
Domain-specific Architectures for Data-intensive
Applications

by

Abraham Lamesgin Addisie

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2020

Doctoral Committee:

Professor Valeria M. Bertacco, Chair
Professor Todd M. Austin
Assistant Professor Reetuparna Das
Professor Wei D. Lu

Abraham Lamesgin Addisie

abrahad@umich.edu

ORCID iD: 0000-0001-6285-1714

c© Abraham Lamesgin Addisie 2020

For my family

ii

ACKNOWLEDGMENTS

It is my great pleasure to acknowledge those who extended their unreserved support

and encouragement throughout my time working on this dissertation. First and foremost, I

would like to thank my advisor, Prof. Valeria Bertacco, for her extensive mentorship while

working on this dissertation and for giving me the opportunity to work on research areas

that I found to be interesting. I am also grateful for the extensive feedback and advice that I

got from my committee members, Prof. Todd Austin, Prof. Reetuparna Das, and Prof. Wei

Lu. I feel fortunate to have been taught by the excellent faculty at UofM, who laid down

the foundation of my research knowledge through extensive course lectures and projects.

I also would like to extend my gratitude to a lot of talented students at the university

who provided their help while working on this dissertation. Specifically, I would like to

thank former ABresearch-lab members, Doowon Lee, Biruk Mammo, Salessawi Yitbarek,

Rawan Abdel Khalik, and Ritesh Parikh, for your insightful discussions, including holding

a multitude of brainstorming sessions at the early stage of my research. I am also thankful

for my collaborators, Leul Belayneh, Hiwot Kassa, and Luwa Matthews. This dissertation

would not have been possible without your help. I am particularly grateful for Annika

Pattenaude for reviewing my research papers, which helped me improve my writing skills.

I also would like to acknowledge the many other friends for making themselves available

for discussions about the ups and downs of my graduate student life. I am particularly

grateful for Helen Hagos, Misiker Aga, and Zelalem Aweke. I am also thankful for other

members of the ABresearch-lab members, Vidushi Goyal and Andrew McCrabb, and the

many other students at CSE whom I didn’t mention by name but have been of great help.

iii

Furthermore, I would like to acknowledge the many staff members at CSE who made

themselves available whenever I needed administrative-related assistance. I am particu-

larly grateful for Magdalena Calvillo, Alice Melloni, Ashley Andreae, Sara Snay, Christine

Boltz, Ava Burnham, and Stephen Reger. Also, Denise Duprie and Dawn Freysinger have

been of tremendous help during my transition to the university as a new incoming student.

I do want to take this chance to acknowledge the Applications Driving Architectures

(ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA, for funding

my research.

Finally, I am forever indebted to my family. I could not have finished this dissertation

without their continuous support and encouragement.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

1. Introduction . 1

1.1 Graph and Graph-based Applications 1
1.2 Current Performance Limitations of Graph Applications 2
1.3 Mismatch of Today’s Conventional Computing Systems 3
1.4 Our Strategies . 6
1.5 Our Solutions . 7
1.6 Beyond Graph Analytics . 9
1.7 Dissertation Document Organization 10
1.8 Summary of Contributions . 10

2. Background on Graph Analytics . 12

2.1 Graph Structures . 13
2.2 Graph Layouts . 16
2.3 Graph Algorithms . 20
2.4 Graph Datasets . 24
2.5 Graph Software Frameworks . 27
2.6 Summary . 30

3. Heterogeneous Memory Subsystem for Graph Analytics 32

v

3.1 Motivational Study . 33
3.2 OMEGA Overview . 36
3.3 Workload Characterization . 37
3.4 OMEGA Architecture . 39

3.4.1 Scratchpad architecture 42
3.4.2 PISC (Processing-in-Scratchpad) unit 44
3.4.3 Source vertex buffer 46
3.4.4 Reconfigurable scratchpad mapping 47
3.4.5 On-chip communication 49
3.4.6 Adopting software frameworks 49

3.5 Graph Preprocessing . 50
3.6 Scaling Scratchpad Usage to Large Graphs 51
3.7 Memory Semantics . 52
3.8 Experimental Setup . 53
3.9 Performance Evaluation . 54
3.10 Sensitivity Studies . 58
3.11 Area, Power, and Energy Analysis 60
3.12 Bibliography . 61
3.13 Summary . 63

4. On-path Message Coalescing for Scalable Graph Analytics 66

4.1 Motivational Study . 67
4.2 MessageFusion Overview . 69
4.3 MessageFusion Architecture . 70

4.3.1 Baseline architecture 70
4.3.2 Distributed message coalescing 72
4.3.3 Maximizing coalescing opportunities 74
4.3.4 Selective power-gating 76

4.4 Experimental Setup . 76
4.5 Energy Evaluation . 78
4.6 Performance . 80
4.7 Sensitivity Studies . 81
4.8 Area, Power, and Thermal Analysis 82
4.9 Bibliography . 82
4.10 Summary . 83

5. Hybrid Processing in On/Off-chip Memory Architecture for Graph
Analytics . 85

5.1 Motivational Study . 86
5.2 Centaur Overview . 87
5.3 Centaur Architecture . 88
5.4 System Integration . 94
5.5 Further Design Considerations 95

vi

5.6 Experimental Setup . 96
5.7 Performance Evaluation . 97
5.8 Sensitivity Studies . 99
5.9 Area, Power, Thermal, and Energy Analysis 100
5.10 Bibliography . 101
5.11 Summary . 102

6. Optimizing Memory Architectures Beyond Graph Analytics 104

6.1 Background and Motivation . 106
6.2 CASM Overview . 108
6.3 Inside a CASM accelerator . 111
6.4 System Integration . 114
6.5 Composite MapReduce Applications 116
6.6 Experimental Setup . 117
6.7 Performance Evaluation . 119
6.8 Sensitivity Studies . 122
6.9 Area, Power, and Energy . 124
6.10 Bibliography . 124
6.11 Summary . 125

7. Conclusions . 127

7.1 Summary of the Contributions . 127
7.2 Future Directions . 129
7.3 Summary . 130

BIBLIOGRAPHY . 132

vii

LIST OF FIGURES

Figure

1.1 High-level architecture of a conventional processor 4
1.2 Execution time breakdown of graph applications 5
1.3 Overview of the proposed solutions . 8
2.1 An 18th century map of Kaliningrad, highlighting its river and bridges . . 13
2.2 Power-law graph . 14
2.3 Community-based graph . 15
2.4 Regular graph . 15
2.5 Random graph . 16
2.6 An example weighted graph . 17
2.7 Adjacency matrix representation . 17
2.8 Adjacency list representation . 18
2.9 Compressed sparse row representation 19
2.10 Compressed sparse column representation 19
2.11 First iteration of BFS with SpMV . 23
2.12 Pseudo-code for PageRank algorithm in a vertex-centric framework . . . 29
3.1 Execution breakdown using TMAM metrics 33
3.2 Cache profiling on traditional CMP architectures 34
3.3 OMEGA overview . 37
3.4 Accesses to the 20% most connected vertices 39
3.5 OMEGA architecture . 40
3.6 Sample power law graph . 40
3.7 Scratchpad controller . 42
3.8 Atomic operation offloading . 43
3.9 PISC architecture . 45
3.10 Pseudo-code for SSSP . 45
3.11 Source vertex buffer . 46
3.12 A code snippet of PageRank performing a sequential access 47
3.13 Cost of mismatched memory interval for scratchpad mapping and OpenMP

scheduling . 48
3.14 Code generated for SSSP with the source-to-source translation tool 50
3.15 OMEGA performance speedup . 55
3.16 Last-level storage hit-rate in PageRank 56

viii

3.17 DRAM bandwidth utilization of PageRank 57
3.18 On-chip traffic analysis of PageRank . 57
3.19 Comparison of power-law (lj) and non-power-law graphs (USA) 58
3.20 Scratchpad sensitivity study . 59
3.21 Performance on large datasets . 60
3.22 Comparison of energy spent in memory activities for PageRank 61
4.1 Energy breakdown . 68
4.2 The MessageFusion Architecture . 71
4.3 Scratchpad memory architecture . 72
4.4 Router architecture showing the reduce module 73
4.5 Example of MessageFusion’s execution 74
4.6 Ordering hardware modules . 75
4.7 Energy savings enabled by MessageFusion 78
4.8 Number of messages delivered . 79
4.9 Breakdown of energy savings . 80
4.10 Performance improvement . 80
4.11 Sensitivity to input graph size and degree 81
5.1 Centaur Overview . 88
5.2 Centaur architecture . 89
5.3 The Atomic Compute Unit (ACU) . 90
5.4 The On-chip Vertex Management Unit (OnVMU) 91
5.5 The Off-chip Vertex Management Unit (OffVMU) 92
5.6 Pseudo-code for a Centaur-ready version of PageRank’s update phase . . 94
5.7 Performance improvement comparison 97
5.8 Internal off-chip memory traffic analysis 98
5.9 Internal off-chip memory bandwidth utilization 99
5.10 Scratchpad sensitivity analysis on PageRrank 99
5.11 Sensitivity to the number of vaults . 100
5.12 Breakdown of uncore energy consumption 101
6.1 MapReduce for wordcount . 105
6.2 Execution flow of MapReduce . 107
6.3 Motivating study . 108
6.4 CASM deployed in a CMP architecture 109
6.5 CASM’s accelerator architecture . 110
6.6 System integration . 114
6.7 CASM performance speedup . 118
6.8 Performance insights . 120
6.9 Speedup breakdown by home or local SPM 121
6.10 L1 cache sensitivity study . 122

ix

LIST OF TABLES

Table

2.1 Graph-based algorithm characterization 24
2.2 Graph dataset characterization . 26
3.1 Experimental testbed setup . 53
3.2 Peak power and area for a CMP and OMEGA node 60
3.3 Comparison of OMEGA and prior related works 65
4.1 Comparison of several graph analytics architectures 83
6.1 Collision rates over a range of dataset and SPM sizes 123

x

ABSTRACT

Graphs’ versatile ability to represent diverse relationships, make them effective for a

wide range of applications. For instance, search engines use graph-based applications to

provide high-quality search results. Medical centers use them to aid in patient diagnosis.

Most recently, graphs are also being employed to support the management of viral pan-

demics. Looking forward, they are showing promise of being critical in unlocking several

other opportunities, including combating the spread of fake content in social networks,

detecting and preventing fraudulent online transactions in a timely fashion, and in ensur-

ing collision avoidance in autonomous vehicle navigation, to name a few. Unfortunately, all

these applications require more computational power than what can be provided by conven-

tional computing systems. The key reason is that graph applications present large working

sets that fail to fit in the small on-chip storage of existing computing systems, while at the

same time they access data in seemingly unpredictable patterns, thus cannot draw benefit

from traditional on-chip storage.

In this dissertation, we set out to address the performance limitations of existing com-

puting systems so to enable emerging graph applications like those described above. To

achieve this, we identified three key strategies: 1) specializing memory architecture, 2)

processing data near its storage, and 3) message coalescing in the network. Based on

these strategies, this dissertation develops several solutions: OMEGA, which employs spe-

cialized on-chip storage units, with co-located specialized compute engines to accelerate

the computation; MessageFusion, which coalesces messages in the interconnect; and Cen-

taur, providing an architecture that optimizes the processing of infrequently-accessed data.

xi

Overall, these solutions provide 2× in performance improvements, with negligible hard-

ware overheads, across a wide range of applications.

Finally, we demonstrate the applicability of our strategies to other data-intensive do-

mains, by exploring an acceleration solution for MapReduce applications, which achieves

a 4× performance speedup, also with negligible area and power overheads.

xii

CHAPTER 1

Introduction

1.1 Graph and Graph-based Applications

Since their introduction in the eighteenth century, graphs have been recognized as an

effective mechanism to capture complex relationships. Graphs represent relationships by

means of vertices connected by edges. Take, for example, webgraphs, for which webpages

correspond to vertices, and edges represent the web links among them. Or consider social

networks, for which vertices correspond to people, and edges represent the relationship

among them. Graphs’ versatile ability to represent diverse relationships, make them ef-

fective for a wide range of applications. For instance, several commercial search engines

– such as Google, Microsoft’s Bing, and Baidu – rely heavily on analyzing webgraphs to

provide high-quality search results [91]. Social networks companies– such as Facebook,

Twitter, and Youtube – perform analytics tasks on their networks, which allow them to of-

fer improved services to their users, and targeted advertising to client companies. Medical

institutes and hospitals, such as the Allen Institute for Brain Science, utilize brain func-

tional connectivity networks to study and understand animal and human brains, leading to

better insights in patient diagnosis [47]. Many recent ride-share and map-service providers

– such as Uber, Lyft, Google maps, and Waze – have flourished by employing analyses

of road networks that provide efficient route selections, thus reducing traffic congestion

and fuel consumption for their users. In addition, graph analytics have been extensively

1

utilized in AI-based applications, such as movie recommendation solutions, product rec-

ommendations, and natural language processing. Most recently, graphs are being employed

to support contact tracing in the management of viral pandemics [11].

1.2 Current Performance Limitations of Graph Applications

In light of their applications mentioned above, graphs are poised to address an increas-

ingly broader range of challenges and applications; however, at the same time, their com-

putational requirements are unmet by conventional computing systems. Modern computing

systems require a significant amount of time to complete most graph-based applications.

For example, the increase in fake content in several social networks jeopardizes the cred-

ibility of these platforms. In this case, graphs can be utilized to identify fake content by

analyzing the credibility of content sources (users) in the network; specifically, by ranking

users in the network [7]. The rank value depends on how they are connected with other

users. A high rank-value indicates that the user is connected from a large number of users,

that is, many people follow this user’s opinions. Alternatively, the user could be connected

with just a few other users, who, in turn, have many followers. Both these scenarios in-

dicate a credible user, whereas a user with a low rank-value is deemed as not-as-credible,

and hence a potential source of fake content. In short, in this scenario, the content from

users with a low rank-value will be identified as fake and, consequently, removed from the

network. Today, to complete this type of task, conventional computing systems can take

minutes to hours, depending on the social network’s size [66]. In contrast, to inhibit the dis-

semination of fake content to a significant number of users, the content must be identified,

tagged as fake, and removed within just one second [10].

As another example, financial institutions lose trillions of dollars annually due to online-

transaction fraud. In this scenario, graphs can be utilized to detect and prevent such fraud

by analyzing users’ transactions along with their social networks’ presence and activity,

implementing a ranking method that, first, takes into account users who have a history of

2

committing fraud. This set of users could be gathered from other sources, such as govern-

mental criminal records [9]. The analysis then essentially identifies users that have strong

ties with individuals in the existing set of people known to have committed fraud. Based on

the idea that users tend to form strong relationships among themselves in a social network,

users with a high rank-value will be considered more likely to commit fraud and, conse-

quently, their transactions will be inspected carefully. Note that this approach may lead to

biased assessments. To complete this type of task, current computing systems take minutes

to hours, based on the size of the social network [66]; however, the detection process must

be completed within a few milliseconds to flag the potentially fraudulent even before it is

approved [13].

Finally, to offer one last example, graph applications are thought to sit at the heart of the

7-trillion-dollar autonomous vehicle industry [8]. In this domain, graphs could enable self-

driving vehicles to utilize their geospatial and geolocation data, not only to identify efficient

routes at a fine granularity, but also to prevent collisions by analyzing their position relative

to other nearby obstacles, including other vehicles [8]. These tasks essentially involve

finding the shortest route from the current location of the vehicle to a destination location.

They typically take seconds to complete, when using existing computing platforms [102];

in contrast, vehicles must be able to complete the tasks within milliseconds so to attain

the enhanced goals described above [8]. Overall, these stringent-time limits cause existing

computing systems to be unfit for such tasks.

1.3 Mismatch of Today’s Conventional Computing Systems

Figure 1.1 shows a high-level architecture of a typical modern processor, which com-

prises multiple cores, enabling concurrent execution within an application, so to boost its

performance. The cores are connected among themselves via interconnect routers. They

are also connected to off-chip memory via a similar interconnection mechanism. The cores

access data from off-chip memory, an activity that incurs high latency (i.e., delay) and

3

Figure 1.1: High-level architecture of a conventional processor. A typical conventional
processor comprises multiple cores, each equipped with cache memory. Cores are con-
nected to the rest of the system and the off-chip memory via an interconnection network
completed by routers.

consumes much energy. To limit the impact of memory accesses in terms of energy and

performance costs, a small amount of on-chip storage, called cache, is typically co-located

with each core. Caches act as a buffer, temporally storing and delivering data from the

much larger off-chip memory with much less latency and energy. Applications that have

predictable data access patterns and/or small working datasets are ideal in this context. In

contrast, typical graph applications present large working datasets that do not fit in such

small on-chip storages. In addition, they access data in a seemingly random pattern; hence,

they cannot leverage the reuse opportunities offered by small and fast on-chip storage. For

those two reasons, when running a graph application on a conventional multicore architec-

ture, a large amount of data is continuously transferred from off-chip main memory to the

processor and back. This data movement is extremely costly, as it incurs high latency and

it consumes a major fraction of the energy required to execute the application.

Case study. To analyze the magnitude of the traffic between processors and off-chip

memory, we profiled a few graph applications running on an Intel Xeon E5-2630 processor

4

Figure 1.2: Execution time breakdown of graph applications. By profiling several
graph applications using vTune on an Intel Xeon E5-2630 v3 processor with a last-level-
cache of 20MB, we learned that performance is mostly limited by time spent accessing
data.

equipped with a 20MB (last-level) cache. Our findings, plotted in Figure 1.2 and discussed

in more detail in Chapter 3, show that the main cause of performance bottlenecks in those

applications is indeed due to the inability of the processor cores to access off-chip memory

efficiently.

Below we briefly discuss sources of performance and energy inefficiencies beyond off-

chip memory accesses.

Inefficiencies due to high interconnect traffic. As discussed above, graph applications’

random-access patterns are often responsible for much of the traffic between cores and off-

chip memory traveling on the interconnect. In addition, modern processors’ cores often

access data stored in remote cores’ caches, further exacerbating the density of interconnect

traffic. High interconnect traffic creates, in turn, congestion in the network, leading to poor

performance and energy inefficiencies.

Inefficiencies due to high overhead of atomic operations computation. Multicore pro-

cessors [102, 105] distribute the execution of an application processing an input graph

across multiple cores, which operate in parallel. The input graph is first partitioned across

cores, and then each core is tasked with the processing of its own portion of the input graph.

Processing a graph entails performing update operations on its vertices. While processing

5

their own portions, multiple distinct cores often must update a same destination vertex. To

correctly perform this update, the operation is performed atomically, requiring the cores

to serialize their access to the vertex among themselves, thus executing only one such op-

eration at a time. This type of operations is referred to as an atomic operation. As one

can imagine, the execution of these atomic operations leads to inefficient utilization of the

processor’s hardware resources, as multiple cores are suspended, waiting for other cores’

accesses to complete.

1.4 Our Strategies

In this dissertation, we set out to boost the performance of graph-based applications, so

to enable the critical opportunities discussed in 1.2. We do this by exploring several strate-

gies. Specifically, we devised three strategies to tackle the challenges presented in Section

1.3 in a systematic manner. These strategies are 1) specializing the memory structure

to improve the efficacy of small on-chip storage, and thus fit the characteristics of graph

applications, 2) processing data near where it is stored as much as possible to reduce

interconnect traffic, and 3) coalescing data messages in the network, which should also

reduce the amount of interconnect traffic. We discuss these strategies below, along with

their potential benefits.

Our first strategy strives to specialize the on-chip memory architecture of a typical con-

ventional processor to alleviate traffic generated because of their inefficient use. In line

with this, we make the key observation that many graph applications do not access data in

a completely random manner, but rather present domain-specific access patterns. For in-

stance, they access some vertices more frequently than others, a trait especially pronounced

in graphs that follow a power-law distribution [85, 26, 37]; that is, approximately 20% of

the vertices in a graph are connected to approximately 80% of the edges in that graph.

Because of their high connectivity, it is likely that this 20% of the vertices is accessed

much more frequently than the rest. We realized that such access patterns can provide an

6

opportunity to devise specialized on-chip storage. Specifically, a small amount of storage

could be designed to house the most-connected vertices, which are often responsible for

the majority of the accesses, thus reducing the traffic from/to the off-chip memory.

Our second strategy is to investigate if processing data near its storage mitigates inter-

connect traffic. Because graph applications rarely reuse recently accessed data, this strategy

may reduce the interconnect traffic that otherwise would take place between a core and a

remote storage unit. A byproduct of this strategy is that data processing could be per-

formed using specialized compute engines, instead of general-purpose cores. As discussed

in Section 1.3, general-purpose cores frequently face idle time when executing atomic op-

erations. Offloading atomic operations from cores to specialized compute engines would

minimize this inefficiency, as the processor cores would be freed up and could advance to

other computation tasks.

Our final strategy is to explore the benefit of coalescing graph analytics data messages

in the network. Offloading atomic operations from general-purpose cores to specialized

compute engines may lead to a high-level of interconnect traffic. Due to the power-law

characteristics described above, it is common for multiple atomic operations originating

from different cores to update a same vertex. Since these operations are similar within a

given graph application (see Chapter 4), it should be possible to coalesce multiple opera-

tions to a same destination vertex in the network, thus reducing the interconnect traffic.

In the next section, we present several solutions that we developed in pursuing the

strategies just described.

1.5 Our Solutions

This section presents solutions that employ the strategies described in Section 1.4. Fig-

ure 1.3 provides an overview of the proposed solutions. We name the solutions along the

horizontal axis, and indicate on the vertical axis the strategies that we explored in develop-

ing them.

7

Figure 1.3: Overview of the proposed solutions.

In our first solution, OMEGA [18], we worked to specialize the memory architecture.

As discussed in Section 1.4, many graphs follow a power-law distribution, hence some ver-

tices are accessed more frequently than others. Based on this characteristic, we developed

specialized on-chip storage that houses this frequently-accessed data. To make our solution

scalable, we distribute the specialized on-chip storage by co-locating one storage unit with

each core. This technique reduces the traffic between the processor and off-chip memory.

In addition, in striving to follow our second strategy, we augment each specialized on-chip

storage unit with a specialized compute engine that carries out the atomic operations affect-

ing the vertices in the local on-chip storage, and which have been offloaded from the cores.

The specialized compute engines help reduce both interconnect traffic and computational

demands on the cores.

Although the solution described above manages to offload atomic operations from cores

to specialized compute engines, the messages for these operations must be transferred via

the interconnect. Due to the power-law characteristics discussed in the prior section, most

often these operations are to a same vertex, and can be coalesced in the network. Our next

solution, MessageFusion, augments each router in the network with specialized hardware

to carry out such message coalescing, thus reducing network traffic.

The solutions described thus far seek to optimize the execution of atomic operations on

frequently-accessed data. However, the computation of atomic operations on infrequently-

accessed data still takes place through conventional mechanisms, that is, transferring the

data from off-chip memory to the relevant processor core and computing the updates in

8

the core. Our third solution, Centaur, addresses precisely this infrequently-accessed data:

it optimizes the computation of atomic operations on infrequently-accessed data as well.

In particular, it augments off-chip memory units with specialized compute engines, which

are tasked with executing atomic operations related to infrequently-accessed data. The

computation by these specialized engines reduces the traffic between cores and off-chip

memory and, at the same time, further frees up the cores from executing atomic operations.

1.6 Beyond Graph Analytics

In addition to graph analytics, we recognize that there are many important families of

applications dominated by data movement. Three key domains in this space include ma-

chine learning applications, streaming applications, and MapReduce applications. Machine

learning applications, such as deep neural networks, are being utilized for a wide range of

applications, e.g., product recommendation and language translation to name just a few.

These applications move a large amount of data, mainly due to accessing the parameters of

the neural network models. Streaming applications provide important insights, for instance,

identifying trending topics in social networks and in stocks trading. They often process a

large amount of input data incoming at a continuous pace. Finally, MapReduce applications

are suited for processing a large amount of accumulated data. They are utilized for various

purposes, such as indexing webpages for improving search results, analyzing log files for

providing summary data, such as website usage. We believe that the strategies we outlined

in Section 1.4 are beneficial for a wide range of applications, with traits like those just

described. To demonstrate their applicability to these applications domains, in the disser-

tation, we explore solutions for MapReduce applications because of their wide adoption.

We recognize other domains of applications as further research directions. Chapter 6 is

dedicated to the discussion of our solution for the MapReduce domain.

9

1.7 Dissertation Document Organization

This dissertation document is organized as follows. Chapter 2 provides background

in graph analytics. Chapter 3 describes OMEGA, a memory subsystem for the efficient

execution of graph analytics on multicore machines. The chapter provides architectural de-

tails of OMEGA and explains how OMEGA exploits the power-law traits of many graphs

to identify frequently-accessed vertex data, thus maximizing on-chip storage utilization.

Chapter 4 discusses MessageFusion, a technique that coalesces data messages in the net-

work, and thus scales the performance and energy efficiencies of a computing system with

the number of processing elements. Chapter 5 presents Centaur, a technique that com-

plements the other solutions by optimizing the processing of infrequently-accessed data.

In exploring application domains beyond graph applications, Chapter 6 discusses CASM,

an architecture that demonstrates the applicability of our strategies to MapReduce applica-

tions. Finally, Chapter 7 provides conclusions to this dissertation, as well as future research

directions that can further improve the techniques developed in this dissertation.

1.8 Summary of Contributions

The goal of this dissertation is to address the performance limitations of existing com-

puting systems so to enable emerging graph applications like those described in Section 1.2.

To achieve this goal, we identify three key strategies: 1) specializing memory architecture,

2) processing data near its storage, and 3) message coalescing in the network. Based on

these strategies, this dissertation develops several solutions: OMEGA, which employs spe-

cialized on-chip storage units with co-located specialized compute engines to accelerate

the computation; MessageFusion, which coalesces messages in the interconnect, Centaur,

which optimizes the processing of infrequently-accessed data. Overall, the solutions pre-

sented in this dissertation provide 2× in performance improvements, with negligible hard-

ware overheads, across a wide range of graph-based applications. Finally, we demonstrate

10

the benefits of deploying our strategies to other data-intensive domains by proposing a so-

lution in one such domain, MapReduce, where we attain a 4× performance speedup with

negligible area and power overheads.

The next chapter provides a review of background concepts in graph analytics, setting

the stage for a detailed discussion of the key techniques presented in the dissertation.

11

CHAPTER 2

Background on Graph Analytics

This chapter reviews background concepts in graph analytics. Graph analytics emerged

with the eighteenth-century implementation of the graph in Kaliningrad, Russia, when the

locals pondered to solve a fun mathematical problem [14]. The problem was to determine

whether it was possible to walk through the city by crossing each of the seven bridges once

and only once. The seven bridges connected the four landmasses of the city together, as

shown in Figure 2.1. In 1735, Leonhard Euler solved this problem by relying on a simple

representation that abstracted the detailed map of the city in terms of its four landmasses

and seven bridges. In doing so, Euler pioneered the concept of graph. In the current field

of graph theory, a landmass corresponds to a vertex and a bridge corresponds to an edge.

Since 1735, graphs have been extensively utilized as a way to simplify the represen-

tation of rather complex relationships. For instance, web graphs provide simple repre-

sentation for the connectivity of web pages [91], and human brain functional connectivity

networks capture complex interactions among the various regions of human brains [47]. Al-

though their simplified representation mechanism makes them a great candidate in various

application areas, efficiently executing them on existing computing systems is a challeng-

ing task, as these systems were not designed with graph-based applications in mind.

To achieve well-suited computing systems, it is crucial that we first understand some

relevant characteristics of graphs. First, different graphs represent different types of rela-

12

Figure 2.1: An 18th century map of Kaliningrad, highlighting its river and bridges [14].

tionships and, consequently, have different structures (e.g., edge to vertex ratio). Second,

a graph can be stored in various ways in memory (e.g., adjacency matrix). In addition,

depending on the types of insights required, a graph can be processed by using multiple

algorithms. Note, finally, that these algorithms are typically implemented on a range of

possible high-level software frameworks, for the benefit of the programmer’s productivity.

A basic grasp of these characteristics is crucial to understand the solutions presented later

in this dissertation, thus this chapter provides a brief review.

2.1 Graph Structures

A graph can represent various types of relationships. An example is a graph that rep-

resents a social network, which conceptualizes interactions among people. Consequently,

each graph has its own unique structure (i.e., the unique way of how its vertices are in-

terconnected). Generally speaking, there are four types of graph structures: power-law,

community-based, regular, and random, described as follows.

Note also, that we refer to graphs arising in practical, real-world applications as natural

13

Figure 2.2: Power-law graph. Vertex 6 and 7 are connected to approximately 80% of the
edges.

graphs, in contrast with synthetic graphs, which are generated to present specified charac-

teristics.

