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ABSTRACT

Directed networks and bipartite networks, which exhibit unique asymmetric con-

nectivity structures, are commonly observed in a variety of scientific and engineering

fields. Despite their abundance and utility, most network analysis methods only con-

sider symmetric networks. In this thesis, we develop statistical methods and theory

for directed and bipartite networks.

The first chapter focuses on matched community detection in a bipartite network.

The detection of matched communities, i.e. communities that consist of nodes of two

types that are closely connected with one another, is a fundamental and challenging

problem. Most widely used approaches for matched community detection are either

computationally inefficient or prone to non-ideal performance. We propose a new

two-stage algorithm that uses fast spectral methods to recover matched communities.

We show that, for bipartite networks, it is critical to adjust for the community

size in matched community detection, which had not been considered before. We

also provide theoretical error bounds for the proposed algorithm on the number

of mis-clustered nodes under a variant of the stochastic block model. Numerical

studies indicate that the proposed method outperforms existing spectral algorithms,

especially when the sizes of the matched communities are proportionally different

between the two types.

The second chapter of the thesis introduces a new preference-based block model

for community detection in a directed network. Unlike existing models, the proposed

vii



model allows different sender nodes to have different preferences to communities in

the network. We argue that the right singular vectors of a graph Laplacian matrix

contain community structures under the model. Further, we propose a spectral clus-

tering algorithm to detect communities and estimate parameters of the model. The-

oretical results show insights on how the heterogeneity of preferences and out-degrees

contribute to an upper bound of the number of mis-clustered nodes. Numerical stud-

ies support the theoretical results and illustrate the outstanding performance of the

proposed method. The model can also be naturally extended to bipartite networks.

In the third chapter, we propose a dyadic latent space model which accommodates

the reciprocity between a pair of nodes in directed networks. Nodes in a pair in

directed networks often exhibit strong dependencies with each other, though most

widely used approaches usually account for this phenomenon with limited flexibility.

We propose a new latent space model for directed networks that incorporates the

reciprocity in a flexible way, allowing for important characteristics such as homophily

and heterogeneity of the nodes. A fast and scalable algorithm based on projected

gradient descent has been developed to fit the model by maximizing the likelihood.

Both simulation studies and real-world data examples illustrate that the proposed

model is effective in various network analysis tasks including link prediction and

community detection.
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CHAPTER I

Introduction

Networks represent interacting relationships among the components inside com-

plex systems such as social networks, technology networks, citation networks, and

biological networks, to name a few (Girvan and Newman, 2002; Goldenberg et al.,

2010). In recent years, the advances in technology have provided more network data

with increasing size and complexity (Fortunato, 2010). Because of the plethora of

network data and valuable insights about the patterns of the connections inside a

complex system that network analysis provides, network data have drawn attention

from many scientific fields. Over the past few decades, extensive network analysis

tools have been developed in a broad range of fields to understand the structures

and features of complex network systems (Newman, 2018).

Among several forms of networks that exist in nature, directed networks and bi-

partite networks are two commonly observed networks. These two types of networks

are distinguished by the asymmetric connectivity structures among the nodes in-

side the networks. A bipartite network is a network which has nodes of two types

and whose connections exist only between nodes of different types (Newman, 2018).

Nodes of the same type are not connected. Bipartite networks can represent many

systems consisting of objects of two types, such as a network of actors and movies,
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a network of papers and authors, and a network of users and items. Let n1 denote

the number of type-1 nodes and n2 be the number of type-2 nodes, then the (binary)

adjacency matrix A corresponding to a bipartite network is of n1 × n2 dimension

with elements Aij such that Aij = 1 if type-1 node i connects to type-2 node j, and

0 otherwise.

A directed network, also called digraph, has directionality on each edge, pointing

from one node to another. Many real-world networks are directed such as the World

Wide Web, email networks and social networks (e.g. Twitter, instagram). In a

directed network, every node has two degrees, the out-degree and the in-degree,

where the in-degree of a node is the number of incoming edges for that node and the

out-degree is the number of outgoing edges. The in-degree and out-degree indicate

the node’s tendency to receive and send edges. In directed networks, a commonly

observed phenomenon for a pair of nodes is that the incoming edge and the outgoing

edge are often dependent, the so-called reciprocal relationship. Let n denote the

number of nodes, then the (binary) adjacency matrix A is of n × n dimension with

elements Aij such that Aij = 1 if node i sends an edge to node j, and 0 otherwise.

Community detection is a fundamental problem in network analysis, either as

a goal or as an stepping stone for other learning tasks (Abbe, 2018). The goal

of community detection is to partition the nodes in a network into clusters whose

components are densely connected with each other. In general, a community refers to

a groups of nodes whose connectivity behavior to other groups of nodes are similar.

There are several approaches for community detection. One approach is to optimize

some global criteria over possible partitions, such as graph cuts, spectral clustering

and modularity. There are also model-based methods, i.e. fitting a probabilistic

model with community memberships (Zhao et al., 2012). Popular models include the
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stochastic block model and its variants, the latent position cluster model (Handcock

et al., 2007) and the random dot product graph (Young and Scheinerman, 2007).

Perhaps the best studied models in community detection are the stochastic block

model (SBM) (Holland et al., 1983) and its variants, such as the degree-corrected

stochastic block model (Karrer and Newman, 2011; Zhao et al., 2012), and the mixed

stochastic block model (Airoldi et al., 2008). The stochastic block model assumes

that edge probabilities only depend on community memberships. Numerous stud-

ies have been conducted on several types of spectral clustering methods under the

stochastic block model or the degree-corrected stochastic block model (Rohe et al.,

2011; Sussman et al., 2012; Jin et al., 2015; Lei et al., 2015) (See review for SBM in

(Abbe, 2018).

Though the stochastic block model and its variants enjoy the simple structure and

ability to summarize a network, they sometimes can be too restrictive. Latent space

models, first proposed by (Hoff et al., 2002), have been popular network models due

to its flexibility and interpretability. In latent space models, each node is represented

by a vector zi in a low-dimensional Euclidean space. Given latent positions of two

nodes, the edge probability is modeled as a function of their positions. For instance,

(Hoff et al., 2002) used −‖zi − zj‖2 as the distance model, i.e. two nodes are more

likely to be connected if zi and zj are close to each other. This concept has been

extended in several follow-up works. For example, the multiplicative effect and the

random effect modeling were introduced to capture second or third order dependency

in networks. Random effects for degree heterogeneity were also introduced. Markov

Chain Monte Carlo is often used for model fitting and inference for these models.

However, using Markov Chain Monte Carlo makes it difficult to apply these models

to large networks. To overcome this challenge and build more general models, Ma
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et al. (2020) and Wu et al. (2017) introduced variants of the latent space model and

proposed to fit models using projected gradient descent algorithms. There have been

other approaches based on matrix decomposition. For example, graph embedding

methods based on matrix decomposition (Belkin and Niyogi, 2003; Kunegis and

Lommatzsch, 2009; Athreya et al., 2017) have been popular. In these methods,

the leading eigenvectors or singular vectors of the graph laplacian matrix or the

adjacency matrix are used for estimating latent positions. Several graph embedding

algorithms for large networks with stochastic gradient descent (Grover and Leskovec,

2016; Perozzi et al., 2014) have also been developed so the computational time scales

linearly with respect to the size of the network.

Despite their abundance and utility, directed networks and bipartite networks were

given less attention compared to symmetric (undirected) networks. For example, in

practice, the most common approach to analyze directed networks is to transform

them into undirected ones first and then apply techniques that have been developed

for undirected networks. Specifically, bipartite adjacency matrix can be considered

as a special case of symmetric adjacency matrix by embedding bipartite adjacency

matrix into a larger block matrix. Directed networks are commonly transformed into

undirected networks by removing directionality. However, these approaches might

result in a considerable loss of information. In particular, we may need different

definitions for communities in bipartite networks when there are two types of nodes.

The directionality may carry useful information about the community structure and

link probability. Therefore, statistical methods designed for directed networks and

bipartite networks are demanded.

In this thesis, we develop statistical methods and theory for bipartite networks

and directed networks for three problems: (1) detection of matched communities
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between two types of nodes, (2) detection of communities under a preference-based

block model, and (3) accommodation of the reciprocal property in modeling. The

rest of the thesis is organized as follows:

Chapter II focuses on matched community detection for bipartite networks. Most

existing work (Dhillon, 2001; Rohe et al., 2016; Razaee et al., 2019) are computation-

ally inefficient, or prone to non-ideal results. Thus, we propose an efficient and robust

new two-stage algorithm based on spectral clustering to identify matched communi-

ties. We show that it is crucial to adjust community sizes in matched community

detection. Theoretical results on the upper bound on the number of mis-clustered

nodes are provided. Simulation studies and data analysis are also shown to support

the performance of the proposed algorithm.

Chapter III presents a method that considers individual differences in directed

networks for community detection. In directed networks, each node can have different

preferences to communities (Cantwell and Newman, 2019; Altenburger and Ugander,

2018). We introduce a preference-based block model that takes into account these

individual differences. We propose a spectral clustering algorithm for community

detection under the model and estimate the community memberships and model

parameters. Theoretical results for the number of mis-clustered nodes are provided

in terms of the preference heterogeneity and degree heterogeneity.

In Chapter IV, we propose a novel dyadic latent space model that considers recip-

rocal relationships in directed networks. Existing models (Hoff, 2015; Holland et al.,

1983) have considered the reciprocity with strong assumptions such as a constant

tendency of reciprocation in a network. We provide an efficient projected gradient

descent algorithm for estimation. Theoretical results on the error bounds for parame-

ters and the probability matrix are also developed. Simulation studies and real-world
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data application demonstrate the outstanding performance of the proposed method.



CHAPTER II

A Two-stage Spectral Co-clustering Algorithm for Matched
Communities

2.1 Introduction

Networks have been an important representation of relationships between enti-

ties or objects. They are commonly observed in many scientific and engineering

fields, such as social networks, biological networks, telecommunication networks etc.

A bipartite network is a network which has nodes of two different types and the

connections exist only between nodes of different types (Newman, 2018). Many real-

world systems can be represented as bipartite networks, such as actors and movies

network, papers and authors network. In addition, directed networks have also often

been treated as bipartite networks (Malliaros and Vazirgiannis, 2013) and can be

analyzed using techniques for bipartite networks.

In study of networks, it is often of interest to detect communities that consist of

nodes that are closely linked to one another. One common approach to community

detection for bipartite networks is to first use one-mode projection to transform the

bipartite network into two regular networks and then apply algorithms for regular

networks to the projected network. However, this transformation may involve infor-

mation loss. Moreover, bipartite networks show relationships between nodes of two

types more effectively than two transformed one-mode projections.

7
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The stochastic block model (SBM), proposed by Holland et al. (1983) provides

a simple way to incorporate community structures. In SBM, connectivity between

nodes are determined based on latent membership variables. For detailed survey

on SBM, see Abbe (2018). Most community detection methods under SBM have

been developed for symmetric networks. These methods can be applied to bipartite

networks as well since a bipartite network can be considered as a symmetric matrix

by embedding the bipartite network into the symmetric block matrix. To be specific,

a bipartite network with n1 type-1 nodes and n2 type-2 nodes can be expressed as a

symmetric network with n1 +n2 nodes. However, if we transform a bipartite network

into a symmetric network and apply the community detection methods developed for

the symmetric networks, this process is most likely to have type-1 nodes and type-2

nodes as in different communities since type-1 and type-2 nodes behave differently,

i.e., there is no edge between type 1 node and type-2 node. Thus, this procedure

provides community memberships for type-1 nodes and for type-2 nodes separately.

To discover community structure between two types of nodes, the transformation

may not be sufficient for bipartite networks.

Co-clustering, introduced by Hartigan (1972), simultaneously clusters the rows

and columns of a data matrix, each representing information of different types.

Dhillon (2001) studied co-clustering documents and words by concatenating the left

and the right singular vectors of the data matrix followed by a k-means algorithm.

Rohe et al. (2016) and Razaee et al. (2019) applied co-clustering to network analysis,

yet concatenation of the left and right singular vectors was not explicitly justified.

Matched co-clustering tries to obtain one-to-one matched clusters of two different

types, which is especially useful and interpretable for assortative networks.

In this chapter, we focus on matched co-clustering. We first observe that imbal-
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anced community sizes between two types of nodes can affect the performance of

existing algorithms. Then we propose a two-stage spectral co-clustering algorithm,

in which we adjust for the effect of imbalanced community sizes in singular value

decomposition. We further provide an upper bound on the proportion of the mis-

clustered nodes under a special case of the stochastic block model.

The chapter is organized as follows. Section 2.2 defines a matched stochastic block

model for bipartite networks. A two-stage algorithm for estimating the model is also

proposed. Section 2.3 studies the upper bound of the error rate to theoretically

validate the performance of the algorithm. Section 2.5 uses simulation studies to

investigate the performance of the algorithm. Applications to real-world data sets

are presented in Section 2.6.

2.2 Methodology

In this section, we first review related methods then introduce our proposed

method for matched co-clustering.

2.2.1 A brief review of existing spectral co-clustering algorithms

We first give an overview of previous spectral matched co-clustering algorithms

for bipartite networks. Dhillon (2001) proposed a spectral co-clustering algorithm to

cluster documents and words simultaneously. Specifically, they posed co-clustering as

a bipartite graph partitioning problem and solved the problem using singular value

decomposition (SVD) of the bipartite Laplacian matrix. Unlike regular spectral

clustering, concatenation of the right and the left singular vectors is the key step

for simultaneous co-clustering. The concatenation was motivated by the observation

that a partitioning vector whose elements’ values are the same if the corresponding

nodes are in the same community, minimize the normalized-cut objective function
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regardless of the node’s type. However, the observation does not exactly hold true

when relaxation is allowed to apply SVD.

Rohe et al. (2016) and Razaee et al. (2019) proposed variants of the algorithm

for networks along with regularization for sparsity and row normalization for degree

heterogeneity, which are frequently used in network analysis. They both introduced

stochastic block models for bipartite networks. Both algorithms concatenate the left

and the right singular vectors to cluster two different types of nodes simultaneously.

Specifically, Rohe et al. (2016) focused on discovery of asymmetric nodes and direc-

tional communities considering that the sending behavior and the receiving behavior

of nodes can be different. The resulting directed network can be naturally perceived

as a special case of bipartite network. They also proved that their algorithm can

estimate the clusters of each type consistently under certain conditions. Razaee

et al. (2019) attempted to match communities of different types. They focused on

incorporation of node covariates, which might contain additional information, based

on a variational inference method. They also proposed a variant of the spectral co-

clustering algorithm of Dhillon (2001) as the initialization step for the variational

inference.

Both algorithms (Rohe et al., 2016; Razaee et al., 2019) used the concatenation of

the left and the right singular vectors and applied spectral clustering on the concate-

nated singular vectors. This procedure clusters relatively close points of two types

together, using similar techniques as in correspondence analysis. In other words,

similar points from the concatenated singular vectors are clustered together even if

the population version of the points from the concatenated singular vectors do not

match. The right and the left singular vectors can be considered as some representa-

tion in a low-dimensional latent space and similar positions imply their similarity in
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stochastic behavior in the network. The process is akin to correspondence analysis,

which is further studied in Zha et al. (2001). None of the above algorithms take

into account the fact that the equality of the population centroids of the left and the

right singular vectors is not guaranteed. In order to address this issue, we propose

an algorithm that adjusts the population centroids of two types to be the same un-

der a model for matched communities. The algorithm not only enables more robust

clustering results but also is theoretically valid.

2.2.2 Model setup

We propose our model based on the Stochastic Block Model (SBM), a popular

and well-studied model for community detection (Rohe et al., 2011; Amini et al.,

2013). In the context of bipartite networks, consider a network with n1 nodes of

type-1 and n2 nodes of type-2 represented by an adjacency matrix A ∈ {0, 1}n1×n2 .

Let Mn,K ∈ {0, 1}n×K be the set of all n ×K matrices where each row has exactly

one 1 and (K − 1) 0’s. For any Z1 ∈ Mn1,K (Z2 ∈ Mn2,K), we call Z1 (Z2) a

membership matrix of type-1 (type-2). Denote the community label of a type-1

node i by z1i ∈ {1, · · · , K}, thus the ith row of Z1 is 1 in column z1i and 0 elsewhere.

Similarly, denote the community label of a type-2 node j by z2j ∈ {1, · · · , K}, and

the jth row of Z2 is 1 in column z2j and 0 elsewhere. Let G1,k = G1,k(Z1) = {1 ≤

i ≤ n1 : z1i = k}, G2,k = G2,k(Z2) = {1 ≤ j ≤ n2 : z2j = k}, n1,k = |G1,k|, and

n2,k = |G2,k| for 1 ≤ k ≤ K. Let n1,min = min1≤k≤K n1,k, n2,min = min1≤k≤K n2,k,

n1,max = max1≤k≤K n1,k, and n2,max = max1≤k≤K n2,k.

Definition II.1. Matched stochastic block model (MSBM) for bipartite network.

Let Z1 ∈ Mn1,K and Z2 ∈ Mn2,K be membership matrices. Assume the block prob-

ability matrix B ∈ [0, 1]K×K is positive definite. Given Z1, Z2 and B, the edge
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variables Aij’s are independent Bernoulli random variables with

(2.1) E[Aij|Z1, Z2] = Bz1iz2j .

Further, the node i of type-1 and the node j of type-2 are in the same matched

community if z1i = z2j.

Note the expression (2.1) can be written in a matrix form as P = E[A|Z] =

Z1BZ
ᵀ
2 . The MSBM is parametrized by matrices (Z1, Z2, B). In MSBM, nodes of

different types are in the same matched community if they are labeled the same.

We wish to match two communities of different types if they have assortative rela-

tionship. Assortative community structure in a bipartite network is slightly different

from that of a SBM. By its nature, a bipartite network has strong disassortative

structures among nodes of type-1 (or of type-2) as no edge exists between nodes of

the same type. This requires the assortative relationship in a bipartite network be

defined on the edges between type-1 and type-2 nodes, where edges exist. Although

there are multiple definitions for assortativeness in SBM in the literature (Binkiewicz

et al., 2017; Amini et al., 2018), all definitions refer to the rough concept that there

are more edges within a community than between communities. Here, we adopt pos-

itive definiteness to define assortativeness for bipartite networks (Binkiewicz et al.,

2017).

It is also important that B is a symmetric matrix. A SBM of undirected network

can naturally be extended to bipartite networks by restricting the SBM to have no

edge between nodes of the same type (Larremore et al., 2014; Razaee et al., 2019).

Such a restriction on SBM results in the symmetry of B in MSBM. Therefore, for

type-1 nodes i 6= i′ and type-2 nodes j 6= j′, if i and j are in the same matched

community and i′ and j′ are in the same matched community, then Bgigj′
= Bgi′gj
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by Definition II.1.

Note the MSBM can be thought of as a special case of SBM with 2K communities.

Let n = n1 + n2 denote the total number of nodes of both types. For any adjacency

matrix A ∈ {0, 1}n1×n2 generated from MSBM, we have

E

 0 A

Aᵀ 0

 =

Z1 0

0 Z2


 0 B

B 0


Zᵀ1 0

0 Zᵀ2

 = ZB′Zᵀ

where Z =

Z1 0

0 Z2

 ∈ Rn×2K and B′ =

 0 B

B 0

 ∈ RK×K .

(2.2)

Note Z ∈ Mn,2K . Thus, SBM by itself perceives that there are 2K communities

in MSBM. To obtain MSBM, however, we need to know the one-to-one matching

between the communities in both types, i.e. which label in type-1 is matched to a

label in type-2. Since communities are only detectable up to permutation, apply-

ing community detection methods for SBM directly to MSBM may not be able to

match communities. This necessitates the definition of MSBM for the purpose of

co-clustering.

2.2.3 Spectral clustering

Investigating the SVD structure of the mean matrix P provides heuristics for

spectral clustering because A can be treated as a noisy version of P . The following

lemma explains the structure of the singular vectors of A under MSBM.

Lemma II.2. Basic SVD-structure of the mean matrix P = E[A]. Let (Z1, Z2, B)

parametrize a MSBM with K communities, where B is a positive definite matrix with

full rank K. Let UDVᵀ be the singular value decomposition of P . Then, U = Z1CU

where CU ∈ RK×K and V = Z2CV where CV ∈ RK×K. In addition, the directions of

the row vectors in CU and CV depend on the size of the communities.
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Proof Let ∆1 = diag(n1,1, · · · , n1,K), ∆2 = diag(n2,1, · · · , n2,K),

P = Z1BZ
ᵀ
2 = Z1∆

−1/2
1

(
∆

1/2
1 B∆

1/2
2

)
∆
−1/2
2 Zᵀ2 .

Let singular value decomposition of ∆
1/2
1 B∆

1/2
2 be XDYᵀ. Then, the SVD of P

is (Z1∆
−1/2
1 X )D(Z2∆

−1/2
2 Y)ᵀ, which leads to U = Z1∆

−1/2
1 X and V = Z2∆

−1/2
2 Y .

Thus, we have CU = ∆
−1/2
1 X and CV = ∆

−1/2
2 Y .

Define the Laplacian matrix L ∈ Rn1×n2 as L = D
−1/2
1 AD

−1/2
2 , where the diagonal

matrices D1 ∈ Rn1×n1 and D2 ∈ Rn2×n2 are defined as D1 = diag(
∑n2

j=1 Aij, i =

1, · · · , n1) and D2 = diag(
∑n1

i=1Aij, j = 1, · · · , n2) respectively. Let the population

version Laplacian matrix be L = D−1/2
1 PD−1/2

2 , where D1 = diag(
∑n2

j=1 Pij, i =

1, · · · , n1) and D2 = diag(
∑n1

i=1 Pij, j = 1, · · · , n2) respectively. Then an analogous

lemma for the Laplacian matrix is as follows.

Lemma II.3. Basic SVD-structure of the mean matrix L = D−1/2
1 PD−1/2

2 . Let

(Z1, Z2, B) parametrize a MSBM with K communities, where B is positive definite

with full rank K. Let UDVᵀ be the singular value decomposition of L. Then, U =

Z1CU where CU ∈ RK×K and V = Z2CV where CV ∈ RK×K. In addition, the

directions of the row vectors in CU and CV depend on the size of the communities.

Note that the left and right singular vectors of the mean matrix P (or L) depend

on the community sizes in each type, thus the left and right singular vectors that

belong to the same matched community may not be the same. This implies that there

are more than K distinct rows which would make clustering challenging unless the

ratio of community sizes are all the same so that ∆
1/2
1 B∆

1/2
2 is symmetric. Therefore,

the performances of previously existing methods depend on the closeness between

the centroids of type-1 and the corresponding centroids of type-2.
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In other words, matched cluster memberships can only be found if the variation

of singular vectors of the observed matrix A or L is not large and the matched

community centroids of both types are close enough. This sheds light on when

previously existing algorithms could cluster two types simultaneously and when they

will fail. Also note that if we adjust for the effect of the community sizes, we could

make the centroids of each matched community to be the same. Specifically, let the

adjusted mean matrix P̃ = W
−1/2
1 PW

−1/2
2 , where W1=diag(n1,z1i , i = 1, · · · , n1)

and W2=diag(n2,z2j , j = 1, · · · , n2). Then we have the following lemmas.

