
Understanding and Improving the Performance of Web
Page Loads

by

Vaspol Ruamviboonsuk

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in the University of Michigan

2020

Doctoral Committee:

Associate Professor Harsha V. Madhyastha, Chair

Assistant Professor N M Mosharaf Kabir Chowdhury

Professor Z. Morley Mao

Assistant Professor Steve Oney

Vaspol Ruamviboonsuk

vaspol@umich.edu

ORCID iD: 0000-0003-0256-1613

© Vaspol Ruamviboonsuk 2020

To my family.

ii

Acknowledgments

I am grateful to have worked with Professor Harsha V. Madhyastha, who guided me

through my Ph.D journey with kindness. His endless valuable guidance puts me in the

correct direction to make progress and his attention to detail improves me not only as a

researcher, but also as a person when looking at issues surrounding me. In addition, Har-

sha always makes himself available to help with not only on research problems, but also

important decisions such as providing me with suggestions on career advice. Deciding to

work with him is one of the best decisions I made.

I am also thankful for my collaborators, Ravi Netravali, who provided me with an ad-

ditional guidance and perspective on how to tackle research projects, as well as, Simon

Pelchat, Tom Bergan, and Michael Buettner, who showed me what it is like to work on

cutting-edge research projects in an industry setting. I thank my dissertation commit-

tee members Professor Morley Mao, Mosharaf Chowdhury, and Steve Oney for providing

valuable feedback on my dissertation.

I would like to thank members of BBB 4929, Chris Baik, David Devecsary, Zhe Wu,

Muhammed Uluyol, Joseph Lee, Jingyuan Li, Xianzheng Dou, and Andrew Quinn, for

all the fond memory working in the o�ce, and all the trips to the water cooler in the

kitchen. I also thank my Thai friends who made home feel closer than it actually is.

Most importantly, I am indebted to my family, Paisan, Valya, and Varis, as well as my

girlfriend, Puntaree, for their unconditional support. They provide me with a safe place

whenever I needed emotional support and invaluable guidance for every decision that I

have to make. Without them I wouldn’t be able to successfully complete this journey.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . ix

Abstract . x

CHAPTER

1 Introduction . 1

1.1 Why are web pages slow to load? . 1

1.2 Speeding Up Web Page Loads . 3

1.3 Thesis and Contributions . 6

1.4 Organization . 7

2 Background and Related Work . 8

2.1 Background . 8

2.2 Related Work . 12

2.2.1 Measuring the Complexity of Web Pages 12

2.2.2 Measuring the Performance of Web Page Loads 12

2.2.3 Optimizing Web Page Load Performance 14

3 CASPR: Enabling Cloud-Assisted Web Page Loads at Scale 17

3.1 Overview . 17

3.2 CASPR Implementation . 18

3.2.1 Streaming DOM Updates . 19

3.2.2 Inlining CSS and Removing Unused CSS Rules 20

3.3 CASPR Evaluation . 22

3.4 Summary . 25

4 Vroom: Accelerating theMobileWebwith Server-AidedDependency Res-
olution . 26

4.1 Overview . 26

4.2 Approach . 30

4.2.1 Limitations of HTTP/2 PUSH . 32

4.2.2 Combining PUSH with Dependency Hints 33

iv

4.3 Design . 34

4.3.1 Server-side Dependency Resolution 35

4.3.2 Accounting for Personalization 38

4.3.3 Cooperative Request Scheduling 40

4.4 Implementation . 42

4.4.1 Server-aided Resource Discovery 42

4.4.2 Scheduling Requests with JavaScript 43

4.5 Evaluation . 45

4.5.1 Impact on Client Performance . 45

4.5.2 Accuracy of Server-side Dependency Resolution 54

4.6 Discussion . 57

4.7 Summary . 59

5 Taking the Long View: The Relationship Between Page Complexity and
Performance . 60

5.1 Overview . 60

5.2 Dataset and Metrics . 63

5.2.1 Dataset . 63

5.2.2 Complexity Metrics . 64

5.3 Characterizing Changes in Page Complexity 65

5.3.1 Change in Complexity Over Time 65

5.3.2 Characterizing Content by Resource Type 67

5.3.3 Characterizing Content by Service Type 69

5.4 Relationship Between Complexity and Performance 71

5.4.1 Page Load Replay Testbed . 71

5.4.2 Impact of Change in Complexity on Performance 75

5.5 In-depth Analysis of Pages . 79

5.5.1 Network Latency . 79

5.5.2 Network Bandwidth . 83

5.6 Recommendations and Evaluation . 86

5.6.1 Characterizing Redirections . 86

5.6.2 Characterizing JavaScript-Induced Fetches 90

5.6.3 Evaluation: Automated Removal of Serial Fetches 91

5.7 Summary . 92

6 Conclusion . 93

6.1 Thesis Contributions . 93

6.2 Future Work . 94

6.3 Summary . 95

Bibliography . 97

v

List of Figures

1.1 An illustration of how a web page load works. 2

1.2 A typical architecture of a proxy-based solution. 3

2.1 Page load times on today’s mobile web. 9

2.2 Potential for reducing page load times by making better use of the client’s

CPU and network. 10

2.3 Estimation of page load time improvements that would be enabled once HTTP/2

is globally adopted. 10

2.4 Fraction of the critical path spent waiting for the network, when the client

uses HTTP/2 to communicate with all domains. 11

3.1 High-level architecture of CASPR . 18

3.2 A large fraction of CSS bytes are not used. 21

3.3 CASPR evaluation comparing (a) cold cache setting, and (b) warm cache set-

ting on the First-Contentful Paint (FCP) metric. 22

3.4 CASPR evaluation on the Speed Index metric. 24

3.5 Distribution of network bytes fetched for CASPR with and without CSS Op-

timization. 24

4.1 Comparison of critical path across di�erent approaches for loading web pages. 31

4.2 Illustration of the components in Vroom and the interactions between them. . 34

4.3 Fraction of resources, per page in the Alexa Top 100, that persist over di�erent

time scales. 36

4.4 Summary of techniques used in Vroom for server-side dependency resolution

to account for the di�erent types of resource on any web page. 37

4.5 Comparison of the stable set of resources on each page when the user device

is a Nexus 6 compared with when the user device is a Nexus 10 or a OnePlus 3. 37

4.6 Illustration of how Vroom-compliant servers account for personalization. . . 39

4.7 Need for and utility of careful scheduling of server-side push and client-side

fetch of the resources that need to be processed (HTML, CSS, and JS) on http:

//eurosport.com. 40

4.8 Setup to evaluate page load performance enabled by our implementation of

Vroom. 46

4.9 With respect to three di�erent metrics, Vroom yields signi�cant bene�ts

compared to simply upgrading from HTTP/1.1 to HTTP/2, and comes close

to matching the achievable lower bound. 47

vi

http://eurosport.com
http://eurosport.com

4.10 Comparison of page load times when pages are loaded with Vroom and with

Polaris. 49

4.11 For the Fox News mobile site, (a) rendering of the above the fold content

completes at 9.26s with Vroom; (b) with only HTTP/2 enabled, rendering is

incomplete at that time and completes only later at 13.87s. 50

4.12 In comparison to HTTP/2, Vroom reduces the latency in both (a) discovering

resources and (b) completing their downloads. 51

4.13 In contrast to Vroom, if servers return dependencies as all the resources seen

on a prior load of the page, page load times increase on many pages. 25th

percentile, median, and 75th percentile are shown in each case. 52

4.14 Vroom improves page load times compared to using only server-side push

to inform clients of dependent resources. 25th percentile, median, and 75th

percentile are shown in each case. 53

4.15 Vroom’s judicious scheduling of server push and client fetch is key to en-

abling improvements in page load time. 25th percentile, median, and 75th

percentile are shown in each case. 53

4.16 For three di�erent delays between the load that warms the browser’s cache

and the load on which we evaluate page load performance, Vroom reduces

page load times. 54

4.17 Vroom’s combined o�ine and online dependency resolution is accurate. . . . 56

5.1 Distribution across sites of the change in number of (a) resources and (b) bytes

on their desktop landing page from 2013 to 2016 and from 2016 to 2019. . . . 66

5.2 For each resource type, change in the number of requests for resources of

that type on the median site. 67

5.3 Distribution of image sizes across desktop landing pages with a substantial

increase in bytes and mobile landing pages with a substantial decrease in bytes. 68

5.4 Comparison of the median change in number of resources per website for

each service type. 70

5.5 Comparison of the median change in number of bytes per website for each

service type. 70

5.6 Distribution of (a) the relative di�erence with respect to number of bytes and

resources between HTTP Archive dataset and our replay setup, (b) normal-

ized di�erence in fetch start times between every pair of consecutive requests

seen in HTTP Archive loads. 74

5.7 For two di�erent performance metrics – (a) page load time, and (b) Speed

Index – correlation between the change in complexity metrics and the change

in performance. 76

5.8 Change in complexity and the change in page load time are strongly corre-

lated in a constrained network. The correlation becomes signi�cantly weaker

when the network is less constrained. The plots show the correlation for mo-

bile landing pages, but we see the same patterns for desktop landing pages. . 77

5.9 The correlation between the change in connection setup time and the change

in number of resources is weak, which suggests that not every added or re-

moved resource directly a�ects performance. 80

vii

5.10 Distribution across websites of the change in number of resources is more

pronounced than changes in the number of connections setup. This shows

reuse of connections. 80

5.11 Distribution across websites shows that enabling connection reuse even with-

out HTTP/2 yields signi�cant reduction in connections setup. Enabling HTTP/2

further reduces the number of connection setups, but it is yet to reach the best

case scenario. 81

5.12 For websites with substantial increase/decrease in number of resources, rel-

ative change in number of hostnames. When websites see an increase in the

number of resources, the magnitude of change in the number of hostnames

is larger than that for sites that see a decrease in the number of resources. . . 83

5.13 Changes in the number of bytes are not highly correlated with changes in

Network Index. 84

5.14 Changes in the amount of time that there is at least one ongoing serial fetch

are highly correlated with changes in Network Index. 85

5.15 On most pages, HTTP redirections are typically within the same domain. . . . 87

5.16 Breakdown of the URL component that changes within intra-domain redirec-

tions. 89

5.17 Examples of JavaScript-induced fetches. 90

viii

List of Tables

4.1 HTTP headers used byVroom-compliant servers to provide dependency hints

to client browsers. Headers are listed in decreasing order of priority. Re-

sources in each header are listed in the order they need to be processed. . . . 43

5.1 With a (16Mbps, 50ms) network, many of the websites with a substantial

increase in complexity do not see a proportionate degradation in page load

times. Among the sites with a substantial decrease in complexity, most do

not see a proportionate speedup. The denominator in each cell is the count

of number of sites with substantial increase/decrease in complexity. 78

5.2 Examples of how the URL changes within intra-domain redirections. 87

ix

ABSTRACT

The web is vital to our daily lives, yet web pages are often slow to load. The ine�ciency

and complexity of loading web pages can be attributed to the dependencies between re-

sources within a web page, which also leads to underutilization of the CPU and network

on client devices.

My thesis research seeks solutions that enable better use of the client-side CPU and net-

work during page loads. Such solutions can be categorized into three types of approaches:

1) leveraging a proxy to optimize web page loads, 2) modifying the end-to-end interac-

tion between client browsers and web servers, and 3) rewriting web pages. Each approach

o�ers various bene�ts and trade-o�s.

This dissertation explores three speci�c solutions. First, CASPR is a proxy-based solution

that enables clients to o�oad JavaScript computations to proxies. CASPR loads web pages

on behalf of clients and transforms every page into a version that is simpler for clients to

process, leading to a 1.7s median improvement in web page rendering for popular CASPR

web pages. Second, Vroom rethinks how page loads work; in order to minimize depen-

dencies between resources, it enables web servers to provide resource hints to clients and

ensures that resources are loaded with proper prioritization. As a result, Vroom halves the

median load times for popular news and sports websites. Finally, I conducted a longitudi-

nal study to understand how web pages have changed over time and how these changes

have a�ected performance.

x

CHAPTER 1

Introduction

The web is an integral of everybody’s life as users use it to do various tasks such as access

knowledge, keep up with the news, order a late-night meal, etc. While nobody can argue

its importance, many websites are disappointingly slow, especially when loaded on mobile

devices. In January 2018, Google observed that 70% of mobile landing pages took more

than 5 seconds for all visual content to appear on the screen and more than 7 seconds to

fully render the page [15].

Slow page loads is a critical issue as users are very sensitive to latency. Content

providers with a slow web page are at risk of losing users and in turn revenue. A re-

cent study has shown that the probability of users abandoning page loads almost double

as the page load time grows from 1s to 5s [15]. In addition, many studies have shown that

an increase in latency results in reduction in revenue. For example, Amazon.com saw a

1% reduction in sales with every 100ms increase in latency [5, 16].

1.1 Why are web pages slow to load?

Dependencies between resources lead tonetwork andCPUunderutilization. First,

page load ine�ciency can be attributed to the complexity of web pages. A web page com-

prises not just the page’s HTML, but other resources such as images, CSS, and JavaScripts,

etc. These resources can start a fetch of another resource, e.g., JavaScripts can be used to

1

a.com

b.com

Client

HTML
GET
a.com

GET
script.js

Script.js GET
img.png

img.png

onload

<html>
…
<script src=“script.js” />
…
</html>

https://a.com/

…
let image = new Image();
image.src = “b.com/img.png”;
document.appendChild(image);
…

https://a.com/script.js

Time

Parse HTML Execute JS

Figure 1.1: An illustration of how a web page load works.

fetch images, creating a dependency between them. Many studies found that the ine�-

ciency of page loads stems from dependencies between resources [83, 74, 81].

Figure 1.1 illustrates how a web browser loads a simple web page at a.com. First, it

fetches the main HTML from the web server that owns the HTML, a.com. At this point,

the browser has to wait on the network until the fetch is complete. Depending on the

network conditions, the fetch can potentially require a long time to complete in a network

constrained setting. Once the browser receives the HTML, it parses the HTML and then

discovers and requests additional resources, e.g., script.js.

While processing the fetched resources, the browser can discover additional resources

that can be embedded within other resources, e.g., a script can be used to fetch an image or

an additional script. In Figure 1.1, after the browser fully fetches script.js, the browser

executes it and starts the fetch of image.png. The browser can fetch image.png only after

the browser executes the line of code that refers to it. The speed with which the browser

can process a resource is dictated by the client’s CPU—a client with a slower CPU will take

2

Client

Proxy

① GET a.com/

③ Apply
Optimization

Origin
Servers

② Fetch
Resources

from Origin

④ Optimized
Response

Figure 1.2: A typical architecture of a proxy-based solution.

more time processing a resource. The interleaving between resource fetches and resource

processing creates a coupling between the use of network and the use of the CPU, i.e.,

computation can block resource discovery (and, vice versa).

Slow network and devices further slow down page loads. While the dependen-

cies between resources is an issue regardless of the user’s device, its impact is more pro-

nounced in the mobile web setting because of the low compute power and poor network

conditions. On one hand, less performant CPU slows down the processing of resources

leading to an increase in the resource discovery delays at the client. Furthermore, addi-

tional CPU cores does not reduce the computation much for mobile browsers because web

browsers execute most tasks in a single-threaded manner [63]. On the other hand, poor

network conditions, i.e., high latency and low bandwidth, delay the receipt of resources,

which causes the browser to wait longer before it can start processing resources.

1.2 Speeding Up Web Page Loads

Any solution that seeks to speed up page loads needs to address one or both reasons that

cause web loads ine�ciency. Generally speaking, there are three classes of approaches.

Proxy-based Solutions. In this class of solution, the client o�oads computation to prox-

ies leveraging the powerful CPU and well provisioned network of the proxy. Figure 1.2

depicts a typical architecture of a proxy-based solution. Instead of directly interacting

with the origins, the client sends requests through a proxy server. In prior work, proxies

3

use the information from page loads at the proxy in the following ways.

• Reducing network delay penalties by applying network optimization at the

proxy. Solutions such as Google Chrome’s Data Saver proxy [57] apply a myriad of

resource-level optimizations to reduce the penalty due to network delays. For example,

the Data Saver proxy serves as a resource cache; if a requested resource is present in

the cache, the proxy can simply return the response. It can also minimize the size of

each requested resource (e.g., when a JavaScript �le is not compressed from the origin

server, the proxy will compress it before sending it back to the client).

• Minimizing dependencies between resources using remote dependency resolu-

tion. Solutions using this approach such as Parcel [82], and Cumulus [78] use the proxy

to send the dependent resources that it discovers during the page load to the client. The

client stores the received resources upon receiving it from the proxy so that it can be

immediately used when the client discovers the resource during the page load. Since

the proxy can load the page at a much faster speed than the client, it is likely that when

a client discovers a resource it will already be present in the client’s local cache. Thus,

the client can use the resource with minimal the network delays.

• Reducing bandwidth consumption and client-side computation by snapshot-

tingwebpages. Solutions employing this approach such as Shandian and Prophecy [85,

76] use the proxy to snapshot web pages by removing unnecessary state from the �nal

page load. Snapshotting web pages speeds up the web especially for users with slow

network and devices by reducing both computation and bandwidth requirements to

load the page. The proxy then sends the snapshotted version of the page to the client,

instead of the original page.

While proxy-based solutions enable signi�cant improvements in page load perfor-

mance, they are subject to two fundamental drawbacks. First, clients must trust that prox-

ies preserve the integrity of HTTPS resources. Second, clients must share their cookies

with proxies to enable the proxies to appropriately handle personalized content.

4

Modifying Client-Server Interactions. To address the limitations associated with the

use of web proxies, solutions such as Polaris [75] and Vroom [81] reduce the dependen-

cies between resources by altering the end-to-end interactions between clients and web

servers. Unlike proxy-based solutions, clients directly contact origin servers to request

for resources. In addition to the requested content, origin servers also include in their re-

sponses additional metadata for optimizing the page load. For example, a web server can

include a high-level dependency structure of the page and the client can use that structure

to prioritize fetches of resources that on the critical path. Since clients are directly con-

tacting origin servers, this class of solutions preserve the end-to-end nature of the web,

thus, ensuring that security and privacy guarantees still hold.

Such solutions require that content providers need to integrate the logic for generating

the metadata for optimizing page loads into their serving infrastructure. This can be an

involved e�ort, thus, leading to friction in adoption.

RewritingWeb Pages. The extent to which solutions compatible with legacy web pages

can speed up the web is hindered by how pages are written. Therefore, a third class of

solutions relies on modi�cations to web pages using o�-the-shelf optimization primitives

to both reduce the dependencies between resources and client resource usage. For in-

stance, to reduce dependencies between resources, content providers can aid dependency

discovery by including <link rel="preload"> along with the main HTML to trigger

resource fetches at the client without needing to process other resources. To reduce client

resource usage, content providers can, for example, enable resource caching to reduce the

bandwidth requirements to load the page as the client can simply reuse resources from its

local cache, precluding the impact of the network. However, the friction of deploying this

type of solution is high, as some optimizations may require removal of some page func-

tionality. Thus, each website provider faces a trade-o� between preserving functionalities

on its web pages and ensuring fast page loads.

5

1.3 Thesis and Contributions

This dissertation supports the following thesis: client-side CPU and network often go un-

derutilized in web page loads; this underutilization can be reduced to speed up page loads or

leveraged to add content to pages without any performance penalty.

I explore solutions guided by the classes of the approaches described in Section 1.2.

My dissertation work makes the following contributions.

Optimizations to CASPR snapshot rendering. We begin by exploring the use of

HTTP proxies to snapshot web pages thereby reducing bandwidth usage and computa-

tion requirements for page loads. CASPR is a solution deployed at the Google Chrome

Data Saver proxies [57] and works by moving the execution of JavaScripts to the cloud.

When a user loads a web page through the Data Saver proxy, the proxy starts the load of

the same web page, captures a “snapshot” of the page which contains the results of the

page load at the proxy, and sends the snapshot to the client. While CASPR snapshots are

lightweight, they still su�er from ine�cient rendering. My primary contribution is on

improving the rendering performance of CASPR snapshots. The optimizations lead to a

50% improvement in rendering performance for the median web page.

An end-to-end page load optimization framework with Vroom. While CASPR

substantially improves rendering of page loads, it still su�ers from the drawbacks of a

proxy-based solution. Given the steady increase in HTTPS adoption [29], CASPR may be

less applicable to users in the future.

With Vroom, we propose a rethink of the interaction between clients and servers with

the goal of minimizing the coupling between resources while preserving the end-to-end

nature of client-server interactions. Vroom alters page loads by having web servers pre-

emptively hint resources that are needed during the page load to the client, which allows

the client to discover resources without having to wait to process other resources. This

helps decouple the client’s use of the network and CPU. To discover the dependencies to

6

hint, Vroom compliant web servers run a dependency resolution that only hint resources

that will be part of the page load. To e�ectively use the hints, the client must be judicious

in using the network (i.e., it cannot simply fetch all hinted resources at the same time). So,

I implemented a scheduler that prioritizes critical resources (e.g., synchronous JavaScripts,

CSS) over less critical resources (e.g., images). Our evaluation shows that Vroom speeds

up the Alexa top news and sports websites by 50% for the median site.

