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ABSTRACT

While terrific progress has been made over the last century, cancer continues to

be a prevalent, lethal disease and is responsible for millions of deaths each year.

The advent of personalized medicine has brought great strides in the treatment of

cancer, as clinicians are able to select therapeutic courses that have been tailored

to patients specific set of biomarkers. This selection, in principal, maximizes the

chances of cancer remission while minimizing overall patient harm. In this spirit, we

have focused on developing diagnostic techniques for two separate cancer biomarkers:

tumor potassium concentration, and cell morphology.

We first developed an ionophore-based potassium sensing nanoparticle. The sen-

sor works on the principle of Donnan exclusion in which the overall charge of the

carrier remains constant. The hydrophobic interior of the nanoparticle holds a pH-

sensitive dye and a potassium ionophore. As the potassium concentrations rise, the

ionophore chelates potassium from the solution which results in a proton being re-

moved from the pH dye to maintain charge neutrality. The deprotonation event can

be calibrated for quantitative measurement and this sensor was developed for use in

diverse imaging modes, which include UV-VIS absorption, fluorescence, and photoa-

coustics. At physiological pH and in the presence of interfering ions, we were able to

quantitatively measure potassium concentrations using each of these readouts.

We modified the potassium sensor to enable in vivo measurements of potassium.

This formulation makes use of a solvatochromic dye that transitions from the par-

viii



ticle’s interior to its surface as potassium is chelated, and thus avoids inherent pH-

cross sensitivity. Using photoacoustic chemical imaging, we are able to quantitatively

measure the potassium concentration in the tumor microenvironment. As predicted,

it was shown that the TME is hyperkalemic, having a potassium concentration of

29mM. The results of the in vivo photoacoustic analysis were verified with ICP-MS

measurements of TME potassium.

Finally, we combined cell magneto-rotation and machine learning to develop a

technique to measure the metastatic potential of a cancer cell population. This

technique aims at avoiding the use of expensive and difficult to produce biological

labels. By magnetically activating cells, we are able to suspend them in an oscillat-

ing magnetic field where they are free to explore their morphological shape space.

By collecting fluorescence images of these cells, we are able to train a classifier to

recognize cells of a given type. A proof of concept for the technique is provided here,

where MCF-7 and MDA-MB-231 cells, both breast cancer but of different metastatic

potential, were classified. A random forest classifier trained on cell images was able

to correctly identify the cell type with 86.9% accuracy.
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CHAPTER I

Introduction

Nanoparticles (NPs) offer an attractive avenue for both therapy and diagnosis of

cancer. NPs are capable of shielding sensitive molecules from premature degradation

and can act as carriers of drugs or contrast agents whose solubility may otherwise

prevent their administration. NPs benefit from both passive and active targeting to

the tumor area. Therapeutics are then able to release their payloads with minimal

interaction with healthy tissues while diagnostics particles can provide contrast for

imaging and other chemical information about the tumor and its environment.

1.1 Journey to the Tumor Microenvironment

Many therapeutics are administered intravenously, and direct injection of thera-

peutic or diagnostics agents is avoided due to the invasive nature of the procedure.

Upon entering the bloodstream, the agents are delivered to the tumor via small blood

vessels, especially capillaries [42]. Healthy capillaries are tightly sealed by a layer of

endothelial cells, which themselves are firmly attached to pericytes anchored in a

relatively thick (100-150nm) basement membrane [2, 120, 67]. To travel from the

blood stream to a target organ, an agent must pass through each of these layers. Ac-

cumulation in the tumor area is aided by abundant neovasculature. Unlike healthy

blood vessels, these tumor vasculatures have large pore openings (0.1-0.3um), which

1
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Figure 1.1: A schematic summary of the tumor microenvironment. NPs delivered from the blood
stream must extravasate through the epithelial walls, pericytes, and basement mem-
brane. Next, diffusion guides the NPs to the tumor parenchyma, which itself acts a
barrier as the collagen, immune cells, and fibroblasts (TAFs) inhibit NP diffusion [70].

leads to increased permeability and hydraulic conductivity [89, 23]. The extent of

pericyte coverage in neovasculature is diminished relative to healthy tissues [2]. Fur-

ther, both these pericytes and the basement membrane have only a loose connection

with the endothelial vasculature and penetrate into the tumor tissue [81, 2, 103,

105]. These leaky, porous openings - coupled with dysfunctional lymph vessels - pro-

duce the Enhanced Permeability and Retention Effect, which promotes nanoparticle

accumulation in the tumor area.

To exit the bloodstream, nanoparticles must pass through the endothelial cells of

the blood vessel, but also the smooth muscle cells lining the vessel and the associated

basement membrane. The endothelial cells present minimal challenge, as the gaps

between cells allow for NPs as large as 100nm to pass through. Though far less

rapid, active endocytosis of epithelial cells on the distal (blood) side of the vessel and

exocytosis on the proximal (tumor) side can also lead to accumulation of particles in

the TME. Associated with the endothelial cells of the blood stream are two additional

components that affect delivery: pericytes and the basement membrane. Pericytes
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are a common feature of the TME; they are the smooth muscle cells that wrap around

blood vessels [2, 21].

Pericyte coverage can both inhibit and promote nanoparticle extravasation. Per-

icyte coverage varies among tumor types, and can even be heterogeneous within a

single tumor [2, 71, 91]. By ablating pericytes, vascular tortuosity is increased, as

does tumor growth [79, 64]. Naively, this ablative approach would be beneficial to

treatment, as it would promote nanoparticle or therapeutic extravasation. Indeed,

inhibition of pericyte formation was shown to increase the intratumoral penetration

of sub-100nm nanoparticles [91, 41]. However, this outcome was only achieved in a

tumor model with high pericyte coverage ( 70%). Paradoxically, tumor models with

low pericyte coverage also display resistance to extravasation due to the inhibition

of vessel function. Here, it is actually through the promotion of pericyte recruitment

and subsequent vascular normalization that nanoparticle penetration is improved

[92, 144]. Thus, when considering delivery, neither high nor low pericyte coverage

can be considered as ideal.

The basement membrane (BM) is a thin layer of extra-cellular matrix that sur-

rounds blood vessels. In healthy tissue, 99% of vasculature is surrounded by an

approximately 100nm thick BM [103]. However, in tumors, the BM can take many

forms, and be either loosely or strongly associated with vasculature. The collagen

layers of the BM act as sieve, and restrict passive diffusion. The thicker the collagen

layers, the ”finer” the BM sieve will be. Typically, the BM restricts diffusion of

particles greater than 100nm, but as additional layers of collagen build-up, passive

diffusion is increasingly attenuated.

A final factor for NP extravasation to consider is interstitial fluid pressure (IFP).

In normal tissues, IFP is roughly 0mm Hg, whereas tumors have an IFP comparable
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to that of blood vessels themselves (10-40mm Hg) [84]. This increase in pressure is

caused by the disruption to the lymph vessels in the tumor area. As lymph vessels

are responsible for draining excess blood, proteins, and fluid from the TME, their

disruption results in stagnation and IFP increase. This inhibits fluid exchange in

tumor-associated capillaries and promotes passive diffusion into the tumor, which is

a much slower process than convection, especially for larger particles [118, 157]. The

increased pressure can further induce tumor stroma into squeezing the microvessels,

resulting even greater restriction of blood flow [138] and the formation of stagnant

pockets that are cut off from circulation.

Having traveled through the bloodstream to the tumor, extravasated, and pro-

gressed through the basement membrane, the nanoparticle finally arrives in the tumor

interstitium. However, despite having arrived at the target destination, the problems

of delivery have not fully abated.

Diffusion through the tumor interstitium is principally governed by the abundance

of collagen ECM, which is heterogeneous within a single tumor and among tumor

types[118, 31, 38]. Tumors with little ECM, such as melanomas, allow for quick,

passive diffusion of nanoparticles through the tumor. However, passive diffusion

becomes intractable as collagen density increases. Further, as tumors mature, the

collagen fibers thicken and align, which narrows the interfiber spacing and further

impedes nanoparticle diffusion [78]. This process also leads to directed diffusion, or

diffusion anisotropy [136]. While the collagen acts as a physical barrier, preventing

NP diffusion, the collagen-associated proteins and sugars, particularly glycosamino-

glycans, can also inhibit particle diffusion via electrostatic interactions [83, 98]. NPs

are typically strongly charged to prevent aggregation. Glycosaminoglycans are highly

negatively charged, and will non-specifically bind positively charged materials.
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1.2 The Therapy Resistance Triad

The tumor microenvironment (TME) is a complex milieu of small molecules, struc-

tural proteins, native cell types, and cancerous cells. Traditionally, the relationship

between cancer cells and this environment has been neglected, and a one-size-fits

all approach has been adopted for the administration of therapeutics. However, the

TME can have significant influence on the efficacy of treatment. Dubbed the ”ther-

apy resistance triad” oxygen, pH, and potassium each exhibit profound attenuating

effects for various forms of treatment. Thus, the ability to measure these parame-

ters, and therefore choose a therapeutic course whose viability is not inhibited by

the TME’s composition, could be of significant diagnostic benefit.

The best known of the therapy resistance triad is oxygen. It has been known

for over a century that oxygen concentrations in the tumor area are depleted [101].

Radiation therapy, whether x-ray or gamma, exerts its effect by ionizing oxygen in

a solution [123, 72, 90]. It is through the creation of reactive oxygen species, and

their associated deleterious effect, that radiation therapy exerts its therapeutic ef-

fect. Thus, without sufficient oxygen concentration, radiation therapy becomes a

non-viable avenue of treatment. While it is most strongly attenuating for radiation

therapy, the hypoxic environment exerts effects on both chemo- and immune ther-

apy as well. Hypoxia is an inhibitor of many chemotherapeutic drugs, including

vincristine [15, 16], melphalan [124], methotrexate [10], and cisplatin [12]. Further,

low oxygen environments have been shown to affect cells of both the adaptive and

innate immune system [63, 115, 96, 132].

Even in the presence of sufficient oxygen, therapy can run afoul. The Warburg

Effect manifests as a preference for anaerobic glycolysis observed in cancer cells even
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in the presence of sufficient oxygen. It is hypothesized that avoiding oxidative phos-

phorylation and the associated ATP production allows promoting anabolic activity

and the formation of biomass [69]. A side effect of this metabolic aberration is

the accumulation of lactic acid in the cytosol and its subsequent exportation to the

TME, leading to acidosis [80]. As many chemotherapeutic drugs are weakly basic,

the acidic environment induces protonation, preventing their passive diffusion across

the plasma membrane. Affected drugs include paclitaxel, vincristine, and vinblastine

[100, 50, 73]. Acidosis further impedes immune [122, 142] and radiation therapy [50,

55].

The final member of the therapy resistance triad is potassium. It is worth going

into detail regarding the relationship between immunotherapy and potassium as it

pertains to the TME. Cells in the TME are forced to compete fiercely for resources

which leads to clumps of cells without access to sufficient resources and nutrients [45,

127]. These areas often develop into dense areas of cellular apoptosis and necrosis

[117]. These apoptotic and necrotic regions alter the extracellular milieu due to the

release of dying cells’ intracellular contents, and notably, ions [162, 87]. It is well

known that T cells present in the tumor microenvironment retain their response to

tumor-associated antigens [139], but their function is heavily suppressed in the TME

[85]. Further, intact ion transport is critical to T cell function, as disruptions to

both calcium and magnesium channels result in severe combined immunodeficiency

in humans [139, 32, 102]. These observations lead Eil and colleagues to hypothesize

that perturbations to ion concentrations in the TME lead to the inhibition of immune

cells. In two seminal papers, elevated extracellular potassium resulted in profound

disruption to T cell function.

