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ABSTRACT 
 

Lightweight materials are critical to meet the ever-increasing demands for improved fuel 

economy in the automotive, aerospace and defense industries. Consequently, aluminum alloys 

have been employed extensively in these industries for structural applications owing to their high 

strength-to-weight ratio. However, Al alloys suffer from several shortcomings, such as poor 

thermal stability of mechanical properties, limiting their usage for components operating in 

elevated temperature environments. Recently, the incorporation of nano-scale particles in the Al 

matrix, termed metal matrix nanocomposites (MMNCs), has been identified as a promising 

approach to improved ambient and elevated temperature mechanical properties, while still 

retaining the lightweight benefits of Al.  

MMNCs manufactured through typical ex situ incorporation methods, wherein pre-made 

particles are mixed into the matrix, can suffer from precursor contamination and undesirable 

particle/matrix interfacial reactions, making incorporation and large-scale processing difficult. In 

situ processing alternatives, where particles are created directly in the melt via direct reaction, have 

been demonstrated to exhibit improved particle/matrix interface stability and easier incorporation 

within the matrix. However, the ability to reliably control critical mechanical property-dependent 

particle characteristics (i.e., particle size, volume fraction, and dispersion) remains a barrier to 

large-scale processing of in situ MMNCs. 

The research for this dissertation is aimed at elucidating the mechanisms governing 

formation of the particles and provide guidance to controlling the resulting microstructure of 

MMNCs processed via in situ methods, for the purposes of informing large-scale processing 

efforts. In this work, we investigate the processing-microstructure-mechanical property 

relationships for two in situ processing methods, namely: in situ gas-liquid reaction (ISGR) for Al-

AlN MMNCs and thermite-assisted self-propagating high-temperature synthesis (SHS) for Al-TiC 

MMNCs. We find that the SHS process is more capable of readily producing nano-scale TiC 

particles in a wide variety of volume fractions and dispersions dependent on processing conditions. 

Additionally, we report on successful SHS processing, at our industry partner, of commercial pilot-
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scale quantities of in situ Al-TiC MMNCs exhibiting enhanced mechanical properties for relatively 

low amounts of particle addition. The preliminary results are a promising demonstration of the 

potential for commercial-scale processing of in situ MMNCs. 

Building upon our study of large-scale processing of MMNCs, we then perform a more 

detailed investigation into understanding the formation mechanisms and microstructural control of 

the thermite-assisted SHS process. By leveraging 2D and 3D microstructural quantification 

techniques with a thermodynamic-based analysis, we identify three potential direct- and indirect- 

reaction pathways governing TiC formation and the conditions under which they are active. We 

also demonstrate an approach for correlating processing-property relationships via multivariate 

statistical analysis (i.e., canonical correlation analysis (CCA)). Using CCA, we report on the 

dominant processing variables affecting final MMNC microstructure and particle characteristics 

and discuss the link between processing variables, reaction pathways, and resultant microstructural 

signatures. Our results and analysis are expected to inform a more rational approach to process 

control of in situ SHS MMNCs, as well as being applicable to other in situ processing methods. 
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CHAPTER 1 

Introduction 

 

1.1 Motivation 

As global energy demands rise, and climate change considerations become increasingly 

important every year, the need for more fuel-efficient vehicles has become critical for the 

automotive, aerospace, and transportation industries. A key design goal towards improved fuel 

efficiency involves light-weighting, where a 10% reduction in weight can lead to a 6% increase in 

fuel economy [1]. Light-weighting can be accomplished via a variety of methods, including 

topology optimization and material selection [2]. However, it is critical that these designs and 

materials contribute to overall load reduction without sacrificing performance. To this end, 

lightweight metals such as Al have been employed extensively in these industries for a wide variety 

of structural applications, owing to its relatively high strength to weight ratio [2]. However, Al 

alloys suffer from several shortcomings, such as poor stability of mechanical properties above 200 

°C, limiting their usage in components in high temperature environments (e.g., Al automotive 

engine blocks currently require cast Fe liners in the cylinder and Al turbochargers have to operate 

at lower temperatures reducing efficiency). Consequently, material processing routes to improve 

the mechanical performance of Al-based materials (at both ambient and elevated temperatures) is 

of great interest.  

A wide variety of approaches to strengthen Al alloys exist, including intermetallic 

strengthening [3], solid solution strengthening [4], precipitation hardening [5], and work hardening 

[6]. However, these processing approaches are not without their drawbacks. For example, work 

hardening increases the strength of the material through grain size reduction but also causes the 

ductility to suffer. Precipitation hardening strengthens the material through the introduction of 

nanoscale precipitates, but is also subject to over-aging and significant precipitate coarsening in 

elevated temperature applications [ 7 , 8 ]. Recently, a composite approach involving the 

incorporation of hard nanoscale particles (commonly ceramic) directly in the Al matrix, termed 

metal matrix nanocomposites (MMNCs), has attracted much attention as a promising alternative. 
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MMNCs are attractive due to their ability to leverage the high strength and stiffness of the 

nanoparticles, while still retaining the ductility of the matrix at relatively low volume percentages, 

leading to improved mechanical properties [9, 10]. Furthermore, MMNCs are advantageous due 

to the stability (e.g. absence of coarsening or degradation) of the particles at elevated temperatures 

(e.g., 200 – 350 °C), making them ideal for applications requiring higher temperature operating 

environments [7, 9, 10 ,11, 12, 13]. Consequently, Al-based MMNCs are a promising material for 

Al-based structural components with low weight, high strength, and high temperature-stable 

characteristics. 

In processing MMNCs, the reinforcing particles are commonly pre-made and added to the 

melt ex situ (in powder form), allowing for a wide variety of reinforcement/matrix combinations. 

The reinforcement particles are typically composed of hard ceramic materials, such as nitrides, 

carbides, and oxides, but incorporation of other materials such as carbon nanotubes have also been 

demonstrated [9, 12, 13]. However, despite the flexibility of materials selection and the superior 

mechanical properties of MMNCs added ex situ, the cost of raw powder materials, lack of scalable 

processing technology, and difficulty incorporating the particles (e.g., particle wetting 

considerations during addition [14]) remain current barriers to widespread commercialization. As 

an alternative approach, there has recently been much interest in producing the particles via in situ 

methods, where the particles are directly created in the matrix via reactive methods [7, 9, 12, 13]. 

In situ MMNCs are expected to be lower cost, easier to incorporate into melts due to in situ 

formation and exhibit similar mechanical properties as their ex situ counterparts. However, despite 

their promise, many aspects of in situ MMNCs are not well understood, including their formation 

mechanisms and achieving process control over microstructural and mechanical properties. 

Furthermore, a method of producing MMNCs at a commercial scale has yet to be demonstrated. 

Consequently, the primary goal of this research was to investigate in situ processing methods that 

may be viable for commercial scale production and understand the corresponding formation 

mechanisms and the processing-microstructure-property relationships needed to inform rational 

design of MMNCs. 

 

1.2 Organization and overview of dissertation 

The remainder of this dissertation is organized into four primary chapters. Chapter 2 

presents an overview of the relvant literature for in situ MMNCs. We discuss the advantages and 
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disadvantages of ex situ and in situ MMNC processing approaches and provide an overview of 

some of the existing methods. We also provide a more detailed discussion of the in situ MMNC 

processing methods studied in the succeeding chapters, namely in situ gas-liquid reaction (ISGR), 

self-propagating high-temperature synthesis (SHS) and flux-assisted reaction synthesis. Chapter 2 

also covers strengthening mechanisms and microstructure-mechanical property relationships for 

MMNCs, for the purposes of identifying reinforcement and microstructural characteristics of 

interest for tuning via processing parameters. 

In Chapter 3, experimental processing-property relationships of in situ MMNCs processed 

via ISGR (Al-AlN) and SHS (Al-TiC) methods. The work in this chapter was conducted as part of 

a project under the Lightweight Innovations for Tomorrow (LIFT) Institute (Detroit, MI) and 

performed in close collaboration with Worcester Polytechnic Insitute (Worcester, MA), the Ohio 

State University (Columbus, OH), Eck Industries (Manitowoc, WI), and the North American Die 

Casting Association (NADCA) (Arlington Heights, IL). The primary goal of the LIFT project was 

to investigate the potential for ISGR and SHS processing methods to be scaled-up, and we present 

results on both lab-scale and commercial pilot-scale material production. Preliminary results 

suggest that SHS is a promising route for producing commercial pilot-scale quantities of material 

with both desirable reinforcement characteristics and enhanced mechanical properties. 

In Chapter 4, a more detailed investigation into understanding the processing-property 

relationships of SHS Al-TiC MMNCs specifically is presented. We propose a set of TiC reaction 

pathways and formation mechanisms by combining 2D and 3D microstructural observations with 

a thermodynamics-based analysis. To understand the link between processing parameters, in situ 

particle reaction pathways, and final microstructural signatures, we demonstrate an approach 

combining quantitative microstructural analysis with canonical correlation analysis to identify 

dominant processing parameters tied to the final SHS microstructures.  

In Chapter 5, we summarize the findings of this dissertation and provide some suggestions 

for future work based on our findings in Chapter 3 and Chapter 4. We also discuss some 

preliminary experiments on alternative MMNC processing methods (i.e., flux-assisted reaction 

synthesis), a promising approach that leverages a low bulk processing temperature reaction 

pathway identified as part of the study in Chapter 4.  
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CHAPTER 2 

Background 

 

2.1 Production and processing of metal matrix nanocomposites 

2.1.1 In situ versus ex situ processing methods 

MMNCs have been successfully produced by a variety of different methods, which broadly 

can be separated into ex situ and in situ processes. Ex situ processing methods involve the insertion 

or dispersion of reinforcement particle powders into the Al matrix (either in the solid state or liquid 

state). Several examples of solid-state ex situ processing methods include: powder metallurgy and 

mechanical alloying [9, 15].  Several examples of liquid state processes include: microwave 

sintering, stir casting, melt infiltration, ultrasonic-assisted cavitation, disintegrated melt deposition 

(DMD), and high pressure die casting (See Table 2.1 for a summary of processing methods) [9, 

15]. However, there are several drawbacks to using ex situ production methods, such as poor 

wettability of the ceramic nanoparticles and the melt during conventional casting processes [13, 

14]. Due to the high surface energy/poor wetting between the particles and melt, particles will tend 

to agglomerate and cluster, which is detrimental to the overall mechanical properties of MMNCs 

[12, 16, 17]. These wetting issues make dispersion of ex situ MMNCs a challenge and can result 

in the rejection of nanoparticles by the melt front during solidification, which leads to 

agglomeration and interdendritic particle trapping [17, 18, 19, 20]. In addition to issues with 

wetting and agglomeration, the mechanical properties of ex situ MMNCs are also strongly affected 

by contamination and oxidization of the nanoparticle precursor powders [9], which can lead to 

porosity in the final product [13], as well as cracking and de-bonding of particle/matrix interfaces 

[9, 12, 21, 22]. Furthermore, ex situ processing methods may not be economically viable, as the 

high cost of raw materials and multiple processing steps and limited scalability of some methods 

may limit their usage [15]. Thus, alternative processing methods are necessary for producing 

MMNCs with superior mechanical properties, scalability, and economic benefit. 

Alternatively, in situ MMNC processing methods involve the creation of the reinforcement 

particles or second phases directly in the Al melt during production, typically by chemical reaction 
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(e.g., solid-solid, liquid-liquid, solid-liquid, or gas-liquid) or morphological methods (e.g., 

solidification or microstructural deformation). Several examples of in situ chemical reaction 

processing methods include: mechanochemical synthesis, reaction milling (RM), friction stir 

processing, self-propagating high-temperature synthesis (SHS), exothermic dispersion (XD), flux-

assisted reaction, MixAlloy™ (mixture of two molten alloys), and in situ gas-liquid reaction 

(ISGR) [13, 15, 23].  On the other hand, morphological in situ processing methods involve the 

creation of particles via non-reactive methods, such as by breaking large second phases into 

smaller particles through severe plastic deformation or the formation of metastable precipitates 

through rapid solidification (See Table 1.1 for a summary of processing methods) [13, 15]. In situ 

processing methods offer several advantages over ex situ methods, such as the potential for single 

stage MMNC processing, which leads to more cost effective and less complex, scalable processes 

[23]. Furthermore, in situ MMNCs have the advantage of particles that are thermodynamically 

stable in the matrix and free of contaminants, leading to a stronger interfacial bond with less 

degradation at high temperature applications; both of which translate to stronger mechanical 

properties as compared with ex situ MMNCs [12, 15, 19, 24, 25, 26, 27]. Additionally, the 

particles formed in master alloys by in situ methods are often more homogeneously dispersed than 

those formed by ex situ methods [24, 28]. Thus, in situ processing of MMNCs is attractive as a 

method of producing low cost and high strength material. 
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Table 2.1 Summary of selected ex situ and in situ metal matrix nanocomposite processing 
methods. More detailed descriptions of the individual processing methods are available in [13, 15]. 

Ex situ 
processing 
methods 

Solid-state process 
Powder metallurgy 

Mechanical alloying 
Microwave sintering 

Liquid-state process 

Stir casting 
Melt infiltration 

Ultrasonic-assisted dispersion/cavitation 
Disintegrated melt deposition (DMD) 

High pressure die-casting 

In situ 
processing 
methods 

Solid-solid process 
Mechanochemical synthesis 

Reaction milling (RM) 
Friction stir processing (FSP) 

Solid-liquid process 
Self-propagating high-temperature synthesis (SHS) 

Exothermic dispersion (XD) 
Flux-assisted reaction synthesis 

Liquid-liquid process MixAlloyTM (mixing molten alloys) 

Gas-liquid process In situ gas-liquid reaction (ISGR) 

Morphological process 
Rapid solidification 

Severe plastic deformation 

 

More in depth summaries of the various processing methods outlined above are available 

in [9], [13], and [15].  However, of the various in situ and ex situ production methods, three are of 

particular interest for investigation in this thesis: in situ gas-liquid reaction (ISGR), in situ self-

propagating high-temperature synthesis (SHS), and flux-assisted reaction synthesis. The focus on 

ISGR and SHS is based upon the fact that a large portion of this work was conducted as part of a 

project under the Lightweight Innovations for Tomorrow (LIFT) Institute (Detroit, MI), where 

they were identified as two of the most promising in situ methods for commercial scale-up (more 

details available in Chapter 3). The focus on flux-assisted reaction is based on its identification as 

a promising processing route stemming from the results of the LIFT project and recent results from 

Professor Xiaochun Li’s group at the University of California – Los Angeles (more details 

available in Chapter 5). A brief description of these processing methods is outlined below. 

 

2.1.2 In-situ gas-liquid reaction (ISGR) 

In the ISGR process, nanoparticles are formed through a gas-liquid reaction mechanism, 

typically accomplished through the injection of gas into a molten metal alloy via a rotating impeller 
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mechanism [7, 13, 29, 30, 31]. The gaseous species (e.g., N2, NH3, CH4) bubbles react with the 

surrounding melt and break off to form a dispersion of thermodynamically stable ceramic particles 

(e.g., AlN, TiC). Thus, the ISGR process requires careful control of the gas injection and melt 

parameters to tune the morphological characteristics of the particles and dispersion. Although the 

chemical composition of the particles is partially restricted by the compositions of the injected gas 

and metal melt, MMNCs generated via the ISGR process can also be created in the form of a 

master alloy and then further diluted into other Al-based alloys to allow for more flexibility in 

materials systems. The ISGR method has been used successfully to form MMNCs with a variety 

of different material combinations, including: Al-AlN [13, 29], Al-TiC [7, 27, 30], Al-TiN [26], 

and Fe-TiN [32]. A schematic depicting the ISGR process and setup is shown in Figure 2.1. 

 

 
Figure 2.1. Schematic of the in situ gas-liquid reaction (ISGR) process. Adapted from [13]. 
 

2.1.3 Self-propagating high-temperature synthesis (SHS) 

In the SHS process, nanoparticles are formed through solid-liquid and/or solid-solid 

reaction pathways when a reaction between elemental powders (typically a compacted pellet) is 

initiated via a high temperature source (e.g., addition to a molten melt or spark ignition) or high-

energy mechanical activation (e.g., ball milling) [31, 33 , 34 , 35 , 36 , 37 ]. Under ignition 

conditions, a highly exothermic combustion reaction occurs, which in turn propagates through the 

powders and leads to the formation of compound materials from the elemental constituents. As an 

added advantage in the cases of ignition via a molten melt, the particles are thought to be somewhat 

dispersed by the explosive reaction propagation prior to solidification [38, 39, 40]. The SHS 
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process a large amount of flexibility as the reinforcement compounds are dependent only on the 

elemental powder chemistry when pure Al melts are used. Consequently, this processing technique 

has been demonstrated for a wide variety of material systems including: Al-TiC [36, 37, 38, 39], 

Al-TiB2 [ 41 ], Mg-TiC [ 42 ], Cu-TiC [ 43 ], Ni-Ti shape memory alloys [ 44 ], and Cu2Se 

thermoelectrics [45]. A schematic depicting the SHS process and setup is shown in Figure 2.2. 

 

 
Figure 2.2. Schematic of the self-propagating high-temperature synthesis (SHS) process. Adapted 
from [31]. 
 

2.1.4 Flux-assisted reaction synthesis  

Flux-assisted processing methods have been widely used in metallurgy as an ex situ method 

of particle incorporation as it can breakdown the oxide on the melt surface and enhance particle 

wetting [46, 47, 48]. However, careful choice of flux and elemental powder additives allows for 

flux-assisted reaction and nanoparticle creation directly in the melt [49, 50, 51, 52]. In flux-

assisted reaction synthesis, a molten salt-based flux is blended with elemental powders and added 

to a melt, where the flux breaks down due to the high temperatures and reaction with surface 

oxides. The flux decomposition subsequently releases solutal atoms that can either react directly 

with the melt or the other elemental powders. Flux-assisted processing is promising for its potential 

scalability, but the composition of the manufactured particles is somewhat limited by the flux and 

elemental powder chemistries. Previous studies have typically utilized K2TiF6 or KBF4 fluxes to 

produce composites, including Al-TiC [49, 50, 53, 54], Al-TiB2 [51, 55], Al-Al3Ti [56], and Al-

AlB2 [52]. A schematic depicting flux-assisted reaction synthesis is shown in Figure 2.3. 
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Figure 2.3. Schematic of the flux-assisted reaction synthesis process. Adapted from [49]. 
 

2.2 Mechanical property-microstructure relationships in metal matrix nanocomposites 

In order to better inform MMNC processing approaches, it is necessary to first understand 

the microstructure-mechanical property relationships. Knowledge of these relationships can then 

be used to target specific desirable particle and microstructure characteristics and guide materials 

processing. 

