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Abstract

�e proliferation of arti�cial intelligence (AI) systems has enabled us to engage more

deeply and powerfully with our digital and physical environments, from chatbots to au-

tonomous vehicles to robotic assistive technology. Unfortunately, these state-of-the-art

systems o�en fail in contexts that require human understanding, are never-before-seen,

or complex. In such cases, though the AI-only approaches cannot solve the full task, their

ability to solve a piece of the task can be combined with human e�ort to become more

robust to handling complexity and uncertainty. A hybrid intelligence system—one that

combines human and machine skill sets—can make intelligent systems more operable in

real-world se�ings.

In this dissertation, we propose the idea of using interactional slingshots as a means of

providing support structure to user interactions in hybrid intelligence systems. Much like

how gravitational slingshots provide boosts to spacecra� en route to their �nal destina-

tions, so do interactional slingshots provide boosts to user interactions en route to solving

tasks. Several challenges arise: What does this support structure look like? How much

freedom does the user have in their interactions? How is user expertise paired with that

of the machine’s?

To do this as a tractable socio-technical problem, we explore this idea in the context

of data annotation problems, especially in those domains where AI methods fail to solve

the overall task. Ge�ing annotated (labeled) data is crucial for successful AI methods,

and becomes especially more di�cult in domains where AI fails, since problems in such

domains require human understanding to fully solve, but also present challenges related

to annotator expertise, annotation freedom, and context curation from the data. To ex-

plore data annotation problems in this space, we develop techniques and work�ows whose

interactional slingshot support structure harnesses the user’s interaction with data.
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First, we explore providing support in the form of nudging non-expert users’ interac-

tions as they annotate text data for the task of creating conversational memory. Second,

we add support structure in the form of assisting non-expert users during the annotation

process itself for the task of grounding natural language references to objects in 3D point

clouds. Finally, we supply support in the form of guiding expert and non-expert users

both before and during their annotations for the task of conversational disentanglement

across multiple domains.

We demonstrate that building hybrid intelligence systems with each of these interac-

tional slingshot support mechanisms—nudging, assisting, and guiding a user’s interaction

with data—improves annotation outcomes, such as annotation speed, accuracy, e�ort

level, even when annotators’ expertise and skill levels vary.

Thesis Statement: By providing support structure that nudges, assists, and guides

user interactions, it is possible to create hybrid intelligence systems that enable more

e�cient (faster and/or more accurate) data annotation.

xvii



Chapter 1

Introduction

Intelligent systems provide a powerful way to interact with the digital and physical en-

vironments around us. Unfortunately, these systems o�en fail in contexts that are never-

before-seen or full of complexity and nuance. In such cases, human intelligence and e�ort

is o�en required to make these intelligent systems more robust to handling complexity and

adversity. One such means of pairing humans and machine e�ort together is by creating

hybrid intelligence systems.

In this dissertation, we propose the idea of using interactional slingshots as a means

of providing support structure to user interactions in hybrid intelligence systems. Much

like how gravitational slingshots provide boosts to spaceships en route to their �nal des-

tinations, so do interactional slingshots provide boosts to user interactions en route to

solving tasks. We explore the structure and nature of these interactional slingshots in the

problem space of data annotation.

1.1 Motivation and Problem Statement

Advances in arti�cial intelligence (AI) methods and an explosion of available data, along

with a concurrent revolution in computers’ abilities, has driven AI use in numerous

domains, including autonomous vehicles, robotics, computer vision, accessibility, and

natural language processing (NLP). However, when faced with tasks that require exper-

tise, nuance, human-level understanding, or are never-before-seen, state-of-the-art AI

approaches o�en fail.

To make these systems more robust to real-world se�ings, researchers and practi-

tioners have developed methods to incorporate human e�ort and intelligence into the AI

systems’ work�ows [109], including methods such as: active learning (AL), where ma-

chine learning algorithms query humans for data labels; human-in-the-loop (HITL), a
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combination of supervised machine learning and active learning in which human input

on an algorithm’s output is fed back into its input, directly impacting training, tuning,

and testing; and, human computation (HCOMP), where human involvement and input is

treated as a computational element in the overall task-solving process.

Furthermore, hybrid intelligence systems—systems that combine human (o�en crowd-

workers) and machine intelligence together in order to solve tasks neither can solve on

their own—are complementary of AI advances, and have shown promise in helping AI

systems overcome some of their limitations. Crowdsourcing, or the practice of obtain-

ing paid human input for a wide range of commodity tasks from online platforms such

as Amazon Mechanical Turk [5], enables these hybrid intelligence systems to scale and

become more widely deployed (for example, see the deployment of Chorus [46]).

Yet, the nature of hybrid intelligence systems, where technology and humanity work

together, means that these systems face similar issues that computer-supported cooper-

ative work (CSCW) systems face, namely the socio-technical gap. As Ackerman writes,

“�ere is a fundamental mismatch between what is required socially and what we can do

technically” [1]. If we want to solve problems being faced by humans, then one way to

go about it is to build be�er hybrid intelligence systems, for di�erent interpretations of

be�er. Indeed, Lasecki has argued that collective intelligence in the form of crowdsourc-

ing and HCOMP has the potential to bridge the socio-technical gap, and lead to users

“a�ain[ing] super-human performance on a wide range of tasks that they may seek to

accomplish” [64]. �ough this may be overly-optimistic and over-claiming progress, such

a hybrid system might still be able to partially overcome this gap.

Complementary to the above-discussed methods that make AI methods more e�ective,

we are interested in closing this socio-technical gap by focusing on the user’s experience

when they interact with a system. �at is, we want to improve the user’s experience in

using these systems for solving problems, thereby making their e�ort more e�cient.

To examine what it means to lessen the user’s e�ort as a tractable socio-technical

problem, we situate our work within the space of data annotation. Not only is ge�ing an-

notated and labeled data critical for the success of these AI approaches, but also humans

are the crucial annotators of such data. �ese are annotation problems that require human

understanding, ability, and interactions with data to fully solve, but nevertheless bene�t

from AI systems’ ability to solve parts of the problem with computational tools. What

makes data annotation a particularly intriguing problem space is that there is natural in-

terplay between the human, machine, or both, when it comes to certain characteristics,

since data annotation: requires expertise (domain knowledge or expertise can reside solely
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with the machine, human annotator, or both); requires context (context might be curated,

again, solely by the machine, human, or both); and, involves coordination (some tasks

are easier solved by coordinating between machine components, some by coordinating

between only the humans, and some by a combination).

We hypothesize that providing support to user interactions with the data itself can

strengthen the partnership between human and machine in these hybrid intelligence sys-

tems. For instance, how well can people learn to do a task or use the interface for solving a

task? How well can the system provide the right context? Can the system provide support

to the user, and vice-versa, and if so, when?

We speci�cally focus on the last question and introduce the idea of using interactional

slingshots as the means of providing support structure to user interactions in hybrid in-

telligence systems. �e user interactions that we focus on are those utilized during the

annotation process, by which we mean are the set of interactions in which a worker takes

input data and annotates it with useful information, a�er which we get annotated output.

We introduce the following de�nition for an interactional slingshot (IS): A compu-
tational tool that provides a supporting “boost” to the user interaction by solving a related
piece of the overall task, but not the full task itself. Much like how gravitational slingshots

provide boosts to spaceships that are en route to their �nal destinations—thereby saving

fuel and time—so do interactional slingshots provide boosts to user interactions en route

to their solving tasks—thereby providing accuracy gains and time savings. As a result,

interactional slingshots cannot solve the entire task, and only serve to provide support to

user interactions with the system.

An example of a user interaction with a slingshot is as follows: Suppose a person wants

to �nd a basketball that they know is located in the basement. Rather than searching the

basement by every square inch, the person can �rst turn on the overhead lightbulb; in this

case, the lightbulb acts as the slingshot that provides a supporting boost to the person’s

task of �nding the basketball. Of course, turning on a lightbulb by itself doesn’t solve

the overall task, but it does help the person become more e�cient (e.g., the person can

�nd the basketball faster). If the basketball were to have a GPS tracker on it, that would

not count as an interactional slingshot, since the overall task—�nding the basketball—is

completely solved by the computational tool (in this case, the GPS tracker). In this thesis,

we explore the forms that interactional slingshot support can take.
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Project

Research

�estion

Annotation

Domain

Annotator

Expertise

Support

Type

Interactional

Slingshots

Mnemo
[38]

RQ1 Two-party chat logs Non-expert Nudges

- Reminders

- Free-form note creation

- Association with text

- Aggregation of output

EURECA
[41]

RQ2 3D point clouds Non-expert Assistance

- Mixed-initiative

- Automated �lter and �ll

of 3D points

- Collaboration with other

workers (visual context of

selections)

MDCD
[60] and Ch. 5

RQ3 Multi-party chat logs

Expert

and Non-expert

Guidance

- Username highlighting

- Machine learning

model predictions

Table 1.1: Summary of thesis contributions.

1.2 �esis Statement and Research�estions

We evaluate the following thesis statement in this dissertation:

By providing support structure that nudges, assists, and guides user interac-
tions, it is possible to create hybrid intelligence systems that enable more e�cient
(faster and/or more accurate) data annotation.

To evaluate that thesis statement, this dissertation explores three ways in which we

provide support to user interactions, listed here as research questions:

• [RQ1]: For a task that relies on extracting latent mental models that could di�er

across annotators, what are the challenges associated with providing support by

nudging a non-expert user’s interactions with data?

• [RQ2]: For a task that involves dealing with spatial ambiguity, how can we cre-

ate interactional slingshots that provide support by assisting a non-expert user’s

interactions?

• [RQ3]: For a task that is di�cult and requires expertise, how e�ective are inter-

actional slingshots that provide support by guiding those interactions, and how do

non-experts and experts perceive them?

Each research question, and associated project, is summarized in Table 1.1, and ex-

panded upon in the next section.
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1.3 Research Contributions

In this dissertation, we demonstrate that building hybrid intelligence systems with each

of these interactional slingshot support mechanisms—nudging, assisting, and guiding a

user’s interaction with data—improves annotation outcomes, such as speed, accuracy, and

e�ort level, even when annotators’ expertise and skill levels vary.

We situate these hybrid intelligence systems in three classes of data annotation prob-

lems: collective crowd memory, natural language grounding for objects in 3D scenes, and

multi-domain conversation disentanglement. In each domain, respectively, an AI system

could not immediately solve the overall task, whether due to identifying relevant informa-

tion to remember about a user over time, dealing with novel objects in never-before-seen

environments, or understanding complex input data that requires domain knowledge. As

a result, this dissertation makes the following contributions for each research question

listed above:

1. RQ1 – Support as nudging in Mnemo [38]: By nudging non-experts’ interactions

with data to make them keep in mind the time-frame of their annotations, we show

that an interface and methodology to help extract notes from conversations can be

e�ective. We are the �rst to present a system for capturing this information con-

cisely, and show that the interactional slingshots can aggregate e�ort from di�erent

crowd workers. However, we also show that nudging itself may not be su�cient

when the task is too ambiguous, contains nuance that’s endemic to human-human

dialog, and provides too much freedom for the annotator (in the task, annotators

summarize sentences in their own words, which introduces a lot of variability into

the data annotations). See Chapter 3 for details.

2. RQ2 – Support as assisting in EURECA [41]: We introduce a mixed-initiative system

that enables workers to ground natural language references to objects in 3D scenes.

User interactions with this system are assisted by the computational tools baked

into the system itself, and in so doing, the human-machine collaboration resembles

that of a critic system, harkening back to the approximation discussed in the socio-

technical gap by Ackerman [1]. We show that human e�ort is substantially reduced

when groups of people can collaborate with—and not simply use—interactional

slingshots by providing initiative to the computational tools themselves (the as-

sistive support here enables mixed-initiative interactions). Finally, we perform

real-world case studies to study the e�cacy of the EURECA hybrid intelligence

system. See Chapter 4 for details.
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3. RQ3 – Support as guiding in Conversation Disentangling [60]: What happens when

expert and non-expert users rely on the guidance provided by interactional sling-

shots? We show that, when both people with and without domain knowledge in

computer science use our tools laden with interactional slingshots (which provide

visual context, as well as predictions made from AI models), they are able to an-

notate text in multiple domains more accurately than if they were using interfaces

without slingshot support. We test our interfaces with chat logs spanning four tech-

nical domains. We also show that non-expert crowd workers are able to succeed at

ge�ing higher quality annotations when using the interactional slingshot tools ver-

sus the baseline tools, sometimes beating the machine’s performance, although as

we discuss, limitations exist. See Chapter 5 for details.

1.4 Dissertation Outline

�e rest of this dissertation is organized as follows:

• Chapter 2 describes background and related work that provides the bedrock upon

which this dissertation is built.

• Chapter 3 describes Mnemo, a crowd-powered dialog system plugin that enables a

way for workers to generate facts about users.

• Chapter 4 describes EURECA, a mixed-initiative system that enables workers to

collaborate with computational tools, rather than simply use them.

• Chapter 5 describes MDCD, a novel interface that enables both experts and non-

experts to disentangle chat logs across multiple domains.

• Chapter 6 summarizes the thesis, and discusses implications and future work direc-

tions.
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Chapter 2

Background

�is chapter reviews literature in the two domains in which we evaluate our work:

Natural Language Processing and Robotics. Our work builds on previous research into

crowd-powered conversational systems, context maintenance, and conversation disen-

tanglement. Our work also builds on work related to crowdsourcing, human computation,

3D sensing for robotics, and visual scene understanding.

2.1 Crowdsourcing and NLP

2.1.1 Crowd-powered Conversational systems

Traditional conversational systems have been shown to be time-consuming and based

on domain expertise [114]. Crowdsourcing has shown its huge potential as a fast and

cost-e�cient way to improve traditional computer systems by integrating human intelli-

gence and knowledge [52] into automated methods in a variety of areas, such as protein

prediction [20], image search [115], speech recognition [63], and multi-step writing and

editing [9]. Due to the di�culty for so�ware agents to handle the complexity of human

language, many systems have used the crowd to interpret natural language data in docu-

ment editing [8], twi�er response generation [10], and vacation planning [58]. However,

those systems can only handle a single round of computation because of the always-

changing pool of crowd workers. Since there is no single worker that can be relied on

to respond at any given time, it is inherently di�cult for systems to maintain consistent

communication with the di�erent crowd workers.

In order to integrate the crowd in two-way interactive system, researchers recently

started to coordinate crowd e�orts in real time. Vizwiz is one of the �rst systems to obtain

responses within seconds from the crowd by using a queuing model to recruit on-demand

workers for later tasks [11]. Since real-time conversational systems require multiple on-
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demand workers to be available at the same time, ChatCollect introduced a two-way

dialog collection method to generate realistic conversations about de�nable tasks from

pairs of workers [67]. To aggregate workers’ e�orts for be�er responses, Legion pro-

posed a collective model of using multiple workers as a single agent to control existing

user interfaces using natural language [70]. �at model was later applied in Chorus, an

intelligent conversational agent where workers interpret natural language interactions

and collectively vote for the best response [75].

2.1.2 Consistency between Conversations

Good conversational systems need to maintain consistency, which we de�ne as the ca-

pability to generate non-con�icting responses based on context discussed in previous

sessions. To �ll out the gap between the requirement of conversational consistency and

the always-changing pool of crowd workers, the idea of collective memory has been pro-

posed, in which workers are able to remember information over time that can bene�t

crowd-powered systems via learning [62]. Chorus allows workers to identify conversa-

tional segments containing critical information as facts to direct future workers to the

most important aspects of the chat history [46, 75], but it still requires the history to

be dense enough to be understood. Since Chorus only maintains and updates a list of

10 facts, the size of crowd-generated collective memory is limited when conversational

history grows with an increasing chance of missing important facts.

To address that issue, a�empts have been made to allow crowd workers to curate

given data, which refers to the process of selecting, organizing, and maintaining a col-

lection of material. Crowdsourced text summarization has been broadly used to extract

the most important message from documents [110] or to summarize others’ comments to

post re�ection [55]. Moreover, crowd workers have been shown to successfully summa-

rize critical information from conversations into facts using their own words, as suggested

in [65]. Jiang et al. propose “target summarization” as a technique to elicit higher quality

paraphrases from crowd workers [48].

In order to reduce the amount of e�ort needed to identify meaningful memories within

a large collection of digital content, Kurator introduces a hierarchical crowd-machine

learning architecture that greatly improves the e�ciency of the curation process [83].

Although these references contribute e�ective work�ow for conversational context sum-

marization via crowdsourcing, the feasibility of using crowd-generated memory facts to

maintain conversational consistency and improve future problem-solving e�ciency in
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conversation still remains unstudied. To address that gap, our Mnemo introduces an alter-

nate solution by allowing crowd workers to directly summarize memory facts with their

estimation of expiration date, which allows us to investigate their ability to determine

what information is critical or relevant in the long term.

2.1.3 Conversation Disentanglement

�ere has been more than a decade of research into conversation disentanglement [102],

as automatic disentanglement of conversations can be used to provide more interpretable

results when searching over chat logs and to help users understand what is happening

when they join a channel. �e most in�uential work has been on disentangling the #Linux

channel [29–32]. �ere are other IRC disentanglement datasets: one studied disentangle-

ment and topic identi�cation, but did not release their data [3]; one had annotations for

the #Ubuntu channel, but for the French version [92]; and, one that used heuristically ex-

tracted conversations [79,80]. Finally, there is other work that use non-IRC logs as a way

to do disentanglement in domains such as studying classes [28, 113], support communi-

ties [81], and customer service [27], but only one [28] is available as a publicly-released

dataset.

With respect to the task of conversation disentanglement, annotators were always

trained experts, as non-experts were thought to not contain the expertise required to

disentangle these datasets. �e approach used to disentangle data was either to create

a ”reply-to” graph structure (i.e., for each message, identifying to what previous mes-

sage or messages the current message is replying to) or separating chats into constituent

conversations [30]. Machine performance on this task does not match that of human

performance, even when models are trained on copious amounts of data [60].

2.2 Crowdsourcing and Robotics

2.2.1 Crowdsourcing and Human Computation

Prior work has focused on annotating objects using computer vision [90, 104], as well

as on o�ine image labeling and model-building for robotics using data generated by

crowdsourcing [105]. Crowdsourcing has also been used to augment robots with human

intelligence to, for example, navigate a maze [86], and real-time crowdsourcing has been

used to provide continuous control for an o�-the-shelf robot that enabled it to follow NL
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commands [71], over unbounded lengths of time [76] (thanks to the availability of crowd

workers), with reaction times under 1 second [89]. Recent work has explored “hybrid in-

telligence” work�ows that leverage both human and machine intelligence to solve tasks

that neither could accomplish alone [94, 103].

Our work draws heavily on real-time crowdsourcing, which makes it possible to get

rapid responses from crowds of workers—o�en in less than a second. �is response speed

makes it possible to create crowd-powered interactive systems. By leveraging real-time

crowds to quickly annotate 3D scenes, we make it possible to interact with robots using

natural language in real-world scenarios, even when the robot has no prior training on

them. For example, Lasecki et al. have created systems capable of generating captions with

less than 3 seconds of latency per word [69] and creating functional UI prototypes [68].

Berstein et al. have created systems for �nding the best image from a short video, and

generating varied images from a single source [7].

2.2.2 Robotics and Semantic Mapping

Point cloud data has enabled geometric mapping of 3D space [33,37,82] and a proliferation

of robots capable of autonomous navigation in both indoor and outdoor environments.

However, the perception capabilities are o�en limited to the mapping of space without

a semantic parse of individual objects, as well as their a�orded actions and language

groundings. Even for simple object a�ordances (“picking” and “placing”), language an-

notation of objects is essential to establishing a common ground of object references that

is both intuitive for humans and perceptible by robots. �is problem of semantic map-

ping [57, 96] is o�en addressed through combinations of object detection, segmentation,

and pose estimation. Each of these modules depend on some form of a priori informa-

tion about the object, such as training data, object geometries, or probabilistic priors.

�is prior knowledge is provided to an autonomous agent as an object model and this

modelling requires data collection through annotation.

2.2.3 Creating Object Geometries

For the robotic manipulation of objects, model-free approaches [35, 108] reason geomet-

rically over 3D point clouds to grasp objects. Such methods do not a�empt to seman-

tically distinguish individual objects, and are unable to provide a common grounding

for human-robot interaction or reason in a goal-directed manner. Methods using object

geometries [26, 85, 88, 107] address these shortcomings, o�en through a combination of
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generative and discriminative inference. However, such methods then rely upon object

models to be provided a priori. As will be seen in Chapter 4, EURECA, as a crowdsourcing-

based data annotation system, o�ers one viable option to building such object geometries

suitable for real-world scenarios.

