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ABSTRACT

Network data, which represent relations or interactions between individual entities,

together with nodal covariates information, arise in many scientific and engineering

fields such as biology and social science. This dissertation focuses on developing sta-

tistical models and theory that utilize information from both the network structure

and node covariates to improve statistical learning tasks, such as community detec-

tion and missing value imputation.

The first project studies the problem of community detection for degree-heterogeneous

networks with covariates, where we aim to cluster the nodes into groups that share

similar patterns in link connectivity and/or covariates distribution. We consider in-

corporating node covariates via a flexible degree-corrected block model by allowing

the community memberships to depend on node covariates, while the link probabil-

ities are determined by both node community memberships and degree parameters.

We develop two algorithms, one using the variational inference and the other based on

the pseudo-likelihood for estimating the proposed model. Simulation studies indicate

that the proposed model can obtain better community detection results compared

to methods that only utilize the network information. Further, we show that under

mild conditions, the community memberships and the covariate parameters can be

estimated consistently.

The second project considers the problem of missing value imputation when indi-

viduals are linked through a network. We assume the edges in the network are

viii



related with the distances in the covariates of the individuals through a latent space

network model. We propose an iterative imputation algorithm that is flexible and

utilizes both the correlation among node variables and the connectivity between ob-

servations given by the network. We relate the proposed method to a Bayesian model

and discuss the convergence of the imputation distribution when the specified condi-

tional models for imputation are compatible with the true underlying model of the

covariates. We also use simulation studies and a data example to illustrate empirically

that the imputation accuracy can be improved by incorporating network information.

The final contribution of this dissertation is on incorporating covariates under the

edge exchangeable framework. Edge exchangeable models have attractive theoretical

and practical properties which make them appropriate for modeling many sparse real-

world interaction networks constructed through edge sampling mechanisms. However,

as far as we know, there is no edge exchangeable network model that allows for node

covariates. In the third project, we propose a model that incorporates node covariates

under the edge exchangeable model framework and show that it enjoys properties such

as sparsity, and partial exchangeability. We further develop a maximum likelihood es-

timation method to estimate the model parameters and demonstrate its performance

through both simulation studies and a data example.
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CHAPTER I

Introduction

Network data arise naturally in many areas nowadays due to the advances in technol-

ogy. In these network data, researchers use edges to represent relations or interactions

between entities represented by nodes. Examples include but not limited to social

networks where nodes are individual persons and edges are relations like friendships,

biological networks where nodes are proteins and edges are their interactions, and etc

(Karrer and Newman, 2011). Many works in the past decades have built up various

tools for analyzing the structures or the development of the networks and have dif-

ferent focuses.

On analyzing the structure of a network, community detection is one of the most

important questions that was widely studied. Community detection aims to cluster

the nodes in the networks into communities with similar connectivity patterns (For-

tunato, 2010). The study of community structures in network can be dated back to

Zachary (1977) with empirical observations that real-world networks typically showed

a pattern that nodes form groups with more connections within the same group than

between groups. Many statistical models have been established to understand and

uncover the community structure, among which the stochastic blockmodel (Holland

et al., 1983) and its extensions, including the mixed membership stochastic blockmod-
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els (Airoldi et al., 2008) and the degree corrected stochastic blockmodels (Karrer and

Newman, 2011) are the most popular ones. Model free methods based on modularity

criteria (Newman, 2006), spectral methods (Rohe et al., 2011; Qin and Rohe, 2013;

White and Smyth, 2005), and other methods (Veldt et al., 2018; Zhao et al., 2011;

Wang et al., 2011; Amini and Levina, 2014) are also available. Theoretical guaran-

tees of community detection has also been established for various models based on

stochastic blockmodels and various methods (Zhao et al., 2012; Bickel et al., 2013;

Celisse et al., 2012; Lei et al., 2015). Another set of literature that focus on explaining

the network structure assume that the nodes of the networks live in a low dimensional

euclidean space. This includes the latent space models (Hoff et al., 2002; Hoff , 2005),

and the random dot product graph model (Young and Scheinerman, 2007). These

models have the potential to explain some higher order characteristics in networks

like abundance of triangles, which is not captured in stochastic blockmodels (Hoff ,

2005). And the random dot product graph shows nice limiting properties (Athreya

et al., 2016). More details of the models can be seen in the survey paper by Athreya

et al. (2017).

Other than focusing on the structure of a snapshot of the network, researchers

also showed interests in understanding the mechanisms for how the networks are

evolved over time, and also in explaining some commonly observed characteristics

in real-world networks. Specifically, the sparse network phenomenon and the power-

law degree distribution are of attention (Barabási and Albert , 1999; Leskovec et al.,

2008). The sparse network and power-law degree distributions are related to the

study of preferential attachment models (Newman, 2001; Wan et al., 2017; Vázquez ,

2003; Jeong et al., 2003), and are important factors that initiates the study of edge-

exchangeable models (Crane and Dempsey , 2018; Cai et al., 2016). On the exchange-

ability structure of network models, most of the literature have been focusing on node
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exchangeable models including random dot product graph (Young and Scheinerman,

2007), stochastic blockmodels (Holland et al., 1983), and graphon models (Wolfe and

Olhede, 2013; Choi et al., 2014). The edge changeable framework developed in Crane

and Dempsey (2018); Cai et al. (2016) has been attracting the attention of researcher

due to its nice limiting properties mentioned above and interpretation in terms of

sampling. Specifically, edge exchangeable framework is natural in the case where the

network data is collected by directly sampling edges instead of sampling the nodes.

Along with the network, often the traditional covariates information are also col-

lected on each node, such as the characteristics of each person in a social network

(Leskovec and Mcauley , 2012; Van de Bunt et al., 1999). These covariates may contain

information that are related to the network structures. For example, the nodes that

are connected in a social network may have similar covariates, which is known as the

homophily phenomenon (McPherson et al., 2001; Fujimoto and Valente, 2012; Chris-

takis and Fowler , 2007). Thus, such information can be very helpful in understanding

the network structures of interest. Some models and methods that incorporate the

covariates information to assist community detection have been developed in the lit-

erature, see for example (Newman and Clauset , 2016; Xu et al., 2012; Yang et al.,

2013; Binkiewicz et al., 2014; Weng and Feng , 2016). In more traditional multivari-

ate analysis, the covariates themselves can be of interests. In that case, the network

information may be helpful to improve the analysis to the covariates. Only a handful

of literature considered such setting and focused on prediction (Asur and Huberman,

2010; Wolf et al., 2009; Li et al., 2019). In social science studies, methods have been

proposed to make inference on causal effects with network interference (Shalizi and

Thomas , 2011; Manski , 2013; Kao, 2017; Basse and Airoldi , 2015). In machine learn-

ing literature, heuristics like label propagation algorithms (Zhur and Ghahramanirh,

2002) have been developed for classifying nodes on a network with a part of the node

3



labels observed, which can be viewed as imputation for a single categorical variable

utilizing network information.

This dissertation aims to develop models and statistical procedures that incorporate

both network and node covariates information to improve the performance in com-

munity detection, missing value imputation, and in enriching the edge exchangeable

models. For all the three targets, we view the observed network as a random object

generated from some underlying distributions or mechanisms. The distribution of the

covariates may or may not be considered random depending on specific applications.

The rest of the thesis is organized as follows:

Chapter II focuses on improving community detection by utilizing covariates in de-

gree heterogeneous networks. Specifically, we proposed a model that combines the

degree-corrected stochastic blockmodel and models for multivariate classification or

clustering. We developed two algorithms for estimating the model based on varia-

tional inference or pseudo likelihood method. We established consistency results for

the pseudo likelihood algorithm and illustrated that the community detection result

was improved with covariates information incorporated.

Chapter III focuses on improving multivariate missing value imputation by incorpo-

rating network information. We assumed that the probability of two nodes connecting

with each other in the network is correlated to the distance between the covariates

of the two node through a latent space model. We considered combining the flexible

iterative imputation with chained equation framework with the network model and

developed gradient based methods for making imputations. We discussed the con-

nection between the iterative imputation with chained equation framework and the

4



Gibbs sampling and Bayesian models.

Chapter IV extends the Hollywood model, a canonical edge exchangeable model to

incorporate node covariates. The main difficult of incorporating covariates into edge

exchangeable models is that the exchangeability structure can be broken easily. We

address the question that to what extent we can preserve the edge exchangeability

and what it means from a sampling perspective. We developed an estimation algo-

rithm for the model and illustrated the model using simulation and Enron email data.

We also showed that the proposed model inherits the sparsity property in limit.

5



CHAPTER II

Network Community Detection via the

Degree-corrected Block Model with Node

Covariates

2.1 Introduction

A commonly asked question when studying a network is that “can we identify groups

of nodes that share similar connectivity patterns”, which leads to the community de-

tection problem, one of the fundamental problems in network analysis. Many methods

have been proposed and studied, and they can be mainly divided into two categories:

(1) model-free methods that do not try to fit a generative probabilistic model, and

(2) model-based approaches using probabilistic network models. Notice that the two

categories are not totally divided, many model-free methods also exhibit good per-

formance under commonly used probabilistic network models.

In the model-free regime, different methods have been considered for community

detection. For example, Newman (2006) proposed modularity as a criterion repre-

senting the “strength” of a community assignment and transformed the community

detection problem to optimization of a certain criterion. Another approach to the

problem is by exploring spectral properties of the adjacency matrix or the corre-
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sponding Laplacian matrix. Literature including Jin (2015); Qin and Rohe (2013);

Rohe et al. (2011) have developed various spectral clustering algorithms and analyzed

their performances.

In model-based approaches, the stochastic blockmodel (Holland et al., 1983) is prob-

ably the most commonly used model. For a network with n nodes, given node labels

ci ∈ 1, 2, ..., K, the probability of having an edge between node i and j is

P (Aij = 1|ci, cj) = Bcicj ,

where {Bab} is a K ×K parameter matrix. The model intuitively explains the com-

munity structure that nodes within the same group share similar link patterns. Ex-

tensions such as the mixed membership models (Airoldi et al., 2008) and the degree-

corrected blockmodel (Karrer and Newman, 2011) have been proposed to accommo-

date different real network properties. Specifically, the degree-corrected blockmodel

assumes that there is a degree parameter θi associating with node i, and Aij is Poisson

distributed with

E(Aij|ci, cj) = θiθjBcicj .

This allows for degree heterogeneity even within the same community, which makes

the model much more flexible and works better in many real-world networks. Another

important family of the network models is the latent space model that is studied by

literature including Hoff (2005), Hoff et al. (2002). The latent space model assumes

that each node has a latent position in some euclidean space and the probability of

forming an edge between two nodes depends on some form of distance between their

latent positions.

Fitting blockmodels is non-trivial as the problem essentially requires optimization

7



over all possible community label assignments. Estimation using MCMC under the

Bayesian framework has been developed in the early stage (Nowicki and Snijders ,

2001) and methods based on variational inference have been developed and studied

to make the computation tractable recently (Airoldi et al., 2008; Bickel et al., 2013;

Celisse et al., 2012). Another way of fitting blockmodels is by the profile likelihood

(Bickel and Chen, 2009; Zhao et al., 2012), which establishes criteria that only depend

on the label assignments by profiling out parameters for any fixed label assignments.

Blockmodels are then fitted by optimizing these criteria via greedy algorithms. Re-

cently, Amini and Levina (2014) proposed semi-definite relaxation that transforms

the problem into an optimization where the argument is a semi-definite matrix by

relaxing some constraints in the maximum likelihood problem. Last but not least,

Amini et al. (2013) proposed a fast pseudo likelihood algorithm that scales well to

large networks for both the stochastic blockmodel and the degree corrected extension

by neglecting the dependence resulting from symmetry in undirected network.

For the community detection problem, the main theorectical interest lies in studying

the consistency of estimated community label assignments. A commonly used notion

of consistency is given in Bickel and Chen (2009) and Zhao et al. (2012):

strong consistency: P (ĉ = c)→ 1, as n→∞

weak consistency: P (
1

n

n∑
i=1

1(ĉ 6= c) < ε)→ 1, for any ε as n→∞

Strong consistency of the clustering result has been established in general for profile

likelihood based methods under the stochastic blockmodel family and its extension

(Bickel and Chen, 2009; Bickel et al., 2015; Zhao et al., 2012) when the average de-

gree of the graph is growing fast enough. Specifically, the average degree needs to

grow faster than log n. The consistency of variational inference under the stochas-
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tic blockmodel has been obtained in Mariadassou and Matias (2015); Celisse et al.

(2012). With mild assumptions on the initialization, pseudo likelihood method has

been shown to be weakly consistent (Amini et al., 2013). Spectral methods have also

been shown to have similar theoretical guarantees (Jin, 2015; Lei et al., 2015; Qin

and Rohe, 2013; Rohe et al., 2011). On top of the studies on consistency of cluster-

ing, asymptotic theories regarding the parameter estimates have also been established

under the stochastic blockmodel for methods based on maximum likelihood (Celisse

et al., 2012) or its approximation via variational inference (Bickel et al., 2013).

The work mentioned above focus on utilizing the network information alone. However,

in real applications, especially in social networks, the structured network data col-

lected using modern technologies often contain additional information on the nodes,

or node covariates, about the individuals in the network. In many cases, it is natural

to believe that these node covariates can be helpful in refining the communities that

are given only using the network information in terms of both accuracy and inter-

pretation. For example, in social networks, two people with similar background may

have a higher probability to be connected.

Several methods have been developed to incorporate the node covariates into the

community detection procedures. For examples, Binkiewicz et al.(2014) proposed a

variant of spectral clustering by using the weighted sum of the graph laplacian and the

gram matrix as input; Yan and Sarkar(2016) extended the semi-definite relaxation

by adding in a k-means type penalty to the objective function; Zhang et al.(2015)

proposed a joint community detection criterion representing the community strength

together with node covariates similarities. Weng and Feng(2016) and Newman and

Clauset(2016) have also considered to extend the stochastic blockmodel or the degree-

corrected blockmodel to incorporate node covariates. However, Weng and Feng(2016)

focuses only on the stochastic blockmodel, while Newman and Clauset(2016) can only

9



allow one categorical covariate.

In consideration of the flexibility, in this chapter, we propose a model that natu-

rally combines the degree-corrected stochastic blockmodel and the classical logistic

regression for the community detection problem. We choose the degree-corrected

blockmodel to model the network as it is not only flexible theoretically, but also has

been proven to perform well in fitting many real-world networks. We choose to use

the multinomial logistic regression to model the relation between covariates and com-

munity labels as it does not make many assumptions on the distribution of covariates

and is thus flexible. It is also possible to use mixture models, which might be helpful

if we have prior knowledge about the distribution of the covariates. In section 2.3, we

develop a variational EM algorithm and a pseudo likelihood algorithm for its estima-

tion and study asymptotic properties for the pseudo likelihood algorithm in Section

2.4. We further illustrate their performances under various simulation settings and

on a data example in Sections 2.5 and 2.6 respectively.

2.2 Model

Suppose we observe an undirected network of n nodes with self-loop and multi-

edges allowed. We represents the network by an symmetric adjacency matrix A =

{Aij}, i, j = 1, 2..., n, whose diagonal element Aii is equal to twice the number of edges

from node i to itself. An n× p covariate matrix X = {Xij}, i = 1, 2..., n, j = 1, 2..., p

is also observed. Besides, there is an unobserved community membership matrix

C = {Cik}, i = 1, 2..., n, k = 1, 2..., K where K is the total number of communities,

and Cik = 1 if node i is in community k. We use ci to denote the community label of

node i, i.e. ci = k if node i is in community k.

Figure 2.1 illustrates the model we consider. Specifically the figure shows the de-
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A X

C

Figure 2.1: Graphical Representation of the Model

pendence structure between A,X and C. The joint probability of this model would

be P (A,X,C) = P (X)P (C|X)P (A|X,C). We do not model P (X) as it does not

involve C and instead, we work with P (C,A|X) = P (A|X,C)P (C|X).

Given node covariates X and community membership C, we assume the network

A|X,C is generated from the Degree-Corrected Stochastic Blockmodel (DCBM)(Karrer

and Newman, 2011). Then the network A is dependent on X implicitly through a set

of latent degree correction parameters θ = {θi}, i = 1, 2, ..., n, which is represented by

the dashed line in the graphical representation. Conditional on the node labels, the

number of edges between a node pair (i, j) is Poisson distributed with mean θiθjBcicj ,

independent of any other node pairs, where B = {Brs}, r, s = 1, 2..., K, is a K ×K

matrix determining the propensity of forming edges between nodes from community

r and s. Since the network is undirected, B should be symmetric. Following this

setting of DCBM we will have

P (A|X,C; θ, B) =
∏
i<j

(θiθjBcicj)
Aij

Aij!
exp(−θiθjBcicj)

×
∏
i

(1
2
θ2
iBcicj)

Aii/2

(Aii/2)!
exp(

1

2
θ2
iBcicj)

=
∏
i<j

K∏
k,l=1

(θiθjBkl)
AijCikCjl

(Aij!)CikCjl
exp(−θiθjBklCikCjl)

×
∏
i

K∏
k=1

(1
2
θ2
iBkk)

AiiCik/2

((Aii/2)!)Cik
exp(−1

2
θ2
iBkkCik) .

(2.1)
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We model P (C|X) using a multinomial logistic regression model with parameter

β = {βk}, k = 1, 2, ...K. For identifiability, βK is set to 0. Here we use a compact

notation by implicitly including the intercept into β and let the covariates matrix X

have a corresponding dummy column of 1,

P (C|X, β) =
n∏
i=1

exp(βcixi)∑K
k=1 e

βkxi

=
n∏
i=1

K∏
k=1

(
exp(βkxi)∑K

l=1 e
βlxi

)Cik .

(2.2)

2.3 Estimation

In this section, we develop a variational EM algorithm and a pseudo likelihood algo-

rithm to estimate the model described in the previous section.

2.3.1 Variational EM algorithm

Since the community membership C is unknown, we can use the EM algorithm with

C being the latent variable to find the maximum likelihood estimate of the parame-

ters Θ = {B, β, θ}. As an intermediate step of EM algorithm, the estimation of the

conditional distribution P (C|A,X) is also calculated.

For the likelihood P (A|X,Θ) we have

logP (A|X; Θ) ≥ logP (A|X,Θ)−DKL(R(C|A,X)||P (C|A,X,Θ))

=

∫
C

R(C|A,X)[logP (A,C|X,Θ)− logR(C|A,X)]

:=

∫
C

R(C|A,X)l(Θ|C)

:= L(R,Θ) ,

(2.3)
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where R(C|A,X) is any conditional distribution of C given A,X. EM algorithm tries

to maximize L by alternately maximizing L over R and Θ, which gives

E-step: given Θ(t), take R(t+1) = P (C|A,X,Θ(t)) and compute

l(Θ|Θ(t)) =
∑
C

P (C|A,X,Θ(t))l(Θ|C)

M-step: compute

Θ(t+1) = arg max
Θ

l(Θ|Θ(t)) .