A longitudinal study of web pages on the relationship between complexity and

performance. In the �nal part of my thesis, I conduct a longitudinal study between 2016

and 2019. I study how the landing pages of popular websites have changed over the years

and what has been the corresponding impact on performance? Between 2016 and 2019,

web pages are roughly equally split based on the amount of content that has changed

on the page. We observe that the changes in web page complexity and the changes in

page load performance are not intuitively correlated. In particular, web pages that see

an increase in page content do not see a proportionate degradation in page load perfor-

mance. Our key �nding is that fetches that occur serially (e.g., fetches of resources from

JavaScripts and HTTP redirections), which are known to slow down page loads, enable

web pages to include additional content without proportionately degrading performance.

However, serialized fetches also prohibit web pages that observe a decrease in complexity

from experiencing improvements in page load performance. Using the insights gathered

from our study, we implement and evaluate simple optimizations that can potentially

speed up pages with a decrease in complexity without altering page functionality.

1.4 Organization

The remainder of this dissertation is organized as follows. In chapter 2, we explore prior

work in the area. Chapters 3, 4, and 5 describe the listed contributions in detail. Finally,

chapter 6 summarizes the dissertation and discusses avenues for potential future work.

7

CHAPTER 2

Background and Related Work

2.1 Background

We begin by presenting a range of measurements that illustrate the poor web performance

today on mobile devices, estimate the potential to reduce page load times, and show that

existing solutions are insu�cient.

Problem: Poor load times. We demonstrate the slowness of the mobile web using two

sets of websites: the Alexa US top 100 websites and the top 50 sites each in the News and

Sports categories [3]; these popular sites apply known best practices such as minifying

JavaScript content and eliminating HTTP redirects [21]. We load the landing page for

each site �ve times on a Nexus 6 smartphone that is connected to Verizon’s LTE network

with excellent signal strength; we report median page load times.
1

Figure 2.1 shows that the median site among the top 100 takes roughly 5 seconds

to load, which is higher than the 2–3 second period that a typical user is willing to

wait [66]. When considering News and Sports sites, which are more complex than the

average site [59], the median load time is even higher, exceeding 10 seconds. Since the

need for faster loads is particularly acute on News and Sports sites, we focus on these sites

in the rest of this section.

Cause: Poor CPU/network utilization. We now consider how low page load times

1
We compute page load time as the time between when a page load begins and when the onload event

�res.

8

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Page Load Time (s)
C

D
F

 a
cr

os
s

w
eb

si
te

s

Top 100 Overall
Top 50 News + Top 50 Sports

Figure 2.1: Page load times on today’s mobile web.

can be reduced to without web pages being rewritten [2]. For a client to not have to trust

proxies to execute page loads on its behalf, the client must fetch all resources on a page

directly from origin web servers and locally process all of these resources. This places two

constraints on web performance: the client’s network connection and its CPU. To compute

a lower bound on page load times, we estimate the potential gains from a redesign of the

page load process that would fully utilize at least one of these two resources.

To mimic a setting where the network bandwidth is the bottleneck, we replay each

page load after modifying the root HTML to list all resources required to load the page

in a manner that instructs the browser to fetch these resources but not evaluate them.

To emulate a setting where the client’s CPU is the bottleneck, we load every page with

the client phone connected via USB to a desktop which hosts all of the web servers. In

both cases, we use Mahimahi [78] to record page content and replay page loads, and we

use HTTP/2 between the client and all web servers in order to make e�cient use of the

network. We use the same mobile device and cellular network as above, and we further

describe our replay setup in Section 4.5.

Figure 2.2 shows that, when exactly one of the network or the CPU is the bottleneck,

rather than both limiting each other as is the case today, page load times on popular News

and Sports websites are signi�cantly lower than the status quo (the median load time

drops from 10.5 seconds to 5 seconds). Our results also show that the CPU is typically

the bottleneck in mobile page loads, corroborating the �ndings of recent studies [74].

9

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Page Load Time (s)
C

D
F

 a
cr

os
s

w
eb

si
te

s

All resources cached
Loads from Web

Figure 2.2: Potential for reducing page load times by making better use of the client’s CPU

and network.

0.00

0.25

0.50

0.75

1.00

0 5 10 15

Page Load Time (s)

C
D

F
 a

cr
os

s
w

eb
si

te
s HTTP/2 Baseline

Push All Static
HTTP/1.1
Loads from Web

Figure 2.3: Estimation of page load time improvements that would be enabled once

HTTP/2 is globally adopted. Given that the adoption of HTTP/2 is still in its nascency

today, the �delity of our replay setup is con�rmed by the close match between load times

measured when loading pages on the web and in our HTTP/1.1 replay environment.

Furthermore, page load times in the case where the CPU is the bottleneck remain largely

the same even if we disable 1 of the 4 cores on the Nexus 6 smartphone, indicating that

adding more cores will not help improve mobile web performance.

Existing solutions are insu�cient. Since we seek a solution that improves mobile

web performance while preserving the end-to-end nature of the web, we consider two

existing solutions that satisfy this property.

First, we consider a setting where all domains on the web have adopted the latest

version of the HTTP protocol, HTTP/2. HTTP/2 reduces ine�ciency in the use of the

network by enabling requests to be multiplexed on the same TCP connection. To estimate

the potential impact of HTTP/2, we replay page loads in an environment where HTTP/2

10

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

Fraction of Time on Critical Path Waiting on Network
C

D
F

 a
cr

os
s

w
eb

si
te

s

Figure 2.4: Fraction of the critical path spent waiting for the network, when the client

uses HTTP/2 to communicate with all domains.

is universally used (“HTTP/2 Baseline"). The results in Figure 2.3 portend that, though

the global adoption of HTTP/2 will reduce the median page load time across popular

News and Sports websites to roughly 8 seconds, mobile web performance will remain

signi�cantly short of optimal; the lower bound we saw in Figure 2.2 was more than 2

seconds lower, a substantial gap given that web providers have found that even a few 100

milliseconds of additional delay signi�cantly reduces their revenue [34]. Con�guring the

�rst party domain of every page to push (leveraging HTTP/2’s server push capability) all

static resources that it hosts o�ers little additional bene�t, for reasons discussed later.

Performance with HTTP/2 falls signi�cantly short of the lower bound because the

root cause for high page load times remains: since both CPU-bound and network-bound

activities are typically on the critical path of a page load [83], neither the client’s CPU

nor its access link is utilized to capacity. The client browser cannot parse an HTML/CSS

object or execute a JavaScript �le until it has incurred the latency to fetch that resource,

which in turn it can begin to do only after discovering the need to fetch that resource by

parsing/executing another resource. Indeed, Figure 2.4 shows that a signi�cant fraction

of time on the page load’s critical path—over 30% on the median page—is spent waiting

to receive data over the network, leading to under-utilization of the CPU, the bottleneck

resource (Figure 2.2).

Summary. Together, the measurements in this section lead to the following take-

11

aways:

• Page loads on mobile devices are currently signi�cantly slow even for popular websites,

particularly for sites in categories that have more complex web pages than others.

• The reduction in load times that we can expect from the adoption of existing end-to-end

solutions will not su�ce.

• However, we could potentially halve the median load time if the page load process were

redesigned to more e�ciently use the client’s CPU and network.

2.2 Related Work

This section provides an overview of the prior work done in the area of optimizing the

performance of web page loads. In particular, it discusses prior studies on how to measure

the complexity of web pages, key metrics for measuring the performance of page loads,

and existing optimizations to page loads.

2.2.1 Measuring the Complexity of Web Pages

A number of prior e�orts study the complexity of web pages to better understand the

implications of a page’s complexity on its performance. Butkiewicz et al. [59] studied the

overall complexity of web pages from various perspectives: such as number of bytes on

the page, number of requests, number of domains, etc. In addition, prior work [70, 71, 64]

also measured web complexity to understand security and privacy implications for the

web ecosystem. For instance, Kumar et al. [70] conducted a study to show various attack

surfaces stemming from the high complexity of web pages.

2.2.2 Measuring the Performance of Web Page Loads

Given the importance of fast page loads, various e�orts have designed metrics to mea-

sure page load performance. For example, Google recently announced the Web Vitals

12

project [52], where it lists a combination of three critical performance metrics that web-

sites providers can use to ensure a positive user experience on their site. Generally speak-

ing, we can characterize each metrics into the following categories based on what aspect

of the page load that the metric measures: 1) completion of page loads, 2) visual rendering

progress, and 3) page interactivity.

Measuring the completion of page loads. To measure the end of the page load, page

load time (PLT) is an often used metric as it measures the time when the browser �nishes

loading and processing resources required for the onload event to be emitted. However,

the key drawback of PLT is that it can be a�ected by fetches of resources that do not

contribute to the visual aspect of the page load. For example, PLT can be a�ected by

invisible 1x1 pixel images that are included in many web pages for analytics purposes [64].

Thus, this means that PLT does not capture a user’s perception of how quickly a page

loads.

Measuring rendering performance. Given the limitations of PLT, other metrics at-

tempt to better capture rendering performance. Many metrics leverage screenshots of

the page load to measure how fast web pages render. For example, the above-the-fold

time [67] metric uses the screenshots to �nd the time when the portion of the page visible

to users before they begin scrolling stabilizes. Speed Index [44] uses the screenshots to

measure the “average” time it takes to render the above-the-fold content. While these two

metrics can measure the rendering performance of page loads, using these metrics on the

live web at scale is challenging as collecting screenshots from users is not trivial.

To measure the rendering performance of web pages from live users, websites have

to instead use rendering events exposed by web browsers. State-of-the-art browsers pro-

vides websites with important rendering events such as First Contentful Paint (FCP) [18],

the time at which the �rst image or text element is rendered, or the Largest Contentful

Paint (LCP) [33], the time at which the largest element is rendered. Measuring render-

ing performance from real users is critical for evaluating page load performance as users

13

are equipped with a wide-range of devices and network con�gurations, which leads to

variance in performance.

Measuring interactivity performance. While rendering plays an important role in ex-

periencing web pages, the full web user experience also includes interacting with pages.

There have been various e�orts in measuring the interactivity for web pages from both in-

dustry and academia. For example, Google introduced the Time-to-Interactive (TTI) [48]

and First CPU Idle [19] metrics to measure the point during the page load that the page is

ready to respond to user interaction. Vesper [77], on the other hand, identify the JavaScript

and DOM state used for interactivity, measures the load progress of such state during the

page load, and measures the average time in which state is loaded.

Developer tools for measuring page load performance. To help developers in rea-

soning and improving the performance of page loads, modern web browsers include de-

veloper tools that expose key performance metrics as well as an in-depth tracing log of

page loads. For example, Google Chrome includes Chrome DevTools [10] and, similarly,

Firefox has Firefox Developer Tools [17]. In addition, Google introduces Lighthouse [35]:

a web page auditing tool that summarizes the e�ciency of page loads via various key

performance metrics and provides optimization recommendations to developers.

2.2.3 Optimizing Web Page Load Performance

The �nal body of prior work relates to optimizing web page loads, i.e., making web pages

load faster. At a high-level, we can group the work into three categories based on whether

they optimize for the network side, the compute side, of both sides of page loads.

Optimizing the network usage of page loads. First, we focus on approaches tackles

the issue at the network protocol level. For example, HTTP/2 (formerly SPDY) [30] was

proposed to address the ine�ciencies of HTTP/1.1 such as head-of-line blocking as well as

introduce performance enhancing features such as HTTP/2 push [31]. In addition, Google

presented QUIC (soon to be HTTP/3) [12], a transport protocol over UDP that optimizes

14

the establishment of TLS connections.

Another line of prior work uses proxies to make network utilization more e�cient.

For example, when users enable data saver mode on Chrome, Google proxies all HTTP

requests through its Data Saver proxies [57]. The Data Saver proxies then apply network

optimizing techniques such as compression, applying image transcoding (i.e., convert im-

ages to a smaller format), etc. In addition, another group of prior work that leverages

proxies, such as Parcel [82] and Cumulus [78], tackles the impact of high network latency

on mobile page loads by leveraging the compute power and well-provisioned network of

proxies. In this type of solution, the client sends the requests via a proxy, which completes

the page loads signi�cantly faster than on a mobile client. Then, the proxy can package

the discovered the resources and send all of them to the client, thereby making e�cient

use of the network and minimizing the impact of network latency.

Another group of solutions on improves network e�ciency of web page loads by us-

ing some knowledge of dependencies within page loads. For example, Klotski [60], Po-

laris [75], and Gaze [69] construct a dependency graph of the page. These solutions can

then prioritize fetches of resources that are more “important” (e.g., both Klotski and Gaze

use HTTP/2 push [31] to preemptively send resources critical to user experience).

Approaches focusing on reducing computation at the client. Given the e�ects of

slow network and devices, many prior system reduce the computation necessary at the

client to load web pages. There are two primary lines of work in this space.

On one hand, the client can employ a thin client where it o�oads the majority of

computation on a proxy or web server. When a user uses this type of client, a headless

browser is typically run in parallel at a proxy. The cloud browser loads web pages on

behalf of the client, sends necessary inputs for the client to render the page and construct

the page state, as well as receives commands (e.g., interactions) from the client. Examples

of such solutions include Amazon Silk [6] and Opera Mini [39].

Another type of solution reduces client-side computation by converting a web page

15

into a highly optimized snapshot. For example, Shandian [85] and Prophecy [76] use

proxies and web servers to extract state necessary for users to use the web page (e.g.,

�nal DOM state, and �nal JavaScript heap state) and package the extracted state into a

snapshot. Given the minimal state included in the snapshot, the size of a typical snapshot

is typically substantially smaller than the unmodi�ed version of the page; thus, reducing

bandwidth usage and computation at the client.

16

CHAPTER 3

CASPR: Enabling Cloud-Assisted Web Page

Loads at Scale

3.1 Overview

The mobile web now dominates web tra�c, with studies showing that 50% of global web

tra�c originates from mobile devices, up from 25% in 2015 [45]. Much of this increase

stems from the growth of mobile web usage in resource constrained environments.

However, a large portion of the users in emerging markets are likely equipped with

slow phones and poor network conditions [62]. For example, in 2018, the average down-

load speed in Indonesia is 4.52Mbps [46]. Furthermore, while the availability of 4G is

70% on average, users using 4G still experience an average latency of 70ms, and users

experience an average latency as high as 160ms using 3G connections.

This chapter describes CASPR (Cloud-Assisted Speedy and Progressive Rendering), a

technology which uses cloud rendering to improve the web experience for users on slow

networks and devices. CASPR optimizes web page loads by rendering any requested page

at a proxy server and sending the outcome of the rendered page to the client in the form

of a “snapshot” which enables the client to restore a fully functional page. CASPR was

built with two important goals in mind:

• Reduce computation at the client. With less powerful phones, computation be-

17

Figure 3.1: High-level architecture of CASPR

comes very constrained. Network optimizations alone are not su�cient.

• Minimize shared state between the client and the server. Strongly coupled state

between the client and the server results in a system that is expensive to build and

deploy, and where private information such as login credentials and other cookies are

shared with the server. CASPR should not rely on shared state.

In this chapter, I describe my contribution to CASPR’s design and implementation

and its evaluation. I designed and implemented prototypes of two rendering optimization

techiniques to CASPR, which were later incorporated into production at Google. The �rst

technique accelerates CASPR rendering by incrementally sending rendering updates from

the proxy to the client while using standard Web APIs. The second techique optimizes CSS

delivery by removing 1) external fetches of CSS to reduce the impact of network latency,

and 2) unused CSS rules to reduce bandwidth usage.

My evaluation of CASPR compares its performance impact in two extreme cache set-

tings: an empty client cache and a pre-warmed cache from a previous load. The results

show that the state of the client cache has a signi�cant impact on CASPR’s bene�ts;

CASPR improves FCP by 1.8s when the cache is empty, but see no improvements when

the cache is warm.

3.2 CASPR Implementation

CASPR accelerates page loads by moving JavaScript fetches and execution to a cloud

18

browser. Users requesting a CASPR page make a request to a proxy server, which starts

a headless cloud browser for rendering the page. The proxy server then starts rendering

the page using the cloud browser and sends the state of the DOM, excluding JavaScripts,

using a JSON-based protocol to the client browser. The client browser starts rendering

the page immediately once it receives the updates from the proxy server. Once the page

has been fully rendered at the proxy, the cloud browser generates a JavaScript �le that

restores the cloud browser’s JavaScript state at the client. Figure 3.1 depicts the �ow of a

CASPR request.

This approach nicely satis�es our two goals. First, the client browser can render the

page without executing any of the page’s original JavaScript; since CASPR snapshots the

JavaScript heap, it removes all original <script> elements from the �nal DOM tree. The

heap restoration script is only fetched and executed once the DOM has been fully re-

stored. Second, the snapshot is self-contained. The client can restore a fully functional

page without the need to maintain shared state with the proxy. The client only needs

to fetch resources, such as images, that are referenced in the DOM tree. Further, since

CASPR represents the DOM tree with ordinary HTML and CSS and uses JavaScript to

construct the page at the client, we can implement a CASPR service without adding cus-

tom rendering code to the browser.

While CASPR uses a variety of optimizations to accelerate page loads, this thesis fo-

cuses on two important contributions I made to CASPR. It does not cover details on cap-

turing the �nal JavaScript state.

3.2.1 Streaming DOM Updates

One way to capture the DOM tree is to generate a DOM snapshot once the page load is

visually complete. However, web pages can take a long time to reach visual completeness,

especially when many external resources are needed. This can lead to an unpleasant ex-

perience as users will not see any progress until the DOM snapshot is �nally generated

19

and sent to the client. Prophecy’s online mode [76] minimizes this problem by fetching

all resources from local memory in the server, something we cannot do from a proxy.

To enable users to see incremental progress as the page loads, unlike Prophecy and Shan-

dian [85], CASPR sends back incremental DOM tree updates instead of a single monolithic

snapshot.

One way to enable incremental rendering is by modifying the client browser so that

the cloud-renderer can directly send rendering commands to the client. This approach is

very challenging to deploy in practice because it introduces a strong coupling between

the client and the proxy, which leads to prohibitive maintainance cost, e.g., modifying a

feature can be very challenging because of client browser version fragmentation. Thus,

we need a solution that does not introduce coupling between the client and the proxy.

Instead of enabling incremental rendering at the rendering layer inside the browser,

CASPR relies on standard web technologies such as JavaScript and JSON to ensure that

the solution is compatible across a large fraction of users. The incremental DOM updates

are sent directly in the main HTML response. The proxy keeps the main response alive

by not sending the closing </html> tag until the page is visually complete. In the cloud

renderer, we use the MutationObserver API [37] to detect changes to the DOM tree, then

we encode updates using JSON and append the JSON into the kept-alive response. JSON

updates are interpreted by a small JavaScript runtime that is injected into the <head> of

the HTML response.

3.2.2 Inlining CSS and Removing Unused CSS Rules

While enabling incremental rendering at the client allows users to have a more positive

user experience, the overall rendering can still be improved. Recall that browsers block

rendering when there is an outstanding fetch of CSS, so fetching external CSS can degrade

rendering, especially on poor network conditions where latency is high and bandwidth

is limited. We can divide the CSS delivery optimizations into two parts: 1) reducing the

20

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

Fraction of Unused CSS Bytes
C

D
F

 a
cr

os
s

w
eb

si
te

s

Figure 3.2: A large fraction of CSS bytes are not used.

impact of network latency on fetching the CSS, and 2) reducing the impact of limited

network bandwidth.

Minimizing impact of network latency by removing externally linked CSS. CSS

�les are often included in web pages as external links, using <link rel="stylesheet">,

which requires the browser to fetch them over the network and fetching any resource

without any existing connection requires at least two round-trips. In a very constrained

network setting, the round-trip time can be as high as 150ms [46], which results in re-

quiring at least 300ms before getting the �rst byte of the resource.

To minimize the e�ects of network latency, CASPR removes any references to exter-

nally linked CSS and inlines them with the main HTML using the <style> tag. By inlining

the CSS, the client browser only needs to fetch the main HTML and does not need to incur

additional round-trips to fetch CSS resources.

While inlining CSS can eliminate round-trips, CSS can no longer be separately cached

from the HTML. A typical CSS �le is often static and a recent study showed that the

median CSS �le can be cacheable for 1 year [9]. However, since CSS is now inlined with

the main HTML, the caching policy of the CSS is now governed by the main HTML, which

is typically not cacheable. Not being able to cache CSS can potentially lead to additional

bandwidth consumption.

Minimizing impact of network bandwidth: removing unusedCSS rules. To reduce

bandwidth consumption, we leverage an observation that web pages often include a large

21

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.5 5.0 7.5 10.0

First−Contentful Paint (s)
C

D
F

 a
cr

os
s

w
eb

si
te

s

CASPR CASPR w/out CSS Inlining
Original CASPR w/out Streaming DOM

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.5 5.0 7.5 10.0

First−Contentful Paint (s)

C
D

F
 a

cr
os

s
w

eb
si

te
s

Original CASPR w/out CSS Inlining
CASPR CASPR w/out Streaming DOM

(b)

Figure 3.3: CASPR evaluation comparing (a) cold cache setting, and (b) warm cache setting

on the First-Contentful Paint (FCP) metric.

number of unused rules—Figure 3.2 shows that 68% and 87% of the CSS bytes are left

unused for the median and 90th percentile pages, which accounts for 76 KB and 558 KB

of unnecessarily fetched bytes. In a setting with limited network bandwidth, reducing the

amount of bytes required to load the page is bene�cial to the client. Thus, CASPR reduces

bandwidth consumption by removing unused CSS rules from the page and including only

the used ones with the �nal snapshot.