2.2.4 Scene Annotation Interfaces

In general, there is a lack of annotation interfaces for visual scenes; this is typically be-

cause existing work has focused on creating datasets for these applications o�ine, o�en

curated by experts. Helpful tools like [95] are used to create large datasets, but are o�en

time-consuming to create. Furthermore, our envisioned use cases are for the in-home or

in-o�ce se�ing, where preserving privacy becomes an important concern, especially in

crowd-powered systems [51]. Indeed, removing the RGB data from an image will make it

resemble a �at grid; without RGB, performing the kind of outlining discussed in Russell

et al. [95] would not be as feasible. If an application wishes to work with another sensor,

such as a Velodyne, lack of RGB would be the norm. However, with the 3D point selection

that EURECA makes possible, privacy is maintained and segmentation is done online and

in real-time.

2.2.5 Visual Scene Understanding

Since robust, general-purpose computer vision is still a distant goal, visual scene under-

standing via human computation has been explored by several prior projects. Objects

and activities have also been recognized in video using the crowd—Glance [66] coded

behavioral events, Salisbury et al. augment live video with natural language markers us-

ing real-time crowds [98], and Legion:AR [73] recognized human activities in real time.

By building upon this body of work, we will integrate visual scene understanding into

EURECA.

�e ESP Game [111] was one of the �rst image labeling systems to engage crowds. It

focused on providing alt-text for web images. VizWiz [11] and Chorus:View [74] leverage

real-time crowds to answer visual questions for blind and low-vision users in their daily

lives. RegionSpeak [117] elicits bounded regions for this Q&A task, which provides users

with richer responses. LabelMe [95] used �ne-grained bounded regions to train computer

vision. Deng et al. [25] incentivized workers to indicate which visual information is most

important when classifying images, allowing visual features to be extracted for training

more accurately.
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2.2.6 Robotics and Autonomous Control

Prior work has also explored how to use crowdsourcing to augment robotics. Crick et al.

show that users provided reliable demonstrations and training for robots when the robots

were in sensory-constrained environments [21]. Legion [72] used real-time crowds to

provide continuous control for an o�-the-shelf robot that enabled it to follow natural lan-

guage commands. While Legion provided generalized user interface control, Salisbury et

al. [99] introduced additional control mediators that improved performance by focusing

speci�cally on robotics applications. de la Cruz et al. [23] got feedback from a crowd of

workers in ∼0.3 seconds for mistakes made by an automated agent. Chung et al. [18]

explored learning from initial demonstrations using crowd feedback for motion planning

problems.

2.3 Conclusion

�e research literature that we presented in this chapter helps inform our decision-making

and approaches as we evaluate our thesis statement. Each of the ideas—crowdsourcing

in an NLP context, in the robotics domain, and expert annotations for conversation

disentanglement—will be the data annotation grounds within which we explore our re-

search questions.
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Chapter 3

Support in the Form of Nudging:

Collective Conversational Memory for

Crowd-Powered Dialog Systems

In this chapter, we explore what it means for interactional slingshots to nudge user in-

teractions towards a particular goal. We address RQ1 and create a methodology for fact
generation for conversational context maintenance as human-generated facts from goal-

oriented dialogs. We evaluate this with a plugin, Mnemo, a crowd-powered conversational

plug-in that allows crowd workers to read dialogs and predict, curate, and save critical in-

formation as notes for future conversations, not yet a capability of existing crowdsourced

summarization techniques. We show that nudging itself is not powerful enough of a

support mechanism to prevent users from annotating text in such a way that consensus

cannot be reached well. �is is because the annotator’s freedom is una�ected by nudg-

ing support and leads to great variability in annotations, although as we discuss, this still

bodes well for the overall task.

Conference: Finding Mnemo: Hybrid Intelligence Memory in a Crowd-Powered Dialog
System, Collective Intelligence, 2018.

Coauthors: Youxuan Jiang, Preetraj Kaur, Jarir Chaar, Walter Lasecki

Collaborations: IBM Research
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3.1 Motivation

Developing intelligent conversational systems that can interact with humans using nat-

ural language has been a longstanding goal of both arti�cial intelligence and human-

computer interaction [4]. Automated systems, such as Apple’s Siri, Microso�’s Cortana,

and Amazon’s Alexa, bring us closer to achieving this goal, and have been widely used

in assisting users with task completion. However, the complexity innate to dealing with

natural language, as well as identifying user intent, limits the capabilities of many of these

systems to a set of prede�ned tasks or queries.

As a result, automated conversational systems struggle to capture the richness found

in long term human interactions, which leads to the loss of conversational context impor-

tant for human-human conversations. Examples of this context include users referring to

prior interactions or any context-dependent phrases, which automated approaches have

di�culty recognizing and capturing from the rest of the conversation. �is is especially

evident in the case of any new people being added to the conversation, as they will lack

any context from any conversations that have taken place thus far. To maintain impor-

tant context for sequential dialogs, many conversational interfaces save their entire chat

history for future participants to read and comprehend [6, 34]. However, that method

is barely useful in maintaining context of real-time chat because people can easily miss

out on new content when they scroll up, especially with the out-of-order turns and high

signal-to-noise ratio [112].

Crowd-powered conversational systems have been shown to successfully overcome

some of the struggles faced by purely automated dialog systems with respect to capturing

the richness found in human dialog, since these systems leverage crowds of human work-

ers to respond to end user queries. �ese systems have shown that workers can recover

context from prior conversations when presented with user-related information [46, 75].

Although those crowd-powered methods are able to direct future workers to understand

context for an on-going conversation, they still require the chat history to be comprehen-

sive enough to be understood, as well as require that the context exist in the �rst place.

Moreover, such systems also fail to map information from past conversations to present

ones, leading to a lack of contextual memory about the user and unnecessary repetition

of information across conversations. Any conversational context is also lost when inter-

actions take place over longer time scales and span multiple sessions, especially when no

one crowd worker is around for all sessions. �ere is currently no way to extract concise,

conversational context from those dialogs. 0
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�is is, of course, in stark contrast to human-human interactions. When interacting

with each other over a long time, people store memories about their conversing partners

and are seemingly able to recall long-term facts relevant to the particular topic at hand

with relative ease. Collective memory, then, can be extremely useful in sharing knowledge

about the user, and falls under the umbrella of the “�rst generation in knowledge manage-

ment [as a] repository” [2]. Although similar in spirit to the early CSCW e�orts outlined

by Ackerman, our problem exploration entails not how people would use information

repositories, but rather, how peopl can generate them in the context of conversational

memory. Remembering such facts enables more e�cient, perhaps even richer conversa-

tions. What if we could tease out these latent models of fact-saving that we innately build

and instantiate this fact storage in our dialog systems?

3.2 Contributions

We propose a methodology for fact generation for conversational context maintenance by

saving and aggregating human-generated facts from goal-oriented dialogs. We implement

and evaluate the model in Mnemo, a crowd-powered conversational plug-in that allows

crowd workers to read dialogs and predict, curate, and save critical information into facts

that will be relevant for future conversations, which is not a capability of existing crowd-

sourced summarization techniques. Our �ndings show that combining worker-generated

facts (which would be hard or impossible to do with summaries) provides higher F1 score

than just combining lines from a conversation.

Speci�cally, we present the following contributions:

• We provide a �rst system exploration into the problem space of crowdsourced

prediction and curation of future-relevant facts by introducing Mnemo, a crowd-

powered dialog system plugin that allows crowd workers to e�ectively identify such

relevant facts;

• We characterize the types of facts captured from conversations by the workers and

show that worker “errors” are o�en not true errors, but are missing important con-

text or have relevance for only a short amount of time;

• Aggregation methods for crowd-generated facts which act as tunable “knobs” that

allow collective responses to outperform individuals’ responses.
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Figure 3.1: Mnemo’s Fact Creation Interface. �e worker interface consists of four parts:

(1) DialogView: display raw dialog lines; (2) FactView: display already-saved facts; (3)

FactSummary: allow workers to summarize facts; and (4) TimeSelect: allow workers to

estimate fact longevity.

3.3 Mnemo Interface

We built the Mnemo plugin on top of the existing Chorus system. Mnemo’s interface (see

Figure 3.1) consists of four parts: (1) the DialogView panel, where we show the dialogs

under consideration. Workers can select one or more sentences from the dialog and group

them as part of one “fact”; (2) the FactsView panel, where worker-created facts are dis-

played. Workers can click on the fact, which opens a dropdown that shows the lines from

the conversation associated with that fact; (3) the FactSummary panel, where workers

summarize relevant information in the selected lines into a fact; (4) the TimeSelect view,

which allows workers to estimate the expiration time of the fact by picking one of the

four time labels: will be true for a day, a week, a month, and a year.

By relevance for the TimeSelect modal, we refer to facts that will still be true about the

user in the long term (e.g., a requester’s allergy information), rather than facts that will

be true in general (e.g., information about a particular restaurant). �e information con-

tained in the la�er category can be obtained by searching existing information sources,

but the former contains information that must be extracted from the requester’s conver-
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Topic Scenario Length WF GTF

Food Obtain a quick lunch 30 3.4 4

Go on a fancy date 31 6.5 4

Shopping Buy a coat for winter 17 3.9 5

Buy Christmas gi�s 20 5.5 7

Jobs Get a summer internship 21 5.8 7

Get a full-time job 21 4.9 7

Laptop Buy laptop for school 29 5.8 6

Replace broken laptop 52 6.9 6

Pets Get a pet for oneself 20 3.7 5

Get a pet for a partner 22 3.6 3

Table 3.1: Summary stats for all 10 dialogs. �ere are two scenarios per dialog topic.

Length = number of lines in each dialog; WF = the average number of worker facts for

that dialog; and GTF = the number of ground truth facts.

sation, which maintains the context for future workers. For our studies, we de�ne long

term as any fact that will still be true even a�er a month (or longer). �is allows us to

avoid user information that is important in the intermediate time frames, and focus on

user information that is relevant when the user makes a request at least a month later.

3.4 Dialog Creation

To collect dialogs where a helper provided advice to a requester’s queries, we recruited 5

student participants to generate 10 human-human dialogs across 5 di�erent topics. �e

study participants conversed in pairs using a simple chat interface in a round-robin fash-

ion. None of the participants had any background with or prior experience using the

Mnemo.

Each pair of participants is tasked with generating two dialogs about two scenarios

within the same topic (Table 3.1 lists the topics) in order to mimic real-world use cases.

For example, for the food topic, the two scenarios are Find a restaurant for quick lunch
and Find a fancy restaurant for a date. One participant is assigned to the “requester” role

and keeps this role for both scenarios; the other participant is assigned to the “crowd”
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role and switches to another topic between sessions. Switching the “crowd” role worker

allows us to emulate the scenario where the same requester discusses the same topic at

another time with di�erent crowd workers, which is very common in real world se�ings

due to full turnover of workers in reality.

For each task, the requester received an initial script to follow (created by the au-

thors), which contains the preferences of their assigned identity (e.g. likes Mexican food)

and considerations for their query (e.g. �nd a good restaurant for lunch). Participants

were instructed to follow the script as closely as possible, but they still had the freedom

to converse naturally.

Summary statistics for each generated dialog can be seen in Table 3.1. Each generated

dialog has an average of 26 lines, along with an average of 12 words per sentence. We use

these dialogs for our experiments, described next.

3.5 Experimental Design

Given a conversation about a topic and a requester’s context and preferences, how ac-
curately can workers predict relevant facts about that user for use in future interactions?
To answer that question, we conducted the following experiment using Mnemo to char-

acterize types of facts generated by workers and explore the viability of crowd-curated

conversational context.

�e procedure is as follows (refer to Figure 3.1): workers are presented with one of

the dialogs from the 10 scenarios and are instructed to save relevant facts, one at a time,

by clicking on the corresponding lines in the dialog. �ey can select multiple lines from

the dialog, then summarize in their own words into a “fact.” Workers were instructed to

only save facts that will be relevant about the requester, so any facts that are true about

the world will be considered irrelevant. �ere was no limit on the number of facts each

worker should submit, but they needed to submit at least one fact in order to receive com-

pensation for completing the task. A�er summarizing each fact, workers were asked to

use the TimeSelect modal to a�x each fact with an estimated expiration date, ranging

from one day, one week, one month, and one year.

For each dialog, 10 unique workers were recruited on Amazon Mechanical Turk to

save facts. Workers were paid $0.67 per task and the expected task duration was four

minutes, for an e�ective pay rate of about $10 per hour.
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Ground Truth

As mentioned in the Interface Section, we consider worker-generated facts to be long-term

only if they still apply to the requester even a�er a month. �ese facts are traditionally

the most di�cult to maintain between di�erent conversational sessions for the same user.

To de�ne the relevant facts for ground truth in each dialog, two of the authors used

Mnemo’s interface to independently generate relevant facts for the 10 dialogs. �e �nal

gold standard fact set was constructed by taking the union of both authors’ fact sets. Since

the authors developed the scripts that the participants followed in the Dialog creation

stage, rather than asking the participants themselves, we use the preferences assigned to

the identities as seeds for the ground truth long-term facts; as a result, this ground truth

serves as a proxy for a real-world usage scenario. �e numbers of long-term ground truth

facts range from 3 to 7 per dialog.

For worker-generated facts whose summaries contain multiple pieces of information

(e.g. “a computer science student looking for a summer internship”), the authors manually

broke them down into constituent pieces (e.g. “a computer science student” and “look-

ing for a summer internship”) in order to ensure that di�erent relevant facts existing in

one single statement would be counted individually for precision and recall. To avoid the

need for manual breakdown of worker-generated facts, future work should provide more

speci�c instructions about the exact de�nition of “one fact” per submission rather than

le�ing workers interpret themselves.

Evaluation Measures

To evaluate workers’ ability to capture relevant facts about the requesters, we use preci-
sion to measure the percentage of worker-generated facts that were in the ground truth

and recall to measure the percentage of all relevant ground truth facts that were retrieved

by the workers. We also use the F1 score (the harmonic mean between precision and re-

call) to give us a single overall accuracy measure, which also permits us to examine the

tradeo�s between precision and recall.

For our system, high precision implies that workers are able to succinctly predict facts

that will be relevant in the future without too many irrelevant facts included; high recall

implies that workers capture most or all of the relevant facts in the ground truth for that

conversation. We set the default precision value, which represents no guess, to be 1, since

no guess from a worker is be�er than a wrong guess about the user.
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Figure 3.2: Precision and Recall for worker sizes across all dialogs. We �nd that we need

just 5 workers to reach at least 90% recall.

3.6 Results

�ere were a total of 500 worker-generated facts distributed across the 10 dialogs, with

an average of 5 facts per worker (σ = 2.87). We manually annotated each worker fact as

either being a true positive (match a ground truth fact) or a false positive (do not match

any ground truth facts). When averaged across all conversations, individual workers’ pre-

cision and recall are 44% and 42%, respectively. We also see that individual precision and

recall values are similarly consistent such that no one topic outperformed all others, as

seen in Figure 3.3.

3.6.1 Characterizing Worker Errors

Of the 500 worker-generated facts, 214 were classi�ed as true positives (42.8%), and the

remaining 286 (57.2 %) were considered as false positives. In order to present a systemat-

ical analysis of workers’ errors, we manually categorized each of the false positive facts

into six categories depending on the error types (See Table 3.2).
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Figure 3.3: Precision and Recall for Individual dialogs. We can see that worker perfor-

mance is relatively consistent across all the di�erent dialogs.

A: Completely wrong

13 facts, or 4.6% of all the 286 false positives, were classi�ed as being completely wrong

when looking at the worker-generated summaries. �ese facts can be gleaned from pieces

in the dialog, but no useful summarization took place. An example of a Category A fact:

“very fact to the myself.”

B: Missing context

58 facts, or 20.3%, were missing a key piece of context for the fact. For instance, the fact

“Green Bay, Wisconsin” is missing the critical piece of “located in” or “lives in”; the facts

are not relevant without these critical pieces. Indeed, if the key pieces of information had

been included in the worker summaries, these Category B facts would all be considered

true positives.

C: Statement about the world

18 facts, or 6.3%, were statements that were made about the world at large, rather than

speci�cally about the requester. Example of a Category C fact: “tanks are like a glass or

plastic cages that have no holes in them, you can keep �sh in them.”
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Category Description Makeup

A Completely wrong 13 (4.6%)

B Missing context 58 (20.3%)

C Statement about the world 18 (6.3%)

D About requester, but short-term only 121 (42.3%)

E About requester, but not in ground truth 45 (15.7%)

F Presupposed information 31 (10.8%)

Table 3.2: Summary stats for all 10 dialogs. �ere are two scenarios per dialog topic.

Length = number of lines in each dialog; WF = the average number of worker facts for

that dialog; and GTF = the number of ground truth facts.

D: Statement about the requester, but short-term relevance only

121 facts, or 42.3% of all false positives, were statements about (or involved) the requester,

but are classi�ed as only being relevant in the short term. �ese facts include any speci�c

preferences the requester expressed, as well as general information from the requester’s

conversation. An example includes: “Spilt his co�ee over laptop, the laptop is fried.”

E: Statement about the requester, but not picked up in ground truth

45 facts, or 15.7%, of the facts were statements about the requester, but neither author

saved this information as part of the ground truth. �ough we consider these facts as

being wrong for our evaluation, we nevertheless recognize that they are important. In

fact, these are facts that workers recognized as being relevant for the future, even if the

authors did not, so these could be viewed as belonging to the true positive pile as well.

An example: “Gives 20% tips for good service.”

F: Presupposed information

31 facts, or 10.8%, were summaries that contain presupposed information necessary for

the facts in the ground truth. We de�ned “presupposed information” as background or

expositional information about the requester related to the current discussed topic, but

not helpful for future conversation. For example, these include: “lives in an apartment.”
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3.6.2 Case Study: Focusing Workers on Speci�c Time Frames

We see that worker responses contain numerous false positives, but not all of them are

completely wrong. Some of the categories were marked as irrelevant because they be-

longed to a shorter time frame. However, what happens to worker performance if we

have a time frame already in mind for relevance?

We investigate whether focusing workers on speci�c time frames through guided in-

structions can improve performance and choose a time frame of six months (average of

the two long term conditions of one month and one year). For this experiment, workers

use Mnemo’s interface to create facts, but they are not shown the TimeSelect view any-

more; rather, they are explicitly instructed at the beginning of the task to save facts that

will still be relevant six months or longer. We randomly selected Topic 1 and reran data

collection for the two scenarios, again with 10 workers each.

Table 3.3 shows the results from this experiment: we can see that worker performance

improves when they are given a focused time frame in the task query, as they capture more

true positives with fewer overall facts created. When compared with the facts for Topic 1

in the “TimeSelect” condition, we can see that a lot of worker error categories (A, B, and

F) have disappeared in the “FocusedSelect” condition.

3.7 Collective Performance

While our results show any individual contributor is imperfect (as should be expected),

extensive work in crowdsourcing has focused on how groups can collectively outper-

form individuals. In this section, we outline methods for improving overall precision and

overall recall given multiple crowd workers by aggregating workers and then clustering

facts sharing similar content. We show the increase in performance along both of these

measures using the workers’ responses collected above.

3.7.1 Improving Recall with Aggregation

Since individual performance in terms of recall is just over 40% on average, we explore

whether combining workers into groups would improve performance, because having

more contributors increases the chance to bring in more relevant information.
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Category TimeSelect FocusedSelect

A 7 0

B 13 0

C 5 6

D 27 15

E 15 6

F 3 0

Total facts 99 66

True positives 29 39

Precision 0.39 0.63

Recall 0.30 0.45

Table 3.3: Worker-generated facts for Topic 1 in the initial “TimeSelect” condition and the

“FocusedSelect” condition. By providing focused queries to the workers, we are able to

capture more true positives with fewer overall facts, as well as reduce other categories of

worker errors.

We measure the e�ect of aggregation on worker summaries by calculating average

precision and recall across all possible combinations of each group size from 2 to 10. �is

provides a more robust measure of group performance that is less tied to the speci�c

members’ performance. �e results show that recall increases steadily as more workers

are added to each group. Figure 3.2 shows that, on average, we need 5 workers to exceed

90% recall. �is implies that each additional worker brings in new information that allows

for improved recall, meaning that the diversity of di�erent responses is high.

However, as can be expected, precision does not increase when additional workers are

added, since adding more people also increases the chance of adding noise to the system.

To address this issue, we developed two clustering methods to investigate the impacts of

workers’ agreements on fact precision, which will be discussed below.