In practice, however, there are Kn configurations of C and P (C|A,X,Θ(t)) cannot

be factorized, which makes the E-step computationally intractable. To handle this

difficulty, we use the variational approximation (Jordan et al., 1999) which considers

a restricted family of the conditional probability P (C|A,X). Specifically, we consider

R(C|A,X) =
∏n

i=1

∏K
k=1 τ

Cik
ik , where τ is a set of variational parameters. With this

choice of R(C|A,X), we make the restriction that Ci, i = 1, 2, ..., n are independent

given A,X and follows a multinomial distribution with K-dimensional probability

vector τi·.
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The objective function to maximize now becomes

J(τ,Θ) :=
∑
C

R(C|A,X)[logP (A,C|X,Θ)− logR(C|A,X)]

= E[logP (A,C|X,Θ)− logR(C|A,X)]

=
∑
i<j

K∑
k,l=1

τikτjl[Aij log(θiθjBkl)− log(Aij!)− θiθjBkl]

+
n∑
i=1

K∑
k=1

τik[
Aii
2

log(
1

2
θ2
iBkk)− log((

Aii
2

)!)− 1

2
θ2
iBkk]

+
n∑
i=1

K∑
k=1

τik[βkxi − log(
K∑
k=1

eβkxi)]−
n∑
i=1

K∑
k=1

τik log(τik) .

(2.4)

The maximization problem can then be solved using an EM-like algorithm with:

E-step: τ (t+1) = arg max J(τ,Θ(t))

M-step: Θ(t+1) = arg max J(τ (t+1),Θ) .

2.3.1.1 E-step

The E-step is to maximize J(τ,Θ) with respect to τ for given Θ; this can be solved

by fixed point iteration. For i = 1, 2, .., n

τik ∝ (
1

2
θ2
iBkk)

Aii
2 exp(βkxi −

1

2
θ2
iBkk)

×
n∏

j=1,j 6=i

K∏
l=1

[
(θiθjBkl)

Aij

(Aij!)
exp(−θiθjBkl)]

τjl

(2.5)

for k = 1, 2, ..., K and subject to
∑K

k=1 τik = 1.
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2.3.1.2 M-step

The M-step is to maximize J(τ,Θ) with respect to Θ for given τ ; this can be divided

into two sub-problems that optimize with respect to (θ, B) and β respectively. For

(θ, B), the objective function is

g(θ, B) =
∑
i<j

K∑
k,l=1

τikτjl[Aij log(θiθjBkl)− θiθjBkl]

+
n∑
i=1

K∑
k=1

τik[
Aii
2

log(
1

2
θ2
iBkk)−

1

2
θ2
iBkk] ,

(2.6)

with the constraints Bij = Bji for undirected network, and θi > 0 by definition.

The parameters θ are only identifiable within a multiplicative constant that will be

absorbed into B, so we also need the constraint
∑n

i=1 θi = 1 for identifiability. To

compute the maximizers, we set the gradient to 0 and iteratively solve the equation

system. The objective function is concave with respect to each θi and the update for

θi with all other variables fixed has analytical solutions as follows:

θ̂i =
−b−

√
b2 − 4ac

2a

a = −
K∑
k=1

Bkkτik

b = −
∑
j 6=i

K∑
k,l=1

θjBklτikτjl

c =
∑
j 6=i

K∑
k,l=1

Aijτikτjl +
K∑
k=1

Aiiτik .

(2.7)

θi are normalized to have sum equal to 1 to satisfy the identifiability constraint after

each iteration of updates. In practice we run a fix number of iterations (2.7) to get a

result close to convergence.

Updating B with θ fixed can be done using the following formulas as the objective
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function is concave with respect to B.

B̂kl =

∑
i<j[τikτjlAij + τilτjkAij]∑
i<j[τikτjlθiθj + τilτjkθiθj]

, for k 6= l

B̂kk =

∑
i<j τikτjkAij +

∑
i τik

Aii
2∑

i<j τikτjkθiθj +
∑

i τik
θ2i
2

.

(2.8)

We then iterate (2.7) and (2.8) until convergence.

Maximizing J(τ,Θ) with respect to β is a multinomial logistic regression problem.

For numerical stability we include a ridge penalty and maximize

L(β) =
n∑
i=1

K∑
k=1

τik[βkxi − log(
K∑
k=1

eβkxi)]− λ||β||22 (2.9)

where λ > 0 is a small positive number. This can be solved using existing packages,

such as the glmnet package in R.

2.3.1.3 Initialization

The speed of convergence often depends on the initial values of the algorithm.

We initialize the parameters by first initializing community labels using regularized

spectral clustering(RSC) and initialize θi proportional to di, the degree of node i.

Note this requires the network to have no isolated node. Then we set τ to be a binary

matrix corresponding to the initial community labels. With τ, θ initialized, B and β

can be calculated using (2.8) and (2.9).

2.3.2 Pseudo likelihood based algorithm

As mentioned in the variational EM algorithm, the main challenge in maximizing

the joint likelihood using EM algorithm lies in the E-step as it is intractable. The main
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idea of pseudo likelihood is to simplify the likelihood and make it tractable by ignoring

some of the dependency structure. Specifically for stochastic blockmodels, a pseudo

likelihood can be established by ignoring the symmetry of the adjacency matrix. In

this section, we first give an brief review on the pseudo likelihood method introduced

in Amini et al. (2013) and then make modifications to involve node covariates.

2.3.2.1 Pseudo likelihood for blockmodel

Let the true community label be denoted by ci, i = 1, 2, ..., K. Given an initial

labeling e = {ei}, i = 1, 2, ..., n, ei ∈ 1, 2, ..., K, we will work with the following

quantity,

bik =
∑
j

Aij1(ej = k), i = 1, ..., n, j = 1, ..., K. (2.10)

Let bi = (bi1, bi2, ..., biK) and further let R be a K ×K matrix with

Rka =
1

n

n∑
i=1

1(ei = k, ci = a)

and Rk· be the k-th row. Let B be the K ×K parameter matrix for the blockmodel

and B·` be the `-th column of B. Let λ`k = nRk·B·` and Λ = {λ`k}.

The pseudo likelihood for a stochastic blockmodel is established based on the fol-

lowing key observations: for each node i, given the true labels c with ci = `,

(A) {bi1, bi2, ..., biK} are mutually independent, and

(B) bik is approximately Poisson distributed with mean λ`k.

With true label ci unknown, bi is a mixture of Poisson vectors. Then by ignoring

the dependence between bi, i = 1, 2, ..., n, we have the following pseudo log-likelihood

(up to a constant):

lPL(π,Λ; {bi}) =
n∑
i=1

log(
K∑
`=1

[π`e
−λ`

K∏
k=1

λbik`k ]), (2.11)
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where λ` =
∑

k λ`k and π` is the probability of a node being in community `.

2.3.2.2 Conditional pseudo likelihood for DCBM

Extending the pseudo likelihood to DCBM is non-trivial. The degree corrected model

has n degree parameters, one for each node, which makes the pseudo likelihood and

estimation much more complicated. Amini et al. (2013) proposed a simple alternative

that considers the pseudo likelihood conditional on the observed node degrees. By

conditioning on the observed node degrees, the degree parameters do not play a role

in the pseudo likelihood anymore and we only need to focus on the block structures.

The key observation in the conditional pseudo likelihood is that conditioning on the

observed node degree di =
∑

k bik and true community label ci = `, the variables

(bi1, bi2, ..., biK) are multinomially distributed with parameters (di;ψ`1, ψ`2, ..., ψ`K),

with ψ`k = λ`k
λ`

. Then we have the conditional log pseudo likelihood (up to a constant):

lCPL(π, {ψlk}; {bi}) =
n∑
i=1

log(
K∑
`=1

[π`

K∏
k=1

ψbik`k ]). (2.12)

2.3.2.3 Conditional pseudo likelihood for DCBM with node covariates

We now introduce the conditional pseudo likelihood with node covariates and develop

a corresponding estimation algorithm.

Note that in our proposed model, the node covariates only affect the formation of

the network through community probability. Thus, we replace π` by exp(β`Xi)∑
k exp(βkXi)

,

which is the probability of node i being in community ` under the logistic regres-

sion model. This gives us the following conditional log pseudo likelihood (up to a
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constant):

LCPL(β, {ψ`k}; bi) =
n∑
i=1

log(
K∑
`=1

[
exp(βT` xi)∑K
k=1 exp(βTk xi)

K∏
k=1

ψbik`k ]). (2.13)

Then we can obtain the estimate of β, {ψ`k} by maximizing the conditional log pseudo

likelihood via the EM algorithm for mixture models. With the parameter estimate,

we update the initial label e and repeat the procedure for T iterations.

Let nk(e) =
∑

i 1(ei = k), nk`(e) = nk(e)nl(e), nkk(e) = nk(e)(nk(e) − 1) and

Ok`(e) =
∑

ij Aij1(ei = k, ej = `). The algorithm consists of the following steps:

• Initialize label e using regularized spectral clustering, and initialize β corre-

spondingly. Let π̂` = n`/n, let R = diag(π̂), B̂`k = O`k/n`k, λ̂`k = nR̂k·B̂·` and

initialize {ψ`k} by row normalization of Λ.

• Repeat T times:

– (1) compute block sums bi under current {ei}, i = 1, 2, ..., n

– (2) E-step: Given β̂, {ψ̂`k}, compute Pi` := P (ci = `|bi, xi)

Pi` := P (ci = `|bi, xi) =
π̂i`
∏K

m=1 ψ̂
bim
`m∑K

k=1 π̂ik
∏K

m=1 ψ̂
bim
km

(2.14)

where π̂i` =
exp(β̂T` xi)∑K
k=1 exp(β̂Tk xi)

.
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– (3) M-step: Given Pil, update β by logistic regression and update Θ

ψ̂`k =

∑n
i=1 Pi`bik∑n
i=1 Pi`di

(2.15)

– (4) repeat (2) and (3) until the parameters converge

– (5) update label ei = arg maxl Pi` and return to step (1) .

The algorithm typically only needs a few label updates until convergence, but the

performance relies on suitable initial labels.

2.4 Theoretical properties

The main theoretical property that community detection methods pursue is consis-

tency of the community estimates ĉ. A commonly used definition of consistency is

from Bickel and Chen (2009) and Zhao et al. (2012):

strong consistency: P (ĉ = c)→ 1, as n→∞

weak consistency: P (
1

n

n∑
i=1

1(ĉ 6= c) < ε)→ 1, for any ε as n→∞ .

Note that the consistency notion is up to label permutations. For example, switching

the label of community 1 and community 2 does not change the community structure.

Although we have developed the algorithm with multi-edges allowed, we will study

the theoretical property based on binary networks to simplify the problem. In most

real applications, we only observe binary networks and care more about whether an

edge is present or not rather the multiplicity of the edges, thus this simplification is
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reasonable.

Methods based on maximum profile likelihood have been shown to be strongly con-

sistent under both stochastic blockmodel and its degree-corrected extension (Zhao

et al., 2012), but consistency of community label estimates under variational infer-

ence is only established under stochastic blockmodel (Mariadassou and Matias , 2015;

Weng and Feng , 2016), with indispensable dependence on the consistency result for

estimating the K × K matrix parameter B that controls inter and intra commu-

nity connectivity (Bickel et al., 2013; Celisse et al., 2012).However, extending these

consistency results to variational inference under the degree-corrected blockmodel is

challenging, since the consistency of the estimates for B cannot be easily obtained

due to identifiability issues in the degree correction parameters. Nonetheless, the

consistency of maximum profile likelihood still holds following Zhao et al. (2012) and

the weak consistency result for pseudo likelihood algorithm similar to that in Amini

et al. (2013) can be shown. We will focus on showing the consistency of the pseudo

likelihood, based on the results from Amini et al. (2013).

For theoretical analysis of the pseudo likelihood algorithm, we only consider the case

K = 2. Further, for simplicity, we assume that among the n nodes, m = n
2

nodes

are in community 1 and assume the initial label e is also balanced, which means e

assigns m nodes to community 1 and m nodes to community 2. We will first consider

a directed graph. For the directed graph, we will use Ãij to denote the adjacency

matrix and B̃ to denote the K ×K matrix parameter. The directed graph model is

actually natural for pseudo likelihood approach since it is the model where the row

independence assumption holds. We let the edge probability matrix of the directed

graph B̃ = 1
m

a b

b a

 with a and b scales with n.
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The key assumption is that among the m nodes with initial labels being commu-

nity 1, γm nodes are truly in community 1. It is not difficult to see that this also

implies that the initial labels e also have γm correctly labeled nodes in community

2. We do not assume we know the value of γ or which labels are matched. But we do

assume γ ∈ (0, 1)\{1
2
} and mγ is an integer. Let Eγ denote the collection of all such

initial labeling

Eγ = Eγn =

{
e ∈ {1, 2}n :

m∑
i=1

1(ei = 1) = mγ =
n∑

i=m+1

1(ei = 2)

}
.

We will focus on the E-step of the pseudo likelihood algorithm. With some initial

estimates â, b̂ as well as β̂, together with initial labeling e, the labels are estimated

by

ĉi(e) = arg max
k∈{1,2}

{β̂kXi +
2∑

m=1

b̃im(e) log γ̂km(e)} , (2.16)

where γ̂km are the elements of the row normalized matrix of Λ̃ = [nR(e)B̃]T , with B̃

estimated by plugging in â, b̂.

Let C(γ) :=
[
log ψ̂11(e)

ψ̂21(e)

]−1

, and define the mismatch ratio

M̃n(e) := min
φ∈{(1,2),(2,1)}

1

n

n∑
i=1

1[ĉi(e) 6= φ(ci)],

where φ is considering the fact that the labels are identified up to a permutation. We

will show a consistency result based on the convergence of this mismatch ratio, which

corresponds to the weak consistency definition.

Let us consider the initial estimates (â, b̂) that have the same ordering as true param-

eter (a, b) such that (â− b̂)(a− b) > 0. We have the following result.

Theorem II.1. Under the balanced communities assumption, let γ ∈ (0, 1)\{1
2
}.
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Let the adjacency matrix Ã be generated under the directed graph model with edge-

probability matrix B̃ and assume a 6= b. In addition, assume |β̂Xi| ≤M , where M is

a constant, and

m := (1− 2γ)(a− b)− |MC(γ)| ≥ 0

(1− 2γ)(a− b) + |MC(γ)| ≤ 3(a+ b)

(2.17)

Then there exists a positive sequence {un} such that

log un + log log un ≥ log(
4

e
) +

m2

4(a+ b)

and the mismatch ratio has

P

[
sup
σ∈Eγ

M̃n(e) >
4h(γ)

log un

]
≤ exp{−[h(γ)− κγ(n)]n} (2.18)

where h(p) = −p log p− (1− p) log(1− p) is the binary entropy function and κγ(n) :=

1
n
[log( n

4πγ(1−γ)
) + 1

3n
] = o(1).

In particular, if m2

4(a+b)
→ ∞, we have un → ∞ and the pseudo likelihood estimate is

consistent.

Remark II.2. m2

4(a+b)
→ ∞ implies (1 − 2γ)(a − b) → ∞ and the assumptions (2.17)

are then satisfied for sufficiently large n, indifferent of the value of γ. The condition

m2

4(a+b)
→ ∞ itself is also not strong if we assume γ fixed. For example, if we let

a = log n and b = ra, r ∈ (0, 1), the condition is satisfied when n is large enough.

Remark II.3. With more assumptions on the initialization, the result of Theorem II.1

can be extended to a more general case where the communities are unbalanced, with

size n1, n2 and edge probability matrix B̃ = 1
n

a1 b

b a2

. The assumption on initial

labels is also relaxed to have n1γ1 nodes matching the true label in community 1 and

n2γ2 in community 2, with γ1 6= γ2. The details are discussed in the appendix.
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Next we extend the result to the undirected case. Let aγ = γa + (1 − γ)b. The

undirected case is studied by introducing a coupling between the directed case and

the undirected case. Specifically, the undirected adjacency matrix A is generated

from the directed adjacency matrix Ã by removing the edge directions, i.e.

A = T (Ã), [T (Ã)]ij = 1− 1(Ãij = Ãji = 0) . (2.19)

Then we have the edge probability matrix for the undirected graph:

Bkl = P (Aij = 1) = 1− P (Ãij = 0)P (Ãji = 0) = 2B̃kl − B̃2
kl .

Define the mismatch ratio for undirected case Mn(e) similarly as in the directed case.

Theorem II.4. Under the undirected model generated with edge-probability matrix

{Bkl}, let γ ∈ (0, 1)\{1
2
} and assume a 6= b. In addition, we assume |β̂Xi| ≤ M ,

where M is a constant and

2(1− ε)aγ ≤ ε(1− 2γ)(a− b) (2.20)

m := (1− ε)(1− 2γ)(a− b)− |MC(γ)| ≥ 0

(1− ε)(1− 2γ)(a− b) + |MC(γ)| ≤ 3(a+ b)

(2.21)

for some ε ∈ (0, 1). Then there exist sequence {un}, {vn} such that

log un + log log un ≥ log(
4

e
h(γ)) +

m2

4(a+ b)

log vn + log log vn ≥ log(
4

e
h(γ)) +

ε2

1 + ε/3
aγ
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and

P

[
sup
e∈Eγn

Mn(e) ≥ 4h(γ)(
1

log un
+

2

log vn
)

]
≤ 3 exp(−n[h(γ)− κγ(n)])

where h(·) is the binary entropy function and κγ(n) = o(1) defined as before.

In particular, if m2

4(a+b)
→ ∞, aγ → ∞ we have un → ∞, vn → ∞ and the pseudo

likelihood estimate is consistent.

Remark II.5. Similar to the directed case, the assumptions (2.21) is satisfied for suf-

ficiently large n if m2

4(a+b)
→ ∞. The condition (2.20) can be satisfied for fixed ε by

letting γ small and upper bound b
a

in terms of γ. This means that there should not

be too many inter-community edges comparing to within community edges in that

case.

With the weak consistency in estimating community labels, we can further consider

estimating the logistic regression parameter β by

β̂PL = arg max
β

1

n

[
n∑
i=1

1(ĉi(e) = 1)βXi − log(1 + βXi)

]

Corollary II.6. If the assumptions for weak consistency of pseudo likelihood hold,

β̂PL is consistent estimator of β.

2.5 Simulation studies

In this section, we apply the proposed methods to simulated data generated from

the model under different settings and compare the performance with regularized

spectral clustering(RSC)(Qin and Rohe, 2013) and covariates assisted spectral clus-

tering(CASC)(Binkiewicz et al., 2014). We try T = 10 and T = 20 for the pseudo

likelihood approach. We also give the computing time for the proposed algorithms
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(b) pkk=0.20

Figure 2.2: Mean accuracy vs r for K = 2, β ∼ U(−1, 1)

under a specific setting.