Lemma II.4. Basic SVD-structure of P̃ . Let (Z1, Z2, B) parametrize a MSBM with

K communities, where B is a positive definite matrix with full rank K. Let ŨD̃Ṽᵀ be

the singular value decomposition of P̃ . Then, we have Ũ = Z1CŨ where CŨ ∈ RK×K,

and Ṽ = Z2CṼ where CṼ ∈ RK×K. In addition, we have ∆
1/2
1 CŨ = ∆

1/2
2 CṼ , where

∆1 = diag(n1,1, · · · , n1,K), ∆2 = diag(n2,1, · · · , n2,K).

Proof Note

P̃ = W
−1/2
1 PW

−1/2
2 = W

−1/2
1 Z1BZ

ᵀ
2W

−1/2
2 = Z1∆

−1/2
1 B∆

−1/2
2 Zᵀ2 .

Let the singular value decomposition of B be X D̃X ᵀ. Then, the SVD of P̃ is

(Z1∆
−1/2
1 X ) D̃(Z2∆

−1/2
2 X )ᵀ, which leads to Ũ = Z1∆

−1/2
1 X and Ṽ = Z2∆

−1/2
2 X .

Then, we have CŨ = ∆
−1/2
1 X and CṼ = ∆

−1/2
2 X . �

Lemma II.5. Basic SVD-structure of L̃. Let (Z1, Z2, B) parametrize a MSBM with

K communities, where B is a positive definite matrix with full rank K. Let ŨD̃Ṽᵀ be

the singular value decomposition of L̃. Then, we have Ũ = Z1CŨ where CŨ ∈ RK×K,

and Ṽ = Z2CṼ where CṼ ∈ RK×K. In addition, we have ∆
1/2
1 CŨ = ∆

1/2
2 CṼ , where

∆1 = diag(n1,1, · · · , n1,K), ∆2 = diag(n2,1, · · · , n2,K).



16

Proofs for Lemma II.3 and Lemma II.5 are provided in the appendix. Note the

above observation suggests how we can adjust the adjacency matrix or the Laplacian

matrix to match the centroids of two types.

If the true community size of each type corresponding to each node is known,

such adjustment will result in K distinct directions in the row vectors, and also the

population centroids for the two types being exactly the same. However, in practice,

the true community sizes are unknown and therefore should be estimated.

2.2.4 Proposed algorithms

In this subsection, we propose two spectral co-clustering algorithms using the

adjacency matrix or the Laplacian matrix based on Lemma II.4 and Lemma II.5

respectively. Algorithm II.1 uses the adjacency matrix, and Algorithm II.2 uses

the Laplacian matrix. Both algorithms consist of two stages, where the result from

the first stage is committed to estimating corresponding community sizes. In both

algorithms, Steps 1-2 are standard whereas the rest steps are committed for making

adjustments. Denote n̂1,k (n̂2,k) as the estimated community size of type-1 (type-2).

Similarly, Ŵ1 denotes diag(n̂1,z1i , i = 1, · · · , n1) and Ŵ2 denotes diag(n̂2,z2j , j =

1, · · · , n2).

Algorithm II.1 Using the adjacency matrix

1: Input: bipartite adjacency matrix A ∈ {0, 1}n1×n2 and number of communities K
2: Compute K left and K right singular vectors U ∈ Rn1×K and V ∈ Rn2×K corresponding to the
K largest singular values of A. Run k-means separately on rows of U and rows of V .

3: Based on the result from 2, construct diagonal matrices Ŵ1 and Ŵ2, where each diagonal
element is the estimated size of the community that the corresponding node belongs to.

4: Let Â = Ŵ
−1/2
1 AŴ

−1/2
2 . Compute K left and K right singular vectors Û ∈ Rn1×K and

V̂ ∈ Rn2×K corresponding to the K largest singular values of Â.

5: Concatenate Ŵ
1/2
1 Û and Ŵ

1/2
2 V̂ and run k-means on the concatenated matrix to obtain K

clusters.
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Algorithm II.2 Using the Laplacian matrix

1: Input: bipartite adjacency matrix A ∈ {0, 1}n1×n2 and number of communities K

2: Form L = D
−1/2
1 AD

−1/2
2 . Compute K left and K right singular vectors U ∈ Rn1×K and

V ∈ Rn2×K corresponding to the K largest singular values of L. Run k-means separately on
rows of U and rows of V .

3: Based on the result from 2, construct diagonal matrices Ŵ1 and Ŵ2, where each diagonal
element is the estimated size of the community that the corresponding node belongs to.

4: Let Â = Ŵ
−1/2
1 AŴ

−1/2
2 , D̂1=diag(

∑
j Aij/n̂2,ẑ2j , i = 1, · · · , n1) and

D̂2=diag(
∑
iAij/n̂1,ẑ1i , j = 1, · · · , n2).

5: Let L̂ = D̂
−1/2
1 ÂD̂

−1/2
2 . Compute K left and K right singular vectors Û ∈ Rn1×K and V̂ ∈

Rn2×K corresponding to the K largest singular values of L̂.

6: Concatenate Ŵ
1/2
1 Û and Ŵ

1/2
2 V̂ and run k-means on the concatenated matrix to obtain K

clusters.

Understandably, the performance of the second stage depends on the performance

of the first stage, and when the result from the first stage is moderately good, we

expect improved performance in the second stage. Further, note the singular vectors

multiplied by square root of the corresponding estimated community size are used as

the input of the k-means algorithm in the last step of the above algorithms. One can

also use regularization techniques for better concentration of singular vectors when

the network is sparse (Chaudhuri et al., 2012; Amini et al., 2013; Joseph et al., 2016).

For example, L and L̂ in Algorithm II.2 can be replaced by regularized versions.

The proposed algorithms are expected to set the centroids of the matched commu-

nities to be the same so that co-clustering would be more effective than previously

existing methods. However, it should be noted that is an interplay between the

variance of singular vectors and the distance between the centroids of the two types.

The proposed algorithm reduces the distance between matching centroids, but it may

increase the variance of the singular vectors, which is also an important factor for

clustering. This phenomenon might be explained by using similar techniques pre-

sented in Sarkar et al. (2015), where they compared the performance of the Laplacian

matrix with that of the adjacency matrix. The performance of a particular spectral
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clustering algorithm depends on parameter regimes, while obtaining exact parameter

regimes could be complicated due to the two stages in the algorithms. In simula-

tion studies, we show the proposed algorithms work well especially when the ratio of

community sizes between two types are imbalanced.

2.3 Theoretical results

In this section, we investigate theoretical properties of the proposed algorithms

under the MSBM model. For simplicity, we use the adjacency matrix to illustrate

the theoretical results, rather than the Laplacian matrix. It has been shown that

concentration of eigenvectors from adjacency matrix and laplacian matrix, which

is closely related to the performance of spectral clustering, has identical rate of

convergence (Sarkar et al., 2015). Throughout the analysis, we assume that the

numbers of nodes of the two types do not differ much (i.e. O(n1/n2) = 1).

Our analysis consists of two parts. In the first part, bounds on the mis-clustering

error of each type are obtained separately. This step is akin to the results of SBM

with 2K communities. In the second part, matched mis-clustering rate is derived

based on the mis-clustering rate of the first stage. The main component of the proof

is to bound the difference between singular vectors of the adjusted adjacency matrix

Â and those of the correctly estimated population version matrix P̃ .

Applying the k-means algorithm to singular vectors is a key step of the spectral

clustering algorithm. The k-means algorithm minimizes ‖ZC − U‖2
F over all Z ∈

Mn×K and C ∈ RK×K . Since solving the k-means problem is NP-hard, we consider

the efficient approximate k-means algorithm (Kumar et al., 2004), which provides a

solution (Ẑ, Ĉ) ∈Mn×K × RK×K such that

‖ẐĈ − U‖2
F ≤ (1 + ε) min

Z,C
‖ZC − U‖2

F .
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2.3.1 The first stage algorithm

The goal of clustering before adjustment is to estimate Z1 and Z2 respectively

up to permutation. Since MSBM is a special case of SBM, the bound on the mis-

clustering rate for SBM can be applied in the first stage. The bound on the mis-

clustering rate has been extensively studied (Lei et al., 2015; Rohe et al., 2011) and

we build our result on the work by Lei et al. (2015). We define the mis-clustered

nodes similar to those in Rohe et al. (2011) and Lei et al. (2015) using the distance

between the centroids obtained from the k-means algorithm and the centroids from

the population matrix. This definition can ultimately bound the error rate

(2.3) Error(z, ẑ) = n−1 min
σ

n∑
i=1

I(zi 6= σ(ẑi))

where zi is true label for node i, ẑi is the estimated label for node i and σ is a

permutation function. Let UDVᵀ be the singular value decomposition of P and

UDV ᵀ be the singular value decomposition of A, where U,U ∈ Rn1×K and V,V ∈

Rn2×K . As in Lemma II.2, U = Z1CU with Z1 ∈ Mn1,K , CU ∈ RK×K and V = Z2CV

with Z2 ∈Mn2,K , CV ∈ RK×K . Let (Ẑ1, ĈU) be a (1+ε)-approximate solution to the

k-means problem and Ū = Ẑ1ĈU . Similarly, let (Ẑ2, ĈV ) be a (1 + ε)-approximate

solution to the k-means problem and V̄ = Ẑ2ĈV . We denote Mi∗ as ith row of a

matrix M .

Definition II.6. Let δ1,k = minl 6=k ‖CU ,l∗−CU ,k∗‖ and δ2,k = minl 6=k ‖CV,l∗−CV,k∗‖.

Define S1,k = {i ∈ G1,k(Z1) : ‖Ūi∗ − Ui∗Q‖ ≥ δ1,k/2‖} and S2,k = {j ∈ G2,k(Z2) :

‖V̄j∗ − Vj∗Q‖ ≥ δ2,k/2‖} for an orthonormal matrix Q ∈ RK×K . Define the set of

mis-clustered nodes of type-1 as S1 = ∪kS1,k and the set of mis-clustered nodes of

type-2 as S2 = ∪kS2,k.

The bounds on the number of mis-clustered nodes for each type can be obtained
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by modifying the Corollary 3.2 in Lei et al. (2015). Specifically, it can be done by

first creating a symmetrized square matrix for a bipartite network and then applying

the results in Lei et al. (2015) accordingly.

Proposition II.7. Let A ∈ {0, 1}n1×n2 be a bipartite adjacency matrix generated

from a MSBM (Z1, Z2, B). Assume that P = Z1BZ
ᵀ
2 is of rank K and B = αnB0

for some αn ≥ log n/n with B0 having minimum singular value ≥ λK > 0 and

maxs,tB0,st = 1. Let Ẑ1 and Ẑ2 be the output of spectral clustering using the (1 + ε)-

approximate k-means algorithm. For an absolute constant c > 0, with probability at

least 1− n−1, we have

(2.4) |S1| ≤ c−1(2 + ε)
n1,maxKn

n1,minn2,minλ2
Kαn

, |S2| ≤ c−1(2 + ε)
n2,maxKn

n1,minn2,minλ2
Kαn

,

where n1,min and n2,min represent the smallest community size of each type and n1,max

and n2,max represent the largest community size of each type.

As the derivation is similar to the proof in Lei et al. (2015), only the different

part of the proof is included in the appendix. Proposition II.7 shows how the number

of mis-clustered nodes of each type is bounded by other parameters, and the result

can be easily extended to bipartite networks with different numbers of communities

between the two types. However, this result does not show how the communities

between the two types can be one-to-one matched.

2.3.2 The second stage algorithm

Because the result in the second stage depends on that of the first stage, reasonable

assumptions on the performance of the first stage are necessary. Intuitively, if the

performance of the first stage is not satisfactory, good performance of the second

stage cannot be expected. Here, we make an assumption that the total number of

mis-clustered nodes for each type is no larger than the minimum community size of



21

the corresponding type. This prevents two extreme scenarios: (1) all mis-clustered

nodes are from the community of the smallest size so that the estimated community

size becomes zero; (2) all mis-clustered nodes are assigned to the smallest community

so that the estimated smallest community size becomes much larger.

Assumption II.8. Assume η < C1 where η = max( |S1|
n1,min

, |S2|
n2,min

) for some constant

0 ≤ C1 < 1.

Under this assumption, we are able to obtain a simple bound on the ratio of

estimated community size and the true community size with respect to η. Let r =

max(n1,max

n1,min
, n2,max

n2,min
) be the maximum ratio of the largest and the smallest community

sizes of each type. Combined with Proposition II.7, we also have η ≤ c−1(2 +

ε)r Kn
n1,minn2,minλ2Kαn

. Since the community sizes are estimated from the first stage to

adjust the adjacency (or Laplacian) matrix in the second stage, the error bound on

the estimated community size is needed as a result of the first stage algorithm. The

following lemma provides the bound on the ratio of estimated community size and

the true community size under the Assumption II.8.

In order to state the lemma, we define the estimated kth community Ĝ1,k cor-

responding to true community G1,k as the aligned estimated community using the

same permutation function that minimizes the error rate (2.3), which is Ĝ1,k = {1 ≤

i ≤ n1 : ẑ1i = σ(k)}. Ĝ2,k can be defined similarly. The estimated community size

n̂1,k and n̂2,k are then defined based on Ĝ1,k and Ĝ2,k respectively.

Lemma II.9. Error bounds on the estimated community size. By using the bound

on mis-clustering error from the first stage algorithm and assumption II.8, we have∣∣∣∣ n̂1,k

n1,k

− 1

∣∣∣∣ ≤ η

∣∣∣∣n1,k

n̂1,k

− 1

∣∣∣∣ ≤ η

1− η∣∣∣∣ n̂2,k

n2,k

− 1

∣∣∣∣ ≤ η

∣∣∣∣n2,k

n̂2,k

− 1

∣∣∣∣ ≤ η

1− η
.

(2.5)
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After computing the adjusted adjacency matrix Â = Ŵ
−1/2
1 AŴ

−1/2
2 , we perform

singular value decomposition on Â and obtain the singular vectors Û and V̂ . In

the second stage, we apply the k-means algorithm to the rows of the concatenated

matrix T ∈ Rn×K , with

(2.6) T =

Ŵ 1/2
1 Û

Ŵ
1/2
2 V̂

 .
We define the population version T ∈ Rn×K , with

(2.7) T =

W 1/2
1 Ũ

W
1/2
2 Ṽ

 =

Z1

Z2

X = ZX ,

where Ũ ∈ Rn1×K and Ṽ ∈ Rn2×K are the left and right singular vectors of P̃ ∈ Rn1×n2

respectively, X ∈ RK×K is the singular vector matrix of B, and Z = [Zᵀ1Z
ᵀ
2 ]ᵀ ∈ Rn×K .

Let (Ẑ, X̂) be a (1 + ε)-approximate solution to the k-means problem and T̄ = ẐX̂.

Then, we can define the mis-clustered nodes similarly as in the first stage. If the

observed centroid X̂i∗ corresponding to node i is closer to the population centroid Xi∗

than any other observed centroids X̂j∗ for j 6= i, then node i is correctly clustered.

Definition II.10. Define the set of matched mis-clustered nodes of both types as

S = {i : ‖T̄i∗ − Ti∗Q2‖ ≥ 1/
√

2‖} for an orthonormal matrix Q2 ∈ RK×K .

Then our main result provides an upper bound on the matched mis-clustering

error rate for MSBM with (Z1, Z2, B) in terms of model parameters.

Theorem II.11. Let A ∈ {0, 1}n1×n2 be a bipartite adjacency matrix generated from

a MSBM (Z1, Z2, B). Assume that P = Z1BZ
ᵀ
2 is of rank K and B = αnB0

for some αn ≥ log n/n with B0 having minimum absolute singular value λK > 0

and maxs,tB0,st = 1. Let Ẑ be the output of spectral clustering using the (1 + ε)-

approximate k-means algorithm. Assume the clustering error from the first stage
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satisfies Assumption II.8. For an absolute constant c > 0, with probability at least

1− n−1, we have

(2.8) |S|/n ≤ c1
nmaxK

n
Kβ

(
1 +

√
c2

1

λ2
K

(Kβ + 3)

)2

+ c3(β + 3)β,

where β = c−1(2+ε)r Kn
n1,minn2,minλ2Kαn

, nmax = max (n1,max, n2,max), nmin = min (n1,min,

n2,min), c1 = 22/(1−C1)2, c2 = 26(2+ε), c3 = 22(2+ε), and r = max(n1,max

n1,min
, n2,max

n2,min
).

The proof of Theorem II.11 is given in the appendix. Note β is an upper bound

for η and a function of other parameters. The matched misclutering rate (2.8) may

seem complicated but it converges to zero as long as nmaxK
n

Kβ converges to zero.

For simpler presentation, if we assume fixed λK > 0, we have

|S|/n = Op

(
K3n2

max

αnn3
min

)
.

Consider the special case where r = O(1) and the constant λK > 0. If αn =

Ω(log n/n), then |S|/n = op(1) as long as K = o((log n)1/4). Thus the proposed

algorithm recovers communities as K is growing moderately. Note that λK does not

change with growing K in planted partition model (i.e., simple SBM with only two

parameters). Another example is when αn = Ω(1) and K = O(1). In this case,

|S|/n = op(1) as long as nmin = o(n2/3).

The result seems to require more stringent conditions than the rate result for

the SBM. For example, in Lei et al. (2015), the mis-clustering rate is op(1) as long

as K=o((log n)1/2) with constant λK and αn = Ω(log n/n). In addition, the mis-

clustering rate is op(1) as long as nmin = o(n1/2) with αn = Ω(1) and K = O(1).

Both examples show that stronger conditions are required for the proposed method.

It is because the proposed algorithm consists of two stages where the final result

depends on the accuracy of the first stage itself. If we look at where the additional
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terms come from, r term is added to the first-stage rate by making Assumption II.8

to accommodate the extreme cases. The K2 term is also added when we bound

‖P̂ − P̃‖2
F . Overall, it is understandable that the rate of a two-stage algorithm is

not as sharp as that of a one-stage algorithm because of the interplay between the

first-stage and the second-stage results.

2.4 Extension to the degree-corrected stochastic block model

The degree-corrected SBM (DC-SBM) (Karrer and Newman, 2011) extends the

standard SBM by permitting different expected node degrees within the same com-

munity. It effectively models networks that contain “hub” nodes and other degree

variations. The degree-corrected matched stochastic block model (DC-MSBM) can

be naturally obtained by replacing (2.1) with the following,

(2.9) E[Aij|Z] = θ1,iθ2,jBz1iz2j ,

where θ1,i and θ2,j are node degree parameters. Denote Θ1 = diag(θ1,1, · · · , θ1,n1)

and Θ2 = diag(θ2,1, · · · , θ2,n2). Equation (2.9) can be re-expressed in matrix form as

P = E[A|Z] = Θ1Z1BZ
T
2 ΘT

2 . If a bipartite network is generated from DC-MSBM,

we can replace singular vectors in the first stage and the second stage with row

normalized singular vectors to remove the effect of node degree heterogeneity. The

specific algorithms incorporating this normalization technique are provided in the

appendix.

2.5 Simulation studies

In this section, we assess the performance of the proposed algorithm by varying

(1) the sparsity of the network, (2) the ratio of community sizes between the two

types, and (3) the spectral gap. It is known than these parameters heavily affect the
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clustering performance.

To compare performances, we use the normalized mutual information (NMI). NMI

ranges from 0 to 1 where 1 means perfect match. Let e be the estimated member-

ship and R be the confusion matrix where Rst = 1
n

∑n
i=1

∑n
j=1 I(zi = s, ej = t).

NMI is defined by Strehl and Ghosh (2002) as NMI(z, e) =
∑

s,tRst log
(

Rst
Rs+R+t

)
/ (
∑

sRs+ logRs+

∑
tR+t logR+t). We will use matched NMI to measure the simul-

taneous clustering. Results using the error rate as in (2.3) are given in the appendix.

In addition to the adjacency matrix and the Laplacian matrix, we also con-

sider the regularized Laplacian, with Lτ = (D1 + τI)−1/2A(D2 + τI)−1/2 and L̂τ =

(D̂1 + τI)−1/2Â(D̂2 + τI)−1/2. Specifically, we compare performances of the following

methods: spectral clustering with adjacency matrix, two-stage spectral clustering

with adjacency matrix, spectral clustering with Laplacian matrix, two-stage spectral

clustering with Laplacian matrix, regularized spectral clustering, two-stage regular-

ized spectral clustering. In regularized spectral clustering, we set τ as the average

degree of the nodes in Lτ and as adjusted average degree of the nodes in L̂τ . Each

simulation was repeated 100 times and the average results were reported.

Simulation 1. In this simulation, we fix

K = 6, B0 =
1

5
11T +

4

5
I6,n1,1 n1,2 n1,3 n1,4 n1,5 n1,6

n2,1 n2,2 n2,3 n2,4 n2,5 n2,6

 =

100 100 100 500 500 500

500 500 500 100 100 100

 .
We change αn to see how sparsity affects the performance. As can be seen from

Figure 2.1, in the very sparse regime, none of the algorithms works well. However,

as the network becomes denser, performances of all the algorithms improve, and the

two-stage algorithms outperform the one-stage algorithms.
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Figure 2.1: Matched NMI between true and estimated memberships as αn varies

Simulation 2. In this simulation, we fix

K = 4, B =
1

5
11T +

4

5
I6, nmin + nmax = 1000n1,1 n1,2 n1,3 n1,4

n2,1 n2,2 n2,3 n2,4

 =

nmin nmin nmax nmax

nmax nmax nmin nmin

 .
We change the minimum community size, thus changing the imbalance between the

two types. Identifying imbalanced communities is known to be difficult compared

to balanced ones. Therefore, as nmin increases and the communities become more

balanced, the performances of all the algorithms improve as shown in Figure 2.2.

At the same time, the two-stage algorithms perform consistently better than the

corresponding one-stage algorithms.

Simulation 3. In this simulation, we set

K = 6, α = 0.05, B =
1

γ
11T +

γ − 1

γ
I6,n1,1 n1,2 n1,3 n1,4 n1,5 n1,6

n2,1 n2,2 n2,3 n2,4 n2,5 n2,6

 =

100 100 100 500 500 500

500 500 500 100 100 100

 .
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Figure 2.2: Matched NMI between true and estimated memberships as nmin/1000 varies

We investigate how the performance changes as we vary γ. Changing γ changes the

out-in ratio and thus the spectral gap. In Figure 2.3, the performances of all the

algorithms improve as the spectral gap increases. As the performances of one-stage

algorithms improve, all the two-stage methods outperform the one-stage algorithms.

Figure 2.3: Matched NMI between true and estimated memberships as γ varies

It is observed that in all three settings, the performance of a two-stage algorithm
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would improve when the performance of the corresponding first-stage algorithm was

moderately good. In addition, regularization helps in challenging regimes, i.e. when

the network is sparse, when the community sizes are unbalanced, or when the spectral

gap is small.