 

2.2.1 Metal matrix nanocomposite strengthening theory 

In MMNCs, the mechanical property enhancement comes from strengthening contributions 

provided by the reinforcement, either in the form of direct (i.e., matrix-to-particle load transfer) or 

indirect (i.e., increased dislocation density stemming from particle/matrix thermal mismatch 

during solidification or Orowan strengthening) mechanisms [25]. Consequently, the overall 

properties of the composites are the sum of these strengthening contributions, where the magnitude 

of individual contributions vary depending on the reinforcement and microstructural 

characteristics of the material. The various strengthening mechanisms have been discussed at 

length in the literature [9, 12, 57, 58, 59, 60, 61, 62]. For the purposes of this thesis, a summary of 

the proposed mechanisms is outlined below using Ceschini et. al. [9] as a basis, where Δσi 

denotes the increase in composite yield strength attributed to each individual mechanism. 

 

• Load transfer/Load bearing: Load transfer is a form of direct strengthening in which an 

applied external load is transferred from the softer matrix to the to the higher stiffness 

reinforcement particles. The effectiveness of load transfer is highly dependent on both the 
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aspect ratio and size of the particles. The strengthening provided by nanoparticle load 

transfer is well described by a modified shear lag model [63] as, 

∆𝜎C1DE	"0DGHIJ0 = 𝜈/𝜎9 L
((NO)'
Q(

R,     (2.1) 

where υp is the total volume fraction of particles, σm is the yield strength of the matrix, A is 

the particle aspect ratio, and l and t are the width and height of the particles respectively 

[9, 12, 23].  For the case of spherical particles, Eqn. (2.1) reduces to Eqn. (2.2) [12], 

∆𝜎C1DE	"0DGHIJ0 =
-
<
𝜈/𝜎9.            (2.2) 

 

• Enhanced dislocation density (Coefficient of thermal expansion mismatch and elastic 

modulus mismatch): The density of dislocations in the material will have a significant effect 

on its mechanical properties as they impede dislocation motion. In coefficient of thermal 

expansion (CTE) mismatch, large thermal stresses occur at the matrix/nanoparticle 

interface during solidification. In elastic modulus (EM) mismatch, stresses become more 

localized around the matrix/nanoparticle interfaces under applied loads. In both cases, the 

additional localized stresses induce plastic deformation and thus create an increased density 

of dislocations around the interface, effectively reinforcing the microstructure [9, 12, 59, 

64]. The enhanced dislocation densities owing to both CTE and EM mismatch are given 

by Eqn. (2.3) and (2.4) respectively, 

𝜌$"T =
'UV∆W∆"
XEV(-YUV)

     (2.3) 

𝜌TZ = [UV
\EV)

𝜀.             (2.4) 

Where A is a geometric factor between 10 and 12 depending on particle shape and 

geometry, b is the Burgers vector, νp is the volume fraction of the reinforcing particles, dp 

is the diameter of the reinforcing particles, ΔT is the temperature difference between the 

MMNC processing and tensile test temperatures, Δα is the difference in CTEs between the 

matrix and particles, and ε is the bulk material strain. The combined strengthening 

contribution of CTE and EM mismatch can then be described by, 

𝛥𝜎$"TNTZ = 𝑀𝛽𝐺9𝑏c𝜌$"T + √3𝛼𝐺9𝑏c𝜌TZ ,          (2.5) 
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where M is the Taylor factor (~1), β is a strengthening coefficient (usually ~1.25), α is a 

strengthening coefficient (usually ~0.5), Gm is the shear modulus of the matrix, and b is the 

Burgers vector [9, 12, 60]. 

 

• Orowan strengthening/looping: Orowan strengthening (or Orowan looping) is the 

phenomenon in which dislocation movements become pinned by closely spaced, hard 

reinforcement particles [ 65 ]. Orowan strengthening is particularly relevant for 

nanoparticles and can become the dominant mechanism for small particle diameters and 

low interparticle distances [66, 67]. However, the effectiveness of this mechanism is 

strongly dependent on the particle spacing uniformity and dispersion homogeneity [68, 

69]. The strengthening effect of the Orowan mechanism can be described by, 

𝛥𝜎601hDG =
i.-klmX

n
ln	(EV

<X
),         (2.6) 

where Gm is the shear modulus of the matrix, b is the Burgers vector, dp is the diameter of 

the reinforcement particles, and λ is the interparticle spacing. The interparticle spacing can 

be expressed as, 

𝜆 ≈ 𝑑/ st
-
<UV
u
-
kv
− 1y,    (2.7) 

where νp is the volume fraction of the particles. 

 

• Grain refinement/Hall-Petch effect: In addition to strengthening via load transfer or 

dislocation-mediated interactions, the addition of nanoparticles can also induce significant 

grain refinement in MMNCs [70]. In general, grain size has a significant effect on the 

mechanical properties of alloys, as grain boundaries can act as barriers to dislocation 

motion [65]. The subsequent strength enhancement as a function of grain size is well 

described by Hall-Petch theory, given by, 

∆𝜎zD((Y{JO2| = 𝐾𝑑9
Y- <v ,      (2.8) 

where K is the Hall-Petch co-efficient and dm is the average grain diameter. Nanoparticles 

may act as grain nucleation sites during solidification, leading to a refined grain structure 

in the final MMNC [70, 71, 72, 73, 74]. Additionally, the nanoparticles are able to interact 

with grain boundaries, thereby restricting grain growth and coarsening during high 
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temperature plastic deformation and recrystallization [9, 12, 59, 75, 76]. This phenomenon 

is known as the Zener pinning effect and the effective resultant grain size is given by, 

𝑑9 = QWEV
kUV

,         (2.9) 

where α is a proportionality constant, dp is the particle diameter, and υp is the volume 

fraction of the particles. 

 

Ultimately, the total enhanced yield strength of the MMNCs can be estimated based on the 

sum of the relative contributions of each strengthening mechanism and several unified models 

have been proposed [57, 58, 60, 61, 67]. However, the approach taken by Santay-Zadeh [60] 

specifically considers reinforcement particle size (e.g., micro- versus nano-particles) and combines 

several different models. The total strength enhancement using this approach assumes linear 

independence of each mechanism and is given by,  

𝜎~,ZZ�$ = 𝜎9 + c(Δ𝜎C")< + (Δ𝜎zY{)< + (Δ𝜎$"TNTZ)< + (Δ𝜎60)<, (2.10) 

where σy,MMNC is the enhanced yield strength of the nanocomposite, σm is the yield strength of the 

matrix, and Δσi is the contribution of the respective strengthening mechanism. Using this model, 

Sanaty-Zadeh found that the relative contributions of each strengthening mechanism varied 

drastically with particle size and that nanoparticles may be particularly important for enhanced 

dislocation density, grain refinement, and Orowan strengthening contributions (See Figure 2.4). 

Consequently, the use of smaller particles may be advantageous for MMNC material design. 
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Figure 2.4. Strengthening mechanism contributions as a function of volume fraction considering 
both micro- and nano-particles using Eqn. (2.10). Adapted from [60]. 

 

From the strengthening theory outlined in this section, it is clear that it is difficult to 

separate out individual mechanism contributions. However, the equations can be used to identify 

key particle characteristics expected to inform bulk MMNC mechanical properties. In particular, 

volume fraction and particle diameter are re-occurring terms in the strengthening equations, which 

we define as: 

• Volume fraction (or weight fraction) of reinforcement particles: The number of particles 

incorporated into the MMNCs, or total volume of particles relative to the matrix volume. 

The volume fraction, 𝜐/, is expected to affect load transfer, enhanced dislocation density, 

and Orowan strengthening mechanisms as well as contribute to grain refinement. 

• Reinforcement particle size: The size distribution (usually in nanometer or micrometer 

length scales) of the particles incorporated into the MMNCs. The particle diameter, 𝑑/, is 

expected to affect load transfer, enhanced dislocation density, and Orowan strengthening 

mechanisms as well as contribute to grain refinement. 
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2.2.2 Influence of particle volume fraction 

Consistent with the theory, the volume fraction of reinforcement particles is experimentally 

observed to have a significant effect on the improvement of MMNC properties [12, 24, 25]. For 

example, Borgonovo et al. [77] observed a significant increase in the ultimate tensile strength 

(UTS) and yield strength (YS) at room and elevated (300 ºC) temperatures for relatively low 

amounts of AlN particles added to cast A356 alloy (See Figure 2.5(a)). Increases in the UTS and 

YS as a function of particle volume fraction have also been observed in other in situ Al-AlN studies 

[78, 79], in situ Al-TiC [80, 81, 82], and in situ Al-Al2O3 [83],  as well as ex situ materials systems 

such as AlCuMg-SiC [25], Al-Al2O3 [84], Al-Si3N4 [85], Al-TiB2 [86], and AlCu-TiC [87] (See 

Figure 2.5(b)). In addition to improved tensile properties, increases in material hardness have also 

been observed to be directly correlated with increasing volume fractions of reinforcement particles 

[77, 80, 88]. 

 

 
Figure 2.5. (a) Tensile and yield strength of A356 versus volume fraction of AlN particles, 
measured at room temperature and 300 ºC. Adapted from [13]. (b) Tensile strength, yield strength, 
and elongation of Al versus volume fraction of Al2O3 and SiC particles measured at room 
temperature. Adapted from [25]. 

 

Despite a general increase in tensile properties, higher amounts of particulate 

reinforcement are observed to decrease MMNC ductility, presumably owing to increased 

microplasticity (localized and inhomogeneous deformation) in the matrix [24, 25, 79, 77, 89, 90]. 
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Decreases in ductility with increasing volume percentage are hypothesized to be caused by an 

increasing number of particle/matrix interfaces acting as preferential sites for crack initiation via 

particle/matrix debonding or particle cracking [91, 92]. This hypothesis may also be in good 

agreement with the observed inverse relationship between fracture toughness and ductility in 

MMNCs [93, 94, 95]. However, the opposite trend has also been reported by Tian et. al. [96] and 

Khdair et. al. [97], where increasing volume fractions of particles were observed to improve 

ductility. In these cases, it is likely that increases in ductility are due to particle induced grain 

refinement, where particles act as heterogeneous grain nucleation sites [70, 98, 99]. However, the 

degree of grain refinement by particulate inoculants is not only dependent on the amount of 

particles, but also on the overall refining efficiency (e.g., number of activated refining particles) 

of the particle/matrix system, which may explain why ductility improvements are not always 

observed [71, 72, 100, 101, 102].  

 

2.2.3 Influence of particle size 

Particle reinforcement size is another key parameter for tuning mechanical properties of 

MMNCs in conjunction with the volume fraction. Smaller particles can be used to overcome some 

of the drawbacks associated with high reinforcement volume fractions in the matrix and increased 

tensile properties as a function of decreasing particle size (with a constant volume fraction) have 

been reported for micrometer-sized particles in SiC-Al based systems [25, 89, 103, 104] and nano-

sized particles in Al2O3-Mg based systems [66] (See Figure 2.6). Presumably, for equivalent 

volume fractions as larger particle MMNCs, the use of smaller particles increases the available 

matrix/particle contact area, thus increasing interfacial dislocation density and improving particle-

matrix load transfer [95, 103]. Additionally, smaller particles may contribute further strengthening 

improvements via Orowan strengthening as particles approach the sub-500 nm regime [105]. 
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Figure 2.6. (a) True stress-strain curves for 2080 Al alloy reinforced 20 vol% SiC particles of 
various micro-scale diameters. Adapted from [25]. Yield strength of Mg as a function of volume 
fraction fraction of Al2O3 particles of various nano-scale diameters. Adapted from [66]. 

 

Previous studies on the effect of particle size on material ductility have come to conflicting 

conclusions, with increases in ductility [89, 106], decreases in ductility [95], and relatively little 

change [77] being observed. Similar to the effect of reinforcement volume percentage and 

ductility, some of the discrepancies may be due to the effect of particle induced grain refinement 

[70]. In general, the grain size has been observed to be reduced as particle size decreases to the 

few micrometers regime [107, 108]. Sub-micrometer particles have been reported to improve grain 

refinement even further in small amounts (e.g., 1.5 vol%) [109], however a decrease in grain 

refining abilities have also been observed as particle sizes reach sub-micrometer scales [102, 108]. 

These conflicting observations of grain refinement as a function of particle size are presumably 

due the higher susceptibility of nanoparticles to agglomeration, as well as differences in overall 

refining efficiency of the different material systems [70, 72, 100, 101, 102].  

 

2.2.4 Influence of particle dispersion and particle/matrix interface quality 

Although particle volume fraction and diameter are expected to have a direct effect on the 

strengthening mechanism equations in Section 2.2.1, other factors such as particle dispersion can 

also play a significant role. Dispersion refers to the spatial distribution of the particles in the 

MMNCs and is also related to the degree of agglomeration or clustering and is thought to arise 

largely due to attractive van der Waals forces that cause clustering [110, 111]. It is expected that 

the degree of dispersion will affect Orowan strengthening via interparticle spacing (Eqn. (1.7)). 
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However, particle dispersion is also expected to indirectly affect multiple mechanisms, such as 

altering the local degree of grain refinement and grain size homogeneity [112, 113, 114]. Particles 

and agglomerates/clusters can be broken up and dispersed via various mixing methods, such as 

mechanical mixing [115, 116] and ultrasonic processing/cavitation [16, 117, 118]. However, the 

effectiveness of these methods is highly dependent on particle size, agglomerate strength, and 

mixing processing parameters [119, 120, 121]. Experimental studies have generally observed a 

link between improved mechanical properties and homogeneous particle dispersions [122, 123, 

124, 125], but effective dispersion control remains a challenge for MMNCs [12, 126]. 

Another factor that is excluded theoretical models, but that may play a significant role in 

MMNC strengthening, is the particle/matrix interface. In Santay-Zadeh’s [60] approach discussed 

in Section 2.2.1, the direct strengthening load transfer mechanism is hypothesized to be relatively 

insensitive to particle size and volume fraction. However, the model does not consider the quality 

or coherency of the particle/matrix interface, which is particularly relevant when considering in 

situ versus ex situ MMNCs [24, 127]. In ex situ MMNCs the precursor particle contamination and 

unfavorable interfacial reactions can both lead to interlayer formation that may significantly alter 

the particle/matrix bond strength via generation of additional weakly bonded interfaces [9, 128, 

129, 130]. The strength and number of these interfacial bonds is hypothesized to be a major 

contributor to particle-matrix load transfer efficiency [130, 131, 132, 133, 134] as well as control 

whether MMNC failure will occur via particle/matrix debonding or particle cracking [92, 135, 

136]. In some cases, the interfacial reactions can be tuned with post MMNC processing to form 

desirable interlayers for enhanced load transfer [136, 137]. However, in situ MMNCs may be 

advantageous due to their inherently stable interfaces upon initial creation, which can lead to clean 

bonding surfaces and improved particle/matrix coherency [24, 79, 138] (See Figure 2.7). However, 

it is important to consider that the coherency of the interface is also strongly dependent on the 

particle size. Previous studies have observed loss of interfacial coherency in nano-scale particles 

and a transition to semi-coherent or incoherent interfaces above a critical particle diameter 

(dependent on the particle-matrix system) [139, 140, 141, 142]. Consequently, while in situ 

MMNCs are advantageous from a reduced interfacial contamination perspective, decreased 

particle diameters are also expected to contribute to interface quality and coherency. 
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Figure 2.7. (a) Clean interface between AlN particle and Al matrix fabricated via a in situ high 
temperature extrusion method. Adapted from [79]. (b) Clean interface between TiCx and Al-Cu-
Mg matrix fabricated via a in situ combustion synthesis. Adapted from [138]. 
 

2.3 Background summary 

 The theory and experimental literature presented in the previous sections of this chapter 

indicate that control over the mechanical properties of MMNCs is largely related to the ability to 

control properties of the particulate reinforcement. Specfically, control over the particle volume 

fraction, particle diameter, dispersion and agglomeration, and particle/matrix interface are 

important for enhanced bulk material strengthening. Although a variety of MMNC processing 

methods exist, in situ approaches are particularly promising due to their inherently clean 

particle/matrix interfaces and particle stability. However, as the particles are created in situ, an 

understanding of the link between processing parameters and control over particle size, volume 

fraction yield, and dispersion remains an open question. Furthermore, an understanding of these 

relationships is a critical step in adapting in situ MMNC processing to commercial scales, despite 

their potential as a scalable approach. Consequently, in the following chapters we explore a rational 

approach to investigating in situ MMNC processing-property relationships and informing scale-

up processing efforts. 
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CHAPTER 3 

Towards Commercial Scale-Up of In Situ Metal Matrix Nanocomposite Production 

 

Note: Portions of the work presented in this chapter have been adapted from C.W. Reese, et. al. in 

Metallurgical and Materials Transactions A [143] and, due to the collaborative nature of the LIFT 

project reflected in this chapter, J. Fedors thesis from Worcester Polytechnic Institute [31]. 

 

3.1 Introduction 

Al-based metal matrix nanocomposites (MMNCs) are of high interest for a variety of 

structural applications in the automotive and aerospace industries, owing to the possibility of 

leveraging the combined mechanical properties of a relatively ductile Al matrix with high strength 

ceramic reinforcing particles [9, 10]. Typically, MMNCs can be created via ex situ or in situ 

methods, where particles are either added to or created directly in the matrix during processing 

respectively. In situ MMNCs have recently been seen as particularly promising due to their 

potential scalability and the possibility of bypassing issues with high precursor powder costs, 

precursor contamination, and particle wetting/incorporation plaguing ex situ methods [9, 12, 23, 

127]. However, despite their promise, a commercial-scale approach to producing in situ MMNCs 

has yet to be demonstrated. Consequently, an investigation of large-scale MMNC processing and 

the corresponding processing-microstructure-property relationships is needed. 

The work performed in this chapter is based upon a larger collaborative project conducted 

by the Lightweight Innovations for Tomorrow (LIFT) Institute (Detroit, MI), that sought to target 

the problem of commercial-scale MMNC processing. The overall project objective was to 

investigate and scale-up in situ processing methods for Al-based nanocomposite materials that 

would be compatible with existing commercial casting (e.g., die- and squeeze-casting) 

technologies. As discussed in Chapter 2, there is a large breadth of research pertaining to MMNC 

processing methods, which could not all be evaluated over the course of this project. Consequently, 

an informed down select was performed by the LIFT project team beforehand and the project scope 

was set as identifying two in situ approaches of interest. The in situ methods chosen for this study 
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were in situ gas-liquid reaction (ISGR) [7, 13] and self-propagating high-temperature synthesis 

(SHS) [33, 34, 35, 36, 37, 38]. The remainder of this chapter will discuss the processing 

experimental efforts, both lab-scale and commercial-scale, and subsequent microstructural and 

mechanical properties of MMNCs produced via ISGR and SHS. Finally, we discuss conclusions 

about the viability of each process for meeting the project goals set forth by the LIFT. 