We generate θi from Beta(1, 5) distribution to approximate the Power-law degree

distribution often found in real network data. Then we set the Bab = ωwithin for a = b

and Bab = rωwithin where r is a number between 0 and 1. The ωwithin controls pkk,

the mean number of edges between a pair of nodes within a group while r controls

the inter-community edge density pk`. We generate covariates independently from

standard normal distribution and generate the logistic regression coefficients β from

uniform distribution centered at 0. We change ωwithin with β fixed to see how does

edge density affect the performance and change β with ωwithin fixed to evaluate the

impact of the level of information contained in the covariates. We tested the model

with K = 2, n = 200, p = 5, and K = 5, n = 500, p = 10, and take the average

accuracy of clustering over 50 repetitions under each setting. In the figures our al-

gorithms are labeled as “MLDCBM”, which stands for “Multinomial Logistic Degree

Corrected Blockmodel”. Further, “VI” is short for “Variational Inference” and “PL”

is short for “Pseudo Likelihood”.
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Figure 2.3: Mean accuracy vs r for K = 2

Figure 2.2 shows the result for 2 clusters and β ∼ U(−1, 1) with pkk being 0.05 and

0.2 respectively. It can be seen that the proposed methods in general perform better

than RSC and CASC. There is no obvious difference between T = 10 and T = 20 for

the pseudo likelihood algorithm, which suggests the algorithm converges and the re-

sults suggest that pseudo likelihood algorithm works well in most cases. It should be

mentioned that CASC itself is not necessarily asymptotically consistent, which may

explain its inferior performance comparing to RSC in terms of clustering accuracy. As

the graph becomes denser, the accuracy of clustering should become higher in general

since the networks are more informative. Figure 2.3 shows the result for 2 clusters

with pkk fixed at 0.15 and β varies. The superior performance of our methods over

RSC becomes more significant when β increases, which is natural as the covariates

are more informative with larger β. Similar results are observed for 5 clusters and

are shown in Figure 2.4 and Figure 2.5.

It should also be mentioned the performances of the proposed algorithms depend
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(b) pkk=0.20

Figure 2.4: Mean accuracy vs r for K = 5, β ∼ U(−1, 1)

on the initialization, in the case when RSC cannot give better initial labels than

pure guessing, the algorithms do not perform well and may not converge. Also, the

performance of the pseudo likelihood algorithm for K = 5 is not as competitive as

variational EM when r is big. It might be suggesting that the pseudo likelihood algo-

rithm is more sensitive to the initialization comparing to variational EM in the case

where signal is weak.

Figure 2.6 shows the case where the relation between covariates and community labels

does not follow the logistic regression structure. For 2.6(a), the dependency struc-

ture between the community label and the covariates forms a mixture model where

the covariates are generated from Gaussian distributions with mean 0 or 1 depend-

ing on which community the node is in. We can see that our method works better

than CASC when the network is informative but the performance is not as competi-

tive when the network becomes less informative. A possible reason is that when the

network is uninformative, the initialization using RSC leads to a poor initial β esti-

mate, which makes it difficult for the algorithm to utilize the covariates information
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Figure 2.5: Mean accuracy of clustering vs r for K = 5
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(a) pkk=0.15, covariates from mixture
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Figure 2.6: Mean accuracy vs r for K = 2 with misspecified covariates
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Figure 2.7: Mean balanced accuracy vs r for K = 2 with unbalanced communities,
pkk=0.15, β = 1

correctly. Similar to previous results, we observe that the accuracy of the pseudo

likelihood algorithm drops more when r becomes larger. For 2.6(b), the covariates

are generated independently from the community label, the result suggests that our

methods still work well when the networks are informative although the covariates

are irrelevant.

We further consider the case when the communities are unbalanced. We simulate

data from the proposed model with β set to 1 and covariates from N(0.5, 1). Under

this setting, about 18.8% of nodes are in the minority community with a standard

error of roughly 3%. Figure 2.7 shows the balanced accuracy, which is the average

of sensitivity and specificity. The result shows that our methods have better perfor-

mance when the network is informative and there is no obvious difference between

the variational EM algorithm and the pseudo likelihood algorithm.

Another setting that we are interested in is when the network is not assortative, where

nodes are more likely to form an edge if they are not from the same community. We
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Figure 2.8: Mean accuracy vs r for K = 2 with non-assortative networks, initialized
with CASC, pk`=0.15

simulate data from the proposed model under the same setting as Figure 2.3(a) except

that here we set pk` = 0.15 and pkk = rpk`. It is known that spectral clustering does

not perform well on non-assortative network while CASC still has a reasonable per-

formance (Binkiewicz et al., 2014). Since our algorithms rely on the initialization, we

decide to use the CASC result as the initialization under the non-assortative setting.

Figure 2.8 shows the clustering accuracy. The result suggests that our method can

still improve the community detection result given by CASC even when the networks

are non-assortative.

Lastly, Table 2.1 shows the computing time of the proposed algorithms under the

setting K = 5, n = 500, p = 10, pkk = 0.15, r = 0.4. It can be seen that pseudo

likelihood algorithm is computationally much more efficient than the variational EM

and CASC.
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Algorithm PL10 PL20 VI CASC
Time (secs) 2.23 3.98 34.37 22.10

Table 2.1: Mean computation time of community detection algorithms under degree
corrected blockmodels with covariates over 10 replications

2.6 Data example

We applied our method to a friendship network of 71 lawyers in a Northeastern US

corporate law firm in New England(Lazega, 2001). The dataset also contains infor-

mation on seven covariates including status, gender, office, year with the firm, age,

practice, and law school. We notice there are only 4 people in the Providence office,

which might not be informative as a source for dividing the network into clusters

since the number of people in the office is too small comparing to 19 of the Hartford

office and 48 for the Boston office. Thus we removed these 4 people and left with 67

people in the following analysis. The original network is directed with an edge from

i to j if person i nominates person j as a friend. We converted it to an undirected

network by letting person i and j be connected if either one of them nominates the

other as a friend.

The covariates status, gender, office, practice, and law school are categorical and

basically balanced between each category. The covariate year varies from 1 to 32 and

has a median 7. The covariate age ranges from 26 to 67 with median 38. The degree

distribution of the undirected network is shown in Figure 2.9.

We applied the variational EM algorithm and the pseudo likelihood algorithm with

K = 3 and obtained same clustering result. The result is shown in Figure 2.10. Fig-

ure 2.10a shows the community membership given by the algorithm. In Figure 2.10b,

the colors of the nodes represent office information and the node size is proportional
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Figure 2.9: Degree distribution

to years plus 10. It can be seen that community 1 contains people only from Hart-

ford office, and people from Boston office are divided into 2 clusters by their years in

the firm. Colors of nodes in Figure 2.10c show the status information and the node

size is proportional to the age. It can be seen that nodes in community 2 are all

associates and community 3 mainly consists of partners. Also, nodes in community

2 are younger comparing to community 3. We then calculated mean degree of each

community. It turns out that the mean degree of community 3 is 15, which is much

higher than 9.4 of community 1 and 10.3 of community 2. This is in some sense ex-

pected since the senior partners in a same office may have worked with each other for

many years. To summarize, the nodes are separated into 3 communities, community

of people from Hartford office, community of young associates in Boston office, and

community of senior partners in Boston office.
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(a) Community membership

(b) Covariate: office and years (c) Covariate: status and age

Figure 2.10: Community detection result
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2.7 Discussion

We have considered the community detection problem for networks with node covari-

ates based on a principled statistical model combining the degree-corrected stochastic

blockmodel and the logistic regression model. We have developed efficient estimation

algorithms via the variational EM and the pseudo likelihood and illustrated their

good performance in simulation studies and on a real-world data. We have also stud-

ied the asymptotic properties of the pseudo likelihood algorithm and obtained weak

consistency result under mild assumptions.

Regarding future work, various directions might be considered. As mentioned, the

model can be extended to the case where the relation between the community label C

and node covariates X is specified by a mixture model P (X|C). In the case where we

have some prior knowledge that the covariates might be from mixtures of some distri-

butions, the model may have better performance. Another perspective that naturally

arises is the semi-supervised setting. If we already observe a part of the community

labels of the nodes in the network, how do we estimate the unobserved community

labels? The semi-supervised setting has many real-world applications especially in

social networks where we may have a survey on a fraction of the targeting people

on their community labels and need to inference for the others’. Going further from

semi-supervised setting, we may consider the supervised setting where all the com-

munity labels are known and our target is to make predictions on new nodes. This

can be viewed as a network information assisted classification problem which might

be of interest when the response variables in classification are dependent of each other

and the dependency structure is given by a network.

From the theoretical perspective, the consistency of variational inference under the

degree corrected blockmodel remains unknown, although it is natural to conjecture

35



so as the maximum profile likelihood has shown to be consistent without covariates.

Also, we observed from simulations that the covariates do help improve the cluster-

ing performance although the degree-corrected blockmodel itself without covariates

provides label consistency in the asymptotic setting. It is thus interesting to study

how helpful it is to incorporate covariates in non-asymptotic settings.
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CHAPTER III

Missing Data Imputation with Network

Information

3.1 Introduction

Missing data problem is widely encountered in real-world data analysis. One com-

monly used technique for handling missing data is imputation since most statistical

procedures and algorithms rely on complete data. Thus it is essential to develop

appropriate imputation procedures that produce imputations with high quality.

Many imputation methods have been proposed to handle univariate and multivariate

missing data using only the information within the data set. However, in modern

datasets, together with the traditional multivariate data, networks representing the

relations between the entities are often also collected, where nodes in the network

represent entities and edges between the nodes represent relations between the enti-

ties. With real-world networks, it is widely observed that there is always some kind

of cohesion effect between connected entities, i.e. the connected entities have similar

covariates.

In this work, we consider the imputation problem under the setting where in addition
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to the multivariate data set, we also observe a network between the observations that

provides information on the affinity. One example is the online social network, where

we observe the friendship network between the users, but only partially observe co-

variates such as age, gender, income etc. for each user. The administrator of the

platform may wish to impute the missing information of the users. To the best of our

knowledge, this problem is not well addressed by existing imputation methods.

3.1.1 Missing data imputation methods

In the simple setting of imputing a single variable, many methods have been pro-

posed and well studied. These methods can be conceptually divided into two groups,

regression-based methods and hot-deck methods. Imputation through regression-

based methods is straightforward. For example, one may perform a univariate regres-

sion, potentially with generalized linear models or nonparametric models, and also

deal with post-processing such as a necessary truncation. Once the regression model

is fitted, the predicted values for the missing entries may be used as imputation. See

Van Buuren (2018) (Chapter 3) for a more detailed review. The hot-deck methods,

similar to nearest-neighbor methods, typically define a distance metric between two

observations using the observed covariates, and the imputation for a missing value

will be borrowed from a completely observed observation that is close under the met-

ric. Andridge and Little (2010) provides a review on some commonly used hot-deck

methods.

Imputation for multivariate missing data can be roughly divided into two categories.

A joint modeling approach would model the observed and missing variables through

some joint distribution, e.g. the multivariate normal or t-distribution. See Murray

et al. (2018) for a comprehensive review for such kind of methods. Although joint
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modeling methods are easy to understand and typically have good theoretical prop-

erties, they are restrictive in many data analysis settings due to its lack of flexibility

in handling complex mixed type of variables (Van Buuren, 2007).

Comparing to the joint modeling approach, the fully conditional specification is a

more flexible framework for multivariate imputation (Van Buuren, 2007). Specifically,

one specifies the conditional model for each variable conditioning on all other vari-

ables. For multivariate imputation, an iterative imputation procedure that starts with

some simple imputation and then conducts univariate imputations using the speci-

fied conditional models sequentially is often used (Buuren and Groothuis-Oudshoorn,

2010). The iterative imputation procedure could be viewed as a Gibbs sampler from

a Bayesian perspective: in each iteration, the sampler draws from the conditional dis-

tribution on the missing entries. The specified conditional models are also flexible. In

principle, one may specify any existing univariate regression model according to their

need. People have studied the performances of using Predictive-Mean Matching (Bu-

uren and Groothuis-Oudshoorn, 2010), Classification and Regression Tree (Burgette

and Reiter , 2010), Support Vector Machines (Wang et al., 2006), and the Random

Forest (Stekhoven and Bühlmann, 2011), ect.

Despite the flexibility of the fully conditional specification framework, there is limited

result on the convergence property of the framework. Liu et al. (2013) compared the

iterative imputation that uses a set of Bayesian regression models g as the conditional

distributions to a proper MCMC algorithm under a joint model f . They showed that

under the assumption that both Markov chains have unique stationary distributions,

the iterative imputation has the same stationary distribution as the joint model pro-

vided that the conditional models g are compatible with f . Zhu and Raghunathan

(2015) showed the convergence of the iterative imputation algorithm without the as-
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sumption of requiring unique stationary distributions, but under the setting that each

observation can have only one missing entry.

3.1.2 Network models

A network can be represented using an adjacency matrix A, where Auv could be binary

indicating whether there is an edge between nodes i and j, or weighted indicating

the strength of the connection between nodes u and v. Many network models have

been proposed to model a network alone, without relating to covariates, including

stochastic block models (Holland et al., 1983), and exponential random graph (Robins

et al., 2007) etc. See Goldenberg et al. (2010) for a detailed review of such models. The

latent space model (Hoff , 2005; Hoff et al., 2002) provides a natural way of relating

the edges in a network to covariates. In one form of the latent space model, the

probability of having an edge between nodes u and v depends on their latent positions

Zu, Zv, their individual connectivity parameters bu, bv, the edge related covariate xuv,

and model parameters. Specifically, conditional on the above mentioned quantities,

the probability between nodes u and v is given by

logit[P (Auv = 1)] = αxuv + bu + bv + ZT
u Zv.

The latent space models are flexible in the sense that they can be easily modified

to cover a wide range of commonly observed network properties such as degree het-

erogeneity, transitivity etc. Recently Ma and Ma (2017) developed gradient based

algorithms that can fit the latent space model efficiently instead of using computa-

tionally expensive MCMC algorithms.
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3.1.3 Imputation with networks

In the setting where a network is observed and each node has a categorical label with

some node labels being unobserved, heuristics such as label propagation (Zhur and

Ghahramanirh, 2002) has been proposed to infer the unobserved labels. Starting with

some initialization, label propagation iteratively assigns each node with unobserved

label the label that dominates in its neighbors and iterates until convergence. This

could be viewed as imputing a single categorical variable with network information.

Chakrabarti et al. (2017) proposed a model that can simultaneously infer multiple

missing labels on a network by encouraging each edge in the network to be explained

by at least one common label. However, such methods can only be applied to cate-

gorical variables, and do not take advantage of the correlation among the variables.

The main contribution of this work is that we propose an imputation method that

can flexibly impute mixed type missing data while taking the network information

into consideration. The idea of the method relies on combing the full conditional

specification framework and the network model.

The rest of the chapter is organized as follows: Section 3.2 introduces the proposed

model and method for missing data imputation with network information available;

Section 3.3 provides theoretical results of the framework under a similar setting to Liu

et al. (2013); Sections 3.4 and 3.5 illustrate the performance of the proposed frame-

work using simulated studies and a real-world data example respectively; Section 3.6

discusses limitations and extensions of the framework.
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3.2 Model and method

Our proposed imputation method builds on the full conditional specification frame-

work that imputes one variable at a time, and we consider modeling the network

using a latent space model conditional on the covariates.

Suppose we observe an incomplete data matrix X with n observations and p variables.

Together with X, we observe a network characterized by its n× n binary adjacency

matrix A that represents connectivity between the observations.

Let Xj denotes the j-th variable and X−j denotes the other variables. Let Xj be

the variable we are imputing in the current iteration, Mj ⊂ {1, 2, ..., n} denotes the

set of indices i for which Xij is missing, and Oj = {1, 2, ..., n}\Mj be the index set for

the observed. Our target is to impute all missing entries {Xij, i ∈ Mj, j = 1, 2, ..., p}

using information from A and {Xij, i ∈ Oj, j = 1, 2, ..., p}.

We assume the network is generated from a latent space model conditional on X:

auv := logit(P (Auv = 1|X)) =

p∑
j=1

αjd(Xuj, Xvj) + bu + bv + ZT
u Zv

with parameters α = (α1, ..., αp)
T , b = (b1, ..., bn)T and latent positions Z = (Z1, Z2, ...Zn)T .

The overall algorithm contains the following steps:

(i) Initialize the imputation using some imputation methods. Fit the latent space

model using the imputed X to initialize the model parameters and the latent

positions.

(ii) For each variable j = 1, 2, ..., p, update the missing entries {Xij, i ∈ Mj} with
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X−j fixed.

(iii) Update the model parameters and latent positions.

(iv) Iterate between steps (ii) and (iii) until convergence.

For the remaining of the chapter, we set d(Xuj, Xvj) = (Xuj − Xvj)
2 for continuous

variables and d(Xuj, Xvj) = 1(Xuj 6=Xvj) for discrete variables. Other choices of the

distance measure are also possible and will be discussed.

Without loss of generality, we consider the problem of imputing X1 with other vari-

ables, the latent space model parameters, and the latent positions fixed. The general

framework of imputation proceeds as follows. Suppose we are given the conditional

distribution of the missing entries P ({Xu1, u ∈ M1}|X−1, {Xv1, v ∈ O1}), possibly

specified by a regression model, we may consider the following criterion:

maxP (A, {Xu1,u∈M1}|X−1, {Xv1, v ∈ O1})

= maxP (A|X1, X−1)P ({Xu1,u∈M1}|X−1, {Xv1, v ∈ O1})
(3.1)

One interpretation of this criterion is that we have a prior on the missing entries

{Xu1,u∈M1} given by P ({Xu1,u∈M1}|X−1, {Xv1, v ∈ O1}), with likelihood P (A|X1, X−1),

we are looking for the posterior mode for the missing entries {Xu1, u ∈M1}.
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3.2.1 Imputation of continuous variables

Suppose X1 is a continuous variable, with all the other variables X−1 fixed, the

conditional log likelihood of the network is

logP (A|X1, X−1) =
∑
u,v

α1(xu1 − xv1)2Auv

−
∑
u,v

log

{
1 + exp[α1(xu1 − xv1)2 +

p∑
j=2

αjd(xuj, xvj) + bu + bv + ZT
u Zv]

}

+
∑
u,v

p∑
j=2

{
αjd(xuj, xvj) + bu + bv + ZT

u Zv
}
Auv.

Note that the terms in the last line do not depend on {xu1, u ∈M1}.

Suppose the specified conditional distribution P ({xu1, u ∈ M1}|X−1, {xv1, v ∈ O1})

has the form such that for u ∈M1, xu1|x{u,−1} ∼ N(x̂u1, σ
2), then the general criterion

(3.1) has the following form

max
xu1,u∈M1

{∑
u,v

α1(xu1 − xv1)2Auv

−
∑
u,v

log

[
1 + exp[α1(xu1 − xv1)2 +

p∑
j=2

αjd(xuj, xvj) + bu + bv + zTu zv]

]

− 1

2σ2

∑
u∈M1

(xu1 − x̂u1)2

}
.

(3.2)

When σ is unknown, we may replace the term 1
2σ2 with an estimate or a specified

tuning parameter λ, which plays the role of balancing between the network and the
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specified conditional distribution, and obtain the following criterion

max
xu1,u∈M1

∑
(u,v)

α1(xu1 − xv1)2Auv

−
∑
u,v

log

[
1 + exp[α1(xu1 − xv1)2 +

p∑
j=2

αjd(xuj, xvj) + bu + bv + ZT
u Zv]

]

−λ
∑
u∈M

(xu1 − x̂u1)2

}

The solution to this optimization problem is then an imputation of {xu1, u ∈ M1}.