Eil and colleagues showed that necrosis in the tumor microenvironment lead to
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a 5-10 fold increase in the local potassium concentration, though they observed no

change for other ions (sodium, magnesium, calcium, and chloride). Elevated ex-

tracellular potassium resulted in a steep decline of T-cell receptor induced cytokine

production. Eil further determined that the reduction of cytokine production was due

to the hypophosphorylation of PP2A. Thus, elevated extracellular potassium lead to

disruptions in the signal transduction of the T cell receptor, preventing any effector

function to manifest itself in the T cells’ epigenetics [29]. In a follow-up study, Eil and

colleagues demonstrated that elevations in potassium disrupted the nutrient trans-

port in T cells, resulting in autophagy and the inability to mature. These ”starved”

T cells displayed a marked increase in in vivo persistence, clonal renewal, and mul-

tipotency, matching the characteristics previously observed in tumor-associated T

cells [37, 36]. Finally, it was demonstrated that T cell function could be rescued by

the depletion of intracellular potassium [143].

1.3 Photoacoustic Chemical Imaging

Photoacoustic imaging (PAI) is an imaging modality that combines the in vivo

penetration depth of ultrasound with the contrast of standard optical techniques

[22, 141, 147]. For simplicity, PAI can be broken down into three critical steps:

the absorption of a photon, thermal dissipation of the absorbed energy, and the

subsequent propagation of an ultrasonic wave [14]. First, a non-ionizing input beam

excites a target molecule. This excitation can be dissipated via radiative decay or

thermalization. In PA, thermalization is preferred as radiative decay (fluorescence,

phosphorescence) is strongly scattered; it often cannot be detected, and no image

can be reconstructed. Thus the relaxation from the excited state to the ground state

is the second critical step in PAI. Here, optical energy is converted to ultrasound
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Figure 1.2: A visual summary of photoacoustic imaging. First, a pulsed laser excitation results in
absorption and thermalization at the location of interest, which take many forms, such
as a sample tumor on a mouse, or a tube containing solutions for in vitro measure-
ment. The thermalization produces an ultrasound wave which can be detected by an
ultrasound transducer. An image of the targeted area can then be reconstructed.

as vibrational and collisional relaxation results in local thermalization. The small

increase in local temperature is accompanied by an increase in local pressure. It

is this pressure increase that causes a propagating acoustic wave due to the elastic

nature of tissue. This ultrasonic wave is then measured via an ultrasonic transducer

and an image can be reconstructed (Figure 2).

Photoacoustics has seen tremendous development over the previous decade and

a half. In vivo functional PAI was first reported for mapping rat brain structures

and hemodynamic changes in response to whisker stimulation [151]. PAI has been

applied to imaging angiogenesis, blood oxygenation, cerebovascular activity [126,

116, 54]. One principal advantage of PAI is that we may use either endogenous

or exogenous chromophores when performing measurements. While blood is the

dominant chromophore in the body, exogenous contrast agents can be used in PAI.

These exogenous agents can provide more than just contrast, however. If the dye
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in question is sensitive to particular analyte, than photoacoustic chemical imaging

can be performed, in which each pixel of the PA image gives structural as well as

chemical information, allowing for photoacoustic chemical imaging [20]. Two major

examples of such an approach are oxygen and pH.

If PAI can be used to measure blood oxygenation, it is natural to wonder what

the purpose of an exogenous PA oxygen sensor is. The subtle distinction between

the two arises in measuring blood oxygenation versus tissue oxygenation. Blood

oxygenation pertains to the relative amount of oxygenated hemoglobin to the total

hemoglobin concentration whereas tissue oxygenation refers to unbound molecular

oxygen in solution [107]. To measure tissue oxygenation with PACI, photoacoustic

lifetime imaging is coupled with an oxygen sensitive dye, such as G2 oxyphor [7, 135].

A pump laser excites the G2 dye into an excited triplet state. The lifetime of the

excited state for G2 is sensitive to the oxygen concentration of the solution. Using

a probe laser, the phosphorescent decay of the excited state is measured, and the

decay rate is correlated to a particular saturation of oxygen. Using this approach,

oxygen concentrations were quantitatively measured in vivo with a mouse model [51,

108].

pH is a second analyte that has been measured using PACI. Initial attempts

to measure pH were done in vitro using buffer solutions contain the radiometric

pH indicator SNARF-5F. By exciting the dye at its isosbestic point, 532nm, and

its sensing point, 564nm, the ratio of the photoacoustic signals’ intensity at those

two excitation wavelengths was able to be calibrated against a pH gradient [137].

This method was further improved by encapsulating SNARF-5F in a polyacrylamide

hydrogel nanoparticle, which allowed for active targeting and protected SNARF-5F

from adsorption by albumins, which significantly impacted its sensitivity [8]. in
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vivo imaging and pH measurements were accomplished on a rat joint model with

resolution below 0.1 pH units.

Another approach to PA pH measurement approach the use of a DNA triplex [68].

This active DNA structure operates through a principal analogous to FRET, though

the signal modulated is PA intensity rather than fluorescence intensity. At high pH

(8.0), the complex is disorganized, and the strands of the 3 ends do not interact

significantly. As the pH drops over the physiologically relevant range of 6.0 to 8.0,

the DNA complex becomes increasingly ordered and the probe begins to fold onto

itself, bringing the 3’ ends into tighter proximity. As such, the excited fluorescent

probe begins to be actively quenched, and the photoacoustic signal increases. While

this sensor is quite novel, it has not yet been demonstrated in vivo.

In vivo PACI of pH was achieved through the use of an exogenous dye [8, 52].

SNARF-5F - a pH-sensitive dye - was embedded in a polyacrylamide hydrogel matrix

that was actively targeted to the tumor area using F3. The absorption spectrum of

SNARF-5F changes as a function of pH, with the dye’s pKa being approximately 7.2,

which is well-suited for the expected biological range. In an optical setting, the two

absorption peaks of SNARF-5F can be simultaneously imaged or excited to obtain

a ratiometric pH measurement that is independent of dye concentration. A similar

approach is taken in the photoacoustic setting, but both deoxy- and -oxygenated

hemoglobin must be taken into account. To do so, the photoacoustic signal, which

is directly proportional to the overall absorption, is modeled as the linear sum of

signals from the independent absorbers.

(1.1) PAλ = k(ελHb[Hb] + ελHbO2
[HbO2] + ελNP [NP ])

Using this approach, the pH of mouse model tumors was measured, and found to
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be approximately 6.7 [52]. The acidic environment of the tumor was expected [80].

When measurements were done in healthy tissue, the pH was found to be 7.46.

1.4 Ionophore-based Optical Sensors

Ionophore-based optical sensors are now over 25 years old, and their first re-

ports are on bulk optodes [134, 121]. These optodes (optical electrodes) were es-

sentially miniaturized versions of ion-selective electrodes. Sub-micrometer sensors

were achieved in the Kopelman lab by photopolymerizing a pH-sensitive dye in an

acrylamide membrane on a fiber optic tip [146]. Miniaturization was further ex-

tended by encapsulating sensors in miniaturized micro- or nanosphere carriers with

hydrophobic cores. Ionophore-based optical sensors operate on the principal of Don-

nan exclusion wherein the hydrophobic core of the sensor must remain electrically

neutral. Figure 3 shows a typical sensing mechanism where three components work

in harmony to measure a cation, such as potassium. At low analyte concentrations,

the pH dye is fully protonated; the proton lends the dye a positive charge. These

positive charges are balanced by anionic sites that are added to the nanoparticle;

they have no significant role beyond imposing electric neutrality. The final compo-

nent is the ionophore. Its role is to selectively chelate the analyte of interest from

solution, such as potassium. Once bound, the cation lends its positive charge to the

ionophore, leading to an overall charge imbalance. To correct for this imbalance, the

chromoionophore loses a proton. The deprotonation event causes a shift in the dye’s

absorption spectrum which can be calibrated for quantitative analysis.

A major advantage of these sensors is their generalization. Simply switching

ionophores renders a sensor responsive to another ionic analyte. Thus, ion-selective

sensors have been made for sodium [112, 56, 57, 141, 154, 77, 82] potassium [93,
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Figure 1.3: A schematic representation of an ionophore-based optical sensor’s function. On the
left, we see that the pH dye (chromoionophore) is fully protonated. As the potassium
concentration increases, the pH dye loses a proton and changes color as the ionophore
chelates potassium from the solution phase.

156, 140], calcium [22, 153], chloride [86, 130], zinc [59], magnesium [30], iron [58],

and lithium [61] among others. One of the principal advantages of these optodes is

their specificity. The ionophores are highly specific to the ion of interest, and their

selectivity is preserved similar across different films and environments [48, 111]. The

overall dynamic range and sensitivity of these sensors can be adjusted by changing

the ratios of the three sensing components in the initial preparation. Ultimately,

however, the sensing range and specificity are governed by the binding constants of

the two exchangers. For example, a pH dye with an extraordinarily strong affinity for

protons would require a far higher concentration of analyte to force a deprotonation

event than would be required for a chromoionophore with weak affinity.

Careful selections must be made beyond the sensing components, however. The

platform (carrier) can have a marked impact on a sensor’s capabilities. Ionic compo-

nents can prevent exchange of ions, or even exhibit weak chelation of ions. A second

aspect of the sensors is the requirement of the carrier to be in a rubber-like versus

a glassy phase [150]. The phase of a sensor is described by its glass transition tem-

perature, below which amorphous solids will enter a fixed, glassy state. The glassy

state strongly inhibits ionophore exchange and prevents sensor function. The choice
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of plasticizer is not necessarily simple either, as it can influence the selectivity of a

carrier towards divalent or monovalent ions [150, 26].



CHAPTER II

An Ion-Selective Nanosensor for Photoacoustic and
Fluorescence Imaging of Potassium

This chapter has been adapted from the following publication to add additional

data and emphasize personal contributions:

Lee CH, Folz J, Zhang W, Jo J, Tan WYJ, Wang X, and Kopelman R. ”Ion-

Selective Nanosensor for Photoacoustic and Fluorescence Imaging of Potassium.”

Analytical Chemistry, 89 (2017), pp 7943-7949.

2.1 Introduction

The analysis of whole body fluids, such as blood, urine, or sweat, is one of the

most valuable diagnostic tests available to the modern clinician [26]. Typically, these

tests employ a standard ion-selective electrode, whose selectivity for the analyte of

interest is exquisite [27, 34, 152]. However, these tests, due to the bulky and invasive

nature of electrodes, are often limited to harvested or ex vivo samples. To perform

in vivo, the electrode itself must be minimized, which can be accomplished via fiber

optics [146] or through the synthesis of nanoPEBBLEs [131, 40].

Potassium makes an attractive target for such analysis due to its ubiquity, high

physiological concentration, and diverse function [9]. Its most famous role is the

part it plays in generating nerve impulses, but it also serves physiological roles by

14
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maintaining osmotic pressure and pH balance in the body. In cancer, potassium’s

accumulation in the tumor microenvironment has been shown to inhibit immune

therapy [29, 143]. At a cellular level, potassium efflux has been shown to play a

critical role in the activation of the MLRP3 inflammasome [110]. Finally, potassium

also plays a critical role in apoptosis, and is considered to be an early marker for cell

death [18].

A variety of miniaturized potassium sensors have been produced, though their

application in vivo has been limited for a variety of reasons. Most sensors are geared

toward cellular measurements, and their fluorescent output is difficult or impossible

to detect in vivo [76, 112, 66]. If sensors are built-on fiber optic or microfluidic plat-

forms, their bulk renders them impossible to apply non-invasively [57, 46, 114, 13].

Still other sensors rely on adjusting pH for having fine control of the measurement

[75]. Here, we will focus on developing a potassium sensor for both fluorescence and

photoacoustic measurement. Fluorescence allows the sensor to be applied in vitro

while photoacoustics permits in vivo application.