Due to the heavily collaborative nature of this project, the work discussed in this chapter 

was performed in close conjunction with Worcester Polytechnic Institute (WPI) (Worcester, MA) 

and Eck Industries (Manitowoc, WI). WPI and Eck were heavily involved in the materials 

processing efforts, while the work described here at the University of Michigan was focused on 

the microstructural characterization and mechanical property evaluation used to inform processing 

efforts. The processing side of the experiments is briefly summarized in this chapter for 

completeness, but a complimentary document containing more detail regarding ISGR and SHS 

processing method development is available in J. Fedors’s thesis from WPI [31]. 

 

3.2 In situ gas-liquid reaction (ISGR): Laboratory-scale 

3.2.1 ISGR master alloys: Experimental methods 

In situ Al-AlN master alloy composites were processed at WPI (Worcester, MA), using a 

process initially developed by C. Borgonovo [13] and refined by I. Añza [7] and J. Fedors [31]. It 

is important to note that several iterations of the lab-scale ISGR process were conducted, however 

many were unsuccessful due to equipment and hardware malfunctions (rather than due to 

processing conditions necessarily). Thus, for the purposes of this study, we focus on the 

experimental methods that led to the “best” laboratory-scale ISGR sample. 

To create Al-AlN master alloys, approximately 1 kg equal parts high purity Al (99.99% 

purity) and Al-5wt%Li were melted together in a SiC coated graphite crucible at a temperature of 

1323 K (1050 °C) under protective Ar atmosphere due to the high oxygen sensitivity of the Al-Li 

melt and ISGR process [13]. A 6-blade ceramic impeller rotating at 450 RPM was then lowered 

into the melt and Ar gas was flowed through for 5 min to purge the system and ensure 

homogenization. After purging, high purity N2 was injected through the rotating impeller at a flow 

rate of 1000 sccm/min for 90 min. The N2 gas was fed through a series of O2 traps prior to reaching 

the impeller, to further ensure an oxygen-free environment. After nitridation, the impeller was 

purged again with Ar before removal from the melt, the furnace was shut off, and the master alloy 



 21 

was allowed to solidify inside the furnace under continual Ar flow. A schematic of the ISGR setup 

used to create master alloys at WPI is shown in Figure 3.1. A summary of the processing conditions 

used to process small-scale Al-AlN master alloys is shown in Table 3.1. 

 

 

 
Figure 3.1. Schematic of the in situ gas-liquid reaction (ISGR) setup developed at Worcester 
Polytechnic Institute. In the ISGR process, purified nitrogen-bearing gas flows through a rotating 
impeller and reacts with an Al-based melt to form AlN. Setup schematic adapted from [13].  
 

Table 3.1. Summary of processing parameters used to create the best Al-AlN small-scale master 
alloys via ISGR. 

Sample ID 
N2 flow 

rate 
[sccm/min] 

Impeller 
speed 

[RPM] 

Nitridation 
time [min] 

Process 
temperature 

[°C] 
ISGR-1 1000 450 90 1050 

 

3.2.2 ISGR master alloys: Characterization and data processing methods 

Metallographic specimens were prepared from Al-AlN master alloys by sectioning as-cast 

ingots and cold mounting in non-conductive epoxy (Mager Scientific). Several ingot locations 

were prepared from each master alloy batch to check for microstructure homogeneity. Mounted 
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samples were ground and polished using an ATM Saphir 530 dual wheel auto-grinder/polisher. 

Mounted samples were wet-ground using 320, 400, 600, and 1200 grit SiC papers (Pace 

Technologies), with contra head/platter rotation at 150 RPM and 15 N of downward force per 

sample. Samples were polished to a “mirror finish” using 9 µm, 3 µm, and 1 µm polycrystalline 

diamond suspensions (Mager Scientific), with complimentary head/platter rotation at 150 RPM 

and 15 N of downward force per sample. After polishing, samples were bath sonicated for 30 s in 

ethanol to remove polishing particles embedded in the surface. As a final preparation step for Al-

AlN samples, polished samples were etched for 10-15 s using a solution of 10vol% NaOH and de-

ionized (DI) water, followed by DI water rinsing and immediate submersion in a 65 °C stirred DI 

water bath for 1 min. 

Scanning electron microscopy (SEM) was used for characterization of the MMNC 

microstructure and particle characteristics. SEM was performed using either a Tescan MIRA3 field 

emission gun (FEG) SEM typically operating at an accelerating voltage of 10 kV and a beam 

intensity of 10 – 12, or a FEI Nova 200 Nanolab SEM/FIB operating at an accelerating voltage of 

10 kV and 0.54 – 1.6 nA (both microscopes were operating in secondary electron (SE) imaging 

mode). An EDAX energy dispersive spectroscopy (EDS) system integrated with both SEMs was 

used for localized chemical identification of particles and secondary phase precipitates. 

X-ray diffraction (XRD) was used as a complimentary technique to identify the presence 

of AlN in the bulk. XRD scans were taken using a Rigaku Rotating Anode X-ray Diffractometer 

operating at 100 kV and 40 mA. Due to the height limitations of the Rigaku sample state, the 

metallographic epoxy mounting step was omitted for XRD samples. Instead, new specimens < 10 

mm in height were sectioned and hand-ground with 400, 600, and 1200 grit SiC grinding paper (a 

level surface is more important than the specific surface finish). Due to the small volume of AlN 

present in the master alloys, scanning parameters of 1.5 °/min scan rate and a 0.2° step size were 

used in order to ensure sufficient count collection. 

Volume fractions and dimensions of AlN particles produced via ISGR were estimated 

based on SEM micrographs using ImageJ (version 1.49) image processing software. Particle length 

and width dimensions were manually measured using the straight-line tool and used to identify an 

approximately range of values. To calculate particle volume fractions, SEM images were adjusted 

to maximize contrast and then segmented by using the auto-thresholding tool to remove the matrix 
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background. Volume fractions were taken to be the total area of the remaining area elements after 

thresholding divided by the total micrograph area. 

3.2.3 ISGR master alloys: Microstructural characterization and discussion 

The ISGR master alloy microstructures generally consisted of elongated and faceted 

micrometer-scale AlN particles embedded in the Al matrix. The matrix itself appeared fairly 

porous, with a large amount of surface cracking present. A representative SEM micrograph of the 

ISGR samples is shown in Figure 3.2(a) and a representative XRD spectra confirming the presence 

of AlN in the bulk is shown in Figure 3.2(b). In Figure 3.2(c), a higher magnification image of the 

particles (left) and corresponding EDS spectra (right) are shown, suggesting a particle chemistry 

corresponding to AlN. Typical particle dimensions were approximately 1 µm long and <500 nm 

wide. Particles commonly appeared to be agglomerated and roughly aligned “end-to-end” in a 

pseudo-chain configuration, possibly suggestive of fracturing of long particles. Volume fractions 

of the small master alloys were estimated to be approximately 2-3 vol% AlN and observed to be 

relatively homogeneous between multiple ingot locations. 

The presence of elongated AlN particles is generally expected to be undesirable for 

enhanced MMNC mechanical properties, as previous studies have observed them to be strongly 

dependent on particle shape [135, 144, 145]. Interestingly, the results of the present small-scale 

ISGR experiments were unexpected as compared with the previous WPI work that served as the 

basis for this study. Most notably, the AlN particles in the previous work were equiaxed in shape, 

even with similar processing parameters [13]. The key differences between processing conditions 

used in this study and the previous work was the use of a 6-blade impeller (this work [31]) versus 

a 4-blade impeller (previous work [13]). Unfortunately, due to time constraints and unforeseen 

experimental setbacks, further explorations of the ISGR processing space using the current lab-

scale setup was not possible [31]. However, it is clear that the ISGR process is highly sensitive to 

slight variations in the processing parameters. 
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Figure 3.2. (a) SE SEM image of Al-AlN small-scale master alloy showing the presence of 
elongated AlN particles in Al after processing via ISGR. (b) XRD spectra of Al-AlN small-scale 
master alloy showing the presence of peaks corresponding to AlN. (c) Higher magnification SE 
SEM image showing the elongated AlN particles in more detail (left). EDS spectra corresponding 
to the elongated AlN particles (collected from red dot), where the N peak suggests AlN (right). 
 

To better understand the differing particle morphologies, it is useful to consider the 

proposed formation mechanisms of AlN via ISGR. To date, several empirical models have been 

developed considering direct nitridation of Al melts, which are commonly based on the idea of the 

two-film model [146, 147, 148]. Originally developed by Zheng et al. [148] and based on bubbling 

N-bearing NH3 into Al melts for AlN formation, the two-film model proposes that particles form 

via reaction at the gas/liquid melt boundary layer as the bubble travels upwards in the melt. The 

bubble subsequently bursts, breaking up the AlN reaction layer and dispersing particles outward 
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(See Figure 3.3). In the context of these proposed formation mechanisms, it is possible that the 

elongated particle morphologies originate as an AlN layer forms parallel to the bubble/melt 

interface and then do not break up completely from impeller rotation or bubble collapse. Similar 

elongated morphologies have been observed for the ISGR process without any stirring action 

[149]. Consequently, it is likely that the differences in particle morphologies may be related to 

differences in the impeller geometries, highlighting the necessity of controlling the fluid dynamics 

of the melt in addition to the nitridation/nitrogen flow parameters [13, 31]. 

 

 
Figure 3.3. Illustration of the two-film model for the formation of AlN particles during direct 
nitridation of an Al-based melt. δG and δL are the thickness of the gas and liquid boundary layer 
respectively, PN2 is the partial pressure of N2, xN is the concentration of N in the liquid boundary 
layer. Adapted from [147, 148]. 

 

3.3 In situ gas-liquid reaction (ISGR): Scale-up approach 

3.3.1 Scale-up of ISGR experiments: Experimental methods 

Efforts to scale-up the ISGR process involved the design of a custom setup based on the 

original ISGR equipment (details on the specific design and equipment available in [31]). For 

large-scale experiments, N2 flow rate and reaction/processing time were increased to account for 

the larger melt volume and the impeller design was modified to a 4-blade configuration rotating at 

250 RPM to prevent blade breakage observed in the small-scale experiments [31]. To create large-

scale master alloys, equal parts high purity Al (99.99% purity) and Al-5wt%Li were melted 

together at 1313 K (1040 °C), approximately 5 kg each. Subsequently, a 4-blade ceramic impeller 

rotating at 250 RPM was lowered into the melt and Ar gas was flowed through for 5 min to purge 
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the system and ensure homogenization. High purity N2 was subsequently injected through the 

rotating impeller (after flowing through the O2 traps) at a flow rate of 4000 sccm/min for 100 – 

150 min. After nitridation, the impeller was purged again with Ar before removal from the melt, 

the furnace was shut off, and the master alloy was allowed to solidify inside the furnace under 

continual Ar flow to prevent oxidation. A summary of the different process conditions used for 

large-scale alloy production are shown in Table 3.2. 

 

Table 3.2. Summary of processing parameters used to create Al-AlN large-scale master alloys via 
ISGR. 

Sample ID 
N2 flow 

rate 
[sccm/min] 

Impeller 
speed 

[RPM] 

Nitridation 
time [min] 

Process 
temperature, 
𝑻𝒑𝒓𝒐𝒄 [°C] 

ISGR-2 4000 250 150 1040 
ISGR-3 4000 250 100 1040 

 

3.3.2 Scale-up of ISGR experiments: Results and discussion 

ISGR samples produced via the scaled-up setup were prepared for metallography and 

characterized using the same techniques described in Section 3.2.2. The observed ISGR 

microstructures in samples produced via the large-scale setup contained faceted, anisotropic AlN 

particles similar to the small-scale master alloys (See Figure 3.4). However, while the particle 

morphologies were similar, the particles here were generally longer. AlN particle dimensions were 

approximately 5-10 µm in length and <500 nm wide for both large-scale processing conditions. 

Similar to the small-scale master alloys, particles commonly appeared to be roughly aligned end-

to-end in a pseudo-chain configuration, possibly suggestive of fracturing of long particles. 

Interestingly, the particle chains in the large-scale batches appear to exhibit some level of 

curvature, possibly more apparent due to the overall longer particle lengths. As compared with the 

small-scale master alloys, particle distributions here were relatively inhomogeneous, being largely 

concentrated in the bottom half of the ingot for both processing conditions. Estimates of particle 

volume fractions in the bottom half were calculated as 5-6 vol% AlN for the batch processed for 

150 min and 2-3 vol% for the batch processed for 100 min. However, these are likely overestimates 

of the overall volume fraction due to ingot inhomogeneity. 
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Figure 3.4. (a) SE SEM image showing the presence of elongated AlN particles in Al after 
processing for 150 min via the large-scale ISGR setup. (b) Higher magnification SE SEM image 
detailing the morphologies of AlN particles processed for 150 min via the large-scale ISGR setup. 
(c) SE SEM image showing the presence of elongated AlN particles in Al after processing for 100 
min via the large-scale ISGR setup. (d) Higher magnification SE SEM image detailing the 
morphologies of AlN particles processed for 100 min via the large-scale ISGR setup.   
 

The elongated AlN particles present in the large-scale Al-AlN alloys were considered to 

be undesirable for mechanical properties. Similar to the small laboratory-scale master alloys 

produced in this study, the anisotropic shape may arise due to ineffective breakage of particles by 

the impeller after formation at the N2 bubble/Al melt interface. This theory may be further 

supported by the observation of longer particles for the lower impeller rotational speeds used here 

(250 RPM for large-scale versus 450 RPM for small-scale), and Borogonovo [13] also observed 

decreased AlN particle sizes for higher rotation speeds owing to increased mixing shear forces. 
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The observed curvature of the AlN particle chains in the large-scale master alloys may also be 

related to the impeller rotational speed, as Borgonovo [13] estimated speeds above 450 RPM are 

necessary to minimize bubble diameter assuming an Al melt viscosity at 1000 °C [13]. The 

difference in observed volume fractions of AlN between the large-scale batches batches is likely 

due to the difference in nitridation time, where increased nitridation time produces increased 

amounts of AlN material [13]. The observation of AlN particles concentrated in the bottom half of 

the melt may also be due to impeller setup sensitivities, as bubble densities, and consequently sites 

for AlN nucleation, are highly dependent on impeller depth in the melt [13, 31].  

Overall, the ISGR process was deemed not ready for scale-up MMNC processing. 

Although the ability to create Al-AlN material in relatively large amounts (i.e., approximately 10 

kg here) is promising, further work needs to be conducted on optimization of processing 

parameters using the scaled-up approach. The differences in AlN morphology highlights the 

sensitivity of the ISGR process to not only nitridation parameters, but also processing parameters 

more closely tied to the mixing aspect of the approach. 

 

3.4 Self-propagating high-temperature synthesis (SHS): Laboratory-scale 

3.4.1 SHS master alloys: Processing methods 

In situ Al-TiC composites were prepared at Worcester Polytechnic Institute (Worcester, 

MA) [31] via a modified thermite-assisted self-propagating high-temperature synthesis (SHS) 

process developed by Cho et al. [38]. To create the pellets for SHS experiments, powders of Al 

(~30 µm, 99.5% purity), Ti (~20 µm or ~44 µm, 99.7% purity), C (100nm or 9 µm, 99% purity), 

and CuO (<10 µm, 98%, purity) were mixed in composition ratios of 1.5 mol Al, 1 mol Ti, 1 mol 

C, and 0.1 mol CuO (with “high” C and CuO compositions corresponding to 1.1 mol and 0.155 

mol, respectively). Two different mixing methods were used: in the first, Al, Ti, and C powders 

were ball milled together for 24 hrs and then combined with CuO via manual mechanical mixing 

(to avoid reaction inside the ball mill); and in the other, Al, Ti, C, and CuO were thoroughly mixed 

via a resonant acoustic mixing (RAM) technique. The powder mixture was subsequently pressed 

into a 30 mm die at 200 MPa to create pressed pellets (~20 g per packed pellet), or loosely packed 

and wrapped in Al-foil (~2.4 g per loose pellet, ~15 mm diameter). All pellets were pre-heated in 

a resistance furnace at 373 K (100 °C) for 2 hrs prior to each SHS experiment, in order to dry the 

powders and bake-off organic contaminants. 
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To create Al-TiC master alloys, approximately 500 g of Al ingot (99.99% purity) were 

melted in an induction furnace and pellets were inserted and pushed beneath the surface of the 

melt using a BN-coated submersion tool (constructed of a flat meshed steel plate and handle). The 

average bulk processing temperature during each experiment ranged from 1043 K (770 °C) to 1133 

K (860 °C). Pellet additions in the melt were staggered by ~1-2 min to allow for the temperature 

to settle between each pellet. The specific number of pellets added in each batch varied depending 

on the target reinforcement volume percentages of 10 vol% TiC or 2 vol% TiC, which 

corresponded to raw powder/melt mass ratios (𝑟//9) of approximately 0.32 and 0.07 respectively. 

The 𝑟//9  ratios were calculated assuming approximately 100% conversion of Ti and C. After 

pellet addition was completed, all batches were manually stirred and subsequently cast into molds 

at room temperature then allowed to solidify in ambient conditions. To assess the feasibility of 

SHS reaction directly in commercially relevant structural alloys (i.e., Al alloys containing Si and 

Mg), several trials using Al-7Mg and A356 (composition: Al – 7Si – 0.3Mg) were also tested using 

the same processing method. A schematic depicting the general SHS experimental procedure is 

shown in Figure 3.5. A summary of all the process conditions used is shown below in Table 3.3. 
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Figure 3.5. Schematic of the in situ self-propagating high-temperature synthesis (SHS) work flow 
developed at Worcester Polytechnic Institute (Worcester, MA), based upon the modified approach 
developed by Y.-H. Cho et. al. [38]. In the SHS process, compact pellets composed of Al, Ti, C, 
and CuO constituent powders are reacted by inserting into an Al melt. Adapted from [31]. 
 

Table 3.3. Summary of processing parameters used to create Al-TiC small-scale master alloys via 
SHS. 