We may use gradient based methods to compute the solution with gradient in the

following form.

∂

∂xu1

=
∑
v

2α1(xu1 − xv1)Auv −
∑
v

2α1(xu1 − xv1)σ(auv)− 2λ(xu1 − x̂u1)

= 2α1〈Au − σ(au), xu11n − x·1〉 − 2λ(xu1 − x̂u1),

where Au is the u-th row of A and a = (auv)u,v≤n with au being the u-th row, σ(·) is

the sigmoid function, and 〈X, Y 〉 = Tr(XTY ).
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3.2.2 Imputation of discrete variables

When X1 is discrete with K categories, with all the other variables X−1 fixed, the

conditional log-likelihood of the network becomes

logP (A|X1, X−1) =
∑
u,v

α11(xu1 6=xv1)Auv

−
∑
u,v

log

{
1 + exp[α11(xu1 6=xv1) +

p∑
j=2

αjd(Xuj, Xvj) + bu + bv + ZT
u Zv])

}

+
∑
u,v

{
p∑
j=2

αjd(Xuj, Xvj) + bu + bv + ZT
u Zv

}
Auv.

Thus maximizing P (A|X1, X−1)P ({xu1, u ∈ M1}|X−1, {xv1, v ∈ O1}) with respect to

the missing entries {xu1, u ∈M1} would be an intractable combinatorial problem. To

handle this problem, we relax the hard assignment of {xu1, u ∈M} to probability as-

signment qu = (q1
u, q

2
u, ..., q

K
u ) with qTu 1 = 1 and compute the conditional distribution

P ({xu1,u∈M1}|A,X−1, {Xv1, v ∈ O1}). However, this conditional distribution is also

intractable due to the complex dependence structure.

We propose to find a variational approximation Q({xu1,u∈M1}) to this conditional

distribution by restricting the distribution of {xu1,u∈M1} to be in a fully factorized

form, i.e. Q(xu1 = ku, xv1 = kv, . . . , xw1 = kw) = qkuu q
kv
v ...q

kw
w . For a specific node u,

fixing all the qv for other nodes v 6= u, the assignment of qu satisfies

qku ∝ P (A, xu1 = k|X−1, {xv1, v ∈ O1}, qv)

= P (A|xu1 = k,X−1, {xv1, v ∈ O1}, qv)P (xu1 = k|X−1, {xv1, v ∈ O1}, qv).

We compute the q vector for every node u, u ∈ M1 for variable 1, we then assign a

hard imputation for xu1, u ∈M1 to simplify the future computation before we proceed

to the next variable.
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3.2.3 Updating network model parameters

To update the parameters α, b and the latent positions Z for the latent space network

model, we take the projected gradient approach described in Ma and Ma (2017). Ide-

ally, the parameters should be updated after imputing each variable, namely p times

in a full iteration over all the variables. But for the consideration of computational

cost, we only do the update after iterations over all the p variables.

The parameters can be updated in the following way:

Zt+1 = Zt + 2ηZ(A− σ(at))Zt

αt+1 = αt + ηα〈A− σ(at),d(Xj)〉

bt+1 = bt + 2ηb(A− σ(at))1n

with centering on Z after each iteration, where 〈X, Y 〉 = Tr(XTY ) and d(Xj) is a

matrix with the (u, v)-th entry being d(Xuj, Xvj) . The step sizes are suggested in Ma

and Ma (2017) to be ηZ = η/||Z0||2op, ηb = η/2n and ηα = η/2||X||2F . For simplicity,

we use the hard imputation as mentioned for the discrete missing variables in fitting

the latent space model.

3.2.4 Initialization and choice of λ

Choosing the initialization of the algorithm is important. In principle, one may use

any existing imputation method to provide an initialization depending on the prac-

titioner’s need. If it is known that the correlation between the covariates are strong,

one may use existing imputation methods such as the misforest to initialize. If the

correlation between the covariates are unclear, one may use simple imputation pro-
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cedures that are less informative, such as the mean imputation.

The λ could be tuned through a cross-validation like procedure. Given a data set,

we randomly sample a small set of entries to be “missing” and impute these entries

together with the true missing entries, and compute the error of imputation for the

missing entries we selected. We then select the λ value that gives the lowest error on

the these entries.

3.3 Theoretical properties

3.3.1 Relation to Gibbs sampling

As mentioned earlier, the iterative imputation framework is essentially a Gibbs sam-

pler type algorithm. Under the proposed model, one may view the objective function

P ({Xu1,u∈M1}|X−1, {Xv1, v ∈ O1})P (A|X1, X−1) as a posterior distribution for the

missing entries. The proposed gradient based algorithm is looking for the mode of

this posterior distribution.

Ideally, in the iterative imputation framework, one may want to sample the miss-

ing entries {Xij, i ∈Mj} from this posterior distribution. However, with the network

information involved, the missing entries are not independent and thus this posterior

distribution cannot be factorized. Directly drawing samples from this posterior would

be hard to implement when the number of missing entries is large. One potential so-

lution is to induce a second layer of Gibbs sampler that draws one missing entry at

a time. But this will still be computationally inefficient and require a balancing be-

tween the inner layer of Gibbs sampling that iterates between missing entries within

a variable, and the outer layer of Gibbs sampling that iterates between different vari-

ables.
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Despite the above mentioned Gibbs sampling algorithm is infeasible in practice, it

provides an idealized algorithm under the framework for us to consider theoretical

aspects of the framework.

3.3.2 Convergence to a Bayesian model

We follows the results in Liu et al. (2013) and show that the iterative imputation

Markov chain converges to the same stationary distribution as a Bayesian model un-

der the assumption that the Markov chain admits a unique stationary distribution.

We first define the Bayesian model and its corresponding Gibbs sampler. Denote

xmisj and xobsj the observed and missing subsets of variable j and let xmis = {xmisj , j =

1, 2, ..., p}, xobs = {xobsj , j = 1, 2, ..., p}. Further we use x−j to denote the variables

excluding the j-th variable. Let Θ = (θR, θA) denotes all the model parameters, with

f(x; θR) corresponds to the joint distribution for x and θA corresponds to the param-

eters and latent positions for the latent space network model. We assume the missing

mechanism is missing completely at random throughout. Under the proposed model,

the likelihood could be decomposed into two parts

p(xmis|xobs, A,Θ) ∝ p(xmis, A|xobs,Θ)

= f(xmis|xobs, θR)p(A|xmis, xobs, θA).

(3.3)

With a prior π(Θ), the posterior predictive distribution is

p(xmis|xobs, A) =

∫
Θ

p(xmis|xobs, A,Θ)p(Θ|xobs, A)dΘ, (3.4)
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where p(Θ|xobs, A) ∝ π(Θ)p(xobs, A|Θ). A standard way to draw samples from the

posterior predictive distribution is to use Gibbs sampler that iteratively draws Θ and

Xmis. Under standard regularity conditions, the Markov chain is ergodic and has

limiting distribution p(xmis,Θ|xobs, A) (Geman and Geman, 1984).

We modify the Gibbs sampling procedure in order to compare to the iterative impu-

tation framework. Let x(k−1) be the entire dataset with both observed and imputed

values and Θ(k−1) be the parameter estimates at iteration k − 1 . At iteration k, the

Gibbs chain evolves as follows:

• Set x← x(k−1) and update the variables of x one at a time.

• For j = 1, ..., p, draw θR ∼ p(θR|xobsj , x−j) and xmisj ∼ p(xmisj |xobsj , x−j, A, θR, θ
(k−1)
A )

• Draw θA ∼ p(θA|x,A)

• Set x(k) ← x and Θk ← (θR, θA)

Under regularity conditions (Rosenthal , 1995), the Markov chain converges to the

posterior distribution of the corresponding model.

For iterative imputation, the user specifies p conditional regression models, denoted

as gj(xj|x−j, θj), with θj being the corresponding parameters with prior πj(θj), i =

1, ..., p. The iterative imputation scheme can be described as follows:

• Set x← x(k−1) and update the variables of x one at a time.

• For j = 1, ..., p, draw θj ∼ pj(θj|xobsj , x−j), which is the posterior distribution of

θj with gj and πj, and xmisj ∼ pj(x
mis
j |xobsj , x−j, A, θj, θ

(k−1)
A )

• Draw θA ∼ p(θA|x,A)

• Set x(k) ← x and Θk ← (θR, θA)
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Notice that under the proposed framework, similar to (3.3), we have

pj(x
mis
j |xobsj , x−j, A, θj, θ

(k−1)
A ) ∝ gj(x

mis
j |xobsj , x−j, θj)p(A|xmisj , xobsj , x−j, θ

(k−1)
A )

We consider when the specified conditional regression models gj’s are compatible

with f . A set of condition models gj(xj|x−j, θj), θj ∈ Θj is said to be compatible with

f(x|θ), θ ∈ Θ if for all j, there exist a collection of surjective maps tj : Θ→ Θj such

that there exists θ ∈ Θ with gj(xj|x−j, θj) = f(xj|x−j, tj(θR)).

Let K1 and K2 denote the transition kernel of the Gibbs chain and the iterative

imputation chain respectively, νXobs1 and νXobs2 be their corresponding stationary dis-

tributions. Liu et al. (2013) showed that K1 and K2 are close to each other on a

large set An = {x : |Θ̂| < γ} where Θ̂ is the complete data maximum likelihood

estimator of the parameters and γ is a positive constant. Let K̃1 and K̃2 be the

transition kernel corresponding to K1 and K2 conditioning on An in the sense that

K̃j(ω,B) =
Kj(ω,B∩An)

Kj(ω,An)
, which means we restrict the update of the missing entries to

be inside An. Then with mild assumptions similar to those in Liu et al. (2013), which

are provided in the supplementary material, we have the following result.

Theorem III.1. Suppose the specified conditional models gj’s are compatible with a

joint model f , the iterative imputation chain and the Gibbs chain are positive Harris

recurrent and have unique stationary distribution νj such that νj(An) → 1 with suf-

ficiently large γ in probability as n → ∞. Further, K̃j are geometrically recurrent.

Then dTV (νXobs1 , νXobs2 )→ 0 in probability as n→∞.

The result suggests that under the assumptions, if the true underlying joint distribu-

tion of the covariates X is in the family of joint models that are compatible with the

specified conditional models, then as the sample size grows, the iterative imputation

Markov Chain will have stationary distribution converging to the stationary distribu-
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tion of the Gibbs chain of the Bayesian model where the underlying joint distribution

is used. This means we will have an imputation that is “consistent” as if we know

the underlying joint distribution.

3.4 Simulation studies

In this section we investigate the performance of the proposed method in simula-

tion studies under several different settings and compare with the widely used itera-

tive imputation method implemented in the MICE package (Buuren and Groothuis-

Oudshoorn, 2010). It should be mentioned that the main purpose of the simulation

study is to illustrate that through considering the network information, we may pro-

duce imputation with higher quality.

The simulation for imputing continuous variables proceeds as follows. We gener-

ate n=100, 200, and 400 and p = 5 dimensional continuous X from a multivariate

normal distribution with the covariance matrix in the form of (1− r)I + r11T where

r is set to 0.1, 0.3, and 0.5 to reflect different levels of correlation between the covari-

ates. The latent positions are generated i.i.d from a 3-dimensional normal distribution

with standard deviation 0.4. We fixed these generated covariates and latent positions

throughout the experiments. The latent space parameter α is set to -(1,1,1,1,1) so

that each variable contributes equally and if two nodes have similar covariates, they

are more likely to form an edge. The parameters b are generated from a uniform dis-

tribution with the mean set to control the overall edge probability to be close to 0.3,

0.55, and 0.1. Once the parameters are generated, the network is generated accord-

ing to the latent space model. We generate 20% missingness in the data matrix X

completely at random. We consider two possible initializations, one using the mean

imputation, the other using result from the MICE algorithm. For both MICE and

the proposed method, the user specified conditional distributions are set to be linear
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regression, as it is compatible to the true generating conditional distribution. For the

proposed method, we also consider a variant that only uses the network information

by setting λ = 0. After imputing the missing data using different methods, we com-

pute the mean squared error for each variable on the imputed entries. Each setting

is repeated 40 times and we calculate the mean over the replications. We provide

results on the first variable since the variables are equivalent.

Figure 3.1 shows the simulation results for imputing continuous variables. Over-

all, the proposed method outperforms its MICE counterpart which does not utilize

the network information. Panels (a)(c)(e) compare the cases when the correlation

between the covariates is mild but the edge density of the network varies. It suggests

that as the edge density increases, the improvement by including network information

increases. Panels (b)(c)(d) compare the cases when the edge density is fixed but the

correlation between the covariates varies. It shows that as the correlation increases,

the improvement by including network information decreases.

For discrete variables, we generate n=100, 200, and 400 and p = 4 dimensional

binary variables Y following the procedure in Cario and Nelson (1997). Specifically,

Yip|Wip, εip follows a logistic model with specified β that controls the marginal dis-

tribution of Y to be roughly balanced. Wip are generated iid normal and εip are iid

normal with mean 0 and covariance (1 − r)I + r11T where r is set to 0.3, 0.5, and

0.7 to form different levels of correlation between the generated covariates. We set

α to be 0.1, 0.2, and 0.3 to reflect weak, medium, and strong relations between the

generated network and the covariates. We set b to be fixed to control the overall edge

density of the network and generate the latent positions similar to the continuous

case. We generate 20% missingness in the data matrix Y completely at random. We

initialize using mode or MICE. For both MICE and the proposed methods, the user
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specified conditional distributions are set to be logistic regression. We also consider

a variant that only uses the network information. After imputing the missing entries,

our methods naturally provide a probability prediction for the missing entries. For

MICE, we refit a logistic regression to each variable using other variables as predic-

tors to obtain a probability prediction on the missing entries. We then compute the

area under the receiver operating characteristic curve (AUC) for each variable on the

missing entries. We provide results on the first variable.

Figure 3.2 shows the results for imputing discrete variables. The proposed method

performs better when the relation between the network and the covariates is strong.

Panels (a)(c)(e) compare the cases when the correlation between the covariates is mild

but the relation between the network and the covariates varies. It can be seen that

the improvement of utilizing network information becomes larger as the relation is

stronger. Panels (b)(c)(d) compare the cases when the strength of network informa-

tion is fixed, but the correlation between the variables varies. When the correlation

between the covariates becomes larger, the improvement of using network information

becomes smaller.

Lastly, we test the case when the network is irrelevant. For this set of simulation,

we use the same setting as in the simulation for continuous variables, except that the

network is now generated from an Erdos-Renyi random graph model with probability

0.3, 0.5, and 0.7, which is independent of the covariates.

Figure 3.3 shows the results when the network is irrelevant. It can be seen that

except for the method that only uses the network information and initializes with the

mean imputation, the proposed methods do not suffer much in comparison to MICE

even though the network is irrelevant.
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Figure 3.1: Imputation results for continuous variable
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Figure 3.2: Imputation results for binary variables
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Figure 3.3: Imputation results for continuous variables when network is irrelavent
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3.5 Data example

In this section, we use a data example to illustrate the potential benefit of using

network information for missing value imputation. The data set consists of the so-

cial relationship network among members of the Provisional Irish Republican Army

(PIRA) from 1970 to 1998 (Gill et al., 2014). The whole study is divided into 6 pe-

riods, which are grouped into 5 data sets by periods 1, 2, 3, 4&5, and 6. We used all

the data except for period 6 as it contains much fewer nodes comparing to previous

periods. The networks are undirected with nodes representing different people and

edges representing relationships between the nodes. The existence of an edge repre-

sents that the two people have at least one of the following relations: (i) involvement

in a PIRA activity together, (ii) friends before joining PIRA, (iii) blood relatives,

and (iv) married. The networks are sparse with average node degree between 1 and

2. The covariates we used include gender, age, marital status, attending university

or not, brigade memberships, and violent characteristics. Age is continuous and con-

tains missing entries, marital status and brigade memberships are categorical, and

the other variables are binary. Several other binary covariates related to role and

specific activities are not used as they are highly unbalanced and may be mutually

exclusive in nature.

A basic summary of the PIRA network is shown in Table 3.1. To evaluate the per-

formances of our imputation algorithms, we randomly generated 20% missing entries

on the brigade memberships and violent characteristics, and imputed the data set

using the proposed method with MICE initialization. We used 3 as the dimension

of the latent space. We computed the area under the receiver operative curve for

the binary and categorical variables. For categorical variables, we used the multiclass

AuROC defined in Hand and Till (2001). We compared with the MICE imputation.

We repeated the process 20 times. The average result suggests that the proposed
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Period 1 2 3 4&5
Number of Nodes 334 260 526 367

Avg Degree 1.2 1.3 1.95 1.4

Table 3.1: Summary of the PIRA network

Period 1 2 3 4&5
Brigade NetMice 0.639(0.071) 0.742(0.078) 0.649(0.065) 0.683(0.053)
Violent NetMice 0.615(0.060) 0.639(0.070) 0.544(0.050) 0.547(0.046)
Brigade NetOnly 0.682(0.048) 0.726(0.086) 0.680(0.043) 0.712(0.068)
Violent NetOnly 0.556(0.060) 0.608(0.075) 0.530(0.038) 0.541(0.047)

Brigade Mice 0.520(0.048) 0.540(0.069) 0.591(0.054) 0.522(0.055)
Violent Mice 0.609(0.092) 0.598(0.088) 0.641(0.044) 0.549(0.042)

Table 3.2: AuROC of the imputation on the PIRA data set

method produces significantly better imputation in brigade, which is expected as

the variable is strongly related to the edges in the networks by the definition of the

edges. The imputation accuracy of the violent characteristic stays at a similar level

as MICE imputation for periods 1, 2, 4&5 but is poorer in period 3. We computed

the number of matches in violent characteristics over the connected pairs, only 63.4%

of the connected pairs had same violent characteristics in period 3, which did not

show strong homophily nor heterogeneity. According to Gill et al. (2014), period 3

had higher proportion of high-degree stars, suggesting a small group of leaders con-

nected and coordinated the brigades, and had a high proportion of membership based

cliques. These may suggest that the violent characteristics are not strongly associated

with the edges, which resulted in the relative poor performances in imputing violent

characteristics in period 3.
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3.6 Discussion

We used the squared distance to illustrate the method, but other choices of the

distance measure are also possible. An example is the Mahalanobis distance. In that

case, we have

auv = α(xu − xv)TΣ−1(xu − xv) + bu + bv + ZT
u Zv

∂

∂xu
=

∑
v:(u,v)∈E

2α(xu − xv)TΣ−1 −
∑
v

2ασ(auv)(xu − xv)TΣ−1 − 2λ(xu − x̂u)T

Then updating the first variable xu1, u ∈ M1 will utilize the first element of the ob-

tained gradient vector.

One limitation of the proposed framework is that the computational complexity will

depend on the choice of the network model as we need to estimate the model param-

eters during the updates. For the latent space model specifically, the computational

cost may grow as O(n2) where n is the number of nodes.