3.3 CASPR Evaluation

Methodology. We evaluate CASPR in a lab setting using WebPageTest [53] with Moto G

phones. We throttled the network to 400 Kbps bandwidth and 400 ms latency. Note that

WebPageTest is not a replay setup; we load pages from the wild even in this controlled

22

setup. Our corpus of pages includes one randomly selected page from each of the 500 most

popular domains that are served CASPR pages in production. For each con�guration, we

load each page three times and randomly choose the result from one successful run. We

consider only pages that have at least one successful run across all con�gurations, as

WebPageTest can occasionally fail. Finally, we evaluate CASPR on two cache settings 1)

cold cache (i.e., when the client cache is empty), and 2) warm cache (i.e., when the client

cache is populated by loading the web page once right before evaluating CASPR in a

subsequent back-to-back load).

Results Summary. Figure 3.3(a) compares fully-optimized CASPR with three other

versions: CASPR with streaming DOM updates disabled, CASPR with CSS inlining dis-

abled, and CASPR served from the proxy cache only. The most important optimization

is streaming DOM updates—with the optimization, the median FCP improves from 4s to

2.1s, a 1.8s reduction. Without streaming DOM updates, CASPR loads are often slower

than unoptimized pages.

Figure 3.3(b) shows that the overall bene�ts of CASPR are signi�cantly less pronounced

when the client cache is warm. There is little di�erence between an unoptimized page load

and a CASPR page. When disabling streaming DOM updates, CASPR renders signi�cantly

slower than unmodi�ed and Flywheel page loads with a 1.6s reduction in FCP for the me-

dian page. This further emphasizes that streaming DOM updates is a vital optimization.

Surprisingly, CASPR renders faster by 150ms when disabling inline CSS in a warm

cache setting. We believe that this happens because most stylesheets are cacheable and

are present in the browser cache. Whereas, with CSS inlining enabled, we give up the

ability to cache stylesheets at the client and increase the size of the HTML. Since our

network is throttled to 400 Kbps bandwidth, an extra 150 ms corresponds to about 7.5 KB

of extra data.

We also evaluate CASPR on the Speed Index [44] metric as computed by WebPageTest,

using the same methodology and corpus of pages. Unfortunately, due to a bug in Web-

23

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000

Speed Index (ms)
C

D
F

 a
cr

os
s

w
eb

si
te

s

CASPR CASPR w/out CSS Inlining
Original CASPR w/out Streaming DOM

Figure 3.4: CASPR evaluation on the Speed Index metric.

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

Data Usage (KB)

C
D

F
 a

cr
os

s
w

eb
si

te
s CASPR w/ CSS Optimization CASPR

Figure 3.5: Distribution of network bytes fetched for CASPR with and without CSS Opti-

mization.

PageTest, we could not measure Speed Index for warm cache page loads. We present cold

cache results only.

Figure 3.4 shows that CASPR’s e�ect on Speed Index is dramatically greater than its

e�ect on FCP. On the median site, CASPR reduces Speed Index by 50%—from 6.3s to 3.1s.

The dramatic speedup comes from the fact that CASPR pages can render without fetching

or executing any JavaScript. CASPR has a higher reduction in Speed Index than FCP (50%

vs. 40%) because, although it is common for pages to require JavaScript to reach FCP, it is

even more common for pages to require JavaScript to reach a visually-complete status.

Figure 3.4 rea�rms that streaming DOM updates is the most important optimization.

However, CASPR often has lower Speed Index than the original page–17% lower at the

median–even with streaming DOM updates disabled. Once again, this illustrates the ben-

e�t of moving JavaScript fetch and execution to the cloud browser.

24

CASPR Data Usage. Figure 3.5 shows the impact of optimizing CSS for CASPR pages.

While CASPR pages are already small, eliminating unused CSS further reduces the amount

of bytes fetched. The median bytes fetched reduces from 265KB to 135KB, a 130KB reduc-

tion, while the 90th percentile sees a reduction of almost 150KB.

3.4 Summary

With a signi�cant growth in users equipped with suboptimal smartphones and network,

the Google Data Saver proxy team deployed a system that optimizes web pages into snap-

shots. In this chapter, I presented my contributions to improve the rendering of CASPR

pages by enabling incremental DOM streaming and optimizing CSS delivery. My evalua-

tion showed that these optimizations were able to signi�cantly reduce FCP for the median

web page by almost 45% when the client’s cache is empty.

25

CHAPTER 4

Vroom: Accelerating the Mobile Web with

Server-Aided Dependency Resolution 1

4.1 Overview

While CASPR is able to substantially improve the performance of page loads, it su�ers

from the drawbacks associated with a proxy-based solution; users must trust the integrity

of HTTPS content served from proxies and must share the their cookies so that person-

alization is appropriately handled. With the recent increase in HTTPS usage [29], proxy-

based solutions may not be as applicable to users as it was in the past. Thus, we explore

optimizing page loads with the goal of preserving the end-to-end interaction between

clients and web servers, enabling users to receive the bene�ts of faster page loads with-

out the need to trust a third-party entity.

Recent studies [75, 83, 84] have found that dependencies between the resources on any

web page are a key reason for slow page loads. Today, even mobile-optimized web pages

include roughly one hundred resources [26] on average, and client browsers can discover

each of these resources only after they have fetched, parsed, and executed other resources

that appear earlier in the page. For instance, a browser may learn that it needs to fetch

1
Appeared in: Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V. Madhyastha.

2017. Vroom: Accelerating the Mobile Web with Server-Aided Dependency Resolution. In Proceedings of

the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM’17). Association

for Computing Machinery, New York, NY, USA, 390-403. DOI:https://doi.org/10.1145/3098822.3098851

26

an image after executing a script which it discovers after downloading and parsing the

page’s HTML.

Prior work has taken one of two approaches to address the impact of these dependen-

cies on web performance, and both approaches su�er from fundamental drawbacks.

• O�loading to proxies. In one class of solutions, when a client loads a page, discovery

of resources on the page is o�oaded to a proxy [78, 82, 85]. Solutions that take this

approach attempt to reduce page load times by leveraging the faster CPUs and net-

work connectivity of proxy servers. However, clients must trust that proxies preserve

the integrity of HTTPS content; proxies that disregard HTTPS tra�c are limited in

the bene�ts they can provide given the increased usage of HTTPS [72]. Moreover, to

preserve the ability of web providers to personalize content, a client must share with

the proxy its cookies for all domains from which resources must be fetched to load the

page.

• Reprioritizing requests at client. An alternative class of solutions [60, 75] lets the

client itself discover all resources on a page. Instead of fetching resources in the or-

der that they are discovered, these systems preferentially fetch certain resources (e.g.,

those that lead to longer dependency chains [75]) based on precomputed, high-level

characterizations of the page’s dependency structure.

For example, with Polaris, the client receives a characterization of the page’s depen-

dency structure at the start of the page load and uses this knowledge to prioritize re-

quests for more critical resources. However, such an approach can do little to reduce

the network delays encountered on the critical path. The fundamental constraint with

this approach is that the client must discover all resources on the page on its own (i.e.,

fetching a resource and then evaluating it to identify new resources to fetch). As a re-

sult, once the browser discovers a resource by parsing/executing other resources that

appear earlier in the page load, the latency of fetching that resource must be incurred

at that time before the browser can begin processing the resource. Since HTTP/2 elim-

27

inates head-of-line blocking and network bandwidth is not the bottleneck in mobile

page loads as shown in section 2.1, reordering requests for discovered resources o�ers

little bene�t. We provide further evaluation and discussion of Polaris in Section 4.5.

The problem with these approaches is that, once the client browser discovers the need

for a resource, the client must necessarily wait for that resource to be fetched over the

network before it can start processing the resource, resulting in under-utilization of the

CPU. Since the client CPU is the primary bottleneck when loading web pages on mobile

devices ([74] and §2.1), this class of solutions has limited ability to speed up the mobile

web.

These limitations of prior approaches motivate the need for a new solution that both

preserves the end-to-end nature of the web and aids clients in discovering the resources

on any page. Speci�cally, a client must receive every resource directly from the domain

hosting that resource, thereby enabling the client to verify the integrity of HTTPS content

and requiring the client to share its cookies for a domain only with servers in that domain.

Yet, the new solution must also preserve the primary bene�t of proxy-based dependency

resolution, which is to decouple the client’s downloading of resources on a page from the

processing of those resources. Decoupling these functions maximizes resource utilization

during page loads because fetching of resources is constrained by the network, whereas

the CPU limits the parsing and execution of each fetched resource.

We argue that the way to realize this desired end-to-end solution is to redesign page

loads such that web servers securely aid clients in resource discovery. In addition to re-

turning a requested resource, a web server should inform the client of other dependent

resources that the client will need in order to load the page. Though there are resource

overheads associated with identifying these dependent resources, content providers have

a strong incentive to incur this burden in order to decrease load times for their clients,

thereby increasing revenue [73, 24]. We make three contributions in designing Vroom to

realize this approach.

28

First, to aid clients in resource discovery, Vroom-compliant web servers not only push

the content of dependent resources (leveraging the server push capability in HTTP/2 [58])

but also return dependency hints in the form of URLs for resources that the client should

fetch. The use of HTTP/2 push alone is insu�cient because content on modern web

pages is often served by multiple domains [59], each of which can only securely push

the content that it owns. In contrast, dependency hints enable a server to inform a client

of the dependent resources that it should fetch from other domains, without providing

the content of those resources. This additional input from servers ensures that a client’s

ability to discover and start downloading required resources is not constrained by the

speed with which it can process fetched content. In fact, by the time the client discovers

the need for a resource during its execution of a page load, that resource will likely already

be in its cache.

Second, we develop the mechanisms that Vroom-compliant web servers must employ

to identify the resources they should push and the dependency hints they should include

with their responses. In contrast to prior e�orts, which have relied exclusively on either

online [78, 82] or o�ine [60, 75] dependency resolution, we show how to combine the two

approaches to accurately identify the set of resources that a client will need to fetch within

a speci�c page load. Critically, our design maximizes the number of dependent resources

that the client is made aware of while avoiding sending dependency hints for intrinsically

unpredictable resources—ones which vary even across back-to-back loads of the page—so

that the client does not incur the overhead of fetching resources that are unnecessary for

its page load.

Lastly, while the additional input from Vroom-compliant web servers reduces the la-

tency for clients to discover all resources on a web page, fetching all resources as soon

as they are discovered increases contention for the access link’s bandwidth, delaying the

receipt of some resources. To maximize CPU utilization, we leverage the property that

resources that need to be parsed/executed (HTML, CSS, and JS objects) constitute only

29

a quarter of the bytes on the average mobile web page [26]. We coordinate server-side

pushes and client-side fetches such that resources that need to be parsed/executed are

received earlier than other resources; the client can fetch the latter set of resources while

processing the former set. In doing so, we ensure that resources arrive at the client in the

order in which they will be processed.

Our implementation of Vroom enables the use of Google Chrome to load pages from

the Mahimahi [78] page load replay environment. On a corpus of web pages from popular

News and Sports sites, the median page load time reduces from the status quo of 10.5

seconds to 5.1 seconds with Vroom. These improvements stem from Vroom’s ability to

enable server-side identi�cation of dependent resources with a median false negative rate

of less than 5%, which in turn results in a 22% median decrease in client-side latency to

discover all resources on a page.

4.2 Approach

Our results in Section 2.1 indicate that the key to optimizing mobile web performance is

to maximize the utilization of the client’s CPU. To do this, we need to ensure that the

browser’s processing of any resource is not delayed waiting to receive the resource over

the network. To achieve this decoupling of the browser’s use of the CPU and network,

web page loads would ideally work as follows. When a client browser issues a request

for a page, it would receive back all the resources needed to render the page, rather than

just the HTML for the page. This would optimize page load performance for two reasons.

On the one hand, in contrast to the status quo wherein the client incrementally fetches

resources as it discovers them during the page load, receiving all of the objects on the

page at once would maximize the utilization of the client’s access link and eliminate the

need for repeated latency-onerous interactions between the client and web servers. On

the other hand, if the resources on the page are delivered in the order they need to be

30

<html>
...
<script>a.com/foo.js</script>
...
</html>

GET
a.com

...
var image = new Image();
image.src = "b.com/img.jpg";
document.appendChild(image);
...

http://a.com http://a.com/foo.js

a.com

b.com

client

HTML foo.js img.jpg

Parse HTML Execute foo.js

11

12

GET
foo.js

13

14

GET
img.jpg

15

GET
a.com

a.com

b.com

client

HTML

Parse HTML

11

12 Execute foo.js13

(a) Client discovers all resources on its own

(b) Servers aid client's resource discovery by pushing some resources

(c) Servers push some resources and return dependency hints for others

GET
a.com

a.com

b.com

client

img.jpg

Parse HTML

HTML

b.com/img.jpg
+

GET
img.jpg

11

12 Execute foo.js13

foo.js img.jpg

GET
img.jpg

14

foo.js

Figure 4.1: Comparison of critical path across di�erent approaches for loading web pages,

in all of which the client receives every resource from the domain from which it is served,

so as to preserve personalization and the client’s ability to verify the integrity of secure

content: (a) 5 stages on critical path with CPU use blocking use of the network in steps 2

and 4 and vice-versa in steps 3 and 5, (b) 4 stages on critical path with CPU use blocking

use of the network in steps 2 and 3 and vice-versa in step 4, (c) 3 stages on critical path

with CPU and network utilized throughout.

processed, the client can make full use of its CPU, processing resources while fetching

other resources in parallel.

31

4.2.1 Limitations of HTTP/2 PUSH

It may appear that such an ideal design of the page load process is feasible today because

HTTP/2-compliant web servers can speculatively push resources to clients [58]. How-

ever, today, 1) the resources on a page are often spread across multiple domains [59], e.g.,

a web page from one provider often includes advertising, analytics, JavaScript libraries,

and social networking widgets from other providers; 2) HTTPS adoption is rapidly grow-

ing [72, 29]; and 3) page content is increasingly personalized. These typical character-

istics of modern web pages make the use of HTTP/2 PUSH ine�cient for the following

reasons.
2

• When a domain receives a request for the HTML of a page that it hosts, it can only

return resources that it hosts and not resources served by other domains. In the example

in Figure 4.1, in response to the request for the HTML, a.com’s servers can only push

the contents of foo.js which is served from the same domain, but not the third-party

resource img.jpg. If web servers were to fetch resources from external domains and

push them to clients [60, 85, 78], clients would be unable to verify the integrity of secure

page content. Moreover, since any client’s request to a web server will only include

the client’s cookie for that domain, resources fetched from other domains by that web

server will not re�ect any personalization of content by those domains.

• If web servers only push locally hosted resources, the client will discover resources that

it needs to fetch from other domains only after processing previously fetched resources,

e.g., in Figure 4.1(b), the client can discover the need to fetch img.jpg only after exe-

cuting foo.js. This makes the CPU a potential bottleneck in the client’s fetching of

resources.

• During a page load, if every domain independently pushes its resources to the client,

the client’s receipt from one domain of a resource that must be processed (i.e., HTML,

2
Another commonly cited limitation of PUSH is the potential for bandwidth wastage when a resource

cached at the client is pushed. However, this problem could be addressed by having the client send a

summary of its cache contents to web servers, e.g., in a cookie [22].

32

CSS, or JavaScript) can be delayed due to bandwidth contention on the client’s access

link with other resources (such as bulky images) from other domains. This makes the

network a potential bottleneck in the client’s processing of resources.

4.2.2 Combining PUSH with Dependency Hints

Given these limitations associated with relying solely on HTTP/2 PUSH, we leverage an

additional server-side capability. When a web server receives a request for a resource, in

addition to pushing the content for some dependent resources that it owns, the server can

also return a list of URLs for other dependent resources—we refer to this list as depen-

dency hints. Web servers can include such a list of URLs as an additional header in HTTP

responses.

When a client receives dependency hints, it can fetch every resource whose URL is

included in the list, without having to �rst process other resources on the page to discover

the URLs in the list. For example, in Figure 4.1(c), based on the hint received from a.com,

the client can fetch img.jpg from b.com without having to wait to receive and execute

foo.js.

Legacy browsers already support dependency hints in the form of HTTP Link headers

which have the preload attribute set [40]; resources listed in these headers are immediately

fetched by browsers but are not evaluated until they are referenced by the page (i.e., Link

preload headers are primarily used to prewarm browser caches during page loads).

Using dependency hints in addition to HTTP/2 PUSH o�ers several advantages:

• Any web server can safely send clients dependency hints for third-party resources. For

any URL received via dependency hints, a client will fetch it directly from the respective

domain, enabling the client to con�rm the integrity of resources served over HTTPS

and preserving that domain’s ability to personalize content.

• The client need not fetch resources that are already cached locally, making it easier to

minimize bandwidth waste compared to the use of HTTP/2 PUSH.

33

Client

Scheduler

Domain A
Front-end

(Online parsing
of HTML)

Offline
dependency

resolution

1. List of URLs of external dependencies
and low priority local dependencies
2. Requested resource
3. Content push of high
priority local dependencies

......

Resource
list

<Page,
device
type>

Resolution table

Domain B Domain C

T=0

Page load timeline
Fetch all HTML,

JS, CSS

onload

Requests with cookie for
corresponding domain

Requests with
no cookies

Fetch other resources

HTML/CSS parsing + JS execution

Figure 4.2: Illustration of the components in Vroom and the interactions between them.

• The client maintains control over its concurrent fetches of resources from multiple do-

mains; it can coordinate its downloads such that high priority resources (those that

must be processed) are not delayed.

4.3 Design

Using the approach described in the previous section requires us to answer three ques-

tions:

• In response to a request from a client, how can a web server accurately identify the list

of dependent resources that it should inform the client about, including ones hosted in

other domains, without having clients fetch resources that are irrelevant to the ongoing

page load (thereby wasting bandwidth)?

• How can a server provide a su�cient number of dependency hints to clients, without

knowledge of how content is personalized by other domains that serve resources for a

given page?

• At any point in time during a page load, a client’s access link bandwidth is shared

by resources that are explicitly fetched by the client or proactively pushed by servers.

Given this contention, when should clients schedule resource fetches? What resources

should servers push?

In designing Vroom to address these questions, we respect two primary constraints: 1)

we do not rely on input from developers to characterize the dependencies on web pages

34

because the resources on a page are typically spread across several domains [59], and

no single developer is likely to have complete knowledge about all dependencies on a

page; and 2) to preserve the integrity of content and to protect user privacy, any client

will accept a resource only from the domain that serves that resource, and it will share

its cookie for a domain only with web servers in that domain. Figure 4.2 illustrates the

server-side and client-side components of Vroom, which we describe next.

4.3.1 Server-side Dependency Resolution

Generating an accurate list of dependent resources for a web page is challenging due to

the constant �ux in resources on modern pages. Moreover, unlike recent work [60, 75]

focused on generating a page’s stable dependency structure, here we need to identify the

preciseURLs of resources that a server must either push or include in its dependency hints.

To appreciate the challenge in doing so, we �rst consider two strawman approaches before

describing our solution.

4.3.1.1 Strawmans for resource discovery

Strawman 1 (Online). When a server receives a request for the HTML of a page, the

server could load the entire page locally, mimicking a client browser, to identify the other

resources on the page. However, many of the URLs fetched by the server during its page

load will not be requested during the client’s page load. On the one hand, back-to-back

loads of a page often di�er in the exact set of URLs fetched (e.g., ads typically insert

a randomly selected identi�er into the URLs they fetch). For example, 22% of the URLs

fetched to load the median page in the Alexa Top 100 list change across back-to-back loads.

On the other hand, loading a page at one server cannot account for the personalization

performed by other domains, since the server only has the user’s cookie for its domain.

If servers fail to account for these discrepancies and either push to the client or ask the

client to fetch unnecessary objects, the user is likely to experience higher load times.

35

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

Fraction of persistent resources
C

D
F

 a
cr

os
s

w
eb

si
te

s

One Week
One Day
One Hour

Figure 4.3: Fraction of resources, per page in the Alexa Top 100, that persist over di�erent

time scales.

Strawman 2 (O�line). Alternatively, a server can periodically load each page that it

serves. This enables the server to account for the variation in resources over time; when a

client requests the HTML for a page, the server can return the set of resources that it has

repeatedly observed on recent loads of that page. With this approach, we risk missing a

large fraction of URLs that a client will need to fetch when loading the page. For example,

the set of stories or set of products on the landing page of a News or Shopping site changes

often. Figure 4.3 con�rms this; for the median site in the Alexa Top 100, only 70% of the

resources on the landing page remain stable over one hour, and this number drops to 50%

over one week.

4.3.1.2 Our solution: o�line + online discovery

The two strawmen approaches for server-side resource discovery illustrate the follow-

ing trade-o�: servers must ensure that a client does not end up fetching unnecessary

resources, but if they are too conservative (and thus let clients discover many resources

on their own), the utility of input from servers will be minimal. To address this trade-

o�, we observe that both o�ine and online dependency resolution are necessary at the

server. Figure 4.4 summarizes the techniques we employ. Periodic o�ine resolution of a

page helps con�rm which URLs are consistently fetched when loading the page, whereas

online resolution helps account for �ux in page content.

36

Relatively stable resources
(Offline loads accounting for

device type customization)

Dynamic page content
(Online analysis of HTML)

Resources that vary
across back-to-back loads
(Onus on client to discover)

User-specific personalization
(Dependencies stemming from
a HTML resolved by domain

that serves HTML)

Figure 4.4: Summary of techniques used in Vroom for server-side dependency resolution

to account for the di�erent types of resource on any web page.

