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Abstract 

The Greenland Ice Sheet covers over 80% of Greenland’s land area and is the largest 

reservoir of frozen water in the Northern Hemisphere. Over the past few decades, the Greenland 

Ice Sheet has experienced significant summertime ice and surface snow loss. Much of this mass 

loss can be attributed to short-term processes that initiate surface energy changes. In this 

dissertation, we examine the effects of 1) light-absorbing aerosols on the Greenland Ice Sheet 

and in the overlying atmosphere, 2) the impacts of atmospheric block location over the 

Greenland Ice Sheet on cloud formation and atmosphere-surface energy exchanges, and 3) how 

these block-induced surface energy responses will change in the future. 

Aerosols are microscopic solid or liquid particles that can be transported long distances 

through the atmosphere. Light-absorbing aerosols like black carbon and certain types of dust are 

unique in that they absorb sunlight and warm the local environment. In the Arctic, black carbon 

reduces surface reflectivity and increases surface energy to induce or enhance melt. Light-

absorbing aerosols suspended in the atmosphere warm the local air and change vertical 

circulation patterns. We use an idealized version of the Community Earth System Model 

(CESM) to understand how Greenland-specific local atmospheric and in-snow light-absorbing 

aerosols can affect Greenland Ice Sheet surface energy input and snowmelt processes. Overall, 

we find that the largest snowmelt and net surface energy responses occur in simulations 

containing only in-snow light-absorbing aerosols while atmospheric absorbing aerosols decrease 
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incident sunlight on the surface and produce insignificant melt and energy changes. Atmospheric 

and in-snow aerosols have offsetting effects on the surface energy budget. 

Atmospheric blocks are mostly stationary high pressure systems that last for days to 

weeks at a time. Blocking over Greenland has been shown to enhance net surface energy by 

reducing cloud cover and transporting warm, moist air over the surface. The variability of the 

Greenland Ice Sheet topography impacts regional block-induced surface changes based on block 

location. We use a variety of observational datasets to understand the impacts of block location 

on cloud formation and surface energy fluxes over the Greenland Ice Sheet. Blocking over 

northern Greenland produces larger cloud reductions that enhance sunlight and decrease net 

longwave energy at the surface than southern Greenland blocking activity. Net surface energy 

increases for all block locations, but more so for blocks over eastern Greenland because of 

greater warm air transport in combination with enhanced sunlight absorption by the Greenland 

Ice Sheet.  

 Five different global climate simulations from the Coupled Model Intercomparison 

Project, phase 6 (CMIP6) are examined to understand how summer Greenland blocking activity 

will affect net surface energy fluxes in the middle (2040-2059) and at the end (2080-2099) of the 

21st century for the largest warming scenario. Net surface energy input increases with blocking 

over all simulations. However, atmospheric warming over the Greenland Ice Sheet produced by 

block circulation plays a larger role in total energy enhancement than solar energy input changes. 

Future net surface energy fluxes may be larger because historical (1986-2005) CMIP6 

simulations underestimate component and total energy fluxes found in Modern Era Retrospective 

Analysis, version 2 (MERRA-2) observational data. These results indicate that Greenland 

blocking will continue to contribute to increased total surface energy in the future. 
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Chapter 1. Introduction 
 
1.1 Greenland Geography and Surface 
 

Greenland is located in the Northern Hemisphere high latitudes between the Atlantic and 

Arctic Oceans and is the largest island in the world. Over 80% of Greenland’s land surface is 

covered by the Greenland Ice Sheet (GrIS). The GrIS covers roughly 1.7 million km2 of land 

area and is the second largest ice sheet in the world (the largest being the Antarctic Ice Sheet). Its 

frozen water volume is equivalent to over 7m of global sea level rise (Gregory et al., 2004; 

Church et al., 2013), which would inundate coastal populations around the world. Like the 

Antarctic Ice Sheet, the GrIS is characterized by steeper margins and a relatively flat interior 

(Fig. 1.1). At its most elevated point, Summit, the GrIS is 3.25km thick (Shupe et al., 2013). The 

surface of the GrIS is snow-covered, with partially compacted snow (i.e., firn) beneath new snow 

and ice composing the remaining mass. 

