
Machine Learning for Physiological
Time Series: Representing and
Controlling Blood Glucose for

Diabetes Management
by

Ian G. Fox

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in the University of Michigan

2020

Doctoral Committee:

Associate Professor Jenna Wiens, Chair
Assistant Professor Nikola Banovic
Professor Joyce Lee
Professor Satinder Singh

http://web.eecs.umich.edu/~ifox/

Ian Fox

ifox@umich.edu

ORCID iD: 0000-0002-6580-9893

c© Ian Fox 2020

Acknowledgements
With thanks to Jenna Wiens for advising me, my family for supporting me, and my

friends for keeping me sane.

ii

Contents

Acknowledgements ii

List of Figures v

List of Tables x

List of Appendices xiii

Abstract xiv

1 Introduction 1

2 Background 6

3 Predicting Adverse Events with Contextual Motifs 15

4 Improving Time-Series Classification Without Additional Data Using Limited
Self-Supervision 39

5 Deep Multi-Output Blood Glucose Forecasting 56

6 Deep Reinforcement Learning for Blood Glucose Management 77

7 Conclusion 107

A Appendix for Improving Time-Series Classification Without Additional Data
Using Limited Self-Supervision 111

B Appendix for Deep Reinforcement Learning for Blood Glucose Management 116

iii

Bibliography 123

iv

List of Figures

2.1 One day of data in the longitudinal glucose dataset. 7
2.2 One day of blood glucose data from the UVA/Padova simulator. 8

3.1 When expert/domain knowledge is available, we can discover context us-
ing hand-engineered rules. The rule illustrated here assigns a ‘meal’ con-
text to a window (highlighted in green) around a sharp increase in blood
sugar. 24

3.2 Proposed generative model for the contextual motif generative process.
Each context parameterizes a different distribution of motif frequencies. . . 27

3.3 Outline of evaluation process. Data is split, using a patient aware scheme,
into train-test splits 100 times. For each time, the training data is used
to train a logistic regression classifier, using cross validation to perform
randomized hyperparameter selection. The AUROC of the trained model
is then calculated on the test data. 30

3.4 Here we see the efficacy of our CMMM inference method on 10,000 sim-
ulated signals as we vary the strength of relationship between contextual
motifs and outcome. Using only the inferred motifs results in suboptimal
performance. Two-stage context inference improves performance, but not
as much as using the jointly inferred motif and context labels. Error bars
on all lines signify 1 standard deviation. 35

3.5 A hand-selected subset of motifs learned from the physiological data, se-
lected to demonstrate the interesting range of motifs present. 37

3.6 CMMM context comparison. Figure 3.6a contains the top three motifs oc-
curring more often in context 0, Figure 3.6b contains the top three motifs
occurring more often in context 1 . 38

v

4.1 a) Our full task architecture. The green encoder layer is shared across all
tasks. The target decoder is a fully connected layer mapping to the correct
label size. The auxiliary tasks connect to hidden states. Note the sequence-
level tasks only connect to the final hidden state. b) Each auxiliary task
decoder DX is composed of a recurrent layer RX and an output layer OX.
DAE) Autoencoder. DF) Forecaster. DPS) Partial-Signal Autoencoder. DPL)
Piecewise-Linear Autoencoder. 44

4.2 Performance across three target tasks by number of auxiliary tasks used
(averaged over all possible orderings). In general, we observe that the
greater the number of auxiliary tasks, the greater the performance for all
three tasks. The marginal improvement from including additional auxil-
iary tasks appears to taper off as the number of tasks increases. 50

4.3 The average marginal contribution of each auxiliary task across target tasks.
The PL-AE task consistently offers the greatest marginal improvement, and
the forecasting task consistently provides the least. 51

4.4 A) The effect training data size has on auxiliary tasks. As the amount of
data increases, we tend to see an increase in the improvement afforded
by the auxiliary tasks. B) The relationship between auxiliary task perfor-
mance (in MAPE, lower is better) and target task performance (in AUC-
ROC, higher is better) on the T1D data. Calculated over all training data
sizes, there is a somewhat weak relationship (Pearson R = -0.53, line not
shown). However, when we condition on the amount of training data, we
find that different relationships emerge (Pearson R = 0.34 when training
size = 1,000 vs. -0.72 when training size = 1,500). 53

5.1 An example of multi-step recursive forecasting. Predictions at one time
step are fed back into the network as input. This allows for single-step
methods to produce multi-step forecasts. 59

5.2 Forecasting with DeepMO involves transforming the input to a shared rep-
resentation and then learning separate output networks for each time point
in the prediction horizon h. 60

vi

5.3 Two extensions to the DeepMO forecasting framework (a) SeqMO uses a
decoder network to generate a representation for each time point in the
prediction horizon that feeds into a shared output network to produce h
predictions (b) PolyMO learns n + 1 separate output networks based on a
shared representation zt, to infer the parameters of an nth degree polyno-
mial that is then used to generate the predicted output. 61

5.4 A combination of SeqMO and PolyMO. The function forecasting frame-
work from PolyMO is used to predict parameters w for a function approx-
imating output values. These parameters are predicted using the recurrent
decoding network from SeqMO. 64

5.5 The splitting procedure used to train and test our models. The complete
dataset is separated into three disjoint subsets: train, validation, and test.
The test set is then further split into 4 non-disjoint sets: the full test set,
test set examples that denote new hypo/hyperglycemic events, and subsets
for each event type separately. This results in widely varying subset sizes
given in the image. 67

5.6 A comparison of per-step error between the various forecasters. While the
multi-output models initially perform worse, they do not accumulate error
as rapidly as the recursive approach, achieving lower error at later predic-
tion steps. 73

5.7 We examine the single output error across a range of different model types,
determined using an exponential loss weighting. We derive the proportion
of weight allocated to the final output (which represents the evaluation
target). Surprisingly, we observe that a multi-output loss improves single-
output performance, suggesting that it is helpful to model forecast trajec-
tories even when you only care about the final value. 74

vii

6.1 The risk function proposed in [152]. The mapping between blood glucose
values (in mg/dL, x-axis) and risk values (y-axis). Blood glucose levels
corresponding to hypoglycemia are shown in the blue shaded region, the
glucose range corresponding to hyperglycemia is shown in the red shaded
region. This function identifies low blood glucose values as higher risk
than high blood glucose values, which is sensible given the rapidity of hy-
poglycemia. 83

6.2 The risk over 10 days for different simulated patients using methods that
do not require meal announcements. Each point corresponds to a different
random test seed that controls the meal schedule and sensor noise, and the
line indicates the median performance for each method on each patient.
Results are presented across 3 random training seeds, controlling model
initialization and randomness in training. We observe that, although there
is a wide range in performance across and within individuals, The RL ap-
proaches tend to outperform PID. 90

6.3 The risk over 10 days using methods that require meal announcements.
PID-MA tends to outperform BB, and RL-MA outperforms PID-MA. 91

6.4 a) The average amount of insulin (in percent of total daily insulin) provided
after meals for PID and RL-Scratch (note: RL-Trans, unshown, is very sim-
ilar to RL-Scratch). RL-Scratch is able respond to meals more quickly than
PID, with insulin peaking 30 minutes post-meal as opposed to roughly 60
minutes for PID. Additionally, the RL approach finishes delivering most
post-meal insulin after 1hr, PID takes over 90 minutes. b) The distribu-
tion of average risk scores over 300 10-day rollouts for Adult 1 using meal
schedules with varying amounts of predictability (mealtime standard devi-
ation). While PID performs better with more regularly spaced meals (me-
dian risk lowers from 9.66 at std=10 to 8.53 at std=0.1, a 12% decrease),
RL-Scratch sees a larger proportional and absolute improvement (median
risk lowers from 8.33 at std=10 to 6.36 at std=0.1, a 24% decrease). 94

viii

6.5 a) The training and validation curve (average reward) for adult#009. Note
the periods of instability affect both training and validation performance.
b) Catastrophic failure rate over all patients for 3 methods of model se-
lection: i) selecting the final training epoch, ii) selecting the epoch that
achieved minimal risk, and iii) selecting the minimal risk epoch that main-
tained blood glucose above 30 mg/dL. We see large differences in perfor-
mance depending on the model selection strategy. 96

6.6 The proportion of test rollouts where RL-Scratch and RL-Trans outperform
the median PID risk with different amounts of patient-specific training. We
see that without any patient-specific data RL-Trans performs better than
PID in 40% of rollouts. RL-Scratch requires a significant amount of patient-
specific data before achieving comparable performance. 99

A.1 Average AUC-ROC for every combination of Auxiliary task for all three
analyses. Here, columns marked ’NOT’ included all but the indicated aux-
iliary task. 114

ix

List of Tables

3.1 Summary of Data-Derived vs. Data-Generating Motifs. Both are important
types of motifs, and we consider both in developing contextual motifs. . . . 19

3.2 Predictive utility of contextual data-derived motifs. We observe an increase
in AUROC when including expert- and data-driven contextual informa-
tion, though the data-driven context is more informative. All differences
shown (except between baseline and expert-driven Hyper) are significant
(p < 0.001). 31

3.3 Predictive utility of contextual data-generating motifs. We note two main
trends in these results. First, the CMMM consistently outperforms the
MMM (difference between CMMM and MMM with no context and in-
ferred context significant with p < 0.001). Second, the inferred context
improves performance over the noise context (significant in CMMM with
p < 0.001) . 32

4.1 The performance of particular combinations of auxiliary tasks. All meth-
ods include the dataset-specific target task. AE and Forecast refers to Au-
toencoding and Forecasting respectively, the auxiliary tasks explored in
[96]. PLAE and PSAE refer to Piecewise-Linear Autoencoder and Partial-
Signal Autoencoder, our novel forms of self-supervision. We see that our
newly proposed forms of self-supervision outperform the other approaches
on all datasets. 52

x

5.1 Results. We examine the performance of our eight forecasting approaches
across different subsets of the CGM test data. Results are reported as 50th

percentile APE over the prediction window, values in parentheses are 2.5th−
97.5th percentiles. Underlined results indicate the best single-model per-
formance. Bold results demonstrate the best overall (single or ensembled)
performance. 71

6.1 Median risk, percent of time Eu/Hypo/Hyperglycemic, and failure rate
calculated using 1000 days of simulation broken into 100 independent 10-
day rollouts for each of 3 training seeds for 30 patients, totaling 90k days of
evaluation (with interquartile range). Lower Magni Risk, Hypoglycemia,
and Hyperglycemia are better, higher Euglycemia is better. Hybrid and
Non-closed loop approaches (requiring meal announcements) are indicated
with *. Approaches requiring a fully observed simulator state are indicated
with †. The non-oracle approach with the best average score is in bold and
underlined, the best approach that does not require meal announcements
is in bold. 92

6.2 Risk and percent of time Eu/Hypo/Hyperglycemic calculated for the RL
approaches treating the 3 training seeds as different random restarts. The
stability of the Scratch and Trans approaches improves relative to perfor-
mance in Table 6.1. 98

6.3 Median risk and interquartile range over 100 10-day rollouts and 3 training
seeds, using the ground truth simulator state. We evaluate methods trained
with either 2 months of batch data or 2 years (note this does not affect the
simulation-only methods). We observe the SABR approaches, particularly
SABR-BEAR, perform better than the baselines. 104

6.4 Median risk and interquartile range using our standard state space. We
observe that SABR-BEAR outperforms all baselines in the low data setting,
but with higher quantities of data underperforms BEAR. Curiously, large
behavior batches reduce overall performance across most methods. 105

A.1 Accuracy on 7 data sets from the UCR Archive. 115

xi

B.1 Basal-Bolus Parameters . 118
B.2 PID parameters . 119
B.3 PID-MA parameters . 120

xii

List of Appendices

Appendix for Improving Time-Series Classification Without Additional Data Using
Limited Self-Supervision 111

Appendix for Deep Reinforcement Learning for Blood Glucose Management 116

xiii

Abstract

Type 1 diabetes is a chronic health condition affecting over one million patients in the
US, where blood glucose (sugar) levels are not well regulated by the body. Researchers
have sought to use physiological data (e.g., blood glucose measurements) collected from
wearable devices to manage this disease, either by forecasting future blood glucose levels
for predictive alarms, or by automating insulin delivery for blood glucose management.
However, the application of machine learning (ML) to these data is hampered by latent
context, limited supervision and complex temporal dependencies. To address these chal-
lenges, we develop and evaluate novel ML approaches in the context of i) representing
physiological time series, particularly for forecasting blood glucose values and ii) deci-
sion making for when and how much insulin to deliver. When learning representations,
we leverage the structure of the physiological sequence as an implicit information stream.
In particular, we a) incorporate latent context when predicting adverse events by jointly
modeling patterns in the data and the context those patterns occurred under, b) propose
novel types of self-supervision to handle limited data and c) propose deep models that
predict functions underlying trajectories to encode temporal dependencies. In the con-
text of decision making, we use reinforcement learning (RL) for blood glucose manage-
ment. Through the use of an FDA-approved simulator of the glucoregulatory system,
we achieve strong performance using deep RL with and without human intervention.
However, the success of RL typically depends on realistic simulators or experimental
real-world deployment, neither of which are currently practical for problems in health.
Thus, we propose techniques for leveraging imperfect simulators and observational data.
Beyond diabetes, representing and managing physiological signals is an important prob-
lem. By adapting techniques to better leverage the structure inherent in the data we can
help overcome these challenges.

xiv

Chapter 1

Introduction

Improvements in the quality and affordability of sensors have led to the widespread
adoption of wearable health sensors for physiological signal monitoring [1]. The abil-
ity to easily monitor an individual’s health under normal living conditions presents an
unprecedented opportunity to understand, treat, and prevent chronic diseases, such as
diabetes, through predicting adverse events (e.g., hypoglycemic events) and suggesting
interventions (e.g., insulin doses) [2]. For example, blood glucose data can be collected
from individuals with diabetes automatically using widely available continuous glucose
monitoring (CGM) technology. However, the scale of these collected data, both on an
individual and population level, renders manual interpretation infeasible. Moreover, as
these data are collected under normal living conditions, they can be strongly affected by
daily events such as meals and activity.

Machine learning (ML) approaches could help in transforming data collected from
wearables into actionable knowledge. However, the application of ML to the problem
of monitoring and managing blood glucose is not straightforward. Better approaches
are needed to learn i) useful representations of longitudinal CGM data and ii) policies
to automatically administer insulin and manage blood glucose levels. Learning useful
representations of blood glucose data is difficult because of i) the impact of context in the
form of daily events, variations in routine, and environmental factors, ii) the potential
lack of large amounts of labeled data, and iii) the temporal dependencies between data
points. Controlling physiological systems is challenging because of the effects of unob-
served daily events on the system, moreover, policies to control these systems must be
learned in a safe and sample-efficient manner. In this dissertation, we first examine the
challenges of learning representations from physiological time series in greater detail, and

1

then consider the issue of learning control policies.
Throughout this dissertation we use diabetes mellitus (referred to simply as diabetes),

in particular type 1 diabetes, as our motivating application. Diabetes is a chronic health
condition characterized by the inability of the body to produce sufficient insulin (a hor-
mone) to regulate blood glucose levels. It is well-suited as a motivating application be-
cause of its prevalence (there are over 1 million people with type 1 diabetes in the U.S.
alone) [3], [4] its severity [5], and because the diabetes community has developed a tech-
nical infrastructure for data collection and intervention in non-clinical settings [6]. More-
over, managing diabetes can represent a significant mental burden [7]. Individuals must
carefully monitor several key aspects of their life, including meal sizes and physical activ-
ity levels, all while keeping track of their blood glucose levels and adjusting insulin doses
to avoid hypo- or hyperglycemia [8]. ML can help relieve this burden by assisting people
with diabetes in predicting events like hypoglycemia or determining appropriate insulin
doses.

1.1 Challenges and Opportunities

In this dissertation, we develop and evaluate new methods designed to address chal-
lenges in applying machine learning to blood glucose data collected using wearable health
monitors. We focus on overcoming the following challenges:

Lack of Context. To effectively manage diabetes using physiological data, we must find
a time-series representation well suited to tasks such as predicting adverse events. Un-
processed time-series data may be unsuitable for standard ML techniques as the signals
may be too long or noisy. Time-series motifs, subsets of the signal that are repeated many
times, are a common way of representing such data [9]. However, in diabetes, external
events such as meals, sleep, and physical activity strongly affect blood glucose levels,
and the glucoregulatory system changes over time. Thus, each signal subset must be in-
terpreted according to the context it occurred under. This information is not included in
standard motif methods [10], [11].

In Chapter 3 we examine methods to learn and incorporate this context and develop
a contextual representation that can be used to improve adverse event prediction in type

2

1 diabetes. We propose to learn context in an unsupervised way by assuming it affects
long term distributions of patterns in the signal. We show such an approach can learn
meaningful and useful time-series representations.

Limited Supervision. Deep learning presents an avenue for representation learning
from unprocessed data. While effective, it typically requires a great deal of data to achieve
high performance [12]. For longitudinal health monitoring, it is possible collect large
amounts of data from any individual. However, we often care about long-term outcomes,
such as changes in average blood glucose, limiting the amount of outcome data available.
In such cases, one might improve model performance with unsupervised pretraining on
additional datasets or multi-task training with additional label sets [13], [14].

In Chapter 4, we demonstrate that when dealing with time-series data, the abundance
of measurements for each label means neither additional unlabeled data nor additional
label sets are required to improve representation learning performance. We show how
auxiliary self-supervision can produce significant performance gains without requiring
additional data (labeled or otherwise) across a range of tasks and datasets, in particular,
patient attribute classification in people with type 1 diabetes.

Modeling Temporal Dependencies. Physiological signals can vary significantly over
time for an individual, and trends can be as important as raw values. Thus, while pre-
dicting future values of these signals can help inform decision making, predicting entire
trajectories of values can provide more clinically value. The task of forecasting, or sig-
nal prediction, is particularly important in diabetes, as the delay induced by sensing and
actuation devices means that attempts to control changes in glucose can be mismatched
with current clinical state. Standard methods to predict trajectories struggle to balance
modeling temporal dependencies within the signal and making robust predictions [15],
[16].

In Chapter 5, we develop new models that are able to navigate this trade-off without
modified training schemes by explicitly learning to share information across prediction
windows at training time. In addition, we constrain the output of the network, which acts
as a form of regularization. We show these improvements lead to better blood glucose
forecasting.

3

Managing Blood Glucose Levels. Continuous health monitoring holds the promise of
more timely medical interventions, such as insulin administration. However, it is un-
reasonable to assume a clinician will be available to suggest interventions, and having
patients manage interventions is burdensome. Reinforcement learning (RL) is an ap-
proach to learn good autonomous control policies from experience, potentially remov-
ing the need for direct patient decision making. In diabetes, the use of an insulin pump
managed by an automated controller is called an artificial pancreas, and is a focus of dia-
betes technology research [17]. Current systems, based on classical control methods, are
difficult to personalize and need additional human provided signals to handle external
phenomena.

In Chapter 6, we examine how RL can improve system performance, particularly in
the case where there is no human provided information. We demonstrate that a combi-
nation of simple and general techniques allows for excellent and safe personalized blood
glucose control in a simulated setting. We also show how simulators can be combined
with observational data to train RL policies without exploration in the target environ-
ment.

While there are significant challenges in the application of ML to health data from
wearable devices, learning to represent and control physiological time series is a techni-
cally interesting problem that could lead to significant clinical gains. In this dissertation,
we present a variety of approaches that deal with problems in representing data, such
as limited context and temporal dependencies, and discuss methods to learn to control
physiological processes using both simulators and observational data.

1.2 Contributions

To address the challenges discussed above, we present a series of contributions in this
dissertation, summarized here:

• Contextual Motifs: We develop methods to incorporate context into motif repre-
sentations of blood glucose data for predicting hypo- and hyperglycemic events.
We demonstrate how the meaning of patterns (i.e., motifs) in the signal can vary
depending on the context under which they occur. This motivates us to explore

4

methods for contextual motif discovery that jointly learn motifs and infer context,
leading to the identification of more informative motifs.

• Self-Supervised Auxiliary Tasks: We improve patient classification using auxiliary
self-supervised models. Classifying patients can serve as a tractable analogue to un-
derstanding the dynamics of an individual’s glucoregulatory system. However, this
task assigns only one label to a sequence of blood glucose measurements, which can
exacerbate small data issues. By training our sequence classification model with ad-
ditional input-derived supervision, our models learn more discriminative sequence
representations.

• Deep Multi-Output Forecasting: We improve multi-step blood glucose forecasting
with deep multi-output models. Standard methods to predict multiple steps into the
future can suffer from accumulating prediction errors or lack coherence across pre-
dictions. To rectify this, we explore two complimentary multi-output architectures
that learn to correct errors and jointly model the distribution of glucose trajectories.

• Reinforcement Learning for Blood Glucose Management: We develop a reinforce-
ment learning (RL) system that achieves strong and safe glucose control over thou-
sands of days of simulated data across a diverse patient population using an FDA-
approved simulator. We demonstrate this system can infer meals without requiring
meal announcements and show that it can beat classical control techniques that re-
quire such announcements. Moreover, we present a comprehensive evaluation of
performance and stability using a realistically varying environment. We demon-
strate ways to improve the sample efficiency of policy learning, presenting methods
that require no patient-specific training data.

The contributions made by this dissertation could be of use to researchers interested
in applying machine learning to problems in diabetes management. Concretely, this dis-
sertation establishes effective deep architectures for representing blood glucose data, and
demonstrates the promise of deep reinforcement learning for blood glucose management.
More broadly, the challenges discussed and techniques developed could be used to guide
applications of machine learning to better represent and manage other kinds of physio-
logical signals, such as heart rate or mood, collected under normal living conditions.

5

Chapter 2

Background

In this chapter, we present a high-level overview of the clinical and technical background
for this dissertation. In the first section, we focus on the clinical application of our work,
managing type 1 diabetes. In the second section, we survey topics relating to machine
learning for time series. More detailed notation and background is presented on a chapter-
by-chapter basis for material specific to subsets of the dissertation.

2.1 Diabetes

Type 1 diabetes is a disease where machine learning with time series shows particular
promise. Type 1 diabetes is a chronic health disease affecting over 1 million individuals
in the US [4], and its rate of occurrence is increasing [18]. This disease is an auto-immune
disorder of unknown origin, where the body begins destroying the insulin-producing
beta cells found in the pancreas [19]. Insulin is a hormone that signals cells to uptake glu-
cose in the bloodstream. The absence of this hormone is problematic in two ways: 1) with-
out insulin signaling cells to consume glucose, the body must metabolize energy from fat
cells via a process known as ketosis, prolonged use of which can lead to a life-threatening
condition known as diabetic ketoacidosis [20], 2) when cells are not consuming glucose,
large amounts of the sugar can accumulate in the bloodstream in a condition called hy-
perglycemia, chronically high levels of blood glucose can lead to nerve, eye, heart, and
kidney damage [19]. The use of synthetic insulin can allow people with type 1 diabetes to
artificially control their blood glucose levels, averting both issues. However, overly large
administrations of insulin can lead to insufficient blood glucose levels, a condition called
hypoglycemia. Hypoglycemia can be extremely serious, as long-term proper functioning

6

Hyperglycemic Excursions

Hypoglycemic Excursions

FIGURE 2.1: One day of data in the longitudinal glucose dataset.

of the brain requires a minimum concentration of blood glucose. Severe cases can lead
to unconsciousness and sudden death, and chronic hypoglycemia increases risk of heart
disease [21]. Tight glucose control, which can reduce the risk of complications in dia-
betes [22]–[24], can be challenging to maintain. There is a tremendous decision burden
placed on diabetic patients who are constantly faced with decisions pertaining to food
intake, activities, and insulin administration. Thus there is significant interest in the field
to develop sensitive technologies and algorithms to close the loop in insulin delivery and
continuous glucose monitoring [17].

2.1.1 Longitudinal Glucose Dataset

Several works in this dissertation (Chapters 3, 4, 5) make use of a dataset collected from
people with type 1 diabetes. The study was originally designed to evaluate changes in
cardiovascular health among individuals with type 1 diabetes. Data from 40 patients was
collected over 3 years at 3-month intervals. Continuous glucose monitors were used to
collect glucose data from each person for 2-7 days at each interval, resulting in 1.9 thou-
sand days of blood glucose measurements, 550k measurements in total. The blood glu-
cose data was collected at integer resolution between 40-400 mg/dL. Some individuals in

7

FIGURE 2.2: One day of blood glucose data from the UVA/Padova simulator.

this group used insulin pumps, others used multiple daily injections. While participants
were encouraged to manually record insulin usage, physical activity, and meals, few did
so, and those who did were inconsistent in usage. As a result, we focus only on the blood
glucose measurements in our projects. This is a challenging proposition, as blood glucose
is heavily impacted by outside phenomena such as insulin and meals. In collaboration
with Dr. Rodica Pop-Busui, the PI on the original prospective study, we have made a
deidentified version of this dataset publicly available1.

2.1.2 Glucose Simulators

In the absence of large blood glucose datasets which include reliable records of daily
events (such as meals), simulation strategies have been important for the analysis of blood
glucose. Models of the blood glucose system have long been seen as an important compo-
nent for the development and testing of an artificial pancreas [25]. Models can be used as
simulation environments for testing the efficacy of control systems [26], as controllers for
administering insulin [27], or as tools to gain deeper understanding of the physiological

1https://github.com/igfox/multi-output-glucose-forecasting

8

processes at work [28]. Current models are built by a combination of rigorous experimen-
tation and expert knowledge of the underlying physiological phenomena. Typical mod-
els are built on an underlying multi-compartment model, with various sources and sinks
corresponding to physiological phenomena, involving often dozens of patient-specific
parameters [26]. In this dissertation, we make use of a publicly available implementa-
tion of the UVA/Padova simulator [26] known as Simglucose [29]. An example day of
data generated from this simulator is presented in Figure 2.2. Note this data can include
carbohydrate and insulin information.

2.2 Machine Learning for Time Series

A sequence of data samples from a dynamical system x0:T = x1, x2, . . . xT indexed by
time is known as a time series. Problems involving time series are found in finance
[30], robotics [31], computer vision [32], speech [33], and many other domains. We fo-
cus on healthcare, where time-series data can come from sequential EHR data collected
in this hospital [34], [35] or physiological time-series collected outside the hospital such as
blood glucose measured by continuous glucose monitors [36]. Classical time-series anal-
ysis seeks to understand and utilize such data by finding good representations, either
by identifying meaningful features, such as well-conserved patterns (motifs) [37], or by
modeling the underlying dynamics of the system [38]. Time-series analysis also focuses
on predicting future values (forecasting) [39]. While analyzing time series is important
for understanding the dynamical system being measured, ultimately such understanding
is only useful insofar as it informs action. The control of dynamical systems, also called
control theory, is a problem that has been closely considered over the years [38].

Learning from physiological time series, particularly those collected using wearable
health monitors, comes with a specific set of challenges. In particular, these signals are
often very long and noisy, motivating the use of sparse representations such as motifs.
The length of these signals also motivates methods that can draw supervision from the
entire signal to learn better representations. As these data measure physiological systems,
value trajectories are important to understand and predict future health. Additionally,
the underlying physiological systems can be profoundly affected by daily events such as
eating or physical activity which may not be recorded in data, so methods that can infer

9

and use latent context can improve modeling. Finally, as these data represent a person’s
physical health, methods designed to control these systems must prioritize safety and
stability. Machine learning approaches can help solve these problems, as discussed in the
sections below.

2.2.1 Representation

In this dissertation, we focus on two ways to represent time series: 1) through the dis-
covery of motifs, or repeated patterns in the signal, and 2) using a deep neural network
trained end-to-end on some task of interest. Here, we give a brief overview of these ap-
proaches, how machine learning can aid in motif discovery, and how deep learning can
be effective in smaller data settings.

Motifs

We can represent time series more efficiently by focusing on the most important subse-
quences of the signal. A subsequence is a contiguous block of measurements lying within
the sequence: xi:j where i ≥ 0 and j ≤ T. A meaningful component of a time series
tends to be one that is repeated, as such a pattern is less likely to be the result of noise
[9]. We call such patterns motifs. Though a motif is properly thought of as a subsequence
xmi , we typically refer to them using their categorical identifier mi. Motifs are a useful
abstraction for representing and analyzing sequential data, such as physiological time-
series [40]. Given a sequence x0:T and a list of n motifs [m1, m2, . . . , mn], the sequence can
be represented by the n-dimensional count vector xm

0:T = [p1, p2, . . . , pn] where pi is the
number of instances of motif mi in x0:T. Motifs exhibit several properties that make them
an appealing approach for analyzing large physiological datasets, including their broad
applicability across a wide range of data types, their resilience to noise, and their inherent
interpretability [10], [40]–[43].

Deep Representation Learning

The assumption that time series are well represented by conserved subsequences has been
useful in several domains, but more recent work has suggested the value in learning data

10

representations end-to-end with the ultimate task of interest, typically using deep neural
networks [44]. On time-series data, it is important to use models that keep a notion of
temporal ordering and are able to accommodate variable input size. As a result, recurrent
neural networks are a natural choice when working with time series.

A standard feed forward fully-connected neural network of length n is a defined as a
sequence of layers N = [L1, L2, . . . Ln] where each layer consists of some number of neu-
rons and an activation function. Each neuron i in layer j defines a linear function using
weight vector wj,i ∈ R|Lj−1|+1 (the +1 is used in place of a bias term). The activation func-
tion f j is a nonlinear sub-differentiable function from R|Lj| to itself. The layer as a whole
defines a nonlinear function Lj(x) = f (Wjx = [wj,0, wj,1 . . . wj,|Lj|]). The network com-
poses the functions defined at each layer, allowing for extremely flexible transformations.
Importantly, such a model can be trained using gradient descent with the backpropaga-
tion algorithm.

A recurrent neural network (RNN) extends standard neural networks by incorpo-
rating layers with a notion of state. In the simplest case, this state is the output of the
same layer at the previous time step. Consider a single layer RNN. The layer L at time
step t takes as input both the current input xt and the output at the previous time-step
ht−1 = L(xt−1). This allows information from one input to propagate to the next. The
states h0:T used to make predictions. For sequence classification problems, which learn
a mapping from a sequence x0:T to a label y, we typically feed the final state hT into an
output layer O. For problems involving sequential output y0:S, such as multi-step fore-
casting, we can use the final state hT to initialize a decoder RNN. The state hDec

j produced
at each step 0 ≤ j ≤ S can be fed to an output layer and trained such that: O(hDec

j) = yj.
Chapters 4 and 5 focus on deep learning with RNNs.

Unsupervised Pretraining and Multi-task Learning

Deep learning has had the greatest success where training data are abundant. In settings
with limited training data, unsupervised pretraining and multi-task learning have both
been shown to help. Both approaches leverage additional available information to im-
prove performance for a task. Let DS = {xi

0:T, yi}N
i=0 be a supervised dataset of size N,

and say we are interested in optimizing a neural network fθ where θ represents all tunable
parameters.

11

In unsupervised pretraining, large pools of additional unlabeled data,DU = {xi
0:T}M

i=0

where N < M, are used to help learn good intermediate representations. For example,
we can construct a new network gθ′ that is identical to fθ except for the output layer,
which is replaced with a recurrent decoder outputting sequences with the same shape
as x0:T. We can train this network as an autoencoder on DU, then use the parameters
in θ′ corresponding to layers in f to initialize f . This strategy has previously been used
successfully in learning with sequences [14].

Multi-task learning adds additional labeled datasets D′S or new labels sets y′ for DS.
The model fθ is trained on all datasets/label sets simultaneously. Learning multiple tasks
jointly allows for information across tasks to be shared, this has been shown to help in a
variety of ways [13], [45]. This approach has also proven useful in sequence learning [46].
In Chapter 4 we examine how auxiliary self-supervision, which is related to unsupervised
pretraining and multi-task learning, can be used to improve performance on sequence
classification tasks.

2.2.2 Prediction

The representation of a time series is only useful if it improves performance on down-
stream tasks. Given an input time series x0:T, it is often useful to be able to predict
values in the future xT+h. This problem, called forecasting, is a task with a wide vari-
ety of important applications in speech processing, energy management, and health [33],
[47], [48]. A wide variety of machine learning model classes have been used success-
fully as forecasters, including Gaussian processes [49], gradient-boosted trees [50], and
recurrent/convolutional neural networks [33], [51]. While most approaches focus on pre-
dicting a single point in the future xT+h (single-step forecasting), predicting trajectories of
data xT:T+h (multi-step forecasting) can result in more accurate and meaningful predic-
tions [15].