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Intersection over Union (Compared to a Nexus 6)

C
D

F
 a

cr
os

s
w

eb
si

te
s Nexus 10

OnePlus 3

Figure 4.5: Comparison of the stable set of resources on each page when the user device

is a Nexus 6 compared with when the user device is a Nexus 10 or a OnePlus 3.

O�line dependency resolution. O�ine server-side determination of the resources on

a page works as described previously: the page is loaded periodically (once every hour

in our implementation), and at any point in time, URLs fetched in all recent loads are

considered likely to also be fetched when a client loads the page. However, even the

largely stable subset of resources on a page can vary across di�erent types of client devices

(Figure 4.5). For example, it is common for website providers to use CSS stylesheets and

JavaScript objects that cause di�erent clients to fetch images of di�erent sizes on the same

page depending on the client’s display resolution or pixel density.

Vroom’s o�ine server-side dependency resolution e�ciently accounts for device-

speci�c customization of resources in two ways. First, the server need not load each page

on every type of device; this would be onerous given the large variety of smartphones

and tablets on the market. Instead, after a few loads of a page, the server can bin all de-

37

vice types into a few equivalence classes. The equivalence classes can vary across pages

because di�erent pages may be customized based on di�erent device characteristics. For

example, in Figure 4.5, the stable set of URLs fetched when loading a page on a Nexus 6

smartphone matches the stable set of resources for a OnePlus 3 phone much more closely

than for a Nexus 10 tablet. Second, after device type equivalence classes for a page are

identi�ed, the server need not load the page on a real device in each class. Instead, the

server can leverage existing device emulation tools [20].

Online HTML analysis. In addition to o�ine dependency resolution, when a Vroom-

compliant web server responds to a request with an HTML object, it not only informs

the client of dependencies discovered from loading this object o�ine, but also includes all

URLs seen in the HTML object by parsing it on the �y. While there can be other sources

of dynamism on a page (e.g., a script on the landing page of a shopping site may fetch

products currently on sale), we show later in Section 4.5 that accounting for the URLs in

HTML objects su�ces on most pages to capture the �ux in page content. Importantly, we

�nd that server-side parsing of HTML objects as they are being served adds a median delay

of only roughly 100 ms across the landing pages of the top 1000 websites. This overhead

is o�set by the multi-second reduction in page load times made possible by server-aided

resource discovery.

4.3.2 Accounting for Personalization

Unlike content push, dependency hints allow a server to inform clients about resources

served by other domains. But, content served by one domain may be personalized in ways

that other domains are unaware of (e.g., based on information stored in cookies).

A naive solution for handling personalization would be for any web server to never

return dependencies derived from external content. In other words, any resource that is

discovered during the page load by parsing or executing an external resource is deemed

as one that could di�er due to personalization. For example, in Figure 4.6, in response

38

a.com/index.html

a.com/banner.jpg

c.com/ad.php

b.com/style.css

c.com/ad_inject.js

c.com/mouseover.js d.com/car.gif

b.com/logo_lo_res.png

Figure 4.6: Illustration of how Vroom-compliant servers account for personalization. A

client that requests for index.html from a.com only discovers the resources within the

solid blue envelope, because a request for ad.php returns a HTML, whose content could

be personalized to a speci�c user. The client discovers the resources in the dashed red

envelope in response to its request for ad.php sent to c.com. The client will have to itself

discover the need to fetch d.com/cars.gif.

to a request for index.html, a.com can inform a client about b.com/style.css, but

let the client discover the need to fetch b.com/logo_lo_res.png only when it requests

style.css from b.com. Accounting for personalization in this manner would however

in�ate the latency incurred by the client in discovering all resources on the page, thereby

limiting its ability to fully utilize the network.

To handle content personalization while enabling low-latency resource discovery, we

observe that websites are personalized primarily in two ways: by customizing the con-

tent of HTML responses,
3

and by adapting the execution of scripts. Server-side resource

discovery in Vroom accounts for these two types of personalization as follows. First, web

servers omit hints for dependencies derived from an external resource only when that

resource is an HTML object (i.e., an embedded iframe); servers do include dependencies

derived from other types of external resources (e.g., style.css in Figure 4.6). In compar-

ison with the naive solution described above, our approach reduces the latency for the

3
Content of CSS stylesheets and scripts are seldom user-speci�c. Personalization of images and videos

(i.e., returning di�erent versions when the same URL is fetched) is typically device-speci�c, which we have

previously accounted for.

39

-2

-1.5

-1

-0.5

 0

 0.5

 1

1 2 3 4 5 6 7 8 9 10

In
cr

ea
se

 in
 r

ec
ei

pt
 ti

m
e

re
la

tiv
e

to
 b

as
el

in
e

H
T

T
P

/2
Resource ID

Push All, Fetch ASAP
Vroom

Figure 4.7: Need for and utility of careful scheduling of server-side push and client-side

fetch of the resources that need to be processed (HTML, CSS, and JS) on http://eurosport.

com. Resources are ordered based on the order in which they are fetched with baseline

HTTP/2.

client to discover resources. Second, of the resources determined based on JavaScript ex-

ecution, those a�ected by user-speci�c state (e.g., local time) are left to clients to discover

on their own. JavaScript-based personalization will typically vary over time, and hence,

such unstable resources will get �ltered out via o�ine dependency resolution.

4.3.3 Cooperative Request Scheduling

Finally, we turn our attention to questions that must be answered for clients to bene�t

from server-side resource discovery. How should web servers combine the use of HTTP/2

PUSH and dependency hints to aid clients? How should clients utilize the dependency

hints from servers?

Strawman: Push whenever possible. Fetch upon discovery. We �rst consider the

most straightforward answers to these questions. When a web server receives a client’s

request for an HTML object, it can push to the client all dependent resources that it owns.

The server can inform the client of all other dependencies via dependency hints. As soon

as the client receives these hints, it can initiate downloads for all speci�ed URLs.

Problem: Bandwidth contention. Though this simple strategy signi�cantly improves

utilization of the client’s access link, we do not see a commensurate increase in CPU uti-

40

http://eurosport.com
http://eurosport.com

lization. This is because, though the client receives the complete set of resources on a

page well before it would without server push and dependency hints, contention on the

client’s access link slows down fetches of some of the resources that need to be processed.

In the example in Figure 4.7, though the time to fetch the �rst 10 resources that need to

be processed reduces by 2 seconds with the “Push All, Fetch ASAP" strawman, simulta-

neous use of the client’s access link to transfer all of these resources delays the �rst few

resources, causing the browser’s processing to stall. Due to the resulting under-utilization

of the CPU, we show later in Section 4.5 that applying this strawman solution yields no

improvements in page load times.

Solution: Prioritization via selective push and staged downloads. Our solution to

this problem is to prioritize the fetches of resources that need to be processed (HTML,

CSS, and JS) over those that need not be processed (e.g., images and videos).
4

Classifying

resources into high and low priority groups helps because, once the client has �nished

fetching all resources that need to be processed, utilization of the CPU and the network

are largely decoupled over the rest of the page load. Moreover, the types of resources that

need to be processed typically constitute a small fraction of the bytes on a page [26].

This prioritization of resources that need to be processed is achieved in Vroom via two

means. First, when a web server responds to a client’s request for an HTML object, out of

all the dependencies the server identi�es, it pushes the content of only the high priority

resources served from the local domain. All other dependencies are returned to the client

via dependency hints. Second, when the client receives a list of URLs, it immediately

fetches only high priority resources; the server’s hints specify resources in the order in

which the client will need to process them, so client requests simply mimic that order.

Once resource discovery from servers is complete and the client has �nished fetching all

high priority resources that have been discovered, it issues requests for all other resources

4
We however consider all resources that are descendants of third-party HTML objects (i.e., HTMLs

within a page’s iframes) as low priority because web browsers process iframes only after the root HTML

for the page has been completely downloaded and parsed. This helps minimize network contention for high

priority resources referenced in the root HTML, thus reducing the fetch times for those resources.

41

at once. In Figure 4.7, the time by when receipt of the 10 resources shown completes is the

same with Vroom’s scheduling as with the strawman strategy, but without signi�cantly

delaying the receipt of any individual resource.

Note that Vroom’s scheduler is tailored for the setting where web pages are loaded

on a state-of-the-art mobile device connected to a LTE network; as we saw earlier in

Section 2.1, the client CPU is the bottleneck in this case. Alternate scheduling strategies

will likely be necessary in settings where either network bandwidth (e.g., because of many

users simultaneously accessing the cellular network [61]) or latency (e.g., on 2G or 3G

networks [65]) is the bottleneck.

4.4 Implementation

The realization of Vroom requires both server-side (o�ine and online dependency res-

olution; pushing resources to clients and including dependency hints in responses) and

client-side (scheduling fetches of hinted objects) changes. Since this preempts evalua-

tion in the wild, we have implemented Vroom to accelerate web page loads when Google

Chrome is used to load pages from the Mahimahi [78] replay environment.

4.4.1 Server-aided Resource Discovery

Vroom-compliant servers inform clients of dependent resources via content pushes and

dependency hints. To push resources, we leverage HTTP/2’s PUSH capability; since

Mahimahi uses Apache web servers which do not yet support HTTP/2, we run an HTTP/2

nghttpx reverse proxy [38] in front of each web server. For dependency hints, we rely on

embedding additional headers in HTTP responses. For example, when a browser encoun-

ters a Link preload header [40] in an HTTP response, the browser will immediately issue

a request for the URL embedded in that header.
5

Table 4.1 summarizes the headers used

5
While Link preload headers are currently supported by Chrome, other browsers such as Firefox are

actively in the process of adding support for these headers: https://bugzilla.mozilla.org/show_bug.cgi?id=

42

https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633

Header Description
Link preload Resources to be processed (e.g., JavaScript and HTML objects),

fetched at the highest priority

x-semi-important Resources to be processed that are lazily fetched, e.g., “async”

JavaScript or CSS objects

x-unimportant Resources that do not need to be parsed or executed (cannot have

derived children), e.g., images

Table 4.1: HTTP headers used by Vroom-compliant servers to provide dependency hints

to client browsers. Headers are listed in decreasing order of priority. Resources in each

header are listed in the order they need to be processed.

by Vroom to provide dependency hints to clients.

To minimize stalls in the client browser’s processing of resources, dependency hints

from any server list resources in the order the client will need to process them and the

client requests hinted resources in this order; the server discovers this order during its

o�ine and online dependency resolution. However, since the client issues these requests

back-to-back, a web server may receive multiple requests near-simultaneously, causing it

to respond to all requests in parallel. The resulting contention for the client’s access link

bandwidth leads to the slowdown of some resources over others as seen with the “Push

All, Fetch ASAP" strategy in Figure 4.7. Therefore, we modify Mahimahi so that any web

server returns the content for requested resources in the same order in which it receives

requests.

4.4.2 Scheduling Requests with JavaScript

To schedule client-side downloads of URLs learned via dependency hints (Section 4.3.3),

Vroom uses a JavaScript-based request scheduler. For each recorded page in Mahimahi,

we modify the page’s top-level HTML using Beautiful Soup [7]. Vroom’s scheduler script

is added as the �rst tag in the HTML, thereby ensuring that the browser executes this

script as soon as it begins parsing the HTML.

1222633.

43

https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633
https://bugzilla.mozilla.org/show_bug.cgi?id=1222633

Vroom’s scheduler script begins its execution with two steps. First, it de�nes an

onload handler, response_handler, which it attaches to each request that it makes. This

handler maintains a list of dependency hints that it has seen and �res every time the

browser receives a response for a request made by Vroom’s scheduler. Second, the script

issues an XHR (XMLHttpRequest) for the page’s HTML, whose URL we embed as an at-

tribute in the <html> tag.
6

The scheduler examines Link preload headers in the response for the page’s HTML

to discover dependency hints.
7

It then issues requests for high priority dependencies by

adding <link> tags (with the preload attribute set) to the DOM. Importantly, the sched-

uler’s requests for high priority resources are served from the browser’s local cache, be-

cause the browser itself immediately requests URLs included in Link preload headers.

Moreover, modern browsers permit only a single outstanding request for any given URL.

Thereafter, Vroom’s scheduler runs in an event-driven loop. Whenever the browser

invokes response_handler upon receiving a resource, the scheduler marks that resource

as fetched. The scheduler then examines the set of outstanding requests to determine

whether it should start fetching dependencies in the next level of priority. Speci�cally,

once all high priority resources learned via dependency hints have been received, Vroom’s

scheduler issues requests for all semi-important resources that it has discovered until that

point. This process then repeats for low priority resources.

By using a JavaScript-based request scheduler, our implementation of Vroom can ac-

celerate page loads on unmodi�ed commodity browsers. However, due to the single-

threaded nature of Javascript, if the browser is executing another script on the page when

a response arrives, response_handler will not �re immediately. This delays the fetches of

lower priority resources. Therefore, in the future, incorporation of the scheduling logic

6
Note that Vroom’s scheduler removes this attribute and its own DOM node from the page once the

XHR for the top-level HTML is issued. Thus, subsequent accesses to the DOM are not a�ected.

7
To ensure that the request scheduler can securely access headers in HTTP responses served from third-

party domains, responses must include the “Access-Control-Expose-Headers” header with the values “Link,”

and our custom headers “x-semi-important” and “x-unimportant.”

44

into the browser may enable greater performance gains than what we report.

4.5 Evaluation

We evaluate Vroom from two perspectives: 1) performance bene�ts for users, and 2) the

accuracy with which servers can aid resource discovery for clients. The key highlights

from our evaluation are:

• Across 100 popular News and Sports websites, we see that the adoption of Vroomwould

yield near-optimal performance on the median site with respect to two di�erent met-

rics: page load time (PLT) and above-the-fold time (AFT). In comparison to the adoption

of only HTTP/2, Vroom’s use would reduce the median PLT and AFT values by 30%

and 20%, respectively.

• Simple alternatives to Vroom (e.g., relying only on prior loads of the page for depen-

dency discovery, using only HTTP/2 PUSH but not dependency hints, or not scheduling

pushes and fetches) can increase the median page load time by over 2 seconds.

• On the median site, Vroom’s server-side discovery of dependent resources has a false

negative rate below 5%, which in turn results in a 22% decrease in client-side latency to

discover all resources on the page.

4.5.1 Impact on Client Performance

Methodology. We use the setup shown in Figure 4.8 to experimentally evaluate our im-

plementation of Vroom. We load pages in Chrome for Android on a Nexus 6 smartphone

connected to a Verizon LTE hotspot. The phone is also connected via USB to a desk-

top, which subscribes to events exported by Chrome via the Remote Debugging Protocol

(RDP). The phone has a VPN tunnel setup to the desktop, on which we host Mahimahi [78].

For every web page on which we test Vroom, we initially load the page with the desktop

as a proxy to have Mahimahi record all page contents; page load times with this setup

45

Local desktop

Client nghttpx
proxy

Apache
serverVPN over

cellular network

RTT1

RTT2RTT3

Figure 4.8: Setup to evaluate page load performance enabled by our implementation of

Vroom.

match those measured when we load pages with the phone directly communicating with

web servers. Thereafter, when replaying page loads, we con�gure Mahimahi such that

tra�c between the phone and any of the web servers is subjected to not only the delay

over the cellular network but also the median RTT observed between the desktop and

the corresponding web server when recording page contents. The desktop on which we

deploy Mahimahi is su�ciently well-provisioned so that its CPU or network is not a bot-

tleneck, and as we mentioned earlier in Section 2.1, load times when we replay page loads

using HTTP/1.1 between the client and all servers closely match load times measured

when loading pages directly from the web.

We evaluate the utility of Vroom on the landing pages of the top 50 News and top

50 Sports websites as well as 100 randomly chosen sites from Alexa’s top 400 sites;
8

in

most of our experiments, we focus on the News and Sports sites because, as seen earlier

in Section 2.1, the need for performance improvements on these sites is particularly acute

with a median page load time of 10.5 seconds. We load each page 3 times in our replay

setup and consider the load with the median page load time. During these loads, web

servers identify the dependencies to return to clients by drawing upon three prior loads

of each page gathered 1, 2, and 3 hours prior to when we recorded the page content in

Mahimahi.

8
The high page load times for these pages and the need to load each page multiple times to account for

the variability of the cellular network limit us from running our evaluation on more web pages.

46

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Page Load Time (s)
C

D
F

 a
cr

os
s

w
eb

si
te

s

Lower Bound
Vroom
HTTP/2 Baseline
HTTP/1.1

(a)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Above−the−fold Time (s)

C
D

F
 a

cr
os

s
w

eb
si

te
s

Lower Bound
Vroom
HTTP/2 Baseline
HTTP/1.1

(b)

0.00

0.25

0.50

0.75

1.00

1000 3000 5000 7000 9000

Speed Index

C
D

F
 a

cr
os

s
w

eb
si

te
s

Lower Bound
Vroom
HTTP/2 Baseline
HTTP/1.1

(c)

Figure 4.9: With respect to three di�erent metrics, Vroom yields signi�cant bene�ts com-

pared to simply upgrading from HTTP/1.1 to HTTP/2, and comes close to matching the

achievable lower bound.

In addition to page load times, we also evaluate Vroom’s bene�ts with respect to ad-

ditional metrics which capture the speed with which page content is rendered, as this

impacts users’ perception of page load performance [69]. To measure these metrics, we

use screenrecord, a utility program which captures videos of page loads on Android de-

vices. We pass the recorded videos to the visualmetrics tool [50] which outputs the metrics

47

of interest.

Improvement in page load times. First, we compare page load performance when

using Vroom with that when doing a HTTP/2 based replay (i.e., same setup as Figure 4.8,

except that servers simply return requested resources), which we refer to as the HTTP/2

baseline. On the top 50 News and top 50 Sports sites, Figure 4.9(a) shows that Vroom

signi�cantly reduces the page load time on the median site—from 7.3s with the HTTP/2

baseline to 5.1s with Vroom—closely matching the lower bound (median of 5s); the lower

bound corresponds to the maximum of the CPU-bound and network-bound loads de-

scribed earlier in Section 2.1. On the 100 sites from the top 400, where the median page

load time is signi�cantly lower than on the News and Sports sites even with the HTTP/2

baseline (median of 4.8s), Vroom still reduces the median page load time to 4s.

The improvements in load times described above are feasible when all domains adopt

the changes prescribed by Vroom. To understand Vroom’s bene�ts as it is incremen-

tally adopted, we evaluate Vroom in a scenario where the �rst party domain for every

web page (i.e., the domain that serves the root HTML for the page), along with all other

domains controlled by the same organization, are Vroom-compliant. All other domains

contacted in each page load only conform to HTTP/2, without pushing content or pro-

viding dependency hints. While the median page load time across the News and Sports

increases to 5.6s in this case, as compared to 5.1s with universal adoption of Vroom, this

is still signi�cantly lower than the 7.3s median page load time with the HTTP/2 baseline.

We also compared Vroom to Polaris [75], a state-of-the-art web accelerator which

uses information about a page’s dependency structure to prioritize requests for critical

resources. Figure 4.10 shows that, compared to Polaris, Vroom is able to reduce the me-

dian page load time for the popular News and Sports sites from 6.4s to 5.1s. As noted

in Section 2.1, the primary reason for this performance gain is that Polaris still leaves

clients to discover resources on their own (i.e., the client can discover the need to fetch a

resource only after fetching and evaluating another resource). Further, Polaris does not

48

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16

Page Load Time (s)
C

D
F

 a
cr

os
s

w
eb

si
te

s

Vroom
Polaris

Figure 4.10: Comparison of page load times when pages are loaded with Vroom and with

Polaris.

specify policies for servers to proactively push resources to clients in anticipation of future

requests.

Though Figures 4.9(a) and 4.10 show that Vroom signi�cantly improves performance

for the median page, these bene�ts are marginal at the tail; in fact, Polaris outperforms

Vroom in the tail of the load time distribution. The reasons for this are two-fold. First, cer-

tain sites include dynamic content that Vroom is unable to detect simply by online analy-

sis of HTMLs; Vroom defers the discovery of such unpredictable resources to clients and

is unable to provide hints for these resources. Second, when clients prefetch objects (spec-

i�ed by dependency hints) and servers in multiple domains concurrently push resources,

bandwidth contention can result in high priority resources being delayed. These results

illustrate that combining the complementary approaches used in Vroom and Polaris is a

promising direction of future work.

Improvement in visual performance metrics. In addition to reducing page load

times, Vroom also improves metrics such as Above-the-fold time and Speed Index which

grade performance based on visual completeness of page loads. Above-the-fold time mea-

sures the time until all content that is “above the fold" (i.e., a user sees prior to scrolling)

is rendered to its �nal state. Speed Index extends this metric to capture the rate at which

all the content that is above the fold gets rendered. Figures 4.9(b) and (c) show that, across

the popular News and Sports sites, Vroom improves the Above-the-fold time and Speed

49

(a) (b)

Figure 4.11: For the Fox News mobile site, (a) rendering of the above the fold content

completes at 9.26s with Vroom; (b) with only HTTP/2 enabled, rendering is incomplete

at that time and completes only later at 13.87s.

Index for the median site by 400ms and 380ms, respectively.

Figures 4.11 shows these bene�ts on an example site (http://m.foxnews.com/). With

Vroom, rendering of all above the fold content completes at 9.26s. At that same time in

the page load with the HTTP/2 baseline con�guration, the main images are still missing

and the rendering of the page is yet to converge. With HTTP/2, rendering of all above the

fold content takes 4.6s longer, completing at 13.87s into the page load.

The above-described improvements in page load performance with Vroom are due to

several reasons; we dig into each of these next. For brevity, we show results only for the

popular News and Sports sites.