Sample 
ID 

Base 
alloy 

C 
amount, 
𝒏𝑪 

[mol] 

C 
size, 
𝒅𝑪 

[µm] 

CuO 
amount, 
𝒏𝑪𝒖𝑶 
[mol] 

Ti 
size, 
𝒅𝑻𝒊 

[µm] 

Pellet 
packing 
method 

[-] 

Powder mixing 
method [-] 

Powder/
melt 
ratio, 
𝒓𝒑/𝒎 

[g/g Al] 

Process 
temperature, 
𝑻𝒑𝒓𝒐𝒄 [°C] 

SHS-1 Pure Al 1 9 0.1 44 Pressed Ball mill+mechanical 0.32 842 
SHS-2 Pure Al 1 9 0.1 44 Pressed Resonant acoustic 0.32 860 
SHS-3 Pure Al 1 9 0.155 44 Pressed Resonant acoustic 0.32 838 
SHS-4 Pure Al 1.1 9 0.1 44 Pressed Resonant acoustic 0.32 851 
SHS-5 Pure Al 1.1 9 0.155 44 Pressed Resonant acoustic 0.32 843 
SHS-6 Pure Al 1.1 9 0.1 44 Pressed Ball mill+mechanical 0.32 840 
SHS-7 Pure Al 1.1 9 0.155 20 Pressed Ball mill+mechanical 0.32 823 
SHS-8 Pure Al 1.1 9 0.155 20 Loose Ball mill+mechanical 0.07 780 
SHS-9 Pure Al 1.1 9 0.155 20 Pressed Ball mill+mechanical 0.07 770 
SHS-10 Pure Al 1.1 0.1 0.155 20 Loose Ball mill+mechanical 0.07 780 
SHS-11 Al-7Mg 1.1 9 0.155 20 Pressed Ball mill+mechanical 0.07 793 
SHS-12 A356 1.1 9 0.155 20 Pressed Ball mill+mechanical 0.07 800 
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3.4.2 SHS master alloys: Characterization and data processing methods 

Metallographic specimens were prepared from Al-TiC master alloys by sectioning as-cast 

ingots and cold mounting in non-conductive epoxy (Mager Scientific). Several ingot locations 

were prepared from each master alloy batch to check for microstructure homogeneity. Mounted 

samples were ground and polished using an ATM Saphir 530 dual wheel auto-grinder/polisher. 

Mounted samples were hand ground with the platter rotating at 200 RPM using succesive 320, 

400, 600, and 1200 grit SiC papers (Pace Technologies). Samples were polished to a “mirror 

finish” using 9 µm, 3 µm, and 1 µm polycrystalline diamond suspensions (Mager Scientific), with 

complimentary head/platter rotation at 150 RPM and 17 N of downward force per sample. After 

polishing, samples were bath sonicated for 30 s in ethanol to remove polishing particles embedded 

in the soft Al surface. 

Al-TiC MMNC microstructures were characterized using either a Tescan MIRA3 FEG 

SEM operating at an accelerating voltage of 15 kV and a beam intensity of 12 – 15, or a FEI Nova 

200 Nanolab SEM/FIB operating at an accelerating voltage of 15 kV and 1.6 – 2.1 nA (both 

microscopes were typically operated in backscatter electron (BSE) imaging mode to leverage the 

inherent high contrast difference TiC and Al [150]). An EDAX energy dispersive spectroscopy 

(EDS) system integrated with both SEMs was used for localized chemical identification of 

particles and secondary phase precipitates.  

XRD scans of Al-TiC material were used to identify phases in bulk specimens as a 

complimentary technique to SEM. XRD scans were taken using a Rigaku Rotating Anode X-ray 

Diffractometer operating at 100 kV and 40 mA. Unmounted samples were hand ground using 400, 

600, and 1200 grit SiC grinding paper to obtain a level and relatively smooth surface. XRD scans 

were taken using a 1.5 °/min scan rate and a 0.2° step size. 

Relevant particle characteristics (e.g., volume fraction, particle diameter) were determined 

from SEM micrographs. Micrographs were adjusted to maximize contrast using ImageJ (version 

1.49) software prior to analysis as necessary. Segmentation or partitioning of phases into different 

classes and additional post-processing were carried out using the Image Processing toolbox in 

MATLAB 2018b. In general, the data processing workflow consisted of multi-level thresholding 

followed by median filtering to reduce background noise. From the segmented and processed 

images, the effective particle area fractions were calculated, and the effective particle diameters 

were determined based on the sizes of individual connected components within an area element. 
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3.4.3 SHS master alloys: Microstructural characterization and discussion 

Representative SEM micrographs corresponding to the various SHS processing conditions 

are shown in Figure 3.6. From the wide variety of SHS microstructures it is apparent, speaking 

qualitatively, that a wide range of TiC reinforcement volume fractions, secondary phase 

precipitates, and reinforcement dispersions are capable of being produced. SHS runs generally 

appeared successful in producing the desired TiC reinforcement and the master alloy 

microstructures consisted of primarily spherical, sub-micrometer TiC particles embedded in the 

Al matrix (a summary of the key particle characteristics is shown in Table 3.4). In addition to TiC, 

a small amount of Al3Ti intermetallics and of C-rich regions presumably corresponding to 

unreacted carbon were observed. A small amount of rod-like precipitates likely corresponding to 

Al2O3 were also observed. XRD was used to confirm the presence of TiC in bulk specimens. 

Spectra appeared similar between master alloy samples, but with variations in TiC peak intensity 

likely corresponding to variations in TiC volume fractions [151]. Representative XRD spectra of 

SHS batches containing approximately 2 vol % (Sample ID 1) and 1 vol % (Sample ID 7) are 

shown in Figure 3.7. The presence of only TiC and Al peaks is suggestive of TiC particles as the 

predominant phase after Al in the SHS MMNCs. Higher magnification micrographs, and 

corresponding EDS maps, identifying the chemistry of the specific microstructural features (e.g., 

particles, intermetallics, excess C, and oxides) are shown in Figure 3.8. 
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Figure 3.6. Representative BSE SEM images showing the microstructure of Al-TiC composites 
processed via in situ SHS (corresponding to the processing conditions and sample IDs shown in 
Table 3.3). Scale bar is 100 µm in all instances. 
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Table 3.4. Key particle characteristics (volume fraction TiC and average particle diameter) of Al-
TiC composites produced via in situ SHS. 

Sample ID 
TiC particle volume 

fraction, 𝝂𝑻𝒊𝑪 
[%] 

Average TiC 
particle diameter, 

𝒅𝑻𝒊𝑪 
[nm] 

SHS-1 2.0 ± 0.32 638 ± 42.6 
SHS-2 2.1 ± 0.38 767 ± 30.2 
SHS-3 2.1± 0.33 388 ± 50.6 
SHS-4 1.8 ± 0.38 578 ± 51.3 
SHS-5 2.1 ± 0.33 908 ± 22.8 
SHS-6 0.8 ± 0.14 384 ± 12.9 
SHS-7 0.9 ± 0.15 651 ± 25.0 
SHS-8 0.1 ± 0.13 571 ± 40.2 
SHS-9 0.3 ± 0.18 569 ± 45.5 

SHS-10 0.4 ± 0.14 637 ± 32.5 
SHS-11 <0.1 655 ± 53.0 
SHS-12 <0.1 592 ± 14.0 

 
 

 
Figure 3.7. Representative XRD spectra of Al-TiC composites processed via in situ SHS. XRD 
spectra correspond to (a) 2vol% TiC reinforcement (Sample SHS-1) and (b) 0.9vol% TiC 
reinforcement (Sample SHS-7). 
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Figure 3.8. SEM observations and corresponding EDS maps (EDS spectra taken from area 
enclosed by the dashed box): (a) Al3Ti intermetallics with surrounding TiC particles; (b) C-rich 
regions with surrounding TiC particles; (c) clustered and individual TiC particles; (d) Al2O3 
oxides. (a)-(c) are BSE images and (d) is a SE image. 
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In SHS samples reacted in pure Al, the observed microstructural features were generally 

similar from batch to batch. The Al3Ti precipitates exhibit an anisotropic and faceted structure 

with dimensions approximately 10-50 µm long and 5-15 µm wide. C-rich regions commonly 

exhibited a layer of TiC or cluster of particles surrounding them (on the order of tens of nm 

between C-rich regions and the surrounding TiC). Individual TiC particles, as well as solid and 

ring-like clusters, were also identified. The particles were largely spheroidal in shape, with some 

more ellipsoidal shapes also being present. The average TiC particle sizes ranged from 

approximately 380 to 910 nm, with a wide range of vol% from approximately 0.1 up to 2.1 vol%. 

Finally, a small amount of rod-like Al2O3 was observed, generally 10-30 µm in length and 3-5 µm 

wide. These microstructural features are consistent with the phases observed in other Al-TiC-C-

based SHS processes, where excess C and Al3Ti have been observed as byproducts of the SHS 

reaction [33, 152, 153]. The Al2O3 has been observed to be a byproduct of the CuO-assisted 

process specifically, resulting from the reduction of CuO by liquid Al [38, 154]. 

In contrast to pure Al melts, SHS samples reacted in Al-7Mg and A356 exhibited 

significantly less TiC particles, calculated to be <0.1 vol% for both batches (Sample SHS-11 and 

SHS-12 respectively). The observed secondary phases included anisotropic Al3Ti, unreacted C, 

and Al2O3, similar to pure Al melts. However, the A356-based master alloy also exhibited phases 

corresponding to elongated Al-Ti-Si-based platelets (e.g., TiAlxSiy) and faceted Al4C3 with 

clustered TiC particles attached (See Figure 3.9). The observation of these additional phases solely 

in the A356 material is suggestive of reaction or modification via Si. 

In general, TiC is thermodynamically unstable in Al melts at temperatures below 

approximately 800 °C when Ti concentration is low (<0.2 wt% Ti), which leads to decomposition 

of TiC and the formation of Al4C3 at the particle melt interface [155, 156]. However, the onset of 

TiC dissolution under these conditions has been observed to occur at relatively long melt holding 

times (>1 hr at 800 °C) [157]. Despite a processing temperature of approximately 800 °C being 

used for Sample SHS-12, it is expected that the other processing conditions (i.e., holding times 

under 1 hr and >0.2 wt% Ti) would render TiC stable. However, Si has been observed to alter the 

kinetics of TiC decomposition in Al-Si-TiC melts, leading to the formation of ternary TiAlxSiy 

phases and Al4C3 at melt holding times are short as 10 min and temperatures below approximately 

880 to 890 °C [158, 159, 160]. Consequently, even if TiC is formed via initial SHS reaction, 
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presumably the Si content in A356 may cause conversion into Al4C3 and TiAlxSiy before the final 

microstructure is formed. 

 

 
Figure 3.9. SEM observations and corresponding EDS maps (EDS spectra taken from area 
enclosed by the dashed box) of TiC particles, Al4C3 carbides, and TiAlxSiy intermetallics formed 
in A356-TiC samples processed via in situ SHS. 
 

Given the presence of spherical, sub-micrometer TiC particles, the SHS process provides 

a promising approach to producing reinforcement compatible with enhanced MMNC mechanical 

properties. To maximize TiC yield and minimize the presence of undesirable secondary phases, 

use of pure Al as the matrix material appeared to have the most potential. Consequently, two scale-

up efforts were attempted: large-scale dilution of Al-TiC master alloys in A356 and direct SHS 

reaction in large-scale batches of pure Al. 

 

3.5 Self-propagating high-temperature synthesis (SHS): Dilution scale-up approach 

3.5.1 Dilution of SHS master alloys in A356: Experimental methods 

In addition to conducting direct SHS reaction in Al-Si and Al-Mg based alloys, Al-TiC 

master alloys were diluted in A356 as an alternative approach to scale-up. Dilution of SHS master 

alloys in A356 was conducted at WPI. Diluted A356-TiC samples were processed by melting Al-

TiC master alloys (See Table 3.3, Sample SHS-2 for specific master alloy processing parameters) 

with A356 in an induction furnace at approximately 760 °C. An appropriate amount of master 

alloy was added to target ~1 vol% reinforcement. Diluted melts were ultrasonically processed 

using a Southwire SRC Technologies Ultra-D ultrasonic degasser for 30 minutes, to encourage 

particle dispersion, and subsequently gravity cast into plates and allowed to cool under ambient 
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conditions. Plain/unreinforced A356 plates were melted and cast using the same conditions, sans 

ultrasonic dispersion, to be used as a reference. 

As-cast A356-TiC and A356 plates were milled down approximately 1 mm on both faces 

to remove surface defects and ensure tensile specimen thickness uniformity. Subsequently, tensile 

specimens were cut from several locations of the milled plates via electric discharge machining 

(EDM) and were designed with a 25 mm gauge section length. Tensile tests were conducted using 

an MTS 810 static-hydraulic tensile tester under ambient conditions. Force and crosshead 

displacement, as measured by the MTS unit, were used to calculate engineering stress and strain 

according to Eqn. (3.1) and (3.2). Modulus of elasticity was calculated according to Eqn. (3.3), 

using stress and strain values from the linear portion of the stress-strain curves. Total elongation 

was calculated using equation 2.4. 

 𝜎 = �
'
 (3.1) 

 𝜀 = �C
C�

 (3.2) 

 𝐸 = �
�
 (3.3) 

 𝐸𝐿 = C�YC�
C�

 (3.4) 

Yield strength (YS) was determined from the linear portion of the curves using the 0.2% offset 

method [161]. Polished cross sections of the tensile specimens were prepared according to the 

metallographic techniques detailed in Section 3.4.1, but with the addition of post-polish etch. Cross 

sectional samples were etched for 10 s in a 10 vol% NaOH-DI water mixture, followed by 

immediate DI water rinsing and submersion in a 65 °C stirred DI water bath for 1 min. Both 

polished cross sections and fracture surfaces of post mortem tensile specimens were analyzed using 

SEM and EDS, equipment and operating parameters detailed in Section 3.4.2. 

 

3.5.2 Dilution of SHS master alloys in A356: Results and discussion 

Stress-strain curves for selected A356-TiC and reference A356 tensile specimens are 

shown in Figure 3.10 and the mechanical properties are summarized in Table 3.5. The A356-TiC 

exhibited slightly enhanced mechanical properties, with an approximately 19% increase in yield 

strength (YS) and 26% increase in ultimate tensile strength (UTS) as compared with the base A356 

material. There is a relatively wide variance in ductility, even among A356 and A356-TiC samples, 

ranging from approximately 2 – 6% elongation for A356 and approximately 3 – 8% for reinforced 
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material. In general, the addition of particulate reinforcement is associated with a ductility decrease 

as compared with unreinforced material [89, 90, 162], but increases in MMNC ductility have also 

been attributed to grain refinement in TiC reinforced Al alloys [96, 109]. However, no apparent 

grain refinement was observed here and elongation variances are likely largely due to defect and 

porosity density variances in the castings, which have been observed to have a larger effect on 

ductility versus other tensile properties [163, 164, 165]. 

It is interesting to note the serrated appearance of several of the A356-TiC curves, and in 

the plain A356 to a lesser extent. Stress-strain curve serrations may be due to the Portevin-Le 

Chatelier (PLC) effect, in which inclusions of reinforcement particles in the matrix induce 

inhomogeneous plastic deformation as dislocations become repeatedly pinned and break free from 

obstacles in the material. In the case of MMNCs, the reinforcement particles are able to act as 

pinning points and dislocations break free during interfacial fracture [166]. However, it is also 

possible that inhomogeneous deformation is brought on by porosity or a high density of casting 

defects in the material and the PLC effect has also been observed to be a strongly dependent on 

specimen porosity [167]. Presumably, a combination of both effects contributes to inhomogeneous 

deformation here considering the presence of large serrations in the reinforced material and small 

serrations in the unreinforced material. 

Fracture surfaces of A356-TiC were observed to contain a mix of ductile and brittle fracture 

surfaces, which is consistent with commercial Al-Si alloys [168, 169] (See Figure 3.11(a)). TiC 

particles were observed to be clustered on the fracture surface in smooth pockets or regions (See 

Figure 3.11(b-c)). Clustering may be indicative of particle agglomeration during processing or 

particle drag during re-solidification. Further EDS analysis suggests that the regions where 

particles are clustered or embedded may be composed of a TiAlxSiy-based phase, which was not 

present in the initial master alloy (See Figure 3.12). The appearance of a new Ti- and Si-containing 

ternary phase is suggestive of a reaction occurring between the TiC particles and Si in the A356 

alloy during master alloy re-melting and dilution. Presumably, TiAlxSiy forms as a result of the 

inherent instability of TiC in Si-containing Al melts, similar to our observations in direct A356 

SHS reaction [155, 157, 158, 159, 160]. The grouping of particles on TiAlxSiy-based phases may 

also be suggestive of nucleation stemming from TiC particles as the Ti source. 
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Figure 3.10. Engineering stress-strain curves of A356-TiC (red) and A356 (blue) tensile 
specimens tested at room temperature. 

 
 

Table 3.5. Summary of the mechanical properties of A356-TiC and A356 tensile specimens tested 
at room temperature. Corresponding stress-strain curves shown in Figure 3.10. 

Sample ID 

Ultimate 
Tensile 

Strength 
[MPa] 

Yield 
Strength 
[MPa] 

Modulus of 
Elasticity 

[GPa] 

Elongation 
[%] 

A356/TiC-1 269 184 92 4.7 
A356/TiC-2 283 199 99.5 4.2 
A356/TiC-3 271 186 93 5.7 
A356/TiC-4 292 187 93.5 8.2 
A356/TiC-5 291 187 93.5 7.9 
A356/TiC-6 259 193 96.5 3.5 

A356-1 228 158 79 5.1 
A356-2 240 165 82.5 6.0 
A356-3 190 152 76 2.3 
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Figure 3.11. SEM images of a fracture surface of A356-TiC tensile specimen showing (a) 
macroscopic fracture surface; (b) smooth regions containing TiC particles; (c) higher 
magnification image of TiC particles. 

 
 

 
Figure 3.12. Representative SEM image and corresponding EDS spectra of TiAlxSiy precipitate 
and embedded TiC particles observed on A356-TiC fracture surfaces.  
 

Although no apparent Al4C3 was observed in the fracture surfaces, as was expected from 

the direct A356 SHS reaction experiments, precipitates corresponding to Al4C3 and TiAlxSiy 

phases were observed in the polished tensile specimen cross sections (See Figure 3.13). TiC 

particles appear attached to both types of precipitates, possibly indicating that groups of particles 

may act as nucleation sites. EDS maps identifying the chemistry of TiAlxSiy and Al4C3 are shown 
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in Figure 3.14 and Figure 3.15 respectively. Interestingly, a strong oxygen signal is also observed 

in the EDS maps for the potential Al4C3 that corresponds well with the precipitate shape and was 

not observed in other samples containing Al4C3. The oxygen signal may suggest a partial oxidation 

reaction of the Al4C3 precipitates during metallographic preparation, either due to the NaOH-based 

etchant or warm water rinse, which have been reported to be highly sensitive to moisture and 

oxygen content leading to Al2O3 or various aluminum oxycarbide based byproducts (e.g., AlOxCy) 

[170, 171, 172, 173]. The appearance of both Al4C3 and TiAlxSiy in the diluted specimens suggests 

that both phases arise during holding TiC particles in the melt rather than Si modification of the 

reaction and initial TiC formation, in agreement with the direct SHS A356 reaction sample 

observations. The dissolution of TiC and formation of larger effective precipitate phases may 

explain the relatively low mechanical property enhancement of A356 by SHS master alloy dilution 

and rule out A356 as a viable base alloy for SHS MMNC scale-up. 

