprehensive theory has to do with the history of statistical

mechanics as a subject. The history starts with thermodynamics, a precursor

to statistical mechanics that was originally developed to quantify the limits on

efficiency of heat engines, culminating in the Carnot treatise in the 1820s,[141]

and ultimately developed into a closed theory based on four laws. The need to

justify the four laws from a more microscopic perspective led to a series of works

in the second half of the 19th century that introduced the notions of entropy,[142,

143] derived the velocity probability distributions,[144] and culminated in the first

textbook with a systematic treatment of statistical ensembles.[116] The main object

of those investigations was atomic and molecular systems of “indivisible” particles.

Investigations into the nature of such particles led to a pileup of problems of early

20th century physics and precipitated the development of quantum mechanics.

Some physical problems indeed only have quantum mechanical explanation, such

as the indistinguishable nature of electrons, discreteness of light quanta, or freezing

out of molecular degrees of freedom at low temperature. Other problems, however,

fall back onto quantum concepts unnecessarily, such as the explanation of the

Gibbs paradox,[145] or the usage of Planck’s constant h as the universal measure

of phase space volume. These intuitions can be traced to Bohr’s correspondence

principle saying that quantum systems ought to behave classically in the large-size,

large-energy limit.[146] If classical behavior is only observed in certain limits, then

the quantum theory is more fundamental and thus more worth pursuing to find

explanations.

This pursuit occupied a large part of the 20th century, especially within the

discipline of solid state physics, later renamed condensed matter physics, and now
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even more appropriately named hard (quantum) condensed matter physics. It is

hard to underestimate the impact of those studies, from the tremendous techno-

logical impact of enabling all of modern electronics, to quantitatively explaining

complex phenomena such as superconductivity, to developing sophisticated math-

ematical tools such as the renormalization group.[107] The need to train people in

solving those kinds of problems led to a demand for textbooks teaching statistical

physics via the prism of quantum systems.[147] More recent textbooks also include

modern and practical computer simulation methods but don’t necessarily refine the

philosophical foundations.[148]

Of course, a century of research resulted in important theoretical ideas. The

study of phase transitions, symmetry breaking, and universality resulted in the

widely-used notions of effective theory and emergence.[149] The notion of Landau

free energy as an aggregate description of a bundle of microstates allows discussing

effective theories quantitatively, as I do in this dissertation.[107] The ideas about

maximal entropy distributions connected statistical mechanics with information

theory.[100, 99] A lot of arguments were proposed in the debate about the nature

of macroscopic irreversibility and the arrow of time, though my interest here is

exclusively in equilibrium.[94] Even in isolation from philosophy, many other con-

densed matter techniques allow calculations for models of complex systems such as

networks.[101]

Historically, all these advances in hard condensed matter are hugely important,

inspirational, and cannot be ignored. However, from the strict logic point of view,

they do not contribute to the axiomatic, closed theory of classical statistical me-

chanics. The intervening century distracted us from pursuing the program started

by Gibbs to the degree that Gibbs’ own resolution of the paradox named after him
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is replaced with a deference to quantum mechanics.[63] The paradox has to do with

adding the entropy of two types of “colored” particles and then continuously merg-

ing their colors into one, resulting in an apparent discontinuity of entropy. While in

quantum mechanics it is impossible to continuously turn one atom into another, in

the space of colloidal particles lots of properties can be adjusted continuously.[74]

The different physical mechanisms of distinguishing particles were discussed by

Jaynes via a thought experiment involving yet undiscovered elements whifnium

and whafnium,[150] and again by Frenkel in context of colloidal particles.[151] The

paradox is resolved by noting that distinguishing the particles is the observer’s

choice, recognized by Gibbs [145] but promptly forgotten. This choice was revived

only a hundred years later by Sethna who coined the notion of undistinguished

particles in his textbook.[62]

The unresolved questions were finally risen again by the advances in experimen-

tal soft condensed matter systems. The experiments by Meng et al. highlight the

key role of rotational entropy and symmetry numbers in determining the equilib-

rium yields of colloidal clusters of different shapes.[64] Klein et al. closely inter-

pret the subtleties of colloidal partition functions in canonical ensemble (what I

called statistical weights in Chapter VII).[68] Cates and Manoharan comment on

an assortment of apparent paradoxes and contradictions that appear in statisti-

cal mechanics of colloids when classical and quantum ideas are indiscriminately

mixed up.[63] A framework by van Anders et al. explicitly treats the particles

as continuously variable in shape,[72], while Antonaglia et al. show how to map

out the distribution of entropy in the system.[67] These works do not yet form a

comprehensive and unified theory, but they provide a lot of pieces that seem to fit

together. With some more work, classical statistical mechanics can be a closed the-
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ory that allows for precise numerical computations without reference and deference

to quantum mechanics to plug up conceptual holes.

This discussion was not meant as a comprehensive historical review, but as

evidence for the conceptual holes and the reasons behind them. Below, I lay out two

sets of questions that would lay out a research program towards building a complete

theory. The first set of questions has more to do with conceptual questions and

interpretations, while the second set has more to do with practical implementation

and calculation. Answering these questions in full in the most general form will

take more space than a Methods section would allow. Instead, I address them in

a more specific form, with an eye towards self-assembly, in Chapter VII, but there

is plenty of other phenomena in classical thermal systems that could benefit from

a systematic framework.

3.3.3 Conceptual questions

In order to build a systematic framework for a classical self-assembly theory, we

need to connect the dots by answering several specific questions. A lot of these

answers are essentially modeling choices, owing to the subjective interpretation of

statistical mechanics originally proposed by Jaynes,[99] and most recently articu-

lated by Cates and Manoharan in application to colloidal particles.[63]

1. Why can we treat colloidal particles of micrometer or nanometer size as indis-

tinguishable? Why can we treat clusters of particles as indistinguishable?

2. Do we need any references to quantummechanical concepts such as the Planck’s

constant or the Pauli principle to make a consistent classical statistical me-

chanical theory? What is a good phase space measure h and when does it

matter? What is then the thermal wavelength λth?
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3. In classical mechanics, the rotations and vibrations of particle clusters are

always active and never get frozen out. How do we account for the classical

bond entropy and bond free energy? When and why are the interaction ranges

and the shapes of interaction potentials important?

4. How do we separate the “integral” and the “combinatorial” parts of the theory?

That is, when do we care about the continuous space of particle positions

and orientations, and when do we care about the discrete space of particle

membership in clusters?

5. Self-assembly statistics is obviously dependent on particle concentrations: at

low concentrations building blocks don’t encounter their binding partners often

enough to form structures, whereas at high concentrations approaching close

packing the building blocks either vitrify or form bulk structures as opposed

to finite and discrete clusters. What range of concentrations is physically

reasonable for synthetic systems and for biological systems? When is it more

reasonable to talk about concentrations of discrete clusters as opposed to bulk

descriptions?

6. Should the theory be built in the canonical or grand canonical ensemble, that

is, fixed particle number or fixed chemical potential? Fixed particle number

corresponds more closely to the setup of experiments and computer simula-

tions, while fixed chemical potential makes theory easier. The physical dif-

ference can be attributed to the capability of the available chemostat to keep

constant density of building blocks.[91]

7. What is the proper counting of terms that enter the grand canonical parti-

tion function? Should one count the unique cluster types or track their copy

numbers as well?
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8. What is the chemical potential? Is it merely a calculational device, or does it

have a physical meaning? Why do the partition functions diverge at some value

of chemical potential? What do the divergence and its exponent physically

mean?

9. What are the good definitions of target structure yield? How do they relate

to the desired applications of self-assembly, e.g. forming maximally precise

structures or having the highest conversion of raw building blocks into ap-

proximately correct structures?

10. What are the degrees of freedom of the self-assembling system that we can

reasonably control or design to set up an experiment or simulation, such as

binding energies and concentrations? What are the observables that we can

reasonably measure in experiment or simulation? The theory we construct

should in the end relate the experimental controls to the experimental observ-

ables in a testable manner.

3.3.4 Implementation questions

This second set of questions is aimed more specifically at the implementation

of a specific self-assembly theory building on Refs. [91, 90]. This theory considers

a specific limit where the building blocks form discrete, finite clusters that have

negligible interactions with each other.

1. An important part of statistical weight of self-assembled cluster is its inter-

nal entropy. How do we compute the rotational and vibrational entropies of

clusters? How do they depend on the shape of the interaction potential that

binds the particles?

2. For heterogeneous self-assembly, we need to find not just one optimal building
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block, but a whole set of building blocks. What are the good collective metrics

of a set of heterogeneous building blocks? How do we optimize these collective

metrics?

3. Self-assembled clusters differ by topology, size, and specific sequence of build-

ing blocks. How do we make a unified accounting over these hierarchical

aspects of structure? How do we compute the sum over all possible sequences

of self-assembled clusters?

4. Apart from the attractive interactions at the binding patches, the building

blocks have repulsive, steric interactions away from the patches. How do we

account for steric interactions of the building blocks? How does the topology

of the cluster affects its entropic weight? How do we account for the loop

entropy penalty?

5. Building blocks with more than two binding sites allow the assembled chains

to branch off, forming tree-like or looped structures. How do we enumerate all

possible tree topologies that can form from a given set of brancher particles?

How do we account for loops? How about denser topologies such as close

packed 2D and 3D structures?

6. We primarily consider the lock-key specific binding and non-specific cross-

talk. How does the cross-talk limit the size and accuracy of self-assembling

structures? Do we need to also account for the key-key and lock-lock cross-

talk? If so, how do we do that?

7. How do we account for the possible allostery of the building blocks, or many-

point binding interactions between different binding sites?

There are probably other questions as well that arise out of the confusions over
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practical computational concerns. It takes a little bit of questioning and looking

up the “textbook” answers to lay these questions base. While I address most of

these questions once in Chapter VII, they still open up a fascinating field of work

to get into.



CHAPTER IV

Phase Transitions in Design

4.1 Introduction

1Designing products with an emergent, overall function that is more than the

sum of their parts is a crucial challenge in science and engineering.[153] Meeting

this challenge is complicated by the fact that, for many complex products,[32, 33,

34, 31, 27] different subsystems employ diverse technologies and are designed us-

ing a variety of methodologies. Moreover, meeting the overall design goal for a

specific product is seldom achieved by optimal performance for every individual

subsystem.[24] The need to design subsystems that achieve target performance

and contribute to overall system outcomes is becoming more pressing.[5, 6] The

increased pressure arises because engineered products in a wide variety of indus-

tries now incorporate several distinct, but interconnected types of functionality.[5]

As a result, for many modern engineered products more economic value is added

in designing a product than in manufacturing it.[6] Making design more effective

requires the ability to understand and quantify how the design of a subsystem is

affected by overall design objectives, and how deviations from optimal performance

are affected by interaction with other subsystems.

Here, we use techniques from information theory and statistical mechanics to
1This chapter is based on the paper [152] coauthored with C.P.F. Shields, D.J. Singer, and G. van Anders.

83
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Design
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Design
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Figure 4.1: Schematic of the relationship between global design pressure and local design stress
in a generic design problem. A complex system (whole network) is divided into three
subsystems (represented by green, red, and blue nodes). Design pressure is represented
by the inward pointing grey arrows and applies to all parts of the system. Locally, the
global design pressure manifests itself as design stress, here between two blue nodes.
If design parameters are e.g. the spatial locations of the nodes, then after taking
into account the interactions among all other elements, the design stress expresses the
marginal cost of incrementally changing the relative position of the two nodes. Figs. 4.4,
4.6 demonstrate the design stress patterns for the specific system studied in the Chapter.

show that subsystem performance and interactions can be cast in terms of “stress”

and “strain” from materials physics. We illustrate this behavior in design prob-

lems that can be cast as arrangement problems. Arrangement problems arise in

design in a wide range of disciplines, including at several scales in electronics,[154]

as well as in distribution logistics [155] and facility layout.[156] Here, we focus

on arrangement problems that arise in naval architecture.[157, 41] Naval architec-

ture, specifically that of warships or other multi-use vessels, provides an ideal case

for understanding the role of subsystem behavior in complex engineering design.

Ships incorporate several competing design pressures,[158, 31] they require design

specifications at several levels of detail,[11] and costs frequently prevent prototype

production.[13] Additionally, ship design has a need for design freedom, i.e. it re-

quires the consideration of nearly-redundant designs of comparable “cost” of the

overall design objective. This type of design cannot be done via approaches that
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focus on finding individual designs, e.g. simulated annealing [21], that don’t cap-

ture entropic drives in design. We show that situating design problems in a more

generic statistical physics framework facilitates the computation of local “design

stress” that arises in subsystems from different competing global design pressures

(see Fig. 4.1 for illustration). We demonstrate how global design pressures from

the remainder of a system induce sub-optimal subsystem performance, which we

quantify through Pareto frontiers computed using effective, or Landau,[107] free en-

ergies. The design stress is the marginal cost of moving one of the system elements

in design space that results from all other element interactions. Similarly, spring

tension is the marginal energy cost of an infinitesimal change in length (regardless

of the intrinsic nature and linearity of the spring).

Our approach draws on work on effective interactions in soft matter systems

without a clear separation of scales [159, 73, 79] and on statistical mechanics based

approaches for materials design,[72, 160, 85] which we apply here at the level of

systems. Using this “systems physics” approach, we compute free energies for sam-

ple systems and show how the effects of competition between design pressures drive

subsystem designs into distinct classes. We also use the same method to show that

it is possible to determine likely arrangements of functional units, and routings

between them, independently. Our approach gives new concrete, quantitative un-

derstanding of how competing design pressures affect subsystem design in complex

naval systems. Our approach can be straightforwardly generalized to other classes

of design problems involving complex couplings between interconnected systems.
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4.2 Systems Physics Framework

We seek a framework for studying tradeoffs in design problems. To do so, we

begin from the fact that many classes of design problems can be cast in the form of

a network of functional components.[157, 161] Different candidate design realiza-

tions arise from different intrinsic properties of the functional units, the topology

of the network of functional connections and, possibly, the spatial embedding of

the functional network. For many real-world design problems this results in a com-

binatorially large space of feasible design solutions.[162, 161, 41] The structure of

design space determines the form of tradeoffs between design considerations.

To study how the structure of design space encodes tradeoffs, we consider a com-

binatorially large set of feasible designs ({σ}) and a set of design objectives ({Oi}).

A powerful approach to the design of complex engineering systems, known as Set-

Based Design,[32, 33, 34, 31] involves finding candidate sets of feasible designs, as

opposed to focusing on a singular optimal design.[24] Different design objectives

select different corners of the full design space into the candidate set. Given the

full design space and a set of specified average outcomes for the design objectives

({〈Oi〉}), an important task is to determine the probability (pσ) that a given design

σ would be selected for inclusion in the set of candidate designs.

To construct a set of candidate designs with average outcomes {〈Oi〉} for the de-

sign objectives, information theory [100, 99] indicates that the least-biased estimate

of pσ is given by maximizing the functional

(4.1) S = −
∑
σ

pσ ln pσ −
∑
i

λi

(∑
σ

pσOi(σ)− 〈Oi〉

)
,

with respect to pσ, where λi are Lagrange multipliers enforcing the constraint on
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candidate designs. Carrying out the maximization gives

(4.2) pσ =
1

Z
e−

∑
i λiOi(σ) ,

where Z is a normalization constant. In principle, further algebraic manipulation

could determine the λi and yield a precise form for pσ. That form of pσ would answer

the question of what designs are likely to be selected. Why certain design classes are

likely to be selected, however, presents an equally important question. Answering

this question is important in untangling the dependence of specific design solutions

on overall design priorities. To answer the “why?” question, we note that pσ has

the form of Boltzmann weight in statistical physics. Using the statistical physics

approach takes us from Eq. (4.2) to the so-called partition function

(4.3) Z =
∑
σ

e−
∑

i λiOi(σ) ,

in which each λi quantifies the “design pressure” of meeting corresponding design

objective Oi. By specifying how the variable design pressure affects the determi-

nation of candidate designs, the partition function provides a means to determine

why candidate designs are candidates. To concretely demonstrate the power of

this approach for general design problems, we use a specific problem from naval

architecture. However, this approach generalizes straightforwardly to other prob-

lem classes by appropriate selection of candidate designs (σ) and design objectives

(Oi).

4.3 Arrangement Problem Model

We consider the spatial embedding of a subsystem of the overall functional

network that contains only two units and a single functional connection. In both

cases we choose a subsystem at random among two possible cases that differ by
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Figure 4.2: Illustration of the model for arrangement problems. The functional network (a) is
embedded into an inhomogeneous space (b), here a ship hull. Spatial embeddings (c-d)
require routings between connections, with two generic cases. Case 1 (c), routings that
are not affected by features of the embedding space, is described in Figs. 2 and 3. Case
2 (d), routings that are affected by features of the embedding space, here bulkheads, is
described in Figs. 4-6.
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whether the embedding of the remainder of the functional network localizes the

subsystem in a homogeneous space (Case 1), or a space that is structured by the

remaining ship design (Case 2). See Fig. 4.2 for an illustration. We show below

that Case 1 exhibits behavior that results from trade-offs between considerations of

cost and design freedom, and Case 2 exhibits behavior that results from trade-offs

between considerations of cost, design freedom, and performance.

For Case 1 we introduce a single explicit design objective O1 together with the

corresponding design pressure λ1, rigorously defined below. For Case 2, we ad-

ditionally introduce a second design objective and pressure pair O2, λ2 that acts

concurrently with the first. The design pressure for so-called design freedom is

not put in by hand but rather emerges organically from careful consideration of

redundancy of similar design solutions through the Landau free energy technique.

It is important to note that we are not trying to find specific preferred or optimal

values for design pressures λ1, λ2. Instead, we are interested in exploring a wide

range for both of them and detecting the statistical, macroscopic changes in the en-

semble of solutions. Two main techniques are used for this exploration: computing

the ensemble-wide statistical averages 〈O〉 and computing the Landau free energy

landscapes F (S) to find the preferred values of some mesoscopic design feature S.

In both cases, the monetary cost expended on routing a connection between

units (E) is given by the “Manhattan” distance (the sum of horizontal and vertical

steps) of a minimal path between the units at some cost per unit length C. The

objective for units separated by some relative ∆x and ∆y is

(4.4) O1 ≡ E = C(∆x+∆y) ,

and we quantify the design pressure for cost through λ1 ≡ 1/T where T is inter-

preted as a “cost tolerance”. Low cost tolerance means that the design pressure to
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minimize costs is strong, which should lead to a preference for low cost designs.

Increasing cost tolerance weakens the design pressure to minimize costs. Note that

the limit of T → ∞ represents complete indifference to cost as a design decision

factor, rather than a preference for high cost. In statistical physics terms, E plays

the role of energy, T plays the role of temperature. In addition, distinct routings

and overall displacements of the units contribute entropy, a measure of the de-

sign freedom to realize distinct designs at fixed cost. We theoretically predict the

critical cost tolerance Tcrit = C/ ln 2 that separates the cost-dominated and design

freedom-dominated regimes (see SM for Tcrit computation).

In addition, Case 2 models the performance penalty associated with routing

functional connections through the bulkhead. We do so with the objective

(4.5) O2 ≡ B ,

which takes the value 1 if a routing penetrates the bulkhead and 0 if it does not.

We represent the penalty for bulkhead penetration by λ2 ≡ γ.

In both cases we use statistical physics to extract design information. Consti-

tutive relations or “equations of state”, evaluated via the expression

(4.6) 〈Oi〉 = −∂ lnZ
∂λi

,

quantify how outcomes for design objectives are determined by design pressure.

In the specific case we consider here, fixing the design pressures through T and

γ yields expected outcomes for 〈E〉 and 〈B〉, which indicate expected costs and

likelihood of bulkhead penetration, respectively. Likewise, the sensitivity of design

outcomes to changes in design pressure is described by “susceptibilities” that can

be evaluated by further differentiation. The magnitude of susceptibility is directly

related to the magnitude of fluctuations about the average design objective (see
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SM for more information). We also evaluate the likely design outcomes for specific

design features Sj

(4.7) 〈Sj〉 =
1

Z
∑
σ

Sj(σ)e
−

∑
i λiOi(σ) .

Finally, effective, or Landau, free energies F for different system elements (e.g. unit

locations, routing locations) can be computed as

(4.8) e−F (Sj) ∝
∑
σ

δ(Sj(σ)− Sj)e
−

∑
i λiOi(σ) ,

and represent the change in the overall design objective resulting from the com-

petition between the design pressures. Note that, because of the summation in

Eq. (4.8), each value of a design feature Sj corresponds to a bundle of detailed

design solutions σ rather than a specific one.[107] Minimal free energy corresponds

to the value of design feature S of the “optimal” design bundle, whereas free energy

isosurfaces represent non-optimal Pareto frontiers. Differentiating the free energy

(−∇F ) yields a “design stress”, which quantifies how overall, global design pressure

is distributed locally among design elements in the subsystem. Similarly, “design

strain” in a subsystem expresses the displacement of subsystem units or routings

from optimality due to stress between subsystem and whole system design pressure.

We use “displacement” to denote any deviation from the subsystem free energy min-

imum in the space of design feature S. For the case considered here, the design

criterion itself is the spatial location (x, y) of one of the functional units, thus dis-

placement has the usual spatial meaning as well. Details of analytic and numerical

computations that yield these quantities for our model systems are described in

SM.
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Figure 4.3: (a) Example unit positions and routings for spatially homogeneous subsystem embed-
dings (Case 1, see Fig. 4.2). Blue markers indicate unit positions, red lines indicate
possible routings. (b) Equation of state relating cost tolerance (T ) and average cost
(〈E〉, in currency) normalized by maximum possible cost expended (Emax) for subsys-
tems localized in an L × L region of a ship (L = 10 blue curve; L = 100 green curve).
Shaded areas indicate cost variability. Inset images illustrate typical design realiza-
tions below (condensed) and above (separated) Tcrit = 1/ ln 2. (c) Cost variability (σE ,
a susceptibility, see SM for mathematical details) normalized by maximum possible
expenditure as a function of cost tolerance. The peak at Tcrit for a finite sized system
(L = 100) would correspond to a phase transition in the thermodynamic limit. (d) Cost
variability normalized by average expenditure as a function of cost tolerance. Data in-
dicate that for both large and small systems relative cost variability is large for low
average cost designs.

4.4 Results

We consider the spatial embedding of a subsystem of the overall functional

network that contains only two units and a single functional connection. In both

cases we choose a subsystem at random among two possible cases that differ by

whether the embedding of the remainder of the functional network localizes the

subsystem in a homogeneous space (Case 1), or a space that is structured by the

remaining ship design (Case 2). See Fig. 4.2 for an illustration. We will show below

that Case 1 exhibits behavior that results from trade-offs between considerations of

cost and design freedom, and Case 2 exhibits behavior that results from trade-offs

between considerations of cost, design freedom, and performance.
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4.4.1 Case 1, Homogeneous Embeddings: Cost/Design Freedom Trade-off

We consider the homogeneous embedding of a subsystem with two units, labeled

A and B, within a homogeneous region of space, here a single watertight compart-

ment (illustrated schematically in Fig. 4.2c). The location of A and B within the

compartment, and the routing of a functional connection between them, leads, in

our model system, to a trade-off between cost expenditure, E, and design free-

dom, measured by the routing entropy. The preferred design of this subsystem is

driven by the relative importance of cost and design freedom, which we parametrize

through the cost tolerance T . In Fig. 4.3a we illustrate example schematic embed-

dings of the subsystem of interest into a region of space of size L × L. We study

examples in which the subsystem is highly localized (L = 10) and delocalized

(L = 100) in Fig. 4.3b-d. For both values of L we study ensembles of design

solutions at a series of values for cost tolerance.

For L = 10, we find that there is a slowly varying, monotonic increase in average

cost with increasing cost tolerance (Fig. 4.3b, blue curve). However, for L = 100,

where the subsystem embedding is less constrained by the remainder of the network,

we find a sharp increase in cost around Tcrit = C/ ln 2 (Fig. 4.3b, green curve). This

sharp increase in cost is reminiscent of a phase transition in physical systems, and

we find that the amount of absolute cost uncertainty across feasible solutions (Fig.

4.3c; akin to a susceptibility for cost) has a peak at Tcrit. For L = 100, when the

subsystem is less constrained, the absolute cost uncertainty is low at both low and

high cost tolerance, indicating that in those regimes routings between unit pairs

are almost always cheap, or almost always expensive relative to possible maximum

cost. For L = 10, when the subsystem is more tightly constrained, the absolute

cost uncertainty is large over a broad range of cost tolerances.
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However, when measured relative to average cost, we find that cost uncertainty

is large for both L = 10 and L = 100 in the limit of low cost tolerance. Fig. 4.3d

shows that relative cost uncertainty diverges as cost tolerance goes to zero. This

result means that even though, as expected, low cost tolerance leads to low cost

designs for the subsystem of interest, possible design outcomes show uncertainty

of 100% or more in terms of average cost. Though this effect might not be a large

design concern if it occurred only in the subsystem of interest, we note that our

choice of subsystem was arbitrary, so that every subsystem in the network should

exhibit this effect. A cascade of such occurrences throughout a large functional

network in a complex product, such as a ship, would lead to large macroscopic

fluctuations in cost of the overall design.

For L = 100, Fig. 4.3d indicates that as the cost tolerance increases across the

critical value, there is a sharp drop in the cost uncertainty relative to average

cost, that is driven by the sharp increase in average cost seen in Fig. 4.3b. This

indicates that above the critical cost tolerance candidate designs are high cost, but

show relatively small cost uncertainty. Taken together, the features of the relative

cost uncertainty curve indicate a fundamental trade-off: tight cost constraints lead

to wild relative cost uncertainty, whereas low relative cost uncertainty can only be

achieved at large cost.