50

http://m.foxnews.com/

0.00

0.25

0.50

0.75

1.00

−0.25 0 0.25 0.5 0.75 1

Discovery Time Improvement over HTTP/2 (%)

C
D

F
 a

cr
os

s
w

eb
si

te
s

High Priority Only
All

0.00

0.25

0.50

0.75

1.00

−0.25 0 0.25 0.5 0.75 1

Fetch Time Improvement over HTTP/2 (%)

C
D

F
 a

cr
os

s
w

eb
si

te
s

High Priority Only
All

(a) (b)

Figure 4.12: In comparison to HTTP/2, Vroom reduces the latency in both (a) discovering

resources and (b) completing their downloads.

Latency in discovering and fetching resources. A key bene�t of server-aided re-

source discovery is that it enables clients to discover resources and complete fetching

them much sooner than in normal page loads. Figure 4.12 depicts these improvements

both when considering all resources identi�ed as dependencies by Vroom-compliant web

servers, and also when considering only those dependencies which are high priority re-

sources (i.e., HTML, CSS, and JS objects, which are the ones that need to be parsed or

executed).

Reducing the time by when the client completes fetching all dependencies (a 22% re-

duction on the median page) is crucial because any further network activity necessary to

complete the page load is only to fetch the small subset of unpredictable resources that

servers fail to identify as dependencies. But, in addition, the drop in the time by when

all high priority dependencies �nish downloading—a 12% median reduction compared to

baseline HTTP/2—is also critical since use of the CPU and the network are largely decou-

pled thereafter. Both of these improvements are made possible because of the speedup in

the client discovering dependencies: in the median, 22% and 16% faster discovery of all

dependencies and of all high priority dependencies, respectively.

Faster discovery and preemptive receipt of resources also helps reduce the time spent

on the critical path waiting to receive data over the network. While the simple use of

HTTP/2 led to network delays accounting for over 30% of the critical path on the median

51

 0

 2

 4

 6

 8

 10

 12

Lower Bound Vroom Deps from
Previous Load

HTTP/2
Baseline

P
ag

e
Lo

ad
 T

im
e

(s
)

Figure 4.13: In contrast to Vroom, if servers return dependencies as all the resources seen

on a prior load of the page, page load times increase on many pages. 25th percentile,

median, and 75th percentile are shown in each case.

site (Figure 2.4), Vroom’s use reduces the network wait time on the critical path by 24%

on the median site.

Utility of accurate dependency inference. While input from servers enables clients

to discover and fetch dependent resources sooner, the bene�t of this input strongly re-

lies upon the accuracy of the dependencies returned. To show this, we consider servers

identifying the set of dependencies to return to a client simply based on a prior load of

the page, i.e., all resources seen in a load within the past hour are assumed to be relevant

to the new load. Figure 4.13 shows that, though the median page load time does reduce

with this approach, the extraneous inaccurate dependencies returned to the client degrade

performance on many sites; the 75th percentile increases by over 1.5 seconds.

Need for combining HTTP/2 PUSH and dependency hints. Beyond accuracy in

server-side dependency discovery, Vroom’s bene�ts draw upon the combined use of HTTP/2

PUSH and dependency hints. Figure 4.14 shows that simply relying on server push is in-

su�cient. Irrespective of whether we push all static resources or only the subset of static

resources that need to be processed, median page load time remains more than 2 seconds

higher than with Vroom. This stems from the preponderance of third-party resources on

modern web pages; servers can inform clients of such dependencies only via dependency

hints, as any server can securely push only the content that it hosts.

52

 0

 2

 4

 6

 8

 10

Lower Bound Vroom Push High
Priority, No Hints

Push All,
No Hints

P
ag

e
Lo

ad
 T

im
e

(s
)

Figure 4.14: Vroom improves page load times compared to using only server-side push

to inform clients of dependent resources. 25th percentile, median, and 75th percentile are

shown in each case.

 0

 2

 4

 6

 8

 10

Lower Bound Vroom Push All,
Fetch ASAP

No Push,
No Hints

P
ag

e
Lo

ad
 T

im
e

(s
)

Figure 4.15: Vroom’s judicious scheduling of server push and client fetch is key to en-

abling improvements in page load time. 25th percentile, median, and 75th percentile are

shown in each case.

Utility of scheduling. While HTTP/2 PUSH and dependency hints enable faster re-

source discovery, performance improvements with Vroom also hinge upon judicious co-

ordinated scheduling of pushes and downloads of discovered dependencies. Figure 4.15

illustrates the utility of the cooperative scheduling in Vroom compared to the strawman

“Push All, Fetch ASAP" approach discussed in Section 4.3.3 (where servers push any re-

source they can and clients fetch any resource immediately upon discovery). Because

only high priority resources are pushed by Vroom servers and are preferentially fetched

by clients, contention for access link bandwidth has minimal impact on the processing

of resources. The resultant increased utilization of the CPU enables Vroom to improve

performance over baseline HTTP/2. Whereas, use of the strawman approach for servers

53

 0

 2

 4

 6

 8

 10

Back-to-back 1 Day Later 1 Week Later
P

ag
e

Lo
ad

 T
im

e
(s

)

Vroom
HTTP/2 Baseline

Figure 4.16: For three di�erent delays between the load that warms the browser’s cache

and the load on which we evaluate page load performance, Vroom reduces page load

times. 25th percentile, median, and 75th percentile are shown in each case.

to inform clients of dependencies o�ers minimal bene�ts; in fact, the median load time

increases as a result of increased network contention.

Vroom accelerates page loads with warm caches. All of our experiments thus far

have considered the browser’s cache to be empty. To evaluate Vroom when the browser’s

cache is not empty, we �rst identify cacheable objects by examining the headers in HTTP

responses. We mimic three di�erent scenarios, wherein once a page is loaded by a client,

it loads the page again immediately thereafter (i.e., back-to-back loads), a day later, or a

week later. Importantly, to prevent wasted bandwidth, resources that were already cached

at the client were not pushed by servers.

Figure 4.16 shows that Vroom signi�cantly improves page load times in all three warm

browser cache settings. When considering back-to-back loads, Vroom reduces the page

load time of the median site by 1.6s. This improvement increases to 2.2s and 2.1s for the

loads separated by one day and one week, respectively.

4.5.2 Accuracy of Server-side Dependency Resolution

Setup. To evaluate the accuracy of the resource dependencies that Vroom-compliant

servers return to clients, we consider 265 web pages drawn from popular News and Sports

websites; these pages span a variety of page types such as landing pages, individual arti-

54

cles, results for speci�c games, etc. We load these pages once every hour for a week from

the perspective of four users, whose cookies are seeded by visiting the landing pages of

the top 50 pages in the Business, Health, Computers, and Shopping/Vehicles Alexa cate-

gories, respectively. Every hour, we load each page twice back-to-back from every user’s

perspective for reasons described shortly.

As described earlier in Section 4.3.1, server-side dependency resolution in Vroom re-

lies upon both o�ine and online analysis. The dependencies identi�ed via o�ine depen-

dency resolution include the resources seen in each of the loads in the past 3 hours. For on-

line analysis, we model the server which serves any HTML object—either the root HTML

on a page or one embedded in an iframe—returning all links in that HTML. Recall that,

in order to account for personalization, Vroom-compliant servers return dependencies—

either via push or via dependency hints—only in response to requests for HTML objects

(Section 4.3.2).

Strategies for server-side resource discovery. We compare dependency resolution in

Vroom with both the strawman approaches described earlier in Section 4.3.1: o�ine-only

returns URLs seen in the intersection of loads over the past 3 hours, and online-only loads

the page on the �y at the server and returns the URLs fetched.

De�nition of accuracy. To evaluate the accuracy with which each of these approaches

can identify the set of URLs that a client must fetch during a page load, we partition the set

of URLs we see in any page load into a predictable and unpredictable subset. We identify

the subset of unpredictable URLs as ones that di�er between back-to-back loads; these

are URLs that Vroom leaves it up to the client to discover. As seen in Figure 4.17(a), out

of the subset of resources on a page that a server can potentially return as dependencies

in response to a request for a HTML (i.e., all the resources derived from HTML minus

the ones derived from embedded iframes), the predictable subset accounts for over 80%

and over 95%, respectively, in terms of the number of resources and the number of bytes.

We evaluate the accuracy of each approach for server-side resource discovery with two

55

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Predictable Resources / Total
C

D
F

 a
cr

os
s

w
eb

si
te

s Count
Bytes

(a)

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Fraction of Predictable Set

C
D

F
 a

cr
os

s
w

eb
si

te
s

Online Only
Vroom
Offline Only

(b)

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Fraction of Predictable Set

C
D

F
 a

cr
os

s
w

eb
si

te
s

Vroom
Offline Only
Online Only

(c)

Figure 4.17: (a) Among the resources derived from a page’s root HTML, except for those

derived from embedded HTMLs, the contribution of the predictable subset to the number

of resources and bytes. As a fraction of the size of this predictable subset, the resources

that are either (b) missed or (c) are extraneous when using Vroom’s server-side depen-

dency resolution as compared to o�ine-only and online-only analyses.

metrics—the number of resources identi�ed as dependencies by the server which do not

appear in the predictable subset of the client’s load (false positives), and the number of

resources in the predictable subset that the server fails to identify (false negatives)—both

computed as fractions of the predictable subset’s size.

56

Results. First, Figure 4.17(b) shows that, out of the resources in the predictable subset,

the fraction that Vroom-compliant servers would fail to identify is less than 5% for the

median page. Whereas, o�ine-only dependency resolution ends up missing as many as

40% of the predictable subset of resources seen on any particular page load because of its

inability to cope with changes from hour to hour. The online-only approach is perfect with

respect to this metric, which validates our design decision to account for personalization

by limiting the set of dependencies returned to exclude resources recursively derived from

embedded HTMLs.

Second, with respect to the overhead imposed on clients by returning dependencies

not in the predictable subset, Figure 4.17(c) shows that Vroom matches the o�ine-only

approach. In both of these cases, identifying the stable set of resources seen consistently

on a page helps in ignoring resources that happen to show up on a single load. Due to

its inability to cope with such nondeterminism, the online-only approach identi�es many

extra resources, which in�ate the predictable subset by as much as 20% in the median

case.

4.6 Discussion

Deployability. Unlike attempts at clean-slate redesigns of the Internet’s architecture,

new designs for client-server interactions on the web are more amenable to deployment,

as evidenced by the recent incorporation of SPDY into HTTP/2. This is possible because

of several di�erences between the web and general communication over the Internet: 1)

clients directly interact with web servers, unlike an ISP having to rely on other ISPs to

forward tra�c, 2) a few popular browsers and web servers are dominant, and 3) since

some browsers (Chrome and IE) are controlled by popular content providers (Google and

Bing), these providers can unilaterally test performance improvements enabled by a new

proposal such as ours without depending on adoption by others.

57

Server-side overhead. Vroom-enabled servers identify dependent resources using both

online and o�ine analyses. For popular websites that host thousands of web pages, load-

ing each page every hour to facilitate o�ine dependency resolution will likely be onerous.

We observe that there are typically only a few types of pages on each site and the stable

set of resources (e.g., CSS stylesheets, fonts, logo images, etc.) are likely to be common

across pages of the same type. For example, on a news site, landing pages for di�erent

news categories are likely to share similarities as will news articles about di�erent indi-

vidual stories. We defer for future work the task of leveraging the similarity across pages

of the same type to improve the scalability of Vroom’s server-side resource discovery.

Note that the overhead of resolving dependencies will be incurred only by the domains

which serve HTML objects, i.e., the root HTML for an entire page or for an individual

frame in the page. Other servers involved in a page load need only serve individual re-

sources as they are requested. Moreover, for over 80% of sites, the landing page’s HTML

is served directly from origin web servers [26] and not from third-party CDNs. Thus, the

overhead imposed by Vroom’s resource discovery will largely be incurred by top-level

domains who are only responsible for the websites they own.

Security. At �rst glance, it may appear that having servers push resources and hav-

ing clients fetch hinted resources present new security concerns for page loads, whereby

compromised web servers could push or provide hints for malware. However, of the re-

sources that are pushed or fetched based on dependency hints, client browsers will only

process those resources referenced by the page being loaded, e.g., as HTML tags. Further,

page loads that include unnecessary pushes or hints will still load correctly to completion,

albeit with higher load times due to the downloads of unnecessary resources. Thus, page

loads with Vroom encounter the same (but not worse) security concerns as page loads do

today.

58

4.7 Summary

The recognition that dependencies within the page load process are the dominant cause

for slow page loads has led to a slew of solutions recently. However, all of these solutions

either compromise security and privacy by relying on proxies to resolve dependencies

or have limited ability to improve mobile web performance since they require clients to

themselves discover the resources on any page. Vroom o�ers the best of both worlds: by

having servers aid a client’s discovery of resources (both via HTTP/2 PUSH and depen-

dency hints), we decouple the client’s processing and downloads of resources, but do so

while preserving the end-to-end nature of the web. By improving CPU utilization, Vroom

signi�cantly decreases page load times compared to baseline HTTP/2.

59

CHAPTER 5

Taking the Long View: The Relationship

Between Page Complexity and Performance

5.1 Overview

In this chapter, we present a longitudinal study on how websites have changed over the

years and how have the changes impacted page load performance. We set out to con-

duct this study because rewriting web pages is the most fundamental change that a con-

tent provider can make; both proxy-based optimizations and end-to-end solutions such as

CASPR are constrained by how a page is written. Understanding the e�ects that changes

to a page have on that page’s load performance will shed light on practices that other

website providers can avoid or follow to ensure performant page loads.

Prior e�orts have characterized every page’s complexity using a variety of metrics

(i.e., the features of a page which determine the impact of network and compute delays

on its loads) and studied the relationship between these complexity metrics and page load

performance [83, 59, 75, 81, 79]. For example, pages with more resources on them are more

likely to be slow on client devices with slow CPUs and networks. This understanding

has, in turn, led to a number of recommendations for web developers to follow in order

to ensure that their pages load quickly for users, e.g., avoid the use of blocking JavaScript

�les [42] and compress images [80].

However, improving page load performance is far from the only concern when web-

60

site providers modify their web pages. They may want to add resources to their pages

in order to o�er richer functionality (e.g., use scripts to enable personalization) [51] or to

reap larger revenues (e.g., include more advertisements) [1]. On the other hand, website

providers may remove content from their pages in order to make it easier for users to nav-

igate their pages, e.g., to o�er a more streamlined web experience on mobile devices [36].

In order to understand the performance impact of such changes, we �ip the lens with

which prior work has viewed the relationship between page complexity and performance.

Instead of analyzing web pages at a particular point in time and identifying what changes

could be made to enable faster page loads, we characterize how pages have evolved over

time and study the performance impact of the changes that have been made to these

pages. Speci�cally, we consider pages that are periodically crawled by the HTTP Archive

project [26] and study the changes in these pages over time—primarily focusing on the

period from 2016 to 2019—with respect to page complexity, performance, and the rela-

tionship between the two. Since prior work has found that the network, more than the

CPU, is typically the dominant bottleneck in web page loads [75, 79], we focus on com-

plexity metrics that capture the network’s impact on page load performance: the number

of resources on a page and the total number of bytes across these resources. In conducting

this study, we make the following contributions.

How has page complexity changed over time? First, we observe that the manner

in which pages have changed from 2016 to 2019 is distinctly di�erent compared to the

period prior to 2016. In the three years leading up to 2016, we see that the vast majority

of pages that we study increased in complexity. In contrast, the number of pages that

increased in complexity from 2016 to 2019 is roughly equal to the number that saw a

decrease in complexity over that period. We �nd that substantial increases in the number

of resources and number of bytes are primarily due to the inclusion of images, both in

quantity and higher quality. Many of the additional resources included on web pages are

due to advertisements, but these contribute little to the need for clients to fetch more

61

bytes. Drops in page complexity, on the other hand, are enabled by lazy loading of images

and the use of image optimization services.

How to analyze performance of historical versions of pages? Second, to study

the impact that changes in page complexity have on page load performance, we set up a

high �delity replay environment. Our testbed lets us evaluate the network’s impact on

versions of a page from di�erent years. The primary challenge here is that, to the best

of our knowledge, there exists no publicly available data source which contains all of the

content present on historical versions of a large corpus of web pages. The absence of even

a single resource can signi�cantly impact the measured performance for a page because all

resources recursively referenced by that missing resource will go unfetched. To tackle this

challenge, we demonstrate how to combine data from several sources (HTTP Archive [26],

Internet Archive’s Wayback Machine [32], and the web today), and strategically patch

resources that are still missing after doing so.

What is the performance impact of increased page complexity? Third, based on

page loads in our replay environment, we �nd that an increase in page complexity from

2016 to 2019 often does not translate to a proportionate performance slowdown. Our anal-

ysis reveals that the primary reasons for this non-intuitive relationship between complex-

ity and performance are the presence of HTTP redirections and blocking JavaScript �les.

Prior work [83, 75, 81, 60, 79] has observed that the serialization of resource fetches caused

by these factors results in ine�cient use of a client’s network. We instead �nd that such

ine�ciencies can prove to be bene�cial in the long term, as they allow for more content

to be added to a page without adversely impacting performance. This observation could

not have been made by analyzing pages from any one point in time, reinforcing the need

to consider page complexity and performance from a longitudinal perspective, as we do

in this chapter.

How to maximize the impact of reduced page complexity? Lastly, we �nd that

serialization of resource fetches does have the undesired e�ect that most pages that sig-

62

ni�cantly decreased in complexity from 2016 to 2019 do not see a proportionate speedup.

Towards enabling such pages to see higher performance gains after removing content, we

characterize the various types of serialized resource fetches that exist on these pages and

identify the ones which could potentially be transparently removed without impacting

the page’s functionality. For example, among resources fetched via JavaScript, those that

consistently appear in a page over time could be inlined in the page’s HTML (thereby

preempting the aforementioned performance penalty of serialization), as they do not re-

quire the dynamism that JavaScript enables. We evaluate the impact of removing such

ine�ciencies from pages; we �nd that doing so increases the number of pages on which a

reduction in content from 2016 to 2019 results in a proportionate performance improve-

ment.

5.2 Dataset and Metrics

5.2.1 Dataset

Source of data. To study the complexity of web pages over time, we use data from

the HTTP Archive project [27]. Prior to January 2019, HTTP Archive loaded the land-

ing pages of the Alexa top 1 million websites [4] once every 15 days. After January

2019, HTTP Archive switched to the landing pages of the top 1.3 million domains from

Chrome’s User Experience report [11] and loaded them once every 30 days. In each cycle,

HTTP Archive loads every page 3 times with an empty cache and records data from the

load with the median page load time. For each site, HTTP Archive separately loads the

desktop landing page and the mobile landing page by respectively mimicing a desktop

and mobile user-agent.

HTTP Archive uses private instances of WebPageTest [53], deployed at the Internet

Systems Consortium data center in Redwood City, CA, to perform page loads. Web-

PageTest considers the page as fully loaded and terminates a page load once the browser

63

fetches all outstanding resources and the CPU on the test machine is idle for at least

500ms [56]. We focus our analysis of each page load on the portion that occurs before the

onload event.

Description of data. In the snapshot that it publishes at the end of each load cycle,

HTTP Archive publishes data in the HAR format [28] containing timings (of requests

and responses) and response bodies for each resource fetched in every page load; HTTP

Archive, however, does not record the response bodies of some resources and we de-

scribe how to handle them in Section 5.4.1. Our analysis predominantly relies on HTTP

Archive’s data from the July 15, 2016 and July 1, 2019 snapshots, but also examines the

July 15, 2013 snapshot for reference. In all snapshots, we consider the landing pages for

600 sites that appear in both the 2016 and 2019 snapshots; we partition all sites based on

their ranking – [0, 5000), [5000, 50000), and [50000,∞) – and randomly select 200 sites

from each rank range.

5.2.2 Complexity Metrics

To better understand how web sites have changed over the years, we identify key metrics

to capture the complexity of a web page. While there are a range of complexity metrics

to choose from [59, 83], we take guidance from prior work, which has observed that most

page loads today are constrained by the network [60, 75, 79]. Therefore, we focus on

complexity metrics which capture the features of a web page which determine how the

page is a�ected by sources of delay imposed by the network: 1) network latency, and 2)

network bandwidth.

To capture the impact of these, we respectively use the number of resources and number

of bytes (i.e., the amount of data transferred over the network to fetch all resources) as

complexity metrics for any page. Fetching each resource incurs at least one round-trip

of latency (more if a new TCP/TLS connection needs to be setup); therefore, greater the

number of resources on a page, greater the slowdown the page will incur on a high-latency

64

network. Whereas, pages that require clients to fetch a greater number of bytes will be

more impacted by limited network bandwidth.

We do not consider more sophisticated complexity metrics, such as the length of the

critical path in a page’s load [83], because such metrics are a function of not only page

content, but also the operation of the browser in which the page is loaded. For example,

the maximum number of TCP connections that a client can maintain to a particular do-

main varies across web browsers [49], which in turn a�ects the client’s ability to fetch

resources in parallel, thereby impacting the page load’s critical path. Instead, our analysis

focuses on how pages have evolved over time, and how those changes speci�cally a�ect

load performance.

5.3 Characterizing Changes in Page Complexity

5.3.1 Change in Complexity Over Time

We begin our analysis by examining how the web pages in our dataset have changed

over the years with respect to our two complexity metrics. For each page, we compute

the di�erence in number of resources and bytes over two periods: from July 2016 to July

2019, and from July 2013 to July 2016. Figure 5.1 shows the distribution of these changes

across the desktop landing pages; the distribution is similar for the mobile landing pages.