 

Fig. 1.1: Greenland elevation map produced using Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-2) surface geopotential data. 
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1.2 Greenland Ice Sheet Mass Changes 

 GrIS mass changes via surface processes constitute the surface mass balance (SMB), a 

metric used to compare total mass loss to total mass gain. Precipitation (snowfall or rainfall) 

positively impacts GrIS SMB, while sublimation, evaporation, and melt all lead to mass loss. Net 

accumulation and loss occur over the accumulation and ablation zones of the GrIS, respectively. 

The accumulation zone is defined by fresh, highly reflective snow in elevated GrIS interior and 

is characterized by net surface mass gain. The GrIS margins constitute the ablation zone and are 

where summer snowmelt and net surface mass loss occur most regularly. These snow zones 

naturally occur because the higher GrIS elevations are colder and less prone to melt and 

refreezing processes. The ablation zone locations are defined as areas that have annual net 

surface mass loss (i.e., Lenaerts et al., 2019). Fig. 1.2 illustrates the geographical coverage of the 

summer 2012 GrIS accumulation (blue) and ablation (red) zones with 0℃ as the boundary 

(Bennartz et al., 2013).  

 

Fig. 1.2: Summer 2012 representation of the accumulation and ablation zones, based on surface 
temperature (courtesy of Bennartz et al., 2013). 
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1.3 Net Surface Energy (𝑬𝑬𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻) 

Snowmelt is triggered when the surface receives enough energy to warm above the 

freezing point of water. Atmosphere-surface energy exchange is produced through “radiative” 

and “non-radiative” processes. Radiative energy broadly refers to electromagnetic radiation, or 

energy that consists of electric and magnetic fields and can travel through any medium. All 

electromagnetic radiation is classified by wavelength (𝜆𝜆), or distance between consecutive crests 

(units of meters). All possible radiative energy wavelengths constitute the electromagnetic 

spectrum. In order to broadly classify different types of radiative energy, the spectrum is divided 

into 7 different energy varieties (Fig. 1.3): 

 

Fig. 1.3: Schematic of the electromagnetic spectrum and its divisions based on wavelength 
(courtesy of Humboldt State University, 2019).  

 

 The largest source of energy input for the Earth system is solar energy produced by the 

sun. The sun, which maintains an average temperature between 5500 and 6000𝐾𝐾, produces peak 

emissions in the visible light portion of the electromagnetic spectrum (Fig. 1.3). Most of the 

incoming solar radiation (i.e., “insolation”) at the top of the atmosphere is characterized by 

wavelengths ranging from 0.1𝜇𝜇𝑚𝑚 to 4𝜇𝜇𝑚𝑚 (ultraviolet, visible light, and near-infrared, 

collectively referred to as “shortwave” energy), and of this incoming energy, a large portion of 

the ultraviolet energy does not reach the Earth’s surface. 
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Incident shortwave energy can either be scattered (i.e., deflected), absorbed, or 

transmitted by the atmosphere and surface. In the case of surface-insolation interactions, the 

amount of shortwave energy that is scattered depends on the surface reflectivity, or albedo. 

Albedo is a unitless quantity defined as the ratio of upwelling shortwave energy (𝑆𝑆𝑊𝑊↑) that is 

scattered back into the atmosphere to the total amount of downwelling insolation that reaches the 

surface (“downwelling shortwave”, 𝑆𝑆𝑊𝑊↓):  

 𝛼𝛼 = 𝑆𝑆𝑆𝑆↑

𝑆𝑆𝑆𝑆↓                    (1.1). 