To make the origin of these behaviors more concrete, in Fig. 4.4 we fix the

position of one of the units to be the origin, and examine how the design pressures

from cost (Fig. 4.4a) and design freedom (Fig. 4.4b) influence the (x, y) location

of the second unit. We use the (x, y) location of the second unit as a design

feature S to compute the free energy and Pareto frontiers (see Eqn. (4.8) and

SM). For the case of L = 30, we plot one quadrant, the other quadrants being
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Figure 4.4: Pressure from overall design objectives induces stress on subsystem design elements.
For spatially homogeneous subsystem embeddings (Case 1, see Fig. 4.2) design stress
(measured in units of cost tolerance T ) can be decomposed into contributions from cost
pressure (panel a) and design freedom pressure (panel b). Depending on the relative
strength of the design pressures, the different phase behaviors in Fig. 4.3 originate from
underlying subsystem effects, illustrated in panels c-f. Panels c-f plot Pareto frontiers
(Landau free energy isosurfaces) that indicate equivalent, suboptimal subsystem designs
that could arise if the subsystem design was forced to sacrifice performance to the
remainder of the system. At low cost tolerance (T = 0.5 c; T = 1.0 d) units are
preferentially condensed. At high cost tolerance (T = 2.0 f) units are preferentially
separated. At the critical cost tolerance (T = Tcrit = 1/ ln 2 there is no preferred
separation distance.
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related by symmetry. Arrows indicate the relative magnitude and direction of

stress that each different form of design pressure induces on the location of the

second unit. Comparing Fig. 4.4 panels a and b shows that cost and design freedom

pressures act in different directions with cost driving the units closer together and

design freedom driving them further apart. The balance between these forces is

determined by the cost tolerance, and leads to qualitatively different outcomes

depending on this value, which can be seen in the Pareto frontiers plotted in Fig.

4.4c-f. For physics readers, we note that Pareto frontiers correspond to isosurfaces

of the Landau free energy (see, e.g., Ref. [107]) for unit locations. We plot Pareto

frontiers describing the deviation in design feature space S from the optimal overall

objective at a series of cost tolerances. We stress that the “optimal” value of design

feature is merely a local minimum of free energy and is not necessarily the value to

be chosen. The reason for considering non-optimal solutions is that any subsystem

is only part of the overall design, and we do not expect that, in general, overall

optimal designs will correspond to optimal outcomes for all subsystems. Non-

optimal Pareto frontiers provide a means of communicating how design pressure

from the rest of the functional network could be expected to influence the behavior

of a subsystem.

When we compute the corresponding Pareto frontiers, we find that at low cost

tolerance (T = 0.5; Fig. 4.4c), units are condensed, since the behavior is dominated

by cost minimization, which is characterized by Pareto frontiers with constant x+y

in the limit of T = 0. Increasing cost tolerance alters the balance between cost and

design freedom. Even below the critical tolerance (T = 1.0; Fig. 4.4d), this causes a

change in shape in the Pareto frontiers. At the critical cost tolerance (T = Tcrit; Fig.

4.4e) Pareto frontiers more closely resemble surfaces with constant x−y rather than
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x+ y as we found at low cost tolerance. Above the critical cost tolerance (T = 2.0;

Fig. 4.4f), Pareto frontiers reverse their order with low free energy locations for the

location of the second unit forced to the boundary.

4.4.2 Case 2, Inhomogeneous Embeddings: Cost/Design Freedom/Performance Trade-
offs

We next consider the additional design pressure that arises from an inhomoge-

neous embedding space. For concreteness, we represent this as a bulkhead within

the ship hull. Bulkheads are features designed to prevent water that enters the hull

through a breach from filling all parts of hull and sinking the ship. Routings through

a bulkhead are expensive and also can reduce a distributed system’s effectiveness,

and thus overall ship performance. Hence, additional performance pressure arises

in the case that elements of a subsystem are located in different bulkhead com-

partments (schematic illustration in Fig. 4.2c). We parametrize it with bulkhead

penalty γ, acting as the second design pressure in the system. Again, from a large

functional network we randomly choose a subsystem comprised by a pair of units

with a single functional connection. However, we assume that the connections be-

tween the subsystem of interest and the remainder of the functional network drive

the location of one unit to be on one side of the bulkhead and the other unit to

be on the opposite side. Both units are vertically constrained to be below the top

of the bulkhead. We allow two types of routings between the units to study their

trade-off: one routes along the shortest path through the bulkhead and suffers the

penalty γ; the other routes along the shortest path around the bulkhead, with no

penalty. For concreteness we give results for systems of fixed size (20 × 20 with a

vertical bulkhead in the middle) which are representative of the general behaviors

we observe. See SM for results for other system sizes.
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Figure 4.5: Pareto frontiers (Landau free energy isosurfaces) for unit and routing locations for
spatially inhomogeneous subsystem embeddings (Case 2, see Fig. 4.2) for different cost
tolerances T (T = 0.5 first column, T = 1.0 second column, T = Tcrit third column,
T = 2.0 fourth column) and performance penalties for bulkhead penetration (γ = 8 top
two rows, γ = 2 bottom two rows). Each panel shows the 20× 20 cell domain in which
the units can be placed, split in the middle by a bulkhead of height 17. The (x, y)
coordinates correspond to the possible positions of functional units and routings. Blue
curves indicate unit positions, normalized so that most favorable unit locations have
value 0, with increasing values indicating the loss in subsystem objective in units of
the cost tolerance. Red curves indicate routing locations, normalized so that locations
through which connections route with absolute certainty have value 0, and increasing
values indicate the reduction in subsystem objective of routing through a given location
in units of cost tolerance. Dashed horizontal lines indicate the upper boundary of the
domain where the units may be placed. Thick black vertical lines indicate the position
of the bulkhead, their transparency is color-coded by 〈B〉. Solid bulkhead indicates
that it serves as a significant obstacle and routings would run around it (low 〈B〉).
Transparent bulkhead indicates that it is relatively easy and likely to route through
(high 〈B〉).



99

Compared with Case 1, breaking spatial homogeneity makes the relationship

between route paths and unit locations more complicated. This complication arises

because routings now couple to both unit positions and geometric features. Because

of this, we study unit positioning and routing separately. As in Case 1, we compute

Pareto frontiers via Landau free energies, but in this case we do so by integrating

out the degrees of freedom of units and routings separately. Fig. 4.5 shows Pareto

frontiers for unit routing positions as a function of cost tolerance for bulkheads

with representative high (γ = 8, panels a-h) and low (γ = 2, panels i-p) bulkhead

penalty. The difference of ∆γ = 6 between the two values implies that the relative

statistical weight of routing through the bulkhead changes roughly by a factor of

e6 ∼ 400, and the effects on node positioning are immediately visually apparent.

Also apparent is the effect of ∆γ on design performance, characterized by the

〈B〉, i.e. the fraction of all designs that route through the bulkhead. See SM for

computation details.

At high bulkhead penalty (γ = 8), and low cost tolerance (T = 0.5) Pareto

frontiers for unit locations (Fig. 4.5a) and routing (Fig. 4.5e) both indicate strong

coupling to the top of the bulkhead. Results for increased cost tolerance (T = 1.0)

that is still below Tcrit indicate that unit locations are less strongly coupled to

the bulkhead (Fig. 4.5b). Comparison with results for routing (Fig. 4.5f) indicate

that this coincides with a drop in the fraction of designs that route through the

bulkhead by nearly an order of magnitude (〈B〉 = 0.025 at T = 1.0, c.f. 〈B〉 = 0.225

at T = 0.5), and though routes remain strongly localized at the top of the barrier,

Pareto frontiers at equivalent objective cost (free energy) are further from the

bulkhead. These trends continue through Tcrit (Fig. 4.5c,g). However, above Tcrit

(T = 2.0) Fig. 4.5d we observe that although the units delocalize from the bulkhead
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(Fig. 4.5d), the routings remain strongly coupled to the top of the bulkhead, and

the probability that a design routes through the bulkhead drops to 〈B〉 = 0.001.

Comparing unit locations (Fig. 4.5a-c) and routing locations (Fig. 4.5e-g) indicates

that at or below Tcrit unit locations are correlated with routing locations. However,

above Tcrit (Fig. 4.5d,h) the most probable unit locations do not correspond to most

probable routing locations.

We contrast the above results at high bulkhead penalty (γ = 8, Fig. 4.5a-h) with

low bulkhead penalty (γ = 2, Fig. 4.5i-p). At low cost tolerance (T = 0.5) we see

that relaxing the bulkhead penalty still causes the unit positions to localize near the

bulkhead (Fig. 4.5e) but the units no longer localize near the top of the bulkhead

as they did at high bulkhead penalty (Fig. 4.5a). Likewise, routings no longer

localize near the top of the bulkhead (Fig. 4.5m), but follow the unit locations

and pierce the bulkhead with high probability (〈B〉 = 0.992). At increased cost

tolerance (T = 1.0, Tcrit) the localization at the top of the bulkhead appears again

(Fig. 4.5j-k,n-o). At high cost tolerance T = 2.0 the units again delocalize from the

bulkhead (Fig. 4.5l,p) and the cases γ = 2 and γ = 8 start looking very similar.

To further understand the competing design pressures of cost, design freedom,

and performance, we compute design stress in unit positioning (see Fig. 4.6). At a

given unit position (corresponding to “strain” in the language of materials science)

design stress indicates the magnitude and direction in which changing the place-

ment of the unit would lead to the greatest decrease in the overall objective cost

for the subsystem. We find that at low cost tolerance (T = 0.5, Fig. 4.6a,e), design

stress is directed primarily toward the bulkhead, with discernible stress toward

the top of the compartment for high cost penalty. An increase in cost tolerance

(T = 1.0, Fig. 4.6b,f) leads to similar design stress at low bulkhead penalty (Fig.
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Figure 4.6: Design stress for unit locations in spatially inhomogeneous subsystem embeddings (Case
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for bulkhead penetration (γ = 8 top row, γ = 2 bottom row). Plots indicate that if a
unit was sited at the origin of an arrow in response to whole system design pressure,
design pressure acting on the subsystem alone would drive the unit in the direction of
the arrow, with a strength proportional to the length of the arrow.

4.6f) but a more intricate pattern of stress at high bulkhead penalty (Fig. 4.6b)

that includes regions with stress toward and away from the both the bulkhead and

the top of the compartment. Similarly, complex patterns of stress occur at both low

and high bulkhead penalty at Tcrit (Fig. 4.6c,g). At high cost tolerance (T = 2.0,

Fig. 4.6d,h), the pattern of design stress is predominantly away from the bulkhead.

The behaviors we find that arise from the competition between cost, design

freedom, and performance design pressures can be classified qualitatively according

to the phase diagram in Fig. 4.7. In Fig. 4.7 we show, schematically, the effects of

bulkhead penalty γ and cost tolerance T on bulkhead penetration (a) and relative

unit distance (b). The combination of these effects also results in a complicated

emergent relationship between the vertical positions of the units (c). To provide a

more concrete and quantitative example, panels (d) and (e) show respectively the
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bulkhead penetration fraction and the correlation in vertical node positions for the

same system of size L = 20.

4.5 Conclusion

We developed a general, statistical physics framework for analyzing complex

design problems. We demonstrated the application of this framework to charac-

terizing tradeoffs between competing design presures. For concreteness, we studied

trade-offs between competing design pressures of cost, design freedom, and perfor-

mance in arrangement problems from naval architecture design. We analyzed ship

models by applying physics principles at the systems-level and found a rich pattern

of behavior. We gave an explicit formulation of Pareto frontiers in terms of isosur-

faces of Landau free energy, and computed “design stress” induced by sub-optimal

subsystem embedding. Our framework recasts common design challenges in terms

of the well-understood concepts of pressure, stress and strain. We find that these

concepts, which are typically used to characterize the behavior of materials, also

provide a means of characterizing system-level behavior.

Our approach opens new avenues for addressing design challenges that arise in

complex systems. Our framing of system design in terms of statistical mechan-

ics has some technical overlap with optimization approaches based on simulated

annealing.[21] Simulated annealing invokes thermodynamics by using a fictitious

Hamiltonian cooled in silico to zero temperature to find the global minimum of

an objective function. Our approach with minimally biased probability distribu-

tions, though derived from information theory, is mathematically equivalent to a

fictitious Hamiltonian held at a constant finite temperature. Maintaining finite

temperature highlights the role of design pressures that arise from design freedom
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and become relevant in combinatorially large optimization spaces, and in early

stage design.[27] We believe this approach can give important information about

the systems of interest that could enable human designer choices. The separa-

tion of subsystem designs into different architecture classes can enable designers

to communicate about qualitative style choices. Knowledge about where the paths

between the units are likely to route, even if the unit locations are not specified,

and vice versa, could facilitate the control of ship outfit density. Knowledge about

tradeoffs between cost constraints and cost variability could inform aspects of the

design project around predictable and consistent expenses. Understanding how

different design objectives create design stress on subsystems could facilitate ed-

ucated choices of sub-optimal designs for individual subsystems in the service of

optimizing the system as a whole. All of these forms of knowledge are crucial in

the early design stages of a broad class of complex design problems.

Finally, physics concepts and principles are typically used to understand the

behavior of a part of a larger system. E.g. for a ship it is common to: use the

physics of electromagnetism to understand the function of a radar; use materials

physics to understand the properties of a hull; use solid state physics to understand

the properties of electronics; use hydrodynamics to understand the interaction of

a hull with water; use thermodynamics to understand the function of an engine.

Here, without explicit reference to the underlying physical nature of component

subsystems, we show that the principles of statistical mechanics give rise to di-

rect analogs of familiar macroscopic physics concepts, such as pressure, stress, and

strain, as well as provide new insight into the architecture of the ship as a whole.

Our focus on an established,[157] minimal model of ship design was motivated

both by pressing challenges in naval architecture, and by the goal of providing a
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concrete, self-contained example of our approach. However, our “systems physics”

approach generalizes straightforwardly in several respects: to more detailed models

of naval architecture, to subsystems with more units, and more complex functional

connections, and, most importantly, to other classes of systems-level design prob-

lems. Systems-level applications of physics have led to constructive engagements

between physics and economics,[163, 164] network science,[165, 50] and epidemiol-

ogy.[166, 167] We believe the present systems-level application of physics will lead

to a similar constructive engagement with design problems in a wide variety of

domains.

4.6 Supplementary Methods

4.6.1 Evaluation of Outcomes and Variability

The importance of the partition function Z is in that it contains all information

about statistical averages of design objectives. The average outcome for a design

objective is given by

〈Oi〉 =
∑
σ

Oi(σ)pσ =
1

Z
∑
σ

Oi(σ)e
−

∑
j λjOj(σ)

=− ∂

∂λi

lnZ .(4.9)

The variability in an outcome can be evaluated by further differentiation

(4.10)
〈
O2

i

〉
c
=
〈
O2

i

〉
−
〈
O2

i

〉
=

(
− ∂

∂λi

)2

lnZ .

The variability in an outcome is directly related to the sensitivity of the design

objective average to design pressures:

(4.11)
〈
O2

i

〉
c
= − ∂

∂λi

〈Oi〉 .
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4.6.2 Case 1: Computation Details

Two units at separated by distances ∆x,∆y along the two axes can be joined

with multiple routings of the same Manhattan length ∆x+∆y. Since the routing

consists of a fixed number of vertical and horizontal steps which can be taken in

any order, the number of possible routings is given by the binomial coefficient

(4.12) n(∆x,∆y) =

∆x+∆y

∆x

 =
(∆x+∆y)!

∆x!∆y!
.

The number of paths n(∆x,∆y) grows rapidly with path length, thus creating

the entropic stress pushing the units apart. The partition function (Eq. 2 in main

text) is a sum over all candidate designs. We separate that sum into summing over

possible unit positions and possible paths. For two units this becomes

(4.13) Z =
∑
σ

e−Eσ/T =
∑

x1,y1,x2,y2

e−Eσ/Tnσ(∆x,∆y) .

To understand the origin of Tcrit more intuitively, we can use an approximation.

If we assume large separations ∆x ∼ ∆y � 1, Stirling’s approximation for the

binomial coefficient gives

(4.14) lnn(x, y) ≈ x ln
(
1 +

y

x

)
+ y ln

(
1 +

x

y

)
≈ (x+ y) ln 2

Substituting this into the partition function gives

(4.15) Z =
∑
x1,y1

∑
∆x,∆y

exp
((

ln 2− C

T

)
(∆x+∆y)

)
,

where the unit separation ∆x,∆y ∈ [0, L]. Because the contributions that cor-

respond to energy and entropy have the same form, depending on the sign of

(ln 2 − C/T ), this is either a descending or ascending finite geometric series. In

either case it evaluates to a finite value that changes rapidly near T = Tcrit =
C
ln 2 .

The average cost and the cost variance/susceptibility are evaluated with straight-

forward derivatives with respect to λ1 = 1/T .
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4.6.3 Case 2: Computation Details

We consider two types of routings between the two units: through the bulkhead

and around the bulkhead. Since they are mutually exclusive, the partition function

can be computed as

(4.16) Z = Zte
−γ + Zr ,

with the two component partition functions being

Zt =
∑

σ through

exp(−E(σ)/T )(4.17)

Zr =
∑

σ around

exp(−E(σ)/T ) .(4.18)

The fraction of bulkhead penetrations, 〈B〉, is a design objective conjugate to

bulkhead penalty, thus it can be evaluated via a partial derivative

(4.19) 〈B〉 = − ∂

∂γ
lnZ =

Zte
−γ

Zte−γ + Zr

.

Free energy landscapes F (x, y) are computed via Eq. 8 of main text with the

“design feature” S(x, y) evaluated as follows, respectively for unit and routing free

energies:

Sunit(x, y) =


1, there is a unit at (x, y)

0, otherwise
(4.20)

Sroute(x, y) =


1, there is a routing through (x, y)

0, otherwise
(4.21)

The vertical node correlation is defined the usual way with averages taken in

the sense of Eq. 7 of main text:

(4.22) cor(y1, y2) =
〈y1y2〉c√
〈y21〉c 〈y22〉c
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4.7 Supplementary Results

For the inhomogeneous embedding (Case 2) unit positions explicitly couple to

the geometric features of the embedding space, as shown in Fig. 4 (main text) for

a system size of 20 × 20. SI Figs. 4.8, 4.9, and 4.10 show identical computations

performed for a series of other system sizes. Fig. 4.8 depicts a system size of 20×40.

Fig. 4.9 depicts a system size of 40× 12. Fig. 4.10 depicts a system size of 20× 20,

with the bulkhead off-center.
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Figure 4.9: Pareto frontiers (Landau free energy isosurfaces) for unit and routing locations for
spatially inhomogeneous subsystem embeddings (Case 2). System size is 40×12 (width
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Figure 4.10: Pareto frontiers (Landau free energy isosurfaces) for unit and routing locations for
spatially inhomogeneous subsystem embeddings (Case 2). System size is identical to
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CHAPTER V

Robust Design

5.1 Introduction

1Modern manufacturing and industrial development demand both robust prod-

ucts and robust designs. Whereas robust products exhibit similar, predictable be-

havior in a variety of operating conditions, robust designs preserve design elements

under uncertainty in problem statements (see Fig. 5.1).[169, 170] Achieving robust

design enhances supply chain stability, avoids rework, and thus reduces downstream

cost and performance uncertainty.[171, 28] Minimizing these uncertainties through

robust design has become both increasingly important, and increasingly difficult

to achieve, as products coming to market incorporate broader arrays of function-

ality that rely on the integration of heterogeneous subsystems.[5] The coupling of

heterogeneous subsystems restricts subsystem component specifications, and small

changes in the design of one subsystem can trigger avalanches of change in con-

nected subsystems.[157] Preventing or controlling avalanches requires developing

the ability to not only describe subsystem interdependencies, but also how inter-

dependencies affect the robustness of subsystem and overall design. (see Fig. 5.2).

Throughout engineering, the design of system elements often exploits known

physical phenomena, leveraging knowledge developed through decades or centuries
1This chapter is based on the paper [168] coauthored with A. Kirkley, D.J. Singer, and G. van Anders.
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of investigation of basic physical science principles. For example, the principles of

robustness of engineering materials have a long history and a rich language and

mathematical apparatus. In this language, intuitive contrasts such as “brittle” vs

“ductile” or “strong” vs “weak” achieve precise meaning in terms of performance

thresholds on stress, or localized force, and strain, or localized displacement.[172]

Unlike the study of materials, the study of the basic physical phenomena that

underlie the behavior of systems integration is in its relative infancy.[173, 174, 175]

Because of this relative infancy, what it means to be robust, and how to quantify

robustness are open questions.

Here, we operationalize questions about the robustness of subsystem design

via the “Systems Physics” approach of Chapter IV. Via Systems Physics we draw

quantitative comparisons between design classes, or architectures, at intermediate,

“mesoscale” levels of analysis. We find that at the mesoscale, the robustness of

architecture classes can be rigorously discussed in precisely the same terms that

are used to quantify the robustness of materials, i.e., in terms of stress–strain re-

lationships. The design stress–strain curves, in the distributed systems we study,

generically exhibit strain softening, i.e. a decrease in design stress with increasing

design strain. By, focusing on stress and strain thresholds, we classify the mesoscale

designs by their response to external subsystem coupling as “brittle” or “ductile”

and “strong” or “weak”. We show that the stress–strain analysis can be concisely

summarized in two-factor robustness plots that directly compare system architec-

tures. For concreteness, we show explicit examples of brittle, ductile, strong, and

weak designs that arise in the context of a naval architecture-inspired arrangement

problem. We show that local architecture classes can change between brittle and

ductile behavior depending on the form of global design pressure. This analysis of
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Figure 5.1: Schematic representation of the difference between a robust design and a robust prod-
uct. (a) The pathway of product design and operation can be represented as a flow from
a set of objectives, to a design process that produces a solution or product, followed
by the testing and operation of the product results in one or more outcomes. The ro-
bustness of the product describes the product’s performance under different operating
conditions. Robust products (panel e, blue squares) perform well under different oper-
ating conditions (lightning bolts), whereas “fragile” products (panel d) perform poorly.
An analogous classification can also be applied to the design process. A robust design
(panel c) is one in which the same solution (red shape) would be produced to meet
different sets of objectives (purple shapes), whereas a fragile design (panel b) would not
stand up to changes in the objectives.
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Figure 5.2: Schematic representation of interdependencies in a complex, integrated system. (a)
Complex systems can be comprised of a set of connected, interdependent subsystems
(distinguished by color). (b) A common design problem is to determine the relationship
of a component subsystem (in red) to the other subsystems (gray). External subsystems
induce “design stress” (~σext

1,2 ) on a subsystem that we use to characterize robustness.
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local manifestations of global design drivers provides a novel form of insight into a

ubiquitous set of challenges faced in industrial design, as well as a new means of

communicating about and achieving robust design.

5.2 Robust Design from Statistical Physics

Engineering complex systems is a difficult, longstanding problem. Early sys-

tematic design paradigms prescribed optimizing subsystems sequentially and inde-

pendently, in the hope of forming a design “spiral” that narrows to a final, single

solution.[24] These “point-based” design approaches rely heavily on mathematical

optimization.[20] Optimal solutions, however, are only as good as the underlying

models that produce them, and a key source of model uncertainty is the inter-

action of the model with external subsystems. The difficulty of design lies not

in the individual subsystems but in their integration.[27] Large systems further

compound the potential for integration failure.[11] The failure potential can be

mitigated by focusing not on finding “good” solutions, but by focusing on avoiding

“bad” ones. Broad-based, so-called “Set-Based Design”, paradigms have become in-

fluential across automotive,[32, 33] aerospace,[34] and naval design.[31] Regardless

of the domain, a key challenge in Set-Based Design is to comb through a space

of potential design solutions and eliminate ones that have elements that are likely

to lead to future problems. Those future design problems are likely to arise when

design elements are not robust.

However, describing robustness in set-based and other flexible design paradigms

requires new approaches. Robustness approaches in narrowing, convergent de-

sign [42, 43] describe single-design solutions, living at a point in design space. In

contrast, set-based design paradigms require determining the robustness not of a
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design, but of sets of designs. The quantitative, collective treatment of sets is

precisely the subject of statistical physics.

Statistical physics has a long history of describing collective behaviors that range

from the long-known thermodynamics of gases,[116] to more recent investigations of

entropy-driven order,[73, 176, 85, 177] and a host of non-thermal collective phenom-

ena, including flocking behaviors,[178] the collective motion of human crowds,[179]

traffic jams,[180] the synchronization of agricultural yields,[181] and primate social

dynamics.[48] A central advantage of statistical physics is its ability to group to-

gether microscopic system states and investigate the properties of and transitions

between those groups in the language of free energy (see the conceptual and math-

ematical discussion below). Free energy ideas have been used to classify transitions

between collective behavior regimes in complex systems [182] and cognition.[183]

Chapter IV has also shown that statistical physics approaches can be applied to

systems design problems, under the guise of Systems Physics. Here, we use Systems

Physics to study the intermediate-scale structure of design spaces to study design

robustness.

5.2.1 General Approach

To establish a physics approach for understanding robust systems design, we

take cues from the physics of materials. In materials an instructive example is a

steel rod under mechanical load. Under load the rod can take one of two qualita-

tively different states, intact or broken. Before it breaks, the response of a rod to

external forcing can be quantified using material-dependent relationships between

force and deformation, i.e. stress–strain relationships. The nature of the stress–

strain response of the rod can be used to concretely describe its material along

the independent axes of weak–strong and brittle–ductile.[172] Brittle and ductile
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materials show qualitative differences in behavior. Both brittle and ductile behav-

ior can, in different industrial contexts, find appropriate uses. But in either case,

determining which material to use requires knowing how it behaves.