2.6 Data example

In this section, we examine the performance of the proposed algorithms on a real-

world data example. We consider the British Members of Parliament (MPs) twitter

network curated by Greene and Cunningham (2013). The data set contains twitter

interactions among 419 British Members of Parliament (MPs). Each MP belongs to

one of the political parties, which include Labour, Conservative, Liberal democratic,

SNP and Other. Since the sizes of SNP and Other are small (with 5 and 11 members

respectively), we only focus on the three major parties. The original network is

directed, with an edge from node i to node j implying that MP i follows MP j. A

bipartite network is then created by considering all the MP followers in the network

as one type and all popular MPs who have many followers as another type. We set a

MP as popular if they are followed by at least 40 other MPs in the twitter network.

The resulting bipartite network consists of 386 followers and 290 followees. Table 2.1

summarizes the number of MPs in each party for each of the two types. Note that

the party sizes between the two types of nodes are proportionately different, which

indicates that matched co-clustering can benefit from the proposed algorithm. We

apply the two-stage spectral clustering with regularized Laplacian matrix. Because

of node degree heterogeneity, we also apply the normalization technique. If we treat

the parties as the ground truth community memberships, we obtained 2.7% error

rate after the first stage and 1.6% after the second stage adjustment. The result
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Political party Conservative Labour Liberal Democratic
Community size of follower 162 183 41
Community size of followee 120 156 14
Ratio of community sizes 1.35 1.17 2.93

Table 2.1: Community size of the political party

Error rate (%)
Cutoff value 1-step 2-step

30 0.97 0.56
35 1.43 0.86
40 2.66 1.63

Table 2.2: Misclustering error rate for British Members of Parliament with cutoff values for popular
MPs

agrees with the findings in simulation studies, i.e. the two-stage algorithm recovers

communities more accurately when the community sizes are not proportional between

the two types. Table 2.2 also summarizes results when different cutoff values were

used for determining popular MPs.

2.7 Discussion

We have proposed a two-stage spectral clustering method for matched community

detection in bipartite networks. A matched stochastic block model is proposed to

define one-to-one matched communities between two types of nodes. The key compo-

nent of the proposed algorithm is that it adjusts the effect of community sizes in the

second adjustment stage. When the sizes of matched communities are imbalanced

between the two types, the second adjustment stage can improve the performance of

the first step algorithm. We derived an upper bound on the number of mis-clustered

nodes for the proposed algorithm. Both simulation studies and a data example in-

dicate that the proposed method outperforms existing methods.

The proposed method may be further extended to be applied to more general

cases. In our work, we assumed that B is symmetric when we defined matched
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communities. The assumption can be relaxed by modifying the definition of the

matched community. It should be taken into consideration, however, that the use

of algorithms based on spectral clustering becomes more challenging without the

assumption. The method can also be extended so that it can be utilized in networks

in which there are nodes that do not belong to any matched community. In this case,

one can consider extracting matched communities from a network using a concept

similar to the one introduced in Zhao et al. (2011). Finally, the work can be extended

for application to networks with multiple-types of nodes, which are also known as

multipartite networks.



CHAPTER III

Community Detection in Directed Networks with Individual
Preferences

3.1 Introduction

Networks represent relationships among the components inside complex systems

such as social networks, brain networks, and biological networks. Because the anal-

ysis of a network can provide a great deal of insight about the connections that exist

inside the complex system, network analysis has been utilized in many disciplines

for a long time. One of the useful network analyses is community detection, which

is used to identify groups among the nodes inside a network based on the nodes’

structural connectivity. Among many methods that can be used for community de-

tection, clustering-based methods are widely used because they provide a simple data

structure as the result of analysis.

Perhaps the best studied models in community detection are the stochastic block

model (SBM) (Holland et al., 1983) and the variants of the SBM, such as the degree-

corrected stochastic block model (DC-SBM) (Karrer and Newman, 2011) and the

mixed stochastic block model (Airoldi et al., 2008). The SBM assumes a community

structure, where the connectivity among nodes depends only on community member-

ships. See Abbe (2018) for a review on the SBM. Community detection in networks

has mainly been considered and studied for undirected networks. For directed net-

31
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works, a common approach for community detection is to first transform the network

into an undirected one and then apply methods for undirected networks (Malliaros

and Vazirgiannis, 2013). The use of symmetrization to remove the directionality,

however, is not ideal because important information that the directionality carries is

completely ignored in the process.

Both the SBM and the DC-SBM capture the average connectivity within a com-

munity and between communities, while the DC-SBM additionally considers the

degree heterogeneity. Thus, these models assume that a node’s preferences to com-

munities are the same as other nodes that are in the same community. This is

considered as a limitation, as there can be a considerable variation among each

node’s preferences to communities, even among those in the same community. In

particular, for two nodes i and j in the same community, i’s preference to a certain

community may be stronger than j’s preference. Such strong individual preferences

carry important information, which may be essential for the identification of groups

in networks. For example, it was observed that political blogs could link to blogs of

the opposite party. One possible explanation for this is that they send links to blogs

they dislike to criticize them (Rohe et al., 2016). Cantwell and Newman (2019) pro-

posed a preference model that allows for nodes’ distinct preferences and developed a

Bayesian method to fit the model. They demonstrated the proposed method in real

networks by showing the existance of individual nodes’ different preferences given

true known labels. Additionally, a few other works also proposed similar concepts.

For example, Altenburger and Ugander (2018) introduced monophily to explain the

overdispersion of preferences, which is similar to the concept of individual’s distinct

preferences, and argued that the use of the information would improve tasks such as

semi-supervised learning. Peel et al. (2018) introduced a localized assortativity mea-
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sure at the node level as opposed to the global assortativity measure. Sengupta and

Chen (2018) proposed a popularity-adjusted block model to accommodate different

individual’s popularity in the community for undirected networks.

Based on the preference-based network model in Cantwell and Newman (2019),

we propose a preference-based block model and develop a spectral clustering algo-

rithm for fitting the model with a focus on directed and bipartite networks. The

details are given in Section 3.2. Given the estimated communities, parameters can

be estimated by maximum likelihood for inference. In Section 3.3, we show that how

degree heterogeneity and preference heterogeneity affect the performance of com-

munity detection. In Section 3.4 and Section 3.5, numerical results are shown to

demonstrate the performance of the proposed method and exhibit the presence of

the preferences in real directed networks and bipartite networks.

3.2 Model

In this section, we introduce a preference-based block model for directed net-

works. A similar model has been considered by Cantwell and Newman (2019). But

unlike their model, we do not assume any prior distribution for the preferences. In

the proposed model, each individual can have different preferences to the communi-

ties. These distinct preferences of the nodes contain information that characterize

communities.

Throughout the chapter, we use ‖·‖ to denote 2-norm of a vector and the spectral

norm of a matrix. For a matrix M , ‖M‖F denotes the Frobenius norm.

3.2.1 Preference-based block model

Let n denote the number of nodes and K denote the number of communities. To

model a node’s different preferences to communities, we introduce a parameter wik,
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which denotes the probability of how node i prefers group k. To deal with degree

heterogeneity, degree-correction parameters θi and φj are introduced as in the DC-

SBM (Karrer and Newman, 2011). Denote the community membership of a node i

as gi ∈ {1, · · · , K}. Given nodes’ community (group) labels g = (g1, · · · , gn), the

edge variables Aij’s are independent Bernoulli random variables with

(3.1) E[Aij] = θiwigjφj.

Note the model is not identifiable without constraints. To ensure identifiability,

we impose certain constraints; specifically, they are

∑
k

wik = 1 and
∑
j:gj=k

φj = 1 for all k = 1, · · · , K.(3.2)

Thus, wik can be interpreted as node i’s probability of the preference to group k.

With the constraints, we have∑
j:gj=k

θiwigjφj = θiwik

n∑
j=1

θiwigjφj =
K∑
k=1

∑
j:gj=k

θiwigjφj = θi.

(3.3)

The summation over j clears away the effect of φj. The θi controls average outgoing

degree of node i. Since wik is the probability for i’s preference, θiwik implies how

many edges from node i will go out to nodes in group k on average.

The probability matrix P = E[A] can be expressed as

(3.4) P = ΘWZTΦ,

where Θ ∈ Rn×n is a diagonal matrix with diagonal elements θ = (θ1, · · · , θn),

Φ ∈ Rn×n is a diagonal matrix with diagonal elements φ = (φ1, · · · , φn), W ∈ Rn×K

is a preference matrix where ith row is wi = [wi1, · · · , wik] ∈ RK , and Z ∈ Rn×K is a
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membership matrix, with each row containing one 1 and (K− 1) zeros. If we denote

the jth row of Z as zj, then zj,gj = 1 and zeros for other elements. In Section 3.2.2,

we will show how we recover the Z matrix.

The model we introduce is similar to the model considered by Cantwell and New-

man (2019) while we impose different constraints for the parameters θi and φj. In

addition, we treat each node’s preferences wi as parameters whereas Cantwell and

Newman (2019) treated wi as random variables generated from a Dirichlet prior dis-

tribution that depends on node i’s community. Consequently, they used K2 parame-

ters for K Dirichlet distributions of communities, while we use n(K − 1) parameters

for the preference parameters. However, if we are concerned about community detec-

tion, we do not need to estimate the wi parameters. The influence of wi parameters

will be seen in the overall block quantity as explained in Section 3.3. After we identify

community memberships, we may estimate the preference parameters, but it should

be noted that for nodes with high degrees, such estimates may have low estimation

errors, while for sparse degree nodes, the estimate of wi tends to have a relatively

large estimation error.

A natural extension of the preference-based block model is to switch the direc-

tion of the preference. For certain mechanisms in directed networks, if an individ-

ual receiver node attracts the edges from the communities, that attractiveness to

the sending group might be considerably different for each receiver node. In other

words, sender nodes have the community structure and each receiving node has dif-

ferent attractiveness to the communities. This is just reversing the sender nodes

and receiver nodes in the preference-based block model. In reality, there might be

both preference and attractiveness. However, we feel that the node’s preference ef-

fect is probably stronger than attractiveness. In addition, it is reasonable to assume
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that nodes taking an active role in making edges have relatively higher preference

heterogeneity.

Another extension is to bipartite networks. Directed networks can be considered

as a special case of bipartite networks if we think of sender nodes as type-1 nodes

and receiver nodes as type-2 nodes. In a preference-based block model for bipartite

networks, one type of nodes is considered to have preferences to the group of an-

other type of nodes. This concept is closely related to recommender systems even

though the purpose of recommender system is to give suggestions to users (Ricci

et al., 2011). A common approach in bipartite networks when we are interested in

the community structure within a type of nodes is to apply standard community

detection algorithms to an one-mode projected network. However, projection loses

the information about the preferences and can be less informative depending on their

weighting scheme (Zhou et al., 2007). The preference-based model on the other hand

provides more meaningful and interpretable results for bipartite networks. A data

example in Section 3.5.2 illustrates the use of the model in bipartite networks.

3.2.2 Estimation

In many real-world networks, community labels are often unknown. Finding hid-

den community structures in networks has been an important problem. Once we

have community labels, the estimation of Θ, W and Φ under the preference-based

block model is straightforward via maximum likelihood. However, if community la-

bels are unknown, we need to first identify communities, before the estimation of

parameters. To estimate unknown community labels, we apply spectral clustering

to the regularized Laplacian matrix as suggested in Rohe et al. (2016).

First, we make several assumptions for the parameters.
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Assumption III.1. θi > 0 and φj > 0 for all i = 1, · · · , n and j = 1, · · · , n

In Assumption III.1, φj > 0 is necessary to ensure node j can be chosen by other

nodes so that we can infer node j’s community. φj > 0 is assumed that every node

has some preferences. Assumption III.1 assures to exclude the nodes that are not

probabilistically connected to other nodes.

Assumption III.2. There is at least one node in each community. In addition, at

least K rows of X are distinct.

Assumption III.2 is needed to ensure the rank of W is K. This is a sufficient

condition that rules out the scenario in which we cannot identify communities from

the WZᵀ matrix. In certain cases, W does not need to be rank K so to identify

communities. For example, if wik is different for all k for some i, we can identify

communities from the probability matrix. However, we will opt out very special cases

in this section for simplicity.

Both the Laplacian matrix L and the adjacency matrix A have been commonly

used for community detection in networks. It has been shown that the concentration

of an adjacency matrix’s eigenvectors and of a Laplacian matrix’s eigenvectors show

the same rate of convergence. However, using the Laplacian matrix may outperform

using the adjacency matrix over broader regimes (Sarkar et al., 2015). We choose

to use the regularized Laplacian matrix. Using regularized version of the Laplacian

matrix or adjacency matrix helps with sparse networks and degree heterogeneous

networks (Qin and Rohe, 2013; Amini et al., 2013; Le et al., 2017). The regularized

graph Laplacian Lτ ∈ Rn×n (Chaudhuri et al., 2012) can be defined as

Lτ = (Dl + τI)−1/2A (Dr + τI)−1/2 ,

where Dl ∈ Rn×n is a diagonal matrix with diagonal elements Dl,ii = di =
∑

j Aij
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and Dr ∈ Rn×n is a diagonal matrix with diagonal elements Dr,jj =
∑

iAij.

We can also define the population version of the regularized Laplacian matrix Lτ

Lτ = (Dl + τI)−1/2P (Dr + τI)−1/2 ,

where Dl ∈ Rn×n is a diagonal matrix with diagonal elements Dl,ii =
∑

j Pij and

Dr ∈ Rn×n is a diagonal matrix with diagonal elements Dr,jj =
∑

i Pij.

Note the observed Lτ matrix is a perturbed version of Lτ and the singular vectors

of Lτ converge to those of Lτ under certain conditions, and since the singular vectors

of Lτ often contain community structures of the network, the singular value decom-

position of Lτ also reveals the community structure. The following lemma explains

the structure of the singular vectors of Lτ under the preference model, and we also

introduce a matrix H that has the same singular values as Lτ .

Lemma III.3. SVD-structure of the population matrix Lτ . Consider a preference

model (Θ,W, Z,Φ) with K communities. Let UDVT be the singular value decompo-

sition of Lτ ∈ Rn×n. Then, we have

1. V = Φ̃ZΨ̃−1C for some C ∈ RK×K where Φ̃ ∈ Rn×n is a diagonal matrix with

diagonal element Φ̃jj = φj/
√
φj
∑

i θiwigj + τ and Ψ̃ = (ZᵀΦ̃2Z)1/2 ∈ RK×K.

2. The Laplacian matrix L and the matrix H = Θ̃W Ψ̃ ∈ Rn×K have the same

singular values where Θ̃ is a diagonal matrix with diagonal element Θ̃ii =

θi/
√
θi + τ .

Lemma III.3 shows that the right singular vectors of Lτ under the model (3.1)

contain the community information. The diagonal matrices Φ̃ and Ψ̃ do not play

an important role, since row normalization for V can filter out the effects of Φ̃

and Ψ̃. Row normalization of singular vectors is a common technique for degree
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heterogeneous networks, and its application to V results in V∗ = ZC. For nodes in

the same community, their corresponding rows in V∗ will be the same, and for nodes

in different communities, their corresponding rows in V∗ will be different. Based on

this observation, we propose to estimate community labels using the right singular

vectors with spectral clustering for the preference model.

Estimation of model parameters is based on the recovered community labels. For

the likelihood, we use the Poisson distribution rather than Bernoulli for simpler

technical derivations as in Cantwell and Newman (2019) and Zhao et al. (2012). It

has been discussed in the literature that replacing the Bernoulli distribution with

Poisson yields almost no difference in sparse networks while enjoying simpler form

for the estimator. Given community labels, the log-likelihood function can be written

as

(3.5)
n∑
i=1

n∑
j=1

−θiwigjφj + Aij log(θiwigjφj)− log(Aij!).

Maximizing the log-likelihood using the approximated Poisson distribution gives

us θ̂i = di and ŵik = dik/di, where di =
∑

j Aij denotes the out-degree of node i and

dik =
∑

j∈gk Aij denotes the number of node i’s outgoing edges to the community k.

In addition, φ̂j =
∑

iAij/(
∑

j′:gj′=s

∑
iAij′) when gj = s, which is the proportion of

in-degree of node j in the total in-degrees of the community where the node belongs

to.

Overall, the algorithm proceeds as the following.

Algorithm III.1 Community Detection and Estimation of W and Θ

1: Input: directed adjacency matrix A ∈ {0, 1}n×n
2: Form (regularized) graph Laplacian Lτ = (Dl + τI)−1/2A(Dr + τI)−1/2. Let Lτ = UΛV T be

the SVD of Lτ .
3: Use K right singular vectors corresponding to the K largest singular values. Normalize each

row of V to have unit length. Denote the normalized version of V as V ∗. Run k-means on rows
of V ∗ and assign each node to one of K communities.

4: Given estimated community memberships, estimate θi and wis as di and dis/di.
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3.2.3 Connections to other models

The preference-based block model is closely related to a degree-corrected stochas-

tic block model (DC-SBM), proposed by Karrer and Newman (2011). The DC-SBM

provides a simple way to incorporate community structures by modeling connectivity

between nodes, which only depends on community labels of the nodes and nodes’

degree heterogeneity. The original DC-SBM, which was for undirected networks, can

be easily extended to directed and bipartite networks as in Larremore et al. (2014).

The DC-SBM for directed networks or bipartite networks aims to summarize the

network structure into a K1 ×K2 low-dimensional block structure B ∈ RK1×K2 for

connectivity, where K1 and K2 are the numbers of communities for sending nodes

(type-1 nodes) and receiving nodes (type-2 nodes) respectively. Analogous to (3.1),

the model for DC-SBM can be written as

(3.6) E[Aij] = θiBgl,igr,jφj,

where g1,i is the community label of the sender node i and g2,j is the community label

of the receiver node j. The main difference between DC-SBM and the preference-

based block model lies in Bgl,igr,j and wigr,j . In the preference model, the case when

wigr,j = Bgl,igr,j implies that the DC-SBM is a special case of the preference model

in which the preference of the nodes in the same community are the same. Another

way to think about it is that the proposed preference model is an extreme case

of the DC-SBM where each sender node can be considered as a community, i.e.

K1 = n. Therefore, they are similar and one can be a special case of the other

with certain constraints or more flexibility. In general, the preference model is much

more flexible than the DC-SBM as in DC-SBM it is often the case that K1 � n.

The number of parameters of wigr,j for the preference model is n(K1 − 1), while the
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number of parameters of wgl,igr,j for DC-SBM with the same constraint
∑K

t=1 wgl,it = 1

is K1(K2 − 1). As we will see in the next section, heterogeneous preferences of

the nodes actually help us in identifying the community structure given the same

average connectivity. Unlike the DC-SBM, in the preference-based block model, the

community structure of the sender (type-1) nodes is not of the interest.

Overlapping SBMs, which is an another variant of the SBM, also have some sim-

ilarity with the preference-based block model. In the overlapping SBM, each node

can have several community labels or a continuous label, which might be more sen-

sible for real-world networks. There have been several studies for overlapping SBMs

(Zhang et al., 2014; Airoldi et al., 2008; Ball et al., 2011). The preference-based

block model and the overlapping SBM have some commonality in that each individ-

ual node can have distinct continuous preferences toward each community. However,

most of overlapping SBMs estimate overlapping community memberships for an undi-

rected network, while the preference-based block model estimates non-overlapping

community memberships for one type of nodes and then estimates the preferences

of each node using the estimated memberships for directed or bipartite networks.

Non-overlapping community memberships for one type of nodes and the preferences

for the other type makes the interpretation easier. The concept of preference in

our model is analogous to overlapping community memberships. For example, one

may interpret each node’s propensity to communities as individual’s preferences in

directed or bipartite networks.

3.3 Theoretical results

In this section, we show theoretical properties of the proposed algorithm under

the preference-based block model. The bounds on the number of mis-clustered nodes
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can be obtained by adapting the results for undirected networks. This can be done

by utilizing a larger block matrix [0 A;Aᵀ 0] ∈ R2n×2n for directed adjacency matrix

A ∈ Rn×n and then applying the results accordingly. See Rohe et al. (2016); Zhou and

Amini (2019) for technical details for similar analyses. In this section, we will focus

on directed networks. Generalization to the bipartite network is straightforward.

We first introduce definitions for average connectivity between and within com-

munities and a community’s variation from the average connectivity.

Definition III.4. Let M ∈ RK×K where Mrs = 1
nr

∑
i∈gr θ̃iwis for r, s = 1, · · · , K

and S(r) ∈ RK×K for r = 1, · · · , K where S
(r)
st =

∑
i∈gr

(
θ̃iwis −Mrs

)(
θ̃iwit −Mrt

)
for s, t = 1, · · · , K where θ̃i = θi/

√
θi + τ .

The matrices M and S are functions of wis’s and θ̃i’s, which summarize con-

nectivity between communities. The quantity Mrs is the average of θ̃iwis over the

nodes in community r, which involves both transformed degree parameter θ̃i and the

preference parameter wis. In other words, we can interpret Mrs as the average edge

connectivity from community r to community s. M gives the average connectivity

information for networks, which is often considered as the main signal in conven-

tional networks literature. S
(r)
st measures joint variability between the preferences

to community s and to community t, from community r, which is related to the

heterogeneity and the variation.

Recall in Lemma III.3, we introduced H that has the same singular values as Lτ .

The decomposition of HᵀH provides insight on the role of individual preferences in

networks, and HᵀH contains all the information about the right singular vectors and

singular values of Lτ .

Lemma III.5. Consider model (3.1). Let H = Θ̃W Ψ̃ with Θ̃ being a diagonal
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matrix with Θ̃ii = θi/
√
θi + τ and Ψ̃ being a diagonal matrix with Ψ̃tt =

∑
j∈gt φj/√

φj
∑

i θiwigj + τ . Then, we have

1. HᵀH = HᵀMHM + HᵀSHS where HM =
(
Z(ZᵀZ)−1ZT

)
Θ̃W Ψ̃ and HS = (I−

Z(ZᵀZ)−1Zᵀ) Θ̃W Ψ̃.

2. HᵀMHM = Ψ̃MᵀNMΨ̃ and HᵀSHS = Ψ̃
∑K

r=1 S
(r)Ψ̃ for a diagonal matrix N ∈

RK×K with Nrr = nr.

3. Let σk(B) be the kth largest singular value of a matrix B. Then, we have

σK(HᵀMHM) + σK(HᵀSHS) ≤ σK(HᵀH) ≤ σK(HᵀMHM) + σ1(HᵀSHS).

Lemma III.5 shows that HᵀH can be decomposed into two parts HᵀMHM and

HᵀSHS, which measure the average connectivity and the joint variability respectively.

It also shows that HᵀMHM and HᵀSHS can be expressed with M and S(r)’s in Def-

inition III.4. In the planted partition model, which is a special type of the SBM,

it is well known that the connectivity ratio between within communities and across

communities plays an important role for community detection. Analogously, the

joint variability contributes to the concentration of singular values given a fixed M .