To summarize, we have proposed an iterative method for missing data imputation

with network information available. The method combines the flexible full conditional

specification in multivariate missing data imputation and the latent space network

model. The method has been illustrated in numerical experiments using both simu-

lation and real-world networks.
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CHAPTER IV

A Partially Edge Exchangeable Model with Node

Covariates

4.1 Introduction

Interaction networks are very common in modern data related to collaboration (Barabási

and Albert , 1999) and social relations (Opsahl and Panzarasa, 2009; Leskovec and

Mcauley , 2012). Many of the popular models are not well suited for modeling such

interaction networks. One set of models focus on analyzing the networks based on the

assumption that the nodes in the model are exchangeable, this includes the stochastic

block model (Holland et al., 1983), graphon models (Airoldi et al., 2013; Wolfe and

Olhede, 2013), etc. These models produce dense networks as the number of nodes

grows to infinity (Lloyd et al., 2012; Cai et al., 2016), which contradicts the fact

that most real-world networks are sparse. Other popular models such as exponential

random graph models do not have a clear sampling mechanism for interpreting the

formation of the network (Crane and Dempsey , 2018).

For the above mentioned consideration in modeling interaction networks, Cai et al.

(2016) and Crane and Dempsey (2018) developed the edge exchangeable framework

where the edges are the statistical units for modeling. On one hand, edge exchangeable
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models admit an interpretation in terms of edge sampling. Under edge exchangeable

models, the observed network is a result of an edge sampling process from a popula-

tion. This corresponds to the data collection procedure of many interaction networks.

For example, a paper citation network can be constructed by random sampling the

published papers. On the other hand, edge exchangeable models can produce sparse

networks as the network grows.

Crane and Dempsey (2018) proposed a simple parametric family of edge exchangeable

models called the Hollywood model. The Hollywood model is a generative procedure

that generates edges sequentially as follows: suppose n − 1 edges Y1, ..., Yn−1 have

already been generated, then

• first generate the number of nodes kn in the n-th edge from a distribution ν,

• then given kn, select kn nodes Yn,1, ..., Yn,kn sequentially according to

P (Yn,j = i|Y1, ..., Yn−1, Yn,1, ...Yn,j−1) ∝


Dn,j(i)− α, i = 1, 2, ..., Vn(j)

θ + αVn(j), i = Vn(j) + 1

(4.1)

where Dn,j(i) is the degree of node i, and Vn(j) the number of existing nodes, com-

puted at the time after the (j − 1)-th node of the n-th edge was chosen, and with

parameters α ∈ (0, 1) and θ > −α corresponding to a growing network. The Holly-

wood model exhibits some desired limiting properties as a network model including

sparsity and power law degree distribution with index (1+α) defined as follows (Crane

and Dempsey , 2018):

Definition IV.1. (Sparse networks) A sequence of network (Em)m≥1 is sparse as

m→∞ if

lim sup
m→∞

e (Em)

v (Em)m∗(Em)
= 0
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where e (En) is the number of edges, v (En) is the number of nodes, and m∗ (En)is the

average number of nodes in each edge in En.

Definition IV.2. (Power law) Let the degree distribution of a network E be defined

as d(E) = (Nk(E)/v(E))k≥1, where Nk(E) is the number of nodes with degree k and

v(E) is the total number of nodes in E . A sequence of networks (Em)m≥1 has power

law degree distribution with index γ, if for some slowly varying function `(x), that is,

limx→∞ `(tx)/`(x) = 1 for all t > 0,

lim
k→∞

lim
m→∞

dk (Em)

`(k)k−γ
= 1

for some slowly varying function `(k)

A specific example of sparse network sequence as in Definition IV.1 is when m∗(Em) =

2, which is the case when each edge contains 2 nodes. Then the network sequence

is sparse if the number of edges in the network grows slower than the quadratic of

number of nodes. In more general cases, the denominator v (Em)m∗(Em) is the rate at

which the total number of all possible edges grows as the number of nodes increases,

and the network sequence is sparse if the number of edges grows at a slower rate.

Despite the nice properties that the Hollywood model has, the process does not

consider additional information that may exist together with the network. Specifi-

cally, node covariates are often collected together with the network in real-world data.

Although incorporating covariates into network analysis is hard in general, some suc-

cessful attempts existed, see for example Binkiewicz et al. (2017), Mariadassou et al.

(2010), Zhang et al. (2016), and Sweet (2015); Hoff et al. (2002). However, to the

best of our knowledge, there is no existing literature that attempts to consider node

covariates information under edge exchangeable models. In practice, it is natural to

63



believe that a node’s covariates may be related with the interactions that the node

makes. For example, in a social network, a person may be more likely to chat with a

person who is humorous. Such kind of relation is not well captured in the Hollywood

model, where whether a node is likely to make new interactions or not depends only

on its degree.

A main difficulty of considering the covariates under edge exchangeable models is

that the edge exchangeability can be broken due to the involvement of covariates.

One may ask the question: to what extent can we preserve the edge exchangeability

structure with covariates taking into consideration and what is the interpretation in

terms of sampling. In this paper, we attempt to address the question by developing

a model that incorporates covariates and partially preserves the edge exchangeabil-

ity. We describe the model and its properties in Section 4.2, establish an estimation

algorithm in Section 4.3. Simulation studies and a data example are provided to

demonstrate the proposed model in Sections 4.4 and 4.5 respectively.

4.2 Model setup

We introduce a new model that incorporates node covariates based on the canonical

Hollywood model. Let ν be a distribution on positive integers with probabilities

ν1, ν2, .... We generate edges Y1, Y2, ... as follows. Suppose n − 1 edges have already

been generated and we are generating the n-th edge. First we draw the number of

nodes kn in the next edge from ν, independently. Then we draw the kn nodes denoted

Yn,1, ..., Yn,kn one at a time according to the following probability:

P (Yn,j = i|Y1, ..., Yn−1, Yn,1, ...Yn,j−1) ∝


Dn,j(i)− α + eβXi , i = 1, 2, ..., Vn(j)

θ + αVn(j) +
∑Vn(j)
k=1 eβXk

Vn(j)
, i = Vn(j) + 1

(4.2)
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where Dn,j(i) is the degree of node i, and Vn(j) is the number of existing node, com-

puted at the time after the (j − 1)-th node of the n-th edge was chosen. α ∈ (0, 1)

and θ > −α are parameters. One notable difference from the canonical Hollywood

model is that now each node i has an “attractive” score related to its covariates given

by the term eβXi , and the node i is more likely to be chosen when edges are generated

if it has a higher score. The term
∑Vn(j)
k=1 eβXk

Vn(j)
is an average score of all the nodes in

the network, and the probability that new nodes would join the network will depend

on this average score. It is also noticeable that the effect of the covariates diminishes

as the degree of a node grows and the total number of nodes in the network grows.

The interpretation of the parameters β largely relies on the sign. A positive β sug-

gests that the corresponding covariate is positively correlated with whether a person

is likely to make a new connection.

A real-world example that may exhibit the effect described above is a social network

where a node represents a person and edges represent interactions between people.

When a person first joins the social network, whether he or she is likely to make new

interactions highly depends on his or her own characteristics, e.g. whether he or she

plays sports. If a person has already made many interactions, suggesting he or she

is highly active and well-known in the network, the effect of his or her characteristics

may not have much impact on whether he or she will make new interactions in com-

parison to someone who is new to the network. Similarly, when the social network is at

its initial stage, how likely a person would like to join the network may depend on who

are already in the network and how attractive they are, while when there are already

many people in the network, a person may no longer consider who are in the network.

Because the model depends on the covariates of the nodes that are currently in-

volved in the network, the edge exchangeability is broken whenever a new node joins
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the network. However, it can be shown that the edges generated between the time

after one new node joins, to the time when next new node joins, are exchangeable.

Formally, suppose at each time point when a new node is introduced into the network,

we observe a snapshot. Denote the snapshots E1, E2, ..., Em at the time when a new

node joins such that Es has s− 1 nodes for s < m, with E1 being an empty network.

We do not model the distribution of the covariates X. Then we have the following

conditional probability for s < m:

P (Es|Es−1, X1, ..., Xs−1) =
∏
k≥1

ν
Mk(Es\Es−1)
k ×

∏s−1
i=1

∏DEs (i)−1

j=DEs−1
(i)(e

βXi − α + j)∏m(Es)−1
i=m(Es−1)(

∑s−1
k=1 e

βXk s
s−1

+ θ + i)
×

θ + (s− 1)α +
∑s−1
k=1 e

βXk

s−1∑s−1
i=1 e

βXi s
s−1

+m(Es) + θ

(4.3)

where DEs(i) counts the degree of node i in snapshot Es, m(Es) counts the total degree

of the snapshot Es, and Mk(Es\Es−1) counts the number of k-node edges in snapshot

Es that is not in Es−1. It could be seen that this conditional probability depends on the

network only through DEs(i), DEs−1(i), m(Es−1), m(Es), and Mk(Es\Es−1). These are

quantities that do not depend on the labeling of the edges between the two snapshots.

Thus we have the following:

Proposition IV.3. The edges generated between any two consecutive snapshots Es−1

and Es are exchangeable.

An interpretation of this exchangeability from a sampling perspective is as follows:

the population of edges changes slightly when a new node joins the network, and

the edges we observe between two consecutive new nodes are representative of the

population of edges during the period.

It should be mentioned that although theoretically there is no restriction to the

parameters β and covariates X as long as they are bounded, in practice we may need
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to standardize X and restrict the range of β so that the term exp(βX) does not

dominate the probability. Also, a special case of the model is when β = −∞, where

the Hollywood model is recovered.

The proposed model shows sparsity as the network grows, which is a desired property

for network models as real-world networks are often sparse. This properties is similar

to what the Hollywood model exhibits. Specifically, we can show the following result:

Proposition IV.4. Let E1, ..., En, ... be a sequence of networks generated following

the proposed model as in (4.2) labeled by the number of nodes, with ν = 1, and n is

number of nodes in the network. Assuming the covariate Xi and the parameter β are

bounded, we have that the expected total degree E(m(En)) grows at a rate at least n
1
α ,

but satisfies E(m(En)) = O(n
1
α ) as n→∞.

This result suggests that the proposed model generates networks that are at least as

dense as the Hollywood model with parameter α, but has the same sparsity level as

the Hollywood model with parameter α in the limit. Then following the definition of

sparse networks in definition IV.1, we have

Corollary IV.5. The model described in 4.2 generates sparse networks if E(ν)α > 1.

4.3 Estimation

Based on the conditional likelihood (4.3), the joint likelihood is

P (E1, E2, ...Es) = P (E1)
s∏
i=2

P (Ei|Ei−1)
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with P (E1) = 1. Thus, the log-likelihood is given by

`(ν, α, β, θ;X, E1, ...Es) =
∑
k≥1

Mk(Es) log νk

+
s−1∑
i=1

DEs (i)−1∑
j=1

log(eβXi − α + j)−
s∑

m=2

m(Em)−1∑
j=m(Em−1)+1

log(
m−1∑
k=1

eβXk
m

m− 1
+ θ + j)

+
s−1∑
m=2

log

[
θ + (m− 1)α +

m−1∑
k=1

eβXk
1

m− 1
)

]
−

s−1∑
m=2

log

[
m−1∑
k=1

eβXk
m

m− 1
+ θ +m(Es)

]

The maximum likelihood estimator of νk is straightforward, given by computing the

frequency of k-node edges in the network. To estimate parameters α, β, and θ, we

use a block-coordinate descent approach. The gradients for β, α, and θ are as follows:

∂`

β
=

s−1∑
i=1

DEs (i)−1∑
j=1

Xie
βXi

eβXi − α + j
−

s∑
m=2

m(Em)−1∑
j=m(Em−1)+1

∑m−1
k=1 Xke

βXk m
m−1∑m−1

k=1 e
βXk m

m−1
+ θ + j

+
s−1∑
m=2

∑m−1
k=1 Xke

βXk 1
m−1

θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1

−
s−1∑
m=2

∑m−1
k=1 Xke

βXk m
m−1∑m−1

k=1 e
βXk m

m−1
+ θ +m(Es)

∂`

α
=

s−1∑
i=1

DEs (i)−1∑
j=1

−1

eβXi − α + j
+

s−1∑
m=2

m− 1

θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1

∂`

θ
= −

s∑
m=2

m(Em)−1∑
j=m(Em−1)+1

1∑m−1
k=1 e

βXk m
m−1

+ θ + j

+
s−1∑
m=2

1

θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1

−
s−1∑
m=2

1∑m−1
k=1 e

βXk m
m−1

+ θ +m(Es)

Further, the Hessian can be derived and the elements are listed as follows. In practice,

the Hessian can be used to construct to estimate the standard error of the maximum

likelihood estimates by taking the diagonal of the inverse negative Hessian, which is
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the observed Fisher information matrix.

∂2`

∂β2
=

s−1∑
i=1

DEs (i)−1∑
j=1

XiX
T
i e

βXi(−α + j)

(eβXi − α + j)2
−

s∑
m=2

m(Em)−1∑
j=m(Em−1)+1

∑m−1
k=1 XkX

T
k e

βXk m
m−1

(θ + j)

(
∑m−1

k=1 e
βXk m

m−1
+ θ + j)2

+
s−1∑
m=2

∑m−1
k=1 XkX

T
k e

βXk 1
m−1

(θ + (m− 1)α)

(θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1
)2
−

s−1∑
m=2

∑m−1
k=1 XkX

T
k e

βXk m
m−1

(θ +m(Es))
(
∑m−1

k=1 e
βXk m

m−1
+ θ +m(Es))2

∂2`

∂β∂α
=

s−1∑
i=1

DEs (i)−1∑
j=1

Xie
βXi

(eβXi − α + j)2
−

s−1∑
m=2

∑m−1
k=1 Xke

βXk

(θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1
)2

∂2`

∂β∂θ
=

s∑
m=2

m(Em)−1∑
j=m(Em−1)+1

∑m−1
k=1 Xke

βXk m
m−1

(
∑m−1

k=1 e
βXk m

m−1
+ θ + j)2

−
s−1∑
m=2

∑m−1
k=1 Xke

βXk 1
m−1

(θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1
)2

+
s−1∑
m=2

∑m−1
k=1 Xke

βXk m
m−1

(
∑m−1

k=1 e
βXk m

m−1
+ θ +m(Es))2

∂2`

∂α2
=

s−1∑
i=1

DEs (i)−1∑
j=1

−1

(eβXi − α + j)2
−

s−1∑
m=2

(m− 1)2

(θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1
)2

∂2`

∂α∂θ
= −

s−1∑
m=2

(m− 1)

(θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1
)2

∂2`

∂θ2
=

s∑
m=2

m(Em)−1∑
j=m(Em−1)+1

1

(
∑m−1

k=1 e
βXk m

m−1
+ θ + j)2

−
s−1∑
m=2

1

(θ + (m− 1)α +
∑m−1

k=1 e
βXk 1

m−1
)2

+
s−1∑
m=2

1

(
∑m−1

k=1 e
βXk m

m−1
+ θ +m(Es))2

However, since the likelihood is non-convex, the resulting Hessian may not be invert-

ible, or the observed Fisher information matrix may have negative diagonal elements.
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In that case, we may perform a parametric bootstrap procedure to obtain an estimate

of the variance in the maximum likelihood estimates.

For parametric bootstrap, we generate B∗ new networks based on the model with

the estimated parameters, and when a new node is introduced into the network, we

randomly sample its covariates by sampling one node’s covariates from the observed

nodes. We then estimate the parameters for all the B∗ generated networks, and con-

struct bootstrap confidence intervals for parameters by the quantiles of the parameter

estimates in the B∗ replications.

4.4 Simulation studies

The simulation studies are divided into two parts. The first part illustrates the the-

oretical properties of the proposed model as the network grows, and the second part

shows the performance of parameter estimation.

Figure 4.1 shows the relationship between the number of nodes and the total degree

of the network on log-log scale for networks generated from the proposed model. For

this set of simulations, we set θ=1, α= 0.3, 0.5, and 0.7. We generated 3-dimensional

covariates, each from U(0, 1) distribution independently, and β was generated from

the standard normal distribution. We generated 40 different networks under each

setting with 216 edges, with ν ≡ 2. We make the plot using the maximum, mini-

mum, and median number of nodes of the generated networks when the number of

edges in the networks are 2k, k = 3, 4, ..., 16. We also plot a line with slope equal to α.

The result suggests that as the network grows, the log number of nodes and the

log number of edges follows a linear relationship with the slope close to α, which

confirms our result in Proposition IV.4.
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Figure 4.1: log(nnodes) vs log(nedges)
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Figure 4.2 plots the log proportion of nodes with degree k on log(k), with a solid

line with slope −(1 + α). The result suggests that the network generated from the

proposed model may obey a power law with index α + 1 according to the definition

IV.2.

Next we show results of simulation studies for parameter estimation. We set α=0.3,

0.5, and 0.7, θ=0 and 10, and we also set ν ≡ 2, β = (1, 1,−1). Again, 3-dimensional

covariates were generated from U(0, 1) independently. The number of edges were set

to be 2500, 5000, and 10000. For each of the settings, we generated 40 networks

and estimated the parameters. We computed mean of the estimates, mean of the

standard errors obtained from the diagonal of the inverse negative Hessian at the

estimates, and the proportion that the interval constructed with the estimate ± 2

standard error covered the true parameter. We reported the proportion of the times

when the standard error estimate was invalid due to that the Hessian was not in-

vertible or produced negative diagonal elements in the observed Fisher information

matrix. Table 4.1 shows the estimation results for α, β1, β3, and θ when α = 0.5 and

θ = 10. The result for β2 is not shown as it is similar to β1. The parameter estimates

for this parameter setting were accurate, and only a few cases had invalid standard

error estimates from the observed Fisher information matrix. As the number of edges

increases, the standard error estimate decreases. Table 4.2 show the results when

α = 0.3 and θ = 10. In comparison to the results with true α = 0.5, there were

more invalid standard error estimates for β1 and β3, suggesting that we may need the

bootstrap approach for estimation of the standard error of the estimates when α is

small. Results of the other parameter settings are given in the appendix.
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(a) α = 0.3

(b) α = 0.5

(c) α = 0.7

Figure 4.2: log(proportion) vs log(degree)
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mean(nnodes) mean(α̂) mean(σ̂α̂) coverage invalid
2500 221.0 0.489 0.066 0.925 0.025
5000 314.5 0.494 0.050 0.975 0.025

10000 445.5 0.494 0.038 0.975 0.025

mean(nnodes) mean(β̂1) mean(σ̂β̂1) coverage invalid

2500 221.0 1.004 0.244 0.925 0.025
5000 314.5 1.003 0.189 0.975 0.000

10000 445.5 1.024 0.147 0.925 0.025

mean(nnodes) mean(β̂3) mean(σ̂β̂3) coverage invalid

2500 221.0 -1.011 0.335 0.925 0.075
5000 314.5 -0.972 0.254 0.950 0.025

10000 445.5 -0.988 0.210 0.975 0.025

mean(nnodes) mean(θ̂) mean(σ̂θ̂) coverage invalid
2500 221.0 11.034 4.942 1.000 0.000
5000 314.5 10.784 4.455 1.000 0.000

10000 445.5 10.790 4.130 1.000 0.000

Table 4.1: Estimate when true α = 0.5, θ = 10

mean(nnodes) mean(α̂) mean(α̂) coverage invalid
2500 127.7 0.283 0.088 0.875 0.025
5000 164.2 0.284 0.062 0.900 0.000

10000 210.5 0.292 0.044 0.900 0.025

mean(nnodes) mean(β̂1) mean(σ̂β̂1) coverage invalid

2500 127.7 0.966 0.385 0.725 0.225
5000 164.2 0.964 0.308 0.850 0.150

10000 210.5 0.975 0.208 0.725 0.250

mean(nnodes) mean(β̂3) mean(σ̂β̂3) coverage invalid

2500 127.7 -0.949 0.644 0.650 0.275
5000 164.2 -0.971 0.415 0.750 0.200

10000 210.5 -0.973 0.292 0.650 0.300

mean(nnodes) mean(θ̂) mean(σ̂θ̂) coverage invalid
2500 127.7 11.097 4.735 0.925 0.00000
5000 164.2 11.131 4.204 0.925 0.00000

10000 210.5 10.740 3.601 0.925 0.00000

Table 4.2: Estimate when true α = 0.3, θ = 10
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Figure 4.3: Full Enron email network, log(nnodes) vs log(degreetotal)

4.5 Data example

In this section, we illustrate the use of the propose model on the Enron email network.