Power-law graphs. Power-law graphs exhibit power-law distribution. A power law is a

functional relationship such that the output varies with the power of the input. In the context

of graphs, power-law graphs follow the power law in their vertex-to-edge connectivity;

that is, the majority of the edges are connected to just a few vertices, with a long tail of

vertices connected to very few edges. In practical approximations, a graph is said to follow

the power law if 20% of its vertices are connected to approximately 80% of the edges

[85]. Many natural graphs follow the power law, including web-derived graphs, electrical

power grids, citation networks, collaboration networks of movie actors [30, 26], graphs

that represent social networks [37], biological networks [25], and human brain functional

networks [47]. The authors of [30, 26] argue that the reason for such abundant occurrence

of power-law distributions in graphs is a mechanism called “preferential attachment”: a

new vertex joining a graph would most likely connect to an already popular vertex. Figure

2.2 presents an example of a power-law graph. As shown in the figure, vertices 6 and 7,

which account for 20% of the vertices, are connected to approximately 80% of the edges.

Community-based graphs. Community-based graphs [50, 84] have a set of vertices

that are densely connected among themselves, while being sparsely connected to other

similar set of vertices (other communities). Each group of densely connected vertices is

14

Figure 2.3: Community-based graph. The graph contains two communities.

Figure 2.4: Regular graph. Each vertex is connected to two edges.

called a community. Community-based graphs are common in natural graphs [52]. For

instance, in social networks, it is common to have friends closely connected with each

other, while being sparsely connected with other groups of friends. Figure 2.3 provides

an example of a community-based graph. The figure highlights two communities: one

community comprises vertices 0, 1, 2, and 6, whereas the other community includes all

other vertices. Recent work [28, 29] has proposed optimizations for community-based

graphs. The key idea behind these optimizations is to segment the graph at a community-

granularity and then process it, one segment at a time, thus maximizing the utilization of

the fast-access storage.

Regular graphs. Regular graphs [75] have vertices with the same number of edges.

This type of graph is not common in natural graphs; however, it is widely utilized for

scientific studies. Figure 2.4 presents an example of a regular graph. As shown, each

15

Figure 2.5: Random graph. Each vertex has an arbitrarily number of edges.

vertex has two edges, which means that the graph is regular.

Random graphs. Random graphs [86] are mostly useful for studying graph theory.

Each of their vertices is connected to a random number of edges. Figure 2.5 provides an

example of a random graph. The figure shows that each vertex has a randomized number

of edges.

Note that graphs can be weighted, i.e., their edges can have associated weight values.

For instance, if the graph represents a road network, then the edge weights could represent

the distance between cities.

Among these four types of graphs (power-law, community-based, regular, and ran-

dom), the properties of power-law graphs are central to this dissertation, because the power-

law trait enables us to maximize on-chip memory utilization; hence it is further discussed

throughout the rest of the dissertation.

2.2 Graph Layouts

There are various ways to organize data related to graphs in memory: adjacency ma-

trix, adjacency list, coordinate list, compressed sparse row, and compressed sparse column.

Below, we provide a brief overview of each of them, and use the example graph of Figure

2.6 to illustrate them.

Adjacency matrix. An adjacency matrix stores a graph as a bidimensional V*V array,

16

Figure 2.6: An example weighted graph, which we use to demonstrate the graph repre-
sentations discussed in this chapter.

Figure 2.7: Adjacency matrix representation for the graph of Figure 2.6. Most entries
are∞.

where V is the number of vertices. Each entry in the array has either a weight value or

the symbol∞. The∞ symbol at <row, column> indicates that there is no edge between

the vertices with index <row> and index <column>. Otherwise, the value indicates the

weight of the edge. The adjacency matrix for the example graph of Figure 2.6 is presented

in the Figure 2.7. This representation is useful to represent dense graphs, but it is an inef-

ficient choice for sparse graphs, because it entails unnecessary storage for pairs of vertices

that are not connected to each other.

Adjacency list. An adjacency list maintains a per-vertex list, which stores, for each

vertex, the IDs of vertices that are connected to it by an edge, and the weight value of

17

Figure 2.8: Adjacency list representation for the graph of Figure 2.6.

the associated edge. For sparse graphs, adjacency lists are more efficient compared to

adjacency matrices as they only require space proportional to the number of edges in the

graph. However, for dense graphs, it might not be as efficient, as it requires maintaining

multiple lists, instead of the compact structure of an adjacency matrix. An example of the

adjacency list for the example graph of 2.6 is shown in Figure 2.8.

Coordinate list. Instead of storing the edge information for a graph with a list for each

vertex, as with the adjacency list, the coordinate list represents a graph by maintaining the

list of edges, each edge listing the pair of vertices that it connects, as well as the weight

value of the edge. This layout is less efficient than the adjacency list, as each vertex ID

is reported multiple times, once for each of its incident edges. It is also less efficient to

identify all vertices adjacent to a given vertex. Most often, the coordinate list is sorted by

source vertex, followed by the destination vertex, to partially address this type of ineffi-

ciencies. Note, however, that, this layout has also some merits. For instance, it stores the

graph information in a uniform data structure as the adjacency matrix, and it simplifies the

process of iterating through all the edges. The coordinate list for the example graph of Fig-

ure 2.6 is (0,1,5), (0,6,10), (1,2,11), (1,6,20), (1,7,12), (2,6,45), (2,7,15), (3,6,50), (3,7,16),

(4,3,15), (4,7,18), (5,7,25), (6,7,30), (8,7,23), (9,7,20).

Compressed sparse row. A compressed sparse row representation optimizes the adja-

cency matrix format by leveraging three separate arrays. The first array lists all the valid

18

Figure 2.9: Compressed sparse row representation for the graph of Figure 2.6.

Figure 2.10: Compressed sparse column representation for the graph of Figure 2.6.

weight values in the adjacency matrix in row order. The second array, called the column

index array, stores the column indices in the adjacency matrix of the valid weights in the

first array. Finally, the third array, called row index array, stores the indices from the edge-

weights array corresponding to the first element of each row in the adjacency matrix. In

some implementations, this array contains an additional value at the end, storing the total

number of non-zero weights. As an example, Figure 2.9 presents a compressed sparse row

representation for the example graph of Figure 2.6. With reference to the Figure, the first

entry in the edge-weights array contains the value 5, corresponding to the first edge-weight

value in the row order traversal of the adjacency matrix. This value is found in column 1

of the adjacency matrix; hence, the first entry of the column index array shows the value

1. Correspondingly, the row index array has a value of 0, as the edge-weight values for the

first row of the adjacency matrix are stored starting at index 0 of the edge-weights array.

The compressed sparse row representation has several advantages over coordinate list.

First, vertex IDs are implicit, leading to additional memory efficiency. Second, it provides

a way to quickly identify all the neighbors of a vertex, as neighbors’ data is stored in

contiguous memory locations.

Compressed sparse column. The compressed sparse column representation is similar

19

to compressed sparse row, with the roles of row and column index arrays reversed. The

first array, that is, the edge-weights array, lists all the valid weight values in the adjacency

matrix in column order. The second array, called the row index array, stores the row in-

dices in the adjacency matrix of the weights in the edge-weights array. Finally, the third

array, called column index array, stores the indices from the edge-weights array of the first

element of each column in the adjacency matrix. Similar to the compressed sparse row

representation, in some implementations, this array contains an extra value at the end, stor-

ing the number of non-zero weights. Figure 2.10 illustrates compressed sparse column for

the example graph of Figure 2.6. Once again, the first entry in the edge-weights array is 5,

corresponding to the first edge-weight value in the column order traversal of the adjacency

matrix representation. This value is found in row 0 in the adjacency matrix; hence, the first

entry in the row index array has a value of 0. The first entry of the column index array is

0, as there are no valid edge-weight values in the first column of the adjacency matrix. It

also has a value of 0 as its second entry, since the first edge-weight value of the second

column of the adjacency matrix is stored at index 0 of the edge-weights array. The com-

pressed sparse column representation enjoys similar advantages as the compressed sparse

row representation, as mentioned above.

In this dissertation, our solutions are evaluated by leveraging direct C/C++ implemen-

tations and the graph software framework, Ligra [102], which stores graph data using rep-

resentations that closely resemble the compressed sparse row and column representations.

Note, however, that it would be straightforward to adapt them to software frameworks that

store graphs in some of the other representations described.

2.3 Graph Algorithms

Graphs are processed with graph algorithms. Each graph algorithm provides unique

insights into the graph. The type of graph algorithm determines how the graph is tra-

versed and, consequently, the performance of the underlying computing systems. Hence,

20

improving the design of the existing computing system first requires an understanding of

the different types of graph algorithms. To this end, in this chapter, we considered several

popular graph algorithms, which are discussed below. These are also the algorithms that

we used to evaluate the solutions presented in the following chapters.

PageRank (PageRank) iteratively calculates a rank value for each vertex, based on the

number and popularity of its neighbors, until the value converges. PageRank was origi-

nally introduced by Google to rank web pages in web graphs [91] and prioritize web pages

provided in search results. A higher rank value indicates that a web page is more popular,

as there are more websites that link to it, thus it has a higher chance of appearing at the

top of the search results. Since then, it has been applied to a wide range of other domains,

for instance, to determine the popularity of users in social networks [56] or to extract rep-

resentative keywords/sentences from a document in natural language processing [76]. In

Section 2.5, we show a possible implementation of PageRank using pseudo-code.

Breadth-First Search (BFS) traverses the graph breadth-first, starting from an as-

signed root node and assigning a parent to each reachable vertex. BFS is applied in a

range of applications, such as to determine optimal wire routes in Very Large Scale Circuit

(VLSI) designs [42] or to crawl the web to identify webpages that are within k-levels from

a particular source page [83].

Single-Source Shortest-Path (SSSP) traverses a graph as BFS, while computing the

shortest distance from the root vertex to each vertex in the graph. It is widely used, for

instance, to find the shortest distance between two locations in online map applications, or

to find the minimum delay of a communication path in telecommunication networks [15].

Betweenness Centrality (BC) computes, for each vertex, the number of shortest paths

that traverse that vertex. It is used for various purposes, such as identifying a set of in-

dividuals who provide quick connections to a large portion of users in social networks

[116], or finding a central location point to most other locations in transportation networks

applications [70].

21

Radii (Radii) estimates the maximum radius of the graph, that is, the longest of the

minimum distances between any pair of vertices in the graph. It is utilized in various areas,

such as, to estimate the maximum number of clicks required to reach to a web page from

another in web graphs [98], or to determine the worst-case communication delay between

any two nodes in internet routing networks [106].

Connected Components (CC) in an undirected graph, identifies all subgraphs such

that, within each subgraph, all vertices can reach one another, and none of the connecting

paths belong to different subgraphs. It is widely used in various application domains, such

as to identify people with similar interests in social networks so to perform content recom-

mendations [43], or to segment images based on some similarity property when partitioning

images in image analytics [110].

Triangle Counting (TC), in an undirected graph, computes the number of triangles,

i.e., the number of vertices that have two adjacent vertices that are also adjacent to each

other. TC is widely used in various areas, such as for spam identification in large scale

computer networks, or for link recommendation in social networks [108].

k-Core (KC), in an undirected graph, identifies a maximum-size connected subgraph

comprising only vertices of degree ≥ k. It is widely applied in various applications, such

as for visualization of large-scale graphs [27], or for analyzing biological protein structures

via the identification of the highest density portion of the structure [112].

Sparse Matrix-Vector Multiplication (SpMV) computes the product of the sparse

adjacency matrix of a graph with a vector of values. SpMV is a general technique that

provides an alternative approach to solve several graph algorithms [35, 104]. For instance,

the BFS algorithm described above can be solved using SpMV. The key operation in BFS

involves finding the set of vertices reachable in one step from the set of vertices already

discovered. This operation can be performed by multiplying a sparse adjacency matrix

representation of the graph with a 0-1 vector, where 1 corresponds to vertices that have

been reached in the prior step of the traversal. Figure 2.11 shows the first iteration of BFS

22

Figure 2.11: First iteration of BFS starting at vertex 0 using SpMV, multiplying the
transpose of the unweighted adjacency matrix representation of the graph of Figure 2.6
with a vector where only index zero is set to 1.

starting at vertex 0 for the adjacency matrix representation of the graph of Figure 2.6. This

iteration involves multiplying the unweighted version (all the∞ values are replaced with 0

and the non-zero values with 1) of the transpose of the adjacency matrix of the graph with

the vector [1,0,0,0,0,0,0,0,0,0]. The operation produces the vector [0,1,0,0,0,0,1,0,0,0],

indicating that the vertices that can be reached in one step of the traversal are 1 and 6. The

algorithm will then continue to multiply the matrix with the result vector until all entries of

the result vector are zero.

The key characteristics of the algorithms outlined are reported in Table 2.1. In some

cases, we do not have the characteristics; hence, we marked them with ‘-’. The table reports

the type of atomic (used during the reduce phase) operation (atomic/reduce op type). The

algorithms we considered range from leveraging a floating-point addition as their atomic

operation, or an unsigned or signed operation, which may include a Boolean comparison,

or a minimum or add operation. Our table also reports a qualitative evaluation of the portion

of vertex accesses that entail an atomic operation over the total set of accesses (%atomic

op). Similarly, we also report about the portion of access that exhibit poor temporal and

spatial locality (% random access). The table also reports the size of per-vertex entry

(vtxProp entry size), in Bytes, in the vtxProp structure, and the number of such structures

23

Table 2.1: Graph-based algorithm characterization

Characteristic PageRank BFS SSSP BC Radii

atomic/reduce op type fp unsigned signed min & fp signed or &
add comp. Bool comp. add signed min

%atomic op high low high medium high
%random access high high high high high
vtxProp entry size 8 4 8 8 12
#vtxProp 1 1 2 1 3
active-list no yes yes yes yes
read src no no yes yes yes
vtx’s vtxProp
msg size 8 4 4 - -

Characteristic CC TC KC SpMV

atomic/reduce op type unsigned signed signed signed
min add add add

%atomic op high low low high
%random access high low low high
vtxProp entry size 8 8 4 4
#vtxProp 2 1 1 1
active-list yes no no no
read src yes no no no
vtx’s vtxProp
msg size 4 - - 4

(# vtxProp) that the algorithm maintains. Many graph algorithms process only a subset

of the vertices per iteration; hence, we provide whether an algorithm maintains such list

or not (active-list). Moreover, the table reports whether an algorithm requires to access

a vertex’s vtxProp to generate a corresponding atomic operation message or not (read src

vtx’s vtxProp). Finally, the table provides the size of an atomic operation’s message that

crosses the network (msg size).

2.4 Graph Datasets

Graph algorithms process input graph datasets. Graph datasets represent complex re-

lationships among data. They are used in a wide range of applications, including social

24

networks, collaboration networks, web graphs, and road networks. To this end, we consid-

ered several types of graph datasets, which are discussed below. These are also the datasets

that we utilized to evaluate the solutions discussed in this dissertation.

wiki-Vote (wv) is a snapshot of the network of Wikipedia users voting each other to

become administrators [67].

soc-Slashdot0811 (sd) and soc-Slashdot0922 (sd2) are snapshots of the network of

Slashdot users’ friendship/foeship relationships [67].

ca-AstroPh (ap) is a network mapping co-authorship of manuscripts uploaded on Arxiv

in the field of Astro-physics [67].

soc-Pokec (pk) is a snapshot of the network of Pokec users’ friendship relationships.

rMat (rMat) is a synthetic graph that follows power-law distribution, which we gener-

ated using the rMat graph generator tool from [5].

orkut-2007 (orkut) and com-Orkut (orkut2) are snapshots of the network of Orkut

users’ friendship relationships [6, 67].

ljournal-2008 (lj) and soc-LiveJournal1 (lj2) are snapshots of the network of Live-

Journal users’ friendship relationships [6, 67].

enwiki-2013 (wiki) is a snapshot of the network of the English portion of the Wikipedia

web pages, interconnected by hyperlinks [6].

indochina-2004 (ic) is a crawl of the network of the country domains of Indochina’s

web pages, interconnected by hyperlinks [6].

uk-2002 (uk) is a crawl of the network of .uk domain’s web pages, interconnected by

hyperlinks [6].

twitter-2010 (twitter) is a snapshot of the network of Twitter’s users’ follower relation-

ships [6].

roadNet-CA (rCA) is a road network of California [67].

roadNet-PA (rPA) is a road network of Pennsylvania [67].

western-USA (USA) is a road network of the Western USA region [3].

25

Table 2.2: Graph dataset characterization

Characteristic wv sd sd2 ap pk rMat orkut orkut2 wiki

#vertices (M) 0.01 0.07 0.08 0.13 1.6 2 3 3.1 4.2
#edges (M) 0.1 0.9 1 0.39 30.6 25 234 117.2 101
type - dir. - undir. - dir. dir. - dir.
in-degree con. - 62.8 - 100 - 93 58.73 - 84.69
out-degree con. - 78.05 - 100 - 93.8 58.73 - 60.97
power law - yes - yes - yes yes - yes
degree 14.6 - 11.5 - 18.8 - - 38.1 -
reference [67] [67] [67] [67] [67] [67] [6] [67] [6]

Characteristic lj2 lj ic uk twitter rPA rCA USA

#vertices (M) 4.8 5.3 7.4 18.5 41.6 1 1.9 6.2
#edges (M) 69 79 194 298 1468 3 5.5 15
type - dir. dir. dir. dir. undir. undir. undir.
in-degree con. - 77.35 93.26 84.45 85.9 28.6 28.8 29.35
out-degree con. - 75.56 73.37 44.05 74.9 28.6 28.8 29.35
power law - yes yes yes yes no no no
degree 14.2 - - - - - 1.4 2.4
reference [67] [6] [6] [6] [6] [67] [67] [3]

The key characteristics of the datasets just described are reported in Table 2.2. In some

cases, we do not have the characteristics; hence, we marked the corresponding items with

‘-’. The table reports the number of vertices, which ranges from 0.01 million to 41.6

million, and the number of edges, which ranges from 0.1 million to 1.5 billion. The table

also provides the type of graph, which can be either directed or undirected. Moreover, it

reports in-degree and out-degree connectivity of the 20% most-connected vertices. The

in-degree/out-degree connectivity measures the fraction of incoming/outgoing edges con-

nected to the 20% most-connected vertices. Finally, it provides whether the datasets abide

by the power law or not in their structures, followed by their graphs’ degrees (edge-to-

vertex ratio), and the source references from where we collected them.

26

2.5 Graph Software Frameworks

The implementation of graph algorithms involve several data structures. It is common

to provide three data structures to represent a graph: “vertex property” (vtxProp), “edge

list” (edgeArray), and non-graph data (nGraphData). vtxProp stores the values that must

be computed for each vertex, e.g., rank values of vertices in PageRank algorithm; edgeAr-

ray maintains both sets of outgoing and incoming edges per each vertex; and non-graph

data includes all data-structures that are not part of vtxProp or edgeArray. For many graph

processing frameworks, accesses to vtxProp often exhibit poor locality, as the access or-

der depends on the ID values of neighboring vertices, which exhibits irregular patterns. In

addition, in multicore processors, multiple distinct cores typically update vtxProp concur-

rently. To correctly perform these update operations, they must be serialized, thus incurring

high-performance overheads, as cores wait in line for their turn to update. In contrast, the

edgeArray and nGraphData data structures are stored in contiguous memory locations,

with accesses that typically follow sequential patterns, thus exhibiting good cache locality.

Many aspects of the execution of graph algorithms – such as parallelization, thread

scheduling, and data partitioning – are similar across many graph algorithms. Hence, graph

algorithms are most often implemented using high-level software frameworks to boost the

productivity of developing a new graph algorithm. There are two variants of graph soft-

ware frameworks. The first type is based on distributed systems, running on networks of

computers. Examples of this type include PowerGraph [53], GraphChi [66], and Pregel

[73]. The key limitation of this type of frameworks is that they incur high network commu-

nication costs. This limitation is addressed by the second type of frameworks, which rely

on single-node multicore architectures. Examples of this latter type include Ligra [102],

GraphMat [105], Polymer [117], X-Stream [99], GridGraph [122], MOSAIC [72], and

GraphBIG [82]. In this dissertation, our focus is on single-node solutions, as powerful,

high-end servers with large and low-cost memory often have sufficient capability to run

many real-world graph algorithms in single-node machines.

27

Single-node frameworks can be broadly classified as either edge-centric (X-Stream,

GridGraph) or vertex-centric (Ligra, GraphMat, Polymer, GraphBIG). The processing of

most graphs by both types of frameworks involves iteratively computing values associated

with vertices that are adjacent to a set of active vertices. Active vertices most often ac-

count for a portion of the entire set of vertices, and they most often vary across iterations.

During each iteration, only the vertices that are active in that iteration are processed. As

an example, in BFS, during the first iteration, only the assigned root vertex is part of the

active vertices and only this vertex is thus processed. The differences among frameworks

is primarily related to how they process graphs.

Edge-centric frameworks access the complete list of edges of the graph, each edge con-

necting one vertex (called source vertex) to another vertex (called destination vertex). For

each edge, if its source vertex is part of the active set, then the value associated with the

source vertex is used to update the value of the corresponding destination vertex. Whereas

vertex-centric frameworks traverse the set of active vertices (instead of the complete list

of edges) and update the values of the adjacent vertices. For instance, for BFS, during the

first iteration, starting at root vertex 0 for the graph in Figure 2.6, an edge-centric frame-

work steps through the complete list of edges ((0,1,5,1), (0,6,10,1), (1,2,11,0), (1,6,20,0),

(1,7,12,0), (2,6,45,0), (2,7,15,0), (3,6,50,0), (3,7,16,0), (4,3,15,0), (4,7,18,0), (5,7,25,0),

(6,7,30,0), (8,7,23,0), (9,7,20,0)). Note that the edge list representation is similar to the

coordinate list representation discussed above, except that it includes an additional entry

per edge, indicating whether the source vertex is active (1) or not (0). While carrying out

this edge traversal, the framework updates the values of all the edges that have vertex 1 or

6 as sources, as they are the only vertices connected to vertex 0. Whereas, a vertex-centric

framework only accesses the active vertex (vertex 0) and updates its neighbors (vertex 1

and 6).

During the second iteration of BFS, the edge-centric framework accesses the entire edge

list above again, and updates the destination vertices corresponding to edges connected to

28

Figure 2.12: Pseudo-code for PageRank algorithm in a vertex-centric framework,
computing the rank of each vertex (next rank) based on the current rank values (curr rank)
and a vertex’s degree (outDegree).

vertex 1 and 6; whereas the vertex-centric framework accesses the two set of neighbors

of vertex 1 and 6 and updates their values. Note that, in a vertex-centric framework, the

neighbors of a vertex are typically stored contiguously in memory; whereas neighbors of

different vertices are not co-located.

In summary, edge-centric frameworks access the entire edge list sequentially; hence,

they benefit from high memory-access bandwidth, as sequential-accesses require higher

bandwidth than random-accesses in modern memory systems. In contrast, vertex-centric

frameworks access adjacent vertices in irregular patterns, as the locations of the neighbors

of different active vertices are typically non-contiguous. However, vertex-centric frame-

works access only those few edges that are incident to active vertices. In this dissertation,

we target vertex-centric frameworks: these frameworks have gained popularity mainly be-

cause of their simpler programming paradigm.

To illustrate how graph algorithms are implemented in vertex-centric frameworks, con-

sider PageRank. Figure 2.12 provides an example of pseudo-code for PageRank. As dis-

cussed above, PageRank iteratively calculates the rank values of vertices in a graph. To do

so, it maintains several types of data structures: 1) outDegree (line 2) stores the number of

a vertex’s outgoing edges; 2) next rank (line 4) maintains rank values for vertices active in

the current iteration, 3) curr rank (line 6) stores a copy of the ranks associated with each

29

vertex, as calculated during the previous iteration, and 4) outgoingEdge (line 8) maintains

neighboring vertex information for each vertex.

PageRank is executed in three phases: initialization phase, reduce/update phase, and

apply phase. As shown in Figure 2.12, it starts with the initialization phase by initial-

izing outDegree, next rank (line 3-4), and curr rank (line 5-6). It then enters into the

reduce/update phase, where it iterates through all the outgoing edges of each vertex (out-

goingEdge) to find its adjacent vertices (line 7-8). Following this step, it reads the rank

(curr rank) and degree (outDegree) of the vertex, and accrues the new rank value (next rank)

at the adjacent vertices (line 9). Then, it enters in the apply phase, where it updates

curr rank by performing a user-defined apply function (line 10-11). Note that, since typical

accesses for the outgoingEdge, curr rank, and outDegree data structures follow sequential

patterns, these accesses exhibit good cache locality. The same holds true for accesses to the

next rank data structure, but only during the initialization and apply phases. In contrast,

accesses to next rank often exhibit poor locality during the reduce/update phase, as ac-

cess order exhibits irregular patterns. In addition, in multicore processors, multiple distinct

cores typically update next rank. To correctly perform the update operations, these updates

must be executed one at a time, serializing their execution at each of the general-purpose

cores, thus incurring high-performance overheads. One of our goals, as described in Chap-

ter 1.3, is to alleviate the above overheads while, at the same time, continue to support

the high-level software frameworks available today, so not negatively impact developers’

productivity.

2.6 Summary

In this chapter, we reviewed background concepts in graph analytics. We described

various types of graph structures, presented several ways to store graphs in memory, and

described various graph algorithms and software frameworks that are typically used to

implement the graph algorithms. These concepts are useful to understand the solutions

30

discussed in the remaining parts of the dissertation.

The next chapter outlines the first of such solutions: OMEGA, a memory architecture

for the efficient execution of graph analytics on multicore machines. OMEGA leverages

the power-law graph characteristic of many naturally existing graphs to maximize on-chip

memory utilization. It was designed to operate with Ligra, a vertex-centric framework.

However, as we mentioned earlier, the OMEGA solution can be easily adapted to operate

with other graph-programming frameworks.

31

CHAPTER 3

Heterogeneous Memory Subsystem for Graph Analytics

As discussed in the introduction chapter, the execution of graph analytics on multi-

core processors provides limited performance and energy efficiencies primarily because of

unstructured and unpredictable data access patterns. These access patterns cause a high

amount of traffic between multicore processors’ cores and off-chip memory. In addition,

modern processors’ cores often access data stored in remote cores’ caches, creating high

interconnect traffic. High interconnect traffic creates, in turn, congestion in the network,

leading to poor performance and energy inefficiencies. Furthermore, multicore processors

distribute the execution of an application processing an input graph across multiple cores,

which operate in parallel. This mechanism typically entails multiple distinct cores updating

a same data. To correctly perform the update operations, the updates must be executed one

at a time, serializing their execution at each of the general-purpose cores, thus incurring

high-performance overheads. As described in Chapter 2, many real-world data collections

are structured as natural graphs; that is, they follow the power-law distribution: 80% of

the edges are incident to approximately 20% of the vertices [48, 53]. Examples include

web connectivity graphs [91], social networks [37], biological networks such as protein-

to-protein interactions [25], and human brain functional networks [47]. This characteristic

can be leveraged to devise solutions that combat the limitations described above.

In this chapter, we strive to overcome the limitations mentioned above by designing an

32

Figure 3.1: Execution breakdown using TMAM[113] metrics. Profiling several real-
world graph workloads using vTune on an Intel Xeon E5-2630 v3 processor with a
last-level-cache of 20MB shows that the performance is mostly limited by the execution
pipeline’s throughput (backend).

architecture that can accelerate graphs, which follow the power-law distribution. In pursu-

ing this goal, we rely on our strategies, discussed in Section 1.4. Specifically, we explore a

specialized memory architecture that houses those vertices with high incident edges, which

are often responsible for the majority of the accesses, thus reducing the traffic from/to the

off-chip memory. We also investigate the benefits of processing data near storage. Because

graph applications rarely reuse recently-accessed data, this strategy reduces the intercon-

nect traffic that otherwise would take place between a core and a remote storage unit in

reading the vertex data, updating it, and then storing it back. A byproduct of this strategy is

that some of the data processing is performed using specialized compute engines, instead

of general-purpose cores. As discussed in Section 1.3, general-purpose cores frequently

face idle time when executing atomic operations: offloading atomic operations from cores

to specialized compute engines reduces this inefficiency, as the processor cores are freed

up and can advance to other computation tasks.

3.1 Motivational Study

To analyze where the bottlenecks lie in graph processing, we performed several studies.

