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ABSTRACT 

When joint stiffnesses are affected by injuries or illnesses they can interfere with gait and 

with activities of daily living, work, and leisure. Biomechanical models have been proposed for 

describing the effects of these conditions and various interventions on the different phases of 

gait. 

This dissertation reports the development of a planar piecewise continuous lumped 

muscle parameter (PPCLMP) model for investigating how different joint stiffnesses affect the 

gait phases individually and collectively. The proposed PPCLMP model characterizes the 

movements of lower limbs during each gait phase by a simplified dynamic system: the single 

stance phase by an inverted pendulum, the double stance phase by a kinematic chain, and the 

swing phase by a double pendulum. The model uses lumped muscle parameters to characterize 

the joint torques during each phase. The phase continuity is achieved by setting the joint angles 

and angular velocities at the end of one phase equal to those at the start of the next phase. The 

model can predict gait movements from given initial conditions (initial joint angles and angular 

velocities), anthropometry, lumped muscle parameters, and joint stiffness in a forward-dynamic 

mode. Also, if the gait movements are known, the model could estimate the lumped muscle 

parameters in an inverse-dynamic mode. 

In the first study, the model was used in the forward-dynamic mode to predict joint 

angles and gait parameters for six healthy subjects’ anthropometry, ankle joint stiffnesses 

(without ankle-foot orthosis (AFO), with a low-stiffness AFO, and with a high-stiffness AFO), 
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initial conditions, and constant lumped muscle parameters. Results showed that the trend of gait 

parameters changings (longer step length and shorter swing time on the AFO-side for higher 

AFO stiffness) with different AFO stiffnesses were qualitatively well predicted by the model but 

quantitative prediction accuracy was limited (the mean errors were 0.15 m and 5% for the 

predicted step length and swing time, respectively) due to the constant values of lump muscle 

parameters. 

The second study examined the use of the model in an inverse-dynamic mode using data 

from a single inertial measurement unit (IMU) attached to the lower shank in order to estimate 

the initial conditions and lumped muscle parameters for each gait cycle. These were used by the 

model in the forward-dynamic mode to enhance the gait prediction. Results from two patients 

wearing AFOs demonstrated that the model prediction was markedly improved comparing with 

the first study by utilizing the inverse-dynamic mode as the mean RMSE was 0.07 m and 2% for 

predicted step length and swing time, respectively. 

The third study investigated the PPCLMP model prediction accuracy using the 

inverse- and forward-dynamic processes proposed in the second study. Three male and three 

female healthy subjects were recruited to walk with IMU-instrumented AFOs on their left feet to 

measure step lengths and swing time, while surface electrodes measured selected muscle 

activities for comparison with lumped muscle parameters. Results showed that the model 

prediction accuracy of step lengths and walking speed improved significantly (p < 0.05) with 

increasing stature; however, model prediction accuracy of swing time unaffected by stature. 

It was concluded that the PPCLMP model of gait has the potential for predicting how the 

prescription of an AFO of a given stiffness will affect gait, but more research is needed to refine 

model predictions by improving the representation of joint torques during gait.  
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CHAPTER 1 Introduction 

1.1.      Overview 

Joint stiffness that describes the linear relationship between joint torques and joint angles 

can be affected by impairments, assistive devices, and activities [1–4]. Biomechanical models of 

human walking gait can be used to characterize joint stiffness and predict gait performance. 

These models are useful in investigating how the change of joint stiffness, like suffering from 

muscle spasticity or wearing ankle-foot orthosis (AFO), affects gait. This thesis develops and 

evaluates a planar piecewise continuous lumped muscle parameter (PPCLMP) model that 

characterizes gait phases as continuous dynamic systems and lumps joint muscle forces to 

simplify the analysis of human gait and predict gait with different joint stiffnesses based on the 

kinematic data measured from an inertial measurement unit (IMU) attached to the AFO.  

1.2.      Aims 

The general aim of this work is to develop and evaluate the PPCLMP model that can be 

used to predict walking gait based on anthropometry, lumped muscle parameters, joint stiffness 

(ankle with AFO as an example), and the initial conditions (initial joint angles and angular 

velocities) of the gait. To achieve this aim, the following objectives are established: 

1. Develop a PPCLMP model that predicts how joint stiffness affects gait via forward 

dynamics. 
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2. Utilize IMU data to estimate the initial conditions and lumped muscle parameters of 

each gait cycle via inverse dynamics to enhance the model prediction of gait. 

3. Evaluate the model prediction accuracy for various anthropometric inputs by 

comparing predicted gait parameters with measurements. 

1.3.      Background and Significance 

Joint stiffness change and underlying pathologies have been identified based on 

observations of gait patterns by clinicians as movements and gait patterns reveal much about the 

physical and behavioral aspects of individuals [5–7]. For example, stroke patients may tend to 

circumduct or lift their legs as a result of increasing joint stiffnesses in their ankle and knee [5,8]. 

To learn the mechanism of human gait, gait patterns are commonly divided into “stance” 

and “swing” phases as shown in Figure 1-1 [9]. The stance phase accounts for approximately 

60% of the total gait cycle and begins at the heel strike (HS), which is the instance that the heel 

of the forward-moving foot makes contact with the walking surface. This phase continues while 

the foot is in contact with the walking surface and ends when the foot leaves the walking surface 

at “toe-off” (TO). The swing phase (SW) begins at the TO and ends at the HS. The stance and 

swing phases alternate between the right and left legs during gait. Since there are overlaps 

between the stance phases of the right and left legs, investigators have further divided the stance 

phase into two phases: 1) single stance phase (SS) when only one leg is in stance phase and 2) 

double stance phase (DS) when both legs are in stance phase [10–12]. These definitions help 

when building biomechanical models for characterizing movements during each phase of 

walking gait. 
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Figure 1-1: Definitions of gait phases reprinted from [9]. 

 

Biomechanical models have been developed to characterize, predict, and study various 

aspects of human gait movement [10,13–15]. The human body is characterized as an array of 

link lengths, lj, and time-dependent joint angles, 𝜃𝑖𝑗𝑥,𝑦,𝑧(𝑡), in biomechanical models [13,16–18]. 

These biomechanical models can be used to describe the spatial and temporal relationship 

between the segments of the body during walking [19]. Further, biomechanical models can 

explain how individual physical attributes, behavior attributes, task attributes, and environmental 

attributes affect biomechanical loads and contribute to gait performance [20–22]. Common 

approaches using biomechanical models to study walking gait include: 1) dividing the walking 

gait into separate phases, 2) characterization of the legs as a series of links, 3) adding inertial 

properties to lower limbs, and 4) adding muscle forces to joints.  
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By adding inertial properties to lower limbs, models have been developed to characterize 

lower limb movements during the SS by an inverted pendulum [13,23–25]. The inverted 

pendulum models were attempts to simplify gait in order to investigate leg movements. 

However, these models for the SS assume no active joint torques, which is not true for the SW 

and DS.  

Biomechanical models have been developed to investigate lower limb movements during 

the SW and DS by characterizing hip, knee, and ankle joint torques as they were found to be 

related to gait performance and stability [26–28]. Double pendulum models were proposed to 

calculate the duration of SW and step length by characterizing the movements of lower limbs 

during the SW by a double pendulum with torques on the hip and knee joints [29–33]. Kinematic 

chain models have been used to characterize the lower limb movements during the DS with the 

active push-off torque at the back-ankle [34,35]. 

However, all these models focus on a specific phase or aspect of normal walking gait and 

are not used to investigate how different joint stiffnesses resulted from impairments and wearing 

assistive devices could affect movements across the whole gait cycle. This work contributes a 

planar piecewise continuous lumped muscle parameter, PPCLMP, model describing how 

anthropometry, lumped muscle parameters, joint stiffness, and initial conditions of gait 

contribute to gait performance across the entire gait cycle by using gait with an AFO as an 

example. The proposed model could be used to: 

 Predict the effect of different joint stiffnesses on step length and swing time 

 Utilize IMU data to estimate initial conditions and lumped muscle parameters for each 

gait cycle to enhance model prediction 
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 Evaluate AFOs for gait performance based on predicted gait performance concerning gait 

efficiency and symmetry 

1.4.      Dissertation Organization 

The remainder of the dissertation has four additional chapters. Chapter 2 derives the 

PPCLMP model and demonstrates the model in the forward-dynamic mode for gait prediction. 

Chapter 3 derives an algorithm that uses the model developed in Chapter 2 in the 

inverse-dynamic mode to estimate the initial conditions and lumped muscle parameters for each 

gait cycle based on the kinematic data measured from an IMU attached to the AFO. Chapter 4 

examines the model prediction accuracy of walking gaits with AFOs for males and females of 

various sizes. Chapter 5 discusses model applications and suggests future work regarding the 

proposed model. Chapter 6 summarizes the dissertation. 
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CHAPTER 2 A Planar Piecewise Continuous Lumped Muscle Parameter Model for 

Prediction of Walking Gait with Passive-Dynamic Ankle-Foot Orthosis  

Abstract 

This work proposes a planar piecewise continuous lumped muscle parameter (PPCLMP) 

model for predicting human walking gait with the passive-dynamic ankle-foot orthosis (AFO) 

based on forward dynamics. The model characterizes the sagittal-plane movement of the lower 

limbs during the single stance phase as an inverted pendulum, the double stance phase as a 

kinematic chain, and the swing phase as a double pendulum. For the normal gait, the 

model-predicted step length was sensitive (> 1% contribution) to the initial joint angle, and the 

predicted swing and stance time were sensitive to the initial angular velocity. To demonstrate the 

model could predict how different AFO stiffnesses affect gait in the forward-dynamic mode and 

validate the results, two AFOs with low (3.4 Nm/deg) and high (6.9 Nm/deg) stiffnesses were 

tested on seven healthy subjects (four males and three females) for level-walking. The model 

successfully predicted that the high-stiffness AFO resulted in longer step length and shorter swing 

time on the side wearing the AFO comparing to the gait with the low-stiffness AFO. The same 

trend was found in the experimentally observed step length and swing time. The model was good 

at qualitatively predicting the trend of three gait parameters (step lengths, swing time, and stance 

time) changing with different AFO stiffnesses but limited on quantitative prediction accuracy due 

to the constant values of lump parameters. 
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2.1.      Introduction 

Gait impairments that affect walking interfere with activities of daily living, work, and 

leisure. One of the leading gait impairment syndromes is the drop foot, and stroke is the leading 

cause of the drop foot syndrome. Approximately 795,000 people suffer a new or recurrent stroke 

each year [36], and 20% to 30% of stroke patients are affected by drop foot during their 

rehabilitation [37]. Drop foot affects patients’ gait and abilities to participate in regular daily 

activities safely. To help improve and restore normal gait functions for drop foot patients, 

passive-dynamic ankle-foot orthoses (AFOs) are commonly used as assistive devices. The 

bending stiffness of AFO has been found to be the main factor that affects the patient’s gait 

performance [38–41]. Currently, determining the ideal stiffness of an AFO for a patient is a 

subjective process based on the observation and experience of clinicians, as well as feedback 

from the patient. A knowledge gap addressed in this chapter is how or if the stiffness of the 

prescribed AFO would improve the patient’s gait is barely predictable.  

Biomechanical modeling has been investigated in quantifying the walking gait to aid 

clinicians in evaluating gait after treatment. The gait for walking is commonly divided into single 

stance phase (SS), double stance phase (DS), and swing phase (SW). Detailed biomechanical 

models have been built to characterize the leg movements in SS, DS, and SW. The SS was 

characterized by the inverted pendulum model with the leg rotating about the ankle joint [13,23–

25]. The DS was characterized by a kinematic chain model with both feet constrained on the 

ground [34,35]. The SW was characterized by a double pendulum model with the upper leg as 

the upper pendulum and lower leg as the lower pendulum [29–33]. However, the ability to 

combine these models into a continuous gait model for the whole gait prediction is still missing. 

The goal of this work, therefore, is to develop a planar piecewise continuous lumped muscle 



 

8 
 

parameter (PPCLMP) model in which each leg is continuously looped from SW to DS to SS to 

DS, and then back to SW. The concept of piecewise continuous proposed by Fu et al. [42] 

specifies that the joint angles and angular velocities of hips, knees, and ankles at the end of one 

phase should be equal to those values at the start of the next phase. After being given the initial 

hip, knee, and ankle joint angles and angular velocities at the start of SW, the PPCLMP model 

should be able to predict the joint angles and angular velocities as well as the step lengths, swing 

time, and stance time throughout the walking gait cycle. 

Toward this end, the goal of this study is to develop a PPCLMP model to predict human 

walking gait, as well as the effect of AFO stiffness on gait performance. Section 2.2 derives the 

PPCLMP model. Section 2.3 outlines the experimental setup to measure the human walking gait. 

Section 2.4 compares the model-predicted and the experimentally observed gait parameters of a 

healthy male subject. Section 2.5 discusses the model prediction accuracy, potential applications, 

and limitations. 

2.2.      The Planar Piecewise Continuous Lumped Muscle Parameter (PPCLMP) Model 

As shown in Figure 2-1, the model simulates each gait cycle starting from and ending at 

the right toe-off (TO). For the right leg, the gait loops from SW to DS to SS to DS, and then back 

to SW. Accordingly, for the left leg, the gait loops from SS to DS to SW to DS, and then back to 

SS. Between the right TO and the right heel strike (HS) are the right SW and left SS. After the 

right HS and before the left TO is the DS with the right leg being the front-leg. After the left TO 

and before the left HS are the right SS and left SW. After the left HS and before the right TO is 

the DS with the right leg being the back-leg.  
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Figure 2-1: The phases and events of the left (red) and right (green) legs during a gait cycle: the gait starts from the right TO, then 

to the right SW and left SS, then to the right HS, then to the DS (right leg in front), then to the left TO, then to the right SS and 

left SW, then to the left HS, then to the DS (right leg in the back), and then back to the right TO (start of the gait).  

 

As shown in Figure 2-2(a), the planar link system of lower limbs [43–45] has been 

adopted in this study to characterize the movements of four gait phases. The planar link system 

contains six body segments (left upper leg, right upper leg, left lower leg, right lower leg, left 

foot, and right foot) and six hinge joints (left hip, right hip, left knee, right knee, left ankle, and 

right ankle joints). Body segments are represented as homogenous rod links with lengths of Li 

and uniformly distributed masses of Mi. The foot dimensions are characterized by the rocker 

model [46–48] in four parts: forefoot, mid-foot, heel, and ankle, as shown in Figure 2-2(b).  

The length of link i is denoted as Li, which could be from direct measurements of 

individuals. When the direct measurements of the subject are not accessible, the link length can 

also be estimated based on the link-length ratio that follows: 

 𝐿𝑖 = 𝐿0𝑙𝑖 (2-1) 
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where 𝑙𝑖 is the link-length ratio of link 𝑖 and 𝐿0 is the measured stature of the subject. Similarly, 

the mass of link i is denoted as Mi follows: 

 𝑀𝑖 = 𝑀0𝑚𝑖 (2-2) 

where 𝑚𝑖 is the mass-ratio of link 𝑖 and 𝑀0 is the measured body mass.  

The 𝑙𝑖 and 𝑚𝑖 are commonly used to estimate the length and mass of each body link 

[16,49–51]. The 𝑙𝑖 (upper leg, lower leg, ankle, forefoot, mid-foot, and heel length ratios) and 𝑚𝑖 

(upper body, upper leg, lower leg, and foot mass ratios) for male are listed in Table 2-1. 
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(a) 

 
(b) 

Figure 2-2: (a) Biomechanical model with definitions of limb links, joints, and joint angles in the sagittal plane and (b) the foot 

anatomy and dimensions in the sagittal plane (part of the image adopted from [52]). 
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Table 2-1: The link-length and link-mass ratios used to estimate the link lengths and masses for simulation, and the measured link 

lengths and estimated link masses for the male subject in Section 2.3. 

A
n

th
ro

p
o

m
et

ry
 d

at
a 

Parameters i Ratios*, 𝑙𝑖 Subject’s values**, 𝐿𝑖 (cm) 

Stature  1 178 

Upper leg length 1 0.257 41 

Lower leg length 2 0.229 40 

Ankle height 3 0.042 7 

Forefoot length 4 0.026 4 

Mid-foot length 5 0.1 13 

Heel length 6 0.03 5 

Parameters  Ratios, 𝑚𝑖 Subject’s values***, 𝑀𝑖 (kg) 

Body mass  1 68.4 

Upper leg mass 1 0.132 9 

Lower leg mass 2 0.044 3 

Foot mass 3 0.014 1 

Upper body mass 4 0.62 42.4 

* The link-length ratios are from ANSUR II [53]. The heel ratio is separately estimated based on data reported by Hansen et al. 

[48]. 

** The link lengths are from the direct measurement from the subject in Section 2.3. 

*** The body mass value is from direct measurement of the subject in Section 2.3. The link masses are estimated from the 

link-mass ratios reported by Drillis and Contini [16]. 

 

As shown in Figure 2-2(a), the joint angles are denoted as 𝜃𝑖𝑗 where i represents the side 

(1 for left and 2 for right) and j represents the joint (1 for hip, 2 for knee, and 3 for ankle). All the 

angles are measured from the standing neutral posture angles. Flexion directions (dorsiflexion 

for ankle joint) are considered positive, and extension directions (plantar flexion for ankle joint) 

are considered negative.  

2.2.1.   Lumped Muscle Parameters 

For the planar link system used in this work, it is assumed that the adjacent links are 

connected by a hinge joint where muscle torques are lumped into one joint torque that linearly 

changing with the associated joint angle. This linear relationship is characterized by the lumped 

muscle parameters (stiffness of a rotational spring), 𝑘𝑖𝑗𝑝, in Nm/deg, where i represents the side 

(1 for left and 2 for right), j represents the joint (1 for hip, 2 for knee, and 3 for ankle), and p 

represents the phase (1 for SS, 2 for DS, and 3 for SW). Especially, the ankle torque during DS is 

characterized by the lumped muscle parameter, 𝑟𝑖32, in Nm/kg, as normalized by body mass. A 

summary of the lumped muscle parameters used in the planar link system is listed in Table 2-2. 
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The definitions of the hip, knee, and ankle joint angles are shown in Figure 2-2(a). The 

biomechanical models of the three phases are described in the following sections. 

Table 2-2: Summary of lumped muscle parameters in the model 
 Phase Joint (i = 1 and 2) Value 

Lumped muscle 

parameters 

DS 

Hip, ki12 (Nm/deg) 20 

Knee, ki22 (Nm/deg) 20 

Ankle, ri32 (Nm/kg) 1.5 

SW 
Hip, ki13 (Nm/deg) 20 

Knee, ki23 (Nm/deg) 8 

*The lumped muscle parameters of the hip and knee joints describe the joint torques by spring stiffness. The lumped muscle 

parameters of ankle joints describe the joint torques normalizing by body mass. 

 

2.2.2.   Single Stance Phase  

An inverted pendulum model is used to predict the leg movement during the SS (Figure 

2-3(a)). The upper leg and lower leg are rotating about the ankle joint with the knee being 

straight. By assuming the knee is straight and the foot is flat on the ground during SS, the 

equation of motion for the inverted pendulum can be adapted from [31] as: 

 

�̈�𝑖1 = �̈�𝑖3 =
6𝑔(𝑀1𝐿1 +𝑀2𝐿2 + 2𝑀1𝐿2 + 2𝑀4(𝐿1 + 𝐿2))

𝑀2𝐿2
2 +𝑀1(𝐿1 + 2𝐿2)2 + 12𝑀4(𝐿1 + 𝐿2)2

sin 𝜃𝑖1

−
12𝑘𝐴𝐹𝑂𝜃𝑖1

𝑀2𝐿2
2 +𝑀1(𝐿1 + 2𝐿2)2 + 12𝑀4(𝐿1 + 𝐿2)2

 

(2-3) 

where 𝜃𝑖1 is the hip angle, 𝜃𝑖3 is the ankle angle, L1 is the upper leg length, L2 is the lower leg 

length, M1 is the upper leg mass, M2 is the lower leg length, M4 is the upper body mass, g is the 

gravitational acceleration, and 𝑘𝐴𝐹𝑂 is the stiffness of the AFO. Additionally, it is assumed that 

𝜃𝑖1 is equal to 𝜃𝑖3 (knee straight) during the SS. The first term of Eq. (2-3) is from Srinivasan 

and Ruina [31]. The second term is added by this work to simulate the effect of AFO stiffness.  
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2.2.3.   Double Stance Phase 

As shown in Figures 2-3(b) and (d), the movements of both legs during the DS is 

characterized as a series of planar kinematic chain movements in the sagittal plane. This 

kinematic chain model is simplified from the existing kinematic chain model [35] by assuming 

the front knee is straight during the DS. The kinematic chain is constrained at the toe of the back-

foot, which is on the ground, and the front-foot, which is flat on the ground. A series of force and 

torque balance equations are solved to achieve the equations of motion for the leg movement 

during the DS. A summary of variables and equations is shown in Table 2-3Table 2-3 for a total 

of 31 equations and 34 variables. Three equations of motion for �̈�𝑖1(𝑡), �̈�𝑖2(𝑡), and �̈�𝑖3(𝑡) for the 

back-leg are derived from these equations for finding the implicit solution if the initial conditions 

of the DS are known. The detailed derivation for the equations of motion during DS is presented 

in Appendix A. 
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 (a) SS (t = t01 → t11) (b) DS (t = t12 → t22) (c) SW (t = t23 → t33) (d) DS (t = t34 → t44) 

Time t0 t01 → t11 t1 t12 → t22 t2 t23 → t33 t3 t34 → t44 t4 = t0 

Right TO 

SW 

Eqs. (2-5) and (2-6) 

Inertial and muscle 

forces 

HS 

DS (front-leg) 

(Appendix A) 

Inertial forces 

 

SS 

Eq. (2-3) 

Inertial forces 

 

DS (back-leg) 

(Appendix A) 

Inertial and muscle 

forces 

TO 

Left (AFO)  
SS 

Eq. (2-3) 

Inertial and AFO forces 

 

DS (back-leg) 

(Appendix A) 

Inertial, muscle, and AFO 

forces 

TO 

SW 

Eqs. (2-5) and (2-6) 

Inertial and muscle 

forces 

HS 

DS (front-leg) 

(Appendix A) 

Inertial forces 

 

State 

vector 

Eq. (2-6) 

𝜽𝒔(t0) 

�̇�𝒔(t0) 

𝜽𝒔(t01)→ 𝜽𝒔(t11) 

�̇�𝒔(t01)→ �̇�𝒔(t11) 

𝜽𝒔(t1) 

�̇�𝒔(t1) 

𝜽𝒔(t12)→ 𝜽𝒔(t22) 

�̇�𝒔(t12)→ �̇�𝒔(t22) 

𝜽𝒔(t2) 

�̇�𝒔(t2) 

𝜽𝒔(t23)→ 𝜽𝒔(t33) 

�̇�𝒔(t23)→ �̇�𝒔(t33) 

𝜽𝒔(t3) 

�̇�𝒔(t3) 

𝜽𝒔(t34)→ 𝜽𝒔(t44) 

�̇�𝒔(t34)→ �̇�𝒔(t44) 

𝜽𝒔(t4) 

�̇�𝒔(t4) 

 

Figure 2-3: Summary of state vectors transferred between phases and forces and equations related to each phase assuming the AFO is on the left ankle. Top diagrams represent the 

joint angles and lumped muscle parameters related to the right leg (solid black) movement during each phase: (a) The right leg movement during the SW is simulated by a 

double-pendulum with two rotational springs on the knee and hip joints, from right TO (t0) to right HS (t1), (b) the leg movements during the DS are simulated by a kinematic 

chain model with the right leg in front, from right HS (t1) to left TO (t2), (c) the right leg movement during the SS is simulated by an inverted pendulum, from left TO (t2) to left 

HS (t3), and (d) the leg movements during the DS are simulated by a kinematic chain model with the right leg in the back, from left HS (t3) to right TO (t4).

t = t23 
t 

= t11 

t = t01 

t = t33 

t = t11 
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Table 2-3: Summary of variables and equations used in Appendix A to solve the movement during the DS 

 Types Number of variables Number of equations 

Geometry 
Angles 5 

7 
Angular velocities 5 

Dynamics 

External forces 2 

24 (Non-linear 

simultaneous equations) 

Internal forces 6 

Joint velocities 6 

Link center of mass velocities 6 

Link rotation angular velocities 4 

 

Since the active ankle torque during the DS does not follow the spring property [13], the 

active ankle torque is estimated based on the body mass. The effect of AFO stiffness on the ankle 

joint is simulated by changing the ankle stiffness. For the ankle wearing the AFO, it is assumed 

that the active ankle torque does not change with different AFO stiffnesses. Thus, the total ankle 

torque, 𝑇𝑖32, is determined as: 

 𝑇𝑖32(𝑡) = 𝑟𝑖32𝑀0 + 𝑘𝐴𝐹𝑂𝜃𝑖3(𝑡) (2-4) 

where 𝜃𝑖3(𝑡) > 0° represents the dorsiflexion of the ankle, 𝜃𝑖3(𝑡) < 0° represents the plantar 

flexion of the ankle, and 𝑟𝑖32 is the active ankle torque of the push-off ankle (Table 2-2) 

normalized by body mass.  

2.2.4.   Swing Phase 

For the SW, the swing leg is characterized as a double-pendulum, with knee and hip 

muscle torques linearly changing with the associated joint angles, as shown in Figure 2-3(c). 

Equations of motion for the double-pendulum are solved by the Euler-Lagrange differential 

equations [54] and given by: 
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 12𝑀1𝐿1
2 �̈�𝑖1 + 6𝑀2𝐿1

2�̈�𝑖1 + 3𝑀2𝐿1𝐿2�̈�𝑖2 cos(𝜃𝑖1 − 𝜃𝑖2)

+ 3𝑀2𝐿1𝐿2�̇�𝑖2
2 sin(𝜃𝑖1 − 𝜃𝑖2) + 3𝑀1𝐿1𝑔 sin 𝜃𝑖1

+ 6𝑀2𝐿1𝑔 sin 𝜃𝑖1 + 6𝑘𝑖13 = 0 

(2-5) 

 3𝑀2𝐿1𝐿2�̈�𝑖1 cos(𝜃𝑖1 − 𝜃𝑖2) + 2𝑀2𝐿2
2 �̈�𝑖2 − 3𝑀2𝐿1𝐿2�̇�𝑖1

2 sin(𝜃𝑖1 − 𝜃𝑖2)

+ 3𝑀2𝐿2𝑔 sin 𝜃𝑖2 + 6𝑘𝑖23 = 0 

(2-6) 

where 𝜃𝑖2 is the knee angle, ki13 is the lumped muscle parameter of the hip joint during the SW, 

and ki23 is the lumped muscle parameter of the knee joint during the SW. The ankle angle, 𝜃𝑖3, 

was assumed neutral (𝜃𝑖3 = 0) during the SW.  