2.2 Methods

2.2.1 Synthesis and Characterization of KNP

KNP are synthesized using a thin film rehydration method. Into 10mL of dichloro-

methane, dissolve 84mg Pluronic F68, 116mg Pluronic P123, 14µL dioctyl seba-

cate (DOS), 5µL 1,6-hexanediol dimethacrylate (HDMA), 5µL butyl methacrylate

(BMA), 1.5mg chromoionophore 1, 5mg potassium ionophore 3 (BME-44), and

9.75mg sodium tetrakis[3,5-bis-(trifluoromethyl) phenyl]borate (NaTFPB). To pro-

duce a thin film, the solvent is then rotoevaporated. The thin film is left to dry

overnight, and rehydrated then next day by adding 10mL of millipore water and

stirring with a magnetic stir bar. The solution is flushed with argon and kept un-
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der an inert atmosphere. After 20 minutes of flushing with argon, add 100µL of

N,N,N’,N’-tetramethyl ethylenediamine followed by 100µL of a 10% (w/v) ammo-

nium persulfate to induce radical polymerization. After 2 hours, the flask is un-

capped to quench the reaction. The particles are washed using an Amicon Ultra-15

Centrifugal Filter (100kDa) with water until the solution turns blue.

KNPs were characterized at concentration of 1mg/mL. Dynamic Light Scatter-

ing and zeta-potential measurements were performed with Beckman Coulter zeta-

analyzer Figure Figure 2.1. Absorption spectra were collected using a UV-VIS

spectrophotometer (Shimadzu UV-1601), fluorescence spectra a fluorimeter (Horiba

FluoroMax-3). All measurements were done in Mops-buffered saline solution (MBS).

Figure 2.1: Dynamic Light Scattering analysis of the KNP’s diameter. The polydispersity index
was 0.28 and 90% of particles had a diameter of 47.8nm or below. Data was collected
at a particle concentration of 1mg/mL.

The calibrations conducted at various temperatures used the heating attachment

of the Shimadzu 1601. Solutions were prepared and a calibration curve was gathered

at room temperature. The solutions were then individually heated, and their spectra

measured. All solutions were given 30 minutes to cool before the final spectra were



17

collected.

2.2.2 PA Spectroscopy Setup

An optically clear polyvinyl chloride tube (I.D. x O.D. = 1/16 in. x 1/8 in.),

containing solutions of the KNP (5 mg/mL), with various concentrations of K+, was

placed in a water bath. An optical parametric oscillator (SLOPO Plus, Continuum),

pumped with the second harmonic of a pulsed (5 ns) neodymium-doped aluminum

garnet (Nd: YAG) laser (Surelite, Continuum), was used for excitation (at 540 and

660nm wavelengths, respectively). The PA signal was detected by a 2.25 MHz unfo-

cused ultrasonic transducer (V323, Panametrics) connected to an amplifier (5072PR,

Olympus). The signal, digitalized by an oscilloscope (TDS540, Tektronix), was col-

lected (averaged over 200 pulses). The laser pulse was focused with a converging lens

where the sample is located inside the tube. The raw PA signals are normalized with

the power of the laser and PA signals from the empty tube. The signal intensity at

540nm when divided by the signal intensity at 660nm gave the ratio used for cali-

bration. With ratios determined for each sample at each potassium concentration (n

= 4), an average and a standard deviation were obtained.

2.2.3 Photoacoustic Imaging Setup

Gelatin phantoms were prepared by dissolving gelatin (from porcine skin) in hot

water (80g/L) containing 16 gauge needles. Then, the phantom cooled down to

room temperature overnight. The 16 gauge needles were carefully removed and four

different solutions of KNP at 5mg/mL were added. As soon as the solutions were

inserted, the PA images were acquired by an imaging system built on commercially

available research (V1, Verasonics) with a linear array probe (CL15-7 with a central

frequency 11.25MHz, Philips) working at 10Hz. The laser pulse was diverged with a



18

Figure 2.2: A schematic illustration of the photoacoustic spectroscopy and imaging set-up. A laser
is focused on a region of interest, which could be either a tube or mouse tissue. The
pulsed excitation light induces local thermalization at the region of interest. The ul-
trasound output of the thermalization, expansion, and retraction process is detected by
an ultrasound transducer. An image of the targeted area can then be reconstructed.

diverging lens so as to cover the entire imaging region (1.5 cm x 3 cm). The phantom

PA images (540nm and 660nm) were averaged over 50 images and were smoothed

by a Gaussian filter. The phantom PA image at 540nm was divided by the phantom

PA image at 660nm so as to acquire the ratiometric potassium image.

2.2.4 Cell Imaging and Assays

HeLa cells were grown in DMEM supplemented with 10% fetal bovine serum and

1% penicillin-streptomycin.

For the MTT assay, 25,000 cells were plated in each well on a 24-well plate. Cells

were allowed to grow 1 day after deposition after which they were incubated with

the KNP at 200µg/mL for 24 hours. Following incubation, the media was removed

and replaced with 5mg/mL MTT reagent in PBS. The cells were further incubated

for 4 hours, after which the MTT solution was replaced with DMSO. After 1 hour

additional incubation, the DMSO solutions were removed and read with UV-VIS

spectrophotometer. Trials were repeated in groups of 4.

For confocal imaging, 100,000 HeLa cells were deposited on a confocal microscopy
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plate. After 1 day of growth, cells were incubated with 50nM lysotracker green.

After 90 minutes, 1mg/mL KNP was added to the solution. After 30 minutes incu-

bation, the media was removed, the plate washed several times, and replaced with

transparent media.

2.2.5 Degree of Protonation Calculations

Calibrations are typically given as the protonation degree as a function analyte

concentration. In a sensing-system with two separate sensing peaks, such as the

KNP, we calculate the protonation degree from the raw spectra as shown in equation

2.1:

(2.1) π = 1 − (1 + S
R−Rmin

Rmax −R
)−1

where S is the scaling factor, defined as Amax
540nm/Amin

540nm, R is A660nm/A540nm, Rmax

is Amax
660nm/Amin

540nm, and Rmin as Amin
660nm/Amax

540nm. Here, A denotes the absorption at a

particular wavelength from the raw spectrum (see Figure 2.3); ’min’ and ’max’ refer

to the smallest and largest absorption values obtained at that wavelength.

2.3 Results

The KNP consists of three sensing components encapsulated in a combination

Pluronic F68 and Pluronic P123 micelle. The core of the micelle contains three

additional components: DOS, HDMA, and BMA. The latter two, HDMA and BMA,

are hydrophobic monomers that are polymerized to give the core of the KNP more

stability and to help prevent spontaneous micelle disassembly. DOS is a plasticizer, so

its role is to decrease the glass transition temperature of the two Pluronic polymers.

The raw spectrum of the KNP at various potassium concentrations, as well as a

calibration curve, can be seen in Figure 2.3.
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Figure 2.3: Left) Raw UV-VIS absorption spectra for the KNP at 1mg/mL. Potassium concen-
trations (mM) are indicated by the legend. The protonated peak is 660nm while the
deprotonated peak is 540nm. Right) A simple calibration curve for the KNP, where π
is the fraction of protonated chromoionophores. Note that the x-axis is the log of the
potassium concentration.

The raw spectra of the KNP demonstrates two peaks: a protonated peak at

660nm and a deprotonated peak at 540nm (Figure 2.3, left). The protonated peak

decreases with increasing concentration of potassium. The right figure in 2.3 shows

a calibration curve for the KNP. The y-axis, π, is the degree of protonation for the

chromoionophore, and is equivalent to the fraction of protonated dyes relative to the

total dye concentration. Thus, the protonation degree is initially 1, as all the dyes are

protonated. As the potassium concentration increases, the sigmoidal response curve

enters its linear region, and we can see a semi-linear response between 1-300mM,

which covers the relevant physiological concentrations of potassium. Beyond 300mM,

the sensor is beginning to become saturated with potassium and very few dyes remain

to be deprotonated.

A fluorescence calibration curve was collected for the KNP, shown in Figure 2.4.

We chose to excite the KNP at 540nm, as the deprotonation peak increases with

the analyte of interest. The emission peak of the KNP is at 680nm. To perform

quantitative measurements, we attached a reference dye, NIR797. The secondary
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Figure 2.4: Left) Fluorescence emission spectra of 1mg/mL KNP with a 540nm excitation. The
540nm absorption peak is selected as its absorption increases with potassium concen-
tration. Right) A fluorescence calibration curve for the KNP. The sensor is optimized
for intracellular fluorescence measurements.

reference dye allows us to perform ratiometric measurements, which do not depend

on the concentration of the KNP. This approach is critical for in vitro measurements,

as simple changes intensity can be attributed to changes in either analyte or dye

concentration. The calibration curve shows that the KNP’s fluorescence is most

sensitive around 100mM K+, which is ideal for intracellular potassium measurements.

Figure 2.5: Left) An MTT assay performed using the KNP at 200µg/mL. The KNP was incubated
with HELA cells for 24 hours. Cell viability was determined to be unaffected by KNP.
Right) A close up image of cells incubated with KNP (red) and lysotracker (green).
The red haze in the cytosol indicates that the KNP is escaping the endosome. Very few
yellow pixels are present, which indicates few KNPs become trapped in the lysosome.
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Prior to performing in vitro studies, it is critical to make sure that the ”ruler”,

in this case the KNP, is non-toxic. Figure 2.5 shows the results of an MTT assay in

which HELA cells were incubated with 1mg/mL KNP for 24 hours. Little toxicity to

cells is indicated during that time, as survival rates between the control (no KNP)

and the test cells are within error of each other.

Knowing that the particle was not toxic, we also wanted to be sure that any

measurements made on the cell were made in the cytosol. The cell is highly com-

partmentalized, and it is most probable that our particles enter via non-specific

endocytosis. If the particles become trapped in the endosomes or lysosomes, it will

not be possible to make accurate measurements of the intracellular potassium con-

centration. Figure 2.5 shows an image of two cells taken on a confocal microscope.

The red is the KNP while the green puncta arise from the dye, lysotracker. The

KNPs appear as a haze throughout the cytosol, suggesting that they have success-

fully escaped the endosome. The lysotracker clearly displays puncta, as one would

expect to see if they dye were tracking individual vesicles. The dirth of yellow pixels,

which indicate the presence of both KNP and lysotracker, suggests that very few

individual particles are becoming trapped in lysosomes.

One concern with using the KNP in a photoacoustic regime is that the heat

generated by, and necessary for, photoacoustic measurement might alter the KNP’s

response to potassium. The sensor itself is indirectly sensitive to temperature due

to its dependence on a low glass transition temperature. Additionally, the sensor

functions at equilibrium with its environment; the equilibrium of a reaction is notably

dependent on temperature. To test the KNP’s temperature dependence, we took 3

consecutive calibration curves: first at room temperature, then at 37◦C, and a final

calibration once the sensor had returned to room temperature. Figure 2.6 shows that
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Figure 2.6: A UV-VIS calibration curve of the KNP taken three times in a row at different tem-
peratures. The curve does not shift, which indicates that any heat generated through
the photoacoustic effect will not affect the accuracy of the calibration curve.

no temperature sensitivity is observed. Thus, we can be confident that the KNP will

produce precise signals in a photoacoustic regime.

The photoacoustic calibration was conducted by placing the the KNP in a gelatin

phantom with known concentrations of potassium. Tygon tubing was encased in

a gel phantom to authentically mimic in vivo photoacoustic image collection. The

KNP was excited by a laser at 540nm and 660nm. Figure 2.7 shows that the 540nm

signal increases with potassium, while the 660nm signal decreases. This pattern

is expected as photoacoustic signal is proportional to absorption and the 540nm

absorption peak increases with increasing potassium concentration. The final row of

Figure 2.7 shows the ratio of these two measurements, and a clear trend can be seen,

especially between the biologically relevant concentrations of 2-100mM.