However, it is not always straightforward to predict trajectories. The two most com-
mon approaches are recursive and multi-output forecasting. Under recursive forecast-
ing, a model f is trained to predict xT+1 given x0:T. The models prediction, x̂T+1 is
then appended to x0:T, approximating x0:T+1. This is then fed into the model to get a
prediction for xT+2 and so on. Viewed probabilistically, this factorizes p(xT+1:T+h) =

12

p(xT+1)p(xT+2|xT+1) . . . P(xT+h|xT+1:T+h−1). While mathematically correct, this formu-
lation is susceptible to exposure bias, or error accumulation over the prediction win-
dow [16]. The other main approach, multi-output forecasting, uses a model capable
of multiple simultaneous outputs to predict xT+1, xT+2, . . . xT+h given x0:T. In the most
naive formulation, this is accomplished by training h different models, each to predict
a separate value. While this formulation does not suffer from exposure bias, it also ig-
nores relationships between values in the output window, approximating p(xT+1:T+h) =

p(xT+1)p(xT+2) . . . p(xT+h). In practice, a balance must be struck between modeling de-
pendencies between steps in the trajectory and passing prediction errors made at one
step down to the next (called exposure bias). In Chapter 5, we explore models that are
able to better navigate this trade-off, and how they can improve multi-step forecasting
performance.

2.2.3 Reinforcement Learning

While prediction and representation are critical to better understand and manage physio-
logical time series, one of the greatest promises of personal sensors and portable medical
devices is the ability for machines to simulate the homeostatic processes of the body. This
requires systems that can learn to act within an environment. Reinforcement learning
(RL) is an approach to optimize sequential decision making in an environment that is
typically assumed to follow a Markov Decision Process (MDP). An MDP is characterized
by a 5-tuple (S, A, P, R, γ), where s ∈ S are the states of the environment, a ∈ A are ac-
tions that can be taken in the environment, the transition function P : (s, a) → s′ defines
the dynamics of the environment, the reward function R : (s, a) → r ∈ R defines the
desirability of state-action pairs, and the discount factor γ ∈ [0, 1] determines the tradeoff
between the value of immediate and delayed rewards. The goal in RL is to learn a policy
π : s→ a, or function mapping states to actions, that maximizes the expected cumulative
reward, or:

arg max
π∈Π

∞

∑
t=1

Est∼P(st−1,at−1)
[γtR(st, π(st))], (2.1)

where Π is the space of possible policies and s0 ∈ S is the starting state. The state value
function, V(s), is the expected cumulative reward where s0 = s. The state-action value

13

function Q(s, a) = R(s, a) + Es′∼P(s,a)[γV(s′)] extends the notion of value to state-action
pairs. In Chapter 6 we look at using reinforcement learning to learn a control policy for
an artificial pancreas.

Batch Reinforcement Learning. One issue with reinforcement learning on health data
is the danger of exploration [52]. While balancing exploration and exploitation is a fun-
damental problem in RL, in settings such as healthcare, excessive exploration could re-
sult in unsafe behavior. Batch RL (also called offline RL) is one solution to this problem
[53]. In batch RL, instead of assuming access to an environment with associated transi-
tion function P, you assume access to a batch of data collected within this environment
DB = {(si, ai, ri, si+1}N

i=0 where actions are selected using a behavior policy ai ∼ πB(si).
For the problem of blood glucose management, the behavior policy could be the behavior
of the individual being monitored.

Learning policies in such a setting is nontrivial. One supervised approach is known as
behavior cloning [54]. In it, the task is to, given a state si, predict an action ai such that ai ∼
πB(si), learning to mimic (or clone) the actions of the behavior policy. However, if our
goal is to surpass human performance on this task then behavior cloning is insufficient.
Off-policy RL, methods that can learn from data collected using policies other than the
one being trained, may apply. However, recent work has demonstrated such approaches
fail, even when the batch was collected using similar model classes with exploration [54].
However, a special class of algorithms designed specifically for the batch setting have
recently demonstrated strong performance in simulated control tasks [55], [56]. These
approaches restrict the class of learnable policies, constraining them to behave similarly
(according to some metric) to the behavior observed in DB.

14

Chapter 3

Predicting Adverse Events with
Contextual Motifs

3.1 Introduction

Motifs exhibit several properties that make them an appealing approach for analyzing
large physiological datasets, including their broad applicability across a wide range of
data types, their resilience to noise, and their inherent interpretability [10], [40]–[43]. For
example, we might discover a motif representing a rapid heartbeat within an ECG dataset.
By representing an ECG signal by whether or not it contains this particular motif, we may
learn an association between a rapid heartbeat and a patient’s cardiac health. From this
we may draw conclusions about how features of the signal are associated with health,
e.g.; a rapid heartbeat may be indicative of poor cardiac health.

Despite their useful properties, Van Esbroeck et al. have shown that, as a feature
representation for discriminative algorithms, motifs performed worse than other repre-
sentation learning schemes [58]. We hypothesize that a key reason for this suboptimal
performance is that standard motifs ignore the context under which they are generated.
Standard motif methods assume that the system that generates the signal, and thus the
meaning of the motifs, does not change over the observation period. This assumption
does not always hold in the context of physiological data.

For example, suppose that the ECG data mentioned earlier was collected under a
range of normal living conditions. We would expect a patient’s heart rate to depend upon

The following is an adaptation of previously published work [57].

15

the patient’s activity. In fact, the ability of the heart rate to vary to accommodate external
stressors, called heart rate variability, indicates good cardiac health [59]. Rapid heartbeats
would then be an indicator of good health within the context of physical activity, and an
indicator of poor health outside that context.

Another, particularly relevant, example can be found in glucose data (i.e., blood sugar
levels). In this domain, motifs may represent spikes in blood glucose levels. When in-
terpreting these spikes, it is important to understand the broader context of the signal.
Occasional, isolated spikes may be expected as the result of glycemic challenges (such
as meals), whereas repeated spikes in a temporally localized region could indicate poor
glycemic control, a risk factor for long-term health outcomes [60], [61].

Our Approach. We address these issues by introducing contextual motifs. Here, we
define context as transient external structure affecting the interpretation of a signal, for
example, physical activity in ECG, or meals in glucose data. We present a framework
for understanding physiological time-series that incorporates time-varying context. By
adding context, we hypothesize that we can more accurately model the relationship be-
tween the signal and outcomes of interest. Importantly, context can be either observed or
unobserved. In our blood glucose example, if patients’ meals were never recorded, the
context would be unobserved. In this common setting, accounting for context is more
challenging. Moreover, what is and is not context may vary depending on the physiolog-
ical system under consideration. In light of these challenges, in this chapter we:

• propose a general motif framework that accounts for context, contextual motifs,
and

• introduce contextual motif discovery along with techniques to jointly infer context
and motifs in a signal when context is unobserved.

Applied to both simulated and real physiological data, our proposed approach im-
proves upon existing motif methods in terms of the discriminative utility of the discov-
ered motifs. Using simulated data, we observe a consistent 10-11 percentage point im-
provement in AUROC when using jointly inferred contextual motifs compared with a
contextless baseline. Additionally, applied to a continuous glucose monitoring (CGM)
dataset of patients with type 1 diabetes (T1D), our proposed context inference techniques

16

led to a 4 and 7.2 percentage point improvement in the AUROC when predicting hypo-
and hyperglycemic events respectively, compared with a state-of-the-art motif discovery
method. Upon further analysis, we demonstrate that our method is capturing a phys-
iologically relevant context for glucose data, demonstrating the potential of joint motif-
context inference. These results suggest that, even when context is unobserved, contex-
tual motifs could lead to a better understanding of the physiological system and, there-
fore, more accurate predictions. Code and data for this project is publicly available .

Organization. The remainder of the chapter is organized as follows. First, we present
a brief survey regarding the motivation and use of motifs, paying particular attention
to the difference between data-derived and data-generating motifs. Next, we describe
contextual motifs and how they can be discovered under either motif type. Finally, we
present results on real and synthetic data, finding that jointly inferring motifs and context
provide the most discriminative patterns.

3.2 Background and Problem Statement

Motifs have been applied across many different fields; including genetic analysis, activity
monitoring, and clinical event prediction [11], [62], [63]. For an in-depth review of motifs
and their applications, we refer the reader to the survey paper by Mueen [43]. Here,
we limit our discussion to prior work that directly relates to our proposed approach.
We begin by providing vocabulary for discussing different motif discovery approaches.
In particular, we differentiate between data-derived and data-generating motifs. Then, we
present our proposed framework, contextual motifs, and discuss related work.

3.2.1 Motifs

History, Definitions, and Notation

The study of motifs originated in the field of genetics [64]. Lin et al. ported the idea
of motifs to time-series analysis [65]. While there exist several different definitions of

https://github.com/igfox/contextual_motifs

17

https://github.com/igfox/contextual_motifs

time-series motifs, here, we focus on support motifs [40], [43]. Support motifs are the sub-
sequences that are most frequently expressed throughout a dataset [43]. These types of
motifs are best suited to capturing inter- and intra-sequence similarity, and are widely
used as a result [11], [62], [66]–[69].

Before going further, we review some notation and definitions to make our discussion
more precise. For the purpose of this chapter, we define a signal as an ordered observation
sequence of the form x = (x1, x2, . . . , xT), where T is the signal length. Signals can be any
form of ordered data, but here we focus on data ordered by time, also called time-series. A
subsequence of a signal is a contiguous subset of observations xt,k = [xt, xt+1, . . . , xt+k−1],
here the subsequence has length k. We call the process that generates the signal the system.
Our goal in time-series analysis is to increase our understanding of the system using the
observed signal. Some subsequences help us achieve this goal, whereas others do not.
Subsequences that occur more often are less likely to be the result of noise, and thus
are more likely to reflect structure in the system. This motivates the study of frequently
occurring subsequences, or motifs.

Previous work has investigated how to increase the discriminative power of motifs.
Motifs that are maximally discriminative across classes are known as shapelets [70]. This
line of work extends motifs by using a measure of their predictive power during the
discovery step. Our work also extends motifs to better predict outcomes. However, we
approach this problem in a unsupervised manner. I.e., we focus on learning a richer
representation of the signal, leading to the discovery of more informative motifs. Our
approach is complementary, and can be applied across different types of motifs.

Data-Derived vs. Data-Generating Motifs

Two common motif types are data-derived and data-generating motifs. Data-derived
motifs are subsequences that are derived from the signal, data-generating motifs are latent
variables that generate the signal.

See Table 3.1 for a summary of data-derived versus data-generating motifs.
Data-derived motifs are discovered using a measure of subsequence quality q. A

motif mt is a subsequence
mt = xt,k : q(xt,k) > n

18

TABLE 3.1: Summary of Data-Derived vs. Data-Generating Motifs. Both are
important types of motifs, and we consider both in developing contextual

motifs.

Discovery Advantages Baseline

Data-Derived search efficiency MDLats [11]
Data-Generating inference quality MMM [10]

for some threshold n. With support motifs, the quality measure q indicates the number
of approximate occurrences of the subsequence in a dataset. Looking for exactly repeated
subsequences is limiting because noise can perturb even well conserved subsequences.
Thus, most motif discovery procedures attempt to find approximate motifs.

Data-generating motifs are learned using a generative model to encode assumptions
about how the data were created. These motifs are defined as an ordered sequence of
distributions

mt = [mt,1, mt,2 . . . , mt,k] : mt,i ∈ D for i = 1, . . . k

where D is some family of distributions.
The primary difference between these motif types is the method they are discovered

by. Data-derived motif discovery methods focus on search. In contrast, data-generating
motif discovery methods emphasize inference. Both approaches are useful to consider.
Though data-derived motifs are easier to discover and thus more common in the lit-
erature [11], [43], [65], [66], [71], data-generating motifs (also called latent motifs), are
typically higher quality [67], [72]. Viewing motifs as data generating also allows for a
natural extension to discovering deformable motifs, which can be relevant in the analysis
of physiological data [72].

Discovering Motifs - Baseline Methods

We consider two motif discovery algorithms as baselines. The first is a state-of-the-art-
motif discovery algorithm, MDLats. Presented by Liu et al. [11], MDLats combines many
of the methodological improvements developed in recent literature into an efficient and
effective method for physiological signals [9], [11], [66]. We will show how MDLats can be
applied in a contextual motif framework to further improve discriminative performance.

19

The second baseline we consider, based on a data-generating motif discovery algo-
rithm proposed by Bailey et al., is a Motif Mixture Model (MMM)[10]. Their method is
designed for categorical genome data, and thus fits a mixture of categorical distributions.
As we are working with real-valued physiological time-series, we instead use a Gaussian
Mixture Model. We assume each portion of a signal is generated by a set of distributions
called a motif. For one signal, x, the generative model is given in Algorithm 1.

ALGORITHM 1: Generative model for Data Generating Motifs
Data: Signal length |x|, motif length |m|, number of motifs nm, motif mixing

parameter γ, and motif parameters {θj}nm
j=1

Result: motif representation of signal
for i = 0, . . . |x||m| do

Pick motif mi ∼ Cat(γ);
for k = 0 . . . |m| − 1 do

Draw observation: xi|m|+k ∼ N (θmi,µk , θ2
mi,σk

);
end

end

Under this definition, even noisy, poorly conserved subsequences are technically mo-
tifs. It is common to include a background motif, assumed to be poorly conserved, to
account for such subsequences. Inference with this model is identical to inference with
a Gaussian Mixture Model. Each mixture component, representing a motif, is an |m|-
dimensional Gaussian with a spherical covariance matrix.

3.2.2 Contextual Motifs- A Novel Extension

We extend the work above to incorporate context. We represent context as a categorical
variable ct ∈ C that, at time point t, takes a discrete value ct ∈ {1, . . . , nc}, where nc is the
number of distinct contexts. Contextual motifs are then tuples of the form (mt, ct), repre-
senting a motif and the context under which it occurs. Contextual motif discovery is the
task of discovering these tuples. Discovery can also be viewed as the process of discov-
ering motifs occurring within similar contexts. This distinction can be important when
contexts vary from signal to signal. Without taking context into account, our measure of
motif quality may mistake infrequent contexts with infrequent motifs within a context.

20

For example, a certain quantity of food consumption may always present a distinctive
blood glucose pattern in individuals with poor glycemic control. If some signals in our
CGM dataset contained large meals, and others did not, contextless motif discovery could
fail to recognize the prevalence of this pattern.

We present methods that extend both data-derived and data-generating motifs to con-
textual motifs. When extending data-derived motifs, we focus on independently inferring
context in a two-stage approach. Data-generating motifs can be extended using either a
two-stage approach or by jointly inferring motifs and context. To perform this joint infer-
ence, we propose a generative model based on a subclass of dynamic Bayesian networks
[73].

Despite the vast literature studying motifs, and motif discovery methods, there is rel-
atively limited work on considering abstractions based on motifs. Still, we discuss the
related work in this area and how it differs from what we propose.

Van Esbroeck et al. considered representing physiological signals using a bag of motifs
(a common approach in motif discovery) [74]. The authors built upon this representation
using a topic modeling approach. In their approach, each topic is associated with a dis-
tribution over motifs and each signal is then a distribution over topics. These topics are
then used as an abstraction to represent the signal. While the idea of a topic is concep-
tually similar to context, their method differs from our proposed method in two ways.
First, we jointly infer contexts and motifs, whereas they assume that motifs are first dis-
covered and then topics are inferred. Second, because of the bag-of-motifs approach the
topics they learn assume a static representation of the signal. In contrast, our approach
leverages the temporal contiguity of contexts to allow for flexible variation in motif rep-
resentations both within and across signals.

In other domains, where the order motifs occur is important (e.g., genetics) researchers
have considered leveraging this temporal ordering to discover better motif represen-
tations. Lin et al. proposed a method based on hierarchical HMMs where the pres-
ence/absence of motifs in one part of a signal affects the presence/absence of motifs in
neighboring parts [75]. Again, this is conceptually similar to context, since context can be
viewed as a type of inter-motif structure. However, like the method described above, Lin
et al.’s method also requires a separate motif discovery step. Our approach combines the
discovery steps, enabling joint motif-context discovery and reducing the reliance on prior

21

knowledge.
Finally, others have looked at non-motif-based approaches to learning abstractions

based on time-series data. For example, Saria et al. examined the joint discovery of gen-
erating functions and temporal topics in NICU data [76]. Our approach to joint discovery
is similar, though we focus on discovering motifs as opposed to generating functions,
since we are interested in preserving interpretability.

3.3 Methods

In this section, we present the main technical contributions of this chapter. We begin
by discussing contextual motifs applied to data-derived motifs. We introduce methods
to discover data-derived contextual motifs when context is observed and when context
is unobserved, using a two-stage context inference procedure. We then discuss data-
generating contextual motifs. In addition to observed context methods and two-stage
context inference, we introduce a method to jointly infer context and motifs.

3.3.1 Data-Derived Contextual Motifs

For completeness, we begin by briefly describing a method to discover contextual motifs
when context is observed. In the more likely case of unobserved context, we present
techniques to infer context in two stages: first inferring context followed by inferring
motifs.

Observed Context

When context is observed, we aim to discover motifs within similar contexts. This results
in the simple extension outlined in Algorithm 2

This framing of contextual motifs can be thought of as a specialized instance of multi-
variate motifs. However, by framing the problem as we have, each context can be mined
for motifs independently of the others. This enables efficient, parallel motif discovery.

Compared to a standard approach that ignores context, this approach may perform
worse if a motif does not occur enough times in any particular context to be discovered.
However, when there is not enough per context information to discover useful motifs, it

22

ALGORITHM 2: Contextual Motif Discovery
Data: dataset of signals x ∈ X, associated set of context signal xc ∈ XC, motif

discovery function MD.
Result: set of contextual motifs cm = (mi, ci)
cm = {};
for i = 1, . . . |C| do
∀x ∈ X: find all maximal subsequences xci ∈ x where xc = i over the entire
subsequence, denote the set of all such xci as Xci ;

Mci = MD(Xci);
for m ∈ Mci do

append (m, i) to cm;
end

end

is likely that non-contextual motif discovery techniques are already tractable, mitigating
this issue.

Two-Stage Inference: Context then Motifs

The above method assumes a fully observed context signal XC. This is not, in general, a
reasonable assumption to make. The passive collection of contextual information may be
impossible due to constrained resources or limitations in sensor technology, and it can be
burdensome for patients to record context manually. Even if recording context is feasible,
it is not always available in retrospective physiological data. Thus, we aim to infer context
based on the signal.

We present two methods to accomplish this:

1. Expert-Driven: Using domain knowledge one may hand-engineer features indica-
tive of certain contexts. For example, large spikes in blood glucose levels typically
occur only after meals [77], [78]. Using this knowledge, we created an expert rule,

ct = b(
∑k

i=1 xt−(i−1) − xt−i

k
)

where b is a hand-defined mapping from R → C. However, such methods require
domain expertise, and fail to generalize to arbitrary domains.

23

Context
Inference

Expert-Driven

If:

Then:
Context = Meal

FIGURE 3.1: When expert/domain knowledge is available, we can discover
context using hand-engineered rules. The rule illustrated here assigns a
‘meal’ context to a window (highlighted in green) around a sharp increase

in blood sugar.

2. Data-Driven: Using unsupervised methods, one can infer transient structure in
time-series data. For example, HMMs could be used to infer hidden states across
the data. These inferred hidden states could then be used as a context for contextual
motif methods.

We have presented methods to discover data-derived contextual motifs, both when
context is observed and unobserved. We now explain how to discover data-generating
contextual motifs.

3.3.2 Data-Generating Contextual Motifs

The use of data-generating motifs allows for the utilization of more sophisticated infer-
ence procedures when discovering motifs. These discovery methods can be used in an
observed context setting identically to the data-derived search methods, using Algorithm
2. Thus, here we focus entirely on the setting where context is unobserved. We begin by
briefly introducing another version of the two-stage inference presented in Section 3.3.1.
Then, we present an approach to jointly discover motifs and context.

24

Two-Stage Inference: Motifs then Context

In Section 3.3.1, we describe two context inference procedures that infer context directly
from the signal. However, as work in the genetics and activity monitoring literature in-
dicates, motifs can be a useful primitive for deriving context [62], [75]. This motivates a
reversed two-stage inference approach, where we first infer motifs and then context.

We introduce a new type of context. This context, defined over fixed window lengths
of size |c|, encodes information about the motif mixing parameter γ. A detailed view of
this context discovery approach is given in Algorithm 3.

ALGORITHM 3: Data-Generating Context Discovery
Data: dataset X, where each signal x ∈ X is represented as a time-ordered list of

motifs [mi1 , mi2 , . . . mi |x|
|m|

], context window length |c|, number of context nc

Result: Context labels XC over the dataset
protocontexts Cp = {};
for x ∈ X do

Partition x into context windows wi = x|c|i:|c|(i+1);
for wi ∈ x do

Append motif frequencies in wi to Cp;
end

end
Cluster Cp using KMeans clustering with k = nc;
Return resulting cluster labels as XC;

We note that both variants of two-stage context inference are equally applicable to
data-derived and data-generating motifs. These variants of two-stage inference imply:

1. context can improve motif discovery, and

2. motifs can improve context inference.

The combination of these two implications motivates a joint context and motif discovery
procedure.

25

Joint Inference

While data-generating discovery techniques carry additional computational cost, the in-
creased model flexibility allows for the joint discovery of motifs and context. To jointly
discover motifs and context, we modify the data-generating MMM (introduced in Sec-
tion 3.2.1) to include a context variable. In our proposed contextual motif mixture model
(CMMM), each context ci defines a distribution over the set of possible motifs (Figure
3.2). The generative model is given in Algorithm 4.

ALGORITHM 4: Generative model for Data Generating Contextual Motifs
Data: Context window length |c|, number of contexts nc, context mixing

parameter α, signal length |x|, motif length |m|, number of motifs nm,
context-dependent motif mixing parameter {γj}

nc
j=1, and

context-independent motif parameters {θk}nm
k=1

Result: contextual motif representation of signal
for i = 0 . . . |x||c| do

Pick context ci ∼ Cat(α) ;

for j = 0 . . . |c||m| do
Pick motif mj ∼ Cat(γci

);
for k = 0 . . . |m| − 1 do

Draw observation: xj∗|m|+k ∼ N (θmj,µk , θ2
mj,σk

);
end

end
end

This model can be viewed as a hierarchical HMM with a feed-forward context layer.
Here, our notion of context is the context introduced in 3.3.2, which is a temporally con-
tiguous extension of the topics used in the motif topic model of Van Esbroeck et al. [74].
In contrast to their approach, we allow the motif distribution parameter, γ, to vary over
time according to a categorical context variable. We explicitly model motif mixing distri-
butions for each context, but hold the motif parameters constant across all contexts. This
allows for the identification of similar contexts across a population.

Using this model, one can infer the specific contexts under which each motif occurs
at the same time one infers the motifs, allowing for the discovery of contextual motifs

26

FIGURE 3.2: Proposed generative model for the contextual motif generative
process. Each context parameterizes a different distribution of motif frequen-

cies.

from scratch. This model can be viewed as a mixture of mixture models, and thus exact
inference on it is intractable. Note that computing the posterior of the latent variables and
parameters requires computing:

p(c, m, α, γ, θ, X)∫
α p(α)∑c p(c|α)

∫
γ p(γ)∑m p(m|γ, c)

∫
θ p(θ)p(x|θ, m)

To perform approximate inference on this model, we use a sampling approach, as is
routine with data-generating motif systems [40], [75], [79]. Our sampling method was
implemented using the probabilistic programming python module PyMC3 [80]. We sam-
ple the categorical variables using a metropolized gibbs sampler with a uniform proposal
distribution [81]. The motif and context mixing parameters are assumed to have Dirichlet
priors, sampled using Metropolis-Hastings with a normal proposal distribution. To sam-
ple the motif distribution parameters, we use a No-U-Turn Sampler with dual averaging
[82]. These sampling schemes use the default parameters in PyMC3.

27

3.4 Experiments and Results

We examine the utility of contextual motifs through a series of experiments. In our exper-
iments we seek to answer the following questions:
• Do data-derived contextual motifs improve on the discriminative ability of standard

data-derived motifs? (Section 3.4.2, Table 3.2)
• Does considering context improve the discriminative ability of data-generating mo-

tifs? (Section 3.4.2, Table 3.3)
• How effectively does our contextual motif mixture model uncover known contex-

tual structure? (Section 3.4.3, Figure 3.4)
To answer these questions, we discover data-derived and data-generating (contextual)
motifs in both simulated and real physiological datasets using our proposed methods.
We measure the utility of the discovered (contextual) motifs by using them as features
in a series of classification tasks. On a separate test set, we compare the discriminative
performance of contextual motifs to that of regular motifs discovered using existing, state-
of-the-art methods. We begin by describing the data we use for these experiments and our
evaluation procedure. We then present a series of experiments using both data-derived
and data-generating motifs on the physiological data. Since the physiological data only
represents a single scenario, we also present experiments on simulated data over a range
of settings.

3.4.1 Dataset and Prediction Tasks

CGM Data

The dataset used for this project is the Longitudinal Blood Glucose dataset described in
Section 2.1.1. Due to calibration and sensor errors, the sessions in this dataset contain pe-
riods of missing data. In total, the dataset contains approximately 51.6k hours of glucose
data and is missing around 4.5k hours. To handle this missingness, we use linear interpo-
lation. This is sensible for small chunks of missing data, as glucose data is locally linear.
However, we exclude days with contiguous periods of missing data longer than thirty
minutes. After removing days with excessive missing data, 32.4k hours of data occurring

28

across 1,352 day remains. Each of the 40 patients contributes between 21 and 48 days to
this total.

Evaluating Motifs: Prediction Task

To measure the utility of the discovered contextual motifs relative to motifs, we represent
each day’s data by the number of times each (contextual) motif appears in the signal and
use this representation in a supervised learning task. We transform each signal into a
feature vector representing motif counts. Given the fixed length feature representation,
any number of machine learning techniques can be used to learn a mapping from the
feature vector to the label.

Given the CGM data, we consider two different supervised learning tasks related to
T1D: hypoglycemia (low blood sugar) and hyperglycemia (high blood sugar). Hypo-
glycemic events are caused by an over administration of insulin, skipping meals, or in-
creased physical activity. They can result in unconsciousness, seizures, and even death
[83]. Hyperglycemic events are caused by overconsumption of carbohydrates or an un-
der administration of insulin. In the short term, severe hyperglycemic events can result
in coma or can lead to life threatening diabetic ketoacidosis. In the long term, chronic hy-
perglycemia increases risk for cardiovascular disease, neuropathy, kidney damage, and
early death [84].

To predict these events, we use one day of data to predict whether a hypo- or hyper-
glycemic event will occur in the next day. Due to the large number of hyperglycemic
events that occur in our data, we modified the prediction task to predict the occurrence
of two or more hyperglycemic events.

We selected these two tasks for their clinical relevance, but also since they differ sub-
stantially in terms of the underlying pathophysiology. Learning a representation that
works well across both tasks is more challenging, but ultimately, the goal of this work.

We do not focus on the choice of supervised learning algorithm, as our contribution
lies in the feature representation method. For consistency, we use a pipeline constructed
using Scikit-Learn [85] that tunes hyperparameters and fits a logistic regression classifier
using patient-aware stratification for cross validation and train-test splits. An outline of
our evaluation process is given in Figure 3.3. We report results in term of average area
under the receiver operating characteristic curve (AUROC) across train-test splits.

29

Validation

TrainTest

Logistic Regression

Model

Randomized 5-Fold CV Hyperparameter
Search

Train

Repeat 100x

Budget=200

AUROC

Data

FIGURE 3.3: Outline of evaluation process. Data is split, using a patient
aware scheme, into train-test splits 100 times. For each time, the training
data is used to train a logistic regression classifier, using cross validation to
perform randomized hyperparameter selection. The AUROC of the trained

model is then calculated on the test data.

3.4.2 Experiments on Real Data

We now present the results of our contextual motif methods applied to our CGM dataset.
We begin by examining the performance of our data-derived contextualize motif tech-
niques, followed by an evaluation of our data-generating techniques.

Data-Derived Motifs

Our first set of experiments explores the utility of two-stage inference for data-derived
motifs. Using the physiological data described in Section 3.4.1, we use the state-of-the-art
data-derived motif discovery method MDLats to discover motifs in three ways:

• Baseline: without context,

• Expert-Driven: using two-stage inference to add context defined according to the
domain rule discussed in Section 3.3.1. This rule is based on the clinically validated
measure of glycemic variability, MAGE [77],

30

TABLE 3.2: Predictive utility of contextual data-derived motifs. We observe
an increase in AUROC when including expert- and data-driven contextual
information, though the data-driven context is more informative. All differ-
ences shown (except between baseline and expert-driven Hyper) are signifi-

cant (p < 0.001).

Method AUROC (std)

Context Hypo Hyper

Baseline 0.535 (0.022) 0.527 (0.020)
Expert-Driven 0.552 (0.023) 0.534 (0.020)
Data-Driven 0.607 (0.023) 0.567 (0.022)

• Data-Driven: using two-stage inference to add context defined as the hidden state
sequence in an HMM, as described in Section 3.3.1.

We use the learned motif representations to predict both hypo- and hyperglycemic events,
using the pipeline discussed in 3.4.1. To faithfully re-implement MDLats, we discretized
our data using the SAX representation technique[86].

The results are presented in Table 3.2. At first glance, the results of current state-of-
the-art are not encouraging. MDLats (or contextless motifs) achieves an AUROC=0.535
and AUROC=0.527 for the tasks of predicting hypo- and hyperglycemic events respec-
tively. But this level of predictive performance is not uncommon for such difficult tasks.
Moreover, if we focus on the differences in performance, incorporating data-driven con-
text leads to a significant increase in performance across both tasks (AUROC=0.607 and
AUROC=0.567).

Data-Generating Motifs

In our second set of experiments, we shift to data-generating motifs to test our joint infer-
ence approach. Furthermore, this allows us to measure the value of contextual motifs in a
different setting (i.e., data-derived vs data-generating). We compare the MMM (presented
in Section 3.2.1) against our CMMM on the glucose dataset.

We applied the MMM and CMMM to the CGM data. With the MMM, we can infer
context using a two-stage process, the first stage is motif discovery and the second stage
is contextual inference. This results in a (motifs, context) representation that can be

31

TABLE 3.3: Predictive utility of contextual data-generating motifs. We note
two main trends in these results. First, the CMMM consistently outperforms
the MMM (difference between CMMM and MMM with no context and in-
ferred context significant with p < 0.001). Second, the inferred context
improves performance over the noise context (significant in CMMM with

p < 0.001)

Method AUROC (std)

Model Representation Hypo Hyper

MMM
(motif) 0.517 (0.023) 0.588 (0.026)

(motif, noise) 0.486 (0.018) 0.575 (0.029)
(motif, context) 0.496 (0.018) 0.578 (0.024)

CMMM
(motif) 0.539 (0.026) 0.595 (0.025)

(motif, noise) 0.510 (0.025) 0.577 (0.023)
(motif, context) 0.533 (0.020) 0.591 (0.029)

used in prediction tasks. We also consider the utility of (motifs) alone (without inferring
context).

Recall, that for the CMMM, context and motifs are discovered jointly. To tease apart
the individual contributions, we consider the performance of models trained on only
(motifs) vs. (motifs, context).

In addition to the (motifs) vs. (motifs, context) we also consider a third repre-
sentation: (motifs, noise). Here, we have added a ‘noise’ context to more explicitly
compare the value added by our contextual inference procedure. By adding context to
motifs, we increase the dimensionality of the feature representation. Although the stan-
dard motif representation is strictly a subset of contextual motif representation, as one
increases the dimensionality of the feature space it becomes easier to overfit, especially in
settings with a limited number of training examples (like our own). Thus, for the purpose
of comparison we project the contextless data to a representation of equal dimension.