In our first study, we profiled a number of graph-based applications over Ligra, a framework

optimized for natural graphs [31], on an Intel Xeon E5-2630 processor with a 20MB last-

33

(a) Cache hit rate

(b) Percentage of accesses to the top 20% most-connected vertices

Figure 3.2: Cache profiling on traditional CMP architectures. (a) profiling several
graph workloads on vTune on Intel Xeon reports hit rates below 50% on L2 and LLC. (b)
Over 75% of the accesses to vtxProp target the 20% most connected vertices, a frequency-
based access pattern not captured by regular caches.

level cache. We used Intel’s VTune to gather the “Top-down Microarchitecture Analysis

Method” (TMAM) metrics [113]. For this analysis, we used representative graph-based

algorithms running on real-world datasets, as discussed in Section 2.3 and 2.4. The results,

plotted in Figure 3.1, show that applications are significantly backend bounded; that is, the

main cause of performance bottlenecks is the inability of the cores’ pipelines to efficiently

complete instructions. Furthermore, the execution time break down of the backend portion

reveals that they are mainly bottlenecked by memory wait time (memory bounded) with

an average value of 71%. From this analysis, we can infer that the biggest optimization

opportunity lies in improving the memory structure to enable faster access completions.

Note that other prior works have also reached similar conclusions [81, 23]. Hence, our

primary goal in this chapter is to develop an optimized architecture for the memory system

34

of a CMP to boost the performance of graph processing.

Our proposed approach is unique when compared with prior works because i) we strive

to fully exploit the frequency-based access pattern that exists in many graph algorithms

when processing natural graphs, and ii) we want to maintain transparency to the user as

much as possible; thus, we strive to minimize – or better, avoid – architectural modifications

that require modifications to the graph-processing framework or the graph applications

running on it.

Inefficiencies in locality exploitation in natural graphs. We then performed a more

in-depth analysis of the bottlenecks in the memory subsystem by monitoring last-level

cache hit rates for the same graph-based applications. Figure 3.2(a) shows that all work-

loads experience a relatively low hit rate. We suspect that the main culprit is the lack of

locality in the vtxProp accesses, as also suggested by [82, 23]. Moreover, in analyzing the

distribution of accesses within vtxProp, Figure 3.2(b) reports which fraction of the accesses

targeted the 20% of vertices with highest in-degree: this subset of the vertices is consis-

tently responsible for over 75% of the accesses. The study overall suggests that if we could

accelerate the access of this 20% of vertices in vtxProp, then we could significantly reduce

the memory access bottleneck and, in turn, the pipeline backend bottleneck pinpointed by

the TMAM analysis.

On-chip communication and atomic instruction overheads. We also observed that,

when using conventional caches to access the vertex data structure, each access must trans-

fer data at cache-line granularity, potentially leading to up to 8x overhead in on-chip traffic,

since the vertex’s vtxProp entry most often fits in one word and a cache line is 64 bytes.

In addition, when a vertex’s data is stored on a remote L2 bank, the transfer may incur

significant on-chip communication latency overhead (17 cycles with the baseline setup of

our evaluation). Finally, atomic accesses may incur the most significant performance over-

head of all those discussed. Based on the approach in [81], we estimated the overhead

entailed by the use of atomic instructions by comparing overall performance against that

35

of an identical PageRank application where we replaced each atomic instruction with a

regular read/write. The result reveals an overhead of up to 50%. Note that these on-chip

communication and atomic instructions overheads are particularly high, even for small and

medium graph datasets, which could comfortably fit in on-chip storage. We found these

kinds of datasets to be abundant in practice, e.g., the vtxProp of over 50% of the datasets

in [67] can fit on an Intel Xeon E5-2630’s 20MB of on-chip storage. Hence, we believe

that a viable memory subsystem architecture must holistically address atomic instructions,

on-chip and off-chip communication overheads.

Limitations of graph pre-processing solutions. Prior works have exploited the frequency-

based access pattern inherent in graph algorithms by relying on offline vertex-reordering

mechanisms. We also have deployed some of these solutions on natural graphs, includ-

ing in-degree, out-degree, and SlashBurn-based reordering [69], but have found limited

benefits. More specifically, in-degree- and out-degree-based reorderings provide higher

last-level cache hit rates, +12% and +2% respectively, as frequently accessed vertices are

stored together in a cache block; however, they also create high load imbalance. For all of

the reordering algorithms, we perform load balancing by fine-tuning the scheduling of the

OpenMP implementation. We found that the best speedup over the original ordering was

8% for in-degree, 6.3% for out-degree, and no improvement with SlashBurn. Other works

[119] have reported similar results, including a slowdown from in-degree-based ordering.

Another common graph preprocessing technique is graph slicing/partitioning, which pro-

vides good performance at the expense of requiring significant changes to the graph frame-

work [119].

3.2 OMEGA Overview

Figure 3.3 outlines the solution discussed in this chapter, called OMEGA, which lever-

ages scratchpad storage, with one scratchpad unit co-located with each core. The scratch-

pads accommodate highly-connected vertices (i.e., vertices that are connected with a large

36

Figure 3.3: OMEGA overview. OMEGA provides a specialized memory architecture
to support graph-based computation in CMPs. The architecture is implemented by re-
placing a portion of each core’s cache with a scratchpad memory, organized to store the
highly-connected vertices from the graph, and augmented with a simple data-processing
unit (PISC) to carry out vertex computations in-situ.

number of edges), satisfying most of the memory requests, and consequently reducing off-

chip accesses during an algorithms execution. Note that, generally speaking, accesses to

vertex data lack spatial locality, as these frequently accessed vertices are unlikely to be

placed adjacent to each other. Because of this reason, traditional caches are not effective.

As discussed above, many graphs follow the power-law distribution: approximately 20% of

the vertices are connected to 80% of the edges. We identify the highly-connected vertices

so to store them in scratchpads.

In addition, each scratchpad is augmented with a lightweight compute engine, called

the Processing in Scratchpad (PISC) unit, to which computation can be offloaded. PISCs

are particularly useful as many graph-based applications are bottlenecked by frequent but

simple operations (including atomic) on the graphs data structures. Since we have mapped

the most frequently accessed data to our on-chip scratchpads, augmenting each scratchpad

with a PISC significantly reduces latency by eliminating many scratchpad-core transfers.

3.3 Workload Characterization

Graph datasets. To guide the design of our proposed architecture, we considered all

datasets reported in Section 2.4 except wv, pk, sd2, lj2, and orkut2. We chose such a large

pool of datasets because we wished to perform a detailed workload characterization. The

37

pool we selected offered a broad representation of graph sizes, types, and both graphs that

follow the power law and graphs that do not. The key characteristics of the graphs selected

are reported in Table 2.2.

Graph-based algorithms. We considered all the algorithms discussed in Section 2.3

except SpMV. We did not consider SpMV because it was not implemented in the Ligra soft-

ware framework [102] that we utilized for our evaluation. The key characteristics of those

algorithms are outlined in Table 2.1. As shown in Table 2.1, the size of the vtxProp entry

varies based on the algorithm, from 4 to 12 bytes per vertex. In addition, several algorithms,

e.g., SSSP, require multiple vtxProp structures of variable entry size and stride. Note that

the size of vtxProp entry determines the amount of on-chip storage required to process a

given graph efficiently. Moreover, Table 2.1 also highlights that most algorithms perform

a high fraction of random accesses and atomic operations, e.g., PageRank. However, de-

pending on the algorithm, the framework might employ techniques to reduce the number of

atomic operations. For example, in the case of BFS, Ligra performs atomic operations only

after checking if a parent was not assigned to a vertex. In this case, the algorithm performs

many random accesses, often just as expensive. Note that there are graph frameworks that

do not rely upon atomic operations, e.g., GraphMat. Such frameworks partition the dataset

so that only a single thread modifies vtxProp at a time, and thus the optimization targets the

specific operations performed on vtxProp. Finally, note that many graph algorithms pro-

cess only a subset of the vertices per iteration; hence, they maintain a list of active vertices

(active-list), which incurs a significant performance penalty. Consequently, it is crucial to

differentiate algorithms by whether they need to maintain such a list or not.

Many algorithms operating on natural graphs experience <50% hit-rate on the last-

level cache (Figure 3.2(a)), despite a highly-skewed connectivity among the vertices of the

graph. Our graph workload characterization, reported in Figure 3.4, reveals that a hit rate

of 50% or greater can be achieved on the randomly-accessed portion of the vertex data

(vtxProp). As shown in the figure, for graphs that follow the power law, up to 99% of

38

Figure 3.4: Accesses to the 20% most connected vertices. The heat map shows the
fraction of accesses to vtxProp that refer to the 20% most-connected vertices. 100 indicates
that all accesses are to those vertices. Data for twitter is omitted because of its extremely
large runtime.

the vtxProp requests can be served by accommodating just the top 20% most-connected

vertices in on-chip storage, which is practical for many graphs encountered in real-world

applications. The per-vertex storage requirement depends on the algorithm: for example,

Ligra uses 4 bytes for BFS, 8 bytes for PageRank, and 12 bytes for Radii (Table 2.1). Our

analysis of storage requirements reveals that 20% of the vertices for the graphs in Table 2.2

can be mapped to a fraction of today’s on-chip storage sizes. Among the graphs considered,

only uk and twitter would require more than 16MB of on-chip storage to attain that goal.

uk requires up to 42MB, whereas twitter requires 64MB. For instance, by re-purposing

IBM Power9 processor’s total L2 + L3 caches (132MB) [12] to store 20% vertices, up to

164 million vertices (1.64 billion edges, assuming R-MAT’s [36] default edge-vertex ratio)

could be allocated to on-chip storage.

3.4 OMEGA Architecture

The OMEGA architecture, shown in Figure 3.5, employs a heterogeneous storage archi-

tecture that comprises both conventional caches and distributed scratchpads. Each scratch-

pad is augmented with a lightweight compute-engine (PISC), which executes atomic op-

erations offloaded from the core. The scratchpads store the most-accessed portion of the

39

Figure 3.5: OMEGA architecture. OMEGA’s heterogeneous cache/SP architecture:
for each core, OMEGA adds a scratchpad and a PISC. For the sample graph of Figure
3.6, the vtxProp for the most-connected vertices (V0 to V3) is partitioned across all on-
chip scratchpads. The rest of the vertices are stored in regular caches. The PISCs execute
atomic instructions that are offloaded from the cores.

Figure 3.6: Sample power law graph. Vertices are ordered based on their in-degree, with
lower IDs corresponding to higher connectivity.

40

vtxProp data structure, which is where most of the random accesses occur. By doing so,

most accesses to vtxProp are served from on-chip storage, and off-chip memory accesses

are minimized. In contrast, the edgeArray and nGraphData data structures are stored in

conventional caches, since they are mostly accessed sequentially, thus benefiting from

cache optimization techniques. While the scratchpads help minimize off-chip memory

accesses, the PISCs reduce overheads of executing atomic operations on general-purpose

cores. These overheads are due to on-chip communication latency related to frequent vtx-

Prop accesses from remote scratchpads and atomic operations, causing the core’s pipeline

to be on-hold until their completion[81]. The PISCs, each co-located with a scratchpad,

minimize these overheads by providing computational capability near the relevant data

location, thus facilitating the atomic update by leveraging the two co-located units. In con-

trast, a number of inefficiencies arise if a core is used for this computation, even a local

one: first, the significant performance penalty for entering and exiting an interrupt service

routine, up to 25ns [23]. Second, since a majority of the atomic operations are simple, a

simple PISC can complete them using less energy than a full-blown CPU.

To illustrate the operation of the OMEGA architecture, we use the sample graph in Fig-

ure 3.6. The vertices are ordered by their decreasing in-degree value, with V0 being first.

OMEGA partitions the vtxProp of the most-connected vertices, in our case V0 to V3, am-

ong all on-chip scratchpads. All other data – that is, the vtxProp for the remaining vertices

(V4 to V18), edgeArray, and nGraphData – is stored in the regular cache hierarchy. This

partitioning scheme enables OMEGA to serve most vtxProp accesses from on-chip scratch-

pads by providing storage for just a small portion of the structure. For graphs that follow

the power law, it should be sufficient to store just about 20% of vtxProp in scratchpads for

OMEGA to serve 80% of the accesses from there.

41

Figure 3.7: Scratchpad controller. The scratchpad controller orchestrates access to the
scratchpad. It uses a pre-configured set of address monitoring registers to filter requests
destined to the scratchpads. The partition unit determines if a request is to a local scratch-
pad or a remote one. To identify the scratchpad line of a request, the index unit is employed.

3.4.1 Scratchpad architecture

A high-level scratchpad architecture is also shown in Figure 3.5. The scratchpad is

organized as a directly-mapped storage. For each line, we store all vtxProp entries (Props)

of a vertex; thus, all Props of a vertex can be retrieved with a single access, which is

beneficial for the efficient execution of atomic operations. In addition, an extra bit is added

for each vtxProp entry to track the active-list using a dense representation [102]. The access

to the scratchpad is managed by the scratchpad controller, as discussed below.

Scratchpad controller. Figure 3.7 shows the scratchpad controller. It includes a set of

address-monitoring registers, the monitor unit, the partition unit, and the index unit. The

scratchpad controller receives normal read and write requests, as well as atomic-operation

requests from both the local core and other scratchpads via the interconnect. Upon receiv-

ing them, the monitor unit determines if the request should be routed to the regular caches

or to the scratchpads. For this purpose, the monitor unit relies on a set of address monitor-

ing registers, which are shown on the left-side of Figure 3.7. For each vtxProp, we maintain

its start addr, type size, and stride. The start addr is the same as the base address of the

vtxProp. The type size is the size of the primitive data type stored by the vtxProp. For

instance, for PageRank, the “next rank” vtxProp maintains a primitive data type of “dou-

42

Figure 3.8: Atomic operation offloading. The PISC executes atomic operations offloaded
by the cores. The figure shows Core0 executing PageRank on the sample graph shown in
the left-side. Core0 reads the vtxProp of V4 from memory and utilizes this value to update
the vtxProp of all of V4’s neighbors (V1 and V3).

ble”; hence, its type size would be 8 bytes. The stride is usually the same as the type size,

except when the vtxProp is part of a “struct” data structure. In that case, it can be deter-

mined by subtracting the first two consecutive vtxProp addresses. All of these registers are

configured by the graph framework at the beginning of an application’s execution. If the

scratchpad controller associates a request with the regular cache, it ignores it, as it will be

handled by the regular cache controller. If it is for the scratchpads, the partition unit is used

to determine whether the request targets a local scratchpad or a remote one. If the request

is for a remote scratchpad, the scratchpad controller forwards the request to it via the in-

terconnect using a special packet. The index unit identifies the line number of the request

to perform the actual scratchpad access. For an atomic operation request, the scratchpad

controller reads the required vtxProp of the request from the scratchpad, initiates its atomic

execution on the PISC engine, and then writes the result back to the scratchpad. Note that,

while the execution of an atomic operation is in progress, the scratchpad controller blocks

all requests that are issued to the same vertex.

43

3.4.2 PISC (Processing-in-Scratchpad) unit

When we deployed the on-chip scratchpads to store the most-accessed portion of the

vtxProp and, thus, bound most of the random-access requests to on-chip storage, we found

that these requests were most often to remote scratchpads. That is, the general-purpose

cores would issue requests that, for the most part, were served by remote scratchpads. This

effect creates bottlenecks due to interconnect transfer latency. Thus, to address this issue,

we augmented our solution with simple PISC engines to offload such requests from the

processor cores. Due to their simplicity, PISCs enable lower energy and latency for data

accesses, similar to the benefits of Processing-in-Memory (PIM) units [81]. Each scratch-

pad is augmented with a PISC engine that executes the atomic operations of the algorithm

in execution, e.g., floating-point addition for PageRank algorithm. Figure 3.8 illustrates

how PISCs work. The figure shows the steps involved when Core0 executes the PageR-

ank algorithm on the sample graph shown in the left-side of the figure. First, Core0 reads

the vtxProp of the source vertex V4 from memory. Then, it utilizes this value to update

the vtxProp of all its neighbors (V1 and V3). Without a PISC, Core0 needs to read the

vtxProp of both V1 and V3 from Core1’s remote scratchpad, incurring remote scratchpad

access latency. However, with a PISC, Core0 can construct an atomic operation message,

corresponding to V1 or V3, and send this message to Core1’s PISC, which executes the

operation on behalf of Core0.

PISC architecture. A high-level architecture of a PISC unit is shown in Figure 3.9.

One of the main components of a PISC unit is an ALU engine that implements the atomic

operations of the algorithms discussed in Section 2.3. Different algorithms may require dif-

ferent types of operations. For instance, PageRank requires “floating-point addition,” BFS

requires “unsigned integer comparison,” and SSSP requires “signed integer min” and “Bool

comparison.” The atomic operations of some algorithms, e.g., SSSP, are composed of mul-

tiple simpler operations, called “microcode.” The PISC includes also microcode registers

to store the microcode that corresponds to an atomic operation. Moreover, it incorporates a

44

Figure 3.9: PISC architecture. A PISC includes a simple ALU engine that implements
atomic operations of a wide range of graph workloads. It also includes a sequencer logic
that controls the execution of the atomic operation’s microcode stored in the microcode
registers, based on the atomic operation type (optype).

Figure 3.10: Pseudo-code for SSSP. For each pair of vertices, “s” and “d,” SSSP adds the
current shortest length (“ShortestLen”) of “s” and the length from “s” to “d” and use the
result to update the “ShortestLen” of “d.” SSSP also marks the vertex “d” as visited.

sequencer module that is responsible for interpreting the incoming atomic operation com-

mand, and controlling the execution of the operation’s microcode. The sequencer is also

responsible to read the vtxProp of the vertex being processed from the locally-attached

scratchpad and input this value along with the src data to the ALU module. Finally, it

carries out the task of writing the result of the operation back to the scratchpad.

Maintaining the active-list. As discussed previously, several graph-based algorithms

leverage an active-list to keep track of the set of vertices that must be processed in the

next iteration of the algorithm. As the algorithm proceeds, the active-list is frequently

45

Figure 3.11: Source vertex buffer. While processing the graph shown in the left-side, a
typical graph algorithm first read V3’s vtxProp from a remote scratchpad (SP1). OMEGA
then keeps a local copy of it in the “source vertex buffer.” Subsequent reads to the same
vertex’s vtxProp are then served from this buffer.

updated; we offloaded this activity from processor cores, too, to avoid a penalty in on-

chip latency due to cores waiting on PISC engines’ completion. The active-list is stored

either in scratchpad or in memory, depending on its type. There are two types of active-list

data structures: dense-active-lists and sparse-active-lists [102]. As indicated in Figure 3.9,

active-list updates are among the I/O signals of the PISC. Indeed, a PISC sets a bit in the

scratchpad corresponding to the vertex entry on which the atomic operation is operating

when updating a dense active list. To update the sparse-active-list, the PISC writes the ID

of the active vertex to a list structure, stored in memory via the L1 data cache.

3.4.3 Source vertex buffer

Many graph algorithms first read a source vertex’s vtxProp (see Table 2.1), apply one

or more operations to it, and then use the result (src data) to update the vtxProp of the

source’s adjacent vertices. For instance, the SSSP algorithm (pseudo-code shown in Figure

3.10) reads a source vertex’s vtxProp, in this case ShortestLen, adds the edgeLen to it, and

then uses the result to update the ShortestLen of all its adjacent vertices. When executing

this sequence of operations using the regular cache hierarchy, a single read to the source

vertex will bring the data to L1 cache, and all subsequent read requests (up to the number

46

Figure 3.12: A code snippet of PageRank performing a sequential access.

of outgoing edges of the source vertex) will be served from there. However, when using

the scratchpads, distributed across all the cores, a read access to a vertex’s information

by a remote core could incur a significant interconnect-transfer latency (an average of 17

processor cycles in our implementation). To minimize this latency, we introduce a new

read-only small storage-structure called the source vertex buffer. Every read request to a

source vertex’s vtxProp is first checked against the contents of this buffer. If the request

cannot be served from it, the request is forwarded to the remote scratchpad. Upon a suc-

cessful read from a remote scratchpad, a copy of the vertex data retrieved will be placed in

the buffer to serve future requests to the same vertex. Note that, since all buffer’s entries are

invalidated at the end of each algorithm’s iteration, and since the source vertex’s vtxProp

is not updated until that point, there is no need to maintain coherence between this buffer

and the scratchpads. Figure 3.11 illustrates how the buffer works. The figure shows the

process that is undertaken when Core0 executes SSSP on the sample graph shown on the

left-side of the figure, starting with a source vertex of V3. The main task of Core0 is to

update the next ShortestLen of V3’s neighbors. To perform the update for V0, Core0 reads

the ShortestLen of V3 from SP1, entailing a remote scratchpad access. Upon a successful

read, a copy of V3’s ShortestLen is stored in the buffer. Then, when Core0 attempts to read

the ShortestLen of V3 again, in this case, to update V1, the read is satisfied from the buffer.

3.4.4 Reconfigurable scratchpad mapping

As previously mentioned, the performance of most graph algorithms is limited by their

random access patterns to the vtxProp data structure. However, some algorithms also per-

form a significant number of sequential accesses to the same data structure. For the portion

of the vtxProp that is mapped to the scratchpads, OMEGA’s mapping scheme affects the ef-

47

Figure 3.13: Cost of mismatched memory interval for scratchpad mapping and
OpenMP scheduling. Given a scratchpad mapping based on interleaving with a memory
interval of 1 and an OpenMP scheduling with a memory interval of 2 (for the code snip-
pet shown in Figure 3.12), the mismatch in memory interval causes half of the accesses to
vtxProp to be served from remote scratchpads.

ficiency of such sequential accesses. To understand this scenario in more detail, we provide

a code snippet of PageRank in Figure 3.12, which performs a sequential access to vtxPorp.

The code snippet involves copying vtxProp (next rank) to another temporary data structure

(curr pagerank). The vtxProp is stored on the scratchpad while the temporary structure is

stored in cache. Figure 3.13 illustrates how the snippet data accesses are mapped to scratch-

pad activities when a scratchpad data is not mapped with a matching memory interval. In

this figure, OMEGA’s interleaving-based mapping is configured with a memory interval

of 1, and the OpenMP scheduling configuration assigns an equally-sized memory interval

for each thread (a memory interval of 2 for the code snippet shown in Figure 3.12). This

mismatch in memory interval causes Core0’s read request to the vtxProp of V1 and Core1’s

read request to the vtxProp of V2 to be served from remote scratchpads, leading to half of

the overall scratchpad accesses to be served remotely. To avoid these remote accesses, the

memory interval that OMEGA uses to map the vtxProp to the scratchpads can be config-

ured to match that of the size used by the OpenMP scheduling scheme. This setting makes

it so potentially remote scratchpad accesses become local ones when performing sequential

accesses.

48

3.4.5 On-chip communication

Communication granularity of scratchpad. Although a large portion of the accesses

to vtxProp are served from the scratchpads, these accesses still lack spatial locality. Such

a deficiency causes most accesses from the cores to be served from remote scratchpads.

Consequently, frequent accesses to the remote scratchpads at a cache-line granularity waste

on-chip communication bandwidth. To address this aspect, OMEGA accesses the scratch-

pads at a word-level granularity. The actual size of the scratchpad access depends on the

vtxProp entry type, and it ranges from 1 byte (corresponding to a “Bool” vtxProp entry) to

8 bytes (corresponding to a “double” vtxProp entry) in the workloads that we considered

(see Table 2.1). For communication with the remote scratchpads, OMEGA uses custom

packets with a size of up to 64-bits, as the maximum type size of a vtxProp entry is 8 bytes.

Note that this size is smaller than the bus-width of a typical interconnect architecture (128

bits in our evaluation), and its size closely resembles the control messages of conventional

coherence protocols (e.g., “ack” messages). Using a word-level granularity instead of a

conventional cache-block size enables OMEGA to reduce the on-chip traffic by a factor of

up to 2x.

3.4.6 Adopting software frameworks

Lightweight source-to-source translation. High-level frameworks, such as Ligra,

must be slightly adapted to benefit from OMEGA. To this end, we developed a lightweight

source-to-source translation tool. Note that source-to-source translation implies that the

resulting framework will be in the same programming language as the original one; hence,

no special compilation techniques is required. The tool performs two main kinds of trans-

lation. First, it generates code to configure OMEGA’s microcode and other registers. To

configure the microcode registers, it parses the “update” function, pre-annotated by the

framework developers (an example for SSSP is shown in Figure 3.10), and generates code

comprising a series of store instructions to a set of memory-mapped registers. This code is

49

Figure 3.14: Code generated for SSSP with the source-to-source translation tool. The
figure shows a microcode for the update function of Figure 3.10. As shown, the new
computed shortest length value is written to memory-mapped register, mem mapped reg1,
and the ID of the destination vertex is written to another memory-mapped register,
mem mapped reg2.

the microcode to be written to each PISC. Note that the microcode contains a relatively

simple set of operations, mostly implementing the algorithm’s atomic operations. For

example, the microcode for PageRank would involve reading the stored page-rank value

from the scratchpad, performing floating-point addition, and writing the result back to the

scratchpad. In addition to the microcode, the tool generates code for configuring OMEGA,

including the optype (the atomic operation type), the start address of vtxProp, the number

of vertices, the per-vertex entry size, and its stride. This configuration code is executed

at the beginning of the application execution. To highlight the functionality of the tool,

we show the “update” function of SSSP algorithm in Figure 3.10 and its translated code in

Figure 3.14. The translated code shows that the new computed shortest length value is writ-

ten to memory-mapped register, mem mapped reg1, and the ID of the destination vertex is

written to another memory-mapped register, mem mapped reg2. We also verified the tool’s

functionality across multiple frameworks by applying it to GraphMat [105], in addition to

Ligra [102].

3.5 Graph Preprocessing

OMEGA’s benefits rely on identifying highly-connected vertices of a graph dataset and

mapping their vtxProp to the on-chip scratchpads. Broadly speaking, there are two ap-

proaches to achieve this purpose: dynamic and static approaches. With a dynamic ap-

proach, the highly-connected vertices can be identified by using a hardware cache with a

50

replacement policy based on vertex connectivity and a word granularity cache-block size,

as suggested in other works [57, 109, 87]. However, this solution incurs significant area

and power overheads, as each vertex must store tag information. For instance, for BFS, the

area overhead can reach up to 2x, assuming 32 bits per tag entry and another 32 bits per

vtxProp entry. To remedy the high overhead of the dynamic approach, a static approach

can be utilized. An important example of a static approach is reordering the graph using

offline algorithms. Any kind of reordering algorithm is beneficial to OMEGA, as long as

it produces a monotonically decreasing/increasing ordering of popularity of vertices. Both

in-degree- and out-degree-based reordering algorithms provide such ordering. We found

in practice that in-degree-based reordering captures a larger portion of the natural graphs’

connectivity, as shown in Table 2.2. Slashburn-based reordering, however, produces subop-

timal results for our solution, as it strives to create community structures instead of a mono-

tonically reordered dataset based on vertex connectivity. We considered three variants of

in-degree-based reordering algorithms: 1) sorting the complete set of vertices, which has

an average-case complexity of vlogv, where v is the number of vertices; 2) sorting only the

top 20% of the vertices, which has the same average-case time complexity; and 3) using

an “n-th element” algorithm that reorders a list of vertices so that all vertices stored before

the n-th index in the list have connectivity higher than those after (in our case, n would be

the 20% index mark). This algorithm has a linear average-case time complexity. We chose

the third option in our evaluation since it provides slightly better performance and has a

very-low reordering overhead. However, a user might find the first option more beneficial

if the storage requirement for 20% of the vertices is significantly larger than the available

storage.

3.6 Scaling Scratchpad Usage to Large Graphs

Our prior discussion regarding the scratchpad architecture assumes that OMEGA’s stor-

age can accommodate a significant portion (≈20%) of the vtxProp of a graph. However,

51

for larger graphs, the vtxProp of their most-connected vertices does not fit into the scratch-

pads. Even in this case, OMEGA’s scratchpad architecture continues to provide significant

benefits primarily because storing the most-connected vertices is the best investment of re-

sources compared to re-purposing the same storage for conventional caches. However, as

the size of the graph continues to increase, there is a point where OMEGA’s scratchpads

would become too small to store a meaningful portion of vtxProp, and, consequently, the

benefit would be negligible. Below, we discuss two approaches that could enable OMEGA

to continue providing benefits, even in this scenario.

1) Graph slicing. [54, 119] proposed a technique, called graph slicing/segmentation,

to scale the scratchpad/cache usage of their architecture. In this technique, a large graph

is partitioned into multiple slices, so that each slice fits in on-chip storage. Then, one slice

is processed at a time, and the result is merged at the end. While the same technique can

be employed to scale the scratchpad usage for OMEGA, there are several performance

overheads associated with this approach: 1) the time required to partition a large graph to

smaller slices, and 2) the time required to combine the results of the processed slices. These

overheads increase with the number of slices, a challenge addressed by the next approach.

2) Graph slicing and exploiting power law. Instead of slicing the complete graph,

slicing can be applied to the portion of the graph that contains the 20% of the most-

connected vertices, which is sufficient to serve most vtxProp accesses. This approach can

reduce the number of graph slices by up to 5x, and consequently, it reduces the overheads

associated with slicing.