An inherent disadvantage in using a pH dye as an optical reporter is that the

KNP itself becomes cross-sensitive to pH. By definition, if the pH is lower, than

the overall concentration of protons is higher. Since the KNP relies on a chemical

equilibrium to do its sensing, the excess protons shift the KNP’s optical response to
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Figure 2.7: A photoacoustic calibration was performed in a gelatin phantom. KNP were placed
within a gel phantom at different K+ concentrations. The KNPs were excited at 540nm
(row 1) and 660nm (Row 2) and their photoacoustic outputs were recorded. The third
row shows the ratio of the first two. A clear trend can bee seen, as the PA signal
increases with potassium.

potassium. At lower pH, a larger potassium concentration is required to induce a

deprotonation event. Figure 2.8 shows three calibrations of the KNP, each gathered

at a slightly different pH. It is clear that KNP’s in a more acidic buffer have a higher

degree of protonation for a given concentration of potassium. A large shift in the

KNP’s response occurs even for a shift in pH smaller than a single unit, and, if

uncorrected, could lead to measurements of potassium that are off by more than an

order of magnitude.

To overcome this disadvantage, it is necessary to simultaneously measure pH in

any environment where the pH cannot be controlled. While most optical experiments

can be done in buffers, in vivo work precludes such convenience. Thus, we will utilize

a pH-sensitive photoacoustic optode [52] to measure the pH of a solution and correct

for any shift to the KNP’s response. A proof of concept for this approach is provided
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Figure 2.8: Three KNP calibration curves taken at different MBS pH values. The three curves
demonstrate the inherent pH cross sensitivity of the KNP.

in Figure 2.9. Figure 2.9 shows three separate potassium measurements each taken at

a different pH. There is strong agreement between these calibrations, unlike Figure

2.8. Figure 2.9 shows that we are simultaneously able to measure pH with this

approach.

2.4 Discussion

The KNP has been developed for diverse imaging modalities, and thus lends itself

to a variety of experiments. As most basic cell work is conducted using fluorescence

probes, we ensured that the KNP is capable of quantitative potassium measurement

in a fluorescent regime. However, fluorescence is poorly suited for in vivo applica-

tions. By probing the changes in the KNP’s absorption spectrum, we are able to

photoacoustically measure the potassium concentration. In all modalities, the KNP

is verified to sufficiently cover the relevant physiological potassium concentration

range, and it has been verified as minimally toxic.

The KNP itself is easily synthesized, and requires only one pot. The particles are
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Figure 2.9: Simultaneous measurement of pH and potassium using the KNP and SNARF-5F NP.
Three series of potassium calibrations were made in MBS at pH 6.6, 7.0, and 7.4.
Through spectral deconvolution, we are able to separate the pH and potassium sig-
nals, control for pH, and reproduce quantitative potassium measurements in a manner
independent from pH.

readily taken up by cells, and appear to escape from the endosome. By modifying

the Pluronic polymer backbone, we can functionalize the KNPs to add reference

dyes or targeting moieties [35, 94]. This modification allows for better control of the

biodistribution of the KNP, and allows us to preferentially target specific tissues or

organelles. Finally, it is worth noting that by swapping the potassium ionophore for

another, the platform can be readily adapted for other analytes [158, 27].

The KNP is not without drawbacks, however. The inherent pH cross sensitivity

makes it difficult to use in biological settings [34], where the pH is often impossible

control without severely disrupting the system of interest. While we have demon-

strated that simultaneous measurement of pH can correct for this cross-sensitivity,

the implementation and analysis of this approach is far from trivial. Significant

spectral overlap exists between the two sensors, especially between the KNP’s de-

protonated state and SNARF’s acidic state. The spectral overlap problem is further

exacerbated in the presence of blood. In vivo, the process will require measuring
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6 different wavelengths at a minimum, two for the analytes, pH and K+, two for

the nanoparticle concentrations for each sensor, and two for oxy- and deoxygnated

hemoglobin. Further, each of the selected wavelengths will have different fluence and

attenuation effects that must be taken into account to achieve quantitative analysis.

The practicality of using two separate nanosensors is further limited by the real-

ities of biological distribution. As previously noted, biological structures are highly

ordered and compartmentalized. To achieve accurate, quantitative potassium mea-

surements, both nanosensors would need to accumulate in the same physiological

space. Given that the two sensors have different radii and zeta-potentials, it is not

necessarily reasonable to assume that their biodistribution would be identical. If the

KNP accumulates in the extracellular space, where the pH is expected be acidic,

while the SNARF sensor accumulates in the cytosol, where the pH is expected to

be slightly basic, large errors in the potassium measurement would result from an

incorrect pH measurement. Thus, even if all of the practical difficulties with the op-

tical set-up and deconvolution were solved, the use of two nanosensors would remain

challenging.



CHAPTER III

In Vivo Photoacoustic Potassium Imaging of the Tumor
Microenvironment

This chapter has been adapted from the following publication with minimal mod-

ification:

Tan JWY*, Folz J*, Kopelman R, and Wang X. ”In Vivo Photoacoustic Potas-

sium Imaging of the Tumor Microenvironment.” Journal of Biomedical Optics Ex-

press, 11 (2020), 2507-3522.

3.1 Introduction

Potassium is the most abundant cation in the body [9]. The evolution of live cells

started by keeping Na+ out of and K+ inside the cell [148, 24]. Steep gradients exist in

its distribution as intracellular K+ concentrations are typically greater than 100mM

[18, 9], while extracellular K+ concentrations are approximately 5mM [9]. It has long

been known that the tumor microenvironment (TME) can have suppressive effects on

T cells [47]. However, this suppression was only recently attributed to disruptions in

the K+ concentration [29]. Notably, necrotic cell death in the nutrient-starved core of

tumors leads to the release of vast quantities of intracellular K+. The release of this

K+ induces local hyperkalemia in the TME with a reported 5-10 fold increase in K+

concentration. In two seminal studies, Eil and colleagues determined that elevated

28
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K+ suppresses T cell effector function and prevents immune cells from maturing [29,

143].

In the previous analysis, the measurement of potassium was conducted via a

specialized electrode - no in vivo measurements were made. Tumor interstitial fluid

was collected by removing tumors from mice and centrifuging the tumor at such a

speed so as to separate the tumor interstitial fluid from the solid tumor without

lysing individual cells [149, 44, 43]. It was this fluid that was analyzed. Thus, all

spatial and temporal information was lost in the analysis. As Eil and colleagues

noted that T cell function was disrupted in a dose-dependent manner, it is of great

interest to develop a method to measure potassium in vivo. The time-dependence,

spatial-distribution, and extent of the tumor hyperkalemia remains uncharacterized.

An electrode is ill-suited for in vivo measurement due to its invasive nature and

practical inability to gather spatial information. Few other methods exist to measure

potassium beyond electrodes and their like. PBFI and the asante green series are the

only commercially available potassium dyes. PBFI suffers from poor solubility and

cellular uptake and both dyes are only excitable in the near ultraviolet spectrum.

This dependence on high energy excitations is poorly suited to in vivo work as the

light is quickly scattered. The alternative approach from using a dye is K39 MRI [49,

74]. K39 MRI has the advantage of measuring potassium in its natural environment

and avoids completely the biodistribution problem associated with exogenous agents.

However, MRI is an expensive technique, it is limited to patients without metallic

implants, and continues to suffer from poor resolution (voxel size of approximately

1mL) [113].

Thus, to perform quantitative potassium measurements in vivo we adopted an

pH-independent mechanism for sensing potassium. First developed by Eric Bakker
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[155], this sensing mechanism is completely analogous to the KNP. However, instead

using a pH dye as the optical reporter, a solvatochromic dye is used instead. Sol-

vatochromic dyes’ optical properties are highly sensitive to their environment. To

make a sensor using them, a solvatochromic, positively-charged dye was conjugated

to a long alkyl chain (18C). This renders the entire molecule hydrophobic, despite

its positive charge. At low potassium concentration, these positive dyes remain in

the hydrophobic interior of the nanoparticle due to the presence of anionic sites. As

potassium concentration increases, an ionophore chelates potassium from solution,

resulting in the addition of a positive charge to the interior of the sensor, which in

turn pushes the positively charged dye head out of the particle’s interior. The sol-

vatochromic dye’s absorption spectra changes due to the hydrophilic nature of the

environment allowing for the measurement of potassium. Here, we use this sensor

to measure the K+ concentration in the TME and extend Photoacoustic Chemical

Imaging (PACI) to incorporate K+.

3.2 Methods

3.2.1 SD2 Synthesis and Characterization

1.5g 2-methylbenzothiazole and 3.8g 1-iodooctadecane were dissolved and refluxed

in acetonitrile for 24 hours. The solution was removed from heat and allowed to so-

lidify. The crude product was precipitated in diethyl ether, collected, and washed

several times in diethyl ether. 265mg of this product, along with 122mg (dimethy-

lamino) cinnamaldehyde, was then dissolved in acetic anhydride and refluxed for

20 minutes. The reaction solution was then poured into a warm solution of 10mM

sodium iodide (in Millipore water). The dark purple precipitate was washed sev-

eral times with water, dried, and collected. Measurements were made using positive

ion electronspray mass spectrometry and performed by the University of Michigan’s
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Figure 3.1: Mass spectrum of the synthesized and purified dye using the protocol described in the
methods section. The reported mass of the dye was 559.5Da; we measured a mass of
559.4Da.

mass spectrometry core.

3.2.2 SDKNP Synthesis and Characterization

To generate a concentrated solution of nanoparticles, the following protocol was

used. 0.2mg SD2 (synthesized in house, see above), 0.9mg sodium tetrakis [3,5-

bis(trifluoromethyl) phenyl]borate, 1.2mg valinomycin, 5mg Pluronic F-127, and

8.75µL (8mg) dioctyl sebacate were dissolved in 3mL of methanol. The methanol

cocktail was then injected into 30mL of Millipore water under vigorous stirring. The

surface of the methanol-water mixture was blasted with nitrogen gas for 1 hour

to remove the methanol. The nanoparticle solution was concentrated to the de-

sired concentration using an Amicon Ultra-15 centrifuge filter (100kDa). Figure

3.2 shows the sensing mechanism solvatochromic dye, potassium-sensing nanoparti-

cle (SDKNP) which is based on equilibrium exchange between an ionophore and a

solvatochromic dye [155].

SDKNP size was evaluated using both Dynamic Light Scattering and Transmis-
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Figure 3.2: A schematic representation of the SDKNP sensing mechanism. The dark half circles
represent potassium ionophore while the ball and stick models represent the solva-
tochromic dyes. At low potassium concentration, all dyes remain in the hydrophobic
interior of the nanoparticle. As potassium concentration increases, it is chelated from
solution by the ionophore. This chelation forces the dye head from the interior of the
particle to its surface, where its sensitivity to the environment results in a change in
absorption.

sion Electron Microscopy (Figure 3.3). DLS measurements show the particles of an

average diameter of 90nm with polydispersity index of 0.107. Zeta potential measure-

ments indicated that the SDKNP is highly stable, with a zeta potential of -69.0mV.

Dynamic Light Scattering and Zeta-Potential measurements were performed at a

nanosensor concentration of 1mg/mL using a Beckman Coulter analyzer.

3.2.3 SDKNP Toxicity

HeLa cells (ATCC authenticated) were cultured in Dulbecco’s Modified Eagle

Media with 10% fetal bovine serum and 1% penicillin/streptomycin. 100,000 cells

were plated on a 24 well plate and allowed to grow over night in 1mL of growth

media. SDKNPs were incubated for various times at a concentration of 1mg/mL.