Adapting the materials analogy to systems design requires identifying the key

behaviors and what drives them. In systems design a key factor in robustness is

how design elements behave as they integrate with other subsystems (see schematic

illustration in Fig. 5.2a). Their behavior, in terms of how specifications, locations,

etc., respond to integration is driven by multiple factors. Different subsystems are

generally designed by different designers to satisfy different design objectives. Also

generally, each design objective has different relative importance, which we term

design pressure. Design pressures act on all the elements at the same time and thus

represent an externally imposed, whole-system level, or global drive.

Global design pressures manifest themselves locally by driving specific design

elements in different directions, e.g. in terms of their physical locations or speci-

fications. For example, competing design pressures of cost and performance can

produce discord in the specification of design elements. This discord at the level of

elements or subsystems, is analogous to local mechanical stresses and strains that

occur in materials under external load. This suggests there should be an analo-

gous local measures of force and deformation, i.e. design stress and design strain,

that express “locally” how design elements respond to the “load” of global design

objectives.

If global design pressures are connected to local design stress and strain, how can

this be quantified? The challenge in quantifying the global–local connection is that

meeting global design objectives is the collective result of all component elements.

Moreover, when design features could be placed in a number of possible locations
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Figure 5.3: Detailed designs α group into mesoscale designs ~x, and locally optimal mesoscale designs
form architecture classes k. Each detailed design is characterized by multiple features
(here system shape and spike pattern) and quantified by the design objective λO(α).
We use the system shape as the feature ~x to define mesoscale designs by summing over
all spike patterns to get the Landau free energy F (~x). Top and bottom shapes are each
better than the middle one and thus form architecture classes, here A and C, in the
local free energy minima F (~xk).
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and/or could meet different specifications, this produces a combinatorial explosion

of possible design states. The challenge of describing the collective behaviors of

combinatorially large numbers of states has an analogue in the thermodynamics of

atomic systems, a problem that prompted the development of statistical physics.

Here, instead of using it to group states of atoms, we will use statistical physics to

group designs.

Our statistical physics approach to quantify design stress and strain relies on

grouping designs that share at least one feature. (see Fig. 5.3 for an illustration).

We term a group of designs with a shared feature as a mesoscale design. Each

mesoscale design needs to be described by a quantity that encodes its properties.

The first quantity that needs to be encoded is the number of designs the mesoscale

design has grouped by common feature. Mesoscale designs that group many de-

tailed designs need to be distinguished from ones that group few. The second

quantity that needs to be encoded is how well the grouped designs meet global

design objectives. These two factors can be lumped together into a mathematical

function, referred to as a free energy in statistical physics. The free energy of a

mesoscale design decreases as the number of detailed designs that comprise it in-

creases, or as the detailed designs better satisfy the design objectives, or both. In

contrast, changes that reduce the number of detailed designs or their suitability for

the objectives increase the free energy.

By grouping designs and computing their free energy, mesoscale designs reduce

the complexity of a large number of detailed designs to be reduced to the consid-

eration of a small number of features of interest. Describing designs in terms of

features of interest has two advantages. First, features of interest that sit at local

minima of the free energy correspond to locally optimal mesoscale designs. The
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deviation from a locally optimal feature set gives a definition of design strain and

the free energy change this deviation induces can be used to define design stress.

Second, The set of designs that receive a “pull” in design stress toward the same

feature set, akin to a watershed, constitute a “basin” in design space that can define

anarchitecture class.

Grouping designs by feature sets provides each architecture class with a defini-

tion of design stress and strain. Appropriate stress and strain definitions, in turn,

inform a two-factor determination of robustness. To see why, the materials analogy

is again instructive. In materials, robustness is determined by response to mechan-

ical stress and strain. Mechanical stress and strain give two key performance indi-

cators of material performance under different kinds of external influence: maximal

loading, or “ultimate stress”, and maximum deformation, or “ultimate strain”. In

everyday language, materials with high ultimate stress are strong and low ultimate

stress are weak; materials with low ultimate strain are brittle and high ultimate

strain are ductile. Given design analogues of material stress and strain, computing

the analogous robustness stress and strain thresholds will provide weak/strong and

brittle/ductile classifications for designs.

Knowing how weak/strong or brittle/ductile particular design architecture is is

useful. However, it is also important to compare the robustness of designs. To make

this comparison, the existence of weak/strong and brittle/ ductile contrasts sug-

gests plotting architectures on two axes that run weak–strong and brittle–ductile.

A sketch of this is given in Fig. 5.4a. An architecture X can be located on a pair

of axes representing the two measures of robustness. The region around X can

be divided into quadrants. Additional architectures would fall into one of those

quadrants, permitting a direct comparison of robustness. We refer to the lower left
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quadrant as the shadow of X because architectures falling in that region would be

inferior to X in both strength and ductility. In contrast X would be in the shadow

of any architecture that falls in the upper right quadrant, because that architecture

would have greater strength and ductility. We refer to that region as the eclipsing

region of X. The other two quadrants, in the upper left and lower right, are regions

where architectures would involve trade-offs with X, either greater strength but

reduced ductility, or greater ductility but reduced strength.

An example robustness comparison between is sketched in Fig. 5.4b. Fig. 5.4b

gives an example of a two-factor robustness plot (R2-plot) for four architectures,

which we label W, X, Y, and Z. In the scenario depicted in the R2-plot 5.4b, W has

the same ductility as X, but W is stronger, so all else being equal the architecture

W would represent a more robust choice. Similarly, architectures W and Y have

the same strength, but W is more ductile, so all else being equal W would represent

a more robust choice. Similar reasoning also indicates that W is more robust

than Z in both strength and ductility. If architecture W was unavailable, similar

considerations would make Z a less robust choice than either X or Y. Comparing

X and Y shows that the two architectures have different forms of robustness, X is

more ductile, but Y is stronger. In this case, all else being equal, the designer would

need additional information to determine whether strength or ductility is likely to

be the more important measure of robustness.

Fig. 5.4 illustrates what could occur in a design process under fixed external

design pressure. However, changes in design pressure can change the robustness

of architectures, echoing e.g. the brittle–ductile transitions that occur in industrial

materials [184] and geology.[185] Similar to the varied industrial uses of both brittle

and ductile materials, we anticipate the usefulness of architecture classes manifest-
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Figure 5.4: Two-factor robustness (R2) comparison of design architectures. Design architectures
can be described by their response to external design stress (e.g., changes in cost) or
design strain (e.g., changes in specification limits). The stress–strain response can be
used to determine the robustness of an architecture, and to compare architectures.
Panel (a) shows that locating an architecture on robustness axes of weak–strong and
brittle–ductile facilitates the comparison of that architecture X with other potential
architectures. The existence of architecture X casts a “shadow” (lower left quadrant) over
other potential architectures that would be less robust by both measures (lower strength,
lower ductility). Conversely situating X also identifies (upper right quadrant) forms of
robustness, that if they were found in other potential architectures would “eclipse” the
robustness of X (greater strength, greater ductility). The other two quadrants (upper
left, lower right) describe regions where potential architectures would involve a trade-off
in forms of robustness (either in strength or ductility) between architectures. Panel (b)
illustrates how this could inform comparison of a set of architectures W, X, Y, and Z.
In this illustration W eclipses all other architectures either in terms of strength (X)
ductility (Y) or both (Z). If architecture W did not exist, Z is eclipsed by both X (in
ductility) and Y (in strength) but a choice between X and Y means a trade-off between
the two forms of robustness.
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ing different forms of robustness. In evaluating robustness, our goal is to generate

knowledge about the possible emergent behaviors in the design space to inform the

human designer, who would make the final design choice.

5.2.2 Systems Physics

In this section we cast the foregoing general approach into a concrete mathemat-

ical form. Our mathematical model expands upon Systems Physics, a statistical

mechanics framework for design problems introduced in Chapter IV. We consider a

design problem with a combinatorially large ensemble of candidate detailed design

solutions {α}. For each detailed design α we compute several quantitative design

objectives Oi , where i is an index. An example of a numerical design objective

would be the cost of routing a cable between two functional units; we explain the

design objectives for our model system in the next section. Given a set of de-

sign objectives, a standard calculational device from statistical mechanics that is

applied in analogous problems is to associate an expected average outcome 〈Oi〉

with each objective. Given only the above data, information theory implies that

the minimally biased (maximal entropy [99]) probability distribution for choosing

a detailed design α that matches the objectives with their outcomes is given by

(5.1) p(α) =
1

Z
e
−

∑
i
λiOi(α)

,

where Z is a normalization constant. High probability designs are the ones that

best fulfill the competing design objectives. Whereas the design objectives Oi

assumed to be known a priori and represent what criteria need to be considered by

the designer, the design pressures λi represent how much each criterion matters,

and the choice of these pressures could differ between stakeholders with different

concerns, e.g. cost versus performance. Selecting particular values of λi significantly
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shapes the probability distribution p(α) and can radically and abruptly change the

types of the preferred designs α. Predicting and quantifying the preferred designs

within the ensemble is a goal of Systems Physics.

The properties of the whole ensemble are contained in the normalization of

Eq. (5.1) that can be computed as

(5.2) Z =
∑
α

e
−

∑
i
λiOi(α)

,

and has the familiar form of a partition function from statistical physics. In sta-

tistical physics, the partition function encodes the statistical averages of design

objectives across the whole ensemble. However, summing over the whole ensem-

ble masks the fact the many detailed designs α achieve the same design objective

value Oi, and thus obscures the intermediate scale design drivers. Discovering

these design drivers requires studying designs at a higher level of granularity. This

granularity is given by the architecture classes we discussed in general terms above,

and which we will now define more precisely.

5.2.3 Architecture Classes

We achieve a higher level of granularity by selecting a design feature ~xα that

multiple detailed designs α share. An example of a shared feature could be the

spatial location of a particular functional unit or one of its internal operational

parameters (e.g. pressure or voltage). Regardless of the specific feature chosen, a

set of designs sharing a common feature ~x can be described by a mesoscale design

(see Fig. 5.3). The feature space {~x} is typically much smaller than the set of

detailed designs {α}, but can be used to recover the statistical information of the

full design ensemble via the expression

(5.3) Z =
∑
~x

e−F (~x) ,
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where F (~x) is the free energy. The free energy quantifies the effective design ob-

jective of the mesoscale design ~x, and is determined by the expression

(5.4) e−F (~x) =
∑
α

δ(~x− ~xα)e
−

∑
i
λiOi(α)

.

Here δ(~x − ~xα) is an indicator function, equal to 1 when the detailed design α

belongs to the mesoscale design ~x and 0 otherwise. F (~x) is an example of a so-

called Landau free energy [107], and provides a mesoscale characterization of classes

of designs that share characteristics specified by ~x. The procedure of going from

a large ensemble of detailed designs α to mesoscale designs ~x is known as coarse

graining in statistical physics.[107] Coarse graining applied to a model system and

the resulting free energy landscape are illustrated in Fig. 5.5.

The shape of the free energy landscape F indicates the relative preference be-

tween different mesoscale designs. Designs that accord better with the balance

of design pressures λi have smaller F , and vice versa. Local minima of F (~x)

are “best-in-class” designs. We denote these designs as ~xk, and index them as

k ∈ {A,B,C, . . . } (colored circles in Fig. 5.5b). However, although best-in-class

designs are defined to be those that best meet a fixed set of design objectives,

changes in the specification of the objectives can alter the classification, so under-

standing the robustness of designs is crucial.

5.2.4 Quantifying Robustness

A deviation from a local minimum ~xk within the feature space gives a design

strain ~εk = ~x − ~xk. In design strain coordinates, design stress is given by the free

energy gradient ~σ(~εk) = −~∇F (~xk + ~εk). Sufficiently close to the local minimum,

design stress pulls the design back to the minimum, i.e. ~σ·~εk < 0. However, at larger

strains in a particular direction, the design can reach a threshold, or saddle point,
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in free energy and get pulled by the local design stress to a different minimum. We

call that point the ultimate strain and formally define it as

(5.5) ~ε ult
k = argmin

~εk

|~εk| : ~σ · ε̂k > 0 ,

where | · | denotes a suitable vector norm (here we use standard Euclidean norm)

and ε̂k is a unit vector pointing along the strain direction. The operator argmin

finds the closest saddle point but still returns the vector ~ε ult
k rather than just its

norm. We illustrate the path from local free energy minima to the saddle points

in an example system in Fig. 5.6a,c,e.

As a mesoscale design is strained from ~0 to ~ε ult
k , it will develop design stress.

To analyze the stress response, it is convenient to compute the projection of the

stress along the strain direction, σ = |~σ(~εk) · ε̂k|. From this projection it is possible

to compute the ultimate stress, i.e. the magnitude of externally exerted stress that

causes designs to switch between classes. Formally, this is given by

(5.6) σult
k = max

a∈[0,1]

∣∣~σ(~xk + a~ε ult
k ) · ε̂ult

k

∣∣ ,
where a is an auxiliary variable parametrizing a straight line from ~0 to ~ε ult

k . While

the free energy minimum ~xk defines the “best-in-class” mesoscale design, the basin

of all mesoscale designs that design stress brings back to the best-in-class design

defines an architecture class.

We have defined architecture classes thus far for isolated subsystems. When sub-

system designers incorporate effects that arise from coupling to other subsystems,

other subsystems exert external design stress or strain on the subsystem of interest.

External stress and strain correspond, respectively, to what are referred to in sta-

tistical mechanics as “intensive” (size independent) or “extensive” (size dependent)

modifications of the specification of the system.
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Going back to the analogy of a metal rod, this nomenclature reflects that a

mechanical load can be applied to the rod with two protocols. One is to subject

the rod to a fixed external stress force, or intensive modification, and measure the

resulting strain. The other is to subject the rod to a fixed linear strain, or extensive

modification, in form of stretching or compression and measure the resulting stress.

Protocols for materials response have direct analogues in systems design. In

systems design, an example of external design stress would arise from the need

to route a connection from a functional unit to an external subsystem, with the

direction and cost per unit length specified for the connection. This scenario cre-

ates a uniform design stress ~σext on the subsystem (Fig. 5.5a), and the new local

optimum would be found at the location where the internal design stress balances

the external ~σext + ~σ = 0. An example of external strain would be the need to po-

sition an additional object in the location ~xk, thus requiring the shift of subsystem

design features by design strain of ~ε ext away from the minimum. In either case,

external stress or strain may or may not push the mesoscale design into a different

architecture class basin. Resisting the architecture class shift is the property that

we call robustness.

We determine the robustness of each architecture class by computing the design

stress–strain curves. From these curves, we extract the ultimate stress and strain for

each architecture class and plot them together without averaging in Fig. 5.8. These

stress–strain relationships facilitate the characterization of each design architecture

class as weak or strong by comparing the respective σult
k among different architecture

classes k. Weak designs have small σult
k , whereas strong designs have large σult

k . We

also characterize designs as brittle or ductile by comparing the relative |~ε ult
k |. Brittle

designs have small |~ε ult
k |, whereas ductile designs have large |~ε ult

k |. Considering both
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strength and ductility gives us the two-factor robustness, R2, of the architecture

classes, presented in Fig. 5.9.

5.2.5 Beyond Ultimate Stress

Whereas the determination of ultimate strain can characterize the robustness

of an architecture class, it is also important to understand what happens once

architecture classes are pushed beyond their viability limit. Doing so requires

understanding the configuration of architecture classes under large external stress.

To model the external stress, we consider not only the free energy of the subsys-

tem of interest F (~x) that depends on the design feature ~x, but also the free energy

of an external subsystem F ′(~x ′) that depends only on the design features ~x ′ of the

external subsystem. The interdependence of the two subsystems is captured by the

interaction free energy Fint(~x, ~x
′). The goal is to understanding what happens in

the system of interest, under the assumption the external subsystem can take any

configuration it prefers. We carry this out by integrating out the external subsys-

tem, leaving a description of the remaining subsystem of interest. Mathematically,

the procedure is similar to to the earlier coarse-graining procedure in Eq. (5.4),

(5.7) e−F̃ (~x) =
∑
~x ′

e−F (~x)−F ′(~x ′)−Fint(~x,~x
′).

In general, performing the computation in Eq. 5.7 is challenging, since it requires

a detailed model of the external subsystem. However, we note that free energy is

only defined up to an additive constant which does not affect the locations or

properties of local minima. Thus we can get insight into the effect of external

couplings by adopting a simplified form of the interaction free energy:

(5.8) Fint(~x, ~x
′) ≈ (~x ′ − ~x) · ~σext + const.
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This form of interaction free energy describes a uniform external design stress

~σext applied to each feasible design in the domain of design feature ~x, caused for

example by the addition of a cable of fixed direction and cost per unit length.

Computationally, this form of interaction makes the summation in Eq. 5.7 separable

and gives the effective free energy landscape as:

(5.9) F̃ (~x) = F (~x)− ~x · ~σext + const.

In general, F̃ and F will have different sets of local minima, i.e. design config-

urations that are best-in-class will change in the presence of external stress. We

investigate the effect of variable external stress by considering different vectors ~σext

that span the space {~σext}. If the external stress ~σext is much larger than any in-

ternal design stresses −~∇F (~x) naturally arising in a given architecture class, the

subsystem is completely dominated by external stress that eliminates candidate

architecture classes, reducing design richness.

We characterize the loss of design richness under external stress by finding the

domain in {~σext} space in which a minimum of the same type k exists. Here, by

“same” we mean a minimum that moved less than some threshold ∆xth under a

small change of stress δ~σext

(5.10) |~xk(~σ
ext + δ~σext)− ~xk(~σ

ext)| < ∆xth .

We illustrate how external stress affects the viability ranges of subsystem design

classes in Fig. 5.7 using Venn diagrams in the {~σext} space. Together, the viability

ranges for architecture classes and the analysis of their ultimate design stress and

strain constitute the quantitative knowledge required for robust system design.
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Figure 5.5: Schematic representation of the specific subsystem investigated for robustness. (a) Two
connected functional units are placed in positions (x1, y1) and (x2, y2). There are two
qualitative ways to connect them along the shortest Manhattan route: either directly
by drilling a hole through the bulkhead, or by first routing up to the bulkhead, over it
and back down. The position of the first unit is taken as the design feature ~x, while the
position of the second one and the possible routings are “integrated out” by computing
the free energy via Eqn. 5.13. The external design stress on the system has the form of
a constant force ~σext shown with a purple arrow. (b) Coarse graining procedure leads
to the free energy landscape F (x, y) for the possible positions of the first unit in the
part of the domain left of the bulkhead. Local free energy minima are identified with
architecture classes labelled with capital letters A through F and distinct colors.
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5.3 Example System: Model, Results, and Discussion

5.3.1 Model System

The Systems Physics based robustness analysis developed in the previous section

can be applied to a broad range of design problems. For concreteness, we will

illustrate its use in arrangement problems that arise in Naval Architecture, taking

as a specific example an established model of early stage ship design.[157] Our ship

design model involves embedding a network of many functional units into a ship hull

of fixed geometry, and routing connections between the units. Large-scale effects

on unit routing induced by changes in design pressure were studied in Chapter IV.

Here, we study this model at the mesoscale to understand the robustness of system

design. To determine robustness, we focus on a subsystem with two connected

functional units that is externally connected to other subsystems, modelled via

external design stress (see Fig. 5.5a).

The subsystem is situated in a square domain of L × L discrete cells. The

domain is separated along the middle line into two compartments housing one

functional unit each, divided up to height hbh by a watertight bulkhead. The

bulkhead serves to prevent simultaneous water flooding of both compartments in

case one of them is breached. It is possible to drill a hole through the bulkhead,

reinforce that hole, and route a connection through it. However, such a hole bears

risks that affect ship survivability. To assess how survivability considerations affect

the routing problem, we consider two distinct types of routing: either along the

shortest possible route through the bulkhead, or along the shortest possible route

around the top of the bulkhead. The connections are only routed horizontally and

vertically, so there is a large but finite number of possible routings for each choice

of positions of the two units. A particular realization of unit positions and routings
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of two types is shown in Fig. 5.5a. The possible positions of the two units (x1, y1)

and (x2, y2) along with the choices of particular routing form the detailed design

space {α} = {(x1, y1, x2, y2, routing)}.

Within the design space, detailed designs are evaluated with respect to two

design objectives, O1,O2, and corresponding design pressures λ1, λ2

O1 ≡E = C (|∆x|+ |∆y|) , λ1 ≡ 1/T ;

O2 ≡B, λ2 ≡ γ .(5.11)

The first design objective E represents the cost of the routing, linearly proportional

to the Manhattan (taxicab/grid) length of the routing used. The corresponding

design pressure is inverse cost tolerance T , similar to the thermodynamic temper-

ature. Low cost tolerance means that designs with shorter routings are strongly

preferred, whereas high cost tolerance means that cost is not a strong factor in

choosing a design. The second design objective B ∈ {0, 1} is a binary variable

indicating whether a given design routes through the bulkhead (1) or goes around

(0). The corresponding design pressure is the bulkhead penalty γ that quantifies

the survivability penalty associated with routing through the bulkhead. Low, near-

zero, values of γ mean that routing through or around the bulkhead are equally

preferable, whereas high values of γ strongly suppress routing through the bulk-

head.

In terms of these specific design objectives and design pressures, the partition

function (5.2) takes the form

(5.12) Z =
∑
α

e−
E(α)
T

−γB(α) ,

where the sum over α runs over the whole set of possible detailed designs. To

group the detailed designs into mesoscale designs, we use the position of the left
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functional unit ~x = (x1, y1) as the design feature of interest. The position of the

right functional unit (x2, y2) and the routings are integrated out. The position of

the left unit then has the associated free energy F (x, y)

(5.13) e−F (x,y) =
∑
α

δ(~x− ~x1(α))e
−E(α)

T
−γB(α) .

An example of the free energy landscape is shown in Fig. 5.5b. Local minima of

the free energy are associated with the architecture classes A through F . We find

that the free energy landscape and the pattern of architecture classes vary greatly

with the design pressures T, γ, and that in all cases the design robustness is given

directly by Eqns. 5.5-5.6. There are several large-scale reorganizations between

architecture classes as the design pressures T and γ are varied. These reorganiza-

tions are analogous to phase transitions in thermodynamic systems, but are not

sharp transitions because the design problems we study have finite size. Despite

the finite sizes, it is possible to approximately determine where the reorganization

of architectures occurs, as shown in Chapter IV. In this model reorganization oc-

curs around a cost phase transition: at low T < Tcrit ∼ C/ ln 2 units prefer short

connections to minimize the routing cost, whereas at large T > Tcrit they prefer

long connections to maximize the flexibility in carrying out the routing. Another

large-scale reorganization is the transition of the average bulkhead penetration 〈B〉,

or fraction of designs routing through the bulkhead: it approaches 0 for simulta-

neously large T and γ (preferring flexibility in routing and suppressing bulkhead

penetration), and approaches 1 when either T or γ is small (preferring low-cost

routing and allowing bulkhead penetration, or a combination of both). As we

will find below, the origin of these large-scale reorganizations can be traced in the

mesoscale through the appearance and disappearance of architecture classes and

changes in their robustness.
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To capture the reorganization of architecture classes, we study the routing prob-

lem for a range of design pressures {T, γ}. We fix our system of units by setting

C = 1.0, which fixes the units of cost tolerance T . To maximize illustrative power,

we seek a set of choices of γ and T that allows for the study of all the possible ar-

chitectural organizations with the fewest number of state points. For this purpose,

a suitable choice is to scan along the line of γ = 2.0 with T ∈ [0.5, 2] because that

choice crosses both the cost- and bulkhead penetration-based reorganizations. We

also make specific choices of system geometry parameters. Since the positions of

the functional units are discrete, we cannot reliably resolve the stress–strain curves

on length scales less than 1 cell. Moreover, the comparison of robustness between

architecture classes requires the system domain to be sufficiently large to support

multiple architecture classes. To this end, we set the domain size L = 50, with

the bulkhead going up to hbh = 46, though our analysis and results are similar

for different system sizes. We find that ultimate strains vary from 1.5 to 18 cells,

allowing us to reliably distinguish the architecture classes along both weak–strong

and brittle–robust axes.

5.3.2 Results and Discussion

Design Stress and Strain

Fig. 5.6 demonstrates the range of architecture classes and their respective

stress–strain curves that appear in the model subsystem. For this subsystem,

for each fixed T in the range of [0.5, 2.0] we identify as many as 6 qualitatively

different architecture classes that we label A through F . Figs. 5.6 and 5.7 illus-

trate the architecture classes at three representative values of T = 1.20, 1.50, 1.70.

T = 1.20 corresponds to the low-cost regime. T = 1.70 corresponds to the high

flexibility regime. T = 1.50 corresponds to the regime in which there is a near
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Figure 5.6: Statistical physics approach quantifies stress–strain relationships in design problems.
Plots show free energy landscapes and stress–strain curves at three different cost toler-
ances T = 1.20, 1.50, 1.70 and constant bulkhead penalty γ = 2.0. (a,c,e) Free energy
landscape for the position of the left functional unit. The solid vertical line on the right
denotes the position of the bulkhead. The dashed vertical line cuts off the domain of the
second functional unit that has been integrated out. Note the different colormap scales
at different T . Each colored circle indicates a local minimum that forms an architecture
class, indexed with a unique letter A through F and a unique color (green, blue, purple
etc.). The cross marks and lines connecting them to circles indicate the ultimate strain
locations for each minima, as determined by condition (5.5). (b,d,f) Stress-strain curves
for each of the local minima at given T , with stress measured along the ultimate strain
direction via spline interpolation of the free energy landscape. The cross marks indicate
the ultimate strain εultk for each minimum. The maximum of each curve indicates the
ultimate stress for each minimum σult

k .
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balance between cost and flexibility.

At each cost tolerance, for each architecture class we compute the stress–strain

response (Fig. 5.6b,d,f). As described above, for materials the stress–strain re-

sponse can be measured via two principal protocols. In the first, the material is

deformed by a fixed strain εext and equilibrates at some corresponding stress σ(εext).