3.7.2 Improving Precision�rough Voting

When combining workers into di�erent group sizes, rather than aggregating facts indis-

criminately across all input, we use an agreement or voting scheme based on the idea that

the facts more workers agree on are more likely to be true positive.
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Agreement-based Clustering

If there are facts that contain similar content, we can cluster them and �nd “representa-

tive” facts for that cluster. We devise two methods for that agreement-based clustering:

1. Clustering based on worker summaries (Word clustering):

In this method, we consider two facts as “share similar content” if at least half of

the facts share similar words. We de�ne two words as similar if the Levenshtein

distance between them is less than or equal to 2.

2. Cluster based on selected lines (Line clustering):

In this method, we cluster two facts together if the workers select the exact same

lines from the dialog when creating those facts. �is clustering method uses the

raw dialog lines and does not use the worker generated summaries.

Facts assigned to the same cluster are considered as a single fact in measurement and

represented by the most frequent label (true/false positive) from members of the cluster.

We then calculate precision and recall based on three levels of workers’ agreement: 1) any

agreement, in which at least 2 workers agree on a fact; 2) majority agreement, in which

at least half of the workers in the group agree on a fact; and, 3) unanimous agreement,

in which all workers agree on the fact.

Clustering Results

Figure 3.4 shows the precision, recall, and F1 score for both clustering methods. Unlike

in the no clustering case from before (in Figure 3.2), when we add one more worker and

take into account similarity, precision drastically improves: in both the Word and Line

cluster graphs, we see precision increase past 80% compared to the 44% individual worker

baseline. However, there is a drastic drop in recall in both cluster conditions, as it drops

from 42% to below 10%.

Furthermore, we see that, as we increase worker group size, precision for the “any”

agreement condition decreases as expected (suggesting that workers agree on both rele-

vant and irrelevant facts), whereas recall increases (there is greater potential for any two

workers to agree on a fact that is a true positive), although this percentage is still lower

than the without-clustering recall seen in Figure 3.2. However, this trend changes when

we look at the “majority” and “unanimous” agreement levels.
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Figure 3.4: Precision and Recall by the number of workers based on Clustering the words

in the worker summaries (le�) and clustering the raw dialog lines (right). We �nd that

“any” agreement performs the best for recall, but precision su�ers; on the other hand,

unanimous agreement leads to 100% precision, but to low recall. �is implies that addi-

tional workers bring in new information with respect to recall, and tend to agree with

other workers with respect to precision. We also �nd that worker summaries are self-

consistent enough with each other to o�er be�er clustering performance.

Both Word and Line clustering methods show similar precision and recall change

trends, where precision increases but recall decreases. For instance, for “unanimous”

agreement, we achieve an expected value of precision of 100% with teams of �ve workers.

We see that “majority” agreement levels trend upward towards the “unanimous” agree-
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ment case as worker group size rises past 4. �is implies that the facts more workers

agree on are facts that are more likely to be found in the ground truth (i.e., be relevant);

on the other hand, clustering decreases the likelihood that all relevant facts are covered

with agreement from workers.

Finally, we see that Word clustering performs be�er than Line clustering (see F1

score); this implies that worker summaries are consistent enough that they contain more

information than the original dialog lines do. Despite having a small dataset compared

to those typically used in Natural Language Processing applications, we are able to make

meaningful comparisons between worker generated summaries and achieve be�er preci-

sion results.

3.8 Discussion and Future Work

Creating long term collective memory for conversational consistency has been a chal-

lenge for crowd-powered systems. However, crowd-sourcing research has yet to explore

methodologies for generating user memory, speci�cally with a focus on long-term valid-

ity. To the best of our knowledge, Mnemo is the �rst a�empt to develop time-independent

collective memory through crowdsourced fact generation from dialogs. Here, we discuss

further �ndings from our studies.

3.8.1 Worker Errors Are O�en Not True Errors

From the worker errors characterization, we can see that precision is not low because

workers inundated the system with super�uous information; rather, the categories show

the variety of information saved by workers. Some facts are irrelevant because they are

only for the short term (e.g. Category D), but other facts, though irrelevant for this eval-

uation, uncover new information not contained by the ground truth (e.g. Category E and

F), which could be helpful in use cases that favor breadth of fact coverage. Future dia-

log systems, crowd-powered or fully-automated, can keep in mind these categories when

designing collective memory curation.
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3.8.2 �ality Control

In general, we avoided well-known quality control steps (like a secondary voting round

on submi�ed answers) because of the cost they add. However, it is possible to add them

with Mnemo to improve response accuracy. �e goal of our experiments is to investigate

workers’ de�nition of “facts important to know” and their ability to predict relevant facts,

which provides us with a baseline. Even without expensive quality control, we still see

worker “errors” are o�en not true errors, so applications with �nancial bandwith may

approach even be�er performance.

3.8.3 Validity of Facts

Our goal with Mnemo is to provide an interface for workers to predict relevant facts about

a user. Worker use of facts, while an interesting behavior to explore, has been studied in

prior work enough to show it to be possible if we could generate such content (which is

our goal here). We are interested in how workers predict relevant facts when compared

with a gold standard and how automated methods can help boost performance (as ag-

gregators). To explore usage of these facts, we would need a relatively large deployment

study, which is outside the scope of this initial paper on the system itself.

3.8.4 Balancing Precision and Recall

Mnemo lays the foundation for conversational context maintenance since our system is

the �rst a�empt to address this issue. We also provide “knobs” to system builders that can

be used to trade o� precision and recall for particular applications. Our results show that

recall-focused applications can be well supported currently (using the “any” aggregation

method) and we believe that, overall, recall is probably the most important piece for a �rst

exploration of the problem space such as this paper, which presents an enabling technol-

ogy/approach. If an application decides precision is most important, it can instead use the

“majority” or “unanimous” aggregation method. Finally, if an application already has an

“expiration” for the long-term relevance in mind, we have seen that worker precision and

recall improve a lot more with the FocusedSelect rather than the TimeSelect interface, so

perhaps those applications would prime workers before fact creation. We contribute to

improving accuracy, but hope that our work sparks future work that further improves

accuracy in this and other use cases.
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3.9 Conclusion

Prior work has shown that crowd-powered dialog systems are e�ective at holding conver-

sations with end users and has shown that crowd workers, when presented with a small set

of concise information, can recover context from prior conversations and e�ectively use

it to guide future interactions. However, we are the �rst to present a system for capturing

concise, relevant set of information. Our work demonstrates that workers can do an e�ec-

tive job of identifying relevant facts individually, and vary enough in what they identify

to perform be�er when combined into groups. Future work may explore how to leverage

this curated information in supporting interaction beyond a conversational context. For

example, this context can be used to guide automatic recommendations, or in deciding

which resources to provide workers who are helping to complete a user-supporting task.
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Chapter 4

Support in the Form of Assistance:

Natural Language Grounding for

Objects in 3D Point Clouds

In the previous chapter, we �nd that, although nudging is helpful for helping tease out the

latent mental models across workers when it comes to saving facts from chats, it still does

not help prevent annotation variability, leading to di�culties in aggregating across worker

annotations. In this chapter, we address RQ2 and introduce support in the form of assist-
ing the user with their annotation process itself. With this change, we develop EURECA,

a mixed-initiative crowd-powered system that leverages non-expert human workers to

annotate objects in 3D scenes on the �y. We show that worker e�ort level is reduced with

the coordination provided by the interactional slingshot support, as EURECA can achieve

high precision (84%) and recall (92%) while keeping latency on par with fully-automated

methods (26.5s/object in group scenarios), and evaluate the system’s e�ectiveness in case

studies that mimic real-world scenarios.

Conference: EURECA: Enhanced Understanding of Real Environments via Crowd Assis-
tance, In AAAI Conference on Human Computation and Crowdsourcing (HCOMP), 2018.

Coauthors: Jinyeong Yim, Karthik Desingh, Yanda Huang, Odest Chadwicke Jenkins,

Walter Lasecki

Collaborations: Laboratory for Progress (University of Michigan)
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4.1 Motivation

Autonomous robots capable of ful�lling high-level end-user requests could revolutionize

in-home automation and assistive technology, potentially improving access to the world

for people with disabilities, providing a helping hand, and enabling more complete on-

demand access to remote physical environments. Yet, robots’ ability to identify objects in

diverse environments, particularly for objects in se�ings that have not been previously

encountered, remains a barrier to creating and deploying such systems in the wild. Ex-

isting 3D computer vision algorithms o�en fail in new contexts where training data is

limited, or in complex real-world se�ings where scene contents cannot be fully speci�ed

in advance. Furthermore, supporting natural language (NL) interaction with end users

introduces the signi�cant additional challenge of associating linguistic information with

visual scenes (e.g., to identify the target of a request).

We leverage real-time crowdsourcing to create EURECA, a system that helps bridge

the gap in understanding between visual scenes and the language used to describe the

objects in them in order to make systems that can robustly operate in real-world se�ings

possible.

Although existing approaches provide useful selection UIs, none solve the NL reso-

lution problem on the �y. Instead, they are systems for o�ine segmentation and data

creation. Further, a majority rely on high quality segmentations or classi�cations from

automated systems, which we do not assume is available to EURECA due to our focus on

novel objects and se�ings. Our solution provides near real-time segmentation based on

an NL query even in domains where references and objects may be completely unknown

to the system (i.e., no available training data).

As an example, imagine a scenario in which an in-home assistive robot routinely �elds

requests to pick up or move di�erent household objects. �e robot is trained to carry out

these tasks and can rely on a wealth of training data available for most objects. However,

if the user asks for a newly introduced object (e.g., something they recently purchased)

to be retrieved, the robot may fail to complete the requested task using automated meth-

ods alone if it does not understand the reference to a new object. EURECA helps robots

overcome such failure modes by leveraging on-demand crowds of human workers to col-

laboratively segment and label unfamiliar objects based on an NL request and a 3D point

cloud view of the current scene. Within tens of seconds, the robot understands which

object is being referenced and can immediately carry out the request, as well as increase

the se�ing-speci�c training dataset to improve future automation.
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(a) Paint tool (b) Region tool

(c) Trace tool (d) An end-to-end case study

Figure 4.1: (a)-(c) Intelligent and collaborative selection tools in EURECA. Crowd workers

can choose from three tools to select a group of points for segmenting and labeling 3D

point clouds. EURECA takes initiative to automatically augment initial user selections;

unintentionally selected points are “�ltered” out, and missed points are “�lled” in, mak-

ing �nal worker selection easier, faster, and more accurate. (d) �e scene used in our robot

case study, as well as a real crowd worker’s annotation of “spray bo�le.”

While this presents a powerful way to make robots more robust in real-world set-

tings through on-the-�y training, using human workers as part of the sensing process—

especially in non-public spaces, such as home or o�ce se�ings—introduces privacy con-

cerns. Workers may be able to identify individuals, observe information on documents or

whiteboards, and more. To address this, we designed EURECA to be e�ective even with

only depth information (without an RGB image overlayed). �is both helps preserve pri-

vacy and makes EURECA compatible with a wider range of sensor technology currently

used on robotic platforms (e.g., LIDAR sensors).
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4.2 Contributions

By combining the machine’s ability to precisely select content with people’s ability to

understand scene semantics, EURECA presents a hybrid intelligence approach to 3D

annotation—allowing it to bene�t from as much automation as possible, while using hu-

man intelligence to �ll in the gaps. To improve crowd workers’ ability to quickly and

accurately select objects in a 3D scene, EURECA takes steps towards a mixed-initiative

work�ow, allowing the crowd to work collaboratively with the system to re�ne selec-

tions for segmentation. Based on initial worker selections, the system automatically

infers points to augment those selections (which can even draw on existing 3D vision

approaches), with workers able to progressively correct those automatic re�nements.

EURECA comprises an interface for selection and scene manipulation (allowing work-

ers to rotate, pan, and zoom) using a series of selection tools, and automated assistance for

selection re�nement. To further reduce segmentation task latency, EURECA recruits mul-

tiple workers on-demand to synchronously complete tasks faster than any lone worker.

Coordination mechanisms are provided to prevent redundant or con�icting worker e�ort.

While EURECA’s approach requires no prior human or machine training (and can ac-

tually generate training data), it is possible to integrate the output of computer vision

approaches for even be�er results. In fact, we explicitly avoid relying on preprocess-

ing because we target se�ings where automated systems have already failed. However,

if output from vision approaches exist (e.g., preprocessed clusters, labels, etc.), EURECA

can use that to make selection easier for workers. �is reduces the e�ort needed from

crowd workers and, over time, enables our approach to smoothly transition towards full

automation as 3D computer vision methods improve and as more data is collected.

We validate our approach on scenes from an established, publicly-available dataset [61]

and demonstrate that our annotation baseline tool, Paint, leads to per-object segmen-

tation times of 85 seconds for individual workers. From this base approach, we then

show that our machine-augmented selection tools, Region and Trace, which infer �-

nal selections based on worker input, further decrease segmentation times by 32%, while

increasing object precision and recall by 5% and 9%, respectively. Next, we demonstrate

that our techniques for supporting coordination among workers lead to speedups that

increase with the number of contributors, further decreasing the average time it takes to

annotate objects to just 26.5 seconds each.
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We conclude with a demonstration of the end-to-end EURECA system with a Fetch

robot
1

that is able to respond to a user’s natural language command and accomplish a

grasping task. Our work will allow automated object recognition systems to be trained on

the �y, creating a seamless, reliable experience between end users and robots. Speci�cally,

we contribute the following in this paper:

• EURECA, a mixed-initiative crowd-powered system that leverages non-expert hu-

man workers to annotate objects in 3D scenes on the �y.

• Mixed-Initiative Annotation Tools for EURECA that help coordinate multiple

simultaneous workers on an annotation task to further reduce latency.

• Validation that EURECA can achieve high precision (84%) and recall (92%) while

keeping latency on par with fully-automated methods (26.5s/object).

4.3 EURECA: Collaborative 3D Tagging

We build on this related work to recognize objects in se�ings where automated approaches

fail or lack su�cient training data. EURECA recruits crowds of workers on demand,

then takes initiative to augment user selections, a�er which users can further correct

updated selections. In this section, we describe EURECA’s architecture, including the

mixed-initiative work�ow, worker UI for interacting with the point cloud, automated sup-

port to re�ne users’ object selections, and annotation tools for collaborating with remote

workers.

4.3.1 Web-Based Annotation Tool

EURECA presents workers with an interactive visualization and annotation tool for 3D

point clouds (Figure 4.2) built in JavaScript using the �reeJS library
2
. Full 3D point clouds

can contain more datapoints than can be rendered at interactive speeds (e.g. a Kinect gen-

erates over 300,000 points). To address this, EURECA keeps only every eighth point for

a �nal point cloud size of ∼35,000 points. On page load, crowd workers are shown the

point cloud and asked to select and label objects mentioned in a natural language query.

Workers can adjust their view of the 3D space using camera controls that let them easily

1
h�p://fetchrobotics.com/platforms-research-development/

2
h�p://threejs.org
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Figure 4.2: EURECA’s worker labeling interface. A typical view includes: (1) Natural lan-

guage query issued by the end user.; (2) Camera controls allow a worker to easily zoom,

pan, and orbit around in the scene; (3) Collaborative selection tools make it easy to se-

lect objects (as well as undo any erroneous selections); (4) An object already segmented

and labeled by the worker; (5) An object that is currently being selected by the worker;

(6) Gray points indicate a remote worker’s real-time activity for collaboration tasks; (7)

Labeling interface for associating the NL query to object segments.

pan, zoom, and orbit a scene. Workers see color highlights of the points they select. To

select points, workers are provided with the Paint tool (Figure 4.1a) which works by

dragging an adjustable-size cursor over the 3D points in a continuous motion (akin to

“painting” on the 3D canvas).

To help the crowd select 3D objects more e�ciently, we create two additional tools,

Region and Trace. �e Region tool (Figure 4.1b) allows workers to drag-select a

rectangle over a region of interest. Once the click-and-drag event is �nished, points that

are inside the 2D rectangular region are selected by ray casting a shape matching the

worker-indicated region and including all intersected points. For objects that are harder to

select with just the Region tool—e.g., objects with a more organic shape, or objects that

are partially occluded—workers can use the Trace tool (Figure 4.1c). Unlike Region
tool, Trace allows workers to draw a free-form region of interest. �e points enclosed

within the region are highlighted using a ray casting method similar to that used for the

Region tool.
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Figure 4.3: EURECA’s iterative, mixed-initiative approach. In (a), the user makes an ini-

tial selection (magenta); in (b), the machine observes the selection, takes initiative, and

modi�es it to �ll the rest of the base (green); in (c), the user sees that the system over�lled

points (do�ed oval), and retakes initiative to clean up that excess selection, and then se-

lects the tea pot’s spout; �nally, in (d), the machine enters a “no-op” state since there is

no more �lter/�ll to be had.

4.3.2 Mixed-Initiative Work�ow

Selection using the tools described above will not always result in perfect object bound-

aries. Automated re�nement is one way to overcome this limitation. A user’s ultimate

goal of �ne-grained selection of a novel object can be thought of as a two-part approach:

there is the user’s latent intent, which involves wanting to perform a �ne-grained segmen-

tation of an object (the “goal state”), and then there is the user’s expressed intent, which

involves using the tools in the system. A user’s expressed intent is o�en limited by the

selection tools’ capabilities (there will be imperfection in this process).
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One approach would be to provide smarter and more capable tools to the users. How-

ever, direct manipulation using selection tools might not always help achieve the goal

state because the user’s latent intent is unknown to the system. Our key insight into

overcoming this limitation is to instead use a mixed-initiative work�ow [43, 45]. Within

this mixed-initiative framework, users can now collaborate with the system’s initiative to

interactively re�ne the machine’s selection (by taking back initiative). Based on the ini-

tial user selections, EURECA takes initiative to �lter out points that were unintentionally

selected by workers, and �ll in points that it believes were missed in the initial worker

selection. As users make repeated point selections for the same object, EURECA starts

to be�er understand the user’s high-level (latent) intent that is being expressed through

low-level selection actions, thereby building a shared context to achieve the goal of �ne-

grained segmentations (Figure 4.3). �is lets EURECA’s automated selection methods

iteratively re�ne the current selection state in tandem with the worker, thereby informing

future selections.

As an example of where this mixed-initiative approach is bene�cial is in cases where

users might not always know the exact object boundaries in the 3D scene. If they mis-

takenly lump two objects into one selection (if, say, their viewpoint hid the boundaries),

a con�dent system can take initiative, jump in, and adjust the �lter / �ll process. �is

mixed-initiative approach, then, can let both the user and the system collaborate e�ec-

tively.

Point-Filtering (“Filter”)

To infer points to be removed from a worker’s initial selection, EURECA uses a combina-

tion of two methods: �ltering �rst by performing outlier detection, and then �nding the

selection of interest using the Kernel Density Estimation from an o�-the-shelf JavaScript

library [22].

Standard outlier detection, in which points that are signi�cantly distant from the bulk

of the selected points are removed, is �rst performed. �is method is not resilient to �l-

tering out points that are within the distance threshold, but still clearly belong to another

object (e.g., if there are two objects that occlude each other, a worker’s wayward selection

can catch points from both objects). Outlier detection is augmented with the KDE method.

(We note that EURECA’s architecture supports any method that takes in an initial user

selection and outputs a re�ned segmentation, and so use KDE as one such method.)
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EURECA builds a density curve of points from the camera’s line-of-sight to the initial

selection set, based on camera distance. Since the goal is to �lter out erroneous selections

within the user’s line of sight, the algorithm splits on the �rst local minimum and discards

points outside the �rst cluster. �is method �lters out points that are behind the object

that was “intended” to be selected. A threshold learned from training data is used to avoid

spli�ing o� and selecting a cluster that contains only a few points.

Selection-Completion (“Fill”)

For �ll, there is a higher likelihood that points close together belong to the same object.

To infer points to add to the initial selection set, EURECA uses a label propagation-based

method that is similar to “�ood �ll” tools in modern graphic editing so�ware (the simplest

example of which is “bucket �ll” in Microso� Paint and similar applications).

For each unselected point, EURECA �rst calculates a constant in�uence value from a

selection point to all points within its neighborhood. Using the kd-tree structure allows

for rapid calculation of each point’s distance relations to all its neighbors. �is is aug-

mented with a term that takes into account how far away this unselected point is from

the selection center. Since we assume a worker’s initial selection lies mostly within their

target object, the second term helps prevent runaway propagation, as points that are too

far away will be less likely to be �lled in. An inclusion threshold is used to determine

which points to add to the �nal �lled-in selection set. A version of the Brush�re algo-

rithm [17] is used to estimate the in�uence on subsequent points. In practice, every point

in�uences its neighbors within a radius that is proportional to the average distances be-

tween neighborhoods of points. To slow down the e�ect of the “brush�re,” EURECA adds

a penalty on the length of the propagation chain. An inclusion threshold is again used to

determine points that are added to the �nal selection set.