2.2.5.   Phases Continuity – Forward Dynamics 

The angle and angular velocity of each joint (Figure 2-2(a)) at time t, 𝜃𝑖𝑗(𝑡) and �̇�𝑖𝑗(𝑡), 

are summarized in an angle state vector and an angular velocity state vector, 𝜽𝑺(𝑡) and �̇�𝑺(𝑡): 

 

𝜽𝑺(𝑡) =  

{
  
 

  
 
𝜃11(𝑡)

𝜃12(𝑡)

𝜃13(𝑡)

𝜃21(𝑡)

𝜃22(𝑡)

𝜃23(𝑡)}
  
 

  
 

 (2-7) 

 

�̇�𝑺(𝑡) =  

{
  
 

  
 
�̇�11(𝑡)

�̇�12(𝑡)

�̇�13(𝑡)

�̇�21(𝑡)

�̇�22(𝑡)

�̇�23(𝑡)}
  
 

  
 

 (2-8) 

In between the phases, these state vectors are transferred from the end of one phase to the 

start of the next phase to pass the values of angle and angular velocity of each joint. The state 

vectors flow between phases and the equations associated with each phase are summarized in 
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Figure 2-3. The initial state vectors are defined as the initial conditions of the right SW and left 

SS, 𝜽𝑺(𝑡0) and �̇�𝑺(𝑡0). By solving the forward dynamics based on the equations of motion of 

right SW and left SS, the end conditions of this phase are calculated and used as the initial 

conditions of the next phase. This process continues through all four phases and finally ends at 

the start of the right SW and left SS. The state vectors for the end conditions of the gait are 

represented as 𝜽𝑺(𝑡4) and �̇�𝑺(𝑡4). 

The gait event time is denoted as ti, where i represents the gait event (0 for right TO, 1 for 

right HS, 2 for left TO, 3 for left HS, and 4 for right TO). Similarly, the start time and end time 

of each phase are denoted as tij, where i represents the start or end gait event of the phase, and j 

represents the phase (1 for right SW, 2 for DS with right leg in front, 3 for right SS, and 4 for DS 

with right leg in the back). Considering the continuity of the gait, the time denotation follows: 

 𝑡𝑖 = 𝑡𝑖(𝑖+1) − ∆𝑡 = 𝑡𝑖𝑖 + ∆𝑡 for i = 0, 1, 2, 3, and 4  (2-9) 

where ∆𝑡 is short enough time in between phases. Consequently, the continuity between phases 

can be expressed with the equations of state vectors as: 

 𝜽𝑺(𝑡𝑖(𝑖+1) − ∆𝑡) = 𝜽𝑺(𝑡𝑖) = 𝜽𝑺(𝑡𝑖𝑖 + ∆𝑡) for i = 0, 1, 2, 3, and 4 (2-10) 

 �̇�𝑺(𝑡𝑖(𝑖+1) − ∆𝑡) = 𝜽𝑺(𝑡𝑖) = �̇�𝑺(𝑡𝑖𝑖 + ∆𝑡) for i = 0, 1, 2, 3, and 4 (2-11) 

The errors between the initial conditions and end conditions are defined with two error 

vectors: 
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𝜺𝜽 =

{
 
 

 
 
𝜀𝜃11
𝜀𝜃12
𝜀𝜃13
𝜀𝜃21
𝜀𝜃22
𝜀𝜃23}

 
 

 
 

 (2-12) 

 

𝜺�̇� =

{
 
 

 
 
𝜀�̇�11
𝜀�̇�12
𝜀�̇�13
𝜀�̇�21
𝜀�̇�22
𝜀�̇�23}

 
 

 
 

 (2-13) 

where each element is the absolute value of differences between the elements in the state vector 

at the initial conditions and the associated end conditions: 

 
𝜀𝜃𝑖𝑗 = |𝜃𝑖𝑗(𝑡0) − 𝜃𝑖𝑗(𝑡4)| 

for i = 1 and 2  

for j = 1, 2, and 3 

 (2-14) 

 
𝜀�̇�𝑖𝑗 = |�̇�𝑖𝑗(𝑡0) − �̇�𝑖𝑗(𝑡4)| 

for i = 1 and 2  

for j = 1, 2, and 3 

(2-15) 

2.2.6.   Initial Conditions at the Right TO 

To simplify the state vectors for the initial conditions, several assumptions are made to 

reduce the dimension of the state vectors. Since front-foot and back-toe are assumed to be on the 

ground (Figure 2-3(d)) during the DS and at the right TO (start of the gait), the vertical distances 

between them and the hip joints satisfy: 

 

(𝐿1 + 𝐿2) cos 𝜃11 + 𝐿4
= 𝐿4 cos(𝜃22 − 𝜃21 − 𝜃23)

+ 𝐿3 sin(𝜃22 − 𝜃21 − 𝜃23) + 𝐿2 cos(𝜃22 − 𝜃21)

− 𝐿1 cos 𝜃21 

(2-16) 
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Thus, the back-ankle angle and angular velocity, 𝜃23 and �̇�23, can be derived from other 

joint angles (𝜃11, 𝜃21, and 𝜃22) and angular velocities (�̇�11, �̇�21, and �̇�22) and link lengths (𝐿1, 

𝐿2, 𝐿3, and 𝐿4). Also, the front-leg is assumed straight, and the front-foot is assumed flat on the 

ground during the DS and at the right TO (start of the gait): 

 𝜃12(𝑡0) = �̇�12(𝑡0) = 0  (2-17) 

 𝜃13(𝑡0) = −𝜃11(𝑡0)  (2-18) 

 �̇�13(𝑡0) = −�̇�11(𝑡0)  (2-19) 

Thus, the state vectors for the initial conditions can be simplified as: 

 

𝜽𝑺(𝑡0) =  

{
 
 

 
 
𝜃11(𝑡0)
0

−𝜃11(𝑡0)

𝜃21(𝑡0)

𝜃22(𝑡0)

𝜃23(𝑡0) }
 
 

 
 

 (2-20) 

 

�̇�𝑺(𝑡0) =  

{
  
 

  
 
�̇�11(𝑡0)
0

−�̇�11(𝑡0)

�̇�21(𝑡0)

�̇�22(𝑡0)

�̇�23(𝑡0) }
  
 

  
 

 (2-21) 

where the angle state vector has 3 dimensions, 𝜃11(𝑡0), 𝜃21(𝑡0), and 𝜃22(𝑡0), and the angular 

velocity state vector has 3 dimensions, �̇�11(𝑡0), �̇�21(𝑡0), and �̇�22(𝑡0). 𝜃23(𝑡0) and �̇�23(𝑡0) can be 

derived from other angles and angular velocities based on Eq. (2-16). 

2.2.7.   Sensitivity Analysis 

A sensitivity analysis was performed to investigate the effect of different initial 

conditions on error vectors and gait parameters. The inputs (independent variables) were 𝜽𝑺(𝑡0), 
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which includes the initial left hip angle, 𝜃11(𝑡0), the initial right hip angle, 𝜃21(𝑡0), and the 

initial right knee angle, 𝜃22(𝑡0), and �̇�𝑺(𝑡0), which includes the initial left hip angular velocity, 

�̇�11(𝑡0), the initial right hip angular velocity, �̇�21(𝑡0), and the initial right knee angular velocity, 

�̇�22(𝑡0). The outputs (dependent variables) were 𝜺𝜽, 𝜺�̇�, step length, swing time, and stance time. 

The subject variables were the stature and body mass. 

To determine the normal range of the inputs, 11 references on joint angles (hip, knee, and 

ankle angles) and angular velocities (hip and knee angular velocities) in the sagittal plane for the 

normal gait at TO were studied. As the range summarized in Table 2-4, the hip flexion angles of 

the front- and back-leg at TO were ranged from 5 to 30° and –30 to –5°, respectively [13,55–60]. 

The knee flexions of the front- and the back-leg were ranged from 0 to 20° and 20 to 45°, 

respectively [13,55–64]. Part of these investigators also reported that the hip flexion angular 

velocities for front- and back-leg at TO were ranged from –200 to –100° per second and 100 to 

150° per second, respectively [59,60]. Tong and Granat [60] reported the observed knee flexion 

angular velocities for front- and back-leg were 20° per second and ranged from 100 to 270° per 

second, respectively. Some investigators reported that ankle flexion angles for front- and 

back-leg were ranged from –5 to 10° and –45 to 0°, respectively [13,55–57,59,61,62,64]. These 

studies gave a reference on the normal range of joint angles and angular velocities as inputs for 

the model. 
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Table 2-4: Summary of observed joint angles for hip, knee, and ankle, joint angular velocities for hip and knee at right TO, and the step length (𝑆𝐿) to stature (𝐿0) ratio during the 

walking gait.  

Paper n 

Front-leg Back-leg 

𝑆𝐿/𝐿0 
Hip Knee Ankle Hip Knee Ankle 

𝜃11 
(deg) 

�̇�11 

(deg/s) 

𝜃12 
(deg) 

�̇�12 

(deg/s) 

𝜃13 
(deg) 

𝜃21 
(deg) 

�̇�21 

(deg/s) 

𝜃22 
(deg) 

�̇�22 

(deg/s) 

𝜃23 
(deg) 

 

Begg et al., 2006 [62] 24   5  –5   30 ~ 45  –30 ~ 0  0.41 ~ 0.45* 

Buczek et al., 2010 [55] 25 25 ~ 30  0 ~ 10  –5 ~ 5 –15 ~ –5  25 ~ 30  –46 ~ –25   

Collins et al., 2009 [56] 10 25  10  5 –10  20  –5   

Eltoukhy et al., 2017 [57] 10 15  10  0   25  –5  0.44* 

Kiss et al., 2004 [63] 51   10     45    0.27 ~ 0.29** 

Mills et al., 2007 [64] 10   5  10   45  –25   

Ramakrishnan et al., 1991 [58] 1 30  0   –5  30     

Seel et al., 2014 [61] 1   4  –5   30  –30   

Tadano et al., 2013 [59] 5 20 ~ 30 –200 ~ –100 10 ~ 15  –5 ~ 5 –10 ~ –5 100 ~ 120 30 ~ 50  –20 ~ –10  0.22 ~ 0.36*** 

Tong et al., 1999 [60] 2 5 ~ 15 –130 ~ –100 15 20  –30 ~ –25 100 ~ 150 20 ~ 30 100 ~ 270    

Winter, 1984 [13] 16 10  20  –5 –15  35  –15   

Range 212 5 ~ 30 –200 ~ –100 0 ~ 20 20 –5 ~ 10 –30 ~ –5 100 ~ 150 20 ~ 45 100 ~ 270 –45 ~ 0  0.22 ~ 0.45 

* 𝑆𝐿/𝐿0 for self-selected comfort walking speed. 

** 𝑆𝐿/𝐿0 for preset walking speed on a treadmill (0.83 m/s). 

*** 𝑆𝐿/𝐿0 for self-selected comfort walking speed estimated by a lower-limbs-mounted IMU system. 
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To validate the model-predicted step length, the step length-to-stature ratio reported in 

the references are also summarized in the last column of Table 2-4, with a range from 0.22 to 

0.45 [57,59,62,63]. This range will be compared with the model-predicted step length-to-stature 

ratio in this work. 

The sensitivity analysis was performed for a 50th percentile healthy male (176.3 cm and 

86.4 kg) walking with no AFO to preliminary examine the effect of initial conditions on global 

errors. The link length and mass were estimated based on the ratios reported in Table 2-1. The 

lumped muscle parameters were estimated based on joint torques during gait reported by Winter 

[13], as shown in Table 2-2. The range of the initial conditions was determined based on the 

range summarized in Table 2-4. The sensitivity analysis examined all possible combinations of 

initial conditions within the range and calculated the error vectors for each combination. The first 

set of combinations examined was with 𝜃11(𝑡0) from 5 to 30° with steps of 5°, while 𝜃21(𝑡0) =  

–5°, 𝜃22(𝑡0) = 20°, �̇�11(𝑡0) = –50° per second, �̇�21(𝑡0) = 100° per second, and �̇�22(𝑡0) = 100° 

per second. Then 𝜃21(𝑡0) was decreased by 5°, and the same process was performed for 𝜃11(𝑡0) 

from 5 to 30° with steps of 5°. This whole process was performed until all combinations of 

𝜃11(𝑡0), 𝜃21(𝑡0), 𝜃22(𝑡0), �̇�11(𝑡0), �̇�21(𝑡0), and �̇�22(𝑡0) had been examined. A summary of the 

start, stop, and step values for each initial angle and angular velocity is shown in Table 2-5. A 

complete list and explanations of combinations examined can be found in Appendix B. 
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Table 2-5: Range of initial conditions for the sensitivity analysis and simulation 

State vector Elements Unit 
Range (start, stop, step) 

Sensitivity analysis (Section 2.2.7) Simulation (Section 2.3) 

𝜽𝒔(𝑡) 

𝜃11(𝑡) 

deg 

(5, 30, 5) (5, 30, 1) 

𝜃21(𝑡) (–5, –30, –5) (–5, –30, –1) 

𝜃22(𝑡) (20, 45, 5) (20, 45, 1) 

�̇�𝒔(𝑡) 

�̇�11(𝑡) 

deg/s 

(–100, –200, –50) (–100, –200, –50) 

�̇�21(𝑡) (100, 150, 50) (100, 150, 50) 

�̇�22(𝑡) (100, 300, 50) (100, 300, 50) 

 

There were in total 6,480 combinations of the initial conditions examined during the 

sensitivity analysis via simulation. Part of the combinations had invalid geometry at the initial 

conditions or resulted in incomplete phases. Only 918 of the combinations resulted in complete 

gaits and were considered valid. For these valid combinations, a series of regressions were 

performed with the initial conditions as the predictor, and the error vectors and gait parameters as 

responses to examine the contributions of variations in each input.  

Contributions of variations in each dimension of the initial state vectors to variations in each 

element of the error vectors and gait parameters are listed in   
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Table 2-6. Only the front-hip (left) and back-hip (right) initial angle explained more than 

1% of the variations in error vectors. The back-knee initial angle explained more than 0.5% of 

the variations in error vectors. None of the initial angular velocities explained more than 0.1% of 

the variations in error vectors. This implied that reducing the magnitude of the error vectors 

should mainly focus on changing initial angles in smaller steps. This also implied that the 

velocity vector did not contribute much to the error vectors. For this reason, the angular velocity 

error vector should be weighted less than the angle error vector.  
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Table 2-6: The statistics of sensitivity analysis output (error vectors and gait parameters) and the percent contributions of 

variations in initial state vectors to variations in error vectors and gait parameters for all 918 valid combinations of initial state 

vectors. 

 
 

𝜺𝜽𝑺 (deg) 𝜺�̇�𝑺 (deg/s) 
𝑆𝐿 (m) 𝑇𝑆𝑊 (s) 𝑇𝑆𝑇 (s) 

 𝜀11 𝜀12 𝜀13 𝜀21 𝜀22 𝜀23 𝜀1̇1 𝜀1̇2 𝜀1̇3 𝜀2̇1 𝜀2̇2 𝜀2̇3 
S

ta
ti

st
ic

s 

Mean 0.62 - 0.62 0.75 0.46 0.49 11 - 11 37 35 9.5 0.70 0.31 0.42 

SD 0.41 - 0.41 0.60 0.40 0.58 18 - 18 62 62 19 0.13 0.17 0.27 

Min 0.06 - 0.06 0 0 0 0 - 0 0.3 0.2 0 0.35 0.10 0.21 

Max 2.2 - 2.2 6.2 5.6 2.8 245 - 245 135 970 289 0.76 0.56 1.1 

C
o

n
tr

ib
u

ti
o
n

 (
%

) 

𝜃11(𝑡0) 0.3 - 0.3 2.6 3.8 0.1 0.5 - 0.5 7.7 3.5 0.1 67 1.3 1.3 

𝜃21(𝑡0) 7.0 - 7.0 14 11 4.0 1.8 - 1.8 5.0 2.2 0.4 21 0 0 

𝜃22(𝑡0) 0 - 0 0.1 0.5 0 0 - 0 0.5 0.6 0 12 0.3 0.3 

�̇�11(𝑡0) 0 - 0 0 0.1 0.1 0 - 0 0.1 0 0.1 0 12 12 

�̇�21(𝑡0) 0 - 0 0 0 0 0 - 0 0 0 0 0 5.3 5.2 

�̇�22(𝑡0) 0 - 0 0 0 0 0 - 0 0 0 0 0 6.0 5.8 

* 𝑆𝐿 is step length, 𝑇𝑆𝑊 is swing time, and 𝑇𝑆𝑇 is stance time (SS+DS). 

 

The step lengths were mainly determined by the initial angle state vector. The predicted 

step length-to-stature ratio was within 0.20 to 0.43, which was close to the range, 0.22 to 0.45, 

reported in Table 2-4. The step length was determined by the initial geometry of the gait because 

the step length is a spatial parameter. Similarly, the swing and stance time were mainly 

determined by the initial angular velocity state vector.  

To quantitatively compare the overall error from different initial conditions, a global 

error vector, E, is proposed in this work with its sth element as: 

𝑬(𝑠) = ||𝜺𝜽
𝒔 || + 𝑓||𝜺�̇�

𝒔 || (22) 

where s is the order of the initial conditions being examined, ||𝜺𝜽
𝒔 || is the norm of the angle error 

vector for the sth initial conditions, ||𝜺�̇�
𝒔 || is the norm of the angular velocity error vector for the 

sth initial conditions, and f is a scalar factor that is used to adjust the weighing between errors in 

angles and angular velocities.  
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As shown in Figure 2-3, it was assumed that the end conditions of a gait should be equal 

to the initial conditions of that gait to maintain the consistency and continuity between phases. 

Thus, the initial conditions with the minimum global error were considered as the optimal initial 

conditions for gait prediction. 

2.2.8.   Summary of the Planar Piecewise Continuous Lumped Muscle Parameter (PPCLMP) 

Model 

The proposed model is based on an inverted pendulum model, a kinematic chain model, 

and a double pendulum model that correspond to SS, DS, and SW, respectively. The joint angles 

and angular velocities at the end of each phase are used to determine the initial conditions of the 

next phase. In other words, elements in Eqs. (2-12) and (2-13) should be all equal to zero. For 

gait with AFOs, the model changes the ankle stiffness to simulate the effect of AFO stiffnesses.  

The flowchart of the model is shown in Figure 2-4. Along with the initial conditions, the 

additional inputs of the model are anthropometry data, lumped muscle parameters, and AFO 

stiffness. The model examines all possible combinations of initial conditions and stores the 

global error of each combination in the global vector. After all combinations are examined, the 

initial conditions with the minimum global error are found and used to predict the gait 

parameters.  
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Figure 2-4: Flowchart of the proposed PPCLMP model for predicting gait parameters. 

 

2.3.      Experiment Setup 

A pilot study was designed to demonstrate the use of the proposed model to predict the 

effect of three different ankle stiffnesses in a healthy (no known conditions that affect gait) male 

subject (29-year-old) with 70th percentile stature (178 cm). Then the model prediction of gait 

parameters was validated with six additional college-age subjects. For the first condition, the 

subjects wore their regular shoes and socks. For the second and third conditions, they wore two 

AFOs, respectively, that increased ankle stiffnesses. Before participation, the goal, experimental 

procedure, and possible risks were explained to the subjects. An informed consent form 

approved by Institutional Review Boards of the University of Michigan (HUM00090458) was 

signed by each subject. The anthropometric inputs for the first subject are shown in Table 2-1. 

The link lengths and body mass were from direct measurement, and the link masses were 

estimated based on mass ratios reported by Drillis and Contini [16]. The lumped muscle 

parameters were estimated based on joint torques during gait reported by Winter [13], as shown 

in Table 2-2. To achieve better prediction outcome from simulating subjects’ gaits, the steps for 
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initial angle state matrix elements was reduced to 1°, as shown in Table 2-5. The steps for 

angular velocities remained the same, as they did not significantly contribute to the error vectors. 

The vision-based measurement system with two sensor units (three cameras each) by 

NDI Optotrak Certus (NDI Waterloo, Ontario, Canada) was used to capture the locations and 

movements of lower limbs at 100 Hz. As shown in Figure 2-5, three marker clusters were placed 

on each upper leg, lower leg, and foot. The marker cluster was used to track the rotation of the 

associated body segment. Additional markers were placed on the hip, knee, and ankle joints for 

calibration purposes. Based on the reported common AFO stiffness range of 0.02 to 8.17 Nm/deg 

from the review by Totah et al. [65], two passive-dynamic AFOs with stiffnesses of 3.4 Nm/deg 

(denoted as AFO1 hereafter) and 6.9 Nm/deg (denoted as AFO2) were used for this study. Each 

subject was asked to perform the level ground walking without the AFO (denoted as NAFO), 

with AFO1, and with AFO2 on his left foot. To gain enough strides (≥10), each subject was 

asked to walk with self-selected comfort speed for 10 trips within the motion capture area. One 

trip was defined as walking from one side of the walking area to the other side with at least two 

complete strides (exclude the first and last strides) for each trip. For each of the AFO condition, 

each subject was asked to walk with the AFO for 5 minutes before the experiment trial to get 

used to the stiffness at his ankle. 
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Figure 2-5: Marker settings for the controlled experiment. 

 

The motion tracking data were imported into MATLAB (MathWorks, Natick, MA, USA) 

to calculate the joint angles, initial conditions, and gait parameters of each gait cycle to compare 

with the model prediction. Meanwhile, the joint angles, initial conditions, and gait parameters 

were also predicted by the model based on the anthropometry data (Table 2-1), lumped muscle 

parameters (Table 2-2), and AFO stiffness (Table 2-7Error! Reference source not found.). The 

global error was calculated with 𝜺𝜽 in degree, and 𝜺�̇� in degree per second. Since the magnitude 

of joint angular velocities in degree per second is on average about 10 times the magnitude of 

joint angles in degree (Table 2-4) and the angular velocities contributed less to the error vectors, 

the scalar factor f was assigned as 0.1 seconds. The correlation between the observed and 

predicted joint angles were calculated using Minitab 18 (Minitab LLC, Chicago, IL, USA). 

2.4.      Results 

In total, 10 complete gait cycles were measured and analyzed for each condition for the 

first subject. 40 complete gait cycles were measured and analyzed for each condition for each of 

the six additional subjects. Overall, the model successfully predicted the changing trend of the 
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gait parameters, except the hip range of motion (ROM) with the AFO2. Moreover, the model is 

limited in quantitatively predicting the gait parameters. 

2.4.1.   Pilot Study 

The results of initial conditions, error vectors, joint kinematics, step lengths, swing time, 

and stance time for the subject in the pilot study are summarized in this section to demonstrate 

the use of the model for investigation of joint stiffness effect on gait. 

2.4.1.1 Initial Conditions and Error Vectors 

The observed initial conditions, predicted initial conditions, and error vectors of the 

prediction are shown in Table 2-7. The minimum global errors were less than 3° for all the 

conditions. The angle errors were all less than 0.5°. The angular velocity errors were all less than 

or equal to 12° per second, whose magnitude was about 23 times greater than the magnitude of 

angle errors. 

2.4.1.2 Joint Kinematics 

Observed and predicted joint angles for left and right legs for each gait cycle are 

presented in Figures 2-6, 2-7, and 2-8, starting from right TO to right TO. As shown in Table 

2-8, the predicted hip flexion angles were strongly correlated with the observed hip flexion 

angles, with the correlation coefficient (CC) range from 0.85 to 0.98, and the root mean square 

error (RMSE) range from 5.2 to 11°. The predicted knee flexion angle was strongly correlated 

with the observed knee flexion angle, with the CC range from 0.87 to 0.99, and the RMSE range 

from 5.7 to 11°. The predicted ankle flexion angles were strongly correlated with the observed 

ankle flexion angles, with the CC range from 0.83 to 0.92, and the RMSE range from 4 to 7.2°.  
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Table 2-7: Summary of AFO stiffness, error vectors, and comparisons between observed (O) and predicted (P) initial conditions 

for simulations (hip flexion/extension with +/–; knee flexion with +). The errors were estimated with the scalar factor, f, equal to 

0.1 seconds 

 Parameters (i = 1, 2) NAFO AFO1 AFO2 

AFO Structural stiffness, kAFO (Nm/deg) - 3.4 6.9 

  O P O P O P 

In
it

ia
l 

co
n

d
it

io
n

s 
at

 r
ig

h
t 

T
O

 

Left hip angle, 𝜃11 (deg) 1.7±4.7 19 6.7±3.1 11 7.1±4.5 11 

Left knee angle, 𝜃12 (deg) 0.9±1.6 0 8.8±3.3 0 11±2.6 0 

Right hip angle, 𝜃21 (deg) –18±2.7 –19 –5.0±5.1 –11 –8.5±2.1 –9 

Right knee angle, 𝜃22 (deg) 26±6.2 32 29±5.2 34 19±2.7 35 

Left hip angular velocity, 𝜃11 (deg/s) –182±167 –150 –81±18 –100 –107±15 –100 

Left knee angular velocity, 𝜃12 (deg/s) 68±144 0 75±40 0 77±35 0 

Right hip angular velocity, 𝜃21 (deg/s) 94±33 150 88±29 150 166±47 150 

Right knee angular velocity, 𝜃22 (deg/s) 205±33 200 239±31 250 265±44 250 

E
rr

o
r 

V
ec

to
rs

 

Minimum global error, 𝑚𝑖𝑛(𝑬) (deg)  1.2  2.6  2.6 

Left hip angle error, 𝜀11 (deg)  0.20  0.37  0.43 

Left knee angle error, 𝜀12 (deg)  0  0  0 

Left ankle angle error, 𝜀13 (deg)  0.20  0.37  0.43 

Right hip angle error, 𝜀21 (deg)  0.12  0.37  0.17 

Right knee angle error, 𝜀22 (deg)  0.17  0.35  0.35 

Right ankle angle error, 𝜀23 (deg)  0.13  0.20  0.27 

Left hip angular velocity error, 𝜀1̇1 (deg/s)  5.9  12  12 

Left knee angular velocity error, 𝜀1̇2 (deg/s)  0  0  0 

Left ankle angular velocity error, 𝜀1̇3 (deg/s)  5.9  12  12 

Right hip angular velocity error, 𝜀2̇1 (deg/s)  2.9  6.0  6.2 

Right knee angular velocity error, 𝜀2̇2 (deg/s)  0.12  0.43  0.25 

Right ankle angular velocity error, 𝜀2̇3 (deg/s)  0.75  4.4  2.0 
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Figure 2-6: Comparisons between the observed (n = 10) and predicted hip flexion angles for the left and right legs under each 

condition. The presented phase blocks are colored based on the model-predicted time of SS, SW, and DS. 