In the second, the material is affected by a fixed stress σext and equilibrates at some

corresponding strain ε(σext). Graphically, this is equivalent to picking first a point

on the vertical σ axis and finding the corresponding curve point on the horizontal

ε axis, or vice versa.

Stress–Strain: Comparison with Materials

For common materials, the difference in protocols is not very noticeable since

at low stress and strain their relationship is linear, at larger deformations it is

weakly nonlinear but still monotonic, up until the breaking point at finite stress

and strain. However, this textbook materials science picture breaks down for the

design stress–strain relationship in our example design problem in three important

ways, at both low and high strain.

The differences between stress–strain relationships for designs and materials can

is facilitated by expanding the relationships at low strain as a power series

(5.14) σ = σ0 + Y ε+O(ε2) .

The first deviation from common material behavior is that for design stress the

constant term is nonzero σ0 6= 0 for all of the curves in Fig. 5.6b,d,f. Similar effects

are common in manufactured engineering components that exhibit residual internal

stress, usually resulting from plastic deformations in manufacturing, thermal ex-

pansion, boundary effects, or phase change of materials.[186] The main implication



138

of residual stress is that applying small external design stress σext < σ0 does not

result in measurable design strain, as opposed to the conventional linear response.

The second deviation is that the linear part of stress response can be both

positive (Y > 0, as in Fig. 5.6f, architecture classes A,B, green and dark blue

curves) and negative (Y < 0, same figure, architecture class C, light blue). A

positive linear response means that the architecture class can support at least small

design stress above σ0 level via a small deformation. A negative linear response

means that the ultimate stress σult = σ0 and is already reached for ε = 0, or

no strain. For any higher, supercritical external stress, there is no corresponding

point ε(σext) and thus the architecture class immediately “breaks”, transitioning the

design to a different class.

Whereas the first two deviations from textbook materials response are observed

at low strain, the third one appears at high strain, right before the breaking point.

Many conventional materials (e.g. steel) break at finite stress. However, some ma-

terials (e.g. fiber-reinforced brittle concrete [187]) exhibit a different phenomenon

known as “tension softening”,[188] whereby they support decreasing amounts of

stress as they are strained, and ultimately fail at zero stress. We observe this

phenomenon in all of the architecture classes we find in the present model system.

Together, these three deviations describe the unconventional pathways in which

architecture classes can break. Via strain: If the external subsystem coupling

provides a fixed design strain, the design stress remains positive and finite for a

wide strain range, ensuring that the chosen architecture class remains viable. Via

stress: Conversely, if the external subsystem coupling provides a fixed stress, the

architecture class only responds noticeably beyond a certain stress threshold, but

often responds with an abrupt architecture class change. Via stress and strain: a
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combination of external design stress and strain can push the architecture class

into the tension softening regime, making it unviable.

Beyond Ultimate Stress

Fig. 5.6 illustrates what happens to an architecture class as it is strained up

to its limit of viability by showing the design stress along the direction of least

ultimate strain. This is useful for assessing the further viability of an architecture

following the effects of an external design strain. However, it can also be important

to determine the effects on the number of architecture classes under the influence

of external design stress that can push one or more classes beyond their limit of

viability.

To assess robustness in this form, Fig. 5.7 illustrates the effect of the external

design stress taking any values in the plane (σext
x , σext

y ). In this plane, each archi-

tecture class A through F has a viable domain. We find that the shapes of these

domains are complex, implying that the viability of an architecture class is highly

sensitive to both direction and magnitude of external stress. We show the overlap

of the domains of all six architecture classes in the center of each panel in Fig. 5.7

in form of a computed Venn diagram.

We start analysis with the richest Venn diagram at the near-critical T = 1.50

(Fig. 5.7b). In that diagram, the classes E,F (pink and purple) are viable in

very narrow and specific ranges of external stress (σext
x , σext

y ). Compared with the

other architectures, small amounts of uncertainty in external design stress would

be be sufficient to render architecture classes E,F unviable. At the same time, the

architecture classes A through D, in which the functional unit is localized either in

one of the three corners or the middle of one side of the allowed domain, are viable

given almost any amount of external design stress outwards toward the domain
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Figure 5.7: The response to external stress gives viability limits on architecture classes and shows
external stress can become viable under external stress. Plots shows regions of existence
of architecture classes in the (σext

x , σext
y ) (external stress) plane. (a) T = 1.20, (b)

T = 1.50, (c) T = 1.70. For each panel, (center) Venn diagram of regions in the
(σext

x , σext
y ) plane where each of 6 architecture classes exists. Black cross indicates the

origin of the plane ~σext = 0. (inset) Free energy landscape with the architecture classes
A through F labelled in color. (sides A–F) Regions in the (σext

x , σext
y ) plane where the

corresponding individual minima exist, in the same stress plane as the central diagram.
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boundaries, as well as moderate stress directed inwards toward the middle of the

domain. This form of analysis gives a more detailed understanding variations in

the robustness of architecture classes when the effects of external design stress are

not uniform in all directions.

From the depiction of the response to anisotropic stress in Fig. 5.7 it can be seen

that external stress can, indeed, push some architectures beyond their viability

limits while leaving others viable. However, Fig. 5.7 also shows that in situations

where there is low cost tolerance (i.e., a strong preference for low cost, T = 1.20,

panel a) or high cost tolerance (i.e., a weak preference for low cost, T = 1.70, panel

c), the external stress can make viable the architecture classes that would not be

viable without the external stress. Architectures A and C are examples of this at

low cost tolerance (panel a), whereas architectures D and F are examples of this

at high cost tolerance (panel c).

Robustness and Design Pressure Changes

Figs. 5.6-5.7 showed a detailed analysis of how particular architecture classes

respond to external design forcing at three representative values of cost tolerance T .

To validate that these choices of T are representative, and to better understand how

robustness changes in response to changes in design pressure, Fig. 5.8 aggregates

the specific results shown in Figs. 5.6-5.7 with the results of similar analysis over

a fine grid of T ∈ [0.5, 2]. As we scan the T range, the robustness of architecture

classes experiences a clear shift in the region of T where the architectures reorganize

from low-cost to high flexibility. In the low-cost regime, architecture classes D,E

are viable, and their properties are typified by the prior analysis at T = 1.20. In the

high-flexibility regime, architecture classes A,B,C are viable, and their properties

typified by the prior analysis at T = 1.70. At intermediate values of T where there
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indicate the values of T for a detailed analysis is given in Figs. 5.6, 5.7. Color and letter
coding remain the same as in those Figures. (a) Ultimate strain values, corresponding to
the brittle–ductile robustness characterization of architecture classes. (b) Ultimate stress
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classes. (c) Landau free energy F (~xk) values at all local minima, normalized so that
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the elimination of non-robust (weak/brittle) architectures. The analysis of the model
system implements the scheme sketched in Fig. 5.4, using the two robustness factors of
ultimate stress (εult, vertical axis) and ultimate strain (σult, horizontal axis). The three
panels depict the architectures and robustness relations among them at different cost
tolerances T (T = 1.2-a, T = 1.5-b, T = 1.7-c). Architectures are represented by circles
with size proportional to global design objectives. At high cost tolerance (c), where
design pressure favors flexibility in realizing designs, the architecture C (also marked
with a red ×) falls in the shadow of both architectures A and B. Between architectures A
and B there is a trade-off in robustness between strength and ductility. A similar trade-
off exists at low cost tolerance (a) between architectures D and E. At intermediate
tolerance (b) where there is a balance of concern between cost and flexibility, more
architectures are possible. Comparing their robustness, the architecture A is eclipsed
by C, the architecture B falls in the shadow of all other architectures, and a trade-off
exists between the three architectures C, D, and F.

is a reorganization between these regimes (shaded area in Fig. 5.8) we observe the

highest diversity of viable architectures at zero stress. However, we also observe

sharp changes in the robustness of architectures in response to external stress or

strain. These change in robustness of the mesoscale design precisely in the near-

critical T region suggests a causal relationship: the shift between viable architecture

classes is the primary mechanism to drive the large-scale phase transitions in the

whole design space.

Two-Factor Robustness Comparison of Architecture Classes

The analysis above gave detailed information about the structure of the design

space. Working from detailed information about the space, it is possible to distill
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essential pieces of information that can inform design decisions. Decisions involving

comparing the robustness of architectures can be cast in the form of R2-plots.

Whereas the Fig. 5.4 diagrams were schematic illustrations, applying the analysis

framework illustrated in Fig. 5.4 to our model system yields the R2-plots shown in

Fig. 5.9.

Fig. 5.9 gives a proof-of-principle that two-factor comparisons of architectures

can be successfully computed in model systems. However, for a given model system

the comparisons themselves are interesting. First, in the model systems we study,

we find no case in which a single architecture class eclipses all others in robustness

in both strength and ductility in a R2-plot. We find that, in the low-cost regime T =

1.20 (Fig. 5.9a), the trade-off is between the only two existing architecture classes:

architecture D is stronger, but more brittle, whereas architecture E is weaker but

more ductile. In the regime where design pressure favors designs that can be

realized with more flexibility, T = 1.70 (Fig. 5.9c), there is a strength/ductility

trade-off between architectures A,B, both of which eclipse architecture C. In

the intermediate regime, where design pressures for cost and flexibility are nearly

balanced, T = 1.50 (Fig. 5.9b), there is a three-way strength/ductility trade-off

between architectures C,D, F , but both of their robustness factors are much smaller

than at either higher or lower T . These results indicate that the comparison of

robustness between architectures is complex. It depends both on the system being

designed and on the design pressures, and that even simple models can exhibit

trade-offs.
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5.4 Conclusion

In this Chapter we described a method to engineer systems that are robust

to variation in the design problem statement. We situated robustness in design

as a necessary complement to the robustness of a product under changes in the

operating environment (Fig. 5.1). We showed that the robustness of a design is not

a unitary concept, but instead it takes multiple forms including being described on

the axes brittle–ductile and weak–strong (Figs. 5.4,5.9). We found that these axes

describe system design in the same mathematical terms that are used to describe

the robustness of materials. The approach developed in this Chapter sets the stage

for the further investigation of robust design.

First, to give a concrete demonstration of the application of our approach we

used an example model system drawn from arrangement problems in Naval Engi-

neering.[157] In that model system we found that the design architectures gener-

ically manifested forms of residual stress and tension softening that are observed

in materials systems. Though both phenomena are well-characterized in materials,

they are phenomena that are associated with special forms of preparation that in-

troduce boundary effects (residual stress) or by unconventional micromechanics in

the material (tension softening).[187] Our observation of these effects in a model

of system design raises the question of whether that observation is specific to our

model system, or whether system designs behave, in general, like unconventional

materials. The fact that the microscopic interactions in systems design can easily

have more varied forms than the micromechanics of materials suggests that con-

ventional behavior for systems may resemble unconventional behavior in materials,

but further investigation is required.
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Second, though we needed to show the approach on a concrete model system, it

can be extended straightforwardly to other classes of design problems. We believe

that for a broad class of problems, the two-factor classification of robustness (R2-

plot; Fig. 5.4) will provide a straightforward means for designers to compare the

robustness of different design architecture classes. The comparison of classes in our

example showed that the R2 analysis provides a straightforward means to eliminate

weak/brittle architecture classes. We expect this to be useful in complex system

design where it has been argued that eliminating bad choices is more important

than selecting good ones.[31] The nontrivial trade-offs in R2 we found here suggest

that a similar multifaceted characterization will be useful in broader classes of

complex systems design.



CHAPTER VI

Interplay of Logical and Physical Architecture

6.1 Introduction

1A fundamental question in the design of complex, multicomponent systems

is how the components of the system are arranged.[155, 154, 156] Arrangement

problems, generically, present the challenge of anticipating or identifying “prime

real estate”,[189, 157] i.e. sectors of the system’s architecture that have premium or

priority because of the mutual avoidance, adjacency, or association between system

components (see Fig. 6.1). Determining or anticipating components’ patterns of

avoidance, adjacency, and association is important in so-called “greenfield” settings,

i.e. before design aspects have been specified, and in “brownfield” settings, i.e.

when one or more system design aspects have been determined.[190, 191, 192] In

both greenfield and brownfield settings, determining the patterns of arrangement

and identifying system factors driving those behaviors is crucial for managing,

mitigating, or adapting to likely design outcomes.[27]

Managing likely design outcomes by identifying patterns of arrangement de-

pends crucially on both a system’s logical architecture, i.e. the set of functional

connections between components, and on the system’s physical architecture, i.e.

the physical properties of the components and their arrangement in space.[39] A
1This chapter is based on an upcoming paper coauthored with D.J. Singer and G. van Anders.

147
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Figure 6.1: Complex system design raises the question of identifying arrangement patterns of avoid-
ance, adjacency, and association. Avoidance patterns (left) can be probed by testing the
“cost” of creating a void in the design. Adjacency patterns (center) describe arrangement
motifs found in the design, e.g. angles between the placement of design elements. Asso-
ciation patterns (right) relate to the preference for proximity between design elements,
e.g. measures “preferred” locations in adding design elements.
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system’s logical architecture is essentially topological, and can be treated using

network theory techniques.[135] In contrast, describing the physical architecture

of a system is typically done by disciplinary engineering approaches that rest on

known physical principles. Treating problems in arrangements that arise from an

interplay of a system’s logical and physical architecture requires a framework that

bridges a system’s network-theory-level description and its physical/spatial descrip-

tion. Whereas approaches exist at the network theory and at the physical spatial

levels, how they can be bridged is an open question.

Here, we show that topological and physical descriptions of complex systems

design can be bridged using statistical physics. Using statistical physics we demon-

strate a framework that reveals patterns of avoidance, adjacency, and association

in arrangement problems. We use an example arrangement problem to concretely

demonstrate how our framework can identify patterns of arrangement and how

those patterns are driven by the design’s logical and physical architecture, in both

greenfield and brownfield settings.

6.2 Systems Physics Framework

6.2.1 Motivation: Design Challenges Lurk Between Logical and Physical Architec-
tures

Complex systems are typically comprised by several interacting entities. The

interactions among the entities are often described at two different levels: the de-

scription of what-is-connected-to-what, which is mathematically a graph-theoretic

description, and by the description of how the entities physically interact with one

another in space, which is described by physics. Taken separately, both levels of

description give useful but incomplete insights into design.

The logical architecture’s graph-theoretic description of a complex system de-
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sign is valuable because it isolates the connections between system elements that

underly functionality.[39] Functionality in the logical architecture is reduced to

the topology of connections, and this connection topology can be analyzed with

network theory techniques.[174, 173, 41] Network theory approaches to analyzing

logical architecture are powerful because they abstract out the system’s physical

realization.[193] However, realizing the logical architecture physically can produce

emergent functional connections that are lost when logical architecture is analyzed

alone.

The physical architecture describes the realization of a complex system design

in terms of physical entities with physical properties. Whereas entities in the

logical architecture have abstract interactions that are encoded topologically, in

the physical architecture interactions interact mechanically, thermodynamically,

electromagnetically, etc., depending on physical factors such as energy consumption

and proximity in space. By retaining this level of detail, the physical architecture

provides an intimate picture of the performance of design elements. However, this

intimate portrait of performance typically describes a single physical architecture

instance. What that single instance means for the space of possible designs more

generally is often unclear.

Though they can provide key insight into single design instances, both physi-

cal and logical architecture descriptions restrict our ability to understand general

characteristics of design. This restriction exists because general design character-

istics are properties of design problem spaces rather than of design instances. The

focus on design instances has been described previously as design organized around

“product structures”, i.e., around a particular outcome of the design process.[29]

Contrasting with product structures are “knowledge structures” that organize the
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Figure 6.2: The need to grow from “product structure” approaches, the focus on single design in-
stances, to “knowledge structure” approaches, the patterns of design outcomes or chal-
lenges that persist across collections of instances, suggests the applying the framework
statistical physics. Statistical physics collectively sums the topological-level description
of the logical architecture that expresses the system’s underlying functionality and the
physical/spatial description of design instances. Connecting the logical and physical
descriptions of design in this way, the resulting “systems physics” picture that emerges
bridges between traditional network theory and engineering design approaches.

design process around relationships between design elements that persist across

instances.[7]

Searching across instances is key for identifying patterns of avoidance, adjacency,

and association that are generic features of design problem spaces. Achieving this

requires a different approach. To formulate this approach, the key challenge is

in framing knowledge that emerges from collections of possible instances of a sys-

tem. The problem of many instances that give rise to collective behavior is the

underlying principle that motivated the development of statistical mechanics.[116]

The fact that an analogous problem emerges in design, i.e. the need to formulate

knowledge structures to identify patterns in design space, suggests that statistical

physics could serve as the foundation for a similar approach. Fig. 6.2 illustrates

this strategy of attack.
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6.2.2 Statistical Physics Approach

The need to address the problem of identifying patterns of avoidance, adjacency,

and association that persist across spaces of designs points to statistical physics as a

framework. To construct this framework there are two key challenges: formulating

the design problem as a statistical mechanics model, and extracting from the model

the knowledge structures that encode design space properties.

To construct statistical physics models of design, we need two things: the space

of states and some metric on this space. For design problems that are studied with

optimization techniques like simulated annealing, these two things are already at

hand. A generic approach for constructing a statistical physics design framework

given a space of possible designs and a set of design objectives was developed in

Chapters II–III.

We denote the design space as the set {α} consisting of individual detailed

designs α. Each design α can be quantitatively evaluated with a design objective

O(α). Instead of exclusively focusing on the design that minimizes O, we consider

a probability distribution over designs. The maximal entropy distribution driven

exclusively by the design objective is given by:[99]

(6.1) pα =
1

Z
e−λO(α); Z =

∑
α

e−λO(α),

where λ is the design pressure, or the relative importance of the corresponding

design objective in driving the distribution. The normalization Z is known as the

partition function and contains a wealth of information on the properties of the

whole design space.

With this formulation of design problems as statistical mechanics models, the

next challenge is to extract collective properties that encode information about
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the structure of the design problem and the space it lives in. Doing this typically

requires computing sums over a combinatorially large set of α, which relies on

various problem-specific mathematical techniques. For simple scenarios involving

only one or two nodes with integrable interactions, Chapters III–V have shown

that this can be done by coarse-graining to extract effective, so-called Landau, free

energies. We expect that effective free energy approaches will, as they do in the

ordinary statistical mechanics of particles, provide the means to gain insight into

the collective properties of more complex design spaces. However for more complex

design spaces, again as is the case in the ordinary statistical mechanics of particles,

some mathematical techniques are required to study systems that lack closed-form,

integrable interactions.

To meet the challenge of extracting information about design spaces with com-

plex forms of interaction it is useful to take cues from the structure of the problem.

For complex problems the advantage of the logical architecture is that it reduces

the complexity of interactions among elements to simple, binary, yes/no connec-

tions. The disadvantage of this simplicity is that it loses the richness and specificity

of the underlying design problem. This suggests a more complete treatment of the

design problem would be to “decorate” the topological description of the logical ar-

chitecture with information about the “topography” of the underlying design space

and its physical architecture. This topographic decoration can be carried out by

encoding the design space as a tensor network.

Tensor networks were originally introduced as a graphic notation for geometric

tensors,[118] but over the last 25 years have grown into powerful computational

tools for storing and manipulating high-rank data. The tensor network computa-

tions are especially efficient when the connections are sparse. This property spurred
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the popularity of tensor networks in a broad range of applications, from encod-

ing entangled wavefunctions in quantum condensed matter systems,[120, 121, 122]

to performing precision quantum chemistry calculations,[123] renormalizing lattice

models,[125, 126] solving constraint counting problems,[130, 131] accelerating nu-

merical linear algebra,[132, 133, 134] and learning multilinear classifiers in machine

learning.[127] Across these applications, tensor networks serve as an information

structure that contains an exhaustive but raw description of the system.

We use tensor networks to bridge the logical and physical descriptions of a de-

sign problem space. Network nodes encode the design elements’ topography in

the physical space of their placement and their properties. Network connections

encode the functional connection topology and topography of the physical inter-

action of design elements based on their spatial location and physical properties.

The topography–topology connection that the tensor network encodes has the use-

ful side effects that it provides a simple graphical representation of the interaction of

design elements, and that well-developed methods exist for extracting information

from tensor networks.

Tensor networks encode information about the design space, knowledge about

patterns of avoidance, adjacency, and association among design elements, has to

be extracted. Extracting this information requires adding specifically formulated

pieces to it that represent key design questions (in physics language, i.e., observables

or order parameters). We formulate design questions about avoidance, adjacency,

and association among design elements by acting on the tensor network with a

combination of elementary “moves”. The moves yield patterns of the placement

over sets of solutions in design space, that are computed via contraction of tensor

networks. See Methods for a detailed description of moves and contraction.
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Figure 6.3: Tensor network bridges the logical and physical descriptions of the design space for
an example Naval Engineering arrangement problem. (a) The logical architecture is
represented graphically by a network of seven functional units (red circles) and their
specific pattern of functional connections (red lines), and algebraically with the adja-
cency matrix Aij . The dashed gray lines represent the non-links in the network, which
do not directly drive the arrangement but can be investigated. (b) The structure of
the whole design space is contained in an information structure in form of a tensor
network. Logical architecture determines the network pattern in which the tensors are
connected, while physical architecture determines the contents of both site and coupling
tensors. (c) The physical architecture is represented graphically by a square grid within
a complex hull shape, and algebraically by the set of possible unit locations {~xi}. A
particular arrangement consists of the placement of all seven functional units within the
hull and the routing of all functional connections between them (blue circles and lines).

6.2.3 Example Model System

Functional Units and Connections—To demonstrate the Systems Physics analy-

sis and tensor network computations on a concrete example of a design problem, we

first define the specific logical and physical architectures for the problem. We use a

problem from Naval Engineering,[157] in which the functional units of a shipboard

system need to be arranged within the hull of a naval battleship, while respecting

their functional connections, such as pipes or cables. The network pattern of con-

nections constitutes the logical architecture, also represented algebraically as an

adjacency matrix Aij. We find a wide variety of network motifs arise in networks

of as few as n = 7 functional units without any graph symmetries (Fig. 6.3a), which

we will study in the remainder of this work.

Ship Hull—We position units and connections within a ship hull that we rep-
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resent, following [157], by a 2D square grid with a complex, but fixed boundary

(Fig. 6.3c). We constrain all connections within the ship hull to always run along a

shortest path between the two functional units; we choose our hull to be L1-convex

to ensure that at least one shortest path exists between any pair of cells. We find

that hull models with a few tens of cells are sufficient to establish placement pat-

terns; computations reported below are for hulls with Y0 = 78 distinct cells for unit

placement each labelled as ~xi.

Design Objectives—Picking the locations of all units and the routings of func-

tional connections between them defines a detailed design solution α = ({~xi}, routing).

In early-stage design, design architectures are typically not fixed, therefore the full

combinatorial design space needs to be considered. Each detailed design is quanti-

tatively evaluated with a design objective O(α), here we model routing cost:

(6.2) λO(α) = λ
∑
ij

AijCL1(~xi, ~xj) ,

where L1 is the “Manhattan” distance between the two cells, C is the cost per unit

distance, and λ is the design pressure. Given the placement of units, we consider

all allowed shortest paths between them. By definition, all shortest paths have the

same length, so the value of O doesn’t depend on the particular routing chosen, yet

the number of routings is important. To account for the redundancy of routings,

we introduce an effective design objective:

λOeff({~xi}) =
∑
ij

Aijf(~xi, ~xj;T ) ;(6.3)

f(~xi, ~xj;T ) =
C

T
L1(~xi, ~xj)− lnnrout(~xi, ~xj) ,(6.4)

where nrout is the number of shortest routings between ~xi and ~xj within the ship hull,

typically growing with distance. The routing lengths L1(~xi, ~xj) and the number
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routings nrout(~xi, ~xj) are fully determined by the shape of the hull and can be

precomputed, stored as matrices, and scaled by the design pressure as needed.

Tensor Network—The representation of the design space in form of a tensor

network depends on both logical and physical architectures (Fig. 6.3b). Logical

architecture in form of the network Aij determines the pattern in which the site

and coupling tensors are connected. Physical architecture determines the set of

available locations for all units {~xi} that is used as index for all tensors. The

effective design objective f(~xi, ~xj;T ) determines the entries of the coupling tensor.

See Methods for a detailed mathematical discussion.

Greenfield/Brownfield Settings—In the above formulation, the design space {α}

of the problem is the space of all possible arrangements of each functional unit

{~xi}, and is it necessary to establish a means of distinguishing units with fixed

and variable position. This distinction is necessary because the formulation needs

to address arrangement before or after some of the units have been placed. We

refer to situations in which no units have fixed placement as greenfield settings.

Greenfield settings are generically associated with green color-coding in results

figures that follow. Also, we refer to situations in which one or more units have fixed

locations as brownfield settings. Brownfield settings are generically associated with

brown color-coding in results figures that follow. In Results figures that describe

brownfield settings that combine placed units with yet-to-be-placed units we make

a visual distinction between the two by color-coding placed units and their effects

brown and yet-to-be-placed units green.

Low Cost, High Flexibility, and Crossover Regimes—The formulation of design

problems in terms of spaces of solutions weighted by objectives of the form of

Eq. (6.4) has been studied in Chapter IV. As in that Chapter we expect that the
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choice of the design pressure associated with each objective (general case: Eq. (6.1);

this model: Eq. (6.2)) will have qualitatively distinct effects on design outcomes.