Intuitively, if there are more variation within community, S will contribute to the

signal. The inequality in Lemma III.5 shows that the singular values of HᵀSHS make

a difference between σK(HᵀMHM) and σK(HᵀH). If σK(HᵀMHM) is fixed, increasing

the smallest singular value of HᵀSHS will also increase the lower bound. In the ex-

treme case such as the SBM, there will be no variation of preferences at all. Thus,

σK(HᵀSHS) will be zero. Since the smallest singular values are important for singular

vector concentration, we define λM and λS as follows.

Definition III.6. Define λM = σK(HᵀMHM) and λS = σK(HᵀSHS).
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Assumption III.7. Assume λM > 0 or λS > 0.

Assumption III.7 is a sufficient condition for σK(HᵀH) > 0. Note that in the

SBM and DC-SBM literature that consider the average connectivity, λM > 0 is often

assumed. Next, we provide the concentration of singular vectors as a result of the

concentration of the regularized Laplacian (Le et al., 2017).

Theorem III.8. Consider an adjacency matrix A generated from the preference-

based block model with K communities. Let d = nmaxij pij and mr = minj=1,··· ,n

‖Vj‖2. Define Lτ and H as in Lemma III.5. Choose a number τ > 0. Then, for any

r ≥ 1, with probability at least 1− e−r, we have

√
‖U − UQ‖2

F + ‖V − VQ‖2
F ≤

4Cr2
√
K√

τ(λM + λS)

(
1 +

d

τ

)5/2

for some orthonormal matrix Q ∈ Rn×n.

The presence of an orthogonal matrixQ is from the orthogonal Procrustes problem

that solves minQ ‖V −VQ‖. The orthogonal matrix Q deals with the situation where

the singular vectors are only determined up to rotations when some singular values

have multiplicities. Theorem III.8 shows the convergence of the singular vectors.

The upper bounds for both left and right singular vectors are inversely proportional

to λM + λS.

For a degree heterogeneous network, row normalization is applied to the right

singular vector V to remove the effect of heterogeneous degrees. Many studies have

used row normalization of singular vectors in spectral clustering for DC-SBM (Lei

et al., 2015; Jin et al., 2015). We normalize each row of V to have unit length. Denote

V ∗ as the row normalized version of V , and V∗ as the row normalized version of V

which is the population version of V ∗. We can check V∗ = ZC for some C ∈ RK×K
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in Lemma III.3. Thus, nodes in the same community have the same row vectors in

the normalized right singular vector matrix V∗.

Applying the k-means algorithm to singular vectors is an important step of spec-

tral clustering after singular value decomposition. The k-means algorithm minimizes

‖ZC−V ∗‖2
F over all Z ∈Mn×K and C ∈ RK×K . Since solving the k-means problem

is NP-hard, we consider the efficient approximate k-means algorithm Kumar et al.

(2004), which is known to provide a solution (Ẑ, Ĉ) ∈Mn×K × RK×K such that

‖ẐĈ − V ∗‖2
F ≤ (1 + α) min

Z,C
‖ZC − V ∗‖2

F ,(3.7)

where (Ẑ, Ĉ) is referred as a (1 + α)-approximate solution to the k-means problem

and we denote V̄ ∗ = ẐĈ. We define mis-clustered node set S as in Rohe et al.

(2011) and Rohe et al. (2016). Since the observed singular vectors can be considered

as noisy version of the population singular vectors, a node whose observed singular

vector is far from the corresponding population singular vector can be considered as

mis-clustered.

Definition III.9. Define the mis-clustered node set as S = {i ∈ G(Z) : ‖V̄ ∗i −

V∗Q‖ > 1/
√

2}.

If the corresponding centroid of a node as a result of the k-means algorithm is

distant from the corresponding population centroid of the node, we define that node

as mis-clustered. For mis-clustered nodes, we only consider the right singular vectors

since it is not guaranteed for the left singular vectors to contain community structures

in the preference model. We define mr = minj=1,··· ,n ‖Vj‖2 to take into account the

effect of low degree nodes after row normalization. Note if the in-degrees of receiving

nodes are small, the clustering problem is difficult.
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Theorem III.10. Consider an adjacency matrix A generated from the preference-

based block model with K communities. Let d = nmaxij pij and mr = minj=1,··· ,n

‖Vj‖2 where Vj is the jth row of V. Define Lτ and H as in Lemma III.5. Choose a

constant τ > 0. Then, for any r ≥ 1 there exists a constant C(α) > 0 such that

|S|/n ≤ C(α)r4K

nm2
r(λM + λS)τ

(
1 +

d

τ

)5

.

with probability at least 1− e−r.

Since λM and λS also depend on τ , it is not straightforward to look at the effect

of λM and λS apart from τ . If we choose τ ∼ d, then |S|/n = Op

(
K

nm2
r(λM+λS)d

)
. If

‖Vj‖2 is the same for all j, then ‖Vj‖2 =
√
K/n for all j due to ‖V‖2

F = n. Thus,

if mr is of order
√
K/n, |S|/n goes to zero as d increases. To provide an insight on

the effect of λM and λS, we provide two examples below.

Example III.11. Let A ∈ Rn×n be an adjacency matrix generated from the pref-

erence model with θi = c and K = 2 communities. Define Lτ , HM and HS as

in Lemma III.5. Then, we have
(
HT
MHM

)
s,t

= C2
τ ψ̃ss

(∑K
r=1 nrw̄rsw̄rt

)
ψ̃tt where

w̄rs = 1
nr

∑
iwis for Cτ = c/

√
c+ τ . After straightforward calculation, we have

(3.8) HT
SHS = Ψ̃

 v −v

−v v

 Ψ̃,

where v =
∑

i:gi=1(wi1− w̄11)2 +
∑

i:gi=2(wi1− w̄21)2. We can compare the effect from

the variation of preferences given the same average preference and other parameters

being fixed. Given w̄rs’s and φj’s fixed, the lower bound for λS is zero if there is

no variation in preferences within the same block (i.e. wis = wjs are the same if

gi = gj), which is the special case of the DC-SBM assuming expected out-degrees

are the same. As v increases, this will also increase the singular values of HT
SHS.
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Therefore, given the same average preference in the community, the variation of the

preferences makes community detection easier compared to no variation.

Example III.12. Let A ∈ Rn×n be an adjacency matrix generated from the DC-

SBM with K communities, which is a special case of the preference model. In the

preference model, the DC-SBM is the case when wis = Brs if gi = r for some block

matrix B ∈ RK×K . Then, we have

HT
MHM = Ψ̃BᵀL(M)BΨ̃

HT
SHS = Ψ̃BᵀL(S)BΨ̃

where L(M) ∈ RK×K is a diagonal matrix with diagonal element L
(M)
ss = ns(θ̄s)

2 and

L(S) ∈ RK×K is a diagonal matrix with diagonal element L
(S)
ss =

∑
i:gi=s

(θ̃i − θ̄s)
2

where θ̄r = 1
nr

∑
i:gi=r

θ̃i is the average θ̃i of community r. It is clear that the varia-

tion of the out-degrees within each community contributes to the magnitude of the

singular values of HT
SHS. Given other parameters the same except for the variation

of the out-degree while we keep the average of out-degree within each community

the same, larger variations of the out-degree will make community detection under

the DC-SBM easier if we focus on the receiving nodes’ information.

3.4 Simulation studies

In this section, we use simulation studies to illustrate how the variation of prefer-

ences and the variation of out-degrees affect the performance of spectral clustering.

The performances of three spectral algorithms are reported: spectral clustering on

the right singular vectors (SC-RSV), spectral clustering on the left singular vectors

(SC-LSV), and spectral clustering for symmetrized network (SC-SYM). SC-RSV is

the algorithm we propose for community detection under the preference model. SC-

LSV is the algorithm similar to SC-RSV but with left singular vectors. For SC-SYM,
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the k-means algorithm is applied to normalized singular vectors that are obtained

from normalized Laplacian with symmetrized adjacency matrix. For symmetrized

adjacency matrix A′, we set A′ij = A′ji = 1 if either Aij = 1 or Aji = 1. We can check

E[A′ij] = pij + pji− pijpji. SC-SYM is provided as the most common practice to deal

with directed networks (Malliaros and Vazirgiannis, 2013).

To compare the performance, we use the error rate defined as

(3.9) Error(z, ẑ) = n−1 min
σ

n∑
i=1

I(zi 6= σ(ẑi)),

where zi is the true label for node i, ẑi is the estimated label for node i, and σ is a

permutation function.

To examine the effect of individual preference heterogeneity and individual de-

gree heterogeneity, we present several simulations in this section. In Simulation 1,

we investigate how preference variations affect the error rate of mis-clustered nodes

given the same expected out-degree for all the nodes. In Simulation 2, we change the

variation of out-degrees in the community while we fix the variation of preferences

in the community. The effect of the variation of preferences while the out-degrees

are heterogeneous is also examined (Simulation 3) and the results are given in the

appendix. Overall, SC-RSV outperforms SC-LSV and SC-SYM when the variation

of the preferences or out-degrees becomes large. Under the preference model, the

right singular vectors are supposed to give correct information while the left singular

vectors do not necessarily provide correct information as the variation of the prefer-

ences becomes large. All simulations were repeated 100 times for given parameters

and the average results were reported.

Simulation 1

In this simulation, we vary the variation of the preferences given the same average

preference within each block while we fix the other parameters. We generate networks
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from the preference model with K = 2 and n = 400. Each community size is 200.

To simplify the problem, we set the out-degrees to be the same for all sending nodes

and in-degrees to be the same for all receiving nodes. To control the preference

variation, we generated (wi1, wi2) ∼ Dirichlet(γs, (1−γ)s) if gi = 1 and (wi1, wi2) ∼

Dirichlet((1−γ)s, γs) if gi = 2, where γ is the community’s average preference to it’s

own community. In the generation of wi’s, s controls the variation of the preferences.

The role of γ and s is more clear if we look at E[W ᵀW ], which is given by

1

n
E[W ᵀW ] =

1

n
(E[W ]ᵀE[W ]) +

1

n
(E[W ᵀW ]− E[W ]ᵀE[W ])1

2
− γ(1− γ) γ(1− γ)

γ(1− γ) 1
2
− γ(1− γ)

+
γ(1− γ)

s+ 1

 1 −1

−1 1

 .
When s→∞, it is equivalent to the SBM, which means there is no variation of the

preferences. In this case, we set w in the same community the same instead of gener-

ating it from a Dirichlet distribution. As s decreases, the variation of the preferences

increases. We can calculate the smallest singular value for the variation of the prefer-

ences as σ2(E[W ᵀW ]−E[W ]ᵀE[W ]) = 2γ(1− γ)/(s+ 1). We set γ = {1/2, 3/4, 5/6}

and set the variation term γ(1 − γ)/(s + 1) ∈ {0, 0.02, 0.04, 0.06, 0.08, 0.1} by con-

trolling s for fixed γ.

The results for Simulation 1 are shown in Figure 4.1. The variation of the pref-

erences is on the x−axis and the error rate is on the y−axis. Three different colors

correspond to different spectral clustering algorithms. When the out-degree is 8,

as expected, the error rate of SC-RSV is always lower than that of SC-LSV under

the preference model. SC-RSV performs better as the variation of the preferences

increases, which is consistent with our theoretical results. The performance of SC-

RSV decreases as the variation of the preferences increases, since the singular vectors

become noisier. The performance of SC-SYM is somewhere between that of SC-LSV
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(a) γ = 1/2 (b) γ = 3/4 (c) γ = 5/6

Figure 3.1: The error rate of community detection as a function of the variation of the preferences
(γ(1− γ)/(s+ 1)) for three values of γ given that the average out-degree is 8

and SC-RSV when the variation of the preferences is considerable. However, when

the model is close to SBM (the variation ≈ 0), it performs better than other algo-

rithms since symmetrization make a network denser, while the population version

singular vectors of all three algorithms have correct information.

Simulation 2

In this simulation, we vary the out-degree heterogeneity given the variation of the

preferences fixed. We set K = 2 and n = 400. Community size is 200 for each

community. We set the parameters for in-degree the same for all the nodes in the

network (i.e., φj are the same for all j). The out-degree θi parameters are generated

from θi = (md− sd)Bi + (md+ sd)Bi where Bi ∼ Binom(0.5). We have E[θi] = md

and
√
V ar[θi] = sd. We vary sd to see the effect of degree heterogeneity. As in

Simulation 1, we control γ(1− γ)/(s+ 1) to set the variation of the preferences. We

set the γ(1 − γ)/(s + 1) value to be 0.08. The simulation results for two different

md = 4, 6 values are shown in Figure 3.2. As discussed in Example 2, the variation

of out-degrees indeed helps to find communities given the other parameters are the

same. SC-RSV performs better as standard deviation of θ increases. SC-RSV always

performs better than SC-LSV as in Simulation 1. When the variation of the out-
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(a) E[θi] = 4 (b) E[θi] = 6

Figure 3.2: The error rate of community detection as a function of the standard deviation of θi’s
given that γ(1− γ)/(s+ 1) = 0.08 and the average out-degree is 4 and 6 respectively

degree increases, the performance of SC-SYM improves as shown in 3.2. It is because

the effect of degree heterogeneity is larger than the effect of noisy information from

the left singular vectors.

3.5 Data examples

3.5.1 Political party examples

In this section, we examine the performance of the proposed algorithm in three

networks: a US political blog network, a UK political Twitter network, and an Ireland

political Twitter network. The US presidential political blog data were collected by

Adamic and Glance (2005). In February 2005, they 1) retrieved the front page of

each blog and 2) recorded the references (hyperlinks) to other blogs. The 1494 blogs

were categorized into “liberal” and “conservative” based on the labels by self-report,

automated categorization, or manual labeling. A directed interaction from node i

to node j is created if blog i uploads a post with a hyperlink to blog j or blog i

lists a link to blog j in sidebar. Many studies have used the data for clustering after
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transforming the directed network to an undirected one. Since our main interest here

is to investigate directed networks, we restrict our analysis to the 793 nodes in the

largest strongly connected components.

The UK political Twitter network and the Ireland political Twitter network were

curated by Greene and Cunningham (2013). These two data sets have three types

of edges based on the sending node’s activity: follows, mentions, and retweets. We

only consider the “follows” activity, which has the most edges, for both networks.

For the UK political Twitter network, we only consider the three largest political

affiliations and extract the largest strongly connected component. This approach

restricts our analysis to 388 out of 418 nodes in the network for the UK political

Twitter network. Likewise, we consider the three largest political affiliations and

extract the largest strongly connected component for the Ireland political Twitter

network. Consequently, we restrict our analysis to 264 out of 348 nodes. Analyses

with more political affiliations can be found in the appendix.

As in simulation studies, we have applied several spectral algorithms to commu-

nity detection here. Specifically, we considered the SC-RSV as well as SC-LSV. In

addition, we also considered spectral clustering with a symmetrized network (SC-

SYM), transformed from a directed network. All the algorithms were applied with

“true” number of communities (i.e. K = 2 for US political blogs network, K = 3

for UK and Ireland political Twitter networks). To measure the performance, we

considered the number of mis-clustered nodes. The results are shown in Table 3.1.

SC-RSV performs the best among the three methods. SC-LSV performs the worst.

The performance of SC-SYM is in-between that of SC-SYM and SC-LSV. In addi-

tion to the quantitative measure, we also provided figures to show how the left and

right singular vectors are positioned. The upper row of Figure 3.3 shows the first
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Network SC-LSV SC-RSV SC-SYM Total number of nodes
US political blogs 35 26 28 793

UK political Twitter 4 0 1 388
Ireland political Twitter 1 0 0 264

Table 3.1: Number of mis-clustered nodes for political networks

three normalized left singular vectors , while the lower row of Figure 3.3 displays the

first three normalized right singular vectors. As can be seen in the six subfigures,

clear separation is obvious for the right singular vectors. The left singular vectors

are noisier than the right ones. This observation indicates that individual bloggers

or Twitter accounts can have heterogeneous preferences to political affiliations. Not

being aware of heterogeneous preferences may result in less accurate clustering re-

sults. Similar patterns for singular vectors have also been seen in other networks and

the results are given in the appendix.

3.5.2 Author-paper citation network

Ji et al. (2016) have collected and curated coauthorship and citation networks (as

well as other information such as paper titles, authors, citations, DOI, and abstracts)

for statisticians and statistical papers. The data set is based on papers published

in four prestigious statistics journals for the period of 2003 to the first half of 2012.

The data set has been analyzed by many statisticians. Much work have focused on

community detection of papers or community detection of authors to find research

topics or collaboration groups.

In this section, we study the bipartite (directed) citation network of authors and

papers. There is a directed edge between author i and paper j if author i cited paper

j in one of i’s papers. Instead of using the number of citations in the original weighted

bipartite network, we use the binary version of the network for easier interpretation

of the preferences. Using the original weighted network generates similar results as
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(a) The 1st and the 2nd normal-
ized left singular vectors

(b) The 1st and the 3rd normal-
ized left singular vectors

(c) The 2nd and the 3rd normalized
left singular vectors

(d) The 1st and 2nd normalized
right singular vectors

(e) The 1st and the 3rd normal-
ized right singular vectors

(f) The 2nd and the 3rd normalized
left singular vectors

Figure 3.3: The normalized left singular vectors (in upper row) and right singular vectors (in lower
row)
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using the binary version. The original data set consists of 3607 authors and 3248

papers. Many networks have a core-periphery structure. A network has a core part

where nodes are densely connected and periphery parts where nodes are sparsely

connected. We focused on the core part of the bipartite network by following the

procedure for finding the core of a directed network as in Wang and Rohe (2016). We

removed all nodes of both types with degrees fewer than four with iterations until

convergence. This pre-processing results in 780 authors and 742 papers for furthr

analysis.

Then we applied the preference model to the bipartite network assuming authors

have individual preferences to research topics. It is natural to assume that certain

authors have broad research interests, not limited to one particular research topic.

It is also possible that certain authors may have one focused research area. It is

thus reasonable to consider that different authors have different research preferences

whereas the papers form communities due to different research topics. In order

to choose the number of communities, we looked at the scree plot of regularized

Laplacian matrix and selected K = 13 since the elbow point of the scree plot seems

to be at 14. We studied the communities of research topics using the word-of-bag

method as in Wang and Rohe (2016) and displayed the research topics of several

statisticians in Tables 3.3 and 3.4.

We restricted our analysis of the preferences to those who have cited more than 30

times in the period 2003-2012. Generally, the topics of papers an author cites show

what topics the author is interested in. It provides more comprehensive information

compared to only looking at the author’s papers. We listed several authors and

their estimated preferences as illustrative examples in Table 3.3. The authors are

those who have cited more than two research topics with at least 0.3 preferences.
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As can be seen, all of them had an interest in “variable selection/regularization”.

The table also shows that two of them were interested in “dimension reduction”.

Another two statisticians were interested in “semi/nonparametric” while the last

two statisticians were interested in “covariance matrix”. Table 3.4 shows individual

preferences of three statisticians who have mainly focused on only one research topic,

with a preference score at least 0.7. Each of them shows their main dominant research

topics, which are “high-dimensional”, “survival analysis” and “dimension reduction”

respectively.

Interpretation Top seven representative words

1

high-dimensional

(classification, regularization)
classification, learning, regularization, penalized,

nonasymptotic, adaptive, sparsity

2 spatial statistics
spatial, predictive, feasible, temporal,

domain, extreme, densities

3 dimension reduction
sliced, dimension, reduction, inverse,

central, subspace, regression

4
randomized trial

observational study
treatment, observational, sensitivity, randomized,

biases, control, design

5 multiple testing false, discovery, null, hypotheses, fdr, testing, rate

6
variable selection

regularization selection, lasso, algorithm, variable, oracle, penalty, path

7 functional data analysis
functional, smoothing, principal, component,

function, variance, scalar

8 semiparametric/nonparametric
asymptotic, partially, semiparametric, backfitting,

estimator, linear, varying

9 bayesian 1
prior, posterior, bayesian, wavelet,

orthogonal, bayes, stationary

10 survival analysis
survival, censored, failure, proportional,

hazard, consistent, censoring

11 bayesian 2 dirichlet, process, posterior, mixture bayesian, markov, chain

12 covariance matrix
matrix, covariance, volatility, matrices,

diffusion, financial, sampled

13 analysis focusing on space deconvolution, cluster, shape, distance, space, machine, size

Table 3.2: Top seven representative words and interpretation for K = 13 communities

1 2 3 4 5 6 7 8 9 10 11 12 13
Chih-Ling Tsai 0.00 0.00 0.47 0.00 0.00 0.30 0.00 0.15 0.00 0.00 0.03 0.00 0.05

Hansheng Wang 0.02 0.00 0.39 0.00 0.00 0.41 0.00 0.13 0.00 0.00 0.00 0.04 0.00
Hua Liang 0.02 0.00 0.02 0.00 0.00 0.43 0.06 0.42 0.02 0.02 0.02 0.00 0.00

Runze Li 0.00 0.00 0.06 0.00 0.00 0.47 0.06 0.35 0.00 0.02 0.00 0.04 0.00
Ji Zhu 0.03 0.00 0.00 0.00 0.00 0.57 0.05 0.00 0.00 0.00 0.00 0.35 0.00

RJ Tibshirani 0.00 0.00 0.06 0.00 0.14 0.44 0.00 0.00 0.00 0.00 0.00 0.31 0.06

Table 3.3: Statisticians who have cited more than two research topics with at least 0.3 preferences
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1 2 3 4 5 6 7 8 9 10 11 12 13
AB Tsybakov 0.74 0.00 0.00 0.00 0.03 0.15 0.00 0.03 0.00 0.00 0.00 0.06 0.00
Donglin Zeng 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.03 0.00 0.82 0.00 0.00 0.00

Liping Zhu 0.00 0.00 0.76 0.00 0.00 0.18 0.03 0.00 0.00 0.03 0.00 0.00 0.00

Table 3.4: Statisticians who have cited one research topics with at least 0.7 preference

3.6 Discussion

In this chapter, we studied the effect of individual differences - the preference

heterogeneity and out-degrees heterogeneity - in community detection in directed

networks. We introduced a preference-based block model, where individual nodes

can have different preferences to groups. The upper bound for the number of mis-

clustered nodes was established which depends on the smallest singular values of

two matrices: one related to the average connectivity and the other related to the

variation of preferences or the variation of out-degrees. We have shown through

numerical studies that it is possible to utilize the variation of the preferences and out-

degrees to improve the performance of community detection given the same average

connectivity between communities.

It would be interesting to design a model that considers not only the individual

differences of the sender nodes but also those of the receiver nodes. There might be

nodes whose popularities to nodes in different communities are different.

Another direction is to extend likelihood-based model selection criteria to the

proposed model. Choosing the number of communities is also a relevant and challenge

task. There has been much progress on likelihood-based model selection criteria

(Wang et al., 2017; Hu et al., 2019) under the stochastic block model or degree-

corrected stochastic block model. These methods can be good starting points to

develop new methods with the additional consideration of the individual differences.