 

 
Figure 2-7: Comparisons between the observed (n = 10) and predicted knee flexion angles for the left and right sides under each 

condition. The presented phase blocks are colored based on the model-predicted time of SS, SW, and DS. 

SS 

SW 

DS 

SS 

SW  

DS 



 

34 
 

 
Figure 2-8: Comparisons between the observed (n = 10) and predicted ankle flexion angles for the left and right sides under each 

condition. The presented phase blocks are colored based on the model-predicted time of SS, SW, and DS. 

 

Table 2-8: Correlation coefficient (CC) and root mean square error (RMSE) between observed and predicted ankle, knee, and hip 

flexion angles for 10 complete gait cycles 

Joint Side 
NAFO AFO1 AFO2 

CC RMSE (deg) CC RMSE (deg) CC RMSE (deg) 

Hip 
L (AFO) 0.85 11 0.95 6.0 0.98 5.2 

R 0.97 9.2 0.92 7.1 0.87 9.5 

Knee 
L (AFO) 0.99 5.7 0.98 7.1 0.99 9.3 

R 0.99 7.7 0.87 11 0.99 7.4 

Ankle 
L(AFO) 0.83 6.9 0.84 6.8 0.90 4.5 

R 0.87 5.2 0.88 7.2 0.92 4.0 

 

The statistics for ROM of the knee and hip are shown in Table 2-9. Comparing with the 

NAFO condition, the observed left knee ROM was decreased with the AFO1 and AFO2. The 

observed right knee ROM was increased with the AFO1 and was further increased with the 

AFO2. The predicted left and right knee ROMs were changing in the same trend as the observed 

knee ROM for all conditions. Comparing with the NAFO condition, the observed left hip ROM 

was decreased with both the AFO1 and the AFO2. The observed right hip ROM was decreased 

with the AFO1 but slightly decreased with the AFO2. Comparing with the NAFO condition, both 

SS 

SW  

DS 
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predicted left and right hip ROMs were decreased with the AFO1 but were not decreased with 

the AFO2. 

Table 2-9: Comparison between the observed (O) and predicted (P) range of motion (ROM) for knee and hip angles 

Unit: deg  NAFO AFO1 AFO2 

  Side O (n = 10) P O (n = 10) P O (n = 10) P 

Hip 

Peak flexion 
L (AFO) 28.9±5.8 19.0 19.6±1.1 15.4 14.5±2.6 16.0 

R 30.0±3.0 19.0 13.6±1.6 18.8 20.2±1.9 14.4 

Peak extension 
L (AFO) 28.5±5.5 18.9 9.4±1.3 16.0 15.0±0.6 20 

R 26.1±2.0 18.9 9.0±2.8 11.0 18.6±4.4 23.0 

Knee Peak flexion 
L (AFO) 50.3±2.4 46.2 29.8±1.0 21.7 41.4±3.1 41.9 

R 46.7±4.0 46.2 54.2±3.2 50.0 60.0±2.3 53.8 

Ankle 

Peak dorsiflexion 
L (AFO) 11.8±2.0 12.8 11±2.2 10 8.5±4.3 5 

R 16.0±1.2 12.8 13±1.3 18 11±0.83 13 

Peak plantar flexion 
L (AFO) 12.8±1.1 16.0 5.9±1.6 13 5.2±1.1 13 

R 8.5±1.3 16.0 12±2.4 10 14±2.5 20 

 

2.4.1.3 Step Length 

The average observed step lengths of left and right legs for 10 gait cycles, and predicted 

step lengths are shown in Figure 2-9. Comparing with the NAFO condition, the observed left 

step lengths were slightly decreased with the AFO1 but were increased with the AFO2. The 

observed right step lengths were decreased with both the AFO1 and the AFO2. The predicted left 

and right step lengths were changing in the same trend as the observed step lengths for all 

conditions. 
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Figure 2-9: Comparisons between the observed and predicted step length for left (AFO) and right sides under each condition (n = 

10). Values are mean ± SE. 

 

2.4.1.4 Swing and Stance Time 

The average observed swing time of the left and right legs for 10 gait cycles, and 

predicted swing time are shown in Figure 2-10Error! Reference source not found.. Comparing 

with the NAFO condition, the observed left swing time was increased with the AFO1 but was 

decreased with the AFO2. The observed right swing time was decreased with both the AFO1 and 

the AFO2. The predicted left and right swing time was changing in the same trend as the 

observed swing time for all conditions. 

The average observed stance time of the left and right legs for 10 gait cycles, and 

predicted stance time is shown in Figure 2-11. Comparing with the NAFO condition, the 

observed left stance time was decreased with both the AFO1 and the AFO2. The observed right 

stance time was increased with the AFO1 but decreased with the AFO2. The predicted left and 

right stance time had a similar trend as the observed stance time for all conditions. 
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Figure 2-10: Comparisons between the observed and predicted swing time for left (AFO) and right sides under each condition (n 

= 10). Values are mean ± SE. 

 

The average observed stance time of the left and right legs for 10 gait cycles, and 

predicted stance time is shown in Figure 2-11. Comparing with the NAFO condition, the 

observed left stance time was decreased with both the AFO1 and the AFO2. The observed right 

stance time was increased with the AFO1 but decreased with the AFO2. The predicted left and 

right stance time was changing in the same trend as the observed stance time for all conditions. 

 

Figure 2-11: Comparisons between observed and predicted stance time for left (AFO) and right sides under each condition (n = 

10). Values are mean ± SE. 
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2.4.2.   Model Prediction for Six Subjects 

The results of step lengths and swing time for the six additional subjects are summarized 

in this section to validate the model prediction. As shown in Figure 2-12, the predicted left and 

right step lengths were changing in the same trend as the observed step lengths for all conditions. 

 

 
(a) Subject 1 

  
(b) Subject 2 

  
(c) Subject 3 

  
(d) Subject 4 

  
(e) Subject 5 

  
(f) Subject 6 

Figure 2-12: Comparison between observed and predicted step lengths for left (AFO) and right sides under each condition for six 

subjects (n = 40). Values are mean ± SE. 

 

Similarly, the predicted left and right swing time were changing in the same trend as the 

observed swing time for all conditions as shown in Figure 2-13.  
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(a) Subject 1 

  
(b) Subject 2 

  
(c) Subject 3 

  
(d) Subject 4 

  
(e) Subject 5 

  
(f) Subject 6 

Figure 2-13: Comparison between observed and predicted swing time for left (AFO) and right sides under each condition for six 

subjects (n = 40). Values are mean ± SE. 

2.5.      Discussion 

This study showed the capability of the proposed PPCLMP model in qualitatively 

predicting gait changes with AFOs of different stiffnesses. For both the AFO conditions, the 

model predictions revealed the trend of changing in gait parameters. There were also high 

correlations between observed and predicted joint angles for both hip and knee under all three 
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conditions (Table 2-8). Besides, the proposed model reveals how the AFO affects joint 

kinematics and gait parameters. 

Overall, the model prediction had better agreement with observed data for the NAFO 

condition than for the AFO conditions (Figures 2-9, 2-10, 2-11, 2-12, and 2-13). For the NAFO 

condition, the predicted gait was symmetric on joint ROMs, step length, swing time, and stance 

time. However, the observed step lengths were longer for the left side (AFO side for AFO 

conditions) than the right side. Similarly, asymmetric patterns were found on all the other gait 

parameters. This asymmetric pattern for normal gait was quantitatively evaluated by using the 

symmetry index (SI) [66] and observed by a group of investigators [67,68]. They reported the SI 

of step length was ranged from 0 to 10%, and the SI of swing time was ranged from 0 to 9% for 

college students. The SI of step length from this study was 6%, and the SI of swing time was 5% 

under the NAFO condition. Both SIs were within the range from the previous investigations. 

2.5.1.   Knee ROM 

The predicted greater peak knee flexion on the AFO side for AFO2 than for AFO1 might 

be explained by the energy generation process during the push-off (Table 2-9). Though the 

passive AFO releases energy during push-off and might decrease overall energy cost for walking 

[39], it constrained the ankle from performing a plantar flexion during the later push-off stage. 

Lewis et al. [69] and Malcolm et al. [70] observed that most of the push-off force at the ankle 

joint was generated when the ankle was in plantar flexion. Comparing with the normal gait, 

wearing the AFO1 might overall decrease the push-off power, and resulted in the observed and 

predicted decreasing peak knee flexion on the AFO side, or left side for the subject of this study. 

Despite the AFO2 was stiffer and constrained the ankle more from performing a plantar flexion, 
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it released more energy during the push-off. This could explain the predicted greater peak knee 

flexion on the AFO side for the AFO2 than for the AFO1. 

Similarly, explanations can be found for the observed increasing peak knee flexion on the 

contralateral (right) side with increasing the AFO stiffness (Table 2-9). The AFOs stored energy 

during the SS, which slowed the forward rotation of the inverted pendulum [71]. To maintain the 

forward movement, the contralateral-side ankle, or right-side ankle for the subject of this study, 

had to push-off with greater power. Though the model assumed that the muscle torque patterns 

did not change between the AFO and NAFO conditions, it found a different dynamic state with 

greater initial knee angular velocities, greater initial knee angles, and less initial hip angles right 

after the push-off on the contralateral side as a feasible solution for the model (Table 2-7Error! 

Reference source not found.). Consequently, the model successfully predicted the increasing 

peak knee flexion with the increasing AFO stiffness. These findings are consistent with the 

observed excessive knee flexion with AFOs reported by [72]. 

2.5.2.   Hip ROM and Step Length 

Comparing with NAFO condition, the AFO-side and contralateral-side hip ROMs were 

decreased with the AFO1 for observed and predicted results, and consequently led to shorter step 

lengths on both sides (Table 2-9), which were consistent with the trend reported by other 

investigators [73,74]. The observed and predicted hip ROMs were not consistent for both sides 

under the AFO2 condition. As mentioned, the AFO could affect both sides’ dynamics. For the 

AFO side, the AFO deaccelerated the push-off (late DS) by constraining the plantar flexion 

(Figure 2-8) and accelerated the push-off by releasing stored energy. Depending on which effect 

was dominant, the initial swing velocities on the AFO side might be increased or decreased. For 

the contralateral side, either the hip angular velocity at push-off or push-off force during DS 
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might be increased to compensate for the slowed inverted pendulum movement on the AFO side. 

However, this slowed movement might be compensated or partially compensated [8,75], which 

could result in similar hip ROM or reduced hip ROM on the contralateral side. The 

compensation done by the subject’s muscle torque patterns changing might not be equivalent 

simulated by only changing the initial conditions. This individual compensation strategy might 

explain the inconsistency between observed and predicted hip ROMs with the AFO2. 

2.5.3.   Swing and Stance Time 

The swing time and stance time were consistent between observed and predicted results 

under all conditions. The differences in the swing time and stance time among conditions could 

be explained similarly to the hip ROMs differences. The collective effect between the AFO 

stiffness and the compensations, either the muscle torque patterns change or the initial velocities 

change, led to the various gait timing. 

2.5.4.   Model Applications, Assumptions, and Limitations 

The proposed model could form the basis of a decision support system for AFO design. It 

could be used to provide insight into how an AFO might change a person’s gait, and help 

clinicians determining the appropriate AFO stiffness for each patient. Furthermore, with given 

movement patterns, the model has the potential to estimate the joint torque patterns based on the 

estimated lumped muscle parameters. 

The two major assumptions of the proposed model were end conditions equaled to initial 

conditions and the front-knee at the initial conditions (back-leg TO) was straight. The error 

vectors revealed high agreement (< 0.5° differences) between end angles and initial angles, and 

fair agreement (≤12° per second differences) between end angular velocities and initial angular 
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velocities (Table 2-7). The better agreement in angle errors was due to the scalar factor (f) 

selection in Eq. (2-22). Furthermore, the contributions of initial angular velocities to error 

vectors were all low (<1%), which justified the scalar factor selection that weighed angular 

velocity errors less than the angle errors. This scalar factor could be changed to explore different 

weightings between angle errors and angular velocity errors. For real gait, the assumption of the 

end conditions equal to the initial conditions might not be true. As shown in Table 2-7Error! 

Reference source not found., the observed initial conditions were variated among gait cycles. 

The subject might adjust muscle torque patterns to compensate for the different initial conditions 

and maintain continuous gait cycles, which could not be predicted by the model. Besides, by 

assuming the continuity of gait for both joint angles and angular velocities, the model assumed 

no energy loss, which was observed by a group of investigators during HS [76–78]. 

For the straight knee assumption, the observed knee flexion at initial TO was about 0° for 

NAFO condition and around 10° for AFO conditions. Besides, most of the literature reported less 

than 10° in knee flexion during the DS (Table 2-4). Comparing with a straight knee, 10° in knee 

flexion would only result in a 1.5% reduction in the front-leg length and was considered 

negligible in this model.  

The model had three limitations: long processing time, spring representation of muscles, 

and constant lumped muscle parameters. The searching method for optimal initial conditions 

took several hours and could be improved. Currently, the model examined all combinations 

within the given range (Table 2-5) and then found the optimal initial conditions with the 

minimum global error. This process was time-consuming and required a lot of system memory. 

To reduce the amount of calculation, the step length, or prediction precision was limited to 1° 
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and 50° per second. An advanced searching algorithm might be useful to reduce the number of 

iterations, processing time, and increase prediction precision. Further investigations are needed 

to evaluate different search algorithms for the optimal initial conditions. 

The lumped muscle parameters for the knee and hip joints were proposed based on the 

rotational spring representation of related muscles. This representation was simplified from 

Hill’s muscle model [166] that has a contractile element and two spring elements, as shown in 

Figure 2-14. The viscoelasticity of muscles can be further represented by adding damping factors 

to the spring element. The simplification of the muscle model in this dissertation was proposed to 

reduce the dimensions of variables in the model. Further, Chapter 2 used constant lumped muscle 

parameters to characterize the joint torques generated by associated muscles. The constant 

lumped muscle parameter assumption ignores the adjustments, adaptions, and preferences of 

individuals among different scenarios. Due to this assumption, the model only shows the 

capability of qualitatively predicting gait parameter changes with different AFO stiffnesses.  

 
Figure 2-14: Hill muscle model that contains a contractile element (CE), a series spring element (SE), and a parallel spring 

element (PE). Diagram downloaded from [167]. 

 

The other limitation of this model was the assumption of homogenous muscle torque 

patterns for different people walking under different environments for different tasks. For a 
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human subject, walking without and with the AFO could involve different muscle torque patterns 

and different dynamic system states, like velocities and angles. However, the model only adapted 

the dynamic system states to look for a feasible solution without changing the muscle torque 

patterns. In other words, the model overestimated the AFO effect on gait. Unsurprisingly, the 

model predicted less hip ROM and less step length with the AFO2 (Table 2-9), which could be 

due to significant muscle torque patterns changes to compensate the stiffer AFO. For healthy 

subjects, the muscle torque patterns could be different between different genders, different ages, 

and even between individuals with similar anthropometry [79–81]. Furthermore, the final users 

of the AFOs would be drop foot patients, who could have various muscle strength and activity 

from a healthy subject with or without the AFOs [37,82–84]. How to determine the correct 

lumped muscle parameters in the model to make the prediction more individualized is 

challenging. 

Known individual movement patterns could be helpful in determining individual lumped 

muscle parameters to improve the gait prediction. Luckily, wearable technologies become more 

available nowadays. As most commonly used gait tracking wearable devices, inertia 

measurement units (IMUs) have advantages in its accuracy, less intrusive, and robustness in 

challenging environments [61,85–87]. Most of the studies focused on mounting multiple IMUs 

for gait tracking, but orthotic clinical applications may only accept a limited number of IMUs. 

With the proposed model, mounting only one IMU on the AFO would be enough to acquire the 

needed data to estimate the muscle torque patterns of the person while wearing the AFO for in 

and post clinical evaluations of the AFO designs. Further investigations are needed to evaluate 

the IMU assisted prediction. 
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2.6.      Conclusions 

The PPCLMP model has the capability to qualitatively predict gait parameter changes 

with the different ankle stiffnesses in the forward-dynamic mode. The model prediction had the 

same trend as the experimental measurements regarding step length and swing time. The ankle 

stiffness increased by the AFO affects the gait in two ways. During the SS, the AFO stiffness 

slows down the inverted pendulum movement and stores energy. During the DS with the AFO 

on the back-leg, the AFO releases energy when the ankle is in dorsiflexion but prevents the ankle 

from generating more energy when the ankle is in plantar flexion. These findings explain how 

AFO affects gait from the energy perspective besides simply helping lift the foot during SW. 

Because the lumped muscle parameters in the model were separately estimated based on joint 

torques reported by a previous study and did not change among different conditions, the model is 

limited on quantitatively predicting gait parameters regarding step length, swing time, and stance 

time. 
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CHAPTER 3 Utilization of the Inertial Measurement Unit for Evaluation of Gait with 

Passive Dynamic Ankle-foot Orthosis based on the PPCLMP Model 

Abstract 

This study aims to utilize the data from a single inertial measurement unit (IMU) attached 

to the passive-dynamic ankle-foot orthosis (AFO) to enhance the planar piecewise continuous 

lumped muscle parameter (PPCLMP) model for predicting gait patterns. An algorithm utilizing 

IMU’s accelerometer, gyroscope, and magnetometer measurements was developed to estimate 

the initial conditions and lumped muscle parameters for each gait cycle based on the 

inverse-dynamic mode of the PPCLMP model. The observed step length, swing time, and stance 

time using five IMUs (one on each thigh, one on the unimpaired-side shank, one on the 

impaired-side shank as attached to the AFO, and one on the lower back trunk of the subject) 

were compared with model prediction results for two patients with drop foot syndrome while 

walking without and with AFOs with low and high stiffnesses (3.6 and 4.5 Nm/deg). The data 

from the IMU attached to the AFO was utilized to estimate the optimal initial conditions and 

lumped muscle parameters of the model for gait prediction. The root mean square errors 

(RMSEs) of the predicted impaired-side step length, unimpaired step length, and the swing time 

were less than 0.09 m, less than 0.20 m, and less than 6% of gait duration, respectively. 
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3.1.      Introduction 

Various conditions of birth, injuries, and diseases that affect ankle stiffness may 

adversely affect gait patterns. About 80% of multiple sclerosis (MS) population experience gait 

problems [88,89], and 20% of the stroke population are affected by the drop foot syndrome 

during their rehabilitation [65,90,91]. Drop foot gait is asymmetric and different from normal 

gait. Kottink et al. [5] and Don et al. [8] demonstrated that drop foot patients used two 

compensatory strategies, increasing the hip abduction or knee flexion angle on the impaired side 

during the swing phase (SW), to avoid stubbing their toes. Drop foot patients were also found to 

have shorter step length and longer swing time on the impaired side [6,7]. The differences 

between the impaired and unimpaired sides resulted in asymmetric gait, which was also 

considered inefficient.  

Ankle-foot orthoses (AFOs) are frequently used to enhance ankle stiffness and help 

restore gait function for drop foot patients [73,92,93]. Bartonek et al. [73] and Radtka et al. [94] 

observed increased walking speed (10%) and step length (6%) on the impaired side during SW 

for a patient’s gait while wearing AFOs. The bending stiffness of AFO was found to be the main 

effect that could affect step length, walking speed, and gait symmetry [91,95,96].  

To evaluate pathological gait and the gait improvement made by AFOs, several quality 

metrics were developed. Gait symmetry index (SI), or Robinson Index [66], was proposed to 

evaluate the quality of the patient’s gait [97–99]: 

𝑆𝐼 = 2
|𝑋𝑅 − 𝑋𝐿|

𝑋𝑅 + 𝑋𝐿
× 100% 

 (3-1) 
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where 𝑋𝑅 is the gait parameter on the right side, and 𝑋𝐿 is the gait parameter on the left side. 

Examples of X include the step length and swing time. In addition to the SI, faster walking speed 

and less energy expenditure during gait have been used as signs of gait improvement [100–103]. 

While most pathological gait evaluations were performed within laboratory or clinical 

settings with dedicated optical tracking systems, investigation on patients’ gaits with AFOs 

during daily activities is limited. Because the optical tracking systems are expensive, intrusive, 

and require structured environments, the cheaper and less intrusive wearable motion tracking 

system is desirable in measuring the human gait during daily activities [104–108]. 

Inexpensive inertial measurement units (IMUs) that measure three axes of accelerations, 

angular velocities, and headings have been utilized for gait tracking in recent studies to estimate 

gait parameters [61,109–111]. IMUs can be integrated with microprocessors and communication 

modules to record and transmit data over several days to a server for gait evaluation as patients 

go about their activities of daily living, work, or recreation. Li et al. [112] estimated the gait 

speed with a root mean squared error (RMSE) of only 7% based on the data from a 

shank-mounted IMU. Sijobert et al. [113] instrumented one IMU on the patient’s shank to detect 

the freezing of gait in the early stage of Parkinson’s disease. Similar to mounting on the shank, 

IMU could be attached to the back of the AFO calf (Figures 3-1(a) and (b)) to provide kinematic 

data of the gait.  
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(a) (b) (c) 

Figure 3-1: The global coordinate system (x0-, y0-, and z0-axes) and local coordinate system (x-, y-, and z-axes) of the IMU 

defined in this study from (a) the side view of the IMU-attached AFO and (b) the back view of the IMU-attached AFO, and (c) 

the local coordinate system of the IMU attached to the back of the AFO calf rotating with respect to the global coordinate system 

in the sagittal plane (side view). 

 

To interpret the IMU data, the planar piecewise continuous lumped muscle parameter 

(PPCLMP) model proposed in Chapter 2 is used. The model represents the lower limbs’ 

segments as homogenous rod links with lengths of Li and uniformly distributed masses of Mi. 

Adjacent segments are connected by a hinge joint with joint torque linearly changing with the 

joint angle. This linear relationship is represented by lumped muscle parameters in the model. 

Furthermore, the model characterizes the single stance phase (SS) by an inverted pendulum, the 

double stance phase (DS) by a kinematic chain, and the SW by a double pendulum. The joint 

angles and angular velocities are continuously transferred between adjacent phases so that the 

joint angles and angular velocities at the end of one phase are equal to those values at the start of 

the next phase. The model can be used to describe the gait starting from the toe-off (TO) and 

ending at the next TO of the same side based on the initial conditions and lumped muscle 

parameters for the gait cycle. This model is limited by the assumption of constant lump 

parameters, which assumes the same joint torque patterns for gaits with different joint stiffnesses 
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and among different people. Variabilities among gaits of the same person with different joint 

stiffnesses and among gaits of different people are not investigated. Instead of assuming constant 

lumped muscle parameters for all gaits, the lumped muscle parameters for each gait cycle could 

be estimated based on the kinematic data measured by the IMU attached to AFO. In addition, the 

kinematic data could be utilized to estimate the initial conditions of each gait cycle at the TO. 

The goal of this study is to utilize the data measured from the IMU attached to AFO to 

improve the gait prediction of the PPCLMP model and use the predicted gait for gait evaluation. 

The hypothesis is that the model prediction accuracy can be increased by utilizing the data from 

IMU. Section 3.2 derives the algorithm that estimates the initial conditions and lumped muscle 

parameters for each gait cycle based on the IMU data. Section 3.3 outlines the experimental 

setup to measure the walking gaits of two drop foot patients. Section 3.4 compares the 

model-predicted and the experimentally observed gait parameters of two drop foot patients. 

Section 3.5 discusses the algorithm estimation accuracy, model prediction accuracy, and 

potential model applications in evaluating gait with AFOs.  

3.2.      Algorithm for Estimating Initial Conditions and Lumped Muscle Parameters based 

on IMU Data – Inverse Dynamics 

3.2.1.   Overview 

To estimate the initial conditions and lumped muscle parameters in the PPCLMP model 

for each gait cycle, an algorithm is developed to utilize the kinematic data measured by the IMU 

attached to the back of the AFO calf. The IMU data are first processed by a framework that 

identifies gait events, calculates phase durations, and estimates shank pitch angles and angular 

velocities. The duration of gait phases and estimated shank pitch angles and angular velocities 
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are utilized as constraints in an optimization problem to search for the optimal initial conditions 

and lumped muscle parameters for the gait cycle. The initial conditions and lumped muscle 

parameters are inputs for the PPCLMP model to predict and evaluate gait. 

3.2.2.   Framework for Gait Event Identification and Angle Estimation  

As shown in Figures 3-1(a) and (b), the IMU is attached to the AFO in the way that the 

x-, y-, and z-axes of the IMU’s local coordinate are aligned with the global anterior-posterior 

(x0-axis), lateral-medial (y0-axis), and superior-inferior axes (z0-axis), respectively, while the 

subject is standing. Because the PPCLMP model only characterizes body movements in the 

sagittal plane, this study has a special interest in the pitch angle, �̃�(𝑡), which the IMU, or shank, 

rotates about the y-axis with in the sagittal plane as shown in Figure 3-1(c). 

Figure 3-2 shows the framework for gait event identification and angle estimation based 

on the IMU measurements. The IMU measures: 1) three accelerations (�̃�𝑥(𝑡), �̃�𝑦(𝑡), and �̃�𝑧(𝑡)) 

from the accelerometer, 2) three angular velocities (�̃�𝑥(𝑡), �̃�𝑦(𝑡), and �̃�𝑧(𝑡)) from the 

gyroscope, and 3) three headings (yaw �̃�(𝑡) for the x-axis, pitch �̃�(𝑡) for the y-axis, and roll �̃�(𝑡) 

for the z-axis) from the magnetometer. The accelerations measured by IMU are inputs to identify 

the gait events. The angular velocity for the y-axis, �̃�𝑦(𝑡), and pitch angle, �̃�(𝑡), measured by 

IMU are used to determine the shank pitch angles and angular velocities at gait events. 

The gait event identification algorithm [114] is utilized to determine the time of the initial 

TO, 𝑡0, heel strike (HS), 𝑡1, and end TO, 𝑡2, based on the resultant acceleration. The swing time 

of the impaired side, 𝑡𝑆𝑊, is calculated as 

𝑡𝑆𝑊 = 𝑡1 − 𝑡0  (3-2) 
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Similarly, the stance time of the impaired side, 𝑡𝑆𝑇, which is the time duration of one SS 

of the impaired side and two DSs before and after the SS, is calculated as 

𝑡𝑆𝑇 = 𝑡2 − 𝑡1  (3-3) 

 

 
Figure 3-2: The framework for gait event identification and angle estimation based on accelerations, angular velocities, and 

headings measured by the IMU. The peaks of resultant acceleration measured from the accelerometer are used to identify the gait 

events and calculate swing and stance time. The angular velocities measured from the gyroscope and the headings measured from 

the magnetometer are used to calculate the shank pitch angle and angular velocities. The swing and stance time and shank pitch 

angles and angular velocities then are used as the constraints in the optimization problem to find the optimal initial conditions and 

lumped muscle parameters. 