Discovery of data-generating motifs is much more computationally intensive than dis-
covering data-derived motifs. As such, we perform motif discovery on a randomly cho-
sen limited subset of the data (40 days). After fitting our models, we apply maximum
likelihood estimation to the remainder of the data to find motifs and context across all
data, so we do not reduce our training data size for evaluation purposes. In a follow up

32

experiment, we used an optimized GMM package and the entire dataset. We did not,
however, observe a significant improvement in predictive performance, suggesting that
this subsampling has little effect on performance.

We set motif hyperparameters (number and length of motifs and contexts) for both
methods to be identical. Based on a grid search over plausible values given our domain,
we set the number of different motifs discovered to 20, the length of motifs |m| = 8
(representing 40 minutes of glucose data), the length of each context window |c| = 72, and
the number of contexts to 2. We evaluated our learned motif representations identically
to the method used in Section 3.4.2.

The results of our experiments are given in Table 3.3. Our proposed CMMM approach
dominates the MMM approach. Focusing on the (motif, context) representation, when
motifs and context are learned jointly as opposed to sequentially we see significant im-
provements in performance AUROC=0.591 vs. AUROC=0.578 for hyperglycemic events.
We further explore these differences and the potential cause in the next section.

3.4.3 Experiments on Simulated Data

To evaluate our proposed contextual motif methods on data with known structure across
a range of settings, we turn to experiments using simulated data. Our simulated data
are created using the CMMM generative model shown in Figure 3.2. We create labels for
these data following the procedure given below, varying β1 values to simulate different
types of settings. Our actual generation process is given in Algorithm 5.

We examine the effects of using our proposed CMM model and a variety of repre-
sentations: (motifs), (motifs, noise), two-stage: (motifs, context) (where context
is inferred after motifs are discovered), and joint:(motifs, context) (where motifs and
context are jointly inferred). As an upper bound, we compare to two oracles that are
based on the ground truth motifs and contextual motifs. Here, we can vary the impor-
tance of the contextual motifs (by varying the value of β1). This allows us to directly test
the efficacy of our proposed methods. We examined predictive performance using 10,000
simulated signals, with identical CMMM hyperparameters to those used in our real data-
experiments, as input to the same evaluation pipeline above (with the exception that the
number of train-test splits is reduced to 25).

33

ALGORITHM 5: Synthetic Data Generation
Data: The number of signals to generate |X|, a fully-specified contextual motif

mixture model CM, including the number of contexts nc, number of motifs
nm

Result: A synthetic contextual motif dataset
for i ∈ [1, . . . , nc] do

for j ∈ [1, . . . , nm] do
Draw a value for the contextual motif: v(mj,ci)

∼ U(−1, 1) ;
end

end
for Each signal in the dataset x ∈ X do

Draw contexts, motifs, and values for the signal according to the contextual
motif mixture model CM using Algorithm 4;

Compute a raw score for the signal: sx = ∑(m,c)∈x v(m,c);

Transform the score into a Bernoulli parameter: px =
exp(β1sx)

1+exp(β1sx)
;

Draw the signal’s outcome: yx ∼ Ber(px);
end

The results are presented in Figure 3.4. Motifs without context perform the worst
(and almost identically to noise motifs). Here, we do not observe a meaningful decrease
in performance when introducing noise, perhaps because we simulated a much larger
dataset. Including separately inferred context provides a minor boost to performance,
and jointly inferred context provides a major boost, surpassing the performance of the
contextless oracle and approaching the performance of the oracle with context.

3.5 Discussion

Our results confirm both the importance of context in physiological time series and the
efficacy of contextual motifs in capturing this context. Below, we summarize some of the
main takeaways of our experiments and present a follow-up analysis where we take a
closer look at what the models actually learned.

Contextual Motifs vs. Motifs. Our first set of experiments demonstrates that con-
textual motifs are more discriminative than their contextless counterparts, even when

34

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
β1

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C
 (

sd
)

CMMM Performance on Simulated Data

Baseline
Dummy Context
Motif Topic Context: TwoStage
Motif Topic Context: Joint
Oracle: Motifs
Oracle: Contextual Motifs

FIGURE 3.4: Here we see the efficacy of our CMMM inference method on
10,000 simulated signals as we vary the strength of relationship between con-
textual motifs and outcome. Using only the inferred motifs results in subop-
timal performance. Two-stage context inference improves performance, but
not as much as using the jointly inferred motif and context labels. Error bars

on all lines signify 1 standard deviation.

35

context is inferred. In Table 3.2, we show that, particularly when using data-driven tech-
niques, contextual motifs are more predictive of both hyper and hypoglycemic events.
These events are, on their face, opposites, as one involves an increase in glucose levels
while the other involves a decrease. However, both events are indicative of poor glycemic
control. The fact that our inferred context improves the predictive utility for motifs on
both tasks simultaneously suggests that contextual motifs are more informative of the
physiological system than motifs alone.

Joint Inference vs. A Two-Stage Approach. Our second set of experiments suggests
the utility of a joint inference approach. Both the motifs and contexts discovered by the
CMMM are more discriminative than those discovered by the MMM. Although we did
not observe large differences between CMMM motifs with and without context, we did
observe a significant improvement compared to (motifs, noise). Moreover, in our large
simulated dataset we observed a performance increase when we include context. Impor-
tantly, we observe a much larger performance increase when using the jointly inferred
context.

Data-Derived vs. Data-Generating. Our results also demonstrate the utility of con-
sidering both data-derived and data-generating motif frameworks. The data-derived mo-
tif discovery method, MDLats, was able to discover variable length motifs much faster
than our data-generating motif discovery methods were able to discover fixed length mo-
tifs. However, we observe that, while the data-derived motif representation was more
useful for predicting hypoglycemic events (max AUROC 0.607 vs max AUROC 0.533),
the data-generating motifs were better at predicting hyperglycemic events (max AUROC
0.591 vs max AUROC 0.567).

Our third set of experiments show the promise of jointly inferred contextual motifs
across a range of settings. In our large simulated dataset, we did not observe a perfor-
mance difference between contextless motifs and motifs with a noise context, suggesting
that our regularization issues were a result of the data and not our pipeline. In this setting
we observe a performance increase when we include context. Importantly, we observe a
much larger performance increase when using the jointly inferred context.

One of the main advantages of motifs is their interpretability. In Figure 3.5, we show
the motifs we discovered in the CGM data. In this collection, we observe several in-
teresting patterns, including nonlinear monotonic increases/decreases in glucose levels,

36

0 1 2 3 4 5 6 7
Motif Position

40

30

20

10

0

10

20

30

40

B
G

 v
al

ue
 (

ce
nt

er
ed

)

Selected motifs learned by CMMM

FIGURE 3.5: A hand-selected subset of motifs learned from the physiological
data, selected to demonstrate the interesting range of motifs present.

demonstrating the nonlinearity of the glucoregulatory system. Additionally, we observe
‘peak’ and ‘trough’ motifs, which appear indicative of hypo- and hyperglycemic events.

To examine the contexts we jointly inferred using the CMMM, we examine the differ-
ence in motif mixing probabilities under each context (|fl0 − fl1|). The three motifs with
the greatest negative and positive difference are shown in Figure 3.6. Interestingly, we ob-
serve a clinically significant increase in value range for motifs more likely under context
0 vs. 1. This suggests that context 0 represents periods of elevated glycemic variability,
this indicates the unsupervised, data-driven discovery of post/pre-meal contexts.

An important assumption made by our current contextual motif methods is that all
contexts are categorical. This makes sense for binary context sets, such as post/pre-meal.
However, it may make sense to consider contexts on a finer scale, for example: post-
large meal, post-small meal, and fasting. In these cases, one may consider extending the
proposed framework to ordinal or even continuous representations. Additionally, the
utility of contextual motifs depends greatly on the context under consideration. When
useful context is unobserved and difficult/impossible to derive from the signal, the utility
of contextual motif discovery may be limited.

37

0 1 2 3 4 5 6 7
Motif Position

40

20

0

20

40

B
G

 v
al

ue
 (

ce
nt

er
ed

)

Context 0 Motifs

(A)

0 1 2 3 4 5 6 7
Motif Position

20

15

10

5

0

5

10

B
G

 v
al

ue
 (

ce
nt

er
ed

)

Context 1 Motifs

(B)

FIGURE 3.6: CMMM context comparison. Figure 3.6a contains the top three
motifs occurring more often in context 0, Figure 3.6b contains the top three

motifs occurring more often in context 1

3.6 Summary and Conclusions

In this chapter, we described how the utility of motifs, as a representation for physiolog-
ical time-series data, is limited when context is ignored. To address this limitation, we
introduced the concept of contextual motifs and proposed methods for contextual motif
discovery.

We considered two settings: when context is observed and when context is unob-
served. In the first setting, we provided a simple extension that transforms any motif
discovery algorithm into a contextual motif discovery algorithm. The second setting is
more interesting and perhaps more common. When context is unobserved, we provided
techniques to both independently and jointly infer context and motifs.

On real data, we conclude that contextual motifs are more discriminative than their
contextless counterparts, even in the absence of observed context. On simulated data,
we show a clear improvement in performance when motifs and context are jointly in-
ferred compared to a two-stage approach. We conclude that given a large enough dataset,
CMMM is preferred over other approaches.

Our results confirm both the importance of context in physiological time-series and
the efficacy of contextual motifs in capturing this context.

38

Chapter 4

Improving Time-Series Classification
Without Additional Data Using Limited

Self-Supervision

4.1 Introduction

In Chapter 3, we proposed a general representation-learning approach for physiological
time series based on the idea that well conserved subsequences are important. This is an
example of a two-stage representation learning approach. Here, we explore an end-to-end
representation learning framework, where the representation is directly optimized to be
useful for the target task. More specifically, we focus on a deep end-to-end representation
learning for sequence classification.

Many problems involving sequential data, such as machine translation, sentiment
analysis, and mortality prediction, are naturally framed as sequence-level tasks [87]–[89].
Sequence-level tasks map a sequence of observations x0:T to a single label y. Learning
this mapping is often made challenging due to a high-D (dimension) low-N (number of
samples) setting [90]. Such problems are particularly prevalent in healthcare tasks, which
often involve limited quantities of labeled data captured at a high temporal resolution
(e.g., electrocardiogram waveforms).

In high-D low-N settings, researchers have had success with transfer learning tech-
niques, by leveraging additional data to learn intermediate representations that are then

39

used in the target task. Such approaches have proven effective across a number of do-
mains including, computer vision [91], [92], speech processing [93], [94], and natural lan-
guage processing [89], [95]. The assumption of additional labeled data or large amounts
of unlabeled data is often reasonable in such fields, where data is abundant and hu-
man annotation for specific tasks is the bottleneck. However, in many domains col-
lecting the data, even without annotations, is either expensive or there is an inherently
limited amount of underlying data (e.g. personalized medicine). When additional data
are unavailable, it may be possible to improve the intermediate learned representation
of the data with respect to the target task by considering additional tasks intrinsic to
the structure of the data. In particular, we hypothesize that the structure of sequential
data provides a rich source of innate supervision. For example, signal reconstruction or
forecasting could improve the intermediate representation by capturing the underlying
data-generating process. Such approaches are examples of self-supervision, where labels
are derived from the input (as opposed to external sources).

Our Approach. In this chapter, we show that leveraging the sequential structure of the
data at-hand can lead to improved performance on sequence-level tasks (i.e., the target
task). More specifically, by considering self-supervised auxiliary tasks (e.g., signal recon-
struction), in addition to the sequence-level task, one can learn useful intermediate rep-
resentations of the data. Past work investigating self-supervision for sequential data has
focused on full-signal reconstruction [96], and to a lesser extent forecasting [14]. Building
on past work, we examine the utility of self-supervision on sequential data when addi-
tional data are unavailable, and we propose new types of self-supervision tasks. We refer
to this approach as ‘limited self-supervision.’ We limit the self-supervision to the labeled
data and focus on self-supervised auxiliary tasks relevant to sequential data ordered by
time (i.e., time-series data). For applications, including those involving blood glucose
data, investigating ways to improve performance without large amounts of data, labeled
or unlabeled, is important. Using wearable health monitors, it is possible to collect vast
amounts of longitudinal data for an individual. When these data are used for prediction
tasks involving chronic diseases (which tend to progress slowly), this results in a high-D
low-N learning setting. The number of individuals, N, is typically the limiting factor. In

40

such scenarios, one might turn to unlabeled data for pretraining. However, there is no
clear source of unlabeled data in this application.

Our main contributions are as follows:

• We demonstrate the efficacy of the proposed limited self-supervision framework for
improving performance across datasets/tasks with no additional data.

• We compare the utility of several different existing forms of self-supervision in
our limited-data setting, identify consistent trends across supervision types, and
demonstrate the utility of combining multiple different forms of self-supervision.

• We propose a new form of self-supervision, piecewise-linear autoencoding, that
trades off fine-grained signal modeling and long-term dependency propagation. We
demonstrate that this is the best form of limited self-supervision across all tasks.

• We provide empirical insights on how auxiliary tasks improve performance under
limited self-supervision.

Our work suggests that there is a wide range of time-series and sequence classifi-
cation tasks where limited self-supervision could improve performance. It also shows
the value of including multiple, simultaneous streams of auxiliary self-supervision. Our
findings present a methodological contribution, in the form of a useful new type of self-
supervision, piecewise-linear autoencoding. Further, our empirical findings on when and
how auxiliary tasks help can inform future work in developing self-supervision tech-
niques.

Organization. The remainder of this chapter is organized as follows. We first provide
an overview of past work on self-supervision and multitask learning. Then, we formalize
our problem and describe the self-supervised tasks we consider. We next describe the
datasets we experiment with and provide our results, demonstrating the ability of self-
supervised tasks to improve performance with no unsupervised data.

4.2 Related Work

Previous work has found value in self-supervised pretraining with large amounts of un-
labeled data [14], [97]. In our work, we focus on time-series data instead of language data.

41

Several previous works have examined self-supervision for pretraining or feature extrac-
tion in the context of time series [98], [99]. We substitute the pretraining framework with
a multitask learning framework, removing the requirement to train multiple individual
models. However, in contrast to standard pretraining or multitask learning setups, we do
not assume the availability of additional data for training. We posit that even in the absence
of additional data, self-supervision can lead to improved performance on the target task.

Multitask learning deals with training a single model to perform well on multiple
tasks. By simultaneously training on multiple related tasks and sharing representations,
multitask models can improve generalization [100]. Multitask learning has been used
successfully across a number of different clinical tasks [35], [87], [101], [102]. In particular,
the success of multitask learning in deep learning demonstrates its value for representa-
tion learning [103]. Within the context of supervised learning, Schwab et al. considered
a multitask framework for learning from sequential health data [104]. Though they used
self-supervision, they only considered a setting where large amounts of unlabeled data
were available.

Our work was inspired by the findings of Dai and Le [96]. Dai and Le compared
sequence-autoencoding and language modeling as auxiliary tasks for leveraging large
pools of unlabeled data for natural language tasks (e.g., sentiment analysis). Their ap-
proach led to state-of-the-art performance on a range of problems. They found sequence-
autoencoding led to larger improvements than language modeling. Interestingly, they
found jointly training on the main and auxiliary task decreased performance relative to
the baseline. In contrast, we focus on self-supervision for time series and do not assume
access to additional data.

[105] examines self-supervision without additional data applied to hierarchical EHR
data. They also demonstrate the benefit of adding auxiliary supervision. Our work dif-
fers from this by i) using sequential as opposed to hierarchical structure, ii) examining
multiple streams of simultaneous supervision and iii) comparing a broad range of aux-
iliary tasks on general time series data. [106] find that training a sequence classification
model to simultaneously forecast the data as an imputation method improves overall per-
formance, though they suggest this is due to better handling missing data. We examine
the impact of auxiliary self-supervision more generally as a way to improve supervised
representation learning.

42

4.3 Learning with Self-Supervised Auxiliary Tasks

In this section, we present our proposed limited self-supervision approach. After describ-
ing our notation, we present our baseline encoder-decoder architecture and describe four
self-supervised auxiliary tasks examined throughout this chapter.

4.3.1 Problem Definition and Notation

We define a sequence as a set of observations {xt}T
t=0 : xt ∈ Rd ordered by the index t. We

denote such a sequence as x0:T. Each observation xt is a d-dimensional vector. We focus
on univariate, evenly sampled time series.

We categorize time-series tasks across three dimensions: i) target vs. auxiliary tasks,
ii) external supervision vs. self-supervision, and iii) sequence-level vs. subsequence-level
tasks. A target task is the task of interest, whereas auxiliary tasks are only useful insofar
as they improve performance on the target task. External supervision occurs when the
task labels are provided by an external source (e.g., object recognition). Self-supervision
occurs when no additional supervision is required to generate the ground truth label (e.g.,
in autoencoding, the input itself serves as the supervision). A sequence-level task is one
where the supervision pertains to the entire sequence (i.e., sequence classification). A
subsequence-level task provides multiple instances of supervision across the signal. In
our work, all the target tasks are sequence-level tasks requiring external supervision. We
denote the label of the target task as y. Our auxiliary tasks are all self-supervised and may
be either sequence- or subsequence-level.

4.3.2 Baseline Architecture

In this chapter, we examine the relative merits of four different self-supervised auxiliary
tasks. Throughout, we consider a fixed encoder architecture, focusing on the improve-
ments offered by the auxiliary tasks. Specifically, we focus on recurrent neural networks
with LSTM cells. We use a 1-layer LSTM with the number of hidden units determined on
a task-by-task basis. These architectures have proven useful for sequential tasks in many
domains [14], [51], including health data [87]. We note that our techniques could work
with any representation-learning gradient-based approach.

43

(A) (B)

FIGURE 4.1: a) Our full task architecture. The green encoder layer is shared
across all tasks. The target decoder is a fully connected layer mapping to
the correct label size. The auxiliary tasks connect to hidden states. Note the
sequence-level tasks only connect to the final hidden state. b) Each auxiliary
task decoder DX is composed of a recurrent layer RX and an output layer OX.
DAE) Autoencoder. DF) Forecaster. DPS) Partial-Signal Autoencoder. DPL)

Piecewise-Linear Autoencoder.

44

Figure 1a depicts our baseline architecture and its relation to auxiliary tasks. The
encoder is implemented as a single-layer LSTM. The target decoder is a single fully con-
nected layer mapping from hidden state zT to the output. This simple output layer pur-
posely places a heavy burden on the encoder, since the representation learned by the
encoder is shared by (and thus may improve from) all tasks. We train the model by min-
imizing the cross-entropy between our predictions ŷ (put through a softmax activation)
and the one-hot distribution representing the correct label class (Eqn. 1).

min
θD,θE

Ltarget = −∑
i

y(i) log(D(zT; θD)
(i)) (4.1)

zT = E(x0:T; θE)

Where θE and θD are parameters for the encoder and decoder respectively and i in-
dexes class labels. We compare this baseline architecture trained with no auxiliary tasks
to models trained with up to four auxiliary tasks.

4.3.3 Self-Supervised Auxiliary Tasks

We consider four self-supervised auxiliary tasks: i) autoencoding (i.e. reconstruction),
ii) forecasting, iii) partial-signal autoencoding, and iv) piecewise-linear autoencoding
(shown in Figure 1b). The auxiliary tasks take as input the output of the encoding net-
work. Task X is implemented as a decoder DX, composed of a recurrent layer RX and a
fully connected output layer OX. While our sequence-level target task requires only one
prediction at the end of the sequence, some of our auxiliary tasks are subsequence-level,
in which case the task takes as input the intermediate encoding representation zt.

i) Autoencoding (AE). This is a standard method for unsupervised training in which
we seek to, given the final hidden state produced by the encoder, output a reconstruction
of the complete signal that minimizes error (Eqn. 2). This task requires that the hidden
state encode compressed version of the input, compression encourages learning latent
structure and discourages learning noise. The decoder, parameterized by a single-layer
autoregressive LSTM, outputs a sequence: DAE(zT) = x̂0:T. Note zT = E(x0:T; θE), and

45

thus depends on θE.
min

θE,θAE
LAE = ||x0:T − DAE(zT; θAE)||22 (4.2)

ii) Forecasting. In this task, the decoder takes the hidden state produced at any time
step by the decoder and attempts to predict the next h (for example, 6) elements in the
sequence. This requires the hidden state to encode the dynamics of the data-generating
process. The decoder outputs xt+1:t+h given past values x0:t, minimizing (Eqn. 3). We
use a single-layer LSTM similar to the AE decoder, though it is used at each time-step to
decode the next h observation values.

min
θE,θF

LF =
T−h

∑
t=1
||xt+1:t+h − DF(zt; θF)||22 (4.3)

zt = E(x0:t; θE)

iii) Partial-Signal Autoencoding (PS-AE). This auxiliary task is a variant of AE that dif-
fers in three ways: 1) instead of decoding the full signal x0:T it decodes only the previous h
(for example, 6) steps of the signal xt−h:t−1, 2) instead of one prediction being made at the
end of the encoder, a prediction is made at every encoding step from xh onward, and 3)
the input to the decoding layer includes the current value, xt (Eqn. 4). It is implemented
identically to the Forecast Decoder. The only difference is that it predicts the previous
h observation values. This task allows us to examine the impact of signal reconstruc-
tion without requiring learning long-term dependencies, allowing for a more meaningful
comparison with Forecasting.

min
θE,θPS

LPS =
T−h

∑
t=1
||xt−h:t−1 − DPS(zt; θPS)||22 (4.4)

iv) Piecewise-Linear Autoencoding (PL-AE). A piecewise-linear approximation, or a
combination of line segments, is capable of efficiently representing a wide class of signals
(particularly non-periodic signals). It is a promising choice for an auxiliary task as it
encourages a compact representation capturing the most important details of the signal.

46

A piecewise-linear representation consists of two length n + 1 vectors (where n is the
number of linear segments in the signal), a value vector v and a position vector p. The
positions are defined as proportions of the original signal length, between 0 and 1. The
decoder produces a series of points that define a piecewise-linear reconstruction of the
complete input signal. The reconstruction is defined by linear interpolation between the
series of points (p0, v0) . . . (pn, vn), where vi is the value of the signal at the point i, and
pi is the relative position (or time) where the point occurs. Our decoder produces n + 1
such points using a single-layer autoregressive LSTM where the hidden state is fed to two
output layers that map zPL

i → (vi, pi). For each point i ∈ [0, n + 1] we feed the previous
point value vi−1 and the sum of previous positions ∑

j=i−1
j=0 pj to the decoder. After we

have generated the target number of points, we normalize the position values to enforce

∑n+1
j=0 pj = T and perform the interpolation. As this entire process is differentiable, we

optimize the decoder directly on the interpolated reconstruction loss (Eqn. 5).

min
θE,θPL

LPL = ||x0:T − DPL(zT; θPL)||22 (4.5)

Additional details on these tasks can be found in Appendix A.1.

4.3.4 Training

We optimize our model to minimize the loss:

L = Ltarget + LAux (4.6)

Where Ltarget is a cross-entropy loss and

LAux = αAELAE + αFLF + αPSLPS + αPLLPL (4.7)

is a weighted summation of auxiliary MSE losses. The weighting terms αX are defined
as 0 if the auxiliary task X is not being used for training. If the task is being used, then
αX =

Ltarget
LX

, where the losses are calculated at the beginning of training using the newly-
initialized network on the training data. This ensures that all tasks have losses of similar
magnitude.

47

4.4 Experimental Setup

To test if auxiliary self-supervision improves performance on sequence-level tasks, we
consider at a variety of sequence-level tasks across different types of synthetic and real
data.

4.4.1 Target Tasks & Datasets

We consider the following three tasks (two of which are based on publicly available real
datasets):

Piecewise-Linear Segment Prediction (PLA). We begin with simulated data, as it al-
lows us to estimate the ability of self-supervised auxiliary tasks to identify long-term
dependencies in the data. The dataset is composed of piecewise-linear signals, each of
length 100. Point values are drawn from a uniform distribution and lie between -1 and
1. The number of line segments also varies uniformly between 1 and 6. The target task
for this dataset is to estimate the number of distinct segments that occurred in the signal.
1,000 training, validation, and test sequences were generated independently.

Patient Classification using Glucose Data (T1D). This task uses the glucose dataset
discussed in Section 2.1.1. Each signal x0:T consists of 288 glucose measurements sam-
pled every five minutes over the course of a day. This dataset contains 1,863 days of
data from 40 patients. In this task, we aim to classify patients based on their data. Here,
y ∈ {1, . . . , 40} represents the patient. Classifying patients is a proxy for the important
problem of identifying signal dynamics. We preprocess the data by removing physio-
logically implausible glucose measurements, and linearly interpolating missing chunks
of data. We exclude signals where more than 20% of the measurements are missing and
those that are missing a contiguous block longer than two hours. Data were collected by
a series of multi-day sessions separated by three-month intervals. As our test set, we con-
sider the final recording session from each patient. We select our validation set randomly
from the remaining data.

Atrial Fibrillation Detection (AF). Our final task uses electrocardiogram (ECG) data
from the publicly available 2017 PhysioNet Challenge [107], in which the goal was to auto-
matically diagnose atrial fibrillation (AF). This dataset contains four unevenly distributed
classes: normal sinus rhythm, AF, other arrhythmia, and noise. We use the training data

48

provided for the competition (the test data are not publicly available), resulting in 8,528
samples. 771 of those signals are labeled AF. We exclude signals with less than 30 sec-
onds of data (967 signals total, 127 with AF) and truncate all signals to exactly 30 seconds.
We also downsample the data, reducing signal size from 9,000 to 125. This speeds up
training time and eases memory requirements. We use the validation set provided for the
challenge as the test set (removing those examples from the training set), and randomly
sample 10% of the training data for use as a validation.

4.4.2 Implementation Details

We implement all models in PyTorch [108], and optimize model parameters using Adam
[109] with an initial learning rate of 1e − 3 (the default PyTorch value). In practice we
found altering the decoding horizon had little effect on performance, so we used h = 6
for all experiments. All encoding/decoding layers are composed of a single recurrent
layer an identical number of hidden units, set on a per-task basis using performance on
the validation set to balance training time, memory constraints, and target-task perfor-
mance (evaluated using the early-stopping validation set). We used 128 hidden units for
the PLA target task, 512 hidden units for the T1D target task, and 256 hidden units for
the AF target task. The decoding layers also have 1 (or two for PL-AE) fully connected
output layers. For the PL-AE, we set the number of line segments n = 6 as a reason-
able size to approximate many signal types. We mitigate the risk of overfitting by using
early stopping on a withheld validation set, training until we fail to improve performance
for over 50 epochs and reporting test performance for the best performing model on the
validation data.

Some auxiliary tasks make predictions at multiple points in the signal. This helps pre-
vent the vanishing gradient problem, which can impede learning with large sequences.
To avoid conflating these sorts of improvements with those caused by learning better
representations, we use label propagation with our target task (sequence classification),
linearly annealing contributions to the loss function over the length of the signal [96].
The propagated losses are combined using a weighted average, with the weights linearly
annealed from 0 to 1 over the length of the signal.

49

0 1 2 3 4
Auxiliary Tasks

0.5

0.6

0.7

0.8

0.9

AU
C-

RO
C

Auxiliary Improvement: PLA

(A)

0 1 2 3 4
Auxiliary Tasks

0.50

0.55

0.60

0.65

0.70

AU
C-

RO
C

Auxiliary Improvement: T1D

(B)

0 1 2 3 4
Number of Auxiliary Tasks

0.500

0.525

0.550

0.575

0.600

0.625

0.650

AU
C-

RO
C

Auxiliary Improvement: AF

(C)

FIGURE 4.2: Performance across three target tasks by number of auxiliary
tasks used (averaged over all possible orderings). In general, we observe that
the greater the number of auxiliary tasks, the greater the performance for all
three tasks. The marginal improvement from including additional auxiliary

tasks appears to taper off as the number of tasks increases.

4.5 Experiments and Results

In our experiments, we seek to answer the following questions:
• Does limited self-supervision improve classification performance? (Figure 4.2)
• Are some forms of self-supervision more effective than others? (Figure 4.3 and Ta-

ble 4.1)
• How does the amount of training data available affect self-supervision? (Figure 4.4)

We begin by establishing that the proposed self-supervised auxiliary task framework im-
proves target task performance. We then look more carefully at the effects of different
types of auxiliary tasks. We conclude by looking at the relationship between auxiliary
task and target task performance, which sheds light on the mechanism by which auxil-
iary tasks improve performance.

To evaluate the results of these experiments, we measure the macro-averaged AUC-
ROC on the target task, and the mean absolute percent error (MAPE) for the auxiliary
tasks. We repeat all experiments using three random initializations and average the re-
sults.

50

AE ForecastPS-AE PL-AE
Auxiliary Task

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Im
pr

ov
m

en
t t

o
AU

C-
RO

C

Averaged Improvement: PLA

(A)

AE ForecastPS-AE PL-AE
Auxiliary Task

0.000

0.002

0.004

0.006

0.008

Im
pr

ov
m

en
t t

o
AU

C-
RO

C

Average Improvement: T1D

(B)

AE ForecastPS-AE PL-AE
Auxiliary Task

0.000

0.005

0.010

0.015

Im
pr

ov
m

en
t t

o
AU

C-
RO

C

Averaged Improvement: AF

(C)

FIGURE 4.3: The average marginal contribution of each auxiliary task across
target tasks. The PL-AE task consistently offers the greatest marginal im-

provement, and the forecasting task consistently provides the least.

The Benefit of Limited Self-Supervision. We begin by examining our main hypoth-
esis, that limited self-supervision improves sequence-level task performance without ad-
ditional data. In Figure 4.2, we plot target-task performance across our three tasks with a
varying number of self-supervised auxiliary tasks. We estimate performance for a given
number of auxiliary tasks by averaging the performance of all possible combinations. For
all three sequence-level tasks, the inclusion of four auxiliary tasks improves performance
relative to no auxiliary tasks. Moreover, we observe that performance tends to increase
with the number of auxiliary tasks. The one exception is in the T1D task, where improve-
ment peaks at three auxiliary tasks.

Relative Contribution of Different Auxiliary Tasks. We now examine how differ-
ent auxiliary tasks contribute differently to performance. To measure the impact of indi-
vidual auxiliary tasks, we average performance across all models that include the aux-
iliary task versus all models that do not. This allows us to observe an auxiliary task’s
individual contribution, and its ability to usefully combine with other streams of self-
supervision. The averaged change in AUC-ROC indicates the marginal improvement
offered by the task (Figure 4.3). PL-AE outperforms all other auxiliary tasks, including
AE, on all three datasets. Since PL-AE limits the temporal granularity of the output, this

51

TABLE 4.1: The performance of particular combinations of auxiliary tasks.
All methods include the dataset-specific target task. AE and Forecast refers
to Autoencoding and Forecasting respectively, the auxiliary tasks explored
in [96]. PLAE and PSAE refer to Piecewise-Linear Autoencoder and Partial-
Signal Autoencoder, our novel forms of self-supervision. We see that our
newly proposed forms of self-supervision outperform the other approaches

on all datasets.

AUC-ROC * 100
Auxiliary Tasks PLA T1D AF
None 50.0± 0.4 67.1± 1.3 55.2± 4.0
AE 88.6± 0.3 66.7± 0.4 59.8± 1.2
Forecast 53.5± 5.2 66.3± 0.5 57.0± 2.0
AE+Forecast [96] 89.5± 0.6 67.4± 1.0 61.0± 0.7
PLAE+PSAE (Ours) 89.6± 0.4 69.6± 0.5 60.0± 3.3
All (Ours) 90.7± 0.3 67.8± 0.7 62.4± 2.1

suggests that modeling fine temporal granularity does not help, and may even hurt per-
formance. The forecasting task underperforms all other auxiliary tasks. This finding is
in line with the findings of [96]. However, the explanation Dai and Le provide (that the
AE encourages long-term dependency modeling) is inconsistent with the performance
of PS-AE, which also does not model long-term dependencies. The fact that the PS-AE
outperforms the forecasting task, but generally underperforms AE, suggests that while
modeling long-term dependencies may improve performance, there is likely some other
reason that AE works well. We also examine the performance of particular combinations
of self-supervised auxiliary tasks in Table 4.1. We see that our proposed auxiliary tasks
outperform and are complementary to standard auxiliary task combinations.

Why do Self-Supervised Auxiliary Tasks Help? To investigate the underlying mech-
anism by which auxiliary tasks improve performance, we examine model performance as
we vary the number of auxiliary tasks and the amount of training data (results shown in
Figure 4.4a). As the amount of training data increases, the added value from the auxiliary
tasks increases on average. This suggests that auxiliary tasks are not simply acting as a
form of regularization, since otherwise we would expect to see larger improvements on
smaller training sets.