 

 
Figure 3.13. Representative SEM images showing the presence of (a) TiAlxSiy precipitates and 
(b) Al4C3 precipitates in A356-TiC tensile specimens. 
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Figure 3.14. Representative SEM image and EDS spectra of Al4C3 precipitate in A356-TiC.  

 

 
Figure 3.15. Representative SEM image and EDS spectra of TiAlxSiy precipitate in A356-TiC. 
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3.6 Self-propagating high-temperature synthesis (SHS): Direct reaction scale-up approach 

3.6.1 Scale-up of SHS experiments: Experimental methods 

Based on the relative success of the small-scale SHS experiments in pure Al, and the results 

of direct SHS reaction in A356 and Al-7Mg and A356 dilution, a production-scale experiment was 

conducted at Eck Industries (Manitowoc, WI) involving reaction in commercial purity Al. The 

method used for pellet creation was identical to the small-scale experiments (See Section 3.4.1), 

with an increased number of pellets being used to target the desired vol % of TiC reinforcement. 

To create large-scale Al-TiC alloys, approximately 30 lbs (~13.6 kg) of commercial purity Al alloy 

(P1020, 99.7% Al) were melted in an induction furnace at 760 °C. Pellets were added to the melt 

using the same method as the small-scale master alloys, with a target reinforcement volume 

percentage of 2 vol% TiC (𝑟//9  of 0.07). After pellet addition was finalized, the melt was 

processed using a Southwire SRC Technologies Ultra-D ultrasonic degasser for 30 minutes, to 

encourage particle dispersion in the larger melt volume, and subsequently gravity cast into bars 

and allowed to solidify at ambient temperature. The experimental processing conditions are shown 

in Table 3.6. 

 
Table 3.6. Summary of processing parameters used to create large-scale Al-TiC MMNC via SHS. 

Sample 
ID 

Base 
alloy 

C 
amount, 
𝒏𝑪 

[mol] 

C 
size, 
𝒅𝑪 

[µm] 

CuO 
amount, 
𝒏𝑪𝒖𝑶 
[mol] 

Ti 
size, 
𝒅𝑻𝒊 

[µm] 

Pellet 
packing 
method 

[-] 

Powder mixing 
method [-] 

Powder/
melt 
ratio, 
𝒓𝒑/𝒎 

[g/g Al] 

Process 
temperature, 
𝑻𝒑𝒓𝒐𝒄 [°C] 

SHS-13 
P1020 
(99.7% 

Al) 
1.1 9 0.155 20 Pressed Ball 

mill+mechanical 0.07 760 

 

Tensile specimens of 50 mm gauge length were prepared via milling and machining and 

subsequently pulled, all at Eck Industries. Stress-strain plots and relevent mechanical properties 

were determined using force and crosshead displacement, as measured by the testing machine, and 

the methods outlined in Section 3.5.1. Polished cross sections of the tensile specimens were 

prepared according to the metallographic techniques detailed in Section 3.4.2. Both polished cross 

sections and fracture surfaces of post mortem tensile specimens were analyzed using SEM, 

equipment and operating parameters detailed in Section 3.4.2. 
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3.6.2 Scale-up of SHS experiments: Results and discussion 

Stress-strain curves for TiC-reinforced P1020 and plain P1020 samples are shown in Figure 

3.16 and the associated mechanical properties are summarized in Table 3.7. It is worth noting that 

in both reinforced and unreinforced P1020, there is an exponential increase in the stress-strain 

curves immediately at the beginning of testing. However, this is likely an artifact due to delayed 

seating of the grips on the samples. Consequently, the YS and modulus of elasticity were calculated 

based on the linear region of the curves after the grips are fully seated. 

 The P1020-TiC exhibited a clear enhancement in mechanical properties, with an 

approximately 26% increase in YS and a 50% increase in UTS as compared with the base P1020 

material. Similar to the diluted A356-TiC material, a relatively wide variance in ductility ranging 

from 13 – 38% elongation for P1020-TiC and 20 – 46% elongation for P1020, is observed with no 

clear trend. Based on visual inspection of the tensile specimen cross sections, it is likely that these 

variances are largely due to ductility dependence on material porosity and defect density [163, 

164, 165]. Serrated behavior is seen in the TiC-P1020 stress-strain curves, possibly suggestive of 

the PLC effect, as observed in the A356-TiC material. 

 

 
Figure 3.16 Engineering stress-strain curves of P1020-TiC (red) and P1020 (blue) tensile 
specimens tested at room temperature. 
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Table 3.7. Summary of the mechanical properties of P1020-TiC and P1020 tensile specimens 
tested at room temperature. Corresponding stress-strain curves shown in Figure 3.16. 

Sample ID 

Ultimate 
Tensile 

Strength 
[MPa] 

Yield 
Strength 

[MPa] 

Modulus of 
Elasticity 

[GPa] 

Elongation 
[%] 

P1020/TiC-1 110 40.0 44.0 38 
P1020/TiC-2 99.3 44.8 33.8 13 
P1020/TiC-3 95.8 41.4 62.7 22 
P1020/TiC-4 104 47.6 30.7 24 

P1020-1 70.3 34.5 5.57 46 
P1020-2 70.3 31.7 42.0 24 
P1020-3 66.2 33.8 23.5 20 
P1020-4 66.2 37.9 0.858 33 

 

TiC-P1020 fracture surfaces were observed to be suggestive of ductile fracture, with 

apparent casting defects in some cases (See Figure 3.17(a)). Individual TiC particles and particle 

clusters were found in fracture surface pockets and were generally uniformly in all surface regions 

(See Figure 3.17(b)). Polished tensile specimen cross sections revealed a relatively uniform TiC 

particle dispersion, with some excess C, elongated Al3Ti, and Al2O3 consistent with the observed 

phases in the small-scale Al-TiC master alloys (See Figure 3.17(c-d)). In contrast to the SHS 

master alloys, a small amount of Fe was observed in the grain boundaries, likely owing to the 

composition of commercial purity P1020 (99.7% Al, 0.2% Fe) versus high purity Al (99.99% Al) 

(See Figure 3.17(d)). 

In general, the results of the scaled-up P1020-TiC alloy produced via SHS are promising, 

exhibiting enhanced mechanical properties in terms of YS and UTS, as well as successful 

production of dispersed sub-micrometer TiC particles in a commercial-scale batch of material. 

However, further work needs to be done to understand the influence of the processing parameters 

on the particle and microstructural characteristics to enable fine tuning of SHS MMNCs.  
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Figure 3.17. Representative SEM images of (a) low mag P1020-TiC fracture surface; (b) higher 
mag P1020-TiC fracture surface, showing clusters of TiC particles; (c) low mag polished cross 
section of a P1020-TiC tensile specimen; (d) high mag polished cross section of a P1020-TiC 
tensile specimen. 
 

3.7 Conclusions 

In this chapter, we have investigated in situ Al-AlN and Al-TiC MMNCs processed via 

ISGR and SHS routes respectively and assessed their potential for commercial-scale MMNC 

production. ISGR Al-AlN MMNCs generally consisted of elongated particles that were considered 

undesirable for mechanical properties. The anisotropic particle shape was attributed to insufficient 

shear force from the impeller, where the particles are intended to be broken into smaller lengths 

during mixing. The scale-up of the ISGR setup was assumed to be highly sensitive to parameters 
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relating to the impeller and mixing aspects of the process and requires further optimization before 

it can be adapted to large-scale production of in situ MMNCs. In contrast, the SHS process was 

found to be promising for the scaled-up production of material, and Al-TiC MMNCs with sub-

micrometer, well dispersed particles were produced successfully in commercial pilot-scale 

quantities. The SHS Al-TiC MMNCs exhibited enhanced mechanical properties (26% increase in 

YS and 50% increase in UTS for 0.7 vol %TiC addition) at room temperature. 
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CHAPTER 4 

In Situ Al-TiC Composites Fabricated by Self-Propagating High-Temperature Reaction: 

Insights on Reaction Pathways and Their Microstructural Signatures 

 

Note: The work presented in the following chapter is adapted from C.W. Reese, et. al. published 

in Metallurgical and Materials Transactions A [143]. 

 

4.1 Introduction 

Based on the results of the LIFT project investigating scale-up processing of in situ 

MMNCs, the SHS process proved to be the most promising (See Chapter 2). In particular, the SHS 

approach under investigation utilizes a small amount of thermite (2.7 mol% CuO) to aid the 

reaction and allow for the SHS processing of TiC/Al MMNCs at relatively low bulk temperatures 

(750-920 °C) [38, 80]. However, the underlying mechanisms of the particle formation are not well 

understood which limits the ability to further optimize the process for large-scale production. The 

SHS reaction pathways for TiC formation have been theorized to be complex and several different 

direct and indirect mechanisms have been hypothesized, each impacting the final microstructure 

in different ways [38, 41, 80, 81, 174].  

The investigation outlined in this chapter seeks to better understand the SHS process and 

is aimed at answering two main questions: First, what are the governing mechanisms of particle 

formation?  Secondly, how are the reaction mechanisms impacted by the processing variables?  To 

this end, we present an integrated approach to understanding the production of in situ TiC/Al 

MMNCs via SHS. Focusing on the CuO-assisted method, we analyze a variety of microstructures 

from different SHS processing conditions and characterize key particle characteristics (e.g., 

particle diameter, particle volume fraction, dispersion/agglomeration, and secondary phase volume 

fractions) using 2D and 3D techniques. While traditional 2D methods like SEM offer the 

possibility of relatively large area and bulk sample imaging, they may fail to be representative of 

the true 3D microstructure or capture material inhomogeneities; this is particularly important for 

accurate assessments of characteristics such as particle dispersion. Thus, we utilize transmission 
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X-ray microscopy (TXM) to visualize the microstructure in 3D with nano-scale resolution and 

supplement our 2D characterization methods. We combine our 2D and 3D microstructural 

observations to elucidate the TiC and secondary phase formation mechanisms and reaction 

pathways. To link these microstructural observations to the processing variables in a quantitative 

manner, we conduct a canonical correlation analysis (CCA). This multivariate statistical technique 

sheds light on the processing parameters that are maximally correlated to the agglomeration and 

dispersion of the TiC particles, among other microstructural descriptors.  

It is important to note that the SHS experiments carried out in this chapter are part of a 

subset of the experiments discussed in Chapter 3 (Section 2.4). However, some experiments 

discussed in Chapter 3 (i.e., Sample SHS-10, 11, and 12) are omitted here due to insufficient data 

needed for the multivariate statistical analysis described in Section 4.4. Thus, for consistency 

throughout the chapter, only samples utilized in Section 4.4 are considered in the discussion of 

experimental methods.  

 

4.2 Experimental methods 

4.2.1 SHS experiments 

In situ Al-TiC composites were prepared at Worcester Polytechnic Institute (Worcester, 

MA) via a modified SHS process developed by Cho et al., wherein pellets containing various ratios 

of raw elemental powders (Al, Ti, C) and copper thermite (CuO) are directly reacted in an Al melt 

[31, 38]. The experimental procedure to create the corresponding SHS pellets and melts is 

described in detail in Chapter 3, Section 3.4.1. In this study, several processing parameters were 

varied as shown in Table 4.1.  

 
Table 4.1. Summary table of experimental conditions varied between SHS processing batches.  

Sample 
ID 

C 
amount, 
𝒏𝑪 [mol] 

CuO 
amount, 
𝒏𝑪𝒖𝑶 [mol] 

Ti size, 
𝒅𝑻𝒊 

[µm] 

Pellet 
packing 

method [-] 

Powder mixing 
method [-] 

Powder/melt 
ratio, 𝒓𝒑/𝒎 

[g/g Al] 

Process 
temperature, 
𝑻𝒑𝒓𝒐𝒄 [°C] 

1 1 0.1 44 Pressed Ball mill + mechanical mix 0.32 842 
2 1 0.1 44 Pressed Resonant acoustic mix 0.32 860 
3 1 0.155 44 Pressed Resonant acoustic mix 0.32 838 
4 1.1 0.1 44 Pressed Resonant acoustic mix 0.32 851 
5 1.1 0.155 44 Pressed Resonant acoustic mix 0.32 843 
6 1.1 0.1 44 Pressed Ball mill + mechanical mix 0.32 840 
7 1.1 0.155 20 Pressed Ball mill + mechanical mix 0.32 823 
8 1.1 0.155 20 Loose Ball mill + mechanical mix 0.07 780 
9 1.1 0.155 20 Pressed Ball mill + mechanical mix 0.07 770 
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 4.2.2 Characterization techniques 

Metallographic specimens were prepared from SHS Al-TiC master alloys and polished to 

a 1 µm polycrystalline diamond surface finish using the standard metallographic preparation 

techniques outlined in Chapter 3, Section 3.4.2. After polishing, samples were bath sonicated for 

30 s in ethanol to remove residual polishing particles embedded in the soft Al surface. 

Bulk microstructural characterization was performed using a Tescan MIRA3 field emission 

gun (FEG) SEM operating in backscatter electron (BSE) mode at 15 kV and a beam intensity of 

12-15, while an integrated EDAX energy dispersive spectroscopy (EDS) system was utilized for 

chemical identification of particles and secondary precipitates.  184 images across 18 samples (2 

separate ingot locations per Sample ID condition) were analyzed in order to provide statistically 

significant correlations (See Section 4.4). 

To supplement our 2D microstructural characterization, the cast samples were also 

visualized in 3D at nanoscale resolution. Micropillar specimens for TXM characterization were 

prepared by taking as-cast ingots and cutting out 1 mm diameter rods (10-15 mm in length) via 

electrical discharge machining (EDM). Rods were subsequently sharpened on one end to 

approximately 100 µm diameter tips via electropolishing. To electropolish samples, a beaker 

containing a solution of 25 vol% NHO3 and 75 vol% CH3OH was first cooled for 10 min in liquid 

N2. Subsequently, one end of a EDM cut sample (i.e., the workpiece or anode) and a steel plate 

(i.e., the cathode) were submerged in the electrolyte at opposite ends of the beaker for the 

electropolishing procedure. 10 V was used for bulk material removal (approximately 1-2 min) and 

a final polish at 5-7.5 V was used to minimize surface roughness and better control taper and the 

onset of pitting. Electropolished tips were shaped into final micropillars £40 µm in diameter and 

80-100 µm in height using a FEI Nova 200 Nanolab SEM/FIB equipped with a Ga+ ion beam. A 

FIB accelerating voltage of 30 keV was used in conjunction with various milling currents, starting 

with 20 nA for coarse milling and stepping down to sequential 5 nA and 1 nA milling steps to 

minimize taper and surface roughness. A schematic depicting the TXM sample preparation process 

is shown in Figure 4.1. 
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Figure 4.1. (top row) Schematic illustration of TXM sample preparation steps. (bottom row) 
Photographs and SEM micrographs of samples after the corresponding preparation step above it 
is performed. 
 

Absorption full-field hard X-ray nanotomography experiments were conducted via TXM 

at Sector 32-ID at the Advanced Photon Source in Argonne National Laboratory (Lemont, IL) 

[175]. The un-milled end of each sample was clamped to a stainless-steel needle to ensure correct 

micropillar height in the TXM, and samples were subsequently placed on a high precision air-

bearing rotary stage capable of 360° rotation. A monochromatic X-ray beam operating at 8 keV 

was focused onto the samples using a monocapillary condenser and a Fresnel zone plate with 50 

nm outermost-zone-width served as an objective lens to magnify the images. Projections were 

acquired using a detector assembly comprising a LuAG scintillator, a Mitutoyo long working 

distance objective lens, and a CCD. A more detailed description of the TXM setup is available 

elsewhere [175, 176]. Using this configuration, a spatial resolution of 50 nm for a pixel size of 

22.3 nm with a field-of-view of 2448 × 2048 pixels (or approximately 54 × 45 µm2) on the detector 

plane was achieved. For each scan, projections were taken at 0.15° angular increments from 0° to 

180° with an exposure time of 1 s or 0.5 s (contrast between sample elements was large enough 

that there was minimal difference between exposure times). In total, we captured 16 scans 

(tomograms) from 9 different samples via TXM to augment our SEM observations (Section 4.4). 
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4.2.3 Data processing and visualization methods 

SEM micrographs were adjusted to maximize contrast using ImageJ (version 1.49) 

software prior to analysis. A representative micrograph after contrast adjustment is shown in 

Figure 4.2(a). The differences in backscattering contrast easily reveal the Al3Ti intermetallic 

precipitates (medium grey) and TiC particles (bright) against the Al matrix (dark) [150]. 

Segmentation or partitioning of phases into different classes and additional post-processing were 

carried out using the Image Processing toolbox in MATLAB 2018b. In general, the data processing 

workflow consisted of multi-level thresholding followed by median filtering to reduce background 

noise. From the segmented and processed images, we calculated the particle (and intermetallic) 

areas (and hence, effective particle diameters) based on the sizes of individual connected 

components. The spacing between centroids of connected components (corresponding to the 

interparticle distance) was calculated via a k-nearest neighbors algorithm [177, 178, 179]. 

The TXM projection data was reconstructed into 3D using TomoPy, a Python-based open 

source framework for tomographic data processing [180]. Projections were first normalized using 

dark- and white-field images (i.e., flat field correction) and subsequently the data were 

reconstructed via the Gridrec algorithm with Parzen filtering [ 181 , 182 ]. A representative 

reconstruction slice along the axis of rotation is shown in Figure 4.2(b), where the Al matrix (dark 

grey), Al3Ti (medium grey), and TiC (bright) are easily distinguishable due to differences in 

absorption contrast. The greyscale intensities of the individual slices were normalized using the 

Beer-Lambert law to account for small differences in slice diameter. Subsequently, the 2D slices 

were segmented using the same approach as for the SEM images. The segmented 2D slices were 

combined into a 3D volume and post-processed using the same methods as for the SEM images 

(i.e. median filtering, connected component labeling, and a k-nearest neighbor search). Interfaces 

between the phases were meshed in 3D to facilitate 3D visualization. A representative mesh is 

shown in Figure 4.2(c), with the TiC colored in red and Al3Ti intermetallics shown in green. 