3.7 Memory Semantics

Cache coherence. Each vtxProp entry of the most-connected vertices is mapped to

and handled by only one scratchpad; hence, it does not require access to the conventional

caches, whereas all the remaining vertices and other data structures are only managed by

the conventional caches. Under this approach, there is no need to maintain data coherence

52

Table 3.1: Experimental testbed setup

Common configuration
Core: 16 OoO cores, 2GHZ, 8-wide, 192-entry ROB
L1 I/D cache per core: 16KB, 4/8-way, private
cache block size: 64 bytes
Coherence protocol: MESI Two Level
memory: 4xDDR3-1600, 12GB/s per channel
interconnect topology: crossbar, 128-bits bus-width
Baseline-specific configuration
L2 cache per core: 2MB, 8-way, shared
OMEGA-specific configuration
L2 cache per core: 1MB, 8-way, shared
SP per core: 1MB, direct, lat. 3-cycles
SP access granularity: 1-8 bytes

among scratchpads or between scratchpads and conventional caches.

Virtual address translation. The local scratchpad controller maps the virtual address

of an incoming request into a vertex ID, and it uses this ID to orchestrate scratchpad ac-

cess, including identifying which scratchpad to access, whether this scratchpad is local or

remote. This approach avoids the necessity of incorporating a virtual to physical address

translation mechanism into the scratchpads.

Atomic operation. If OMEGA only employs distributed scratchpads without augment-

ing them with PISC units, execution of atomic operations would be handled by the cores.

Since on-chip scratchpad accesses occur at word-level granularity instead of cache-line

granularity, the cores lock only the required word address. Other aspects of the implemen-

tation remain the same as in a conventional cache coherence protocol.

3.8 Experimental Setup

In this section, we provide the experimental setup that we deployed to evaluate the

OMEGA solution.

53

We modeled OMEGA on gem5 [34], a cycle-accurate simulation infrastructure. We

ported the OpenMP implementation of the Ligra framework [102] to gem5 using “m5threads”

and we carried out the simulation in “syscall” emulation mode. We compiled Ligra with

gcc/g++ using the O3 optimization flag. Our simulation setup is summarized in Table 3.1.

Our baseline design is a CMP with 16, 8-wide, out-of-order cores with private 32KB of

L1 instruction and data caches, and shared L2 cache with a total storage size matching

OMEGA’s hybrid scratchpad+cache architecture. For OMEGA, we maintain the same pa-

rameters for the cores and L1 caches as the baseline CMP. Each scratchpad is augmented

with a PISC engine. Communication with the caches takes place at ache-line granularity

(64 bytes), and communication with the scratchpads occurs at word-size granularity, with

sizes ranging from 1 to 8 bytes, depending on the size of the vtxProp entry being accessed.

Workloads. We considered the same algorithms and datasets discussed in Section 3.3.

Note that TC and KC present similar results on all our experiments; thus, we report only

the results for TC. Because CC and TC require symmetric graphs, we run them on one

of the undirected-graph datasets (ap). Moreover, because of the long simulation times of

gem5, we simulate only a single iteration of PageRank. In addition, we simulate only the

“first pass” of BC, and we use a “sample size” of 16 for Radii. Other algorithms are run to

completion using their default settings.

3.9 Performance Evaluation

In this section, we present overall performance gains enabled by OMEGA. We then

discuss a number of insights on the sources of those gains by inspecting caches hit rates, on-

chip traffic analysis, and off-chip memory bandwidth utilization. Furthermore, we provide

a comparison of the performance benefit of OMEGA for power-law and non-power-law

graphs.

Figure 3.15 shows the performance benefit provided by OMEGA compared to Ligra

running on a baseline CMP. OMEGA achieved a significant speedup, over 2x on average,

54

Figure 3.15: OMEGA performance speedup. OMEGA provides 2x speedup, on average,
over a baseline CMP running Ligra.

across a wide range of graph algorithms (see Table 2.1) and datasets (see Table 2.2). The

speedup highly depends on the graph algorithm. OMEGA achieved significantly higher

speedups for PageRank, 2.8x on average, compared to others. The key reason behind this

is that Ligra maintains various data structures to manage the iterative steps of PageRank.

In the case of PageRank and TC, all vertices are active during each iteration; hence, the

per-iteration overhead of maintaining these data structures is minimal. Unfortunately, TC’s

speedup remains limited because the algorithm is compute-intensive; thus, random ac-

cesses contribute only a small fraction to execution time. In contrast, for the other algo-

rithms, Ligra processes only a fraction of the vertices in each iteration; therefore, maintain-

ing the data structures discussed above negatively affects the overall performance benefit.

However, even with these overheads, OMEGA managed to achieve significant speedups:

for BFS and Radii, an average of 2x, and for SSSP, an average of 1.6x.

In addition to the impact of the algorithm, the speedup highly varies across datasets.

OMEGA manages to provide significant speedup for datasets for which at least 20% of the

vtxProp fits in the scratchpads, e.g., lj, and rMat (whose vtxProp fits completely). The key

observation here is that, for a natural graph, OMEGA’s scratchpads provide storage only

for a small portion of the vtxProp but manage to harness most of the benefits that could

have been provided by storing the complete vtxProp in scratchpads. Despite not following

a power-law distribution, rCA and rPA achieve significant performance gains since their

vtxProp is small enough to fit in the scratchpads. However, compared to other graphs, they

55

Figure 3.16: Last-level storage hit-rate in PageRank. OMEGA’s partitioned L2 caches
and scratchpads lead to a significantly larger hit-rate, compared to the baseline’s L2 cache
of the same size.

achieve a smaller speedup because of their low out-degree connectivity (see Table 2.2),

which makes the accesses to the edgeArray exhibit more irregular patterns.

Cache/Scratchpad access hit-rate. In Figure 3.16, we compare the hit rate of the

last-level cache (L2) of the baseline design against that of OMEGA’s partitioned storage

(half scratchpad and half the L2 storage of the baseline). The plot reveals that OMEGA

provides an over 75% last-level “storage” hit-rate, on average, compared to a 44% hit-rate

of the baseline. The key reason for OMEGA’s higher hit rate is because most of the vtxProp

requests for the power-law graphs are served from scratchpads.

Using scratchpads as storage. To isolate the benefits of OMEGA’s scratchpads, with-

out the contributions of the PISC engines, we performed an experiment running PageRank

on the lj dataset with a scratchpads-only setup. OMEGA achieves only a 1.3x speedup,

compared to the >3x speedup when complementing the scratchpads with the PISCs. The

lower boost of the scratchpads-only solution results from foregoing improvements in on-

chip communication and atomic operation overheads. Computing near the scratchpads

using the PISCs alleviates these overheads.

Off- and on-chip communication analysis. As noted by prior work [31], graph work-

loads do not efficiently utilize the available off-chip bandwidth. We measured OMEGA’s

DRAM bandwitdh utilization on a range of datasets while running PageRank and report our

findings in Figure 3.17. The plot indicates that OMEGA manages to improve the utiliza-

tion of off-chip bandwidth by an average of 2.28x. Note that there is a strong correlation

56

Figure 3.17: DRAM bandwidth utilization of PageRank. OMEGA improves off-chip
bandwidth utilization by 2.28x, on average.

Figure 3.18: On-chip traffic analysis of PageRank. OMEGA reduces on-chip traffic by
3.2x, on average.

between the bandwidth utilization and the speedup reported in Figure 3.15 for PageRank.

Indeed, the bandwidth improvement can be attributed to two key traits of OMEGA: 1) cores

are freed to streamline more memory requests because atomic instructions are offloaded to

the PISCs, and 2) since most of the random accesses are constrained to OMEGA’s scratch-

pads, the cores can issue more sequential accesses to the edgeArray data structure. Fur-

thermore, we found that graph workloads create lots of on-chip communication traffic. Our

analysis measuring on-chip traffic volume, reported in Figure 3.18, shows that OMEGA

reduces this traffic by over 4x on average. OMEGA minimizes on-chip communication by

employing word-level access to scratchpad data and offloading operations to the PISCs.

Non-power-law graphs. Figure 3.19 presents a speedup comparison for two large

graphs: one for a power-law graph (lj) and another for a non-power-law graph (USA), tar-

geting two representative algorithms: PageRank (a graph algorithm with no active-list) and

BFS (a graph algorithm with active-list). OMEGA’s benefit for USA is limited, providing a

maximum of 1.15x improvement. The reason is that, since USA is a non-power-law graph,

only approximately 20% of the vtxProp accesses correspond to the 20% most-connected

57

Figure 3.19: Comparison of power-law (lj) and non-power-law graphs (USA). As
expected, OMEGA achieves only a limited speedup of 1.15x on a large non-power-law
graph.

vertices, compared to 77% for lj.

3.10 Sensitivity Studies

This section provides sensitivities studies related to the sizes of scratchpad and input

datasets.

Scratchpad size sensitivity. In our analyses so far, OMEGA is configured with scratchpad-

sizes that enable it to accommodate around 20% or more of the vtxProp. In this Section, we

present a scratchpad-size sensitivity study for PageRank and BFS on the lj dataset, over a

range of scratchpad sizes: 16MB (our experimental setup), 8MB, and 4MB. We maintained

identical sizes of L2 cache for all configurations, as in our experimental setup (16MB). The

results, reported in Figure 3.20, show that OMEGA managed to provide a 1.4x speedup

for PageRank and a 1.5x speedup for BFS even when employing only 4MB scratchpads,

which accommodate only 10% of the vtxProp for PageRank and 20% of the vtxProp for

BFS. As shown in the figure, 10% of the vertices are responsible for 60.3% of vtxProp for

PR, and 20% of the vertices are responsible for 77.2% of the vtxProp for BFS. Note that

this solution point entails significantly less storage than the total L2 cache of our baseline.

Scalability to large datasets. This study estimates the performance of OMEGA on

very large datasets: uk and twitter. Since we could not carry out an accurate simulation,

due to the limited performance of gem5, we modeled both the baseline and OMEGA in a

58

Figure 3.20: Scratchpad sensitivity study. OMEGA provides 1.4x speedup for PageRank
and 1.5x speedup for BFS with only 4MB of scratchpad storage.

high-level simulator. In the simulator, we retained the same number of cores, PISC units,

and scratchpad sizes, as in Table 3.1. In addition, we made two key approximations. First,

the number of DRAM accesses for vtxProp is estimated based on the average LLC hit-

rate that we obtained by running each workload on the Intel Xeon E5-2630 v3 processor

and using the Intel’s VTune tool. The number of cycles to access DRAM is set at 100

cycles, and we also accounted for the LLC and scratchpad access latencies. Second, the

number of cycles for a remote scratchpad access is set at 17 cycles, corresponding to the

average latency of the crossbar interconnect. For the baseline solution, we configured the

number of cycles required to complete an atomic operation execution to match the value

we measured for the PISC engines: this is a conservative approach, as the baseline’s CMP

cores usually take more cycles than the PISC engines. Figure 3.21 reports our findings,

which also include the result from our gem5 evaluation for validation purposes. We note

that the high-level estimates are within a 7% error, compared to the gem5 results. As

shown in the figure, OMEGA achieves significant speedup for the two very large graphs,

even if they would benefit from much larger scratchpad resources. For instance, for twitter,

OMEGA manages to provide a 1.7x speedup on PageRank, by providing storage only for

5% of the vtxProp. Note that 5% of the most-connected vertices are responsible for 47%

of the total vtxProp accesses. This highly-skewed connectivity is the reason why OMEGA

is able to provide a valuable speedup even with relatively small storage.

59

Figure 3.21: Performance on large datasets. A high-level analysis reveals that OMEGA
can provide significant speedups even for very large graphs: a 1.68x for PageRank runnning
on twitter, our largest graph, when storing only 5% of vtxProp in scratchpads; and a 1.35x
for BFS, storing only 10% of vtxProp.

Table 3.2: Peak power and area for a CMP and OMEGA node

Component Baseline CMP node OMEGA node
Power (W) Area (mm2) Power (W) Area (mm2)

Core 3.11 24.08 3.11 24.08
L1 caches 0.20 0.42 0.20 0.42
Scratchpad N/A N/A 1.40 3.17
PISC N/A N/A 0.004 0.01
L2 cache 2.86 8.41 1.50 4.47
Node total 6.17 32.91 6.21 32.15

3.11 Area, Power, and Energy Analysis

This section presents area and power overheads, as well as energy benefits provided by

OMEGA, as compared to CMP-only baseline.

We used McPAT [68] to model the core, and Cacti [101] to model the scratchpads

and caches. We synthesized PISC’s logic in IBM 45nm SOI technology. Note that the

PISC’s area and power is dominated by its floating-point adder. We referred to prior works

for the crossbar model [16]. We used the same technology node, 45nm, for all of our

components. We re-purposed half of the baseline’s L2 caches space to OMEGA’s on-

chip scratchpads. Table 3.2 shows the breakdown of area and peak power for both the

baseline CMP and OMEGA. The OMEGA node occupies a slightly lower area (-2.31%)

60

Figure 3.22: Comparison of energy spent in memory activities for PageRank. OMEGA
requires less energy to complete the algorithm due to less DRAM traffic and shorter exe-
cution time. The energy efficiency of OMEGA’s scratchpads over the caches contributes to
the overall energy savings.

and consumes slightly higher in peak power (+0.65%) compared to the baseline CMP. The

slightly lower area is due to OMEGA’s scratchpads being directly mapped and thus not

requiring cache tag information.

In Figure 3.22, we provide energy analysis on PageRank, considering a wide-range of

datasets. Since OMEGA’s modifications to the baseline are limited to the memory hier-

archy, we provide a breakdown of the energy consumption only for the memory system,

including the DRAM. The figure reveals that OMEGA provides 2.5x energy saving, on

average, compared to a CMP-only baseline. The saving is because OMEGA’s scratchpads

consume less energy compared to caches. In addition, OMEGA utilizes lower DRAM

energy because most of the accesses to vtxProp are served from on-chip scratchpads.

3.12 Bibliography

In this Section, we provide a summary of related works. We first discuss solutions

that optimize the execution of graph analytics on general-purpose architectures. Then, we

describe near-memory based solutions, followed by specialized architectures that target

graph analytics. We also mention solutions based on GPUs and other vector processing

61

architectures. Finally, we provide a brief discussion, which highlights the benefit of the

OMEGA solution compared to other relevant works.

Optimizations on general-purpose architectures. [31] characterizes graph workloads

on Intel’s Ivy Bridge server. It shows that locality exists in many graphs, which we leverage

in our work. [45] minimizes the overhead of synchronization operations for graph appli-

cations on a shared-memory architecture, by moving computation to dedicated threads.

However, dedicated threads for computation would provide a lower performance/energy

efficiency compared to our lightweight PISC architecture. [119] proposes both graph re-

ordering and segmentation techniques for maximizing cache utilization. The former pro-

vides limited benefits for natural graphs, and the latter requires modifying the framework,

which we strive to avoid. [120] proposes domain-specific languages, thus trading off ap-

plication’s flexibility for higher performance benefits.

Near-memory processing and instruction offloading. [24, 81] propose to execute

all atomic operations on vtxProp in the off-chip memory because of the irregular nature of

graph applications. However, our work shows that processing many natural graphs involves

frequency-based access patterns, which can be exploited by using on-chip scratchpads, thus

reducing the access to off-chip memory.

Domain-specific and specialized architecture. Application-specific and domain-specific

architectures, including those that utilize scratchpads [90, 23, 54, 103], have recently flour-

ished to address the increasing need of highly efficient graph analytics solutions. However,

the focus of these architectures is on performance/energy efficiency, foregoing the flexibil-

ity of supporting software frameworks and applications. In addition, these solutions do not

fully exploit the frequency-based access pattern exhibited by many natural graphs.

GPU and vector processing solutions. GPU and other vector processing solutions,

such as [111, 22, 88], have been increasingly adopted for graph processing, mostly in the

form of sparse matrix-vector multiplication. However, the diverse structure of graphs limits

the viability of such architectures.

62

Heterogeneous cache block size architecture. [57] proposed an access mechanism

of variable cache-line sizes depending on the runtime behavior of an application. Simi-

larly, OMEGA provides variable storage access sizes (cache-line-size for accessing caches

and word-size for accessing scratchpads), depending on the type of data structure being

accessed.

Finally, we provide a summary of a comparison of OMEGA against the most relevant

prior works in Table 3.3. As shown in the table, OMEGA surpasses previous architec-

tures primarily because it exploits the power-law characteristics of many natural graphs

to identify the most-accessed portions of the vtxProp, and it utilizes scratchpads to effi-

ciently access them. In addition, most of the atomic operations on vtxProp are executed on

lightweight PISC engines instead of CPU cores. Furthermore, OMEGA is easily deploy-

able in new graph frameworks and applications because it maintains the existing general-

purpose architecture while also providing small but effective additional components.

3.13 Summary

In this chapter, we presented OMEGA, a hardware architecture that optimizes the mem-

ory subsystem of a general-purpose processor to run graph frameworks without requiring

significant additional changes from application developers. OMEGA provides on-chip dis-

tributed scratchpads to take advantage of the inherent frequency-based access patterns of

graph algorithms when processing natural graphs, providing significantly more on-chip ac-

cesses for irregularly accessed data. In addition, the scratchpads are augmented with atomic

operation processing engines, providing significant performance gains. OMEGA achieves

on average a 2x boost in performance and a 2.5x energy savings, compared to a same-sized

baseline CMP running a state-of-the-art shared-memory graph framework. The area and

peak power needs of OMEGA are comparable to that of the baseline node, as it trades

cache storage for equivalently sized scratchpads.

Overall OMEGA achieves its performance boost in computing on graphs by leveraging

63

specialized storage structures, so to limit cache accesses. However, as the number of pro-

cessor cores increases, other activities become preponderant in the computation, including

the communication traffic among cores. The following chapter addresses specifically this

issue by presenting a hardware solution that strives to limit this type of on-chip traffic.

64

Ta
bl

e
3.

3:
C

om
pa

ri
so

n
of

O
M

E
G

A
an

d
pr

io
rr

el
at

ed
w

or
ks

C
PU

G
PU

L
oc

al
ity

E
xi

st
s

[3
1]

G
ra

ph
ic

io
na

do
[5

4]
Te

ss
er

ac
t

[2
3]

G
ra

ph
It

[1
20

]
G

ra
ph

PI
M

[8
1]

O
M

E
G

A

le
ve

ra
gi

ng
po

w
er

la
w

lim
ite

d
lim

ite
d

ye
s

no
no

lim
ite

d
no

ye
s

m
em

or
y

su
bs

ys
te

m
ca

ch
e

ca
ch

e
ca

ch
e

sc
ra

tc
hp

ad
ca

ch
e

ca
ch

e
ca

ch
e

ca
ch

e
&

sc
ra

tc
hp

ad
lo

gi
c

fo
r

no
n-

at
om

ic
-

op
er

at
io

n
ge

ne
ra

l
ge

ne
ra

l
ge

ne
ra

l
sp

ec
ia

liz
ed

ge
ne

ra
l

ge
ne

ra
l

ge
ne

ra
l

ge
ne

ra
l

lo
gi

c
fo

r
at

om
ic

-
op

er
at

io
n

ge
ne

ra
l

ge
ne

ra
l

ge
ne

ra
l

sp
ec

ia
liz

ed
ge

ne
ra

l
ge

ne
ra

l
sp

ec
ia

liz
ed

sp
ec

ia
liz

ed

on
-c

hi
p

co
m

m
un

ic
a-

tio
n

gr
an

ul
ar

ity
ca

ch
e-

lin
e

ca
ch

e-
lin

e
ca

ch
e-

lin
e

w
or

d
w

or
d

ca
ch

e-
lin

e
w

or
d

ca
ch

e-
lin

e
&

w
or

d
of

flo
ad

in
g

ta
rg

et
fo

r
at

om
ic

op
er

at
io

n
N

/A
N

/A
N

/A
sc

ra
tc

hp
ad

of
f-

ch
ip

m
em

or
y

N
/A

of
f-

ch
ip

m
em

or
y

sc
ra

tc
hp

ad

co
m

pu
te

un
its

fo
r

at
om

ic
op

er
at

io
n

C
PU

G
PU

C
PU

sp
ec

ia
liz

ed
C

PU
C

PU
sp

ec
ia

liz
ed

C
PU

&
sp

e-
ci

al
iz

ed
fr

am
ew

or
k

in
de

pe
n-

de
nc

e&
m

od
ifi

ab
ili

ty
ye

s
ye

s
ye

s
lim

ite
d

ye
s

lim
ite

d
ye

s
ye

s

pr
op

os
e

so
ft

w
ar

e-
le

ve
l

op
tim

iz
at

io
ns

ye
s

ye
s

pa
rt

ia
lly

no
no

ye
s

no
no

65

CHAPTER 4

On-path Message Coalescing for Scalable Graph Analytics

This chapter focuses on addressing the limited scalability of the OMEGA solution, dis-

cussed in the Chapter 3, to systems with a large number of cores. OMEGA offloads the

execution of atomic operations from general-purpose cores to specialized compute engines,

co-located with on-chip storage units, to avoid the round-trip traffic between cores and the

storage units, thus minimizing network traffic. However, when a system has many cores,

even the traffic generated by these offloaded atomic operations alone is sufficient to cause

network congestion and, consequently, performance and energy inefficiencies. Recent ar-

chitectures have been striving to address these inefficiencies. They leverage a network of

3D-stacked memory blocks, placed above processing elements; an example of such archi-

tectures are Hybrid Memory Cubes (HMCs) [23, 118, 41]. HMCs offer high internal band-

width between the processing elements and their corresponding local memory blocks; thus,

they can access their local data efficiently. However, due to the irregular-access patterns in

graph analytics, significant network traffic between local processing elements and remote

memory blocks still remains. Hence, HMCs are also affected by limited performance and

energy inefficiencies, even if at a lesser degree.

In this chapter, we aim to minimize the performance and energy inefficiencies described

above by devising an architecture that takes advantage of the power-law characteristic. To

achieve this goal, we rely on one of the strategies discussed in Section 1.4. Specifically,

66

we explore the benefit of coalescing graph analytics data messages in the network. Due

to the power-law characteristic described in Chapter 2, and also leveraged in the OMEGA

solution of Chapter 3, it is common for multiple atomic operations originating from dif-

ferent processing elements to update the same vertex. Since these operations are similar

within a given graph application, it should be possible to coalesce multiple operations to the

same destination vertex in the network, thus reducing the network traffic, and consequently

improving performance and energy efficiencies.

To accomplish the above goal, we must overcome a few challenges: first, it is conven-

tionally assumed that updates to the same vertex are atomic, i.e., each update to a vertex

should be completed before another update to that same vertex is initiated. Second, multiple

vertex-update messages can be fused only if they reach a same location in the interconnect

at approximately the same time, a generally unlikely scenario.

We debunk the atomicity requirement by observing that, when update operations are as-

sociative and commutative, they can indeed be decomposed into multiple partial operations,

and do not require atomic execution. We note that many popular graph-based algorithms

entail updates that satisfy those two properties. To increase the opportunity for message

coalescing, we reorganize the work at each compute node so that vertex-update messages

are generated in destination-vertex order, so as to emit updates from multiple sources to a

same destination in close sequence, before moving to the next destination. This schedul-

ing mechanism greatly increases the opportunities for coalescing, as messages to a same

destination are more likely to be en-route at the same time.

4.1 Motivational Study

A number of recently proposed works have leveraged a network of HMC cubes for

execution of graph-based algorithms [23, 118, 41]. These proposals place a processing

unit under each memory cube, so that each unit enjoys energy-efficient access to a large

data footprint locally; the inter-cube interconnect is based on either a mesh or dragonfly

67

Figure 4.1: Energy breakdown: communication is responsible for 16% to 80% of energy
consumption for many algorithms/datasets.

topology, the latter being particularly beneficial if the graph connectivity has a relatively

higher density within the dragonfly clusters. To estimate the potential benefits of our mes-

sage coalescing pursuit, we carried out a simple analysis on a HMC model. Specifically,

we simulated Tesseract, a domain-specific architecture [23], with 16 HMCs and 32 vaults

per HMC. We utilized CasHMC [58] to model each individual HMC, and BookSim [59]

to model the network among the 16 HMCs. First, we measured the total energy con-

sumed by the Tesseract model. Then, the energy spent in communication was measured

by subtracting the computation energy, which we evaluated by setting up an ideal cross-

bar interconnect topology with no delay in inter-cube communication. For this evaluation,

we considered several graph-based algorithms and datasets. The algorithms are discussed

in Section 2.3 and the datasets are described in Section 2.4. Based on our findings, pre-

sented in Figure 4.1, communication is responsible for 62% of overall energy consumption,

on average. Hence, we conclude that inter-cube communication is the primary source

of energy consumption in the execution of graph-based algorithms, even on recent

HMC-based solutions. Key contributors to this energy consumption are 1) interconnect

contention, which increases execution time and, in turn, static energy consumption, and 2)

high interconnect utilization, which drives dynamic energy consumption. Since message

coalescing could reduce both, we carried out further analysis on the same algorithms and

datasets to find that up to 80% of the total interconnect messages could be eliminated under

ideal coalescing conditions, where we assume an architecture that takes full advantage of

68

all message-coalescing opportunities.

4.2 MessageFusion Overview

The solution discussed in this chapter, called MessageFusion, is rooted in the obser-

vation that there is potential for coalescing multiple vertex-update messages traveling to a

same destination, thus providing an opportunity to reduce network traffic. The reduction in

network traffic reduces overall execution time and, consequently, static energy consump-

tion. In addition, dynamic energy consumption is also affected in a favorable way, as

hardware resources experience lower utilization when transferring fewer messages. To ac-

complish this goal, we must overcome a couple of challenges. The first challenge stems

from an assumption that each update operation to a vertex must be executed atomically, i.e.,

each operation must be completed before another operation to the same vertex is initiated.

The second challenge is caused by a general trait of graph analytics’ algorithms, such that

opportunities for coalescing messages because they naturally reach a same interconnect

node at the same time is minimal. To improve the opportunity window, one could use a

fairly large buffer at each interconnect router. However, this choice entails a significant en-

ergy cost and, potentially, even a performance cost, if messages are waiting to be matched

for a long time.

MessageFusion accomplishes the goal of reducing network traffic by coalescing vertex-

update messages while in transit to their destination. We observe that when update op-

erations are associative and commutative, they can indeed be decomposed into multiple

partial operations, and thus do not require atomic execution. We note that many popular

graph-based algorithms entail updates that satisfy these two properties, a trait that has been

leveraged already in several other high-impact works for other goals, such as [60, 53].

Finally, to increase the opportunity for message coalescing, MessageFusion reorganizes

the work at each compute node so that vertex-update messages are generated in destination-

vertex order. Traditional graph algorithm schedulers proceed by completing all the work for

69

one source vertex, then emitting vertex-update messages to their destinations before mov-

ing on to the next source vertex. In MessageFusion, scheduling at each node is setup so

as to emit updates from multiple sources to the same destination in close sequence, before

moving to the next destination. This scheduling mechanism greatly enhances the opportu-

nities for coalescing, as messages to a same destination are more likely to be en-route at

the same time. Note that edge-data information is commonly organized in a source-vertex

order to promote sequential accesses to this data. Thus, we deploy reordering mechanisms

to sort the edge-data structure by destination vertex offline. When beneficial to specific

algorithms, we also sort vertex-update messages dynamically.

4.3 MessageFusion Architecture

In light of the analysis presented, we developed a novel architecture, called MessageFu-

sion, based on an optimized HMC architecture. It includes two hardware modules: reduce

and ordering. Reduce modules are deployed along with each router and each vault: they are

responsible for coalescing messages emitted by the vault or traversing the router, whenever

an opportunity arises. Ordering modules augment each vault and the overall HMC: they

sort messages emitted by destination vertex, so as to maximize the opportunity of coalesc-

ing during interconnect transfers. Figure 4.2 highlights the deployment of these modules

throughout the HMC architecture. Below, we briefly discuss the optimized HMC baseline,

and then detail the design of the two modules.

4.3.1 Baseline architecture

Our two proposed hardware modules are deployed alongside an HMC architecture op-

timized for graph processing. Specifically, we consider the Tesseract architecture [23],

comprising HMCs of 32 vaults each. High-speed SerDes links connect each cube to other

cubes via a router. Each vault includes a processing element (PE) and storage. The PE is

an optimized graph analytics unit implementing a vertex-centric approach, following the

70

Figure 4.2: The MessageFusion Architecture entails the deployment of two novel hard-
ware modules: reduce and ordering, which augment the HMC architecture at vaults, cubes
and router locations.

types described in [54, 41]. Each PE includes three main units, sketched in Figure 4.2: re-

duce and apply, corresponding to the two computation phases discussed in Section 2.5; and

edge-processor used by algorithms that process weighted-edges [54]. The PEs implement

an efficient message-passing communication mechanism, and utilize specialized messages

for synchronization at the completion of each iteration of a graph algorithm. Figure 4.3

outlines the in-vault storage architecture in the baseline design. As shown, storage is or-

ganized as three scratchpads (rather than conventional caches of [23]). The first two are

called source and destination scratchpads and store vertex-property information (described

in Section 2.5) in a distributed fashion across the entire system. Each entry in the source

scratchpad holds the vertex property of a vertex accessed in the current iteration, its starting

memory address, and the number of outgoing edges. The destination scratchpad temporally

stores the vertex entry that is being computed, which will be copied to the source scratch-

pad at the end of the current iteration. When the entire set of vertices does not fit in the

collective source scratchpads, graph slicing is employed [54]. The third scratchpad is an

active-list scratchpad, and it tracks the subset of vertices that are active in each iteration

[54]. Two registers support the management of the active-list by storing the address of the

starting location and the length of the list.