If the auxiliary tasks result in better representations (not just regularized representa-
tions), their impact on performance should correlate with the auxiliary task performance.
A decrease in auxiliary task error should lead to a better intermediate representation and

52

100 500 1000
Training Data Size

0.0

0.1

0.2

0.3

0.4

Im
pr

ov
em

en
t i

n
AU

C-
RO

C

Effect of Training Data: PLA

Auxiliary
1
2
3
4

(A)

0.2 0.4 0.6 0.8
AE MAPE

0.60

0.65

0.70

AU
C-

RO
C

AE MAPE vs. AUROC

Data
500
1000
1500

(B)

FIGURE 4.4: A) The effect training data size has on auxiliary tasks. As the
amount of data increases, we tend to see an increase in the improvement af-
forded by the auxiliary tasks. B) The relationship between auxiliary task per-
formance (in MAPE, lower is better) and target task performance (in AUC-
ROC, higher is better) on the T1D data. Calculated over all training data sizes,
there is a somewhat weak relationship (Pearson R = -0.53, line not shown).
However, when we condition on the amount of training data, we find that
different relationships emerge (Pearson R = 0.34 when training size = 1,000

vs. -0.72 when training size = 1,500).

53

an increase in target task performance (i.e., AE MAPE and AUC-ROC should be nega-
tively correlated). Meanwhile, if the auxiliary tasks work as regularizers, exhausting rep-
resentation capacity, we would expect to see little effect or a positive correlation (if the
regularization effect is too strong, and auxiliary performance comes at the cost of target
performance).

We explore this, specifically for AE with the T1D data in Figure 4.4b. This relationship
is highly dependent on the amount of data. When training data are limited, there is a
weak positive correlation between auxiliary task error and target performance, suggest-
ing a regularizing effect. However, with the full amount of training data, we see a strong
negative correlation. Auxiliary tasks give sizable improvements at 1,000 and 1,500 train-
ing examples (averaged improvement of 0.016 and 0.010 respectively). This suggests that
1) auxiliary tasks act both to regularize and to enhance intermediate representations, de-
pending on the amount of data, and 2) there is an amount of training data where they are
effective in either role. These findings suggest that auxiliary self-supervised tasks may be
useful across a wide range of training set sizes.

4.6 Summary and Conclusions

In this chapter, we introduced and analyzed limited self-supervised, where we sought
to improve sequence-level task performance without additional data. By jointly training
our target task with auxiliary self-supervised tasks, we demonstrated small but consistent
improvements across three different sequence classification tasks. Our novel piecewise-
linear autoencoding task emerged as the most useful auxiliary task across all datasets.
In contrast, forecasting, which presents an intuitively appealing form of self-supervision,
led to the smallest improvements.

Across a range of training set sizes, we showed that the value of auxiliary tasks lies
in improving intermediate representations learned by the network. When limited train-
ing data are available, these tasks serve as a form of regularization. With more training
data, performance on the auxiliary tasks improves and so does performance on the target
task, suggesting more useful intermediate representations. In the context of time-series
analysis, limited self-supervision is an effective form of supervision and comes at little

54

cost. Going forward, researchers seeking to improve performance on sequence-level tar-
get tasks should consider incorporating self-supervised auxiliary tasks.

55

Chapter 5

Deep Multi-Output Blood Glucose
Forecasting

5.1 Introduction

In the previous two chapters, we focused on the problem of representing sequential data
as input to machine learning methods. In this chapter we shift focus to consider how
we frame the machine learning task of forecasting, and the implications of the output
representation we use.

In a typical signal forecasting problem, one aims to estimate the future value of the sig-
nal using past values. For example, one may aim to predict a blood glucose measurement
occurring 30 minutes in the future, given past blood glucose measurements. This single-
step setting generalizes to the multi-step setting, in which one aims to predict multiple
values within a time horizon. This multi-step setting is inherently more difficult, since it
requires modeling the joint probability of future measurements. While more challenging,
if successful this joint modeling of observations within a sequence can improve overall
performance. For example, while the word ‘the’ occurs often in English, the phrase ‘the
the the’ does not.

Recursive approaches, in which a single-step forecaster predicts several values by
using the current prediction to make the next prediction, are commonly used in multi-
step forecasting [15]. However, such approaches often suffer from poor long-term per-
formance, since any error introduced will enter a positive feedback loop. Alternatively,

The following is an adaptation of previously published work [110].

56

multi-output forecasting aims to estimate multiple values at once. While no longer sus-
ceptible to the feedback issue, multi-output forecasting may not adequately capture de-
pendencies among predictions.

Our Approach. In this chapter we examine two complementary solutions to better model
trajectories. In the first, we use a multi-output recurrent neural network where explicit
temporal dependencies between outputs captures the relationship between the predic-
tions. In the second, we propose a novel architecture that directly models the underlying
generating function of the signal by learning a polynomial approximation for the out-
puts. The problem of error accumulation during sequence prediction has been previously
studied in NLP [16], [111]. We distinguish ourselves from this past work by focusing on
new models that alleviate this problem, as opposed to new training schemes. For blood
glucose forecasting, approaches that predict value trajectories can be more useful than
approaches that predict a single future value. This is because the overall trend and vari-
ability in the signal are important factors to determine future treatment [112].

We apply the proposed approaches to a challenging real-world forecasting problem
(described below). Our main contributions can be summarized as followed:

• We propose two complementary deep multi-output forecasting architectures: an
autoregressive multi-output forecaster and a polynomial “function forecasting” sys-
tem.

• We improve over existing approaches by leveraging the proposed forecasting archi-
tectures on a large-scale real-world multi-step forecasting problem.

In additional analyses, we demonstrate that predicting multiple values can provide
extra supervision, improving single output forecasting performance.

This work focuses on forecasting blood glucose values. Forecasting blood glucose is
relevant to individuals with diabetes, as they need to consistently and tightly maintain
blood glucose levels, which can be aided by predictive alarms powered by forecasting
models [113].

Learning the dynamics of the glucoregulatory system is difficult because the long-term
system dynamics are highly nonlinear [114]. We tackle this challenge using data from

57

over 550K blood glucose measurements. Our proposed approaches, when used together,
achieve better results in terms of Absolute Percent Error (APE) than existing shallow or
deep forecasting approaches both on average (4.87 vs. 5.31) and particularly in periods of
extreme fluctuation (12.05 vs. 13.34).

Organization. The remainder of the chapter is organized as follows. In the next section,
we introduce notation and formally define our problem. We then present our proposed
forecasting architectures and methods. After, we present a series of experiments on a real-
world dataset demonstrating our approaches offer complementary solutions to the issue
of temporal dependence in multi-output forecasting.

5.2 Problem Setup and Background

In signal forecasting, one aims to estimate the next value in a signal xt+1 given past values
x0:t, x represents the signal of interest, and t the current time step. Here, we focus on the
univariate setting, i.e., x0, . . . , xt ∈ R, though our approaches generalize to the multidi-
mensional setting. The most common approaches to signal forecasting focus on learning
a model for p(xt+1|x0:t) [15], [33]. Sometimes a prediction offset d is added to learn the
model for p(xt+d|x0:t). Given the recent successes of deep architectures for this problem
in general [33], [47], [115], and specifically in the domain of glucose forecasting [116], we
focus on building upon deep learning methods for signal forecasting.

A model that accurately predicts xt+1 can be used for either single- or multi-step fore-
casting. Applied recursively, single-step models enable multi-step forecasting, i.e., pre-
dicting multiple values over a time horizon of length h (see Figure 5.1). Of particular
note are deep conditional generative models, which model joint distributions by sequen-
tially estimating terms in the conditional factorization of the distribution with deep neural
nets [33]. This style of forecasting, where p(xt+1:t+h|x0:t) is estimated by the factorization:
p(xt+1|x0:t)p(xt+2|x0:t, x̂t+1) . . . p(xt+h|x0:t, x̂t+1:t+h−1) is called recursive forecasting, and
is the primary form of multi-step forecasting [15]. Recursive models have the advantage
of modeling the joint probability of the signal within the prediction window. However,
the re-use of predictions creates a feedback loop, amplifying potential errors and leading
to lower quality predictions as the time horizon increases.

58

FIGURE 5.1: An example of multi-step recursive forecasting. Predictions at
one time step are fed back into the network as input. This allows for single-

step methods to produce multi-step forecasts.

In contrast, multi-output forecasting aims to estimate p(xt+1:t+h|x0:t) in one step [15].
Multi-output approaches sidestep the issue of error feedback by jointly estimating over
the prediction window, and will be the main focus of this work.

5.3 Methods

We examine two approaches for deep multi-output forecasting: 1) propagating informa-
tion across the prediction window, and 2) directly predicting the underlying generative
function of the signal. We investigate both approaches, as they represent different, com-
plementary methods to enhance multi-output forecasting. In this section, we first describe
the multi-output deep learning framework shown in Figure 5.2, then explain both exten-
sions, shown in Figure 5.3. We finish by providing additional details on how to train the
models.

5.3.1 Deep Multi-Output Forecasting (DeepMO)

A neural network can function as a multi-output forecaster by using multiple output
channels to infer multiple time points into the future from a shared hidden state. At time
t, a standard multi-output neural network derives a hidden state vector zt from input x0:t

through a series of hidden layers composed of linear combinations and nonlinear activa-
tion functions, all parameterized by θz. This hidden state is then translated to predictions
via the network’s output channels o1:h as follows:

59

FIGURE 5.2: Forecasting with DeepMO involves transforming the input to a
shared representation and then learning separate output networks for each

time point in the prediction horizon h.

x̂t+i = oi(zt; θi) for i ∈ [1 : h] (5.1)

where oi is defined in terms of linear combinations and nonlinear activations, param-
eterized by θi. This approach is illustrated in Figure 5.2. Note that the value of the pre-
dicted output at time step t + 1 is not explicitly propagated through the remainder of the
prediction window (as it would be in a recursive setting). The mapping defined by oi

has no direct impact on oj at inference time for j 6= i. However, x̂i is not independent
of x̂j since they both depend on the shared representation zt. Additionally, temporal de-
pendencies among the output are implicitly propagated by the joint optimization over
θ = [θz, θo1 , . . . θoh] during training. However, since this approach does not explicitly en-
code dependencies among the outputs, learning such relationships may be more difficult.

Standard neural networks require a fixed sized input. To eliminate this limitation,
we use recurrent neural networks (RNNs), which allow for variable-sized input. This
allows the network to learn the amount of history that is useful for prediction and make
predictions at any point in the signal. As such, this and all subsequent architectures use

60

(A)
(B)

FIGURE 5.3: Two extensions to the DeepMO forecasting framework (a) Se-
qMO uses a decoder network to generate a representation for each time point
in the prediction horizon that feeds into a shared output network to produce
h predictions (b) PolyMO learns n + 1 separate output networks based on a
shared representation zt, to infer the parameters of an nth degree polynomial

that is then used to generate the predicted output.

recurrent cells to generate zt. We use GRU cells [117], however, other recurrent cells could
be used as well. The recurrent cells are depicted by the orange cell in Figure 5.2. We refer
to the architecture described above as “DeepMO” (Deep Multi-Output Forecaster).

5.3.2 Sequential Multi-Output Forecasting (SeqMO)

We extend the approach described above by combining 1) the ability of a recursive fore-
caster to explicitly model temporal dependencies within a sequence with 2) the ability of
a multi-output system to model multiple time steps at once. To combine the advantages
of these two forecasting systems, we use the DeepMO architecture, described above, but
introduce temporal dependencies between sequential outputs.

Our sequential multi-output approach modifies DeepMO by replacing the multiple
output channels oi for i ∈ [1 : h] with a recurrent decoder network, parameterized by
θdec. The decoder network unrolls the hidden state zt into [z′1, z′2, . . . , z′h]. Each z′i is then
independently passed through the same shared output channel. Specifically, we replace
(5.1) with:

61

z′1, z′2, . . . , z′h = Dec(zt; θdec) (5.2)

x̂t+i = o(z′i; θo) (5.3)

With this setup, the model can learn to trade off between recursively propagating error
and capturing temporal dependencies. We refer to this approach as a sequential multi-
output forecaster (SeqMO) (Figure 5.3a). We hypothesize that by explicitly encoding a
temporal relationship among predictions, we will learn a more accurate forecasting strat-
egy. This approach uses a recurrent encoding-decoding framework [118] for time-series
forecasting. Note that this involves a many-to-many mapping, since we make multiple
sequential predictions at each time step.

5.3.3 Polynomial Function Forecasting (PolyMO)

Our second proposed extension reframes the forecasting task. Instead of learning the
distribution of future signal values conditioned on the past, we learn to predict an un-
derlying representation of the data. We call this function forecasting. In particular, we
assume the prediction window xt+1:t+h ∼ f (0 : h − 1; w), where w parameterizes the
function class f . Instead of directly modeling p(xt+1:t+h|x0:t), we estimate the parameters
to the underlying generative function p(w|x0:t) (see Figure 5.3b). Function forecasting is
analogous to SeqMO, where input data are encoded into a hidden state best parameter-
izing a decoder network. The key difference is that here the decoding step is restricted to
the function f .

We restrict our generating function class f to polynomials of degree n. Such functions
are parameterized by n + 1 real numbers f (t; w) = w0 + w1t + · · · + wntn. We modify
equation (5.1) so

wj = oj(zt; θoj) for j ∈ [0 : n] (5.4)

At each time step, t we predict the set of coefficients w parameterizing the best ap-
proximation of future values xt+1:t+h. For training, we determine the actual value of the

62

parameter by taking the best-fit polynomial of degree n over xt+1:t+h. Since we want the
generating function f to actually model the underlying signal, and not just the observa-
tions, we limit the polynomial’s capacity by setting n << h.

We refer to this approach of polynomial function forecasting as “PolyMO” (Figure
5.3b). We hypothesize that focusing on estimating the underlying generative function
versus the values themselves will result in improved forecasting performance. By com-
pactly representing future data, the output complexity of the network can be lowered,
reducing noise. In addition, by predicting a generating function, the network must rea-
son about the joint distribution of the values (since each parameter wi affects the entire
output window). This helps address the error accumulation inherent to recursive fore-
casting.

5.3.4 Sequential Polynomial Function Forecasting (PolySeqMO)

The two extensions to DeepMO shown in Figure 5.3 both seek to improve our estimation
of p(xt+1:t+h|x0:t). However, these proposed techniques represent somewhat orthogonal
improvements. SeqMO provides a way to learn the trade-off between relying on interme-
diate value estimates and avoiding recursive error accumulation. PolyMO, meanwhile,
facilitates prediction by constraining the intermediate representation, predicting values
parameterizing the function approximation. The prediction of these parameters is itself a
multi-output prediction. While the standard PolyMO forecaster uses the DeepMO frame-
work to generate w0, . . . , wn, there’s no reason that it couldn’t use or wouldn’t benefit
from the SeqMO framework instead. Thus, we also examine a PolyMO forecaster with
recurrent parameter decoding, denoted “PolySeqMO” (Figure 5.4).

5.3.5 Training and Inference Details

In the above methods, the parameters θ can be learned using stochastic gradient descent.
The standard deep forecasting formulation defines training loss based on actual values in
the signal. However, previous work has found that it can be beneficial to transform the
problem into a multi-class classification task [33]. Thus, we replace the task of directly
predicting signal values x̂t+i with the task of predicting the probability mass function
over possible discretized values of the signal: p̂(xt+i), using a cross-entropy loss against

63

FIGURE 5.4: A combination of SeqMO and PolyMO. The function forecast-
ing framework from PolyMO is used to predict parameters w for a function
approximating output values. These parameters are predicted using the re-

current decoding network from SeqMO.

the one-hot distribution for the actual value. Each output channel oi encodes not a single
number, but distribution over possible values. Similarly, we predict distributions over
parameter values w in PolyMO forecasting. While the multi-class formulation allows
us to use the cross-entropy loss during training time, ultimately, we are interested in
evaluating the quality of real valued forecasts. Thus, we translate these distributions to
predictions by taking the value represented by the class with maximum probability in
p̂. This approach has been found to work well in the field of speech generation [33],
but has not, to our knowledge, been investigated in the context of physiological signal
forecasting.

Finally, at inference time, we smooth predictions by replacing the predicted values
x̂t+1:t+h with the values occurring at that time in a best-fit polynomial, with the polyno-
mial degree set using validation data. That is, we find the polynomial f (·; w) that best

64

approximates x̂t+1:t+h, and return as output the vector [f (0), . . . f (h − 1)]. This polyno-
mial smoothing allows for a more direct comparison between models that predict glucose
values and the PolyMO approach.

In the sections that follow, we test our hypotheses and evaluate our proposed fore-
casting systems on a real dataset. We begin by describing the forecasting task, and then
explain the experimental setup and provide the detailed implementation of the methods
we evaluate.

5.4 Dataset & Forecasting Task

We consider the task for predicting future blood glucose values in patients with type 1
diabetes. These data present a challenging and clinically meaningful forecasting task.

5.4.1 The Data

We used the dataset described in Section 2.1.1. In total, the dataset consists of 1.9k days of
blood glucose measurements, totaling nearly 550k distinct glucose measurements. Blood
glucose measurements were of integer resolution in the range of 40-400 mg/dL.

5.4.2 The Task

There has been extensive work on using CGM data to predict short-term outcomes (e.g.,
predicting hypo and hyperglycemic events, [119], [120]). In contrast, here, we focus on the
more general task of glucose forecasting. More specifically, we consider the challenging
task of predicting future blood glucose levels using only data about past blood glucose
measurements. In this context, previous work has focused on using ARIMA [121] and
machine learning algorithms such as Random Forests [119]. Others have proposed ma-
chine learning techniques for leveraging data pertaining to external factors [122]–[124].
While blood glucose is affected by external factors, e.g., carbohydrate intake and insulin,
such data are not always readily available [125] and come at the cost of increasing patient
burden in the form of data collection. Through the dataset we consider does not contain

65

these additional data, it is important to note that the proposed methods generalize to a
multivariate setting.

With enough advanced warning via a forecast, one can correct blood glucose levels
through the administration of either insulin or glucose. How far in advance is far enough?
It is important to note that there is 1) often a delay before insulin or glucose begins to act
on the glucoregulatory system and 2) a lag between changes in blood glucose levels and
CGM measurements. Thus, to have the greatest impact (e.g., help patients avoid hypo-
and hyperglycemic events) we must be able to predict several measurements in the future.
Previous work in blood glucose forecasting has settled on a 30-minute prediction window
as adequate for this task [122]–[124]. Thus, to test the efficacy of our forecasting systems,
we evaluate a multi-step forecast with a 30-minute (h = 6) prediction window.

We evaluate performance for any given prediction by calculating the mean absolute
percentage error (APE) over the prediction window. This evaluation metric varies from
previous work, which reports performance on only the last sample in the prediction win-
dow. We report over the entire prediction window for two reasons. First, from a clinical
perspective, we are interested in the trend the values suggest. An ultimate decrease in
blood glucose can have different interpretations if the rate of decline is accelerating vs.
decelerating. Second, from a technical perspective, we are interested in evaluating our
systems as multi-step forecasters, naturally suggesting evaluation over multiple steps.

5.5 Experimental Setup & Baselines

Through a series of experiments on the data and task described above, we measure the
ability of our proposed methods to forecast blood glucose values. We compare against
several baselines that have been used for forecasting in previous work [119]. We also in-
vestigate the advantage the extra supervision inherent in multi-output forecasting offers
over single-output forecasting on a single-output task.

5.5.1 Train, Test, and Validation

In all of our experiments, we split the data into training, validation, and a held-out test
dataset. This procedure is shown in Figure 5.5. These splits were determined using the

66

FIGURE 5.5: The splitting procedure used to train and test our models. The
complete dataset is separated into three disjoint subsets: train, validation,
and test. The test set is then further split into 4 non-disjoint sets: the full
test set, test set examples that denote new hypo/hyperglycemic events, and
subsets for each event type separately. This results in widely varying subset

sizes given in the image.

CGM recording sessions across patients. For each subject, the entirety of the final record-
ing session is added to the test set, the second to last session is added to the validation
set, and the remaining data are added to the training set. Recording sessions vary in
length, but this split results in approximately 85% of the data being used for training,
7.5% for validation, and 7.5% for testing. Compared to a random split, a temporal split
more closely mimics how we expect the model to perform in practice. Note that several
months elapse between recording sessions, so data in the training set have no immediate
connection to the testing data.

We evaluate the models at any point in time where we have at least ten samples (i.e.,
50 minutes) of prior data. We select this minimum to ensure that there is sufficient in-
formation to make a reasonable prediction. As CGMs are used continuously in the real
world, this does not restrict applicability. We remove measurements that represent physi-
ologically unrealistic glucose fluctuations (over 40 mg/dL in under 5 minutes) to remove
noisy CGM measurements. Using a sliding window sampling method with a stride of 1
results in over 39k distinct test samples.

For evaluation purposes, we divide our test set into four overlapping groups: 1) the
full test set, 2) windows in the test set that contain either hypoglycemic onsets or hyper-
glycemic onsets, and two sets containing 3) only hypo and 4) only hyperglycemic onsets.
Specifically, we examine performance on a second test set of samples filtered such that
a hypo or hyperglycemic event begins in the 30-minute prediction window, and the last
training sample was at a normal blood glucose level (between 70-180 mg/dL). Focusing
on only hypo and hyperglycemic events reduces our test set size to 3,068 samples: 1,156

67

hypoglycemic events and 1,912 hyperglycemic events. We look at each of these subgroups
to better understand forecaster performance across a range of relevant situations. The dy-
namics of the glucoregulatory system are highly nonlinear, and the dynamics can vary
dramatically depending on the state of the glucoregulatory system and environmental
contexts [113].

The complete test set is most representative of general model performance. However,
the event test set is indicative of performance at points critical for maintaining healthy
glucose levels. This event test set is further broken into a hypoglycemic event set and hy-
perglycemic event set. The prevention of hypo and hyperglycemic events are important
for different reasons. Depending on the outcome of interest and the patient’s personal
history, it may be more important to effectively predict one versus the other. Thus, per-
formance across all the test sets can be relevant.

5.5.2 Baseline Forecasting Methods

To compare the performance of our proposed approaches to existing methods, we con-
sider the following shallow and deep architectures.

• Baseline: Linear Extrapolation. This baseline simply uses the most recent 30 min-
utes of data to extrapolate 30 minutes into the future. We chose to use the most
recent 30 minutes (as opposed to a longer history) based on performance on the
validation set. We include this naive baseline to give the reader a sense for how
challenging the task is. It also provides an interesting comparison to the perfor-
mance of the 1st degree PolyMO and PolySeqMO models, as they have identical
output capacity.

• Baseline: Random Forest (RF). Simple but effective, the RF algorithm has been
successfully used in glucose forecasting [119]. A robust ensemble method, it can
be parallelized for rapid training and prediction. Applied to the task of predicting
hypoglycemic events, Sudharsan et al. achieved results competitive with state-of-
the-art. We experimented with two random forest baselines: i) a random forest
trained to predict one time step into the future, used to recursively generated the
multi-output prediction, and ii) a true multi-output random forest.

68

• Recursive RNN. As our next baseline, we consider a recurrent neural network
(RNN) that makes multi-step predictions using the recursive approach outlined in
Figure 5.1. RNNs have recently been shown to achieve state-of-the-art results in glu-
cose forecasting [116]. Our RNN uses two layers of GRU cells regularized via early
stopping on a validation set and weight decay. While we are interested in minimiz-
ing the APE of our forecasts, we do not use APE as our loss function. Instead, as
discussed in Section 5.3.5, our network outputs a probability mass function over a
discretized set of glucose values, thus we use a cross-entropy loss.

5.5.3 Implementation Details

We implemented all deep learning models using PyTorch. We learned the model param-
eters using stochastic gradient descent with an ADAM optimizer [109]. We implemented
the RF baseline using Scikit Learn [126].

All our models have a number of hyperparameters. To ensure fair comparison be-
tween methods, we set hyperparameters by optimizing performance on the training and
validation data. Our hyperparameter search space for the deep architectures included
model depth, recurrent layer size, initial learning rate, and input normalization. For the
RF, we tuned the number of trees and size of input.

Values reported for the RF forecaster were obtained using 100 estimators with a 10-
sample input size. The remaining hyperparameters used the default Scikit Learn values.
The deep architectures were found to have performance robust to hyperparameter selec-
tion. All results reported were obtained using two recurrent layers of 512 GRU hidden
units. Output channels were implemented as fully connected layers with a softmax acti-
vation. Training was run until performance on a separate validation set failed to increase
for 50 epochs. A weight decay value of 10−5 was used for all models. All remaining model
details, such as the initialization procedure and the initial learning rate for ADAM, used
the PyTorch default values.

To train our PolyMO model, we tested a variety of different polynomial degrees. On
the training data, we observed that blood glucose values over a 30-minute window can
be well approximated with something as simple as a 1st degree polynomial (n = 1). On

69

average, a linear approximation of the output window incurred a reasonably small recon-
struction loss. The first-degree polynomial struck a good balance between performance
and capacity. On the validation data, we investigated the performance of the PolyMO
model using different degrees, and found the 1st degree performed best.

We found the best fit 1st degree polynomials over all length six prediction windows
in the training set and used the maximum and minimum values for each coefficient as
the range for our categorical output prediction, except for the bias term that we limited
between 40-400 to mirror the glucose monitor output limitations. Outputs were quan-
tized into 361 equal bins both when predicting glucose and for each polynomial coef-
ficient. This number was chosen to give the real-value network the capacity to predict
any recorded value of blood glucose, as most continuous glucose monitors have integer
resolution. All source code for this project is available online .

5.6 Experiments & Results

In our experiments, we seek to answer the following questions:
• Do deep forecasters outperform strong shallow approaches? (Section 5.6.1)
• Is multi-output or recursive forecasting a better multi-step forecasting baseline?

(Section 5.6.2)
• What improvements come from explicitly modeling sequential dependencies in the

prediction window? (Section 5.6.3)
• Is there added benefit to predicting underlying functional representations? (Section

5.6.4)
• Are there performance benefits from explicitly predicting blood glucose trajectories

compared to single-step forecasting? (Section 5.6.6, Figure 5.7)
In total, we tested eight distinct forecasting systems: 1) Linear Extrapolation, 2) a recur-
sive RF (RF: Rec), 3) a multi-output RF (RF: MO), 4) a recursive RNN (Recursive), 5) a
multi-output RNN (DeepMO), 6) a sequential multi-output RNN (SeqMO), 7) a polyno-
mial multi-output RNN (PolyMO), and 8) a sequential polynomial multi-output RNN
(PolySeqMO).

https://github.com/igfox/multi-output-glucose-forecasting

70

TABLE 5.1: Results. We examine the performance of our eight forecasting ap-
proaches across different subsets of the CGM test data. Results are reported
as 50th percentile APE over the prediction window, values in parentheses are
2.5th − 97.5th percentiles. Underlined results indicate the best single-model
performance. Bold results demonstrate the best overall (single or ensembled)

performance.

Architecture
Full
39k

Event
3.1k

Hypo
1.2k

Hyper
1.9k

Sh
al

lo
w

Ba
se

-
lin

e Extrapolation 6.48 (0.21-42.12) 10.76 (1.42-63.98) 14.85 (1.89-86.81) 8.73 (1.30-36.87)
RF: Rec 8.00 (0.62-40.83) 10.45 (1.99-65.21) 14.31 (2.73-91.12) 8.82 (1.85-30.42)
RF: MO 5.18 (0.71-30.16) 10.64 (1.41-55.28) 17.88 (2.70-75.46) 8.20 (1.14-28.00)

D
ee

p
Ba

se
-

lin
e Recursive 5.31 (0.00-29.32) 10.00 (1.45-46.22) 13.34 (2.17-62.86) 8.43 (1.24-30.49)

DeepMO 5.01 (0.00-28.74) 9.93 (1.62-41.67) 12.91 (2.26-56.04) 8.52 (1.43-30.02)

Pr
op

os
ed SeqMO 4.91 (0.00-28.95) 9.69 (1.51-41.54) 12.48 (2.28-54.02) 8.37 (1.29-29.46)

PolyMO 4.95 (0.51-28.30) 9.79 (1.48-43.67) 12.49 (1.93-60.78) 8.46 (1.31-30.75)
PolySeqMO 4.87 (0.48-27.80) 9.57 (1.43-43.59) 12.05 (2.03-60.90) 8.31 (1.24-29.76)

PolySeqMO Ensemble 4.59 (0.41-21.12) 9.38 (1.35-42.34) 11.61 (1.99-59.89) 8.13 (1.18-29.49)

Table 1 presents the forecasting model performance, in terms of APE over the predic-
tion window in the held-out test data. We noted the error distribution was non-normal, so
we report the median APE and the 2.5th− 97.5th percentile errors. That said, all observed
trends hold when instead considering the mean APE, with the exception that SeqMO
outperforms PolySeqMO on the Event and Hypo subtasks (12.63 vs. 12.79 and 16.60 vs.
17.04 respectively). These results illustrate the strengths (and weaknesses) of the pro-
posed forecasting systems applied to the task of predicting blood glucose. We discuss the
implications of these results in the sections that follow.

5.6.1 Deep vs. Shallow.

While RF: MO achieves good performance on the full test set, it does worse than our three
improved deep multi-output methods. Moreover, it underperforms the deep approaches
on the event subset. This is due mainly to very poor performance on hypoglycemic pre-
dictions. These results suggest that, compared to shallow models, deep models can more
accurately learn the underlying dynamics of the glucoregulatory system from raw data.

71

Still, we note that RF is a competitive forecaster, in line with previous work [119]. In par-
ticular, it achieves lower APE on the hyperglycemic test set than all models except the
PolySeqMO Ensemble.

5.6.2 Multi-Output vs. Recursive.

We observe that among both deep (DeepMO vs. Recursive: 5.01 vs. 5.31) and shallow
approaches (RF: MO vs. Rec: 5.18 vs. 8.00), multi-output forecasting offers significant
advantages over recursive forecasting. We also observe that all deep multi-output models
improve on the Recursive model in the hypoglycemic task (12.05-12.91 vs. 13.34).

We highlight these differences further in Figure 5.6. We plot the average performance
at each of the six time points within the 30-minute prediction window. The difference
in the approaches is amplified as we predict further out. At the first place in the pre-
diction window, corresponding to predicting xt+1, the recursive approach outperforms
most other approaches. As the target moves further in the future, we observe two trends.
First, the problem becomes more difficult for all approaches (i.e., MO Error increases).
This makes sense, as it is inherently more difficult to predict events further in the future.
Second, the relative performance of the Recursive forecaster degrades with respect to the
multi-output approaches. By the final step, the recursive model is far and away the worst
predictor (8.38 vs. 7.51-7.74).

5.6.3 Adding Sequential Dependencies

Examining the difference in performance between the DeepMO and SeqMO models, we
note the autoregressive connections improve performance across every subset of the data
(4.91 vs. 5.01 on the full test set). While the multi-output approach under-performs the
deep recursive forecaster on the hyperglycemic task, once we add the sequential decod-
ing, the resulting model beats the recursive forecaster on every task. This indicates that,
while multi-output forecasting represents a step in the right direction, it is important to
consider sequential dependencies between outputs.

72

FIGURE 5.6: A comparison of per-step error between the various forecasters.
While the multi-output models initially perform worse, they do not accumu-
late error as rapidly as the recursive approach, achieving lower error at later

prediction steps.

5.6.4 Predicting Underlying Function vs. Values.

In our investigation of PolyMO, we began by looking at the performance attained using a
range of polynomial function classes. We looked at four different degree settings for the
best-fit polynomial we predict (0-3 degree polynomials). We found the degree 1 model
achieved the best performance on the validation set (4.87 vs. next best 5.14). While higher
degree polynomials allow for strictly better approximations of prediction windows, they
also allow for more variation in output. Moreover, minor errors in high-degree coeffi-
cients rapidly compound to large errors.

Focusing on the 1st degree PolyMO, we see it is advantageous to rephrase the value
forecasting problem as a function forecasting one. We find that PolyMO beats DeepMO
on every task.