Earth’s average surface albedo is ~0.15; 15% of all energy that reaches the Earth’s surface is 

reflected back towards space. However, deserts, ice, and snow-covered surfaces like the GrIS 

maintain higher-than-average albedos (e.g., summertime GrIS-wide albedos range from 0.65 to 

0.75 (Box et al., 2012)). Net shortwave energy (𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇), or the amount of insolation absorbed by 

the surface, depends on the surface albedo and is defined as follows: 

𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 = 𝑆𝑆𝑊𝑊↓ − 𝑆𝑆𝑊𝑊↑ = 𝑆𝑆𝑊𝑊↓ − �𝛼𝛼 ∗ 𝑆𝑆𝑊𝑊↓� = 𝑆𝑆𝑊𝑊↓(1 − 𝛼𝛼)             (1.2). 

GrIS 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 varies seasonally and is lower over the pristine accumulation zone snow than the 

lower albedo ablation zone surface.  

Although 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is generally low over the GrIS, small, negative perturbations in surface 

albedo produced by snow metamorphism (i.e., snow grain shape change from crystals to spheres 

over time) or external factors (discussed in section 1.5) can trigger continuing melt via increasing 

𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 through the ice-albedo feedback mechanism. Within this positive ice-albedo feedback 

process, decreasing albedo enhances melt, which further reduces surface albedo and increases 

𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 and melt. The ice-albedo feedback process can only be halted by 1) melting all existing 

frozen water, 2) by overlaying old snow with fresh snow precipitation, which increases surface 

albedo, or 3) surface temperature falling below 0℃. Because Greenland and the broader Arctic 
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climate system are snow- and ice-covered, they are more susceptible to Arctic Amplification, or 

the ice-albedo feedback cycle that has produced larger regional warming and enhanced melting 

(Screen et al., 2012; Jiao and Flanner, 2016).  

Like the sun, the Earth and its overlying atmosphere also emit electromagnetic radiation. 

However, because the Earth’s average emitting temperature is much lower (approximately 

288𝐾𝐾), the emitted energy wavelength range is 4 − 200 𝜇𝜇𝑚𝑚. These less energetic wavelengths 

are almost completely separate from shortwave radiation and are referred to as “longwave” or 

“terrestrial” energy (Fig. 1.4). 

 

Fig. 1.4: Shortwave (red) versus longwave (blue) emission wavelength ranges. 
 
 
Earth’s surface, atmospheric gases, and clouds are all longwave energy emitters. The total power 

radiated by any body or object per unit area is calculated using the Stefan-Boltzmann law: 

𝐸𝐸 = 𝜀𝜀𝜀𝜀𝑇𝑇4                            (1.3), 

where 𝜀𝜀 is the scaling factor that accounts for non-blackbody (i.e., less than 100% radiating 

efficiency) radiation, 𝜀𝜀 = 5.67 × 10−8 𝑊𝑊 𝑚𝑚−2 𝐾𝐾−4 is the Stefan-Boltzmann constant, and T is 

the temperature (in K) of the emitting body. Like surface net shortwave energy, absorbed 

longwave energy is defined by upwelling (out of the surface (s), 𝐿𝐿𝑊𝑊↑) and downwelling (from 
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𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 = 𝐿𝐿𝑊𝑊↓ − 𝐿𝐿𝑊𝑊↑ = 𝜀𝜀𝑠𝑠𝐿𝐿𝑊𝑊↓ − 𝜀𝜀𝑠𝑠𝜀𝜀𝑇𝑇𝑠𝑠4                (1.4).  

Sensible (SH) and latent heat (LH) fluxes are so-called “turbulent fluxes” that are directly 

proportional to wind speed, surface roughness, and air density magnitudes. Sensible (latent) heat 

flux direction is directed from locations of higher temperature (specific humidity) to lower 

temperature (specific humidity). Sensible heating adds more to total surface energy than latent 

heating over most of the GrIS. All seasonal average sensible heat fluxes are directed from the 

atmosphere into the surface (Fig. A.1). Turbulent heating could become increasingly important 

as the overlying atmosphere warms in the future (van den Broeke et al., 2011).  