Finally, our baseline architecture includes an edge-prefetcher as in [23] to stream the

edgeArray from the local vault’s memory. The prefetcher consults the active-list to identify

71

Figure 4.3: Scratchpad memory architecture in the baseline design. The source scratch-
pad stores all vertices within a partition for the current algorithm’s iteration. Each entry
holds vertex property, starting memory address, and number of outgoing edges. The des-
tination scratchpad is temporary storage for updated vertex information. The active-list
scratchpad keeps track of the active vertices for the current iteration.

which edges to prefetch, or simply streams the complete edgeArray for an algorithm that

must process all vertices in each iteration.

4.3.2 Distributed message coalescing

One of MessageFusion’s key contributions is enabling a distributed approach to vertex

updates. While the general assumption by developers is that updates take place atomi-

cally, it is indeed possible in many situations to decompose the update operation into sev-

eral incremental updates, without affecting final outcomes. We note that this decomposi-

tion is possible whenever the update operation satisfies both commutative and associative

properties, a scenario common to several graph-based algorithms, including, for instance,

PageRank (update is an addition operation, as illustrated in Figure 2.12), or Single-Source-

Shortest-Path (update is a ’min’ operation). MessageFusion coalesces vertex-update mes-

sages when they are emitted from the source vault, and again while in transit in the inter-

connect.

Coalescing at the source vault: the reduce module deployed in each vault is responsible

for carrying out the reduce operation at each vault. In addition to coalescing updates for

vertices stored in the local vault – a function common to most state-of-the-art solutions –

our reduce units also strive to coalesce multiple messages generated within the vault and

destined to the same remote vertex. Messages that could not be coalesced are directly

72

Figure 4.4: Router architecture showing the reduce module, which taps into all the
router’s input ports looking for opportunities to aggregate messages among those stored at
input or reduce buffers.

injected into the interconnect.

Coalescing in the network: once a message is injected into the interconnect, there is

an additional opportunity for coalescing with messages from other vaults while traversing

the interconnect. Figure 4.4 presents a typical router augmented with our reduce unit to

perform such coalescing. The reduce unit contains a comparator to match messages to the

same destination vertex, compute logic for the supported reduce operations (e.g., adder,

comparator, etc.) that are selected by configuring each message with the application’s

reduce operation type before the message is injected to the interconnect. In addition, the

reduce unit incorporates a few reduce buffers, whose role is to extend the time window

available for finding coalescing opportunities. The reduce unit continuously scans all of the

router’s input ports and messages stored in the reduce buffers, seeking to merge messages

to the same destination vertex. Note that this operation is executed in parallel with other

functions of the routers; hence, it incurs a negligible penalty in latency. Also, vertex update

messages are single-flit; thus, they are transferred through the router in a single operation,

without requiring reassembly. If an input message is not matched immediately upon arrival,

it is stored in one of the reduce buffers, replacing the most stale entry, which, in turn, is sent

along to the destination node. Upon completion of an iteration, the HMC vaults transmit

a buffer-flush message used to clear all reduce buffers so that all messages reach their

destination. Figure 4.5 presents a simple example of the execution flow just described: two

messages for vertex V4 are merged in cycle 2, and again with one more merged-message

73

Figure 4.5: Example of MessageFusion’s execution illustrating snapshots of messages
being coalesced at cycle 2 and again at cycle 4.

in cycle 4.

4.3.3 Maximizing coalescing opportunities

To support and enhance coalescing opportunities, MessageFusion strives to organize

the work at each vault so that vertex-update messages to same vertex are generated in close

sequence. When successful in this effort, the messages can be coalesced at the source and

may find additional opportunities as they traverse the interconnect, as other vaults maybe

working on updates to the same vertices. To this end, we explored two types of edge

reordering techniques. The first is an offline reordering that must be completed only once

for each dataset and simplifies per-destination message generation. The second is an online

reordering solution, which is particularly valuable for algorithms that update only a portion

of the vertices during each iteration of execution. For the second solution, we devised a

simple online hardware-based implementation.

Offline edge reordering. This process is very simple in that it reorganizes the edgeArray

to be sorted by destination vertex, rather than by the more common source vertex ordering.

An example is shown in the edgeArrays of Figure 4.5, cycle 0. With this ordering, vaults

process all updates to a same destination vertex first, then move forward to the next, thus

creating coalescing opportunities.

74

Figure 4.6: Ordering hardware modules. Vault- and HMC-level ordering modules can
order messages within a pool as large as the number of buffers they maintain. During each
cycle, the module selects the message with the minimum destination vertex ID among those
stored in its buffers, and forwards it to a downstream reduce module for potential reduction.

Runtime edge reordering. For applications that require processing only a subset of ver-

tices during each iteration of the algorithm’s execution (thus, they maintain an active-list),

the simple solution described above is not effective, as accesses to the edgeArray would not

benefit from any spatial locality. Since only some of the source vertices are considered in

each iteration, the prefetcher unit becomes ineffective (see also Section 4.3.1). To address

this challenge, we leverage hardware ordering units, which are deployed in each vault and

each HMC. Ordering units within a vault receive a stream of vertex-update messages and

forward them to the reduce units, after sorting them by increasing destination vertex. Note

that this sorting is only partial, as the set of incoming messages keep changing during the

runtime ordering. In addition, we also deploy ordering units at each HMC: these units

sort the vertex-update messages arriving from multiple vaults within the same HMC, and

output them to the local port of the associated router. Note that HMC-level ordering units

enhance MessageFusion’s coalescing capability for all applications. The ordering module,

shown in Figure 4.6, comprises internal buffers storing update messages generated during

edge-processing. The larger the number of buffers within the unit, the better its sorting

capabilities. In our implementation, we used 32 entries for HMC ordering units, and 1,024

for vault ordering units. These units include a ‘min’ function that extracts the message with

the lowest vertex ID among those in the buffers, and sends it to the reduce unit within the

vault (vault ordering modules) or to the router’s local port (HMC ordering modules).

75

4.3.4 Selective power-gating

We employ power-gating selectively, based on algorithm and dataset, to limit the energy

impact of MessageFusion’s reduce and ordering hardware modules. Specifically, vault or-

dering modules are only useful for algorithms that maintain an active-list (e.g., PageRank);

thus, they are power-gated when running all other algorithms.

Moreover, the input dataset’s size drives scratchpad’s utilization. The scratchpad size in

our experimental setup (see Section 4.4) matches the storage size of several recent works

[54, 41]. These scratchpads have low utilization when running most datasets. Indeed,

utilization is less than 50% for over 85% of real-world datasets from [67]. In other words,

for many datasets, a large portion of the scratchpad can be turned off using the Gated-Vdd

technique [94]. We leverage the number of vertices of the dataset to estimate the size of

the scratchpad portion that can be turned off. The technique entails negligible impact in

storage access time and area of the scratchpads [94].

4.4 Experimental Setup

In this section, we present the experimental setup that we deployed to evaluate the

MessageFusion solution.

We modeled the optimized Tesseract baseline using an in-house cycle-accurate sim-

ulator. To model the HMC, we used CasHMC [58], a cycle accurate HMC simulator,

set up with 16 8GB HMCs interconnected with a scalable network architecture modeled

in BookSim [59], as discussed in [63]. The interconnect has 128-bit links and 5-stage

pipelined routers with 3 virtual channels. We considered both dragonfly and 2D mesh net-

work topologies. The dragonfly topology is configured with 255 input buffers, whereas

the 2D mesh topology is set with 8 input buffers. Four high-speed SerDes links connect

each HMC to the interconnect. Each HMC comprises 8 DRAM dies stacked on top of each

other and partitioned into 32 vaults, with each vault providing 16 GB/s of internal memory

76

bandwidth, for a total bandwidth of 8 TB/s available to the processing elements (PE). Each

PE is equipped with a 1KB prefetcher to stream edge data. In addition, source scratchpads

are 128KB, destination scratchpads are 64KB, and active-list storage is 32KB. To model

MessageFusion, we then augmented each router and vault with a reduce module. Reduce

modules within each vault coalesce messages locally, and thus have a buffer size of 1. Re-

duce modules in the routers have a buffer size equal to the total number of HMCs. The

ordering module in each vault performs 1,024 comparisons per cycle, while the ordering

module in each HMC provides 32 comparisons.

Area, power, and energy modeling. We modeled the scratchpads with Cacti [101] and

the interconnect with ORION 3.0 [62], assuming a 45nm technology node. We also syn-

thesized MessageFusion’s logic (PE and ordering logic) in IBM 45nm SOI technology at

1GHz. We refer to prior works for estimation of the logic layer, including the SerDes

links, and the DRAM layers of the HMC [96, 23]. The SerDes links consume the same

power whether in idle or active states [96]. To quantify overall energy consumption, we

considered both static power and per-access energy for each hardware module, which we

combined with execution time and module’s utilization, obtained from the cycle-accurate

simulator.

Graph workloads characteristics. Once again, we considered for our evaluation algo-

rithms from the pool discussed in Section 2.3. From this pool, we selected five representa-

tive algorithms: PageRank, BFS, CC, SSSP, and SpMV. We provide their key characteristics

in Table 2.1. We evaluated these algorithms on seven real-world datasets that we selected

from a pool of datasets described in Section 2.4. The datasets are wv, sd2, pk, lj2, orkut2,

rCA, and USA. These datasets provide a broad representation of graph size and degree

(edge-to-vertex ratio). In Table 2.2, we report their size in vertices and edges, their degree,

and the source reference for the dataset.

77

Figure 4.7: Energy savings enabled by MessageFusion over Tesseract on 2D mesh (3.1×
on average) and on dragonfly (2.9× on average).

4.5 Energy Evaluation

In this section, we present overall energy benefit and the insights gained concerning

message coalescing rates and sources of the energy savings.

Figure 4.7 presents the overall energy benefit of MessageFusion compared to Tesseract,

on 2D mesh and dragonfly topologies. As shown, MessageFusion achieves a 3× energy re-

duction on average for both topologies. MessageFusion’s main source of energy saving lies

in its ability to coalesce messages within each vault, as well as in the routers. This prop-

erty minimizes inter-cube communication bottlenecks typical of Tesseract, reducing execu-

tion time and network utilization, and consequently reducing overall energy consumption.

PageRank and SpMV enable relatively better energy benefits because they process all ver-

tices in each iteration. Hence, an offline reordering algorithm is sufficient to order edges

so as to maximize coalescing opportunities, and its energy cost is amortized over all runs

of the same dataset [119]. BFS, SSSP, and CC attain lower energy savings because they

maintain an active-list to process a different subset of vertices at each iteration. As a result,

our limited-size ordering module (the module can order at most 1,024 at a time) is rela-

tively ineffective. All of the above algorithms are executed on the baseline solution with

the edgeArray in source-order. Executing the algorithms on the baseline with the graphs

78

Figure 4.8: Number of messages delivered with 2D mesh and dragonfly, showing a re-
duction by 2.5× over the baseline.

reordered in destination-order consumes higher energy (by a factor of 1.2×). This result

is because destination-order vertex update messages exacerbate network contention in the

baseline. MessageFusion’s reduce modules alone alleviate this network contention, and

manage to achieve a 1.2× energy reduction.

We note that energy savings are generally dataset-size-independent, but highly sensi-

tive to the graph’s degree. Indeed, we analyzed the energy saving profile of road-network

graphs (USA and rCA), which have notoriously low degrees: MessageFusion achieves only

1.3× energy savings for these datasets. This limited benefit is due to the fewer coalescing

opportunities that these graphs present.

Message reduction. To gain insights on MessageFusion’s effectiveness, Figure 4.8 reports

the number of messages crossing each router in both MessageFusion and Tesseract, show-

ing that MessageFusion enables a 45% reduction. Further analysis reveals that almost 50%

of the messages to remote HMCs are coalesced at the source vault, while 30% of coalesc-

ing takes place in the network. MessageFusion’s ability to reduce interconnect traffic is the

lead factor in its energy savings.

Energy savings analysis. Figure 4.9 presents a breakdown of the sources of energy savings

in MessageFusion. A primary source is the shorter execution time due to message coalesc-

ing, which alone contributes a factor of 2×, on average. In addition, power-gating unused

79

Figure 4.9: Breakdown of energy savings: for most graphs, the key contributor is static
energy, due to MessageFusion’s performance speedup.

Figure 4.10: Performance improvement over the Tesseract baseline is 2.1x on average.

storage entries is significantly beneficial for small datasets, which underutilize available

storage. Power-gating the vault ordering modules provides some benefit for algorithms

with no active-list. Finally, the benefit of coalescing on network utilization is negligible. A

major source of the remaining energy costs, not shown in the plot, is the use of the SerDes

links (60% of the remaining energy spent in execution). Since MesssageFusion reduces

the activity through this component significantly, future works may explore a selective dis-

abling of these links [96].

4.6 Performance

Figure 4.10 presents the speedup achieved by MessageFusion over Tesseract. Message-

Fusion provides a 2.1× speedup on average, primarily because it reduces inter-cube traffic

by coalescing messages within each vault, as well as in the network.

80

Figure 4.11: Sensitivity to input graph size and degree showing that energy savings
improve with higher degrees, but degrade with larger graph sizes. The analysis is carried
out for PageRank.

4.7 Sensitivity Studies

This section provides sensitivities studies related to input graph size and degree, router

buffer size, and number of HMC cubes.

Input graph size and degree. To evaluate in depth the impact of graphs’ size and degree

on MessageFusion, we generated synthetic graphs using a tool from [67]. The number of

vertices of the graphs generated ranges from 100K to 5M while their degree spans from 2

to 38. The number of edges for those graphs is the number of vertices times the degree.

Figure 4.11 reports our findings. As shown in the figure, MessageFusion’s energy benefit

increases with a graph’s degree, but degrades with large graph sizes.

Router resources. While a single-entry reduce buffer suffices at each vault, since messages

are ordered by destination-vertex, router buffers require more entries as messages come

from different cubes. To this end, we evaluated a range of buffer sizes for a router’s reduce

module: 8, 16, and 32 entries. 16-entry was an optimal choice over the evaluated algorithms

and datasets, providing a 1.2× improvement over the 8-entry solution, and on par with the

32-entry one. Consequently, we used this value in all other experiments. With a 16-entry

reduce buffer, the average opportunity window for coalescing is 175 clock cycles. Note that

this latency does not affect overall performance, as the workloads are not latency sensitive.

In addition, we evaluated the effect of re-purposing the reduce buffers for Tesseract’s input

buffers, and found only a negligible benefit. We also considered increasing the number

81

of virtual channels (3, 6, 12) at the routers for both Tesseract and MessageFusion: the

relative energy benefit of MessageFusion over Tesseract holds at 3× across these different

virtual-channel configurations.

Number of cubes. Tesseract is shown to be highly scalable with the number of cubes [23].

Our evaluation indicates that MessageFusion maintains this scalability. As a data point,

when quadrupling the number of cubes, MessageFusion’s benefit slightly improves from

3× to 3.7×, on average.

4.8 Area, Power, and Thermal Analysis

This section presents area, power, and thermal analysis of MessageFusion, as compared

to the baseline Tesseract design.

Assuming that the logic die in the HMC architecture occupies the same area as the

DRAM die (226 mm2 as reported in [23]), the baseline Tesseract design occupies 10% of

the logic die, while MessageFusion takes an additional 3.1%, for a total of 13.1% of the

available area. MessageFusion increases the power consumption by a maximum of 2.5%,

leading to a power density of 124 mW/mm2, which is still under the thermal constraint (133

mW/mm2) reported in [23].

4.9 Bibliography

In this section, we provide a summary of related works. We first present specialized

architectures that target graph analytics. Then we describe solutions based on CPUs and

other vector processing architectures. Finally, we provide a discussion on message coalesc-

ing based solutions.

Graph analytics architectures. Recently, several graph-specific architectures have been

proposed. Tesseract [23] relies on 3D-stacked memory to benefit from its high bandwidth,

and GraphP [118] proposes a graph partitioning strategy to improve the inter-cube commu-

82

nication of Tesseract, while trading its vertex programming model as well as incurring ad-

ditional memory overhead. OMEGA [18] proposes a memory subsystem optimization. In

Table 4.1, we present a comparison of MessageFusion with these architectures. Message-

Fusion improves over these architectures primarily because it coalesces messages while

they are in transit. It performs coalescing locally at each vault as well as in the network’s

routers. Its ability to reduce the number of messages flowing through the network is the key

reason for its significant improvement over prior works. While doing so, it still maintains

the widely accepted vertex-centric model and is independent of partitioning strategies.

Table 4.1: Comparison of several graph analytics architectures.

Tesseract[23] GraphP[118] OMEGA[18] MessageFusion
programming vtx-centric 2-phase upd. vtx-centric vtx-centric
update location remote local remote on-path
partitioning flexible source-cut flexible flexible
preprocessing none source-cut reorder slice & reorder
communication word-size source-cut word-size coalesce
memory type PIM PIM DDR PIM

Graph analytics on CPUs and Vector platforms. Several works have been proposed to

reduce the energy of graph analytics on CPUs [119] and vector platforms [92]. However,

these works do not take advantage of the high internal bandwidth provided by 3D-stacked

memories.

On-path message coalescing. On-path message coalescing has been explored in single-

node systems to reduce traffic due to cache coherence [20], atomic-operations [44], and

key-value data in MapReduce applications [17]. However, extending these solutions to

graph analytics is nontrivial.

4.10 Summary

This chapter presented MessageFusion, a specialized hardware architecture for graph

analytics based on a novel mechanism to coalesce vertex update messages as they transit

83

to their destination node, hence mitigating the interconnect bandwidth bottleneck of recent

domain-specific architectures. MessageFusion maximizes message-coalescing opportuni-

ties by relying on a novel runtime graph-reordering mechanism specific to this goal. As

a result, MessageFusion reduces the number of messages traversing the interconnect by

a factor of 2.5 on average, achieving a 3× reduction in energy cost, and a 2.1× boost in

performance, over a highly-optimized processing-in-memory solution.

MessageFusion provides a solution for our third strategy, discussed in Section 1.4, as it

coalesces graph analytics data messages to the same vertex in the network. MessageFusion

is effective for processing of frequently-accessed vertices. It reduces interconnect traffic,

and thus improving the overall performance and energy benefits.

Both MessageFusion and our OMEGA solution discussed in Chapter 3 address the

inefficiency of the execution of graph analytics by optimizing the processing of frequently-

accessed data. The next chapter complements these solutions by optimizing the processing

of infrequently-accessed data.

84

CHAPTER 5

Hybrid Processing in On/Off-chip Memory Architecture

for Graph Analytics

This dissertation has thus far focused on boosting the execution of graph analytics by

optimizing the processing of frequently-accessed data. Chapter 3 presented the OMEGA

solution, which optimizes the processing of frequently-accessed data, by adopting our strat-

egy of processing near storage, presented in Chapter 1. Whereas Chapter 4 provided an

introduction to MessageFusion, which achieves the same goal by embracing the strategy

of coalescing messages in network. Although these solutions optimize the processing of

frequently-accessed data, they rely on conventional mechanisms to process infrequently-

accessed data. Once the processing of frequently-accessed data was optimized, we noted

that the processing of the infrequently-accessed data had become the primary cause of in-

efficiencies.

In this chapter, we strive to holistically optimize the processing of both frequently-

accessed data as well as infrequently-accessed data. To optimize the former, we employ

the OMEGA solution of Chapter 3. This technique provides specialized on-chip storage

units to handle frequently-accessed data, and co-locates specialized compute engines with

those storage units for processing the data in-situ. As discussed in Chapter 3, the technique

reduces the traffic between processor and off-chip memory, as well as between proces-

sor cores and on-chip storage units. To optimize the processing of infrequently-accessed

85

data, we pursue our third strategy: processing data near storage in traditional storage units.

Specifically, we co-locate compute engines with off-chip memory units for processing

infrequently-accessed data in-situ. This approach reduces the traffic due to the process-

ing of infrequently-accessed data, which would have normally taken place between pro-

cessor cores and off-chip memory, thus minimizing the associated performance and energy

inefficiencies.

The solution discussed in this chapter equips both on-chip and off-chip memory with

specialized compute engines, which accelerate the computation over all vertices in a graph,

after negotiating where each vertex should be stored. For power-law graphs [18] with im-

balanced connectivity among their vertices, the solution maps the high-degree vertices,

which are accessed most frequently, to dedicated on-chip memory: their updates are com-

puted by co-located lightweight compute-engines. In contrast, low-degree vertices remain

in off-chip memory: their updates are processed by compute units connected to the off-chip

memory blocks. This approach enables high-degree vertices to experience efficient on-chip

access and all vertices to benefit from efficient execution of the related operations.

5.1 Motivational Study

As discussed in Chapter 2, accesses to vertices’ property data (the next rank data struc-

ture) in the PageRank algorithm often exhibit poor locality during the update phase, and

those updates are typically carried out atomically in multicore architectures, incurring high

performance overheads. Many recent studies strive to optimize atomic operations: Graph-

PIM [81] by offloading all atomic operations to off-chip memory, OMEGA [18] by execut-

ing atomic operations related to high-degree vertices in dedicated on-chip memory. Note

that neither approach holistically optimizes the execution of atomic operations across a

wide range of vertices’ degrees or graph characteristics (e.g., from power law to uniform

graphs).

To estimate the potential benefit of processing data both in on- and off-chip memory, we

86

carried out an experiment using the gem5 simulation infrastructure [34]. In this experiment,

we modeled the OMEGA solution, which processes data in on-chip memory, and another

recent proposal, called GraphPIM [81], which computes on data in off-chip memory. We

modeled both OMEGA and GraphPIM in gem5 and ran the PageRank algorithm with sev-

eral input graphs of varying average degrees. Our findings indicate that OMEGA executes

up to 26% of the atomic operations on general-purpose cores when processing power-law

graphs, and up to 80% when processing relatively uniform graphs. Unfortunately, the

execution of atomic operations on general-purpose cores incurs a high-performance cost,

primarily due to the suspension of the cores’ pipelines during the operation’s execution

[81, 18]. GraphPIM attempts to overcome this cost by executing all atomic operations in

off-chip memory, but it also generates high traffic between compute engines and their local

memory partitions: up to 6× the traffic generated by a plain chip multi-processor (CMP)

solution. Indeed, the execution of each atomic operation in GraphPIM entails two mem-

ory requests (a read and a write) from the compute engines. The memory traffic could be

potentially reduced by processing atomic operations both in on-chip and off-chip memory.

5.2 Centaur Overview

Figure 5.1 illustrates the solution discussed in this chapter, called Centaur. Centaur

enables hybrid processing in a dedicated on-chip (SPs) / off-chip memory architecture. It

stores frequently-accessed vertex data in on-chip memory and infrequently-accessed data in

off-chip memory. Lightweight compute engines, attached to each memory unit, execute the

related operations in-situ. Centaur’s approach enables high-degree vertices to experience

efficient on-chip access, and all vertices to benefit from efficient execution of the related

atomic operations. Note that both the general-purpose cores and the compute-engines ac-

cess vertex data. To simplify the implementation of cache coherence, Centaur employs a

cache-bypassing technique for vertex-data requests from the cores. Centaur retrieves edge

data via caches, as those accesses exhibit high cache-locality.

87

Figure 5.1: Centaur overview. Centaur enables hybrid processing in a specialized on-chip
(SPs) / off-chip memory architecture. It stores frequently-accessed vertex data in on-chip
memory and infrequently-accessed data in off-chip memory. Lightweight compute engines,
attached to each memory unit, execute the related operations in-situ.

5.3 Centaur Architecture

Figure 5.2 presents the architecture of Centaur, a hybrid solution that comprises pro-

cessing both in on- and off-chip memory. As shown, data related to high-degree vertices is

stored in dedicated on-chip memory, whereas data related to low-degree vertices is stored

in off-chip memory. Atomic Compute Units (ACUs) are co-located with both types of

memory units to perform related atomic operations. The on-chip memory is modeled as a

specialized scratchpad (SP) architecture. Off-chip memory is modeled as a Hybrid Mem-

ory Cube (HMC), a 3D-stacked memory solution that has been shown to provide higher

bandwidth to memory compared to conventional solutions, such as DDR [93]. The HMC

includes 32 DRAM partitions (vaults), which are connected to the processor cores via four

high-speed SerDes links. The ACUs at both scratchpads and vaults are specialized hard-

ware units that execute the atomic operations of a wide range of graph algorithms, similar

to those detailed in the HMC 2.0 specification [81]. The on-chip Vertex Management Units

(OnVMUs) filter requests to vertex data, manage their execution, and forward the results

to their destination. The destination OnVMUs control the execution of the requests on the

OnACUs and/or the scratchpads. In addition, the OnVMUs update the activeList on behalf

of their local cores, based on the results of atomic operations obtained from the ACUs. ac-

88

Figure 5.2: Centaur architecture. Centaur employs Atomic Compute Units (ACUs) ca-
pable of executing atomic operations at both dedicated on-chip memory units (SPs) and
off-chip memory partitions (vaults). The Vertex Management Units (VMUs) attached to
the SPs filter requests to vertex data and send them to their respective destinations. They
also control the execution of requests to high-degree vertices, and update the activeList
on behalf of their respective cores. The VMUs attached to the vaults manage the execu-
tion of requests to the low-degree vertices. The cores access edge and metadata via the
conventional caches.

tiveList refers to a list of vertices that will be active, and thus processed in the next iteration

of an algorithm [18, 102]. The off-chip Vertex Management Units (OffVMUs) manage the

execution of requests related to low-degree vertices. Additionally, similar to ACUs, the

cores issue read/write requests to the vertex data, e.g., to initialize the vertex data and to

access source-vertex data for generating atomic commands to ACUs. All of these requests

bypass the conventional cache hierarchies to simplify coherence management between the

cores and the ACUs; this is accomplished by leveraging a cache bypassing technique com-

mon in commercial processors [78]. This approach also reduces cache pollution, access

latency, and energy costs. However, edge data and metadata are still delivered via the

conventional cache hierarchy, as they are accessed only by the cores and maintain high

locality.

Dedicated On-chip Memory. To minimize the traffic between cores and off-chip mem-

89

Figure 5.3: The Atomic Compute Unit (ACU) executes the atomic operations entailed
by the graph algorithm. They are deployed in both on- and off-chip memory units.

ory, and thus reduce the associated bandwidth, latency, and energy costs, Centaur utilizes

dedicated on-chip memory units to store high-degree vertices, partitioning them across the

multiple units. The on-chip memory is modeled as a scratchpad (SP), organized as a direct-

mapped memory, storing data related to high-degree vertices. Each entry in the scratchpad

corresponds to the data that the algorithm stores per-vertex. In most graph algorithms, this

per-vertex data ranges from 4 to 12 bytes (see Table 2.1). For instance, PageRank stores 8

bytes of rank values for each vertex.

Atomic Compute Unit (ACU). To execute the atomic operations entailed by graph algo-

rithms in-situ, thus eliminating the computation overhead of atomic operations from the

general-purpose cores, Centaur co-locates ACUs with both scratchpads and off-chip mem-

ory. Figure 5.3 provides the architecture of the ACU. Each ACU uses configuration regis-

ters to store the set of micro-operations that implement the required atomic operation. The

control logic takes the atomic operation type (op type) as input to index the configuration

registers, and then executes the corresponding micro-operation. Other inputs to the ACUs

include source-vertex data (src data) from the cores and stored data from either scratchpads

or off-chip memory, depending on where the ACU is deployed. Centaur configures the con-

figuration registers during the application’s initialization. New algorithms requiring new

types of atomic operations can also be supported by generating additional micro-operation

sequences.