 

Since there is redundancy in the heading and angular velocity measurements, the adaptive 

Kalman Filter [109] can be applied to reduce the drift in the angular velocity measurement by 

utilizing the heading measurement for better angle estimation. The Kalman-Filter processed 

shank pitch angular velocity, �̇�(𝑡), is utilized to calculate the shank pitch angle, 𝜃(𝑡), via angular 
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integration. The 𝜃(𝑡) is compared with the measured pitch angle, �̃�(𝑡), to estimate the drift in the 

angular velocity measurements. The 𝜃(𝑡) and �̇�(𝑡) are used to find the shank pitch angles 

(𝜃(𝑡0), 𝜃(𝑡1), 𝜃(𝑡2)) and angular velocities (�̇�(𝑡0), �̇�(𝑡1), and �̇�(𝑡2)) at the identified gait 

events. 

3.2.3.   Optimization Problem for Searching the Initial Conditions and Lumped Muscle 

Parameters 

An optimization problem is constructed to use the estimated swing time, stance time, and 

shank pitch angles and angular velocities at gait events as constraints to search for the optimal 

initial conditions (the IMU only provides the initial shank pitch angle and angular velocity while 

the initial joint angles of the lower limbs are unknown) and lumped Muscle parameters of the 

PPCLMP model, as shown in Figure 3-3. The model then estimates the gait parameters and 

calculates the quality metrics of gait symmetry and efficiency to evaluate the gait. 

 
Figure 3-3: The optimization problem for searching the optimal initial conditions and lumped muscle parameters for model 

prediction and gait evaluation based on the estimated swing time, stance time, and shank pitch angles and angular velocities at 

identified gait events to minimize estimated total energy expenditure. 
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3.2.3.1 Initial Conditions at the TO 

Since the IMU could only provide the pitch angle and angular velocity of the shank, this 

section derives the quantitative relationship between the initial joint angles and shank pitch 

angle. This relationship is further used to decrease the variable dimension of the optimization 

problem proposed in this study. 

Because the IMU is attached to the AFO, which is strapped to the impaired leg, the 

IMU-identified TO is the impaired-side TO. Thus, the front-leg is the unimpaired leg, and the 

back-leg is the impaired leg at this TO (Figure 3-4). There are six joint angles determining the 

initial posture at this TO: 1) the impaired-side hip angle, 𝜃11(𝑡0), 2) the impaired-side knee 

angle, 𝜃12(𝑡0), 3) the impaired-side ankle angle, 𝜃13(𝑡0), 4) the unimpaired-side hip angle, 

𝜃21(𝑡0), 5) the unimpaired-side knee angle, 𝜃22(𝑡0), and 6) the unimpaired-side ankle angle, 

𝜃23(𝑡0). All these joint angles are measured from the standing neutral posture angles. Flexion 

directions (dorsiflexion for ankle joint) are considered positive, and extension directions (plantar 

flexion for ankle joint) are considered negative.  
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Figure 3-4: The geometry and angle definitions at the impaired-side TO, 𝑡0, as shown in Figure 3-2. 

 

The model assumes the front-knee is straight [58,61,64] and the front-foot is flat on the 

ground at the TO. Thus, the unimpaired-side joint angles and angular velocities at the TO satisfy: 

𝜃22(𝑡0) = �̇�22(𝑡0) = 0  (3-4) 

𝜃23(𝑡0) = −𝜃21(𝑡0)  (3-5) 

�̇�23(𝑡0) = −�̇�21(𝑡0)  (3-6) 

which means the unimpaired-side leg posture at the TO is only determined by the hip joint angle, 

𝜃21(𝑡0), or the ankle joint angle, 𝜃23(𝑡0). In this way, the number of joint angles determining the 

initial posture at the TO is reduced to four: 𝜃11(𝑡0), 𝜃12(𝑡0), 𝜃13(𝑡0), and 𝜃21(𝑡0). For the 

impaired-side leg, the estimated shank pitch angle, 𝜃(𝑡), and angular velocity, �̇�(𝑡), are: 

𝜃12(𝑡) − 𝜃11(𝑡) = 𝜃(𝑡)  (3-7) 

�̇�12(𝑡) − �̇�11(𝑡) = �̇�(𝑡)  (3-8) 

Because the back-toe and front-foot are assumed on the ground at the TO, the front-hip 

(unimpaired-side hip) joint angle at the TO, 𝜃21(𝑡0), is: 
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(𝐿1 + 𝐿2) cos 𝜃21(𝑡0)
= 𝐿4 cos(𝜃12(𝑡0) − 𝜃11(𝑡0) − 𝜃13(𝑡0)) − 𝐿4 + 𝐿3 sin(𝜃12(𝑡0) − 𝜃11(𝑡0) − 𝜃13(𝑡0))
+ 𝐿2 cos(𝜃12(𝑡0) − 𝜃11(𝑡0)) − 𝐿1 cos 𝜃11(𝑡0) 

 

(3-9) 

where 𝐿1 is the upper leg length, 𝐿2 is the lower leg length, 𝐿3 is the foot length, and 𝐿4 is the 

ankle height. Based on Eq. (3-7), Eq. (3-9) can be rewritten as: 

𝜃21(𝑡0)

= acos (
𝐿4 cos(𝜃(𝑡0) − 𝜃13(𝑡0)) − 𝐿4 + 𝐿3 sin(𝜃(𝑡0) − 𝜃13(𝑡0)) + 𝐿2 cos(𝜃(𝑡0)) − 𝐿1 cos 𝜃11(𝑡0)

𝐿1 + 𝐿2
) 

 

(3-10) 

To summarize, if 𝜃(𝑡0), 𝜃11(𝑡0), and 𝜃13(𝑡0) are known, the other joint angles at the TO 

can be estimated based on Eqs. (3-5), (3-7), and (3-10). 

3.2.3.2 Lumped Muscle Parameters 

There are 10 lumped muscle parameters as listed in Table 3-1. The hip and knee lumped 

muscle parameters are used to describe the linear relationship between the hip and knee joint 

torques and the associated joint angles. The joint torques are estimated as: 

𝑇𝑖𝑗𝑝 = 𝑘𝑖𝑗𝑝𝜃𝑖𝑗  (3-11) 

where i represents the side (1 for the impaired side and 2 for the unimpaired side), j represents 

the joint (1 for the hip joint and 2 for the knee joint), and p represents the phase (1 for SS, 2 for 

DS, and 3 for SW). Since the push-off ankle torque during DS does not follow the spring 

property [13], a lumped ankle torque is separately applied during DS based on the body mass. 

The ankle torque of the unimpaired side is estimated based on the body mass as: 

𝑇232 = 𝑟232𝑀0  (3-12) 

where 𝑀0 is the body mass and 𝑟232 (the first 2 represents the unimpaired side, 3 represents the 

ankle joint, and the second 2 represents the DS phase) is the lumped muscle parameter of the 

unimpaired-side ankle. 

The ankle torque of the impaired side is affected by the AFO stiffness and estimated as: 
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𝑇132 = 𝑟132𝑀0 + 𝑘𝐴𝐹𝑂𝜃13  (3-13) 

where 𝑟132 is the lumped muscle parameter of the impaired-side ankle and 𝑘𝐴𝐹𝑂 is the AFO 

stiffness that is simulated by changing the ankle stiffness. 

Table 3-1: Summary of 10 lumped muscle parameters in the model. 

Side Phase Lumped muscle parameter Representation 

Impaired 

DS 

Hip 𝑘112 

Knee 𝑘122 

Ankle 𝑟132 

SW 
Hip 𝑘113 

Knee 𝑘123 

Unimpaired 

DS 

Hip 𝑘212 

Knee 𝑘222 

Ankle 𝑟232 

SW 
Hip 𝑘213 

Knee 𝑘223 

 

For each gait cycle (from initial TO, 𝑡0, to end TO, 𝑡2), there are two initial joint angles 

(𝜃11(𝑡0) and 𝜃13(𝑡0)), two initial joint angular velocities (�̇�11(𝑡0) and �̇�13(𝑡0)), and ten lumped 

muscle parameters (Table 3-1) needed to be solved. The constraints need to be satisfied are the 

information provided by the IMU: three shank pitch angles (𝜃(𝑡0), 𝜃(𝑡1), and 𝜃(𝑡2)), three 

shank pitch angular velocities (�̇�(𝑡0), �̇�(𝑡1), and �̇�(𝑡2)), swing time (𝑡𝑆𝑊), and stance time (𝑡𝑆𝑇).  

3.2.3.3 Optimization Problem 

To find the optimal initial conditions and lumped muscle parameters for each gait cycle, 

an optimization problem is constructed. Since the most commonly used objective function for 

gait simulation is minimizing system energy expenditure [115–117], the objective function for 

this study is proposed as minimizing the model estimated total energy expenditure at the hip, 

knee, and ankle joints for each gait cycle: 

     𝑚𝑖𝑛 
𝒙
   ∑ (∫ 𝑇𝑖32𝑑𝑡 +∑ ∑ ∫𝑘𝑖𝑗𝑝𝜃𝑖𝑗𝑝(𝑡)𝑑𝑡

3
𝑝=1

2
𝑗=1

2
𝑖=1 )     (3-14) 
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where ∫𝑇𝑖32𝑑𝑡 is the total energy expenditure at the ankle joint and ∑ ∑ ∫𝑘𝑖𝑗𝑝𝜃𝑖𝑗𝑝(𝑡)𝑑𝑡
3
𝑝=1

2
𝑗=1  is 

the total energy expenditure at the hip and knee joints. x is the variable vector, which can be 

written as: 

     𝒙 =
 {𝜃11(𝑡0), 𝜃13(𝑡0), �̇�11(𝑡0), �̇�13(𝑡0), 𝑘112, 𝑘122, 𝑟132, 𝑘113, 𝑘123, 𝑘212, 𝑘222, 𝑟232, 𝑘213, 𝑘223}   

 

(3-15) 

where the first four elements are the initial joint angles and angular velocities and the rest 

elements are the lumped muscle parameters listed in Table 3-1. 

To satisfy the IMU measured swing time and stance time, the equality constraints are 

defined as: 

𝑡𝑆𝑊𝑃 = 𝑡𝑆𝑊  (3-16) 

𝑡𝐷𝑆1𝑃 + 𝑡𝑆𝑆𝑃 + 𝑡𝐷𝑆2𝑃 = 𝑡𝑆𝑇  (3-17) 

where 𝑡𝑆𝑊𝑃 is the model-predicted SW time of the impaired side, 𝑡𝐷𝑆1𝑃 is the model-predicted 

DS time with the impaired leg in front, 𝑡𝑆𝑆𝑃 is the model-predicted SS time of the impaired side, 

and 𝑡𝐷𝑆2𝑃 is the model-predicted DS time with the impaired leg behind. 

Furthermore, to satisfy the IMU measured shank pitch angles and angular velocities at the 

TOs and HS, the inequity constraints are defined as: 

||(𝜃12(𝑡1) − 𝜃11(𝑡1))| −  𝜃(𝑡1)| ≤ 𝜀1 (3-18) 

||�̇�12(𝑡1) − �̇�11(𝑡1)| − �̇�(𝑡1)| ≤ 𝜀2 (3-19) 

||𝜃12(𝑡2) − 𝜃11(𝑡2)| −  𝜃(𝑡2)| ≤ 𝜀1 (3-20) 

||�̇�12(𝑡2) − �̇�11(𝑡2)| −  �̇�(𝑡2)| ≤ 𝜀2 (3-21) 

where 𝜀1 is the error tolerance for angle prediction and 𝜀2 is the error tolerance for angular 

velocity prediction. 

Because this optimization problem is non-linear and non-convex, the enumeration search 

method [118,119] is utilized to solve this problem. The searching boundaries of the variable 
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vector, x, for the enumeration method are listed in Table 3-2. The searching boundaries of the 

lumped muscle parameters are set from 1 Nm/deg to twice the values estimated from Winter 

[13]. The boundaries of initial angular values are set based on the normal range in the literature 

review in Table 2-4. The error tolerance for angle predictions, 𝜀1, is set to 1º, and the error 

tolerance for angular velocity predictions, 𝜀2, is set to 10º per second. 

Table 3-2: Ranges of the initial conditions and lumped muscle parameters for the enumeration method and the ranges of AFO 

stiffness and subject parameters for the sensitivity analysis. 

Ranges for the enumeration method Variables Unit Range (start, stop, step) 

Initial conditions 

𝜃(𝑡0) Deg (75, 25, 1) 

𝜃11(𝑡0) Deg (30, 5, 1) 

𝜃13(𝑡0) Deg (45, 0, 1) 

�̇�(𝑡0) Deg (170, 0, 10) 

�̇�11(𝑡0) Deg/s (100, 150, 10) 

�̇�13(𝑡0) Deg/s (100, 450, 10) 

Lumped muscle parameters 

𝑘𝑖𝑗2 Nm/deg (1,20,1) 

𝑘𝑖𝑗3 Nm/deg (1,40,1) 

𝑟𝑖32 Nm/kg (0.1,3,0.1) 

Additional ranges for the sensitivity analysis Variable Unit Values to be tested 

AFO stiffness and anthropometry 

𝑘𝐴𝐹𝑂 Nm/deg 0, 3.6, 4.5 

Gender - M, F 

𝐿0* m 1.51, 1.70, 1.88 

𝑀0 kg 51, 88, 125 

*𝐿0 is the stature. 

 

3.2.4.   Sensitivity Analysis 

A sensitivity analysis was performed to investigate the effects of the initial conditions, 

lumped muscle parameters, AFO stiffness, gender, stature, and body mass on gait parameters 

within the range listed in Table 3-2. The AFO stiffness was selected based on the measured 

stiffnesses of two AFOs. The stature and body mass were selected to cover the stature and body 

mass ranged from 5th percentile female to 95th percentile male reported by ANSUR Data [53]. To 

reduce the number of enumerations, only the start, stop, and mean of the start and stop values for 

initial conditions and lumped muscle parameters were used in the sensitivity analysis.  

The contribution of each variable is listed in   
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Table 3-3. The unimpaired-side step length increased with increasing stature and initial 

shank pitch angle. This was consistent with the findings that step length should be proportional 

to the stature [57,62]. The impaired-side step length increased with increasing joint angular 

velocities. The SW time of the impaired side decreased with increasing initial angular velocities 

of the AFO. This implied that the initial angular velocities had more impact on the SW time than 

initial angles, which was consistent with the findings in Chapter 2. The time of the DS with the 

impaired side in front was decreased with increasing unimpaired-side ankle torque. This was 

because the unimpaired-side ankle torque was the main power source to activate the DS 

movement. The SS time of the impaired side increased with increasing AFO stiffness and with 

decreasing ankle torque of the unimpaired side during DS. The longer SS time with higher AFO 

stiffness was consistent with the hypothesis made in Chapter 2: the AFO at ankle joint prevented 

the inverted pendulum from swing forward. The ankle torque of the unimpaired side during DS 

(with the impaired side in front) determined the initial state of the SS of the impaired side. The 

DS time with the unimpaired side in front was not significantly (>10% contribution) affected by 

any input tested. 
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Table 3-3: Percent contribution of variations in the initial conditions, lumped muscle parameters, AFO stiffness, gender, stature, 

and body mass to variations in gait parameters. 

Input Variable 𝐷𝑈 𝐷𝐼 𝑡𝑆𝑊𝑃 𝑡𝐷𝑆1𝑃 𝑡𝑆𝑆𝑃 𝑡𝐷𝑆2𝑃 

Initial conditions 

𝜃(𝑡0) 39(+)  1 1 1  

𝜃11(𝑡0) 32(–) 1 5 2 3  

𝜃13(𝑡0) 6 1 2    

�̇�(𝑡0)  16(+) 27(–)    

�̇�11(𝑡0)  10 4 6 4  

�̇�13(𝑡0)   1    

Lumped muscle parameters 

𝑘113  8  4 3  

𝑘123  1 17(–) 4 3  

𝑘112       

𝑘122      6 

𝑘213 7   1 9  

𝑘223 1      

𝑘212       

𝑘222    2 2  

𝑟132 3     1 

𝑟232    22(–) 22(–)  

Anthropometry and AFO 

𝑘𝐴𝐹𝑂    9 13(+) 1 

Gender       

𝐿0 23(+) 1  9 2 2 

𝑀0  6  6 4 4 

* (+) represents a positive relationship between variables and (–) represents a negative relationship between variables for 

contribution greater than 10%. Contributions that less than 1% are not included. 𝐷𝐼 is the step length of the impaired side, and 𝐷𝑈 

is the step length of the unimpaired side. 

 

3.2.5.   Algorithm Summary 

The proposed algorithm (Figures 3-2 and 3-3) is used to estimate the initial conditions 

and lumped muscle parameters for each gait cycle based on the data from an IMU sensor 

attached to AFO. The IMU data are used to estimate the swing and stance time of the impaired 

side and the pitch angle and angular velocity of the impaired-side shank. This information then is 

used to search for the optimal initial conditions and lumped muscle parameters for the lowest 

energy expenditure predicted by the model for each gait cycle. The optimal initial conditions and 

lumped muscle parameters are used in the model to estimate gait parameters and evaluate gait. 

3.3.      Subjects and Methods 

To test the proposed PPCLMP model, observed and predicted gait parameters were 

compared for one male and one female subjects with drop foot syndrome wearing AFOs. Both 

subjects suffered drop foot syndrome on their left side, denoted as impaired side hereafter, due to 
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spastic hemiparesis. The anthropometric data of the two subjects are shown in Table 3-4. The 

body link lengths were directly measured from the subjects. The body link masses were 

estimated based on the measured subjects’ body masses and mass ratios reported by Drillis and 

Contini [16]. Each subject was prescribed with a plaster-molded AFO (AFO1) and a 3D-printed 

AFO (AFO2). AFO1’s stiffness was 3.6 Nm/deg, and AFO2’s stiffness was 4.5 Nm/deg.  

Table 3-4: Anthropometry of Subjects 1 and 2 and the stiffnesses of AFOs used in the experiment. 

 Subject Subject 1 Subject 2 

 Gender Male Female 

 Age 62 26 

B
o

d
y
 l

in
k

 l
en

g
th

 (
m

) Stature, 𝐿0 1.96 1.69 

Upper leg length, 𝐿1 0.47 0.33 

Lower leg length, 𝐿2 0.45 0.36 

Mid-foot length, 𝐿3 0.20 0.16 

Ankle height, 𝐿4 0.11 0.10 

Heel length, 𝐿5 0.06 0.05 

Fore-foot length, 𝐿6 0.05 0.04 

B
o

d
y
 l

in
k

 

m
as

s*
 

(k
g

) 

Body mass, 𝑀0 113 49 

Upper leg mass, 𝑀1 15 6.5 

Lower leg mass, 𝑀2 5 2.2 

Foot mass, 𝑀3 1.6 0.7 

Upper body mass, 𝑀4 70 30 

AFO stiffness (Nm/deg) 
AFO1 AFO2 AFO1 AFO2 

3.4 6.9 3.4 6.9 

* The mass for each segment was estimated based on the measured body mass of the subject and the link-mass ratios reported by 

Drillis and Contini [16]. 

 

The goal, experimental procedure, and possible risks were explained to the subjects 

before participation. Each subject signed the informed consent form approved by Institutional 

Review Boards of the University of Michigan (HUM00090458). 

A five-IMU system, LEGSysTM (BioSensics LLC, Newton, MA, USA), was used to 

measure shank and hip planar movements at a 100 Hz sampling rate and calculate step length, 

swing time, and stance time using the algorithm described by Chen et al. [120]. The IMU 

attachment is shown in Figure 3-5 with one IMU on each thigh, one on the unimpaired-side 

shank, one on the impaired-side shank, and one on the lower back trunk of the subject. 

Separately, the IMU attached to the impaired shank was used as the IMU attached to AFO to 
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predict the gait parameters based on the PPCLMP model for comparison with the observed gait 

parameters based on the five-IMU system. 

Each subject was asked to perform level ground walking without AFO (NAFO), with 

AFO1, and with AFO2 on his/her impaired (left) ankle. Before each AFO trial, the subjects were 

asked to walk with the AFO for 5 minutes to practice. For each trial, the subject was asked to 

walk for 6 eight-meter trips with the comfortable self-selected speed in the gait room at the 

University of Michigan Orthotic and Prosthetic Center (UMOPC). The first and last gaits of each 

trip were excluded during the analysis.  

To quantitatively evaluate the patients’ compensatory strategies for impairment. The 

maximum hip abduction and knee flexion angles during SW were calculated separately based on 

the thigh and shank IMUs via MATLAB (MathWorks, Natick, MA, USA). The data from the 

IMU attached to the impaired-side shank were processed by the proposed algorithm (Figures 3-2 

and 3-3) implemented in MATLAB to estimate the initial conditions and lumped muscle 

parameters (Table 3-2) for each gait cycle. The paired t-test was used to determine the significant 

differences of gait parameters among conditions and between observed and predicted gait 

parameters. 
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Figure 3-5: IMU attachment for the LEGSysTM: one IMU on each thigh, one on each shank, and one on the lower back trunk. 

 

3.4.      Results 

3.4.1.   Observed and Estimated Initial Joint Angles and Angular Velocities 

Table 3-5 shows the shank pitch angles and angular velocities at the initial TO (𝑡0), HS 

(𝑡1), and end TO (𝑡2) that were predicted from the raw accelerations, angular velocities, and 

headings measured by the IMU on the impaired-side shank (Figure 3-2). These data were used as 

constraints in the optimization problem to search for the optimal, denoted as predicted hereafter, 

initial conditions and lumped muscle parameters for the observed gaits. The impaired-side shank 

pitch angles were significantly (p < 0.05) greater for AFO conditions comparing with NAFO 

condition at 𝑡0 (60±9° versus 49±7°), 𝑡1 (7±4° versus 17±4°), and 𝑡2 (61±8° versus 51±5°).  

The comparisons of observed (O) and predicted (P) initial joint angles and angular 

velocities are shown in Table 3-6. Significant differences (p < 0.05) were found between the 

observed and predicted values for initial ankle angle and angular velocity for both subjects under 

the NAFO condition. Such differences were not found for the AFO conditions. For Subject 2, the 
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predicted angular velocity of the hip was significantly (p < 0.05) less than the observed value for 

all conditions. 

Table 3-5: Summary of the estimated swing time, stance time, and shank pitch angles and angular velocities at TOs and HS for 

the impaired leg based on the IMU attached to the impaired-side shank. 

Type Variables 

Subject 1 Subject 2 

NAFO AFO1 AFO2 NAFO AFO1 AFO2 

 n 33 24 26 24 30 22 

Shank pitch angle (deg) 

𝜃(𝑡0) 50±5 67±7↑ 67±6↑ 43±9 54±11↑ 53±5↑ 

𝜃(𝑡1) 10±5 3±4↑ 4±2↑ 23±3 8±4↑↑ 13±4↑ 

𝜃(𝑡2) 50±5 68±7↑ 67±6↑ 51±5 55±11↑ 53±5↑ 

Shank pitch angular velocity 

(deg/s) 

�̇�(𝑡0) 166±7 159±36 138±33↓ 236±21 216±33 288±22↑ 

�̇�(𝑡1) 129±11 117±9↓ 112±9↓ 37±12 84±27↑↑ 64±17↑ 

�̇�(𝑡2) 166±7 159±36 138±33↓ 167±8 216±43↑ 288±22↑↑ 

Swing and stance time (s) 

𝑡𝑆𝑊 0.47±0.07 0.46±0.01 0.44±0.03 0.47±0.11 0.47±0.03 0.46±0.09 

𝑡𝑆𝑇 0.74±0.01 0.73±0.03 0.76±0.03 0.73±0.01 0.73±0.03 0.77±0.03↑ 

↑ represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition 

↑↑ represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition and the other AFO 

condition 

↓ represents the value of the AFO condition was significantly (p < 0.05) smaller than the NAFO condition 

 

Table 3-6: Comparison of initial impaired-leg hip and ankle joint angles and angular velocities between observed values (O) and 

predicted (P) values. 

    Subject 1 Subject 2 

    NAFO AFO1 AFO2 NAFO AFO1 AFO2 

   n 33 24 26 24 30 22 

Initial impaired-leg joint 

angle (deg) 

Hip 𝜃11(𝑡0) 
O 20±5 26±8 23±6 19±4 25±3 16±4 

P 28±3 26±1 22±1 27±0.4 26±2 12±1 

Ankle 𝜃13(𝑡0) 
O 21±6* 17±4 16±3 19±1* 11±4 17±6 

P 44±8* 6±21 15±10 40±5* 27±12 1±1 

Initial impaired-leg joint 

angular velocity (deg) 

Hip �̇�11(𝑡0) 
O 160±13 167±9 162±13 48±7* 79±27* 70±26* 

P 128±16 120±23 110±12 100±14* 120±23* 100±25* 

Ankle �̇�13(𝑡0) 
O 387±19* 393±9 362±13 271±27* 314±27 267±26 

P 299±19* 333±11 374±20 394±22* 320±37 290±19 

* represents that the predicted value was significantly different from observed value based on paired t-test, p < 0.05 
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3.4.2.   Estimated Lumped Muscle Parameters 

The statistics of estimated lumped muscle parameters are shown in Table 3-7. For the 

impaired side during SW, the lumped muscle parameter of the impaired-side hip joint was 

significantly (p < 0.05) increased under the AFO1 condition comparing with the NAFO 

condition for both subjects (23±4 Nm/deg versus 17±4 Nm/deg). The lumped muscle parameter 

of the impaired-side hip joint during SW was significantly (p < 0.05) increased under the AFO2 

condition comparing with the NAFO condition for Subject 1 (26±2 Nm/deg versus 18±2 

Nm/deg) but was significantly (p < 0.05) decreased for Subject 2 (8±1 Nm/deg versus 13±6 

Nm/deg). 

The rest estimated lumped muscle parameters did not significantly change under both 

AFO conditions comparing with the NAFO condition for Subject 1. For Subject 2, the lumped 

muscle parameters of the unimpaired-side hip joint during SW were significantly (p < 0.05) 

decreased under the AFO2 condition comparing with the NAFO condition (12±5 Nm/deg versus 

18±4 Nm/deg). The lumped muscle parameter of the unimpaired-side hip joint during DS was 

significantly (p < 0.05) increased under the AFO1 condition comparing with the NAFO 

condition (22±5 Nm/deg versus 10±5 Nm/deg). The impaired-side ankle torque was 

significantly (p < 0.05) decreased under the AFO2 condition comparing with the NAFO 

condition (0.94±0.16 Nm/kg versus 2.08±0.22 Nm/kg). The unimpaired-side ankle torques were 

significantly (p < 0.05) increased under the AFO1 condition comparing with the NAFO 

condition (2.07±0.10 Nm/kg versus 1.94±0.33 Nm/kg). 
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Table 3-7: Statistics of lumped muscle parameters of the hip and knee joints, 𝑘𝑖𝑗𝑝, in Nm/deg, and ankle joints, 𝑟𝑖32, in Nm/kg 

summarized in Table 3-2. 