Net surface energy flux (𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;𝑊𝑊/𝑚𝑚2) is thus the sum of radiative (𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇) and 

non-radiative energy fluxes (SH and LH; positive when directed downward):  

𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + 𝑆𝑆𝑆𝑆 + 𝐿𝐿𝑆𝑆               (1.5). 

When 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > 0, energy is added to the surface; if enough total energy is added to the GrIS 

surface, surface mass balance decreases. Dominant surface energy flux contributions to net 

surface energy vary over the GrIS and depend on climatological winds, elevation, surface albedo, 

and moisture presence, among other factors. Fig. 1.5 illustrates GrIS surface features, energy 

fluxes, and mass balance changes over the ablation and accumulation zones. These can vary with 

different melt triggering events, which we discuss in next section 1.5. 
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Fig. 1.5: Sample accumulation and ablation zone illustration of the GrIS. Katabatic winds result 

when cold, dense air from the GrIS interior flows downslope over the accumulation 
zone (Lenaerts et al., 2019).  

 

1.4 Greenland Ice Sheet Melt 

Since 1980, GrIS total mass loss has exceeded mass gain through ice discharge processes 

(Mouginot et al., 2019). Mass loss has further accelerated into the 21st century. Between 2002 

and 2011, the GrIS lost 214 ± 58 𝐺𝐺𝐺𝐺/𝑦𝑦𝑦𝑦, which was approximately 6 times as large as the 1992-

2001 mass loss average (Tedesco et al., 2016a). Fig. 1.6 depicts the non-linear nature of GrIS-

average mass loss between April 2002 and July 2014 (Khan et al., 2015). 
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Fig. 1.6: GrIS-wide total mass change (gain-loss) derived from GRACE between April 2002 and 
July 2014 (Khan et al., 2015).  

 

Surface mass loss through runoff (originating from melt) increased from 1990 onward 

and constituted roughly 60% of all ice sheet mass change (Rignot et al., 2008; Fettweis et al., 

2013; Fettweis et al., 2017). Especially since the mid-2000s, snowmelt loss has been 

unprecedented. The summers of 2007, 2010, 2012, 2015, and 2019 have all produced record-

high surface melt volume over greater area (Tedesco et al., 2008; Tedesco et al., 2011; Nghiem 

et al., 2012; Hanna et al., 2014; Tedesco et al., 2016b; Tedesco and Fettweis, 2020) dating back 

through 1889 in ice core records (i.e., Neff et al., 2014).  

 GrIS snowmelt can occur over varying temporal and spatial scales. The duration and 

spatial coverage of melt events is largely determined by the melt triggering mechanism. For 

example, higher average summer temperatures will slowly enhance average seasonal snowmelt 
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rates. Persistent atmospheric warming preconditions the surface to future melt by reducing snow 

albedo through snow metamorphism and refreezing processes (i.e., ice-albedo feedback 

mechanism). Some of GrIS snowmelt can be explained by Arctic Amplification, or increased 

warming in the Arctic relative to the rest of the northern hemisphere. Arctic Amplification 

results from sea ice melt and open water, surface ice-albedo feedback, oceanic warming, and 

atmospheric circulation and warming, among others (Serreze and Barry, 2011). These 

mechanisms all occur on different time scales and have ultimately led to decades-long Arctic 

Amplification that is predicted to continue well into the future (Serreze and Barry, 2011).   