On-chip Vertex Management Unit (OnVMU). OnVMUs share the cache data-port of their

local cores to filter requests related to vertex-data away from the cores. During the initial-

ization phase of the graph algorithm, the OnVMU filters configuration requests, such as

90

Figure 5.4: The On-chip Vertex Management Unit (OnVMU) routes vertex-data re-
quests from the local core to the correct storage unit and monitors their computation.

atomic operation type (op type), and base address and range of vertex data locations (de-

picted in the left part of Figure 5.4). Once the execution of the graph algorithm begins, the

OnVMU determines if further requests are to vertex data or other data. If a request is not

to vertex data, the OnVMU forwards it to the cache; otherwise, it must determine whether

the requested vertex is stored in a scratchpad or in off-chip memory. Simple, non atomic,

read/write requests on low-degree vertices are processed through specialized read/write

buffers within the OnVMU (shown in the right part of Figure 5.4). These read/write buffers

are useful when requests to vertex data exhibit sequential patterns: they operate as read-

combining or write-combining buffers, which are already common in contemporary pro-

cessors [1]. As an example, PageRank performs sequential read/write operations on the

next rank vector during the apply phase. Alternatively, if a request is to a high-degree

vertex, the OnVMU sends it forward to the relevant destination scratchpad, handling it at

word granularity. Read requests are sent through the read buffer, before forwarding to a

scratchpad, to take advantage of temporal locality in the vertex data (common when cores

access source-vertex data to generate atomic commands).

Requests related to atomic operations, e.g., a write request to the src data memory-

mapped register (discussed in the last paragraph of this section), are handled differently:

91

Figure 5.5: The Off-chip Vertex Management Unit (OffVMU) manages requests to low-
degree vertices in off-chip memory.

requests related to low-degree vertices are forwarded to off-chip memory, while those re-

lated to high-degree vertices are sent to the destination scratchpad. The destination OnVMU

holds the incoming request in a buffer and generates a read request to its associated scratch-

pad to retrieve the requested value. Upon receiving the value, the destination OnVMU initi-

ates execution of the atomic operation on the associated OnACU. Then, the OnVMU writes

the result back to its scratchpad and, if the operation generates a new active vertex, it sends

also a command with active-vertex information to the originating OnVMU. Upon receiving

the command, the originating OnVMU updates its activeList in the cache. Figure 5.4 shows

this selection process and compute flow.

Off-chip Vertex Management Unit (OffVMU). Low-degree vertex accesses filtered by

the OnVMUs are forwarded to the OffVMUs via the memory controller. The memory

controller inspects the request address and sends it to the corresponding memory partition

(vault). The OffVMU connected to this vault is thus tasked with processing the request,

as shown in Figure 5.5. First, this OffVMU determines whether the request is atomic or

a simple read/write request to vertex data. For atomic requests, the OffVMU generates a

read request to memory, while queuing the request in the atomic buffer. Upon receiving a

response from memory, the OffVMU instructs the corresponding OffACU to dequeue the

request and execute the atomic operation. Once the OffACU completes its task, the OffVMU

writes the result back into memory. If the atomic operation generates an active vertex,

the OffVMU forwards a command to the originating OnVMU to update its corresponding

92

activeList in the cache. For non-atomic requests, the OffVMU reads the corresponding

cache block from memory and sends the block to the originating OnVMU (read operations),

or it reads, updates, and writes-back the block to memory (write operations).

Vertex data partitioning between on/off-chip memory. For power-law graphs that do

not fit in the on-chip memory, Centaur must identify high-degree vertices to maximize the

utilization of on-chip memory, and thus provide higher performance benefit. To do so,

either of the following two approaches can be adopted. The first is a hardware-based vertex

replacement policy that maintains the frequency of atomic operations computed on each

vertex. In this approach, Centaur maintains frequency and collision bits for each vertex

stored in the on-chip memory, while either increasing the associated frequency value (if

an atomic operation is computed on the vertex successfully), or otherwise increasing the

corresponding collision value. For each new request, if the stored frequency value is greater

than that of the collision value, the stored value will be replaced by the new one and sent to

off-chip memory. Otherwise, the new value will be the one forwarded to off-chip memory.

This approach is similar to that employed in [17], its main drawback is that it requires

maintaining extra bits to implement the replacement policy.

The second solution is a software-based graph preprocessing approach that reorders

vertices based on their in-degree. Once vertices are reordered, the high degree vertices can

be identified by verifying if the ID of a new vertex request is smaller than the maximum

number of vertices that can be mapped to the on-chip memory unit, assuming that the

highest-degree vertex has an ID of 0. Although this approach can identify the optimal

set of high-degree vertices at no extra hardware cost, it entails a preprocessing overhead.

Such overhead could be alleviated by reordering only vertices to be mapped to on-chip

memory. In power-law graphs, approximately 20% of the vertices account for 80% of

the connectivity; thus, sorting only 20% of the vertices would allow the computation of a

significant fraction of atomic operations in on-chip memory. Furthermore, the cost of this

reordering algorithm is amortized over the execution of various graph algorithms, repetitive

93

Figure 5.6: Pseudo-code for a Centaur-ready version of PageRank’s update phase.
The new rank value of the source vertex and the destination vertex ID are written to
memory-mapped registers.

execution of the same algorithm, or even the many iterations of a single execution of the

algorithm on the same dataset, as suggested by [18, 119]. We employed this latter approach

in this work and deferred the former to future work.

5.4 System Integration

Cache coherence, address translation, and context switching. To simplify the imple-

mentation of cache coherence, Centaur relies on uncacheable address space for vertex data:

all accesses to vertex data bypass caches, avoiding the need to maintain coherence across

caches, scratchpads, and off-chip memory. Centaur utilizes the cores’ translation look-

aside buffer (TLB) to translate virtual to physical addresses when the OnVMUs update the

activeList in the cache. Context switching is supported by saving the vertex data stored in

scratchpads as part of the process’s context. Other functionalities, such as thread schedul-

ing, are independent of Centaur’s architecture and are performed as in a traditional CMP.

Integration with software frameworks. To enable a seamless integration of Centaur with

graph-software frameworks, such as Ligra [102], GraphMAT [105], etc., we aimed to min-

imize system-level facing changes. Indeed, in Centaur, it is sufficient to annotate atomic

operations (described in Section 2), a task that can be accomplished by a simple source-

to-source transformation tool. For instance, Figure 5.6 shows the Centaur-ready version of

the update phase in PageRank; the atomic operation is translated into two write operations:

one to the vertex-ID memory-mapped register, the other to the src data memory-mapped

register. These operations are received by the OnVMUs: the first passes the ID of the tar-

94

get vertex for the atomic operation, and the second the corresponding new rank value. The

transformation tool should also augment the software frameworks with code to pass config-

uration parameters from the cores, such as atomic operation type, base and range of vertex

data locations, etc. Other aspects of these software frameworks, including multi-threading,

load balancing, etc., remain unchanged and are independent of the Centaur architecture.

5.5 Further Design Considerations

Dynamic graphs. Although the connectivity of vertices in dynamic graphs changes over-

time, Centaur continues to provide performance benefit, as existing popular vertices tend

to remain popular for a while, due to a characteristic called “preferential attachment” [18].

However, after a considerable amount of time, a large portion of the vertices stored in off-

chip memory might become more popular than those in on-chip memory, in which case,

the graph’s vertices should be reordered periodically for optimal benefits. Alternatively,

a hardware-based vertex replacement strategy, as discussed in Section 5.3, or a dynamic

graph partitioning technique similar to [74] can be employed at the cost of a small hard-

ware overhead.

Applicability to other application domains. While Centaur specifically targets graph

analytics, we foresee its deployment in other application domains, such as MapReduce and

database queries. For instance, in MapReduce, the word-count application determines the

frequency of words in a document, which has been found to follow Zipf’s law; that is,

20% of the words occur 80% of the time [79]. Centaur can take advantage of such skews

in word occurrences by processing high-frequency words in the on-chip memory, and the

remaining ones in off-chip memory.

On- and off-chip memory options. While using scratchpads as on-chip memory leads

to high performance benefits, it also entails high design costs. To alleviate these costs, a

portion of the caches can be re-purposed to operate as scratchpads, using a technique similar

to Intel’s Cache Allocation Technology (CAT) [4]. For off-chip memory implementations,

95

Centaur is not limited to a HMC design; it can also leverage other architectures, such as

High Bandwidth Memory.

5.6 Experimental Setup

In this section, we provide the experimental setup that we deployed to evaluate the

Centaur solution.

To evaluate Centaur, we compared it to a chip multi-processor (CMP) solution and two

state-of-the-art proposals: GraphPIM, a processing-in-memory solution [81], and OMEGA

[18], which leverages scratchpads with associated compute units. We modeled all these so-

lutions and Centaur in a gem5 simulator[34]. The CMP has 16, 2GHz, 8-wide O3 cores run-

ning the x86 ISA, 32KB L1 instruction and data caches, and 16MB of shared L2 cache. The

off-chip memory for all of the above solutions is based on HMC, which includes 8GB of

memory partitioned over 32 vaults, each vault providing a peak bandwidth of 20GB/s. The

scratchpads, OnACUs, and OnVMUs are modeled by extending gem5’s cache implementa-

tion, whereas the OffACUs and OffVMUs are modeled by extending gem5’s HMC model.

We re-purposed half of the shared L2 cache as scratchpads for Centaur and OMEGA, while

keeping the L2 cache intact for the CMP and GraphPIM. Finally, we mapped Ligra [102],

a highly optimized software graph framework, to the simulator through the “m5threads”

library, and ran the simulations in “syscall” emulation mode.

Workloads and Datasets. Once again, we considered for our evaluation all algorithms

discussed in Section 2.3 except SpMV. We did not consider SpMV because it was not im-

plemented in the Ligra software framework, which we utilized for our evaluation. We

summarized the key characteristics of those algorithms in Table 2.1. We considered six

representative real-world graph datasets from the pool described in Section 2.4: lj, wiki,

sd, USA, rCA, and rPA. We used all of these datasets as inputs of each algorithm, except

for SSSP, TC, and KC for which we used only the smallest datasets among those, due to

their long simulation time. We chose these algorithms because they have representative

96

Figure 5.7: Performance improvement comparison. Centaur provides up to 4.0×
speedup over a CMP baseline, while also achieving up to 1.7× speedup over GraphPIM
and up to 2.0× speedup over OMEGA.

characteristics in size, degree, and power-law distribution. Table 2.2 reports their key char-

acteristics. Note that all datasets were sorted by decreasing vertex degree, as discussed in

Section 5.3, and the sorted datasets were used in evaluating all three solutions considered.

5.7 Performance Evaluation

In this section, we first present overall performance benefits of the proposed solution,

followed by our insights on atomic operation overhead and internal off-chip memory traf-

fic and bandwidth analysis. We also provide discussion of the benefits of the read/write

buffers.

Figure 5.7 compares Centaur’s performance against other solutions. As shown in the

figure, Centaur delivers up to 4.0× speedup over the CMP reference, up to 1.7× over

GraphPIM, and up to 2× over OMEGA. Note that GraphPIM excels on graphs with low-

degree vertices, whereas OMEGA performs best on graphs with average high-degree. How-

ever, Centaur consistently delivers the best performance on graphs with any average degree.

This trait also holds across graph sizes: OMEGA performs best on small graphs where the

scratchpads can hold a valuable fraction of the vertex data, while GraphPIM works best

on large non-power-law graphs. Once again, Centaur delivers high performance across the

entire graph-size range. Additionally, note how Centaur performs best with algorithms that

are dominated by a high density of vertex access – where Centaur can offer benefit – such

as PageRank, which processes all vertices during each iteration. In contrast, TC and KC

are more compute-intensive, and thus attain a lower speedup.

97

Figure 5.8: Internal off-chip memory traffic analysis. GraphPIM generates 4.7× more
traffic between OffACUs and memory than a CMP’s traffic between cores and memory, on
average. Centaur reduces it to 1.3×. The analysis is carried out on PageRank.

Atomic operation overhead. Centaur’s high performance benefit is mainly due to its com-

puting 100% of atomic operations in on-/off-chip memory units. GraphPIM achieves the

same goal by executing atomic operations in off-chip memory, but at the cost of generat-

ing high internal memory traffic, as discussed in the next section. In contrast, OMEGA

computes only a fraction of atomic operations in on-chip memory: up to 20% for non-

power-law graphs and 74% for power-law graphs.

Internal off-chip memory traffic and bandwidth analysis. GraphPIM’s main drawback

is that it incurs a large amount of traffic between the OffACUs and their associated memory

partitions, as the OffACUs generate two memory requests (one read and one write), both at

a cache line granularity, for each atomic operation. Figure 5.8 shows this traffic, indicating

a 4.7× increase over a baseline CMP, on average. Centaur limits the read/write requests to

low-degree vertices, reducing the traffic to 1.3× of the baseline CMP, on average. Because

of these transfers, which are related to atomic operations, both solutions attain high internal

bandwidth utilization, 10.5× for GraphPIM, and 2.1× for Centaur, over the baseline CMP,

as reported in Figure 5.9. In contrast, the other two solutions considered, the CMP and

OMEGA, have much lower utilization as their cores are suspended during the execution

of atomic operations. Note that Centaur’s traffic could be further reduced by enabling the

OffACUs to access their associated memory partitions at a word-granularity [115].

Benefits of read/write buffers. We conducted an analysis of the impact of read/write

buffers in Centaur, and found that read buffers moderately improve the speedup of PageR-

98

Figure 5.9: Internal off-chip memory bandwidth utilization. GraphPIM and Centaur
achieve internal memory bandwidth utilization of 10.5× and 2.1×, on average, over a
baseline CMP. The analysis is carried out on PageRank.

Figure 5.10: Scratchpad sensitivity analysis on PageRrank. Centaur’s and OMEGA’s
speedup rates improve significantly with larger scratchpad sizes on a power-law dataset as
lj, while a graph as USA, which does not follow the power law, is fairly insensitive to it.
Centaur outperforms OMEGA across the entire range swept.

ank over all our datasets from an average of 2.6× to 2.8×, and that write buffers further

improve it to an average of 3.0×.

5.8 Sensitivity Studies

This section provides sensitivity studies in terms of scratchpad size, number of vaults

and ACUs.

Scratchpad size sensitivity. Figure 5.10 compares trends in performance speedup as we

sweep the scratchpad size in Centaur and OMEGA, while keeping the total scratchpad

plus shared L2 cache size similar to the shared L2 cache size of the baseline CMP and

GraphPIM. We note that larger scratchpads correspond to speedup increases for a power-

99

Figure 5.11: Sensitivity to the number of vaults. Centaur maintains a performance ad-
vantage over both OMEGA and GraphPIM across a wide number-of-vaults range. The
analysis is carried out on PageRank processing lj.

law graph, like lj, while this correlation is absent for a graph that does not follow the

power-law, as is USA.

Vaults, ACUs, and bandwidth sensitivity. Figure 5.11 evaluates the speedup attained

when varying the number of vaults and, correspondingly, the number of OffACUs and the

off-chip bandwidth available. As shown, Centaur presents the best performance consis-

tently across the spectrum of setups considered.

5.9 Area, Power, Thermal, and Energy Analysis

This section presents area, power, and thermal analysis of Centaur. It also provides

discussion on Centaur’s energy benefit.

To evaluate the physical impact of Centaur, we carried out an analysis on Centaur’s

synthesized components. To this end, we synthesized the processor cores using McPAT, the

caches and scratchpads using Cacti at 45nm technology, and the ACUs and VMUs using

the IBM 45nm SOI library. We referred to prior works to obtain area, power, and per-access

energy cost of the HMC’s SerDes links, logic layer, and DRAM layer [81, 23]. We then

estimated both static and dynamic energy consumption by considering the execution time

of each algorithm and the energy costs incurred by each module’s per-data access, along

with their utilization rate, which we obtained from our simulation infrastructure.

Our area analysis indicates that Centaur’s and OMEGA’s on-chip components occupy

3% less area than the CMP primarily because the scratchpad portions of on-chip storage

100

Figure 5.12: Breakdown of uncore energy consumption. Centaur provides up to 3.8×
in energy reduction, compared to a CMP, and a better energy profile than both GraphPIM
and OMEGA across all datasets. Note how Centaur greatly reduces the contributions to
energy by L2 caches. ACUs and VMUs are not shown because of their minimal footprint.
The analysis is carried out on PageRank.

are direct-mapped, thus requiring much simpler control logic than multi-way caches. As

for power, Centaur’s and OMEGA’s on-chip modules draw 1% less in peak power, due to,

once again, the simpler controller logic in the scratchpads. The off-chip hardware mod-

ules (OffACUs and OffVMUs), common to both Centaur and GraphPIM, occupy <1%

of the baseline HMC’s logic layer. Finally, Centaur’s thermal density was estimated at

62mW/mm2, well below the reported constraint for the HMC, of 133mW/mm2 [23].

On the energy front, since Centaur’s design targets uncore components, we only provide

an energy analysis for those units, and present it in Figure 5.12. As shown, Centaur provides

up to 3.8× in energy improvement over a baeline CMP, primarily due to reduced execution

time and less frequent cache, DRAM, and logic layer accesses.

5.10 Bibliography

In this section, we provide a summary of related works. We start with solutions that are

based on CMPs, GPUs, and specialized hardware architectures. We then focus on the more

relevant related works that rely on processing in on-chip and off-chip memory techniques.

Prior works looking to optimize the execution of graph analytics on CMPs have pro-

101

posed reordering the input graphs [119] and/or partitioning them, so that each partition

fits in on-chip memory units [119]. Solutions based on GPUs [88] and specialized hard-

ware architectures [54] have also found some benefit, but only for a limited set of graph

algorithms. Moreover, specialized-hardware solutions have limited applications because of

their extreme design specialization. All these works tackle challenges orthogonal to ours.

Solutions based on processing in off-chip memory [24, 81] or on-chip memory [18, 80]

are closest to our work. Among them, [24] proposes an architecture that automatically

identifies the locality profile of an application, and processes it at the cores or on off-chip

memory accordingly. Specific to graph analytics, [81] further optimizes [24] by eliminating

the overhead incurred in automatically identify irregular accesses, as they presume that

every access is random. [18] makes the observation that a certain portion of the graph data

can be processed in on-chip memory for power-law graphs. Centaur brings to light the

best opportunities for both approaches by processing vertex data both at on- and off-chip

memory. As far as we know, it is the first solution of its kind and has the potential to be

deployed in other domains.

5.11 Summary

In this chapter, we proposed Centaur, a novel solution that leverages both processing

near on-chip and off-chip memory architectures. Centaur holistically optimizes the pro-

cessing of both frequently-accessed data as well as infrequently-accessed data. Centaur is

capable of delivering high-performance computation on a wide range of graph datasets. It

provides up to 4.0× performance speedup and 3.8× improvement in energy, over a baseline

chip multiprocessor. It delivers up to 1.7× speedup over a processing near off-chip mem-

ory solution, and up to 2.0× over a processing near on-chip memory solution. Centaur’s

on-chip components have a smaller footprint than the baseline, while off-chip ones occupy

<1% of the baseline HMC’s logic layer.

The solution presented in this chapter adopted our two strategies discussed in Sec-

102

tion 1.4. We followed our first strategy of specializing memory architecture, where we

utilized scratchpads to store frequently-accessed data, reducing the traffic between proces-

sor cores and off-chip memory. We then adopted our second strategy of processing near

data storage, where we co-located the scratchpad with specialized compute engines for

processing the data in-situ, reducing the traffic between processor cores and on-chip stor-

age units. We once again embraced our second strategy of processing data near storage,

where we co-located off-chip memory units with specialized compute engines for process-

ing infrequently-accessed data in-situ, reducing the associated performance and energy

inefficiencies.

The solutions presented thus far adapt our three strategies discussed in Chapter 1, pro-

viding a comprehensive set of solutions for graph analytics. In the next chapter, we show

the applicability of our strategies to another domain of applications, called MapReduce.

103

CHAPTER 6

Optimizing Memory Architectures Beyond Graph

Analytics

In this chapter, we demonstrate the applicability of our strategies discussed in Chapter

1 to another domain of applications, specifically MapReduce applications. MapReduce ap-

plications provides an effective and simple mechanism to process a large amount of data,

delivering their result in a simple key-value data. They are utilized for various purposes,

such as indexing webpages for improving search results and analyzing log files for pro-

viding summary data, such as website usage. In all of these applications, they maintain

key-value data structures used to track the occurrence of all relevant “key”s on informa-

tion related to the analysis. For instance, word count, a typical MapReduce, application

maintain words as key and their frequency in input documents are value. During a typi-

cal execution of MapReduce applications on chip multiprocessor (CMP) machines, each

core involved in the execution must manage its own key-value data, as a single centralized

key-value data would lead to extreme access contention. In addition, each core accesses

its own key-value data with random-access patterns. Unfortunately, this setup creates pres-

sure on the memory system, causing high on- and off- chip communication, and resulting

in performance and energy inefficiencies. Many real-world data inputs for MapReduce ap-

plications have key-value pairs with some keys appearing more frequently than others. This

characteristic can be leveraged to develop solutions that combat the limitations described

104

Figure 6.1: MapReduce for wordcount. map emits a kv-pair for each word, combine ag-
gregates words emitted from a mapper, whereas reduce aggregates emitted words from all
mappers. In CASM, map is executed by the cores, while combine and reduce are offloaded
to the accelerators’ network.

above.

In this chapter, we strive to overcome the above limitations by designing an architecture

that can accelerate MapReduce applications, leveraging the skewed access frequency of

key-value pairs. To achieve this goal, we rely on the strategies discussed in Section 1.4.

Specifically, we explore a specialized memory architecture, where each core of a CMP is

augmented with scratchpad memories. The scratchpads house frequently-occurring key-

value pairs, which are often responsible for the majority of the accesses, thus reducing the

traffic from/to the off-chip memory. We also investigate the benefits of processing data near

storage, by co-locating each scratchpad with a lightweight compute engine. This second

strategy reduces the interconnect traffic that otherwise would take place between a core

and a remote storage unit. As a byproduct, some of the data processing is performed using

specialized compute engines, instead of general-purpose cores, freeing up processor cores

to perform other computation tasks. Each core’s scratchpads and their locally-attached

compute engines form an accelerator unit, resulting in an overall system that comprises a

network of accelerators, enabling the CMP to efficiently execute MapReduce applications

105

6.1 Background and Motivation

MapReduce is a simple programming framework for data-intensive applications. Users

can write complex parallel programs by simply defining map and reduce functions, while

all the remaining parallel programming aspects, including data partitioning and data shuffle

stages, are handled by the MapReduce infrastructure. In a typical scale-up MapReduce

framework, the application’s input data is first partitioned over the cores in the system.

Then, each core runs the user-defined map function, which processes the input data and

produces a list of intermediate key-value pairs (kv-pairs), followed by a combine stage,

which aggregates keys to partially reduce local kv-pairs, conserving network bandwidth.

Once this stage is complete, the intermediate data is partitioned and shuffled within the

network, while the cores assume the role of reducers, so that all kv-pairs with the same key

are transferred to a same reducer. In the final stage, each core executes the user-defined

reduce function to complete the aggregation of its kv-pairs. As an example, Figure 6.1

provides the pseudo-code for wc (wordcount), a classic MapReduce application with a

wide-range of uses. wc computes the frequency of occurrence of each word in a document.

In the MapReduce framework, the map function parses the input document and identifies

all the words. It then emits each word as part of a kv-pair, with the word as the key and an

initial value of 1. The combine stage partially aggregates kv-pairs at each core, before they

are transferred to the reducer core. Finally, the reduce function collects all kv-pairs and

sums up the values for each word, producing in output a final list of unique words along

with their frequency.

Phoenix++: optimizations and inefficiencies. Phoenix++ is among the most opti-

mized scale-up MapReduce frameworks for CMPs. One major optimization adopted by

Phoenix++ is the interleaving of map and combine stages, which lowers memory pressure

caused by applications with many kv-pairs. In Phoenix++, kv-pairs are aggregated locally,

immediately after they are mapped. The left part of Figure 6.2 illustrates the MapReduce

steps for Phoenix++. At first, each core considers its own data segment, one input at a time;

106

Figure 6.2: Execution flow of MapReduce. Left side - In a typical CMP-based frame-
work, the map, combine and partition stages execute on the local core. A barrier then
synchronizes the execution; kv-pairs are shuffled through the interconnect and reduced at
the home core. Right-side - When deploying CASM, cores are only responsible for the
map stage. They then transfer kv-pairs to the local accelerator, which combines, partitions,
and transfers them to the home accelerator for the reduce stage.

maps it into a kv-pair (orange); and combines it with its current database of kv-pairs (red).

Then the core partitions aggregated kv-pairs over all the cores based on their key (yellow).

At this point the threads are synchronized so that all cores switch from operating as local

cores to home cores. kv-pairs are then transferred through the interconnect to the home

core and reduced there (green). However, there are still two major inefficiencies in this

approach. i) Map and combine stages are executed in a sequential manner. If they were to

run concurrently, as suggested in the right part of Figure 6.2, execution time would be sig-

nificantly reduced. ii) Moreover, each combine function (one per map function) maintains

its own kv data structure as a hashtable; thus, keys are replicated in the on-chip caches,

creating many off-chip memory accesses when that data no longer fits in cache.

Motivating Study. To gain insights on the execution bottlenecks of a real platform,

we analyzed the execution of Phoenix++ with our experimental workloads (Section 6.6)

on a 16-core Intel Xeon E5-2630 (2 threads per core) machine, using a range of input data

sizes. Figure 6.3 plots the breakdown of execution time by MapReduce stage. Note how

map and combine dominate the overall execution time, and the combine stage contributes

the majority of the total execution time for most benchmarks. We then analyzed in detail

the execution of the combine stage for those benchmarks using Intel’s VTune tool and col-

107

Figure 6.3: Motivating study. Execution time breakdown for our MapReduce workloads,
running Phoenix++ on a Xeon E5-2630 V3 machine with the input datasets discussed in
Section 6.6. Note how the combine stage dominates the overall execution for most appli-
cations.

lected the Top-down Microarchitecture Analysis Method (TMAM) metrics [113]. VTune

reported that most workloads were primarily back-end bounded (60% average value); that

is, the main cause of performance bottlenecks was the inability for instructions to progress

through the pipeline. Vtune could also indicate that, among the (lack of) resources that

caused back-end bottlenecks, the time overhead in accessing memory was a primary factor

in our case. Based on this analysis, we suspected that the bottleneck could be due to the

large number of data transfers occurring during the combine stage, driven by the need to

maintain multiple, large, and irregularly accessed hashtables (one per core), which often do

not fit in on-chip storage. Thus, to assess the impact of these off-chip memory accesses, we

setup a 64-core system on the gem5/garnet infrastructure, where all kv-pairs could be ac-

commodated in on-chip storage, as it would be in an ideal case. This last analysis showed

that the total data-transfer footprint differential between the real and the ideal system is

over 9x.

6.2 CASM Overview

Figure 6.4 outlines our solution, called CASM (Collaborative Accelerators for Stream-

lining Mapreduce), which comprises a network of accelerators laid out alongside the cores,

108

Figure 6.4: CASM deployed in a CMP architecture. Left side - CASM adds a local
accelerator to each CMP’s core to carry out MapReduce tasks. Right side - Each accelerator
aggregates kv-pairs emitted by the local core (local aggregation). Those kv-pairs are then
transferred among the accelerators through the CMP’s interconnect. At the home core,
accelerators execute the reduce stage, so that, in the end, there is one kv-pair per key.

capable of delivering high computation performance locally, while collaboratively manag-

ing the application’s data footprint, so as to minimize data transfers among the cores and

to off-chip memory. Each of CASM’s accelerator contains two storage structures: a home

scratchpad and a local scratchpad memory. The scratchpad memories (SPM) share some

similarity with the home and local directories in a directory-based cache coherence proto-

col, but they are indexed by keys instead of memory addresses. The home SPMs collec-

tively form a large cumulative on-chip memory to store kv-pairs. Each SPM is responsible

for its own portion of the keys’ space, capturing most keys of the input dataset; spilling to

memory occurs rarely, only when the home SPMs cannot store all the keys. While home

SPMs minimize off-chip memory access, most kv-pairs would still traverse the intercon-

nect, potentially leading to performance degradation due to interconnect contention. Local

SPMs are used to combine kv-pairs locally, so as to greatly reduce contention on the inter-

connect.

109

Fi
gu

re
6.

5:
C

A
SM

’s
ac

ce
le

ra
to

r
ar

ch
ite

ct
ur

e.
E

ac
h

ac
ce

le
ra

to
ri

nc
lu

de
s

tw
o

SP
M

s,
or

ga
ni

ze
d

as
2-

w
ay

as
so

ci
at

iv
e

ca
ch

es
w

ith
sm

al
l

vi
ct

im
SP

M
s,

in
de

xe
d

by
a

ha
sh

fu
nc

tio
n,

w
hi

ch
ag

gr
eg

at
es

kv
-p

ai
rs

in
co

m
in

g
fr

om
th

e
lo

ca
lc

or
e

or
th

e
in

te
rc

on
ne

ct
.

T
he

ag
gr

eg
at

e
un

its
ag

gr
eg

at
e

va
lu

es
fo

r
kv

-p
ai

rs
st

or
ed

in
th

e
SP

M
s.