  Subject 1 Subject 2 

Type Variable NAFO AFO1 AFO2 NAFO AFO1 AFO2 

 n 33 24 26 24 30 22 

Impaired-side  

SW 

𝑘113 18±2 26±3 ↑ 26±2 ↑ 13±6 20±4 ↑ 8±1 ↓ 

𝑘123 9±1 8±3 10±4 9±3 10±3 6±5 

Impaired-side  

DS 

𝑘112 6±4 4±2 5±3 10±2 15±2 6±5 

𝑘122 11±3 9±5 13±8 10±1 13±5 9±2 

𝑟132 1.77±0.20 1.77±0.23 1.69±0.28 2.08±0.22 1.95±0.25 0.94±0.16 ↓ 

Unimpaired-side SW 
𝑘213 15±2 12±3 14±2 18±4 20±3 12±5 ↓ 

𝑘223 9±6 13±3 12±1 10±3 11±3 7±8 

Unimpaired-side DS 

𝑘212 11±3 13±2 20±3 10±5 22±5 ↑ 12±5 

𝑘222 17±3 15±1 14±1 20±2 15±3 18±8 

𝑟232 1.72±0.21 1.75±0.32 1.77±0.33 1.94±0.33 2.07±0.1 ↑ 2.24±2.03 

↑ represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition. 

↑↑ represents the value of the AFO condition was significantly (p < 0.05) greater than the NAFO condition and the other AFO 

condition. 

↓ represents the value of the AFO condition was significantly (p < 0.05) smaller than the NAFO condition. 

 

3.4.3.   Observed and Predicted Gait Parameters 

A summary of the observed and predicted gait parameters (step lengths, maximum hip 

abduction, maximum knee flexion, phase time, and walking speed) is shown in Table 3-8. The 

RMSEs between observed and predicted unimpaired-side step length were all significantly (p < 

0.05) greater than the RMSEs for impaired-side step length (RMSEs of 0.11 m versus 0.06 m). 

Besides, the predicted gait parameters all had significantly (p < 0.05) greater variations than 

observed gait parameters (standard deviations of 0.10 m versus 0.03 m). The observed and 

predicted SW time for the impaired side were the same because they were estimated based on the 

same algorithm. No significant differences were found between all observed and predicted gait 

parameters based on the paired t-test (p < 0.05).  
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Table 3-8: Summary of the observed (O) and predicted (P) gait parameters. 

  Subject 1 Subject 2 

  NAFO AFO1 AFO2 NAFO AFO1 AFO2 

 n 33 24 26 24 30 22 

Impaired-leg step length (m) 

O 0.68±0.03 0.78±0.03 0.75±0.03 0.35±0.03 0.44±0.02 0.38±0.04 

P 0.66±0.13 0.81±0.12 0.74±0.16 0.31±0.07 0.40±0.14 0.36±0.07 

RMSE 0.04 0.08 0.06 0.02 0.07 0.09 

Unimpaired-leg step length (m) 

O 0.48±0.03 0.47±0.02 0.45±0.02 0.46±0.03 0.54±0.03 0.48±0.03 

P 0.49±0.03 0.48±0.09 0.48±0.09 0.51±0.12 0.55±0.15 0.42±0.05 

RMSE 0.05 0.09 0.09 0.09 0.20 0.13 

Max impaired-leg hip abduction O 7±3 5±4 5±4 15±8 10±2 12±3 

Max impaired-leg knee flexion 
O 66±3 63±3 61±2 53±7 60±4 60±5 

P 64±7 64±4 62±10 60±4 57±3 62±12 

𝑡𝑆𝑊/𝑇 (%) O (P) 38±6 36±10 37±2 46±5 39±4 42±2 

𝑡𝐷𝑆1/𝑇 (%) 
O 13±2 10±3 11±1 6±3 11±2 10±1 

P 15±3 10±5 11±2 7±3 12±5 11±2 

𝑡𝑆𝑆/𝑇 (%) 
O 33±5 35±9 37±1 35±2 33±1 32±1 

P 32±7 34±11 40±6 34±17 32±12 33±9 

𝑡𝐷𝑆2/𝑇 (%) 
O 16±3 19±3 15±3 13±4 17±4 16±2 

P 15±3 20±7 12±2 14±5 18±7 16±5 

Walking speed (m/s) 
O 0.93±0.15 0.98±0.25 1.00±0.04 0.67±0.05 0.81±0.04 0.7±0.05 

P 0.92±0.13 1.03±0.22 1.02±0.16 0.68±0.12 0.77±0.15 0.73±0.06 

* 𝑡𝑆𝑊 is the duration of the SW of the impaired side, 𝑡𝐷𝑆1 is the duration of the DS with the impaired side in front, 𝑡𝑆𝑆 is the 

duration of the SS of the impaired side, 𝑡𝐷𝑆2 is the duration of the DS with the impaired side behind, and T is the duration of the 

whole gait that equal to the sum of 𝑡𝑆𝑊, 𝑡𝐷𝑆1, 𝑡𝑆𝑆, and 𝑡𝐷𝑆2. 

 

The step length of the impaired side was significantly (p < 0.05) longer than the 

unimpaired side for Subject 1. Contrarily, the step length of the impaired side was significantly 

(p < 0.05) shorter than the unimpaired side for Subject 2. Comparing with the NAFO condition, 

the impaired step length was significantly (p < 0.05) longer under both AFO conditions for both 

subjects, and the unimpaired step length was significantly (p < 0.05) shorter under both AFO 

conditions for Subject 1, but longer under the AFO1 condition for Subject 2. 

The observed maximum hip abduction angles were significantly (p < 0.05) higher for 

Subject 2 than Subject 1 (12±7° versus 6±4°). Comparing with the NAFO condition, the 

impaired-side hip abduction was significantly (p < 0.05) decreased under both AFO conditions 
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for both subjects (8±4° versus 11±5°). Both observed and predicted impaired-side maximum 

knee flexion was significantly (p < 0.05) higher for Subject 1 than for Subject 2 under NAFO 

condition (63±7° versus 59±6°). Comparing with the NAFO condition, the maximum 

impaired-side knee flexion was significantly (p < 0.05) decreased under both AFO conditions for 

Subject 1 (63±5° versus 65±7°) but significantly (p < 0.05) increased under both AFO 

conditions for Subject 2 (60±9° versus 57±5°). 

The swing time of the impaired side was significantly (p < 0.05) shorter for Subject 1 

than for Subject 2 (36% versus 43% of gait duration). Comparing with the NAFO condition, the 

swing time was significantly (p < 0.05) decreased under both AFO conditions for Subject 2 (41% 

versus 46% of gait duration), but not significantly changed under both AFO conditions for 

Subject 1. 

3.4.4.   Gait Symmetry and Efficiency for Evaluation 

The observed and predicted SIs for step length are shown in Figure 3-6. Comparing with 

the NAFO condition, the SI significantly (p < 0.05) increased under both AFO conditions for 

Subject 1 (50% versus 34%) but significantly (p < 0.05) decreased under both AFO conditions 

for Subject 2 (22% versus 28%). This trend was consistent between observed and predicted 

values.  

The SIs under both AFO conditions were not consistent between observed and predicted 

values. In between the AFO conditions for Subject 1, the observed SI was equal under both AFO 

conditions, but the predicted SI was significantly (p < 0.05) lower under the AFO2 condition 

than under the AFO1 condition (41% versus 51%). In between the AFO conditions for Subject 2, 

the observed SI was significantly (p < 0.05) less under the AFO1 condition (20% versus 24%), 
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but the predicted SI was significantly (p < 0.05) greater under the AFO1 condition (31% versus 

26%).  

 
Figure 3-6: Observed and predicted SI under all conditions based on mean step lengths. Values are mean ± SE. 

 

The observed and predicted SIs for swing time are shown in Figure 3-7. Comparing with 

the NAFO condition, the SI significantly (p < 0.05) decreased under both AFO conditions (4% 

versus 15%) for both subjects except that the observed SI with AFO 2 condition for Subject 2 

was equal to the observed SI under the NAFO condition. This trend was overall consistent 

between observed and predicted values. The SI changing trend under both AFO conditions was 

consistent between observed and predicted for Subject 2, but was inconsistent for Subject 1. In 

between the AFO conditions for Subject 1, the observed SI was significantly (p < 0.05) greater 

under the AFO1 condition (3% versus 0%), but the predicted SI was significantly (p < 0.05) less 

under the AFO1 condition (6% versus 8%). In between the AFO conditions for Subject 2, the 

observed and predicted SI was significantly (p < 0.05) less under the AFO1 condition (22% 

versus 29%).  
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Figure 3-7: Observed and predicted SI under all conditions based on mean swing time. Values are mean ± SE. 

 

The observed and predicted preferred walking speed are shown in Figure 3-8 and Table 

3-8. The walking speed was significantly (p < 0.05) faster for Subject 1 than for Subject 2 (0.98±

0.19 m/s versus 0.73±0.12 m/s). Comparing with the NAFO condition, the walking speed was 

significantly (p < 0.05) increased under both AFO conditions for both subjects (0.88±0.18 m/s 

versus 0.80±0.11 m/s). This trend was consistent between observed and predicted values. The 

walking speed under both AFO conditions was consistent between observed and predicted 

values. The walking speed was not significantly different between the AFO conditions. 
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Figure 3-8: Observed and predicted walking speed under all conditions as summarized in Table 3-8. Values are mean ± SE. 

 

The predicted energy expenditure for each condition is shown in Figure 3-9. The NAFO 

condition had significantly (p < 0.05) lower energy expenditure comparing with the AFO 

conditions for both subjects (89 J/gait versus 133 J/gait), while the AFO2 condition had 

significantly (p < 0.05) higher energy expenditure comparing with the other two conditions for 

both subjects (143 J/gait versus 105 J/gait). 

 
Figure 3-9: Predicted energy expenditure under all conditions. Values are mean ± SE. 

* 

* * 
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3.5.      Discussion 

3.5.1.   Initial Joint Angles and Angular Velocities Differences 

Most of the observed and predicted values were within the normal range from the 

literature review in Table 2-4 except the observed initial hip angular velocity for Subject 2 was 

30% less than the normal range (Table 3-6). This implied the slowed gait that resulted from the 

impairment [100–103]. The differences between observed and predicted initial ankle angles 

(RMSE = 17°) and angular velocities (RMSE = 52 deg/s) might due to the forefoot stiffness 

created by the shoe. Several studies showed that the forefoot stiffness created by the shoe 

affected gait performance [121,122]. While the proposed model considered the forefoot as a rigid 

link and resulted in a biased initial ankle angle. For both AFO conditions, the AFO footplate was 

more rigid than the shoe. This made gait with AFOs similar to the gait predicted by the PPCLMP 

model and explained that no significant differences were found for ankle angle and angular 

velocities between observed and predicted values under AFO conditions. 

3.5.2.   Estimated Lumped Muscle Parameters 

The lumped muscle parameters of hip and ankle joints were significantly changed among 

different conditions, while the lumped muscle parameters of knee joints were not significantly 

changed among the AFO conditions. 

The increment of impaired-side hip lumped muscle parameter with AFO1 during SW for 

two subjects (23±4 Nm/deg versus 17±4 Nm/deg) and the inconsistency changing trend with 

AFO2 during SW between two subjects (Table 3-7) can be explained by the two AFO effects 

during DS addressed in Chapter 2. The AFO released energy during push-off, but also 

constrained the ankle from performing plantar flexion during the later push-off stage, which 
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constrained the ability of energy generation. The AFO1 had less stiffness and released less 

energy for initial SW. This resulted in higher hip muscle activity to pull the leg forward during 

SW to compensate for less energy at the beginning. On the other hand, the AFO2 had higher 

stiffness and released more energy for initial SW. Depends on which effect (release energy and 

constrain the ankle) was dominating, the hip lumped muscle parameter could increase or 

decrease during SW.  

The decrement of the unimpaired-side ankle torque for Subject 2 with AFO2 (Table 3-7, 

0.94±0.16 Nm/kg versus 2.08±0.22 Nm/kg) was because AFO2 was stiffer and released more 

energy. The increment of unimpaired-side ankle torque for Subject 2 with AFO1 (2.07±0.10 

Nm/kg versus 1.94±0.33 Nm/kg) was a result of compensating for the constrain-ankle effect of 

the AFO during SS. During the DS with unimpaired side behind, the subject might want to 

push-off harder to maintain higher initial velocities of the impaired side at initial SS that right 

after the DS to compensate the slowing effect of the AFO stiffness proposed in Chapter 2. The 

inconsistency trend in lumped muscle parameters changing between subjects might due to 

gender, anthropometry, and gait preference differences. Further investigation is needed to study 

how these factors could affect lumped muscle parameters and model predictions.  

3.5.3.   Gait Parameters 

Overall, the PPCLMP model predictions of gait parameters were improved by utilizing the IMU 

data comparing with results in Chapter 2 (RMSE of step length: 0.07 m versus 0.15 m; RMSE of 

swing time: 2% versus 5% of gait duration). The RMSE of step lengths ranged from 0.02 to 0.20 

m. The RMSE was resulted from the higher variations found in the predicted step length 

comparing with the observed step length (Table 3-8). The differences between the mean 

observed and predicted step lengths were all less than 0.05 m. This suggested that the model was 

good in predicting multiple gait cycles instead of the individual gait cycle. The higher RMSE of 

the unimpaired-side step length suggested that the prediction of step length on the impaired side 

was better than the prediction of the unimpaired side. This was because the IMU was attached to 

the impaired side. There was more information provided for the impaired side from the IMU. 
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The movement of the unimpaired side was only based on model prediction. The impaired-side 

step length (Table 3-8) was changing in the same direction with the impaired-side hip joint 

lumped muscle parameter (Table 3-7), which was consistent with the sensitivity analysis shown 

in   
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Table 3-3. For both subjects, the AFO made the impaired-side step length longer and was 

inconsistently affect the step length on the unimpaired side. This was consistent with the finds 

reported by previous investigations of AFO effects on impaired gait [123–125].  

Subject 1 had a longer step length on the impaired side than on the unimpaired side (0.74

±0.18 m versus 0.47±0.07 m), while Subject 2 had longer step length on the unimpaired side 

(0.49±0.03 m versus 0.39±0.03 m). This could be explained by the two compensatory strategies 

described by Konttink et al. [5] and Don et al. [8]. As observed, Subject 1 tended to use more 

knee flexion (Table 3-8, 63±7° versus 59±6°) on the impaired side to lift his foot during SW in 

order to avoid stubbing his toe. Because of more knee flexion, the HS occurred later and further 

away from the stance leg, which led to longer step length. On the other hand, Subject 2 tended to 

utilize more hip abduction (Table 3-8, 12±7° versus 6±4°) and perform the circumduction 

movement of the leg on the side of the body. This resulted in longer SW time (Table 3-8) and 

shorter step length. The differences in compensatory strategies between the two subjects might 

be due to the differences in gait patterns between males and females. Females have been found to 

have more hip abduction and internal rotation due to wider pelvis and less effective hip 

abductors during walking [126,127].  

The prediction of step length was better for Subject 1 than Subject 2 (RMSE < 0.09 

versus RMSE < 0.20 m). This is because the significant hip abduction performed by Subject 2 

during gait was not characterized by the planar model. Possible solutions are adding one degree 

of freedom to the hip joint (abduction/adduction) to advance the model into a 3-D model, or 

compensating the 3-D movement in the planar model by changing the effective lengths of the 

body segments in the sagittal plane. 
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The walking speed was overall faster with AFO conditions comparing with the NAFO 

condition (0.88±0.18 m/s versus 0.80±0.11 m/s), which suggested that AFOs could improve 

walking speed. This was consistent with the findings reported by previous investigations of AFO 

effects on impaired gait [123–125]. 

3.5.4.   Evaluation of Gait with AFOs 

The IMU-attached AFO shows the possibility of evaluating gait with AFOs during the 

patient’s daily activity. The IMU data can be stored locally or uploaded to a server via Wi-Fi for 

indoor or 2G-5G for outdoor connection for gait analysis and evaluation regarding gait symmetry 

and efficiency.  

The observed SI for step length (Figure 3-6) suggested that Subject 1 had worse spatial 

symmetry in his gait with the AFOs (SI for step length: 50% versus 34%), and Subject 2 had 

better spatial symmetry in her gait with the AFOs comparing with the NAFO condition (SI for 

step length: 22% versus 28%). This was because that Subject 1 had longer step lengths on his 

impaired side, while Subject 2 had shorter step lengths on her unimpaired side under the NAFO 

condition. Since the AFOs increased the step lengths on the impaired side, it was reasonable to 

see Subject 1 got worse gait with the AFOs, and Subject 2 got better gait with the AFOs based on 

the SI for step length. This suggested that patients with longer impaired-side step length 

(compensate by flexing knee) would get even more asymmetry on step lengths, while patients 

with shorter impaired-side step length (compensate by circumduction) would gain more 

symmetry on step lengths by wearing AFO. Neither AFOs could correct the SI for step length to 

normal range (0~10%, [67,68]), which was consistent with the findings from Guillebastre et al. 

[128] and Esposito [40].  
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Due to the better prediction of impaired-side step length (RMSE < 0.09 m) and poor 

unimpaired-side step length (RMSE < 0.20 m) mentioned above, the model did not demonstrate 

good prediction on the SI for step length. Especially for Subject 2, the model prediction would 

suggest AFO2 was better than AFO1, while the observed step lengths would suggest the other 

way around. Also, the RMSE of step length prediction for Subject 1 was less than 0.09 m 

compared with 0.20 m for Subject 2. This inconsistency of the step length prediction accuracy 

between the two subjects might be the result of differences in stature, gender, and age of two 

subjects. Females were found to have a wider pelvis and more pelvic obliquity range than males 

during gait [129,130], while the linkage system of the PPCLMP model ignores the size and 

movements of the pelvis link during gait. This may contribute to the prediction errors when 

predicting gait for females. Further investigation is needed to evaluate the effect of these 

anthropometric parameters on model prediction accuracy. 

Overall, the SI for swing time (Figure 3-7) suggested that drop foot patients would gain 

more temporal symmetry with the AFOs (4% versus 15%). For Subject 2, the model prediction 

was consistent with the observation results: AFO1 was better. For Subject 1, the model 

prediction suggested AFO1, while the observed results suggested AFO2. However, both AFOs 

corrected the SI for swing time of Subject 1 back to normal range (0~9%, [67,68]) and might be 

good options for Subject 1. Thus, the model had consistent results in evaluating the gait with 

AFO1 and AFO2 with the observed results on SI for swing time.  

Similarly, the model had consistent results in evaluating the gait with AFO1 and AFO2 

with the observed results on walking speed (Figure 3-8). Based on the walking speed, AFO1 and 

AFO2 were equivalent in improving Subject 1’s gait, while the AFO1 showed better gait 

improvement on Subject 2 than the AFO2. 
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The predicted energy expenditure was increasing under the AFO conditions comparing 

with the NAFO condition (Figure 3-9, 89 J/gait versus 133 J/gait). This was inconsistent with the 

observed reduction in oxygen consumption with AFO use reported by many investigators 

[96,131–133]. Hassler [134] proposed that the possible reason for oxygen consumption reduction 

was stability improvement. The proposed model did not consider the stability of the movement, 

since the model characterized the lower limb movement of each phase with continuous dynamic 

systems that describe smooth movements. The lateral stability was also not considered due to the 

limitation of the planar analysis. Furthermore, the model estimated the energy expenditure based 

on the lumped muscle works at each joint. The model did not separate the passive stiffness of 

joints from the active muscle activities, neither the work from agonist and antagonist. For 

instance, the two subjects in this study suffered from drop foot due to spastic hemiparesis. This 

pathology resulted in the involuntary contraction of the ankle plantar flexor [135,136], whose 

passive work was included in the energy expenditure of this study. The model also assumed the 

knee was straight during SS, and the front-knee was straight during DS. The energy needed to 

keep the knee straight was not considered in the model. 

3.5.5.   Limitations 

As discussed, the model was limited to predicting energy expenditure because the work 

of agonist and antagonist, the smoothness of movement, and lateral movements were not 

characterized by the model. In addition, using the minimization of energy expenditure as the 

objective of the optimization problem was a major limitation. The optimization strategies of 

subjects during walking may not be limited to minimize energy expenditure, but also comfort 

and movement smoothness.  Also, only two subjects were recruited in this study, which limits 

the statistical power of the results. 
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3.6.      Conclusions 

This work demonstrated how the model could be used to quantitatively predict and 

evaluate gait with different ankle stiffnesses based on the data from a single IMU attached to the 

impaired shank. Results showed that the IMU could be utilized to estimate the initial conditions 

and lumped muscle parameters for each gait cycle by the inverse-dynamic mode of the PPCLMP 

model. The estimated initial conditions and lumped muscle parameters can be used by the 

forward-dynamic mode of the model to enhance the gait prediction and evaluation. The 

model-predicted step lengths, swing time, and walking speed were consistent with the observed 

gait parameters, and the prediction accuracy was improved comparing with results in Chapter 2. 

The model-predicted SI for swing time was consistent with the observed SI, while the 

model-predicted SI for step length was inconsistent with the observed SI among different 

conditions. The model-predicted energy expenditure was not a good quality metric for gait 

evaluation because the model ignored the amount of energy needed to perform stable and smooth 

movements.  
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CHAPTER 4 An Investigation of Gait Prediction Accuracy of the PPCLMP Model 

Abstract 

This study aims to investigate the gait prediction accuracy of the planar piecewise 

continuous lumped muscle parameter (PPCLMP) model. Three male (13th to 96th percentile stature) 

and three female (22th to 97th percentile stature) healthy subjects were recruited to walk with and 

without two ankle-foot orthoses (AFOs) with low and high stiffnesses (3.4 and 6.9 Nm/deg) on 

their left ankles to measure their step lengths and swing time during gait using the vision-based 

motion tracking system. The kinematic data measured from the inertial measurement unit (IMU) 

attached to the AFO calf were utilized by the inverse-dynamic mode of the PPCLMP model to 

predict the initial conditions and lumped muscle parameters that characterize joint torques. The 

predicted initial conditions and lumped muscle parameters were then utilized by the 

forward-dynamic mode of the PPCLMP model for gait prediction. Additionally, the electrical 

activities of muscles related to hip joint torques were measured by four surface electromyogram 

(SEMG) units: one on the biceps femoris and one on the rectus femoris of each thigh. The 

model-predicted initial conditions and lumped muscle parameters were compared with the 

experimentally measured initial conditions and SEMG profiles, respectively. The model-predicted 

step lengths and swing time were also compared with the experimental observations. Results 

demonstrated that the increasing stature significantly (p < 0.05) improved the model prediction 

accuracy regarding the initial conditions and lumped muscle parameters while body mass and 

gender had no significant effect. Consequently, the increasing stature was found to significantly 
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(p < 0.05) improve the model prediction accuracy of step lengths, as well as the walking speed and 

symmetry index for step length. 
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4.1.      Introduction 

Gait-related biomechanical models utilize anthropometric parameters (stature, body mass, 

and gender) to characterize the linkage system of the human body and investigate movements 

during gait phases [137–140]. The inverted pendulum model for the single stance phase (SS) 

demonstrated that the stature and body mass distribution determined the energy transfer during 

the SS [141]. The inverted pendulum model for the SS [141] and the double pendulum model for 

the swing phase (SW) [142] revealed that the stature (particularly the lower limb lengths) but not 

body mass affected the swing time and stance time ratio for walking gait. Further, various 

stature, body mass, and gender affected the prediction of joint forces and movements from the 

kinematic chain model [140,143] which was used to characterize the lower limb movements 

during the double stance phase (DS) of walking.  

Anthropometric parameters also affect the gait prediction of the planar piecewise 

continuous lumped muscle parameter (PPCLMP) model (Chapters 2 and 3), which combines the 

SS (inverted pendulum model), SW (double pendulum model), and DS (kinematic chain model) 

to predict the walking gait with an ankle-foot orthosis (AFO) that increases the ankle joint 

stiffness. The data from an inertial measurement unit (IMU) attached to the AFO are utilized by 

the inverse-dynamic mode of the PPCLMP model to predict the initial conditions (joint angles 

and angular velocities at the start of gait) and lumped muscle parameters that characterize joint 

torques for each gait cycle (Chapter 3). The predicted initial conditions and lumped muscle 

parameters are then utilized by the forward-dynamic mode of the PPCLMP model to predict gait 

parameters (step lengths and swing time) for gait evaluation. Anthropometry of subjects affects 

the model prediction accuracy. The PPCLMP model prediction accuracy of step lengths was 

better for a tall male subject than for a short female subject (root mean square error (RMSE) < 
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0.09 m versus RMSE < 0.20 m) in Chapter 3. The goal of this study is to investigate the 

PPCLMP model prediction accuracy among subjects with various anthropometry.  

Human subject tests of various anthropometry are required to evaluate the prediction 

accuracy of biomechanical models [144–146]. Muscle electrical activity measured from surface 

electromyogram (SEMG) units can be used to estimate the muscle force [64,147–149] which is 

characterized as spring force by the lumped muscle parameters in the PPCLMP model. As biceps 

femoris (BF) acting as the knee flexor and hip extensor and rectus femoris (RF) acting as the 

knee extensor and hip flexor, SEMG signals of the BF and RF are commonly used to estimate 

the hip extension and flexion torques, since they determine the lower limb movements during 

each gait phase. The root mean square (RMS) of the SEMG profile for the BF mostly peaked 

during the SW [150,151], while the RF of the back-leg was found to significantly active during 

the DS [152–154].  

To examine the prediction accuracy of the PPCLMP model, subjects of various stature, 

body mass, and gender were recruited in this study to compare the SEMG measured muscle 

activities and the model-predicted lumped muscle parameters as well as the observed and 

model-predicted: 1) initial conditions of each gait cycle, 2) step lengths, 3) swing time, 4) 

symmetry index (SI) for step length, 5) SI for swing time, and 6) walking speed. 

This study investigates the PPCLMP model prediction accuracy among various 

anthropometry. The hypothesis is that the anthropometric inputs affect the model prediction 

accuracy. Section 4.2 outlines the subject recruitment, experiment procedure, data collection and 

processing, and statistical analysis. Section 4.3 compares the model prediction accuracy among 

subjects of various anthropometry. Section 4.4 discusses the effect of anthropometry on model 
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prediction accuracy and explains the effect of subject variables on PPCLMP model prediction 

accuracy.  

4.2.      Methods 

The subjects, the procedure of the human subject test, experimental settings, data 

processing, and the statistical analysis that examines the effect of anthropometry on model 

prediction accuracy are summarized. 