Following incubation, 500µL of incubation media was replaced with 500µL of MTT

solution (5mg/mL in PBS) and incubated for 4 hours. Once finished, all media was

removed from the wells and replaced with 1mL of DMSO. This solution was then

incubated for 1 hour at which point the solution was removed and its absorption
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Figure 3.3: Left) TEM image of the SDKNP. Right) Dynamic Light Scattering distribution for the
SDKNP. The SDKNP has an average diameter of 90nm and a polydispersity index of
0.107.

spectrum measured in a UV-VIS spectrophotometer. Absorption peaks at 590nm

were compared, and all samples were repeated four times. Figure 3.4 shows that the

SDKNP is toxic, especially beyond 6 hours of exposure.

3.2.4 Inductively Coupled Plasma Mass Spectroscopy

Tumor interstitial fluid was diluted with Millipore water by a factor of 5000 prior

to measurement with a Perkin-Elmer Nexion 2000 ICP-MS (Perkin-Elmer, Waltham,

MA, USA). The machine was calibrated using standards prepared at 50, 100, 250,

500, and 750PPB K+ using potassium chloride as a source for K+ ions.

3.2.5 PA and UV-VIS Calibrations

For the UV-VIS calibration, K+ calibration samples of 0, 1, 5, 10, 20, 30, 50, 70,

100, and 150mM K+ with 1mg/mL of SDKNP were prepared. Samples were pre-

pared in pH 7.4 MOPS-buffered saline solution containing physiologically relevant

concentrations of interfering cations: sodium (150mM), magnesium (1mM), and cal-

cium (2.6mM). The absorption spectrum for each sample was obtained for a range of
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Figure 3.4: An MTT assay shows the SDKNP is toxic, and the toxicity increases with exposure
time, though approximately 90% of cells are viable within 2 hours of exposure.

400-800nm using a Shimadzu 1600 UV-VIS Spectrophotometer (Shimadzu, Kyoto,

Kyoto, Japan). For the PA calibration, K+ calibration samples of 0, 1, 5, 10, 20, 30,

40, 50, 70, 100, and 150 mM K+ with 10mg/mL of SDKNP were prepared. 75µL

of each sample was added into a transparent PVC tubing. The tube samples were

submerged in water for acoustic coupling. The tube samples were then imaged using

a PACI system consisting of a tunable pulsed laser (Continuum, Santa Clara, CA,

USA) and a 128-element ultrasound probe with frequency range of 7 to 15 MHz

(CL15-7, Philips, Andover, MA, USA)). The tunable pulsed laser pumped by the

third harmonic of an Nd:YAG laser (Continuum, Santa Clara, CA, USA), has a

pulse duration of 5ns, a firing frequency of 10 Hz, and is capable of achieving wave-

length tuning in the range of 410-680nm and 710-2500nm. The ultrasound probe was

then connected to a commercially available research ultrasound platform (Vantage

256, Verasonics, Kirkland, WA, USA) for data acquisition. A general PA imaging

setup is shown in Chapter 1. The PA signal was obtained for 6 wavelengths of 545,
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560, 576, 584, 605, and 625 nm, chosen based on the absorption spectra obtained.

Each PA signal was averaged 20 times, with a total of 4 replicates performed for

each sample. A simple light fluence correction was performed where the PA signal

was normalized to the average energy measured for each wavelength using a power

meter (Newport, Irvine, CA, USA).

3.2.6 PA Multi-wavelength Unmixing

An identical setup to the PA calibration experiment was performed. K+ samples

of 2, 5, 20, 40, 50, and 150mM were prepared in the presence of 1% blood v/v and

10mg/mL of SDKNP as well as a blank sample which only contained saline solution.

PA imaging was conducted for 6 wavelengths of 545, 560, 576, 584, 605, and 625nm.

The wavelengths were chosen based on the isosbestic points and maximal difference

in the extinction coefficients of SDKNP and hemoglobin. Multi-wavelength unmixing

was performed according to the following steps. Firstly, at each wavelength, the PA

signal can be modeled as shown below:

(3.1) PAλ = k(ελHb[Hb] + ελHbO2
[HbO2] + ελNP [NP ])

where λ is the wavelength in nm, [SDKNP] is the SDKNP concentration, [HbO2] is

the oxyhemoglobin concentration, [Hb] is the deoxyhemoglobin concentration, ε is

the extinction coefficient, and k is a constant associated with multiple parameters

such as light fluence, the Gruneisen parameter of the sample, and the sensitivity of

the imaging system. It should be noted that εSDKNP is dependent on both λ and

the K+ concentration.

The extinction coefficients of Hb and HbO2 for each λ are known values, while the

extinction coefficient of SDKNP can be measured at each λ and for a range of K+
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values. Here, we measured the value of εSDKNP for K+ values of 0, 1, 5, 10, 20, 30,

40, 50, 60, 70, 80, 90, 100, 125, 150, and 200mM using a UV-VIS spectrophotometer.

This left only 4 unknowns in the above equation, specifically [SDKNP], [HbO2],

[Hb], and [K+]. Using simple linear algebra, the 4 unknowns can be solved by

making at least 4 separate measurements at different wavelengths. Here, we used 6

wavelengths to solve the linear equations for increased accuracy, as it is widely known

that additional measurements can help to improve the accuracy of the unmixed

results. [28, 95, 39]. A notable limitation to this technique is that the estimation

of the [K+] is based on measurements of the extinction coefficient of the SDKNP at

discrete K+ values, meaning that the values of the measured K+ are always limited

to those discrete K+ values. An alternative to this is to model the εSDKNP response

to K+ by using an equation-based approach. This approach, while allowing for

continuous K+ estimates, has its own drawbacks in that no simple equation model

can perfectly capture the εSDKNP response to K+, meaning that approximations will

have to be made, reducing the accuracy of the measurements.

3.2.7 In vivo PA Imaging of K+

Animal care was provided by the Unit for Laboratory Animal Medicine (ULAM),

and all procedures on live animals were performed in accordance with institutional

guidelines and approved by the Institutional Animal Care and Use Committee (IACUC)

at the University of Michigan. A total of 6 mice were used in the iin vivo imaging

experiment. To generate the subcutaneous tumors, approximately 1x106 9L glioma

cells (ATCC, Manassas, VA, USA) in 0.1mL of RPMI 1640 (Gibco, Waltham, MA,

USA) was injected into the thigh muscle of 5-week old nude mice (Envigo, Hunting-

don, Cambridgeshire, UK). The tumors were allowed to grow till a size of approx-

imately 1cm in diameter. 0.05mL of 10mg/mL SDKNP was then locally injected
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into the tumor, followed by PA imaging immediately after the injection. This was

repeated with the thigh muscle on the opposite flank, where 0.05mL of 10mg/mL SD-

KNP was locally injected in the thigh muscle, followed by PA imaging immediately

after the injection. All PA imaging was conducted for the same 6 wavelengths of 545,

560, 576, 584, 605, and 625nm, with a total of 80 averages per image. A simple light

fluence correction was performed where the PA signal was normalized to the average

energy measured for each wavelength using the power meter. Multi-wavelength un-

mixing was conducted according to the same protocol as previously mentioned with

the exception that only K+ values between 0-125mM were analyzed. This range was

chosen to reflect the expected biological range of the extracellular tumor K+. After

the imaging, the mice were euthanized, and the tumor harvested. An adaptation of

the protocol performed by Eil et al. was conducted to collect the extracellular fluid

from the tumor[29]. Briefly, the tumor was first flushed with saline to remove surface

blood and blotted gently with Kimwipe (Kimberly-Clark, Irving, TX, USA) to dry.

The tumor then was placed in a SpinX centrifuge tube filter (Corning, New York,

NY, USA) and centrifuged at increasing speeds of 1000, 2000, 4000, and 8000RPM

for 10 minutes each [43]. Approximately 4-10µL of extracellular fluid was collected

per tumor. The extracellular fluid was then sent for ICP-MS.

3.3 Results

We adopted a potassium sensor for the photoacoustic quantification of potassium.

To test the capabilities of the SDKNP for PACI of K+, we first compared the response

of the SDKNP to K+ using both PACI and UV-VIS spectrophotometry. Figure 3.5a

shows the absorption spectra obtained for SDKNP at various K+ levels. The largest

absorption change occurred at 605nm for the changing K+ concentrations, with a
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small opposite trend at around 545nm. The isosbestic point of the SDKNP is at

approximately 560nm. Making use of these wavelength ranges, the PA and UV-VIS

calibration ratios were plotted in Figures 3.5b-f. These calibration ratios show the

changes in the PA and the UV-VIS signals with respect to the isosbestic point for in-

creasing concentrations of K+. As the PA signal of a molecule is directly proportional

to its absorption, the PA calibration is expected to match that of the UV-VIS cali-

bration. To show the good agreement between the PA and UV-VIS measurements,

the ratios are co-plotted in Figures 3.5b-f to show the similarity between the ratios

measured by both modalities. These ratios generally showed a signal decrease with

increasing K+ concentration, with exception of the 545nm/560nm ratio. The SDKNP

is most sensitive between 0-50mM K+, an ideal range for the expected in vivo tumor

K+ concentration. Based on these results, we used the UV-VIS spectrophotometer

measurements for later calibrations, as they generally provided measurements with

very low noise levels.

Next, we analyzed the capability of separating the SDKNP signal from the ex-

pected in vivo endogenous chromophores of deoxyhemoglobin (Hb) and oxyhemoglobin

(HbO2). While other chromophores such as melanin and water are also present in

biological tissue, Hb and HbO2 are expected to be the major PA signal contributors

within the 545-625nm wavelength range in the tumor. Using a similar setup as the

calibration experiment, multi-wavelength unmixing was performed for various K+

samples in the presence of 1% blood v/v. This volume of blood was used as it is

close to the estimated blood volume fraction in a tumor tissue (for breast cancer)

[129]. Using a 6-wavelength unmixing technique, the concentrations of K+, SDKNP,

Hb, and HbO2 were identified with the results shown in Figure 3.6. The Hb and

HbO2 concentrations were then combined, as the oxygenation of the sample was not
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Figure 3.5: Absorption spectra and PA K+ calibrations compared to UV-VIS K+ calibrations. (a)
Absorption spectra of SDKNP for various K+ concentrations, oxyhemoglobin (HbO2),
and deoxyhemoglobin (Hb). PA and UV-VIS ratio measurements for (b) 625nm/560nm,
(c) 605nm/560nm, (d) 584nm/560nm, (e) 576nm/560nm, and (f) 545nm/560nm. There
is excellent agreement between the PA and UV-VIS calibrations.
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controlled and the total hemoglobin (THb) concentration was expected to serve as

a more precise measurement. Within the SDKNP’s sensitivity range of 0-50mM,

the unmixed measurements of K+ concentration showed good accuracy levels (+/-

5mM), with exception of the 20mM sample. Outside this range, the measurement

accuracy drops rapidly, although qualitative increases can be observed, as is shown

by the significantly lower PACI estimate of 76mM for the 150mM K+ sample. There

is also some noticeable bleed through of the SDKNP and blood signals at higher

K+ concentrations. This is most likely due to the absorption spectra of the SD-

KNP being more similar to blood at higher K+ concentrations, especially that of

deoxyhemoglobin (Figure 3.5a). It should be noted that this does not affect the

K+ measurement significantly, as most of the error is localized in the [SDKNP] and

[THb] measurements. Finally, the blank sample showed almost no detectable signal

throughout, as expected.