 Episodic GrIS snowmelt is spatially heterogeneous and can occur as a result of short-

lived melt triggers in the atmosphere and on the surface (Velicogna et al., 2014; Cullather and 

Nowicki, 2018). An example of extreme GrIS surface snowmelt occurred on 11-12 July, 2012 

when melt was recorded over >98% of the GrIS and included Summit, Greenland (i.e., the 

highest elevation of the GrIS) (Nghiem et al., 2012). Because the most recent instance of 

snowmelt at Summit preceding this event occurred in 1889 (Neff et al., 2014), the July 2012 

event has been widely studied to better understand how it was triggered. Coincident with 

extensive melt, the following conditions were observed on the GrIS and in the overlying 

atmosphere: black carbon aerosols (BC) in Summit firn cores (Keegan et al., 2014); persistent 

atmospheric ridging producing anticyclonic circulation (e.g., Nghiem et al., 2012; Tedesco et al., 

2013; Hanna et al., 2014); thin, liquid clouds were detected at higher elevations (e.g., Bennartz et 

al., 2013; Miller et al., 2015); and strong moisture transport through an atmospheric river (e.g., 

Mattingly et al., 2018). The 2012 melt season also began two weeks earlier in the year than usual 

(Tedesco et al., 2013) and was accompanied by persistent anticyclonic circulation between May 

and July (Hanna et al., 2014). All of these mechanisms likely played a role in the GrIS-wide melt 
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that transpired in mid-July. However, it is very unusual for all of these conditions to be present 

simultaneously. The triggers on summer GrIS surface processes examined in this dissertation 

include 1) black carbon and other light-absorbing impurities, 2) clouds, and 3) atmospheric 

blocking. These will be discussed in further detail in the following section. 

 

1.5 Greenland Ice Sheet Melt Triggers 

1.5.1 Black Carbon 

Black carbon (BC) is an inorganic, irregularly-shaped microscopic (diameter ≤ 2.5𝜇𝜇𝑚𝑚) 

aerosol (i.e., liquid or solid particle) that is produced naturally (e.g., biomass burning) and 

anthropogenically (e.g., fossil fuel, coal, and wood fire combustion) (Bond et al., 2007, 2013). 

Since the onset of the Industrial Revolution, global cumulative BC emissions produced through 

biofuel and fossil fuel combustion have increased linearly from 1.0 to 4.5 Tg/year (Bond et al., 

2007). Relative contributions of fuel types to these emissions have changed with evolving 

technologies and fuel preferences. As of 2000, average total BC emissions produced via fuel 

combustion is 4.8 Tg/yr (Bond et al., 2013). Biomass burning and other natural processes 

produced average global BC emissions of 1.86 Tg/yr between 1997 and 2016 (van der Werf et 

al., 2017), which is less than half of the anthropogenic emissions. Because BC particles are so 

small, they can remain suspended in the atmosphere for days to weeks at a time (Bond et al., 

2013). Averaged over the entire globe, modeled atmospheric BC burdens at the start of 21st 

century were 0.088-0.24 Tg (Liu et al., 2012).  

Unlike other common aerosol species (e.g., sulfates, sea salt, and certain dust species), 

BC is an efficient absorber of shortwave energy and can thus induce localized warming. 

Atmospheric warming occurs when suspended BC particles absorb incoming sunlight and heat 
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the surrounding air. If suspended BC concentrations are large enough, sunlight absorption in the 

aerosol layer will lead to shortwave cooling on the underlying surface through “dimming”. 

Warming produced by BC direct aerosol forcing can also impact local atmospheric stability. BC 

at high altitudes decreases the environmental lapse rate to induce vertical stability, while BC 

close to the surface increases the environmental lapse rate and decreases stability (Ban-Weiss et 

al., 2011; Flanner, 2013).   

Cloud formation processes are also impacted by atmospheric BC. Although freshly-

emitted BC is generally insoluble and independent of other aerosol species (i.e., externally 

mixed) (Chýlek et al., 1984; Koch et al., 2009; Liu et al., 2012; Bond et al., 2013), often quickly 

becomes coated with water-soluble compounds like sulfates or organics (Wang, 2004; Koch et 

al., 2009; Liu et al., 2012; Bond et al., 2013; Allen and Landuyt, 2014). Coated BC can serve as 

cloud condensation nuclei, thus indirectly impacting shortwave fluxes through cloud scattering 

processes and by extending cloud life span. Localized warming produced by suspended BC can 

also decrease local relative humidity and lead to cloud burn-off, which can increase the amount 

of insolation that reaches the surface.   