CHAPTER IV

Dyadic Latent Space Models for Directed Networks

4.1 Introduction

Networks have been an important representation of relationships among objects

for a long time. It effectively represents relationships among objects inside complex

systems such as social networks, brain networks, biological networks, to name a few

(Malliaros and Vazirgiannis, 2013). In many cases, networks are directed, which

means there is a directionality on the relationship, a distinct feature of directed net-

works different from undirected networks. Due to the directionality, the relationship

between two nodes can be asymmetric. For example, node i sends an email to node

j, but node j does not do the reverse. In addition, this property can result in signifi-

cant difference between the in-degree and the out-degree of a node, which represents

popularity and preference of the node respectively. A common approach to tackle

directed networks in practice is to ignore the directionality and apply methods for

undirected networks, causing potentially unsatisfactory results due to losing useful

directional information (Leicht and Newman, 2008). Thus, recognizing and modeling

the reciprocity in the edges of directed networks is of pressing need when analyzing

directed networks.

Various models for directed networks have been developed to take into account

58
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the tendency of edge reciprocity. For example, Holland and Leinhardt (1981) pro-

posed the directed p1 model, which concerns the distribution of edges with several

parameters including a parameter for reciprocity, and they assumed the parameter

for reciprocity is a constant over the network to reduce the number of parameters.

Wang and Wong (1987) extended the p1 model to consider subgraph information

rather than just dyads. Holland et al. (1983) introduced a pair-dependent stochastic

block model assuming the dyad probabilities can be different for different interac-

tions between two communities. A mixture model of exponential families, including

a mixture of p1 models, was proposed in Vu et al. (2013a). They developed a vari-

ational EM algorithm to estimate the mixture model. For community detection, Li

et al. (2012) introduced a spectral clustering method that only utilized mutual dyads

to find communities. They argued mutual relations might be more stable and using

only that relations can be of interest. However, all these existing methods in the lit-

erature fail to model reciprocity at the node level or the edge level, which requires a

substantial number of parameters. In directed networks, it is likely that some nodes

tend to reciprocate edges, while other nodes tend to only receive or send edges. In

addition, some types of nodes might reciprocate edges more with the same type than

other types. Thus, models ignoring individual reciprocity information in directed

networks tend to be limited and fail to use holistic information in the network.

The latent space model for networks has also been widely used due to its flexibility,

ease of interpretation and visualization. In such model, each node is represented as a

vector zi in a low-dimensional Euclidean space for parsimonious parameters. If two

nodes are close in that space, they are more likely to connect to each other. Several

distances can be used to measure the closeness between nodes. For example, Hoff

et al. (2002) considered two types of latent space models, the distance model and the
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projection model treating latent space positions as fixed effects. The original latent

space model has been extended in the same author’s later work (Hoff, 2015, 2005,

2009), in which the latent vectors were treated as random effects generated from a

multivariate Gaussian distribution. Treating latent vectors as random effects allowed

better modeling of key characteristics in networks such as transitivity, homophily,

and degree heterogeneity. Model fitting and inference for latent space models have

usually been carried out via Markov chain Monte Carlo. Due to the lack of scalability

of MCMC, there is a limitation when applying these models to large network data.

More recently, projected gradient descent algorithms to fit latent space models have

been proposed (Wu et al., 2017; Ma et al., 2020), showing that the algorithms are

scalable to large networks. Theoretical properties of the algorithms have also been

established. A similar approach has been studied as node embedding (Grover and

Leskovec, 2016; Tang et al., 2015; Perozzi et al., 2014), using stochastic gradient

ascent with different neighborhood sampling schemes to make the algorithm scalable.

To the best of our knowledge, there has been no latent space model for directed

networks that takes into account diverse reciprocal relationships among the nodes.

The model in Hoff (2015) is probably the closest one but it only considered a constant

reciprocity parameter across the network.

In this chapter, we propose a new latent space model for directed networks. Un-

like previous studies, we directly model the dyadic probability with low-dimensional

latent vectors and three heterogeneity parameters. This enables the reciprocity to

be different between different dyads as the reciprocity will depend on the interaction

between two latent positions and each node’s tendency to reciprocate, which was not

considered in previous models. Thus, the proposed model allows for more flexibility

for directed networks and enables to utilize overlooked differences in dyads, while
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maintaining the advantages of the original latent space model. The model is promis-

ing for many tasks such as link prediction and community detection. In addition,

by treating degree heterogeneity parameters and latent vectors as fixed effects, we

use a projected gradient descent algorithm for model fitting, which is scalable and

computationally efficient.

4.2 Models

In this section, we propose dyadic latent space models for directed networks using

inner-product of latent vectors with degree heterogeneity parameters. Several con-

ditions for the parameters are provided for identifiability. In addition, connections

to previous models and the advantages over previous models are also discussed. The

data we observe consists of a n×n adjacency matrix A ∈ {0, 1}n×n on n nodes, with

entries Aij equal to 1 if there is a link from node i to node j and 0 otherwise. This

matrix is in general asymmetric since Aij and Aji are not necessarily the same in

directed networks. We assume there is no self-loop, i.e. Aii = 0 for all i = 1, · · · , n.

We denote the probability matrix P = E[A] ∈ Rn×n. The model proposed in this

section is based on
(
n−1

2

)
random vectors Dij = (Aij, Aji) ∈ {0, 1}2, i < j, each

referred as a dyad. To simplify notation for dyadic outcomes, the observed cases

can be denoted as, for i 6= j, A
(s,t)
ij = I(Aij = s, Aji = t) for s = 0, 1 and t = 0, 1.

Note that A
(1,0)
ij + A

(0,1)
ij + A

(1,1)
ij + A

(0,0)
ij = 1 and A

(1,0)
ij + A

(1,1)
ij = Aij. Similarly,

for i 6= j, P
(s,t)
ij = P (Aij = s, Aji = t) for s = 0, 1 and t = 0, 1. Note that

P
(1,0)
ij + P

(0,1)
ij + P

(1,1)
ij + P

(0,0)
ij = 1.

4.2.1 A dyadic latent space model

We consider a pair of edges (dyad) Dij = (Aij, Aji) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

for any i < j. We model the dyadic probability, which is a joint probability of Aij
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and Aji, instead of assuming Aij and Aji are independent. The proposed model es-

sentially uses multinomial distribution with 4 categories with shared latent variables.

Assuming the Dij’s (for any i < j) are mutually independent, we write the model as

Dij
ind∼ Multinomial(P

(1,0)
ij , P

(0,1)
ij , P

(1,1)
ij , P

(0,0)
ij )

with Θ
(1,0)
ij = log(P

(1,0)
ij /P

(0,0)
ij ) = ai + bj + uᵀiRuj

Θ
(0,1)
ij = log(P

(0,1)
ij /P

(0,0)
ij ) = bi + aj + uᵀiR

ᵀuj

Θ
(1,1)
ij = log(P

(1,1)
ij /P

(0,0)
ij ) = ci + cj + uTi Suj,

(4.1)

where R, S ∈ RK×K , ai, bi, ci ∈ R1 and ui ∈ RK . Since P
(0,1)
ij = P

(1,0)
ji and P

(0,0)
ij =

P
(0,0)
ji , we have Θ

(0,1)
ij = Θ

(1,0)
ji . Note it is also possible to define Dij for i > j using

the property P
(0,1)
ij = P

(1,0)
ji , even though Dij and Dji are basically the same random

variable except for the order of categories. In total, there are n(3 + K) + 2K2

parameters in the model.

The parameters {ai : 1 ≤ i ≤ n}, {bi : 1 ≤ i ≤ n} and {ci : 1 ≤ i ≤ n} are

used for modeling degree heterogeneity of each node. In directed networks, each

node has two types of degrees: the in-degree of node j is the number of incoming

edges, i.e,
∑n

i=1Aij, and the out-degree of node i is the number of outgoing edges,

i.e,
∑n

j=1Aij. Both ai and ci parameters represent out-degree heterogeneity while

both bi and ci parameters represent in-degree heterogeneity. ai represent one-way

sending tendency of node i and bi represent one-way receiving tendency of node

i. Specifically, ci models both in-degree and out-degree which reflects the reciprocal

tendency of node i. For instance, if ci is large while ai and bi are small for node i, then

it implies that node i is likely to have large out-degree and in-degree. In addition,

the nodes who receive the edges from node i tend to have mutual relationships. Note

that parameters ai, bi and ci are not directly comparable to each other. When we

interpret ai, we need to compare ai among ai’s.
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The latent position vector ui ∈ RK plays an important role with uj through uᵀiRuj

for j 6= i. Other functions of ui and uj that measure the similarity between ui and uj

can be used instead of uᵀiRuj to model the effect of latent vectors (Hoff et al., 2002;

Ma et al., 2020). One reason we use uᵀiRuj is because it is easy to take derivatives.

Further, the representation uᵀiRuj can be justified by singular value decomposition,

which indicates that any n × n matrix can be expressed as UV ᵀ. Thus, if we take

vj = Ruj for parsimony, we have uᵀiRuj. An asymmetric matrix R ∈ RK×K is

adopted to accommodate the asymmetric directional effect of i → j and j 9 i, i.e.

P
(1,0)
ij and P

(0,1)
ij can be different. A symmetric matrix S ∈ RK×K is adopted to

explain the effect of ui and uj on the probabilities of reciprocated edges; note P (1,1)

is symmetric. In Section 4.2.2, a general model using the UV ᵀ representation will be

discussed. The uᵀiRuj part can model transitivity and reciprocity. Take S = R = I

as a simple illustration. If Aij = 1 and Ajk = 1 for i 6= j and j 6= k, then both uᵀi uj

and uᵀjuk are likely to be large, resulting uᵀi uk likely to be large as well and increasing

the chance of observing Aik = 1. Similarly under the same condition, uᵀjui tends to

be large, increasing the chance of observing Aji = 1. Since the two matrices R and

S need to be estimated, the estimates will accommodate with the transitivity and

reciprocity in the network.

Matrix representations of Θ
(1,0)
ij and Θ

(1,1)
ij can be written as

Θ(1,0) = a1ᵀn + 1nb
ᵀ + URUᵀ

Θ(1,1) = c1ᵀn + 1nc
ᵀ + USUᵀ

(4.2)

where 1n ∈ Rn is a vector with elements all equal to 1 and U = (u1, · · · , un)ᵀ ∈ Rn×K .

Denote a = (a1, · · · , an) ∈ Rn, b = (b1, · · · , bn) ∈ Rn and c = (c1, · · · , cn) ∈ Rn.

Since we assume there is no self loop, diagonal elements of Θ(1,0) and Θ(1,1) could be

ignored in the matrix form. Let Θ
(1,0)
0 be a matrix that has the same value for the off-
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diagonal elements as Θ(1,0) and zero for diagonal elements, i.e., Θ
(1,0)
0,ij = Θ

(1,0)
ij I(i 6= j),

and Θ
(1,1)
0 can be defined similarly, i.e., Θ

(1,1)
0,ij = Θ

(1,1)
ij I(i 6= j). Without confusion,

we assume the diagonal elements of Θ(1,0) and Θ(1,1) are zero.

Note that without any constraints, the model is not identifiable. To ensure iden-

tifiability, we impose certain conditions:

bᵀ1n = 0, JU = U

‖UUᵀ‖F = n

(4.3)

where J = In − 1
n
1n1ᵀn is a centering matrix. These conditions uniquely identify

U up to an orthonormal matrix Q ∈ RK×K . In the model U , S and R are only

identifiable upto USUᵀ and URUᵀ. Multiplying any c > 0 to U results in URUᵀ =

(cU)
(

1
c2
R
)

(cU)ᵀ. Thus, ‖UUᵀ‖F = n is imposed. R and S also have to be scaled

accordingly to keep USUᵀ and URUᵀ the same, respectively.

Rearranging model (4.1) gives us the log-odds ratio ρij, that is

ρij = log

(
P (Aij = 1|Aji = 1)P (Aij = 0|Aji = 0)

P (Aij = 0|Aji = 1)P (Aij = 1|Aji = 0)

)
= log

(
P

(1,1)
ij P

(0,0)
ij

P
(1,0)
ij P

(0,1)
ij

)

= (ci − ai − bi) + (cj − aj − bj) + uᵀi (S −R−Rᵀ)ui.

(4.4)

As in Holland and Leinhardt (1981), ρij measures the tendency to reciprocate edges

between two nodes i and j. We will have a positive ρij if the probability for the

two nodes to either have both edges or neither edge is relatively higher than the

probability of having only one edge of the two possible edges. If the two random

variables Aij and Aji are independent, then ρij = 0. In this model, we have ρij = 0

if ci = ai + bi and S = R + Rᵀ. Many previous work assumed a constant ρ in the

network and then conducted hypothesis testing to test whether ρ = 0 or not. Unlike

previous work, we do not impose any constraints on ρ. By using a flexible model for
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dyadic probabilities, ρ can also be modeled flexibly, providing a way to understand

reciprocity better.

Note that covariates can be naturally incorporated in the model as extra terms

similar to previous work (Ma et al., 2020; Wu et al., 2017). However, we do not

pursue that direction in this thesis.

Remark IV.1. A natural model for comparison to examine the effect of dyadic prob-

abilities is a model that assumes all edge are independent. We thus define a pair-

independent latent space model, which can be considered as a counterpart of the

dyadic latent space model (4.1), as follows:

Aij ∼ Bernoulli(Pij), with

logit(Pij) = Θij = ai + bj + uTi Ruj.

(4.5)

In numerical studies, we will compare model (4.1) to model (4.5).

4.2.2 A general dyadic latent space model

In a directed network, many methods try to model the sender’s behavior and

the receiver’s behavior separately. For example, in spectral clustering methods for

directed networks, the left singular vectors and the right singular vectors are often

utilized, with the left singular vectors responsible for senders’ behavior and right

singular vectors responsible for receivers’ behavior (Rohe et al., 2016). Modeling

latent vectors of outgoing nodes and incoming nodes separately has also been used

in latent space models (Hoff, 2015). We also propose a general dyadic latent space

model for directed networks that allows for two different latent vectors, for incoming

and outgoing edges of a node respectively.

Assuming that Dij (for any i < j) are mutually independent, we write the model
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as

Dij
ind∼ Multinomial(P

(1,0)
ij , P

(0,1)
ij , P

(1,1)
ij , P

(0,0)
ij )

with Θ
(1,0)
ij = log(P

(1,0)
ij /P

(0,0)
ij ) = ai + bj + uᵀi vj,

Θ
(0,1)
ij = log(P

(0,1)
ij /P

(0,0)
ij ) = bi + aj + vᵀi uj

Θ
(1,1)
ij = log(P

(1,1)
ij /P

(0,0)
ij ) = ci + cj + uᵀiTvj + vᵀi T

ᵀuj + vᵀi Svvj + uᵀiSuuj

(4.6)

where T ∈ RK×K and symmetric matrices Sv, Su ∈ RK×K . The roles of a, b and c are

the same as in Section 4.2.1. Now we have two latent vectors ui ∈ RK and vj ∈ RK ,

which influence Θ
(1,0)
ij through uᵀi vj, and they influence Θ

(1,1)
ij through 4 different

terms: uᵀiTvj, v
ᵀ
i T
ᵀuj, v

ᵀ
i Svvj and uᵀiSuuj. For the (1,1) pair, all combinations

between (ui, vi) and (uj, vj) may have an influence on (1,1).

Again, to ensure identifiability, we impose the following conditions

bᵀ1n = 0, JU = U

‖U‖F =
√
n and ‖V ‖F =

√
n

(4.7)

where J = In − 1
n
1n1ᵀn is a centering matrix. These conditions uniquely identify U

up to an orthonormal matrix Q ∈ RK×K .

Rearranging the model (4.6) gives us the log-odds ratio ρij, that is

ρij = log

(
P (Aij = 1|Aji = 1)P (Aij = 0|Aji = 0)

P (Aij = 0|Aji = 1)P (Aij = 1|Aji = 0)

)
= log

(
P

(1,1)
ij P

(0,0)
ij

P
(1,0)
ij P

(0,1)
ij

)

= (ci − ai − bi) + (cj − aj − bj) + uᵀi (T − I)vj + vᵀi (T − I)ᵀuj + vᵀi Svvj + uᵀiSuuj.

(4.8)

Again, ρij = 0 implies that Aij and Aji are independent, and it corresponds to

ci = ai + bi, T = I, Sv = 0 and Su = 0.

Model (4.6) has more parameters and is more complicated than model (4.1). Un-

like model (4.1), we need two times more latent variables in model (4.6) since we have
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two types of latent spaces for the outgoing nodes and the incoming nodes respectively.

This more complicated model will be suitable if the behaviors of outgoing nodes and

incoming nodes are considerably different. However, if behaviors of outgoing nodes

and incoming nodes are expected to be not that different, using both ui and vj may

overparametrize the model. If we let vj = Ruj and S = TR+ (TR)ᵀ +RᵀSvR+ Su,

then model (4.6) reduces to model (4.1). In model (4.1), R compresses the difference

between ui and vi via a matrix transformation. Since model (4.1) is simpler and

easier to interpret than model (4.6), we will mainly use model (4.1).

4.2.3 Connections to other models

The models we propose are more general than previously studied models. Both

directed and undirected networks can be understood under the proposed model. If

the network is undirected, we will only observe (0,0) and (1,1) pairs. This can be

considered as a special case of the directed model. Then, it is equivalent to using

only the Θ(1,1) part in model (4.1). Specifically, it is

Aij = Aji ∼ Bernoulli(Pij), with

logit(Pij) = Θij = ci + cj + uTi uj

(4.9)

after re-parametrization of ui as S1/2ui. Model (4.9) has been studied for undirected

networks in (Hoff, 2009; Ma et al., 2020).

A directed network assuming independent edges is a special case of model (4.1)

or model (4.6), that is

Aij ∼ Bernoulli(Pij), with

logit(Pij) = Θij = ai + bj + uTi vj.

(4.10)

Model (4.10) is the same as model (4.1) if we set ci = ai + bi, T = I, Sv = 0 and

Su = 0. Model (4.10) has been studied in the literature (Wu et al., 2017; Hoff, 2015).
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Hoff (2018) proposed an additive and multiplicative effects model (AME), in which

Cov[Aij, Aji] is a constant. In comparison, in model (4.1), we have Cov[Aij, Aji] =

P
(1,1)
ij − (P

(1,0)
ij +P

(1,1)
ij )(P

(0,1)
ij +P

(1,1)
ij ). Since we model dyadic probabilities directly,

which provides more information than just each edge, we do not impose strict con-

straints on model reciprocity. The main contribution of the proposed models is to

model the dependency of edges in a pair by directly using latent space variables, with

moderate increase in the number of parameters. This enables us to use reciprocal

information, which was usually neglected in previous models for directed networks.

4.3 Algorithm

In this section, we develop algorithms for fitting model (4.1) by maximizing log-

likelihood using a projected gradient descent approach. Denote Θij = {Θ(1,0)
ij ,Θ

(0,1)
ij ,

Θ
(1,1)
ij }. The link function is defined as

(4.11) Sd(Θij) = exp(Θd
ij)/

(
1 + exp(Θ

(1,0)
ij ) + exp(Θ

(0,1)
ij ) + exp(Θ

(1,1)
ij )

)
for d ∈ {(1, 0), (0, 1), (1, 1)}. Let P d

ij = Sd(Θij) for d ∈ {(1, 0), (0, 1), (1, 1)}. The

log-likelihood function can be written as

l(U,a, b, c, S,R) =
∑
i<j

A
(1,0)
ij log(P

(1,0)
ij ) +A

(0,1)
ij log(P

(0,1)
ij ) +A

(1,1)
ij log(P

(1,1)
ij ) +A

(0,0)
ij log(P

(0,0)
ij )

=
∑
i 6=j

A
(1,0)
ij Θ

(1,0)
ij +

1

2

∑
i6=j

A
(1,1)
ij Θ

(1,1)
ij − 1

2

∑
i 6=j

log
(

1 + eΘ
(1,0)
ij + eΘ

(0,1)
ij + eΘ

(1,1)
ij

)
.

(4.12)

Detailed derivation can be found in the appendix. Since this function is not convex

with respect to ui for all i, obtaining global optimum is not guaranteed. However,

local minimum can be achieved by the gradient descent method with first-order

derivative. To ensure identifiability conditions as in equation (4.3), we project pa-

rameter estimates into the constrained space after each step of iteration. Computa-

tional advantages of the gradient descent method for latent space models have been
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demonstrated in Ma et al. (2020); Wu et al. (2017).

4.3.1 Projected gradient descent algorithm

We fit the model using a gradient descent algorithm by minimizing the negative

log likelihood, which is

(4.13) min
U,a,b,c,S,R

−l(U,a, b, c, S, R) = min
U,a,b,c,S,R

f(U,a, b, c, S, R),

where we set f(·) = −l(·). The algorithm for fitting the model (4.1) using the

projected gradient descent approach is given in Algorithm IV.1.

Algorithm IV.1 A projected gradient descent algorithm

1: Input: Adjacency matrix: A; latent space dimension: K;
initial estimates: U0,a0, b0, c0, S0, R0;
step size: ηU , ηa, ηb, ηc, ηR, ηS

2: Output: Û = UT , R̂ = RT , Ŝ = ST , â = aT , b̂ = bT , ĉ = cT

3: for t = 0,1,...,T-1 do
4: Ũ t+1 = U t + 2ηU

(
(A(1,0) − P (1,0))U t(Rt)ᵀ + (A(0,1) − P (0,1))U tRt + (A(1,1) − P (1,1))U tSt

)
5: at+1 = at + 2ηa

(
A(1,0) − P (1,0)

)
1n

6: b̃t+1 = bt + 2ηb
(
A(0,1) − P (0,1)

)
1n

7: ct+1 = ct + 2ηc
(
A(1,1) − P (1,1)

)
1n

8: Rt+1 = Rt + 2ηR(U t)ᵀ(A(1,0) − P (1,0))U t

9: St+1 = St + ηS(U t)ᵀ(A(1,1) − P (1,1))U t

10: U t+1 = PU (Ũ t+1), bt+1 = Pb(b̃t+1)
11: Update P (1,0) and P (1,1) using U t+1, at+1, bt+1,ct+1, Rt+1 and St+1

12: end for

Algorithm IV.1 iteratively updates the estimates for the parameters U , a, b, c, S

and R. The estimates move along the direction of gradient descent by a small step

size. In our implementation, we use an adaptive step size over iterations to prevent

gradient from explosion and non-convergence. If f(·) with the updated parameters

increases from the previous step, we reduce the step size until we have the updated

parameters to decrease f(·). This prevents the objective function from getting to

large. We stop the iteration if either the relative change of the object function is

small enough, or the number of iterations reaches a pre-specified maximum value.
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Step sizes are also important for algorithm convergence. We allow step sizes for U ,

a, b, c, R, S to be different for better convergence.

For successful convergence of the algorithm IV.1, proper initialization is necessary.

We take advantage of the parameter estimates from the pair-independent latent space

model. Under the model, we estimate the parameters as a0,b0, U0 and R0, and we

set c0 = a0 + b0 and S0 = R0 +R0ᵀ.

We suggest initialization using Algorithm IV.2. In our numerical studies, we

found the performance of Algorithm IV.1 was robust to initialization even when

we used randomly generated values. In practice, we suggest using multiple initial

values and see which leads to the smallest objective value. A more principled way

for initialization is developed in Algorithm C.2. Specifically, we separate A(1,0) and

A(1,1) to estimate initial parameters. However, this algorithm did not necessarily

perform better than other initialization algorithms. Thus, we used Algorithm IV.2

in our simulations for initialization.