The Enron email network collected the information about email interactions between

184 people who were affiliated with Enron. Each email could have one sender and

multiple receivers. We assumed that one sender can only send one email at a specific

time point, and a person joins the email network at the time they first appeared as

a sender or receiver. Then we treated emails as edges and people as nodes. Each

person was categorized into one of the following roles: Employee, Trader, Manager,

Director, Vice President, President, and CEO. We used Employee as the baseline and

construct 6 binary variables to indicate the role of a person. These variables were

used as the covariates.
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Figure 4.4: Enron email network before 2001, log(nnodes) vs log(degreetotal)

Figure 4.3 plots the log(nnodes) against log(degreetotal) for the full Enron email net-

work. We notice that there is a gap towards the right end of the plot, which corre-

sponds to 2001 when the scandal of Enron broke out and may indicate a structural

change in the network. Thus we removed that part of data and only focus on emails

before 2001.

Figure 4.4 plots the log(nnodes) against log(degreetotal) for the Enron email network

before 2001, and a simulated network using the parameter estimates from fitting the

proposed model to the network. Table 4.3 shows the result of the estimated parame-

ters and bootstrap confidence intervals from 40 bootstrap replications for the Enron

email network. The result suggests that while CEO is not, people with role being

Trader, Manager, Director, Vice President and President are more likely to be in-

volved in email interactions comparing to Employee. The large θ value and small α
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value suggest that the number of nodes of the network grows fast at the beginning

of the network generation, and grows slowly when the total degrees in the network is

large, which can also be seen from Figure 4.4.

T M D VP P CEO α θ
est 2.830 2.010 1.761 1.720 1.149 1.200 0.001 18.976

bootstrap 5% 2.632 1.767 1.596 1.583 0.441 -0.059 0.001 13.888
bootstrap 95% 3.039 2.165 1.928 1.854 1.658 1.895 0.072 21.070

Table 4.3: Estimates for Enron network, T:Trader, M: Manager, D: Director, VP/P:
Vice President/President

For comparison, we also fitted the Hollywood model to the data, which gives esti-

mated α̂Hollywood = 0.001 and θ̂Hollywood = 18.17. We computed a BIC type criterion

using −2l̂ + log(nedges)k where l̂ is the fitted log-likelihood and k is the number of

parameters. The result is BICHollywood = 436065.2 while the criterion for the pro-

posed model is BICproposed = 435578.4, suggesting that the proposed model might be

a better fit to the data.

4.6 Discussion

In summary, we have proposed a network model that can incorporate covariate infor-

mation in the edge exchangeable framework. We discussed the exchangeability of the

model and its interpretation. We showed the sparsity of the model and illustrated a

power law behavior using simulation studies. We have developed an accurate estima-

tion algorithm for the model and demonstrated its performance through simulation

studies and a data example.
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APPENDIX A

Appendix for Chapter II

A.1 Proof of Theorem II.1

Without loss of generality we assume γ ∈ (0, 1
2
) and a > b. It can be checked that

the same argument holds for γ ∈ (1
2
, 1) with b > a, while only switching the estimated

label is needed for the other two cases. Thus a valid estimate of (â, b̂) should satisfy

â > b̂.

With the R(e), B̃, we have

ψ̂11(e) = ψ̂22(e) = γ
â

â+ b̂
+ (1− γ)

b̂

â+ b̂

ψ̂12(e) = ψ̂21(e) = γ
b̂

â+ b̂
+ (1− γ)

â

â+ b̂

and since γ ∈ (0, 1
2
), â > b̂, we have ψ̂11(e) < ψ̂12.

Consider a node in community 1, in the directed case, we have ĉi(e) = 1 if

b̃i1(e) log
ψ̂11(e)

ψ̂21(e)
+ b̃i2(e) log

ψ̂12(e)

ψ̂22(e)
> β̂Xi
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Rearranging we get ĉi(e) 6= 1 implies

b̃i1(e)− b̃i2(e) ≥ β̂Xi

[
log

ψ̂11(e)

ψ̂21(e)

]−1

Define ξ̃i(σ(e)) =
∑n

j=1 Ãijσj(e) where σj(e) =


1, ej = 1

−1, ej = 2

.

Then ĉi(e) 6= 1 if ξ̃i(σ(e)) ≥ β̂Xi

[
log ψ̂11(e)

ψ̂21(e)

]−1

= β̂XiC(γ). Further, we have

E((ξ̃i(σ)) =
∑
j∈S11

a

m
(1) +

∑
j∈S22

b

m
(−1) +

∑
j∈S21

a

m
(−1) +

∑
j∈S12

b

m
(1)

= (a− b)γ + (b− a)(1− γ) = −(1− 2γ)(a− b)

(A.1)

and

v := var[ξ̃i(σ(e))] =
n∑
j=1

var(Ãijσj) ≤
n∑
j=1

E(Ãij) = a+ b

Then by Bernstein inequality, if t/3 ≤ a+ b

P
[
ξ̃i(σ) ≥ E(ξ̃i(σ)) + t

]
≤ exp(− t2

2(v + t/3)
) ≤ exp(− t2

4(a+ b)
)

And plugging in the expectation given in (A.1) we get

P
[
ξ̃i(σ) ≥ −(1− 2γ)(a− b) + t

]
≤ exp(− t2

2(v + t/3)
) ≤ exp(− t2

4(a+ b)
) (A.2)

Let M̃n,1(e) := 1
m

∑m
i=1 1(ĉi(e) 6= 1) be the mismatch ratio for community 1. Also,

define Ñn,1(σ; r) =
∑m

i=1 1(ξ̃i(σ) ≥ ri) where r is an vector of size m with ri being its
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i-th element, we have

M̃n,1(e) =
1

m

m∑
i=1

1(ĉi(e) 6= 1) ≤ 1

m

m∑
i=1

1[ξ̃i(σ(e)) ≥ β̂XiC(γ)] =
1

m
Ñn,1(σ; β̂XC(γ))

(A.3)

Here we use a the compact notation β̂XC(γ) for the vector with the i-th element

β̂XiC(γ). And the inequality is due to treating the boundary case ξ̃i(σ(e)) = β̂XiC(γ)

as error.

We now bound Ñn,1(σ; β̂XC(γ)).

Define

pi(k) = P [ξ̃i(σ) ≥ k] , and p̄1(r) =
1

m

m∑
i=1

pi(ri)

Then we have the result that

P

[
1

m
Ñn,1(σ; r) ≥ eup̄1(r)

]
≤ exp(−emp̄1(r)u log u), u > 1/e (A.4)

by Lemma 5 of (Amini et al., 2013).

Recall |β̂Xi| ≤M , and we assumed that

m := (1− 2γ)(a− b)− |MC(γ)| ≥ 0

Then apply (A.2) by taking ti = (1 − 2γ)(a − b) − β̂XiC(γ), notice that we have

ti ≥ (1−2γ)(a−b)−|MC(γ)| ≥ 0 and by assumption ti ≤ (1−2γ)(a−b)+|MC(γ)| ≤

3(a+ b), so ti is valid and we shall have

p̄1(β̂XC(γ)) ≤ exp(− [mini(ti)]
2

4(a+ b)
) ≤ exp(− m2

4(a+ b)
)
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The cardinality of the set Eγ is
(
m
mγ

)2 ≤ exp(2m[h(γ) + κγ(2m)]) where h(p) =

−p log p − (1 − p) log(1 − p), p ∈ [0, 1] is the binary entropy function and κγ(2m) =

κγ(n) = o(1). Then by union bound and (A.4) we have

P

[
sup
σ∈Eγ

1

m
Ñn,1(σ; β̂XC(γ)) > eunp̄1(β̂XC(γ))

]
≤ exp{m[2h(γ) + 2κγ(n)− ep̄1(β̂XC(γ))un log un]}

(A.5)

Then take un such that un log un = 4h(γ)

ep̄1(β̂XC(γ))
and use n = 2m we have

P

[
sup
σ∈Eγ

1

m
Ñn,1(σ; β̂XC(γ)) >

4h(γ)

log un

]
≤ exp{−[h(γ)− κγ(n)]n}

The same bound holds for community 2 by symmetry and it follows that the mismatch

ratio M̃n(e) = 1
2
M̃n,1(e) + 1

2
M̃n,2(e) has the same bound. This completes the proof.

A.2 Proof of Theorem A.1

Recall |β̂Xi| ≤M , aγ = γa+ (1− γ)b, and we assumed that

2(1− ε)aγ ≤ ε(1− 2γ)(a− b), and m := (1− ε)(1− 2γ)(a− b) +MC(γ) ≥ 0

for some ε ∈ (0, 1). Then apply (A.2) by taking ti = (1 − 2γ)(a − b) − 2(1 + ε)aγ −

β̂XiC(γ), notice that ti ≥ (1 − ε)(1 − 2γ)(a − b) + MC(γ) ≥ 0 and by assumption

ti ≤ (1− 2γ)(a− b)−MC(γ) ≤ 3(a+ b), so ti is valid and we shall have

p̄1(β̂XC(γ)− 2(1− ε)aγ) ≤ exp(− [mini(ti)]
2

4(a+ b)
) ≤ exp(− m2

4(a+ b)
)

Define ξi(σ(e)) for the undirected case similarly as in the directed case with only Ãij

replaced by Aij, we will upper bound ξi(σ) in terms of ξ̃i(σ). Let Dij = Aij− Ãij ≥ 0,
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then

ξi(σ)− ξ̃i(σ) =
∑
j∈S1

Dij −
∑
j∈S2

Dij ≤
∑
j∈S1

Dij (A.6)

Further, Dij ≤ Ãij + Ãji. Define

Ãi∗(σ) =
∑
j∈S1

Ãij, Ã∗i(σ) =
∑
j∈S1

Ãji

we have

ξi(σ) ≤ ξ̃i(σ) + Ãi∗(σ) + Ã∗i(σ) (A.7)

We then apply Bernstein inequality to Ãi∗(σ), the same result holds for Ã∗i(σ) by

symmetry.

µ = E

[∑
j∈S1

Ãij

]
=
∑
j∈S11

a

m
+
∑
j∈S12

b

m
= aγ + b(1− γ) = aγ

and
∑

j∈S1
var(Ãij) ≤ µ, thus we get

P
[
Ãi∗(σ) > µ+ t

]
≤ exp(

t2

2(µ+ t/3)
)

Take t = εaγ we have

P
[
Ãi∗(σ) > (1 + ε)aγ

]
≤ exp(− ε2

1 + ε/3
aγ)

By (A.7) we have

ξi(σ) ≥ β̂XiC(γ) =⇒
(
ξ̃i(σ) ≥ β̂XiC(γ)− r

)
∨ (Ãi∗(σ) ≥ r

2
) ∨ (Ã∗i(σ) ≥ r

2
)
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where ∨ is logic OR operator. Then, using indicator representation,

1
[
ξi(σ) ≥ β̂XiC(γ)

]
≤ 1

[
(ξ̃i(σ) ≥ β̂XiC(γ)− r

]
+ 1

[
Ãi∗(σ) ≥ r

2

]
+ 1

[
Ã∗i(σ) ≥ r

2

]

Averaging over i ∈ C1 we have

1

m
Nn,1(σ; β̂XC(γ)) ≤ 1

m
Ñn,1(σ; β̂XC(γ)− r) +

1

m
Q̃n,1∗(σ;

r

2
) +

1

m
Q̃n,∗1(σ;

r

2
) (A.8)

where Nn,1(σ; r) is defined similar to Ñn,1(σ; r) but with ξ̃i(σ) replaced by ξi(σ). And

Q̃n,1∗(σ; t) =
∑m

i=1 1
[
Ãi∗(σ) ≥ t

]
, similarly for Q̃n,∗1(σ; t).

Let qi(r) = P (Ãi∗(σ) ≥ r
2
), q̄1(r) = 1

m

∑m
i=1 qi(r).

Then similar to (A.4) we have

P

[
1

m
Q̃n,1∗(σ; r/2) ≥ euq̄1(r)

]
≤ exp(−emq̄1(r)u log u), for u > 1/e (A.9)

The same bound holds for 1
m
Q̃n,∗1(σ; r/2). By combining the bounds on

1
m
Ñn,1(σ; β̂XC(γ)− r), 1

m
Q̃n,1∗(σ; r/2), and 1

m
Q̃n,∗1(σ; r/2), we obtain

P

[
sup
σ∈Σγ

1

m
Nn,1(σ; β̂XC(γ)) ≥ e[unp̄1(β̂XC(γ)− r) + 2vnq̄1(r)]

]
≤ P

[
sup
σ∈Σγ

1

m
Ñn,1(σ; β̂XC(γ)− r) ≥ eunp̄1(β̂XC(γ)− r)

]
+ 2P

[
sup
σ∈Σγ

1

m
Q̃n,∗1(σ; r/2) ≥ evnq̄1(r)

]
≤ exp{m[2h(γ)− ep̄1(β̂XC(γ)− r)un log un + 2κγ(n)]}

+ 2 exp{m[2h(γ)− eq̄1(r)vn log vn + 2κγ(n)]}

(A.10)

where un, vn > 1/e. Now take r = 2(1 + ε)aγ, we have q̄1(r) ≤ exp(− ε2

1+ε/3
aγ),

and p̄1(β̂XC(γ) − r) ≤ exp(− m2

4(a+b)
). Then we get the bound for mismatch ratio of
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community 1 Mn,1(e) by picking un, vn such that

un log un =
4h(γ)

ep̄1(β̂XC(γ)− r)
, vn log vn =

4h(γ)

eq̄1(r)

The same bound holds for Mn,2(e) using the same argument. And The proof is

finished by noting that Mn(e) = 1
2
(Mn,1(e) +Mn,2(e)).

A.3 Proof of Corollary A.2

β̂PL = arg max
β

1

n

[
n∑
i=1

1(ĉi(e) = 1)βXi − log(1 + βXi)

]
Notice that

1

n

[
n∑
i=1

1(ĉi(e) = 1)βXi − log(1 + βXi)

]
=

1

n

[
n∑
i=1

1(ci(e) = 1)βXi − log(1 + βXi)

]
+

1

n

n∑
i=1

1[ĉi(e)− ci(e)]βXi .

(A.11)

By assumption 1
n

∑n
i=1 1[ĉi(e) 6= ci(e)]

p→ 0, Xi bounded as |β̂Xi| < M where M is a

constant. Further, the MLE estimator of logistic regression

β̂MLE = arg max
β

1

n

[
n∑
i=1

1(ci(e) = 1)βXi − log(1 + βXi)

]

is consistent under regularity conditions, we have β̂PL is consistent.
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A.4 General directed case

We consider the case where K = 2 and B̃ = 1
n

a1 b

b a2

 = b
n

ρ1 1

1 ρ2

, with

ρ1, ρ2 > 1 and b scales with n.

Suppose we have initial estimates ρ̂1, ρ̂2, b̂, β̂, and initial labeling e, the labels are

estimated by

ĉi(e) = arg max
k∈{1,2}

{β̂kXi +
2∑

m=1

b̃im(e) log ψ̂km(e)} (A.12)

where ψ̂km are the elements of the row normalized matrix of Λ̃ = [nR(e)B̃]T and B̃ is

estimated by plugging in ρ̂1, ρ̂2, b̂. We further assume that the initial estimates have

ρ
k
≤ ρ̂k ≤ ρ̄k where {ρ

k
} and {ρ̄k} are bounds on the estimates ρ̂k, k = 1, 2.

Consider an initial labeling e = {ei} ∈ {1, 2}n that matches n1γ1 labels in commu-

nity 1 and n2γ2 labels in community 2, n1, n2 are the number of nodes are truly in

community 1 and community 2 respectively. We use Eγ1,γ2 do denote the collection

of all such labeling Another assumption is that the covariates X and initial estimate

β̂ should be bounded such that |β̂Xi| ≤ M where M is a constant satisfying some

technical conditions we will state.

Let M̃n(e) := minφ∈{(1,2),(2,1)}
1
n

∑n
i=1 1[ĉi(e) 6= φ(ci)] be the mismatch ratio for the

directed case, where φ is considering the fact that the labels are identified up to a

permutation. We will show a consistency result based on the convergence of this

mismatch ratio, which corresponds to the weak consistency definition. Under these

assumptions, the confusion matrix R =

 γ1π1 (1− γ2)π2

(1− γ1)π1 γ2π2

.

Define u(x) = (1−γ1)x+γ2τ
γ1x+(1−γ2)τ

, v(x) = u( 1
x
), F1(x, y) = log 1+u(x)

1+v(y)
and F2(x, y) = log 1+[u(x)]−1

1+[v(y)]−1

where τ = π2/π1

Let α1 := F1(ρ̄1, ρ̄2), β1 := F1(ρ
1
, ρ

2
), α2 := F2(ρ

1
, ρ

2
), β2 := F2(ρ̄1, ρ̄2).

Set α = (α1, α2), |α| = (|α1|, |α2|) and similarly for β.

Define z1,n,i := −[Λ̃α]1 + β̂Xi and z2,n,i = [Λ̃β]2 − β̂Xi, recall that we assume
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|β̂Xi| ≤M .

Theorem A.1. Assume γ1, γ2 ∈ (0, 1
2
),

m1 := −[Λ̃α]1 −M ≥ 0 and − [Λ̃α]1 +M ≤ 3[Λ̃|α|]1

m2 := [Λ̃β]2 −M ≥ 0 and [Λ̃β]2 +M ≤ 3[Λ̃|β|]2
(A.13)

Let C :=
∑2

i=1 πih(γi) and rn :=
∑2

i=1 πiκγi(2πin) where h(p) = −p log p − (1 −

p) log(1 − p), p ∈ [0, 1] is the binary entropy function, and κγ(n) := 1
n
[log n

4πγ(1−γ)
+

1
3n

] = o(1).