 Deposited BC leads to surface warming, especially over the high-albedo snow- and ice-

covered surfaces in the polar regions. BC in snow and ice decreases surface albedo and increases 

net shortwave energy flux to warm the surface and enhance melt (Warren and Wiscombe, 1980; 

Flanner et al., 2007). This is especially important in the summer months when solar insolation is 

highest (McConnell et al., 2007). Estimated BC radiative forcing over snow, ice, and other 

highly reflective surfaces is roughly +2.8 ± 0.4𝑊𝑊 𝑚𝑚2⁄  (Ban-Weiss et al., 2012), which is over 

three times larger than the global average BC radiative forcing of +0.88(+0.17, +1.48)𝑊𝑊 𝑚𝑚2⁄  

(Bond et al., 2013). Overall, snow and ice warming due to BC forcing is roughly 2-4 times 
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greater than that produced by equal carbon dioxide-caused forcing (Hansen and Nazarenko, 

2004; Flanner et al., 2007). 

 Most BC over Greenland or on the GrIS surface originates from forest fires in Canada 

and Russia (e.g., Thomas et al., 2017). Although average BC mass mixing ratios over the GrIS 

are smaller than over other Arctic regions (Doherty et al., 2010; Polashenski et al., 2015), melt 

and warming are easily triggered because of the high GrIS albedo. The compared effects of 

atmospheric and in-snow BC on GrIS melt and energy fluxes need to be explored. Furthermore, 

since future atmospheric and in-snow burdens over Greenland could change in response to 

enhanced circumpolar forest burning in the Northern Hemisphere (i.e., Soja et al., 2007), it is 

important to understand how large BC burdens could impact GrIS surface melt and energy 

processes.  

  

1.5.2 Clouds  

 Clouds affect net surface energy fluxes by decreasing net shortwave energy via scattering 

and emitting longwave energy down to the surface (Fig. 1.7). The negative (positive) impacts of 

clouds on shortwave (longwave) energy fluxes relative to cloud-free conditions are referred to as 

cloud radiative forcing. Over the GrIS, cloud coverage is largest between May and September 

(i.e., Cawkwell and Bamber, 2002; Shupe et al., 2013; Miller et al., 2015; Lacour et al., 2017; 

McIlhattan et al., 2017). The impacts of summertime clouds are especially important because 

they can trigger and enhance GrIS melt (e.g., Bennartz et al., 2013). 
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Fig. 1.7: (Left to right) Longwave and shortwave cloud radiative forcing processes (Forsythe et 
al., 2015). 

 
 
 Especially over elevated GrIS areas, the impact of net shortwave loss produced by clouds 

is reduced because snow has a high surface albedo. Shortwave cloud radiative impacts are also 

affected by the solar cycle and cloud transmission (i.e., Cawkwell and Bamber, 2002; Shupe and 

Intrieri, 2004). Higher solar zenith angle (lower sun angle) reduces insolation and minimizes the 

shortwave impacts of clouds. Cloud transmitting abilities, on the other hand, largely depend on 

cloud composition. Compared to ice clouds, liquid-based clouds have higher albedos and thus 

increase the magnitude of shortwave cloud radiative forcing (Shupe and Intrieri, 2004; Morrison 

et al., 2012). Small solar zenith angles and increasingly prevalent mixed-phase clouds over the 

GrIS (Morrison et al., 2012; Shupe et al., 2013; Miller et al., 2015; Lacour et al., 2017) produce 

more negative shortwave cloud radiative forcing in the summer. This contrasts with winter 

clouds, which produce negligible shortwave cloud radiative forcing. 