4.3.3 Collaboration and Scaling with Crowd Size

Moreover, EURECA facilitates coordination between multiple workers via real-time feed-

back on the selection and labeling of synchronous workers. Because we have li�le to no

information about a given scene in our problem formulation, it is di�cult to direct workers

to non-overlapping parts of the scene to avoid redundant work. Lasecki et al. previously

explored using “so� locking” in Apparition [68], where workers manually placed mark-

ers to signal to others that they were contributing in the 2D scene’s physical location.

We adapt this idea by automatically providing real-time feedback on what other workers
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are marking via highlighting. �is approach, while intuitive, is novel in crowdsourcing

systems and generalizes to broader classes of real-time coordination problems. EURECA

uses Meteor
3

to create a shared tagging state that allows remote events to be synchronized

between workers’ local views.

4.4 Evaluation

Making interactive robotics applications possible via crowd-augmented sensing requires

a combination of speed and accuracy. In the previous section, we described EURECA’s

architecture. In this section, we introduce the experiments we use to validate the e�cacy

of this architecture.

4.4.1 Recruiting Crowd Workers

We recruited 78 unique workers with a minimum approval rating of 95% from Amazon

Mechanical Turk [5]. For each task, we paid at an e�ective hourly rate of $10 per hour,

along with a built-in bonus amount for successfully completing a multi-stage tutorial.

Once workers pass the tutorial, they are routed to the main task in which they use EU-

RECA to respond to the posted query (e.g. “Select and label the dinner plate”).

4.4.2 Point Cloud Dataset

Our evaluation uses scenes from the RGBD Object Dataset [61], which consists of color

and depth images of naturalistic household and o�ce scenes. Because we wish to explore

sensing modes that preserve user privacy, we use only the depth images to generate a

3D point cloud. We selected �ve scenes with enough diversity in object type, clu�er, and

orientation to validate object reference resolutions and crowd segmentations (Figure 4.4).

To create the ground truth for evaluation, two researchers carefully annotated the various

object segments for each scene.

3
h�ps://www.meteor.com/
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Figure 4.4: Point clouds used in worker studies. Workers are instructed to segment com-

mon household objects. �e exact natural language query di�ers for each scene. For each

scene, non-trivial camera movements are required to overcome object occlusion, shadow

e�ects, and orientation in order to identify objects.

4.4.3 Measures

We evaluate worker performance using four measures: latency, precision, recall, and the

F1 score. We measure latency in terms of the entire session’s duration, from understand-

ing to segmentation to NL annotation, and not simply the time spent selecting the object.

�is includes time to understand the scene (“perception”) and time to select objects (“se-

lection”). Factors that impact perception include dealing with occlusion, understanding

an object’s orientation within the scene, and recognizing how distinct an object is by its

shape. Factors that impact selection include how easily separable the objects are, as well

as how di�cult it is to select the object’s shape. �erefore, latency will always be longer

than time spent segmenting objects.

We divide latency by the number of objects we detect that the worker has labeled. �is

normalization on a per-object basis lets us compare across scenes with di�erent numbers

of objects. We then automatically align worker selections to the best-�t ground truth

objects to calculate precision and recall. We report precision and recall for both objects

(important for object recognition) and points (important for grasping / motion planning).

�e F1 score (harmonic mean of precision and recall) gives a combined accuracy measure.

We perform paired two-tailed t-test to measure signi�cance.
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4.4.4 Study Conditions

We focus on evaluating 1) EURECA’s overall e�cacy, 2) the e�ect of our selection tools

(with automated re�nement) on how quickly and accurately workers can segment objects,

and 3) the impact of workers collaborating in teams.

Study 1: EURECA’s E�ectiveness. To measure the overall e�ectiveness of EURECA

in enabling workers to segment and label objects in 3D point clouds, we identify at the

object level how many object instances were correctly identi�ed by the workers. Across

the �ve scenes, there are 21 unique objects (four scenes with four objects each, and one

scene with �ve objects).

We evaluate this recognition in terms of precision (how many objects did the worker

correctly identify?) and recall (did the worker correctly identify all the requisite objects in

the scene?). We treat each iteration of the scene as a new data point, as there is a chance

that a worker might not recognize an object when they see the scene the �rst time around,

but do end up recognizing it the second time they see the scene.

Study 2: �e E�ect of Automatic Re�nement on Selection. To study the e�-

cacy of EURECA’s initiative when automatically re�ning user selections, we task workers

with segmenting and labeling objects in the same scene twice: once with only the Paint
tool enabled (PaintMode) and then once with all tools at their disposal (ToolsMode),

presented in a randomized order.

Study 3: Collaboration in Teams. Next, we want to demonstrate that EURECA’s

collaborative features enable it to e�ciently scale with the number of workers available.

We select two scenes with a total of nine distinct objects that needed to be identi�ed.

Workers are recruited to a “retainer pool” whenever EURECA is running, and can be di-

rected to a task within one second of a query that the system does not understand arriving.

By varying the team size from one to three workers, we can investigate the e�cacy of

EURECA in enabling worker coordination and collaboration when performing multiple

selections.

4.5 Results

In this section, we describe the experimental results of related to the core EURECA system,

the mixed-initiative tools that support workers, and the bene�ts of collaboration.
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Figure 4.5: Overall latency per object among the crowd workers in EURECA’s various

iterations.

4.5.1 Study 1: EURECA (It Works!)

We recruited 34 workers to use EURECA using only the Paint tool. We dropped one

outlier whose task duration was more than 3σ from the mean. �e remaining 33 workers

were distributed across the �ve scenes: three scenes had seven workers each, and two

scenes had six workers each.

We �nd that the average total time to task completion (both perception and selection

for the never-before-seen scene) for all 33 workers, when normalized on a per-object ba-

sis, was 85 seconds (σ = 56s; p < 0.005), with 99.6% object-level precision (only one false

positive), and 93.9% recall. Of the total of 17 object instances were missed (not recalled)

by workers, 10 were completely missed and 7 were combined with other objects into one

label. As mentioned earlier, because scene understanding involves both perception and

selection factors, we see scene latency times range from 65s to 92s on average.
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4.5.2 Study 2: Mixed-Initiative Selection Tools

Although 85 seconds latency per object segmentation and labeling already allows for on-

the-�y understanding of novel 3D scenes, we seek to improve this further with EURECA’s

mixed-initiative tools. Does the progressive re�nement of selections help speed workers

up?

For the 33 workers, as we see in Figure 4.5, when ToolsMode is enabled, we see a

35% relative improvement in annotation speed to 58 seconds (σ = 28s). Additionally, we

observe an improvement in the average precision and average recall: precision improves

from 0.82 to 0.86, whereas recall improves from 0.82 to 0.90).

Worker Improvement Over Time

In addition to worker speedups from the mixed-initiative tools, we want to know if work-

ers learn with repeated exposure to the conditions in Studies 1 and 2. We further break

down the performance on tasks accounting for the order of task conditions (i.e., whether

workers used PaintMode or ToolsMode �rst). �ere were 19 workers who used Paint-

Mode �rst and 14 who used ToolsMode �rst. Workers using PaintMode �rst completed

the �rst task in 87.4s (followed by a second task using ToolsMode completed in 61.1s).

Workers using ToolsMode �rst completed the �rst task in 55.6s (followed by a second

task using PaintMode completed in 81.8s). Comparing across both orders, we �nd that

workers improve over time when they use EURECA.

Moreover, we note that 10 workers (30.3%) did not use ToolsMode when they had

the option available, which means that they used the Paint tool for all object tagging.

With this in mind, we can focus speci�cally on those workers who used at least one of

our ToolsMode selection tools. For these 23 workers, when in the ToolsMode condition,

we see a statistically signi�cant 36% improvement (p < 0.02) in time taken to tag objects

when compared with the time taken in the PaintMode condition.

Leveraging a priori Clustering Information

With EURECA, we obtain performance improvements when we add our new selection

tools with the system initiative to re�ne user selections. However, active research is be-

ing conducted on devising systems that can segment out objects or surfaces in visual

scenes. Such information can provide our tools with improved knowledge and under-

standing of the scene. In fact, for all new elements that have never been seen before, this

kind of automated segmentation is the best that can be done. But, even though we can
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delineate it in the scene, we still require the proper NL annotation for it. Since both of

EURECA’s selection tools have the ability to integrate results from any o�-the-shelf seg-

mentation algorithm, can performance be improved if our envisioned robot has such a
priori understanding of its environment?

To test this hypothesis, we recruited 10 workers from Amazon Mechanical Turk and

ran the same experimental setup as seen in Study 1 with one of our scenes. We use percep-

tual grouping of RGBD segments to form object cluster information [91]. When we take

the average worker performance across all of ToolsMode with clustering information

available, we �nd a further 37% improvement in speed when compared with the average

across all of ToolsMode without clustering information. �erefore, if prior clustering

knowledge exists, EURECA’s selection tools can leverage that information to further re-

duce per-object tagging time (Figure 4.5).

4.5.3 Study 3: Collaboration Leads to Lower Latency

To understand the ability of teams of workers to complete the annotation tasks, we re-

cruited 24 workers to create four di�erent teams for four scenes. Each team had to segment

between four and �ve objects. We �nd a large decrease in segmentation time required as

we add more workers (Figure 4.6). Individual workers (teams of size one) took on average

Figure 4.6: Latency per object in a collaborative se�ing.
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89 seconds (σ = 24s) to segment the objects, with an overall precision of 0.96 and an

overall recall of 0.99 (F1 score of 0.97). When we add one worker (teams of size two), we

see a 62% relative decrease in time taken to 34 seconds (σ = 15s); however, we also see a

14% decrease in precision along with a 0.2% increase in recall (F1 score of 0.91). Finally,

for teams of size three, we see a further 22.5% decrease in time taken for segmentation

and labeling to 26.5 seconds (σ = 8.4s), with a relative decrease in precision of 0.12%,

and a relative decrease of 7.3% in recall (F1=0.88).

�ese results suggest that having workers collaborate with each other o�ers imme-

diate speed bene�ts; increasing team size to two leads to a drastic reduction in latency,

but at the expense of a decrease in precision. However, precision losses seem to stabilize

when an additional worker is added.

During one of the trials, we observed that one team of three did not complete the

task because they entered a con�ict state in which an error confused all workers into

tagging erroneous objects. �is suggests EURECA still needs to �nd more e�ective ways

of enabling explicit worker coordination, especially to rectify mistakes. Future work may

explore addressing such con�icts by automatically changing a worker’s camera view such

that no one worker is looking at the same part of the scene during collaborative tasks.

4.6 Case Studies

We have experimentally validated that EURECA enables crowd workers to quickly iden-

tify and accurately select, segment, and annotate objects in 3D point clouds, all with near

real-time latency. With the novel Paint tool, we see speeds of 85 seconds, which we

are able to reduce to a best-case scenario of 26.5 seconds with teams of 3 workers. In this

section, we explore some case study scenarios to be�er evaluate EURECA’s performance

for real life applicability.

4.6.1 Case Study: End-to-End Test with a Robot

We are using the Fetch robot, a mobile manipulation platform mounted with an ASUS

depth camera to sense the environment. For this case study, we assume that the robot has

bounding boxes and training data for numerous objects. Provided the object locations

in the point cloud, the robot uses handle grasp localization [108] and MoveIt! [106] (a

motion planning library) to manipulate an object. However, when a new object—a spray
bo�le—is introduced, the robot has no way of detecting it, so it places an on-demand re-
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quest to EURECA. In our case study, the robot successfully picked up the spray bo�le—of

which it had zero training data on—based on the crowd-generated annotation. Our case

study validates that the precision obtained from the crowd’s segmentation and annota-

tion using EURECA is enough to enable object manipulation, which is typically seen as a

harder task than object annotations for room navigation (as manipulation requires higher

segmentation accuracy).

Figure 4.7: An example case study where the Fetch Robot successfully picked up a spray

bo�le based on an Amazon Mechanical Turk worker’s annotation using EURECA.
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Figure 4.8: An colorized (RGB) version of the point cloud that is seen in Figure 4.2. Even

though RGB helps to visually di�erentiate between the objects, we did not see any signif-

icant improvements in annotation speed and accuracy.

4.6.2 Case Study: Using RGB Color Information

If the lack of RGB color information constraint were relaxed, would that improve worker

performance? To investigate this, we repeat Study 1, but workers now see the RGB point

clouds. Figure 4.8 shows a point cloud with RGB information: in this �gure, it is easy

to visually separate the objects. However, a�er accounting for two outliers, we �nd that

with N=25 workers, segmentation is 5.9% faster with PaintMode (80s), with a 4.9% gain in

precision and 2.4% gain in recall. Worker feedback seems to shed some light on this result,

as workers found it di�cult to delineate the selection colors from the point cloud colors.

Future work could look into ways of toggling point cloud colors to make the selection

object stand out more clearly.
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4.6.3 Case Study: Deformable Objects

We study EURECA’s performance on a custom scene with deformable objects where the

task is to identify a scarf. Compared with the segmentation using an o�-the-shelf re-

gion growing algorithm in PCL [97] in Figure 4.9, which erroneously breaks the scarf into

multiple regions, crowd workers are able to properly segment the scarf as one object.

We can see that an o�-the-shelf region growing algorithm erroneously identi�es mul-

tiple regions for the scarf, whereas crowd workers are able to correctly segment the scarf

using EURECA. However, because deformable objects can be complex, workers need con-

textual information to disambiguate between objects if confusion arises (e.g., if the table

were to consist of only scarves, then picking out the correct one would not work). Perhaps

crowd workers can separate out the individual scarves and the robot can rely on clues in

the natural language query to properly annotate the scarf (e.g., “the middle one”).

4.6.4 Case Study: Labeling in Open-Ended�eries

We have seen from our studies that workers have extremely high precision and recall

when it comes to identifying objects when given directed queries (e.g. ”Pick up the bot-

tle”). We want to know how well people can identify and label objects in an unbounded,

or open-ended, query se�ing. For this case study, we recruited 10 workers (two outliers

did not complete the task before submi�ing the HIT) and asked them to label all objects

in the scene. We picked seven unique objects that the workers should have selected. Since

each worker sees the scene twice, we have a total of 7 * 2 instances of objects per worker;

with 8 workers, we have a total of 112 object instances that need to be recognized.

Since this is a visual scene understanding task, we accept an object as having been

“recognized” if its object label matches a version of the ground truth’s label (e.g. “cup”

and “mug” map to the same abstract label). We �nd the overall object instance recogni-

tion precision and recall to be 0.44 and 0.52, respectively. However, based on the default

camera view, there were two separate objects, a bowl and a �ashlight, that seemed to

resemble a saucepan or a frying pan. Five of the 8 workers mistook these two separate

objects as a single object. When we account for this mislabeling, as well as other mislabels,

we see precision and recall climb to 0.68 and 0.80, respectively.
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Figure 4.9: For a deformable object (Top: green scarf within the do�ed white oval), PCL’s

region growing erroneously segments the scarf into multiple distinct regions (Bo�om

Le�), whereas an Amazon Mechanical Turk worker is able to correctly segment and an-

notate the scarf (Bo�om Right).
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�ere were a total of 20 false positive instances, which is a 15.15% false positive rate.

However, 30% of the false positives (6 object instances) were objects that the crowd recog-

nized that were out of scope for the task (e.g. one worker broke down a “tissue box” into

constituent “box” and “tissues”; another worker identi�ed a “cap” that was hidden behind

a bowl).

Finally, when asked to �nd a particular object (e.g., “Pick up the cup”), it is possible

that the scene has multiple objects of the same type. If there are other instances of said

object, we imagine the robot will prompt the end user for a clarifying request (e.g., “Pick

up the cup nearest the fridge”). We do �nd that workers annotate all objects of a particular

class (i.e., all cups or all bowls).

From this case study, we can see that workers are able to recognize objects even with-

out direct prompting, though direct object mentions boost the ability to perceive objects.

Workers also seemed to recognize objects be�er the second time they saw a scene, in-

cluding objects that were not part of the ground truth. �is suggests EURECA could help

robots to get a more general understanding of their in-home environments.

4.7 Limitations and Future Work

We show that EURECA e�ectively leverages non-expert crowd workers to annotate 3D

scenes in as li�le as 36s per object for individual workers, and as li�le as 26s per object

when workers collaborate in teams. However, collaboration currently only works in par-

allel and builds on the “so�-locking” idea seen in [68]. Future work can explore ways of

having multiple workers select the same object without con�icts, making the work�ow

fast enough for natural and continuous interactions with robots.

During our collaboration tests, we did not observe any social loa�ng behaviors in our

tests. We were focused on the functionality of the end-to-end system, and any loa�ng

e�ect was minimal enough that it did not prevent a signi�cant improvement in the per-

formance of groups over individuals. With further instrumentation, future work can study

worker behavior in detail. While this is an interesting problem, studying it su�ciently is

beyond this dissertation’s scope.

Furthermore, even when preserving privacy by removing RGB information and down-

sampling the point cloud by keeping only 10% of initial points, workers are still able to

correctly identify common household items with high precision and recall. However, in

addition to the scenario we saw in the case study where it is hard to delineate objects into

constituent ones (e.g. the saucepan), unique objects could prove problematic for EURECA.
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Unique objects, such as say a clay dinosaur, would be hard to identify from just the point

cloud alone. Indeed, clu�er and other scene properties (e.g., camera capture angle) can

signi�cantly a�ect the ability for anyone, computer or human, to both perceive and select

objects in 3D scenes.

Our goal was to demonstrate that crowds could be used to segment and annotate ob-

jects in real time in “tractable” scenes, which we explored using a common 3D vision

dataset in the literature that contains images feasible for highly-trained vision systems

to recognize with reasonable accuracy. As a result, EURECA’s strength lies in dealing

with objects that are familiar to the average worker. Future work could explore how to

overcome these bounds by devising work�ows that selectively relax privacy constraints.

Finally, EURECA’s ability to deal with novelty makes our approach especially relevant

to mobile robots. As these robots enter new environments, the likelihood of them en-

countering unknown and novel objects increases. For these se�ings, the robot can place

on-demand requests to EURECA. We could then take advantage of the class of point-

tracking algorithms to map the already-annotated region as the robot moves around its

environment. Furthermore, EURECA’s �ll algorithm can be used to incrementally update

this annotated region as more of the object is uncovered (e.g., occlusions disappear as

the robot moves around). Future work may address how to introduce approaches that

reduce latency and further reduce the amount of human time required for the real-time

annotations.

4.8 Conclusion

In this chapter, we present EURECA, a mixed-initiative, hybrid intelligence system that

leverages non-expert crowds of human contributors to help robots identify, segment, and

label objects in 3D point clouds in near real-time. �is makes it possible to deploy robots

that operate reliably in real-world se�ings from day one, while collecting training data

that can help gradually automate these systems over time.
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Chapter 5

Support in the Form of Guidance: A

Novel Interface for Multi-Domain

Conversation Disentangling

In this chapter, we explore what happens when interactional support guides user annota-

tions for a task that is not only di�cult, but also requires domain knowledge.

Speci�cally, people with domain expertise in computer science and non-experts in

the form of online crowdworkers will be disentangling conversations from Internet Re-

lay Chat (IRC) logs. �e output conversations are critical to training machine learning

(ML) algorithms so that these algorithms can e�ectively provide disentanglement in chat

applications. Our ultimate goal is to explore how providing visual contexts during the

annotation phase can make these annotations adaptable to multiple domains, making it

easier and more e�ective to train ML classi�ers, which in turn can be used to train chatbots

and other applications.

Conference: A Large-Scale Corpus for Conversational Disentanglement, ACL, 2019.

Note: Only the initial part of the work discussed in this chapter was published at ACL.

�e rest of the chapter is unpublished work.

Coauthors: Andrew M. Vernier, Yiming Shi, Zihan Li, Jonathan K. Kummerfeld, Mark

S. Ackerman

Collaborations: IBM Research
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5.1 Motivation

Intelligent systems in digital environments bring us closer to achieving the longstanding

goal of arti�cial intelligence and human-computer interaction: systems that can interact

with human beings using natural language. However, �nding human-human conver-

sational data to train these systems remains a core challenge to fully automating these

systems; in fact, millions of lines of human-human dialog exist on the Internet for free in

the form of Internet Relay Chat (IRC) messages. However, current state-of-the-art systems

face a critical challenge since they cannot easily disentangle conversations that require

domain expertise. If we improve the ability for AI systems to disentangle these IRC logs

into constituent conversations.

Not only can these disentangled conversations help train chatbot models, but also they

can be used to train disentanglement models. �ese models can then be used to make log

history easier for people to read through, such as allowing individual channel owners to

quickly get disentanglement working for their own logs.