After verifying the ability to measure the K+ signal in vitro in the presence of

blood, we then tested the ability to perform in vivo measurement of K+ in a sub-

cutaneous tumor mouse model. We locally injected 0.05mL of 10mg/mL SDKNP

into the tumor and the thigh muscle of the mice before conducting PACI at the 6

wavelengths. Figure 3.7a shows an example of the map of oxygen saturation, SD-

KNP concentration, and K+ concentration in the tumor and the muscle as measured

by PA multi-wavelength unmixing for an individual mouse. Figure 3.7b shows the

average hemoglobin oxygen saturation across all mice (n=6). While there is a slight

decrease in the average tumor hemoglobin oxygen saturation compared to the muscle

(47.5% compared to 52.3%), it was not statistically significant in this study. Figure

3.7c shows the average SDKNP concentration across all mice, where there was no

significant difference detected between the tumor and the muscle). As equal con-
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Figure 3.6: PA multi-wavelength unmixing for SDKNP samples in a tube for determining total
hemoglobin concentration ([THb]), SDKNP concentration ([SDKNP]), and K+ concen-
tration ([K+]). All samples contain SDKNP and 1% blood v/v at the specified K+

concentrations, with exception of “Blank”, which only contains saline solution. Sample
values of K+ are provided at the top of the figure, while the measured values obtained
via deconvolution are given at the bottom of the figure. Measured values pertain to the
average K+ in the region of interest outlined by the white box.
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Figure 3.7: In vivo PA imaging with overlaid ultrasound images of subcutaneous tumors and thigh
muscles (control) in nude mice. (a) Multi-wavelength unmixing performed to identify
the hemoglobin oxygenation saturation (%SO2), SDKNP concentration ([SDKNP]), and
K+ concentration ([K+]). The average value across all mice (n=6) in the tumor and the
muscle for (b) %SO2, (c) [SDKNP], and (d) [K+], as determined by multi-wavelength
unmixing. ‘N.S.’ indicates no significance, ‘*’ indicates p less than 0.05.

centrations of SDKNP were injected into the tumor and the muscle, this result was

expected. Figure 3.7d shows the average K+ concentration between the tumor and

the muscle, where the tumor K+ was significantly higher than the muscle K+. We

observe an average K+ concentration of 29mM (range of 22-49mM) in the TME, as

expected from the predicted 5-10 fold increase [29, 143]. In the muscle samples, we

see an average concentration of 19mM (range of 14-24mM), which is higher than

naively expected.

To validate the accuracy of the K+ measurements in vivo, we then measured the

average K+ within the tumor via a method involving centrifugation to extract the
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Figure 3.8: Average K+ measurement in the tumor from PA imaging vs ICP. Average K+ in the
tumor for (a) individual mouse measurements, and (b) across all mouse samples (n=6).
‘N.S.’ indicates no significance. (c) Correlation analysis between the ICP and the PACI
measurements.

interstitial fluid of the tumor, followed by inductively coupled plasma mass spec-

troscopy (ICP-MS) to measure the K+ concentration of the extracted fluid. The

centrifugation method was used by Eil et al. to measure the K+ concentration of the

tumor [29]. The results of the ICP measurements are compared to the PACI mea-

surements in Figure 3.8. Figure 3.8a shows the average K+ concentration measured

by PACI vs ICP for each of the individual mouse tumors. Figure 3.8b shows a box

plot of the distribution of average K+ measurements for PA imaging and ICP. Here,

the mean value of K+ measured using PACI was 29mM (range of 22-49mM), identical

to the ICP value of 29mM (range of 15-48mM). Figure 3.8c shows the correlation

between the average K+ measurements made by PACI as compared to the ICP mea-

surements. Generally, there was good agreement between the two K+ measurements,

with a correlation value of 0.70.

To further analyze the capability of our PACI technology for detecting spatial

information within the tumor, we analyzed the K+ distribution within the tumor

core and the periphery. As it has been reported that the necrotic core was the cause
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Figure 3.9: Further analysis of the measured K+ within the tumor core vs the tumor periphery. (a)
An overlaid PA and ultrasound image showing the regions of interest of the core and
the periphery, outlined in red. (b) Measured K+ concentrations for each mouse for the
tumor core and the tumor periphery.

of the elevated K+ in the tumor, we wanted to identify if there was a difference in

the K+ concentration within the tumor core (where the necrotic cores are expected),

as compared to the peripheral regions of the tumor. Based on this, we would expect

to see a higher K+ concentration in the tumor core as opposed to the periphery. The

results of our analysis are shown in Figure 3.9, where an example of the determined

regions of interest are shown in Figure 3.9a. The cores were demarcated by taking

a region of approximately 40% of the entire demarcated tumor, centered around the

estimated geometric center of the tumor. Here, we noted that there was an increase

in the measured K+ concentration in the tumor core for almost all the tumors (Figure

3.9b), although this increase was small (3mM or 10% higher). These observations

suggest that elevated K+ within tumors may not be uniform, and that this spatial

difference can potentially be detected via PACI.
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3.4 Discussion

In this study, we demonstrate the ability of PACI to measure the K+ concentration

in a tumor in vivo, and show the elevated K+ concentration in the tumor compared

to the muscle tissue. These results were verified using ICP-MS with good correlation

between the two independent measurement techniques (r2=0.70). While Eil et al.

have demonstrated that TME hyperkalemia induces elevated intracellular K+, it

remains unknown at what K+ threshold this suppressive effect manifests itself. The

ability to measure K+ concentrations in vivo could provide an essential tool to the

field of immunology, with studies no longer having to rely on in vitro measurements of

K+ at single time points with no spatial resolution. Additionally, an example of the

spatial distribution of the TME hyperkalemia, as measured by our PACI technique,

have been provided here. While the observed tumor K+ heterogeneity was small, this

may not be the case at a different time point of the tumor’s development, especially

at long times and large tumors. PACI of K+ is ideally suited for characterizing these

physiological phenomena, allowing for quantitative and spatial measurements of K+

in an in vivo mouse tumor, and potentially in a patient’s tumor.

There are still improvements that can be made with the K+ measurement. Re-

garding the discrepancies seen in Figure 3.6, besides instrument calibration errors

(UV-VIS spectrophotometer, ICP-MS), the PACI errors are mainly attributed to

inaccuracies in the multi-wavelength unmixing technique, due to the wavelength-

dependent light fluence attenuation in the sample, namely the “rainbow effect”, and

the wavelength-dependent laser energy output. While the latter is mostly corrected

for by monitoring the laser energy through the partial reflector in the setup, the

former is significantly more challenging to correct. A significant amount of research
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has been dedicated to this area, where methods to model the light fluence distri-

bution in a tissue sample are being studied [65, 3, 62]. Without this wavelength-

dependent light fluence correction, quantitative PA imaging is usually limited to sur-

face/subcutaneous tumors. In a previous study, we have shown good accuracy within

6mm depth from the tumor surface [52]. Besides light fluence modeling, increasing

the number of wavelengths used in the imaging and multi-wavelength unmixing can

also improve the accuracy of the measurements [28, 95, 39]. The latter method, how-

ever, has its own drawbacks in that the imaging time will be significantly increased,

depending on the number of wavelengths desired.

Additionally, there are some concerns regarding the toxicity of the current formu-

lation of the SDKNP. While not having significant toxicity within 2 hours, prolonged

exposure does cause significant cell death in an MTT study. This toxicity is largely

attributable to the use of valinomycin as the K+ ionophore. However, there are ad-

justments that can be made to the nanoparticle matrix to allow for substitution with

a less toxic ionophore, such as BME-44. Notably, the Pluronic polymer is highly bio-

compatible and in wide medical use [6]. That being said, the strength of using these

ionophore-based optical sensors is the relative ease at which sensors for other materi-

als can be developed. For example, substituting valinomycin for a sodium ionophore

allows for the development of a PA sodium sensor with relative ease. Additional sub-

stitution of ionophores and plasticizers would allow for sensing multivalent cations,

such as magnesium, calcium, or transition metal ions, though non-trivial adjustments

would be required, especially as the physiological concentrations of these species are

much lower than that of K+.



CHAPTER IV

Morphodynamic Cell Phenotype Classification with
application to Cancer

This chapter has been adapted from the following publication to add additional

data and emphasize personal contributions:

Elbez R*, Folz J*, McLean A, Roca H, Labuz JM, Pienta KJ, Takayama S, and

Kopelman R. ”Morphodynamic Cell Phenotype Classification with application to

Cancer” in submission ’*’ indicates co-first author

4.1 Introduction

Cancer lethality is overwhelmingly due to metastasis, the process by which cells

from the original cancerous tumor leave their environment and disseminate to colo-

nize new tissues [106]. During this metastatic process, motile cells escape the origi-

nal tumor by intravasation. Separated single cells or multi-cellular clusters migrate

through the extra-cellular matrix (ECM) surrounding the tumor, passing through the

endothelium into the bloodstream. Upon entering the bloodstream, cells and clus-

ters are buffeted by hemodynamic forces on the range [88, 145] of 4-30 dyns/cm2.

Additionally, these cells must contend with immunological insults and collisions with

red blood cells. Having survived under these conditions, cancer cells must latch onto

epithelial cells and extravasate into “foreign” tissue, so as to seed a secondary tumor.

47



48

To survive this gauntlet of challenges, metastatic cells must express entirely dif-

ferent phenotypes than their stationary counterparts. Specifically, the epithelial to

mesenchymal transition (EMT) permits the relatively stationary, epithelial cells of

solid tumors to obtain the mobility required so as to intravasate and exit the primary

tumor. It has been observed that the post-EMT amoeboid-like cells can significantly

increase the metastatic potential of the tumor [53], and morphological changes can

be used to identify cells having undergone the EMT [163]. Morphology has been fur-

ther used to predict the metastatic potential of osteosarcoma cells [25, 133], and has

been used to differentiate chemoresistant and chemosensitive cell lines [5, 4]. Work in

linking cell morphology to phenotype has come from the group of Chris Bakal, which

has developed a method for probing the relationship between individual genes and

morphology [17]. They have shown a quantitative link between cell morphology and

Rho GTPase signaling pathways [99, 104], and also claimed that transitions between

cell morphologies are switch-like rather than gradual [160].

To date, most studies of cell morphology have focused on plated, adherent cell

lines. Notably, even though clear morphological distinctions can be discerned among

cells when plated, the mere two-dimensional plating process might change their phe-

notypes and thus alter the quality of the diagnostics [19, 1, 11, 125, 33]. Furthermore,

adherent cells are restricted from freely exhibiting potential morphological changes

or morphodynamic behavior, i.e., the morphological changes in individual cells and

populations over time. Here cell morphodynamics describes a cell’s “plasticity” or

“shape shifting” capability. Thus, in this study, we combine cell magneto-rotation

with machine learning so as to examine cellular morphodynamics. Machine learning

has lent itself to many medical applications [161]; our approach allows researchers to

probe cell motility and morphological expression.
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Operationally, GFP expressing cancer cells are activated by endosomic uptake of

magnetic nanoparticles, are loaded into a microfluidic device that contains an array

of microwells, and remain non-adherent while rotating in an oscillating magnetic

field. This allows 3-dimensional cell deformations, akin to their in vivo behavior.

Most microwells contain a single cell, and in each microwell, the cell is free to take

any shape in its morphological space. After taking fluorescent images of these cells,

we combine object recognition and machine learning algorithms so as to differentiate,

cluster, and identify each of the cells by its morphological profile. We found that

cells having undergone the EMT could be distinguished from control cells, which

demonstrates a morphodynamic equivalent of a change in protein expression. Fur-

thermore, highly migratory cells were also found to be morphodynamically distinct

from a control population. This new machine learning (ML) based method appears

to have the potential to reliably map and classify the morphological distribution of a

cell population, and thus to provide information on a tumor cell population’s degree

of morphological plasticity, which may be related to its lethality. We have used this

method here to demonstrate the strong relationship between a cell’s morphological

and biological behaviors.

4.2 Methods

4.2.1 Preparation of Magnetic Nanoparticles (MNPs)

Amine-coated magnetic nanoparticles (Ocean Nanotech) with a diameter of 30nm,

are prepared in a 1mL stock solution of 200µg/mL in cell culture media. We then

add 15µL of Poly-L-Lysine at 0.1%w/v (Sigma-Aldrich), and the solution is left for

an hour on a rotator at room temperature. The solution is then filtered using a

0.2µm syringe filter.
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Figure 4.1: Photographs of the microfluidic masks. These masks are used during contact lithogra-
phy to cure SU-8 in the illuminated pattern. The masks on the left is the first layer,
which consists of the canal. The pattern on the right contains the array of triangular
microwells that are used to capture the cells.