To maximize generality, we study design pressures that correspond to multiple

behavioral regimes. We do this by first expressing the design pressure via its inverse

λ = 1/T , where T is the cost tolerance. Low cost tolerance means that minimizing

the routing cost O is a strong driver of a detailed design choice, whereas high

cost tolerance means that the choice among the detailed designs is not driven by

cost. Chapter IV showed that the system driven by this design objective undergoes

a large-scale rearrangement (akin to a phase transition, but at finite-size) around

Tcrit = C/ ln 2 ≈ 1.44C. We pick C = 1 to fix the measurement units for T . T < Tcrit

favors low cost and we therefore expect units to organize into motifs that facilitate

short (cheap) connecting paths. We expect this setting to be characterized by

effective attraction. T > Tcrit favors maximal flexibility and we expect units to

organize into motifs that facilitate maximizing routing degeneracy. We expect this

setting to be characterized by effective repulsion. We expect that for T ≈ Tcrit

where cost and flexibility drivers are competing on near-equal footing there will be

a crossover in behavior.

6.3 Results

6.3.1 Avoidance

Void Premium—The interplay of logical and physical constraints among design

elements induces a complex landscape for element placement. Intervening in that

landscape by reserving space for future use could induce functional units to make

a complex, collective rearrangement to avoid the reserved space. We characterize

the cost of avoidance by computing the void premium that must be paid to forbid

any units to be placed in the reserved space.
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Figure 6.4: Void premium quantifies the cost of avoidance of reserved space across the whole design
space in a greenfield scenario. (a) Schematic of the ship hull and square cells within
(Physical Architecture). Pink square represents a void where unit placement is prohib-
ited, driven by the void design stress ~σ along the center line of the hull (pink dashed
lines). (b) Tensor network used to compute the void premium, with each coupling ten-
sor modified. (c-e) Graphs of void premium (void free energy ∆F (xv;T )) against the
void coordinate xv for three values of T (color coded). (f-g) Functional unit density in
presence of the void.
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Figure 6.5: A brownfield scenario, such as anchoring one functional unit, sharpens the void premium
curve. (a-c) Graphs of void premium (void free energy ∆F (xv;T )) against the void
coordinate xv for three values of T (columns, color coded) and different choice of the
anchored unit (rows, anchor shown in the tensor network on the right). (d-e) Functional
unit density in presence of the void and unit 1 anchored in the indicated cell (brown
square).

We implement reserved space mathematically by creating a void 2 × 2 cells in

size. In the results below we introduce the void on the hull midline, though in

general it could be placed anywhere. We vary the horizontal location of the void,

xv, from zero to the hull length L (see Fig. 6.4a). We compute the cost of the void

via the tensor network approach by suppressing several rows and columns of the

coupling tensor (see Methods). Contracting the modified tensor network results

in a modified partition function, which is smaller or equal to the original one

Z(xv;T ) ≤ Z(T ). The ratio of the two partition functions defines the non-negative

free energy:

(6.5) ∆F (xv;T ) = − ln Z(xv;T )

Z(T )
.

We take this void free energy as a measure of the void premium, the effective “cost”

of the avoidance of a specified region in space.
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Void Design Stress—The magnitude of the void premium ∆F corresponds to

the placement opportunity cost for the functional units. To understand this op-

portunity cost, note that functional units that are not yet placed form a greenfield

“cloud” of possibilities within the hull, the location and density of which depends

on the cost tolerance T . Cutting a void from a dense part of the cloud costs a lot

of free energy, whereas cutting a cloud from a sparse part of the cloud costs almost

nothing. In this way, scanning the void free energy along the void coordinate xv

gives a direct probe of the morphology of the cloud. Conversely, if we regard the

unit positions as fixed, and the void as moveable, the cloud of units drives the void

with an effective force σ = −∆F/∆xv, which we call void design stress. The void

free energy and design stress are then a concise description of the collective effect

of avoidance in functional unit placement.

The void premium and void design stress give a description of collective avoid-

ance effects in placement. These effects can be examined in greenfield and brown-

field settings.

Greenfield—We studied avoidance metrics in greenfield settings, i.e. before any

unit data have been fixed, in three design regimes specified by cost tolerance T .

We plot results in Fig. 6.4c-e. At subcritical T = 1.0 (low cost priority), the void

free energy curve shows a clear single maximum in the middle of the hull, and two

minima on the ends of the hull. At near-critical T = 2.0 (cost-flexibility tradeoff)

the curve maintains the same qualitative shape, but the maximum gets flatter. At

supercritical T = 3.0 (high flexibility priority), the curve shape flips to have a local

minimum at the center of the hull, surrounded by local maxima on two sides. In

other words, at low T the void prefers to be at either of the two ends of the ship

(but a choice needs to be made in favor of one of them). In contrast, at high T
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the void prefers to be in the center of the ship. Thus the change from designing

for flexibility (high T ) to designing for cost (low T ) induces a change from one

architecture class (central-void) to two architecture classes (bow-void and stern-

void). This collective effect is analogous to symmetry-breaking phase transitions

in conventional physical systems.[107]

To understand the origin of the symmetry breaking we note that void free energy

is a proxy for the morphology of the unit cloud. To illustrate the shape of the

cloud in a different way, we approximate the cloud density as a sum of one-unit

densities ρ(~x) =
∑

i pi(~x) and plot densities as heatmaps in Fig. 6.5f-h. These

heatmaps are approximate because, unlike the void free energy curves, they ignore

the correlations in unit placement. At low T (panel f), units attract each other

and thus preferentially form a cloud in the center of the hull and push the void

to either side of the hull. At near-critical T (panel g), the distribution becomes

more homogeneous throughout the hull, flattening the curve. At high T (panel

h), functional units strongly repel one another, concentrating near the edges of the

hull. This leaves the center nearly empty, resulting in a single void free energy

minimum.

Brownfield—Both the void free energy curve and the unit cloud morphology

can, however, change dramatically in brownfield settings, e.g. if even one unit is

fixed to a specific location in space. We pick the location indicated with the brown

square in Fig. 6.5d-f and fix one unit there. We choose three different units to fix:

unit 3 (which has 1 functional connection), unit 5 (2 functional connections) and

unit 1 (3 functional connections). We plot the resulting void free energy curves in

panels a-c, and unit clouds in panels d-f.

Consider first the low-cost regime T = 1.0 (Fig. 6.5a,d). In the greenfield setting
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(Fig. 6.4f) units positions were determined solely by ship geometry, and formed a

dense cloud in the middle of the ship (Fig. 6.4f). Fixing a unit position places an

additional constraint on unit positions, and forces the unit cloud to condense around

it (Fig. 6.5d). Because of this condensation, the void free energy curve becomes

simultaneously steeper and more focused around the fixed unit point (panel a), but

decays faster close to the edges of the hull. The void free energy cost also depends

on the topological position of the anchored unit: it is highest for the most-connected

unit 1 (bottom curve) and lowest for the least-connected unit 3 (top curve).

At the near-critical and supercritical T = 2.0, 3.0 the anchored unit similarly

creates a reference point for the cloud, but the units in the cloud repel from that

point. When repulsion and attraction are nearly balanced at T = 2.0, the cloud

profile becomes nearly uniform and is not strongly affected by the fixed unit (com-

pare Fig. 6.4g and Fig. 6.5e). Similarly, fixing a unit at supercritical T = 3.0

creates a point of strong repulsion, forcing the unit cloud to the opposite corners

of the ship hull (Fig. 6.4h and Fig. 6.5f). At both values of T = 2.0, 3.0, the

cloud morphology is not affected strongly by the single fixed unit position, and

thus the brownfield void premiums (Fig. 6.5b-c) closely resemble their greenfield

couterparts (Fig. 6.4b-c). Discussion of the effects of avoidance on unit positions,

i.e. backreactions on the cloud, can be found in Supplementary Materials (SM).

Avoidance: Logical–Physical Architecture Interplay—The above avoidance anal-

ysis gives a case study of basic phenomenology of the interplay between design

pressure (favoring low-cost vs high-flexibility) and the logical and physical archi-

tecture. Shifting the design priority from low-cost to high-flexibility changed the

interaction between pairs of functional units. However, unit interactions were mod-

ulated by connection topology (i.e., logical architecture) and by the spatial domain
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Figure 6.6: Bond diagrams quantify the adjacency patterns for both directly and indirectly con-
nected functional units. (a-b) Tensor networks used for computations of bond diagrams
for two pairs of units, one connected directly (0→2, D = 1), the other indirectly (0→3,
D = 2). The site tensors in the measured pair have external legs (green). The unit 1
is anchored in the center of the hull (brown square). (c-h) Bond diagrams for the angle
between the two units of the pair, for two different pairs (rows) and three values of T
(columns, color coded). Yellow curve shows the null model of the bond diagram, iden-
tical for all graphs. Black rim of bond diagram axes indicated the topological distance
D = 1, gray rim indicates D = 2.

(i.e., the physical architecture). We captured the effect of these complex interac-

tions on spatial avoidance the unit clouds in Figs. 6.4,6.5. However, within the unit

clouds, the interplay of design pressure with the logical and physical architectures

also induces emergent coupling. This emergent coupling within the cloud induces

patterns of adjacency and association between units, which we turn to next.

6.3.2 Adjacency

Whereas our avoidance analysis derives from and illustrates the basic morphol-

ogy of the unit cloud within the ship hull, questions about unit adjacency derive

from correlations within the cloud, and the emergent coupling between units that

arise.
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Bond-Diagram Measures of Adjacency—To determine how emergent coupling

between units leads to arrangment motifs, we consider pairs of units and their rel-

ative positions. We examine pairs of units in 2D space, and express motifs as the

polar angles θ(i → j), which vary along with the positions of the units in the cloud.

Across the cloud, the angle takes form of a probability distribution pi→j(θ). This

distribution is analogous to the bond order that is used to describe structure in

condensed matter.[194, 195] In condensed matter, bond angles are whole-system

aggregate measures of adjacency. Here, the heterogeneous connectivity of design

elements yields “bond” diagrams that are specific to each pair of units i, j. Depend-

ing on whether the units i and j are directly connected or not (Aij = 1 or 0), the

bond diagrams illuminate the strength of direct or emergent adjacency patterns.

Computational Approach—To compute the bond diagrams mathematically, we

use tensor networks to compute the raw 2-unit marginal distributions p(~xi, ~xj)

(Fig. 6.6a,e), and convert them into the angular distributions pi→j(θ) using Kernel

Density Estimation to reduce the numerical artifacts (see Methods). In order to

demonstrate more sharply defined bond diagrams, we assume that one unit has

already been placed (anchored) in the center of the hull and all other units need

to be placed with respect to it. The bond diagram pi→j(θ) of any pair of units

is not uniform with respect to the angle θ even if the units are not connected at

all, directly or indirectly. This non-uniformity is driven by the shape of the hull,

a manifestation of the physical architecture, and we account for it by computing

null model p0(θ) of the bond diagram(see Methods). Differences between the null

model and computed bond diagrams are indicators of interaction-driven adjacency.

This interaction driven adjacency depends on unit connectivity; we use a topological

distance, D(i, j) metric. D(i, j) is the minimal number of network hops to get from



167

unit i to unit j. In our example problem, the minimal number of hops varies from

1 (e.g. units 0→1) to 5 (e.g. units 3→4).

Direct Adjacency—We show topological distance, bond diagrams, and the null

model for our model in Fig. 6.6 in form of polar plots for two example unit pairs

(corresponding plots for all unit pairs are given in SM). We start discussion with

the bond diagrams for direct adjacency (0→2, D = 1). At subcritical T = 1.0

(panel b) most units are located very close to each other, either in cardinal or

intercardinal directions (orthogonally or diagonally), resulting in a bond diagram

with a strong eightfold signal. At near-critical T = 2.0 (panel c) the orthogonal

attraction is balanced with diagonal repulsion, resulting in a bond diagram with

smaller peaks. At supercritical T = 3.0 (panel d) the units are located relatively

far from each other and prefer diagonal relative location (since diagonal location

allows them to maximize their routing entropy), resulting in a fourfold, X-shaped

signal. The symmetry of the fourfold signal is further broken by anchoring the

unit 1. This additional symmetry breaking is driven by the high density of units

in top-left and bottom-right corners of the hull (see Fig. 6.4).

Emergent Adjacency—Across the whole T range, the bond diagrams for direct

adjacency are significantly different from the null model. However, adjacency can

also be induced for indirectly connected unit pairs. The indirectly connected unit

pair 0→3 shows emergent adjacency, since its bond diagram is different from both

the direct adjacency and the null model (Fig. 6.6f-h). The bond diagrams for unit

pairs with even larger topological distance the bond diagrams gradually approach

the null model (see SM), following the intuition of decay of correlation functions

with distance in condensed matter systems. This observation suggests the general

takeaway: at large topological distance bond diagrams always approach the null
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model, and thus are fully determined by the Physical Architecture; at small topo-

logical distance the bond diagrams depend strongly on both the design pressure T

and the explicit details of Logical Architecture. However, our results reveal that

for emergent adjacency topological distance is a good predictor of strength but is

not a good predictor of shape.

Logical Architecture Modifications—To further test the interplay between Logical

Archiecture and Adjacency, we investigate what happens to bond diagrams when we

modify the Logical Architecture. We consider two types of modifications: removing

an existing functional connection (Fig. 6.7d), or adding a new one between two

units (Fig. 6.7e). Instead of comparing the resulting bond diagrams to the null

model again, we focus on the difference between bond diagrams before and after

modification (panels f-g). Addition: The effect of adding the (0,3) connection is

strong. We can anticipate that with the added direct adjacency, the adjacency

pattern should approach that of other directly adjacent units. The fourfold signal

that results (panel g) is a signal of this. Since neither of the units 0 or 3 is explicitly

anchored in space, at high T = 3.0 they want to be positioned at the opposite ends

of the longest diagonal available within the hull, in this case the diagonal from top-

left to bottom-right corners, similarly to the original adjacency 0→3 (Fig. 6.6d).

Removal: Like for addition the effect of removing the (0,2) connection is dramatic,

however the result is unexpected. Instead of fourfold diagonal direct adjacency, the

two units now have twofold horizontal emergent adjacency (panel f). The reason

for this is that with the (0,2) connection removed, the units 1-2-6-0 now form a

rhombus. Unit 1 is fixed in space, and because of high T = 3.0 all unit pairs prefer

to have diagonal adjacency. In this case the units 0 and 2 on the opposite corners of

the rhombus will have an orthogonal adjacency, of which only horizontal adjacency
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manifests because the ship hull is larger in length than height.

Adjacency: Changes and Constraints Drive Patterns—We showed that the irreg-

ular, complex-network nature of a system’s Logical Architecture drives the patterns

of direct and emergent adjacency. We showed adjacency patterns can change sig-

nificantly with changes in Logical Architecture. One outcome of this approach was

the ability to detect emergent adjacency. The emergent effects we observed were

with a single fixed unit. Though having having few fixed units is a characteristic of

early-stage design, later-stage design situations will result in more fixed units. Fix-

ing more units will induce more constraints, and further constraints will complicate

the interplay of the logical and physical architecture. A more complicated logical–

physical architecture interplay should induce more complex patterns of association

between units, which we will examine next.

6.3.3 Association

Analyzing association patterns extends our avoidance and adjacency investiga-

tions to situations in which multiple, pre-existing constraints restrict functional

units, i.e. in brownfield settings. These settings model either of two situations: (i)

actual late-stage design in which multiple functional units have been fixed during

preceding design stages, or (ii) an early-stage design investigation of hypothetical

late-stage situations under different decision scenarios.

Constraints and Localization—In either case, the expectation that multiple ac-

tive constraints will drive complex forms of interaction suggests that identifying

patterns of association that result will require different techniques than identify-

ing patterns of avoidance and adjacency. In general we expect that patterns of

association arising from multiple constraints will localize those patterns relative to

fixed design elements. This suggests that metrics of association patterns should
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Figure 6.8: Early stage design decisions determine the association patterns and design freedom for
subsequent ones. (a) Tensor network used for association computations. Three out
of seven units have already been anchored to specific locations (brown), other four
are pending placement (green). External legs not shown. (b) The units 1,2,6 are
anchored at the indicated locations within the ship hull (brown squares). The units
0,3,4,5 can still be placed in many locations, some demonstrated for an example (green
circles). (c) Graph of the design freedom Φ for the four units without anchors across a
range of cost tolerance T . Brown brackets on the right indicate that units with more
adjacent anchors have less remaining design freedom. Vertical dotted lines indicate
the T values investigated in more detail in panels (d-g), as well as in avoidance and
adjacency patterns. (d-g) Design stress ∆F patterns for the placement of each pending
unit (rows in order of decreasing design freedom Φ) at three values of T (columns, color
coded). Legend for design stress magnitude ∆F is shown to the left of panel (d).
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signal a tendency toward (or away from) placement proximity relative to fixed el-

ements, either globally or locally. Here, for a global signal we adapt measures of

emergent localization to compute a scalar design freedom for unit locations. For

a local signal we compute the design stress associated with specified, hypothetical

unit placement.

To study the effect of added constraints, their interplay with the logical and

physical architecture and the resulting localization, we employ the same model

system as in the avoidance and adjacency investigations. However we introduce

constraints that fix units 1,2, and 6 to specific locations. We investigate the emer-

gent localization of the other 4 units with two metrics via the global design freedom

Φ and local design stress ∆F . Results are shown in Fig. 6.8 and broken down below.

Global Signal of Association: Design Freedom Mathematically, both global and

local metrics of localization use a tensor network computation of the marginal prob-

ability distribution p(~xi). The conversion of the distribution into design freedom is

inspired by the metric of existence area, commonly used in studies of the Anderson

localization of wavefunctions in disordered media and the localization of vibrational

eigenmodes.[196, 197] We define design freedom as:

(6.6) Φ =
1

Y0

(∑
~x

p(~x)

)2

∑
~x

p(~x)2
,

where the normalization Y0 is the total number of cells within Physical Architecture;

in this example Y0 = 78. Given this normalization, Φ takes a value between 0 and

1 and has the meaning the effective fraction of the total area available for unit

placement, if the distribution was uniform. For a unit with uniform distribution

p(~xi) = const, Φ would be 1, whereas for an anchored unit Φ would be 1/Y0 → 0.

Because of the heterogeneous connectivity of the logical architecture, design
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freedom Φ varies between units. The variation between units is in addition to

variation with design pressure, via changing cost tolerance T . Fig. 6.8c plots Φ(T )

by unit, and shows that all units have design freedom peaks near T ≈ 2.0. In

the range of this near-critical T , cost (effective attraction) and flexibility (effective

repulsion) drivers of unit interactions balance and allow the units to explore the

largest range of placement. As well, we observe Φ(T ) to fall into three groups

according to how constrained each unit is. Unit 4 is not directly connected to any of

the anchored units and thus enjoys the largest design freedom, almost approaching

Φ = 1. Units 3 and 5 are each connected to one anchored unit and thus have

intermediate Φ. Unit 0 is connected to all three anchored units and thus has the

lowest Φ which quickly decays at both low and high T .

Local Signal of Association: Design Stress—Whereas Φ serves as an global scalar

metric of design freedom, it is also important to understand how global design

freedom is distributed locally. This local distribution is captured by design stress.

Design stress is closely related to an effective (Landau) free energy (LFE), defined

as follows:

(6.7) F (~xi) = − ln p(~xi) + C ,

where C is an arbitrary additive constant. We chose a convention where C is

such that the minimal value of F is zero. The LFE can be interpreted as an

effective design objective for the chosen degree of freedom, given that other degrees

of freedom have been fixed or integrated out. This interpretation is analogous to

the void premium (Eq. 6.5) in our avoidance investigation, but instead of the effects

of unit placement on voids, here we examine the effects of unit placements on one

another. Similar to the definition of void design stress via a spatial difference,

the difference of LFE between two horizontally or vertically adjacent cells is the
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design stress ∆F . Design stress is then an effective “force” that pushes individual

functional units towards their preferred locations (Chapters IV–V). Compared with

global design freedom, design stress patterns give a more detailed picture of effective

localization.

Fig. 6.8d-g presents the design stress patterns for all four pending units at three

values of T . Design stress is represented by brown arrows drawn across the bound-

ary of two adjacent cells and pointing from higher to lower LFE. In other words, to

decrease LFE and reach lower values of its effective design objective, a unit needs

to follow the arrows towards a basin. As the basin gets smaller and its walls get

steeper, the pending units become more closely associated with the anchored ones

and thus exhibit stronger emergent localization. The localization effect is strongest

at lowest T , where all of pending units are strongly attracted to the two anchored

units 1,6 in a single basin. The basin is steepest for the most constrained unit 0,

less steep for the units 3,5, and the shallowest for the least constrained unit 4, con-

sistent with our expectation based on design freedom Φ. At higher T = 2.0, 3.0,

the constrained unit 0 develops complex LFE and design stress landscapes with

multiple local minima, maxima, and ridges (panel g). Units 3,5, connected respec-

tively to the anchored units 6 and 1 in the center of the hull, show an X-shaped

pattern of LFE (panels e,f), similar to the bond diagrams for directly connected

unit pairs, e.g. Fig. 6.6d. Lastly, the unit 4 is not connected to any of the anchored

units, instead it is “dangling off” unit 5 and thus shows almost nonexistent design

stress across the whole hull (panel d).

Association: Interaction and Decision Drivers—Both the design stress and de-

sign freedom metrics show that the association patterns and the emergent localiza-

tion phenomenon strongly depend on the position of both the fixed and the pending
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units within the logical architecture. The logical architecture alone gives an inter-

pretation of the emergent localization result by counting the anchored neighbors.

However, fully predicting localization requires examining the logical–physical archi-

tecture interplay that arises from the systems physics analysis. Unlike the simplified

unidirectional design stress discussed in Chapter V, in this system the design stress

pattern is emergent both from unit interactions and from previous design decisions.

Chaining design decisions into sequences and achieving optimal control of emergent

localization stands out as an important question for further study.

6.4 Discussion

In this Chapter we showed that questions of avoidance, adjacency, and associa-

tion among the elements of complex, distributed systems hinge on the interaction

between logical- and physical-architecture description planes. We bridged these

descriptive planes with statistical physics techniques and showed that patterns of

avoidance, adjacency, and association can be mapped for an example system.

Design Phenomena: Symmetry-Breaking, Emergent Adjacency, Localization—

Our mapping of avoidance gave a space premium landscape. We found this land-

scape to undergoe a symmetry-breaking transition with a change from design pres-

sure that prioritizes high flexibility to pressure that prioritizes low cost (Figs. 6.4,6.5).

Our mapping of adjacency gave a description analogous to “bond” directions in mat-

ter systems. From this bonding description we observed that indirectly connected

design elements developed emergent adjacency (Fig. 6.6). We also found large

downstream changes in adjacency from small changes in underlying connectivity

(Fig. 6.7). Our mapping of association patterns quantified changes in global design

freedom driven by fixing design elements and changes in design pressure. Mapping
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number of functional units explicitly considered. Vertical axis represents the reduction
in spatial detail considered. Black arrows represent the computational pathway across
the study of avoidance, adjacency, and association patterns. The full design objective
O (Eqn. 6.2) depends on all unit locations and routings. The effective design objective
Oeff (Eqn. 6.4) depends only on locations of all units. The association pattern considers
detailed location ~xi, but only for a single unit. The adjacency pattern reduces the
spatial detail to just the relative direction θ(i → j) between two units. The avoidance
pattern further reduces the spatial detail to just the void position xv as a single collective
coordinate of the unit cloud. Finally, the partition function Z loses all detail of physical
and logical architecture and summarizes the properties of the whole design space.
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these effects locally showed the emergent localization of design elements (Fig. 6.8).

Coarse Graining for Other Design Contexts—Our mappings of avoidance, adja-

cency, and association patterns were done for a model system motivated by prob-

lems in Naval Engineering. However, for other design contexts where questions

of avoidance, adjacency, and association patterns arise, our statistical physics ap-

proach opens new lines of attack. In particular, our approach can be summarized in

two steps. First we “decorated” the logical architecture with detail from the physi-

cal architecture. Then, we systematically chose two sets of system details, one to

examine in detail, and the other to treat in aggregate, in a coarse-grained way. The

aggregated details induce effective patterns of interaction among the remaining el-

ements, that reveal underlying patterns of arrangement. We illustrate this strategy

in Fig. 6.9. Fig. 6.9 casts the strategy into two orthogonal forms of coarse-graining:

one in the physical architecture, the other in the logical architecture. In this repre-

sentation, in statistical physics language, microstates that retain complete detail of

both the physical and logical architecture sit in one corner, whereas the partition

function, which aggregates microstates into a single scalar sits in the opposite cor-

ner. Though the specific locations that correspond to our investigations are given

at specific points on these axes, regardless of design context, answers to questions

about patterns of avoidance, adjacency, and association lie at intermediate levels

of detail between those extremes.
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Figure 6.10: Tensor networks can be used as information structures as combinations of basic moves
express complex questions about the design space. Panel (a) shows the original net-
work, panels (b-d) describe the three basic moves that modify its topology, panels
(e-g) show how the elementary moves are recombined to study the emergent patterns.
(bottom-left corner) Legend of tensor network elements. (a) The original network con-
nects n = 7 site tensors (green circles) with coupling tensors (gray squares) in the
same pattern as the Logical Architecture (Fig. 6.2 top). Since this network has no
outgoing legs, it contracts into a single scalar number equal to the partition function
Z(T ). (b) Move 1 adds extra outgoing legs on site tensors 0 and 3 (green lines), making
the contraction result in the rank-2 tensor containing the joint marginal probability
distribution on the spatial positions of the two units p(~x0, ~x3). (d) Move 2 attaches an
additional rank-1 anchor tensor (brown square) to site 1, fixing it to a specific spatial
location. This network contracts to the conditional partition function Z~x1

. (d) Move
3 modifies all of the coupling tensors (shown as pink squares), for example to account
for the voids. This network contracts to the modified partition function Z(xv;T ). (e)
For the avoidance pattern, we use both anchors and modified couplings to compute
the placement opportunity cost via Eqn. 6.5. (f) For the adjacency pattern, we fix
node 1 with an anchor and compute the 2-unit marginal distributions p(~xi, ~xj) for all
possible pairs of external legs i, j, and further convert them into bond order diagrams.
(g) For the association pattern, we encode the past design decisions with anchors on
units 1, 2, 6 and study the 1-unit marginal distributions on each of the other units.
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6.5 Methods

6.5.1 Tensor Network Construction

The partition function of the system can be expressed in terms of the effective

design objective in the following factorized form:

(6.8) Z(T ) =
∑
{~x}

∏
i<j:

Aij 6=0

e−f(~xi,~xj ;T ).