4.2.1.   Subjects 

Three male and three female healthy subjects were recruited to measure their muscle 

activities, joint angles, step lengths, and swing time during walking gait. The gender, stature, 

percentile of stature, body mass, and body mass index (BMI) of six subjects are listed in Table 

4-1. The stature of female subjects ranged from 22th to 97th percentile of the female population, 

and the stature of male subjects ranged from 13th to 96th percentile of the male population 

reported in the ANSUR Data [53].  

Table 4-1: Anthropometry of six subjects 

Subject 1 2 3 4 5 6 

Gender* F F F M M M 

Stature (m) 1.55 1.61 1.74 1.65 1.75 1.88 

Percentile of stature 22th 55th 97th 13th 55th 96th 

Body mass (kg) 50 56 56 68 85 95 

BMI 21 22 18 25 28 27 

*F represents the female and M represents the male. 

 

4.2.2.   Procedure 

Three experimental conditions were carried out. In the first condition, the subjects walked 

without any AFO, denoted as NAFO. In the second and third conditions, the subjects wore an 

AFO with low (3.4 Nm/deg, as tested in Appendix C) or high stiffnesses (6.9 Nm/deg, as tested 

in Appendix C) on their left ankle and denoted as AFO1 and AFO2, respectively. To gain data of 
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40 gait cycles from each subject under each condition (NAFO, AFO1, and AFO2), the subject 

was asked to walk with comfortable self-selected speed for 20 trips under each condition with at 

least two complete gait cycles recorded (exclude the first and last gait cycles) for each trip. For 

AFO1 and AFO2 conditions, each subject was asked to walk with the AFO for 5 minutes before 

the experiment trial to adapt to the increased stiffness at the ankle joint. Before participation, the 

goal, experimental procedure, and possible risks were explained to each subject. An informed 

consent form approved by Institutional Review Boards (IRB) of the University of Michigan 

(HUM00090458) was signed by each subject before participation. 

4.2.3.   Data Collection 

Three measurement devices were applied simultaneously to record the lower limb 

movement and muscle activity data: 1) vision-based motion tracking system, 2) IMU attached to 

the left shank or AFO, and 3) SEMG on BF and RF muscles. 

The vision-based motion tracking system with two sensor units (three cameras each) by 

NDI Optotrak Certus (NDI Waterloo, Ontario, Canada) was used to measure the movements of 

lower limbs at a sampling rate of 100 Hz. As shown in Figure 4-1(a), six marker clusters were 

placed on the upper leg, lower leg, and foot of both legs to track the movement of lower limb 

segments in the sagittal plane. Additional markers were placed on the hip and ankle joints for 

calibration purposes.  

An IMU (Model BNO055, Bosch Sensortec, Mount Prospect, Illinois, USA) was 

attached to the back of the left lower shank for the NAFO condition and the AFO for AFO1 and 

AFO2 conditions as shown in Figure 4-1(b), to measure the shank movement at a sampling rate 

of 100 Hz. 
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Custom SEMG units with RMS filter (University of Michigan Center for Ergonomics, 

Ann Arbor, Michigan, USA) were utilized to predict the muscle activities to compare to the 

model prediction of the lumped muscle parameters. As shown in Figure 4-1(c), four SEMG units 

were instrumented on: 1) left biceps femoris (lBF), 2) left rectus femoris (lRF), 3) right biceps 

femoris (rBF), and 4) right rectus femoris (rRF) [150–154] to measure the electrical activities of 

the hip extensors and flexors. Recorded SEMG signals were processed by the RMS filter with 

the gain set to 10,000 and the delay set to 250 ms. The SEMG RMS data were synchronized with 

the vision-based motion tracking system using the NDI data acquisition unit (NDI Waterloo, 

Ontario, Canada).  
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(a) 
(b) 

 

(c) 

Figure 4-1: Equipment for measuring movements and muscle activities of the BF and RF: (a) the placement of vision-based 

motion tracking markers from the side view, (b) the IMU attached to the back of the AFO calf, and (c) the placement of four 

SEMG units on lBF, lRF, rBF, and rRF. 

 

4.2.4.   Data Processing 

The data measured from the vision-based motion tracking system were utilized to 

calculate the initial conditions, step lengths, swing time, and walking speed of each gait cycle 

using MATLAB 2017 (MathWorks, Natick, MA, USA). The amplified SEMG RMS data of each 

muscle during one sample gait cycle is shown in Figure 4-2. Because each lumped muscle 

parameter has only one value for each phase, the mean SEMG RMS of each phase was 

calculated to compare with the hip joint lumped muscle parameters regarding changing trends. 

The three-axis accelerations, angular velocities, and headings measured from the IMU were 

SEMG for RF 

SEMG for BF 

IMU 

Markers 
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analyzed by the inverse-dynamic mode of the PPCLMP model to predict the initial conditions 

and lumped muscle parameters (Figures 3-2 and 3-3). The predicted initial conditions and 

lumped muscle parameters were then used in the forward-dynamics mode of the PPCLMP model 

to predict the step lengths, swing time, and walking speed of the gait to compare with 

experimental observations.  

Differences between the observed and PPCLMP model-predicted initial conditions were 

calculated to study the model prediction accuracy of the initial conditions. Correlations between 

the mean of SEMG RMS and PPCLMP model-predicted hip joint lumped muscle parameters for 

the swing leg during the SW and the back-leg during the DS were used to investigate the model 

prediction accuracy of the lumped muscle parameters. Differences between the observed and 

predicted step lengths and swing time were used to examine the model prediction accuracy of 

gait parameters. 
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Phase 
Associated lumped muscle 

parameter 

Left 

SW 

DS1 (right leg 

behind) 

Right 

SW 

DS2 (left leg 

behind) 

Mean SEMG RMS 

(mV) 

lBF Left hip 34±12 16±2 14±11 63±9 

lRF Left hip 19±5 18±6 11±10 35±3 

rBF Right hip 14±10 47±5 28±6 18±3 

rRF Right hip 3±3 52±20 36±10 6±1 

 

 

 
Figure 4-2: Amplified SEMG RMS during a sample gait of Subject 3 under the NAFO condition. TO represents the toe-off, HS 

represents the heel strike, SW represents the swing phase, SS represents the single stance phase, DS1 represents the doubles 

stance phase with right leg behind, and DS2 represents the double stance phase with left leg behind, lBF represents the left biceps 

femoris, lRF represents the left rectus femoris, rBF represents the right biceps femoris, and rRF represents the right rectus 

femoris. The top table shows the mean and standard deviation of the SEMG RMS during each phase that are used to compare 

with the associated lumped muscle parameters. 

 

To further examine the effect of anthropometry, the walking speed and SIs (Eq. 3-1, [66]) 

for step length and swing time were calculated for each subject for NAFO, AFO1, and AFO2 

conditions based on observed and predicted gait parameters. Differences between the observed 

and predicted walking speed and SIs were also used to determine the prediction accuracy of the 

PPCLMP model. 

4.2.5.   Statistical Analysis 

Seven dependent variables were used in this study to evaluate the model prediction 

accuracy: 1) the correlation (denoted as 𝑟𝐸𝑀𝐺) between the mean SEMG RMS and predicted 

lumped muscle parameters of the SW and DS, as well as the error of predicted: 2) initial 

conditions (denoted as 𝜀𝐼𝐶) including initial joint angles (initial shank pitch angle 𝜃(𝑡0), back-hip 
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angle 𝜃11(𝑡0), and back-ankle angle 𝜃13(𝑡0)) and angular velocities (initial shank pitch angular 

velocity �̇�(𝑡0), back-hip angular velocity �̇�11(𝑡0), and back-ankle angular velocity �̇�13(𝑡0)), 3) 

step lengths (denoted as 𝜀𝑆𝐿), 4) swing time (denoted as 𝜀𝑇𝑆𝑊), 5) walking speed (denoted as 

𝜀𝑆𝑃), 6) SI for step length (denoted as 𝜀𝑆𝐼𝑆𝐿), and 7) predicted SI for swing time (denoted as 

𝜀𝑆𝐼𝑇𝑆𝑊).  

These errors were defined as the absolute differences between the observed and predicted 

values. The independent variables of this study were stature, body mass, gender, and AFO 

stiffness. 

Repeated measures analysis of variance (ANOVA) was performed using Minitab 18 

(Minitab LLC, Chicago, IL, USA) to evaluate the effects of four independent variables (stature, 

body mass, gender, and AFO stiffness) and their interaction terms on the dependent variables. 

Subjects’ stature and body mass were used as covariates. Additional correlation analysis was 

performed to further test the relations between the independent variables and the 

ANOVA-significant (p < 0.05) affected dependent variables. As suggested by Evans [155], for 

the absolute value of r: 

 0.00 – 0.19, “very weak” 

 0.20 – 0.39, “weak” 

 0.40 – 0.59, “moderate” 

 0.60 – 0.79, “strong” 

 0.80 – 1.00, “very strong”  

4.3.      Results 

The model prediction accuracy of initial conditions, lumped muscle parameters, step 

lengths, swing time, gait symmetry, and walking speed are presented. 
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4.3.1.   RMSE between Observed and Predicted Results 

Results of observed and predicted initial joint angles and angular velocities (Appendix 

D), measured SEMG RMS, the model-predicted hip and knee lumped muscle parameters during 

the SW and DS (Appendix E), and observed and predicted step lengths, swing time, and walking 

speeds (Appendix F) for 40 normal self-paced gait cycles are presented. The RMSE in predicted 

initial joint angles and angular velocities ranged from 0 to 18° and 2 to 58 °/s, respectively. The 

RMSE in predicted step lengths and swing time ranged from 0.01 to 0.16 m and 0.01 to 0.04 

seconds, respectively. The model prediction accuracy was good for swing time and fair for step 

length. 

4.3.2.   ANOVA 

As the ANOVA results shown in Table 4-2, the stature and gender have significant 

effects on the model prediction accuracy. The stature had significant effects (p < 0.05) on all the 

dependent variables except the 𝜀𝐼𝐶 of the initial back-ankle angle, the 𝜀𝑇𝑆𝑊 of both sides, and 

𝜀𝑆𝐼𝑇𝑆𝑊. Gender showed significant effects on the 𝑟𝐸𝑀𝐺 of lBF (r = 0.79 for male versus r = 0.40 

for female) and rRF (r = 0.63 for male versus r = 0.32 for female) during SW and rBF (r = 0.73 

for male versus r = 0.44 for female), lRF (r = 0.81 for male versus r = 0.33 for female), and rRF 

(r = 0.87 for male versus r = 0.61 for female) during DS.  

The body mass, AFO stiffness, and the interaction terms between the independent 

variables did not have significant effects on any of the dependent variables. 
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Table 4-2: ANOVA table for independent variables with significant effects (p < 0.05). L represents the left side, R represents the right side, M represents the male, and F represents 

the female. The significant effect of gender is shown as pooled value comparisons between males and females. The significant effect of stature is shown as the first-order 

coefficient and the intercept from ANOVA. The body mass and the interaction terms had no significant effect on the dependent variables. 

 

𝜀𝐼𝐶  𝑟𝐸𝑀𝐺 𝜀𝑆𝐿 (m) 𝜀𝑇𝑆𝑊 (s) 
𝜀𝑆𝑃  

(m/s) 
𝜀𝑆𝐼𝑆𝐿 
(%) 

𝜀𝑆𝐼𝑇𝑆𝑊 
(%) 𝜃(𝑡0) 

(°) 
𝜃11(𝑡0) 

(°) 
𝜃13(𝑡0) 

(°) 
�̇�(𝑡0) 
(°/s) 

�̇�11(𝑡0) 
(°/s) 

�̇�13(𝑡0) 
(°/s) 

 SW   DS  L  

(AFO) 
R 

L  

(AFO) 
R 

lBF lRF rBF rRF lBF lRF rBF rRF 

Gender 

 (M vs. F) 
      

0.79±0.08 

vs. 

0.40±0.04 

  

0.63±0.06 

vs. 

0.32±0.14 

 

0.81±0.06 

vs. 

0.33±0.01 

0.73±0.12 

vs. 

0.44±0.10 

0.87±0.02 

vs. 

0.61±0.21 

       

Stature (m) 

coefficient 

(intercept) 

26 

(54) 

16 

(34)  

65 

(129) 

66 

(136) 

51 

(105) 

1.3 

(–1.6) 

0.9 

(–1.1) 

0.5 

(–0.3) 

1.1 

(–1.4) 

0.9 

(–1.1) 

1.4 

(–1.8) 

1.3 

(–1.7) 

1.4 

(–1.6) 

0.24 

(0.49) 

0.33 

(0.66)   

0.24 

(0.52) 

37 

(72)  
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4.3.3.   Accuracy of Initial Conditions 

The model prediction accuracy of initial conditions (𝜀𝐼𝐶) was correlated with stature as 

shown in Table 4-3. Weak to strong negative correlations (r = 0.61 to 0.21) were found 

between stature and the 𝜀𝐼𝐶 of all initial angles and angular velocities.  

Table 4-3: The correlation coefficients between the stature and 𝜀𝐼𝐶 of initial angles and angular velocities. The 𝜀𝐼𝐶 of all initial 

angles and angular velocities were ANOVA-significant (p < 0.05) affected by stature except the 𝜀𝐼𝐶 of the initial back-ankle 

angle (𝜃13(𝑡0)). 
   Correlation between stature and 𝜀𝐼𝐶 

Shank pitch angle  𝜃(𝑡0) 0.81 

Back-hip angle  𝜃11(𝑡0) 0.60 

Back-ankle angle  𝜃13(𝑡0) 0.51 

Shank pitch angular velocity  �̇�(𝑡0) 0.37 

Back-hip angular velocity  �̇�11(𝑡0) 0.35 

Back-ankle angular velocity  �̇�13(𝑡0) 0.38 

  

4.3.4.   Accuracy of Lumped Muscle Parameters 

The model prediction accuracy of lumped muscle parameters (𝑟𝐸𝑀𝐺) was correlated with 

stature and gender as shown in Table 4-4. The 𝑟𝐸𝑀𝐺  of BFs was generally close to that of RFs 

during the SW among all subjects (r = 0.59 versus r = 0.50), while the 𝑟𝐸𝑀𝐺  of RFs were greater 

than that of BFs during DS (r = 0.66 versus r = 0.48). The model prediction accuracy of the 

lumped muscle parameters was better for males than for females (r = 0.68 versus r = 0.43). 

Table 4-4: The 𝑟𝐸𝑀𝐺 during the SW and DS for six subjects. The L and R for 𝑟𝐸𝑀𝐺 during DS represent the side of the back-leg. 

  Subject 1 2 3 4 5 6 

Mean   Gender F F F M M M 

  Stature (cm) 155 161 174 165 174.5 187.5 

𝑟𝐸𝑀𝐺 

 
L (AFO) 

BF 0.40 0.45 0.36 0.70 0.79 0.89 0.60 

SW RF 0.34 0.36 0.47 0.59 0.54 0.67 0.50 

 
R 

BF 0.52 0.54 0.64 0.43 0.69 0.63 0.58 

 RF 0.13 0.37 0.47 0.67 0.68 0.55 0.49 

DS 

L (AFO) 
BF 0.25 0.40 0.44 0.32 0.28 0.61 0.38 

RF 0.35 0.32 0.33 0.73 0.87 0.82 0.57 

R 
BF 0.30 0.55 0.46 0.70 0.60 0.89 0.58 

RF 0.38 0.56 0.88 0.89 0.88 0.85 0.74 

 

4.3.5.   Accuracy of Step Lengths and Swing Time 

As shown in Figures 4-3 and 4-4, the model prediction accuracy of step lengths (𝜀𝑆𝐿) was 

correlated with stature, and the model prediction accuracy of swing time (𝜀𝑇𝑆𝑊) was not 
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correlated with any anthropometric parameter. Strong and moderate negative correlations were 

found between the stature and 𝜀𝑆𝐿 of both legs (r = 0.64 for the left side and 0.44 for the right 

side), and no correlation was found between the stature and 𝜀𝑇𝑆𝑊 (r = 0.07 for the left side and 

0.06 for the right side).  

 
Figure 4-3: The range of errors of predicted step lengths for subjects with different statures (all conditions pooled). 

 

 
Figure 4-4: The range of errors of predicted swing time for subjects with different statures (all conditions pooled). 
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4.3.6.   Accuracy of Gait Symmetry Index (SI) 

The observed and predicted SIs for step lengths and swing time of all six subjects are 

summarized in Table 4-5. Consistency was found between the observed and predicted SIs for 

swing time. Inconsistency was found between the observed and predicted SIs for step length. 

The errors in observed and predicted SIs for step length and swing time are shown in 

Figure 4-5. A weak negative correlation (r = 0.30) was found between the stature and errors of 

predicted SI for step length, and the error of predicted SI for swing time was not correlated with 

stature (r = 0.09). 

Table 4-5: Calculated gait symmetry indices (SIs) for observed (O) and predicted (P) step lengths and swing time of six subjects. 

Subject 1 2 3 4 5 6 

Gender F F F M M M 

Stature (cm) 155 161 174 165 174.5 187.5 

O vs. P O P O P O P O P O P O P 

SI for step length 

(%) 

NAFO 6±0.9 10±1.6 7±1.1 8±1.4 4±0.5 1±0.1 5±0.8 1±0.2 9±1.6 2±0.2 7±1 3±0.4 

AFO1 12±2.2 7±1.2 8±1.3 16±2.4 29±3.1 11±1.8 3±0.4 9±1.8 14±1.7 4±0.4 3±0.5 3±0.6 

AFO2 58±11.3 10±1.3 42±5.1 24±3.4 49±5.5 18±3.4 30±4 6±0.8 40±4.9 19±3.4 8±1.3 6±0.9 

SI for swing time 

(%) 

NAFO 1±0.2 1±0.2 11±1.2 11±1.1 1±0.2 3±0.4 5±1 3±0.6 7±0.8 20±3.8 6±0.8 8±0.8 

AFO1 10±1.1 13±2 23±3.5 22±3.1 6±1.2 6±1.1 6±1.2 15±2.7 6±0.7 3±0.3 10±1.6 10±1.7 

AFO2 6±0.9 11±1.7 23±3.6 24±4.2 6±0.9 12±1.7 23±2.6 23±4.3 23±2.9 21±3.3 17±2.9 22±4.3 

 

 
Figure 4-5: The range of errors of predicted SIs for step length and swing time of subjects with different statures (all conditions 

pooled). 
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4.3.7.   Accuracy of Walking Speed 

The error of the predicted walking speed (𝜀𝑆𝑃) is shown in Figure 4-6. A moderate 

negative correlation (r = 0.55) was found between the stature and error of predicted walking 

speed. 

 
Figure 4-6: The range of errors of predicted walking speed for subjects with different statures (all conditions pooled). 

  

4.4.      Discussion 

The model prediction accuracy among subjects with various anthropometry and other 

potential subject variables that may affect model prediction accuracy are discussed. 

4.4.1.   Accuracy of the Initial Conditions and Lumped Muscle Parameters 

The prediction accuracy of the initial conditions and lumped muscle parameters from the 

inverse-dynamic mode of the PPCLMP model determines the model prediction accuracy of gait 

parameters from the forward-dynamic mode of the PPCLMP model. The predicted initial 

conditions were compared with observed initial conditions to quantitatively examine the 

prediction accuracy of initial conditions among subjects. The predicted lumped muscle 

parameters were compared with measured SEMG RMS regarding changing trends by utilizing 
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correlations to qualitatively examine the prediction accuracy of lumped muscle parameters 

among subjects.  

The model prediction accuracy of the initial conditions (𝜀𝐼𝐶) was significantly (p < 0.05) 

better with increasing stature (Table 4-2 and Table 4-3, the coefficients (𝜀𝐼𝐶 to stature) were 26°

/m, 16°/m, 65°/m·s, 66°/m·s, 51°/m·s for the initial shank pitch angle 𝜃(𝑡0), back-hip angle 

𝜃11(𝑡0), shank pitch angular velocity �̇�(𝑡0), back-hip angular velocity �̇�11(𝑡0), and back-ankle 

angular velocity �̇�13(𝑡0), respectively), but not affected by body mass or AFO stiffness. The 

variability of inter-subject prediction accuracy among various subjects was also reported by 

Findlow et al. [156] and Goulermas et al. [157] when utilizing shank-mounted and foot-mounted 

IMUs. One possible explanation is that taller subjects tend to walk faster which causes greater 

magnitudes of the signals measured by the IMU sensors while the magnitudes of noises remain 

the same, which resulted in better noise reduction performance of the Kalman filter [158] in 

framework shown in Figure 3-2. On the other hand, males are generally taller and walking faster 

than females [159,160] while females naturally have more hip abduction and pelvic obliquity 

than males during walking gait [126,127]. As the gender and stature were correlated in this study 

(r = 0.59), another explanation is that the prediction accuracy of initial conditions was better for 

males than females because of the gait pattern differences between genders instead of stature. 

The prediction accuracy of the initial conditions based on planar inverse dynamics is better for 

males because males have less lateral movements during gait. As discussed in Section 3.5.3, the 

PPCLMP model is limited to planar movement analysis. Efforts are needed to further develop 

the PPCLMP model to compensate for the 3-D movement or advance the model to a 3-D model. 
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The measured SEMG RMS patterns of BFs and RFs are consistent with the patterns 

reported in previous studies [150,151]. The correlations between the lumped muscle parameters 

and the mean SEMG RMS, 𝑟𝐸𝑀𝐺 , were increased for taller subjects (Table 4-2 and Table 4-4, the 

coefficients (𝑟𝐸𝑀𝐺  to stature) were 1.3 m1, 0.9 m1, 0.5 m1, 1.1 m1, 0.9 m1, 1.4 m1, 1.3 m1, 

1.4 m1 for the lBF, lRF, rBF, and rRF during SW and DS, respectively). The 𝑟𝐸𝑀𝐺  was greater 

for the RF than for the BF during the DS. This is because the RFs are the agonists that mainly 

contribute to the torque of the back-hip during DS while the BFs are acting mainly as the 

antagonists that kept the hip torque stable. The significant increments in the SEMG RMS of RFs 

during DS were consistently observed in this study (Figure 4-2) and previous studies [152–154]. 

The lumped muscle parameter prediction accuracy of hip joints was significantly better 

for males than females (Table 4-2) regarding the lBF (0.79±0.08 versus 0.40±0.04) and rRF 

(0.63±0.06 versus 0.32±0.14) during SW and the lRF (0.81±0.06 versus 0.33±0.01), rBF (0.73±

0.12 versus 0.44±0.10), and rRF (0.87±0.02 versus 0.61±0.21) during DS. Female was found to 

have more complex recruitment of the lower limb muscles than male during walking gait as the 

SEMG RMSs of VL and GM were significantly greater for female than male [127,161]. The 

lumped muscle parameters for hip joints were only compared with the SEMG signals of the BF 

and RF, while hip joint flexion and extension torques are generated by the work of a group of 

related muscles including BF, RF, vastus lateralis (VL), vastus intermedius (VI), vastus medialis 

(VM), hamstrings, gluteus maximus (GM), etc. The method of using the correlation between 

lumped muscle parameters and only BF or RF tends to be less effective for females than males, 

which may explain the better prediction accuracy for males than females.  
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The correlation between the SEMG of the BF and RF and the lumped muscle parameters 

of the knee joint was not investigated in this study. Though the BF and RF also contribute to the 

knee joint flexion and extension torques, the knee lumped muscle parameters were not 

significantly changed in this study (Appendix E) and Chapter 3 (Table 3-7). 

4.4.2.   Accuracy of the Step Lengths, Swing Time, Gait Symmetry, and Walking Speed 

The model prediction accuracy of step lengths (𝜀𝑆𝐿) was found to be better for taller 

subjects (Table 4-2 and Figure 4-3, coefficients of 𝜀𝑆𝐿 to stature were 0.04 and 0.08 for left 

and right sides, respectively). This can be explained by better prediction accuracy of the initial 

conditions and lumped muscle parameters for taller subjects as explained in Section 4.1. 

Consequently, the model prediction accuracy of SI for step length (Figure 4-5 and Table 4-2, the 

coefficient of 𝜀𝑆𝐼𝑆𝐿 to stature was 30%/m) and walking speed (Figure 4-6 and Table 4-2, the 

coefficient of 𝜀𝑆𝑃 to stature was 0.12/s) was better for taller subjects. The model prediction 

accuracy of swing time was not significantly affected by any anthropometric parameter because 

the swing time was estimated based on the three-axis accelerations measured by the IMU without 

being processed by the Kalman filter or the inverse-dynamic mode of the PPCLMP model. 

Results suggest that the model can be used to perform gait evaluations based on SI for step 

length and walking speed for tall subjects, while gait evaluations based on SI for swing time can 

be performed for subjects with a wide range of stature. 

4.4.3.   Other Subject Variables 

Besides stature, body mass, and gender, other subject variables could also affect the 

model prediction accuracy. The model characterizes lower limb segments as rods with masses 

and negligible thickness, which ignores the body thickness. For subjects with higher BMI, this 

assumption tends to be invalid. This study recruited subjects with a small range of BMI (18 to 
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28). Larger sample size with a wider range of BMI is needed to further investigate how the BMI 

could affect the model prediction accuracy. 

Besides, researchers found that age was another factor that could affect gait performance 

[162,163]. Elder people were found to have shorter step lengths, and the effect of stature on step 

lengths was fading with increasing age [162]. The PPCLMP model was assuming the hip and 

knee joint torques to be linearly related to joint angles based on the torques of young adults 

reported by Winter [13]. However, people with advanced age were found to have more variation 

and less stability on their joint torques [164,165]. Though the model showed good prediction 

accuracy for six young adults in this study, the use of lumped muscle parameters might become 

less effective while predicting gait for the elder populations. Further investigations are needed to 

evaluate the model for predicting the gait of elder people. 

4.4.4.   Limitations and Future Work 

The major limitations of this study were the number of SEMG units used and the sample 

size. Only four SEMG units were used in this study that measured the activities of BFs and RFs 

in order to validate hip lumped muscle parameters. Other muscles that contribute to hip joint 

torques and other joint torques should be studied to thoroughly examine the prediction accuracy 

of the lumped muscle parameters. Though anthropometric inputs were various in this study, there 

were only six subjects recruited. More subjects should be studied to improve the statistical power 

of the results. 

4.5.      Conclusions 

This study investigated the model accuracy of the initial conditions, lumped muscle 

parameters, step lengths, swing time, and walking speed among various anthropometry (stature, 
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body mass, and gender). The model prediction accuracy of initial conditions, lumped muscle 

parameters, step lengths, and walking speed was significantly better for taller subjects, while the 

accuracy of swing time was not significantly affected by stature, body mass, gender, or AFO 

condition. The prediction accuracy of lumped muscle parameters was better for males than 

females. Other subject variables including BMI and age may affect model prediction accuracy 

and need further investigation.  
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CHAPTER 5 Discussion 

The proposed planar piecewise-continuous lumped muscle parameter (PPCLMP) model 

shows its capability in the investigation of joint stiffness change on gait performance. This 

dissertation uses ankle stiffness that increased by ankle-foot orthosis (AFO) as an example to 

demonstrate and examine the model. The broader applications and suggested future work for the 

PPCLMP model are summarized in this chapter. 