4.2.2 Cell Culture and Magnetization

Cells were purchased from and verified by ATCC. All cell lines were stably ex-

pressing GFP. MCF-7 and MDA-MB-231 cells were cultured in DMEM supplemented

with 10% FBS and 1% Penicillin- Streptomycin- Glutamine in a 37◦C with 5% CO2

and 100% humidity. Cells’ confluency before addition of the MNPs is around 20-

30%. Cells are incubated for 24 hours with cell culture medium to which is added

(see below) 20µg/mL of amine-coated magnetic nanoparticles. These particles are

uptaken via endocytosis.

4.2.3 Microfluidic Mask Making

Microfluidic devices were prepared as described by Park [60]. Masks were pro-

duced at the University of Michigan’s Lurie Nanofabrication Facility using the Hei-

delberg µPG 501 Masker Maker. The masks for the two layer device are shown in

Figure 4.1.
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4.2.4 Microfluidic Mold Manufacture

Using the masks, a mold for the microfluidic devices is produced. Briefly, a was

vacuumed sealed to a Solitec Spinner. Approximately 1mL of SU-8 2000 was poured

onto the wafer, after which it was spun at 1500RPM to induce a 200µm thick coating.

The wafer was removed from the spinner, and placed in dark, flat space for 24 hours

so as to remove dissolved gases from the SU-8. Prior to lithography, the wafer was

prebaked at 60◦C for 10 minutes. Contact lithography was performed using the Karl

Suss MA 45s. The device was exposed as per the SU-8 manufacturer’s specifications.

Following lithography, the wafer was washed with Su-8 developer to produce features.

Undeveloped SU-8 was removed with acetone and isopropyl alcohol. The device was

given 24hours to dry before it was cleaned and the second layer applied in the same

manner as the first. The second layer uses SU-8 1500 spun at 3000RPM, and requires

no rest time due to the viscosity of SU-8 1500 and the relative thinness of the second

layer. Once the second layer has been developed, the wafer is thoroughly cleaned

using acetone and isopropryl alcohol. The mold is placed in a vacuum chamber

with PDMS-release dissolved in toluene. The vacuum is applied for approximately

5minutes to induce a low vapor pressure in the chamber, and then is sealed. The

chamber is left for 24 hours to allow proper deposition of PDMS release. Following

the 24 hours, the mold is ready for use.

4.2.5 Microfluidic Device Manufacture

To make microfluidic devices, one each of a prepared mold and a blank wafer are

placed in miniature 4 inch pie tins. The blank wafer is required, as it will form the top

layer of the microfluidic device. For each mold, 40g of polydimethylsiloxane (PDMS)

and 4g of curing agent. The two are mixed thoroughly via mechanical stirring for at
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Figure 4.2: Pictures of a microfluidic mold with improper PDMS-release deposition. The images
show the cured PDMS sitting on the mold. The devices (rectangles) have been cut out
of the PDMS layer. On a mold with quality PDMS-release deposition, all of the PDMS
can be peeled off as a single piece.

least 3 minutes. Then the 44g mixture is poured onto of the device in the pie tin. It

is then moved to a vacuum chamber where the mixture is fully degassed over several

rounds of depressurization. Once the gases have been removed, the PDMS is baked

at 100◦C for 24 hours to cure the PDMS. After baking, the individual devices are cut

out of the mold. The bottom and top layer are attached by activating the PDMS in

the Glen 100P Plasma Cleaner. Once the top and bottom of the device are attached,

the PDMS is further activated and rendered hydrophillic. Phosphate-buffered saline

is injected into the inlet port, and the devices are stored until use.

4.2.6 Microfluidic Trapping System and Cell Loading

One hour before being exposed to fluorescent light, cells are washed with Hank’s

Balanced Salt Solution (HBSS) three times to remove traces of phenol red contained

in the cell culture media, and then incubated for an hour in a colorless cell culture
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Figure 4.3: Photographs of the prepared microfluidic device. The devices are hot-glued into 60mm
Petri-dishes, which are then filled with 37◦C water to mimic in vivo conditions.

media that has been supplemented with the radical oxygen scavenger, Trolox (6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, Sigma-Aldrich), at 0.25nM.

After an hour, cells are washed with HBSS, and gently detached using a cell scraper.

Cell density is then adjusted by the help of a magnetic separator.

Cells are then gently pipetted into the microfluidic device (Figure 4.3). Each well

has a triangular shape, with a side size of 40µm and a depth of 35µm. The chip has

two ports: An inlet port and an outlet port. Cells are loaded with a 100µL pipetter

into the inlet, and gently introduced into the channel by applying negative pressure

at the outlet. Once positioned, the device is put on top of a rare earth magnet to pull

the cells down into the wells. We repeat these steps several times, until a sufficient

loading ratio is achieved (above 60% of the traps occupied by single cells). These

loading steps take around 3 minutes, and no more than 5 minutes. Finally, cells

are washed with fresh media by gently pipetting fresh media into the device (fresh

media is placed at the inlet port and pipetted from the outlet port). At the end of

the imaging series, propidium iodide is pipetted into the inlet port and the cells are

imaged so that dead cells can be removed from the analysis.
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4.2.7 Cell Imaging and Rotation

Cells are imaged on an Olympus IX71 microscope, equipped with an arc-mercury

lamp (U-RX-T) and a high definition monochromatic digital camera (Q-Imaging

Retiga 6000, 10 Megapixels). To image simultaneously multiple positions of the

device, the microscope stage is replaced with a motorized stage (ASI MS-4400 XYZ

Automated Stage). Images are captured with the software package Micro-Manager

(extension of ImageJ), while the stage is programmed and controlled via a custom

made script in Micro-Manager [97]. To protect cells from light exposure, a custom

made shutter opens for 700ms at every position each minute. Only single cells are

kept to be measured. Temperature and humidity are controlled using a homemade,

on-stage system that keeps the cells at 37◦C with 100% humidity. Cell media is

supplemented with HEPES in order to maintain pH in the absence of CO2. The

oscillating magnetic field is generated via 4 solenoids positioned around and slightly

above the microfluidic device (Figure S2). All solenoids are driven by an alternating

current with frequency of 15Hz; two solenoids are driven 90◦ out of phase. Suspended

cells rotate with a frequency of 0.1Hz.

4.2.8 Image Processing

Raw images consist of a grid of cells at regular intervals (each cell is sitting in

regularly-spaced microwells). Each live, single cell is cropped from the original image

into separate, smaller images, each consisting of a single cell. It is these cropped

images of single cells that are analyzed. The basis for measuring cell morphology

relies on the accurate delineation of a cell’s contours. This task is performed by a

pipeline with the image analysis software CellProfiler [morpho30]. Once cells are

delineated, CellProfiler measures and records the value of different morphological
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parameters, such as cell area, perimeter, extent, etc., as well as Zernike moments

and Haralick features. For a single experimental run, over 1000 individual cells are

processed, and each cell has over 100 measured features.

4.2.9 Computation

All methods described (PCA, SVM, k-NN, Random Forests, AdaBoost, cross

validation, grid search) were trained on normalized data (mean 0, standard deviation

1). Implementations were taken from the Scikit package suite, and used without any

further modification. All hyperparameters tuned are listed in Table 4.1. Training

was performed on a personal laptop.

4.3 Results

Figure 4.4 shows an image of an empty microfluidic device juxtaposed with flu-

orescence images of cells loaded into the device. As the triangular wells are clearly

deliminated, we can be confident in the device’s ability to capture cells. The un-

cropped, loaded cells are presented as an example of a raw data image. Note that

most wells contain only a single cell, while some wells contain two or three cells. Any

well containing two or more cells is rejected from analysis.

Prior to training a classifier, we use Principal Component Analysis (PCA) to

explore and visualize the data. The raw data collected from CellProfiler consists of

over 100 measured variables, making data visualization a challenge. With so many

measured parameters, it is difficult to select a subset that allows us to visualize the

data well. We would like to select a subset that separated the data points well, i.e.

maximizes the variance in the data. In essence, PCA is a dimensionality reduction

technique. Operationally, in PCA, the data is normalized and the covariance matrix

of the data is calculated against itself. The principal components are calculated as
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Figure 4.4: Left) A brightfield image of an empty microfluidic device. The triangular wells are
well-defined and regular, with side of length 40µm. Right) A fluorescence image of
GFP-expressing cells that have been loaded into the microfluidic device.

the eigenvectors and eigenvalues of this covariance matrix. The eigenvectors point

in the directions of maximum variance, and the eigenvalues represent the relative

magnitude of explained variance in each direction. We can then project our original

data onto the princiapl component space,a nd thus visualize a graph of the data

where each axes maximizes the variance of the data. Figure 4.5 shows the results of

projecting the raw data onto these principal components.

It is always the case that the greatest proportion of the variance is explained by

the first principal component. Figure 4.6 shows a modified scree plot, where the

x-axis is the nth component, and the y-axis shows the relative proportion of vari-

ance explained by that component. Here, the first component explains 97% of the

overall variance with the second component explaining 2% overall. The remaining

components individually explain a negligible proportion of the total variance. Prin-

cipal components are linear combinations of the individual parameters. Thus, their

interpretation can be challenging. By looking at the individual loadings of each

component, we can learn how strongly a given variable contributed to and correlated
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Figure 4.5: Projection of the processed cell image data onto its first three principal components.
The same plot is provided with the axis switch to provide different viewing angles. 97%
of the variance is explained by the first principal component.

Figure 4.6: A modified scree plot. It shows the relative variance explained by the first 10 principal
components. The first component dominates, with 97% of the variance.
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with a given component. For both the first and second component, the loadings were

dominated by a single variable: area and orientation, respectively. In their respective

components, the loadings for these two variables were at least an order of magnitude

larger than the second largest contributor.

Orientation, in this context, is defined as the x-axis of the cropped image and

the major length axis of the object (cell). As the cells are rotating in an oscillating

magnetic field, the orientation of the cell is liable to change upon additional rounds

of imaging. Thus, it seems unlikely that orientation represents a manifestation of a

biological condition. Cell area, however,has a simple biological interpretation: the

cell size or diameter. As we are comparing two genetically distinct cell lines, it is

reasonable to expect that the mean diameter between the two populations is different,

as has been reported [159, 128, 119].

While principal component analysis helps with data visualization, and can be

employed in classification problems, it inevitably does remove some of the information

present in a data set. Thus, we chose to return to the original, normalized data to

develop a supervised classifier for identifying the cells. To find a suitable classifier,

a grid search approach was employed. Also known as hyperparamter tuning, grid

search allows us to test the performance of learning algorithms under different initial

conditions. For example, we can compare k-Nearest Neighbor’s performance with

different values of k. In addition to grid search, we also conducted cross validation.

In cross validation, a given classifier and hyperparameter set are tested and trained

on multiple different samples of the population. This approach ensures that our

results are robust and helps avoid over-fitting.

Table 4.1 shows the best performance results of four classifiers after grid search.

Strictly, the random forest algorithm performed best, correctly identify the cells
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Table 4.1: Summary of coarse classifier optimization. Tuned hyperparameters are listed as well as
the classifier’s mean performance with the best hyperparameters obtained. Standard
deviation of classifier performance is obtained from threefold cross validation.

Classifier Hyperparameter(s) Performance (%) Standard Deviation

Support Vector Machine Kernel; regularization 86.5 1.3
Random Forest Estimators 86.9 2.0

AdaBoost Estimators; Learning Rate 83.9 1.0
k-Nearest Neighbors Neighbors 80.8 2.5

Table 4.2: Analysis of the in-class performance using the best tuned hyperparameters obtained from
grid search.