We interpret the factorized partition function (6.8) graphically in the form of a

tensor network (Fig. 6.10a). Like other networks, a tensor network consists of

nodes and links. Each node is a tensor with rank equal to node degree, and the

network links represent the pattern of tensor contractions. We construct tensor

networks following a recent prescription of Ref. [137], in which the tensor networks

are bipartite: they consist of coupling tensors and site tensors, with each type only

connected to the other type as shown in Fig. 6.10a. Logical architecture Aij is con-

tained in the pattern of the coupling tensors, whereas physical architecture domain

{~x} serves as the index of all the tensors, and the design objective determines the

contents of the tensors.

The basic tensor network (Fig. 6.10a) represents the partition function Z(T ) and

is merely an alternative, graphical way to express Eq. 6.8. Each multiplicative term

in the partition function becomes a rank-2 coupling tensor with elements defined

as M~xi~xj
≡ ef(~xi~xj ;T ) (note elementwise rather than matrix exponentiation). The

site tensors have the form of a multi-dimensional Kronecker delta with the rank

corresponding to site’s degree in the logical network Aij. For example, the unit 0

in Fig. 6.10a has three network neighbors, and thus corresponds to a rank-3 tensor

δ~x01~x02~x06. The indices mean the value of unit 0 coordinate ~x0 that is “presented”

to each network neighbor, in this case units 1, 2, and 6. The Kronecker delta
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ensures that each neighbor perceives the unit 0 at the same location, while index

summation ensures that all possible locations are considered. The rank of site

tensors can be adjusted for other computations, as shown below. For brevity of

notation, we suppress indices on edges because the contraction pattern is dictated

by the graphical notation.

Contracting all the tensors along the network links corresponds to performing

the sum in Eq. 6.8. Since that sum has no free indices, the network of Fig. 6.10a

has no external (unpaired) legs. Contraction of the network preserves the number

of external legs, resulting in a rank-0 tensor, a scalar number. Since each coupling

tensor implicitly depends on cost tolerance T , the result of contraction is the T -

dependent partition function Z(T ).

In order to compute quantities other than the partition function, we add minor

modifications of the tensor network. These modifications are described in the

graphical language of moves. Here we define three moves: adding external legs,

adding anchors, and modifying the coupling tensors (Fig. 6.10b-d). These moves are

recombined to create networks that address the patterns of avoidance, adjacency,

and association (Fig. 6.10e-g).

6.5.2 Move 1: External Legs

The first move adds extra legs to specific site tensors to control whether specific

design degrees of freedom are marginalized or not. If none of the degrees of free-

dom are marginalized, then carrying out the multiplication but not the summation

in the sum (6.8) would result in an un-normalized joint probability distribution

p({~xi}) over all the units, which is a rank-N tensor of prohibitive size. However,

following the usual probability theory calculus, in a joint probability distribution

each of the entering variables can be in three states: joint, marginalized, or condi-
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tional. In the tensor network representation of Fig. 6.10a, every variable ~x0, ~x1, . . .

is marginalized, resulting in the distribution normalization, i.e. the partition func-

tion Z(T ).

In this perspective, a special action needs to be taken to not marginalize some of

the variables. We do this by adding external legs to the corresponding site tensors

(green lines in Fig. 6.10b). External legs are the site degrees of freedom that are not

summed over, functioning as free indices for the sum (6.8). The result of contracting

the network in Fig. 6.10b is a rank-2 tensor that represents the un-normalized joint

probability distribution p(~x0, ~x3). Since the original network contracted to yield

the full Z, the normalized probability distribution can be expressed as p̃ = p/Z.

6.5.3 Move 2: Anchors

The second move adds anchor tensors to the network. The anchors represent

the design decisions already taken and woven into the information structure, thus

encoding the brownfield aspects of design. In tensor network language, this is

equivalent to fixing some of the local degrees of freedom ~xi and thus summing

over a restricted ensemble, conditional on the fixed ~xi. We do this by creating an

additional tensor that we call an “anchor”. An anchor is a rank-1 tensor (vector)

that is coupled to a site tensor and is illustrated as purple square in Fig. 6.10c.

The elements of an anchor vector are given by the Kronecker delta δ(~xi, ~xa), where

~xi is the index connected to the site and ~xa is the specific location to which the

functional unit is pinned as result of a design decision. Since we didn’t create any

external legs, the tensor network in Fig. 6.10c also contracts to a scalar number of

conditional partition function Zx6 that functions as a similar statistical summary

of the system as the original partition function Z.
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6.5.4 Move 3: Modified Coupling

The third move modifies the coupling tensors M(~xi, ~xj) and traces the effect of

this modification on the partition function. In our study, we use the modification

to account for the void where no units can be placed. The modification consists of

suppressing the statistical weight of the void cells in the coupling tensor:

(6.9) M∗(~xi, ~xj) = M(~xi, ~xj)
∏
~xv

(1− δ(~xi, ~xv))(1− δ(~xj, ~xv)),

where ~xv denotes the positions falling into the excluded void. In the network

on Fig. 6.10d we modified each coupling tensor in this way (marked in pink). The

network results in the modified partition function Z(xv;T ), from which we compute

the void free energy via Eq. 6.5.

6.5.5 Bond Diagrams

To compute bond diagrams, the raw two-unit distributions p(~xi, ~xj) need to

be converted into the angular distributions pi→j(θ) in post-processing. Since all

functional units are placed in a discrete, finite, and fixed set of cells ~xi, we pre-

compute the directions between any pair of cells θ(~xi, ~xj), measured in radians from

0 to 2π, ahead of time and store them.

Within the design ensemble, the locations of units ~xi are random, drawn from

the joint distribution encoded in the tensor network. We compute a series of

marginal two-units distributions p(~xi, ~xj) for all pairs i < j (see the tensor network

in Fig. 6.10f). Since the possible unit locations are discrete, the possible directions

θ(~xi, ~xj) form an artificially irregular discrete set. This numerical artifact would

result in a jagged direction distribution pi→j(θ). We smooth the distribution by us-

ing a version of non-parameteric Kernel Density Estimation (KDE) [198, 199] with
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periodic boundary conditions in which higher angular harmonics are suppressed:

(6.10) pi→j(θ) =
1

N
∑
k

∑
~xi,~xj

p(~xi, ~xj)e
− 1

2
(hk)2 cos (k(θ − θ(~xi, ~xj)))

Here N is a normalization factor, h is the KDE smoothing factor (bandwidth),

k ∈ {0, 1, 2, . . . } is the angular mode index. We find that using smoothing factor

of h = 0.1 radians and angular modes up to kmax = 30 gives good results.

The resulting distributions pi→j(θ) need to be compared with the null distribu-

tion induced by the Physical Architecture (ship hull shape). We compute the null

distribution by evaluating the formula (6.10) for p(~xi, ~xj) = const. The identical

null distribution is shown in every panel of Fig. 6.6.

6.5.6 Numerical Aspects of Computation

Implementing the tensor networks described above on a computer requires two

different kinds of computational work: constructing the networks from Logical

and Physical Architecture and possible modifications with the three moves, and

contracting said networks numerically. We perform these two tasks in Python.

Using code we developed, we create tensor networks by specifying the network

topology, the spatial domain geometry, the design objective, and additional moves.

These specifications are done via high-level commands, allowing for the rapid gen-

eration of diverse networks.

Tensor network contraction is handled by a Python package. Existing tensor

network packages use different methods of executing a sequence of pairwise tensor

contractions. The contraction result does not depend on the contraction sequence,

but the computational time and memory requirements rise by orders of magnitude

for suboptimal sequences. Optimal sequences are known for certain frequently used

networks, wherease for others one can use exhaustive enumeration algorithms to
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find the optimal sequence and then execute it repeatedly for the same network

topology.[200] However, almost all networks that we contract in the present work

are subtly different, and therefore might require different contraction sequences. We

perform all contractions with the PyTNR package, an open-source general purpose

tensor network contractor.[137, 138] The features of PyTNR include using heuristics

to automatically generate the contraction sequences on the fly, and performing SVD

approximations of controlled precision to reduce the dimension of stored tensors.

The features of PyTNR define the computational constraints on the size of systems

that our approach can handle. The size and structure of the Logical Architecture

directly change the number of units n in the network and the number of tensors nt

(counting both site and coupling tensors). The size or resolution of the Physical

Architecture domain directly affect the tensor bond dimension D. A rigorous,

though pessimistic upper bound on the time complexity of contraction stands at

O
(
D2

√
∆nt

)
, where ∆ is the maximal tensor rank.[131] In contrast, PyTNR relies on

a heuristic and stochatic generation of contraction sequences, which complicates

even the empirical investigations of numerical scaling of complexity. For highly

structured networks, such as d-dimensional hypercubic lattices, the time complexity

scales a power law O(Nγ), where the exponent γ is a bit larger than the space

dimension d and depends on the nature of system’s boundary conditions (periodic

or closed).[137]

To provide more concrete numbers, each tensor network contraction in this

Chapter takes less than 10 seconds on a laptop computer (Intel Core i5-3360M

@ 2.8GHz CPU, 8Gb RAM) for our example system (n = 7 units, nt = 15 tensors,

D = 78, total number of combinatorial states O(1013)). The example system size

was chosen to best illustrate the physical phenomena at single unit resolution. In
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other investigations we reliably contracted lattice networks of up to nt = O(103)

tensors accounting for O(10167) combinatorial states using PyTNR.[80] This result

suggests that the current tensor network methods would remain tractable for sys-

tems even one order of magnitude larger, or perhaps even larger as the tensor

network methods develop.

6.6 Supplementary Results

6.6.1 Avoidance: Excess Density

In the main text of the Chapter we show that void premium quantifies the cost of

reserving space within the ship hull, with the effect being further amplified by the

presence of an anchor (Figs. 4-5). We associated high void premium with a large

rearrangement of the functional units. We can quantify the degree of rearrangement

by computing the unit density profile without void ρno void(~x), the unit density

profile with void ρvoid(~x), and their difference:

(6.11) ∆ρ(~x) = ρvoid(~x)− ρno void(~x),

which we term excess density that can be both positive and negative. Since the

total number of functional units does not change upon addition of void, the positive

and negative regions of excess density have to cancel each other. In this case large

rearrangements of the unit cloud are characterized by large contrast between the

positive and negative regions, graphically visible in saturation of colors.

We plot all three densities in Fig. 6.11, both without and with an anchor on

unit 1. In low-cost case T = 1.0 (panel a) the units want to form a compact cloud,

which can be located anywhere within the hull. Upon creation of a void slightly

to the left of center, the unit cloud relocates to the right of the void, as seen by

large negative ∆ρ in the left half of the hull and positive in the right half (visible as
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Figure 6.11: Reserving space in locations with large void premium causes large rearrangements
of the unit cloud morphology. The rearrangement is shown via the density profile
without the void, with the void, and their pointwise difference (rows) for three values
of T (columns, color coded). Panels (a-c) show the rearrangement in a fully greenfield
scenario (no anchors). Panels (d-f) show the rearrangement in a brownfield scenario
(one anchor indicated with a brown square).
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red and blue clouds). When unit 1 is anchored (panel d), this effect becomes even

more pronounced since the unit cloud condenses around a reference point. Creation

of a void pushes the unit cloud to the right and above the anchor, but it cannot

move far from the anchor, resulting in high contrast of excess density (strong color

saturation in the figure) and thus high void premium. At intermediate and high

values of T , both with and without an anchor (panels b,c,e,f) the rearrangements

are much smaller, visible in much paler colors on excess density heatmaps.

6.6.2 Adjacency: All Bond Diagrams

In the main text of the Chapter we show how to compute the bond diagram

pi→j(θ) for any pair of units i, j. Since the directions θ(i → j) and θ(j → i) only

differ by a trivial rotation by angle π, and the direction from a node to itself is not

defined, a system of n units would have n(n − 1)/2 independent bond diagrams.

The Logical Architecture of the example problem was deliberately chosen to not

have any graph symmetries, therefore the bond diagrams are not related to each

other via any symmetries.

While in the main text we only show several representative bond diagrams

(Figs. 6-7), Fig. 6.12 shows all of the bond diagrams for the low-cost regime T = 1.0

and the high-flexibility regime T = 3.0. The diagrams are arranged as a lower-

triangular and an upper-triangular matrix of polar plots so that the diagrams in

positions symmetric with respect to the diagonal refer to the same pair of func-

tional units and are thus directly comparable. The full set of diagrams shows all

adjacency features highlighted in the main text. For units that are directly con-

nected, most of the diagrams at T = 1.0 show eightfold signal (e.g. 2→6), while

diagrams at T = 3.0 show X-shaped fourfold signal (e.g. 4→5). All diagrams to or

from unit 1 show further symmetry breaking because unit 1 is anchored in space.
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(top-left corner) Typical tensor network used for bond diagram computations, with
a brown anchor for unit 1 and green external legs at units i and j for each origin-
destination pair i, j. (bottom-right corner) Legend for the opacity of axes boundaries
representing the topological distance D(i, j) varying from 1 to 5 hops. (top-right
triangle, red) Bond diagrams for T = 3.0. (bottom-left triangle, blue) Bond diagrams
for T = 1.0. The origin and destination of each bond diagram are indicated on the
outside boundaries of the triangle. Axes in positions symmetric with respects to the
diagonal refer to the same origin-destination pair and thus can be directly compared.
The yellow curve in each axes shows the null model bond diagram p0(θ).
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For units that are connected only indirectly with large topological distance, the

bond diagram approaches the null model at both T = 1.0 and T = 3.0 (e.g. 3→4).



CHAPTER VII

Topological Design in Heterogeneous Self-Assembly

7.1 Introduction

1Self-assembly is an incredibly robust, and often unique method of organizing

loose building blocks to adopt a certain structure.[51] A wide range of structures

have been observed in synthetic self-assembly in both experiments and numerical

simulations, from strictly periodic crystals [81] to quasicrystals,[84] liquid crys-

tals,[83] polymers,[201] nets,[78] and finite clusters.[64] While the initial investiga-

tions were guided by anecdotal evidence and limited availability of building blocks,

later works deliberately discuss optimizing the building block properties for assem-

bly of a desired target structure.[72] The emergent connection between the building

block properties and the structures they form makes self-assembly a perfect model

system for discussion of more general design principles.

Self-assembling building blocks are typically particles of nanometer or microm-

eter size, small enough to experience thermal fluctuations but too large for the

quantum effects to be significant.[51] Quantum mechanics usually imposes discrete-

ness on the atomic parameters, thus responsible for the discreteness of the chemical

elements in the periodic table.[202, 203] The absence of quantum effects then frees

the building blocks to have continuously adjustable parameters such as size, shape,
1This chapter is based on an upcoming paper coauthored with M.P. Brenner

189
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roughness, or interaction patches.[74, 73] These parameters span combinatorially

large design spaces that sometimes can be efficiently searched with inverse design

methods.[72, 85]

The design spaces are best characterized for homogeneous self-assembly, where

all building blocks are identical. On the other side, in heterogeneous self-assembly

several types of building blocks are used, primarily to allow encoding the tar-

get structure in specific interactions. Specific interactions can be realized with

several different substrates, the most popular being DNA origami [76] and DNA-

functionalized colloidal particles,[75] while newer frameworks focus on de novo pro-

teins [77] or magnetic panels.[78]

The shared goal of all these substrates is to make the desired (“on-target”) bind-

ing much stronger than the undesired (“off-target”), but some amount of off-target

binding, also known as cross-talk, is inevitable.[89, 204] Because of cross-talk, the

object of heterogeneous self-assembly design is not a single building block, but a

set of all building blocks used together. The performance of the whole set of build-

ing blocks can be characterized by several metrics,[90, 91] but they have limited

capacity of predicting quantitatively the yield of target structures.

The “target structure” in heterogeneous self-assembly can be defined at sev-

eral levels of detail by aggregating different number of system microstates. The

self-assembly target is never a single microstate, since under the effect of thermal

noise the system continuously explores microstates that are statistically similar, but

distinct. In order to distinguish larger-scale differences, the microstates are aggre-

gated, for example with order parameters that distinguish bulk structures.[107, 65]

However, here we are interested instead in finite structures, which we distinguish

hierarchically: by topology, by structure length, and by specific monomer sequence
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Figure 7.1: The nested hierarchy of detail of self-assembled clusters. (a) Nested Venn diagram of
clusters: all clusters of a specific sequence are a subset of all clusters of a specific length,
which are a subset of all clusters of a specific topology, which in turn are a subset of all
possible structures. (b) Example microstate of a self-assembling system with different
target structures identified. The central cluster blue rim is a ring of 10 monomers in a
specific non-repeating sequence (blue rim). Two other clusters are rings of 10 monomers
in a wrong sequence with repetitions (green rim). Another two clusters are much smaller
rings (red rim). All other clusters are either linear chains or free monomers (gray rim).
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(see Fig. 7.1). The more narrow is the definition of the target, the more stringent

the design of the building blocks becomes.

In this Chapter, I show how to characterize the target structures at different

levels of detail and design the set of building blocks that will self-assemble them.

The argument consists of three sections. First, I focus on the philosophical ques-

tions laid out in Chapter III, lay out the general statistical mechanics framework,

and show how the theoretical quantities relate to measurable self-assembly “yield”.

Second, I address the practical questions and show how to compute the partition

functions and yields for two topologies of self-assembled structures: linear chains

and looped rings. Third, I show which features of the design space govern the out-

come of self-assembly and discuss how cross-talk and entropy limit the precision of

self-assembly. In conclusion, I discuss the generalization of the framework of the

chapter to wider classes of branching and looped structures.

7.2 Statistical mechanics of self-assembly

This section sets up the statistical mechanics framework in application to fully

classical self-assembling particles. I start with the characterization of design space

via binding energies, concentrations, and bending rigidity. Then I introduce the

statistical weights of clusters Qs and show how they can be summed into two

different, but related types of partition functions. I show how our theoretical

control parameter of chemical potential relates to the experimentally measurable

control of building block concentrations. Lastly, I discuss the two effects of polymer

chain bending entropy: one distributed along the polymer length, and the other

penalizing loop formation.
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Figure 7.2: The design space of the self-assembly problem. (a) Each particle type i is present at a
specific concentration ci. The key site of particle i binds to the lock side of particle j with
energy Ei

j . The bending rigidity of the bond is given by the function H(θ), independent
of particle types. (b) Example of a binding energy matrix E, with rows corresponding
to keys and columns corresponding to locks. The on-target binding energies are very
negative (dark blue), while the off-target binding energies are only slightly negative
(light blue).

7.2.1 Self-assembly design space

In this chapter we consider a set of N building blocks, jointly designed (see

Fig. 7.2a). Each building block has two binding sites on the opposite sides. The

binding sites are of two types: “lock” and “key”, and binding is only possible between

the lock of one particle and the key of another, that is, lock-lock and key-key inter-

actions are negligible. Lock and key interactions have been experimentally realized

with several substrate systems,[205, 206, 207] but for the present investigation we

abstract out the specific realization.

Regardless of realization, the central description of the interaction is the binding

energy. We denote the binding energy between the key side of particle i and the

lock side of particle j as Ei
j. As the indices i, j span the range [1, N ], the entries

form a matrix E (see Fig. 7.2b). Since all particles exhibit attractive interactions,
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all entries of this matrix are negative. In the process of designing the matrix E,

we designate certain (i, j) pairs as on-target, and all other ones as off-target. In

order for the particles to preferentially bind on-target, the corresponding binding

energies need to be stronger (more negative):

(7.1) |Eon-target| � |Eoff-target|.

Ideally, the off-target binding energy should be zero or even positive (repulsive).

However, it is still negative for off-target interactions in all existing substrates.

Because of this limit in contrast between on- and off-target interactions, we typically

cannot control all of the entries of the matrix E independently. How much does

this limited control over the binding energies allow us to control the self-assembled

structures is an open question.

The target structure includes the building blocks in a specific proportion, known

as the stoichiometric ratio. However, the concentrations of the building blocks in

the system ci don’t need to follow the stoichiometric ratio. Non-stoichiometric,

carefully optimized concentrations have been shown to inhibit the assembly of

incorrect structures and thus boost the yield of the correct ones.[91] Since for each

target structure the optimal ratio is different and we want to explore the space of

possible target structures, we treat the concentrations ci as a free parameter in the

design space.

The last important part of the design space is bond entropy. The length and

angle of the bond is subject to thermal fluctuations since the bonds between classi-

cal particles cannot be frozen out.[63] We divide these fluctuations into two parts:

longitudinal and transverse. The longitudinal fluctuations correspond to the vi-

brations of bond length around the potential energy minimum. These fluctuations

can be integrated out and provide a small entropic contribution to the bond (free)
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energy. For simplicity, we absorb this contribution into the bond energies Ei
j. On

the other side, the transverse fluctuations correspond to the fluctuations of the

bond angle, or bending of the chain of monomers. We assume that the bending has

finite rigidity given by the angle-dependent potential H(θ), the rigidity of which

we denote with P .

The design space of the heterogeneous self-assembly problem thus consists of

the binding energies E, concentrations ci, and bending rigidity P . The binding

energies and bond rigidity are limited by the particle synthesis techniques on a

specific substrate, but once the particles are synthesized, the concentrations can

varied freely. As we show below, the concentrations are not the most convenient

variable to use for theoretical calculations, but the ultimate yield results need to

be expressed via concentration to be interpretable.

7.2.2 Partition functions

In order to make predictions of self-assembly of the building blocks into vari-

ous clusters, we are going to use statistical mechanics. Statistical mechanics is a

theory that uses the energy and entropy of different system configurations to make

statements about their relative probability. This notion of relative probability will

come to be important to interpret seemingly divergent or mathematically nonsensi-

cal expressions, and to connect them to the experimental observables or the design

space parameters.

Macroscopic parameters that specify a statistical mechanical system typically

form thermodynamic conjugate pairs, i.e. only one parameter from a pair can be

used as an independent variable for theoretical description. The conjugate pair

important here is that of chemical potentials ~µ and building block concentrations

~
c. Mathematically, we use the vector arrow above ~µ to indicate that it is a column
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vector, and the vector arrow below
~
c to indicate that it is a row vector. Physically,

a description in terms of concentrations forms a canonical ensemble, while descrip-

tion in terms of chemical potentials forms a grand canonical ensemble. In the limit

of large system size, as considered here, the two ensembles are equivalent, but con-

verting between them is cumbersome. Typically self-assembly experiments directly

control the concentrations, but chemical potentials make theoretical calculations

easier and we shall use them in the present Chapter.

By choosing the chemical potentials to be the independent variable, we are

creating a system description in terms of a grand canonical ensemble. In the grand

canonical ensemble, we don’t need to track the distribution of a finite number of

building blocks between different clusters. Instead, within each cluster, we “create”

building blocks by paying their chemical potential price ~µ. Since the total number of

building blocks in the system is not fixed, it needs to be evaluated as an observable

as discussed later.

The building blocks form distinguishable self-assembled clusters. In principle

the clusters can get arbitrarily large, so there is infinite number of cluster types,

but since the types are discrete we can enumerate them with an index s. We assume

that two clusters of types s and s′ can be distinguished from each other if and only if

s 6= s′. Each cluster is characterized by the integer number of particles of each type

in it
~
ns, the energy of all the bonds Es, and the internal entropy Ss. The internal

entropy includes rotations and vibrations, but not the translations in the assembly

volume which we will take care of separately. Together these characterizations of

the cluster form it statistical weight:

(7.2) Qs = exp(β (
~
ns · ~µ− Es) + Ss),

where (·) denotes a dot product between a row vector of particle numbers and a
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column vector of chemical potentials. The expression (7.2) is very similar to the

colloidal partition function discussed and interpreted in Ref. [68] for the canonical

ensemble case. In order to get from the individual statistical weights, we need to

sum over all possible system states. The standard statistical mechanics textbooks

are often vague on how exactly this sum is performed (Kardar [102], Sethna [62],

Huang [139, 140], Landau [109]). We show below two variants of this summa-

tion and demonstrate that they are closely related to each other but have slightly

different interpretations.

The first form of summation is what we call a cluster partition function, and is

a direct sum of statistical weights of all unique clusters, without taking their copy

numbers into account:

(7.3) Zcl =
∑
s

Qs.

Note that the cluster partition function is somehow ignorant of the box in which

the clusters can move. Accounting for the volume of the box is the same thing as

accounting for the translational entropy of the cluster. Taking into account the

volume of the box adds a factor of V , while integrating out the kinetic energy of

motion of the whole cluster adds a factor of thermal wavelength λ−3
th . Note that

the thermal wavelength only appears once, regardless of the number of particles

in the cluster, since all other factors of thermal wavelength are absorbed in the

calculation of vibrational entropy.[63]. We denote the factor of thermal wavelength

as the reference concentration c0 ≡ λ−3
th .[91] The reference concentration is very

high and typically unattainable, but serves as a convenient measurement unit.

Apart from the translational entropy, we need to account for the copy number

ms of each type of cluster: while clusters of the same type s are indistinguishable

from each other, they can be counted. Each cluster type appears between zero and
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infinity times within the box, regulated by the corresponding statistical weight.

Performing the sum over all cluster types and their copy numbers, we get the box

partition function:

(7.4) Zbox =
∑
{ms}

∏
s

1

ms!