T
he

fr
eq

ue
nc

y/
co

lli
si

on
up

da
te

un
its

en
fo

rc
e

ou
r

kv
-p

ai
r

re
pl

ac
em

en
tp

ol
ic

y.
Fi

na
lly

,
ea

ch
ac

ce
le

ra
to

r
in

cl
ud

es
a

ke
y

ha
sh

un
it

to
co

m
pu

te
th

e
ha

sh
of

in
co

m
in

g
ke

ys
,

an
d

a
pa

rt
iti

on
st

ag
e

un
it,

re
sp

on
si

bl
e

fo
r

de
riv

in
g

th
e

ID
of

th
e

ho
m

e
co

re
in

ch
ar

ge
of

re
du

ci
ng

ea
ch

un
iq

ue
ke

y.
kv

-p
ai

rs
ev

ic
te

d
fr

om
th

e
SP

M
s

ar
e

tr
an

sf
er

re
d

to
th

ei
r

ho
m

e
co

re
(f

ro
m

lo
ca

lS
PM

)o
rt

he
lo

ca
lc

ac
he

(f
ro

m
th

e
ho

m
e

SP
M

).

110

6.3 Inside a CASM accelerator

Each CASM’s accelerator (see Figure 6.5) comprises a scratchpad memory (SPM),

organized into two partitions, one to serve kv-pairs incoming from the local processor core

(local SPM), and one to serve kv-pairs incoming from the interconnect (home SPM). Each

SPM is complemented by a small “victim SPM,” similar to a victim cache, which stores

data recently evicted from the main SPM. The accelerator also includes dedicated hardware

to compute a range of reduce functions, used both to aggregate data in the local and home

SPMs. Logic to compute hash functions, both for indexing the SPMs and for partitioning

kv-pairs over home accelerators, completes the design. Note that both local and home

SPMs have fixed sizes; thus, it may not be always possible to store all the kv-pairs that

they receive. When a local SPM cannot fit all the kv-pairs, it defers their aggregation to the

reduce stage, by transferring them to the home accelerator. When a home SPM encounters

this problem, it transfers its kv-pairs to the local cache, and then lets the home core carry

out the last few final steps of the reduce function.

When an accelerator receives a kv-pair from either its associated core, or the network,

it first processes the key through its key hash unit and through the partition stage unit.

The purpose of the former is to generate a hash to use in indexing the SPM. The latter

determines which home accelerator is responsible for reducing this kv-pair: if the local

accelerator is also the home accelerator (accel is home signal), then we send the kv-pair to

the home SPM, along with the hash value and an enable signal; otherwise, we send it to

the local SPM. Note that all kv-pairs incoming from the network will be aggregated at the

home SPM. Pairs incoming from the local core will be aggregated at the home SPM only

if the local core is also the home one. Each SPM is organized as a 2-way cache augmented

with a small victim cache. Associated with each SPM is an aggregate unit, responsible for

deploying the specified reduce function to combine two kv-pairs with the same key. Each

SPM is also equipped with a dedicated unit, called frequency/collision update unit, to keep

up to date the replacement policy information. Finally, note that when a kv-pair is spilled

111

from a SPM, it is transferred out through the interconnect, either to a home accelerator or

to local cache. Spilling occurs because of eviction from the victim SPM.

Hash Function Units. Our accelerator includes two hash computing units: the key hash

unit and the partition stage unit. The former is used to compute the index value to access

the SPM, which is organized as a 2-way associative cache. The latter uses a hash function

to create a unique mapping from keys to an accelerator ID (accel ID), so that kv-pairs from

each core can be distributed among the home accelerators for the final reduce stage, and

each home accelerator is responsible for the reduce stage of all the keys hashed to its ID.

We used an XOR-rotate hash for both units. We considered several alternatives for the key

hash unit and found that XOR-rotate [64] is both the most compute efficient and has a low

collision rate.

SPM (Scratchpad Memory). The accelerators’ SPM is a fixed-size storage organized

as a 2-way associative cache, where the set is determined by the key hash unit. Each entry

in the SPMs stores the following fields: valid bit, key, the corresponding value to that key,

and frequency and collision values. When a kv-pair accessing the SPM “hits”, that is,

the keys of the SPM entry and the kv-pair are a match, we aggregate the two values by

sending them to the aggregate unit, and then update the entry in the SPM. When a kv-pair

“conflicts” in the SPM, that is, when both stored keys are different, then we leverage our

replacement solution to determine which kv-pair (the incoming one or one of those already

stored) should be removed from the SPM and evicted to the victim SPM as discussed below.

Of course, if there is an empty entry in the SPM corresponding to the current hash index,

the incoming kv-pair will be stored there. We maintain separate local and home SPMs, one

to store kv-pairs undergoing local aggregation, the other for kv-pairs in their final reduce

stage. We keep them separate because, particularly for applications with a large number of

unique keys, the home SPMs avoid key duplication and provide the equivalent of a large

unified on-chip storage, minimizing kv-pair spills to memory. Local SPMs, on the other

hand, are beneficial in avoiding network congestion. We also considered an alternative

112

direct-mapped SPM organization, but dismissed it due to much higher collision rates.

kv-pair Replacement Policy. Since the SPMs are of limited size, it is possible for two

distinct keys to be mapped to the same SPM entry and collide. Our replacement policy

determines if a previously-stored key must be evicted and replaced with an incoming kv-

pair. Upon storing a new entry in the SPM, its collision is initialized to 0 and its frequency

to 1. Each time a new kv-pair is aggregated with a current entry, its frequency value is

incremented, while the collision value remains unmodified. Each time there is a key con-

flict, that is, the incoming kv-pair has a different key than those stored in the SPM set,

the collision is incremented for both kv-pairs in the set. Whenever an incoming kv-pair

conflicts in the SPM, we analyze the two entries already in the SPM set to determine if one

should be replaced. If, for either entry, the frequency is greater than the collision, then the

entries are frequent ones and we simply update their collision values, but no replacement

occurs. In this case, we send the new kv-pair to its destination (either its home accelerator

or spilled into memory through the local cache). If, instead, collision exceeds frequency for

one of the entries, then that entry is deemed infrequent, and it is replaced by the incoming

kv-pair. If both entries are infrequent, we evict the one with the lowest frequency. Upon

replacement, the frequency and collision values of the new entry are reset.

Victim SPM. Depending on the sequence of keys accessing the SPMs, it is possible

to incur thrashing, where a small set of keys keeps overwriting each other in the SPM. To

limit the impact of this issue, we augment each SPM with a small, fully-associative “victim

SPM”: kv-pairs are stored in the victim SPM when they are denied entry to or evicted

from the main SPM. All kv-pairs that are either evicted or rejected by the victim SPM are

transferred to the home accelerator (from a local SPM), or to local cache (from a home

SPM).

Aggregate Unit. The accelerator’s aggregate unit implements the MapReduce reduce

function. Our accelerator design supports several reduce operators, which cover a wide

range of common MapReduce applications: we support addition; computing the maximum

113

Figure 6.6: System integration showing the sequence of CASM execution steps.

value, the minimum value, and average; and more. The average operation is implemented

by separating it into two addition operations that are stored into the two halves of the data

field: the first maintains the sum of values, and the second counts the total number of

values. As a general rule, CASM requires that the reduce function be both commutative

and associative, since the accelerators process kv-pairs independently from each other, and

thus no ordering can be enforced on the kv-pair processing in the combine stage. Note

that many practical applications satisfy this requirement and employ straightforward and

common operators, as those we provide [40]. It is also possible to replace the aggregate

unit with a reconfigurable logic block to provide further flexibility.

6.4 System Integration

Figure 6.6 illustrates the interactions among all systems components during execution.

At the start of an application, each core sends the type of aggregate operation and the pre-

allocated memory region that the accelerator shall use for reduced kv-pairs at the end of the

execution, and for potential spilled pairs. The core then begins sending mapped kv-pairs

114

to its accelerator, completing this transfer with a map completion signal. Whenever an

accelerator receives this signal from its local core, it sends all kv-pairs from its local SPM

to their home SPMs, and then sends out a completion signal to all other accelerators in the

system. After an accelerator has received completion signals from all other accelerators, it

flushes out the contents of its home SPM to the local cache and signals to its core that the

processing has completed. At this point, the corresponding core retrieves the final, reduced

kv-pairs from memory and carries out a final reduce step, if any kv-pair was spilled during

the execution. All communication from a core to its local accelerator is through store

instructions to a set of memory-mapped registers, while accelerators communicate with the

core via interrupts and shared memory. Each accelerator is also directly connected to the

on-chip network interface to send/receive kv-pairs and synchronization commands to/from

other accelerators and memory.

Cache Coherence. SPM storage is for exclusive access by its accelerator, and it is not

shared with other units. Communication among the accelerators also happens via custom

packets, instead of the CMP’s coherence protocol’s messages. Thus, CASM’s read/write

operations from/to the SPMs are transparent and oblivious to the CMP’s coherence proto-

col. To handle spilling of kv-pairs to the L1 cache, each accelerator, on behalf of its local

core, writes the spilled kv-pair to the cache, handled by the CMP’s coherence protocol.

Note that, for each kv-pair, spilling is handled by only one home accelerator.

Virtual Memory. In accessing memory storage set up by the local core, each acceler-

ator uses the same virtual memory space as its core; thus, addresses are translated with the

same page table and TLB as the process initiating the MapReduce application. Once the

physical address is obtained, the access occurs by read/write to memory through the local

cache.

Context Switching. During context switching of a process, the content of the local

SPMs is flushed into their respective home SPMs; then, the kv-pairs in the home SPMs

are spilled to memory. Once context switching is complete, the accelerators stop issuing

115

further requests to memory, so to avoid accessing stale data in page-tables and TLBs. Note

that, when the context is restored, spilled kv-pairs do not have to be re-loaded to the SPMs,

as their aggregation can be handled during the reduce step, together with other spilled kv-

pairs.

6.5 Composite MapReduce Applications

Many MapReduce applications map to a single MapReduce job, for instance, those

considered in our evaluation (see Section 6.6). More complex MapReduce applications

often involve multiple analysis steps, which depend on each other’s results [121, 39, 33].

One type of such applications involves multiple MapReduce jobs organized in a pipeline

fashion, with the output of one fed as input to the next. An example of such an application

is top k, an application that determines the most popular terms within an input dataset

[39]. top k is a pipelined MapReduce application: first, it relies on a word count job to

determine each term’s frequency, and then it deploys a second MapReduce job to identify

the k most popular terms. Another example is TF-IDF, an application that identifies a

list of documents that best match a given search term [33]. TF-IDF relies on two distinct

MapReduce jobs: TF (term frequency) that determines the frequency of a term for each

document and IDF (inverse document frequency) that determines the uniqueness of a term

for a particular document by diminishing the frequency value of terms common across

multiple documents. Beyond pipelined applications, other complex applications include

those that compute their results iteratively, e.g., k-means [107].

The execution flow structures of both types of applications described above are com-

patible with CASM. For a pipelined MapReduce application, at the end of the application’s

first job, the software framework instructs CASM to copy the aggregated kv-pairs from

source scratchpads to their destination scratchpads, followed by copying the kv-pairs to

the CMP’s memory system. If any kv-pair was spilled during the execution of the job,

then CASM’s cores retrieve the final kv-pairs from memory, reduce those kv-pairs, and

116

then generate the final output of the job (as described in Section 6.4). The next job of the

application in the pipeline then takes the output of the first job as input and follows the

same steps as that of the first job to produce its outcome. This process will continue until

the final job of the application is executed. The output of the final job of the application

is provided as the result of the overall application. The same process can be extended to

iterative MapReduce applications except that instead of per MapReduce job, CAM initiates

the above process per each iteration of the application.

6.6 Experimental Setup

In this section, we provide the experimental setup that we deployed to evaluate the

CASM solution.

In order to perform a detailed micro-architectural evaluation of a CASM-augmented,

large-scale CMP architecture, we implemented our design with gem5 + Garnet [34], a

cycle-accurate simulation infrastructure. We ported the Phoenix++ framework [107] to

gem5’s x86 model using “m5threads” and carried out the simulations using the “syscall”

mode. We modeled the baseline scale-up CMP solution as a 64-core CMP in a 8x8 mesh

topology, with 4 DDR3 memory nodes at the corners of the mesh. Each core is OoO, 8-

wide, and equipped with a 16KB private L1 I/D cache and a 128KB slice of a shared L2

cache. The cache coherence is based on a MOESI directory-based protocol. The intercon-

nect uses 5-stage routers. CASM’s SPMs are also 16KB, and use 8-entry victim SPMs.

Each entry in the SPMs contains 64-bit key and value fields, along with an 8-bit field to

implement our replacement policy. For the ‘average’ reduce operation, the value field is

partitioned into two 32-bit fields, accruing sum and entry-count.

Workloads and Datasets. We considered several workloads in our evaluation: wc

(wordcount, 257K keys), h-img (histogram image, 768 keys), and lr (linear regression, 5

keys) are gathered from the Phoenix++ framework, while sc (counts frequency of 64-bit

hashes of 3-word sequences, 3.5M keys), h-rt (histogram ratings of movies, 5 keys), and

117

Figure 6.7: CASM performance speedup over a baseline CMP execution of MapReduce.
SPMs are 16KB for CASM, and infinite for the ideal variant.

h-mv (movies by histogram rating, 20K keys) are adopted from the PUMA benchmarks

[21]. Finally, we developed pvc (page view count, 10K keys), mm (min-max), and avg

from scratch using the API of Phoenix++. The datasets come from the same framework

as the workloads, except for avg and mm (we used a list of 28K cities and corresponding

temperature logs) and pvc, which we generated. For wc, we preprocess its dataset to filter

out words that are more than 8 characters long because of our 64-bit key-size limitation.

We used two families of datasets. In running the cycle-accurate gem5 simulations, we

used datasets of 1GB for h-rt and h-mv, and 100MB for all others. The dataset footprint

was driven by the limited performance of the gem5 simulator (e.g., 15 days of simulation

time for a 1GB input file). Note that datasets of similar size have been used to evaluate

prominent scale-up MapReduce frameworks [97, 114, 107]; thus, we determined that such

footprint sizes are useful and provide practical insights. To further evaluate the scalability

of CASM to large-scale datasets, we carried out a study with dataset sizes of 30GB from

[2] for wc and sc, 100GB from [21] for h-mv and h-rt, and 1.5GB from [107] for h-img.

For other workloads, we generated 100GB datasets with the same number of keys.

118

6.7 Performance Evaluation

In this section, we first present overall performance benefit, then gain insights by in-

specting sources of performance gains and data transfer analysis. We also provide discus-

sion on the performance benefit that can be achieved by employing only either the local or

home scratchpads.

Figure 6.7 reports the performance speedup of CASM compared to the baseline CMP

running Phoenix++. We report both the speedup that we could achieve with infinitely large

local and home SPMs (i.e., no kv-pair collision occurs in either of the SPMs) and that of the

actual setup (i.e., 16KB SPMs). Note that most applications reach fairly close to their ideal

speedup. From the figure, the ideal speedup ranges from 1.1x to 26x, while the speedups

we observed with our implementation settings peak at 12x and average at 4x. Note that wc,

mm, and avg have many unique keys; yet, CASM achieves an almost ideal speedup. wc,

in particular, is an important kernel in MapReduce applications. h-img, h-rt, and lr have

relatively few unique keys, which comfortably fit in the baseline CMP’s caches, reducing

our room for improvement. The speedup of lr is relatively better because its map stage is

less memory-intensive than that of h-img and h-rt (CASM executes concurrently with the

map stage). h-mv’s speedup is limited despite its many unique keys, as its input data layout

provides a cache-friendly access pattern, which benefits the baseline CMP. pvc entails fairly

heavy parsing during mapping, thus limiting the speedup potential of CASM. Finally, it is

clear that sc’s speedup is limited by the SPM size because of its vast number of distinct

keys, over 3 million. Yet, CASM’s 16KB SPMs were able to deliver a 2x speedup.

Speedup Breakdown. To assess source of the performance gains that CASM at-

tains, we analyzed the execution stage breakdown of our testbed applications running on a

Phoenix++/ CMP system. To gather the analysis data, this experiment leveraged our gem5-

Garnet infrastructure. Figure 6.8 reports how execution time is partitioned among map,

combine, partition, and reduce stages. Moreover, we dissected the combine stage into i)

hash function computation; ii) hash-key lookup, which entails memory accesses to walk

119

e

Figure 6.8: Performance insights. The plot reports a breakdown of MapReduce by stage
for a baseline CMP framework. The table shows performance improvements provided by
i) map stage concurrency alone, and ii) hardware acceleration alone.

the hashtable; and iii) data aggregation. Note that for most applications, the dominant time

drain is the hash-key lookup. pvc presents a dominating map stage because of the extensive

parsing of web addresses, while lr is dominated by data aggregation because it only uses

five distinct keys, which can be easily mapped into registers. It can be noted that just opti-

mizing the hash key lookup execution via a specialized hardware structure would provide

significant overall performance benefits. The table in Figure 6.8 specifies the contributions

of each source of performance improvement. As discussed in Figure 6.2, the map stage in

CASM executes concurrently with the other MapReduce stages. The first row of the table

reports the speedup we would obtain if this concurrency was the only source of perfor-

mance improvement. The second row of the table reports the speedup we would obtain if

the map stage was serialized with the other stages, but combine, partition, and reduce were

all accelerated by CASM.

Data Transfers Analysis. To further explain sources of speedups, we tracked off-chip

memory accesses for our baseline CMP, the CASM solution and an ideal solution. For

the latter, we assumed that all unique keys could be accommodated in the SPMs, with no

off-chip memory access for key-lookups. CASM reduces this traffic by 4.22x on average,

120

Figure 6.9: Speedup breakdown by home or local SPM. CASM with local SPMs alone
shows significant speedup on applications with few unique keys (no spilling to the home
SPM). Home SPMs contribute to overall speedup mostly for applications with many keys
and low key-access locality.

while the ideal solution achieves a 9x traffic reduction. Such traffic reduction is possible

because CASM’s home SPMs experience minimal kv-pair spills (<4%), except for sc,

which amounts to 75% because of its large number of unique keys. CASM’s ability to

aggressively reduce off-chip memory accesses is the root of the vast performance benefits

it provides, since many of our workloads spend most of their time performing key-lookups,

which entail accesses to caches and memory. Furthermore, we found that CASM reduces

interconnect latency by 7% on average, peaking at 15% for workloads such as wc.

SPM (scratchpad memory) Architecture Analysis. In our previous analysis, we eval-

uated the contribution to overall speedup by home and local SPMs. Figure 6.9 provides the

results of a comparative analysis when using only home SPMs or only local SPMs – note

that each SPM is still 16KB in size. When CASM uses only local SPMs, the benefits of

local aggregation stand, and we still obtain acceptable speedups, although to a lower extent:

local SPMs contribute to 2.75x of the speedup, on average. In particular, for applications

with a moderate number of keys, such that they can all fit in the local SPM, local SPMs

provide the majority of the overall performance benefit of CASM. For other applications,

with many distinct keys, performance becomes more challenging using only local SPMs,

because of the high rate of spilling to the home SPM. On the other hand, we found that hav-

ing only home SPMs provides on average a 2.26x speedup. The performance boost here is

extremely variable: applications with a large number of keys provide the best benefit (e.g.,

121

Figure 6.10: L1 cache sensitivity study. Performance speedup over the baseline CMP, for
varied L1 cache sizes. The performance improves by no more than 26% at L1=64KB.

wc). Note that, in a few cases, the use of home SPMs alone leads to a slowdown, as much

as -7x (lr), because of the high interconnect traffic generated in transferring all kv-pairs

directly to the home SPMs, with no local aggregation.

6.8 Sensitivity Studies

This section provides sensitivities studies in terms of cache and input data sizes.

Cache Size Sensitivity. Since CASM entails additional storage (32KB per accelerator

in our experimental setup) over the L1 data caches, one might wonder if it were possible to

achieve the same performance improvement by simply increasing the capacity of the cores’

caches. To this end, we performed a cache-size sensitivity study by tracking the execution

time of each application over a range of cache sizes. Figure 6.10 provides a plot obtained

by running our MapReduce applications on the baseline CMP, while sweeping the L1 data

cache size from 16KB (the original baseline size) to 64KB. The plot shows that the largest

performance gain is only 26%, corresponding to the largest L1 data cache considered,

while running the pvc benchmark. Note that this solution point entails more storage than

the total of our baseline L1 cache and the two SPMs embedded in the CASM accelerator.

In contrast, with the addition of CASM, we can achieve an average of 4x speedup with less

storage. Finally, we carried out a similar analysis for L2 caches. In this case, we swept the

size of the total shared L2 cache from 8MB (128KB per core) to 32MB (512KB per core)

and found that the largest performance gain was only 32% at 32MB when running wc.

122

Table 6.1: Collision rates over a range of dataset and SPM sizes at CASM’s local
and home SPMs. At 64KB, CASM achieves equal or lower collision rates with large (30-
100GB) datasets than with the medium (0.1-1GB) ones at 16KB. Workloads not reported
have a 0% collision rate for all datasets and SPMs sizes. min-max and avg have the same
access patterns, leading to the same collisions.

dataset size/ wc mm/avg pvc sc
SPM size local home local home local home local home

0.1-1GB / 16KB 24.14 3.51 46.35 1.92 3.99 0.00 91.44 75.31
30-100GB / 16KB 30.00 5.28 47.03 1.63 5.24 0.00 94.98 74.51
30-100GB / 32KB 24.16 3.96 45.83 0.43 1.04 0.00 93.47 69.57
30-100GB / 64KB 18.71 3.01 41.25 0.10 0.63 0.00 91.19 65.17

Scalability to Large Datasets. This study estimates the performance of CASM on the

large datasets discussed earlier in this section, ranging from 30 to 100GB. Since we could

not carry out an accurate simulation, due to the limited performance of gem5, we used the

collision rate on the local and home SPMs as a proxy for performance. Indeed, kv-pair

collisions in local or home SPMs are the lead cause for contention in the interconnect; in

addition, collisions in the home SPMs cause spilling to off-chip memory. As discussed

above, off-chip memory accesses are the main source of performance benefits provided by

CASM. In contrast, if an application generated no collisions, CASM’s execution would

almost completely overlap that of the map stage. Table 6.1 reports the collision rates for

our applications on all datasets we considered for them, both medium (0.1-1GB) and large

(30-100GB). We compute a collision rate as the average number of kv-pairs collisions at

the local/home SPM, divided by the total number kv-pairs. We only report our findings for

four applications because all others have a collision rate of 0%, irrespective of the dataset

size. The first row of the table reports the collision rate of the medium dataset – the one

simulated in gem5 and reported in Figure 6.7. The other rows report the collision rate for

the large datasets, over a range of SPM sizes. For the large datasets, we report in bold the

SPM sizes that lead to a collision rate below that of our original setup with the medium

dataset. Assuming that the baseline CMP maps large datasets as efficiently as medium

datasets – a highly conservative assumption – CASM should achieve the same or better

123

performance speedup as reported in Figure 6.7, when the collision rates at both SPMs fall

below that of the medium datasets. Note that all workloads reach this low collision rate with

64KB SPMs. Note also that our analysis is based on a very conservative assumption that

the baseline CMP would be able to provide the same performance for medium and large

datasets, which is unlikely, as large datasets create further pressure on the baseline-CMP’s

memory subsystem, providing additional benefits for CASM.

6.9 Area, Power, and Energy

This section presents area and power overheads, as well as energy benefits provided by

CASM, as compared to CMP-only baseline.

We synthesized CASM’s logic in IBM 45nm technology. We then setup Cacti with the

same technology node to model the SPMs. We used McPAT to compute the same metrics

for the other CMP node’s components: cores, caches and interconnect. Our findings indi-

cate that CASM accounts for approximately 6% of a CMP node’s area and 1% of its peak

power consumption. We derived energy consumption from average dynamic and leakage

power and total execution time, using the tools detailed earlier and performance stats from

gem5/Garnet. The performance speedup of CASM provides energy savings up to 11x, cor-

responding to wc. Since the power overhead of CASM is minimal (1%), it is natural to

expect that high performance benefits translate into high energy savings.

6.10 Bibliography

This section provides a summary of related works, focusing on solutions that opti-

mize the execution of data-intensive applications, by leveraging CMPs, GPUs, FPGAs,

and domain-specific architectures.

Many MapReduce solutions targeting CMPs, GPUs and vector platforms have recently

been proposed [97, 38, 107, 114, 71, 46, 49, 55]. CPU solutions rely on a traditional mem-

124

ory subsystem, which we found to be inefficient for most applications. Other architectures

are optimized for compute-intensive applications, whereas, most MapReduce applications

require large and irregularly accessed data structures, generating high off- and on-chip traf-

fic. Several other works accelerate MapReduce using FPGA platforms: [100, 61], but their

architecture does not allow for scaling to large CMP systems. Some recent works share

some traits with CASM. For instance, [65] improves hash-key lookups for database ap-

plications [54, 18], and optimizes off- and on-chip communication for graph analytics.

Other proposals, even if they state different goals, have proposed some architectural fea-

tures that share some similarity with CASM: the software-defined caches of [32] partially

resemble home scratchpads, [77] proposes a set of fine-grained accelerators, [51] provides

a near-data processing architecture, [19] offers computation in cache, and [89] designs a

novel reconfigurable architecture that is more flexible than domain-specific architectures.

All of these solutions, while including valuable contributions, do not offer the full range of

optimized design aspecs of CASM, and many have a different set of goals all together.

6.11 Summary

This chapter discussed CASM, a novel hardware architecture that accelerates Map-

Reduce applications, leveraging the skewed access frequency of key-value pairs. CASM

augments each core of a CMP with scratchpad memories. The scratchpads store frequently-

occurring key-value pairs, which are often responsible for the majority of the access. It also

provides processing data near storage functionality by co-locating each scratchpad with a

lightweight compute engine. By doing so, CASM manages to process the majority of the

key-value pairs in scratchpads. The system is highly scalable with the number of cores,

and provides over a 4x speedup on average over a CMP-based software solution, as we

evaluated over a wide range of input dataset, up to 100GB in size. The cost of CASM is a

6% overhead in silicon area and a 1% in peak power.

Overall in this chapter, we showed that our techniques to boost the performance and

125

lower the energy of application domains that are data-transfer bounded are applicable and

effective even in domains beyond graphs. For instance, as we discussed above, MapRe-

duce applications access their key-value data with random-access patterns, which causes

high on- and off-chip communication, which, in turn, leads to performance and energy in-

efficiencies. We addressed these inefficiencies by employing our two strategies discussed

in Section 1.4. We adopted our first strategy of specializing memory architecture, where

we utilized scratchpads to store frequently-occurring key-value pairs, which are often re-

sponsible for the majority of the off-chip memory accesses. We then adopted our second

strategy of processing data near storage, by co-locating each scratchpad with a lightweight

compute engine. This second strategy reduced the interconnect traffic that otherwise would

take place between cores and remote on-chip storage units.

With this chapter, we conclude the discussion of the technical contributions of this

dissertation. The next chapter provides the conclusions of this dissertation, followed by

some future research directions that can potentially improve this existing study.

126

CHAPTER 7

Conclusions

In this chapter, we provide a summary of the contributions of this dissertation, fol-

lowed by future potential research directions. Finally, we conclude this chapter with a brief

summary of the overall dissertation.

7.1 Summary of the Contributions

This dissertation provides several solutions that address the primary limitations of graph

analytics in conventional computing system architectures, specifically in terms of perfor-

mance and energy efficiencies affected by unstructured and unpredictable data access pat-

terns. We do this by relying on three strategies discussed in Section 1.4. These strategies

are: 1) specializing the memory structure to improve the efficacy of small on-chip stor-

age, and thus accommodating the characteristics of graph applications, 2) processing data

near its storage location, when possible, to reduce interconnect traffic, and 3) coalescing

data messages in the network, which should also reduce the amount of interconnect traffic.

Based on these strategies, we developed several solutions, discussed below.

Processing in on-chip memory architecture for graph analytics. In Chapter 3, we

discussed our first solution, OMEGA [18], based on our first strategy of specializing mem-

ory architecture. As discussed in Section 1.4, many graphs follow a power-law distribution;

hence, some vertices are accessed more frequently than others. Based on that character-

127

istic, we developed specialized on-chip storage that houses this frequently-accessed data.

To make our solution scalable, we distribute the specialized on-chip storage by co-locating

one storage unit with each core. This technique reduces the traffic between the processor

and off-chip memory. In addition, in aiming to follow our second strategy, we augment

each specialized on-chip storage unit with a specialized compute engine that carries out the

atomic operations affecting the vertices in the local on-chip storage, and which have been

offloaded from the cores. The specialized compute engines help reduce both interconnect

traffic and computational demands on the cores.

On-path message coalescing for graph analytics. Although the OMEGA solution

described above manages to offload atomic operations from cores to specialized compute

engines, the messages for these operations must be transferred via the interconnect. Due

to the aforementioned power-law characteristics; most often these operations target the

same vertex and can therefore be coalesced in the network. Our MessageFusion solution,

detailed in Chapter 4, adopts our third strategy of coalescing data messages in the network.