An important step, then, is to leverage human intelligence to annotate this IRC data

that requires domain knowledge. An example of how multi-party, multi-turn conversa-

tions can be entangled, or overlap, is seen in Figure 5.1.

Our previous work in this space [60] �rst started as an internship project at IBM Re-

search. We took a rule-based learning approach to automatically disentangle multiparty,

multi-turn conversations taking place in Internet Relay Chat (IRC) on the #Ubuntu chan-

nel. Each rule would identify structure and pa�erns in the data and create a contextual

thread of importance in the IRC log, such as keywords in each conversation thread. For a

new u�erance, rules were used to identify to which conversation that u�erance belongs;

in this way, the combination of the rules with the keywords-creation helped to disentangle

di�erent threads.

However, this process requires high-e�ort on behalf of the expert. �e more rules that

are created, the more complex potential edge-cases can be, or the higher chance u�erances

can be �ltered out / otherwise not included. It is o�en the case that experts always have

to keep updating their heuristics because new conversations can bring in edge-cases that

the expert might not have thought about. For instance, Figure 5.2 shows ambiguity that

is o�en involved in disentangling conversations that require domain knowledge.

�is initial, rule-based learning approach for this task quickly becomes complex and

full of edge-cases. As a result, there can be issues with precision and recall. Rather than

relying on heuristics to capture high-quality annotations, instead, it is be�er to create

interactional slingshots and rely on ML algorithms to help augment the expert’s e�ort.
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Figure 5.1: A sample log from the #Ubuntu IRC channel, earliest message �rst. �e curved

lines represent two di�erent conversations happening at the same time. Notice that the

username delire is speaking in both conversations to separate users.

�e shortcomings of this expert-driven rules creation approach led to the creation

of a larger team e�ort that looked at overcoming these issues with a more powerful AI

approach. As part of this larger team e�ort, a hand-created dataset of more than 77k mes-

sages (a dataset 16x larger than previous similar datasets combined) was used to train ML

models which then labeled a data set of the remaining 37 million messages [60].

What if the expert wishes to switch the domain or the channel? As e�ective as the

results are, it is clearly ine�cient and infeasible for experts to manually annotate and

hand-label 77k messages for each new channel for which they wish to set up automated

support. �ere is a huge need for more e�cient methods to allow individual channel

owners to make automation work on their own data. Can we create a system that can en-

able rapid annotation of large corpuses from new IRC channels with minimal e�ort from

channel owners?
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Figure 5.2: �is conversation snippet shows annotation ambiguity that arises in the IRC

messages. �e message from MOUD could be a response to either MonkeyDust or

nacc. In the same vein, the message from Madsy could be a part of this conversation

or to another one entirely.

In this project, we develop a hybrid intelligence system whose ultimate goal is to en-

able an AI system that has been trained to disentangle conversations in domain A (or

channel A) to be able to disentangle conversations in domain B (or channel B). �e labeled

data that the AI system is trained on exists for domain A. To get to this step, however, we

�rst explore what it means to create a novel interface for multi-domain conversation dis-

entanglement, speci�cally with interactional slingshots (referred to with the acronym “IS”

in the rest of this chapter) that guide user annotations.

5.2 Related Work

As seen in Section 2.1.3, related work in this area of research has historically focused on

the disentanglement task itself, and less on the interface development. Our main focus for

this project is to create an e�ective interface that, via interactional slingshots, can help

annotators disentangle text from multiple domains.

However, in general, there exist several tools that automatically preannotate text to

help annotators with a range of NLP tasks. �ese interfaces include GATE Teamware [13],

WebAnno [116], and AlvisAE [87]. Perhaps the closest interface to ours is from Klie et

al. [54], who introduce a domain-agnostic human-in-the-loop approach for Entity Linking
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tasks based on their previous INCEpTION [53] interface. �is interface enables annota-

tors to suggest new annotations, rejections, etc., at any time in their annotation process.

Klie et al.’s work is similar to ours in that they also study a variant of the ”No IS” and ”IS”

study that we describe later in this chapter.

SLATE [59] is the most direct inspiration for our work. SLATE was built as a �exible

annotation tool that supports three annotation types: applying categorical labels, writing

free text, and linking portions of text. �e la�er annotation type is the inspiration for the

“Link” mode, which is described in Section 5.5. Our annotation interface borrows concepts

from SLATE, but unlike SLATE, is fully-online, and uses mouse input for selections.

5.3 Task De�nition

We consider the same overall conversation disentangling task as seen in [60], which we

describe again here. An Internet Relay Chat (IRC) shared channel contains a group of

users that communicate with each other about a topic, o�en technical in nature. Each

message in this chat is timestamped. Sometimes, these users use directed messages, in

which they mention the users to whom they are replying; otherwise, they just reply,

which we then consider an undirected message. For the annotation task, there are two

major �avors: Link, where annotators label the previous message to which this message

is a responding or referring to. �is provides a graph structure in which messages are

nodes and edges indicate that messages are responses to each other; and, Conversation,

where annotators create ongoing conversational snippets to which they then assign each

message. A conversation can be inferred from the graph structure, but not vice-versa.

5.4 Data

Our data consists of 16 �les with varying levels of disentangling di�culty that were

sampled from four di�erent channels: Stripe, Rust, Ubuntu-Meeting, and

MediaWiki. Stripe and Rust contain jargon, MediaWiki contains mostly bug reports,

and Ubuntu-Meeting contains mostly meeting jargon. Each �le contains 200 lines that

were manually annotated by us. However, we subsample for 34 lines from these �les for

the annotation task in order to make the task time manageable for our studies.
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Adjudication for Gold Standard

For the gold standard dataset creation, we had four total annotators: Each of the 16 �les

were annotated in the Link task by two unique authors using the SLATE interface [59], and

a third author then adjudicated between these annotations to improve quality. During this

adjudication step, there was no indication of which author had been given which anno-

tation, and there was an option to choose another annotation entirely. �ese adjudicated

annotations serve as our gold standard.

Summary Stats

Table 5.1 shows relevant summary stats from the set of annotation �les, grouped by

domain. Even though each �le comprises 34 lines, there is a large variability in character-

istics. For instance, the shortest conversation time span (time elapsed from Line 1 to Line

34) was 4.00 minutes for the ubuntu-meeting.0.100 �le, whereas the longest time

span contained in the �les was 1204.05 minutes for the mediawiki.1.100 �le. Sim-

ilarly, we notice that the Stripe and Ubuntu-Meeting channels contain a mix of directed

and undirected messages, but Rust and MediaWiki are heavily biased towards undirected

messages. Another feature of variability for these �les exists in the ”Number of Users

Directly Addressed” column. For those users directed their messages at others, this col-

umn shows the number of unique users that were addressed by such a user. For instance,

for the stripe.0.100 �le, one user addressed eight unique users, whereas for the

mediawiki.0.200 �le, there was only one user for one directed message.
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5.5 Interface Conditions

All the client and server-side so�ware is wri�en in JavaScript and uses o�-the-shelf li-

braries. As mentioned in Section 5.3, there are two major ways of doing the conversation

disentanglement task: “Link” mode, where annotators �nd the previous message being

replied-to (resulting in graphs with nodes and edges), and “Convo” mode, where annota-

tors separate the entangled chat into constituent conversations. Since we are interested in

adding guidance support to the annotators’ interactions with the interface, we have two

further variations: No IS mode, where the annotators do not receive any interactional

slingshot support (so these are the baseline conditions), and IS mode, where annotators

receive interactional support.

Unlike the SLATE interface, which is a custom-built tool that utilizes the command

line [59], our interface is fully web-based. Figures 5.3, 5.4, 5.5, and 5.6 show our interactive

annotation interface, built using the Meteor framework. Depending on the task condition

(“Link” or “Convo”) and whether or not interactional slingshots are present (“No IS” vs.

“IS”), annotators can interact with di�erent features.
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Figure 5.3: Web-based interactive annotation interface for the Convo-No-IS condition.

�ere are no slingshots a�orded for this interface. (Note: these screenshots show each

interface at the same point in the Tutorial �le.)

In the Convo-No-IS condition, seen in Figure 5.3, annotators can scroll through the

entangled conversations on the le� hand side, and create new conversation “snippets” that

show up on the right hand side. Annotators can add sentences by clicking inside each con-

versation container. �e blue-highlighted sentence is the start of the snippet and occupies

a “sticky” position. No other interactional slingshots are a�orded for this interface.
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Figure 5.4: Web-based interactive annotation interface for the Convo-IS condition. �e

interactional slingshots include username highlighting and system predictions for con-

versation snippets. (Note: these screenshots show each interface at the same point in the

Tutorial �le.)

In the Convo-IS condition, seen in Figure 5.4, annotators have access to interactional

slingshots: username displays box, where the conversation snippets display the users that

are currently in that snippet; system predictions, which highlight the username displays

box based on the system’s con�dence in the correct conversation prediction, where bright

yellow is the highest con�dence prediction and dark orange is the lowest con�dence

prediction; and, username highlights, where the current username and any targeted user-

names are automatically highlighted in the entangled chats, as well as in the username

displays. �e highlights are blue if the user is actively speaking at another user, and green

if any conversation involves this user.
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Figure 5.5: Web-based interactive annotation interface for the Link-No-IS condition.

�ere are no slingshots a�orded for this interface. (Note: these screenshots show each

interface at the same point in the Tutorial �le.)

In the Link-No-IS condition, seen in Figure 5.5, annotators can scroll and click on the

sentence they think the currently highlighted line (shown in the red border) is respond-

ing to. Since this is a baseline condition, annotators do not receive any interactional help

from the system. As a result, annotators cannot visually tell to what previous sentence

they linked the currently-highlighted sentence.
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Figure 5.6: Web-based interactive annotation interface for the Link-IS condition. �e

interactional slingshots include username highlighting and system predictions for links.

(Note: these screenshots show each interface at the same point in the Tutorial �le.)

Finally, in the Link-IS condition, seen in Figure 5.6, annotators once again have access

to the three interactional slingshots as in the Convo-IS condition. �e major di�erence is

that, unlike in the Convo-IS condition, the entangled sentences on the le� hand side are

highlighted. �e system highlights similarly range from yellow (for the highest con�dence

prediction) to orange (for the lowest con�dence prediction).
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5.6 Experimental Setup

5.6.1 Hypotheses

�ere are three hypotheses that we explore in our experimental study, when comparing

to the No IS mode:

1. H1: Using IS tools will improve the accuracy for both the Convo and Link modes.

2. H2: Using IS tools will lead to time savings during the annotation.

3. H3: Using IS tools will lead to a speed-up in annotation the further along a �le the

annotator is.

5.6.2 Annotation Guidelines

We developed annotation guidelines based on our aforementioned previous work:

• In Convo mode, for each currently highlighted sentence, annotators are instructed

to identify to what previous conversation this sentence belongs. If none exists or if

this is the start of the task, annotators are instructed to create a new conversation

snippet.

• In Link mode, for each currently highlighted sentence, annotators are instructed to

identify what previous sentence this current sentence is replying to, addressing, or

following up with. If no such sentence exists or if the current sentence is the start

of a new topic, conversation, or a social message, then annotators are instructed to

link this sentence with itself.

• For both modes, we provided examples of annotations for edge cases. Example edge-

cases include what to do when a question is repeated, when the user is engaged in

multiple conversations, when a user asks new questions that are di�erent from the

existing conversation thread, what to do with a series of lines of output, and how

to deal with “ubo�u,” a bot.
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5.6.3 Annotators

Human Annotators

�e annotators were all �uent English speakers with a background in computer science,

a necessary component to understand the technical content present in these domains. Of

the 21 total annotators: 17 were doctoral students, 1 was an undergraduate student, 1 re-

ceived their undergraduate degree, 1 received a Master’s degree, and 1 received a doctoral

degree. Of the four author annotators: 1 was pursuing a doctoral degree, 1 was pursuing

a Master’s degree, 1 graduated undergraduate, and 1 was a postdoc. All adjudication was

performed by a postdoc, who is a native English speaker.

Machine Models

From our previous work [60], we had trained models from the Ubuntu channel domain.

Even though these four channels are out-of-domain for those models, we include the ma-

chine’s performance in the results, as it is an important baseline and also provides the

system suggestions for the IS interfaces.

5.6.4 Pilot Study

We recruited four annotators (all doctoral students doing research in NLP) for a pilot study.

Each annotator was randomly assigned one of the four interface conditions and had to an-

notate both �les, for a total of 200 lines of annotation. �e pilot study was informative for

the construction of our actual study:

• Task length. We aimed for a task duration time of about 30 minutes based on pre-

vious experience, but noticed that the annotators took a lot longer than 30 minutes

(one person took almost 70 minutes on one �le).

• Practice with interface. We noticed that one of the annotators “played around” with

the interface before starting the task in earnest. In the post-task survey, one of the

participants suggested that we create a tutorial to make the interface explanations

more clear.

• Task confusion. Our annotators expressed confusion in how to get started with the

task, as the instructions were unclear. All of them said that the ubuntu-meeting �le

was the hardest one to annotate.
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Based on the results and comments from this pilot study, we implemented an inter-

active tutorial (screenshots from each tutorial is seen aforementioned series of interface

�gures), added a task instructions section to the interface, added con�dence score ques-

tions to the post-task survey, and generally improved instructions.

5.6.5 Study Setup

Each of the 16 participants were randomly split into one of the four task conditions, and

received four �les from the three channels that they had to annotate. Each �le had 34

lines that needed to be disentangled. To mitigate any learning e�ects (which could make

performance on later �les appear be�er) and to reduce task fatigue (which could make

performance on later �les appear worse), the order of the �les shown was randomly as-

signed to be one of four possibilities. �is means that each annotation �le was 1st, 2nd,

3rd, and 4th only once for each of the four interface conditions: Convo-No-IS, Convo-IS,

Link-No-IS, and Link-IS.

Before accessing the task, however, each participant had to �rst pass a tutorial. �e

tutorial’s aim was to help the annotators be�er understand both the task, as well as the

interface. If the participant got an annotation wrong, an alert would show up and show

the correct answer, which the participant had to click before continuing. For the partic-

ipants in the Convo-IS and Link-IS conditions, the tutorial also had system suggestions

highlighted. Since some of these suggestions were incorrect, we hoped that the partici-

pants could learn that not all system suggestions, even if con�dent, were automatically

right.

A�er six lines of practice, participants could move to the main task. Once all four �les

had been annotated, participants �lled out a post-task survey that asked participants to

self-rate their con�dence level of how well they thought they did the task, from a scale

of 1 (least con�dent) to 5 (most con�dent). �e survey also had open-ended questions,

which we address in the Discussion section.

5.6.6 Task Measures

For both tasks, we measure timing and accuracy.

For the Convo task, we consider two broad measures: (1) Exact Match (Precision,

Recall, and F1): these measures are calculated from the number of perfectly matching con-

versations, excluding conversations with only one message. As described in [60], this is a

challenging metric, but as with there, we include it here because it directly measures the
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partcipants’ ability to perfectly extract conversations.; and (2) One-to-One Overlap (1-

1), which measures the percentage overlap when conversations from two annotations are

optimally paired up using the max-�ow algorithm (the same measure was used in [60]).

Higher values indicate greater overlap between participant annotations and gold standard

annotations.

For the Link task, we consider precision, recall, and F1 score when comparing with

the gold standard. Since links provide a graph structure, we infer sets of messages (con-

versations) and run the aforementioned Convo task metrics for this as well. (In the results

tables, conversation measures that were inferred from the Link graph structures will say

”link” in the ”Task” column heading.)

5.7 Results: �antitative Analysis

We break the results into two broad categories: �antitative, where we observe the

impact the di�erent task and interface conditions had on the output measures, and �al-

itative, where we examine the annotations themselves to be�er understand the task and

characterize annotator output.

5.7.1 Outlier Participants

�ere were two outlier participant data points—both in the IS conditions—so we show

analysis with and without adjusting for these outliers.

�e �rst outlier, Participant 5, not only had the lowest scores and abnormally fast time

to completion for all �les, but also they contacted the authors a�er completing the tutorial

saying that they “didn’t quite understand the tutorial” and that they weren’t sure how to

progress in the task. �e adjustment for this outlier was to recruit another participant,

Participant 17, who was given the same task.

�e second outlier, Participant 16, performed the worst on their �rst �le and contacted

the authors saying that they were frustrated with the UI on the �rst �le and had “li�le to

no idea what’s going on” and that the �rst �le “was hard”; however, their performance

on their next three �les was seemingly una�ected by their frustration with the UI. �e

adjustment for this outlier performance was to give this participant a redo with another

�le from the same domain as their �rst �le.
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Participant Task Condition Matched P Matched R Matched F1 1-1

Time on task

(seconds)

Machine - - 53 55 53 78 -

1 convo no IS 54 60 55 78 364

2 convo no IS 70 67 68 93 338

3 convo no IS 38 46 41 73 472

4 convo no IS 38 42 39 74 287

(Original) 50 53 51 80 365

5* convo IS 15 10 12 60 157

17 convo IS 81 78 80 95 827
6 convo IS 35 34 35 77 262

7 convo IS 65 65 65 87 267

8 convo IS 56 52 54 91 280

(Original) 43 40 41 79 242

(Modi�ed) 59 57 58 87 409

9 link no IS 37 35 36 86 482

10 link no IS 54 54 54 85 340

11 link no IS 44 47 45 73 272

12 link no IS 38 42 39 77 324

(Original) 43 44 43 80 354

13 link IS 94 94 94 99 514

14 link IS 58 59 58 89 354

15 link IS 50 48 49 84 468

16* link IS 63 58 60 79 1171

16 link IS 81 73 77 96 1159
(Original) 66 65 65 88 627

(Modi�ed) 71 69 69 92 624

Table 5.2: Summary Convometric stats from the study. (�e values from the “Link” task

condition are inferred from their graph structure.) Each participant value represents their

combined average for their four �les. �ere are two outlier participant data points—both

for the IS condition—shown here with an asterisk (*) on the participant ID. We show av-

erages with and without these outliers: Values inside the gray cells are averages for that

group of participants. Values inside the yellow cells are averages where we replace the

asterisk value with the values in the italics. We explore potential reasons for this in the

Discussion section.

For large-scale annotation e�orts, we expect these issues to be resolved in annotator

training. If domain experts are annotating their own data �les, we further expect such

kind of confusion to be mitigated, since domain experts would know both why they are

doing the disentanglement task, as well as information about their own channel: what the

discussions are about and how those discussions �ow.
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Participant Task Condition Precision Recall F1

Time on task

(seconds)

Machine - - 68 69 68 -

9 link no IS 75 75 75 482

10 link no IS 67 67 67 340

11 link no IS 56 56 56 272

12 link no IS 76 75 76 324

(Original) 69 68 68 354

13 link IS 85 84 85 514

14 link IS 78 78 78 354

15 link IS 74 74 74 468

16* link IS 63 61 62 1171

16 link IS 80 78 79 1159
(Original) 75 74 75 627

(Modi�ed) 79 79 79 624

Table 5.3: Summary Link metric stats from the study. (�e Precision, Recall, and F1

scores here are the Link measures.) Each participant value represents their combined

average for their four �les. �ere are two outlier participant data points—both for the

IS condition—shown here with an asterisk (*) on the participant ID. We show averages

with and without these outliers: Values inside the gray cells are averages for that group

of participants. Values inside the yellow cells are averages where we replace the asterisk

value with the values in the italics. We explore potential reasons for this in the Discussion

section.

5.7.2 Overall Performance

Table 5.2 shows summary results for the Convo measures when comparing across the

Convo task mode, and Table 5.3 shows summary results for the Link measures when com-

paring with the Link task mode. Overall, for both the Convo and Link tasks, we support

our hypothesis that the interface with interactional slingshots will lead to more accurate

performance, as we see precision, recall, F1, and One-to-One metrics improve, especially

for the “harder” channels. However, the time spent on task also increased, so there are no

time savings a�orded with the IS tools. So, we support our H1, but do not �nd enough

evidence to support H2 (We report signi�cance testing in Section 5.7.3).
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Convo Task

When compared with the machine’s baseline, for the Convo task, the percent increase

in the 1-1 metric for the Convo-No-IS is 2.56%, and the percent increase for the original

Convo-IS is 1.28%. A�er accounting for the outlier, the modi�ed Convo-IS has a 11.54%

increase for the 1-1.

Recall that participants who did the Link task have annotations from which conver-

sations can be inferred (by traversing the graph). For these, the increase in 1-1 is 2.56%

when using the Link-No-IS, 12.82% when using Link-IS unadjusted for the outlier �le,

and 17.95% using Link-IS when adjusted for the outlier.