Several rotated views of the 3D mesh are shown for clarity. 
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Figure 4.2. Microstructural observations: (a) Representative contrast-adjusted SEM micrograph 
used for image analysis of particles and secondary phases. Both TiC and Al3Ti intermetallics are 
present. (b) Representative reconstructed slice (taken along the tomographic axis-of-rotation, z>) of 
a micropillar showing both TiC and Al3Ti phases. The round slice shape corresponds to the 
diameter of the micropillar, ~35 µm. (c) Volume renderings of a cubic field-of-view within stacked 
TXM slices. Elongated Al3Ti (transparent green) is present along with clusters of TiC particles 
(solid red). Several rotated views are shown for clarity. 
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4.3 Results and discussion 

4.3.1 Microstructural observations 

The observed microstructures were discussed in Chapter 3 (Section 3.4.3), but are 

reiterated here as they are relevant for the discussion in this chapter. SHS microstructures consisted 

primarily of sub-micrometer TiC particles, with small amounts of Al3Ti and C-rich regions 

containing unreacted carbon. Micrographs of representative Al3Ti, C-rich regions, and TiC 

particles and their corresponding EDS spectra are shown in Chapter 3, see Figure 3.8(a-c). A small 

amount of Al2O3 (Figure 3.8(d)) was also observed in the bulk. Since this is a byproduct of the 

reduction of CuO by liquid Al during thermite reaction and not directly related to the Al-Ti-C 

system under investigation, we do not focus on the Al2O3 phase hereafter [154, 183, 184]. 

The Al3Ti precipitates (Figure 4.2 and Figure 3.8(a)) exhibit an elongated and faceted 

structure with dimensions approximately 10-40 µm long and 5-10 µm wide. Small clusters of TiC 

particles were observed to surround the Al3Ti in many cases, which becomes more apparent when 

looking at the reconstructed 3D volumes (Figure 4.2(c)) where TiC particles appear to be attached 

to the surface of the Al3Ti (at the spatial resolution of the TXM, 50 nm). The overall volume 

fraction of Al3Ti was generally low, with <0.5 vol% per batch (as averaged from all SEM and 

TXM datasets for a given batch). In a similar sense, the C-rich regions (Figure 3.8(b)) exhibit a 

layer of TiC or cluster of particles surrounding them (on the order of tens of nm between C-rich 

regions and the surrounding TiC). Amounts of excess C were difficult to identify reliably via image 

recognition methods due to contrast similarities with pores and any contamination, but in general 

we observe <0.02 vol% per batch (as averaged from all SEM and TXM datasets for a given batch). 

We also detected individual TiC particles as well as solid and ring-like clusters, as shown in Figure 

3.8(b-c). The particles were largely spheroidal in shape, as confirmed by both SEM and the TXM 

observations, with some more ellipsoidal shapes also being present. The average TiC yield from 

SHS was estimated to be in the range of 1-2 vol%, with particle sizes ranging from approximately 

380 to 910 nm (as averaged from all SEM and TXM datasets for a given batch). It is also worth 

noting that although C/TiC and Al3Ti/TiC features were observed, we did not see instances of C-

rich regions in close proximity with Al3Ti precipitates. Excess C and Al3Ti were separated by 

distances on the order of tens of microns. 
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4.3.2 Thermodynamics of TiC formation 

In the CuO-assisted SHS process, the highly exothermic thermite reaction is thought to 

facilitate the high local temperatures typically needed for TiC formation but estimates as to the 

peak reaction temperature vary. Theoretical calculations by Fischer and Grubelich [185] report an 

adiabatic peak reaction temperature of ~2800 K (2527 °C) accounting for phase change of the 

reaction products, while Lee et. al. [183] used a Gibbs formulation model [186] to predict a peak 

temperature of ~4500 K (4227 °C) in liquid aluminum. Experimental measurements indicate that 

peak reaction temperatures are dependent on bulk melt temperature, with a peak temperature of 

1300 K (1027 °C) for a bulk temperature of 1023 K (750°C) and 2000 K (1727°C) for a bulk 

temperature of 1193 K (920°C) [38]. Discrepancies in the experimental values are likely due to 

difficulties in measuring highly localized and transient thermal fields, as well as local variations 

in thermal conductivity in the pellet/melt system. Therefore, it is worth considering the 

thermodynamics of the SHS process over a relatively large temperature range to adequately 

account for bulk and peak temperatures. 

TiC can form via SHS reaction according to indirect or direct reaction pathways [38]. 

Indirect formation of TiC can occur by reaction between solutes and intermediate compounds, as 

given by 

 3[𝑇𝑖] + 𝐴𝑙Q𝐶k(𝑠) = 3𝑇𝑖𝐶(𝑠) + 4𝐴𝑙(𝑙), (4.1) 

 [𝐶] + 𝐴𝑙k𝑇𝑖(𝑠) = 𝑇𝑖𝐶(𝑠) + 3𝐴𝑙(𝑙), (4.2) 

or by solid-solid reactions between Ti- and C-based intermediate compounds, 

 𝐶(𝑠) + 𝐴𝑙k𝑇𝑖(𝑠) = 𝑇𝑖𝐶(𝑠) + 3𝐴𝑙(𝑙), (4.3) 

 3𝐴𝑙k𝑇𝑖(𝑠) + 𝐴𝑙Q𝐶k(𝑠) = 3𝑇𝑖𝐶(𝑠) + 13𝐴𝑙(𝑠). (4.4) 

Alternatively, TiC can also be formed directly via solute-solute reaction or solute-precursor C 

reaction, 

 [𝑇𝑖] + [𝐶] = 𝑇𝑖𝐶(𝑠), (4.5) 

 [𝑇𝑖] + 𝐶(𝑠) = 𝑇𝑖𝐶(𝑠). (4.6) 

Following Rapp and Zheng [187], we plot the Gibbs free energies of the various chemical 

reactions as well as solute generation from Ti and C sources for comparison in Figure 4.3(a-b). 

Several of the energy lines have been truncated based on the stable temperature ranges of the 

compounds involved in indirect reaction processes (e.g. the lines involving Al3Ti(s) are truncated 

approximately at its melting temperature). All reactions appear thermodynamically favorable over 
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the range of relevant temperatures, offering the possibility of multiple pathways in the formation 

of TiC (Figure 4.3(a)). However, the generation of [C] solutes necessary for Eqns. (4.2 and (4.5) 

requires temperatures in excess of ~1500 K (1227 °C). 

 

 
Figure 4.3. Thermodynamic analysis based on equations from Rapp and Zheng [187]: (a) Gibbs 
energies of formation for the various SHS reaction pathways over an operating temperature range 
covering bulk melt temperature and peak thermite reaction temperature. “Direct” reaction 
pathways are warm colored lines, “indirect” reaction pathways are cool colored lines. Dotted lines 
represent those reaction pathways that are ruled out as unlikely (see text for details). Some lines 
have been truncated based on maximum limits of phase stability. (b) Gibbs energies of formation 
for C and Ti solutes ([C] and [Ti]). 
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4.3.3 Discussion of TiC formation pathways 

The observed microstructural signatures and thermodynamics allow us to infer the 

dominant reaction pathways for TiC formation. The presence of Al3Ti and the aforementioned TiC 

clustering around Al3Ti (Figure 4.2(c)) are suggestive of reaction by Eqns. (4.2) and (4.3). It is 

possible that the close proximity is due to both particles and intermetallics being pushed during 

solidification, but it may also be indicative of particle growth from the intermetallics themselves. 

Similar clustering behavior has been observed previously and attributed to both Al3Ti-based 

reaction pathways [38, 39, 41, 188]. However, reaction via Eqn. (4.2) may be more favorable than 

Eqn. (4.3), as the solid-solid reaction has been observed to occur over relatively long time scales 

(on the order of hours for TiC formation from C and Al-Ti intermetallics) [189]. Furthermore, 

solid-solid reaction processes are expected to be heavily dependent on the surface contact area 

between the two solid phases [190], which may be impacted by factors such as localized turbulence 

in the melt during the self-propagating reaction. The lack of observed Al3Ti and C in contact with 

each other, or any indication of partial reaction, would also agree with Eqn. (4.3) either not 

occurring here or else occurring in a limited capacity. 

The observation of TiC particles forming around C-rich regions (Figure 3.8(b)) may be 

indicative of partial reaction or nucleation sites, thus suggesting that Eqn. (4.6) is also plausible. 

Numerous observations have been made of TiC surrounding excess C after SHS reaction, and they 

are often attributed to dissolution of Al3Ti and subsequent [Ti]-C(s) reaction [38, 152, 174].  

Reactions involving Al4C3 (Eqns. (4.1 and (4.4)) may be unlikely here, given that it is 

absent in any of the batches in either a partially reacted or standalone state. Banerji and Reif [191] 

proposed that Al4C3 may be more stable than TiC below temperatures of 1500 K (1227 °C), in 

which case we would expect residual Al4C3, but this was disputed [187, 192] and found to be valid 

only for very low levels of dissolved Ti. It is likely that the concentration of dissolved Ti is higher 

than the concentration of dissolved C in the melt during processing, considering the more favorable 

dissolution of Ti (Figure 4.3(b)) over the operative temperature range. Additionally, the highest 

thermite reaction temperatures (>1500 K) are required to initiate any C dissolution and, despite 

discrepancies in the peak reaction temperature, the heat around a CuO reaction site dissipates 

rapidly (~ 1 ms) [183, 184]. Furthermore, on the Al-rich side of the phase diagram and at 

concentrations of high Ti relative to C, the Al4C3 phase does not co-exist with TiC, Al3Ti, and 
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liquid Al [156]. Therefore, reaction pathways involving Al4C3 are improbable or limited as 

compared with other mechanisms. 

The direct reaction of [Ti] and [C] in Eqn. (4.5), is difficult to confirm or rule out directly, 

as no residual evidence of the reaction would be expected or observed. However, Eqn. (4.5) 

becomes thermodynamically favorable at high temperatures where the dissolution of C is 

facilitated [38]. It is possible that the particle clusters observed (Figure 3.8(c)), without C-rich 

regions present, are suggestive of the direct [Ti]-[C] mechanism occurring with a higher frequency 

in localized regions around thermite reaction sites. Additionally, individual TiC particles observed 

separate from other solid phases or clusters may also be the result of reaction via Eqn. (4.5), 

occurring when isolated solutes interact after diffusing away from reaction sites.  

Figure 4.4 is a schematic that surveys the dominant formation mechanisms of TiC. In the 

process, the compacted pellet consisting of Al-Ti-C-CuO powders is plunged directly into an Al 

melt between 1043 K (770 °C) and 1133 K (860 °C). Subsequently, Al powders will begin to melt 

and react with the solid Ti particles and begin to form Al3Ti, which is expected at these 

temperatures even in the absence of thermite [193, 194, 195]. The liquid Al will then reduce the 

CuO thermite, quickly increasing the local temperature upwards of 1500 K (1227 °C). Al3Ti (s) 

and C (s) will subsequently break down and form dissolved [Ti] and [C] in the melt near the 

thermite reaction sites. At this point [C], [Ti], Al3Ti(s), and C(s) co-exist in the melt and three 

reaction pathways can take place in series or in parallel according to Eqns. (4.2), (4.5) and (4.6). 

Consequently, we expect to see a final microstructure consisting of TiC particles (both individual 

and clustered), Al3Ti intermetallics, and excess C-rich regions. 
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Figure 4.4. Schematic depicting formation mechanisms of TiC via thermite-assisted SHS 
reactions. Upon insertion of a pellet to the melt (1), Al melts and forms intermediate Al3Ti 
precipitates (2). The CuO thermite subsequently reacts with liquid Al and a sharp temperature 
increase (>1500 K) causes dissolution of solid C particles and Al3Ti precipitates (3). TiC formation 
then occurs via one of three parallel reaction pathways (4), yielding distinct microstructural 
signatures (5). All suggested pathways are consistent with experimental observations (cf. Figures 
3.8(a-c) and 4.2(c)). 
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4.4 Canonical correlation analysis (CCA) 

4.4.1 Motivation 

To assist in reconciling the wide variety of processing conditions (Table 4.1), 

microstructural observations (Figure 3.8(a-c), 4.2), and potential formation pathways (Figure 4.4), 

we conducted a canonical correlation analysis (CCA). Broadly, CCA is a multivariate statistical 

model used to study linear associations between two sets of variables via analysis of the cross-

covariance matrices [196]. As compared with multiple regression, CCA has the advantage of being 

able to handle multiple dependent variables simultaneously [196, 197]. The methodology of CCA 

has been discussed in detail elsewhere [196, 197, 198, 199, 200, 201, 202], but will be briefly 

described here for the purpose of defining key terms.  

CCA assumes a set of 𝑥# input and 𝑦� output variables,  

 𝑋⃑ = 	 {𝑥-, 𝑥<, 𝑥k, … 𝑥#}, (4.7) 

 𝑌+⃑ = 	 ¥𝑦-, 𝑦<, 𝑦k, … 𝑦�¦, (4.8) 

where subscripts 𝑖 and 𝑗 correspond to the number of input and output variables respectively. 

Ultimately, CCA seeks to identify linear combinations (up to a maximum of 𝑖 = 𝑗) of artificial 

variables, otherwise known as canonical variates, that exhibit maximum correlations (canonical 

correlations). Canonical variates are denoted as 

 	𝑉 = 	∑ α«x«« , (4.9) 

 	𝑊 = 	∑ β¯y¯¯ , (4.10) 

where 𝑉  and 𝑊  are the canonical variates and 𝛼  and 𝛽  are weighted coefficients, known as 

canonical weights. Effectively, the weights used in the canonical variates represent the relative 

contributions of each independent variable to the dependent variables, at a maximized canonical 

correlation. Additional quantities of interest for our analysis include the canonical loadings (or 

cross-loadings), and the redundancy indices [196]. The canonical loadings and cross-loadings are 

a measure of the correlation between the original variables used in the analysis and the canonical 

variates [203]. Redundancy indices provide a means of interpreting the shared variance of the 

canonical variates (i.e., 𝑟<). Thus, to assess the overall “goodness” of the analysis and interpret the 

results, all of these factors must be considered holistically. Standard statistical significance testing 

can also be used to aid in interpretation and evaluation of robustness of the CCA results (such as 

the Wilks-Lambda significance test) [196, 197, 198].  
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4.4.2 Parameters and definitions 

Setting up the CCA requires addressing several assumptions and limitations of the model, 

such as sample size, variable co-linearity, and canonical variate linearity. Requirements for 

minimum number of observations (sample size) vary, with guidelines ranging from 10 times the 

number of model variables [196, 204], >200 observations [205, 206], and >500 observations [203]. 

Here we use a sample size of 200 observations (20 times the number of variables) corresponding 

to both SEM and TXM datasets (where one observation represents complete particle and 

intermetallic statistics for a single SEM image or TXM volume, taken from different locations of 

ingots from each batch). CCA also assumes that input and output model variables are not co-linear 

within their respective sets [196]. This is an important consideration when choosing the output 

metrics, since dispersion and agglomeration can be used to calculate average particle diameter and 

volume percentage. Thus, these two sets of metrics were kept as separate groups during evaluation. 

Finally, it is worth noting that CCA is designed to highlight linear relationships between 

combinations of independent and dependent variables [196, 197, 199]. If the relationships are not 

linear, CCA may not accurately capture them and supplementing with additional techniques like 

Monte Carlo analysis may be required [202]. However, the information obtained from CCA can 

still be quite valuable if care is taken during interpretation of the results [196]. 

Taking the assumptions and limitations of CCA into account, below we define our input 

and output variables. For input metrics 𝑋⃑, we use the processing parameters (from Table 4.1): bulk 

melt temperature (𝑇/012), C and CuO pellet composition (𝑛$, 𝑛$56), Ti precursor size (𝑑"#), pellet 

packing method, powder mixing method, and powder/melt mass ratio (𝑟//9 ). For the output 

metrics, we define two separate canonical variates (denoted as 𝑌+⃑- and 𝑌+⃑<) in order to avoid the 

problem of multicollinearity [196] between the dependent variables. For 𝑌+⃑-, we choose volume 

percentage of TiC (𝜈"#$), average diameter of TiC particles (𝑑"#$), and volume percentage of Al3Ti 

intermetallic phases (𝜐'()"#). The choice of output metrics here is based on our microstructural 

observations (Figure 3.8(a-c)) with the goal of informing process parameters in tuning TiC 

characteristics. Although volume percentage of excess C (Figure 3.8(b)) was also an observed 

microstructural feature, it was not included here due to the very low volumes relative to TiC and 

Al3Ti (<0.02 vol% based on an average of all SEM and TXM datasets for a given batch). The 

second grouping of relevant output metrics, 𝑌+⃑<, consisted of dispersion (𝐷), agglomeration (𝐴), 
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and Al3Ti volume percentage (𝜐'()"#). The rationale behind this particular set of variables was to 

provide some indication as to whether different processing conditions lead to different reaction 

pathways (e.g., TiC formed via [Ti]-[C] may be more dispersed, whereas agglomerated TiC or 

high Al3Ti vol% may indicate more solid-solute mediated reaction mechanisms). Additionally, 

dispersion and agglomeration are microstructural features of interest due to their strong influence 

on the overall mechanical performance of MMNCs [122, 124, 207, 208, 209]. 

Dispersion, D, and agglomeration, A, were calculated for each 2D/3D dataset using the 

approach developed by Tyson et al. [210]. First probability density functions (PDFs, denoted as 𝑓 

in the equations that follow) were created from the distributions of particle diameters and 

interparticle spacings in the image [211]. Then, D and A were calculated as, 

 D =	∫ f(r·«¸-·«¸)dr
-.<»
i.¼» , (4.11) 

 A = 	1-	∫ f(d·«¸)dd
-.k»
i.½» , (4.12) 

where 𝑟"#$Y"#$  is the nearest-neighbor interparticle spacing, 𝑑"#$  is the particle diameter, and 𝜇 is 

the mean value of each corresponding PDF. In the limit the particles are perfectly disperse and not 

clustered, 𝐷 = 1 and 𝐴 = 0 (and vice versa in the opposite limit). A graphical representation of 

how dispersion and agglomeration are calculated is shown in Figure 4.5(a-b), for a representative 

high-magnification SEM image. 