Specifically, it augments each router in the network with specialized hardware to carry out

such message coalescing. It boosts the chances of coalescing by reorganizing the work

at each compute node so that messages to a same vertex are generated in close sequence

before moving to the next one. By doing so, it significantly reduces network traffic, and

thus maximizes performance and energy efficiencies.

Hybrid processing in on/off memory architecture for graph analytics. The two so-

lutions described above seek to optimize the execution of atomic operations on frequently-

accessed data. However, the computation of atomic operations on infrequently-accessed

data still takes place through conventional mechanisms, that is, transferring the data from

off-chip memory to the relevant processor core and computing updates in the core. Our

Centaur solution, discussed in Chapter 5, relies on the second strategy of processing data

near storage so to improve precisely the computation of infrequently-accessed data: it op-

timizes the computation of atomic operations on infrequently-accessed data as well. In

128

particular, it augments off-chip memory units with specialized compute engines, which are

tasked with executing atomic operations related to infrequently-accessed data. The compu-

tation by these specialized engines reduces the traffic between cores and off-chip memory

and, at the same time, further frees up the cores from executing atomic operations.

Optimizing memory architecture beyond graph analytics. Finally, we applied the

strategies discussed thus far to MapReduce applications, to demonstrate their applicability

to multiple data-intensive application domains. In this regard, Chapter 6 detailed our work,

CASM, which optimizes the execution of MapReduce, by augmenting each core in a chip

multiprocessor with specialized on-chip storage units to house performance-critical data,

thus reducing traffic between cores and off-chip memory. In addition, each on-chip storage

unit is co-located with a lightweight compute engine that processes data in situ, limiting

network traffic.

7.2 Future Directions

The contributions of this dissertation are augmented by the future research directions it

illuminates, as discussed below.

Dynamic graphs. Dynamic graphs, in which the connectivity of vertices changes over-

time, are increasingly becoming important in a wide range of areas, such as social networks

[74]. Although this dissertation focuses on static graphs (i.e., graphs with a static topology),

future work might find the techniques discussed in this dissertation useful for dynamic

graphs as well. New work might explore, for example, efficient techniques that maximize

the on-chip memory utilization while the structure of the graph morphs over time.

Locked cache vs scratchpad. Locking cache lines allows programmers to load a cache

line and disable its replacement policy [95]. This technique could be extended to cap-

ture frequently-accessed data on conventional caches by locking their corresponding cache

lines, thus, minimizing the cost associated with hardware specialization, as compared to

the solutions discussed in this dissertation.

129

Processing near on-chip memory using the general-purpose cores. In this disserta-

tion, each scratchpad is co-located with a specialized compute unit to process the vertex-

update operations for vertices stored in that scratchpad. In place of the specialized com-

pute unit, the general-purpose core that is local to the scratchpad can be utilized for this

purpose. This approach could potentially reduce the overhead of hardware specialization

while maintaining an attractive performance cost.

Further memory architecture optimization using word-level granularity access.

In this dissertation, the vertex data stored in the off-chip memory is accessed at cache-line

granularity, and these accesses most often exhibit low spatial-locality, potentially creat-

ing a performance bottleneck. One future research direction is to evaluate the benefits of

accessing the off-chip memory at word-level granularity instead of cache-line granularity.

Hybrid processing in on-/off-chip memory architecture for other applications do-

mains. Chapter 5 discusses our work, Centaur, which targets graph analytics. Centaur’s

hybrid processing in on- and off-chip memory technique does not modify the on-chip mem-

ory’s SRAM-cell circuitry nor the off-chip memory’s DRAM-cell circuitry. Efficient hard-

ware solutions for compute-intensive applications, such as machine learning, often require

re-purposing the SRAM- or DRAM- cell circuitry as computational blocks. In this regard,

future work might find it useful to employ a Centaur-like hybrid processing in on- and

off-chip memory architectures that involve the aforementioned modifications.

From single-node platforms to distributed-system platforms. Finally, the techniques

discussed in this dissertation target single-node platforms. For further scalability, future

work might find it useful to extend them to distributed-system platforms.

7.3 Summary

In summary, this dissertation addresses the performance limitations of existing com-

puting systems so to enable emerging graph analytics. To achieve this goal, we identi-

fied three key strategies: 1) specializing memory architecture, 2) processing data near its

130

storage, and 3) message coalescing in the network. Based on these strategies, the dis-

sertation presents several solutions: OMEGA, which employs specialized on-chip storage

units with co-located specialized compute engines to accelerate the computation; Message-

Fusion, which coalesces messages in the interconnect; and Centaur, which optimizes the

processing of infrequently-accessed data. Overall, the solutions discussed in this disserta-

tion provide a 2× performance improvement, with negligible silicon area overhead, across

a wide range of graph-based applications. We also demonstrate the benefits of adapting our

strategies to other data-intensive domains by exploring a solution in MapReduce, where our

strategies achieve a 4× performance speedup, once again with negligible area and power

overheads.

Finally, we would like to conclude by noting that the limited available works in the

memory-access specialization areas made our journey of working on this dissertation chal-

lenging. We hope that this dissertation will be a valuable resource to future researchers

working on related areas, enabling them to focus more on developing their own novel tech-

niques.

131

BIBLIOGRAPHY

132

BIBLIOGRAPHY

[1] Intel Corporation. https://www.intel.com/content/www/us/en/

architecture-and-technology/64-ia-32-architectures-software-

developer-vol-1-manual.html, 2017.
[2] Project Gutenberg. https:/www.gutenberg.org, 2017.
[3] 9th DIMACS Implementation Challenge . http://www.dis.uniroma1.it/

challenge9/, May 2018.
[4] Cache Pseudo-Locking. https://lwn.net/Articles/738968/, Dec. 2018.
[5] Ligra GitHub. https://github.com/jshun/ligra, May 2018.
[6] WebGraph. http://webgraph.di.unimi.it/, May 2018.
[7] Facebook Is Changing News Feed (Again) to Stop Fake News. https:

//www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-

page-rank, 2020.
[8] Graph Databases Lie at the Heart of $7TN Self-driving Car Opportu-

nity. https://www.information-age.com/graph-databases-heart-self-
driving-car-opportunity-123468309/, 2020.

[9] How to Perform Fraud Detection with Personalized Page Rank. https:

//www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-

page-rank, 2020.
[10] Is technology the key to combatting fake news? https://www.itproportal.

com/features/is-technology-the-key-to-combatting-fake-news/,
2020.

[11] Neo4j COVID-19 Contact Tracing. https://neo4j.com/blog/this-

week-in-neo4j-covid-19-contact-tracing-de-duplicating-the-

bbc-goodfood-graph-stored-procedures-in-neo4j-4-0-sars-cov-2-

taxonomy/, 2020.
[12] POWER9. https://en.wikipedia.org/wiki/POWER9, 2020.
[13] Real Time Fraud Detection: Next Generation Graph Analytics? https:

//medium.com/@erez.ravid/real-time-fraud-detection-next-

generation-graph-analytics-b6cefc96d1bb, 2020.
[14] Seven Bridges of Knigsberg. https://en.wikipedia.org/wiki/Seven_

Bridges_of_K%C3%B6nigsberg, 2020.
[15] Shortest Path Problem. https://en.wikipedia.org/wiki/Shortest_path_

problem/, 2020.
[16] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. Dreslinski, D. Blaauw,

and T. Mudge. Scaling towards kilo-core processors with asymmetric high-radix
topologies. In Proceedings of the International Symposium on High Performance

133

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https:/www.gutenberg.org
http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/
https://lwn.net/Articles/738968/
https://github.com/jshun/ligra
http://webgraph.di.unimi.it/
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.information-age.com/graph-databases-heart-self-driving-car-opportunity-123468309/
https://www.information-age.com/graph-databases-heart-self-driving-car-opportunity-123468309/
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.sicara.ai/blog/2019-01-09-fraud-detection-personalized-page-rank
https://www.itproportal.com/features/is-technology-the-key-to-combatting-fake-news/
https://www.itproportal.com/features/is-technology-the-key-to-combatting-fake-news/
https://neo4j.com/blog/this-week-in-neo4j-covid-19-contact-tracing-de-duplicating-the-bbc-goodfood-graph-stored-procedures-in-neo4j-4-0-sars-cov-2-taxonomy/
https://neo4j.com/blog/this-week-in-neo4j-covid-19-contact-tracing-de-duplicating-the-bbc-goodfood-graph-stored-procedures-in-neo4j-4-0-sars-cov-2-taxonomy/
https://neo4j.com/blog/this-week-in-neo4j-covid-19-contact-tracing-de-duplicating-the-bbc-goodfood-graph-stored-procedures-in-neo4j-4-0-sars-cov-2-taxonomy/
https://neo4j.com/blog/this-week-in-neo4j-covid-19-contact-tracing-de-duplicating-the-bbc-goodfood-graph-stored-procedures-in-neo4j-4-0-sars-cov-2-taxonomy/
https://en.wikipedia.org/wiki/POWER9
https://medium.com/@erez.ravid/real-time-fraud-detection-next-generation-graph-analytics-b6cefc96d1bb
https://medium.com/@erez.ravid/real-time-fraud-detection-next-generation-graph-analytics-b6cefc96d1bb
https://medium.com/@erez.ravid/real-time-fraud-detection-next-generation-graph-analytics-b6cefc96d1bb
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Shortest_path_problem/
https://en.wikipedia.org/wiki/Shortest_path_problem/

Computer Architecture (HPCA), 2013.
[17] A. Addisie and V. Bertacco. Collaborative accelerators for in-memory mapreduce on

scale-up machines. In Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC), 2019.

[18] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco. Heterogeneous memory sub-
system for natural graph analytics. In Proceedings of the International Symposium
on Workload Characterization (IISWC), 2018.

[19] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das.
Compute caches. In Proceedings of the International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2017.

[20] N. Agarwal, L.-S. Peh, and N. K. Jha. In-network coherence filtering: snoopy co-
herence without broadcasts. In Proceedings of the International Symposium on Mi-
croarchitecture (MICRO), 2009.

[21] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar. PUMA: Purdue MapRe-
duce benchmarks suite. Technical Report TR-ECE-12-11, School of Electrical and
Computer Engineering, Purdue University, 2012.

[22] M. Ahmad and O. Khan. GPU concurrency choices in graph analytics. In Proceed-
ings of the International Symposium on Workload Characterization (IISWC), 2016.

[23] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A scalable processing-in-memory
accelerator for parallel graph processing. In Proceedings of the International Sym-
posium on Computer Architecture (ISCA), 2015.

[24] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled instructions: a low-overhead,
locality-aware processing-in-memory architecture. In Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), 2015.

[25] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, and T. Salakoski. All-
paths graph kernel for protein-protein interaction extraction with evaluation of cross-
corpus learning. BMC Bioinformatics, 2008.

[26] R. Albert, H. Jeong, and A.-L. Barabási. Internet: Diameter of the world-wide web.
Nature, 1999.

[27] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. Large scale net-
works fingerprinting and visualization using the k-core decomposition. In Proceed-
ings of the Neural Information Processing Systems (NIPS), 2006.

[28] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura. Rabbit order:
Just-in-time parallel reordering for fast graph analysis. In Proceedings of the Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2016.

[29] V. Balaji and B. Lucia. When is graph reordering an optimization? Studying the
effect of lightweight graph reordering across applications and input graphs. In Pro-
ceedings of the International Symposium on Workload Characterization (IISWC),
2018.

[30] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
1999.

[31] S. Beamer, K. Asanovi, and D. Patterson. Locality exists in graph processing: Work-
load characterization on an ivy bridge server. In Proceedings of the International
Symposium on Workload Characterization (IISWC), 2015.

[32] N. Beckmann and D. Sanchez. Jigsaw: Scalable software-defined caches. In Pro-

134

ceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2013.

[33] L. Bin and G. Yuan. Improvement of tf-idf algorithm based on hadoop framework. In
Proceedings of the International Conference on Computer Application and System
Modeling (ICCASM), 2012.

[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39:1–7, 2011.

[35] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. Design of the Graph-
BLAS API for C. In Proceedings of the International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2017.

[36] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph min-
ing. In Proceedings of the SIAM International Conference on Data Mining (SDM),
2004.

[37] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan. One trillion
edges: Graph processing at Facebook-scale. Proceedings of the VLDB Endowment
(PVLDB), 2015.

[38] C.-T. Chu, S. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Ng. Map-
Reduce for machine learning on multicore. In Proceedings of the Neural Information
Processing Systems (NIPS), 2007.

[39] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and R. Sears. Map-
Reduce online. In Proceedings of the USENIX Conference on Networked Systems
Design and Implementation (NSDI), 2010.

[40] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea. Camdoop: Exploiting in-
network aggregation for big data applications. In Proceedings of the Symposium on
Networked Systems Design and Implementation (NSDI), 2012.

[41] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang.
GraphH: A processing-in-memory architecture for large-scale graph processing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 38:640–653, 2018.

[42] X. Deng, Y. Yao, J. Chen, and Y. Lin. Combining breadth-first with depth-first search
algorithms for VLSI wire routing. In Proceedings of the International Conference
on Advanced Computer Theory and Engineering (ICACTE), 2010.

[43] S. Dhingra, P. S. Dodwad, and M. Madan. Finding strongly connected components
in a social network graph. International Journal of Computer Applications.

[44] S. Dickey and R. Kenner. Combining switches for the NYU Ultracomputer. In
Proceedings of the Symposium on the Frontiers of Massively Parallel Computation
(FRONTIERS), 1992.

[45] H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and O. Khan. Accelerating
graph and machine learning workloads using a shared memory multicore architec-
ture with auxiliary support for in-hardware explicit messaging. In Proceedings of
the International Parallel and Distributed Processing Symposium (IPDPS), 2017.

[46] K. Duraisamy, R. Kim, W. Choi, G. Liu, P. Pande, R. Marculescu, and D. Mar-
culescu. Energy efficient MapReduce with VFI-enabled multicore platforms. In
Proceedings of the Design Automation Conference (DAC), 2015.

135

[47] V. Eguiluz, D. Chialvo, G. Cecchi, M. Baliki, and A. Apkarian. Scale-free brain
functional networks. Physical Review Letters, 94:018102, 2005.

[48] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. ACM SIGCOMM Computer Communication Review (CCR),
29:251–262, 1999.

[49] W. Fang, B. He, Q. Luo, and N. K. Govindaraju. Mars: Accelerating MapReduce
with graphics processors. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 22:608–620, 2010.

[50] S. Fortunato. Community detection in graphs. Physics Reports, 486:75–174, 2010.
[51] M. Gao, G. Ayers, and C. Kozyrakis. Practical near-data processing for in-memory

analytics frameworks. In Proceedings of the International Conference on Parallel
Architecture and Compilation (PACT), 2015.

[52] M. Girvan and M. E. Newman. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences (PNAS), 99:7821–7826,
2002.

[53] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI), 2012.

[54] T. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphicionado: A high-
performance and energy-efficient accelerator for graph analytics. In Proceedings of
the International Symposium on Microarchitecture (MICRO), 2016.

[55] T. Hayes, O. Palomar, O. Unsal, A. Cristal, and M. Valero. Future Vector Micro-
processor Extensions for Data Aggregations. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2016.

[56] J. Heidemann, M. Klier, and F. Probst. Identifying key users in online social net-
works: A PageRank based approach. 2010.

[57] K. Inoue, K. Kai, and K. Murakami. Dynamically variable line-size cache archi-
tecture for merged DRAM/Logic LSIs. IEICE Transactions on Information and
Systems (IEICE T INF SYST), 83:1048–1057, 2000.

[58] D.-I. Jeon and K.-S. Chung. CasHMC: A cycle-accurate simulator for hybrid mem-
ory cube. IEEE Computer Architecture Letters (CAL), 16:10–13, 2017.

[59] N. Jiang, D. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. Shaw, J. Kim,
and W. Dally. A detailed and flexible cycle-accurate network-on-chip simulator. In
Proceedings of the International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2013.

[60] S.-W. Jun, A. Wright, S. Zhang, et al. GraFBoost: Using accelerated flash storage
for external graph analytics. In Proceedings of the International Symposium on
Computer Architecture (ISCA), 2018.

[61] C. Kachris, G. Sirakoulis, and D. Soudris. A reconfigurable MapReduce accelerator
for multi-core all-programmable socs. In Proc. ISSOC, 2014.

[62] A. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A fast and accurate NoC
power and area model for early-stage design space exploration. In Proceedings of
the conference on Design, Automation and Test in Europe (DATE), 2009.

[63] G. Kim, J. Kim, J. H. Ahn, and J. Kim. Memory-centric system interconnect de-
sign with hybrid memory cubes. In Proceedings of the International Conference on

136

Parallel Architectures and Compilation Techniques (PACT), 2013.
[64] A. Klein. Stream ciphers. Springer, 2013.
[65] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan. Meet the

walkers: Accelerating index traversals for in-memory databases. In Proceedings of
the International Symposium on Microarchitecture (MICRO), 2013.

[66] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation
on just a PC. In Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[67] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, May 2018.

[68] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. McPAT: an in-
tegrated power, area, and timing modeling framework for multicore and manycore
architectures. In Proceedings of the International Symposium on Microarchitecture
(MICRO), 2009.

[69] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph compression and mining
beyond caveman communities. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 26:3077–3089, 2014.

[70] W. Liu, X. Li, T. Liu, and B. Liu. Approximating betweenness centrality to identify
key nodes in a weighted urban complex transportation network. Journal of Advanced
Transportation (JAT), 2019.

[71] M. Lu, Y. Liang, H. Huynh, Z. Ong, B. He, and R. Goh. MrPhi: An Optimized
MapReduce Framework on Intel Xeon Phi Coprocessors. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 26:3066–3078, 2014.

[72] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. Mosaic: Pro-
cessing a trillion-edge graph on a single machine. In Proceedings of the European
Conference on Computer Systems (EuroSys), 2017.

[73] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD), 2010.

[74] A. McCrabb, E. Winsor, and V. Bertacco. DREDGE: Dynamic Repartitioning during
Dynamic Graph Execution. In Proceedings of the Design Automation Conference
(DAC), 2019.

[75] M. Meringer. Fast generation of regular graphs and construction of cages. Journal
of Graph Theory (JGT), 30:137–146, 1999.

[76] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
2004.

[77] A. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr. Fine-grained ac-
celerators for sparse machine learning workloads. In Proceedings of the Asia and
South Pacific Design Automation Conference (ASP-DAC), 2017.

[78] S. Mittal. A survey of cache bypassing techniques. Journal of Low Power Electron-
ics and Applications (JLPEA), 6:5, 2016.

[79] I. Moreno-Sánchez, F. Font-Clos, Á. Corral, et al. Large-Scale Analysis of Zipfs
Law in English Texts. PLOS ONE, 11:1–19, 2016.

[80] A. Mukkara, N. Beckmann, and D. Sanchez. PHI: Architectural support for

137

http://snap.stanford.edu/data

synchronization-and bandwidth-efficient commutative scatter updates. In Proceed-
ings of the International Symposium on Microarchitecture (MICRO), 2019.

[81] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. GraphPIM: Enabling
instruction-level PIM offloading in graph computing frameworks. In Proceedings of
the High Performance Computer Architecture (HPCA), 2017.

[82] L. Nai, Y. Xia, I. Tanase, H. Kim, and C.-Y. Lin. GraphBIG: understanding graph
computing in the context of industrial solutions. In Proceedings of the High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2015.

[83] M. Najork and J. Wiener. Breadth-first crawling yields high-quality pages. In Pro-
ceedings of the International Conference on World Wide Web (WWW), 2001.

[84] M. Newman. Detecting community structure in networks. The European Physical
Journal B (EPJ B), 38:321–330, 2004.

[85] M. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics, 46:323–351, 2005.

[86] M. Newman et al. Random graphs as models of networks. Handbook of Graphs and
Networks, 1:35–68, 2003.

[87] D. Nicolaescu, X. Ji, A. Veidenbaum, A. Nicolau, and R. Gupta. Compiler-Directed
Cache Line Size Adaptivity. In Proceedings of the International Workshop on Intel-
ligent Memory Systems (IMS), 2000.

[88] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao. Tigr: Transforming Irregular Graphs for
GPU-Friendly Graph Processing. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), 2018.

[89] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam. Stream-dataflow
acceleration. In Proceedings of the International Symposium on Computer Architec-
ture (ISCA), 2017.

[90] M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk. Energy
efficient architecture for graph analytics accelerators. In Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), 2016.

[91] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[92] S. Pal, R. Dreslinski, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng,
C. Chakrabarti, H.-S. Kim, D. Blaauw, and T. Mudge. OuterSPACE: An Outer Prod-
uct based Sparse Matrix Multiplication Accelerator. In International Symposium on
High Performance Computer Architecture (HPCA), 2018.

[93] J. T. Pawlowski. Hybrid Memory Cube (HMC). In Proceedings of the Hot Chips
Symposium (HCS), 2011.

[94] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar. Gated-Vdd: a circuit
technique to reduce leakage in deep-submicron cache memories. In Proceedings
of the International Symposium on Low Power Electronics and Design (ISLPED),
2000.

[95] I. Puaut and C. Pais. Scratchpad memories vs locked caches in hard real-time sys-
tems: a quantitative comparison. In Proceedings of the Design, Automation & Test
in Europe (DATE), 2007.

[96] S. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyukto-

138

sunoglu, A. Davis, and F. Li. NDC: Analyzing the impact of 3D-stacked memory+
logic devices on MapReduce workloads. In Proceedings of the International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), 2014.

[97] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
MapReduce for multi-core and multiprocessor systems. In Proceedings of the Inter-
national Symposium on High Performance Computer Architecture (HPCA), 2007.

[98] L. Roditty and V. Vassilevska. Fast approximation algorithms for the diameter and
radius of sparse graphs. In Proceedings of the Symposium on Theory of Computing
(STOC), 2013.

[99] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric graph processing
using streaming partitions. In Proceedings of the Symposium on Operating Systems
Principles (SOSP), 2013.

[100] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang. FPMR: MapReduce
framework on FPGA. In Proceedings of the International Symposium on Field-
Programmable Gate Arrays (FPGA), 2010.

[101] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated cache timing, power, and
area model. 2001.

[102] J. Shun and G. Blelloch. Ligra: a lightweight graph processing framework for shared
memory. In Proceedings of the Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2013.

[103] S. Singapura, A. Srivastava, R. Kannan, and V. Prasanna. OSCAR: Optimizing
SCrAtchpad reuse for graph processing. In Proceedings of the High Performance
Extreme Computing Conference (HPEC), 2017.

[104] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen. GraphR: Accelerating graph pro-
cessing using ReRAM. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[105] N. Sundaram, N. Satish, M. Patwary, S. Dulloor, M. Anderson, S. Vadlamudi,
D. Das, and P. Dubey. GraphMat: High performance graph analytics made pro-
ductive. Proceedings of the VLDB Endowment (PVLDB), 8:1214–1225, 2015.

[106] F. Takes and W. Kosters. Determining the diameter of small world networks. In
Proceedings of the International Conference on Information and Knowledge Man-
agement (CIKM), 2011.

[107] J. Talbot, R. Yoo, and C. Kozyrakis. Phoenix++: Modular MapReduce for shared-
memory systems. In Proceedings of the International Workshop on MapReduce and
Its Applications (MapReduce), 2011.

[108] C. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos. Spectral
counting of triangles via element-wise sparsification and triangle-based link recom-
mendation. Social Network Analysis and Mining (SNAM), 1:75–81, 2011.

[109] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting cache line
size to application behavior. In Proceedings of the International Conference on
Supercomputing (ICS), 1999.

[110] J.-P. Wang. Stochastic relaxation on partitions with connected components and its
application to image segmentation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 20:619–636, 1998.

[111] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. Owens. Gunrock: A high-

139

performance graph processing library on the GPU. In Proceedings of the Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2016.

[112] S. Wuchty and E. Almaas. Peeling the yeast protein network. Proteomics, 5:444–
449, 2005.

[113] A. Yasin. A top-down method for performance analysis and counters architecture.
In Proceedings of the International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2014.

[114] R. Yoo, A. Romano, and C. Kozyrakis. Phoenix Rebirth: Scalable MapReduce on a
Large-scale Shared-memory System. In Proceedings of the International Symposium
on Workload Characterization (IISWC), 2009.

[115] D. Yoon, M. Jeong, and M. Erez. Adaptive granularity memory systems: A trade-
off between storage efficiency and throughput. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2011.

[116] J. Zhang and Y. Luo. Degree centrality, betweenness centrality, and closeness cen-
trality in social network. In Proceedings of the International Conference on Mod-
elling, Simulation and Applied Mathematics (MSAM), 2017.

[117] K. Zhang, R. Chen, and H. Chen. NUMA-aware graph-structured analytics. In
Proceedings of the Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2015.

[118] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian.
GraphP: Reducing communication for pim-based graph processing with efficient
data partition. In Proceedings of the High Performance Computer Architecture
(HPCA), 2018.

[119] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia. Making caches
work for graph analytics. In Proceedings of the International Conference on Big
Data (Big Data), 2017.

[120] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe. GraphIt-
A High-Performance DSL for Graph Analytics. arXiv preprint arXiv:1805.00923,
2018.

[121] Z.-L. Zhao, C.-D. Wang, Y.-Y. Wan, Z.-W. Huang, and J.-H. Lai. Pipeline item-based
collaborative filtering based on MapReduce. In Proceedings of the International
Conference on Big Data and Cloud Computing (BDCloud), 2015.

[122] X. Zhu, W. Han, and W. Chen. GridGraph: Large-Scale Graph Processing on a Sin-
gle Machine Using 2-Level Hierarchical Partitioning. In Proceedings of the Annual
Technical Conference (ATC), 2015.

140

	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	 1. Introduction
	1.1 Graph and Graph-based Applications
	1.2 Current Performance Limitations of Graph Applications
	1.3 Mismatch of Today's Conventional Computing Systems
	1.4 Our Strategies
	1.5 Our Solutions
	1.6 Beyond Graph Analytics
	1.7 Dissertation Document Organization
	1.8 Summary of Contributions

	 2. Background on Graph Analytics
	2.1 Graph Structures
	2.2 Graph Layouts
	2.3 Graph Algorithms
	2.4 Graph Datasets
	2.5 Graph Software Frameworks
	2.6 Summary

	 3. Heterogeneous Memory Subsystem for Graph Analytics
	3.1 Motivational Study
	3.2 OMEGA Overview
	3.3 Workload Characterization
	3.4 OMEGA Architecture
	3.4.1 Scratchpad architecture
	3.4.2 PISC (Processing-in-Scratchpad) unit
	3.4.3 Source vertex buffer
	3.4.4 Reconfigurable scratchpad mapping
	3.4.5 On-chip communication
	3.4.6 Adopting software frameworks

	3.5 Graph Preprocessing
	3.6 Scaling Scratchpad Usage to Large Graphs
	3.7 Memory Semantics
	3.8 Experimental Setup
	3.9 Performance Evaluation
	3.10 Sensitivity Studies
	3.11 Area, Power, and Energy Analysis
	3.12 Bibliography
	3.13 Summary

	 4. On-path Message Coalescing for Scalable Graph Analytics
	4.1 Motivational Study
	4.2 MessageFusion Overview
	4.3 MessageFusion Architecture
	4.3.1 Baseline architecture
	4.3.2 Distributed message coalescing
	4.3.3 Maximizing coalescing opportunities
	4.3.4 Selective power-gating

	4.4 Experimental Setup
	4.5 Energy Evaluation
	4.6 Performance
	4.7 Sensitivity Studies
	4.8 Area, Power, and Thermal Analysis
	4.9 Bibliography
	4.10 Summary

	 5. Hybrid Processing in On/Off-chip Memory Architecture for Graph Analytics
	5.1 Motivational Study
	5.2 Centaur Overview
	5.3 Centaur Architecture
	5.4 System Integration
	5.5 Further Design Considerations
	5.6 Experimental Setup
	5.7 Performance Evaluation
	5.8 Sensitivity Studies
	5.9 Area, Power, Thermal, and Energy Analysis
	5.10 Bibliography
	5.11 Summary

	 6. Optimizing Memory Architectures Beyond Graph Analytics
	6.1 Background and Motivation
	6.2 CASM Overview
	6.3 Inside a CASM accelerator
	6.4 System Integration
	6.5 Composite MapReduce Applications
	6.6 Experimental Setup
	6.7 Performance Evaluation
	6.8 Sensitivity Studies
	6.9 Area, Power, and Energy
	6.10 Bibliography
	6.11 Summary

	 7. Conclusions
	7.1 Summary of the Contributions
	7.2 Future Directions
	7.3 Summary

	BIBLIOGRAPHY