Moreover, we find that the improvements from function forecasting are complimen-
tary to those achieved by accounting for sequential output dependencies. By combining
the SeqMO output decoder with the PolyMO function forecasting, resulting in PolySe-
qMO, we achieve better performance than all other non-ensemble models in every task

73

17 21 30 51 100
% Weight on Final Output

7.58

7.60

7.62

7.64

7.66

7.68

A
PE

 a
t

3
0
-M

in
u
te

s
(S

in
g
le

 O
u
tp

u
t

E
rr

o
r)

Single OutputMulti-Output

FIGURE 5.7: We examine the single output error across a range of different
model types, determined using an exponential loss weighting. We derive the
proportion of weight allocated to the final output (which represents the eval-
uation target). Surprisingly, we observe that a multi-output loss improves
single-output performance, suggesting that it is helpful to model forecast tra-

jectories even when you only care about the final value.

under consideration. The fact that PolySeqMO does well across all subsets of the data
suggests that it encodes a more accurate and complete view of the underlying dynamics
of the glucoregulatory system.

Both PolyMO and PolySeqMO focus entirely on modeling value trajectories as op-
posed to the values themselves. Given that we are evaluating using a multi-output metric,
this built-in assumption may appear to drive the boost in performance. However, upon
inspecting the performance of the Linear Extrapolation baseline, we conclude that this is
not the case. Degree 1 PolyMO and PolySeqMO are equivalent in output capacity to the
Linear Extrapolation baseline, and both inherently emphasize trajectories. However, the
Linear Extrapolation does far worse. PolySeqMO significantly reduces the error of the
Linear Extrapolation approach on the full dataset (4.87 vs. 6.48). This demonstrates that
the value of PolySeqMO is its ability to predict the future, not its assumption of linear
trajectories. However, the fact that all models improve performance under polynomial
smoothing suggests there is some value in the trajectory assumption.

74

5.6.5 Ensembling

While PolySeqMO is the best individual model in every task, it under-performs RF: MO
on hyperglycemic prediction (8.31 vs. 8.20). While this could be due to the fact that RF:
MO is simply better suited to that task, it could also be a result of the general improve-
ments observed when ensembling different model performances. To test this effect, we
trained 10 PolySeqMO models on the same training set, varying only the random seed for
initialization and training batch ordering. We then averaged the results of each models
prediction on the test set by taking the mean.

We found that even this simple ensembling scheme with few models (relative to the
100-model ensemble used in RF: MO) leads to a sizeable increase in performance across
all tasks. In particular, we find the PolySeqMO ensemble outperforms RF: MO on the
hyperglycemic prediction task (8.13 vs. 8.20).

5.6.6 Multi-output vs. Direct Forecasting

There are many forecasting problems in which an accurate single-output forecast may
suffice. In such cases, it is common to use a direct forecaster [15], where one directly
estimates p(xt+h|x0:t). In a follow-up analysis, we demonstrate that even in cases where
only a single output is desired, it can be beneficial to consider a multi-output forecasting
framework.

To demonstrate this, we begin by introducing a method to transition from multi-
output to direct forecasting, focusing on SeqMO. This model operates by predicting mul-
tiple values at each time step. The training loss is the average across each of the six time
steps in the prediction window. A direct forecaster, aiming to make a single prediction at
the final time step, can be approximated by zeroing out all losses except those incurred at
the final step. This focuses the full capacity of the network on predicting the final value.
We can flexibly transition between direct and multi-output forecasting by manipulating
the per-step loss weighting, transitioning from a one-hot vector on the final output (direct)
to a uniform allocation of weight across the window (multi-output). We encapsulate this
transition in a single hyperparameter, 0 ≤ bw ≤ 1, or the base for the per-step loss weight.
For each step i in a prediction window of length h, we set the loss weight wl,i =

bh−i
w

∑h
i=0 bh−i

w
.

75

In Figure 5.7 we show the single output performance (predicting 30 minutes into the
future) of SeqMO with different settings of bw. We observe that modeling the full trajec-
tory does not worsen performance, and in fact appears to slightly improve it (MO 7.67 vs.
Direct 7.61). Interestingly, we found that best single-output performance was achieved
using an intermediate value for bw (7.58 with bw = 0.5). Mixing multi-output and direct
forecasting strategies could be a promising direction for improving single-output fore-
casting performance.

5.7 Summary and Conclusions

In this chapter, we investigated methods for deep multi-output blood glucose forecasting.
Applied to the challenging task of predicting blood glucose, we demonstrated that: 1)
multi-output methods outperform recursive alternatives, 2) modeling underlying depen-
dencies among outputs using explicit connections and function forecasting leads to better
performance, and 3) the proposed approaches are complementary, and combining them
significantly improves performance. Additionally, we demonstrated that multi-output
forecasting improves performance, even on a single-output task.

These experimental results suggest a multi-output approach can effectively capture
the underlying dynamics of the glucoregulatory system. While we focus on blood glu-
cose, forecasting real valued signals is a problem with applications across a number of
different domains including speech processing, weather prediction, and medicine [33],
[47], [127]. Our proposed methods may be applied to any forecasting problem requiring
multi-step predictions.

76

Chapter 6

Deep Reinforcement Learning for Blood
Glucose Management

6.1 Introduction

In the previous chapter, we discussed glucose forecasting, an important application for
predictive alarms. If machine learning approaches can model the glucoregulatory sys-
tem reasonably well, a natural question is how well could a machine learning approach
control such a system? In this chapter, we examine that question in detail.

People with type 1 diabetes (T1D) need to manage their blood glucose levels consis-
tently using insulin to achieve good glycemic control. Getting the correct dose requires
careful measurement of glucose levels and carbohydrate intake, resulting in at least 15-17
data points a day. When using a continuous glucose monitor (CGM), this can increase to
over 300 data points, or a blood glucose reading every 5 minutes [129].

CGMs with an insulin pump, a device that delivers insulin, can be used with a closed-
loop controller as an ‘artificial pancreas’ (AP). Though the technology behind CGMs and
insulin pumps has advanced, there remains significant room for improvement when it
comes to the control algorithms [130], [131]. Current hybrid closed-loop approaches re-
quire accurate meal announcements to maintain glucose control.

Our Approach. In this chapter, we investigate deep reinforcement learning (RL) for
blood glucose management. RL is a promising solution, as it is well-suited to learning

The following is an adaptation and expansion of previously published work [128].

77

complex behavior and readily adapts to changing domains [132]. In particular, RL can
learn effective policies when the environment is not fully observed. For the problem
of blood glucose management, this is an important benefit. Blood glucose values are
strongly affected by events, such as meals, that cannot be automatically recorded. We hy-
pothesize that deep RL, the combination of RL with a deep neural network, will be able
to accurately infer latent meals to control insulin. Furthermore, as RL is a learning-based
approach, we hypothesize that RL will adapt to predictable meal schedules better than
baseline approaches.

The fact that RL is learning-based means it requires data to work effectively. Unlike
many other health settings, there are credible simulators for blood glucose management
[133]. Having a simulator alleviates many concerns of applying RL to health problems
[52], [134]. However, that does not mean RL for blood glucose control is straightforward,
and, in this paper, we identify and address several challenges. To the best of our knowl-
edge, we present the first deep RL approach that achieves human-level performance in
controlling blood glucose without requiring meal announcements. Accomplishing this
required several important considerations, outlined below.

• The range of insulin and carbohydrate requirements across patients makes it diffi-
cult to find a single action space that balances the needs of rapid insulin adminis-
tration and safety. To solve this problem, we present a robust patient-specific action
space that naturally encourages safer policies.

• We found several pitfalls in evaluating our proposed approach that led to unrealistic
performance estimates. To address this issue, we used validation data to perform
careful model selection, and used extensive test data to evaluate the quality of our
models.

• Deep RL has been shown to be unstable [135], [136], often achieving poor worst-case
performance. This is unacceptable for safety-critical tasks, such as those in health-
care. We found that a combination of simple and widely applicable approaches
stabilized performance. In particular, we used a safety-augmented reward func-
tion, realistic randomness in training data, and random restarts to train models that
behaved safely over thousands of days of evaluation.

78

• Finally, unlike game settings where one has ability to learn from hundreds of thou-
sands of hours of interaction, any patient-specific model must be able to achieve
strong performance using a limited amount of data. We show that a simple trans-
fer learning approach can be remarkably sample efficient and can even surpass the
performance of models trained from scratch.

In a followup analysis, we consider a more realistic setting in which we have access
to data collected by a behavior policy, known as batch reinforcement learning. Due to the
presence of reasonable physiological models in our application, we also assume access
to an imperfect simulator. This setting addresses the safety concerns of training RL ap-
proaches on real individuals. We compare policies learned using only data collected by
a behavior policy, such as automatically logged human behavior, to ones learned using
a simulator. We present an approach to augment common batch RL algorithms with an
imperfect simulator. We demonstrate that batch RL is applicable to the task of glucose
control, and that batch RL augmented with a simulator can perform even better.

Organization. The remainder of this chapter is organized as follows. We describe cur-
rent approaches to manage and simulated blood glucose. We frame the problem of blood
glucose management as an MDP and describe our approaches to solve it. We then present
our results using a simulator, demonstrating how we achieved strong and consistent
blood glucose control without requiring meal announcements. Finally, we describe our
application of batch reinforcement learning to this problem. We demonstrate how aug-
menting batch RL with an imperfect simulator can lead to improvements over standard
algorithms.

6.2 Background and Related Work

In recent years, researchers have started to explore RL in healthcare. Examples include
matching patients to treatment in the management of sepsis [137], [138] and mechanical
ventilation [139]. In addition, RL has been explored to provide contextual suggestions for
behavioral modifications [140]. Despite its successes, RL has yet to be fully explored as a
solution for a closed-loop AP system [130]. To provide necessary background, we discuss

79

how RL and other approaches have been used for blood glucose control and present an
overview on blood glucose simulation.

6.2.1 Algorithms for Blood Glucose Control

Among recent commercial AP products, proportional-integral-derivative (PID) control
is the most common backbone [141]. The simplicity of PID controllers make them easy
to use, and in practice they achieve strong results [142]. The Medtronic Hybrid Closed-
Loop system, one of the few commercially available, is built on a PID controller [143],
[144]. A hybrid closed-loop controller adjusts baseline insulin rates but requires human
intervention to control for the effect of meals. The main weakness of PID controllers is
their reactivity. As a result, they often cannot react fast enough to meals, and thus rely on
meal announcements [143]. Additionally, without safety modifications, PID controllers
can deliver too much insulin, triggering hypoglycemia [144]. In contrast, we hypothesize
that an RL approach will be able to leverage patterns associated with mealtimes, resulting
in more responsive and safer policies.

Previous works have examined RL for different aspects of blood glucose control. See
[145] for a recent survey. Many of these works investigated the use of RL to adapt ex-
isting insulin treatment regimens to learn a ‘human-in-the-loop’ policy [146]–[148]. This
contrasts with our setting, where we aim to learn a fully closed-loop policy.

Similar to our work, [149] and [150] focus on the task of closed-loop glucose control.
[149] use direct future prediction to aid PID-style control, substituting the problem of
RL with prediction. [150] use a policy-iteration framework with Gaussian process ap-
proximation and Bayesian active learning. While they tackle a similar problem, these
works use a simple simulator and a fully deterministic meal routine for training and test-
ing. In our experiments, we use an FDA-approved glucose simulator and a realistic non-
deterministic meal schedule, significantly increasing the challenge.

6.2.2 Glucose Models and Simulation

Models of the glucoregulatory system are important for the development and testing of an
AP [25]. In our experiments, we use the UVA/Padova model [26]. This simulator models
the glucoregulatory system as a nonlinear multi-compartment system, where glucose is

80

generated in the liver, absorbed through the gut, and controlled by external insulin. A
more detailed explanation can be found in [26]. For reproducibility, we use an open-
source version of the simulator that comes with 30 virtual patients [29]. The parameter
distributions of the patient population are determined by age, and the simulator comes
with 10 children, adolescents, and adults each [26]. We combine the simulator with a non-
deterministic meal schedule (Appendix B.1) to realistically simulate patient behavior.

6.3 Online RL

In this section, we consider the problem of learning blood glucose management policies
in an online fashion. We provide a problem formulation and a set of methods that can
improve glucose control over standard baselines while maintaining safety.

6.3.1 Methods

We present a deep RL approach well suited for blood glucose control. In framing our
problem, we pay special attention to the concerns of partial observability and safety. The
issue of partial observability motivates us to use a maximum entropy control algorithm,
soft actor-critic, combined with a recurrent neural network. Safety concerns inspire many
aspects of our experimental setup, including our choice of action space, reward function,
and evaluation metrics. We also introduce several strong baselines, both with and without
meal announcements, to which we compare.

Problem Setup

We frame the problem of closed-loop blood glucose control as a partially-observable
Markov decision process (POMDP) consisting of the 7-tuple (S∗, O, S, A, P, R, γ). A POMDP
generalizes the MDP setting described in Section 2.2.3 by assuming we do not have ac-
cess to the true environment states, here denoted s∗ ∈ S∗, but instead observe noisy states
s ∈ S according to the (potentially stochastic) observation function: O : s∗ → s. This
setting applies given the noise inherent in CGM sensors [151] and our assumption of un-
observed meals.

81

In our setting, the true states s∗t ∈ S∗ are the 13-dimensional simulator states, as de-
scribed in [26]. The stochastic observation function O : s∗t → bt, it maps from the simu-
lator state to the CGM observation bt and insulin it administered. To provide temporal
context, we augment our observed state space st ∈ S to include the previous 4 hours of
CGM bt and insulin data it at 5-minute resolution: st = [bt, it] where:

bt = [bt−47, bt−46, . . . , bt], it = [it−47, it−46, . . . , it],

bt ∈N40:400, it ∈ R+, and t ∈N1:288 represents a time index for a day at 5-minute resolu-
tion. Note that in our augmented formulation, the observation function no longer directly
maps to observed states, as observed states incorporate significant amounts of historical
data. We chose a 4-hour window, as we empirically found it led strong performance. We
use a time resolution of 5 minutes to mimic the sampling frequency of many common
CGMs. Actions at ∈ R≥0 are real positive numbers, denoting the size of the insulin bolus
in medication units.

The transition function P, our simulator, consists of two elements: i) M : t → ct is the
meal schedule, and is defined in Appendix B.1, and ii) G : (at, ct, s∗t) → (bt+1, it+1, s∗t+1),
where ct ∈ R≥0 is the amount of carbohydrates input at time t and G is the UVA/Padova
simulator [26]. Note that our meal schedule is patient-specific, and includes randomness
in the daily number, size, and timing of meals.

The reward function R : (st, at)→ R is defined as negative −risk(bt) where risk is the
Magni risk function:

risk(b) = 10 ∗ (c0 ∗ log(b)c1 − c2)
2, (6.1)

c0 = 3.35506, c1 = 0.8353, and c2 = 3.7932 [152]. These values are set such that risk(70) =
risk(280) = 25, see Figure 6.1. Finally, we set γ = 0.99 for our experiments, a value
we determined empirically on validation data in combination with the early termination
penalty.

Considered in isolation, our reward could lead to dangerous behavior. As it is always
negative, cumulative reward is maximized by ending the episode as quickly as possible,
which occurs when glucose reaches unsafe levels. To avoid this, we add a termination
penalty of−1e5 to trajectories that enter dangerous blood glucose regimes (blood glucose

82

FIGURE 6.1: The risk function proposed in [152]. The mapping between
blood glucose values (in mg/dL, x-axis) and risk values (y-axis). Blood glu-
cose levels corresponding to hypoglycemia are shown in the blue shaded re-
gion, the glucose range corresponding to hyperglycemia is shown in the red
shaded region. This function identifies low blood glucose values as higher
risk than high blood glucose values, which is sensible given the rapidity of

hypoglycemia.

levels less than 10 or more than 1,000 mg/dL), countering the advantage of early termi-
nation. We investigated other reward functions, such as time in range or distance from a
target blood glucose value, but found this reward worked best. It led to control schemes
with less hypoglycemia, as low blood glucose is penalized more heavily than high glu-
cose. Low glucose can occur quickly when large amounts of insulin are given without
an accompanying meal. Given the lack of meal announcements and sensor noise in our
setting, avoiding hypoglycemia was a significant challenge.

Soft Actor-Critic

We chose to use the soft actor-critic (SAC) algorithm to learn glucose control policies. We
initially experimented with a Deep-Q Network approach [153]. However, choosing a dis-
cretized action space (as is required by Q-learning) that accounted for the range of insulin
values across a day and allowed exploration proved impractical, as large doses of inap-
propriately timed insulin can be dangerous. Among continuous control algorithms, we
selected SAC as it has been shown to be sample efficient and competitive [154]. Addition-
ally, maximum entropy policies like the ones produced by SAC can do well in partially
observed settings like our own [155].

83

SAC produces a stochastic policy π : st → p(a) ∀a ∈ A, which maps a state to a distri-
bution over possible actions. Under SAC, the policy (or actor) is represented by a neural
network with parameters φ. Our network generates outputs µ, log(σ) which parameter-
ize a normal distributionN (µ, σ). The actions are distributed according to a TanhNormal
distribution, or tanh(z), z ∼ N (µ, σ). πφ is trained to maximize the maximum entropy
RL objective function:

J(π) =
T

∑
t=0

E(st,at)∼P(st−1,πφ(st−1))
[R(st, at) + αH(πφ(·|st))], (6.2)

where entropy, H, is added to the expected cumulative reward to improve exploration
and robustness [154]. Intuitively, the return in Equation 6.2 encourages a policy that can
obtain a high reward under a variety of potential actions. The temperature hyperparam-
eter α controls the tradeoff between reward and entropy. In our work, we set this using
automatic temperature tuning [156]. Equation 6.2 is optimized by minimizing the KL di-
vergence between the action distribution and the distribution induced by the state-action
values:

Jπ(φ) = Est∼D

[
DKL

(
πφ (·|st) ‖

exp (Qθ (st, ·))
Zθ (st)

)]
(6.3)

where D is a replay buffer containing previously seen (st, at, rt, st+1) tuples, Zθ is a
partition function, and Qθ is the state-action value function parameterized by a neural
network (also called a critic). This means that our learned policy engages in probability
matching, selecting an action with probability proportional to its expected value. This
requires an accurate value function. To achieve this, Qθ is trained by minimizing the
temporal difference loss:

JQ(θ) = E(st,at)∼D

[
1
2
(
Qθ (st, at)− Q̂ (st, at)

)2
]

, (6.4)

Q̂ (st, at) = r (st, at) + γEst+1∼p

[
Vψ (st+1)

]
. (6.5)

Vψ is the soft value function parameterized by a third neural network, and Vψ is the
running exponential average of the weights of Vψ over training. This is a continuous

84

variant of the hard target network replication in [153]. Vψ is trained to minimize:

JV(ψ) = Est∼D

[
1
2

(
Vψ (st)−Eat∼πρ

[
Qθ (st, at)− log πφ (at|st)

])2
]

. (6.6)

In summary: we learn a policy that maps from states to a probability distribution over
actions, the policy is parameterized by a neural network πφ. Optimizing this network
(Equation 6.3) requires an estimation of the soft state-action value function, we learn
such an estimate Qθ (Equation 6.4) together with a soft value function Vψ (Equation 6.6).
Additional details of this approach, including the gradient calculations, are given in [154].
In keeping with previous work, when testing our policy we remove the sampling compo-
nent, instead selecting the mean action tanh(µ). We replace the MSE temporal difference
loss in Equation 6.4 with the Huber loss, as we found this improved convergence.

Recurrent Architecture

Our network πφ takes as input the past 4 hours of CGM and insulin data, requiring no
human input (i.e., no meal announcements). To approximate the true state s∗t from the
augmented state s we parameterize Qθ, Vψ, and πφ using gated-recurrent unit (GRU)
networks [118], as GRUs have been successfully used for glucose modeling previously
[110], [157].

Patient-Specific Action Space

After the network output layer, actions are squashed using a tanh function. Note that this
results in half the action space corresponding to negative values, which we interpret as
administering no insulin. This encourages sparse insulin utilization and makes it easier
for the network to learn to safely control baseline glucose levels. To ensure that the max-
imum amount of insulin delivered over a 5-minute interval is roughly equal to a normal
meal bolus for each individual, we use the average ratio of basal to bolus insulin in a day
[158] to calculate a scale parameter for the action space, ωb = 43.2 ∗ bas, where bas is the
default patient-specific basal insulin rate provided by [29].

85

Efficient Policy Transfer

One of the main disadvantages of deep RL is sample efficiency. Thus, we explored trans-
fer learning techniques to efficiently transfer existing models to new patients. We refer to
our method trained from scratch as RL-Scratch, and the transfer approach as RL-Trans.
For RL-Trans, we initialize Qθ, Vψ and πφ for each class of patients (children, adolescents,
and adults) using fully trained networks from one patient of that source population (see
Appendix B.4). We then fine-tune these networks on data collected from the target pa-
tient.

When fine-tuning, we modify the reward function by removing the termination penalty
and adding a constant positive value (100) to all rewards. This avoids the negative reward
issue discussed in Section 6.3.1 - Problem Setup. Removing the termination penalty in-
creased the consistency of returns over training, allowing for a more consistent policy
gradient. The additional safety provided by a termination penalty is not required as we
begin with policies that are already stable. We found this simple approach for train-
ing patient-specific policies attains good performance while using far less patient-specific
data.

Baselines

We examine three baseline methods for control: basal-bolus (BB), PID control, and PID
with meal announcements (PID-MA). BB reflects an idealized human-in-the-loop control
strategy, and PID reflects a common closed-loop AP algorithm. PID with meal announce-
ments is based on current AP technology, and is a combination of the two, requiring
regular human intervention. Finally, we consider an ’oracle’ approach that has access to
the true state s∗t . This decouples the task of learning a policy from state inference, serving
as a pseudo-upper bound on performance for our proposed approach.

Basal-Bolus Baseline. This baseline is designed to mimic human control and is an ideal
depiction of how an individual with T1D controls their blood glucose. In this setting, we
modify the state representation st to include a carbohydrate signal and a cooldown signal
(explained below), and to remove the historical data, st = [bt, it, ct, cooldown]. Note that

86

the inclusion of a carbohydrate signal, or meal announcement, places the burden of pro-
viding accurate and timely estimates of meals on the person with diabetes. Each virtual
patient in the simulator comes with the parameters necessary to calculate a reasonable
basal insulin rate bas (the same value used in our action space definition), correction factor
CF, and carbohydrate ratio CR. These three parameters, together with a glucose target bg,
define a clinician-recommended policy π(st) = bas + (ct > 0) ∗ (ct

CR + cooldown ∗ bt−bg
CF)

where cooldown is 1 if there have been no meals in the past three hours, otherwise it is
0. The cooldown ensures that each meal is only corrected for once. Appropriate settings
for these parameters can be estimated by endocrinologists, using previous glucose and
insulin information [159]. The parameters for our virtual patient population, which are
derived from a distribution validated by clinical trials [26], are given in Appendix B.2.

PID Baseline. PID controllers are a common and robust closed-loop baseline [142]. A
PID controller operates by setting the control variable, at, to the weighted combination of
three terms at = kPP(bt)+ kI I(bt)+ kDD(bt) such that the process variable bt (t is the time
index) remains close to a specified setpoint bg. The terms are calculated as follows: i) the
proportional term P(bt) = max(0, bt− bg) increases the control variable proportionally to
the distance from the setpoint, ii) the integral term I(bt) = ∑t

j=0(bj − bg) corrects long-
term deviations from the setpoint, and iii) the derivative term D(bt) = |bt− bt−1| uses the
rate of change as a basic estimate of the future. The set point and the weights (also called
gains) kP, kI , kD are hyperparameters. To compare against the strongest PID controller
possible, we tuned these hyperparameters using multiple iterations of grid-search with
exponential refinement per-patient, minimizing risk. Our final settings are presented in
Appendix B.3.

PID with Meal Announcements. This baseline, which is similar to available hybrid
closed loop AP systems [143], [144], combines BB and PID into a control algorithm we
call PID-MA. During meals, insulin boluses are calculated and applied as in the BB ap-
proach. The basal rate, instead of being fixed, is controlled by a PID algorithm, allowing
for adaptation between meals. As above, we tune the gain parameters for the PID algo-
rithm using sequential grid search to minimize risk.

87

Oracle Architecture. A deep RL approach to learning AP algorithms requires that the
representation learned by the network contain sufficient information to control the sys-
tem. As we are working with a simulator, we can explore the difficulty of this task in
isolation, by replacing the observed state st with the ground-truth state s∗t . Though un-
available in real-world settings, this representation decouples the problem of learning a
policy from that of inferring the state. Here, Qθ, Vψ, and πφ are fully connected with two
hidden layers, each with 256 units. The network uses ReLU nonlinearities and Batch-
Norm [160].

6.3.2 Experimental Setup & Evaluation

To measure the utility of deep RL for the task of blood glucose control, we trained and
tested our policies on data with different random seeds across 30 different simulated in-
dividuals.

Training and Hyperparameters.

We trained our models separately for each patient. They were trained from scratch for
300 epochs for RL-Scratch, and fine-tuned for 50 epochs for RL-Trans. They were trained
with batch size 256 and an epoch length of 20 days. We used an experience replay buffer
of size 1e6 and a discount factor of 0.99. We found that extensive training from-scratch
was required to obtain consistent performance across test runs. We also found that too
small of an epoch length could lead to dangerous control policies. We optimized the pa-
rameters of Qθ, Vψ and πφ using Adam with a learning rate of 3E− 4. All deep networks
were composed of two layers of GRU cells with a hidden state size of 128, followed by a
fully-connected output layer. All network hyperparameters, including number and size
of layers, were optimized on training seeds on a subset of the simulated patients for com-
putational efficiency. Our networks were initialized using PyTorch defaults.

Evaluation.

We measured the performance of πφ on 10 days of validation data after each training
epoch. After training, we evaluated on test data using the model parameters from the

88

best epoch as determined by the validation data. While this form of model selection is not
typical for RL, we found it led to significant changes in performance (see Section 6.3.5 -
Potential Pitfalls in Evaluation). Our model selection procedure first filters out runs
that could not control blood glucose within safe levels over the validation run (glucose
between 30-1000 mg/dL), then selects the epoch that achieved the lowest risk. We tested
each patient-specific model on 1000 days of test data, broken into 100 independent 10
day rollouts. We trained and evaluated each approach 3 times, resulting in 3000 days of
evaluation per method per person.

We evaluated approaches using i) risk, the average Magni risk calculated over the
10-day test rollout, ii) % time spent euglycemic (blood glucose levels between 70-180
mg/dL), iii) % time hypo/hyperglycemic (blood glucose lower than 70 mg/dL or higher
than 180 mg/dL respectively), and iv) % of rollouts that resulted in a catastrophic failure,
which we define as a run that achieves a minimal blood glucose level below 5 mg/dL (at
which point recovery becomes highly unlikely). Note that while catastrophic failures are
a major concern, our simulation process does not consider consuming carbohydrates in
reaction to low blood glucose levels. This is a common strategy to avoid dangerous hy-
poglycemia in real life, and thus catastrophic failures, while serious, are manageable. The
random seeds controlling noise, meals, and all other forms of randomness, were different
between training, validation, and test runs. We test the statistical significance of differ-
ences between methods using Mood’s median test for all metrics except for catastrophic
failure rate, for which we use a binomial test.

6.3.3 Overview of Experiments

Our experiments are divided into two broad categories: i) experiments showing the ben-
efits of deep RL for blood glucose control relative to baseline approaches and ii) the chal-
lenges of using deep RL in this setting, and how to overcome them.

Throughout our experiments, we consider 3 variants of RL methods: i) RL-Scratch,
our approach trained from scratch on every individual, ii) RL-Trans, which fine-tunes
an RL-Scratch model from an arbitrary child/adolescent/adult, and iii) RL-MA, which
uses RL-Scratch trained using the automated meal boluses from BB or PID-MA. We also

89

report results on an Oracle approach, which is trained and evaluated using the ground
truth simulator state.

FIGURE 6.2: The risk over 10 days for different simulated patients using
methods that do not require meal announcements. Each point corresponds
to a different random test seed that controls the meal schedule and sensor
noise, and the line indicates the median performance for each method on
each patient. Results are presented across 3 random training seeds, control-
ling model initialization and randomness in training. We observe that, al-
though there is a wide range in performance across and within individuals,

The RL approaches tend to outperform PID.

6.3.4 Advantages of Deep RL

We compare our deep RL approaches to baselines with and without meal announcements
across several metrics (Section 6.3.4 - Deep RL vs. Baseline Approaches). We then in-
vestigate two hypotheses for why deep RL is well suited to the problem of glucose man-
agement without meal announcements:

• the high-capacity neural network, integral to the RL approaches, is able to quickly
infer when meals occur (Section 6.3.4 - Detecting Latent Meals), and

90

FIGURE 6.3: The risk over 10 days using methods that require meal an-
nouncements. PID-MA tends to outperform BB, and RL-MA outperforms

PID-MA.

• the learning-based approach is able to adapt to behavioral patterns better than a PID
controller (Section 6.3.4 - Ability to Adapt to Behavioral Schedules).

Deep RL vs. Baseline Approaches

A comparison between the PID baseline to the RL approaches is presented in Figure 6.2.
Each point represents a different test rollout by a policy. For the RL approaches, the
performance of each method is reported as the combination of 3 random training restarts.
Among the 3 methods that do not require meal announcements, RL-Scratch performs best
across patients (average rank 1.33), followed by RL-Trans (average rank 1.7), then PID
(average rank 2.97). For each individual, we rank the 3 approaches in terms of median
risk. We calculate average rank by taking the mean of each approach’s rankings across
all 30 individuals. Note that RL-Scratch, while achieving strong performance overall,
reliably performs poorly on adolescent#002. We discuss this issue in Appendix B.5.

One major advantage of our proposed approach is its ability to achieve strong per-
formance without meal announcements. This does not mean that it does not benefit from

91

meal announcements, as shown in Figure 6.3. Among the 3 methods that require meal an-
nouncements, RL-MA performs best (average rank 1.07), followed by PID-MA (average
rank 2.13) then BB (average rank 2.8).

We examine additional metrics in the results presented in Table 6.1. The difference
between results that are bold, or bold and underlined, and the next best non-bold result
(excluding RL-Oracle) are statistically significant with p < 0.001. We observe that RL-MA
equals or surpasses the performance of all non-oracle methods on all metrics, except for %
time spent hyperglycemia. Interestingly, all RL variants achieve lower median risk than
PID-MA, which requires meal announcements. This is because the RL approaches achieve
low levels of hypoglycemia, which the risk metric heavily penalizes (see Figure 6.1). Note
that all methods, including PID-MA, were optimized to minimize this metric. Across
patients, the RL methods achieve approximately 60-80% time euglycemic, compared with
52%± 19.6% observed in real human control [161]. These results suggest that deep RL
could be a valuable tool for closed-loop or hybrid closed-loop AP control.

TABLE 6.1: Median risk, percent of time Eu/Hypo/Hyperglycemic, and fail-
ure rate calculated using 1000 days of simulation broken into 100 indepen-
dent 10-day rollouts for each of 3 training seeds for 30 patients, totaling
90k days of evaluation (with interquartile range). Lower Magni Risk, Hy-
poglycemia, and Hyperglycemia are better, higher Euglycemia is better. Hy-
brid and Non-closed loop approaches (requiring meal announcements) are
indicated with *. Approaches requiring a fully observed simulator state are
indicated with †. The non-oracle approach with the best average score is in
bold and underlined, the best approach that does not require meal announce-

ments is in bold.