Then

P

[
sup

e∈Eγ1,γ2
M̃n(e) > 2C

2∑
k=1

1

log un,k

]
≤ 2 exp[−n(C − rn)]

where

log(un,1 log un,1) ≥ log
2C

eπ1

+
m2

1

4||α||∞[Λ̃|α|]1

log(un,2 log un,2) ≥ log
2C

eπ2

+
m2

2

4||β||∞[Λ̃|β|]2

A simpler result can be obtained following a same argument as Theorem 3 in

(Amini et al., 2013). If ρ1, ρ2 are large enough and γ1, γ2 satisfy some assumptions,

we can estimate ρ1, ρ2 by be infinity and still get consistency. Define KL-divergence

D(p||q) := p log p
q

+ (1− p) log 1−p
1−q . and D(γ1, γ2) = D(γ1||(1−γ2))

D((1−γ2)||γ1)
.

Corollary A.2. Assume that we start with ρ̂1 = ρ̂2 = ∞ and arbitrary b̂. Assume

γ1, γ2 satisfy

τ

ρ1

(1 + ε) ≤ D(γ1, γ2) ≤ (1− ε)ρ2τ (A.14)

for some ε ∈ (0, 1). Then for b ≥ 2ε−1 M
π1τ(ρ2∧1)D((1−γ2)||γ1)

, we have

P

[
sup

e∈Eγ1,γ2
M̃n(e) > 2C

2∑
k=1

1

log un,k

]
≤ 2 exp[−n(C − rn)]
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where

log(un,k log un,k) ≥ log
2C

eπk
+ bπ1

ε2Ck
16C0

D((1− γ2)||γ1), k = 1, 2

where C1 = τ2

ρ1D(γ1,γ2)+τ
, C2 =

ρ22τ
2

ρ1D(γ1,γ2)+τ
,

and C0 = max | log((1− γ2)/γ1)|, | log(γ2/(1− γ1))|.

Remark A.3. The corollary suggest that if the parameters ρi, πi, γi, i = 1, 2 are con-

stant that does not scale with n while b → ∞, the estimate start with ρ̂1 = ρ̂2 = ∞

is consistent as long as the assumption (A.14) is satisfied. Regarding the assumption,

if we fix γ1, γ2 and τ , then the inequality can be satisfied by increasing ρ1 and ρ2.

A.4.1 Proof of Theorem A.1

The proof is mainly based on (Amini et al., 2013) Proposition 1.

Let Cl = i : ci = l and Sl = i : ei = l, Skl = Sk ∩ Cl. n1 = |C1|, n2 = |C2|.

Initial label e satisfies that e matches γ1n1 labels in community 1 and γ2n2 labels in

community 2. Let

Eγ1,γ2 =

{
e ∈ {1, 2}n :

∑
i∈C1

1(ei = 1) = γ1n1,
∑
i∈C2

1(ei = 2) = γ2n2

}

be the collection of all such initial labeling

R = ( 1
n
|Skl|) =

 γ1π1 (1− γ2)π2

(1− γ1)π1 γ2π2

 where πi = |Ci|/n.

B̃ = 1
n

a1 b

b a2

 = b
n

ρ1 1

1 ρ2

, with ρ1, ρ2 > 1 and b scales with n. Then Λ̃ =

[nRB̃]T . We have initial estimate B̂ = b̂
n

ρ̂1 1

1 ρ̂2

 and by assumption, ρ
k
≤ ρ̂k ≤ ρ̄k
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where {ρ
k
} and {ρ̄k} are bounds on the estimate ρ̂k. Then

Λ̂ =

â1 b̂

b̂ â2


 γ1π1 (1− γ2)π2

(1− γ1)π1 γ2π2

 = b̂π1

ρ̂1γ1 + τ(1− γ2) ρ̂1(1− γ1) + τγ2

γ1 + τ ρ̂2(1− γ2) (1− γ1) + τ ρ̂2γ2



where τ = π2
π1

, then ψ̂ =

 λ̂11
λ̂11+λ̂12

λ̂12
λ̂11+λ̂12

λ̂21
λ̂21+λ̂22

λ̂22
λ̂21+λ̂22

.

u(x) = (1−γ1)x+γ2τ
γ1x+(1−γ2)τ

, v(x) = u( 1
x
), F1(x, y) = log 1+u(x)

1+v(y)
and F2(x, y) = log 1+[u(x)]−1

1+[v(y)]−1 .

Then we can check

ψ̂21

ψ̂11

=
1 + u(ρ̂1)

1 + v(ρ̂2)
= F1(ρ̂1, ρ̂2) and

ψ̂22

ψ̂12

= F2(ρ̂1, ρ̂2)

Assume γ1, γ2 ∈ (0, 1
2
), (1 − γ1)(1 − γ2) > γ1γ2. We will have u(x) is increasing on

(0,∞) and v(x) decreasing, then we will get

β1 := F1(ρ
1
, ρ

2
) ≤ log

ψ̂21

ψ̂11

≤ F1(ρ̄1, ρ̄2) =: α1

β2 := F2(ρ̄1, ρ̄2) ≤ log
ψ̂22

ψ̂12

≤ F2(ρ
1
, ρ

2
) =: α2

(A.15)

Further, let β̂ be the estimate of coefficient for logistic regression and assume that

for any initial labeling e ∈ Eγ1,γ2 , the corresponding β̂ has |β̂Xi| ≤ M where M is a

constant.

The conditional pseudo likelihood estimate of community label is defined as

ĉi(e) = arg max
k∈{1,2}

{β̂kXi +
2∑

m=1

b̃im(e) log ψ̂km(e)} (A.16)
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WLOG, we assume β̂2 = 0 and β̂1 = β̂. Consider a node i ∈ C1, then ĉi(e) = 1 if

b̃i1(e) log
ψ̂21(e)

ψ̂11(e)
+ b̃i2(e) log

ψ̂22(e)

ψ̂12(e)
< β̂Xi (A.17)

If ĉi(e) 6= 1, then LHS of (A.17) is ≥ β̂Xi and thus implies that α1b̃i1(e) + α2b̃i2(e) ≥

β̂Xi.

Define

σj(e) :=


α1, ej = 1

α2, ej = 2

Then α1b̃i1(e) +α2b̃i2(e) =
∑

j Ãijσj(e) =: ξ̃i(σ(e)). So we have that ĉi(e) 6= 1 implies

ξ̃i(σ(e)) ≥ β̂Xi.

Then the mismatch ratio over community 1 is

M̃n,1(e) :=
1

n1

∑
i∈C1

1(ĉi(e) 6= 1) ≤ 1

n1

∑
i∈C1

1(ξ̃i(σ(e)) ≥ β̂Xi) =:
1

n1

Ñn,1(σ; β̂X)

(A.18)

By Bernstein inequality, we have

P
[
ξ̃i(σ) ≥ E[ξ̃i(σ)] + t

]
≤ exp(− t2/2∑

j var(Ãijσj) + ||α||∞t/3
) (A.19)

where ||α||∞ := max{|α1|, |α2|} and |Ãijσj| ≤ ||α||∞.

Since i ∈ C1,

E[ξ̃i(σ)] =
∑
j

σjE(Ãij) =
2∑

k=1

2∑
`=1

∑
j

σjE(Ãij)1(j ∈ Sk`)

=
2∑

k=1

2∑
`=1

∑
j

αkB̃1`1(j ∈ Sk`)

= n

2∑
k=1

2∑
`=1

αkB̃`1
|Sk`|
n

= n[αTRB̃]1

(A.20)
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where [αTRB̃]1 is the first element of αTRB̃ and α = (α1, α2). Recall Λ̃ = [nRB̃]T so

n[αTRB̃] = (Λ̃α)T and we have E[ξ̃i(σ)] = [Λ̃α]1.

Similarly,

∑
j

var(Ãijσj) =
∑
j

σ2
j var(Ãij)

≤
∑
j

σjE(Ãij) ≤ ||α||∞
∑
j

|σj|E(Ãij) = ||α||∞[Λ̃|α|]1
(A.21)

where |α| = (|α1|, |α2|). Plug in (A.20)(A.21) to (A.19) we get

P
[
ξ̃i(σ) ≥ [Λ̃α]1 + t

]
≤ exp(− t2

2||α||∞([Λ̃|α|]1 + t/3)
)

Take ti = z1,n,i := −[Λ̃α]1 + β̂Xi, which is valid by assumption z1,n,i ≥ −[Λ̃α]1−M :=

m1 ≥ 0 and z1,n,i/3 ≤ [Λ̃|α|]1, we obtain

P
[
ξ̃i(σ) ≥ β̂Xi

]
≤ exp(−

z2
1,n,i

4||α||∞[Λ̃|α|]1
) ≤ exp(− m2

1

4||α||∞[Λ̃|α|]1
)

Let pi(r) := P
[
ξ̃i(σ) ≥ r

]
and p̄1(β̂X) = 1

n1

∑
i∈C1

pi(β̂Xi) Then by (Amini et al.,

2013) lemma 2 we have

P

[
1

n1

Ñn,1(σ; β̂X) ≥ eup̄1(β̂X)

]
≤ exp(−en1p̄1(β̂X)u log u), u > 1/e

And we have just obtained

p̄1(β̂X) ≤ exp(− m2
1

4||α||∞[Λ|α|]1
)
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Then we want to take a supremum over the set Eγ1,γ2 . By (Amini et al., 2013) lemma

6, the cardinality of the set Σγ1,γ2 := {σ(e) : e ∈ Eγ1,γ2} is

(
n1

γ1n1

)(
n2

γ2n2

)
≤ exp(

2∑
i=1

ni[h(γi) + κγi(2ni)]) = exp(n(C + rn))

where C =
∑2

i=1 πih(γi), rn =
∑2

i=1 πiκγi(2ni), h(p) = −p log p−(1−p) log(1−p), p ∈

[0, 1] is the binary entropy function, and κγ(n) = 1
n
(log n

4πγ(1−γ)
+ 1

3n
).

We then obtain

P

[
sup

σ∈Σγ1,γ2

1

n1

Ñn,1(σ; β̂X) > eunp̄1(β̂X)

]
≤ exp{n[(C + rn)− eπ1p̄1(β̂X)]un log un}

(A.22)

Pick un that un log un = 2C

eπ1p̄1(β̂X)
then

P

[
sup

σ∈Σγ1,γ2

1

n1

Ñn,1(σ; β̂X) >
1

π1

2C

log un

]
≤ exp{−n(C − rn)}

Next consider a node in community 2, i ∈ C2, similarly, ĉi(e) 6= 2 implies

b̃i1(e) log
ψ̂21(e)

ψ̂11(e)
+ b̃i2(e) log

ψ̂22(e)

ψ̂12(e)
≤ β̂Xi (A.23)

and thus implies β1b̃i1(e) + β2b̃i2(e) ≤ β̂Xi. Define

σj(e) :=


β1, ej = 1

β2, ej = 2

92



Then β1b̃i1(e) + β2b̃i2(e) =
∑

j Ãijσj(e) =: ξ̃i(σ(e)).

Then the miss match ratio over community 2 is

M̃n,2(e) :=
1

n2

∑
i∈C2

1(ĉi(e) 6= 2) ≤ 1

n2

∑
i∈C2

1(ξ̃i(σ(e)) ≤ β̂Xi) =:
1

n2

Ñn,2(σ; β̂X)

(A.24)

Then by Bernstein inequality and similar argument to that for community 1, we have

P
[
ξ̃i(σ) ≤ [Λ̃β]2 − t

]
≤ exp(− t2

2||β||∞([Λ̃|β|]2 + t/3)
)

Taking ti = z2,n,i := [Λ̃β]2 − β̂Xi, which is valid by assumption z2,n,i ≥ [Λ̃β]2 −M :=

m2 ≥ 0 , we get

P
[
ξ̃i(σ) ≤ β̂Xi

]
≤ exp(−

z2
2,n,i

4||β||∞[Λ̃|β|]2
) ≤ exp(− m2

2

4||β||∞[Λ̃|β|]2
)

Similarly define pi(r) and p̄2(β̂X) we have p̄2(β̂) ≤ exp(− m2
2

4||β||∞[Λ|β|]2 ) and choose

un log un = 2C

eπ2p̄2(β̂X)
and we get a similar bound for community 2

P

[
sup

σ∈Σγ1,γ2

1

n2

Ñn,2(σ; β̂X) >
1

π2

2C

log un

]
≤ exp{−n(C − rn)}

Last, putting the two classes together, the total mismatch is M̃n(e) := π1M̃1,n(e) +

π2M̃2,n(e) which completes the proof.

A.5 Proof of Corollary A.2

The proof is using the same argument as the proof for Theorem 3 in (Amini et al.,

2013), with minor modifications to the assumptions. Nonetheless, we repeat the proof

here for completeness.
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Define D(p||q) := p log p
q

+ (1− p) log 1−p
1−q . and D(γ1, γ2) = D(γ1||(1−γ2))

D((1−γ2)||γ1)

Assume τ
ρ1

(1− ε) ≤ D(γ1, γ2) ≤ (1− ε)ρ2τ , for some ε ∈ (0, 1).

Apply ρ̄i = ρ
i

= ∞, then u(∞) = (1 − γ1)/γ1, v(∞) = γ2/(1 − γ2), and α1 = β1 =

log((1− γ2)/γ1), α2 = β2 = log(γ2/(1− γ1)). Then

Λ̃α = Λ̃β = nB̃RTβ = bπ1

ρ1 1

1 ρ2


 γ1 (1− γ1)

(1− γ2)τ γ2τ


log((1− γ2)/γ1)

log(γ2/(1− γ1))


= bπ1

ρ1 1

1 ρ2τ


 γ1 (1− γ1)

(1− γ2) γ2


log((1− γ2)/γ1)

log(γ2/(1− γ1))


= bπ1

ρ1 1

1 ρ2τ


−D(γ1||(1− γ2))

D((1− γ2)||γ1))


(A.25)

Let L1 = D(γ1||(1 − γ2)), L2 = D((1 − γ2)||γ1). Then L1, L2 ≥ 0 by non-negativity

of KL-divergence and

[Λ̃α]1 = bπ1(−ρ1L1 + τL2), [Λ̃β]2 = bπ1(−L1 + ρ2τL2)

By assumption M
π1b
≤ 1

2
ετL2, then

m1

π1b
=
−[Λ̃α]1
π1b

− M

π1b
≥ ρ1L1 − τL2 −

ε

2
τL2

= L2[ρ1
L1

L2

− τ(1 + ε)] +
ε

2
τL2

≥ ε

2
τL2 ≥ 0

(A.26)
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On the other hand, since ε ∈ (0, 1)

−[Λ̃α]1
π1b

+
M

π1b
≤ ρ1L1 − τL2 +

ε

2
τL2 ≤ 3(ρ1L1 + τL2) = 3

[Λ̃|α|]1
π1b

Thus the condition that 0 ≤ z1,n,i ≤ 3 [Λ̃|α|]1
π1b

is satisfied. And we have

m2
1

[Λ̃|α|]1
= bπ1

[m1/(π1b)]
2

[Λ̃|α|]1/(π1b)
≥ bπ1

( ε
2
τL2)2

ρ1L1 + τL2

For community 2, a similar argument shows that the conditions are also satisfied and

since we assumed M
π1b
≤ 1

2
ερ2τL2. Then

m2

π1b
=

[Λ̃β]2
π1b

− M

π1b
≥ −L1 + ρ2τL2 −

ε

2
ρ2τL2

= L2(−L1

L2

+ ρ2τ(1− ε)) +
ε

2
ρ2τL2 ≥ 0

(A.27)

And similarly,

m2
2

[Λ̃|β|]2
= bπ1

[m2/(π1b)]
2

[Λ̃|β|]2/(π1b)
≥ bπ1

( ε
2
ρ2τL2)2

L1 + τρ2L2

Putting the pieces together and noting ||α||∞ = ||β||∞ = C0 finishes the proof.
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APPENDIX B

Appendix for Chapter III

B.1 Proof of Proposition III.1

We follow the proof of (Liu et al., 2013) and show a similar result under similar

assumptions.

Suppose we observed a network A with n nodes, and there are p covariates for each

node. The covariates are collected into n × p matrix X with variables xi. Denote

xmisi and xobsi the observed and missing subsets of variable i and let xmis = {xmisi , i =

1, 2, ..., p}, xobs = {xobsi , i = 1, 2, ..., p}. Further we use x−i to denote the variables ex-

cluding the i-th variable. Let Θ = (θR, θA) denotes all the model parameters, with θR

corresponds to the regression model and θA corresponds to the latent space network

model. We assume the missing data is at random throughout. Under the proposed

model, the likelihood could be decomposed into two parts

p(xmix|xobs, A,Θ) ∝ p(xmis, A|xobs,Θ)

= f(xmix|xobs, θR)p(A|xmis, xobs, θA)

(B.1)
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where f is the joint distribution of x. With a prior π(Θ), the posterior predictive

distribution is

p(xmis|xobs, A) =

∫
Θ

p(xmix|xobs, A,Θ)p(Θ|xobs, A)dΘ (B.2)

where p(Θ|xobs, A) ∝ π(Θ)p(xobs, A|Θ). A standard way to draw samples from the

posterior predictive distribution is to use Gibbs sampler with data augmentation

strategy that iteratively draw Θ and Xmis. Under standard regularity conditions, the

Markov chain is ergodic and has limiting distribution p(xmis,Θ|xobs, A) (**).

We modify the Gibbs sampling procedure in order to compare to the iterative imputa-

tion framework. Let x(k−1) and be the entire dataset with both observed and imputed

values, and Θ(k−1) be the parameter estimates, at iteration k− 1 . At iteration k, the

Gibbs chain evolves as follows

• Set x← x(k−1) and update the variables of x one at a time.

• For i = 1, ..., p, draw θR ∼ p(θR|xobsi , x−i) and xmisi ∼ p(xmisi |xobsi , x−i, A, θR, θ
(k−1)
A )

• Draw θA ∼ p(θA|x,A)

• Set x(k) ← x and Θk ← (θR, θA)

Under regularity conditions (***), the Markov chain converges to the posterior dis-

tribution of the corresponding model.

For iterative imputation, the user specifies p conditional regression models, denoted as

gi(xi|x−i, θi), with θi being the corresponding parameters with prior πi(θi), i = 1, ..., p.

The iterative imputation scheme can be described as follows.

• Set x← x(k−1) and update the variables of x one at a time.
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• For i = 1, ..., p, draw θi ∼ pi(θi|xobsi , x−i), which is the posterior distribution of

θi with gi and πi and xmisi ∼ pi(x
mis
i |xobsi , x−i, A, θi, θ

(k−1)
A )

• Draw θA ∼ p(θA|x,A)

• Set x(k) ← x and Θk ← (θR, θA)

Notice that under the proposed framework, similar to (B.1),

pi(x
mis
i |xobsi , x−i, A, θi, θ

(k−1)
A ) ∝ gi(x

mis
i |xobsi , x−i, θi)p(A|xmisi , xobsi , x−i, θ

(k−1)
A )

We first consider when the specified conditional regression models gi are compatible

with f . A set of condition models gi(xi|x−i, θi), θi ∈ Θi is said to be compatible with

f(x|θ), θ ∈ Θ if for all i, there exist a collection of surjective maps ti : Θ → Θi such

that there exists θ ∈ Θ with gi(xi|x−i, θi) = f(xi|x−i, ti(θR)).