CCA was carried out using the CCA package developed by González et. al. [212] for the 

R statistical computing environment (version 3.6.0). We used a sample size of 200 observations 

(i.e., 20 times the number of variables) corresponding to both SEM and TXM datasets (where one 

observation represents complete particle and intermetallic statistics for a single SEM image or 

TXM volume, taken from different locations of ingots from each batch). The CCA input data (e.g. 

particle diameter, volume percentage, etc.) was compiled from calculations using the image 

processing methods described in Section 4.2.2. 
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Figure 4.5. (a) Example calculation of particle dispersion, D, based on a corresponding probability 
distribution function of interparticle spacings. (b) Example calculation of particle agglomeration, 
A, based on a corresponding probability distribution function of particle diameters. SEM images 
at left are high-magnification representations to more clearly show the definitions of interparticle 
spacing and diameter (lower magnification images are used to construct the PDFs so that a 
sufficient number of particles can be captured). In general, >1200 particles are considered in 
constructing the probability distributions. See text for computational details. 
 

4.4.3 CCA results and discussion 

CCA evaluation of the first group of variables 𝑌+⃑-  using 𝜈"#$ , 𝑑"#$ , and 𝜈'()"#  as the 

dependent variables yield linear combinations with correlation coefficients of 0.74, 0.18, and 0.11. 

The relative differences between the coefficients, as well as a redundancy index analysis, suggest 

that the first pair of canonical variates is sufficient to describe the data. A table of the relevant 
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results for the first canonical variate pair is shown in Table 4.2 and the variates are plotted together 

in Figure 4.6 (SEM data in blue and TXM data in red). A least-squares fit to the data and the 

relatively high correlation coefficient suggest that the behavior of the dependent variate, 𝑊, is 

reasonably well described by the independent variate, 𝑉. A Wilks-Lambda test yields p < 0.001, 

indicating the results are statistically significant. A graphical representation of the absolute value 

of the loadings and weights for each variable is shown in Figure 4.7, where the relative diameters 

of the circles correspond to the variance (squared loadings). Variables with high weights and 

significant loadings (³ 0.40 for sample sizes of at least 200 [196, 203]) are considered to dominate 

the behavior of the variate. Thus, the dominant variables for further consideration can be reduced 

to the independent variables 𝑛$ , 𝑟//9, and the dependent variable 𝜈"#$ . 
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Table 4.2. Summary of the CCA analysis using TiC particle volume percentage (𝜈"#$ ) , TiC 
particle diameter (𝑑"#$), and Al3Ti intermetallic volume percentage (𝜐'()"#) (metric set 𝑌+⃑-) as the 
dependent variables for the output metrics. The input variable metrics are bulk melt temperature 
(𝑇/012), C and CuO pellet composition (𝑛$, 𝑛$56), Ti precursor size (𝑑"#), pellet packing method, 
powder mixing method, and powder/melt mass ratio (𝑟//9). Note that the redundancy indices 
apply to all the inputs (for 0.401) and outputs (for 0.275). 

Variable Weight Loading Cross-loading Redundancy Index 
𝑇/012  0.032 0.888 0.761 

0.401 

𝑛$  −5.290 −0.651 −0.558 
𝑛$56 16.152 −0.386 −0.331 
𝑑"# 0.031 0.869 0.745 
𝑟//9 −3.839 0.811 0.696 

𝑃𝑒𝑙𝑙𝑒𝑡	𝑝𝑎𝑐𝑘𝑖𝑛𝑔 0.622 0.643 0.551 
𝑀𝑖𝑥𝑖𝑛𝑔	𝑚𝑒𝑡ℎ𝑜𝑑 −0.138 −0.794 −0.680 

𝑉"#$  1.133 0.999 0.857 
0.275 𝑑"#$  −0.0001 0.336 0.288 

𝑉'()"# −0.068 0.096 0.083 
 

 
Figure 4.6. Correlation of the canonical variates using the output metrics 𝜈"#$  , 𝑑"#$ , and 𝜐'()"#  
(metric set 𝑌+⃑-) in canonical variate W. Data points are colored according to the experimental probe 
used to capture the microstructure (either SEM or TXM, see Figure 3.8 and Figure 4.1).  The 
associated canonical weights of each variate and the canonical correlation coefficient are shown 
at the top left.  



 67 

 
Figure 4.7. Graphical representation of the CCA-determined weights and loadings (of the first 
canonical variate pair) using 𝜈"#$  , 𝑑"#$ , and 𝜐'()"#  (metric set 𝑌+⃑-) as the output metrics. The 
diameter of each circle corresponds to the fraction of the variance associated with each variable 
(squared loadings). Relatively higher weights and loadings for 𝑛$  and 𝑟//9  indicate that they 
explain a larger fraction of the canonical variate of processing variables, 𝑉. The relatively higher 
loading for 𝜈"#$indicates that it explains a large fraction of the canonical variate of output metrics, 
𝑊. A more detailed list of the CCA outputs is found in Table 4.2. 

 

CCA evaluation of the second group of variables 𝑌+⃑< with 𝐷, 𝐴, and 𝜈'()"#  as dependent 

variables yield linear combinations with correlation coefficients of 0.82, 0.42, and 0.15 for the 

first, second, and third canonical variate pairs respectively. Similar to the first group of metrics, 

we assume the first canonical variate pair is sufficient for interpretation of the CCA based on the 

relative magnitudes of 𝑟< and a redundancy index analysis. A Wilks-Lambda test suggests the first 

canonical correlation is statistically significant, yielding p < 0.001. A summary of the relevant 

results for the first variate pair is shown in Table 4.3 and a least-squares fit and the correlation 

coefficient suggest that 𝑊 is well described by 𝑉 (Figure 4.8). A graphical representation of the 

absolute value of the loadings and weights for each variable is shown in Figure 4.9. Based on the 

significant weights and loadings, the independent variables 𝑛$56 , 𝑛$ , and 𝑟//9  dominate the 

behavior of 𝑉, while the behavior of 𝑊 is not observed to be dominated by a specific variable 

(although 𝐷 exhibits the highest weight and loading). 
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Table 4.3. Summary of the CCA analysis using particle dispersion (𝐷), particle agglomeration 
(𝐴), and volume percentage of Al3Ti intermetallics (𝜐'()"# ) (metric set 𝑌+⃑< ) as the dependent 
variables for the output metrics. The input variable metrics are bulk melt temperature (𝑇/012), C 
and CuO pellet composition (𝑛$, 𝑛$56), Ti precursor size (𝑑"#), pellet packing method, powder 
mixing method, and powder/melt mass ratio (𝑟//9). Note that the redundancy indices apply to all 
the inputs (for 0.445) and outputs (for 0.180). 

Variable Weight Loading Cross-loading Redundancy Index 
𝑇/012  −0.012 0.902 0.816 

0.445 

𝑛$  1.066 −0.488 −0.441 
𝑛$56 −19.547 −0.855 −0.773 

𝑑"# 0.044 0.931 0.842 
𝑟//9 4.920 0.787 0.711 

𝑃𝑒𝑙𝑙𝑒𝑡	𝑝𝑎𝑐𝑘𝑖𝑛𝑔 −0.218 0.563 0.509 

𝑀𝑖𝑥𝑖𝑛𝑔	𝑚𝑒𝑡ℎ𝑜𝑑 −0.233 −0.475 −0.430 
𝐷 0.103 0.639 0.577 

0.180 𝐴 0.092 0.461 0.416 
𝜐'()"# 0.174 0.198 0.179 

 

 
Figure 4.8. Correlation plot of the canonical variates using the output metrics 𝐷, 𝐴, and 𝜐'()"# 
(metric set 𝑌+⃑<) in canonical variate W. Data points are colored according to the experimental probe 
used to capture the microstructure (either SEM or TXM, see Figure 3.8 and Figure 4.1). The 
associated canonical weights of each variate and the correlation coefficient are shown at top left. 
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Figure 4.9. Graphical representation of the CCA determined weights and loadings (of the second 
canonical variate pair) using 𝐷, 𝐴, and 𝜐'()"# (metric set 𝑌+⃑<) as the output metrics. The diameter of 
each circle corresponds to the fraction of the variance associated with each variable (squared 
loadings). Relatively higher weights and loadings for 𝑛$56, 𝑛$  and 𝑟//9indicate that they explain 
a large fraction of the canonical variate of processing variables, 𝑉, in agreement with results 
obtained from the other canonical variate pair (Fig. 4.7). The relatively similar weights and 
sufficiently high loadings of dispersion and agglomeration indicate that they explain roughly equal 
fractions of the canonical variate of output metrics, 𝑊. A more detailed list of the CCA outputs is 
found in Table 4.3. 

 

The results of both CCAs suggest that the amount of precursor powder (𝑛$  and 𝑟//9) and 

the amount of thermite, 𝑛$56 , have the largest impact on the final microstructure (e.g., TiC 

characteristics and distribution). Several of the variables in the independent variate 𝑋⃑  (𝑇/012, 𝑑"#, 

pellet packing method, and powder mixing method) exhibit a high loading, but low weight (relative 

to the dominant variables). This suggests that these variables are accurately captured by the 

independent variates and that the dependent variates 𝑌+⃑- and 𝑌+⃑< are weakly sensitive to variations 

in these inputs. The relatively low weights calculated for the dependent variates in both CCAs may 

stem from non-linear relationships between the outputs and the inputs that may be more accurately 

captured by supplementary methods such as a Monte Carlo analysis [202]. Nevertheless, the high 

correlation coefficients between the variates in both CCAs suggest a measure of sensitivity in the 

output variables to the dominant input variables. 
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The results of the CCA are in agreement with our microstructural observations and the 

thermodynamics of TiC formation (Section 4.3.3), suggesting that the amount of C and CuO have 

the largest impact (relative to the other processing variables) on the final microstructure. In our 

schematic (Figure 4.4) of formation mechanisms, we proposed three dominant reaction pathways 

(all requiring C) consisting of TiC formation via direct mechanisms (i.e., [Ti] and [C] or solid C 

interactions, Figure 3.8b-c) and an indirect mechanism (i.e., [C] with Al3Ti, Figure 3.8(a) and 

Figure 4.2(c)). However, based on the thermodynamics (Figure 4.3(a-b)), it is expected that only 

the reaction pathway involving [Ti] and solid C will be favorable below temperatures of ~1500 K 

(1227 °C). Thus, the amount of CuO will play a dominant role in TiC formation as the high 

temperatures required for [C] dissolution and initiation of the other two formation pathways (i.e., 

[Ti]-[C] and [C]-Al3Ti) are dependent on the availability of thermite reaction sites. Given that the 

three pathways exhibit distinct microstructural signatures, tuning the characteristics of the CuO 

(e.g., amount, particle size, distribution within the pellet) may provide a more effective measure 

of microstructural control.  

 

4.4.4 Considerations of morphological evolution 

 The combined CCA and microstructural data shown above provide a holistic view of the 

key processing variables and hypothetical reaction pathways for the formation of TiC. We have 

not yet considered on a more local scale the morphological evolution of individual phases via each 

pathway, which can also have a significant impact on physical properties. In particular, the shape 

of the reinforcing and secondary phases (e.g., the TiC particles and Al3Ti intermetallic here) have 

been found to strongly affect the mechanical performance of the material [135, 144, 145].  

The TiC particles observed here (See Figure 3.8 and Figure 4.2) are typically spheroidal or 

nearly spheroidal (e.g., ellipsoidal) in shape. Jin et. al. [213, 214], Dong et. al. [215], and Zhang 

et. al. [216] have demonstrated that the shape of TiC is heavily influenced by the stoichiometric 

ratio of C/Ti, where a perfect sphere corresponds to C/Ti ~1.0 and sub-stoichiometric ratios of 

C/Ti can lead to cubic (C/Ti > 1.0), ellipsoidal (C/Ti < 1.0), or octahedral (C/Ti ≪  1.0) 

morphologies. Particles corresponding to C/Ti stoichiometry close to 1.0 would be in good 

agreement with the morphologies observed here (See Figure 3.8(c)). The presence of some 

ellipsoidal particles corresponding to C/Ti < 1.0 (i.e., TiCx<1) may be due to instances of particle 

formation that are C limited (e.g., reaction via Eqn. (4.5)). However, it is also possible that some 
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of these ellipsoidal particles may change to spherical over time. Previous studies of TiC formation 

in Al via SHS reaction have observed particle evolution from octahedral to ellipsoidal and 

spherical, owing to a thermodynamic roughening transition from (111) stable particle surfaces to 

(100) stable surfaces [213, 215].  

Similarly, the Al3Ti morphology has been shown to be highly sensitive to processing 

conditions, with primarily either the blocky/platelet-like (both elongated and equiaxed) or needle-

like flakey morphologies forming based on melt processing temperature, cooling rate, and Ti 

concentration [217, 218, 219, 220, 221]. The Al3Ti intermetallics in this study exhibit an elongated 

shape with some degree of faceting at the ends (See Figure 3.8(a) and Figure 4.2(c)). Faceting is 

likely a characteristic of platelet-type Al3Ti, which has been observed to form at relatively low 

processing temperatures (as low as ~730 °C) [193, 217, 222]. Observed platelets may be consistent 

with formation by reaction between the surrounding liquid Al, melting Al powders, and solid Ti 

powders when the pellets are introduced into the melt (between 770-860 °C in this study). 

Alternatively, Zhao et. al. [223] and Arnberg et. al. [217] have attributed the blocky faceted 

formation to a local supersaturation of Ti. This explanation may also be feasible, given that high 

local Ti concentrations arise following CuO reaction and melting of nearby Ti powders. In general, 

elongated faceted intermetallics are suggestive of anisotropic growth, which has been 

hypothesized to occur preferentially in the <110> direction due to nucleation on lowest density 

atomic planes [218, 224, 225]. 

 For both TiC particles and Al3Ti intermetallics, different morphological evolution 

pathways may still lead to the same morphologies in the final microstructure (e.g., direct formation 

of spherical TiC particles versus roughening transitioning from octahedral to spherical particles). 

However, each pathway may be sensitive to the processing conditions and occur at different or 

competing rates; such intermediate steps cannot be accessed using the present analysis. To 

supplement our investigation, a complimentary approach such as phase field modeling [226, 227] 

or reaction-diffusion modeling [228] of SHS reaction would be illuminating. In situ studies of 

microstructure formation (through, e.g., TXM [229]) would also help validate and refine these 

models. The time-resolved experiments and models would provide a more complete picture of the 

morphological evolution underlying complex reactive processes. 
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4.5 Conclusions 

In this chapter, we have performed a more detailed investigation of formation mechanisms 

and processing-property relationships for in situ Al-TiC MMNCs produced via CuO-assisted SHS. 

A variety of SHS processing conditions were studied and the microstructures were characterized 

by both SEM and TXM (2D and 3D) to better understand TiC particle formation. By corroborating 

the microstructural data with thermodynamic analyses, we have proposed a formation mechanism 

for SHS TiC consisting of three reaction pathways (i.e., [Ti] + [C], [Ti] + C(s), and [C] + Al3Ti(s)) 

that lead to distinct microstructural signatures. We have also conducted CCA on the data collected 

in our study and demonstrated its potential as a means of guiding processing parameter choice for 

production of SHS MMNCs. In particular, for the CuO-assisted SHS process, we find that the 

amount of CuO thermite has the largest impact on final microstructural characteristics, likely due 

to the fact that two of three proposed reaction pathways require the high local temperatures 

generated by the thermite reduction. The results of this study on the formation mechanisms and 

processing input/output relationships will inform future SHS experiments and the rational design 

of in situ SHS MMNCs. 
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CHAPTER 5 

Summary, Preliminary Flux-Assisted Reaction Experiments, and Suggestions for Future 

Work 

 

5.1 Dissertation summary 

 Metal matrix nanocomposites (MMNCs) are a promising route for achieving improved 

ambient and elevated temperature mechanical performance of lightweight metals, such as Al. 

Typical ex situ MMNC processing methods, where the reinforcing particles are added to the matrix 

after manufacturing elsewhere, can suffer from incorporation difficulties due to contamination and 

undesirable particle/matrix interfacial reactions, reducing their viability for commercial scale-up. 

Alternatively, in situ processing methods, where particles are created directly in the melt via 

reactive pathways, exhibit improved particle/matrix interface stability and easier potential 

scalability. However, as the particles are created in situ, process control over critical particle 

characteristics (e.g., diameter, volume fraction, dispersion) are not well understood and remain a 

barrier to scale-up efforts. Consequently, this dissertation work sought to investigate processing-

microstructure-mechanical property relationships and formation mechanisms for in situ MMNCs, 

with the purpose of informing efforts to process commercial pilot-scale amounts of material. 

 In Chapter 2, we discussed the necessary literature and background for better understanding 

processing control of MMNCs, including pros and cons of various processing approaches, the 

strengthening mechanisms underlying their improved mechanical performance, and key particle 

characteristics to be controlled. This review provides a framework for the work studied in Chapter 

3 and Chapter 4 of this dissertation. 

In Chapter 3, we studied microstructural and mechanical properties of MMNCs processed 

via two in situ methods, namely, in situ gas-liquid reaction (ISGR) and self-propagating high-

temperature synthesis (SHS). We found that a modified CuO thermite-assisted SHS process in 

particular is capable of readily producing sub-micrometer TiC particles in a wide variety of volume 

fractions and dispersions depending on processing conditions. Working jointly with a team as part 

of the Lightweight Innovations for Tomorrow (LIFT) Institute, we report successful SHS 
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processing of commercial pilot-scale quantities of in situ Al-TiC MMNCs (~30 lbs), which exhibit 

a 26% increase in yield strength and 50% increase in ultimate tensile strength for relatively low 

amounts of reinforcement addition (0.7 vol% TiC). These results are a promising indication of the 

SHS process as a commercial-friendly method for large-scale production of in situ MMNCs. 

The work conducted in Chapter 3 laid the groundwork for our study in Chapter 4, where 

we performed a more detailed investigation into understanding the particle formation mechanisms 

and processing-property relationships for the SHS process. By combining 2D and 3D 

microstructural characterization (i.e., SEM and TXM) with a thermodynamic-based analysis, we 

identified three probable reaction pathways leading to TiC formation, namely direct reaction 

between [Ti] and [C] solutes, [Ti] solutes and solid C(s) sources, and [C] solutes with solid Al3Ti(s) 

intermetallics. We also demonstrate an approach for correlating processing-property relationships 

via quantitative microstructural analysis and canonical correlation analysis (CCA), where we 

report that the amount of CuO thermite is the key processing variable affecting final MMNC 

characteristics of interest (e.g., TiC volume fraction and dispersion). The results presented in this 

chapter are expected to inform a more rational approach to process control of in situ SHS MMNCs. 

 

5.2 Suggestions for future work and research directions 

The remainder of this dissertation will focus on suggestions for future work and directions 

based on the results presented in Chapter 3 and Chapter 4. We also present some preliminary 

experiments on an alternative MMNC processing method (i.e., flux-assisted reaction synthesis) 

that were not able to be completed over the course the work presented here, and some suggestions 

for additional future directions. 