Risk Euglycemia Hypoglycemia Hyperglycemia Failure
↓ (%) ↑ (%) ↓ (%) ↓ (%) ↓

N
o

M
A PID 8.86 (6.8-14.3) 71.68 (65.9-75.9) 1.98 (0.3-5.5) 24.71 (21.1-28.6) 0.12

RL-Scratch 6.50 (4.8-9.3) 72.68 (67.7-76.2) 0.73 (0.0-1.8) 26.17 (23.1-30.6) 0.07
RL-Trans 6.83 (5.1-9.7) 71.91 (66.6-76.2) 1.04 (0.0-2.5) 26.60 (22.7-31.0) 0.22

M
A

BB∗ 8.34 (5.3-12.5) 71.09 (62.2-77.9) 2.60 (0.0-7.2) 23.85 (17.0-32.2) 0.26
PID-MA∗ 8.31 (4.7-10.4) 76.54 (70.5-82.0) 3.23 (0.0-8.8) 18.74 (12.9-23.2) 0.00
RL-MA∗ 4.24 (3.0-6.5) 77.12 (71.8-83.0) 0.00 (0.0-0.9) 22.36 (16.6-27.7) 0.00

RL-Oracle† 3.58 (1.9-5.4) 78.78 (73.9-84.9) 0.00 (0.0-0.0) 21.22 (15.1-26.1) 0.01

92

Detecting Latent Meals

Our approach achieves strong blood glucose control without meal announcements, but
how much of this is due to the ability to react to meals? To investigate this, we looked at
the total proportion of insulin delivered on average after meals for PID and RL-Scratch,
shown in Figure 6.4a. A method able to infer meals should use insulin rapidly after meals,
as the sooner insulin is administered the faster glycemic spikes can be controlled while
avoiding hypoglycemia. We observe that RL-Scratch administers the majority of its post-
meal bolus within one hour of a meal, whereas PID requires over 90 minutes, suggesting
RL-Scratch can indeed better infer meals. Interestingly, when considering the percent-
age of total daily insulin administered in the hour after meals, RL-Scratch responds even
more aggressively than BB or PID-MA (54.7% vs. 48.5% and 47.3% respectively). This
demonstrates that our RL approach is able to readily react to latent meals shortly after
they have occurred.

Ability to Adapt to Behavioral Schedules

We hypothesize that one advantage of RL is its ability to compensate for predictable vari-
ations (such as meals) in the environment, improving control as the environment becomes
more predictable. To test this benefit, we changed the meal schedule generation proce-
dure outlined in Algorithm 7 (Appendix B.1) for Adult 1. We removed the small ‘snack’
meals, set all meal occurrence probabilities to 1, and made meal amounts constant (i.e.,
each day Adult 1 consumes an identical set of meals). We then evaluated both the PID
model and RL-Scratch on 3 variations of this environment, characterized by the standard
deviation of the mealtimes (either 0.1, 1, or 10 hours). This tests the ability of each method
to take advantage of patterns in the environment. As the standard deviation decreases,
the task becomes easier for two reasons: i) there are fewer instances where two meals
occur in quick succession, and ii) the meals become more predictable. The results are
presented in Figure 6.4b. We observe that both methods improve in performance as the
standard deviation decreases, likely due to (i). However, while RL-Scratch outperforms
PID under all settings, the difference increases as the standard deviation of mealtimes de-
creases, suggesting RL is better able to leverage the predictability of meals. Specifically,
mean risk decreases by roughly 12% for the PID approach (form 9.65 to 8.54), whereas it

93

0 1 2 3 4
Hours After Meal

0

1

2

3

4

5

6

7

Pe
rc

en
t o

f T
ot

al
 D

ai
ly

 In
su

lin

PID
RL-Scratch

0.1 1.0 10.0
Std of Meal Times (Hr)

6

8

10

12

14

M
ea

n
M

ag
ni

 R
isk

Method
PID
RL-Scratch

FIGURE 6.4: a) The average amount of insulin (in percent of total daily in-
sulin) provided after meals for PID and RL-Scratch (note: RL-Trans, un-
shown, is very similar to RL-Scratch). RL-Scratch is able respond to meals
more quickly than PID, with insulin peaking 30 minutes post-meal as op-
posed to roughly 60 minutes for PID. Additionally, the RL approach finishes
delivering most post-meal insulin after 1hr, PID takes over 90 minutes. b) The
distribution of average risk scores over 300 10-day rollouts for Adult 1 using
meal schedules with varying amounts of predictability (mealtime standard
deviation). While PID performs better with more regularly spaced meals
(median risk lowers from 9.66 at std=10 to 8.53 at std=0.1, a 12% decrease),
RL-Scratch sees a larger proportional and absolute improvement (median

risk lowers from 8.33 at std=10 to 6.36 at std=0.1, a 24% decrease).

decreases nearly 24% for the RL approach (from 8.40 to 6.42). This supports our hypoth-
esis that RL is better able to take advantage of predictable meal schedules.

6.3.5 Challenges for Deep RL

While in the previous section we demonstrated several advantages of using deep RL for
blood glucose control, here we emphasize that the application of deep RL to this task and
its evaluation are non-trivial. Specifically, in this section we:

• demonstrate the importance of our action space formulation for performance (Section
6.3.5 - Developing an Effective Action Space),

• illustrate the critical need for careful and extensive validation, both for model selec-
tion and evaluation (Section 6.3.5 - Potential Pitfalls in Evaluation).

94

• show that, applied naively, deep RL leads to an unacceptable catastrophic failure
rate, and present three simple approaches to improve this (Section 6.3.5 - Reducing
Catastrophic Failures),

• address the issue of sample complexity with simple policy transfer (Section 6.3.5 -
Sample Efficiency and Policy Transfer).

Developing an Effective Action Space

One challenging element of blood glucose control in an RL setting is defining the action
space. Insulin requirements vary significantly by person (from 16 to 60 daily units in the
simulator population we use), and throughout most of the day, insulin requirements are
much lower than after meals. To account for these challenges, we used a patient-specific
action space, where much of the space corresponds to delivering no insulin (discussed in
Section 6.3.1 - Recurrent Architecture). We perform an ablation study to test the impact
of these decisions. On an arbitrarily chosen patient (child#001), we shifted the tanh out-
put to remove the negative insulin space. This increased the catastrophic failure rate from
0% (on this patient) to 6.6%. On a challenging subset of 4 patients (indicated in Appendix
B.2), we looked at the effect of removing the patient-specific action scaling ωb. This re-
sulted in a 13% increase in median risk from 9.92 to 11.23. These results demonstrate
that a patient-specific action space that encourages conservative behavior can improve
performance.

Potential Pitfalls in Evaluation

In our experiments, we observed two key points for model evaluation: i) while often
overlooked in RL, using validation data for model selection during training was key to
achieving good performance, and ii) without evaluating on far more data than is typical,
it was easy to underestimate the catastrophic failure rate.

Performance instability necessitates careful model selection. Off-policy RL with func-
tion approximation, particularly deep neural networks, is known to be unstable [52],
[162]. As a result, we found it was extremely important to be careful in selecting which

95

network (and therefore policy) to evaluate. In Figure 6.5a, we show the fluctuation in vali-
dation performance over training for Adult#009. While performance increases on average
over the course of training (at least initially), there are several points where performance
degrades considerably. Figure 6.5b shows how performance averaged over all patients
changes depending on the approach used to select the policy for evaluation. When we
simply evaluate using the final epoch, almost half of test rollouts end in a catastrophic
failure. Surprisingly, even when we select the model that minimized risk on the valida-
tion set, nearly a fifth of rollouts fail. However, by first limiting our pool of models to
those that achieve a minimum blood glucose level of at least 30 mg/dL over the valida-
tion data, we reduce the catastrophic failure rate to 0.07%. As performance instability has
been noted in other RL domains [136], [163], this observation is likely relevant to other
applications of deep RL in healthcare.

0 50 100 150 200 250 300
Training Epoch

100

80

60

40

20

0

Av
er

ag
e

Re
wa

rd
 (N

eg
at

iv
e

Ri
sk

)

Train
Validation

Final Epoch Max Reward Max Reward + Min BG lim
Validation Selection Method

0

10

20

30

40

Ca
ta

st
ro

ph
ic

Fa
ilu

re
 R

at
e

(%
)

44.56

19.39

0.07

FIGURE 6.5: a) The training and validation curve (average reward) for
adult#009. Note the periods of instability affect both training and valida-
tion performance. b) Catastrophic failure rate over all patients for 3 meth-
ods of model selection: i) selecting the final training epoch, ii) selecting the
epoch that achieved minimal risk, and iii) selecting the minimal risk epoch
that maintained blood glucose above 30 mg/dL. We see large differences in

performance depending on the model selection strategy.

Extensive evaluation is necessary. Health applications are often safety critical. Thus,
the susceptibility of deep RL to unexpected or unsafe behavior can pose a significant risk
[164], [165]. While ongoing work seeks to provide safety guarantees in control applica-
tions using deep learning [165], [166], it is important that practitioners take every step to

96

evaluate the safety of their approaches. While it is typical to evaluate RL algorithms on
a small number of rollouts [136], in our work we saw how easy it can be to miss unsafe
behavior, even with significant testing. We examined the number of catastrophic failures
that occurred using RL-Trans using different evaluation sets. Over our full evaluation
set of 9,000 10-day rollouts, we observed 20 catastrophic failures (a rate of 0.22%). How-
ever, when we only evaluated using the first 5 test seeds, which is still over 12 years of
data, we observed 0 catastrophic failures. Additionally, when we evaluated using 3-day
test rollouts instead of 10, we only observed only 5 catastrophic failures (a rate of .05%),
suggesting that longer rollouts result in a higher catastrophic failure rate. These results
demonstrate that, particularly when dealing with noisy observations, it is critical to eval-
uate potential policies using many different, lengthy rollouts.

Reducing Catastrophic Failures

Due to their potential danger, avoiding catastrophic failures was a significant goal of this
work. The most direct approach we used was to modify the reward function, using a
large termination penalty to discourage dangerous behavior. While unnecessary for fine-
tuning policies, when training from scratch this technique was crucial. On a subset of 6
patients (see Appendix B.4), including the termination penalty reduced the catastrophic
failure rate from 4.2% to 0.2%.

We found varying the training data also had a major impact on the catastrophic failure
rate. Every time we reset the environment during training, we used a different random
seed (which controls meal schedule and sensor noise). Note that the pool of training,
validation, and test seeds were non-overlapping. On a challenging subset of 7 patients
(described in Appendix B.4), we ran RL-Scratch with and without this strategy. The run
that varied the training seeds had a catastrophic failure rate of 0.15%, the run that didn’t
had a 2.05% rate (largely driven by adult#009, who reliably had the highest catastrophic
failure rate across experiments).

Other approaches can further improve stability. In Table 6.1, our RL results are av-
eraged over three random restarts in training. This was done to demonstrate that our
learning framework is robust to randomness in training data and model initialization.
However, in a real application it would make more sense to select (using validation data)

97

TABLE 6.2: Risk and percent of time Eu/Hypo/Hyperglycemic calculated for
the RL approaches treating the 3 training seeds as different random restarts.
The stability of the Scratch and Trans approaches improves relative to perfor-

mance in Table 6.1.

Risk Euglycemia Hypoglycemia Hyperglycemia Failure Rate
↓ (%) ↑ (%) ↓ (%) ↓ (%) ↓

RL-Scratch 6.39 (4.7-8.9) 72.96 (69.1-76.6) 0.62 (0.0-1.7) 25.96 (22.7-29.6) 0.00
RL-Trans 6.57 (5.0-9.3) 71.56 (67.0-75.7) 0.80 (0.0-1.9) 27.19 (23.4-31.2) 0.13
RL-MA 3.71 (2.7-6.3) 77.36 (72.7-83.2) 0.00 (0.0-0.5) 22.45 (16.7-26.9) 0.00

one model for use out of the random restarts. We apply this approach in Table 6.2, choos-
ing the seed that obtained the best performance according to our model selection criteria.
This improves all the RL methods. Most notably, it further reduces the catastrophic fail-
ure rate for the approaches without meal announcements (0.07% to 0% for RL-Scratch,
and 0.22% to 0.13% for RL-Trans).

Sample Efficiency and Policy Transfer

While RL-Scratch achieves strong performance on average, it requires a large amount of
patient-specific data: 16.5 years per patient. While RL-Trans reduced this amount, it still
required over 2 years of patient-specific data, which for most health applications would
be infeasible. Thus, we investigated how performance degrades as less data is used.

In Figure 6.6, we show the average policy performance by epoch for both RL-Scratch
and RL-Trans relative to the PID controller. Note the epoch determines the maximum
possible epoch for our model selection, not the actual chosen epoch. We see that far less
training is required to achieve good performance with RL-Trans. In over 40% of rollouts,
RL-Trans outperforms PID with no patient-specific data (median risk 10.31), and with 10
epochs of training (roughly half a year of data) RL-Trans outperforms PID in the majority
of rollouts (59.6%; median risk 7.95).

Interestingly, the lack of patient-specific data does not appear to cause excessive catas-
trophic failures. With no patient-specific data the failure rate is 0%, after 5 epochs of
training it has risen to .5%, and then declines over training to the final value of .22%. This
implies two things: i) patient-specific training can increase the catastrophic failure rate,

98

0 10 20 30 40 50
Epochs of Patient-Specific Training

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 T
es

t R
ol

lo
ut

s
 th

at
 o

ut
pe

rfo
rm

 m
ed

ia
n

PI
D

Scratch
Trans
Scratch (Epoch 300)

FIGURE 6.6: The proportion of test rollouts where RL-Scratch and RL-Trans
outperform the median PID risk with different amounts of patient-specific
training. We see that without any patient-specific data RL-Trans performs
better than PID in 40% of rollouts. RL-Scratch requires a significant amount

of patient-specific data before achieving comparable performance.

possibly by learning overly aggressive treatment policies, and ii) our current model se-
lection procedure does not minimize the catastrophic failure rate. We do not observe this
for RL-Scratch, where all epochs under 50 achieve a catastrophic error rate of over 17%.
These results suggest that our simple transfer approach can be effective even with limited
amounts of patient-specific data.

6.4 SABR: Simulation Augmented Batch Reinforcement Learn-

ing

In Section 6.3.5 - Sample Efficiency and Policy Transfer, we evaluated a simple approach
to reduce the sample complexity of deep RL for blood glucose management. While we
observed a large decrease in the amount of training data required to reliably beat the
PID controller (from 1000 days to less than 200 to beat the PID ≥ 50%), even the re-
duced amount of training data presents a serious safety issue. Any amount of training
that requires our policy to actively explore or interact with its environment could lead to
catastrophic failures during training.

99

One solution to the problem of safety during training is to attempt to learn using ob-
servational data. High-quality observational data can be easily obtained by logging the
manual glucose management strategies of people with diabetes. Learning policies from
a batch of observational data collected by a behavior policy, i.e., batch RL (or offline RL),
has been explored in several recent works [55], [56]. The fundamental problem in this set-
ting is constraining learned policies to avoid exploiting inadequate state/action coverage
in the batch while maintaining good performance. E.g., the goal is to learn a policy such
that, if the behavior policy does not sufficiently explore part of the state space to develop
accurate value estimates, the learned policy will avoid those states when possible. Stan-
dard off-policy methods such as soft actor-critic, while theoretically capable of learning
in such settings, fail in practice [54]. Such techniques fail even when the behavior policy
contains highly diverse data generated from a similar policy class (i.e.: a batch of data
generated by training an identical soft actor critic on the same task) [54].

To address this issue, recent work has focused on using various distance metrics to
constrain a learned policy from deviating significantly from the behavioral policy [54],
[56]. In this work, we examine supplementing these approaches assuming access to an
imperfect simulator.

Motivation. While approaches in batch RL have demonstrated more stable performance
relative to off-policy learning in the batch setting, they can still struggle to achieve per-
formance that surpasses the behavior policy, let alone the performance of online train-
ing [55]. Meanwhile, while blood glucose simulators are known to imperfectly model
real-world phenomenon, they are sufficiently realistic to qualify for FDA approval as a
replacement for animal trials in closed loop control studies [167]. It seems sensible then
to assume that the knowledge encoded in simulators could help correct some of the flaws
in policies learned using batch RL.

Our Approach. Naively, one might train policies entirely on the simulator. However, we
assume the simulator is imperfect, and the behavior batch contains information from the
true environment. We propose an approach that combines the imperfect simulator with
the batch data. We draw inspiration from past work in batch RL that limits divergence
from a behavior policy and extend this notion to a simulator by initializing our simulator

100

using a batch and limiting simulated rollout lengths. We propose simulation-augmented
batch RL, or SABR, a simple and general technique to augment batch RL algorithms with
a simulator.

6.4.1 Batch RL Setup

We assume access to a batch of data DB collected using a behavior policy, that we call the
"behavior batch". At training time, this behavior batch is used in place of the experience
replay buffer used in traditional off-policy learning approaches. SABR makes use of a
second, regularly updated batch of data DR used as the replay buffer, that we call the
"replay batch". We also assumes access to a simulator P̂ that approximates the transition
function discussed in Section 6.3.1 - Problem Setup.

6.4.2 Proposed Algorithm

Given this setup, at each training iteration, a data sample is drawn from the behavior
batch (si, ai, ri, si+1)} ∼ DB, then si is used to initialize the state of the simulator and a
short trajectory is rolled out: si+k ∼ P̂(·|si+k−1, πφ(si+k−1) for k = 1 to the rollout length
h (typically 10 in our experiments). The rolled out trajectory {(si+k, ai+k, ri+k, si+k+1)}h−1

k=0
is then appended to DR. The full algorithm is given in Algorithm 6.

Note that SABR can be used with any RL or batch RL algorithm that uses an expe-
rience replay buffer. For approaches, such as BCQ and BEAR, that involve training a
behavior policy, we still train using the behavior batch. The limited length of the rollouts
helps prevent the dynamics of the simulator from washing out information contained
in the behavior batch, and the use of the batch to initialize the environment allows our
experience replay buffer to contain diverse trajectories, despite the short rollout lengths.

6.4.3 Experimental Setup

To test the efficacy of SABR (while allowing ground truth evaluation), we created a batch
RL problem using the UVA/Padova simulator used for our previous experiments. To

101

ALGORITHM 6: Simulation Augmented Batch RL

Data: Behavior Batch DB, Simulator P̂
Result: Trained policy πφ

Initialize policy πφ and empty experience replay buffer DR;
while Not trained do

Draw observation (si, ai, ri, si+1)} ∼ DB;
for k = 1 . . . h do

ai+k−1 ∼ πφ(·|si+k−1);
si+k ∼ P̂(·|si+k−1, ai+k);
ri+k−1 = R(si+k−1, ai+k−1);

end
Append trajectory {(si+k, ai+k, ri+k, si+k+1)}h−1

k=0 to DR;
if Training behavior policy then

Perform iteration of behavior cloning using DB;
Perform iteration of training πφ using standard RL or Batch RL algorithm with
buffer DR;

end

initialize the simulator, we use the oracle state space described in Section 6.3.1 - Ora-
cle Architecture. We also consider applying SABR to our normal state space by using a
separate round of state inference, trained using our imperfect simulator.

We collect a batch of data from Adult#001 using a basal bolus control policy to sim-
ulate human behavior. The batch is collected using independent 20-day rollouts with
varying random seeds for meals and sensor noise. We then use this batch of data together
with a copy of the simulator for adult#004 to train control policies for adult#001. We
use the same learning and validation procedure described in Section 6.3.1. We measure
performance using mean risk and compare the effect of using different batch sizes. We
evaluate using batches containing 1 month, 2 months, or 2 years of observational data.

We evaluate the following approaches:
• Simulation-Only: The policy is learned using the imperfect simulator in a standard

online fashion (using soft actor-critic). This approach serves as a baseline, testing
the importance of considering batch data.
• Behavior Cloning (BC): We use the variational autoencoder behavioral cloning ap-

proach of [54]. This approach measures the efficacy of the behavioral policy we can

102

learn from the batch.
• Batch Constrained Q Learning (BCQ) [54]: This approach constrains the learned

policy by learning to modify a cloned behavior policy using a perturbation net-
work thresholded on the L∞-norm measured in the action space of the policies. The
threshold is set proportional to the maximum absolute action. We use the origi-
nal continuous formulation from the authors implementation with a perturbation
threshold of 5%.
• BEAR [56]: This approach constrains the learned policy to lie within the support of

the behavior policy using an MMD loss. We use the authors implementation and
tune hyperparameters (specifically the MMD variance term and lagrange threshold
parameter) for our task. This method, along with BCQ, test the efficacy of state-of-
the-art batch RL on the new problem of blood glucose management.
• SABR-BCQ/BEAR: We augment SAC/BCQ/BEAR respectively using our proposed

approach outlined in Algorithm 6.
• Online Training (Oracle): This serves as a form of oracle performance. We train our

RL approach using the simulator for the true patient, adult#001.

6.5 Experiments and Results

In our experiments, we seek to answer the following questions:

• Do standard batch RL approaches learn effective glucose control policies? (Table
6.3)

• Can imperfect simulators be used to augment the performance of these approaches
when ignoring issues of state inference? (Table 6.3)

• Can these approaches work even in the presence of biased state inference? (Table
6.4)

Our results using the oracle state space are presented in Table 6.3. We observe that the
simulation augmented approaches, SABR-BCQ and SABR-BEAR, improve over vanilla
BCQ/BEAR, reducing risk on a 2-month batch from 7.94 with BEAR to 5.52. Interest-
ingly, we observe a consistent decrease in performance from all methods except BC when

103

increasing the amount of batch data. Thus, in our next experiment we considered further
reducing the batch data to 1 month.

TABLE 6.3: Median risk and interquartile range over 100 10-day rollouts and
3 training seeds, using the ground truth simulator state. We evaluate meth-
ods trained with either 2 months of batch data or 2 years (note this does not
affect the simulation-only methods). We observe the SABR approaches, par-

ticularly SABR-BEAR, perform better than the baselines.

Method Risk: 2 Month Batch Risk: 2 Year Batch

Sim-Only 6.82 (6.68, 6.96) 6.82 (6.68, 6.96)
BC [54] 9.12 (8.68, 9.80) 7.65 (7.06, 7.78)
BCQ [54] 95.42 (95.23, 96.32) 76.57 (76.12, 77.83)
BEAR [56] 7.94 (7.22, 8.60) 9.39 (8.63, 10.15)
SABR-BCQ (Ours) 6.54 (6.17, 6.95) 9.13 (6.39, 9.78)
SABR-BEAR (Ours) 5.52(5.29, 5.89) 5.94(5.63, 6.22)
Oracle∗ 3.58 (1.88, 5.37) 3.58 (1.88, 5.37)

Evaluated on our observed state space, consisting of the past four hours of carbs and
insulin, the task becomes considerably more difficult. Using simulator augmentation re-
quires a separate state inference step. Given the observed data, we predict the true sim-
ulator state. We train this approach in a supervised fashion, using data collected from
adult#004. We describe our process for doing this more fully in Appendix B.6. The results
are presented in Table 6.4. The additional state inference step has a negative impact on
performance. Neither SABR-BCQ nor SABR-BEAR consistently outperform their vanilla
counterparts. We continue to observe general increases in performance when reducing
the quantity of batch data, contrary to our expectations.

While our results using simulator augmentation were mixed, helping most in a setting
where state inference was not required, this work does suggest that batch RL can be rea-
sonably applied to the problem of blood glucose control. In the results presented in Table
6.3 and Table 6.4 the oracle risk performance was within 2 points or less of the next best
approach. This is encouraging as the batch RL approaches require no interaction with the
environment and is thus safer than an online approach.

Given the difference in results between Table 6.3 and Table 6.4, additional work in
state inference may further reduce the gap between batch RL and interactive training.

104

TABLE 6.4: Median risk and interquartile range using our standard state
space. We observe that SABR-BEAR outperforms all baselines in the low data
setting, but with higher quantities of data underperforms BEAR. Curiously,

large behavior batches reduce overall performance across most methods.

Method Risk: 1 Month Batch Risk: 2 Month Batch Risk: 2 Year Batch

BC [54] 21.99 (21.03, 22.90) 17.32 (16.32, 18.17) 20.31 (19.32, 21.14)
BCQ [54] 16.71 (13.41, 22.71) 18.33 (13.48, 26.59) 17.33 (15.75, 43.24)
BEAR [56] 8.43 (7.94, 9.02) 8.78(8.43, 9.19) 8.79(8.40, 9.26)
SABR-BCQ (Ours) 18.08 (12.90, 38.28) 28.97 (17.70, 102.55) 30.73 (7.82, 93.78)
SABR-BEAR (Ours) 8.31(7.76, 9.07) 10.49 (8.67, 11.41) 9.93 (9.48, 10.50)
Oracle∗ 7.83 (7.15, 8.64) 7.83 (7.15, 8.64) 7.83 (7.15, 8.64)

Recent work has demonstrated how the adjoint method allows backpropagation through
arbitrary ODE-solvers [168], this could be used with our simulator to optimize state in-
ference using observational data. However, in both cases the best performing non-oracle
approach was simulation-augmented BEAR, which is encouraging for the overall efficacy
of our proposed simulation augmentation.

6.6 Summary and Conclusions

In this work, we demonstrate how deep RL can lead to significant improvements over
alternative approaches to blood glucose control, with and without meal announcements
(Section 6.3.4 - Deep RL vs. Baseline Approaches). We provide insight into why (Section
6.3.4 - Detecting Latent Meals) and when (Section 6.3.4 - Ability to Adapt to Behavioral
Schedules) we would expect to see RL perform better. We demonstrate the importance
of a robust action space in patient-specific tasks (Section 6.3.5 - Developing an Effective
Action Space), show how careful and extensive validation is necessary for realistic eval-
uation of performance (Section 6.3.5 - Potential Pitfalls in Evaluation), investigate sev-
eral simple and general approaches to improving the stability of deep RL (Section 6.3.5 -
Reducing Catastrophic Failures), and develop a simple approach to reduce the require-
ments of patient-specific data (Section 6.3.5 - Sample Efficiency and Policy Transfer). To
go further, we provide the first application of batch RL to the problem of blood glucose
management (Section 6.4), and demonstrate how biased simulators could be combined

105

with suboptimal observational data to learn blood glucose management policies. While
the main goal of this work is to advance a clinical application, the challenges we encoun-
tered and the solutions they inspired are likely to be of interest to researchers applying
RL to healthcare more broadly.

While our results in applying deep RL to blood glucose control are encouraging, they
come with several limitations. First, our results are based on simulation. The simula-
tor may not adequately capture variation across patients or changes in the glucoregula-
tory system over time. In particular, the virtual patient population the simulator comes
equipped with does not differentiate individuals based on demographic information,
such as gender and ethnicity. Thus, the applicability of our proposed techniques to all
relevant patient populations cannot be assessed. However, as an FDA-approved substi-
tute for animal trials [26], success in using this simulator is a nontrivial accomplishment.
Second, we define a reward function based on risk. Though optimizing this risk function
should lead to tight glucose control, it could lead to excess insulin utilization (as its use is
unpenalized). Future work could consider resource-aware variants of this reward. Third,
our choice of a 4-hour state space discourages learning long-term patterns or trends. In
our environment, this did not reduce performance relative to a longer input history, but
this could be important for managing blood glucose levels in more realistic simulators
or real-world cases [167]. Finally, we emphasize that blood glucose control is a safety-
critical application. An incorrect dose of insulin could lead to life-threatening situations.
Many of the methods we examined, even those that achieve good average performance,
are susceptible to catastrophic failures. We have investigated several ways to minimize
such failures, including modifying the reward function and selecting models across mul-
tiple random restarts. While the results from Table 6.2 suggest these approaches mitigate
catastrophic failures, the results of Section 6.3.5 - Potential Pitfalls in Evaluation show
such empirical evaluations can miss failure cases. To enable researchers to better explore
and correct these limitations, we evaluated on an open-source simulator and made all the
code required to reproduce our experiments publicly available.

106

Chapter 7

Conclusion

This dissertation addressed how to learn useful representations of physiological time se-
ries with a focus on algorithms for monitoring and managing blood glucose levels in peo-
ple with type 1 diabetes. Physiological data collected under normal living conditions can
provide great insight into the progression and management of chronic diseases. However,
learning from such data presents several challenges. The fact that the data are collected
under normal living conditions means that unobserved daily events and environmental
factors can have large effects on the data which are difficult to model. Additionally, when
dealing with chronic diseases, outcomes can occur over time horizons spanning years,
thus huge amounts of longitudinal data are often available for each labelled example,
resulting in a challenging high-D low-N learning problem. Additionally, physiological
time series inherit the problems (and advantages) of more general time-series data, re-
quiring approaches that model temporal dependencies. Finally, as with all problems in
health, safety and reliability are absolute necessities, introducing serious challenges when
learning automated control policies.

This dissertation builds on work spanning several fields, including time-series analy-
sis, machine learning with sequential data, and deep reinforcement learning. Identifying
representations of time-series data that can then be used to make predictions (e.g., predict
hypoglycemia) has been a longstanding problem. Motif representations, which empha-
size repeated patterns in the data, have been used to find efficient and discriminative rep-
resentations of sequences [43]. However, these techniques can ignore important context
in the signal. In recent years, a great deal of work has been done on end-to-end repre-
sentation learning using deep learning. These approaches can struggle without access
to large amounts of labeled data, though work has shown the value of self-supervision

107

on large unlabeled datasets [96]. For predicting future values in time series, approaches
in multi-step forecasting have emphasized modeling trajectories in using recursive and
multi-output models, which can ignore temporal dependencies [15]. Finally, deep rein-
forcement learning has made great strides in recent years on several complex domains
[153], [169], but past work has not explored how it could be used for closed loop blood
glucose management.

Building on this past work, our dissertation has contributed several new approaches
for learning useful representations of and controlling physiological time series. For rep-
resenting signals, we proposed contextual motifs, an approach that combines well con-
served subsequences with global context to learn discriminative representations (Chapter
3). For end-to-end representation learning with sequences, we showed self-supervision
does not require unlabeled data to improve classification performance, as it can draw
on the sequential structure inherent to the input (Chapter 4). Relating to both represent-
ing and controlling physiological signals, our work on multi-output forecasting demon-
strated the importance of modeling dependencies in the output window, and we showed
that incorporating functional priors into output representations improved performance
(Chapter 5). While our work in forecasting could serve as a component of a control
scheme, we also used RL to learn policies that manage blood glucose levels. We ob-
served that stable personalized policies could be learned directly from data, and that
these policies could be used without any human intervention, even without any access to
the true environment (Chapter 6). While we demonstrated that our contributions often
lead to quantitative gains in relevant metrics, one unmeasured benefit is the potential to
reduce patient burden. Even if automated methods for blood glucose management do
not significantly improve performance relative to human control, removing the stress of
managing glucose levels is important.

There are several areas touched upon in this dissertation that could be interesting for
further examination. Here we outline four possibilities.

First, the ability to incorporate extremely long temporal contexts in sequence predic-
tion is still lacking. Approaches in this dissertation only considered using input lengths
of up to one day for prediction problems, which would certainly be insufficient for prob-
lems involving long-term disease progression. Learning to connect minute-level input
data with trends that emerge over years is not feasible with the approaches we have laid

108

out. While this problem in general may be infeasible, the fact that patterns in blood glu-
cose data are largely present at a daily level suggests that hierarchical representations that
track slow changes in daily patterns may be feasible.

Second, there is still a clear divide between methods that use expert definitions and
those that seek to learn solely from data. While recent history in ML suggests that the
latter is preferable, it would be surprising if existing expert information on physiological
processes had no role to play in understanding and managing these systems. In par-
ticular, using data to improve existing simulators is an exciting way to combine expert
definitions and data. While existing glucose simulators are capable of generating realistic
days of glucose traces [167], the ability to easily generate accurate personalized simu-
lators using only observational data would be an exciting development for advancing
blood glucose management.

Third, while we observed good performance using deep RL to control blood glucose
levels, it is unclear how such models could be used in practice. The fundamental issue
with deep RL in safety-critical control problems is the lack of provable guarantees on
behavior for general methods. With the recent surge of interest in RL for autonomous
driving and robotics, there has been an increase in work done on safety in RL [170]–[172].
However there has been limited work using RL to learn provably safe control policies
for physiological time series. Related to this issue is the problem of sample efficiency.
Even our transfer-learning approach required 6 months of patient-specific data to achieve
good performance. Clinicians can recommend changes to insulin regimes using only a
few weeks of data. This suggests that better modeling could lead to improved sample
efficiency.

Finally, one major limitation of this dissertation was a lack of evaluation on real peo-
ple in a prospective manner. While we worked with data collected from real individuals
where possible, evaluations were performed retrospectively and thus their applicabil-
ity to real-world settings cannot be presumed. This problem is particularly notable in
Chapter 6, in which we only use simulated data. While the simulator we evaluate on is
strong, it does not model several important aspects of the glucoregulatory system, such as
changes in insulin sensitivity [167]. Before this work could be deployed broadly, it must
be carefully evaluated prospectively on individuals under real-world settings. Such trials
have been done for existing commercial hybrid closed loop systems, suggesting this is

109

feasible [141]. However, due to the expense of such trials and our finding that extensive
evaluation is needed to properly evaluate approaches (Section 6.3.5), as an initial step it
would be valuable to explore methods to efficiently generate adversarial meal schedules
for control algorithms. This would help determine worst case controller performance
without requiring prohibitive amounts of real world evaluation.