Classifier Hyperparameter(s) MCF7 (%) MDA-MB-231 (%)

Support Vector Machine Kernel= radial; C=1 87.1 85.8
Random Forest Estimators=500 86.4 87.4

AdaBoost Estimators=100; Learning Rate=0.5 83.4 84.5
k-Nearest Neighbors Neighbors=60 81.0 80.6

as ’MDA’ or ’MCF-7’ 86.9% of time time. However, its performance was within

error of the support vector machine, so those two algorithms performed comparably.

Adaboost, which is an ensemble method like random forest, performed slightly worse.

Finally, k-nearest neighbors had the poorest performance on the data set.

Since the aggregate accuracy of these classifiers can be misleading, Table 4.2 shows

the individual classification accuracy of the four classifier’s with the best performing

hyperparameters yielded form grid search. One might note that the ensemble classes

were able to better identify MDA-MB-231 cells while nearest neighbors and the

support vector machine performed better on the MCF-7 cells. However, no significant

performance differences arose in identifying the two cellular subclasses.

Finally, to gain some understanding of how the classifiers are learning, we per-

formed an ablation study. In this approach, the classification is done on the data set

while iteratively removing a single parameter from the training data. By finding the

poorest performing classifier, we can determine the ”moat significant feature” in the

data set, and gain some intuition for which parameters are the most important for
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Table 4.3: A summary of results from the ablation study. For each classifier, the worst performance
when the most significant parameter is removed from the data set. Analysis of the
average score (n=114 parameters) suggests that each parameter contributes only a small
amount to the classification.

Classifier Most Significant Feature Minimum Score (%) Average Score (%)

Support Vector Machine Cell Center X 85.6 86.4
Random Forest 8th Radial Distribution 85.3 86.4

AdaBoost 8th Radial Distribution 81.4 83.6
k-Nearest Neighbors Entropic Information Measure 80.2 80.7

classification. Table 4.3 shows the results ablation and training of the classifiers.

The ablation study suggests that no feature is particularly critical to the classi-

fication algorithms. Table ?? shows the worst performance accuracy found in the

abalation study (the worst classification accuracy corresponds to the most significant

feature). In each case, removal of the most significant feature had little impact on the

overall classification accuracy. The worst performing classifiers were all within 1%

of the average classification error, except adaboost. Both ensemble methods found

the ”8th Radial Distribution” to be the most significant feature, which suggests.

However, as the classification performance varied very little by removing individ-

ual features, the ablation study suggests that no individual parameter is critical for

learning and classification to take place.

4.4 Discussion

While the devices produced by Park have been reproduced, there remain several

improvements that could be pursued. During manufacture, precise and even de-

position of PDMS-release remains a challenge. Uneven distribution of release agent

produces microfluidic devices with damaged or missing canals. Simultaneously, molds

without proper release agent deposition become irreparably damaged quickly. Re-

garding the devices themselves, notably, cured PDMS is practically transparent, but

the devices produced as described here suffer from clouding in buffered storage so-
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lutions, which render the devices translucent to opaque. This clouding significantly

interferes with data collection. The reason for the clouding is unclear. It cannot

be attributed to Pluronic F68 or buffer salts in the storage medium, as removing

either of these components had no effect on the problem. Incomplete curing is also

unlikely to be the source, as the effect is independent of light exposure to the devices.

Fortunately, the clouding can be reversed by drying the device overnight, but this

presents the hazard of the internal canal drying out.

PCA was performed on a small data set consisting of MDA ad MCF7 cells. The

first principal component was able to explain 97% of the variance. As this component

was dominated by the Cell Area loading, it is natural to interpret that a great deal

of the variance is attributable to that parameter. However, Figure 4.5 shows that the

size variance is not polarizing, but exists spread between the two populations. Thus,

size alone is not a reliable way to identify between these two cell lines. Indeed, their

is significant variation in the literature regarding the mean cell diameter of these

lines [159, 128, 119].

It is of significant interest to identify phenotypes and sub-phenotypes of cells

robustly without costly genetic or proteomic profiling. Morphodynamics combines

several techniques and approaches to permit the classification and clustering of cells.

In previous analyses, this technique has been used to classify cells of different geno-

types, cells of different phenotypes, and was shown to serve as a suitable Proxy for

a Boyden chamber assay [109]. Here, several supervised classifiers have been trained

on a small data set. A coarse grid search was performed to find hyperparameters

better than defaults, but no extensive optimization has been performed. Three-fold

cross validation was used to verify the robustness of the results and avoid problems

associated with overfitting. Ultimately, it was found that a random forest classifier
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was best able to classify the data. No significant performance difference was found

in identifying the two subclasses. An ablation study was performed and determined

that no individual parameter was critical for the learning algorithms to classify the

cells accurately. Instead, the approach the of using a wide variety of physical and

optical features allows us to capture the information necessary to robustly classify

the cells. These algorithms were trained on relatively small data sets (approximately

3000 cells), and it is likely true that their performance could be improved with ad-

ditional data. These results offer a proof of principal that morphodynamics can be

used to identify cells using morphology alone, and offers a robust, reliable way to

identify cells and could be of significant diagnostic benefit.



CHAPTER V

Summary and Future Directions

5.1 Summary

In this work, we sought to develop technologies that could inform clinicians. The

first focus was on developing a reliable, robust potassium sensor. We chose to uti-

lize an ionophore-based sensor for their exquisite selectivity and diverse fabrication

methods. We wanted to improve on previous fluorescent potassium sensors by en-

suring that quantitative potassium measurements could be taken both in diverse

imaging modalities. For fluorescence, this goal was achieved through these use of a

reference dye, which allowed for the ratiometric imaging. The sensor was not limited

to fluorescence, however, as fluorescence is ill-suited toward in vivo measurement.

We also performed photoacoustic calibrations, and were able to show in vitro that

photoacoustic images could be generated that can carry the information of potassium

concentration.

This photoacoustic approach was then modified and extended to allow for easier

in vivo imaging. The inherent pH-cross sensitivity of the sensor was removed by re-

placing the pH dye with a solvatochromic dye. As the sensor was no longer dependent

on the concentrations of protons in the solution, we no longer had to control for pH

in our measurements. We were able to perform quantitative, in vivo measurements

63
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of potassium. We have shown that the the potassium concentration in the TME is

elevated, and determined the potassium concentration to be to 29mM. These results

were validated by ICP-MS measurement of the TME fluid’s potassium content, and

reasonable agreement (r2=0.70, m=1) was found between the two methods.

In the final chapter, the relationship between a cell’s morphology and phenotype is

explored. Currently, to determine the phenotype of cell, expensive genetic profiling or

antibody techniques are required. We sought to eliminate the need for highly specific

biomarkers by correlating a cell’s morphology to its phenotypic behavior. This goal

was accomplished by loading magnetically-activated cells into a microfluidic device.

This device was then placed into an oscillating magnetic field and fluorescence images

of the cells were gathered. Upon delineating these images and measuring a variety

of physical features, the cells were identified by a machine learning classifier. This

method was tested on two genetically distinct populations of breast cancer: MDA-

MB-231 and MCF-7 cells. An random forest classifier was trained on the data, and

able to accurately identify cells 86.9% of the time with three-fold cross validation.

5.2 Future Directions: Potassium Sensing

Photoacoustic Chemical Imaging of potassium is an attractive goal. Many bio-

logical questions, such as the rate of potassium accumulation, its distribution, and

the inhibitory dose of potassium remain unanswered. The largest obstacle moving

forward is the toxicity of the SDKNP, as its interference with measurement is difficult

to predict and it prevents intravenous injection of the nanoparticles. The source of

this toxicity is almost assuredly the potassium ionophore, valinomycin. Valinomycin

is a well-characterized apoptotic agent. To eliminate this toxicity, valinomycin must

be replaced with a less toxic ionophore, such as BME-44. Exploring alternative car-
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riers to permit valinomycin replacement with BME-44 is the most direct method of

reducing SDKNP’s toxicity.

Replacement of BME-44 in the Pluronic F127 SDKNP formulation results in re-

duced sensor response (data now shown). The reduction in sensitivity is attributed

to incomplete solvation and encapsulation of BME-44 in the Pluronic F127 micelle.

The long akyl chain in BME-44 may render it relatively liophillic compared to vali-

nomycin. BME-44 has been used for potassium sensing in mixed micelles of Pluronic

F68 and P123. The additional polypropylene blocks in P123 may help to better sol-

ubilize BME-44. Alternatively, non-Pluronic carriers could be explored. Polyvinyl

chloride is frequently employed in the construction of both standard electrodes as well

as nanosensors. Further, phospholipid micelles make an attractive choice due to the

relative ease of preparation, small radius, and ability to mimic biological structures.

The acute toxicity of the SDKNP prevented its intravenous direction. While

solving the toxicity would also likely permit the SDKNP to be administered intra-

venously, its retention in the TME could be improved by modifying the hydroxyl

groups at the ends of the Pluronic polymers. By converting these groups into pri-

mary amines, active targeting could be added to the SDKNP, such as the F3 peptide

which targets neovasculature. Active targeting increases retention time in the tumor

area, and thus would be of significant benefit to the analysis of tumor hyperkalemia.

Finally, the sensitivity of the SDKNP could be adjusted. Optimization of the rel-

ative ratios of sensing components has been performed, and our best results reported

here. However, the dynamic range of the sensor could be adjusted by modifying the

lipophilicity of the solvatochromic dye. Currently, the SDKNP is best suited for

small concentrations, approximately 0-20mM. By rendering the solvatochromic dye

more hydrophobic, it would take an increasingly large concentration of potassium to
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permit a chelation event. By shifting the dynamic range so that the greatest sen-

sitivity is observed from 5-50mM, more precise measurements could be taken using

the same approach.

5.3 Future Directions: Morphodynamics

Previously, morphodynamic analysis has been shown to separate cells from a

number of phenomenological classes. As shown here, MDA-MB-231 and MCF-7

breast cancer cells were identified and classified. These two cells lines represent

’mesenchymal’ and ’epithelial’ cell types, respectively. Morphodynamics was further

applied to PC3 and HR14 cell lines, which contained the same genotype but differed

vastly in their phenotype. Finally, MDA-MB-231 cells that migrated through a

Boyden chamber were separated from a control population of MDA cells. These

results suggest that morphodynamics is capable of delineating among cell phenotypes

without the need for specific biomarkers.

To improve these results, the morphodynamic analysis must be associated with

relevant biological data. While delineating two behaviorally distinct cell lines is

significant, it will be of great interest to determine the expression profiles of mor-

phodynamically identified populations differ. These expression profiles could take

the form of gene sequencing, RNA sequencing, or protein expression profiles. How-

ever, it is a significant challenge to gather genetic data about single cells after they

have been analyzed via morphodynamics. To move forward, splitting populations

prior to training (50% of cells for morphodynamics, 50% of cells for genetic profil-

ing) may offer a starting point. Alternatively, anti-body labeling of cell populations

may also be of significant benefit as a ’gold standard’. For the case of epithelial

versus mesenchymal cells, the use of a fluorescent EpCAM anti-body could be used
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to demonstrate the expression of epithelial cell adhesion molecules in epithelial cells

that should be absent in the mesenchymal cell line. This experiment would allow

fundamental expression patterns to be linked to the morphodynamic analysis.

From an experimental stand point, morphodynamics could be improved by gath-

ering additional information, particularly about the cell nucleus. A simple cell stain,

such as DAPI, could allow for morphological information about cell nuclei to be

gathered along with whole-cell morphologies. In addition, further optimization of

the classifiers could be done. Alternatively, other approaches could be adopted, such

as neural networks or, as previously done, unsupervised learning algorithms. While

unsupervised learning algorithms have the advantage of making no inherent assump-

tions about the underlying biological data, the results of such analyses are difficult

to interpret without additional biological data. Identified subphenotypes may be

attributed to noise, variations in the cell cycle, or true morphological manifestations

of cell phenotypes. Further testing would be required to confirm these results.
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