When considering the 3 year span between 2013 and 2016, most websites see a signif-

icant increase in both the number of resources and number of bytes. Figure 5.1(a) shows

that the number of resources increased on roughly 90% of sites, with the median website

observing an increase of more than 40 resources. On the other hand, Figure 5.1(b) shows

that 90% of sites observe an increase in the number of bytes fetched during a page load,

with an increase of more than 750KB for the median website.

In stark contrast, when considering the timeframe between 2016 and 2019, we �nd

that page complexity did not strictly increase with respect to either metric; complexity

65

0.0

0.2

0.4

0.6

0.8

1.0

−100 −50 0 50 100

Change in number of resources
C

D
F

 a
cr

os
s

w
eb

si
te

s (07/2019 − 07/2016)
(07/2016 − 07/2013)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Change in number of bytes (MB)

C
D

F
 a

cr
os

s
w

eb
si

te
s (07/2019 − 07/2016)

(07/2016 − 07/2013)

(b)

Figure 5.1: Distribution across sites of the change in number of (a) resources and (b) bytes

on their desktop landing page from 2013 to 2016 and from 2016 to 2019.

increased for some sites and decreased for others, with the change for the median site close

to 0 both in terms of number of resources and number of bytes. For example, Figure 5.1(a)

shows that 20% of the sites saw an increase of more than 50 resources, but another 20%

witnessed a decrease of 50 resources or more. Similarly, Figure 5.1(b) shows that the

number of bytes fetched increased by more than 500KB on 35% of sites, but decreased by

over 500KB for a di�erent subset of 35% sites.

Overall, between 2013 and 2016, websites generally see an increase in page complex-

ity, but between 2016 and 2019, the change is largely mixed. The signi�cant increase in

complexity between 2013 and 2016 can stem from a variety of reasons, e.g., mobile landing

pages leveraging improved device and network speeds to include additional features on

their web pages; Explaining the phenomena underlying these trends is beyond the scope

of this work and is worthy of a separate study of its own.

66

−40

−20

0

20

40

Document Font Image Script Stylesheet
Resource type

C
ha

ng
e

in
 #

 o
f r

es
ou

rc
es

on
 m

ed
ia

n
si

te

Sites w/ resources decrease
Sites w/ resources increase

Figure 5.2: For each resource type, change in the number of requests for resources of that

type on the median site.

Given the mix of complexity changes between 2016 and 2019, in the reset of the chap-

ter, we focus on digging deeper into the changes over this period. In the rest of this

section, we examine what changes underlie the increase in complexity on some sites and

the decrease on others. In subsequent sections, we study the impact of these changes on

page load performance.

5.3.2 Characterizing Content by Resource Type

To analyze sites with a substantial change in landing page complexity between 2016 and

2019, we focus on sites in the top 30% and bottom 30% of the distributions in Figures 5.1(a)

and 5.1(b); note that pages with a substantial increase (or decrease) in the number of

resources do not necessarily see a substantial increase (or decrease) in the number of

bytes. Here, we examine the types of content that were added/removed from these pages.

When the takeaways are similar for both desktop and mobile landing pages, we present

results only for the desktop landing pages.

Sites with substantial changes in number of resources. On sites with a substan-

tial increase or decrease in the number of resources, images and scripts are the highest

contributor to these changes. Figure 5.2 shows that, among sites where the number of

resources on the landing page substantially increased, the median site saw an increase

of 47 resources overall, of which at least 15 were images and 15 others were scripts. For

67

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

Image size (KB)
C

D
F

 a
cr

os
s

im
ag

es

Desktop sites w/ bytes incr. (2016)
Mobile sites w/ bytes decr. (2019)
Mobile sites w/ bytes decr. (2016)
Desktop sites w/ bytes incr. (2019)

Figure 5.3: Distribution of image sizes across desktop landing pages with a substantial

increase in bytes and mobile landing pages with a substantial decrease in bytes.

sites with a substantial decrease in resources, we �nd that the reduction in the number

of images is even more pronounced; on the median site, almost 30 fewer images were

fetched.

On closer inspection, we �nd that the cause for the reduction in number of images

is not always because images were removed from these pages. Instead, we observe that

the signi�cant reduction in the number of images fetched is often due to the adoption of

lazy loading of images; only images that appear above-the-fold (i.e., the portion of the

page visible to users before they begin scrolling) are fetched prior to the onload event.

For example, lazy loading of images helped redbubble.com reduce the number of images

whose fetches impact page load time by 60, while the rest of the page had minimal other

changes.

Sites with substantial changes in number of bytes. As for sites with substantial

changes in the number of bytes on their landing pages, an increase/decrease in the number

of images is a key reason – as one would expect given the above results – but not the sole

contributor. In addition, we observe that the average image size changed signi�cantly

from 2016 to 2019 on many sites. For example, Figure 5.3 shows that, on desktop landing

pages with a substantial increase in bytes, the median image size increased from 4.4KB

in 2016 to 8.5KB in 2019. The underlying cause here appears to be website providers

choosing to use higher quality images.

68

redbubble.com

Figure 5.3 also shows that, across mobile landing pages with a substantial decrease in

bytes, the median image size decreased from 6.6KB to 4.3KB. We observe that this drop

in image sizes is due to websites optimizing the images they serve in a couple of ways.

On some sites (e.g., marketingweek.com), the use of image optimization services such as

imgix.com helped reduce image sizes. On other sites (e.g., escombray.cu), the adoption

of responsive images [43] enabled the site to serve images tailored to the screen size on

users’ devices, thus reducing data consumption.

5.3.3 Characterizing Content by Service Type

Beyond characterizing changes in page complexity with respect to the types of resources

being added/removed, we now analyze the types of services o�ered by the new/old re-

sources. For example, how much of the new content is due to the addition of advertise-

ments?

To do so, we correlate the URL of every added/removed resource against the third-

party-web [14] dataset, which provides the service type of a large number of domains.

If the domain for a resource is not in the dataset, we determine whether it is a �rst-

party resource by comparing with the domain of the site whose landing page is being

considered. We classify all remaining resources as “Other". We extract the domain from

any URL by removing the su�x of the hostname based on the public su�x dataset [41],

splitting the remainder of the hostname based on the ‘.’ delimiter, and using the last token.

Figure 5.4 shows that ads account for most of the increase in resources; on the median

desktop landing page, the number of ad-based resources increased by 20. We observe that

this increase is not necessarily due to the inclusion of more ads, but is often because of

additional resources being requested per ad domain. For example, we �nd that between

2016 and 2019, the number of ad domains on n�.com remains largely the same (45), but

the average number of resources per domain increased by 4.

Figure 5.4 also shows that for websites with a substantial decrease in the number of

69

marketingweek.com
imgix.com
escombray.cu
nfl.com

−20

−10

0

10

20

1st Party Ads Analytics CDN Service Social Other
Service type

C
ha

ng
e

in
 #

 o
f r

es
ou

rc
es

on
 m

ed
ia

n
si

te

Sites w/ resources decrease
Sites w/ resources increase

Figure 5.4: Comparison of the median change in number of resources per website for each

service type.

−1000

−500

0

500

1000

1st Party Ads AnalyticsCDN ServiceSocial Other

Service type

C
ha

ng
e

in
 #

 o
f b

yt
es

 o
n

m
ed

ia
n

si
te

 (
K

B
)

Sites w/ bytes decrease
Sites w/ bytes increase

Figure 5.5: Comparison of the median change in number of bytes per website for each

service type.

resources, reductions in the number of �rst-party resources and resources attributed to

advertisements were the primary contributors. We observe that websites see a decrease

in the number of ads-related requests largely because of the reduction in advertisement

services adopted on the site. For example, mlssoccer.com reduced the number of ads do-

mains from 46 in 2016 to 15 in 2019, with 5 resources fetched on average per domain in

both years.

Figure 5.5 shows that ads, however, contribute little to changes in the number of bytes;

changes on this front primarily stem from addition/removal of �rst-party content.

70

mlssoccer.com

5.4 RelationshipBetweenComplexity andPerformance

Having characterized the changes in page complexity between 2016 and 2019, we now

ask: what has been the impact of these changes on page load performance? To answer this

question, we �rst present our methodology for measuring performance and then describe

our results.

5.4.1 Page Load Replay Testbed

The page load time values recorded in the HTTP Archive dataset are speci�c to the mea-

surement setup used by that project, which itself changed between July 2016 and July

2019 [54]. To be able to quantify page load performance in any arbitrary network condi-

tion, we use Mahimahi [78], a web record and replay tool, in conjunction with the HTTP

Archive dataset. Mahimahi enables us to keep a �xed client con�guration across loads

of multiple snapshots, so that any performance changes we see are solely due to page

modi�cations made over time.

Challenge. The key obstacle in using the HTTP Archive dataset to load pages in

Mahimahi is that HTTP Archive records the HTTP response bodies for only a third of

resources seen during its crawls. For these resources, we transform the metadata and

HTTP response body stored in the HTTP Archive data into Mahimahi-compliant �les.

For the remaining 66% of resources, HTTP Archive only provides HTTP response head-

ers, but not the content of the fetched resource. Most of the missing response bodies

stem from the fact that HTTP Archive only stores non-binary resources [68], but we also

observe some missing iframes and JavaScripts.

To get the content of those resources without response bodies, we could fetch them

from the web today using the metadata stored in the dataset. However, many of the

resource URLs that were previously included on web pages no longer exist or have been

modi�ed since. For example, among the resources which HTTP Archive crawled from

71

desktop landing pages in 2016, almost half have a di�erent size today than that recorded

in the dataset.

Approach. We account for missing response bodies as follows to create our performance

measurement setup.

• Instead of fetching resources only from theweb, we �rst check for the resource

on Internet Archive’s Wayback Machine [32]. For resource URLs seen in one of

HTTP Archive’s snapshots, we check to see if Wayback Machine had crawled that URL

in the same month, as the resource size is more likely to match in that case than the

copy from today’s web (if available).

Note that conducting our study using archived page loads from Wayback Machine,

instead of using data from the HTTP Archive project, would not have obviated the

need to patch up resources missing from the data. Our comparison of HTTP Archive

and Wayback Machine crawls from the same time period show that the latter too is

missing many resources; speci�cally, the latter ignores resources that are not worth

archiving (e.g., ones related to ads and analytics). HTTP Archive’s data at least provides

a complete list of all resource URLs fetched in each of its page loads and is only missing

the content of some resources. Whereas, from any of Wayback Machine’s crawls, you

would not even know that it is missing any mention of many resources! On the median

desktop landing page, the number of resources seen in Wayback Machine’s archive

from 2016 are 35% lesser than the number of resources seen for that page in HTTP

Archive’s July 2016 data.

Due to the incompleteness of Wayback Machine crawls, it does not su�ce to rely solely

on Wayback Machine to �nd resource content missing in the HTTP Archive data; on

the median desktop landing page, we were still missing content for roughly 60% of

resources after leveraging Wayback Machine.

Therefore, for the remaining resources, we fetch them directly from the web. The com-

72

bination of fetches from the Wayback Machine and from the live web helps us reduce

the fraction of resources for which we are missing content on the median site to at most

23% across all combinations of desktop/mobile and 2016/2019.

• We �nd that approximately 15% of the resources we fetch from Wayback Machine and

the live web have a di�erent size than that recorded in the HTTP Archive dataset, i.e.,

the content we obtain for these resources di�ers from what HTTP Archive fetched as

part of its crawls. Of these modi�ed resources, over 65% are images.

To account for fetched images whose size di�ers from that recorded in the HTTP

Archive data, as well as any images for which we still lack content, we observe that

the speed with which a page loads is not impacted by the precise content of images

that the page includes. Instead, only the image’s type (e.g., jpg or png) and size matters.

Therefore, for any image in the HTTP Archive data for which we are unable

to obtain a copy of its original size, we replace it with another image of the

same type and similar size. For every image type, we amass a pool of 200 image

replacement candidates as follows: for every half percentile in the distribution of all

image sizes in the HTTP Archive dataset, out of all images we downloaded, we pick

the image whose size most closely matches that value in the distribution. For every

image for which we lack content of the recorded size, we then replace it with that

image of the same type from our candidate pool which has the most similar size.

• After the previous two steps, we are missing less than 3% of resources on the median

site. However, missing content for iframes (i.e., HTML documents embedded in the

page) and JavaScript �les can have an outsized impact, because the browser would

fail to fetch all of the resources that it would discover after parsing/executing them.

If any of these unfetched child resources are iframes or JavaScripts, recursively other

descendants of the missing iframes and scripts will go unfetched.

Hence, for any of a page’s iframes or JavaScripts that aremissing or have changed,

73

0.0

0.2

0.4

0.6

0.8

1.0

−0.50 −0.25 0.00 0.25 0.50

Relative difference
C

D
F

 a
cr

os
s

w
eb

si
te

s

2016 − Resources
2019 − Resources
2016 − Bytes
2019 − Bytes

(a)

0.0

0.2

0.4

0.6

0.8

1.0

−0.10 −0.05 0.00 0.05 0.10
Request time relative difference

C
D

F
 a

cr
os

s
(s

ite
, r

eq
ue

st
 p

ai
r)

 tu
pl

es

Replay
HTTP Archive

(b)

Figure 5.6: Distribution of (a) the relative di�erence with respect to number of bytes and

resources between HTTP Archive dataset and our replay setup, (b) normalized di�erence

in fetch start times between every pair of consecutive requests seen in HTTP Archive

loads.

we carefully insert their descendants back into the page. First, we load every

page in our Mahimahi replay environment and identify the resources mentioned in

HTTP Archive’s records that go unfetched. For every frame on the page, we then in-

sert a script at the top of the frame’s HTML; this script uses the MutationObserver

API [37] to subscribe to changes to the page’s DOM. Based on the order in which re-

sources were requested in the HTTP Archive crawl, our script inserts a resource (which

would otherwise go unfetched) into the DOM when it learns that the resource prior to

it in the order is added to the DOM. Our script appends any resource to the <body>

section of that resource’s parent frame; the referer HTTP request header recorded in

the HTTP Archive data enables us to identify which frame every resource belongs to.

Sanity check. Whether our augmentation of the HTTP Archive data to make it amenable

74

to replay its page loads su�ces depends on two considerations: 1) do we preserve page

complexity?, and 2) do we preserve the relative ordering and timing of resource fetches?

We validate our setup on both fronts by replaying page loads using the network conditions

used in HTTP Archive’s crawls.

• Our replay setup largely preserves page complexity. Figure 5.6(a) shows that the

number of bytes and number of resources seen in our replay loads closely match those

in the original data. 80% of sites see a relative di�erence of no more than 20% in both

bytes and resources. To maximize con�dence in our subsequent correlation between

page complexity and performance, we focus our analysis in the rest of the chapter on

sites where the relative di�erence is no more than 20% for both complexity metrics.

• We also largely preserve the sequence and relative timings of resource fetches.

For each page load, given the order in which resources were requested in the HTTP

Archive crawl, we compute for every pair of consecutive requests the di�erence be-

tween the times at which their fetches were initiated. For landing pages in the July

2016 snapshot, Figure 5.6(b) plots the distribution across request pairs of this di�erence,

normalized by page load time. The distribution in our replay loads closely matches that

in the HTTP Archive data. We observe the same when replaying the 2019 snapshot

(not shown).

Note that, since our replay setup is missing the content for some JavaScripts, we make

no claims about preserving client-side computation in our page loads. Given our focus

on page complexity metrics impacted by network-based delays, this lack of �delity is

admissible.

5.4.2 Impact of Change in Complexity on Performance

Next, for every page, we correlate the change in complexity from 2016 to 2019 with the

change in loading performance. To isolate changes in performance that are solely due to

75

0.0
0.2
0.4
0.6
0.8
1.0

1Mbps
300ms

4Mbps
100ms

16Mbps
50ms

50Mbps
25ms

200Mbps
10ms

Network configuration
C

or
re

la
tio

n
co

ef
fic

ie
nt

Desktop − Bytes Desktop − Resources
Mobile − Bytes Mobile − Resources

(a)

0.0
0.2
0.4
0.6
0.8
1.0

1Mbps
300ms

4Mbps
100ms

16Mbps
50ms

50Mbps
25ms

200Mbps
10ms

Network configuration

C
or

re
la

tio
n

co
ef

fic
ie

nt

Desktop − Bytes Desktop − Resources
Mobile − Bytes Mobile − Resources

(b)

Figure 5.7: For two di�erent performance metrics – (a) page load time, and (b) Speed Index

– correlation between the change in complexity metrics and the change in performance.

changes in the page, we use our replay setup to load both the 2016 and 2019 versions of

every page in exactly the same client and network con�guration. We load pages using

Chrome v77 on a Ubuntu desktop with a quad-core processor with 16 GB of RAM. For

every page load, we con�gure our setup to apply both per-packet client-server delays and

server processing delays, both of which we extract from HTTP Archive’s data. We then

apply additional network shaping based on the kind of client network connection we aim

to mimic.

The correlation between the change in complexity and the change in perfor-

mance varies across network conditions. As listed in Figure 5.7, we vary network

conditions across a very constrained network (1Mbps, 300ms)—mimicking the lower end

of a 3G network [8], a moderately constrained network (16Mbps, 50ms)—mimicking a 4G

network [8], and a very fast network (200Mbps, 10ms)—mimicking a cable network [23].

76

1Mbps, 300ms 16Mbps, 50ms 200Mbps, 10ms

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

Corr Coeff: 0.424

−15

−10

−5

0

5

10

15

−100 −50 0 50 100

Change in number of resources

C
ha

ng
e

in
 lo

ad
 ti

m
e

(s
)

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

Corr Coeff: 0.419

−15

−10

−5

0

5

10

15

−100 −50 0 50 100

Change in number of resources

C
ha

ng
e

in
 lo

ad
 ti

m
e

(s
)

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

● ●●
● ● ●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

● ● ●

●

●● ●

●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

● ●

●●

●

● ●

●

● ●
●

●

●
●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

Corr Coeff: 0.478

−15

−10

−5

0

5

10

15

−100 −50 0 50 100

Change in number of resources

C
ha

ng
e

in
 lo

ad
 ti

m
e

(s
)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

Corr Coeff: 0.8

−15

−10

−5

0

5

10

15

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Change in number of bytes (MB)

C
ha

ng
e

in
 lo

ad
 ti

m
e

(s
)

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

Corr Coeff: 0.329

−15

−10

−5

0

5

10

15

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Change in number of bytes (MB)

C
ha

ng
e

in
 lo

ad
 ti

m
e

(s
)

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●● ●

●

● ● ●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●

● ●

●

●●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

Corr Coeff: 0.259

−15

−10

−5

0

5

10

15

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Change in number of bytes (MB)

C
ha

ng
e

in
 lo

ad
 ti

m
e

(s
)

Figure 5.8: Change in complexity and the change in page load time are strongly corre-

lated in a constrained network. The correlation becomes signi�cantly weaker when the

network is less constrained. The plots show the correlation for mobile landing pages, but

we see the same patterns for desktop landing pages.

Figure 5.7 shows that, in both the desktop and mobile settings, changes in the number

of bytes are strongly correlated with changes in page load time when the network is poor;

for a (1Mbps, 300ms) network, the Pearson’s correlation coe�cient is 0.82 for both desktop

and mobile landing pages. However, when the network is less constrained, the correlation

is signi�cantly weaker. With a (200Mbps, 10ms) network, the correlation between the

change in number of bytes and change in page load time drops to 0.29. These di�erences

in correlations are evident from the scatter plots in the bottom row of Figure 5.8.

When we look at the relationship between changes in the number of resources and

changes in load time (top row of Figure 5.8), the correlation is weak in all network condi-

tions. The same is true for the correlation between changes in Speed Index and changes

in either complexity metric in all network conditions (Figure 5.7(b)).

The weak correlations suggest that when websites add or remove content, the

change does not proportionately a�ect page load performance. In other words,

when pages become more complex over time, they do not necessarily slow down propor-

tionately. Similarly, pages which reduce in complexity do not experience a proportionate

speedup.

77

Setting Complexity Complexity ↑, but no Complexity ↓, but no
Metric proportionate PLT ↑ proportionate PLT ↓

Desktop

Resources 17/79 70/80

Bytes 34/78 66/78

Mobile

Resources 26/70 61/72

Bytes 29/70 58/70

Table 5.1: With a (16Mbps, 50ms) network, many of the websites with a substantial in-

crease in complexity do not see a proportionate degradation in page load times. Among

the sites with a substantial decrease in complexity, most do not see a proportionate

speedup. The denominator in each cell is the count of number of sites with substantial

increase/decrease in complexity.

To con�rm this interpretation of the weak correlations, we focus on those landing

pages which had a substantial change in their complexity from 2016 to 2019, i.e., pages

in the top 30% and bottom 30% of the distributions in Figure 5.1. Among these pages, we

identify ones that do not observe a change in page load time that is inline with the change

in complexity. Speci�cally, we identify pages where the relative di�erence in page load

time between the 2016 and 2019 versions of the page is less than 80% of the relative change

in complexity.

Table 5.1 shows the results of our analysis for the network which is in the middle of

the range we consider. The �ndings are largely the same for either complexity metric.

Among the sites where complexity of their landing page has signi�cantly increased

between 2016 and 2019, a signi�cant fraction do not see a commensurate slowdown. For

example, in the desktop setting, of the 78 sites with a substantial increase in number of

bytes, 34 (or 43%) do not see a proportional increase in page load time.