 Longwave cloud radiative forcing positively contributes to GrIS net surface energy in all 

seasons (Curry et al., 1996; Shupe and Intrieri, 2004; Miller et al., 2015). Unlike shortwave 
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cloud radiative forcing, the magnitude of longwave cloud radiative forcing depends on cloud 

base height and cloud temperature properties, which influence cloud phase and emissivity 

(Shupe and Intrieri, 2004). Higher cloud bases have lower temperatures because of adiabatic 

cooling at higher altitudes, which produce greater ice crystal concentrations. Ice crystals emit 

less longwave energy than liquid cloud droplets (Curry et al., 1996; Shupe and Intrieri, 2004; 

Miller et al., 2015), which reduces surface longwave cloud radiative forcing. Winter clouds 

warm the surface through longwave processes (Curry et al., 1996; Shupe and Intrieri, 2004; 

Miller et al., 2015), while longwave cloud radiative forcing is at least partially offset by negative 

shortwave cloud radiative forcing in the summer. Over the GrIS, longwave cloud radiative 

forcing decreases from the margins to the GrIS center because of temperature and moisture 

changes (Lenaerts et al., 2017). 

 Optically thin liquid-containing clouds are especially important for GrIS snowmelt 

enhancement. Low-level liquid clouds with liquid water paths of 10 − 40 𝑔𝑔/𝑚𝑚2 over high 

elevation locations like Summit insulate the surface via longwave cloud radiative forcing while 

also transmitting shortwave energy to the surface and minimizing shortwave cloud radiative 

forcing (i.e., Bennartz et al., 2013; Solomon et al., 2017). In the future, warming and increased 

atmospheric moisture (e.g., Serreze and Barry, 2011; Kusunoki et al., 2015) could induce low-

level liquid cloud frequency changes over the GrIS accumulation zone and impact regional melt 

frequency.   

 These cloud-surface interactions over Greenland are further complicated by underlying 

surface albedo variability. Wang et al. (2018) use data from the Greenland Climate Network 

(GC-Net) automatic weather stations to examine the impact of surface albedo and latitude on 

shortwave, longwave, and net cloud radiative forcing. Southern GrIS albedo decreases 
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throughout the summer season, so shortwave cloud radiative forcing magnitudes increase 

between May and September while longwave cloud radiative forcing remains roughly constant 

(Wang et al., 2018). Because northern Greenland accumulation and ablation zone surface albedo 

response to warming is lower than southern Greenland, the shortwave cloud radiative effect is 

lessened and the net cloud radiative effect is more positive (Wang et al., 2018). This spatial 

variability in surface responses to cloud presence can impact regional GrIS meltwater refreezing 

(i.e., Van Tricht et al., 2016) and surface mass balance responses. Along with atmospheric 

moisture and temperature characteristics, cloud formation spatial variability is affected by GrIS 

surface-airflow interactions. Greenland blocking is a large-scale system that can affect cloud 

formation and associated cloud radiative forcing spatial variability over the GrIS. 

 

1.5.3 Blocking 

 Atmospheric blocks are synoptic-size extratropical anticyclones that last for days to 

weeks at a time and remain mostly stationary throughout their lifespans (Rex, 1950; Lupo and 

Smith, 1994). Although blocking is most robust and frequent in the winter, the North Atlantic, 

North Pacific, and eastern European/Russian regions maintain high blocking frequencies in all 

seasons (Lupo and Smith, 1994; Barriopedro et al., 2006; Croci-Maspoli et al., 2007; Masato et 

al., 2013). Future global climate simulations generally produce reduced blocking frequencies 

(Dunn-Sigouin and Son, 2013; Kennedy et al., 2016; Matsueda and Endo, 2017), but these 

findings are still highly uncertain because global climate models are unable to produce historical 

synoptic and planetary-scale circulation trends (e.g., Cassano et al., 2006; Franco et al., 2013; 

Pithan et al., 2016; Hanna et al., 2018b). 
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 Greenland blocking, which is a variety of North Atlantic blocking, has shown increased 

summertime frequencies since the start of the 21st century (Fettweis et al., 2011; Box et al., 2012; 