(
V Qs

λ3
th

)ms

=
∏
s

exp(c0V Qs) = exp(c0V Zcl).

The box partition function turns out to be directly related to the cluster partition

function. The box partition function is more similar to the textbook definition, but

the textbooks typically don’t include different types of “super-particles” in the sum.

Since in the box partition function the clusters of different types do not interact

with each other, they are treated as independent and coexistent ideal gases of

“super-particles”, or clusters. The statistical weight of each cluster plays the role

of fugacity of the corresponding “super-particle”. In order to find the relationship

between this effective fugacity and the cluster concentration, we can perform the

usual derivative:

(7.5) cs =
1

V

∂ lnZbox

∂ lnQs

= c0Qs.

The reference concentration c0 is the same for all cluster types, therefore the

statistical weight Qs of every cluster is directly related to the number concentration

of the corresponding clusters. A special case of a cluster type s is a free monomer:

a cluster i which consists of only one particle of type i and no bonds so that Ei = 0

and Si = 0. The statistical weight of such a cluster is then Qi = eβµ
i ≡ zi, known

as fugacity. The concentration of such free monomers is then:

(7.6) cfree
i = c0zi = c0e

βµi

.

Note that the concentration of free monomers can be substantially different from

the total concentration of all monomers, free and bound. We discuss this distinc-

tion below. The relationship (7.6) can be interpreted as a simple nonlinear unit
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conversion between the chemical potential and the free monomer concentration. It

is agnostic of what else is happening in the system and is thus not an equation of

state as might be implied by some theories.[91]

The simplest example of how the chemical potential could be misleading is the

generic divergence of the partition function (7.3). The sum over cluster types s

typically has an infinite number of terms with ever increasing particle counts
~
ns.

Frequently this infinite sum will be convergent and give sensible results. However,

since the chemical potentials ~µ are free parameters in our theory, we can always

make them arbitrarily high, thus making the later terms in the sum grow and the

whole sum diverge. At the same time, the conversion 7.6 from chemical potential

µi to free monomer concentration cfree
i is smooth and analytic, thus it will never

diverge.

While the existence of such a divergence is generic for all partition functions with

an infinite number of terms, the exact value of µi∗ at which it happens, and the

behavior of the partition function close to that divergence are model-specific. We

analyze those specific behaviors and their physical implications in several models

below. However, before we discuss the specifics, we need to make sense of this

seemingly unphysical divergence by discussing how it relates to the experimentally

controllable and observable quantities.

7.2.3 Experimental control and yields

The apparent unphysicality of the partition function divergence is resolved by

carefully considering the experimentally controllable variables. If we treat the

chemical potential ~µ, or equivalently, the free monomer density
~
cfree as a free pa-

rameter, we encounter that for certain values the partition function diverges. This

means that given the building block properties and interactions, there don’t exist
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any equilibrium configurations of the system with that many free monomers. We

can certainly prepare a system configuration with an arbitrarily high concentra-

tion of free monomers (for example the moment when the building blocks are just

placed into the box), but that configuration will be far from equilibrium. As it

equilibrates, many monomers will bind up into various structures and become not

free anymore.

The quantity conserved throughout the equilibration process is the total monomer

concentration of each type
~
ctotal, since an experimentalist can put an arbitrary pro-

portion of monomers into the box. In order to compute the total concentration, we

need to add up the numbers of monomers bound up in each type of cluster. A clus-

ter type s has the number
~
ns of each monomer type, and thus contributes c0Qs

~
ns

to the total particle concentrations. The number of particles can be pulled out of

the exponential in Qs by taking a derivative with respect to ~µ (remember that a

derivative of a scalar with respect to a column vector is a row vector). Fortunately,

the partition function sum has already been performed, so the total concentration

is found by a straightforward derivative:

(7.7)
~
ctotal = c0

1

β

∂Zcl

∂~µ
.

The expression 7.7 is the equation of state for the self-assembling system, since

it relates two conjugate thermodynamic variables. If the total concentrations
~
ctotal

are known, the chemical potentials ~µ can be found. The two vectors have the same

dimension N , so the expression (7.7) is a map RN → RN , or a system of N coupled

equations. Since the particles of different types can interact with each other (that

is the whole point of heterogeneous self-assembly), the equations are not separable

and need to be solved jointly.

The partition function Zcl diverges as ~µ approaches a critical surface in RN . The
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derivative of the partition function then diverges even faster. This fast divergence

ensures that any arbitrarily high values of total concentration are reached close

to the critical ~µ. Conversely, if in experiment we control
~
ctotal and can make it

arbitrarily high, then we can approach the critical ~µ surface arbitrarily closely but

never cross it. If the crossing never happens and we always stay in the region

where the partition function is analytic, there will be no observable equilibrium

phase transition as the total concentrations are varied.

The divergence occurs because of the growth of the magnitude of terms with

large
~
ns. These terms correspond to large, complex structures of many monomers

– but those are precisely the structures we want to assemble! Therefore, in order to

observe high yields of the complex structures, we need to be in the near-divergent

regime of the parameter space, and understanding the nature of the divergence for

a given self-assembly model is incredibly important.

How can we then evaluate the yield of a particular structure? The simplest

metric is the relative yield, introduced in the Ref. [91]. We can either designate a

specific structure s as the target, or aggregate the weights of several structures, for

instance all that share the same topology, into a larger target. The relative yield

is then given by:

(7.8) Y rel
target =

Qtarget

Zcl

,

where Qtarget is either a specific Qs or sum of all Qs designated as the target.

Physically, the relative yield answers the question: given a randomly-picked cluster,

what is the probability that this cluster is of target type? Notably, the picking of

clusters is done without taking their size into account, thus equally comparing free

monomers with most complex structures.

Whether or not the relative yield is an appropriate metric depends on the design
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goals. If we interpret self-assembly as a manufacturing technique, we can evaluate

it by the amount of target structures it successfully produces, or by the conversion

of raw monomers into the target structure. We can compute such metrics by

combining the notions of total concentration and the relative yield. We define the

absolute yield as the concentration of monomers bound up in the target structure:

(7.9)
~
Y abs
target =

c0
β

∂Qtarget

∂~µ
.

Similarly, we define the conversion ratio as the percentage of all monomers that

are bound into the target structure:

(7.10)
~
Rtarget =

~
Y abs
target/

~
ctotal =

(
∂Qtarget

∂~µ

)
/

(
∂Zcl

∂~µ

)
,

where the division of vectors is carried out elementwise.

We still need to relate these yield metrics to the experimentally controlled pa-

rameters, i.e. the total concentrations
~
ctotal. However, solving the equations that

relate
~
ctotal to ~µ is in general hard and becomes even harder and more numerically

unstable close to a divergence point, so it is an undesirable strategy. Instead, we

will treat the chemical potential ~µ as an implicit parameter and plot parametric

yield curves. It is important to determine the exact point of divergence as precisely

as possible and have a fine grid of ~µ close to it since small variations in the chemi-

cal potentials there correspond to great changes of the concentrations. As well, to

avoid sampling high-dimensional spaces, we can consider the situations where all

of the chemical potentials are the same, or follow a simple pattern parameterized

with a single number.



203

7.2.4 Polymer entropy and loop penalty

Apart from binding energies and chemical potentials, the statistical weights of

different clusters depend on their entropy. Entropy is a shorthand for the number

of microstates that are identified as the same cluster. While we can tell apart

two clusters based on the sequence of their monomers and the presence of specific

bonds, we choose to treat two clusters with slightly different bond angles to be

identical. However, the number of states that results from such bending depends

on the size of the structure and its topology.

All structures considered in this Chapter are one-dimensional sequences of monomers:

the key site of one is bound to the lock site of the next. The last monomer in the

sequence may or may not be bound to the first one, thus the whole structure looks

either like a linear chain, or a ring. Here we discuss the entropy of this chain or

ring, while the next section is devoted to accounting for the sequence-dependent

energy and chemical potential. To account for the bending entropy, we adopt the

worm-like chain model [208] described by the following Hamiltonian:

(7.11) H = −P
n−1∑
k=1

t̂k · t̂k+1 = −P
n−1∑
k=1

cos(θk),

where P is the bending rigidity, n is the length of the chain, t̂k is the unit vec-

tor in the direction of each monomer, and θk is the angle between two subsequent

monomers. The Hamiltonian is minimized when each monomer has the same di-

rection as the previous one, and deviations from this minimum are penalized more

for larger P . The wormlike chain model is equivalent to the Heisenberg model of

ferromagnetism where the unit vectors are mapped to spins. For a one-dimensional

chain with open boundary conditions each of the angles θk can be treated as an

independent integration variable, thus finding the partition function is straightfor-
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ward:

(7.12) Z(n)
wl chain =

∫ (n−1∏
k=1

dΩk

)
e−βH =

(
4π

sinh(βP )

βP

)n−1

= eSb·(n−1),

where dΩk is integration over a solid angle and Sb is the bending entropy of each of

the n− 1 bonds. From the partition function we can easily extract the correlation

in direction of the two adjacent monomer directions:

〈cos(θ)〉2 =− 1

β

∂ lnZ(2)
wl

∂P
=

[
coth(βP )− 1

βP

]
≡ c(βP )(7.13)

〈cos(θ)〉n =cn−1 = e−(n−1)/ξ,(7.14)

where ξ = −1/ ln c is the persistence length of the chain, measured in monomers.

Note that c is an analytic function of bending rigidity as the singular parts of

the two terms exactly cancel out. The large-scale statistics of the polymer chain

with finite bending rigidity are those of a persistent random walk. A persistent

walk of n steps of length a is statistically similar to a independent random walk of

n′ = n/ξ steps of length a′ = aξ. Specifically, the probability distribution for the

displacement between the start and the end of the random walk is approximately

Gaussian:[208]

(7.15) p(~r) =
1

(2πn′a′2)3/2
exp
(
− 3~r2

2n′a′2

)
.

A loop is a random walk on n steps that ends approximately in the same place

where it starts (so ~r = 0), up to the size of a monomer (a volume of a3). Note

that a ring of n monomers has n bonds as opposed to n− 1 in an open chain. The

partition function of the ring is then:

(7.16) Zwl ring ≈ eSbna3p(~r = 0) =
eSbn

(2πξn)3/2
.

Compared to the linear chains, the loop partition function has an additional

power law decay factor with exponent −3/2. The decay is driven by the fact that
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it gets harder and harder for a long random walk to encounter its own beginning.

For this reason, long loops are always entropically suppressed compared to long

chains. However, loops have one more bond that can be energetically favorable.

We will see that this entropy-energy tradeoff is one of the main design limitations

of the self-assembly system.

Note that the expression (7.16) only holds for loops long enough to be able to

bend on themselves, that is n > ξ. For very short loops, the bending energy will

be prohibitive for the loop to form at all. The simplest way to deal with such short

loops is to manually exclude them from the computation of the full self-assembly

partition function, as we will do in the next section.

One way to reduce the entropy penalty is to use building blocks with binding

sites that are not strictly at the opposite sides of the block, but at a finite angle. The

lowest bending energy configuration will then correspond to a bond bend by that

specific angle, thus directly building curvature into the assembling structure and

favoring rings over chains. However, we will not consider this case in the following

calculation in order to highlight other, more fundamental design tradeoffs.

7.3 Chain sequence combinatorics

This section details the computation of the cluster partition function (7.3) for

our specific model system. We first introduce the hierarchical sum of the partition

function over the topologies, lengths, and sequences. We then define the transfer

matrix as the central element of the combinatorial calculation. We derive closed-

form partition functions for linear chains and rings and indicate their convergence

criteria. We show how the convergence and other properties of the partition func-

tion relate to the spectral properties of the transfer matrix. As we approach the
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divergence point, the chain and ring partition functions diverge at different rates,

thus informing the entropic trade-off between them. We conclude the section with

deriving the total concentrations and absolute yields of building blocks in closed

form.

7.3.1 Hierarchical structures

In order to start computing the partition functions, we need to look back at the

hierarchical taxonomy of structures that can be assembled (Fig. 7.1). The structure

index s so far did not refer to this hierarchy and was treated as one-dimensional.

Without invalidating any of the summations in s, we can use it to refer to the

topology, the length, and the specific sequence of the structure. In this case we can

write the cluster partition function as a triple sum:

(7.17) Zcl =
∑

topology

∑
length

∑
sequence

Qs.

The outermost sum is over the possible topologies. As we stated before, the

monomers with two binding sites can only assemble two different topologies: chains

and rings. For these topologies, we will write down two different expressions and

add them up. The sum in length is relatively straightforward since the structures

are one-dimensional, so the possible lengths are enumerated by a single set of natu-

ral numbers with some starting point. The sum in possible sequences is more tricky.

However, since the energies of bonds and chemical potentials of the monomers are

additive, the corresponding statistical weights are multiplicative and can be ex-

pressed via matrix products by following the approach of Ref. [91]. The following

sections derive the partition function expressions from the bottom up and develop

the tools for their analysis.
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7.3.2 The transfer matrix

The central mathematical object of our theory is the transfer matrix T that can

be defined elementwise as following:

(7.18) T i
j = exp

(
β(−Ei

j + µj) + Sb

)
.

The transfer matrix corresponds to adding one more element to the chain. The

first index i accounts for the possible key binding sites exposed by the preceding

part of the chain. The second index j accounts for the possible monomers and

their corresponding locks that the key can bind with. Note that in constructing

this matrix we explicitly broke the symmetry by the convention of adding the new

monomer on the right (in the index j). We could place the chemical potential

either on the left or on the right, so long as in a long chain chemical potentials

alternate with binding energies, with special care of what happens at the ends of

the chain. The bending entropy depends on the bending rigidity of the chain, but

not on the identities of the monomers and is thus a constant multiplicative factor

in the transfer matrix.

This definition of the transfer matrix closely follows the version used in solv-

ing spin lattice models,[107] with suitable modifications to account for the grand

canonical ensemble. It is also very similar to the coupling tensors in Chapter VI

and Ref. [80]. While the coupling tensors only accounted for two-point interactions,

here we also absorb the one-point interaction (chemical potential) into the same

object.

7.3.3 Partition functions

A linear chain consists of three components: the initial monomer driven only

by the chemical potential, some number of subsequent monomers described by
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the transfer matrix, and the interaction of the last monomer with the solvent. The

selection of the initial monomer is given by the vector of fugacities
~
z : zi ≡ eβµ

i. The

number of intervening monomers varies between zero and infinity and is accounted

by the sum in length. The terminus is taken as ~1, a vector of all 1’s since we assume

that monomers don’t have any specific interactions with the solvent. In this case,

the partition function of all possible chains is given by:

(7.19) Zchain =
∞∑
n=0~

zTn~1.

Note that for each term n, the chain has n bonds that contribute energy and

entropy and n+ 1 monomers that contribute the chemical potential. The contrac-

tion of the transfer matrix with the fugacities on the left and the terminus on the

right can be taken outside of the summation due to linearity. The internal sum is

then a simple geometric series in the matrix T that we will call the propagator D:

(7.20) D ≡
∞∑
n=0

Tn = (I−T)−1 ,

where I is an N×N identity matrix. The geometric series does not always converge,

and consequently the inverse does not always exist. This will have important phys-

ical implications below. For now, we can write down the chain partition function

in a much more concise form:

(7.21) Zchain =
~
zD~1.

By analogy with the chain, we can derive the ring partition function. The key

difference between the chain and the ring is that there is no initial monomer and

no terminus. Instead, the last monomer in the chain is bound to the first one. In

order to account for this, we take the trace of the appropriate power of the transfer

matrix. While the bending entropy of the bonds is already accounted for in the
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transfer matrix, the ring entropy penalty needs to be added manually. We also

manually exclude the very short loops since they need excessively high bending.

The resulting ring partition function is:

(7.22)

Zring =
∞∑

n=nmin

1

(2πξn)3/2
Tr(Tn) =

1

(2πξ)3/2

(
Tr
(
Li3/2(T)

)
−

nmin−1∑
n=1

Tr(Tn)

n3/2

)
,

where Liq is the polylogarithm function of order q (here we use q = 3/2).[209]

The polylogarithm is usually defined for a scalar argument, but we will discuss

a suitable generalization to matrix arguments below. Since the polylogarithm is

defined via a sum starting from n = 1, we need to manually subtract a finite number

of terms of the sum. The polylogarithm remains the leading term that will govern

the divergence properties of the ring partition function, described below.

The total partition function of all possible structures in this system is the sum

over the two possible topologies:

(7.23) Zcl = Zchain + Zring.

This cluster partition function is the basis for computing the total monomer

density and absolute yields of target structures. However, to predict those quanti-

ties it is crucially important to understand the properties of the divergence of both

the geometric series and the polylogarithm. Those divergences, in turn, are directly

related to the spectral properties of the transfer matrix, as discussed below.

7.3.4 Spectral analysis

Both the propagator and the polylogarithm are defined as sums of series in

powers of the transfer matrix. In order to clarify the conditions of convergence of

this series, we can analyze it in terms of the spectrum of the transfer matrix. The
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eigendecomposition of the transfer matrix can be computed as following:

(7.24) T = PΛP−1,

where P is a transformation matrix of eigenvectors and Λ is a diagonal matrix

of eigenvalues.2 The eigenvectors and eigenvalues together form the spectrum of

the matrix, which for small matrices can be easily computed numerically once

and looked up after that. The properties of T impose some constraints on its

spectrum. If none of the binding energies are positive-infinite, the matrix consists

of positive elements only, which by Perron-Frobenius theorem guarantees that the

top eigenvalue λ0 is real, positive, and an all-positive eigenvector can be found for

it. However, since the transfer matrix T depends on the binding energy matrix E,

which is not symmetric, there is no guarantee that the rest of the spectrum is real,

only that it lies within a complex circle of radius λ0.

In terms of the spectrum, the propagator and the polylogarithm can be com-

puted as following:

D =P (I−Λ)−1P−1(7.25)

Li(T) =PLi(Λ)P−1,(7.26)

where the inverse and the polylogarithm of the diagonal matrix can be com-

puted elementwise. The convergence of both of them is then dependent on the top

eigenvalue. Importantly, the convergence condition λ0 < 1 is the same for both

functions. Since λ0 depends on the components of the transfer matrix, then as

these components vary, both the chain and the ring partition functions will diverge

at exactly the same point, though at different rates which we analyze below.
2Usually the matrix P will be unitary, since the eigenvectors are typically orthogonal to each other for most matrices

that occur in physics. However, in the present case we are dealing with a non-symmetric matrix T. While the spectrum can
be found even for a non-symmetric matrix, the orthogonality of eigenvectors is not guaranteed. Because of that, the inverse
of the transform matrix does not necessarily coincide with the conjugate transpose P−1 6= P∗.
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While the top eigenvalue is sufficient to determine whether or not the sum over

all statistical weights diverges, the structure of that sum also depends on all other

eigenvalues. A simple way to see that is to examine the sequence of weights of the

rings of valuable size. The weights are proportional to the traces of powers of the

transfer matrix, which in turn are related to sums over eigenvalues:

(7.27) Qn ∝ Tr(Tn) =
N−1∑
k=0

λn
k ,

where N is the number of monomers, equal to the dimension of the matrix T

and thus the number of eigenvalues. Even though the eigenvalues themselves can

be complex, the sum over them is always real, resulting in a real Qn. However,

for certain values of ring length n all of the eigenvalues can add up in phase and

give a boost to the statistical weight. Such a boost will be an evidence of the

successful programming of a target structure into the energy matrix, as shown in

Supplementary Results section below. A similar spectral analysis can be carried

out for the assembly of linear chains.

In this way, the spectrum of the transfer matrix serves simultaneously two pur-

poses: while the lead eigenvalue governs the overall divergence of the partition

function, all other eigenvalues determine whether specific target structures are ro-

bustly formed close to that divergence. Therefore, the spectrum is a collective

metric that quantifies the properties of a given set of building blocks. In order to

design an optimal set of building blocks for self-assembly, we can state the desired

spectral properties of the transfer matrix and then attempt to pick the blocks that

can realize those properties.
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7.3.5 Divergence analysis

The divergence properties of the partition function contain important knowledge

about the design limitations. In order to elucidate these limitations, we need to

look at the asymptotic behavior of the partition functions. Generically, as we

approach the divergence in the space of chemical potentials, the lead eigenvalue of

the transfer matrix will have the following form:

(7.28) λ0 ' exp(µ− µ∗),

where the divergence point µ∗ depends in a complicated way on the properties

of the binding energies. However, the divergence point is the same for the linear

chains and the rings, thus we can compare the asymptotic forms of the two partition

functions. For the chain partition function, the asymptotic form is quite simple:

(7.29) Zchain =
~
z(I−T)−1~1 ∝ A(1− λ0)

−1 ∝ A (µ∗ − µ)−1 ,

where A is a non-singular positive constant.

For the ring partition function, the analysis is slightly more complicated and has

to do with the properties of the polylogarithm function. As the argument x ≡ ew

of the polylogarithm Liq(x) approaches x = 1, the singular term can be separated

from the analytic term:[209]

(7.30) Liq(ew) = Γ(1− q)(−w)q−1 +O
(
w0
)
,

where O(w0) is a series in non-negative powers of w that does not affect the singu-

larity. In our case q = 3/2, so the singular part is (−w)1/2. Note that the Gamma

function Γ(−1/2) is negative, so that the singular part of the ring partition function

is negative. We can therefore write it down as following:

(7.31) Zring ∝ −B(µ∗ − µ)1/2 + C,
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where B,C are non-singular positive constants. Note that as µ → µ∗, the partition

function itself does not approach infinite value, even though it is not defined for

µ > µ∗.

However, the interesting part of the divergence is the behavior of total concen-

trations, i.e. the derivative of the cluster partition function Zcl = Zchain + Zring.

The derivative shifts the divergence exponents by 1, giving us:

(7.32) ctotal ∝ ∂Zcl

∂µ
= A(µ∗ − µ)−2︸ ︷︷ ︸

chain

+B(µ∗ − µ)−1/2︸ ︷︷ ︸
ring

.

Each of the two divergent terms corresponds to the number of building blocks

bound up in either chains or rings. We are interested in which of these terms if

larger. At any finite density, (µ∗ − µ) > 0, and the relative balance of the two

terms depends on the values of A,B, which in turn depend on all of the design

space variables in a complicated way. Figuring out this complicated dependence

is the goal of design. A system well designed for assembly of chains will have

the term with A dominate, whereas a system well designed for assembly of rings

will have the term with B dominate. However, the terms still diverge at different

rates. Regardless of our design efforts, for very high concentrations ctotal we will

get arbitrarily close to µ∗ and the assembly of chains will always dominate.

It is important to note that these very high concentrations ctotal are not always

possible, since the building blocks will either reach close-packing density, or differ-

ent clusters will be so close to each other that ignoring their interactions will be

impossible. In either case, the cluster-based theory is likely to break down in that

limit.

There is two more qualitative features that can be extracted from the analysis of

this divergence. First, close to the divergence point Eqn. (7.32) becomes a simplified
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form of an equation of state that connects chemical potential to the concentration.

For example, for a system dominated by chains, we can easily solve for the chemical

potential in terms of the experimentally controllable concentration:

(7.33) µ ' µ∗ −
(
ctotal

A

)−1/2

.

This approximate value of chemical potential can then be plugged into any

other µ-dependent expressions in the grand canonical theory. For example, the

lead eigenvalue of the transfer matrix is then λ0 ' 1− (ctotal/A)−1/2, asymptotically

approaching 1 as expected.

The second qualitative feature is the asymptotic behavior of the conversion ratio

at large concentrations. The partition function diverges because it is a sum over

an infinite number of statistical weights Qs. Each statistical weight is an analytical

function of chemical potential µ, thus it does not diverge at µ∗. Similarly, if the

target structure aggregates a finite number of structures s, its statistical weight

does not diverge either. Therefore, the asymptotic behavior of the conversion ratio

is governed exclusively by the divergence of the total concentration:

(7.34) Rtarget =
1

βctotal
∂Qtarget

∂µ
∝ 1

ctotal .

In other words, optimal conversion of raw monomers into target structures will

always be achieved at finite building block concentration. Arbitrarily large building

block concentrations favor formation of larger and larger structures, thus they will

always suppress the formation of any finite target structure.

7.3.6 Computing yields

In order to complete the theory, we need to predict the absolute yields and total

concentrations of structures of interest. Above we showed the general formula for
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total concentration in vector derivative format. In order to perform that derivative

analytically, it will be more convenient to rewrite the expression in index notation:

(7.35) ctotal
l = c0

1

β

∂Zcl

∂µl
,

where we highlight that a derivative of a scalar (Zcl) with respect to a column vector

(µl) is a row vector (ctotal
l ). Similarly, the vector derivative of any higher-rank object

adds an extra index to the result. For an example, an important building block of

our theory is the transfer matrix, the derivative of which is:

(7.36) 1

β

∂T i
j

∂µl
= T i

jδjl,

where there is no summation in repeated index j. Since each index might be

repeated more than twice and not always summed over, throughout this section

we do not assume the Einstein convention and instead write the summations out

explicitly.

Through the definition of the propagator Di
j we can also get the derivative of

the propagator:

(7.37) 1

β

∂Dm
k

∂µl
=
∑
i,j

Dm
i T

i
jδjlD

j
k =

(∑
i

Dm
i T

i
l

)
Dl

k.