Link Task

For the Link task, when looking at the F1 score, there is no increase when using Link-No-

IS when comparing with the machine’s performance. However, when using the original

Link-IS �les, we see a 10.29% increase, and when using the modi�ed Link-IS mode, we

see a 16.18% increase. However, the time increase for the Link-IS (orig.) is 77.12% and for

the Link-IS (mod.) is 76.27%.

Condition Matched F1 1-1 Link F1

Task Time

(seconds)

Machine 53 78 68 -

All No IS 47 80 68 360

All IS (mod.) 64 90 79 517

All Convo (mod.) 55 83 - 387

All Link (mod.) 56 86 74 489

Table 5.4: Averages of the accuracy and time stats for both the No IS (combining Convo-

No-IS and Link-No-IS) and IS (combining Convo-IS and Link-IS) conditions.
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Combined Tasks

Table 5.4 shows di�erences between the two No-IS and IS groups, which we get by com-

bining across the two task modes. When compared with the machine’s performance, we

see that all IS conditions, adjusting for the outliers, provides the greatest bene�t in accu-

racy performance: Matched F1 is improved by 20.75%, 1-1 by 15.38%, and Link F1 score

by 16.18%. When comparing across the two tasks for both conditions, we see that all the

Link annotations provide slightly higher Matched F1 and 1-1 scores than thsoe seen in all

the Convo annotations.

5.7.3 Signi�cance

Table 5.5 shows p-values for di�erent condition groups a�er performing one-tailed un-

paired t-tests, as our null hypothesis is that there is no increase in the Match (Convo) F1,

One-to-One, Link F1, and Task time measures given our IS interventions. Since we are

performing multiple tests, we apply a correction using the Holm-Bonferroni Method [44]

to control for the potentially-higher probability of introducing false positive errors. Be-

cause we are conducting multiple hypothesis testing of di�erent metrics on the same two

populations, this correction can help account for any family-wise errors. However, we

note that this is probably an overly aggressive correction because we know that the three

accuracy measures—Match F1, 1-1, and Link F1—are strongly correlated.

Even with the correction applied, as we can see, there is a statistically-signi�cant dif-

ference for the Link F1 score when using the Link-IS mode versus using the Link-No-IS

mode, once outliers are adjusted for. Similarly, there is a statistically-signi�cant di�erence

in Task Time when using Convo-No-IS and Convo-IS (original), along with Convo-IS

(original) versus Link-IS (original).

Table 5.6 shows p-values when combining across the interface conditions. We see a

statistically-signi�cant di�erence for the Match F1, 1-1, and Task Time measures when

comparing the All No IS group with the All IS (modi�ed) group.
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Convo No IS

Convo IS

(original)

Convo IS

(modi�ed)

Link No IS

Link IS

(original)

Link IS

(modi�ed)

Match F1 1-1 Link F1 Task Time

X X 0.280 0.478 - 0.431

X X 0.060 0.132 0.141 0.017

X X 0.026 0.020 0.007 0.019

X X 0.229 0.449 - 0.012

X X 0.280 0.096 - 0.291

X X 0.045 0.096 - 0.001

X X 0.019 0.160 - 0.060

Table 5.5: Unpaired One-tailed t-test p-values, corrected with the Holm-Bonferroni

method. Statistically signi�cant values are bolded. “Original” refers to values that con-

tained the two outliers, whereas “Modi�ed” refers to values that replaced those outliers,

as described in the Results section.

All No IS

All IS

(orig.)

All IS

(mod.)

Match F1 1-1 Task Time

X X 0.263 0.239 0.160

X X 0.033 0.008 0.020

Table 5.6: Unpaired One-tailed t-test p-values for combined conditions, with a correction

applied using the Holm-Bonferroni Method. “Original” refers to values that contained the

two outliers, whereas “Modi�ed” refers to values that replaced those outliers, as described

in the Results section.

5.7.4 Channel Breakdown for Accuracy

Now that we looked at how annotator performance was across all the domains for the

di�erent conditions, let’s look at the di�erent channels in more detail. Table 5.7 shows

a detailed breakdown of annotator performance for each �le when combining the two

interface conditions (No IS and IS). Bolded values show the condition that performed the

best for that particular measure.

In this table, we see that the machine’s performance beats aggregated human perfor-

mance on 4/16 (25%) �les for the “Convo“ task, and on 5/16 (31%) for the “Link” task.

(�ree of these �les (19%) are common to both task conditions.) For the remaining �les,

human performance beats that of the machine’s.

In Table 5.8, we can see that, when aggregating across �les for each channel, human

performance always beats machine performance for “Link” mode, and all-but-one case for

“Convo” mode.
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File Task Prec Rec F1 Matched P Matched R Matched F1 1-1

stripe.0.100 machine 88 88 88 100 100 100 100

convo, orig. - - - 50 50 50 71

convo, mod. - - - 93 88 90 93

link 81 81 81 76 76 76 96

stripe.1.100 machine 79 79 79 71 71 71 91

convo - - - 92 86 89 97

link 87 87 87 100 100 100 100

stripe.2.100 machine 77 77 77 71 83 77 91

convo - - - 75 84 79 93

link 76 76 76 67 75 70 88

stripe.0.200 machine 74 74 74 67 67 67 97

convo - - - 59 50 54 90

link 82 82 82 75 84 79 96

rust.0.100 machine 67 66 67 20 25 22 56

convo, orig. - - - 37 38 37 84

convo, mod. - - - 70 75 72 91

link 90 87 89 75 75 75 99

rust.1.100 machine 85 85 85 60 50 55 79

convo - - - 40 34 37 75

link 80 80 80 82 75 78 94

rust.2.100 machine 59 59 59 100 100 100 100

convo - - - 80 88 84 97

link 58 58 58 70 75 72 90

rust.0.200 machine 71 71 71 50 50 50 94

convo - - - 75 75 75 94

link 80 80 80 100 100 100 100

mediawiki.0.100 machine 50 60 50 33 25 29 62

convo, orig. - - - 38 26 30 56

convo, mod. - - - 69 63 66 81

link 72 72 72 61 57 59 81

mediawiki.1.100 machine 59 59 59 20 33 25 71

convo - - - 63 67 65 84

link 67 67 67 42 50 45 85

mediawiki.2.100 machine 67 67 67 25 20 22 56

convo - - - 50 50 50 72

link 68 68 68 50 40 45 85

mediawiki.0.200 machine 79 79 79 35 50 33 50

convo - - - 54 63 58 78

link, orig. 43 43 43 0 0 0 41

link, mod. 77 77 77 38 30 34 75

ubuntu-meeting.0.100 machine 67 67 67 100 100 100 100

convo, orig. - - - 13 25 17 65

convo, mod. - - - 38 50 42 81

link 78 78 78 50 50 50 94

ubuntu-meeting.1.100 machine 35 35 35 0 0 0 44

convo - - - 17 17 17 85

link 58 58 58 0 0 0 68

ubuntu-meeting.2.100 machine 82 82 82 100 100 100 100

convo - - - 0 0 0 57

link 59 59 59 0 0 0 50

ubuntu-meeting.0.200 machine 53 50 51 0 0 0 50

convo - - - 0 0 0 69

link 74 68 71 25 17 20 75

Table 5.7: Summary metric stats broken down by individual �les. �e machine’s perfor-

mance beats aggregated human performance on 5/16 �les (31%) for the “Link” task, and

on 4/16 (25%) �les in the “Convo” task.
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Channel Task Condition Prec Rec F1 Matched P Matched R Matched F1 1-1

Stripe link no IS 79 79 79 66 74 69 91

IS 83 83 83 93 93 93 99

convo no IS - - - 79 84 81 96

IS, orig. - - - 58 51 54 79

IS, mod. - - - 80 70 74 90

machine - 80 80 80 77 80 79 95

Rust link no IS 72 72 72 83 83 83 99

IS 81 80 81 80 79 79 93

convo no IS - - - 58 61 59 90

IS, orig. - - - 58 56 57 85

IS, mod. - - - 75 75 75 89

machine - 71 70 71 58 56 57 82

MediaWiki link no IS 60 60 60 23 20 21 68

IS, orig. 65 65 65 53 54 53 79

IS, mod. 82 82 82 72 69 70 96

convo no IS - - - 56 57 56 75

IS, orig. - - - 46 45 45 70

IS, mod. - - - 62 64 63 83

machine - 64 66 64 28 32 27 60

Ubuntu-Meeting link no IS 63 62 62 0 0 0 63

IS 71 70 70 38 33 35 81

convo no IS - - - 6 13 8 58

IS, orig. - - - 8 8 8 80

IS, mod. - - - 21 21 21 88

machine - 59 59 59 50 50 50 74

Table 5.8: Summary metric stats broken down by channel. When aggregating across all

�les for a channel, human performance always beats that of the machine’s for “Link”

mode, and all but one case for “Convo” mode.
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5.7.5 Channel Breakdown for Errors

Table 5.9 shows a breakdown of all correct and incorrect annotations for the No IS, IS,

and Machine annotations. �e table shows the eight combination; for instance, for Ta-

ble 5.9(c), the value of 12 indicates that, across all four �les, only the IS condition was

correct that many times (No IS incorrect and Machine incorrect). Table 5.9(e) shows the

cumulative stats: across all 16 �les (total of 544 messages), the IS condition was the only

one correct for 39 messages, or 7.17% of the time, and the only one incorrect for 10/544,

or 1.84% of the time. Similarly, the machine prediction annotations were the only correct

ones 16/544, or 2.94% of the time, and was the only incorrect one almost 21.32% of the

time (116/544).

An important result that arises from this error breakdown per channel is that voting

as a means to improve accuracy would not help. �e errors are correlated enough (e.g.,

when a machine makes a mistake, it is likely that the human also did the same) that voting

across the di�erent methods would likely not yield large bene�ts, and would be similar

to using the one best option.

5.7.6 Time Per Annotation

On top of total task time that we see in the prior tables, we also look at how annotators did

with respect to time per annotation for both the No IS and IS conditions for each channel.

Figure 5.7 shows results for the stripe channel; Figure 5.8 is for rust; Figure 5.9 is for

ubuntu-meeting; and �nally, Figure 5.10 is for the mediawiki channel. Looking

at these �gures, our hypothesis H3—where we talk about time savings the further along

the annotator is in a �le—can be rejected. It does not appear to be the case that the context

that the annotators are building is helping them to annotate the document faster as they

move along.
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Machine Correct

Machine Incorrect
IS Correct IS Incorrect

No IS Correct
66

31

3

8

No IS Incorrect
10

6

4

8

(a) stripe

Machine Correct

Machine Incorrect
IS Correct IS Incorrect

No IS Correct
48

38

3

9

No IS Incorrect
15

9

6

9

(b) rust

Machine Correct

Machine Incorrect
IS Correct IS Incorrect

No IS Correct
44

29

3

9

No IS Incorrect
11

12

5

25

(c) ubuntu-meeting

Machine Correct

Machine Incorrect
IS Correct IS Incorrect

No IS Correct
38

18

1

24

No IS Incorrect
20

12

1

22

(d) mediawiki

Machine Correct

Machine Incorrect
IS Correct IS Incorrect

No IS Correct
196

116

10

50

No IS Incorrect
56

39

16

64

(e) Totals

Table 5.9: Breaking down correct and incorrect annotations for the No IS, IS, and Machine

annotations. �e table shows eight combinations of where No IS, IS, and Machine could

have been correct and incorrect. For instance, for (c), a value of 12 indicates that the No

IS and Machine were both incorrect, but the IS condition was correct for 12 of the 34 an-

notations. (e) shows a total across all of the �le annotations (544 lines). Instances where

only the IS condition was correct amount to 39/544, or 7.17% of the total annotations, and

10/544 (1.84%) where only IS was incorrect.
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Figure 5.7: Time per annotation for all channels: stripe
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Figure 5.8: Time per annotation for all channels: rust
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Figure 5.9: Time per annotation for all channels: ubuntu-meeting
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Figure 5.10: Time per annotation for all channels: mediawiki
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5.8 Results: �alitative Analysis

5.8.1 How much jargon is present in the �les?

Part of what makes conversational disentanglement a di�cult task is the amount of tech-

nical concepts being discussed by the users. We annotated each line in all 16 �les to see

whether jargon
1

was present in the �le, and what impact, if any, this had on the output

annotation accuracy measures. Table 5.10 shows the percent jargon that is present in each

annotation �le. We can see that the Stripe and Rust channels have the most jargon,

whereas Ubuntu-Meeting and MediaWiki do not have as much. What is di�erent

about the la�er two channels is that it contains more Bot and bug report activity than the

�rst two �les. For instance, although “ubuntu-meeting.1.100” does not contain technical

jargon, it does contain a way that people vote during the meetings (using a slash with

the le�er ’o’). “ubuntu-meeting.0.200” is mostly �lled with bug report information (URLs,

links to the reports themselves).

When comparing the per-�le accuracies that we see in Table 5.1, we notice that the

machine’s accuracy is higher for those channels that contain more jargon, whereas an-

notator performance is lower. �is �ips around for the two channels that contain less

amount of jargon.

5.8.2 Annotator Feedback

Task Di�culty

Conversation disentanglement is a di�cult task, as it requires domain knowledge and be-

ing able to juggle the context of multiple simultaneous conversations, especially if the

users use undirected messages. We found that, in all cases of annotation tasks—for the

gold standard annotation, pilot study, and the 16-person study—at least one annotator was

completely confused with this task (one out of four, one out of four, and two out of 16,

respectively, for the three scenarios). In P16’s case, they were confused on the �rst �le,

but �gured out the task on the second �le, whereas for P5, they were confused for all four

1
We de�ne “jargon” as content that is endemic to a particular channel. �is covers technical content,

but also channel-speci�c items such as how people vote in the ubuntu-meeting channel.
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File % Jargon

stripe.0.100 65

stripe.1.100 35

stripe.2.100 59

stripe.0.200 67

57

rust.0.100 59

rust.1.100 47

rust.2.100 67

rust.0.200 56

57

ubuntu-meeting.0.100 65

ubuntu-meeting.1.100 15

ubuntu-meeting.2.100 47

ubuntu-meeting.0.200 53

45

mediawiki.0.100 56

mediawiki.1.100 76

mediawiki.2.100 21

mediawiki.0.200 35

47

Table 5.10: Percentage of lines in each annotation �le that contains technical jargon. (I.e.,

# of jargon sentences / # of total sentences in �le)

�les. P5 messaged the author prior to starting the task saying “I was a li�le bit confused

what the task is […] I don’t quite get the tutorial.” P16 also messaged the author saying,

“I think I need to do [the �rst �le] again. I have li�le to no idea what’s going on […] Ok,

I did the rust one, I think that was maybe be�er.”

A�er reading through all of the annotators’ feedback, we uncover the following

themes that can shed light on why this task is particularly di�cult:

• Understanding task rules: 3/16 (P8, P15, P16) annotators mentioned that under-

standing the task’s rules was di�cult, and that they only �gured out how to proceed

by continuing to do the annotations. P8 notes the edge-cases that can occur with

this task, and commented, “ It was initially hard to understand the task and what

the rules of the task were. �estions like ‘if this isn’t the start of the conversation,

but it’s the �rst red-do�ed snippet of the �le, is that a new conversation?’ caused

some confusion.”
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• Parsing technical jargon: 6/16 (P1, P3, P4, P6, P7, P10) annotators mentioned that

they were not familiar with the technical jargon that was being used. A few anno-

tators resorted to using Google to �gure out what some of the terms meant. P3 said

that “I was unfamiliar with many terms, so did some [G]oogling to make sense of

the conversations.”

• Picking up the conversational context: 8/16 (P1, P4, P6, P7, P10, P13, P15, P17) an-

notators mentioned how di�cult it was to get started on new conversations and to

pick up the conversational context when new topics emerged.

• One-to-many responses: 3/16 (P2, P11, P14) annotators noted that the disentan-

gling task became di�cult when trying to �gure out what messages a particular

user is responding to, especially if that user was speaking with multiple others. For

instance, P14 wrote, “ Identifying multiple threads of conversation involving one

person at the same time was di�cult,” a sentiment also echoed by P2, who wrote,

“Also hard was when conversations overlapped because sometimes they are carry-

ing on a conversation that happened messages ago and with the same username

answering multiple threads, it could be di�cult to keep track of the conversations

they belong to.”

• Bots created additional confusion: 4/16 (P9, P13, P14, P17) annotators said that they

were unsure where Bot messages �t into the annotation scheme. P5 commented,

“When there is (my guesses) a bot in the chat, it is di�cult to judge which conver-

sation it belongs to”, and P17 wrote, “For example, the conversation that had the

bots posting comments mind-�ooded me for a while until I was able to �gure out

the role of the bots and thereby parse out what they were responding to.”

Interface Di�culty

Although the IS interfaces help annotators disentangle conversations with higher accu-

racy measures, we are interested in seeing the overall usability of these interfaces. Adding

more interactional elements to the interface—especially those as involved as the interac-

tional slingshots—can make the interface more complicated to use and can increase the

annotator’s cognitive load. Making sure that the interface captures enough context and

is usable, while not taxing the annotator’s cognitive load, is an important design consid-

eration for annotation interfaces, and hybrid intelligence systems in general.

While analyzing annotator feedback, we �nd these commonly-held views regarding

the interface, which we split by the No IS and IS conditions:
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No IS interfaces comments

• “[I like the] visual representation of separation between the conversations. I also

liked that you could refer back to the instructions at any given time.” [P1]

• “[C]licking on the conversation card on the right side to add a highlighted sentence

to the conversation was awesome.” [P2]

• “I like having the instructions ready on hand.” [P9]

• “I wished I could ‘go back’ without undoing, like I wanted to remember which mes-

sages I had previously linked to which. […] I found myself trying to keep the whole

thread in my mind so sometimes. Also, sometimes a�er I got further in the con-

versation it started making more sense to me so I wanted to go back and check my

previous answers in some way.” [P10]

IS interfaces comments:

• “I liked the scroll to blue/green/current line options – made the interface more us-

able. I also liked the names ge�ing added to the le� blocks as the conversations were

grouped by me. It helped me keep track of who was in which of my conversation

groupings.” [P6]

• “�e yellow and orange suggestions [system predictions, where yellow is most con-

�dent and orange is least con�dent] were somewhat helpful but I didn’t feel I could

always trust them, but it helped me feel like I had some support.” [P13]

• “Yellow highlight also was helpful in general, but when it was wrong, I had to think

harder about what is the right answer. Also, among cases that I thought right, but

when color is almost-orange, it also required a bit of more thinking, inspecting

whether it is right or wrong.” [P14]

• “I also didn’t really use some of the bu�ons like for selecting ”green” ”blue” and the

one with the red box. Not sure why they were there.” [P15]

• “Being able to �nd previous messages from a particular user was helpful because

people o�en participated in one conversation at a time. I could just look back and

see how they responded to previous messages to get an idea if the current message

is a part of that conversation or a di�erent one.” [P17]
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Emerging �emes

What was interesting about the No IS interface comments was that a couple of annotators

mentioned features that they wish the interface had, which were actually part of the IS

conditions. For instance, P10’s comment refers to the visual context, which is what the IS

conversation snippets provide. P12 echoes this sentiment, writing, “A visual mapping of

already marked threads would’ve been nice to keep track of things.”

Another interesting theme that emerged from only the No IS interface comments is

that a few annotators mentioned the ability to undo more than just one line at a time

would have been helpful. P9 expresses this by saying that they “forgot about undo-ing

because it’s a di�erent interface. It’s like in a word doc, you know how an undo works

and you can do it multiple times. �is one, I kind of forgot or lost that intuition.” Similarly,

P2 states, “Sometimes, I changed my mind about whether an earlier sentence should go

in a di�erent conversation, and so had to backtrack and undo work to �x that spot – it

didn’t interfere much with this task, but I could see that being annoying on larger scale

projects.” Is is interesting to note that the IS interface comments did not mention undo-

ing their annotations, but instead referred to the thought process they had to go through

before doing an annotation.

An emerging theme from the IS interfaces is that the system highlights provide sup-

port, but annotators had to think more before trusting them. P13 and P14 both express

similar sentiments, as seen above. Two annotators also mentioned that the color scheme

used in the system highlights made it hard to distinguish between di�erent shades that

were close together in color.
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5.9 Repeating the Task With Non-Expert Annotators

�us far, we have explored what it means to do this task with annotators with domain

knowledge, with some annotators even having expertise. But, what would change if we

relaxed this constraint and conducted the experiment with non-expert annotators? Would

the interactional slingshot guidance help non-experts overcome their knowledge gaps?

We repeat the previous study, but this time with non-expert annotators recruited from

the Amazon Mechanical Turk platform [5]. To our knowledge, this task has not been

performed with non-expert annotators.