5.1.      Broader Applications 

5.1.1.   Developing a Decision Support System of AFO Design 

As discussed in Chapter 2, the model used in the forward-dynamic mode forms the basis 

of a decision support system for AFO design. Though the current model could not determine the 

optimal AFO stiffness for the user like artificial intelligence, it could help the users of this 

system, clinicians and patients, investigate how different AFO designs could result in different 

gait patterns without the time-consuming fabrication, fitting, and testing process. A webpage 

listed in Appendix G is developed to demonstrate using this model as an investigation tool. As 

shown in Figure 5-1, the user could input the patient’s height, weight, default or estimated 

lumped muscle parameters, and an AFO stiffness to get the predicted gait parameters (joint 

kinematics, swing time, step length) and quality metrics (walking speed and SI for swing time 

and step length) from the model based on phase continuity and forward dynamics. If the 
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predicted gait performance is not acceptable or below expectations, the user could change the 

input AFO stiffness to repeat this process until the user accepts the predicted gait. 

 
Figure 5-1: Workflow for predicting AFO stiffness effect on gait and searching for optimal AFO stiffness. 

 

The ideal decision support system should be able to give the optimal AFO stiffness for a 

given patient based on the patient’s information (anthropometry, impairment, etc.) collected at 

the clinic. The gaps between the proposed model and an ideal decision support system are: 

 The efforts needed to achieve the optimal AFO stiffness. 

 The qualitative prediction is not sufficient. 

To achieve the optimal AFO stiffness, the user may need to explore through all possible 

AFO stiffness to compare among the predicted gait performances using the model. This could be 

tedious and time-consuming. More efforts are needed to directly link the optimal AFO stiffness 

with patients’ information to simplify this decision support process. 

In addition, Chapter 2 only qualitatively predicts how AFO stiffness could affect gait as a 

result of ignorance of the variability among gaits for the same person and among people under 

different walking scenarios [79,168,169]. Therefore, the predicted gait may not be quantitatively 

aligned with the actual gait of the person wearing the AFO. There are still many challenges to 

quantitatively predict the patient’s gait with given AFO stiffness only based on their information 
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collected at the clinic. These challenges include how a patient would adapt to the AFO stiffness 

in both short and long term and how patients walking preference under different walking 

scenarios. 

5.1.2.   Developing a Cyber-based System for AFO Evaluation 

As Chapters 3 and 4 demonstrated the model’s capability in quantitatively predicting gait 

parameters, SI for swing time, and walking speed based on kinematic data measured by the 

inertial measurement unit (IMU) attached to AFO, a cyber-based AFO evaluation system can be 

built, as shown in Figure 5-2. Patients could wear an AFO with IMU that collects their gait 

information both in and out of the clinic or other point-of-care site. This information will be 

uploaded to a data center and utilized to estimate initial conditions and lumped muscle 

parameters by the inverse-dynamic mode of the model. Based on the estimated initial conditions 

and lumped muscle parameters, the model will provide the gait prediction and evaluation 

concerning the quality metrics, such as SI for swing time, SI for step length, and walking speed. 

The clinicians could have quantified feedback on the gait with the current AFO stiffness based 

on these metrics. This information could help the clinicians determine if the current AFO 

stiffness needs adjustment to better fit the patient, as well as give insights on future AFO design 

that should be used for a specific patient in the future. The advantage of this system is not only 

giving objective and quantitative feedback but also evaluating gaits with the AFO under different 

walking scenarios and environments that the specific patient is engaging with during the 

patient’s daily living. Furthermore, 3-D scanning, computer-aided design (CAD), and 3-D 

printing technologies are now available to design and fabricate an AFO with a specific bending 

stiffness in a day. The proposed evaluation system could integrate these technologies to improve 



 

107 
 

the whole design and fabrication process of AFO from handmade to cyber-based to increase 

fabrication quality and reduce processing time and cost [170].  

 
Figure 5-2: Overview of a cyber-based AFO design and evaluation system 

5.1.3.   Investigating of Joint Stiffness 

Though the dissertation uses different AFOs, specifically different AFO bending 

stiffnesses, as examples to develop and examine the proposed PPCLMP model on investigating 

gait with different ankle joint stiffnesses, the PPCLMP model can be modified and implemented 

in a wider range of gait investigations on: 

 Different ball (of foot) stiffnesses due to wearing different shoes or different AFO 

footplate stiffnesses. 
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 Different knee and hip joint stiffnesses due to impairment or wearing passive-dynamic 

assistive devices. 

 More complicated joint toque patterns – active assistive devices, exoskeletons, etc. 

The AFO footplate stiffness was found to be affecting the rotation of the ball of the foot 

[171]. Further, ball of foot rotation during the stance phase was found to be the determinant of 

ground reaction force pattern and energy transition between the swing (SW) and stance phases 

[172,173]. The model has the capability of evaluating different AFO footplate stiffnesses by 

adding a stiffness parameter to the ball of the foot. 

The knee and hip stiffnesses during gait can be changed due to aging, different walking 

tasks, wearing passive assistive devices (lower limbs orthotics or prosthetic devices), 

osteoarthritis, joint replacement, etc. [174–179]. The effect of the knee and hip joint stiffness 

changes can be evaluated and predicted by the model via changing the joint torque equations at 

the hip and knee joints in the model. Similar to Eq. (2-4), the knee and hip joint torques can be 

estimated by adding a stiffness term as shown below: 

 𝑇𝑖𝑗𝑝(𝑡) = 𝑆𝑖𝑗𝑝(𝜃𝑖𝑗) + 𝑘𝑖𝑗𝑝𝜃𝑖𝑗(𝑡) (5-1) 

where 𝑖 represents the joint (1 for hip and 2 for knee), 𝑗 represents the side (1 for left and 2 for 

right), 𝑝 represents the phase (1 for single stance phase (SS), 2 for double stance phase (DS), and 

3 for SW), 𝑇𝑖𝑗𝑝 represents the torque for joint 𝑖 on 𝑗 side during the 𝑝 phase, 𝑆𝑖𝑗𝑝 represents the 

joint stiffness, 𝑘𝑖𝑗𝑝 represents the lumped muscle parameter, and 𝜃𝑖𝑗 represents the joint angle. 

The joint stiffness term might be a function of joint angle or a constant that could be different 

between phases depending on the pattern of joint stiffness to be simulated. With this 

modification, the model could give insights on how these changes would result in different gait 

parameters and different gait performance regarding the SI and walking speed. 
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As mentioned in Chapter 2, the muscle model was simplified as a rotational spring from 

the classic Hill’s muscle model [166]. This does not mean that the model is limited to using 

rotation spring representations for muscle activities or joint torque patterns. For gait with an 

assistive device that has known torque patterns during each phase, the model can estimate and 

predict the gait performance by modifying one or more of the joint torques into pre-determined 

torque patterns during gait. For example, the active AFO is designed to provide a plantar-flexion 

torque at the ankle to assist the push-off [180]. The equation for ankle torque during DS (Eq. 

2-4) could be modified into the following form to simulate the active AFO effect to the ankle 

torque: 

 𝑇𝑖32(𝑡) = 𝑇𝐴𝐹𝑂(𝜃𝑖3, 𝑡) + 𝑟𝑀0 + 𝑘𝐴𝐹𝑂𝜃𝑖3(𝑡) (5-2) 

where 𝑟 represents the active torque normalized by body mass at the ankle joint generated by the 

muscle, 𝑀0 represents the body mass, and 𝑇𝐴𝐹𝑂 represents the active torque provided by the 

active AFO. Such torque patterns may be a function of ankle joint angle, time during the push-

off, or both [181].  

5.2.      Suggestions for Future Work 

The PPCLMP model proposed in this dissertation shows a lot of potentials in estimating 

and predicting the effect of changing joint stiffness in lower limbs on gait using the AFO as an 

example. Further work is needed to thoroughly examine the model and develop the actual system 

that utilizes the model for practical applications. 

The study presented in Chapter 2 gives the qualitative prediction of gait that can be used 

as a tool for investigating different AFO designs. However, there are still gaps between the 

model and an intelligent system that gives the optimal stiffness of the AFO for a given patient. 
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More efforts are needed to simplify the process and reduce the efforts needed to achieve optimal 

AFO stiffness and improve the model prediction. 

The study presented in Chapter 3 shows the possibilities of longer-term quantitative gait 

evaluation by attaching the IMU to AFO. However, there are still many practical issues including 

IMU data transmission, battery charging, providing technical support, and improving system 

robustness to be solved and examined before the implementation. 

Both approaches in Chapters 2 and 3 find the optimal solution by utilizing the 

enumeration searching method, which is slow and inefficient. There are other advanced non-

linear algorithms available to find the optimal solutions for non-convex optimization problems 

[182–184]. Besides, machine learning could link the output with the input to simplify the 

prediction process by training the system with a large amount of data [185,186]. Also, because 

the possible input combinations are finite, if we limited the precision of the input, a lookup table 

could be used for finding the optimal solutions by generating a multi-dimensional table for all 

possible inputs and associated outputs [187,188]. Further investigations are needed to develop 

and evaluate the means of applying these options in reducing the time and efforts needed for gait 

prediction using the model.  

The study presented in Chapter 4 shows the effect of different stature on model 

prediction. There are other anthropometry or personal factors that could affect model prediction, 

including age, gender, and BMI. Further studies with larger sample sizes are needed to 

systematically examine these factors. In addition, investigations are needed to examine the 

hypothesis of better IMU noise reduction for taller people (faster walking) in Chapter 4.  

The model assumes the knee is straight during the inverted pendulum movement, and the 

front-knee is straight during the kinematic chain movement. Though the observed knee angle 
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during these phases was less than 10 degrees, these assumptions need to be examined for patients 

who may have quite different joint kinematics than the subjects recruited in this dissertation. 

Further, the effect of the flexed knee during DS and SS on model prediction should be 

investigated. 

The model was developed to only describe movement in the sagittal plane. However, 

lateral movement of legs during gait was observed in Chapters 3 and 4, and also reported by 

other studies [5,8]. Possible ways to resolve this issue should be proposed and evaluated. For 

example, the model can be developed into a quasi-3-D model by adding one degree of freedom 

(abduction/adduction) to the hip joint. This could improve the model prediction of the SW by 

changing the planar double pendulum model to a more realistic conical double pendulum model. 

Another possible way is to compensate for the lateral movement by changing the effective 

lengths of the body segments in the model. These methods may help with estimating and 

compensating the lower limb movements out of the sagittal plane. 

The model was developed based on the dynamic models that describe walking on a level 

surface. Walking on incline and decline surfaces, such as ramps, can have a quite different 

mechanism due to the change of whole-body angular momentum [189,190]. Efforts are needed 

to modify the model accordingly, such as change the direction of gravitational force, to predict 

walking on a sloped surface. 

Though the model utilizes spring representations for muscles to reduce the dimensions of 

variables in the model, it ignores the viscoelasticity of muscles [166]. Classic Hill’s muscle 

model may be implemented in the PPCLMP model to improve model prediction accuracy. The 

trade-off between prediction accuracy and complexity of the model should be considered. 
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The model was developed and evaluated by using the ankle with different AFOs as an 

example of changing stiffness that affects gait. As discussed in Section 5.2.3, there are possible 

applications of the model regarding investigating the effect of different joint stiffness on task 

performance. Extra efforts are needed to examine the usability and values of the proposed model 

in other applications. 

The model shows the possibility of predicting human movement by using dynamic 

systems to characterize the movements of body segments during different phases of walking gait. 

Similar ideas might be able to work on the upper limbs to evaluate the effect of joint stiffness in 

the upper limbs on task performance. The application includes but not limited to simulate the 

effect of upper limbs industrial exoskeletons, prosthetic devices, clothing (space suit), and 

impairments. 
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CHAPTER 6 Conclusions 

This dissertation describes the development of a planar piecewise continuous lumped 

muscle parameter (PPCLMP) model for predicting gait and evaluating the effect of joint stiffness 

on gait. This was achieved through the following aims: 

 Develop a PPCLMP model that predicts how joint stiffness affects gait based on forward 

dynamics. 

 Utilize data from a single inertial measurement unit (IMU) attached to the lower shank to 

estimate the initial conditions and lumped muscle parameters for each gait cycle based on 

inverse dynamics to improve the model prediction of gait. 

 Evaluate the model prediction accuracy for various anthropometric inputs by comparing 

predicted gait parameters with measurements. 

The proposed PPCLMP model connects three existing biomechanical models (the 

inverted pendulum model for SS, the double pendulum model for SW, and the kinematic chain 

model for DS) to predict leg movement across the whole gait cycle for investigation of joint 

stiffness in walking on a level surface. By using the ankle with ankle-foot-orthosis (AFO) as an 

example of changing joint stiffness, the PPCLMP model shows its capacity on investigating joint 

stiffness in walking gait. The model also forms the basis of an AFO design and evaluation 

system by predicting and evaluating gait with AFO based on the anthropometry, lumped muscle 

parameters, initial conditions, and AFO stiffness, as shown in Figure 6-1.  
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Figure 6-1: Overview of the model inputs (orange) and model outputs (blue). 

Chapter 2 describes the development of the PPCLMP model. The model contains three 

continuous dynamic systems: the inverted pendulum to simulate the single stance phase (SS) 

movement, the double pendulum to simulate the swing phase (SW) movement, and the kinematic 

chain to simulate the double stance phase (DS) movement. Within each dynamic system, the 

joint torques are determined by the inputted lumped muscle parameters. With given initial 

conditions of the gait, the model could calculate the end conditions of the gait based on the 

equations of motion of each dynamic system based on forward dynamics. By assuming phase 

continuity, the model utilizes the forward-dynamic mode to search for the initial conditions that 

minimize the differences between the end conditions and the initial conditions based on the 

lumped muscle parameters estimated from the join torques reported by Winter [13]. Comparing 

with the experimental measurements, the model showed the capability of qualitatively predict 

how increased ankle stiffness affects gait in terms of swing time and step length.  

The model reveals the two major effects of the ankle stiffness increased by AFO on 

walking gait. During the SS, the AFO slows down the inverted pendulum movement and stores 
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energy. During the DS with the AFO on the back-leg, the AFO releases energy when the ankle is 

in dorsiflexion but prevents the ankle from generating more energy when the ankle is in plantar 

flexion. These findings explain how increased ankle stiffness affects gait from the energy 

perspective. 

To compensate for the gait variability among different people and different scenarios, 

Chapter 3 focuses on utilizing the kinematic data measured by an IMU attached to the AFO to 

estimate the initial conditions and lumped muscle parameters to enhance the model prediction 

based on inverse dynamics. A framework was developed to estimate the swing time, stance time, 

and shank pitch angles and angular velocities based on IMU data. These estimated values are 

then used in an optimization problem to search for the optimal initial conditions and lumped 

muscle parameters based on the commonly used minimizing energy expenditure assumption 

[115–117]. Comparing with results in Chapter 2, the gait parameter prediction was improved by 

utilizing the IMU: the RMSE of step length and swing time were 0.07 m and 2% of gait duration, 

respectively, by utilizing IMU in Chapter 3 comparing with 0.15 m and 5% of gait duration in 

Chapter 2.  

Based on the process of finding the initial conditions and lumped muscle parameters 

proposed in Chapter 3, the model showed the capability of quantitative prediction on swing time, 

impaired side step length, and walking speed for two drop foot patients. However, the model 

showed limited capability in predicting unimpaired side step length. The prediction of the step 

length was better for the impaired side than the unimpaired side because more information about 

the impaired side is provided by the IMU attached to the AFO.  

To evaluate gait based on the predicted gait parameters, gait symmetry index (SI) [66], 

and walking speed (gait efficiency) are used as criteria for gait evaluation. The model shows 



 

116 
 

good prediction in walking speed and SI for swing time but not in the SI for step length due to 

the better prediction of the impaired-side step length than the unimpaired step length. 

Chapter 4 is a data-based focusing on the effect of different anthropometric inputs on 

model prediction accuracy. Results showed that the model prediction accuracy of gait parameters 

was better for taller people than for shorter people, regardless of gender or body mass. A possible 

explanation was that the IMU noise reduction, or the Kalman Filter performance, was better for 

taller people because taller people walk faster, and have a greater magnitude of the signal 

compared with the noise.  

The PPCLMP model is limited by its assumption of the straight knee during SS and DS 

(front knee) and the planar representation of leg movements during gait. The front knee was 

found to be not exactly straight during SS and DS (Table 2-8Error! Reference source not f

ound.). The effect of a flexed knee on model prediction accuracy should be investigated. On the 

other hand, leg movements during gait were found to be 3-D instead of planar, especially for 

female [126,127]. Efforts are needed to further develop the model to accommodate the lateral 

movements of legs during gait. 

This dissertation builds into a broader set of research related to the biomechanical model 

of human gait. This dissertation is using wearing different AFOs or changing ankle stiffness as 

an example to show how different joint stiffnesses could affect gait performance. The three 

studies gradually developed the model from a conceptual model to a practical model that could 

utilize wearable technologies for gait prediction and evaluation and investigated each input type 

of the model, as shown in Figure 6-2.  
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Figure 6-2: The scope of investigations on model inputs and outputs in Chapters 2, 3, and 4. 

 

The limitations of the model are not including viscous resistance of body tissues to joint 

motion, not knowing the optimization strategy of subjects during gait, not looking at different 

gait speeds, not looking at step over an obstacle or on a rough surface, not including the axial 

movement of the pelvis, not including the lengthening versus shortening behavior of the 

agonists, not including more EMGs, and not have enough subjects to give much statistical 

power. Nonetheless, the hypotheses of each study were tested and the approaches in this 

dissertation had promising results. Chapter 2 showed the model capacity in qualitatively 

predicting gait parameter changes of gait with different AFOs while no motion tracking data are 

available. Chapter 3 showed the model capacity in quantitatively predicting gait parameters 

while utilizing IMU data. Chapter 4 showed the significant improvement of model prediction 

accuracy for taller subjects.  
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APPENDICES 

Appendix A: Modeling of the Kinematic Chain during DS 

The DS starts with HS and ends with TO. The DS is characterized as a kinematic chain 

that consists of links and joints. During this phase, the front-foot and toe of the back-foot are 

constrained on the ground. Thus, there is a series of geometry equations, force balance equations, 

and torque equations need to be satisfied. 

A1. Geometry 

All the equations in this Appendix are based on DS with the right leg in front. The 

kinematic chain during DS is constrained with the back-toe and front-heel on the ground. Thus, 

the vertical location of the back-toe should be equal to the vertical location of the front heel 

(Figure A1): 

(𝐿1 + 𝐿2) cos 𝜃21 + 𝐿4 = 𝐿4 cos 𝜃10 + 𝐿3 sin 𝜃10 + 𝐿2 cos(𝜃10 + 𝜃13) − 𝐿1 cos 𝜃11 

where L1 is the upper leg length, L2 is the lower leg length, L3 is the foot length, 𝜃21 is the 

front-hip (right) angle, 𝜃10 is the angle between the left foot and ground, 𝜃13 is the left ankle 

angle, and 𝜃11 is the left hip angle. 

The hip flexion angle is defined as the angle between the upper leg and the gravitational 

direction. Thus, the relationship between angles is: 

−𝜃11 = 𝜃10 + 𝜃13 − 𝜃12 
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where 𝜃12 is the back-knee (left) flexion angle. 

 

The joint angles and angular velocities satisfy: 

𝑑𝜃𝑖𝑗

𝑑𝑡
= �̇�𝑖𝑗 

 

Figure A1: Diagram of DS posture with the right leg in front. 
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A2. Free Body Diagram – Back-Foot (Left) 

As shown in Figure A2, the left foot angular acceleration satisfies the torque balance 

equation: 

𝑑2𝜃10
𝑑𝑡2

=  �̇�𝐹𝑜𝑜𝑡 =  
−𝐹𝑎𝑥𝐿3 cos 𝜃13 + 𝐹𝑎𝑦𝐿3 sin 𝜃13 + 𝑇13𝐷𝑆 − 0.5𝑀3𝐿3𝑔 cos 𝜃10

1
3 (𝑀3𝐿3

2)
 

where Fax is the ankle axial force, Fay is the ankle shear force, M3 is the foot mass, 𝜔𝑓𝑜𝑜𝑡 is the 

foot angular velocity. 

The foot center of mass (COM) horizontal acceleration is:  

�̇�3𝑐𝑥 = −0.5�̇�𝑓𝑜𝑜𝑡𝐿3 sin 𝜃10 − 0.5𝜔𝑓𝑜𝑜𝑡
2 𝐿3 cos 𝜃10

=
−𝐹ℎ + 𝐹𝑎𝑦 cos(𝜃10 + 𝜃13) + 𝐹𝑎𝑥 sin(𝜃10 + 𝜃13)

𝑀3
 

where Fh is the horizontal ground reaction force. 

Similarly, the foot COM vertical acceleration is:  

�̇�3𝑐𝑦 = 0.5�̇�𝑓𝑜𝑜𝑡𝐿3 cos 𝜃10 − 0.5𝜔𝑓𝑜𝑜𝑡
2 𝐿3 sin 𝜃10

=
𝐹𝑣 + 𝐹𝑎𝑦 sin(𝜃10 + 𝜃13) − 𝐹𝑎𝑥 cos(𝜃10 + 𝜃13) − 𝑀3𝑔

𝑀3
 

where Fv is the vertical ground reaction force. 

Further, the toe was fixed to the ground, and the ankle was rotating about the toe. Thus, 

the ankle joint horizontal and vertical accelerations are: 

�̇�3𝑥 = −�̇�𝑓𝑜𝑜𝑡𝐿3 sin 𝜃10 

�̇�3𝑦 = �̇�𝑓𝑜𝑜𝑡𝐿3 cos 𝜃10 
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Figure A2: Diagram of forces and torque that applied to the left foot.  
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A3. Free Body Diagram – Back-Lower-Leg (Left) 

As shown in Figure A3, the left lower leg angular acceleration satisfies the torque 

balance equation: 

�̇�𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔 =
𝑑2𝜃13
𝑑𝑡2

+  �̇�𝑓𝑜𝑜𝑡

=  
𝐹𝑘𝑥𝐿2 sin 𝜃12 − 𝐹𝑘𝑦𝐿2 cos 𝜃12 − 𝑇13𝐷𝑆 − 𝑘12𝐷𝑆𝜃12 + 0.5𝑀2𝑔𝐿2 sin(𝜃10 + 𝜃13)

1
3 (𝑀2𝐿2

2)
 

where Fkx is the knee axial force, Fky is the knee shear force, M2 is the lower leg mass, and 

𝜔𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔 is the lower leg angular velocity. 

The lower leg COM horizontal acceleration is:  

�̇�2𝑐𝑥 = �̇�3𝑥 − 0.5�̇�𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔𝐿2 cos(𝜃10 + 𝜃13) + 0.5𝜔𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔
2 𝐿2 sin(𝜃10 + 𝜃13))

=
𝐹𝑘𝑥 sin 𝜃13 + 𝐹𝑘𝑦 cos 𝜃13 − 𝐹𝑎𝑦 cos(𝜃10 + 𝜃13) − 𝐹𝑎𝑥 sin(𝜃10 + 𝜃13)

𝑀2
 

Similarly, the lower leg COM vertical acceleration is:  

�̇�2𝑐𝑦 = �̇�3𝑦 − 0.5�̇�𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔𝐿2 sin(𝜃10 + 𝜃13) − 0.5𝜔𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔
2 𝐿2 cos(𝜃10 + 𝜃13)

=
−𝐹𝑘𝑥 cos 𝜃13 + 𝐹𝑘𝑦 sin 𝜃13 − 𝐹𝑎𝑦 sin(𝜃10 + 𝜃13) + 𝐹𝑎𝑥 cos(𝜃10 + 𝜃13) − 𝑀2𝑔

𝑀2
 

Further, the knee joint horizontal and vertical accelerations are: 

�̇�2𝑥 = �̇�3𝑥 − �̇�𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔𝐿2 cos(𝜃10 + 𝜃13) + 𝜔𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔
2 𝐿2 sin(𝜃10 + 𝜃13) 

�̇�2𝑦 = �̇�3𝑦 − �̇�𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔𝐿2 sin(𝜃10 + 𝜃13) − 𝜔𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔
2 𝐿2 cos(𝜃10 + 𝜃13) 
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Figure A3: Diagram of forces and torque that applied to the left lower leg.  
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A4. Free Body Diagram – Back-Upper-Leg (Left) 

As shown in Figure A4, the left upper leg angular acceleration satisfied the torque 

balance equation: 

�̇�𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔 = �̇�𝑙𝑜𝑤𝑒𝑟𝑙𝑒𝑔 −
𝑑2𝜃12
𝑑𝑡2

=
𝑑2𝜃11
𝑑𝑡2

=  
𝐹ℎ𝑥𝐿1 sin(𝜃11 + 𝜃21) − 𝐹ℎ𝑦𝐿1 cos(𝜃11 + 𝜃21) − 𝑘13𝐷𝑆𝜃13 + 𝑘12𝐷𝑆𝜃12 + (0.5𝑀1 +𝑀4)𝑔𝐿1 sin 𝜃13

1
3 (𝑀1𝐿1

2)
 

where Fhx is the back-hip axial force, Fhy is the back-hip shear force, M1 is the upper leg mass, 

𝜔𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔 is the upper leg angular velocity. 

The upper leg COM horizontal acceleration is:  

�̇�1𝑐𝑥 = �̇�2𝑥 − 0.5�̇�𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔𝐿1 cos 𝜃11 + 0.5𝜔𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔
2 𝐿1 sin 𝜃11

=
−𝐹𝑘𝑥 sin 𝜃11 − 𝐹𝑘𝑦 cos 𝜃11 + 𝐹ℎ𝑦 cos 𝜃21 − 𝐹ℎ𝑥 sin 𝜃21

𝑀1
 

Similarly, the upper leg COM vertical acceleration is:  

�̇�1𝑐𝑦 = �̇�2𝑦 − 0.5�̇�𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔𝐿1 sin 𝜃11 − 0.5𝜔𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔
2 𝐿1 cos 𝜃11

=
𝐹𝑘𝑥 𝑐𝑜𝑠 𝜃11 − 𝐹𝑘𝑦 sin 𝜃11 − 𝐹ℎ𝑦 sin 𝜃21 − 𝐹ℎ𝑥 cos 𝜃21 −𝑀1𝑔 −𝑀4𝑔

𝑀1
 

Further, the hip joint horizontal and vertical accelerations are: 

�̇�1𝑥 = �̇�2𝑥 − �̇�𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔𝐿1 cos 𝜃11 + 𝜔𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔
2 𝐿1 sin 𝜃11 

�̇�1𝑦 = �̇�2𝑦 − �̇�𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔𝐿1 sin 𝜃11 − 𝜔𝑢𝑝𝑝𝑒𝑟𝑙𝑒𝑔
2 𝐿1 cos 𝜃11 
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Figure A4: Diagram of forces and torque that applied to the left upper leg. 
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A5. Free Body Diagram – Front-Leg (Right) 

As shown in Figure A5, the right front-leg angular acceleration satisfied the torque 

balance equation: 

�̇�𝑓𝑟𝑜𝑛𝑡𝑙𝑒𝑔 =
𝑑2𝜃21
𝑑𝑡2

=  
𝐹ℎ𝑦(𝐿1 + 𝐿2) − 𝑀4𝑔(𝐿1 + 𝐿2) sin 𝜃21 − 0.5(𝑀1 +𝑀2)𝑔(𝐿1 + 𝐿2) sin 𝜃21 + 𝑘𝐷𝑆3𝜃11

1
3
(𝑀1 +𝑀2)(𝐿1 + 𝐿2)2

 

where 𝜔𝑓𝑟𝑜𝑛𝑡𝑙𝑒𝑔 is the front-leg angular velocity. 