Algorithm IV.2 Initialization algorithm

1: Input: A: Adjacency matrix; K: latent space dimension;

2: If dependent is TRUE, let a0 =
(

1
n(n−1)

∑
i 6=j A

(1,0)
i,j

)
1n, b0 = 0n and c0 =(

1
n(n−1)

∑
i 6=j A

(1,1)
i,j

)
1n. Otherwise, let a0 = 1

n(n−1)

∑
i6=j A

(1,0)
i,j and b0 = 0n.

3: Find the singular vectors UK ∈ Rn×K of A+Aᵀ

2 corresponding to the K largest singular values
dK ∈ RK .

4: We have U0 after centering and scaling UK so that JU = U and ‖UUᵀ‖F = n.
5: Set R0 = diag(dk) and S0 = 2 · diag(dk).
6: end for

4.3.2 Modified algorithm for link prediction

The proposed model can be used for link prediction, which predicts unobserved or

missing edges. However, unlike the models assuming pair-independence, likelihood

for missing edges is not clear in model (4.1) as we directly deal with dyads, which

needs a pair of edges. Let M = {(i, j) : Aij exists and Aji is missing} be the set
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of pairs that one edge is missing and one edge is not missing. For edges in M, we

maximize the marginal likelihood where missing edges have been marginalized out.

The marginalized log likelihood function for maximization is as follows

∑
i6=j,(i,j)∈I

A
(1,0)
ij Θ

(1,0)
ij +

1

2

∑
i 6=j,(i,j)∈I

A
(1,1)
ij Θ

(1,1)
ij − 1

2

∑
i 6=j,(i,j)∈I

log
(

1 + eΘ
(1,0)
ij + eΘ

(0,1)
ij + eΘ

(1,1)
ij

)
+

∑
(i,j)∈M

Aij log
(
P

(1,0)
ij + P

(1,1)
ij

)
+ (1−Aij) log

(
P

(0,0)
ij + P

(0,1)
ij

)
(4.14)

Again, a projected gradient descent algorithm can be used to fit the model by max-

imizing the log likelihood function (4.14).

Once the model is fitted, we can predict the missing edges using the estimated

probabilities. When two edges are missing in a dyad, we can predict the pair of edges

using estimated probabilities P̂
(1,0)
ij , P̂

(0,1)
ij and P̂

(1,1)
ij . If Aij is missing and Aji = 1,

we can look at conditional probability P (Aij = 1|Aji = 1) instead of P (Aij = 1),

which is more informative. That is

(4.15)

P (Aij = 1|Aji = 1) =
P (Aij = 1, Aji = 1)

P (Aij = 1, Aji = 1) + P (Aij = 0, Aji = 1)
=

P
(1,1)
ij

P
(1,1)
ij + P

(0,1)
ij

.

Similarly, if Aij is missing and Aji = 0, we have

(4.16)

P (Aij = 1|Aji = 0) =
P (Aij = 1, Aji = 0)

P (Aij = 1, Aji = 0) + P (Aij = 0, Aji = 0)
=

P
(1,0)
ij

P
(1,0)
ij + P

(0,0)
ij

.

We obtain the estimates of conditional probabilities with estimated dyadic proba-

bilities as in (4.15) and (4.16) for link prediction. Incorporating pair-dependence

information can greatly improve the performance compared to other models that do

not consider pair-dependence. In our numerical studies, we estimate the conditional

probability (4.15) or (4.16) using estimated probabilities P̂
(1,0)
ij , P̂

(1,0)
ij and P̂

(0,0)
ij .
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4.4 Theoretical results

In this section, we establish error bounds for Θ and P under the proposed model

(4.1). First, we consider the following parameter space:

F(n, k, αl, αu) ={
Θ|Θ(1,0) = a1ᵀn + 1nb

ᵀ + URUᵀ ,

Θ(1,1) = c1ᵀn + 1nc
ᵀ + USUᵀ, JU = U, bᵀ1n = 0

min
i 6=j

Θ
(1,1)
(i,j) ,min

i 6=j
Θ

(1,0)
(i,j) ≥ αl, and max

i 6=j
Θ

(1,1)
(i,j) ,max

i 6=j
Θ

(1,0)
(i,j) ≤ αu ≤ 0

}
(4.17)

A constraint αu ≤ 0 is given for simpler derivation, naturally making all probabilities

less than 0.5. For simplicity, define Θ =
[
Θ(1,0)ᵀ,Θ(1,1)ᵀ

]ᵀ ∈ R2n×n. We also set

f (Θ) = −l(U,a, b, c, S, R) as a function of Θ for notational simplicity. Let (â, b̂,

ĉ, R̂, Ŝ, Û) be the optimal solution to (4.12). Denote Θ̂(1,0) = â1ᵀn + 1nb̂
ᵀ

+ ÛR̂Ûᵀ

and Θ̂(1,1) = ĉ1ᵀn + 1nĉ
ᵀ + Û ŜÛᵀ. Similarly, let (a∗, b∗, c∗, R∗, S∗, U∗) be the true

parameters. Denote Θ
(1,0)
∗ = a∗1

ᵀ
n+1nb

ᵀ
∗+U∗R∗U

ᵀ
∗ and Θ

(1,1)
∗ = c∗1

ᵀ
n+1nc

ᵀ
∗+U∗S∗U

ᵀ
∗ .

We consider the upper bound for ‖Θ̂−Θ∗‖2
F = ‖Θ̂(1,0)−Θ

(1,0)
∗ ‖2

F +‖Θ̂(1,1)−Θ
(1,1)
∗ ‖2

F .

Theorem IV.2. Suppose the network is generated from a dyadic latent space model

(4.1) with parameter Θ∗. Let Θ̂ be the global optimal solution to (4.12). Then, there

exists constants r, C > 0 such that

(4.18) ‖Θ̂−Θ∗‖2
F ≤ C(K + 2)e−2αl max{neαu , log n}

with probability at least 1− 2n−r.

Theorem IV.2 shows that the mean squared error, i.e. ‖Θ̂ −Θ∗‖2
F/n

2, is upper

bounded by CK e−2αl

n
max (eαu , log n/n). If eαu ≥ log n/n, the sparsity of the network

influences the upper bound through eαu . If log n/n ≤ eαu , log n/n will affect the

rate. When eαu decreases, the bound increases. In addition, eαu also affect the upper
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bound inversely, meaning the smallest probability makes the upper bound larger. For

instance, if eαu = Ω(log n/n) and eαl = Ω(log n/n), then ‖Θ̂−Θ∗‖2
F/n

2 = O
(

1
logn

)
.

Denote P = [P (1,0), P (0,1), P (1,1), P (0,0)] ∈ Rn×4n and P̂ = [P̂ (1,0), P̂ (0,1), P̂ (1,1),

P̂ (0,0)] ∈ Rn×4n. We have the following result.

Theorem IV.3. Suppose the network is generated from a dyadic latent space model

with parameter Θ∗. Let Θ̂ be the global optimal solution to (4.12). Let P ∗ and P̂

be obtained from Θ∗ and Θ̂, respectively. Then, there exists constants r, C > 0 such

that

‖P̂ − P ∗‖2
F ≤ C1(K + 2)e−αl max (neαu , log n)(4.19)

with probability at least 1− 2n−r.

The rate of ‖P̂−P ∗‖2
F is faster than that of ‖Θ̂−Θ∗‖2

F by e−αl . The mean squared

error, i.e. ‖P̂ −P ∗‖2
F/n

2, is O
(
K+2
neαl

max (eαu , log n/n)
)
. The rate is reasonable since

P ∗ is a transformation of Θ∗ via the link function Sd(·).

4.5 Simulation studies

In this section, we use three simulation studies to demonstrate the performance

of the proposed method in different aspects: (1) estimation error, (2) community

detection, and (3) link prediction. In Section 4.5.1, we study the estimation error

using the proposed algorithm as we vary the size of the network and the dimension

of the latent space. In Sections 4.5.2 and 4.5.3, we compare the proposed dyadic

latent space model (DLSM) with pair-independent latent space model (PILSM). In

PILSM, we assume all edges are independent Bernoulli random variables as in (4.5).

Model fitting for PILSM is also implemented using a projected gradient descent

algorithm and with initial values obtained from a similar initialization algorithm for
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the independent edges case.

4.5.1 Estimation errors

We study how the estimation error by the proposed algorithm depends on the

network size (n) and the dimension of the latent variables (K). We show that the

proposed algorithm empirically converges well and estimates parameters well. As

we have seen in Theorem IV.2, the estimation error depends on n and K. We set

other parameters for any combination of n ∈ {250, 500, 1000} and K ∈ {2, 4, 6} as

the following:

1. Generate degree heterogeneity parameters a, b and c. For all i = 1, · · · , n,
ai

bi

ci

 ∼ N[−1,1]




−3

0

−1.5

 , 0.1 ·


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1




2. Generate latent variables: For k = 1, · · · , K, uik ∼ N[−2,2](0, 1) for i = 1, · · · , n.

3. Set Ũ = JU as defined in (4.3) and U∗ be the normalized version of Ũ such that

‖U∗,ᵀU∗‖F = n.

4. Set R = diag(1, · · · , 1) ∈ RK×K and S = diag(1, · · · , 1) ∈ RK×K .

In these steps, N[a,b](·) is a truncated normal distribution by bounding the random

variable from a to b. For each configuration of (n, K), the parameters generation is

repeated 30 times, a corresponding adjacency matrix is generated, and the proposed

algorithm is applied to the adjacency matrix. Initial estimates are also obtained from

Algorithm ??. We also found that convergence of algorithm is robust to other initial

values.

We use relative error to compare the performances of the different methods, where

the relative error of (X̂,X) is defined as ‖X̂−X‖2
F/‖X‖2

F . Since U is identifiable up
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to an orthonormal transformation, we measure the relative error of UUᵀ. As can be

seen in Figure 4.1, relative errors of UUᵀ and P (1,0) decrease as n increases and/or K

decreases, which is consistent with the theoretical result. Relative errors of URUᵀ,

USUᵀ and P (1,1) show similar patterns as in Figure 4.1.

Figure 4.1: Boxplots of relative estimation error as we vary the number of nodes and the dimension
of the latent space

4.5.2 Community detection

The stochastic block model (SBM) has been widely used as a standard model

for community detection. Connectivity difference between communities in a network

allows us to find communities. See Abbe (2018) for a review of the topic. Most

models for community detection do not consider dyadic dependence. The degree of

dyadic dependence can depend on the communities. In particular, it is possible that

nodes in a community reciprocate more edges to nodes in the same community than

to nodes in other communities. If reciprocity provides a strong signal for community

information in directed networks, using reciprocity for community detection may
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enable us to recover communities even if the parameters of the standard SBM are in

a regime where community detection is difficult or even not possible.

To investigate the role of community-wise reciprocity for community detection,

we vary the gap between the marginal probability within communities from the

SBM and the marginal probability between communities while we fix the ratios

between (1,0) probability and (1,1) probability of within and between communities

and the average degree of the nodes. We set n=500 and K=2. Let γ(1,0) and

γ(1,1) be the corresponding dyadic probabilities within communities and β(1,0) and

β(1,1) be corresponding dyadic probabilities between communities. We set marginal

probability within communities as γ = γ(1,0)+γ(1,1) and marginal probability between

communities as β = β(1,0) + β(1,1). We set γ(1,0)/γ(1,1) = 2 for edges within the

same communities and β(1,0)/β(1,1) = 1/2 for edges between communities. We vary

marginal probabilities γ and β while keeping (γ+β)/2 = 0.1. To compare our results

to true labels, we use the error rate which is defined as n−1 minσ
∑n

i=1 I(zi 6= σ(ẑi))

where zi is the true label, ẑi is the estimated label and σ(·) is a permutation function.

We also present the error rates obtained from traditional spectral clustering (SP)

and PILSM. For SP, we perform singular value decomposition of A and apply the k-

means algorithm to the singular vectors. SP and PILSM do not use pair dependence

information, which are present in the simulation studies. For both the proposed

model and PILSM, the k-means algorithm was applied to the fitted U to obtain

cluster labels.

As expected, when γ ≈ β, the SP and PILSM algorithms cannot distinguish the

two communities, while the proposed DLSM can obtain much better results since the

community information are available in dyadic dependence. Throughout the entire

range of γ, the error rate of DLSM is always smaller than that of the other algorithms.
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Figure 4.2: Error rates as γ varies

Especially from 0.1 to 0.12, where information of the dyadic probabilities is consider-

able while the signal is weak in the marginal connecting probabilities, the advantage

of using DLSM is substantial. This also implies that neglecting pair-dependency in

directed networks can result in significant information loss in community detection.

4.5.3 Link prediction

We also investigate how the proposed model can help to predict the missing edges

in directed networks. Specifically, we vary the matrix S to change the tendency to

reciprocate the links between nodes within close distance in the latent space. We set

n = 500, K = 2 and R = diag(0.5, 0.5) ∈ R2×2. For a given s in S = diag(s, s) ∈

R2×2, we generated the data as follows:

1. Generate degree heterogeneity parameters a, b and c as follows: For all i =

1, · · · , n,


ai

bi

ci

 ∼ N[−1,1]




−3

0

−1.5

 , 0.1 ·


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1




2. Generate latent variables: For k = 1, 2, uik ∼ µ1,k+N[−2,2](0, 1) for i = 1, · · · , n.
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3. Set Ũ = JU as defined in (4.3) and U∗ be the normalized version of Ũ such that

‖U∗,ᵀU∗‖F = n

For each model, the parameters generation is repeated 30 times. Note that varying

s will also change the sparsity of networks. Among total n× (n− 1)/2 dyads, which

are 124750 dyads, 10000 dyads are randomly sampled, which is around 8.02% of

total dyads. Then, we randomly sample one edge from each sampled dyad and set

it as missing. We apply the proposed algorithm and predict the link probability

as described in Section 4.3.2. We compare the performance of the proposed model

(DLSM) to that of PILSM in terms of the Area Under Curve (AUC), which is also

known as the area under the ROC curve.

Figure 4.3: AUC for link prediction as s varies

Figure 4.3 shows that DLSM outperforms PILSM in terms of AUC in the entire

range of s. When s = 1, a main difference between DLSM and PILSM comes

exclusively from c parameters on (1,1) pairs. As we increase s, the effect of U on

(1,1) pairs also increases. DLSM performs better than PLSM because the proposed

model directly deals with the conditional probability of a edge in a dyad given the
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other edge in the same dyad.

4.6 Data example

The data set we consider is a Twitter data of Rugby Union accounts, curated by

Greene and Cunningham (2013). In this network, there is a collection of 854 interna-

tional Rugby Union players, clubs, and organisations active on Twitter in 2012, who

are linked to each other by several activities such as Follow, Mention and Retweet.

Each activity can construct a directed network. There are overlapping communities

corresponding to 15 different countries, which are considered to be ground truth

groups. Some communities are dominantly large while some communities only have

three to five accounts. Some largest communities are England, France, Ireland and

Wales, etc. An adjacency matrix of only (1,0) pairs and an adjacency matrix of only

(1,1) pairs are shown in Figure 4.4. When we made Figure 4.4, we ordered the nodes

by countries to show existence of community structures. The accounts that have

multiple affiliations are assigned to one of its affiliation. Clear community structures

in both partial adjacency matrices are shown in Figure 4.4. In addition, different

degree heterogeneity and different ratios of (1,0) and (1,1) pairs across countries can

be observed, indicating there might be significant dependency within a pair.

In this analysis, we specifically focus on the Follow activity, which has the most

edges among three activities. A directed edge from node i to node j implies that

Twitter account i follows Twitter account j. We first perform the link prediction

task with DLSM and PILSM and show how DLSM can achieve better results. We

randomly choose 50, 000 dyads from (848 · 847)/2 dyads and randomly set one of the

edges in each sampled dyad as missing, which is around 13.9% of total dyads. We

fit the model using only available links and perform link prediction with estimated
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Figure 4.4: (1,0)-pair adjacency matrix (left) and (1,1)-pair adjacency matrix (right)

Figure 4.5: Estimated ρ
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DLSM PILSM
K Overall Aji = 1 Aji = 0 Overall Aji = 1 Aji = 0
2 0.963 0.833 0.904 0.861 0.695 0.834
4 0.970 0.852 0.924 0.927 0.766 0.902
6 0.972 0.862 0.927 0.944 0.806 0.913
8 0.977 0.876 0.939 0.953 0.825 0.924
10 0.977 0.882 0.942 0.955 0.822 0.925
12 0.980 0.885 0.948 0.963 0.842 0.930
14 0.981 0.886 0.952 0.966 0.843 0.941
16 0.983 0.884 0.957 0.965 0.838 0.933
18 0.977 0.876 0.943 0.952 0.795 0.891

Table 4.1: AUC for link prediction of the proposed model and PILSM using different K

conditional probabilities as in (4.15) and (4.16). Table 4.1 shows the result of AUC

for several different K. To compare performance, we also present the result of PILSM

as in Section 4.5. In Table 4.1, we calculated AUC with overall edges, AUC with

edges Aijs given Aji = 1, and AUC with edges Aijs given Aji = 0. This illustrates

how knowing one edge of a dyad helps to predict the other edge. It can be seen that

the proposed model outperforms PILSM for all K, especially when the other edge

in a dyad is one. The best performances were achieved when K = 14 or K = 16.

When K is larger, both AUCs from the two models decrease because of overfitting.

The above link prediction task suggests using DLSM might be more suitable to

this data set. However, one question about the data is which model should be used.

One approach to tackle this is to use hypothesis testing with likelihood ratio based

test statistics. Since PILSM is nested in DLSM, we can develop a hypothesis testing

framework with hypotheses that“H0: generated from PILSM” and “H1 : generated

from DLSM”. We choose K = 8 since AUC for link prediction was good when K = 8

and K = 8 gives a relatively parsimonious number of parameters. Since derivation of

asymptotic distribution of the test statistics is not straightforward and asymptotic

distribution may not reflect actual distribution unless n is very large, we choose to

use parametric bootstrap (Paul et al., 2016). We fit the data with PILSM under



82

the null hypothesis. Then, we obtain fitted probability matrix P̂ . Considering P̂ as

the approximate probability under the null hypothesis, we then generate Ã(b) matrix

from the fitted probability for b = 1, · · · , 1000. For each b, we fit Ã(b) with DLSM and

calculate log likelihood, which provide the empirical distribution of log likelihood with

DLSM under the null hypothesis. Finally, we calculate the observed log likelihood

with DLSM to the original adjacency matrix A and compare the observed value to the

empirical distribution. The range of the empirical distribution of log likelihood was

from -281445 to -273944, while the observed log likelihood with DLSM was -88199.

The result shows we can reject the null hypothesis.

To show edge-wise different reciprocity, we first fit the model with K = 8 as

before. Figure 4.5 displays the matrix ρ̂ where ρ̂ij = log(P̂
(1,1)
ij P̂

(0,0)
ij / P̂

(1,0)
ij P̂

(0,1)
ij ).

After obtaining ρ̂, we threshold 44 dyads values that exceed the absolute value

10 to -10 or 10. As expected, we observe different structures of reciprocation across

countries and node-wise heterogeneity of reciprocity. Within the same national team,

the nodes tend to reciprocate the edges. In addition, some teams reciprocate edges

more with some specific teams than with other teams, implying some teams are closer

to each other. For instance, connections between New Zealand and Australia tend

to be reciprocal. It is reasonable considering their geographical proximity.

4.7 Discussion

We have proposed a novel dyadic latent space model for directed networks by

incorporating reciprocal relationships. The model directly targets the joint proba-

bility of a pair of edges with latent vectors to provide full information about pair

dependency. We have also developed a projected gradient descent algorithm, which

is computationally efficient.
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The proposed model can be further improved. Though the proposed algorithm

is computationally efficient as it is, the computation time can be further reduced at

maybe the cost of reduced accuracy, even to the linear time of the size of a network,

with a stochastic gradient descent approach. It would be interesting to evaluate the

trade-off between the computing time and the accuracy.

One can further extend the ideas to weighted edges. Unlike binary edges, mod-

eling the joint probability of a pair of weighted edges in a simple form is not a

straightforward task. One promising candidate for the distribution in the continuous

case will be the bivariate Gaussian distribution.



CHAPTER V

Discussion

In this thesis, we presented statistical methods and theories for directed networks

and bipartite networks. First, we introduced one-to-one matched communities be-

tween two types of nodes and proposed a model with a two-stage spectral clustering

algorithm, whose second stage adjusts the effect of community sizes. In the third

chapter, we described a preference-based block model, where each node can have

different preferences to groups. The spectral algorithm on the right singular vectors

with weak consistency results on the number of mis-clustered nodes was presented

as well. Finally, we demonstrated a model that can accommodate information from

reciprocal relationships with latent positions. The proposed model, named a dyadic

latent space model, showed excellent performance compared to the one that did not

consider pair dependency.

The work presented in this thesis lays the foundation for future studies on directed

and bipartite networks. The choice of the number of communities or the dimension

of latent space is a critical part of analysis. There have been several studies on

the topic (Li et al., 2020; Wang et al., 2017; Hu et al., 2019). One may adapt

the proposed models into likelihood-based criteria developed for the stochastic block

model (SBM) and the degree-corrected SBM. One can also attempt to develop a

84
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statistical procedure or criterion for the choice of a proper model for specific data.

Although there are many network models available, it is still difficult for one to

choose a proper model for his or her data. A theoretically sound guidance would be

greatly beneficial for users.

The dyadic latent space model, presented in the fourth chapter, can be extended

for the application to weighted edges. For continuous edges, multivariate Gaussian

distribution can be employed to model joint distribution of a pair of edges. Other

types of edges such as counts will be more challenging to model jointly. It would

also be an interesting task to adopt ideas from Bayesian methods to fit a model

with Markov chain Monte Carlo. Finally, considering that the initialization and the

setting of the step size are critical for the convergence of gradient descent algorithms

solving non-convex problems, either a theoretical or at least an empirical study that

can provide directions for the choice of initial values and step sizes would be greatly

beneficial to the community.
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APPENDIX A

Appendix of Chapter II

A Proofs for lemmas in Section 2.2

Proof of Lemma II.3.

Let ∆1 = diag(n1,1, · · · , n1,K), ∆2 = diag(n2,1, · · · , n2,K), 51 = diag(D1,1, · · · ,

D1,K) and 52 = diag(D2,1, · · · ,D2,K) where D1,s =
∑K

a=1 BsaNa and D2,t =
∑K

b=1

BtbMb

L = D−1/2
1 PD−1/2

2 = D−1/2
1 Z1BZ

ᵀ
2D
−1/2
2 = Z15−1/2

1 B 5−1/2
2 Zᵀ2

= Z1∆
−1/2
1

(
∆

1/2
1 5−1/2

1 B 5−1/2
2 ∆

1/2
2

)
∆
−1/2
2 Zᵀ2

Let singular value decomposition of ∆
1/2
1 5−1/2

1 B 5−1/2
2 ∆

1/2
2 to be XDY ᵀ. Then,

SVD of L is (Z1∆
−1/2
1 X)D(Z2∆

−1/2
2 Y )ᵀ. U = Z1∆

−1/2
1 X and V = Z2∆

−1/2
2 Y . CU =

∆
−1/2
1 X and CV = ∆

−1/2
2 Y .