The propagator derivative allows us to write down the derivative of the chain

partition function:

cchainl =
c0
β

∂Zchain

∂µl
=

c0
β

∂

∂µl

(∑
i,j

ziD
i
j1

j

)
(7.38)

=
c0
β

[(∑
j

zlD
l
j1

j

)
+

(∑
i,j

ziD
i
jT

j
l

)(∑
j

Dl
j1

j

)]
.(7.39)

While the expression above appears cumbersome, it amounts to several lookups

and multiplications of matrices T,D that are already known. In a similar way,
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the main component of the ring partition function is the trace of a power of the

transfer matrix Tr(Tn). Its derivative can be shown to be:

(7.40) 1

β

∂

∂µl
Tr(Tn) = n(Tn)ll,

so that the derivative is read off the diagonal of a matrix power (a trace will

have summed up that diagonal). This expression, up to a prefactor, gives the

concentration of building blocks bound up in rings of a specific size n. By summing

such expressions, we can express the total concentration of building blocks bound

up in rings of all sizes:

(7.41) cringl =
c0
β

∂Zring

∂µl
=

c0
β(2πξ)3/2

[(
Li1/2(T)

)l
l
−

nmin−1∑
n=1

n−1/2(Tn)ll

]
.

Note that the order of the polylogarithm and the power of n in the second sum

both shifted by 1. The polylogarithm of any order diverges at the same value of

the argument, and thus the polylogarithm of a matrix can be evaluated via the

same spectral method.

It is important to note that the equations (7.39) and (7.41) are valid for any

transfer matrix regardless of the symmetries or design decisions built in. We are

still at liberty of assigning the binding energies Ei
j, the chemical potentials µl, and

the bending rigidity P . The total concentration and related yield expressions then

directly connect the points in design space (encoded in T) with the self-assembly

outcomes (encoded in cchainl and cringl ). Having obtained these fully analytic ex-

pressions, we can explore them numerically and give practical recommendations

for design of particular structures.

7.4 Design for topology

There are three qualitative outcomes possible in the system we are considering

here: target rings, target finite chains, or unstructured chains. The goals of self-
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assembly design are to pick the appropriate points in the design space that will

drive the system into the regime that is desired.

In order to reliably assemble rings, the binding energy matrix needs to be circu-

lar, i.e. each building block should bind on-target to the next one, and the last one

should bind to the first one. In order for rings of target size N to be preferred over

other sizes, especially N ± 1, the contrast between the on- and off-target binding

energies needs to be sufficiently strong (see an analysis in Supplementary Results).

If the target ring size is large, there is an additional suppression from the loop

entropy which will require even higher contrast to ensure Zring � Zchain.

In order to reliably assemble finite chains of target size, the last building block

should only bind weakly to the first one to ensure that the chain reaches the desired

size and actually terminates. There are two effects that compete with this. On

one side, shorter chains are entropically preferable: while there is only one chain

of N elements with N − 1 on-target bonds, there are two chains of N − 1 elements

with N − 2 on-target bonds. To favor formation of complete chains, the on-target

binding has to be strong enough. On the other side, if another off-target building

block binds to the end of a chain of on-target bonds, it can effectively restart the

chain. For strong enough on-target bonds, it is possible to make a chain of 2N

blocks with 2N − 2 on-target bonds and only 1 off-target bond. The chief way

to avoid this is to make the off-target interaction as low as possible, perhaps even

repulsive, but that might be limited by the substrate.

The third outcome, unstructured chains, dominates whenever the first two fail.

If the binding energy contrast is too weak to provide sufficient specificity of binding

and overcome the entropy, all building blocks will behave as effectively homoge-

neous.[91] The assembly of homogeneous polymer chains is well-studied,[201] and
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results in an exponential distribution of chain length. The exponential distribution

is featureless in that it does not have any defined peaks at target length.

Overall, in order to assemble large complex structures, we need to encode specific

interactions with sufficiently high contrast, which will allow for a non-monotonic

sequence of statistical weights Qs. In the language of grand canonical ensemble,

we will have to tune the system close to the divergence point in order to see the

large structures. Detailed numerical investigation still needs to be undertaken to

formulate the quantitative boundaries and trade-offs between different regimes.

7.5 Discussion

In this section we tally up the progress in pursuit of statistical mechanics ques-

tions stated back in Chapter III and discuss how the proposed framework can be

extended to account for more complex structures.

7.5.1 Conceptual questions

This Chapter builds a version of self-assembly theory grounded entirely in fully

classical modeling choices by synthesizing several previous conceptual discussions.

In the following summary of results the conceptual questions of Chapter III are

referred to by their number in brackets.

The first modeling choice is about distinguishing individual building blocks and

clusters (1). Regardless of manufacturing details, we choose the building blocks

to be distinguished only if they are of different type, and similarly for assembled

clusters. In describing the particles, we do not refer to any quantum mechanical

factors explicitly (2). Implicitly, the statistical weights are dependent on the ther-

mal de Broglie wavelength λth, which in turn depends on the phase measure h.

Together, these factors determine the reference monomer concentration c0, but its
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exact value remains a modeling choice. This choice is directly connected to the

classical bond entropy, which we implicitly absorb into the bond (free) energy (3).

Treating the bonds in the sticky limit is our implicit choice of the integral, or

continuous part of the theory (4). Instead, in this Chapter we focus on accounting

for the combinatorics of discrete arrangements of building blocks into clusters. We

discuss in some detail the high-concentration behavior of this self-assembly theory,

even though real systems have a hard upper bound on building block density as

they reach close packing (5). We build up the theory initially in the grand canon-

ical formalism (via chemical potential) but connect it to the canonical formalism

(via total concentrations) to be more directly comparable to experiment and simu-

lation (6-7). In the process we discover the chemical potential to be essentially an

unmeasurable theoretical construct that nevertheless makes a lot of mathematics

tractable both analytically and numerically (8). We discover divergences in the

theory as chemical potential is smoothly varied, but these divergences cannot be

crossed as total concentration is varied in equilibrium. The divergence exponents,

however, govern the relative abundances of different structures.

Lastly, we discuss and compare several notions of self-assembly yield (9). We de-

fine the design space for heterogeneous self-assembly via the binding energy matrix,

bond bending rigidities, and building block concentrations, even though the latter

are only controlled indirectly via fugacities (10). The derived connection between

the design space and the outcome concentrations of self-assembled clusters is the

knowledge structure that will empower the self-assembly design process.

7.5.2 Implementation questions

For a specific family of building blocks we provide specific derivations and ana-

lytical predictions that address the second set of questions in Chapter III, focused
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on implementation.

We account for the vibrational and rotational entropies by using the worm-like

chain model from polymer science (1). We derive the partition functions for two

types of structures, linear chains and closed loops, via the transfer matrix method

and series summations (3). The convergence criteria of the partition function are

shown via the spectral properties of the transfer matrix. This makes the matrix

spectrum our desired collective metric to design whole sets of heterogeneous build-

ing blocks (2). The matrix spectrum also accounts for both the energetic and

entropic aspects of cross-talk and allows us to derive the bounds on the size of

structures that can be reliably assembled with a given substrate (6). For linear

structures, steric interactions of the building blocks are not a significant hindrance,

but we manually exclude from the sums the rings that are too short.

7.5.3 Generalizations and outlook

The conceptual and mathematical framework built in this Chapter can be further

generalized to account for more diverse structures. The simplest extension is to

allow for building blocks with more than two binding sites on them. If such a

building block bonds with an existing linear chain, it provides a way for this chain

to branch off in two or more directions, thus forming a tree-like structure. So long

as the linear segments of the tree are long compared to the size of the branching

points, such structures can largely avoid steric interaction issues.

Certain families of tree-like structures can be directly enumerated and summed

via special functions, much like we did with the polylogarithm function for the

rings here. For more general forms of tree-like networks, we can construct self-

consistent expressions similar to those used for study of random networks [210] and

hyperbranched polymers.[211] Similar methods can help us account for formation
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of local loops within the structures.[212, 213] Another avenue to control of self-

assembled structures is the usage of allosteric building blocks for which the different

binding sites are not independent.[214, 215]

7.6 Supplementary results

7.6.1 Quantifying the in-phase boost

The boost to the statistical weight of target structure can be detected numer-

ically by diagonalizing any given transfer matrix, but we can get a qualitative

insight by looking at an especially simple transfer matrix. To illustrate this boost,

consider a binding energy matrix that consists of two values: the on-target energy

v and the off-target binding energy ε such that v < ε < 0. Each monomer’s key

site binds on target with the next monomer’s lock site, with the last monomer’s

key binding to the first. In other words, the interaction energy is the following:

(7.42)


Ei

j = v, j = i+ 1

Ei
j = ε, j 6= i+ 1

,

where the equality of indices is taken modulo N . We also assume that all chemical

potentials are the same µi = µ and there is no bending entropy Sb = 0. Such a

matrix attempts to optimize the assembly of a ring. The same symmetry structure

propagates to the transfer matrix, which then can be analytically diagonalized with

a Fourier ansatz. The resulting eigenvalues take the following form:

λk =λei2π
k
N +∆δk,0(7.43)

λ =eβµ
(
e−βv − e−βε

)
(7.44)

∆ =eβµne−βε.(7.45)

To ensure convergence, we assume that λ+∆ < 1. The trace of a matrix power
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then takes the following form:

(7.46) Tr(Tn) ≈ (λ+∆)n + λnnδ(n,Nr),

where r is an integer counting how many times the full sequence has repeated. In

other words, the statistical weight gets a boost every N elements. Is this boost

significant? In other words, does it significantly affect the structures assembled?

This boost will be significant if the second term in the sum is much larger than the

first one for the weight of the target structure n = N :

NλN �(λ+∆)N(7.47)

lnN >N ln(1 + ∆/λ)(7.48)

lnN
N

>N
e−βε

e−βv
(7.49)

N2

lnN
<e−β(v−ε)(7.50)

Turns out, requiring a substantial boost of statistical weight sets up a limit

on the largest structure that can be reliably assembled given the binding energy

contrast (v− ε). The contrast is typically limited by the properties of the substrate

that realizes the specific interactions. The derived limit is remarkably similar to

the “logn limit” shown in Ref. [91].



CHAPTER VIII

Conclusions and Outlook

8.1 Design as Knowledge Generation

In order to recap the conclusions of the dissertation and evaluate our progress,

we need to first return to the statement of our goals. Back in Chapter I we de-

fined design as “the act of generating knowledge for decision-making through time”.

With this definition, the implied goal of a study of design is to figure out how to

systematically generate and store knowledge and build upon the existing knowl-

edge. Important advances on these knowledge structures were made by the previous

network-based studies,[7, 38] but they focused on documenting a single realization

of the design process. In contrast to those works, this dissertation is interested in

the space of available design solutions and the collective physical phenomena in

that design space. How did we fare in pursuing this interest?

In Chapter II I formulated the Systems Physics approach to wicked problems as

a three-stage loop Model–Compute–Learn. Each of these stages involves making

qualitative choices. In order to model the original wicked problem as a tame prob-

lem, we need to define the solution space and parameterize the design objectives

and pressures. On this tame problem, we can perform a variety of calculations

using statistical mechanics as a toolbox. The results of those calculations become

223
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pieces of knowledge about what and why questions that we can communicate back

to the wicked problem and refine our analysis on the next run of the loop. To

conclude the dissertation, I am going to address all stages of the loop but out of

order.

First, I highlight the last stage of the loop – Learn – since it serves as the

punchline for the kinds of knowledge attainable via statistical mechanics and not

otherwise. The statistical mechanics analysis of the models in Chapters IV–VII

shows that the design problems can show new physical phenomena or uncommon

variations of known phenomena. Second, I discuss the innovations of the Compute

stage in form of analytical and numerical tools. Third, I reflect on the Model stage

and discuss how exactly we make qualitative choices that turn the wicked problem

into a tame one.

Lastly, there are plenty of design questions opened up by this dissertation. Some

of these questions I have already formulated in statistical mechanics terms, for some

I have preliminary results that are too raw to be included here in full, but many

of these questions are of great interest to the design community. Thus, I end the

dissertation with an outlook of where we can go further.

8.2 Learn: New Phenomena Discovered

The results from model computations in Chapters IV–VII don’t only provide

knowledge about those specific problems, but show off new physical phenomena

that could be observed in other systems too.

The first phenomenon we discovered in Chapter IV is the trade-off between

minimization of routing cost and maximization of routing flexibility that was not

known before. The variation of the cost design pressure results in a phase transi-
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tion smoothed out by the finite system size. Understanding this phase transition

in Chapter IV allows me to explore qualitatively different behavioral regimes in

Chapters V–VI via a simple parameter sweep. While the derivation of the criti-

cal cost tolerance depended on the assumptions of only the shortest paths and a

square lattice in 2D space, I expect this phase transition to be inevitably present

in systems where the number of possible routings grows with distance fast enough.

The trade-off between routing cost and flexibility drives the different robustness

behaviors examined in Chapter V. We describe this robustness in the familiar and

interpretable language of stress–strain curves, but find their shape to be highly

unusual. The curves show at the same time three features characteristic of uncon-

ventional materials: residual stress, negative Young’s modulus and tension soft-

ening. This observation posits that maybe the conventional robustness behavior

of integrated systems is generically similar to unconventional mechanical material

robustness.

A host of other unconventional behaviors results from the tight coupling of

Logical and Physical Architectures studied in Chapter VI. Usually one of those

Architectures dominates others, but we show that their tight interplay manifests

as complex patterns of avoidance, adjacency, and association. These three patterns

are highly reminiscent of physical phenomena in condensed matter systems, such

as symmetry breaking, propagation of correlations, and emergent localization.

The intuitions about the interplay of different kinds of degrees of freedom allow

us to pursue design of sets of building blocks for self-assembly. In Chapter VII we

showed that the set of scalar binding energies can be sufficient to encode the target

topology of the assembled structures – a goal previously identified as desirable but

not achieved directly. The maximal size of structures that can be reliably assembled
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is limited by the binding energy contrast afforded by the substrate, as well as the

loop entropy. We also show that the partition function of self-assembling structures

generically diverges at some value of chemical potential, with the shape of the

divergence informing the asymptotic trends in self-assembly yields. The divergence

is driven by the assembly of structures larger than the target, thus limiting the

conversion of loose monomers into the target structure at high concentrations.

8.3 Compute: New Methods Proposed

Throughout the dissertation I develop several new computational methods. Us-

ing maximal entropy approach to statistical mechanics is most definitely not a new

idea and has wide applications.[216, 217, 218] However, its application to design

problems, and especially it’s connection to other computational tools have not been

considered in such detail before.

A statistical mechanics perspective is a generalization of both mathematical op-

timization and constraint satisfaction.[20, 18] From optimization it inherits the dis-

cussion of the objective function landscapes, but in contrast does not strictly iden-

tify the absolute minimum of the objective with the sole desirable solution. From

constraint satisfaction it inherits the accounting for sets of solutions and the search

for compatibility of several design objectives, but it doesn’t divide all solutions into

the binary classes of “feasible” and “infeasible”. Instead, statistical mechanics oper-

ates with probability landscapes and the discusses their averages corresponding to

design phases and their basins corresponding to architecture classes.

Grounded in statistical physics, the Systems Physics analysis emphasizes the

aggregation of microstates (detailed design solutions) into mesostates (intermediate

scale design solutions). I perform this coarse-graining operation as computation of
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Landau free energy in Chapters IV–VI. [107] Chapter III has a brief discussion

on the origins and attribution of the “Landau free energy” that drove its usage as

both a term and a tool. While textbook computations typically rely on self-similar

functional form of Landau free energy in which only the coefficients “flow” under

renormalization, in my computations the free energy has a different form at each

scale. Moreover, in Chapter VI I show how coarse-graining can be performed in two

orthogonal directions, spatial and topological detail, in order to answer different

questions about the collective effects in the system. The ability to smoothly change

perspective between detailed and coarse design, to zoom in and out of the solution

space, was sorely missing from the existing design frameworks.

At the intermediate scale, the design spaces frequently naturally break up into

several basins that I associate with qualitatively distinct architecture classes. In

order to quantify the robustness of such architecture classes, I show how to com-

pute numerically the stress–strain curves in Chapter V. While these curves have

interesting features, they can be abbreviated into two metrics of ultimate design

stress and strain. These two metrics constitute the two-factor robustness R2 which

allows direct comparison of architecture classes that immediately highlights the

eclipsing and the trade-offs between them, similar to comparisons of solutions in

multi-objective optimization.[158]

Statistical mechanics computations provide us with a powerful information struc-

ture, the partition function, that provides knowledge about the collective behaviors

spanning the whole solution space. However, in order to capture more granular in-

teractions of space and topology in the design space, I developed a new information

structure framework based on tensor networks. While tensor networks have many

applications in modern science (see overview in Chapter III), they so far remained
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disconnected from the complex networks literature. My framework allows me the

use of arbitrary physical spaces and arbitrary topologies of couplings, which has

wide-reaching implications for both design and physics communities. Tensor net-

works provide both a graphical and a computational way to work with statistical

mechanics, further aided by the TenZ package. The usage of SVD approximations

in tensor network contractions provides a qualitatively new kind of approximate

calculations, which enabled me to enumerate 1013 design solutions in Chapter VI

and up to 10167 states in a related work not included in the dissertation.[80]

Apart from tensor networks, I used a set of different analytical combinatorial

techniques in Chapter VII to count the possible self-assembled structures at differ-

ent levels of detail and quantitatively predict their yields. Expressing the results as

matrix functions naturally leads to spectral analysis methods which help identify

the features of the whole set of building blocks driving self-assembly. The proposed

self-assembly theory also accounts for and interprets such important quantities as

chemical potential, bond entropy, concentration, different forms of yield, and di-

vergence and its exponents. While the work in this dissertation only considers

relatively simple building blocks and assembled structures, it paves way to more

detailed investigations of design for self-assembly.

8.4 Model: New Design Principles Developed

Having demonstrated the new kinds of insights that can be gained with Systems

Physics, as well as the technical ways to reach those insights, we can now discuss

the implications for modeling the design problems. The modeling process reduces

a wicked problem to a tame one by necessarily ignoring something. So how does

the statistical mechanics accounting change the pattern of what we leave out and
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what we leave in the problem?

Statistical mechanics forces us to explicitly consider the full space of design solu-

tions spanned by a set of design variables. Other analysis of alternatives paradigms

operated with a set of a hundred or a thousand candidate solutions, but don’t scale

well due to the need of looking at each solution individually. Statistical mechan-

ics reduces each solution to its statistical weight and thus allows combing through

huge spaces very fast. These design spaces also typically have a special structure

driven by the sparsity of couplings: out of all possible interactions between design

variables, only very few are present. I exploit the sparsity property in Chapter VI,

where sparsity ensures that tensor networks work fast enough.

Along with the accounting of solution space, Systems Physics forces explicit

accounting of design objectives and pressures. The essence of the maximal entropy

approach is to predict the properties of the ensemble of solutions that are exclusively

driven by the objectives put in by hand, without any external bias or prejudice.

This approach attains a certain degree of mathematical purity and separates the

insight given by the computational tools from the human intuition, expertise, and

judgment of the designer.

The goal of Systems Physics is to provide the designer with knowledge about

the relative merit of possible alternative solutions, as opposed to direct answers to

the design problems. This comes in sharp contrast with the optimization school of

thought, in which the minimum of the objective function is trivially identified with

the solution, often without extended discussion.[20] By treating the design pressures

as parameters, Systems Physics can analyze shifting objective landscapes and thus

recognize the phase transitions in design (Chapter IV). In the common case of

solution space fragmentation into architecture classes, Systems Physics provides
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knowledge about the architecture class robustness to the human designer, who can

then make the qualitative, but informed decision of which class to pick.

Systems Physics can differentiate between the solution space and the design

space, as well as between design objectives and design outcomes. Solution spaces

enumerate all possible microstates of the system, while design spaces enumerate the

space where decisions are made. For the Naval Engineering arrangement problems,

the two spaces essentially match, but for the self-assembly problems the designer

makes choices about energies and concentrations, but not necessarily the specific

particle microstates. Similarly, the choice of a particular solution is driven by the

objectives O weighted by design pressures λ, but the outcomes are measured as

observable averages 〈X〉 that may or may not be conjugate to the pressures. In

Chapter IV the design pressures are cost tolerance and bulkhead penalty, but the

outcome is characterized by the correlation. In Chapter VII the considered system

is explicitly thermal and thus the only allowed “objective” is the energy landscape,

but the outcome is measured by several yield metrics. Recognizing both of these

dichotomies reinforces the distinction of the original wicked problem described by

design and outcome spaces that need to be mapped out gradually, from its tame

counterpart described by solution and objective spaces that are known from the

beginning.

The relaxation of the rigid objective–solution connection also relaxes the antag-

onistic relationship between forward and inverse design. Forward design is, loosely,

a mapping from design space to outcome space, while inverse design is the opposite

mapping. The analyses presented in this dissertation describe the relationship be-

tween the two spaces that can be progressively mapped out as knowledge about the

whole wicked problem is generated. Since the forward–inverse design dichotomy
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was most informed by the self-assembly literature, it is self-assembly that most

benefits from the integration of the two approaches. Instead of subordinating the

building block search to the rigid target structure, or vice versa, we are free to

consider them jointly and imagine the new possible structures and functional be-

haviors.

Lastly, Systems Physics is a design tool that directly highlights its role in the

design method by pushing the designer’s tacit knowledge to a higher level of ab-

straction. Systems Physics predicts the relationships between the design elements

driven by pressures and gives user-friendly computational tools. The choice of what

new knowledge to generate (which computation to run next) or what decision to

make (which design variable to freeze/anchor) remains firmly in the hands of the

designers, while Systems Physics computations predict the implications of such de-

cisions. In this way, the execution of the Model–Compute–Learn loop allows us

to exploit the feasibility of solving tame problems in order to ultimately solve the

wicked problems posed to us in the first place.

8.5 Open Questions in Design Science

Having covered the questions already answered by the dissertation, I want to

finish with the questions freshly posed by the dissertation. Some of them rely on

simple extensions of scale and scope of the studies presented here, whereas others

would require new conceptual developments. These questions would affect all three

stages of the Model–Compute–Learn loop, and pursuing them would inevitably

enrich our understanding of Systems Physics and design problems more broadly.

The simplest question is one of scale. How large a system can we study with

statistical mechanics? Chapter VI enumerated 1013 solutions, but that number
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grows exponentially fast with the number of design elements, so how many ele-

ments can we consider? How much can we improve the spatial resolution of the

arrangements, given that the Chapters IV–VI relied on a very coarse and cartoon-

ish ship hull model? How do the tensor network algorithms scale with system size

and target accuracy? Are there better backend software packages for TenZ than

PyTNR?[137, 138] Addressing these questions of scale would allow us to generate

better design insights with purely extensive methods.

A similar extensive modification is to consider not just more functional units or

a higher spatial resolution, but more layers of description of the designed system

and more heterogeneity in those layers. Specifically, the Logical Architecture of

naval ships frequently has multiple layers, differentiating between e.g. electric

cables, water pipes, and personnel corridors.[157] How do we efficiently account for

the heterogeneity of couplings for different edges of the functional network? The

tensor network formalism allows using a different form for each coupling tensor,

and different space of states for each functional node, but how do we coherently

formulate such a heterogeneous problem and extract general insights?

Apart from the extensive scaling, we can consider intensive complications of

modeling, requiring new qualitative insights. The Naval Engineering design frame-

work that informed our analysis of Logical and Physical Architecture also includes

the Operational Architecture that we left out to have a more focused scope. The

Operational Architecture tracks the dynamic operational variables of the functional

units, such as hydrodynamic pressures, electric voltages, on/off status, or possible

damage to the unit. These variables can either vary stochastically or form dynam-

ical systems that evolve over time with a potential for cascade failures. How can

we incorporate such information into our analysis and couple it with the existing
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spatial and topological degrees of freedom?

The time domain is not only important in analysis of ship’s operations. Time

also drives the design process in crucial ways. At every time moment, choices to

generate knowledge and to commit to certain design elements are made in context of

the previous, but not future knowledge. This generically creates path dependency

of the design process.[7] In Chapter VI I briefly discussed the free energy landscape

in light of the previous design decisions. However, how can we navigate the space

of possible decisions histories? Is it even appropriate to try modeling the decision

process that we so far left to the designer? What are the appropriate metrics of

evolving knowledge and design freedom for us to track over time?

I discuss above that defining the space of solutions for consideration is one of the

essential choices in taming a wicked problem. On each Systems Physics loop this

choice can potentially be made differently, reflecting the new gained understanding

of space. However, in the three Naval Engineering investigations in this dissertation

the space was exactly the same even as we sweep across the ranges of design pressure

and even as we vary the functional network topology. What could be a reasonable

model of revision of the solution space as we get a better understanding of the

relationship between the design space and the outcome space over time?

Lastly, the three Naval Engineering studies in this dissertation deep down rely

on the same design objective function of routing cost. While this allows for an

intimate understanding of this objective function and asking different kinds of

questions across Chapters IV–VI, it leaves the concern whether the reported re-

sults are generalizable for other kinds of objective functions. The chosen objective

function is not particularly detailed or realistic, staying at the same level of ab-

straction as the Ref. [41] that inspired it. To demonstrate broader applicability
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of Systems Physics to the modern Naval Engineering practice, it is necessary to

perform studies with other objective functions. In the ideal scenario, these stud-

ies need to be lead someone who, unlike me, has Naval Engineering as opposed

to physics training, and asks questions of more direct engineering relevance. This

would also demonstrate that Systems Physics analysis is accessible to users and is

not a tool understood only by its developers.

It is my hope that the tools and intuitions of Systems Physics can be expanded

by my successors beyond the scope presented here. The study in this dissertation

is a product of both physics and design studies, with a significant bias towards

the former due to author’s training and professional history. Applying statistical

physics ideas to design studies is not only an exercise in pedagogy and translation of

terms into a different professional jargon, but an earnest examination of the foun-

dations of statistical physics philosophy and computational methods. It is ironic

that the more traditional physical problem of interacting colloidal particles raises as

many conceptual questions in model-building as the hereto unknown arrangement

problem. As we discovered new physical phenomena and new manifestations of old

phenomena in this model system, the raised practical and philosophical questions

uncover a vast research program that can be pursued into the future.
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