The front-leg center of mass (COM) horizontal acceleration is:  

�̇�𝑓𝑐𝑥 = 0.5�̇�1𝑥 = 0.5(𝐿1 + 𝐿2)�̇�𝑓𝑟𝑜𝑛𝑡𝑙𝑒𝑔 cos 𝜃21 − 0.5𝜔𝑓𝑟𝑜𝑛𝑡𝑙𝑒𝑔
2 (𝐿1 + 𝐿2) sin 𝜃21 

Similarly, the front-leg center of mass (COM) vertical acceleration is:  

�̇�𝑓𝑐𝑦 = 0.5�̇�1𝑦 = 0.5(𝐿1 + 𝐿2)�̇�𝑓𝑟𝑜𝑛𝑡𝑙𝑒𝑔 sin 𝜃21 − 0.5𝜔𝑓𝑟𝑜𝑛𝑡𝑙𝑒𝑔
2 (𝐿1 + 𝐿2) cos 𝜃21 

 

Figure A5: Diagram of forces and torque that applied to front-leg (right). 
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A6. Summary 

There were in total of 31 equations and 34 variables. Thus, these equations can be solved 

implicitly to find the equations of motion that will be presented for angular accelerations: 

�̈�11(t), �̈�12(t), and �̈�13(t).  
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Appendix B: List of Combinations for Sensitivity Analysis in Chapter 2 

The combinations for joint angles are shown in Tables B1, B2, B3, B4, B5, and B6. The 

combinations for joint angular velocities are separately listed in Table B7. For each joint angle 

combination, all combinations of joint angular velocities were examined.  

Table B1: Combinations of joint angles (𝜃22= 20 deg). 

𝜃11(deg) 𝜃12(=0 deg) 𝜃13(= -𝜃11) 𝜃21 (deg) 𝜃22 (deg) 𝜃23* 

5 0 -5 -5 20 - 

10 0 -10 -5 20 - 

15 0 -15 -5 20 - 

⁞ 

30 0 -30 -5 20 - 

5 0 -5 -10 20 - 

10 0 -10 -10 20 - 

⁞ 

30 0 -30 -10 20 - 

5 0 -5 -15 20 - 

10 0 -10 -15 20 - 

⁞ 

30 0 -30 -15 20 - 

5 0 -5 -20 20 - 

10 0 -10 -20 20 - 

⁞ 

30 0 -30 -20 20 - 

5 0 -5 -25 20 - 

10 0 -10 -25 20 - 

⁞ 

30 0 -30 -25 20 - 

5 0 -5 -30 20 - 

10 0 -10 -30 20 - 

⁞ 

30 0 -30 -30 20 - 

*𝜃23 is calculated based on Eq. (2-16) 
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Table B2: Combinations of joint angles (𝜃22= 25 deg). 

𝜃11(deg) 𝜃12(=0 deg) 𝜃13(= -𝜃11) 𝜃21 (deg) 𝜃22 (deg) 𝜃23* 

5 0 -5 -5 25 - 

10 0 -10 -5 25 - 

15 0 -15 -5 25 - 

⁞ 

30 0 -30 -5 25 - 

5 0 -5 -10 25 - 

10 0 -10 -10 25 - 

⁞ 

30 0 -30 -10 25 - 

5 0 -5 -15 25 - 

10 0 -10 -15 25 - 

⁞ 

30 0 -30 -15 25 - 

5 0 -5 -20 25 - 

10 0 -10 -20 25 - 

⁞ 

30 0 -30 -20 25 - 

5 0 -5 -25 25 - 

10 0 -10 -25 25 - 

⁞ 

30 0 -30 -25 25 - 

5 0 -5 -30 25 - 

10 0 -10 -30 25 - 

⁞ 

30 0 -30 -30 25 - 

*𝜃23 is calculated based on Eq. (2-16) 
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Table B3: Combinations of joint angles (𝜃22= 30 deg). 

𝜃11(deg) 𝜃12(=0 deg) 𝜃13(= -𝜃11) 𝜃21 (deg) 𝜃22 (deg) 𝜃23* 

5 0 -5 -5 30 - 

10 0 -10 -5 30 - 

15 0 -15 -5 30 - 

⁞ 

30 0 -30 -5 30 - 

5 0 -5 -10 30 - 

10 0 -10 -10 30 - 

⁞ 

30 0 -30 -10 30 - 

5 0 -5 -15 30 - 

10 0 -10 -15 30 - 

⁞ 

30 0 -30 -15 30 - 

5 0 -5 -20 30 - 

10 0 -10 -20 30 - 

⁞ 

30 0 -30 -20 30 - 

5 0 -5 -25 30 - 

10 0 -10 -25 30 - 

⁞ 

30 0 -30 -25 30 - 

5 0 -5 -30 30 - 

10 0 -10 -30 30 - 

⁞ 

30 0 -30 -30 30 - 

*𝜃23 is calculated based on Eq. (2-16) 
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Table B4: Combinations of joint angles (𝜃22= 35 deg). 

𝜃11(deg) 𝜃12(=0 deg) 𝜃13(= -𝜃11) 𝜃21 (deg) 𝜃22 (deg) 𝜃23* 

5 0 -5 -5 35 - 

10 0 -10 -5 35 - 

15 0 -15 -5 35 - 

⁞ 

30 0 -30 -5 35 - 

5 0 -5 -10 35 - 

10 0 -10 -10 35 - 

⁞ 

30 0 -30 -10 35 - 

5 0 -5 -15 35 - 

10 0 -10 -15 35 - 

⁞ 

30 0 -30 -15 35 - 

5 0 -5 -20 35 - 

10 0 -10 -20 35 - 

⁞ 

30 0 -30 -20 35 - 

5 0 -5 -25 35 - 

10 0 -10 -25 35 - 

⁞ 

30 0 -30 -25 35 - 

5 0 -5 -30 35 - 

10 0 -10 -30 35 - 

⁞ 

30 0 -30 -30 35 - 

*𝜃23 is calculated based on Eq. (2-16) 
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Table B5: Combinations of joint angles (𝜃22= 40 deg). 

𝜃11(deg) 𝜃12(=0 deg) 𝜃13(= -𝜃11) 𝜃21 (deg) 𝜃22 (deg) 𝜃23* 

5 0 -5 -5 40 - 

10 0 -10 -5 40 - 

15 0 -15 -5 40 - 

⁞ 

30 0 -30 -5 40 - 

5 0 -5 -10 40 - 

10 0 -10 -10 40 - 

⁞ 

30 0 -30 -10 40 - 

5 0 -5 -15 40 - 

10 0 -10 -15 40 - 

⁞ 

30 0 -30 -15 40 - 

5 0 -5 -20 40 - 

10 0 -10 -20 40 - 

⁞ 

30 0 -30 -20 40 - 

5 0 -5 -25 40 - 

10 0 -10 -25 40 - 

⁞ 

30 0 -30 -25 40 - 

5 0 -5 -30 40 - 

10 0 -10 -30 40 - 

⁞ 

30 0 -30 -30 40 - 

*𝜃23 is calculated based on Eq. (2-16) 
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Table B6: Combinations of joint angles (𝜃22= 45 deg). 

𝜃11(deg) 𝜃12(=0 deg) 𝜃13(= -𝜃11) 𝜃21 (deg) 𝜃22 (deg) 𝜃23* 

5 0 -5 -5 45 - 

10 0 -10 -5 45 - 

15 0 -15 -5 45 - 

⁞ 

30 0 -30 -5 45 - 

5 0 -5 -10 45 - 

10 0 -10 -10 45 - 

⁞ 

30 0 -30 -10 45 - 

5 0 -5 -15 45 - 

10 0 -10 -15 45 - 

⁞ 

30 0 -30 -15 45 - 

5 0 -5 -20 45 - 

10 0 -10 -20 45 - 

⁞ 

30 0 -30 -20 45 - 

5 0 -5 -25 45 - 

10 0 -10 -25 45 - 

⁞ 

30 0 -30 -25 45 - 

5 0 -5 -30 45 - 

10 0 -10 -30 45 - 

⁞ 

30 0 -30 -30 45 - 

*𝜃23 is calculated based on Eq. (2-16) 
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Table B7: Combinations of joint angular velocities 

�̇�11(deg/s) �̇�12(=0 deg/s) �̇�13(= -�̇�11) �̇�21 (deg/s) �̇�22 (deg/s) �̇�23* 

-200 0 200 100 100 - 

-150 0 150 100 100 - 

-100 0 100 100 100 - 

-200 0 200 150 100 - 

-150 0 150 150 100 - 

-100 0 100 150 100 - 

-200 0 200 100 150 - 

-150 0 150 100 150 - 

-100 0 100 100 150 - 

-200 0 200 150 150 - 

-150 0 150 150 150 - 

-100 0 100 150 150 - 

-200 0 200 100 200 - 

-150 0 150 100 200 - 

-100 0 100 100 200 - 

-200 0 200 150 200 - 

-150 0 150 150 200 - 

-100 0 100 150 200 - 

-200 0 200 100 250 - 

-150 0 150 100 250 - 

-100 0 100 100 250 - 

-200 0 200 150 250 - 

-150 0 150 150 250 - 

-100 0 100 150 250 - 

-200 0 200 100 300 - 

-150 0 150 100 300 - 

-100 0 100 100 300 - 

-200 0 200 150 300 - 

-150 0 150 150 300 - 

-100 0 100 150 300 - 

*�̇�23 is calculated based on Eq. (2-16) 
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Appendix C: AFO Stiffness Test. 

As shown in Figure C1, the Stiffness Measurement Apparatus (Courtesy: Barton 

Research Group) was used to test the stiffnesses of the AFOs used in this dissertation. The 

stiffness of AFOs used in Chapter 4 was tested before (12/14/2019) and after (2/15/2020) the six 

subjects’ trials to validate that the AFO stiffness was not changed significantly after used. Each 

AFO was tested for 5 cycles (from neutral to dorsiflexion, then to plantar flexion, and back to 

neutral) for before and after the trials. 

 
Figure C1: Component of the SMApp machine developed by Barton Research Group at the University of Michigan 
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The tested stiffness curves with AFO reaction torques versus bending angles are shown in 

Figure C2. Linear regressions were performed to test the linear relationship between the reaction 

torque and bending angles, as well as the changes in AFO stiffness before and after the trials. 

The linear regression slope (stiffness), intercept, and goodness of fitting are shown in Table C1. 

The differences in the slope, or stiffness of the AFOs between before trials and after trials were 

less than 2%, which was considered insignificant changes in AFO stiffness. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C2: The stiffness plots for (a) AFO1 before the trials, (b) AFO1 after the trials, (c) AFO2 before the trials, and (d) AFO2 

after the trials. 
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Table C1: The slope, intercept, and goodness of fitting of the linear regression between reaction torque and bending angle 

  Slope Intercept Goodness of Fitting 

AFO1 

Before trials 3.64 0.009 0.98 

After trials 3.60 0.086 0.99 

Error in Slope (% ) 1.1 - - 

AFO2 

Before trials 6.87 0.074 0.98 

After trials 6.96 −0.020 0.98 

Error in Slope (%) 1.3 - - 

 

  



 

138 
 

 

Appendix D: Observed and Predicted Initial Angles and Angular Velocities in Chapter 4 

The initial angles and angular velocities for six subjects are presented in Table D1.  

Table D1. Observed (O) and predicted (P) initial angles (initial shank pitch angle 𝜃(𝑡0), back-hip angle 𝜃11(𝑡0), and back-ankle 

angle 𝜃13(𝑡0)) and angular velocities (shank pitch angular velocity �̇�(𝑡0), back-hip angular velocity �̇�11(𝑡0), and back-ankle 

angular velocity �̇�13(𝑡0)) for 40 gait cycles (n = 40) for each subjects under each condition. 

Subject 1 2 3 

Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2 

𝜃(𝑡0) 
O 65±4 69±2 53±9 42±16 36±15 43±5 57±7 50±13 47±5 

P 77±14 77±9 65±13 32±17 28±16 53±7 48±7 38±13 37±5 

RMSE 18 8 13 14 10 11 14 15 13 

�̇�(𝑡0) 
O 112±22 118±19 153±19 110±25 157±24 104±14 141±17 119±15 100±13 

P 125±14 162±14 113±26 117±28 168±27 104±13 145±15 123±17 80±21 

RMSE 18 58 52 9 16 5 5 4 28 

𝜃11(𝑡0) 

O 11±2 30±12 16±2 28±4 11±1 9±4 11±5 19±1 19±4 

P 21±5 20±3 25±6 29±5 11±1 21±5 20±4 15±5 31±5 

RMSE 14 13 12 1 2 15 11 5 15 

�̇�11(𝑡0) 
O 179±24 147±24 80±19 94±29 106±29 72±8 126±27 199±23 134±14 

P 138±8 116±19 105±15 110±23 121±13 72±8 130±13 150±10 134±13 

RMSE 50 38 25 38 19 10 5 59 5 

𝜃13(𝑡0) 

O 14±1 19±2 16±2 31±5 20±2 12±6 38±7 29±2 27±6 

P 24±6 30±9 18±4 31±6 22±3 22±8 38±8 28±3 17±5 

RMSE 13 11 2 4 3 18 2 1 12 

�̇�13(𝑡0) 
O 154±27 118±26 103±21 129±26 165±22 147±16 160±12 145±20 54±6 

P 131±46 119±13 126±23 125±32 183±42 147±16 163±9 150±22 54±6 

RMSE 39 1 33 5 26 2 4 7 3 

Subject 4 5 6 

Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2 

𝜃(𝑡0) 
O 49±6 67±10 53±17 54±6 44±7 38±4 49±12 68±9 76±13 

P 56±7 65±10 43±17 51±7 45±5 44±4 53±11 65±10 74±14 

RMSE 9 7 12 4 1 9 6 3 2 

�̇�(𝑡0) 
O 139±12 159±25 163±22 131±17 121±5 129±10 146±17 161±26 154±24 

P 123±11 141±6 156±23 143±27 160±41 160±13 145±21 163±12 161±8 

RMSE 19 2 3 16 45 31 1 3 9 

𝜃11(𝑡0) 

O 23±3 22±6 22±4 8±3 21±4 23±3 29±6 11±1 16±7 

P 21±3 27±6 24±4 14±4 17±10 16±5 29±7 15±1 21±8 

RMSE 2 10 4 7 4 9 2 4 7 

�̇�11(𝑡0) 
O 113±12 133±23 246±28 250±15 156±15 184±17 275±14 320±28 201±13 

P 136±15 154±25 226±8 280±25 166±28 196±23 287±30 316±19 210±27 

RMSE 25 26 26 33 15 17 14 6 11 

𝜃13(𝑡0) 

O 34±7 18±9 14±5 39±3 36±6 20±3 32±12 26±8 17±2 

P 37±7 26±9 14±3 40±17 33±4 23±3 35±12 24±8 25±3 

RMSE 3 9 0 1 4 4 4 3 11 

�̇�13(𝑡0) 
O 162±17 103±13 60±22 123±22 160±14 97±13 191±23 262±14 141±12 

P 133±14 147±19 91±24 116±23 184±16 120±28 193±10 269±23 131±19 

RMSE 36 50 32 10 25 28 2 8 14 
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Appendix E: Surface Electromyography (SEMG) Signals and the Hip and Knee Lumped 

Muscle Parameters of the Swing Phase (SW) and Double Stance Phase (DS) in Chapter 4 

There are SEMG RMS of BFs and RFs and hip and knee lumped muscle parameters 

during SW and DS for six subjects under three conditions presented in Table E1. 
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Table E1. The measured SEMG root mean square (RMS) for left biceps femoris (lBF), left rectus femoris (lRF), right biceps 

femoris (rBF), and right rectus femoris (rRF), and the predicted hip and knee lumped muscle parameters during the SW and DS. 

n = 40 for each subject under each condition. 

 Subject 1 2 3 

Phase Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2 

S
W

 S
E

M
G

 R
M

S
 

(m
V

) 

lBF 65±4 69±2 53±19 42±16 36±15 43±5 57±7 50±13 47±5 

lRF 87±14 77±9 75±13 32±17 28±16 63±7 38±7 38±13 37±5 

rBF 66±22 69±19 87±19 65±25 89±24 64±14 31±7 70±25 60±13 

rRF 73±14 116±24 67±16 69±8 94±27 62±13 33±5 72±17 100±21 

Left hip parameter (Nm/deg) 21±2 30±12 26±2 28±4 11±4 29±4 21±5 39±10 29±4 

Right hip parameter (Nm/deg) 21±11 20±3 25±6 29±5 11±5 41±5 20±4 35±5 41±5 

Left knee parameter (Nm/deg) 9±3 9±2 12±4 9±3 12±5 8±3 11±4 8±3 9±1 

Right knee parameter (Nm/deg) 11±2 9±2 11±2 9±3 12±3 8±2 10±1 10±2 9±1 

D
S

 

S
E

M
G

 R
M

S
 

(m
V

) 

lBF 23±14 19±7 15±3 46±2 46±4 44±3 68±9 76±17 28±10 

lRF 17±4 26±4 25±12 49±6 46±3 44±5 46±11 51±18 21±4 

rBF 32±12 28±13 32±12 54±5 55±4 56±2 57±1 56±1 57±2 

rRF 45±24 21±9 36±12 52±12 53±11 57±10 57±1 55±1 55±1 

Left hip parameter (Nm/deg) 16±3 18±2 15±2 22±7 17±4 18±3 24±9 19±9 17±3 

Right hip parameter (Nm/deg) 15±5 18±5 15±5 20±5 13±15 4±2 13±15 19±9 2±2 

 Left knee parameter (Nm/deg) 13±3 15±4 13±4 15±2 17±5 17±3 15±3 16±1 18±1 

 Right knee parameter (Nm/deg) 15±1 16±6 17±2 16±4 21±7 16±3 20±4 20±3 22±2 

 Subject 4 5 6 

 Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2 

S
W

 S
E

M
G

 R
M

S
 

(m
V

) 

lBF 49±6 67±20 53±7 54±6 44±7 38±4 49±22 68±19 76±23 

lRF 56±7 85±20 43±7 51±7 45±5 44±4 53±21 65±10 74±24 

rBF 60±12 90±15 92±12 56±17 76±25 50±20 85±17 71±6 92±14 

rRF 52±11 91±16 93±13 62±17 95±11 65±13 87±11 72±12 96±28 

Left hip parameter (Nm/deg) 23±3 32±6 22±4 18±3 21±4 23±3 29±6 11±5 16±7 

Right hip parameter (Nm/deg) 21±3 47±6 34±4 14±4 17±4 16±5 29±7 15±4 31±8 

Left knee parameter (Nm/deg) 12±3 10±4 9±1 9±4 8±3 12±4 11±2 13±1 10±4 

Right knee parameter (Nm/deg) 9±2 9±5 11±3 12±4 10±3 13±3 13±1 13±4 12±2 

D
S

 

S
E

M
G

 R
M

S
 

(m
V

) 

lBF 13±4 19±4 23±8 16±8 18±3 11±2 28±3 45±4 47±3 

lRF 20±5 20±6 27±10 21±12 29±4 11±5 25±5 47±8 48±13 

rBF 23±1 37±1 19±2 18±1 19±1 19±6 17±1 37±1 48±3 

rRF 15±10 38±3 18±3 17±6 20±2 13±5 20±3 37±1 47±5 

Left hip parameter (Nm/deg) 31±2 32±6 24±1 25±4 36±6 18±3 28±4 22±4 26±12 

Right hip parameter (Nm/deg) 38±4 37±5 32±3 32±5 27±5 23±3 35±5 32±6 35±4 

 Left knee parameter (Nm/deg) 16±1 14±3 13±8 21±2 23±3 24±4 25±5 25±7 29±5 

 Right knee parameter (Nm/deg) 22±5 25±3 25±9 22±5 22±6 24±1 27±4 24±2 22±7 
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Appendix F: Observed and Predicted Step Lengths, Swing Time, and Walking Speeds 

There are observed and predicted step lengths, swing time, and walking speeds for six 

subjects under three conditions presented in Table F1. 
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Table F1. Observed (O) and predicted (P) step lengths, swing time, and walking speed for six subjects with 40 gait cycles (n = 

40) for each subject under each condition. 

Subject 1 2 3 

Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2 

S
te

p
 L

en
g

th
 (

m
) 

L 

O 0.34±0.04 0.27±0.02 0.38±0.02 0.43±0.06 0.37±0.03 0.46±0.05 0.46±0.06 0.51±0.05 0.61±0.05 

P 0.40±0.07 0.23±0.08 0.36±0.06 0.42±0.07 0.44±0.08 0.44±0.08 0.45±0.07 0.51±0.11 0.65±0.06 

RMSE 0.11 0.12 0.10 0.12 0.12 0.08 0.07 0.05 0.10 

R 

O 0.32±0.03 0.24±0.05 0.21±0.03 0.46±0.06 0.34±0.04 0.30±0.03 0.48±0.07 0.38±0.04 0.37±0.03 

P 0.33±0.05 0.20±0.05 0.30±0.10 0.49±0.04 0.32±0.16 0.27±0.13 0.46±0.13 0.41±0.15 0.37±0.11 

RMSE 0.13 0.12 0.16 0.11 0.14 0.13 0.11 0.12 0.07 

S
w

in
g
 T

im
e 

(s
) 

L 

O 0.35±0.03 0.42±0.06 0.34±0.06 0.33±0.07 0.39±0.02 0.31±0.06 0.35±0.1 0.36±0.02 0.36±0.01 

P 0.36±0.01 0.40±0.07 0.34±0.04 0.33±0.01 0.40±0.03 0.29±0.01 0.35±0.02 0.37±0.01 0.36±0.05 

RMSE 0.01 0.03 0.01 0.01 0.01 0.03 0.02 0.02 0.02 

R 

O 0.35±0.05 0.38±0.05 0.36±0.02 0.37±0.08 0.31±0.09 0.39±0.07 0.35±0.07 0.34±0.08 0.34±0.09 

P 0.36±0.03 0.35±0.03 0.38±0.03 0.37±0.04 0.32±0.01 0.37±0.06 0.36±0.05 0.35±0.07 0.32±0.1 

RMSE 0.03 0.04 0.03 0.03 0.03 0.04 0.02 0.03 0.03 

S
p

ee
d

 

(m
/s

) 

O 0.61±0.07 0.55±0.07 0.65±0.05 0.63±0.12 0.59±0.07 0.51±0.08 0.73±0.13 0.64±0.09 0.73±0.08 

P 0.68±0.09 0.46±0.11 0.73±0.13 0.65±0.14 0.63±0.14 0.48±0.11 0.71±0.05 0.66±0.16 0.76±0.17 

RMSE 0.16 0.12 0.14 0.12 0.16 0.15 0.13 0.13 0.14 

Subject 4 5 6 

Condition NAFO AFO1 AFO2 NAFO AFO1 AFO2 NAFO AFO1 AFO2 

S
te

p
 L

en
g

th
 (

m
) 

L 

O 0.37±0.05 0.35±0.01 0.38±0.06 0.56±0.06 0.54±0.05 0.66±0.07 0.54±0.03 0.62±0.03 0.62±0.03 

P 0.36±0.07 0.38±0.19 0.33±0.05 0.50±0.10 0.47±0.05 0.66±0.07 0.53±0.11 0.65±0.13 0.64±0.19 

RMSE 0.07 0.10 0.06 0.06 0.08 0.05 0.02 0.04 0.03 

R 

O 0.39±0.06 0.36±0.05 0.28±0.04 0.51±0.04 0.47±0.05 0.44±0.02 0.58±0.05 0.60±0.06 0.57±0.05 

P 0.37±0.13 0.32±0.32 0.29±0.04 0.48±0.08 0.43±0.02 0.45±0.08 0.56±0.18 0.61±0.19 0.57±0.15 

RMSE 0.11 0.13 0.12 0.09 0.07 0.09 0.03 0.04 0.01 

S
w

in
g
 T

im
e 

(s
) 

L 

O 0.41±0.13 0.36±0.08 0.31±0.04 0.31±0.04 0.34±0.05 0.31±0.01 0.34±0.04 0.33±0.01 0.38±0.06 

P 0.40±0.09 0.36±0.08 0.31±0.06 0.32±0.06 0.36±0.12 0.30±0.02 0.34±0.03 0.33±0.04 0.36±0.09 

RMSE 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 

R 

O 0.39±0.05 0.34±0.07 0.39±0.11 0.39±0.05 0.36±0.03 0.39±0.02 0.36±0.01 0.30±0.08 0.32±0.09 

P 0.39±0.08 0.31±0.05 0.39±0.07 0.39±0.05 0.37±0.04 0.37±0.03 0.37±0.03 0.30±0.06 0.29±0.02 

RMSE 0.02 0.03 0.02 0.04 0.03 0.04 0.02 0.03 0.03 

S
p

ee
d

 

(m
/s

) 

O 0.75±0.11 0.65±0.06 0.46±0.1 1.05±0.1 1±0.1 1.16±0.09 1±0.08 1.12±0.09 1.23±0.08 

P 0.72±0.12 0.64±0.11 0.43±0.09 0.96±0.18 0.89±0.07 1.17±0.11 0.97±0.19 1.16±0.12 1.25±0.14 

RMSE 0.04 0.03 0.04 0.11 0.12 0.05 0.04 0.05 0.02 

 

  



 

143 
 

 

Appendix G: Webpage for Demonstration of Model Application 

The webpage link is http://www-personal.umich.edu/~qifu/pendulum/flexPend.html. A 

screenshot of the webpage is shown in Figure G1. 

http://www-personal.umich.edu/~qifu/pendulum/flexPend.html
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Figure G1. The webpage with input predicted animation of gait and joint angles for demonstration of model application. 

  

Inputs 

Animation of Gait 

Joint Angles 
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