Proof of Lemma II.5

Let ∆1 = diag(n1,1, · · · , n1,K), ∆2 = diag(n2,1, · · · , n2,K), 51 = diag(DB,1, · · · ,

DB,K) and 52 = diag(DB,1, · · · ,DB,K) where DB,s =
∑K

a=1Bsa.

L̃ = D̃−1/2
1 W

−1/2
1 PW

−1/2
2 D̃−1/2

2 = D̃−1/2
1 W

−1/2
1 Z1BZ

ᵀ
2W

−1/2
2 D̃−1/2

2

= Z1∆
−1/2
1

(
5−1/2

1 B5−1/2
2

)
∆
−1/2
2 Zᵀ2

Let singular value decomposition of 5−1/2
1 B5−1/2

2 to be XD̃Xᵀ (since 51 = 52).
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Then, SVD of L̃ is (Z1∆
−1/2
1 X)D̃(Z2∆

−1/2
2 X)ᵀ. CŨ = ∆

−1/2
1 X and CṼ = ∆

−1/2
2 X.

∆
1/2
1 CŨ = ∆

1/2
2 CṼ .

B Proof of Proposition II.7

To apply statistical techniques that have been used in (undirected) SBM, we can

express a bipartite network as a symmetric network. Denote full graph versions of

A and P from bipartite network as

Af =

 0 A

Aᵀ 0

 , Pf =

 0 P

P ᵀ 0


The next lemmas are slightly modified lemmas of Lei et al. (2015) to Af and Pf .

Lemma A.1. (concentration of Singular Space)

Assume that P ∈ Rn1×n2 is a rank K matrix with smallest absolute non-zero singular

value γn > 0. Let A ∈ {0, 1}n1×n2 and U, U ∈ Rn1×K contain the top K left singular

vectors of A and P , respectively. Similarly, let V, V ∈ Rn2×K contain the top K right

singular vectors of A and P , respectively. Then there exists a K × K orthogonal

matrix Q ∈ RK×K .

‖U − UQ‖F or ‖V − VQ‖F ≤
√
‖U − UQ‖2

F + ‖V − VQ‖2
F ≤

4
√
K

γn
‖A− P‖

Proof. Since Pf is a 2K rank matrix, Pf has 2K leading eigenvectors Wc =[
W W ′

]
∈ Rn×2K , where W = 1√

2

U
V

 and W ′ = 1√
2

 U
−V

 that have the same

absolute eigenvalues. Similarly, Af has 2K eigenvectors Wc =

[
W W ′

]
∈ Rn×2K ,

where W = 1√
2

U
V

 and W ′ = 1√
2

 U

−V

 that have the same absolute eigenvalues.

By Proposition 2.2 in (Vu et al., 2013b), there exists a K-dimensional orthogonal
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matrix Q such that

1√
2

√
‖U − UQ‖2

F + ‖V − VQ‖2
F = ‖W −WQ‖F ≤

√
2‖(I −WW ᵀ)WWᵀ‖F

≤
√

2K‖(I −WW ᵀ)WWᵀ‖

Next, we establish that ‖(I −WcW
ᵀ
c )WcWᵀc ‖ ≤ 2

‖Af−Pf‖
γn

. If ‖Af − Pf‖ ≤ γn
2

, then

by Davis-Kahan theorem, we have

‖(I −WcW
ᵀ
c )WcWᵀc ‖ ≤

‖Af − Pf‖
γn − ‖Af − Pf‖

≤ 2
‖Af − Pf‖

γn

If ‖A− P‖ > γn
2

, then

‖(I −WcW
ᵀ
c )WcWᵀc ‖ ≤ 1 ≤ 2

‖Af − Pf‖
γn

.

Using ‖(I −WcW
ᵀ
c )WcWᵀc ‖ = ‖(I −WW ᵀ)WWᵀ‖ and ‖Af − Pf‖ = ‖A − P‖, we

have

(A.1)

‖U − UQ‖F or ‖V − VQ‖F ≤
√
‖U − UQ‖2

F + ‖V − VQ‖2
F ≤

4
√
K

γn
‖A− P‖.

The following two lemmas are modified versions of Theorem 5.2 and Lemma 5.3

in Lei et al. (2015), showing concentration of A to P and approximate k-means error

bound.

Lemma A.2. (concentration of A to P )

Let Af be the adjacency matrix of a random graph on n nodes in which edges occur

independently. Let E[Af ] = Pf = (pf,ij)i,j=1,··· ,n and assume that n · maxij pf,ij ≤ d

for d ≥ c0 log(n) and c0 > 0. Then, for any r > 0 there exists a constant C = C(r, c0)

such that

(A.2) ‖A− P‖ = ‖Af − Pf‖ ≤ C
√
d

with probability at least 1− n−r.
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Lemma A.3. (approximate k-means error bound)

For ε > 0 and any two matrices U, U (V, V) ∈ Rn1×K (Rn2×K) such that U =

Z1CU (V = Z2CV) with Z1 ∈ Mn1,K (Z2 ∈ Mn2,K), CU ∈ RK×K (CV ∈ RK×K),

let [Ẑ1, ĈU ]
(

[Ẑ2, ĈV ]
)

be a (1 + ε)-approximate solution to the k-means problem

and Ū = Ẑ1ĈU (V̄ = Ẑ2ĈV ). For any δ1,k ≤ minl 6=k ‖CU ,l∗ − CU ,k∗‖ and δ2,k ≤

minl 6=k ‖CV,l∗ − CV,k∗‖, define S1,k = {i ∈ G1,k(Z1) : ‖Ūi∗ − Ui∗‖ ≥ δ1,k/2‖} and

S2,k = {j ∈ G2,k(Z2) : ‖V̄j∗ − Vj∗‖ ≥ δ2,k/2‖} then

(A.3)
K∑
k=1

|S1,k|δ2
1,k ≤ 4(4 + 2ε)‖U − U‖2

F ,
K∑
k=1

|S2,k|δ2
2,k ≤ 4(4 + 2ε)‖V − V‖2

F

Moreover, if

(A.4) (16 + 8ε)‖U − U‖2
F/δ

2
1,k < n1,k and (16 + 8ε)‖V − V‖2

F/δ
2
2,k < n2,k for all k

then there exists a K ×K permutation matrix J1 and J2 such that Ẑ1,G1∗ = Z1,G1∗J1

and Ẑ2,G2∗ = Z2,G2∗J2, where G1 = ∪Kk=1(G1,k/S1,k) and G2 = ∪Kk=1(G2,k/S2,k).

Proof of Proposition II.7

Combining Lemma A.1 and Lemma A.2, we obtain that, for some K-dimensional

orthogonal matrix Q,

√
‖U − UQ‖2

F + ‖V − VQ‖2
F ≤

4
√
K

γn
‖A− P‖ ≤ 4

√
K

γn
C
√
nαn

with probability at least 1−n−1, where C is the absolute constant involved in Lemma

A.2. Now, we apply Lemma A.3 to U and UQ. We can choose δ1,k =
√

1/n1,k and

δ2,k =
√

1/n2,k in Lemma A.3 and hence n1,kδ
2
1,k = 1 and n2,kδ

2
2,k = 1 for all k. Using

the above, a sufficient condition for Lemma A.3 to hold is

(16 + 8ε)16C2K
nαn
γ2
n

≤ 1 = min
k
n2,kδ

2
k



91

Let c−1 = 64C2. With the choice of δ1,k =
√

2/n1,max and δ2,k =
√

2/n2,max, this

yields that
K∑
k=1

|S1,k| ≤ c−1(2 + ε)n1,max
Knαn
γ2
n

K∑
k=1

|S2,k| ≤ c−1(2 + ε)n2,max
Knαn
γ2
n

C Proof of Theorem II.11

Proof of Lemma II.9

By the Assumption II.8, we have

1− η ≤ n̂1,k

n1,k

= 1 +
n̂1,k − n1,k

n1,k

≤ 1 + η

Therefore, we have ∣∣∣∣ n̂1,k

n1,k

− 1

∣∣∣∣ ≤ η

Also for
n1,k

n̂1,k
, we have inequality as follows by the Assumption II.8

1

1 + η
≤ n1,k

n̂1,k

=
1

1 +
n̂1,k−n1,k

n1,k

≤ 1

1− η

Therefore, we have ∣∣∣∣n1,k

n̂1,k

− 1

∣∣∣∣ ≤ η

1− η

Similarly for n2,k.

Lemma A.4. (concentration of Â to P̃ )

Let Â = Ŵ
−1/2
1 AŴ

−1/2
2 ∈ Rn1×n2 and P̃ = W

−1/2
1 PW

−1/2
2 ∈ Rn1×n2 and maxs,tBst ≤

αn for some αn ≥ log n/n. Under the assumption II.8, there exists a constant C such

that

‖Â− P̃‖2 ≤ C2
η,2

(
C
√
nαn√

n1,minn2,min

+ αn
√
Kη(Kη + 3)

)2
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with probability at least 1− n−1.

Proof. Let P̂ = Ŵ
−/2
1 PŴ

−1/2
2 . From the inequality ‖Â− P̃‖ ≤ ‖Â− P̂‖+‖P̂ − P̃‖.

We bound two terms ‖Â − P̂‖ and ‖P̂ − P̃‖ separately. From the Lemma A.2, we

have

(A.5) P[‖A− P‖ ≤ C
√
nαn] ≥ 1− n−1

where C is the constant in that Lemma A.2. For the first term, on the event (A.5)

‖Â− P̂‖ = ‖Ŵ−1/2(A− P )Ŵ−1/2‖

≤ ‖Ŵ−1/2
1 ‖‖(A− P )‖‖Ŵ−1/2

1 ‖ ≤
C
√
nαn√

n̂1,minn̂2,min

≤ Cη,1
C
√
nαn√

n1,minn2,min

where we let Cη,1 = 1/(1−C1) for notational simplicity. Last inequality follows from

assumption II.8.

For the second term also on the event (A.5), we bound ‖P̂−P̃‖ with the inequality

‖P̂ − P̃‖ ≤ ‖P̂ − P̃‖F with frobenius norm. When we compute the bound on the

‖P̂ − P̃‖F , we divide the set of edges into 4 non-overlapping cases; (1) i ∈ Sc1, j ∈ Sc2,

(2) i ∈ Sc1, j ∈ S2, (3) i ∈ S1, j ∈ Sc2 and (4) i ∈ S1, j ∈ S2.

For the set of edges where the nodes are correctly clustered (1) i ∈ Sc1, j ∈ Sc2,

∑
i∈Sc1 ,j∈Sc2

(
P̂ij − P̃ij

)2

=
∑

i∈Sc1 ,j∈Sc2

(
pij√

n̂1,ẑ1in̂2,ẑj

− pij√
n1,z1in2,z2j

)2

≤
∑

i∈Sc1 ,j∈Sc2

(
pij√

n1,z1in2,z2j

)2

max
i,j

(
1−
√
n1,z1in2,z2j√
n̂1,ẑ1in̂2,ẑ2j

)2

≤
n1∑
i=1

n2∑
j=1

(
pij√

n1,z1in2,z2j

)2(
(1 +

η

1− η
)− 1

)2

≤

(
K∑
s=1

K∑
t=1

B2
st

)(
η

1− η

)2

= C2
η,1

(
K∑
s=1

K∑
t=1

B2
st

)
η2

For the set of edges where the nodes of type-1 is correctly estimated and the nodes
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of type-2 is mis-clustered (2) i ∈ Sc1, j ∈ S2,

∑
i∈Sc1 ,j∈S2

(
P̂ij − P̃ij

)2

=
∑

i∈Sc1 ,j∈S2

(
pij√

n̂1,ẑin̂2,ẑj

− pij√
n1,z1in2,z2j

)2

≤
∑

i∈Sc1 ,j∈S2

(
pij√
n1,z1i

)2

max
i,j

(√
n1,z1i√
n̂1,ẑ1i

1√
n̂2,ẑ2j

− 1
√
n2,z2j

)2

≤

(∑
j∈S2

K∑
s=1

∑
i:z1i=s

B2
z1iz2j

n1,z1i

)
max
i,j

(√
n1,z1i√
n̂1,ẑ1i

1√
n̂2,ẑ2j

− 1
√
n2,z2j

)2

≤

(
max
t

K∑
s=1

B2
st

)(∑
j∈S2

1

)
1

n2,min(1− η)2

≤ C2
η,1

(
max
t

K∑
s=1

B2
st

)
|S2|
n2,min

≤ C2
η,1

(
max
t

K∑
s=1

B2
st

)
η

Similarly for the set of edges where the nodes of type-2 is mis-clustered and the nodes

of type-1 is correctly estimated (3) i ∈ S1, j ∈ Sc2,

∑
i∈S1,j∈Sc2

(
P̂ij − P̃ij

)2

≤ C2
η,1

(
max
s

K∑
t=1

B2
st

)
η

For the set of edges where both nodes are misclustered (4) i ∈ S1, j ∈ S2,

∑
i∈S1,j∈S2

(
P̂ij − P̃ij

)2

=
∑

i∈S1,j∈S2

(
pij√

n̂1,ẑ1in̂2,ẑ2j

− pij√
n1,z1in2,z2j

)2

≤

( ∑
i∈S1,j∈S2

B2
z1iz2j

)
max
i,j

(
1√

n̂1,ẑ1in̂2,ẑ2j

− 1
√
n1,z1in2,z2j

)2

≤ max
s,t

B2
st

( ∑
i∈S1,j∈S2

1

)
1

n1,minn2,min(1− η)2

≤ max
s,t

B2
st

|S1||S2|
n1,minn2,min(1− η)2

≤ C2
η,1

(
max
s,t

B2
st

)
η2

Therefore combining all those (i), (ii), (iii) and (iiii), we obtain

‖P̂ − P̃‖2
F ≤ C2

η,1

((
K∑
s=1

K∑
t=1

B2
st

)
η2 + 2

(
max
s

K∑
t=1

B2
st

)
η + max

s,t
B2
stη

2

)

≤ C2
η,1

(
K2α2

nη
2 + 2Kα2

nη + α2
nη

2
)
≤ C2

η,1α
2
n (Kη(Kη + 3))
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Therefore, finally we have

‖Â− P̃‖2 ≤ C2
η,2

(
C
√
nαn√

n1,minn2,min

+ αn
√
Kη(Kη + 3)

)2

.

Proof of Theorem II.11

From (1+ε) approximate k-means algorithm, we have

‖T̄ − T‖2
F ≤ (1 + ε) min

Z,X
‖ZX − T‖2

F ≤ (1 + ε)‖T Q2 − T‖2
F

We further have ‖T̄−T Q2‖2
F ≤ 2

(
‖T̄ − T‖2

F + ‖T − T Q2‖2
F

)
≤ 2(2+ε)‖T−T Q2‖2

F .

Now, we can bound

‖T − T Q2‖2
F =

[
‖Ŵ 1/2

1 Û −W 1/2
1 ŨQ2‖2

F + ‖Ŵ 1/2
2 V̂ −−W 1/2

2 ṼQ2‖2
F

]
≤ 2

[
‖Ŵ 1/2

1 Û − Ŵ 1/2
1 ŨQ2‖2

F + ‖(Ŵ 1/2
1 −W 1/2

1 )ŨQ2‖2
F

+‖Ŵ 1/2
2 V̂ − Ŵ 1/2

2 ṼQ2‖2
F + ‖(Ŵ 1/2

2 −W 1/2
2 )ṼQ2‖2

F

]
≤ 2n̂max

(
‖Û − ŨQ2‖2

F + ‖V̂ − ṼQ2‖2
F

)
+
(
‖(Ŵ 1/2

1 −W 1/2
1 )Ũ‖2

F + ‖(Ŵ 1/2
2 −W 1/2

2 )Ṽ‖2
F

)
.

‖(Ŵ 1/2
1 −W 1/2

1 )Ũ‖2
F can be re-expressed as

‖(Ŵ 1/2
1 −W 1/2

1 )Ũ‖2
F = tr(X ᵀ∆−1/2

1 Zᵀ1 (Ŵ
1/2
1 −W 1/2

1 )2Z1∆
−1/2
1 X )

= tr(Zᵀ1 (Ŵ
1/2
1 W

−1/2
1 − I)2Z1)

(A.6)
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We first bound the (A.6),

tr(Zᵀ1 (Ŵ
1/2
1 W

−1/2
1 − I)2Z1) =

∑
i

(

√
n̂1,ẑ1i

n1,z1i

− 1)2

=
∑
i∈Sc1

(

√
n̂1,ẑ1i

n1,z1i

− 1)2 +
∑
i∈S1

(

√
n̂1,ẑ1i

n1,z1i

− 1)2

≤
∑
i∈Sc1

(
n̂1,ẑ1i

n1,z1i

− 1)2 +
∑
i∈S1

(
n̂1,ẑ1i

n1,z1i

− 1)2

≤ η2 · n1 +
n1,max + |S1|

n1,min

|S1|

≤ (n1η + n1,max + |S1|)η

In the fourth inequality, we used an inequality (
√
x− 1)2 ≤ max(1, x) for x > 0.

Similarly, ‖(Ŵ 1/2
2 −W 1/2

2 )Ṽ‖2
F ≤ (Nη + n2,max + |S2|)η. Thus,

‖(Ŵ 1/2
1 −W 1/2

1 )Ũ‖2
F + ‖(Ŵ 1/2

2 −W 1/2
2 )Ṽ‖2

F

≤ (Mη + n1,max + |S1|+Nη + n2,max + |S2|)η

≤ (nη + n1,max + n2,max + |S1|+ |S2|)η ≤ n(η + 3)η

Then, the second term can be bounded by using Lemma A.1 and Lemma A.4,

2n̂max

(
‖Û − ŨQ2‖2

F + ‖V̂ − ṼQ2‖2
F

)
≤ 22n2,max

(
24K

α2
nλ

2
K

‖Â− P̃‖2

)
≤ 26n2,maxK

αnλ2
K

C2
η,1

(
C
√
n

√
n1,minn2,min

+
√
αnKη(Kη + 3)

)2

≤ 26n2,maxK

αnλ2
K

C2
η,1

C2nrK2

n1,minn2,min

(
1/
√
rK2 +

√
n1,minn2,min

C2nrK2
αnKη(Kη + 3)

)2

≤ C2
η,126C2n2,maxK

2 nrK

n1,minn2,minαnλ2
K

(
1 +

√
n1,minn2,min

C2nrK2
αnKη(Kη + 3)

)2

≤ C2
η,1

n2,maxK
2

(2 + ε)
β

(
1 +

√
26

(2 + ε)

λ2
K

(Kη + 3)

)2

where β = c−1(2 + ε)r Kn
n1,minn2,minλ2Kαn

and η ≤ β. First inequality follows from

Lemma A.1 and second inequality is from Lemma A.4. For the fifth inequality,

η ≤ c−1(2 + ε) Krn
n1,minn2,minλ2Kαn

from Proposition II.7 with definition η is used.



96

Recall mis-clustered nodes are defined as in definition II.10.

|S| ≤
∑
i∈S

2‖T̄i∗ − Ti∗Q2‖2

≤ 2 · 2(2 + ε)‖T − T Q2‖2
F

≤ 22(2 + ε)
[
2n̂max

(
‖Û − ŨQ2‖2

F + ‖V̂ − ṼQ2‖2
F

)
+‖(Ŵ 1/2

1 −W 1/2
1 )Ũ‖2

F + ‖(Ŵ 1/2
2 −W 1/2

2 )Ṽ‖2
F

]
≤ 22(2 + ε)

C2
η,1

n2,maxK
2

(2 + ε)
β

(
1 +

√
26

(2 + ε)

λ2
K

(Kη + 3)

)2

+ n(η + 3)η


Therefore, we have

|S|/n ≤ 22C2
η,1

n2,maxK
2

n
β

(
1 +

√
26

(2 + ε)

λ2
K

(Kβ + 3)

)2

+ 22(2 + ε)(β + 3)β.

C.1 Algorithms for degree-corrected SBM

Algorithm A.1 Using adjacency matrix

1: Input: bipartite adjacency matrix A ∈ {0, 1}n1×n2 and K
2: Compute K left and K right singular vectors U ∈ Rn1×K and V ∈ Rn2×K corresponding to the K largest

singular values of A. Normalize each row of U and V to have unit length. Let normalized version of U and V be
U∗ and V ∗, respectively. Run k-means separately on rows of U∗ and rows of V ∗.

3: Based on the result from 2, construct diagonal matrices Ŵ1 and Ŵ2, diagonal elements being the community
size for each type where the node belongs.

4: Let Â = Ŵ
−1/2
1 AŴ

−1/2
2 . Compute K left and K right singular vectors Û ∈ Rn1×K and V̂ ∈ Rn2×K cor-

responding to the K largest singular values of Â. Normalize each row of Û and V̂ to have unit length. Let
normalized version of Û and V̂ be Û∗ and V̂ ∗, respectively.

5: Concatenate Û∗ and V̂ ∗ and run k-means with K clusters at the same time.

Algorithm A.2 Using laplacian matrix

1: Input: bipartite adjacency matrix A ∈ {0, 1}n1×n2 and K

2: Form L = D
−1/2
1 AD

−1/2
2 . Compute K left and K right singular vectors U ∈ Rn1×K and V ∈ Rn2×K cor-

responding to the K largest singular values of L. Normalize each row of U and V to have unit length. Let
normalized version of U and V be U∗ and V ∗, respectively. Run k-means separately on rows of U∗ and rows of
V ∗.

3: Based on the result from 2, construct diagonal matrices Ŵ1 and Ŵ2, diagonal elements being the community
size for each type where the node belongs.

4: Let Â = Ŵ
−1/2
1 AŴ

−1/2
2 , D̂1=diag(

∑
j Aij/n̂2,ẑ2j , i = 1, · · · , n1) and D̂2=diag(

∑
i Aij/n̂1,ẑ1i , j = 1, · · · , n2).

5: Let L̂ = D̂
−1/2
1 ÂD̂

−1/2
2 . Compute K left and K right singular vectors Û ∈ Rn1×K and V̂ ∈ Rn2×K correspond-

ing to the K largest singular values of L̂. Normalize each row of Û and V̂ to have unit length. Let normalized
version of Û and V̂ be Û∗ and V̂ ∗, respectively.

6: Concatenate Û∗ and V̂ ∗ and run k-means with K clusters at the same time.