The main contributions of this dissertation are: 1) approaches to learn useful repre-
sentations of blood glucose data for predicting adverse events, and 2) methods to learn
blood glucose management policies from online or batch data. Important to these contri-
butions is the identification of overarching problems that arise when learning from these
data. By emphasizing problems such as latent context and the mismatch of input data
size to labels, this dissertation could help to clarify issues in other application areas using
data from wearable health monitors. Another important aspect of this dissertation is the
emphasis on problems in diabetes management, a societally important and technologi-
cally interesting but often overlooked application area for machine learning research. By
highlighting applications of machine learning approaches to problems in this field, par-
ticularly the closed-loop management of blood glucose levels, we hope this dissertation
inspires more interest from the machine learning community in this area.

110

Appendix A

Appendix for Improving Time-Series
Classification Without Additional Data

Using Limited Self-Supervision

A.1 Auxiliary Tasks: Additional Motivation and Details

A.1.1 Autoencoding

Motivation. Autoencoding encourages the hidden state to retain all relevant information
from the original input. By reducing the size of the hidden state, our model must learn a
compressed representation of the signal. Compression encourages learning latent struc-
ture and discourages learning noise.
Details. We use a single-layer autoregressive LSTM for the recurrent layer RAE, which
is initialized using the hidden and cell states from the encoder LSTM and sequentially
decodes hidden states zAE

t . These hidden states are fed into a fully-connected output
layer, OAE, that maps zAE

t → x̂t. The output x̂t is then fed into RAE, generating zAE
t+1,

continuing until x̂0:T is fully generated. To provide a shorter path for gradient flow, we
decode in reverse order, generating x̂T:0 instead of x̂0:T [44].

111

A.1.2 Forecasting

Motivation. Forecasting encourages E to encode the dynamics of the data-generating
process. Without information about the underlying dynamics, future value prediction
is either challenging or trivial (if the signal does not change). Such dynamics may carry
valuable information for a range of sequence-level tasks, though the aspects of the dy-
namics most relevant to the target task may differ from those that predict future values.
Details. We focus on a multi-output forecasting architecture, predicting several future
values simultaneously [173]. This is done using a recurrent decoder, similar to the au-
toencoder, but applied at each encoding step and expanded only h steps, where h is a
hyperparameter.

A.1.3 Partial-Signal Autoencoding

Motivation. Previous work has found advantages to reconstruction over prediction [96].
Dai and Le hypothesize the observed superiority of sequence autoencoding over fore-
casting may result from the short-term nature of the language modeling task (only pre-
dicting the next word). To investigate the effect of short-term dependency auxiliary
tasks, we use a multi-step forecasting system, where we can examine the effect of vary-
ing the prediction horizon. Analogously, we use PS-AE to examine the effect of produc-
ing short-term reconstructions.
Details. PS-AE is implemented using a setup identical to our forecasting approach, ex-
cept we estimate the previous h values instead of the subsequent values (Figure 4.1 a, DPS).

A.1.4 Piecewise-Linear Autoencoding

Motivation. AE encourages fine-grained modeling of the signal over long periods, whereas
PS-AE encourages fine-grained modeling over a short period. While PS-AE can control
the range of temporal dependencies modeled using the decoding horizon h, it does not
vary the granularity at which the output is modeled. What level of signal granularity is

112

required for reasonable target-task performance? To explore this question, we introduce
Piecewise-Linear (PL) Autoencoding.
Details. To generate a PL representation of a signal with n distinct pieces, we take the
encoded representation of the signal, zT, and feed it into a recurrent layer RPL. Figure
4.1 a, DPL illustrates our point-generation system. The sequential output of the decoder,
zPL

j , generates the jth point value and position. Specifically, we use two fully-connected
output layers, Oval and Opos, that map zPL

j → vj, pj respectively. Since we know p0 = 0,
at the first step we generate only an initial value. We continue the decoding process,
feeding vj, ∑

j
k=0 pk to the decoder to generate zPL

j+1, until we have generated n+ 1 points.
We then use linear interpolation to map (v0, p0) . . . (vn, pn) → x̂0:T. We normalize the
position vector and use the cumulative summation to determine segment positions.

A.2 All Combinations of Auxiliary Tasks

In Figure 5 we present plots showing average AUC-ROC for all possible combinations of
auxiliary tasks, for each data set. Here the contribution of each task can be examined.

A.3 Application to UCR Times Series data-sets

In order to evaluate the use of self-supervised auxiliary tasks in an easily replicable set-
ting, and in order to facilitate comparisons with state-of-the are methods, we performed
classification on 7 data sets from the UCR Time Series Archive https://www.cs.ucr.edu/
~eamonn/time_series_data_2018/. We included tasks that had fixed length sequences
and a sample to label ratio greater than 100. We only included the subset of these tasks for
which our baseline architecture performed better than random chance. These selections
were to ensure that the tasks were reasonably well suited to our baseline architecture. For
each dataset, the last 20% of the training sample was used as a validation set, with the
testing sample used as a test set.

Table A.1 shows baseline results for each task (accuracy when our model was run
with no auxiliary tasks), the highest accuracy achieved with any combination of auxiliary

113

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C
-R

O
C

PLA

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

A
U

C
-R

O
C

T1D

Non
e AE

Fore
ca

ste
r

Inl
ine

AE
PLA

AE+F
ore

AE+In
lin

e

AE+P
LA

Fore
+In

lin
e

Fore
+P

LA

Inl
ine

+P
LA

NOT A
E

NOT Fore

NOT In
lin

e

NOT P
LA ALL

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

A
U

C
-R

O
C

AF

FIGURE A.1: Average AUC-ROC for every combination of Auxiliary task for
all three analyses. Here, columns marked ’NOT’ included all but the indi-

cated auxiliary task.

tasks, and state-of-the-art performance according to timeseriesclassification.com. Al-
though the baseline architecture is routinely and drastically outperformed by state-of-
the-art methods, the addition of auxiliary tasks improved performance to be significantly
closer to the state-of-the-art level in most cases, and our model achieved at- state-of-the-
art accuracy for the Two Patterns task. Although our model was unable to achieve state-
of-the-art performance on most tasks, the improvement over baseline indicates that the
addition of self-supervised auxiliary tasks could enhance better suited baseline architec-
tures on these and other tasks.

114

timeseriesclassification.com

TABLE A.1: Accuracy on 7 data sets from the UCR Archive.

Data Set Baseline-ACC Best-ACC Best-Tasks SOTA- ACC
ElectricDevices 57.5 59.6 Forecaster 89.5
FordB 60.3 75.4 Inline + PLA 92.9
FordA 61.4 86.6 Not Forecaster 96.5
Wafer 89.1 95.2 AE 100.0
HandOutlines 54.7 54.7 None 92.4
TwoPatterns 64.4 100 Forecaster+Inline 100
StarLightCurves 84.6 89.0 Not PLA 98.0

115

Appendix B

Appendix for Deep Reinforcement
Learning for Blood Glucose Management

B.1 Harrison-Benedict Meal Generation Algorithm

See Algorithm 7. In short, this meal schedule calculates BMR for each simulated individ-
ual using the Harrison-Benedict equation [174]. This is used to estimate expected daily
carbohydrate consumption, assuming individuals eat a reasonably low-carb diet where
45% of calories come from carbohydrates. Daily carbohydrates were divided between 6
potential meals: breakfast, lunch, dinner, and 3 snacks. The occurrence probability of the
meal and expected size of the meal was set such that the expected number of carbs eaten
per day matched the BMR-derived estimate. Note, in our experiments our implementa-
tion of of this meal schedule incorrectly estimated ages for many patients, particularly
adults. This effect was fairly minor, resulting in no more than a 10% change in estimated
BMR.

116

ALGORITHM 7: Generate Meal Schedule
Data: body weight w, age a, height h, number of days n

BMR = 66.5 + (13.75 ∗ w) + (5.003 ∗ h)− (6.755 ∗ a) ;
ExpectedCarbs = (BMR ∗ 0.45)/4 . 45% of calories assumed from carbs, 4 calories per
carb;
MealOcc = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3];
TimeLowerBounds = [5, 9, 10, 14, 16, 20] ∗ 12;
TimeUpperBounds = [9, 10, 14, 16, 20, 23] ∗ 12;
TimeMean = [7, 9.5, 12, 15, 18, 21.5] ∗ 12;
TimeStd = [1, .5, 1, .5, 1, .5] ∗ 12;
AmountMean = [0.250, 0.035, 0.295, 0.035, 0.352, 0.035] ∗ ExpectedCarbs ∗ 1.2;
AmountStd = AmountMean ∗ 0.15;
Days = [];

for i ∈ [1, . . . , n] do
M = [0]288

j=1;
for j ∈ [1, . . . , 6] do

m ∼ Binomial(MealOcc[j]);
lb = TimeLowerBounds[j];
ub = TimeUpperBounds[j];
µt = TimeMean[j];
σt = TimeStd[j];
µa = AmountMean[j];
σa = AmountStd[j];

if m then
t ∼ Round(TruncNormal(µt, σt, lb, ub));
c ∼ Round(max(0, Normal(µa, σa)));
M[t] = c;
end

end
Days.append(M);

end

117

B.2 BB Parameters

The parameters are presented in Table B.1. The simulator provides age and TDI for
each individual. To calculate CR and CF we use equations CR = 500/TDI and CF =

1800/TDI, which were provided to us via a clinical consultation. The resulting CR and
CF we used differed from those provided in the baseline Simglucose download from [29],
in practice we found our values led to better performance.

TABLE B.1: Basal-Bolus Parameters

Person CR CF Age TDI
child#001 28.62 103.02 9 17.47
child#002 27.51 99.02 9 18.18
child#003 31.21 112.35 8 16.02
child#004 25.23 90.84 12 19.82
child#005 12.21 43.97 10 40.93
child#006 24.72 89.00 8 20.22
child#007 13.81 49.71 9 36.21
child#008 23.26 83.74 10 21.49
child#009 28.75 103.48 7 17.39
child#010 24.21 87.16 12 20.65
adolescent#001 13.61 49.00 18 36.73
adolescent#002 8.06 29.02 19 62.03
adolescent#003 20.62 74.25 15 24.24
adolescent#004 14.18 51.06 17 35.25
adolescent#005 14.70 52.93 16 34.00
adolescent#006 10.08 36.30 14 49.58
adolescent#007 11.46 41.25 16 43.64
adolescent#008 7.89 28.40 14 63.39
adolescent#009 20.77 74.76 19 24.08
adolescent#010 15.07 54.26 17 33.17
adult#001 9.92 35.70 61 50.42
adult#002 8.64 31.10 65 57.87
adult#003 8.86 31.90 27 56.43
adult#004 14.79 53.24 66 33.81
adult#005 7.32 26.35 52 68.32
adult#006 8.14 29.32 26 61.39
adult#007 11.90 42.85 35 42.01
adult#008 11.69 42.08 48 42.78
adult#009 7.44 26.78 68 67.21
adult#010 7.76 27.93 68 64.45

118

B.3 PID and PID-MA parameters

TABLE B.2: PID parameters

kp ki kd
child#001 -3.49E-05 -1.00E-07 -1.00E-03
child#002 -3.98E-05 -2.87E-08 -3.98E-03
child#003 -6.31E-05 -1.74E-08 -1.00E-03
child#004 -6.31E-05 -1.00E-07 -1.00E-03
child#005 -1.00E-04 -2.87E-08 -6.31E-03
child#006 -3.49E-05 -1.00E-07 -1.00E-03
child#007 -3.98E-05 -6.07E-08 -2.51E-03
child#008 -3.49E-05 -3.68E-08 -1.00E-03
child#009 -3.49E-05 -1.00E-07 -1.00E-03
child#010 -4.54E-06 -3.68E-08 -2.51E-03
adolescent#001 -1.74E-04 -1.00E-07 -1.00E-02
adolescent#002 -1.00E-04 -1.00E-07 -6.31E-03
adolescent#003 -1.00E-04 -1.00E-07 -3.98E-03
adolescent#004 -1.00E-04 -1.00E-07 -4.79E-03
adolescent#005 -6.31E-05 -1.00E-07 -6.31E-03
adolescent#006 -4.54E-10 -1.58E-11 -1.00E-02
adolescent#007 -1.07E-07 -6.07E-08 -6.31E-03
adolescent#008 -4.54E-10 -4.54E-12 -1.00E-02
adolescent#009 -6.31E-05 -1.00E-07 -3.98E-03
adolescent#010 -4.54E-10 -4.54E-12 -1.00E-02
adult#001 -1.58E-04 -1.00E-07 -1.00E-02
adult#002 -3.98E-04 -1.00E-07 -1.00E-02
adult#003 -4.54E-10 -1.00E-07 -1.00E-02
adult#004 -1.00E-04 -1.00E-07 -3.98E-03
adult#005 -3.02E-04 -1.00E-07 -1.00E-02
adult#006 -2.51E-04 -2.51E-07 -1.00E-02
adult#007 -1.22E-04 -3.49E-07 -2.87E-03
adult#008 -1.00E-04 -1.00E-07 -1.00E-02
adult#009 -1.00E-04 -1.00E-07 -1.00E-02
adult#010 -1.00E-04 -1.00E-07 -1.00E-02

119

TABLE B.3: PID-MA parameters

kp ki kd
child#001 -5.53E-09 -1.00E-07 -3.49E-04
child#002 -1.00E-04 -2.87E-08 -1.00E-03
child#003 -1.00E-05 -2.87E-08 -1.00E-03
child#004 -6.31E-05 -1.00E-07 -1.00E-03
child#005 -1.00E-04 -1.00E-07 -3.31E-03
child#006 -1.00E-05 -3.68E-08 -1.00E-03
child#007 -2.35E-07 -1.00E-07 -1.00E-03
child#008 -4.72E-06 -2.87E-08 -1.00E-03
child#009 -1.00E-05 -1.00E-07 -3.49E-04
child#010 -3.49E-05 -4.72E-08 -1.00E-03
adolescent#001 -1.00E-04 -4.72E-08 -6.31E-03
adolescent#002 -1.00E-05 -1.00E-07 -3.49E-03
adolescent#003 -6.31E-05 -1.00E-07 -2.09E-03
adolescent#004 -6.31E-05 -1.00E-07 -2.51E-03
adolescent#005 -4.79E-05 -1.00E-07 -3.98E-03
adolescent#006 -1.00E-04 -1.00E-07 -2.75E-03
adolescent#007 -1.00E-05 -1.00E-07 -3.02E-03
adolescent#008 -1.58E-09 -1.00E-07 -2.75E-03
adolescent#009 -3.98E-05 -1.00E-07 -1.91E-03
adolescent#010 -1.00E-04 -1.00E-07 -4.37E-03
adult#001 -1.07E-07 -1.00E-07 -4.37E-03
adult#002 -1.58E-04 -1.00E-07 -4.37E-03
adult#003 -7.59E-05 -1.00E-07 -2.51E-03
adult#004 -1.00E-04 -1.00E-07 -1.00E-03
adult#005 -1.07E-07 -1.00E-07 -6.31E-03
adult#006 -1.00E-04 -1.00E-07 -1.00E-02
adult#007 -1.58E-04 -2.51E-07 -3.02E-03
adult#008 -1.58E-05 -1.00E-07 -3.98E-03
adult#009 -4.54E-10 -1.00E-07 -6.31E-03
adult#010 -3.98E-05 -1.00E-07 -4.37E-03

120

B.4 Relevant Patient Subgroups

For tuning our models and selecting hyperparameters, we focused on one challenging
but representative individual from each category. In particular, we used child#001, ado-
lescent#004, and adult#001.

For our action space ablation we examined the subset of 4 individuals who were most
prone to catastrophic failures: child#006, child#008, adolescent#002, and adult#009

For the termination penalty experiment, we included child#001, child#003, adoles-
cent#002, adolescent#008, adult#008, and adult#009. We used these patients as they con-
tained a mix of regular and hard to control patients.

For seed progression experiments, we focused on a subset of patients we found re-
liably challenging for different models to control (in terms of risk and catastrophic fail-
ure rate). We included child#001, child#006, child#008, adolescent#002, adolescent#003,
adult#001, and adult#009 in this analysis.

B.5 RL-Scratch on Adolescent#002

RL-Scratch has a distinct form of degenerate behavior that occurs only in adolescent#002,
drastically lowering performance (see Figure 6.2). We reliably observe that models trained
on adolescent#002 do not administer any insulin, and thus achieve chronic hyperglycemia.
This is because, unlike any other virtual patient, adolescent#002 does not require any in-
sulin to achieve blood glucose levels below 1000 mg/dL (the threshold at which we apply
the hyperglycemic termination penalty) over a 10 day period. As a result of the large dis-
parity between average rewards and the termination penalty, the network quickly learns
to never administer insulin and the learned exploration rate collapses to 0. This approach
can be easily avoided by warm-starting using an environment from another individual,
as then the network has already learned to administer generally safe amounts of insulin.
Adolescent#002 spends, on average, 97% of their time hyperglycemic under RL-Scratch,
and only 39.2% of time hyperglycemic under RL-Trans.

121

B.6 SABR State Inference

We train a random forest regressor implemented in Scikit-Learn to predict the 13-dimensional
oracle state given the past hour and future of data. We include the future hour as it im-
proves the performance, particularly when inferring meals. The model is trained using
a paired dataset of observed and ground truth states generated using the simulator for
adult#004.

122

Bibliography

[1] “Literature on Wearable Technology for Connected Health: Scoping Review of Re-
search Trends, Advances, and Barriers”, vol. 21, e14017, DOI: 10.2196/14017. [On-
line]. Available: https://www.jmir.org/2019/9/e14017/.

[2] T. Nakamura, K. Kiyono, H. Wendt, P. Abry, and Y. Yamamoto, “Multiscale analy-
sis of intensive longitudinal biomedical signals and its clinical applications”, Pro-
ceedings of the IEEE, vol. 104, no. 2, pp. 242–261, 2016.

[3] B. Tao, M. Pietropaolo, M. Atkinson, D. Schatz, and D. Taylor, “Estimating the Cost
of Type 1 Diabetes in the U.S.: A Propensity Score Matching Method”, en, PLOS
ONE, vol. 5, no. 7, e11501, Jul. 2010, ISSN: 1932-6203.

[4] W.-P. You and M. Henneberg, “Type 1 diabetes prevalence increasing globally and
regionally: The role of natural selection and life expectancy at birth”, BMJ Open
Diabetes Research and Care, vol. 4, no. 1, e000161, Mar. 1, 2016, ISSN: 2052-4897. DOI:
10.1136/bmjdrc- 2015- 000161. [Online]. Available: https://drc.bmj.com/
content/4/1/e000161 (visited on 01/04/2019).

[5] CDC, National diabetes statistics report: Estimates of diabetes and its burden in the united
states. atlanta, ga: Centers for disease control and prevention; 2014, 2017.

[6] R. M. Bergenstal, W. V. Tamborlane, A. Ahmann, J. B. Buse, G. Dailey, S. N. Davis,
C. Joyce, T. Peoples, B. A. Perkins, J. B. Welsh, S. M. Willi, and M. A. Wood, “Effec-
tiveness of Sensor-Augmented Insulin-Pump Therapy in Type 1 Diabetes”, New
England Journal of Medicine, vol. 363, no. 4, pp. 311–320, Jul. 2010, ISSN: 0028-4793.
DOI: 10.1056/NEJMoa1002853. [Online]. Available: https://doi.org/10.1056/
NEJMoa1002853 (visited on 10/29/2018).

123

https://doi.org/10.2196/14017
https://www.jmir.org/2019/9/e14017/
https://doi.org/10.1136/bmjdrc-2015-000161
https://drc.bmj.com/content/4/1/e000161
https://drc.bmj.com/content/4/1/e000161
https://doi.org/10.1056/NEJMoa1002853
https://doi.org/10.1056/NEJMoa1002853
https://doi.org/10.1056/NEJMoa1002853

[7] E. A. Rogers, K. J. Yost, J. K. Rosedahl, M. Linzer, D. H. Boehm, A. Thakur, S.
Poplau, R. T. Anderson, and D. T. Eton, “Validating the patient experience with
treatment and self-management (pets), a patient-reported measure of treatment
burden, in people with diabetes”, Patient related outcome measures, vol. 8, p. 143,
2017.

[8] K. Bohlen, E. Scoville, N. D. Shippee, C. R. May, and V. M. Montori, “Overwhelmed
patients: A videographic analysis of how patients with type 2 diabetes and clini-
cians articulate and address treatment burden during clinical encounters”, Diabetes
care, vol. 35, no. 1, pp. 47–49, 2012.

[9] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs”,
in Proceedings of the ninth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, ACM, 2003, pp. 493–498.

[10] T. L. Bailey, C. Elkan, et al., “Fitting a mixture model by expectation maximization
to discover motifs in bipolymers”, 1994.

[11] B. Liu, J. Li, C. Chen, W. Tan, Q. Chen, and M. Zhou, “Efficient motif discovery for
large-scale time series in healthcare”, IEEE Transactions on Industrial Informatics,
vol. 11, no. 3, pp. 583–590, 2015.

[12] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effective-
ness of data in deep learning era”, in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 843–852.

[13] R. Caruana, “Multitask learning”, Machine learning, vol. 28, no. 1, pp. 41–75, 1997.

[14] P. Ramachandran, P. J. Liu, and Q. Le, “Unsupervised pretraining for sequence
to sequence learning”, in Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, 2017, pp. 383–391.

[15] S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and comparison
of strategies for multi-step ahead time series forecasting based on the NN5 fore-
casting competition”, Expert systems with applications, vol. 39, no. 8, pp. 7067–7083,
2012.

124

[16] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence
prediction with recurrent neural networks”, in Advances in Neural Information Pro-
cessing Systems, 2015, pp. 1171–1179.

[17] C. Cobelli, E. Renard, and B. Kovatchev, “Artificial pancreas: Past, present, future”,
Diabetes, vol. 60, no. 11, pp. 2672–2682, 2011.

[18] J. Tuomilehto, “The Emerging Global Epidemic of Type 1 Diabetes”, en, Current
Diabetes Reports, vol. 13, no. 6, pp. 795–804, Dec. 2013, ISSN: 1539-0829. DOI: 10.
1007/s11892- 013- 0433- 5. [Online]. Available: https://doi.org/10.1007/
s11892-013-0433-5 (visited on 10/29/2018).

[19] K. G. M. M. Alberti, R. A. DeFronzo, and P. Zimmet, Eds., International textbook of
diabetes mellitus, English, 2nd ed. New York: J. Wiley, 1997, ISBN: 978-0-471-93930-6.

[20] M. E. Kerl, “Diabetic ketoacidosis: Pathophysiology and clinical and laboratory
presentation”, Compendium, vol. 23, no. 3, pp. 220–228, 2001.

[21] J. K. Snell-Bergeon and R. P. Wadwa, “Hypoglycemia, Diabetes, and Cardiovas-
cular Disease”, Diabetes Technology & Therapeutics, vol. 14, no. S1, S–51, May 2012,
ISSN: 1520-9156. DOI: 10.1089/dia.2012.0031. [Online]. Available: https://www.
liebertpub.com/doi/abs/10.1089/dia.2012.0031 (visited on 10/29/2018).

[22] Writing Team for the Diabetes Control and Complications Trial/Epidemiology of
Diabetes Interventions and Complications Research Group, “Sustained effect of
intensive treatment of type 1 diabetes mellitus on development and progression
of diabetic nephropathy: The Epidemiology of Diabetes Interventions and Com-
plications (EDIC) study”, eng, JAMA, vol. 290, no. 16, pp. 2159–2167, Oct. 2003,
ISSN: 1538-3598. DOI: 10.1001/jama.290.16.2159.

[23] “Intensive Diabetes Therapy and Glomerular Filtration Rate in Type 1 Diabetes”,
New England Journal of Medicine, vol. 365, no. 25, pp. 2366–2376, Dec. 2011, ISSN:
0028-4793. DOI: 10.1056/NEJMoa1111732. [Online]. Available: https://doi.org/
10.1056/NEJMoa1111732 (visited on 05/23/2018).

125

https://doi.org/10.1007/s11892-013-0433-5
https://doi.org/10.1007/s11892-013-0433-5
https://doi.org/10.1007/s11892-013-0433-5
https://doi.org/10.1007/s11892-013-0433-5
https://doi.org/10.1089/dia.2012.0031
https://www.liebertpub.com/doi/abs/10.1089/dia.2012.0031
https://www.liebertpub.com/doi/abs/10.1089/dia.2012.0031
https://doi.org/10.1001/jama.290.16.2159
https://doi.org/10.1056/NEJMoa1111732
https://doi.org/10.1056/NEJMoa1111732
https://doi.org/10.1056/NEJMoa1111732

[24] D. M. Nathan, M. Bayless, P. Cleary, S. Genuth, R. Gubitosi-Klug, J. M. Lachin,
G. Lorenzi, B. Zinman, and f. t. D. R. Group, “Diabetes Control and Complica-
tions Trial/Epidemiology of Diabetes Interventions and Complications Study at
30 Years: Advances and Contributions”, en, Diabetes, vol. 62, no. 12, pp. 3976–3986,
Dec. 2013, ISSN: 0012-1797, 1939-327X. DOI: 10.2337/db13-1093. [Online]. Avail-
able: http://diabetes.diabetesjournals.org/content/62/12/3976 (visited on
05/23/2018).

[25] C. Cobelli, G. Federspil, G. Pacini, A. Salvan, and C. Scandellari, “An integrated
mathematical model of the dynamics of blood glucose and its hormonal control”,
Mathematical Biosciences, vol. 58, no. 1, pp. 27–60, 1982.

[26] B. P. Kovatchev, M. Breton, C. Dalla Man, and C. Cobelli, In silico preclinical trials:
a proof of concept in closed-loop control of type 1 diabetes. SAGE Publications Sage CA:
Los Angeles, CA, 2009.

[27] B. W. Bequette, “Algorithms for a Closed-Loop Artificial Pancreas: The Case for
Model Predictive Control”, en, Journal of Diabetes Science and Technology, vol. 7,
no. 6, pp. 1632–1643, Nov. 2013, ISSN: 1932-2968, 1932-2968. (visited on 11/09/2018).

[28] R. N. Bergman, “Toward physiological understanding of glucose tolerance: Minimal-
model approach”, Diabetes, vol. 38, no. 12, pp. 1512–1527, 1989.

[29] J. Xie, Simglucose v0.2.1, Available: https://github.com/jxx123/simglucose, ver-
sion v0.2.1, 2018. (visited on 01/20/2019).

[30] M. Kumar and M. Thenmozhi, “Forecasting Stock Index Movement: A Compar-
ison of Support Vector Machines and Random Forest”, Social Science Research
Network, Rochester, NY, SSRN Scholarly Paper ID 876544, Jan. 2006.

[31] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for physical inter-
action through video prediction”, in Advances in Neural Information Processing Sys-
tems, 2016, pp. 64–72.

126

https://doi.org/10.2337/db13-1093
http://diabetes.diabetesjournals.org/content/62/12/3976

[32] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame synthesis using
deep voxel flow”, in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 4463–4471.

[33] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for
raw audio”, in 9th ISCA Speech Synthesis Workshop, pp. 125–125.

[34] Y. Luo, Y. Xin, R. Joshi, L. Celi, and P. Szolovits, “Predicting icu mortality risk
by grouping temporal trends from a multivariate panel of physiologic measure-
ments”, in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[35] J. Wiens, J. Guttag, and E. Horvitz, “Patient risk stratification with time-varying
parameters: A multitask learning approach”, The Journal of Machine Learning Re-
search, vol. 17, no. 1, pp. 2797–2819, 2016.

[36] R. Bunescu, N. Struble, C. Marling, J. Shubrook, and F. Schwartz, “Blood Glucose
Level Prediction Using Physiological Models and Support Vector Regression”, in
2013 12th International Conference on Machine Learning and Applications, vol. 1, Dec.
2013, pp. 135–140.

[37] S. Saria, A. Duchi, and D. Koller, “Discovering deformable motifs in continu-
ous time series data”, in IJCAI Proceedings-International Joint Conference on Artifi-
cial Intelligence, vol. 22, 2011, p. 1465. [Online]. Available: http://ijcai.org/
Proceedings/11/Papers/247.pdf.

[38] K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists and
engineers. Princeton university press, 2010.

[39] A. Cowles, “Stock Market Forecasting”, Econometrica, vol. 12, no. 3/4, pp. 206–
214, 1944, ISSN: 0012-9682. DOI: 10 . 2307 / 1905433. [Online]. Available: https :
//www.jstor.org/stable/1905433 (visited on 10/24/2018).

[40] Z. Syed, C. Stultz, M. Kellis, P. Indyk, and J. Guttag, “Motif discovery in physiolog-
ical datasets: A methodology for inferring predictive elements”, ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 4, no. 1, p. 2, 2010.

127

http://ijcai.org/Proceedings/11/Papers/247.pdf
http://ijcai.org/Proceedings/11/Papers/247.pdf
https://doi.org/10.2307/1905433
https://www.jstor.org/stable/1905433
https://www.jstor.org/stable/1905433

[41] M. Breton and B. Kovatchev, “Analysis, modeling, and simulation of the accuracy
of continuous glucose sensors”, Journal of Diabetes Science and Technology, vol. 2,
no. 5, pp. 853–862, 2008.

[42] C. K. Chui, An introduction to wavelets. Academic press, 2014, vol. 1.

[43] A. Mueen, “Time series motif discovery: Dimensions and applications”, Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 2, pp. 152–
159, 2014.

[44] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press
Cambridge, 2016, vol. 1.

[45] Y. S. Abu-Mostafa, “Learning from hints in neural networks.”, J. Complexity, vol. 6,
no. 2, pp. 192–198, 1990.

[46] M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser, “Multi-task Sequence
to Sequence Learning”, arXiv:1511.06114 [cs, stat], Nov. 2015, arXiv: 1511.06114.

[47] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep Learning for solar power fore-
casting #x2014; An approach using AutoEncoder and LSTM Neural Networks”,
in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct.
2016, pp. 002 858–002 865.

[48] M. Fiterau, S. Bhooshan, J. Fries, C. Bournhonesque, J. Hicks, E. Halilaj, C. Ré,
and S. Delp, “Shortfuse: Biomedical time series representations in the presence of
structured information”, Proceedings of machine learning research, vol. 68, p. 59, 2017.

[49] P. Schulam and S. Saria, “Reliable decision support using counterfactual models”,
in Advances in Neural Information Processing Systems, 2017, pp. 1697–1708.

[50] C. Midroni, P. J. Leimbigler, G. Baruah, M. Kolla, A. J. Whitehead, and Y. Fossat,
“Predicting glycemia in type 1 diabetes patients: Experiments with XGBoost”, p. 6,

128

[51] A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural
networks”, in Proceedings of the 33rd International Conference on International Confer-
ence on Machine Learning-Volume 48, 2016, pp. 1747–1756.

[52] O. Gottesman, F. Johansson, J. Meier, J. Dent, D. Lee, S. Srinivasan, L. Zhang, Y.
Ding, D. Wihl, X. Peng, et al., “Evaluating reinforcement learning algorithms in
observational health settings”, arXiv preprint arXiv:1805.12298, 2018.

[53] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems”, arXiv preprint arXiv:2005.01643,
2020.

[54] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning
without exploration”, in International Conference on Machine Learning, 2019, pp. 2052–
2062.

[55] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, “Benchmarking Batch Deep
Reinforcement Learning Algorithms”, en, arXiv:1910.01708 [cs, stat], Oct. 2019. [On-
line]. Available: http://arxiv.org/abs/1910.01708 (visited on 02/06/2020).

[56] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing Off-Policy Q-Learning
via Bootstrapping Error Reduction”, in Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and
R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 11 761–11 771. [Online]. Avail-
able: http : / / papers . nips . cc / paper / 9349 - stabilizing - off - policy - q -
learning-via-bootstrapping-error-reduction.pdf (visited on 02/06/2020).