When gi and f is compatible, the difference of the Gibbs sampling scheme and the it-

erative imputation scheme lies in the step of drawing parameters θR ∼ p(θR|xobsi , x−i)

and θi ∼ pi(θi|xobsi , x−i) as the distribution of the missing data given the parameters

are the same under the joint model f and iterative imputation models gi. The fol-

lowing results follow the same line of work by (Liu et al., 2013). We here restate the

important steps to accommodate the results to our setting for completeness.

As we are assuming compatibility, we may drop the notation gi and use the uni-

fied notation f . Specifically, we denote f(xi|x−i, θi) = f(xi|x−i, θR) for ti(θR) = θi.

To compare the posterior distribution of θR and θi, the first difference we should

notice is that the dimension of θR is higher. θR contains parameters describing both

the conditional distribution xi|x−i and the marginal distribution of x−i. Thus we aug-

ment the parameter space of iterative distribution to (θi, θ
∗
i ) with θ∗i = t∗i (θR), and
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Ti(θR) = {θi, θ∗i } is an invertible map. With this augmentation, the prior distribution

π on θR for the Bayesian model is equivalent to a prior on (θi, θ
∗
i ) with the following

form.

π∗i (θi, θ
∗
i ) = det(∂Ti/∂θR)−1π(T−1

i (θi, θ
∗
i ))

The posterior distribution for θi under the Bayesian model is

p(θi|xobsi , x−i) =

∫
p(θi, θ

∗
i |xobsi , x−i)dθ

∗
i ∝

∫
f(xobsi , x−i|θi, θ∗i )π∗i (θi, θ∗i )dθ∗i .

Since f(xobsi |x−i, θi, θ∗i ) = f(xobsi |x−i, θi), we can further reduce the posterior distribu-

tion to the following

p(θi|xobsi , x−i) ∝ f(xobsi |x−i, θi)
∫
f(x−i|θi, θ∗i )πi(θi, θ∗i )dθ∗i .

Denote the integral in the above formula as πi,x−i(θi), we have

p(θi|xobsi , x−i) ∝ f(xobsi |x−i, θi)πi,x−i(θi).

Recall for the iterative imputation, we have

pi(θi|xobsi , x−i) ∝ gi(x
obs
i |x−i, θi)πi(θi) = f(xobsi |x−i, θi)πi(θi).

The difference of the posterior depends only on the difference between the prior dis-

tributions πi,x−i and πi.

Lemma B.1. Let n be the sample size, let fX(θ) and gX(θ) that shares the same

likelihood but with different prior πg and πf . Let L(θ) = πg/πf , r(θ) = gX(θ)
fX(θ)

=

L(θ)∫
L(θ′)fX(θ′)dθ′

.
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Let ∂L(θ) be the partial derivative with respect to θ and let ξ be a random variable

such that

L(θ) = L(µθ) + ∂L(ξ)T (θ − µθ)

where µθ =
∫
θfX(θ)dθ. If there exists a random variable Z(θ) with finite variance

under fX such that

∣∣n1/2∂L(ξ)T (θ − µθ)
∣∣ ≤ |∂L (µθ)|Z(θ)

then there exists a constant κ > 0 such that for n sufficiently large,

∥∥∥f̃X − g̃X∥∥∥
1
≤ κ |∂ logL (µθ)|1/2

n1/4

The lemma states that when the ratio between the priors satisfies the condition, the

difference between the corresponding posterior predictive distribution vanishes as n

grows. The condition is satisfied for most parametric models on the following set Bn.

Let θ̂(x) the complete-data maximum likelihood estimator and let Bn = {x : |θ̂(x)| ≤

γ}. Specifically, it states that we are only interested in the area where the observed

data and the imputation is “valid” such that the MLE exists.

Thus we have shown that the transition kernels Gibbs chain and the iterative im-

putation chain are close on the region Bn. The subsequent step is to show that

conditioning on the set Bn, the stationary distributions ν̃Xobsi for the conditional pro-

cesses are close to that of the original processes νXobsi . Also, ν̃Xobs1 and ν̃Xobs2 are close

in total variation and thus are νXobs1 and νXobs2 .

We consider the chains conditional on the set Bn where the two transition kernels are
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close to each other. In particular, for any set C, let

K̃i(w,C) =
Ki (w,C ∩Bn)

Ki (w,Bn)

By this, we restrict the update of the missing data to Bn. Next Lemma B.2 shows that

the stationary distribution of the original chain and this corresponding conditional

chain are close.

Lemma B.2. Let Bn be in the form Bn = {x : |θ̂(x)| ≤ γ} and we pick γ sufficiently

large such that νXobsi (Bn) → 1 in probability as n → ∞. Let the defined conditional

chains following K̃i has invariant distribution ν̃i, then

lim
n→∞

dTV

(
νX

obs

i , ν̃Xobsi

)
= 0.

Then ‖K1(w, ·)−K2(w, ·)‖1vanishes uniformly for w ∈ Bn, this implies

lim
n→∞

∥∥∥K̃1(w, ·), K̃2(w, ·)
∥∥∥

1
= 0 uniformly for w ∈ Bn

. Then we need to show that dTV

(
ν̃X

obs

1 , ν̃X
obs

2

)
→ 0.

Lemma B.3. With

lim
n→∞

∥∥∥K̃1(w, ·), K̃2(w, ·)
∥∥∥

1
= 0 uniformly for w ∈ Bn

holds and suppose there exists a monotone decreasing sequence rt → 0 and a data

dependent starting distribution ν such that

pr
{∥∥∥K̃(t)

i (ν, ·)− ν̃Xobs

i (·)
∥∥∥

1
≤ rt, for all t > 0

}
→ 1, n→∞
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Then ∥∥∥ν̃Xobs

1 − ν̃Xobs

2

∥∥∥
1
→ 0, in probability as n→∞

The required condition can be established with a set of sufficient conditions according

to (Rosenthal , 1995): K̃1 and K̃2 admits a common small set C and each admits their

own drift function on C. A Gibbs chain admits a small set C and a drift function V

means that K̃1(ω,A) ≥ q1µ1(A) for some positive µ1 with ω ∈ C, q1 ∈ (0, 1); and for

some λ1 ∈ (0, 1) an for all ω /∈ C,

λ1V (w) ≥
∫
V (w′) K̃1 (w, dw′)

. Then Given K̃1 and K̃2 are close, the set C is also a small set for K̃2. Proposition 2

in (Liu et al., 2013) showed a weak conditions under which V is also a drift function

for K̃2 and thus the condition for lemma B.3 can be established.

Last, we summarize the results as follows: assuming the compatibility of the mod-

els gi with f , the Gibbs chain and the iterative imputation chain are constructed.

Lemma 1 provide conditions under which the distance between their posterior pre-

dictive distributions vanish. On the set Bn where the MLE is bounded, the distance

between the condition kernels K̃1 and K̃2 vanishes with the condition in lemma B.1.

Then with conditions in lemma B.3, we can show that the stationary distribution of

the conditional chains are close. Last, by lemma B.2, the stationary distribution is

close to the stationary distribution of the original chain. Combing the components,

we can conclude that the stationary distribution of the Gibbs chain and the iterative

imputation chain are close.
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APPENDIX C

Appendix for Chapter IV

C.1 Proof of Proposition IV.4 and corollary IV.5

We want to show that the network generated by the proposed model is asymptot-

ically sparse.

P (Yn,j = i|Y1, Y2, ..., Yn−1, Yn,1, ...Yn,j−1) ∝


Dn,j(i)− α + eβXi , i = 1, 2, ..., Vn(j)

θ + αVn(j) +
∑Vn(j)
k=1 eβXk

Vn(j)
, i = Vn(j) + 1

.

Let Ti be the degrees needed to the generation of next node, starting with 1 node in

the network, so that T1 is the degree needed to the second node. Let ri = exp(βXi),

and we assume ri ∈ (δ, C) with δ > 0 and C ≤ γδ for constant δ, γ, C. Then we can

write

P (T1 = 1) =
θ + α + r1

1 + θ + 2r1

P (T1 = k) =
θ + α + r1

k + θ + 2r1

(1− θ + α + r1

k − 1 + θ + 2r1

)...(1− θ + α + r1

1 + θ + 2r1

)
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Similarly we will have

P (T2 = 1|T1) =
θ + 2α + r1+r2

2

T1 + 1 + θ + 3(r1+r2)
2

and etc..

Let Sn = T1 + T2 + ...+ Tn + 1 we can write

P (Tn = 1|Sn−1) =
θ + nα +

∑n
i=1 ri/n

Sn−1 + θ + n+1
n

∑n
i=1 ri

When n > γ, we have

P (Tn = 1|Sn−1) ≤ (θ + C) + nα

Sn−1 + (θ + C)
=: P (TCRP,αn = 1|Sn−1)

, and similarly for P (Tn = k|Sn−1) , where TCRP,αn can be viewed as the degrees

needed to the next node for a standard Chinese Restaurant Process (CRP) with pa-

rameter α and θ + C. By standard results of CRP, SCRP,αn ∼ ( n
Sα

)
1
α almost surely,

where Sα is a positive and finite random variable(Pitman, 2006). Then we have that

Tn|Sn−1 � TCRP,αn |Sn−1 for any n, where � denotes stochastic dominance. Thus we

will have Sn � SCRP,αn as n→∞.

Next,

P (Tn = 1|Sn−1) ≥ θ + nα

Sn−1 + θ + C + nC
=: P (TmCRP,αn = 1|Sn−1)

, and similarly for P (Tn = k|Sn−1) where TmCRP,αn is defined for a modified Chinese

Restaurant process as follows, when there are (n− 1) existing nodes, select the next
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node with the following probability

∝


D(i)− α + C, i = 1, 2, ..., n− 1

θ + α(n− 1), i = n

. (C.1)

We can then define SmCRP,αn and we will have Sn ≺ SmCRP,αn . Then we look at the

upper bound of SmCRP,αn for the modified CRP. Notice for a standard CRP with

parameter α, θ, P (TCRP,αn = 1|Sn−1) = θ+nα
Sn−1+θ

, it could be seen that

E(SmCRP,α1 )− E(SCRP,α1 ) = E(TmCRP,α1 )− E(TCRP,α1 ) =
2C

α + θ

.

Then since

E(SmCRP,α2 ) = E(E(SmCRP,α2 |SmCRP,α1 )

and

E(SCRP,α2 ) = E(E(SCRP,α2 |SCRP,α1 )

, we have

E(SmCRP,α2 )− E(SCRP,α2 ) =
2C

(α + θ)(2α + θ)
+

3C

(2α + θ)

.

Then by deduction, we will have

E(SmCRP,αn )− E(SCRP,αn ) =
n∑
i=1

(i+ 1)C∏n
j=i(θ + jα)

.

Now, let N∗,M∗ > 2N∗ be positive integer constant such that θ + N∗α > 1 and

(θ + α)(θ +M∗α) > 1.
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Then we shall have when n > N∗,

(E(SmCRP,αn )− E(SCRP,αn ))− (E(SmCRP,αn−1 )− E(SCRP,αn−1 )) ≤ (N∗ + 1)C

N∗α

and thus when n > M∗,

(E(SmCRP,αn )− E(SCRP,αn )) ≤ 2Cn

α

Then since we know SCRP,αn ∼ ( n
Sα

)
1
α , when n > M∗ by Markov inequality

P (SCRP,αn > (
n

Sα−ε
)

1
α−ε ) ≤ E(SCRP,αn ) + 2Cn/α

( n
Sα−ε

)
1

α−ε
→ 0 (C.2)

Where ε is arbitrary small positive constant. Now for a CRP with parameter α − ε,

we will have

P (TCRP,α−εn = 1|SCRP,α−εn−1 ) =
θ + (n− 1)(α− ε)
SCRP,α−εn−1 + θ

and since (C.2), we have as n → ∞ SCRP,α−εN−1 ≥ SmCRP,α in probability. Then we

have

P (TCRP,α−εn = 1|SCRP,α−εn−1 ) ≤ θ + (n− 1)(α− ε)
Sn−1 + nC

=: P (Tn = 1|Sn−1)

And we can then establish Tn|Sn−1 � TCRP,α−εn |Sn−1 for n large enough and thus

Sn ≺ SCRP,α−εn . Then by standard result of CRP, we have ( n
Sα

)
1
α ≺ Sn ≺ ( n

Sα−ε
)

1
α−ε .

Then we have Sn = O( n
Sα

)
1
α , as n→∞.

Using the following definition of sparsity from Crane and Dempsey (2018): Let (En)n≥1

be a sequence of edge-labeled networks for which e (En)→∞ as n→∞. The sequence

(En)n≥1 is sparse if

lim sup
n→∞

e (En)

v (En)m∗(En)
= 0
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where m∗ (En) = e (En)−1∑
k≥1 kMk (En) is the average arity of the edges in En.

Following a similar argument to Theorem 4.3 in (Crane and Dempsey , 2018), the

network is sparse whenever µα > 1. Where µ is expected number of nodes in an

edge. For completeness, we restate the argument in the following.

We already established that ( n
Sα

)
1
α ≺ Sn ≺ ( n

Sα−ε
)

1
α−ε . Reversing the relationship

of number of nodes n and total degree Sn, let m be the total degree and Nm be the

number of nodes until we generated m unary edges, we shall obtain the result that

mα−ε ≺ Nm ≺ mα as n→∞. Then for arbitrary distribution ν with mean µ on the

number of nodes in each edge, the number of nodes v(En) is a random subsequence of

(Nm) with indices k1, k2, ... where ks =
∑s

i=1 κi and κi i.i.d from ν. Then v(En) = Nks

is bounded by kαs Sα and kα−εs Sα−ε as n → ∞. Then as ks
s
→ µ almost surely by

law of large numbers, we shall have (µn)α−ε ≺ Nks ≺ (µn)α. Then in order to have

sparsity, we need lim infn→∞
1
n
v(En)

m∗(En)
= ∞, then since m∗(En) → µ we will have

1
n
(µn)µ(α−ε)Sα−ε ≺ 1

n
v(En)

m∗(En) ≺ 1
n
(µn)µαSα. Thus En is sparse when µα > 1 as ε is

arbitrary small.

C.2 Additional simulation results for the estimation in Chap-

ter IV

By comparing the simulation results for α = 0.3, 0.5, 0.7 and θ = 0, 10, we can

conclude that it is more difficult to obtain accurate estimates and valid standard error

estimates for β from the observed fisher information when α is small and β is small.

One explanation for this phenomena is that when α is small and β is small, there

number of new nodes joining the network is small, and is thus harder to estimate the

covariates effects.
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mean(nnodes) mean(α̂) mean(σ̂α̂) coverage invalid
2500 375.6 0.685 0.061 0.950 0.000
5000 585.5 0.688 0.042 1.000 0.000

10000 925.1 0.696 0.030 1.000 0.000

mean(nnodes) mean(β̂1) mean(σ̂β̂1) coverage invalid

2500 375.6 1.013 0.178 0.975 0.000
5000 585.5 1.007 0.132 0.950 0.000

10000 925.1 1.008 0.099 0.975 0.000

mean(nnodes) mean(β̂3) mean(σ̂β̂3) coverage invalid

2500 375.6 -1.014 0.276 1.000 0.000
5000 585.5 -1.017 0.194 1.000 0.000

10000 925.1 -1.014 0.143 1.000 0.000

mean(nnodes) mean(θ̂) mean(σ̂θ̂) coverage invalid
2500 375.6 12.208 5.965 1.000 0.000
5000 585.5 12.188 5.369 1.000 0.000

10000 925.1 11.800 4.944 1.000 0.000

Table C.1: Estimation when true α = 0.7, θ = 10

mean(nnodes) mean(α̂) mean(σ̂α̂) coverage invalid
2500 85.5 0.446 0.088 0.900 0.050
5000 121.3 0.465 0.068 0.900 0.025

10000 174.6 0.484 0.051 0.925 0.000

mean(nnodes) mean(β̂1) mean(σ̂β̂1) coverage invalid

2500 85.5 1.019 0.473 0.725 0.225
5000 121.3 0.990 0.372 0.825 0.150

10000 174.6 1.005 0.262 0.900 0.075

mean(nnodes) mean(β̂3) mean(σ̂β̂3) coverage invalid

2500 85.5 -1.048 0.706 0.775 0.225
5000 121.3 -1.014 0.585 0.800 0.175

10000 174.6 -0.998 0.368 0.925 0.025

mean(nnodes) mean(θ̂) mean(σ̂θ̂) coverage invalid
2500 85.5 1.251 1.957 1.000 0.000
5000 121.3 1.006 1.752 1.000 0.000

10000 174.6 0.750 1.578 1.000 0.000

Table C.2: Estimation when true α = 0.5, θ = 0
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mean(nnodes) mean(α̂) mean(σ̂α̂) coverage invalid
2500 38.2 0.231 0.109 0.925 0.025
5000 47.8 0.243 0.085 0.950 0.000

10000 60.9 0.267 0.071 0.950 0.000

mean(nnodes) mean(β̂1) mean(σ̂β̂1) coverage invalid

2500 38.2 0.970 1.453 0.500 0.450
5000 47.8 1.041 0.502 0.525 0.425

10000 60.9 1.004 0.727 0.625 0.350

mean(nnodes) mean(β̂3) mean(σ̂β̂3) coverage invalid

2500 38.2 -0.930 1.676 0.450 0.450
5000 47.8 -0.987 0.715 0.350 0.550

10000 60.9 -0.942 0.854 0.525 0.450

mean(nnodes) mean(θ̂) mean(σ̂θ̂) coverage invalid
2500 38.2 1.030 1.663 0.975 0.025
5000 47.8 0.938 1.499 1.000 0.000

10000 60.9 0.710 1.379 1.000 0.000

Table C.3: Estimation when true α = 0.3, θ = 0

mean(nnodes) mean(α̂) mean(σ̂α̂) coverage invalid
2500 193.4 0.665 0.072 0.900 0.050
5000 305.8 0.676 0.050 0.900 0.025

10000 485.9 0.685 0.037 0.875 0.000

mean(nnodes) mean(β̂1) mean(σ̂β̂1) coverage invalid

2500 193.4 1.018 0.268 0.925 0.075
5000 305.8 1.007 0.199 0.950 0.025

10000 485.9 1.016 0.143 1.000 0.000

mean(nnodes) mean(β̂3) mean(σ̂β̂3) coverage invalid

2500 193.4 -1.021 0.382 0.900 0.075
5000 305.8 -1.006 0.265 0.975 0.025

10000 485.9 -1.007 0.188 1.000 0.000

mean(nnodes) mean(θ̂) mean(σ̂θ̂) coverage invalid
2500 193.4 1.521 2.290 0.950 0.050
5000 305.8 1.372 2.057 1.000 0.000

10000 485.9 1.256 1.942 1.000 0.000

Table C.4: Estimation when true α = 0.7, θ = 0
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