APPENDIX B

Appendix of Chapter III

A Proof for Section 3.2

Proof of Lemma III.3

Lτ = (Dl + τI)−1/2ΘWZTΦ(Dr + τI)−1/2

= diag
(
(θi + τ)−1/2

)
·ΘWZTΦ · diag

(
(φj
∑
i

θiwigj + τ)−1/2

)

= Θ̃WZT Φ̃

=
(

Θ̃W (ZT Φ̃2Z)1/2
)

(ZT Φ̃2Z)−1/2ZT Φ̃ =
(

Θ̃W Ψ̃
)

Ψ̃−1ZT Φ̃

where Θ̃ii = θi√
θi+τ

and Φ̃jj =
φj√

φj
∑
i θiwigj+τ

. In the fourth equation, we can simplify

the notation more by letting Ψ̃ = (ZT Φ̃2Z)1/2 ∈ RK×K . Let H = Θ̃XΨ̃ ∈ Rn×K . If

we let singular value decomposition of H as UDCᵀ, singular value decomposition of

Lτ is UDVᵀ where V = Φ̃ZΨ̃−1C is the right singular vector. After row normalization

(row vector v divided by ‖v‖2) of V , we get ZC. We can easily check VᵀV = IK and

CᵀC = IK .

Proof of Lemma III.5
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1. To show equality, we will add and subtract Z(ZTZ)−1ZT matrix as follows.

HTH = Ψ̃W T Θ̃2W Ψ̃

= Ψ̃W T Θ̃
(
Z(ZTZ)−1ZT − Z(ZTZ)−1ZT + I

)
Θ̃W Ψ̃

= Ψ̃(Θ̃W )T
(
Z(ZTZ)−1ZT

)
Θ̃W Ψ̃

+ Ψ̃(Θ̃W )T
(
I − Z(ZTZ)−1ZT

)
Θ̃W Ψ̃

= HT
MHM +HT

SHS

where HM =
(
Z(ZTZ)−1ZT

)
Θ̃W Ψ̃ and HS =

(
I − Z(ZTZ)−1ZT

)
Θ̃W Ψ̃. Fourth

equality follows from the fact that
(
Z(ZTZ)−1ZT

)2
= Z(ZTZ)−1ZT and(

I − Z(ZTZ)−1ZT
)2

=
(
I − Z(ZTZ)−1ZT

)
.

2. After some calculation, we see that (s, t) element of a matrix
(
(ZTZ)−1ZT

)
Θ̃W Ψ̃

∈ RK×K is Mstψ̃tt where Mst = 1
ns

∑
i∈gs θ̃iwit. Then, the (i, t) element of HM ∈

Rn×K is Mgit. Since
(
HT
MHM

)
st

is the inner product of HM ’s sth column and HM ’s

tth column, we have

(
HT
MHM

)
st

= ψ̃ss

(
K∑
r=1

nrMrsMrt

)
ψ̃tt

Similarly, using the result from above, the (i, t) element of HS ∈ Rn×K is
(
θ̃iwit−

Mgit) ψ̃tt. Since the element
(
HT
SHS

)
st

is an inner product of HS’s sth column and

HS’s tth column, we have

(
HT
SHS

)
st

= ψ̃ss

K∑
r=1

nrσ
2
r,stψ̃tt

where σ2
r,st = 1

nr

∑
i∈gr

(
θ̃iwis −Mrs

)(
θ̃iwit −Mrt

)
.

3. HT
MHM and HT

SHS are positive semi-definite matrix with eigenvalues σ1(HT
MHM)

≥ · · · ≥ σK(HT
MHM) ≥ 0 and σ1(HT

SHS) ≥ · · · ≥ σK(HT
SHS) ≥ 0. By applying

weyl’s inequality (Bhatia, 1987), we obtain the following inequality.
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σK(HT
MHM) + σK(HT

SHS) ≤ σK(HTH) ≤ σK(HT
MHM) + σ1(HT

SHS).

B Consistency

The matrix concentration inequalities results for symmetric matrices can be gen-

eralized for general matrices. We first introduce (Symmetric) dilation operator as in

Tropp et al. (2015), which embeds matrices to larger block matrices.

Definition B.1. The Symmetric dilation S : Rd1×d2 → Sd1+d2 is the map from a

general matrix B to an Symmetric matrix defined by

S(B) =

 0 B

Bᵀ 0


where Sn is the set of symmetric n× n matrices.

We can express singular decomposition of S(B) using that of B ∈ Rd1×d2 . The

following lemma provides an important property of dilation.

Lemma B.2. For any rank K ≤ min(d1, d2) matrix B ∈ Rd1×d2, let UDVᵀ be the

singular value decomposition of B, where D ∈ RK×K, U ∈ Rd1×K and V ∈ Rd2×K.

Then, it is easy to check singular value decomposition of S(B) is

W ·

D 0

0 −D

 · Wᵀ where W =
1√
2

U U

V −V

 .
Moreover, ‖S(B)‖=‖B‖.

We also define diagonal matrices D and D from S(L) and S(L) as follows.

D =

Dl 0

0 Dr

 , D =

Dl 0

0 Dr





100

D is the diagonal matrix of out-going degree and in-coming degree. D is population

version of D. We slightly modified the Theorem 4.1 from Le et al. (2017) to show

the concentration inequality for a different version of regularized Laplacian matrix.

Basic idea is to bound ‖(Dr+τI)−1/2(A−P )(Dl+τI)−1/2‖ and ‖(Dr+τI)−1/2P (Dl+

τI)−1/2−(Dr+τI)−1/2P (Dl+τI)−1/2‖ separately. The Theorem 4.1 does not change

with a different version of regularized Laplacian matrix since 0 ≤ Pij ≤ d
n

in the Step

3 of the Theorem 4.1’s proof (Le et al., 2017).

Proposition B.3. Consider an adjacency matrix A of a random graph with E[A] =

P = (pij)i,j=1,··· ,n, and let d = nmaxij pij. Choose a number τ > 0. Then, for any

r ≥ 1, there exists a constant C > 0, with probability at least 1− e−r,

‖S(Lτ )− S(Lτ )‖ ≤
Cr2

√
τ

(
1 +

d

τ

)5/2

.

Here is the modified Lemma 5.1 from Lei et al. (2015).

Lemma B.4. (concentration of singular space)

Assume that L ∈ Rn1×n2 is a rank K matrix with smallest non-zero singular value

γK > 0. Let L ∈ Rn1×n2 and U,U ∈ Rn1×K contain the top K left singular vectors of

L and L, respectively. Similarly, let V,V ∈ Rn2×K contain the top K right singular

vectors of L and L, respectively. Then there exist K × K orthogonal matrix Q ∈

RK×K such that

‖U − UQ‖F or ‖V − VQ‖F ≤
√
‖U − UQ‖2

F + ‖V − VQ‖2
F ≤

4
√
K

γK
‖L− L‖

Proof.

S(L) has 2K leading eigenvectors W ∈ Rn×2K , where W = 1√
2

U U

V −V

 and

S(L) has 2K leading eigenvectors W ∈ Rn×2K , where W = 1√
2

U U

V −V

 and
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‖S(L)− S(L)‖ = ‖L− L‖ by lemma B.2.

We first establish that ‖(I−WW T )WWT‖ ≤ 2‖S(L)−S(L)‖
γK

. If ‖S(L)−S(L)‖ ≤ γK
2

,

then by Davis-Kahan theorem, we have

‖(I −WW T )WWT‖ ≤ ‖S(L)− S(L)‖
γK − ‖S(L)− S(L)‖

≤ 2
‖L− L‖
γK

If ‖S(L)− S(L)‖ > γK
2

, then

‖(I −WW T )WWT‖ ≤ 1 ≤ 2
‖L− L‖
γK

.

By Proposition 2.2 in Vu et al. (2013b), there exists a K-dimensional orthogonal

matrix Q such that

1√
2

√
‖U − UQ‖2

F + ‖V − VQ‖2
F = ‖W −WQ‖F ≤

√
2‖(I −WW T )WWT‖F

≤
√

2K‖(I −WW T )WWT‖.

Thus, we have

‖U − UQ‖F or ‖V − VQ‖F ≤
√
‖U − UQ‖2

F + ‖V − VQ‖2
F ≤

4
√
K

γK
‖L− L‖.

Proof of Theorem III.8

From the Lemma B.4,√
‖U − UQ‖2

F + ‖V − VQ‖2
F ≤

4
√
K

γK
‖Lτ − Lτ‖

≤ 4
√
K√

λM + λS
‖Lτ − Lτ‖

≤ 4Cr2
√
K√

τ(λM + λS)

(
1 +

d

τ

)5/2

.

Second inequality follows from the Lemma III.5. Third inequality follows from the

Proposition B.3.

Proof of Theorem III.10
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|S|/n ≤ 1

n

∑
i

2‖V̄ ∗i − V∗Q‖2

≤ 2

n
‖V̄ ∗i − V∗Q‖2

F

≤ 2(1 + α)

n
‖V ∗ − V∗Q‖2

F

≤ 8(1 + α)

nm2
r

‖V − VQ‖2
F

≤ 27C2r4(1 + α)K

nm2
r(λM + λS)τ

(
1 +

d

τ

)5

Fourth inequality follows from the fact that for any nonzero vectors v1, v2 of same

dimension, we have ‖ v1
‖v1‖ −

v2
‖v2‖‖ ≤ 2 ‖v1−v2‖

max(‖v1‖,‖v2‖) . Last inequality is due to Theorem

III.8.
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Appendix of Chapter IV

A A derivation of likelihood in Section 4.3

∑
i<j

A
(1,0)
ij log(P

(1,0)
ij ) + A

(0,1)
ij log(P

(0,1)
ij ) + A

(1,1)
ij log(P

(1,1)
ij ) + A

(0,0)
ij log(P

(0,0)
ij )

=
1

2

∑
i 6=j

A
(1,0)
ij log(P

(1,0)
ij /P

(0,0)
ij ) + A

(0,1)
ij log(P

(0,1)
ij /P

(0,0)
ij )

+ A
(1,1)
ij log(P

(1,1)
ij /P

(0,0)
ij ) + log(P

(0,0)
ij )

=
1

2

∑
i 6=j

A
(1,0)
ij Θ

(1,0)
ij + A

(0,1)
ij Θ

(0,1)
ij + A

(1,1)
ij Θ

(1,1)
ij − log

(
1 + eΘ

(1,0)
ij + eΘ

(0,1)
ij + eΘ

(1,1)
ij

)
=
∑
i 6=j

A
(1,0)
ij Θ

(1,0)
ij +

1

2

∑
i 6=j

A
(1,1)
ij Θ

(1,1)
ij − 1

2

∑
i 6=j

log
(

1 + eΘ
(1,0)
ij + eΘ

(0,1)
ij + eΘ

(1,1)
ij

)

B Algorithms for pair-independent latent space model

We also present projected gradient descent algorithm for pair-independent latent

space model. Initialization algorithm for pair-independent latent space model is also

introduced here.
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Algorithm C.1 A projected gradient descent algorithm

1: Input: Adjacency matrix: A; latent space dimension: K;
initial estimates: U0,a0, b0, R0;
step size: η

2: Output: Û = UJ , R̂ = RJ , â = aJ , b̂ = bJ

3: for t = 0,1,...,T-1 do
4: Ũ t+1 = U t + 2η ((A− P )U t(Rt)ᵀ + (A− P )ᵀU tRt)
5: at+1 = at + 2η (A− P ) 1n
6: b̃t+1 = bt + 2η (A− P )

ᵀ
1n

7: Rt+1 = Rt + 2η(U t)ᵀ(A− P )U t

8: U t+1 = PU (Ũ t+1), bt+1 = Pb(b̃t+1)
9: Update P using U t+1, at+1, bt+1 and Rt+1

10: end for

C An Initialization Algorithm

Algorithm C.2 Initialization algorithm

1: Input: Adjacency matrix: A; latent space dimension: K;
2: Let P̃ (1,0) =

∑K
i=1 σiuiv

ᵀ
i where

∑n
i=1 σiuiv

ᵀ
i is the SVD of A(1,0). Then, project each

element of P̃ (1,0) onto the interval [ε, 1− ε] for some small 0 < ε < 1/2 to obtain P̂ (1,0). Let
Θ̂(1,0) = logit(P̂ (1,0)).

3: Similarly construct Θ̂(1,1) with A(1,1).

4: Let a0 = 1
n Θ̂(1,0)1n and b0 = 1

n Θ̂ᵀ1n − θ̄(1,0)1n where θ̄(1,0) = 1
n2

∑
i,j Θ̂

(1,0)
ij . Let c0 =

1
n Θ̂(1,1)1n − θ̄(1,0)1n where θ̄(1,0) = 1

2n2

∑
i,j Θ̂

(1,1)
ij .

5: Let Θ̃(1,0) =
(

Θ̂(1,0) + Θ̂(1,0)ᵀ −
(
a0 + b0

)
1ᵀ − 1n

(
a0 + b0

)ᵀ)
/2.

Also, let Θ̃(1,1) =
(

Θ̂(1,1) − c01ᵀn − 1nc
0ᵀ
)

.

Let Θ̃ = Θ̃(1,1) + Θ̃(1,0).
6: Find the eigenvectors Uk of Θ̃ corresponding to the k eigenvalues with largest magnitude.

Set U0 = Uk.
7: Set R = UᵀΘ̃(1,0)U and S = Uᵀθ̃(1,1)U .
8: end for

D Proofs of Theorems

Following lemma about concentration of a random (directed) graph adjacency

matrix is from Le et al. (2017). Similar statement can be also found in Lei et al.

(2015).

Lemma C.1. Let A be the adjacency matrix of a random graph on n nodes in which

edges occur independently. Let E[Aij] = Pij for all i, j = 1, · · · , n. Assume that

nmaxi,j ≤ d for d ≥ c0 log n and c0 > 0. Then for any r > 0, there is a constant
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C = C(r, c0) such that

(C.1) ‖A− P‖ ≤ C
√
d

with probability at least 1− n−r.

Lemma C.2. There exist absolute constants r, C such that for any Θ ∈ F with

probability at least 1− 2n−r, the following inequality holds

max
{
‖A(1,0) − P (1,0)‖, ‖A(1,1) − P (1,1)‖

}
≤ C

√
max{neαu , log n}.

Proof. For Θ(1,0) and Θ(1,1) in the parameter space, the off diagonal elements

of two matrices are uniformly bounded above by αu from our assumption. Thus,

maxij(P
(1,0)
0,ij ), maxij(P

(1,1)
0,ij ) ≤ σ(αu). In our model, maxi P

(1,0)
ii ≤ 1 and maxi P

(1,1)
ii ≤

1. We have ‖A(1,0)−P (1,0)‖ ≤ ‖A(1,0)−P (1,0)
0 ‖+‖P (1,0)

0 −P (1,0)‖ ≤ ‖A(1,0)−P (1,0)
0 ‖+1.

Similarly, ‖A(1,1) − P (1,1)‖ ≤ ‖A(1,1) − P (1,1)
0 ‖+ 1. Recall each variable A

(1,0)
ij for any

i 6= j and A
(1,1)
ij for any i < j has a binomial distribution. By Lemma C.1, this

implies that there exist absolute constants r, C > 0 such that

P
(
‖A(1,0) − P (1,0)‖ ≤ C

√
max{neαu , log n}

)
≥ 1− n−r

P
(
‖A(1,1) − P (1,1)‖ ≤ C

√
max{neαu , log n}

)
≥ 1− n−r

Thus, there exist some absolute constants r, C > 0 such that

P
(

max
{
‖A(1,0) − P (1,0)‖, ‖A(1,1) − P (1,1)‖

}
≤ C

√
max{neαu , log n}

)
≥ 1− 2n−r.

Proof of Theorem IV.2.

Θ̂ is the (global) optimal solution to (4.12) and the true parameter Θ∗ is feasible

in the optimization. Let f(Θ) = −l(Θ) be the negative log likelihood. Thus, we

have the inequality,

(C.2) f(Θ̂)− f(Θ∗) ≤ 0.
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since Θ̂ is the optimal solution.

For any Θ
(1,0)
ij ,Θ

(1,1)
ij ∈ F , |Θ(1,0)

ij |, |Θ
(1,1)
ij | ≥ αl for all i, j = 1, · · · , n. Let β =

minx∈[αl,αu] σ(x) (1− σ(x)) = σ(αl)(1− σ(αl)) ≥ 1
4
eαl . The Hessian matrix of f(Θ)

is

∇2f(Θ) = diag
(
vec
(
2σ(Θ(1,0)) ◦ (1− σ(Θ(1,0)))

)
, vec

(
σ(Θ(1,1)) ◦ (1− σ(Θ(1,1)))

)
≥ βI2n2×2n2 .

(C.3)

Here, diag(a, b) is a diagonal matrix with elements a and b on its diagonals for

any vectors a and b. For any matrix B = [b1, · · · , bn] ∈ Rn×n, vec(B) ∈ Rn2
is

obtained by vectorizing B matrix as ([bᵀ1, · · · , bᵀn]). For notational simplicity, Θ =

[Θ(1,0)ᵀ,Θ(1,1)ᵀ]ᵀ ∈ R2n×n. Taylor expansion at Θ∗ gives

(C.4) f(Θ̂)− f(Θ∗) ≥ < ∇Θf(Θ∗), Θ̂−Θ∗ > +
β

2
‖Θ̂−Θ∗‖2

F

using Taylor’s theorem since f(Θ) is convex function with respect to parameter Θ.

Here < M1,M2 >= tr(Mᵀ
1M2) denotes inner product of two matrices M1 and M2.

Together with (C.2) and (C.4) implies

β

2
‖Θ̂−Θ∗‖2

F =
β

2

(
‖Θ̂(1,0) −Θ(1,0)

∗ ‖2
F + ‖Θ̂(1,1) −Θ(1,1)

∗ ‖2
F

)
≤
∣∣∣< ∇Θf(Θ∗), Θ̂−Θ∗ >

∣∣∣
=

∣∣∣∣< A(1,0) − P (1,0), Θ̂(1,0) −Θ(1,0)
∗ > +

1

2
< A(1,1) − P (1,1), Θ̂(1,1) −Θ(1,1)

∗ >

∣∣∣∣
≤
∣∣∣< A(1,0) − P (1,0), Θ̂(1,0) −Θ(1,0)

∗ >
∣∣∣+

1

2

∣∣∣< A(1,1) − P (1,1), Θ̂(1,1) −Θ(1,1)
∗ >

∣∣∣ .

(C.5)

Note that |< M1,M2 >| ≤ ‖M1‖2‖M2‖∗ ≤ ‖M1‖2rank(M2)‖M2‖F from matrix
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norm inequalities. If we let λn = max
{
‖A(1,0) − P (1,0)‖, ‖A(1,1) − P (1,1)‖

}
, we have∣∣∣< A(1,0) − P (1,0), Θ̂(1,0) −Θ(1,0)

∗ >
∣∣∣+

1

2

∣∣∣< A(1,1) − P (1,1), Θ̂(1,1) −Θ(1,1)
∗ >

∣∣∣
≤
(
‖A(1,0) − P (1,0)‖

√
2(K + 2)‖Θ̂(1,0) −Θ(1,0)

∗ ‖F
)

+

(
1

2
‖A(1,1) − P (1,1)‖

√
2(K + 2)‖Θ̂(1,1) −Θ(1,1)

∗ ‖F
)

≤ 1

2
λn
√

2(K + 2)
(

2‖Θ̂(1,0) −Θ(1,0)
∗ ‖F + ‖Θ̂(1,1) −Θ(1,1)

∗ ‖F
)

≤ λn
√

(K + 2)

√
4‖Θ̂(1,0) −Θ

(1,0)
∗ ‖2

F + ‖Θ̂(1,1) −Θ
(1,1)
∗ ‖2

F

≤ 2λn
√

(K + 2)

√
‖Θ̂(1,0) −Θ

(1,0)
∗ ‖2

F + ‖Θ̂(1,1) −Θ
(1,1)
∗ ‖2

F

First inequality comes from the inequality that ‖M‖∗ ≤
√
rank(M)‖M‖F for

any matrix M . Note that rank
(

Θ̂(1,0) −Θ(1,0)
)
≤ rank

(
Θ̂(1,0)

)
+ rank

(
Θ(1,0)

)
≤

2(K + 2). Similarly, rank
(

Θ̂(1,1) −Θ(1,1)
)
< 2(K + 2). Third inequality comes from

the fact (a+ b)2 ≤ 2(a2 + b2) for any a, b ≥ 0. Together with (C.5) and (D), we have

‖Θ̂(1,0) −Θ(1,0)
∗ ‖2

F + ‖Θ̂(1,1) −Θ(1,1)
∗ ‖2

F ≤
24(K + 2)

β2
λ2
n

By Lemma C.2, there exist constants r, C such that

‖Θ̂(1,0) −Θ(1,0)
∗ ‖2

F + ‖Θ̂(1,1) −Θ(1,1)
∗ ‖2

F ≤ C(K + 2)e−2αl max{neαu , log n}

with probability 1− 2n−r.

E Convergence of probability matrices

We first define Kullback-Leibler (KL) divergence for the probability distributions

of dyads in a random matrix as

DKL(fP‖fQ) = n−2
∑
i 6=j

∫ ∞
−∞

fPij(x) log
fPij(x)

fQij(x)
dx

where fP and fQ are the probability distributions of n × n random matrices. In

our case, fP is multinomial distribution. In addition, we also define total variation
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distance between probability distributions fP and fQ on a set X as

‖fP − fQ‖TV :=
∑
i 6=j

sup
A∈X
|Pij(A)−Qij(A)|

=
1

2

∑
i 6=j

∫
|Pij(x)−Qij(x)|dx.

Since we have multinomial distribution for Pij and Qij,
∫
|Pij(x) − Qij(x)|dx =∑n

s,t=1 |P
(s,t)
ij −Q(s,t)

ij | for our case.

Proof of Theorem IV.3.

Since Θ̂ is optimal solution to maximum likelihood function, we have l(Θ̂) ≥ l(Θ).

n2

2
DKL(P‖P̂) = EA[l(Θ)]− EA[l(Θ̂)]

≤ l(Θ̂)− EA[l(Θ̂)]− l(Θ) + EA[l(Θ)]

≤< A(1,0) − P (1,0), Θ̂(1,0) −Θ(1,0) > +
1

2
< A(1,1) − P (1,1), Θ̂(1,1) −Θ(1,1) >

≤
√

2(K + 2)‖A(1,0) − P (1,0)‖‖Θ̂(1,0) −Θ(1,0)‖F

+
1

2

√
2(K + 2)‖A(1,1) − P (1,1)‖‖Θ̂(1,1) −Θ(1,1)‖F .

Using Lemma C.1 and Theorem IV.2, we have

n2DKL(P‖P̂) ≤ C ′(K + 2)

β
max (neαu , log n)

with probability at least 1−2n−r. Next, we need to connect DKL(P‖P̂) with Frobe-

nius norm.

n2DKL(P‖P̂) ≥ 2‖P̂−P‖2
TV ≥

1

2
‖P̂−P‖2

F

First inequality follows from Pinsker’s inequality such thatt DKL(P‖Q) ≥ 2‖P −

Q‖2
TV . Second inequality follows from 2‖p− q‖2

TV ≥= 1
2

(∑2
s=1

∑2
t=1 |p(s,t) − q(s,t)|

)2

≥ 1
2

(√∑2
s=1

∑2
t=1(p(s,t) − q(s,t))2

)2

≥ 1
2
‖p− q‖2

F . Therefore, we have

‖P̂−P‖2
F ≤

C1(K + 2)

β
max (neαu , log n)

≤ C1(K + 2)e−αl max (neαu , log n)

(C.6)

with probability at least 1− 2n−r.
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