[57] I. Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens, “Contextual motifs: Increas-
ing the utility of motifs using contextual data”, in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017,
pp. 155–164.

[58] A. Van Esbroeck, “Learning better clinical risk models”, PhD thesis, The Univer-
sity of Michigan, 2015.

129

http://arxiv.org/abs/1910.01708
http://papers.nips.cc/paper/9349-stabilizing-off-policy-q-learning-via-bootstrapping-error-reduction.pdf
http://papers.nips.cc/paper/9349-stabilizing-off-policy-q-learning-via-bootstrapping-error-reduction.pdf

[59] R. E. Kleiger, J. P. Miller, J. T. Bigger, and A. J. Moss, “Decreased heart rate variabil-
ity and its association with increased mortality after acute myocardial infarction”,
The American journal of cardiology, vol. 59, no. 4, pp. 256–262, 1987.

[60] M. Jaiswal, K. McKeon, N. Comment, J. Henderson, S. Swanson, C. Plunkett, P.
Nelson, and R. Pop-Busui, “Association between impaired cardiovascular auto-
nomic function and hypoglycemia in patients with type 1 diabetes”, Diabetes care,
vol. 37, no. 9, pp. 2616–2621, 2014.

[61] M. Muggeo, G. Zoppini, E. Bonora, E. Brun, R. C. Bonadonna, P. Moghetti, and
G. Verlato, “Fasting plasma glucose variability predicts 10-year survival of type 2
diabetic patients: The verona diabetes study.”, Diabetes care, vol. 23, no. 1, pp. 45–
50, 2000.

[62] D. Minnen, T. Starner, I. Essa, and C. Isbell, “Discovering characteristic actions
from on-body sensor data”, in 2006 10th IEEE international symposium on wearable
computers, IEEE, 2006, pp. 11–18.

[63] Q. Zhou and W. H. Wong, “Cismodule: De novo discovery of cis-regulatory mod-
ules by hierarchical mixture modeling”, Proceedings of the national academy of sci-
ences of the United States of America, vol. 101, no. 33, pp. 12 114–12 119, 2004.

[64] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search
for similarities in the amino acid sequence of two proteins”, Journal of molecular
biology, vol. 48, no. 3, pp. 443–453, 1970.

[65] J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding motifs in time series”, in Proc. of
the 2nd Workshop on Temporal Data Mining, 2002, pp. 53–68.

[66] J. Buhler and M. Tompa, “Finding motifs using random projections”, Journal of
computational biology, vol. 9, no. 2, pp. 225–242, 2002.

[67] J. Grabocka, N. Schilling, and L. Schmidt-Thieme, “Latent time-series motifs”,
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 11, no. 1, p. 6,
2016.

130

[68] K. L. Jensen, M. P. Styczynski, I. Rigoutsos, and G. N. Stephanopoulos, “A generic
motif discovery algorithm for sequential data”, Bioinformatics, vol. 22, no. 1, pp. 21–
28, 2006.

[69] T. Oates, “Peruse: An unsupervised algorithm for finding recurring patterns in
time series”, in Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International
Conference on, IEEE, 2002, pp. 330–337.

[70] L. Ye and E. Keogh, “Time series shapelets: A new primitive for data mining”, in
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, 2009, pp. 947–956.

[71] M. Shokoohi-Yekta, Y. Chen, B. Campana, B. Hu, J. Zakaria, and E. Keogh, “Dis-
covery of meaningful rules in time series”, in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 1085–
1094.

[72] S. Saria, A. Duchi, and D. Koller, “Discovering deformable motifs in continuous
time series data”, in IJCAI Proceedings-International Joint Conference on Artificial In-
telligence, vol. 22, 2011, p. 1465.

[73] K. P. Murphy, “Dynamic bayesian networks”, Probabilistic Graphical Models, M. Jor-
dan, vol. 7, 2002.

[74] A. Van Esbroeck, C.-C. Chia, and Z. Syed, “Heart rate topic models”, in The Twenty-
Sixth AAAI Conference on Artificial Intelligence, vol. 1001, 2012, p. 48 109.

[75] T.-h. Lin, P. Ray, G. K. Sandve, S. Uguroglu, and E. P. Xing, “Baycis: A bayesian hi-
erarchical hmm for cis-regulatory module decoding in metazoan genomes”, in An-
nual International Conference on Research in Computational Molecular Biology, Springer,
2008, pp. 66–81.

[76] S. Saria, D. Koller, and A. Penn, “Learning individual and population level traits
from clinical temporal data”, in Proc. Neural Information Processing Systems (NIPS),
Predictive Models in Personalized Medicine workshop, Citeseer, 2010.

131

[77] P. A. Baghurst, “Calculating the mean amplitude of glycemic excursion from con-
tinuous glucose monitoring data: An automated algorithm”, Diabetes technology &
therapeutics, vol. 13, no. 3, pp. 296–302, 2011.

[78] G. D. Molnar, J. W. Rosevear, E. Ackerman, L. C. Gatewood, W. F. Taylor, et al.,
“Mean amplitude of glycemic excursions, a measure of diabetic instability”, Dia-
betes, vol. 19, no. 9, pp. 644–655, 1970.

[79] R. Siddharthan, E. D. Siggia, and E. Van Nimwegen, “Phylogibbs: A gibbs sam-
pling motif finder that incorporates phylogeny”, PLoS Comput Biol, vol. 1, no. 7,
e67, 2005.

[80] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in python
using pymc3”, PeerJ Computer Science, vol. 2, e55, 2016.

[81] J. S. Liu, “Metropolized gibbs sampler: An improvement”, Technical report, Dept.
Statistics, Stanford Univ, Tech. Rep., 1996.

[82] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: Adaptively setting path
lengths in hamiltonian monte carlo.”, Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1593–1623, 2014.

[83] S. Zoungas, A. Patel, J. Chalmers, B. E. de Galan, Q. Li, L. Billot, M. Woodward, T.
Ninomiya, B. Neal, S. MacMahon, et al., “Severe hypoglycemia and risks of vascu-
lar events and death”, New England Journal of Medicine, vol. 363, no. 15, pp. 1410–
1418, 2010.

[84] R. M. Bergenstal, “Glycemic variability and diabetes complications: Does it mat-
ter? simply put, there are better glycemic markers!”, Diabetes care, vol. 38, no. 8,
pp. 1615–1621, 2015.

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in
python”, Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

132

[86] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: A novel symbolic
representation of time series”, Data Mining and knowledge discovery, vol. 15, no. 2,
pp. 107–144, 2007.

[87] H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, and A. Galstyan, “Mul-
titask learning and benchmarking with clinical time series data”, Scientific data,
vol. 6, no. 1, pp. 1–18, 2019.

[88] H. Hassan, A. Aue, C. Chen, V. Chowdhary, J. Clark, C. Federmann, X. Huang, M.
Junczys-Dowmunt, W. Lewis, and M. Li, “Achieving Human Parity on Automatic
Chinese to English News Translation”, arXiv preprint arXiv:1803.05567, 2018.

[89] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to Generate Reviews and
Discovering Sentiment”, arXiv:1704.01444 [cs], Apr. 2017. (visited on 04/13/2018).

[90] N. M. Nasrabadi, “Pattern recognition and machine learning”, Journal of electronic
imaging, vol. 16, no. 4, p. 049 901, 2007.

[91] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional Deep Belief Net-
works for Scalable Unsupervised Learning of Hierarchical Representations”, in
Proceedings of the 26th Annual International Conference on Machine Learning, ser. ICML
’09, New York, NY, USA: ACM, 2009, pp. 609–616, ISBN: 978-1-60558-516-1. DOI:
10.1145/1553374.1553453. (visited on 04/13/2018).

[92] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning”, in The
IEEE International Conference on Computer Vision (ICCV), 2017.

[93] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep Neural Networks
for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research
Groups”, IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, Nov. 2012, ISSN:
1053-5888. DOI: 10.1109/MSP.2012.2205597.

[94] A. van den Oord and O. Vinyals, “Neural discrete representation learning”, in
Advances in Neural Information Processing Systems, 2017, pp. 6309–6318.

133

https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1109/MSP.2012.2205597

[95] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality”, in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[96] A. M. Dai and Q. V. Le, “Semi-supervised sequence learning”, in Advances in neural
information processing systems, 2015, pp. 3079–3087.

[97] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding”, in NAACL-HLT (1), 2019.

[98] A. Hyvarinen and H. Morioka, “Unsupervised feature extraction by time-contrastive
learning and nonlinear ica”, in Advances in Neural Information Processing Systems,
2016, pp. 3765–3773.

[99] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive pre-
dictive coding”, arXiv preprint arXiv:1807.03748, 2018.

[100] R. Caruana, “Multitask learning”, in Learning to learn, Springer, 1998, pp. 95–133.

[101] B. Ahmed, T. Thesen, K. Blackmon, R. Kuzniecky, O. Devinsky, J. Dy, and C. Brod-
ley, “Multi-task learning with weak class labels: Leveraging iEEG to detect cortical
lesions in cryptogenic epilepsy”, in Machine Learning for Healthcare Conference, 2016,
pp. 115–133.

[102] N. Razavian, J. Marcus, and D. Sontag, “Multi-task prediction of disease onsets
from longitudinal laboratory tests”, in Machine Learning for Healthcare Conference,
2016, pp. 73–100.

[103] S. Ruder, “An Overview of Multi-Task Learning in Deep Neural Networks”, arXiv:1706.05098
[cs, stat], Jun. 2017.

[104] P. Schwab, E. Keller, C. Muroi, D. J. Mack, C. Strässle, and W. Karlen, “Not to
cry wolf: Distantly supervised multitask learning in critical care”, in International
Conference on Machine Learning, 2018, pp. 4518–4527.

134

[105] E. Choi, C. Xiao, W. Stewart, and J. Sun, “Mime: Multilevel medical embedding of
electronic health records for predictive healthcare”, in Advances in Neural Informa-
tion Processing Systems, 2018, pp. 4547–4557.

[106] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional recurrent
imputation for time series”, in Advances in Neural Information Processing Systems,
2018, pp. 6775–6785.

[107] G. Clifford, C. Liu, B. Moody, L. Lehman, I. Silva, Q. Li, A. Johnson, and R. Mark,
“AF classification from a short single lead ECG recording: The Physionet Comput-
ing in Cardiology Challenge 2017”, Computing in Cardiology, vol. 44, 2017.

[108] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch”, 2017.

[109] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, International
Conference for Learning Representations (ICLR), 2015.

[110] I. Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens, “Deep Multi-Output Fore-
casting: Learning to Accurately Predict Blood Glucose Trajectories”, in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’18, New York, NY, USA: ACM, 2018, pp. 1387–1395, ISBN: 978-
1-4503-5552-0. DOI: 10.1145/3219819.3220102. [Online]. Available: http://doi.
acm.org/10.1145/3219819.3220102 (visited on 11/05/2018).

[111] A. M. Lamb, A. G. A. P. Goyal, Y. Zhang, S. Zhang, A. C. Courville, and Y. Bengio,
“Professor forcing: A new algorithm for training recurrent networks”, in Advances
in neural information processing systems, 2016, pp. 4601–4609.

[112] G. Cappon, G. Acciaroli, M. Vettoretti, A. Facchinetti, and G. Sparacino, “Wear-
able continuous glucose monitoring sensors: A revolution in diabetes treatment”,
Electronics, vol. 6, no. 3, p. 65, 2017.

[113] C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Cobelli, “The
UVA/PADOVA type 1 diabetes simulator: New features”, Journal of diabetes science
and technology, vol. 8, no. 1, pp. 26–34, 2014.

135

https://doi.org/10.1145/3219819.3220102
http://doi.acm.org/10.1145/3219819.3220102
http://doi.acm.org/10.1145/3219819.3220102

[114] R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti, M. O. Fed-
erici, T. R. Pieber, H. C. Schaller, L. Schaupp, T. Vering, et al., “Nonlinear model
predictive control of glucose concentration in subjects with type 1 diabetes”, Phys-
iological measurement, vol. 25, no. 4, p. 905, 2004.

[115] W. Wu, K. Chen, Y. Qiao, and Z. Lu, “Probabilistic short-term wind power forecast-
ing based on deep neural networks”, in 2016 International Conference on Probabilistic
Methods Applied to Power Systems (PMAPS), Oct. 2016, pp. 1–8.

[116] S. Mirshekarian, R. Bunescu, C. Marling, and F. Schwartz, “Using LSTMs to Learn
Physiological Models of Blood Glucose Behavior”, EMBC, 2017.

[117] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of
neural machine translation: Encoder–decoder approaches”, Syntax, Semantics and
Structure in Statistical Translation, p. 103, 2014.

[118] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for
statistical machine translation”, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2014, pp. 1724–1734.

[119] B. Sudharsan, M. Peeples, and M. Shomali, “Hypoglycemia prediction using ma-
chine learning models for patients with type 2 diabetes”, Journal of diabetes science
and technology, vol. 9, no. 1, pp. 86–90, 2014.

[120] S. Oviedo, J. Vehí, R. Calm, and J. Armengol, “A review of personalized blood
glucose prediction strategies for T1dm patients”, International journal for numerical
methods in biomedical engineering, vol. 33, no. 6, 2017.

[121] M. Eren-Oruklu, A. Cinar, and L. Quinn, Hypoglycemia prediction with subject-specific
recursive time-series models. SAGE Publications, 2010.

[122] C. Zecchin, A. Facchinetti, G. Sparacino, and C. Cobelli, “Jump Neural Network
for Real-Time Prediction of Glucose Concentration”, English, in Artificial Neural
Networks, ser. Methods in Molecular Biology, DOI: 10.1007/978-1-4939-2239-0_15,
Springer New York, Jan. 2015, pp. 245–259, ISBN: 978-1-4939-2238-3.

136

[123] K. Plis, R. Bunescu, C. Marling, J. Shubrook, and F. Schwartz, “A machine learning
approach to predicting blood glucose levels for diabetes management”, Modern
Artificial Intelligence for Health Analytics. Papers from the AAAI-14, 2014.

[124] K. Turksoy, E. S. Bayrak, L. Quinn, E. Littlejohn, D. Rollins, and A. Cinar, “Hypo-
glycemia early alarm systems based on multivariable models”, Industrial & engi-
neering chemistry research, vol. 52, no. 35, pp. 12 329–12 336, 2013.

[125] C. Zecchin, A. Facchinetti, G. Sparacino, and C. Cobelli, “How Much Is Short-Term
Glucose Prediction in Type 1 Diabetes Improved by Adding Insulin Delivery and
Meal Content Information to CGM Data? A Proof-of-Concept Study”, en, Journal
of Diabetes Science and Technology, vol. 10, no. 5, pp. 1149–1160, Sep. 2016, ISSN:
1932-2968.

[126] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in
Python”, Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[127] M. Ghassemi, M. A. Pimentel, T. Naumann, T. Brennan, D. A. Clifton, P. Szolovits,
and M. Feng, “A multivariate timeseries modeling approach to severity of illness
assessment and forecasting in icu with sparse, heterogeneous clinical data”, in Pro-
ceedings of the... AAAI Conference on Artificial Intelligence. AAAI Conference on Artifi-
cial Intelligence, vol. 2015, NIH Public Access, 2015, p. 446.

[128] I. Fox, J. Lee, R. Busui, and J. Wiens, “Deep reinforcement learning for closed-loop
blood glucose control”, in Machine Learning for Healthcare Conference, 2020.

[129] R. D. Coffen and L. M. Dahlquist, “Magnitude of type 1 diabetes self-management
in youth health care needs diabetes educators”, The Diabetes Educator, vol. 35, no. 2,
pp. 302–308, 2009.

[130] M. K. Bothe, L. Dickens, K. Reichel, A. Tellmann, B. Ellger, M. Westphal, and A. A.
Faisal, “The use of reinforcement learning algorithms to meet the challenges of
an artificial pancreas”, en, Expert Review of Medical Devices, vol. 10, no. 5, pp. 661–
673, Sep. 2013, ISSN: 1743-4440, 1745-2422. DOI: 10.1586/17434440.2013.827515.

137

https://doi.org/10.1586/17434440.2013.827515

[Online]. Available: http://www.tandfonline.com/doi/full/10.1586/17434440.
2013.827515 (visited on 10/31/2018).

[131] J. E. Pinsker, J. B. Lee, E. Dassau, D. E. Seborg, P. K. Bradley, R. Gondhalekar,
W. C. Bevier, L. Huyett, H. C. Zisser, and F. J. Doyle, “Randomized Crossover
Comparison of Personalized MPC and PID Control Algorithms for the Artificial
Pancreas”, en, Diabetes Care, p. dc152344, Jun. 2016, ISSN: 0149-5992, 1935-5548.
DOI: 10.2337/dc15-2344. [Online]. Available: http://care.diabetesjournals.
org/content/early/2016/06/10/dc15-2344 (visited on 11/08/2018).

[132] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn,
“Learning to adapt: Meta-learning for model-based control”, Proc. of ICLR, 2019.

[133] R. Visentin, C. Dalla Man, B. Kovatchev, and C. Cobelli, “The university of vir-
ginia/padova type 1 diabetes simulator matches the glucose traces of a clinical
trial”, Diabetes technology & therapeutics, vol. 16, no. 7, pp. 428–434, 2014.

[134] O. Gottesman, F. Johansson, M. Komorowski, A. Faisal, D. Sontag, F. Doshi-Velez,
and L. A. Celi, “Guidelines for reinforcement learning in healthcare”, Nature Medicine,
vol. 25, no. 1, pp. 16–18, 2019.

[135] A. Irpan, Deep reinforcement learning doesn’t work yet, https://www.alexirpan.
com/2018/02/14/rl-hard.html, 2018.

[136] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep
reinforcement learning that matters”, in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[137] W.-H. Weng, M. Gao, Z. He, S. Yan, and P. Szolovits, “Representation and rein-
forcement learning for personalized glycemic control in septic patients”, NeurIPS
2017 ML4H Workshop, Dec. 2, 2017. (visited on 09/20/2019).

[138] M. Komorowski, L. A. Celi, O. Badawi, A. C. Gordon, and A. A. Faisal, “The Artifi-
cial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive
care”, Nature Medicine, p. 1, 2018.

138

http://www.tandfonline.com/doi/full/10.1586/17434440.2013.827515
http://www.tandfonline.com/doi/full/10.1586/17434440.2013.827515
https://doi.org/10.2337/dc15-2344
http://care.diabetesjournals.org/content/early/2016/06/10/dc15-2344
http://care.diabetesjournals.org/content/early/2016/06/10/dc15-2344
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

[139] N. Prasad, L. F. Cheng, C. Chivers, M. Draugelis, and B. E. Engelhardt, “A re-
inforcement learning approach to weaning of mechanical ventilation in intensive
care units”, in 33rd Conference on Uncertainty in Artificial Intelligence, UAI 2017, 2017.

[140] P. Klasnja, S. Smith, N. J. Seewald, A. Lee, K. Hall, B. Luers, E. B. Hekler, and
S. A. Murphy, “Efficacy of contextually tailored suggestions for physical activity: A
micro-randomized optimization trial of HeartSteps”, Annals of Behavioral Medicine,
vol. 53, no. 6, pp. 573–582, May 3, 2019. (visited on 09/20/2019).

[141] S. Trevitt, S. Simpson, and A. Wood, “Artificial pancreas device systems for the
closed-loop control of type 1 diabetes”, Journal of Diabetes Science and Technology,
vol. 10, no. 3, pp. 714–723, Nov. 20, 2015. (visited on 09/06/2019).

[142] G. M. Steil, “Algorithms for a closed-loop artificial pancreas: The case for proportional-
integral-derivative control”, Journal of diabetes science and technology, vol. 7, no. 6,
pp. 1621–1631, 2013.

[143] S. K. Garg, S. A. Weinzimer, W. V. Tamborlane, B. A. Buckingham, B. W. Bode,
T. S. Bailey, R. L. Brazg, J. Ilany, R. H. Slover, S. M. Anderson, R. M. Bergenstal,
B. Grosman, A. Roy, T. L. Cordero, J. Shin, S. W. Lee, and F. R. Kaufman, “Glu-
cose Outcomes with the In-Home Use of a Hybrid Closed-Loop Insulin Delivery
System in Adolescents and Adults with Type 1 Diabetes”, Diabetes Technology &
Therapeutics, vol. 19, no. 3, pp. 155–163, Jan. 2017, ISSN: 1520-9156. DOI: 10.1089/
dia.2016.0421. [Online]. Available: https://www.liebertpub.com/doi/full/
10.1089/dia.2016.0421 (visited on 11/08/2018).

[144] J. L. Ruiz, J. L. Sherr, E. Cengiz, L. Carria, A. Roy, G. Voskanyan, W. V. Tamborlane,
and S. A. Weinzimer, “Effect of Insulin Feedback on Closed-Loop Glucose Control:
A Crossover Study”, en, Journal of Diabetes Science and Technology, vol. 6, no. 5,
pp. 1123–1130, Sep. 2012, ISSN: 1932-2968. DOI: 10 .1177 /193229681200600517.
[Online]. Available: https://doi.org/10.1177/193229681200600517 (visited on
11/09/2018).

[145] M. Tejedor, A. Z. Woldaregay, and F. Godtliebsen, “Reinforcement learning appli-
cation in diabetes blood glucose control: A systematic review”, Artificial Intelligence
in Medicine, p. 101 836, Feb. 21, 2020, ISSN: 0933-3657. DOI: 10.1016/j.artmed.

139

https://doi.org/10.1089/dia.2016.0421
https://doi.org/10.1089/dia.2016.0421
https://www.liebertpub.com/doi/full/10.1089/dia.2016.0421
https://www.liebertpub.com/doi/full/10.1089/dia.2016.0421
https://doi.org/10.1177/193229681200600517
https://doi.org/10.1177/193229681200600517
https://doi.org/10.1016/j.artmed.2020.101836
https://doi.org/10.1016/j.artmed.2020.101836

2020.101836. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0933365718304548 (visited on 03/04/2020).

[146] P. D. Ngo, S. Wei, A. Holubová, J. Muzik, and F. Godtliebsen, “Reinforcement-
learning optimal control for type-1 diabetes”, in 2018 IEEE EMBS International Con-
ference on Biomedical Health Informatics (BHI), Mar. 2018, pp. 333–336. DOI: 10.1109/
BHI.2018.8333436.

[147] M. Oroojeni Mohammad Javad, S. Agboola, K. Jethwani, I. Zeid, and S. Kamarthi,
“Reinforcement learning algorithm for blood glucose control in diabetic patients”,
in Volume 14: Emerging Technologies; Safety Engineering and Risk Analysis; Materials:
Genetics to Structures, Houston, Texas, USA: ASME, 2015, V014T06A009, ISBN: 978-
0-7918-5757-1. (visited on 11/10/2018).

[148] Q. Sun, M. Jankovic, J. Budzinski, B. Moore, P. Diem, C. Stettler, and S. G. Mougiakakou,
“A dual mode adaptive basal-bolus advisor based on reinforcement learning”,
IEEE Journal of Biomedical and Health Informatics, pp. 1–1, 2018.

[149] E. Daskalaki, L. Scarnato, P. Diem, and S. G. Mougiakakou, “Preliminary results of
a novel approach for glucose regulation using an actor-critic learning based con-
troller”, in UKACC International Conference on Control 2010, ISSN: null, Sep. 2010,
pp. 1–5. DOI: 10.1049/ic.2010.0287.

[150] M. De Paula, G. G. Acosta, and E. C. Martínez, “On-line policy learning and adap-
tation for real-time personalization of an artificial pancreas”, Expert Syst. Appl.,
vol. 42, no. 4, pp. 2234–2255, Mar. 2015. (visited on 11/16/2018).

[151] M. Vettoretti, S. Del Favero, G. Sparacino, and A. Facchinetti, “Modeling the er-
ror of factory-calibrated continuous glucose monitoring sensors: Application to
dexcom g6 sensor data”, in 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), IEEE, 2019, pp. 750–753.

[152] L. Magni, D. M. Raimondo, L. Bossi, C. D. Man, G. De Nicolao, B. Kovatchev,
and C. Cobelli, “Model predictive control of type 1 diabetes: An in silico trial”,
Journal of diabetes science and technology (Online), vol. 1, no. 6, pp. 804–812, Nov.
2007. (visited on 02/26/2020).

140

https://doi.org/10.1016/j.artmed.2020.101836
https://doi.org/10.1016/j.artmed.2020.101836
http://www.sciencedirect.com/science/article/pii/S0933365718304548
http://www.sciencedirect.com/science/article/pii/S0933365718304548
https://doi.org/10.1109/BHI.2018.8333436
https://doi.org/10.1109/BHI.2018.8333436
https://doi.org/10.1049/ic.2010.0287

[153] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning”, en, Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015, ISSN: 0028-0836. DOI: 10.1038/nature14236. [On-
line]. Available: http://www.nature.com/nature/journal/v518/n7540/abs/
nature14236.html (visited on 12/02/2016).

[154] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy Max-
imum Entropy Deep Reinforcement Learning with a Stochastic Actor”, en, in In-
ternational Conference on Machine Learning, Jul. 2018, pp. 1861–1870. (visited on
09/22/2019).

[155] B. Eysenbach and S. Levine, “If maxent rl is the answer, what is the question?”,
arXiv preprint arXiv:1910.01913, 2019.

[156] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A.
Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic Algorithms and Applications”,
arXiv:1812.05905 [cs, stat], Dec. 2018. (visited on 09/23/2019).

[157] T. Zhu, K. Li, P. Herrero, J. Chen, and P. Georgiou, “A deep learning algorithm for
personalized blood glucose prediction”, IJCAI Knowledge Discovery in Healthcare
Data Workshop, 2018.

[158] A. Kuroda, H. Kaneto, T. Yasuda, M. Matsuhisa, K. Miyashita, N. Fujiki, K. Fuji-
sawa, T. Yamamoto, M. Takahara, F. Sakamoto, T.-a. Matsuoka, and I. Shimomura,
“Basal insulin requirement is 30% of the total daily insulin dose in type 1 diabetic
patients who use the insulin pump”, Diabetes Care, vol. 34, no. 5, pp. 1089–1090,
May 1, 2011. (visited on 09/23/2019).

[159] J. Walsh, R. Roberts, and T. Bailey, “Guidelines for optimal bolus calculator set-
tings in adults”, Journal of Diabetes Science and Technology, vol. 5, no. 1, pp. 129–135,
Jan. 1, 2011. (visited on 09/23/2019).

141

https://doi.org/10.1038/nature14236
http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html

[160] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”, in International Conference on Machine Learn-
ing, 2015, pp. 448–456.

[161] S. Ayano-Takahara, K. Ikeda, S. Fujimoto, K. Asai, Y. Oguri, S.-i. Harashima, H.
Tsuji, K. Shide, and N. Inagaki, “Carbohydrate intake is associated with time spent
in the euglycemic range in patients with type 1 diabetes”, Journal of diabetes inves-
tigation, vol. 6, no. 6, pp. 678–686, 2015.

[162] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second edi-
tion, ser. Adaptive computation and machine learning series. Cambridge, Mas-
sachusetts: The MIT Press, 2018, ISBN: 978-0-262-03924-6.

[163] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control”, ICML Repro-
ducibility in Machine Learning Workshop, 2017.

[164] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L. Orseau,
and S. Legg, “Ai safety gridworlds”, arXiv preprint arXiv:1711.09883, 2017.

[165] J. Futoma, M. A. Masood, and F. Doshi-Velez, “Identifying distinct, effective treat-
ments for acute hypotension with soda-rl: Safely optimized diverse accurate rein-
forcement learning”, AMIA Summits on Translational Science Proceedings, vol. 2020,
p. 181, 2020.

[166] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization”,
in Proceedings of the 34th International Conference on Machine Learning-Volume 70,
JMLR. org, 2017, pp. 22–31.

[167] R. Visentin, E. Campos-Náñez, M. Schiavon, D. Lv, M. Vettoretti, M. Breton, B. P.
Kovatchev, C. Dalla Man, and C. Cobelli, “The uva/padova type 1 diabetes simu-
lator goes from single meal to single day”, Journal of diabetes science and technology,
vol. 12, no. 2, pp. 273–281, 2018.

142

[168] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary
differential equations”, in Advances in neural information processing systems, 2018,
pp. 6571–6583.

[169] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, and T. Graepel, “Mastering chess and shogi by self-play with
a general reinforcement learning algorithm”, arXiv preprint arXiv:1712.01815, 2017.

[170] X. Xiong, J. Wang, F. Zhang, and K. Li, “Combining deep reinforcement learning
and safety based control for autonomous driving”, arXiv preprint arXiv:1612.00147,
2016.

[171] A. Jain, K. Khetarpal, and D. Precup, “Safe option-critic: Learning safety in the
option-critic architecture”, ICML ALA Workshop, 2018.

[172] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A lyapunov-
based approach to safe reinforcement learning”, in Advances in neural information
processing systems, 2018, pp. 8092–8101.

[173] S. B. Taieb, A. Sorjamaa, and G. Bontempi, “Multiple-output modeling for multi-
step-ahead time series forecasting”, Neurocomputing, vol. 73, no. 10-12, pp. 1950–
1957, 2010.

[174] J. A. Harris and F. G. Benedict, A biometric study of basal metabolism in man, 279.
Carnegie institution of Washington, 1919.

143

	Acknowledgements
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Challenges and Opportunities
	Contributions

	Background
	Diabetes
	Longitudinal Glucose Dataset
	Glucose Simulators

	Machine Learning for Time Series
	Representation
	Prediction
	Reinforcement Learning

	Predicting Adverse Events with Contextual Motifs
	Introduction
	Background and Problem Statement
	Motifs
	Contextual Motifs- A Novel Extension

	Methods
	Data-Derived Contextual Motifs
	Data-Generating Contextual Motifs

	Experiments and Results
	Dataset and Prediction Tasks
	Experiments on Real Data
	Experiments on Simulated Data

	Discussion
	Summary and Conclusions

	Improving Time-Series Classification Without Additional Data Using Limited Self-Supervision
	Introduction
	Related Work
	Learning with Self-Supervised Auxiliary Tasks
	Problem Definition and Notation
	Baseline Architecture
	Self-Supervised Auxiliary Tasks
	Training

	Experimental Setup
	Target Tasks & Datasets
	Implementation Details

	Experiments and Results
	Summary and Conclusions

	Deep Multi-Output Blood Glucose Forecasting
	Introduction
	Problem Setup and Background
	Methods
	Deep Multi-Output Forecasting (DeepMO)
	Sequential Multi-Output Forecasting (SeqMO)
	Polynomial Function Forecasting (PolyMO)
	Sequential Polynomial Function Forecasting (PolySeqMO)
	Training and Inference Details

	Dataset & Forecasting Task
	The Data
	The Task

	Experimental Setup & Baselines
	Train, Test, and Validation
	Baseline Forecasting Methods
	Implementation Details

	Experiments & Results
	Deep vs. Shallow.
	Multi-Output vs. Recursive.
	Adding Sequential Dependencies
	Predicting Underlying Function vs. Values.
	Ensembling
	Multi-output vs. Direct Forecasting

	Summary and Conclusions

	Deep Reinforcement Learning for Blood Glucose Management
	Introduction
	Background and Related Work
	Algorithms for Blood Glucose Control
	Glucose Models and Simulation

	Online RL
	Methods
	Experimental Setup & Evaluation
	Overview of Experiments
	Advantages of Deep RL
	Challenges for Deep RL

	SABR: Simulation Augmented Batch Reinforcement Learning
	Batch RL Setup
	Proposed Algorithm
	Experimental Setup

	Experiments and Results
	Summary and Conclusions

	Conclusion
	Appendix for Improving Time-Series Classification Without Additional Data Using Limited Self-Supervision
	Auxiliary Tasks: Additional Motivation and Details
	Autoencoding
	Forecasting
	Partial-Signal Autoencoding
	Piecewise-Linear Autoencoding

	All Combinations of Auxiliary Tasks
	Application to UCR Times Series data-sets

	Appendix for Deep Reinforcement Learning for Blood Glucose Management
	Harrison-Benedict Meal Generation Algorithm
	BB Parameters
	PID and PID-MA parameters
	Relevant Patient Subgroups
	RL-Scratch on Adolescent#002
	SABR State Inference

	Bibliography