 

5.2.1 Elevated temperature mechanical properties of SHS MMNCs 

As discussed in Chapter 1, MMNCs are expected to exhibit improved mechanical 

properties in the elevated temperature regime (i.e., 250 °C – 350 °C) as compared with other alloy 

strengthening mechanisms like precipitation strengthening. Consequently, although our reported 

results in Chapter 3 demonstrated improved ambient temperature mechanical properties of Al-TiC 

MMNCs, further mechanical testing at these elevated temperatures is necessary to better confirm 

their potential for commercial structural applications. Improved elevated temperature properties 

are expected for the MMNCs studied in this dissertation [77, 80, 138], but additional high 
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temperature tensile testing or hot hardness testing would provide valuable data on the mechanical 

performance of Al-TiC MMNCs produced via SHS. 

 

5.2.2 Influence of Si on SHS MMNCs 

Based on the results of the SHS experiments presented in Chapter 3, it is clear that the 

addition of secondary elements like Si can have a drastic effect on the final MMNC microstructure. 

During both direct SHS reaction and SHS master alloy dilution in Si-containing A356 

(composition: Al-7Si-0.3Mg), we reported on formation of undesirable TiAlxSiy intermetallics and 

Al4C3 carbides, which are presumably due to decreased TiC stability in the presence of Si. 

However, Si-containing Al-alloys such as A356 are of high interest for matrix materials in 

commercial applications owing to their improved castability [230, 231]. TiC instability and the 

subsequent formation of TiAlxSiy and Al4C3 in Si-containing Al alloys have been previously 

reported [158, 160], but the governing mechanisms are not fully understood. Furthermore, in 

addition to issues with TiC instability, the formation of these secondary TiAlxSiy phases may have 

negative effects on the general bulk material properties in terms of castability and wear resistance 

[232, 233]. Consequently, a more detailed study on the influence of Si on the stability and 

formation of TiC in Al-Si melts would be beneficial for informing scale-up of commercially 

relevant Al-Si-based alloys.  

 

5.2.3 CCA: Accounting for non-linear variable relationships 

In Chapter 4, we demonstrated an approach combining microstructural quantification and 

CCA to better understand the relationship between processing parameters and final microstructural 

characteristics. Although our CCA analysis identified some key processing parameters (i.e., 

amount of CuO) and confirmed the sensitivity of key output characteristics (i.e., dispersion and 

volume reinforcement percentage) to these processing variables, further work needs to be done to 

better quantify the relationship between the two. One of the limitations of CCA is the assumption 

of linear relationships between variables, which may not be the case. To better capture non-

linearities in the data, CCA can be supplemented with complimentary techniques such as Monte-

Carlo analysis [202] or optimiztation via genetic algorithms [234]. Similar techniques may be 

applied to the SHS microstructural data discussed in Chapter 4, as well as future in situ MMNC 

data sets, which may uncover new processing-property relationships. 
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5.2.4 Exploration of alternative thermite materials for SHS process 

In Chapter 4, our multi-faceted approach utilizing microstructural quantification and CCA 

identified the CuO thermite as the key processing parameter influencing the reaction pathways and 

subsequent microstructural signature of thermite-assisted SHS Al-TiC MMNCs. This is likely due 

to a high localized temperature increase in the constitutent precursor powders, owing to the 

exothermic reaction after reduction of CuO by the Al melt. The high localized temperature then 

enables generation of [Ti] and [C] solutes, which can form solid TiC via several direct and indirect 

pathways (See Chapter 4). Given the apparent importance of the localized temperature increase 

from the thermite, a useful future study would be to explore alternative thermite materials in 

addition to CuO. For example, titanium dioxide (i.e., TiO2) has been demonstrated as a viable 

thermite for TiC production and allowing for the exclusion of pure Ti precursor powders from the 

SHS pellets [37, 235, 236]. 

 

5.2.5 An alternative approach to in situ Al-TiC MMNCs: Flux-assisted reaction synthesis 

Based on the results of the CCA analysis in Chapter 4, it is clear that the amount of thermite 

is a significant processing parameter in controlling the microstructure and particle characteristics 

of CuO-assisted SHS MMNCs. However, we also find interest in alternative methods of producing 

in situ Al-TiC MMNCs. Based on the analysis of the thermodynamics, reaction pathways, and 

formation mechanisms in the Al-TiC system presented in Chapter 3, one possible approach 

involves leveraging the reaction pathway that does not require the high temperatures provided by 

the CuO reduction, given as Eqn. 5.1, 

 [𝑇𝑖] + 𝐶(𝑠) = 𝑇𝑖𝐶(𝑠).  (5.1) 

A promising in situ processing method presumed to be based on Eqn. 5.1 involves the use 

of flux-assisted reaction synthesis, where a Ti-based flux (i.e., dipotassium titanium hexafluoride, 

K2TiF6) acts as a source of [Ti] solute atoms upon decomposition in Al melts [49, 50, 51, 53, 54]. 

In the flux-assisted process, it is thought that when the K2TiF6 is reduced by the Al melt, it releases 

[Ti] solute atoms, potassium tetrafluoroaluminate and potassium hexafluoroaluminate byproducts 

according to Eqn. 5.2,  

 3𝐾<𝑇𝑖𝐹[(𝑙) + 4𝐴𝑙(𝑙) = 3[𝑇𝑖] + 3𝐾𝐴𝑙𝐹Q(𝑙) + 𝐾k𝐴𝑙𝐹[(𝑙).  (5.2) 

The solutal Ti can then either react with the solid C sources, forming a thin layer of TiC at the 

C/melt interface [49], or induce Al3Ti intermetallic precipitation when the Ti content exceeds the 
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melt solubility limit [50]. TiC formation and growth then proceeds owing to the improved wetting 

of C particles [54] and increased amounts of [Ti] can be supplied to the melt through the dissolution 

of Al3Ti [50].  

It is hypothesized that as the flux-assisted reaction synthesis approach relies on TiC 

formation via Eqn. (5.1), that the final particle size can be somewhat controlled by the size of the 

C precursor particles, possibly enabling a more straightforward way for in situ reinforcement 

particle size control. For example, Cao et. al. [49] have demonstrated Al-TiC MMNCs with sub-

10 nm particles, based on 3-10 nm diamond C, at processing temperatures as low as 820 °C. 

Consequently, the flux-assisted reaction synthesis process has potential as an alternative scalable, 

commercial friendly process.  

Preliminary experiments on bulk synthesis of Al-TiC MMNCs via flux-assisted reaction 

were conducted. To create flux-powder mixtures, K2TiF6 flux (Sigma Aldrich) and £10 nm 

diamond C (SkySpring Nanomaterials) were mixed via planetary ball milling for 2-3 hrs at a speed 

of 300 RPM. To create Al-TiC MMNCs, approximately 350 g of commercial purity Al (P1020 

alloy, 99.7% Al) were placed in a graphite crucible and melted at 950 °C in a resistance furnace 

under Ar atmosphere. After holding the melt at the target temperature for 1 hr to ensure 

homogenization, flux-C powder mixture was manually loaded onto the melt surface until 

completely covered. The powder mixture was allowed to dwell and react on the melt surface for 

10 min, followed by manual stirring with a BN-coated graphite rod for approximately 1 min and 

an additional 10 minutes holding time. Subsequently, the melt was removed from the furnace and 

allowed to solidify under ambient conditions. Metallographic specimens were prepared using 

standard preparation techniques with a 1 µm diamond finishing step and examined using a Tescan 

MIRA3 FEG SEM at 15 kV and a beam intensity of 15 (see Section 3.4.2 for more details).  

 The microstructure of Al-TiC composites processed via flux-assisted reaction synthesis 

consisted of particles approximately 50-60 nm in diameter (See Figure 5.1). Particles were 

typically clustered at the grain boundaries, possibly due to particle pushing during solidification, 

which is predicted to require high cooling rates and fast solidification front velocities to ensure 

effective engulfment as particle sizes approach the sub-500 nm scale [237, 238, 239, 240, 241]. In 

addition to TiC particles, some amount of Al3Ti intermetallics and K- or F-based oxides remain as 

byproducts, which may be undesirable from a mechanical property standpoint. 
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From these preliminary experiments, it is apparent that sub-100 nm TiC particles are able 

to be produced from a relatively simple process. Further work on better understanding the 

processing-property relationships, and a systematic study of C precursor size as a means to control 

TiC particle size in particular, would be useful to inform scale-up efforts for the flux-assisted 

reaction synthesis process. 

 

 
Figure 5.1. (left) SEM micrograph showing microstructure of Al-TiC nanocomposite processed 
via flux-assisted reaction synthesis using K2TiF6 and £10 nm diamond C precursors. TiC 
nanoparticles, Al3Ti intermetallics, and K- and F-based oxides are visible in the microstructure. 
(right) Higher magnification SEM micrograph showing the TiC nanoparticles with an average 
diameter of 50-60 nm. 
 

5.2.6 Real-time visualization of in situ MMNC processing: Preliminary experiments on flux-

assisted reaction synthesis 

To better understand the particle formation mechanisms underlying in situ processing 

approaches, we also seek to explore real-time visualization techniques to supplement post mortem 

sample characterization and thermodynamic analyses (e.g., as used to investigate the SHS reaction 

in Chapter 4). One such technique is synchrotron X-ray radiography (XRR), a 2D imaging 

technique where projections are collected for a single sample orientation (i.e., no sample rotation). 

XRR is advantageous versus 3D synchrotron imaging techniques (e.g., TXM) as the lack of sample 

rotation allows for improved temporal resolution, which makes it particularly attractive for 

capturing fast dynamic processes. XRR has been successfully demonstrated for a wide variety of 
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fast processes, such as solidification studies [242, 243, 244,  245], battery lithiation during cycling 

[246], and spray dynamics [247, 248]. but not yet applied to in situ reactive MMNC processing. 

Here, we present some preliminary work on real-time visualization of flux-assisted reaction 

synthesis performed at the Advanced Photon Source at Argonne National Laboratory (Lemont, 

IL). 

Samples for XRR were prepared using Al (~30 µm, 99.5% purity), K2TiF6 flux (> 100 µm), 

and spherical graphite C (~10 µm, 99.95% purity) powders in composition ratios corresponding to 

2 mol Al, 1 mol K2TiF6 flux, and 1 mol C. Powder mixtures were blended together via manual 

mixing in an agate mortar and pestle and then cold pressed at 200 MPa into thin chips 200-250 µm 

thick. To assemble samples for XRR, pellet pieces were sandwiched between two square quartz 

(SiO2) coverslips each 100 µm thick, with an additional rectangular 250 µm thick quartz coverslip 

was placed at the bottom of the assembly to prevent the sample from falling through the bottom 

during melting. The edges of the sandwich assembly were coated in high temperature-resistant 

Al2O3-based thermal paste to ensure a robust assembly during reaction. Dimensions of the sample 

sandwich assemblies varied but were required to be less than 8 mm in width to fit inside the furnace 

assembly available at the beamline. 

Preliminary synchrotron X-ray radiography (XRR) experiments were conducted at Sector 

2-BM at the Advanced Photon Source (APS) at Argonne National Laboratory (Lemont, IL) to 

visualize the flux-assisted reaction process in real-time. Sandwich assemblies were held in place 

by a tungsten wire clip and Al2O3 rod assembly to ensure the samples would be at the correct 

height in the beam. A monochromatic X-ray beam operating at 20 keV was focused onto the 

samples and X-rays were converted to visible light using a 25 µm thick LuAg scintillator. Images 

were collected using a FLIR Oryx CCD with a 5× magnifying objective lens, yielding pixel sizes 

of 0.69 µm × 0.69 µm with the field-of-view set as 2448 × 2048 pixels (or approximately 1689 × 

1413 µm2). To conduct an XRR experiment, samples were introduced into the furnace at 

temperature to better simulate the process of flux-assisted reaction synthesis in a melt. The furnace 

temperature was increased to 950 °C and held for 10 minutes to equilibrate. Subsequently, imaging 

of the sample was started and then rapidly introduced into the furnace. For each experiment, 

images were recorded for 30 min after samples were introduced into the furnace in order to ensure 

capture of the complete reaction process. An exposure time of 200 ms was used for all experiments. 
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A sequence of radiographs, after performing flat-field correction, taken during in situ flux-

assisted reaction are shown in Figure 5.2. In the first panel (top left) at t = 0 s, the sample has not 

yet reacted immediately after entering the furnace and dark K2TiF6 flux particles, owing to the 

contrast between more heavily attenuating Ti and lighter Al and C, are observed. Within the first 

few seconds, the Al begins to melt and presumably react with K2TiF6, releasing bubbles and 

causing some apparent shrinkage of flux particles (top right panel). In the subsequent panels, 

presumably dark regions correspond to Ti rich regions after dissolution of the K2TiF6, which 

gradually become coarser over time (bottom right panel, after 15 min reaction time). The 

coarsening of the Ti-rich regions may be indicative of formation and growth of TiC particles. 

To better identify features observed in the radiography experiments, post-reacted samples 

were also characterized ex situ for comparison. SEM and EDS were performed on the sample 

shown in Figure 5.3 using a Tescan MIRA3 FEG SEM, with integrated EDAX system, operating 

at 15 kV and a beam intensity of 15 (see Section 3.4.2 for more details). No metallographic sample 

preparation was used prior to SEM imaging so as not to disrupt the microstructure from the 

radiography experiments. An SEM micrograph showing the region recorded during the 

radiography experiment (Figure 5.2) is shown in Figure 5.3(a) (denoted by the dotted red box), 

where surface oxides (dark grey regions) and TiC or TiSixCy particles (bright regions on the sample 

surface) are observed. A representative higher magnification micrograph of the particles is shown 

in Figure 5.3(b), with corresponding EDS spectra shown in Figure 5.3(c) (taken from the particle 

denoted with the red cross). Interestingly, particles appeared to exhibit hexagonal 6-fold symmetry, 

possibly corresponding to the (111) basal plane of TiC, and were 4-5 µm in diameter as measured 

from facet-to-facet. EDS spectra from a particle cluster suggest approximately stoichiometric 

amounts of Ti and C, as well as a small amount of Si. It is possible that Si appears in the samples 

due to reaction between the K2TiF6 flux and quartz slides used in sample construction. Similar TiC 

hexagonal platelet structures have been reported in the presence of Si [249, 250] or B [251] trace 

impurities, where the hexagonal morphology is attributed to slowed growth of the {111} facets. 

However, it is also possible that the hexagonal particle shape is induced by C/Ti off-stoichiometric 

ratios [214, 215], where TiC transitions from octahedral, to hexagonal, to spherical as the C/Ti 

ratio increases. 
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Figure 5.2. Flat-field corrected radiographs depicting various time steps during flux-assisted 
reaction synthesis at 950 °C. Dark particles in the initial frame correspond to K2TiF6. Blue arrows 
in subsequent frames indicate bubbles after initial sample reaction, red arrows indicate Ti-rich 
regions, and yellow circles indicate clusters of particles (presumably TiC). 
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Figure 5.3. Ex situ characterization of the radiography sample shown in Figure 5.2. (a) SEM 
micrograph of sample after reaction. Radiography scans imaged in area indicated by red box. (b) 
Higher magnification SEM micrograph of hexagonal TiC particles. (c) EDS spectra of hexagonal 
TiC particles taken from red spot in (b). 
 

Further work is required to better interpret the results of these preliminary radiography 

experiments specifically, such as confirming the Si-content of the hexagonal platelets and whether 

they are TiC particles. However, these experiments are a promising demonstration of the use of 

synchrotron X-ray radiography for real-time visualization of in situ MMNC processing methods, 

which may be extended to other approaches such as SHS. 

 

5.2.7 Particle/melt interactions during solidification 

While much of the work in this dissertation has focused on the relationship between 

processing parameters and final particle and microstructural characteristics of in situ MMNCs, a 

key step inherent to all processing methods that was not discussed is solidification. For MMNCs 

in particular, the specifics of how the nanoparticles affect the solidification behavior of the matrix 
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and their interactions with the solidification front is an important area of investigation relevant to 

both in situ and ex situ methods. As discussed briefly in Chapter 2, achieving a homogeneous 

dispersion of particles is critical to exploiting the improved mechanical properties of these 

composite materials and issues such as particle segregation and agglomeration during 

solidification have remained unsolved issues [16, 252]. Several models have been proposed over 

the years to try and predict melt front/particle interactions, but a large gap between the models and 

experimental observations remains, largely due to the complexity of the process.  

In general, when the solid-liquid interface approaches a pre-existing second-phase particle 

during solidification it can be captured/engulfed or rejected/pushed, wherein the latter leads to 

segregation and dispersion inhomogeneities as the particles are moved along by the solidification 

front. To elucidate this behavior, several attempts have been made to model the particle/solid-

liquid front interaction and extract the relevant parameters [253, 254]. However, these models have 

traditionally relied on several simplifying assumptions, such as spherical particles and a 

macroscopically planar interface, which do not always reflect the corresponding experimental 

observations [255]. More recent work has incorporated additional layers of complexity to explain 

particle capture behavior, such as melt front velocity and shape evolution [256], particle shape 

effects [257], particle/melt front solutal diffusion [258], particle/melt interfacial surface energies 

[259, 238], thermal conductivity differences [260], melt viscosity [261], and van der Waals and 

Brownian potential considerations [125, 238]. 

In addition to considerations of particle engulfment by the advancing melt front, 

nanoparticles may also modify the matrix solidification behavior. For example, as discussed in 

Chapter 2, nanoparticles have previously been demonstrated to be effective grain refiners by acting 

as grain nucleation sites through the induction of localized nucleation undercooling [71, 72, 73, 

74]. Similarly, grain refinement can be achieved through grain growth pinning or restriction, rather 

than nucleation promotion. Nanoparticles have been theorized to restrict matrix grain growth via 

several potential mechanisms, such as inducing localized temperature and solute concentration 

differences at the particle matrix interface [262, 263, 264], acting as solutal diffusion barriers at 

the melt front [265], and growth front pinning via the Gibbs-Thomson effect [262]. Both grain 

growth nucleation promotion and grain growth restriction may both lead to smaller grains, and 

sometimes have been observed to occur simultaneously [266], which is beneficial to the overall 

MMNC mechanical properties. 
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Although a study on the solidification behavior of MMNCs was outside the scope of this 

dissertation, it is apparent that the interactions between the particles and the melt during 

solidification are highly complex processes with many interlinking factors. Thus, a future research 

direction focusing on this topic is promising and critical to move towards a complete understanding 

of controlling MMNC characteristics such as particle dispersion and matrix grain size. Presumably 

a combination of the techniques demonstrated in this thesis, such as 3D microstructural 

visualization via TXM, real-time solidification via X-ray radiography, and processing-

microstructure correlation via CCA, could be utilized to better understand these highly complex, 

interlinked processes. 
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