This non-intuitive relationship between change in complexity and page load times is

even more stark for sites where complexity of their landing pages substantially decreased.

No matter how you look at the data – desktop or mobile, number of requests or number

of bytes – an overwhelming majority of the sites with reduced complexity do not bene�t

from a proportionate decrease in page load time.

78

5.5 In-depth Analysis of Pages

Our results from Section 5.4 reveal many pages which observe a change in complexity over

time without the (expected) proportional change in page load performance. In this section,

we perform deep-dive experiments in order to uncover the origins of this counterintuitive

behavior. We focus primarily on settings with well-provisioned network resources, as

the above trends are most pronounced there; results are shown for the (16Mbps, 50ms)

con�guration, but the listed trends and takeaways also hold for the superior conditions

in Figure 5.7.

Approach. Our goal here is to elucidate the impact that each facet of page complexity

has on performance. One approach would be to perform this analysis using page load

time (as in Section 5.4), but this metric is not well-suited for our target analysis. The

reason is that page load time is a coarse metric that captures overall load performance,

bundling together the e�ects of all page load tasks, including those that do not relate to

(i.e., are not in�uenced by) the complexity factor at hand. Instead, we introduce a new set

of performance metrics that aim to explicitly capture the delays that are solely induced

by each complexity metric.

5.5.1 Network Latency

Recall that we capture the impact of network latency on page load performance by char-

acterizing a page’s complexity as the number of resources on the page. Section 5.4 showed

a weak correlation between changes in this complexity metric and page load time. Thus,

to dig deeper, we propose the following more-targetted metric.

Performance metric: connection setup time. Each resource in a page can elicit net-

work delays by triggering the establishment of a new network connection and requiring

round trips for request and response transmission. We focus our analysis on overheads

stemming from TCP connection setups (and TLS connection setups for HTTPS resources)

79

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

Corr Coeff: 0.239

−4

−2

0

2

4

−100 −50 0 50 100
Change in number of resources

C
ha

ng
e

in
co

nn
ec

tio
n

se
tu

p
tim

e
(s

) ● mobile

Figure 5.9: The correlation between the change in connection setup time and the change in

number of resources is weak, which suggests that not every added or removed resource

directly a�ects performance.

0.0

0.2

0.4

0.6

0.8

1.0

−100 −50 0 50 100

Change in metric

C
D

F
 a

cr
os

s
w

eb
si

te
s

Connection Setup
Resources

Figure 5.10: Distribution across websites of the change in number of resources is more

pronounced than changes in the number of connections setup. This shows reuse of con-

nections.

as request/response transmission delays can be in�uenced by factors unrelated to network

latency, e.g., server processing delays in serving a response. We de�ne our connection

setup time metric as “the amount of time in a page load during which at least one connec-

tion is being established”. Importantly, we do not measure total connection setup time

(i.e., summing the times across all established connections), as concurrent setups impose

a shared e�ect on incurred network delays.

The correlation between the change in the number of resources on a page and the

change in connection setup time is weak. Figure 5.9 illustrates the weak correlation

for our mobile pages: the correlation coe�cient is only 0.24. We observed a similarly

weak correlation for our desktop pages as well (0.39).

80

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Number of connections setup
C

D
F

 a
cr

os
s

w
eb

si
te

s

All adopt HTTP/2 Disable reuse
HTTP/1.1 only Status quo

Figure 5.11: Distribution across websites shows that enabling connection reuse even with-

out HTTP/2 yields signi�cant reduction in connections setup. Enabling HTTP/2 further

reduces the number of connection setups, but it is yet to reach the best case scenario.

Implication. The weak correlation suggests that there are pages that experience an

increase/decrease in number of resources, without a (proportional) increase/decrease in

connection setup time. We hypothesize that this is likely due to connections being reused,

whereby each request does not necessarily incur a connection setup delay.

To test our hypothesis, we compare the change in the number of resources from 2016 to

2019 to the corresponding change in the number of connection setups. Figure 5.10 shows

that these two properties change at very di�erent rates. For example, 20% of mobile pages

see an increase of more then 50 resources, and roughly 15% see a decrease of 50 resources

or more. In contrast, the fraction of sites with either 50 more or 50 fewer connection

setups is miniscule.

Enabling connection reuse. Digging deeper into the e�ects of connection reuse, we

observe that reuse decisions are largely dictated by the HTTP protocol and browser op-

eration. Broadly speaking, the HTTP/1.1 protocol enables connection reuse by default;

most modern browsers attempt to reuse established connections, and limit the number of

concurrent (open) connections per hostname [49]. The more recent HTTP/2 protocol [58]

alters this by permitting only a single connection per hostname; browsers can multiplex

requests onto each connection to enable even more reuse.

To understand the e�ects of each protocol on the above analysis, we compare the

81

number of established connections for mobile and desktop pages in 2019 across four sce-

narios. First, we use only HTTP/1.1 and entirely disable connection reuse by including

the Connection: close HTTP header in each response [13]; in this case, the number

of connections equals the number of resources on a page. Second, we enable HTTP/1.1’s

default connection reuse, while still not using HTTP/2. Third, we consider the status

quo, where HTTP/1.1 and HTTP/2 are intertwined according to origin server support.

Fourth, we mandate HTTP/2 for all origins; this establishes a lower bound on the number

of established connections, i.e., one per hostname.

Figure 5.11 shows that enabling HTTP/1.1 connection reuse yields the largest drop in

connection setup counts. Without reuse, browsers must incur more than 75 connection

setups at the median; this lowers to 24 when HTTP/1.1 connection reuse is enabled (a 66%

reduction). Further, we observe that the current state of the web, in which only a subset

of hostnames enable HTTP/2, marginally improves this number to 18, which is still 5

setups higher than a scenario where all hostnames adopt HTTP/2, i.e., one connection

per hostname.

Implication. Recall that in Section 5.4, we �nd that when a page observes an increase

in number of resources, page load performance does not always degrade proportionately,

but it does more often than not. However, when pages observe a decrease in resource

count, page load performance typically does not improve proportionately. Our �ndings in

this section, i.e., that connection reuse mitigates the e�ects that a resource has on incurred

network latencies, help characterize this behavior. In particular, pages that see an increase

in number of resources see a greater increase in number of connections, as compared to the

disproportionately small drop in number of established connections witnessed on pages

with decreasing resource counts.

A potential explanation for this trend is that, when pages add resources, they also in-

troduce new hostnames, but when pages remove resources, the corresponding hostnames

remain in the page as they still contribute other resources (that have not been removed).

82

0.0

0.2

0.4

0.6

0.8

1.0

−100 0 100 200

% Change in number of hostnames
C

D
F

 a
cr

os
s

w
eb

si
te

s

Resources Decreased
Resources Increased

Figure 5.12: For websites with substantial increase/decrease in number of resources, rel-

ative change in number of hostnames. When websites see an increase in the number of

resources, the magnitude of change in the number of hostnames is larger than that for

sites that see a decrease in the number of resources.

Figure 5.12 shows that pages that experience an increase in the number of resources see

a greater magnitude of change in number of hostnames. Pages that see a decrease in the

number of resources do see a drop in hostname counts, but the change is much less pro-

nounced. For example, 80% of the pages that see a decrease in the number of resources

see a reduction in hostnames of at most 50%. For comparison, only 50% of pages with

an increase in number of resources observe an increase in number of hostnames below

50%. From this, we conclude that when the number of resources decrease, the number

of hostnames fails to decrease proportionately, precluding the expected improvements in

overall load times.

5.5.2 Network Bandwidth

Next, we aim to perform a similar analysis (as in Section 5.5.1) in order to understand the

reason why many pages with a substantial change in the number of bytes do not see a

proportional change in performance.

PerformanceMetric: Network Index. Page bytes are associated with network bandwidth-

related delays (Section 5.2). As such, we seek a performance metric that captures only that

aspect of the overall page load performance. Page load time is not appropriate as it is sus-

ceptible to latency-based delays that are caused by small straggler requests towards the

83

●
●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●● ●

●

●
●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●

●

●

●

●

●

●

Corr Coeff: 0.378

−5.0

−2.5

0.0

2.5

5.0

−2 −1 0 1 2

Change in number of bytes (MB)
C

ha
ng

e
in

 N
et

w
or

k
In

de
x

(s
)

● mobile

Figure 5.13: Changes in the number of bytes are not highly correlated with changes in

Network Index.

end of a page load, e.g., single-pixel images used for ad or analytics services that involve

many redirections [70]. Instead, inspired by the Speed Index metric [44], we introduce a

new metric called Network Index that directly captures the e�ciency at which bytes are

delivered. More precisely, Network Index measures “the average time at which a page’s

bytes are fetched", and is de�ned as:

NetworkIndex =

∫ PLT

t=0

1−BytesCompleted(t) (5.1)

where

0 ≤ BytesCompleted(t) ≤ 1

The correlation between the change in number of page bytes and change in Net-

work Index is weak. Figure 5.13 illustrates the weak correlation for our mobile pages:

the Pearson’s correlation coe�cient is only 0.38. The weak correlation also holds for

desktop pages (coe�cient of 0.35).

Implication. The weak correlation suggests that there are pages that experience a de-

crease in bytes without proportional improvements in Network Index, and vice versa. We

hypothesize that the reason for these seemingly counterintuitive trends stem from the

84

●
●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●
●

● ●

●●

●

●

●
●

●

●

●
●

●
●●●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●●●

●
●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●●● ●

●

●

●

●

●

Corr Coeff: 0.741

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

Change in time spent fetching resources serially (s)
C

ha
ng

e
in

 N
et

w
or

k
In

de
x

(s
)

● mobile

Figure 5.14: Changes in the amount of time that there is at least one ongoing serial fetch

are highly correlated with changes in Network Index.

recursive nature of the page load process: not all bytes (and resources) are directly refer-

enced by a page’s HTML (and fetched without inter-object blocking delays [25]). Instead,

many resources can be fetched only after the fetch and evaluation of some other resource

on the page [75, 81]. Consequently, we assert that fetches of resources that cannot be

discovered directly from a page’s HTML �le (i.e., those that would be fetched later in the

page load) are the primary in�uencers of changes in Network Index. These fetches, which

we call “serial fetches", comprise of (1) requests made directly by JavaScript code, and (2)

requests that involve HTTP redirections, i.e., where a server redirects the fetch of one

resource to some other URL.

To test our hypothesis, we correlate the change in the time spent performing serial

fetches to the change in Network Index. Similar to the connection setup time from Sec-

tion 5.5.1, we compute the time spent performing serial fetches as “the amount of time in

a page load during which at least one serial fetch is in progress".

Figure 5.14 shows (for mobile pages) that the correlation between the change in time

spent performing serial fetches and the change in Network index is strong: the correla-

tion coe�cient is 0.74. This �nding also holds for desktop pages, where the correlation

coe�cient is 0.73.

The takeaway from these results is that, when serialization delays exist in a page, they

enable the addition of bytes without proportionately degrading performance. This is why

85

the change in a page’s Network Index is weakly correlated with the change in number

of bytes on the page, but is strongly correlated with the change in serialization-induced

delays.

This result is surprising as it goes against the recent �urry of web optimizations which

advocate for the removal of serialization in the page load process [75, 81, 60, 79]. Instead,

we �nd that such delays enable pages to evolve in complexity over time without taking a

performance hit. This �nding also clari�es the reverse trend: removal of page bytes may

not improve performance unless the removed bytes also eliminate serialization delays.

5.6 Recommendations and Evaluation

One of the goals of our longitudinal study is to extract actionable insights that 1) are rooted

in real changes that pages have made, and 2) enable web developers to strike their desired

balance between complexity and performance. In this section, we present an analysis and

methodology through which developers could act upon our �ndings from Section 5.5. We

focus our discussion on the takeaways from Section 5.5.2, and seek to assist developers of

pages that observe a drop in page bytes without a commensurate improvement in perfor-

mance. Recall that the main reason for this counterintuitive behavior is the presence of

serial fetches which can arise through JavaScript-induced requests or HTTP redirections;

we describe how to address each factor, in turn.

5.6.1 Characterizing Redirections

In an ideal case, we would remove all redirections present on a web page. However, do-

ing so automatically is challenging because redirections can be used for synchronizing a

user’s information between di�erent domains, both within the same administrative orga-

nization (e.g., Google Analytics and Doubleclick) and across organizations (e.g., Google

and Facebook) [55]; see Section 5.3.3 for how we extract the domain from any URL. We

86

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

Fraction of HTTP redirections
that are intra−domain

C
D

F
 a

cr
os

s
w

eb
si

te
s Desktop − 2016 Desktop − 2019

Mobile − 2016 Mobile − 2019

Figure 5.15: On most pages, HTTP redirections are typically within the same domain.

URL Component Initial URL Target URL
Scheme http://www.livescore.com/ https://www.livescore.com/

Hostname http://www.yohobuy.com/ http://m.yohobuy.com/

Path https://match.adsrvr.org/track/

cmf/generic

https://match.adsrvr.org/track/

cmb/generic

Filename https://luxor.mgmresorts.com/ https://luxor.mgmresorts.com/

en.html

Query Params http://www.acint.net/mc/?dp=

10

http://www.acint.net/mc/?dp=

10&tc=10

Table 5.2: Examples of how the URL changes within intra-domain redirections.

refer to such redirections as inter-domain redirections, and note that their removal would

require coordination between the associated domains to ensure that the functionality that

the redirect provided was removable or could be satis�ed in other ways.

Our goal in this section is to identify redirections that can be safely removed without

manual coordination. Given the challenges above, we shift our focus to intra-domain

redirections, i.e., redirections in which the initial and target URLs belong to the same

domain. As shown in Figure 5.15, on approximately half of the websites, more than 50% of

the redirections are within the same domain. Furthermore, on almost 40% of the websites,

all redirections are intra-domain.

At �rst glance, it appears that all intra-domain redirects can be eliminated without

any risk of altering page functionality since all information in the corresponding URLs

is being delivered to the same domain. However, further analysis reveals that such re-

movals require additional care and must consider precisely how the URLs change within

87

http://www.livescore.com/
https://www.livescore.com/
http://www.yohobuy.com/
http://m.yohobuy.com/
https://match.adsrvr.org/track/cmf/generic
https://match.adsrvr.org/track/cmf/generic
https://match.adsrvr.org/track/cmb/generic
https://match.adsrvr.org/track/cmb/generic
https://luxor.mgmresorts.com/
https://luxor.mgmresorts.com/en.html
https://luxor.mgmresorts.com/en.html
http://www.acint.net/mc/?dp=10
http://www.acint.net/mc/?dp=10
http://www.acint.net/mc/?dp=10&tc=10
http://www.acint.net/mc/?dp=10&tc=10

a redirect.

URLs comprise of �ve parts—a scheme (e.g., HTTP or HTTPS), hostname, path, �le-

name, and query string—and are structured as

scheme://hostname/path/filename?query. Intra-domain redirects can involve modi�-

cations to any subset of these �elds; Table 5.2 lists examples of each. Using this structure,

we classify intra-domain redirects as removable without manual coordination (or not)

according to the following rules:

• Redirects in which the path of the URL changes cannot be automatically removed. The

reason is that, while a path change can simply indicate a shift in the position of a re-

source on the server’s �le system, it could also be used to point API calls to di�erent

services within the same domain (requiring coordination), e.g., match.adsrvr.org/track/

cmf/generic and match.adsrvr.org/track/cmb/generic.

• Redirections which involve any combination of changes to scheme, hostname, or �le-

name can be removed. Recall that hostname is not the same as domain, e.g., www.

ilbe.com and m.ilbe.com belong to the same domain (ilbe.com), but represent di�erent

hostnames.

• Redirections with query string alterations can be removed if the hostname and path

remain �xed. Since URLs with the same hostname and path likely correspond to the

same service, the query string included in the target URL is generated from this common

service’s server-side state.

Figure 5.16 shows the breakdown of the URL components that changes between intra-

domain redirection pairs. Almost 50% of the intra-domain redirections can be removed

without coordination between parties. In both years, redirections with only query param-

eters changing contributes signi�cantly to the number of intra-domain redirects. In fact,

the fraction of redirects with query only changing increases by 5.5 percentage points.

We note that these classi�cations represent a conservative approach, even for the au-

tomatic removal of intra-domain redirections; further coordination across services within

88

match.adsrvr.org/track/cmf/generic
match.adsrvr.org/track/cmf/generic
match.adsrvr.org/track/cmb/generic
www.ilbe.com
www.ilbe.com
m.ilbe.com

2016

2019

0.00 0.25 0.50 0.75 1.00

Fraction of Intra−domain Redirection Pairs
Ye

ar

Scheme
Host

Host & Scheme
Filename

Query
Unremoveable

Figure 5.16: Breakdown of the URL component that changes within intra-domain redirec-

tions.

a domain could bring additional removal opportunities.

Approaches to removing redirections. At a high-level, we can think of removing

redirects from two perspectives. First, for redirects that observe changes only to the query

parameters, we argue that the information being passed through the redirection is already

present at the server. Thus, we think that web servers should be able to eliminate such

redirections by having the server respond to a request for the initial URL with the response

it would return for the target URL.

For the remaining redirects that only involve changes to scheme, hostname, and �le-

name, we envision enabling clients to skip such redirections by caching them. There

already exist approaches that allow the client to directly request for HTTPS resources

using HTTP Strict Transport Security (HSTS) [47]; a domain can use HSTS to inform the

client browser that it should always make an HTTPS request when requesting a resource

from that domain. Inspired by HSTS, we propose that HTTP response headers could also

be used to eliminate hostname redirections.

For example, today, when a server receives a request for a URL such as www.yohobuy.

com from a mobile device and responds with a redirection to m.yohobuy.com, this redi-

rection is speci�c to this particular URL. So, even if the server marked its redirection

response as cacheable, the client would again incur the redirection overhead when it is-

sues a request for a di�erent URL on the same hostname, e.g., www.yohobuy.com/lifestyle

89

www.yohobuy.com
www.yohobuy.com
m.yohobuy.com
www.yohobuy.com/lifestyle

Site: https://nationalgeographic.com/ (108 images fetched from JS)

• Example of image fetched via JS: https://nationalgeographic.com/.../tv/drk_400x600.jpg

• Intent: These images represent the latest shows on National Geographic, which

requires up-to-date data from the server.

Site: https://www.foxnews.com/ (45 scripts fetched from JS)

• Example of script fetched via JS:
https://global.fncstatic.com/static/isa/core-app.js?v=v26

• Intent: The site uses JavaScript to determine whether the served page is a “testing"

page and serves scripts according to those conditions.

Figure 5.17: Examples of JavaScript-induced fetches.

redirecting to m.yohobuy.com/lifestyle.

We propose that web servers can instead indicate in the HTTP headers of their hostname-

only redirections that this change in hostnames is valid for this client independent of the

rest of the URL. Depending on the richness of the policy, the server’s response could

indicate the set of URLs (e.g., in the form of a set of regular expressions) for which this

hostname-only redirection can be reused and for how long this redirection policy is cacheable.

5.6.2 Characterizing JavaScript-Induced Fetches

In order to determine how to eliminate JavaScript-induced fetches, we must �rst under-

stand their operation and what functionality web pages use them for. To that end, Fig-

ure 5.17 presents a couple of representative examples, focusing on the two most common

resource types fetched via JavaScript: images (44%) and other JavaScript �les (28%). As

shown in these examples, JavaScript-based fetches primarily enable pages to “dynami-

cally" determine the precise URL to fetch depending on current state (client-side or server-

side), e.g., the list of latest shows stored at the National Geographic server described in

Figure 5.17.

In order to eliminate JavaScript-induced fetches, we advocate for web servers to di-

rectly embed the corresponding URLs into HTML tags prior to serving the main HTML

90

m.yohobuy.com/lifestyle

to a client. However, we note that the location of the state that JavaScript-induced fetches

rely on must be considered when applying this optimization. In particular, whereas servers

are aware of the local (server-side) state that may a�ect the precise URLs to load, they are

not aware of client-side state that may be considered by the JavaScript �le. Thus, in order

to be conservative and eliminate the risk of altering page functionality or breaking pages,

we add the following criteria: only JavaScript-induced fetches that persist across loads

of a page should be inlined as HTML tags, as these resources are unlikely to depend on

client-side state or nondeterminism (e.g., time of day). We observe that 75% and 50% of

the JavaScript-induced fetches for our pages persist across back-to-back loads and across

loads separated by two weeks, respectively.

5.6.3 Evaluation: Automated Removal of Serial Fetches

We applied the aforementioned optimizations to our desktop and mobile pages that counter-

intuitively (and undesirably) did not bene�t from a proportionate speedup when the num-

ber of bytes on them was reduced (Table 5.1). To eliminate JavaScript-induced fetches, we

listed the corresponding resources in HTTP Link preload tags (i.e., <link rel="preload">) [40]

that were added to the beginning of the <head> section of the main HTML for a page. Re-

sources listed in these headers are fetched immediately after header parsing; note that we

did not alter JavaScript �les, and instead let the corresponding JavaScript-induced fetches

simply hit the local browser cache (which was already populated from the preloads of

those resources). For HTTP redirects, we altered our replay setup to return 200 OK re-

sponses to the �rst request in a sequence of redirects that we deemed could be automati-

cally skipped.

These alterations enable additional pages to experience the desired (expected) perfor-

mance improvements resulting from their reduction in bytes. For example, 8 more mobile

pages experience this expected behavior, where the median site witnesses a 320ms im-

provement in page load time. We note that these results re�ect only conservative modi�-

91

cations to pages in order to act upon our �ndings in Section 5.5; indeed, more rewarding

alterations could be made to further improve performance by considering alterations that

a�ect page functionality, e.g., handling inter-domain redirects.