5.9.1 MTurk Study Setup

For the study, we doubled the length of the interactive tutorial to be 12 lines of annota-

tion. For each �le task and interface condition, we recruited 2 unique workers from AMT

who had at least a 98% HIT approval rating, for a total of 128 unique workers (16 �les x 4

conditions x 2 workers per condition = 128 workers). We randomly split the workers into

four groups, again mirroring the four di�erent interface conditions, but this time, each

worker only does the interactive tutorial and annotates their assigned task �le. A�er they

complete the annotation, workers �ll out a post-task survey a�er which they can submit

the HIT. For the post-task survey, we asked workers to evaluate how well they think they

did on the task, as well as asked for general comments on the task and interface. We paid

an e�ective rate of $15 per hour for this task (each HIT was worth $3.75).
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5.9.2 MTurk Study Results

Figure 5.11 shows the results from this study. When averaging across all �les in each

domain, we see that annotators get higher conversation precision, recall, F1, and one-to-

one scores for the Convo task using the Link-IS condition for the rust domain. For

the mediawiki domain, annotators perform be�er than the machine for 1-1 with the

Link-IS condition. However, the machine’s performance bests that of the non-experts for

all the Link mode tasks.

We note that there exists a lot of variability in this data given that there were only

two crowd workers per �le, but still believe that these results show promise. Across all

the conditions, there are MTurk workers who could hold either the domain knowledge or

expertise required to do this task. When removing those workers who spend fewer than

100 seconds on the task (as we consider them outliers), we see further improvements, as

non-expert performance matches or beats that of the machine in three domains (refer to

Figure 5.11b). When breaking the results down into individual worker performance, we

notice a few workers matching or performing be�er than experts.

What this indicates to us is that this task, although di�cult, could still bene�t from

pairing machines, non-experts, and experts together. For instance, there are clearly work-

ers that do not perform well or are outliers, but there are others who might do well if we

�ltered for them. �is can involve giving workers a “pre-task” with a set of annotations

to be�er gauge what their performance on the real task might be.

Predicting workers’ performance is outside the scope of this thesis, but holds promise

as a future work direction, though there has already been research work that explores this

topic [42, 49, 100]. In fact, the approach discussed in [93] could show bene�ts in selecting

workers that are skilled at conversation disentangling tasks.
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(a) Averages including outliers

(b) Averages a�er removing outliers

Figure 5.11: Average across all �les for the non-expert MTurk worker study. Although

machine performance beats that of the non-experts in all four of the “Link” mode condi-

tions, crowd worker performance matches or beats that of the machine’s in three domains:

rust, mediawiki, and ubuntu-meeting. �is shows that non-expert contribu-

tors can be bene�cial for this conversation disentanglement task.
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5.9.3 Crowdworker Feedback

Since we did not collect information from the MTurk workers that would correlate their

post-task survey with their Worker ID, we unfortunately cannot directly map comments

to the participant IDs. However, we present worker comments to be�er understand how

they perceived both the task and the interface.

Task Perception

As expected, worker responses for how they felt about the task ranged from ”VERY EASY”

to “nothing was easy, all of it was hard.” What is surprising is how con�dent most work-

ers seemed to be in their annotations. In the post-task survey, about 44% of workers said

that they were con�dent they got a majority of the annotations correct, with 23% say-

ing they were con�dent they got most of the answers correct. A further 26% were only

half-con�dent in their responses. Only 2% of workers said that they were completely un-

con�dent in their responses. Clearly, worker perception of their e�ort is that this task is

doable, even though it requires domain expertise.

Worker comments also track with those le� by the expert annotators: at the beginning,

knowing what to do with the task was di�cult, but a�er a couple of lines of annotations,

the task became clearer. Finally, workers also had the same questions of ambiguity with

respect to the server / bot logs, and also wished for clearer instructions.

Interface Perception

Most of the workers mentioned that the interface was easy to use and that they liked us-

ing it. One worker, for the No IS interface, wrote, “I found the task to be a bit hard. �ere

wasn’t enough visuals in the interface to show me which sentences I selected, how many

times I selected them, and which sentences I linked them to.” Said another worker, “�e

suggestions were a helpful starting point as well as how easy you made it to identify the

individual speakers.”

What is interesting, however, is that none of the comments mentioned anything about

second-guessing or doubting the suggestions made by the machine, something that the

expert annotators had mentioned. �at is, crowd workers appreciated the highlighting

features and the system predictions (“prediction coloring was helpful”), but did not say

anything about potentially distrusting those suggestions.
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5.10 Discussion

In this section, we expand upon some observations made during the Results analysis sec-

tions.

5.10.1 Hypotheses

We revisit the three hypotheses from Section 5.6.1:

• H1: Using IS tools will improve the accuracy of both the Convo and Link task modes.

Based on the improvement in performance using IS tools, as seen in Table 5.4, we

can support this hypothesis.

• H2: Using IS tools will lead to decrease in annotation time. We do not see any time

improvements for IS tool usage, so we do not con�rm this hypothesis.

• H3: Using IS tools will lead to an annotator to go faster the further along a �le they

are. As we see in the �gures mentioned in Section 5.7.6, there is no indication that

annotators get faster as they move along. As a result, we also do not con�rm this

hypothesis.

5.10.2 Jargon vs. Accuracy

As mentioned before, the machine seems to do be�er in the Stripe and Rust �les

than in the Ubuntu-Meeting and MediaWiki �les. One potential explanation for

why we believe this occurs is because people might not be familiar with jargon, and so

might take more time and/or be more confused when reading these messages. Since our

machine models have been trained on messages from the #Ubuntu channel, these models

might be be�er at disentangling in those channels whose messages resemble those from

the #Ubuntu channel. However, if people are less distracted or confused by the jargon,

they can be�er disentangle the conversations based on other relevant context, such as

that found in the natural language around the jargon itself. If we can be�er pro�le and

preanalyze the entangled text, perhaps we can create human-machine pairings to create

even be�er accuracy outcomes.
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5.10.3 Annotator Feedback

In Section 5.8.2, we saw a few themes emerge from the post-task surveys. Here, we address

potential ways to ameliorate annotator concerns.

Task Di�culty

• Understanding task rules: One way to lower the barrier to entry for this task can

be to make the interactive tutorial longer, or to have annotators do a tutorial on

more than just one sample �le, so that the ‘rules” become clearer. Because there

are a lot of edge-cases that can come into play, another option is to make the rules

easier (e.g., if there are certain edge cases that do not impact the disentanglement

outputs, then having more �exibility with that rule can reduce the number of rules

annotators need to remember through this process.)

• Parsing technical jargon: A few annotators mentioned not having familiarity with

the jargon seen in the text. One way to help familiarize annotators can be to provide

examples or a dictionary where annotators can look up what these unfamiliar terms

might mean. In a large-scale annotation e�ort, having the ability for annotators to

ask follow-up questions with the channel owner can also be helpful.

• Picking up the conversational context: �is particular theme is hard to immediately

overcome, as gaining context involves spending some time with the conversations

to start �guring out topics, number of threads, etc. One way to make this e�ort

easier is to ask annotators to focus on just one conversation; that way, they can

scan only for the particular conversation they’ve been assigned and will not need

to keep track of other threads. Another approach, as suggested by P6, is to provide

short summaries of the �les before annotators start the task, to be�er help their

mental-model formations. As P6 wrote, “I wish I could’ve had a sense of a general

topic of the conversation (e.g., this is about meetings or Ubuntu or whatever) just to

have a be�er sense of the terminology to look for as I was about to start the task.”

• One-to-many responses: Similar to the context theme, it is di�cult to easily disen-

tangle messages from users that speak to many other users. A way to mitigate this

burden can be to be�er highlight related messages not just based on the users, but

also the content within those messages.
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• Bots created additional confusion: Annotators were confused as to how to treat

Bot messages. Although we had examples in the instructions for what to do with

“ubo�u,” an Ubuntu bot, it is clear that annotators could have bene��ed with more

examples.

Interface Di�culty

Annotators using the IS interface had positive views towards the interactional slingshots

present in them, but the usability of the interface could still be improved. In particular,

we restricted the ability to undo an annotation to be for the most-recent-annotation only,

rather than have the ability to undo any prior annotation. �is was a design decision

to remove freedom from the annotator’s side (to avoid ill-e�ects that arose when anno-

tators had more freedom, as seen in Chapter 3. However, since these annotators have

domain knowledge, perhaps relaxing this constraint can lead to be�er outcomes. More-

over, improving instructions and providing video examples can also help annotators be�er

navigate the interface.

Cognitive Load

Even given di�culties faced, we �nd that our interface helps annotators to be�er disen-

tangle �les in channels that are harder in nature (e.g., MediaWiki). In the harder tasks,

there are more undirected messages, fewer users, and more errors made by the machine

suggestions; nevertheless, we �nd higher accuracies. One potential explanation for this

is that, although people took more time to do the annotations, perhaps this slowdown

helped annotators think more critically about the task itself.

�is leads us to posit that the expert annotators were dealing with a case of managing

their cognitive load [15]: intrinsic cognitive load of the task itself being di�cult, and ex-

trinsic cognitive load from how the interface was guiding their interactions. Not only is

the task itself di�cult, but the annotators had to use the interactional slingshot support

to evaluate whether the guidance was accurate or not, and then make an annotation. P16

expresses a sentiment shared by a few other annotators, namely the issue of trusting the

machine’s suggestions. �ey write, “I think the highlighting was done well, that helped a

lot. �e highlights actually I found to be wrong most of the time. I honestly relied on the

time stamps, those disentagled [sic] it for me more than anything else.”
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Managing the two intrinsic and extrinsic sources of cognitive load can also help ex-

plain why the experts found less success in the jargon-heavy �les, since now the annota-

tors have to expend more e�ort to understand the di�erent threads and content taking

place in the �le. �is makes them more prone to errors, something that can also be

explained by thinking about this slowdown in the Expert Reversal e�ect [50]. Experts

have the externally-provided guidance from the interactional slingshots, but also pull into

working memory their domain knowledge. By relying on their domain knowledge store,

the expert annotators were slowed down more when they had to double check the sys-

tem’s predictions. As a result, the e�ort to combine these two knowledge structures causes

cognitive overload and can also cause slowdowns.

On the other hand, there was no indication from the non-expert annotators that they

were being slowed down by the external cognitive load, apart from the start where most

workers were unsure what to do. As one of the key points of Chapter 2 in How People
Learn states, “Experts notice features and meaningful pa�erns of information that are not

noticed by novices” [14]. Because non-expert annotators do not know the subject ma�er

as well, perhaps they are less a�ected by the system predictions being erroneous, and so

their cognitive load was less impacted as they do this novel task.

A design point to take away from this is that, if experts are working on the task, inter-

actional slingshots that are providing support in the form of guidance could thro�le back

their support to be less-guidance driven, and more along the nudging type of support.

5.10.4 Time Spent On Task vs. Accuracy

To examine whether annotators performed be�er on the task if they spent longer on the

document, we plo�ed time on task versus 1-1. Figure 5.12 shows the sca�erplots for

“Convo” mode, and Figure 5.13 shows the sca�erplots for “Link” mode.

For the “Convo” task, it is interesting to see a moderate correlation inverse cor-

relation between time spent in the Convo-No-IS condition to the 1-1 score for the

ubuntu-meeting and mediawiki domains. However, in the Convo-IS condition,

we see a relatively weaker correlation between time spent in this task condition versus

the Convo-No-IS condition. One reason for this positive correlation for the two harder

domains is that, though the annotators take more time in the Convo-IS condition, they

are doing the task more carefully.
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For the “Link” task, in the Link-No-IS condition, there is e�ectively no correlation

between time spent on task and 1-1 score. However, for the Link-IS condition, there is a

slight positive correlation for the rust domain, but there is not enough evidence to state

that spending longer on the �le leads to higher annotation scores.

Figure 5.12: Time vs. 1-1
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Figure 5.13: Time vs. 1-1, cont’d.
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5.10.5 Are �ere Any Learning E�ects?

Even though we randomize the order of �les seen by the annotators such that, for each

condition, a �le appears in that position only once, we are still interested to see if there

are any learning e�ects taking place. Figure 5.14 shows the e�ect of �le order on accuracy

(1-1) and time (Task time). For 1-1, we see that, for “Convo” mode, annotators seem to

have higher accuracies the more time they spend doing annotations. However, for “Link”

mode, that correlation is weak. For Task time, there is no correlation between subsequent

annotations and how long they spend doing the task.

(a) 1-1

(b) Task Time

Figure 5.14: File order versus accuracy and time measures. For 1-1, we see that, for

“Convo” mode, annotators seem to have higher accuracies the more time they spend doing

annotations. However, for “Link” mode, that correlation is weak. For Task time, there is

no correlation between subsequent annotations and how long they spend doing the task.
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5.10.6 Link Mode vs. Convo Mode For Disentangling Chats

Elsner and Charniak, in the Future Work section in [30], write the following:

Although our annotators are reasonably reliable, it seems clear that they

think of conversations as a hierarchy, with digressions and schisms. We

are interested to see an annotation protocol which more closely follows hu-

man intuition. One suggestion (David Traum, personal communication) is to

drop the idea of partitioning entirely and have annotators mark the data as a

graph, linking each u�erance to its parents and children with links of various

strengths.

Although our “Link” mode does not specify a strength to the links, we can still do a

comparison between the “Convo” and “Link” modes. Based on our results, we can con�rm

their intuition that using the “Link” task leads to higher quality annotations.

5.11 Conclusion

By using interactional slingshots to guide user interactions for a task that requires domain

knowledge and is di�cult across many dimensions, we show that we get more accurate

annotation output than using an interface without guidance. Upon further breakdown of

the annotator performance, we note that there are cases where the machine outperforms

the human annotations, and discuss implications of this. For instance, annotators outper-

form the machine in domains where there is less jargon, as well as domains where the

conversation characteristics more complex (e.g., fewer directed messages, fewer users,

more bots). Cognitive load plays a role in the annotator experience, and we �nd that

expert annotators do not fully trust the suggestions provided by an automated system.

Even with interactional slingshots, annotators �nd the task di�cult, with ambiguity

that can be overcome with future studies, along with some di�culty that is not o�en easy

to overcome. For instance, based on annotator feedback, we �nd that the startup cost to

developing context before starting the conversation disentangling is almost-always high.

Future work directions can look into how to ameliorate this and provide context-loading

speedups. Moreover, because we �nd a signal that non-expert annotators are able to do

this task successfully, future work can explore pairing up non-expert, expert, and machine

annotators to leverage each group’s strengths for even higher quality annotations.

97



Chapter 6

Conclusion and Future Directions

�is dissertation shows that adding support structure to user interactions—in the form of

interactional slingshots—can make annotators more e�cient in data annotation se�ings.

Speci�cally, we have proposed and explored the following thesis statement:

By providing support structure that nudges, assists, and guides user interac-
tions, it is possible to create hybrid intelligence systems that enable more e�cient
(faster and/or more accurate) data annotation.

�e interactional slingshot work�ows that we introduce can serve as the basis for

thinking about how to provide support to user interactions in hybrid intelligence systems.

In this chapter, we brie�y restate our evaluation of that thesis statement, and discuss some

implications of this work, for data annotation and beyond.

6.1 Research�estions: A Summary of Findings

As shown in the thesis, we believe that adding support in the form of nudging, assistance,

and guidance form the beginnings of interactional slingshots that help users annotate data

more e�ciently and accurately. We believe these forms of support to be three instanti-

ations of interactional slingshots that can help user interactions in hybrid intelligence

systems.

6.1.1 Support as Nudges for Collective Conversational Memory

[RQ1]: For a task that relies on extracting latent mental models from each annotator, what
challenges arise when providing support as a form of nudging?
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Predicting what information is going to be useful in future interactions for conver-

sations is a challenging task to explicitly capture, even though humans do this curation

naturally and subconsciously. By providing nudging support that reminds crowd workers

of a �xed time horizon for their notes-creation, we introduce Mnemo, a tool and work-

�ow that allows non-expert crowd workers to collectively select, summarize, and annotate

conversational content.

We show that, by nudging non-expert annotators’ user interactions, we are able to

tease out their latent mental models for how they create notes from conversations. �ese

worker notes can be aggregated to be�er predict facts that will be relevant in the fu-

ture, leading to more accurate results. Across 10 dialogs, workers generated 500 notes for

collective memory, with individual precision and recall being 44% and 42%, respectively.

By aggregating across worker performance, we exceed 90% recall with just �ve workers.

�ough our methodology shows that aggregating over di�erent crowd workers’ notes can

boost recall, we �nd that precision su�ers.

We claim that nudging as a form of support cannot overcome the annotation freedom

given to these crowd workers, which can lead to output annotation variability. �at is,

nudges remind workers to keep in mind the �xed time horizon for the facts that they create

in their own words; however, because nudging support does not restrict the “own words”

of these workers, the notes that are created cover a multitude of time spans, leading a loss

in precision as compared with a gold-standard set of notes.

However, we characterize worker errors and show that they are o�en not true errors:

the loss in precision is not because of super�uous notes created by the workers, but is

because of di�erent categories of worker notes. To improve precision and recall, we add

a more-explicit nudge at the start of an interaction, leading to a 37% increase in precision

and 44% increase in recall. By associating content with u�erances within a dialog, we

enable automated approaches to recall facts with a non-expert curated knowledge base of

important notes, enabling our approach to scale to any length of conversation history.

6.1.2 Support as Assistance for Grounding Natural Language Ob-

ject References in 3D Scenes

[RQ2]: For a task that involves dealing with 3D spatial ambiguity, how can interactional
slingshots that provide support in the form of assistance work with annotators?
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Automated approaches’ ability to automatically ground and identify natural language

references to objects in 3D scenes fails when these approaches encounter never-before-

seen or diverse environments. �is creates a barrier to creating and deploying such sys-

tems, including autonomous robots, in the wild. To overcome this problem, we introduce

EURECA, the �rst mixed-initiative hybrid intelligence system that leverages real-time

crowdsourcing to bridge the gap between understanding visual scenes and natural lan-

guage references to objects in them.

With support in the form of assistance, we show that EURECA enables non-expert

crowd workers to annotate 3D points clouds more accurately and with less time when

compared with a baseline interface. Because interactional slingshots like automated �l-

tering and �lling of additional points boost each interaction the user has with the data,

we show that this leads to a substantial reduction of annotation time, from 85 seconds

without interactional slingshots to 58 seconds with. EURECA also facilitates collabora-

tion between sets of online crowd workers, and with just three workers’ e�orts being

assisted and coordinated, EURECA achieves high precision (84%) and recall (92%) with a

latency of 26.5 seconds per object.

To ascertain whether our system helps bridge the aforementioned lack of real-world

deployability, we test EURECA with several case studies approximating real-world con-

ditions. �ese tasks include: successfully ge�ing crowd workers to segment a deformable

object (scarf) among a scene full of multiple deformable objects (gloves, backpack, toy);

including RGB color information in the scene; and, enabling a Fetch robot to pick up

a previously-unknown spray bo�le based on crowd worker annotations. We show that

assistive slingshots make it possible to deploy robots that reliably operate in real-world

se�ings, all the while collecting training data that can help to gradually automate these

systems in the future.

6.1.3 Support as Guidance for Multi-Domain Conversation Disen-

tanglement

[RQ3]: For a task that is di�cult and requires expertise, how e�ective are interactional
slingshots that provide support by guiding interactions?

Millions of lines of human-human dialog exist in the form of Internet Relay Chat

(IRC) logs, yet automated methods are incapable of easily disentangling these overlap-

ping messages. Expert users can disentangle these IRC logs and build channel-speci�c

disentangling models, but each domain requires e�ort that does not scale with size of

the logs. We introduce MDCD, an interface that provides guided support to expert and
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non-expert users to disentangle IRC logs across multiple domains. We show that people

with and without domain knowledge are able to use our interactional slingshot-equipped

tools to annotate conversational data more accurately than when compared with a base-

line. We study this conversational disentanglement task with two task modes across four

domains: “Link,” where annotators create a reply-to graph structure, and “Convo,” where

annotators separate messages into constituent conversations.

When the slingshots guide user interactions, annotators achieve higher performance

on all four of the channels when averaged across all �les. Compared with the machine’s

performance, the interfaces with guidance improves Exact Match F1 score by 21%, One-

to-One by 15%, and Link F1 score by 16%. (See Section 5.6.6 for technical detail regarding

these measures.) We �nd that the guided interfaces improve annotation performance on

those channels that are more di�cult for annotators. Furthermore, we conduct a study

with non-experts recruited from Amazon Mechanical Turk and �nd crowd workers are

capable of outperforming the machine with guidance on three of the four channels, de-

pending on the particular task.