5.7 Summary

Prior studies on the relationship between web page complexity and performance have fo-

cused on studying a corpus of pages gathered at a particular point in time. In this chapter,

we highlighted the challenges and utility of instead viewing this relationship from a longi-

tudinal perspective. On the one hand, we showed that studying how page complexity and

page load performance have evolved over time requires careful aggregation of data from

multiple data sources. On the other hand, we found that a longitudinal analysis reveals

new implications of prior �ndings, namely that ine�ciencies in page loads, speci�cally

the use of serial fetches, can prove to be bene�cial in the long-term. We hope that our

work will spur future e�orts to examine the evolution of the web and the corresponding

implications.

92

CHAPTER 6

Conclusion

6.1 Thesis Contributions

In this dissertation, I support the following thesis statement: client-side CPU and network

often go underutilized inweb page loads; this underutilization can be reduced to speed up page

loads or leveraged to add content to pages without any performance penalty. Speci�cally, this

dissertation makes the following contributions.

Rendering optimizations to CASPR. CASPR is a solution by Google Chrome’s Data

Saver proxy that moves the execution of JavaScripts from the client to the cloud. When

the proxy loads a web page on behalf of clients and constructs a snapshot of the web page,

which is highly optimized for users with poor network conditions and slow devices. My

contribution lies primarily in identifying and �xing bottlenecks in rendering web page

snapshots. Speci�cally, I implemented progressive rendering in CASPR, allowing users to

see progress during the page load. I also optimize the delivery of CSS for CASPR snap-

shots. Both optimizations lead to an improvement of more than 80% in the �rst-contentful

paint metric.

A rethink of the end-to-end process of loading web pages. While CASPR is able

to substantially speed up the loads of web pages, it still su�ers the drawbacks of a proxy-

based solution; users have to trust that proxies preserve the integrity of HTTPS resources

and have to share cookies with the proxies to appropriately handle personalized content.

93

Next, I developed Vroom, a solution that improves client-side CPU and network utiliza-

tion while preserving the end-to-end nature of web page loads. Vroom decouples the

dependencies between resources on a page by having web servers identify and inform

any client about dependent resources it would need in addition to any resource that it re-

quests. Further, it includes a scheduler that appropriately prioritizes the fetches of hinted

dependencies. Combining the hinted dependencies with the scheduler, Vroom improves

the median load time by 50

Longitudinal study Finally, I conducted a longitudinal study of how the complexity of

web pages has changed over time and what e�ects did the changes have on performance.

I found that performance does not always change proportionally to the change in com-

plexity (e.g., complexity increased, but performance did not proportionally degrade). For

example, I found that fetches of resources that happen serially (i.e., fetches of JavaScripts

and HTTP redirections) are the primary cause of the disproportionate impact of complex-

ity changes on performance, allowing websites to add additional content and functionality

without degrading performance.

6.2 Future Work

While the web is an ever changing ecosystem with new technologies constantly being

introduced to improve the status quo, achieving substantial speed up in page loads is

challenging without fundamental changes to how web page loads work. With the exis-

tence of the coupling of network and CPU usage, I believe that the solutions presented in

this dissertation will still be applicable in the future. Further, improvements to the net-

work or CPU usage, such as the standardization of QUIC, are still important as they will

complement the solutions presented. For the remainder of this section, I outline potential

future research areas that are motivated by some limitations of this dissertation.

Approximating bene�ts of web optimization techniques. Almost all of the evalua-

94

tions in this dissertation were done in a lab setting. However, given the variety of user de-

vices and network con�gurations in the wild, the improvement in page load performance

when deployed in production may di�er depending on a user’s device and network.

To allow developers to better reason whether an optimization approach is worth pur-

suing, I think that a fruitful research avenue would be a system that allows web per-

formance researchers and engineers to estimate the bene�ts of an envisioned optimiza-

tion without actually implementing it. It should allow developers to swiftly estimate the

change in load times in numerous client device and network con�guration combinations.

This research direction would be extremely useful as it helps researchers and engineers

to better reason about the e�ort versus bene�t trade-o�.

Ensuring correctness of web optimization techniques. There are numerous so-

lutions which speed up web page loads by transforming web pages into a more perfor-

mant format. In an ideal world, after applying any page load optimizations, the �nal state

of the page should be equivalent to its unmodi�ed counterpart (e.g., the �nal DOM and

JavaScript heap should be identical between the optimized and unmodi�ed versions of the

web page). To my knowledge, there is not any work with regards to checking the correct-

ness of the optimized web pages. Given the abundance of web optimization techniques, I

argue that exploring the notion of correctness of web pages is also equivalently important

to ensure that the optimization techniques do not degrade user experience on the web.

6.3 Summary

In this dissertation, I describe CASPR, Vroom, and a longitudinal study of web pages to

identify key approaches to better utilize client-side CPU and network during web page

loads. However, these approaches also have trade-o�s among them, for example, an end-

to-end modi�cation of page loads requires change to the web server infrastructure, which

can be challenging to website owners. I hope that this dissertation can guide stakeholders

95

in the web ecosystem, such as website owners, proxy operators, etc., through navigat-

ing the trade-o�s associated with di�erent web optimizations and allow them to deploy

websites that e�ectively utilize the client-side CPU and network.

96

Bibliography

[1] 10 Ways on How to Monetize a Website. https://www.hostinger.com/tutorials/

how-to-monetize-a-website/.

[2] Accelerated mobile pages project. https://www.ampproject.org/.

[3] Alexa - Top Sites. https://www.alexa.com/topsites.

[4] Alexa top 1,000,000 sites. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.

[5] Amazon Found Every 100ms of Latency Cost them

1% in Sales. https://www.gigaspaces.com/blog/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/.

[6] Amazon Silk. https://docs.aws.amazon.com/silk/latest/developerguide/introduction.

html.

[7] Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/.

[8] Brief History of the G’s. https://hpbn.co/mobile-networks/#brief-history-of-the-gs.

[9] Caching | 2019 | the web almanac by http archive. https://almanac.httparchive.org/

en/2019/caching.

[10] Chrome DevTools. https://developers.google.com/web/tools/chrome-devtools.

[11] Chrome User Experience Report. https://developers.google.com/web/tools/

chrome-user-experience-report.

[12] The Chromium blog: Experimenting with QUIC. http://blog.chromium.org/2013/06/

experimenting-with-quic.html.

[13] Connection. https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/

Connection.

[14] Data on third party entities and their impact on the web.

https://www.thirdpartyweb.today/. https://github.com/patrickhulce/

third-party-web.

[15] Find out how you stack up to new industry benchmarks for mobile page speed. https:

//www.thinkwithgoogle.com/data/mobile-page-speed-new-industry-benchmark/.

97

https://www.hostinger.com/tutorials/how-to-monetize-a-website/
https://www.hostinger.com/tutorials/how-to-monetize-a-website/
https://www.ampproject.org/
https://www.alexa.com/topsites
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
http://www.crummy.com/software/BeautifulSoup/
https://hpbn.co/mobile-networks/#brief-history-of-the-gs
https://almanac.httparchive.org/en/2019/caching
https://almanac.httparchive.org/en/2019/caching
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
http://blog.chromium.org/2013/06/experimenting-with-quic.html
http://blog.chromium.org/2013/06/experimenting-with-quic.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Connection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Connection
https://github.com/patrickhulce/third-party-web
https://github.com/patrickhulce/third-party-web
https://www.thinkwithgoogle.com/data/mobile-page-speed-new-industry-benchmark/
https://www.thinkwithgoogle.com/data/mobile-page-speed-new-industry-benchmark/

[16] Find out how you stack up to new industry benchmarks for mobile page

speed. https://developers.google.com/web/fundamentals/performance/

why-performance-matters/.

[17] Firefox DevTools. https://developer.mozilla.org/en-US/docs/Tools.

[18] First Contentful Paint. https://w3c.github.io/paint-timing/#�rst-contentful-paint.

[19] First CPU Idle. https://web.dev/�rst-cpu-idle/.

[20] Google developers - simulate mobile devices with device mode. https://developers.

google.com/web/tools/chrome-devtools/iterate/device-mode/.

[21] Google page speed. https://developers.google.com/speed/pagespeed/.

[22] H2O - the optimized HTTP/2 server. https://h2o.examp1e.net/con�gure/http2_

directives.html#http2-casper.

[23] How fast is Fiber Optic Internet?

[24] How One Second Could Cost Amazon $1.6 Billion In Sales. https://www.

fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales.

[25] How the browser pre-loader makes pages load faster. https://andydavies.me/blog/

2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/.

[26] HTTP archive. http://httparchive.org/.

[27] HTTP archive project. https://httparchive.org/.

[28] HTTP archive speci�cation. http://groups.google.com/group/

http-archive-speci�cation/web/har-1-1-spec?hl=en.

[29] HTTPS adoption *doubled* this year. https://snyk.io/blog/https-breaking-through/.

[30] Hypertext transfer protocol version 2. https://http2.github.io/http2-spec/.

[31] Hypertext Transfer Protocol Version 2 (HTTP/2): Server Push. https://tools.ietf.org/

html/rfc7540#section-8.2.

[32] Internet Archive Wayback Machine. https://archive.org/.

[33] Largest Contentful Paint. https://web.dev/lcp/.

[34] Latency is everywhere and it costs you sales - how to crush it. http://highscalability.

com/latency-everywhere-and-it-costs-you-sales-how-crush-it.

[35] Lighthouse. https://developers.google.com/web/tools/lighthouse.

[36] Mobile-Friendly vs Mobile-Optimization vs Responsive Design for Websites. http:

//torspark.com/mobile-friendly-vs-mobile-optimized-vs-responsive-design/.

98

https://developers.google.com/web/fundamentals/performance/why-performance-matters/
https://developers.google.com/web/fundamentals/performance/why-performance-matters/
https://developer.mozilla.org/en-US/docs/Tools
https://w3c.github.io/paint-timing/#first-contentful-paint
https://web.dev/first-cpu-idle/
https://developers.google.com/web/tools/chrome-devtools/iterate/device-mode/
https://developers.google.com/web/tools/chrome-devtools/iterate/device-mode/
https://developers.google.com/speed/pagespeed/
https://h2o.examp1e.net/configure/http2_directives.html#http2-casper
https://h2o.examp1e.net/configure/http2_directives.html#http2-casper
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/
https://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/
http://httparchive.org/
https://httparchive.org/
http://groups.google.com/group/http-archive-specification/web/har-1-1-spec?hl=en
http://groups.google.com/group/http-archive-specification/web/har-1-1-spec?hl=en
https://snyk.io/blog/https-breaking-through/
https://http2.github.io/http2-spec/
https://tools.ietf.org/html/rfc7540#section-8.2
https://tools.ietf.org/html/rfc7540#section-8.2
https://archive.org/
https://web.dev/lcp/
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://developers.google.com/web/tools/lighthouse
http://torspark.com/mobile-friendly-vs-mobile-optimized-vs-responsive-design/
http://torspark.com/mobile-friendly-vs-mobile-optimized-vs-responsive-design/

[37] Mutationobserver. https://developer.mozilla.org/en-US/docs/Web/API/

MutationObserver.

[38] nghttpx - HTTP/2 proxy. https://nghttp2.org/documentation/nghttpx-howto.html.

[39] Opera Mini. https://www.opera.com/mobile/mini.

[40] Preload. https://www.w3.org/TR/preload/.

[41] Public Su�x List. https://publicsu�x.org/.

[42] Remove Render-Blocking Javascript. https://developers.google.com/speed/docs/

insights/BlockingJS.

[43] Responsive images. https://developer.mozilla.org/en-US/docs/Learn/HTML/

Multimedia_and_embedding/Responsive_images.

[44] Speed Index. https://developers.google.com/web/tools/lighthouse/audits/

speed-index.

[45] StatCounter global stats. http://gs.statcounter.com/#desktop+mobile+

tablet-comparison-ww-monthly-201309-201408.

[46] State of the mobile network: India (april 2018).

[47] Strict-Transport-Security. https://developer.mozilla.org/en-US/docs/Web/HTTP/

Headers/Strict-Transport-Security.

[48] Time to Interactive. https://developers.google.com/web/tools/lighthouse/audits/

time-to-interactive.

[49] Using Multiple TCP Connections. https://hpbn.co/http1x/

#using-multiple-tcp-connections.

[50] visualmetrics. https://github.com/WPO-Foundation/visualmetrics.

[51] Web Personalization. https://developers.marketo.com/javascript-api/

web-personalization/.

[52] Web Vitals. https://web.dev/vitals/.

[53] Webpagetest project. https://www.webpagetest.org/.

[54] What changes have been made to the test environment

that might a�ect the data? https://httparchive.org/faq#

what-changes-have-been-made-to-the-test-environment-that-might-a�ect-the-data.

[55] What is Cookie Syncing and How Does it Work? https://clearcode.cc/blog/

cookie-syncing/.

99

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://nghttp2.org/documentation/nghttpx-howto.html
https://www.opera.com/mobile/mini
https://www.w3.org/TR/preload/
https://publicsuffix.org/
https://developers.google.com/speed/docs/insights/BlockingJS
https://developers.google.com/speed/docs/insights/BlockingJS
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://developers.google.com/web/tools/lighthouse/audits/speed-index
https://developers.google.com/web/tools/lighthouse/audits/speed-index
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201309-201408
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201309-201408
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developers.google.com/web/tools/lighthouse/audits/time-to-interactive
https://developers.google.com/web/tools/lighthouse/audits/time-to-interactive
https://hpbn.co/http1x/#using-multiple-tcp-connections
https://hpbn.co/http1x/#using-multiple-tcp-connections
https://github.com/WPO-Foundation/visualmetrics
https://developers.marketo.com/javascript-api/web-personalization/
https://developers.marketo.com/javascript-api/web-personalization/
https://web.dev/vitals/
https://www.webpagetest.org/
https://httparchive.org/faq#what-changes-have-been-made-to-the-test-environment-that-might-affect-the-data
https://httparchive.org/faq#what-changes-have-been-made-to-the-test-environment-that-might-affect-the-data
https://clearcode.cc/blog/cookie-syncing/
https://clearcode.cc/blog/cookie-syncing/

[56] wptagent. https://github.com/WPO-Foundation/wptagent/blob/master/internal/

desktop_browser.py#L334.

[57] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein, S. McDaniel,

M. Piatek, C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s data compression

proxy for the mobile web. In Proceedings of the 12th USENIX Symposium onNetworked
Systems Design and Implementation, 2015.

[58] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version 2. http:

//httpwg.org/specs/rfc7540.html, 2015.

[59] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Understanding website complexity:

Measurements, metrics, and implications. In Proceedings of the 11th ACM SIGCOMM
Conference on Internet Measurement Conference, 2011.

[60] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar. Klotski: Repriori-

tizing web content to improve user experience on mobile devices. In Proceedings of
the 12th USENIX Symposium on Networked Systems Design and Implementation, 2015.

[61] A. Chakraborty, V. Navda, V. N. Padmanabhan, and R. Ramjee. Coordinating cellular

background transfers using LoadSense. In Proceedings of the 19th Annual Interna-
tional Conference on Mobile Computing & Networking, 2013.

[62] J. L. Contreras and R. Lakshane. Patents and mobile devices in india: An empirical

survey. Vanderblit Journal of Transactional Law, 2017.

[63] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubramanian, S. R. Das, and M. Fer-

dman. Impact of device performance on mobile internet qoe. In Proceedings of the
18th ACM SIGCOMM Conference on Internet Measurement Conference, 2018.

[64] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measurement

and analysis. In Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[65] T. Everts. Rules for mobile performance optimization. ACM Queue, 11(6), 2013.

[66] D. F. Galletta, R. Henry, S. McCoy, and P. Polak. Web site delays: How tolerant are

users? Journal of the Association for Information Systems, 5(1):1–28, 2004.

[67] Goran Candrlic. What is Above The Fold Time and What to Do With It. https:

//www.globaldots.com/fold-time/.

[68] igrigorik. Analyzing HTML, CSS, and javascript response bodies. https://discuss.

httparchive.org/t/analyzing-html-css-and-javascript-response-bodies/442.

[69] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das. Improving user perceived page

load times using gaze. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation, 2017.

100

https://github.com/WPO-Foundation/wptagent/blob/master/internal/desktop_browser.py#L334
https://github.com/WPO-Foundation/wptagent/blob/master/internal/desktop_browser.py#L334
http://httpwg.org/specs/rfc7540.html
http://httpwg.org/specs/rfc7540.html
https://www.globaldots.com/fold-time/
https://www.globaldots.com/fold-time/
https://discuss.httparchive.org/t/analyzing-html-css-and-javascript-response-bodies/442
https://discuss.httparchive.org/t/analyzing-html-css-and-javascript-response-bodies/442

[70] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A. Halderman, and M. Bailey.

Security challenges in an increasingly tangled web. In Proceedings of the World Wide
Web Conference, 2017.

[71] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. Internet jones and the raiders

of the lost trackers: An archaeological study of web tracking from 1996 to 2016. In

Proceedings of the 25th USENIX Security Symposium (USENIX Security, 2016.

[72] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, K. Papagiannaki,

and P. Steenkiste. The cost of the "S" in HTTPS. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Technologies,
2014.

[73] A. Nazir, S. Raza, D. Gupta, C.-N. Chuah, and B. Krishnamurthy. Network level

footprints of Facebook applications. In Proceedings of the ACM SIGCOMMConference
on Internet Measurement Conference, 2009.

[74] J. Nejati and A. Balasubramanian. An in-depth study of mobile browser performance.

In Proceedings of the World Wide Web Conference, 2016.

[75] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan. Polaris: Faster page loads

using �ne-grained dependency tracking. In Proceedings of 12th USENIX Symposium
on Networked Systems Design and Implementation, 2016.

[76] R. Netravali and J. Mickens. Prophecy: Accelerating mobile page loads using �nal-

state write logs. In Proceedings of the 15th USENIX Symposium on Networked Systems
Design and Implementation, 2018.

[77] R. Netravali, V. Nathan, J. Mickens, and H. Balakrishnan. Vesper: Measuring time-

to-interactivity for web pages. In Proceedings of the 15th USENIX Symposium on
Networked Systems Design and Implementation, 2018.

[78] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and H. Bal-

akrishnan. Mahimahi: Accurate Record-and-Replay for HTTP. In Proceedings of the
USENIX Annual Technical Conference, 2015.

[79] R. Netravali, A. Sivaraman, J. Mickens, and H. Balakrishnan. Watchtower: Fast,

secure mobile page loads using remote dependency resolution. In Proceedings of the
17th Annual International Conference on Mobile Systems, Applications, and Services,
2019.

[80] G. Podjarny, T. Kadlec, M. McCall, Y. Weiss, N. Doyle, and C. Bendell. High Perfor-
mance Images. O’Reilly Media, 2016.

[81] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V. Madhyastha. Vroom: Accel-

erating the mobile web with server-aided dependency resolution. In Proceedings of
the ACM SIGCOMM Conference, 2017.

101

[82] A. Sivakumar, S. P. N., V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen. PARCEL: Proxy

assisted browsing in cellular networks for energy and latency reduction. In Proceed-
ings of the 10th ACM International on Conference on EmergingNetworking Experiments
and Technologies, 2014.

[83] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. Demystifying

page load performance with WProf. In Proceedings of 12th USENIX Symposium on
Networked Systems Design and Implementation, 2013.

[84] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. How speedy

is SPDY? In NSDI, 2014.

[85] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speeding up web page loads with

Shandian. In Proceedings of the 13th USENIX Symposium onNetworked Systems Design
and Implementation, 2016.

102

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Why are web pages slow to load?
	Speeding Up Web Page Loads
	Thesis and Contributions
	Organization

	Background and Related Work
	Background
	Related Work
	Measuring the Complexity of Web Pages
	Measuring the Performance of Web Page Loads
	Optimizing Web Page Load Performance

	CASPR: Enabling Cloud-Assisted Web Page Loads at Scale
	Overview
	CASPR Implementation
	Streaming DOM Updates
	Inlining CSS and Removing Unused CSS Rules

	CASPR Evaluation
	Summary

	Vroom: Accelerating the Mobile Web with Server-Aided Dependency Resolution
	Overview
	Approach
	Limitations of HTTP/2 PUSH
	Combining PUSH with Dependency Hints

	Design
	Server-side Dependency Resolution
	Strawmans for resource discovery
	Our solution: offline + online discovery

	Accounting for Personalization
	Cooperative Request Scheduling

	Implementation
	Server-aided Resource Discovery
	Scheduling Requests with JavaScript

	Evaluation
	Impact on Client Performance
	Accuracy of Server-side Dependency Resolution

	Discussion
	Summary

	Taking the Long View: The Relationship Between Page Complexity and Performance
	Overview
	Dataset and Metrics
	Dataset
	Complexity Metrics

	Characterizing Changes in Page Complexity
	Change in Complexity Over Time
	Characterizing Content by Resource Type
	Characterizing Content by Service Type

	Relationship Between Complexity and Performance
	Page Load Replay Testbed
	Impact of Change in Complexity on Performance

	In-depth Analysis of Pages
	Network Latency
	Network Bandwidth

	Recommendations and Evaluation
	Characterizing Redirections
	Characterizing JavaScript-Induced Fetches
	Evaluation: Automated Removal of Serial Fetches

	Summary

	Conclusion
	Thesis Contributions
	Future Work
	Summary

	Bibliography