We discuss how guidance as the form of support can be more e�ective for non-experts

and experts alike, although with important di�erences. For non-experts, because their

lack of domain knowledge renders them less likely to notice when the machine is incor-

rect, they can rely more easily on the machine suggestions and bene�t from guidance.

However, expert annotators do tend to notice mistakes made by the machine, and so take

longer to complete the task, potentially making it harder for them to trust the machine.

6.2 Re�ections and Future Directions for Annotation-

Related Interactional Slingshots

We comment on some interesting future directions that can tackle challenges that still

remain in providing support for user interactions in hybrid intelligence systems.

6.2.1 Support Modalities Across Multiple Dimensions

Prior work shows that leveraging human intelligence in human-in-the-loop, active learn-

ing, and human computation can lead to much improved algorithms. In this dissertation,

we focus on the human side and have argued that three natural ways of adding sup-

port structure to user interactions in hybrid intelligence system are support as nudging,

assisting, and guiding. �ere is an implicit question within this support arrangement,
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Task

Complexity

Interaction

Complexity

Annotator

Expertise

AI System’s

Context

Support

Modality

Low Low Non-expert None Nudging

Medium High Non-expert

Partial: can select clusters,

even if they are incomplete

Assisting

High Low-to-Medium

Non-expert

and Expert

Full: can predict links and

conversation snippets, but

trained in only one domain

Guiding

Table 6.1: Important dimensions that underlie annotation tasks and their respective sup-

port modalities. E.g., As seen in the Nudging case, when the system does not have much

context for how to do the task, the ensuing support mode becomes less intrusive.

namely: Why are these three support modalities useful for annotation tasks? We claim

that these three modes are natural divisions that occur when thinking about providing

support to users, not just for interactions but providing support in general. In the way

that a schoolteacher might nudge, assist, or guide a student as they learn new material,

so do these support mechanisms help users as they learn new interfaces.

What is important for deciding when to use these support mechanisms is to think

about important dimensions that underlie annotation tasks. For this dissertation work, as

seen in Table 6.1, there are four that we focus on: task complexity, interaction complexity,

annotator expertise, and context embedded in the AI system. Di�erent support might be

required depending on how complex the task is or how complex the actual interactions

with the system are, and similar considerations exist for the other two dimensions.

As an example, for the memory curation task, the AI system does not know anything

about solving the task and lacks context necessary for saving future-relevant notes, and

so it cannot provide assistance or guidance. �e context for solving this task lies wholly

with the human annotators, as does the expertise. However, AI methods can aggregate

over worker inputs, so Mnemo’s computational tools (slingshots) o�er support only in the

form of nudging annotators into curating future-relevant notes.

However, for the 3D point cloud segmentation task, interactions become more com-

plex (they take place in a 3D space a�er all), the natural language grounding expertise

lies with the human, but the AI system does contain context, which is how to partition

the point clouds based on existing computer vision information (the a priori clusters).

However, it cannot solve the entire task of associating objects with the natural language

references, so the interactional slingshots in this case not only need to help non-experts
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overcome complex data transformations in 3D space, but also leverage their expertise in

recognizing what objects exist in the scene. For this task, nudging itself might not work

because these interactions require more powerful support. Assistance becomes collabo-

ration as a means of helping non-experts to overcome the complexity.

What happens, then, when the task itself is complex, requires domain knowledge, and

the AI system has full context (but only trained on one domain)? Nudging is not power-

ful enough, and assisting runs the risk of having annotators constantly correct mistakes

made by the AI system (if we approach this annotation in the mixed-initiative way as

we did with EURECA). For the conversation disentanglement task, rather than nudging

or assisting, guidance seems the most natural �t, since the context embedded in the AI

system models can be leveraged to guide user interactions, but the system itself doesn’t

directly annotate the data since it might be wrong. �e expert users have the freedom to

choose for whether to rely on the system’s guidance or not. If they feel that the system is

making mistakes, they can still rely on the other interactional slingshots to receive boosts

for doing their annotations.

6.2.2 What Support Modality Works Best for What Type of Task?

Each support modality brings with it a varying level of intrusiveness with respect to the

user’s interaction with the system, and ultimately, their data annotations. Nudging is least

intrusive, assistance is most intrusive (since the system actually annotates the data a�er

the user is done), and guidance is in the middle. �e more intrusive the support modality,

the more cognitive load being placed on the annotator, since now they have to consider

whether the system was accurate or not.

Furthermore, there is yet another dimension that exists when human and machine

collaborations exist, which is the ma�er of trust. Do the humans trust the machine’s an-

notations? We have seen with EURECA that non-expert annotators learn to work with

the automated �lter and �ll methods that modify the users’ initial selections. But, in the

conversation disentanglement task, expert users o�en doubt the validity of the machine

suggestions, whereas non-experts do not do so as frequently.
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Because of this added cognitive load and the extra dimension of trusting the system, it

is possible that the annotator is slowed down, leading to ine�cient data annotation. We

claim that, if annotation speed is the most important consideration, then assistance helps.

�is is because the AI system knows how to partially solve the task, so the user’s inter-

actions can bene�t from the system’s assistance. However, a drawback to this pairing is

that accuracy could su�er: people end up trusting the machine’s annotation output, but

this is not helpful if the computer models are not accurate themselves.

On the other hand, if accuracy ma�ers (let’s say, for a complex task such as conversa-

tion disentanglement), we claim that guidance is an optimal pairing. It might be di�cult

for annotators to trust the AI suggestions fully, but given guidance from those suggestions

and other interactional slingshots, the annotators can be in a be�er position to make more

accurate annotations. �is is at the cost of speed, as we have seen, since the extra cog-

nitive load can slow the experts down. If both speed and accuracy ma�er for the task,

a combination between all three—non-experts, experts, and machine—might be required.

We speculate on this might entail in the next section.

6.2.3 Setting and Curating Contexts to Jump-Start Annotators

One theme that consistently arose from annotators across the hybrid intelligence systems

discussed in this dissertation is that of taking a long time to get started on a task. �ere re-

mains a challenge to devise be�er slingshots that can reduce this barrier of task entry for

the annotator. One approach can be to enable annotators to collaborate with each other;

that is, if more than one annotator works on the same task, a dialog could be established,

say via chat, that can help the annotators share knowledge and more quickly curate the

context needed to solve the problem.

6.2.4 Dynamically Changing Support Structures

�e interactional slingshots used in this thesis were all static in nature. �at is, they are

the same whether for experts or non-experts. Future work directions can explore what

it means for slingshots to be dynamically updated based on task and annotator charac-

teristics. For instance, given the well-studied phenomena of cognitive overload and the

Expertise Reversal e�ect [50] for experts (where guidance can end up negatively impacting

expert learners) interactional slingshots can dynamically change the type of support they

provide. Rather than support user interactions with just guidance, interactional slingshots

can “fade away” over time, or morph into the nudge support.
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6.3 Beyond Data Annotation in Hybrid Intelligence

Systems

We have seen how the four dimensions of task complexity, interaction complexity, ex-

pertise of the annotator, and the context held by the AI system lead to di�erent support

modalities, but this was still centered around data annotation tasks. If we move into appli-

cations that are beyond data annotation, how does the interplay between these dimensions

play out? What new dimensions come to the fore?

For one, even though data annotation has multiple dimensions, hybrid intelligence

systems still have to face with two that are endemic to human and machine collaborations:

how trust can be developed between the two parties, and how intrusive the AI system is.

�e more intelligence that is behind the AI system, the more important trust becomes. If

the AI system can solve part of the task (not just data annotation), then burden is being

placed on the user of the hybrid intelligence system to then trust the AI system. Trusting

the machine’s ability to solve the problem becomes harder if the user of the system is

an expert, and especially becomes tougher the more intrusive the type of support that is

being provided by the hybrid intelligence system. Otherwise, providing support to expert

users that are distrustful of the support can lead to suboptimal outcomes.

�e onus is on the hybrid intelligence system’s creators to ensure that whatever sup-

port modality they use can help develop trust between the user and the system, as well

as make sure that the support’s intrusiveness will not slow the users down. Identifying

ways of doing this are le� as studies for future work. If trust is established, more powerful

forms of support can be deployed, including assistance in which the human and machine

take turns solving the task at hand.

6.3.1 Hybrid Intelligence Systems Task Taxonomy

As a helpful comparison point, we comment on slingshot support as it pertains to four

generic categories of hybrid intelligence system tasks, based on the taxonomy devised

by Dellermann et. al [24]: recognition tasks, where the primary objective is to recognize

objects, images, or natural language; prediction tasks, where the aim is to predict future

events based on previous data such as stock prices; reasoning tasks, where the focus is to

understanding data, for instance, by building mental models; and, action tasks, where the

objective is to conduct a certain kind of action by an agent (human or machine). Based on

this taxonomy, this dissertation’s projects can be classi�ed as annotations for a prediction

task (Mnemo), recognition task (EURECA), and reasoning task (MDCD).
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For these four task categories, the three interactional slingshot support approaches

that we present—nudging, assisting, and guiding—can still be helpful, especially because

the dimensions that underlie data annotation tasks also exist in other tasks. However,

for each of these categories, other dimensions can become more important, changing the

importance of the support being provided.

In the remainder of this chapter, we provide some motivating examples of tasks that

exemplify the task taxonomy, and reason about how interactional slingshots could per-

form in such scenarios.

6.3.2 Motivating Examples

Example: Slingshot Support for Context-Curation Tasks

Curating context is a dimension whose importance that we have already seen for data an-

notation tasks. Speci�cally, if the AI system has context that it can bring to the annotation

problem, the type of slingshot support that can be a�orded to the user can become more

powerful. �e more context the AI system has, the more towards guidance and assistance

the hybrid intelligence system can move.

What about context-curation for non-data annotation tasks? We propose that provid-

ing interactional slingshot support to user interactions for such tasks can make it possible

to create more complex hybrid intelligence systems, and imagine what this would mean

for two tasks: exploratory data analysis and learning in classroom environments.

1) Exploratory Data Analysis So far, the interactional slingshots presented in this

dissertation provide work�ows that are either non-expert plus machine, or expert plus

machine. It would be interesting to evaluate a work�ow that can combine experts, non-

experts, and machines with the interactional slingshots that can nudge, assist, and guide

the various annotators in this work�ow. A position paper [40] that we submi�ed to the

Human-Centered Machine Learning workshop shows one such con�guration for the task

domain of data mining.

Mining massive datasets can bene�t from human input, but current approaches re-

quire making tradeo�s between overburdening end users or under-informing the system

– algorithms become more accurate given more training data, but requiring more exem-

plars takes signi�cant user e�ort. We suggest an approach that engages non-expert and

semi-expert crowds as a supporting “interface layer” between end users and data min-

ing systems. Leveraging human intelligence will allow systems to answer new types of
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Figure 6.1: A proposed hybrid intelligence system for exploratory data analysis. �e sys-

tem comprises all the elements inside the do�ed rectangle. �e End User uses natural

language queries to interact with the system. �e Crowd helps the End User with the

data analysis by supporting vague or subjective queries. �e UI provides the crowd with

analysis tools. By providing guided interactional slingshots, we can engage human groups

in the analysis process and rely on the system to coordinate those e�orts in di�erent ways.

queries (e.g., vague or subjective ones) and generate richer example sets for user-speci�ed

pa�erns. Using crowdsourcing to parallelize this task makes it possible to provide training

data to the system in nearly real-time. �is allows the system to learn from crowd-

generated examples of user-provided instances within the span of a single query.

We predict that the interactional slingshot support most well-suited for this type of

recognition task is the guided approach. Because this is exploratory analysis, the end user

will have an idea of what kind of analysis to do with the data (as they have expertise), and

a hybrid intelligence system can guide such data interactions by providing slingshots, for

example, that automatically suggest certain data operations. For the crowd workers, guid-

ance can also help them to be�er understand how to manipulate data, in case they don’t

already have domain knowledge.

Because end users may construct human-understandable queries, even if algorithms

may not understand, new dimensions arise for this hybrid intelligence system: novelty

and coordination. Users can construct queries where they describe pa�erns they wish

to �nd in the data, which means that slingshot mechanisms should guide non-experts
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to be�er understand the novel user queries. Because the crowd can clarify with exam-

ples for the end user requests, guided support now must support the ability to coordinate

between the end user, crowd, and algorithmic layers. Making available the ongoing in-

teraction context to both the crowd and the data analysis can help the crowd get a be�er

idea of what was queried before, and how it is related to the current query. As depicted

in Figure 6.1, this query-response-re�ne process allows the crowd’s insights to become

an integral part of the data analysis work�ow. �e machine’s ability to curate context

combined with the human’s ability to describe data regions of interest can lead to helpful

crowd-powered data mining system that leverages slingshot support.

2) Learning in Classroom Environments Context-curation in the classroom envi-

ronment is also a task that is an exemplar for interactional support, but one that contains

a dimension that we did not explore in this thesis: namely, learning. Unlike tasks in the

annotation domain, tasks in the education domain o�en require that humans (students)

actually learn and obtain new knowledge, not just use the knowledge they already have

to annotate data (which was the case with Mnemo and MDCD). However, for such hybrid

intelligence systems, slingshot support can still be bene�cial, especially with the nudging

and assisting supports. For example, education research has shown with overwhelming

Figure 6.2: An example of an AI-based approach that helps students access material from

di�erent sources as they learn information.
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evidence that explicit and direct instructional guidance are more e�ective for everyone but

experts [19]. Fully-guided instructional support includes lectures, videos, and demonstra-

tions of the problems to be solved. We can imagine hybrid intelligence systems facilitating

classroom discussions and helping students by augmenting their classroom activities.

Such a system can allow students to leverage context curated from multiple sources—

textbooks, online examples, Stack Over�ow—and presented to the student as they learn

information. An example of an AI-based approach to such a task is planned to be tested at

the University of Michigan for the Fall 2020 semester [101]. Figure 6.2 shows a description

of their approach, which we imagine can be modi�ed into a hybrid intelligence system.

Moreover, assistive interactional slingshots can take the students’ a�empts, let’s say

at coding a problem, and automatically adding and removing errors, but in an instruc-

tional way. As Clark suggests, “One of the best examples of an instructional approach

that takes into account how our working and long-term memories interact is the ’worked-

example e�ect.”’ For such hybrid systems, we can leverage computational tools that assist

students as they step-through a worked example, thereby leading to be�er knowledge re-

tention. Once the novice gains more information and expertise, such assistive slingshots

can morph into guided slingshots, thereby avoiding the expertise-reversal e�ect.

Example: Slingshot Support for Accessibility

How can interactional slingshots even begin to tackle tasks that requires recognition, rea-

soning, and action all at once? An example of such a task having situated interactions

for users with motor impairments. Situated interaction leverages a physical environ-

ment’s context to make communication richer and more e�cient between an AI agent

and a human user [12]. �ese interactions leverage gesture and references to physical

surroundings, in addition to speech, to make sense of the interaction context. However,

these speech- and gesture-based interactions are not always accessible to people with cer-

tain types of motor impairments that may reduce their ability to accurately reference an

object via gesture, or may result in modi�ed speech pa�erns.

In a proposed hybrid intelligence system [39], we suggest a direction of work that aims

to combine context from multiple interactional sources with collective human intelligence

to help overcome these accessibility challenges. As seen in Figure 6.3, it is crucial that the

system obtain the ability to understand speech and gesture modalities. For instance, cur-

rent crowd-powered approaches use context from pairwise intersections between these
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Speech

Lang.

Percept obj

Gesture

Figure 6.3: General setup of situated interactions. While issues of natural language un-

derstanding (Lang.) and perception (Percept) are common, these are the same for motor

impaired users as for anyone else, and thus are not our focus here. We believe that crowds

provide a powerful and highly available means of addressing challenges in speech and

gesture understanding, but new ways to jointly leverage context are needed.

four components to overcome some of these accessibility gaps. If we know that there is

a cup in the scene (perception) and the user says “cup” (speech), the system can use that

recognized object and interactional slingshots to narrow down the list of object candidates

(similar to how language models narrow down candidate words).

Multiple sources of context can help to resolve these complex references, or to fur-

ther improve people’s ability to disambiguate references. However, there remains the key

open question of how to present this joint context while avoiding an increase in people’s

cognitive load, which is an aspect that we encountered in the MDCD project.

Furthermore, there remains an additional open challenge for situated interaction ref-

erences, as no one has looked at “noisy” gestures for referencing objects in physical

environments (though, as an example, Mo� et al. [84] looked at this for touch interfaces).

�is object referencing is itself based on the machine’s ability to perceive, which we al-

ready explored in EURECA, but not completely resolved, and not when the initial request

is low-con�dence. �is means that slingshots cannot simple nudge user interactions, and

need more power, perhaps even assisting users while they perform situated interactions.
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However, a drawback with assistance is that, if the system gets the prediction wrong (e.g.,

the user did not want to touch the part of the interface the system guessed), then the

time to complete the task could become too large, frustrating the user and leading to a

suboptimal experience.

Example: Slingshot Support for Creative Tasks

Human-AI collaborative systems have had great success when deployed in tasks that re-

quire creativity, including for automatically learning about webpage layouts [56], provid-

ing support to programmers by reducing coordination costs involved in seeking help [16],

using a web browser to facilitate musical performances over a distributed crowd of peo-

ple [77], and enabling crowd workers to create reusable interactive behaviors easily and

accurately [78]. Although these tasks require creativity—a wholly new dimension not seen

in the projects discussed in this dissertation—they nevertheless still share some qualities

with data annotation tasks.

Namely, tasks that require creativity can bene�t from an AI system’s context, user

expertise, and interaction complexity. We can imagine, for instance, that the di�erent

remix behaviors present in [78] can form assistive support, where the system automati-

cally predicts user actions for next steps based on past behavior. Moreover, even though

the interactional complexity present in [56] is high, guided support can help an expert

user, in this case one that understands CSS and web layouts, to be�er interact with the

tool to automate some functionality. Slingshot supports can provide a net bene�t to the

user’s experience, both if the user is the one being creative (in which case relying on the

slingshot support), or if the computer is being creative (such as when neural networks

paint in the style of other artists [36]).

6.3.3 Where Slingshot Support Can Fail

�e motivation behind this dissertation, which is to provide support to user interactions

in hybrid intelligence systems for data annotation, exists because existing AI systems on

their own do not cope well with uncertainty, nuance, and complexity. Jarrahi [47] notes

that, in decision-making scenarios, humans and AI can collaborate e�ectively in scenar-

ios that involve uncertainty, complexity, and equivocality. For each category, AI systems

and humans bring di�ering skill sets: for uncertainty, humans can make swi� decisions

in the face of the unknown, and AI can provide access to realtime information to facili-

tate those decisions; for complexity, humans decide where to seek and gather data, and
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AI systems can collect, curate, and analyze this data; �nally, for equivocality, humans can

build consensus and rally support, and AI can analyze sentiments and represent diverse

inputs. For all three categories, we can see how interactional supports can enable hybrid

intelligence systems to facilitate this human-AI collaboration. However, under certain

circumstances, we speculate that interactional slingshots still might not be enough to

overcome challenges.

One such challenge is something we already explored in this dissertation: when the

AI does not have any task-solving context, such as in Mnemo, it becomes di�cult for in-

teractional support to be of any other form than nudging. And if the human being is an

non-expert, then it can make it di�cult for this type of interactional support to actually

help the user. Along all of the three axes of uncertainty, complexity, and equivocality, the

combination of a non-expert and nudging might not work well.

Another challenge that is di�cult for interactional slingshot-based support to over-

come is if the task is intolerant of error. �e data annotation work�ows and systems

presented in this thesis perform quality control on the output data annotation, such as

aggregating input across all annotators. However, if the task is in a domain where mak-

ing mistakes can be critical to the task objective, such as in the medical domain, then

interactional supports such as nudging, assisting, and guiding might not be enough to

guarantee mistake-free outcomes. Future work can explore new support modalities that

can overcome this challenge.

In a similar vein, interactional slingshots as presented in this dissertation might not

work well if the task type requires extremely low latency. �e data annotation tasks that

we explored in this dissertation have a relatively high tolerance for time; except for EU-

RECA, where the wall time for completing the end-to-end test with a Fetch robot ma�ers,

the time to task completion is not critical to solving the task itself. �at is, even though

time per annotation ma�ers, it is not fundamental to the solving the task itself. However,

for tasks like anomaly detection, latency ma�ers: if the interactional support given to the

user’s interaction takes longer than the allowed time bounds, not only will the user have

a frustrating experience with the system (because the support doesn’t arrive in time), but

also the support a�orded to the user will not help them do the task well.

What this implies is that, although interactional slingshots are well suited to support

user interactions across a diverse set of tasks, for the best performance, careful thought

needs to go into design decisions that impact what the human will do, what the machine

will do, and how slingshots can best facilitate this collaboration.
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