Rajewicz and Marshall, 2014; Hanna et al., 2015). Multiple atmospheric and surface processes 

have been cited as possible causes for the observed Greenland blocking frequency changes. The 

first is the North Atlantic Oscillation (NAO) teleconnection pattern that is modulated by 

atmospheric pressure change between the Azores High and Icelandic Low semi-permanent 

pressure systems. Negative NAO indices characterize lower pressure changes with latitude and 

more meridional-like airflow in the North Atlantic region. Like Greenland blocking activity, 

negative NAO indices have become more frequent over the past 20 years (i.e., Davini et al., 

2012; Hanna et al., 2013, 2014, 2015, 2016; Hassanzadeh and Kuang, 2015). Whether Greenland 

blocking activity induces negative NAO through dynamic-based Rossby Wave Breaking activity 

in the upper troposphere (Woollings et al., 2008) or NAO pressure changes trigger Greenland 

blocking activity (Overland et al., 2012; Hanna et al., 2015) remains unclear. Another process 

that is hypothesized to increase Greenland blocking activity is the reduction of summertime sea 

ice surrounding Greenland. Reduced sea ice exposes underlying ocean water and warms the 

overlying atmosphere to enhance local geopotential height patterns over and around Greenland 

(Liu et al., 2016). Since summertime Arctic-average sea ice is virtually non-existent at the end of 

the 21st century across numerous models (i.e., Mioduszewski et al., 2019), the importance of 

regional sea ice changes for Greenland blocking activity could be reduced. However, the role of 

NAO in future Greenland blocking frequencies is uncertain because of model deficiencies.  

 Greenland blocking frequency changes over the past 20 years have had important impacts 

on GrIS net surface energy and snowmelt processes. During blocking activity, subsidence 

reduces cloud presence and leads to increased downwelling shortwave energy at the surface (Fig. 
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1.8; Rajewicz and Marshall, 2014; Lim et al., 2016; Mioduszewski et al., 2016; Hofer et al., 

2017). 

 

 

Fig. 1.8: Observational (MODIS) and modeled (MAR) evidence of average cloud coverage 
change between 2002-2015 (relative to average 1970-1995 modeled cloud coverage) 
resulting from increased Greenland blocking activity (courtesy of Hofer et al., 2017). 

 
 
The locations of greatest cloud reduction (Fig. 1.8) correspond to the GrIS ablation zone that 

enhances net shortwave flux and perpetuates the ice-albedo feedback process. In order for net 

shortwave fluxes to enhance melt and albedo changes over the more reflective GrIS regions, melt 

must be triggered by other surface energy flux components. 

 The main melt trigger associated with Greenland blocking that enhances net surface 

energy flux is the advection of warm air onto the ice sheet (e.g., Fettweis et al., 2011, 2013). In 

addition to melt onset via the ice-albedo feedback process, this warm air produces downwelling 

sensible heat flux into the surface. These processes are spatially-variable over the GrIS. Snow 

aging and albedo reduction is the largest contributor to melt as a result of increased net 

shortwave energy over the accumulation zone (e.g., Franco et al., 2013) and northern Greenland 
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(e.g., Tedesco et al., 2016b), while sensible heating during blocking most frequently occurs over 

western Greenland (Franco et al., 2013; Fausto et al., 2016). Because the western GrIS ablation 

zone has low albedo, net shortwave energy and sensible heating inputs resulting from blocking 

contribute to large net surface energy gain, especially over the lower ablation zone (Franco et al., 

2013; Fausto et al., 2016). Despite larger downwelling longwave energy fluxes produced by 

warm air advection (Hofer et al., 2017), negative longwave cloud radiative forcing and enhanced 

longwave emission from the warmer surface produce overall negative net longwave energy 

anomalies.  

  Although Greenland block subsidence reduces cloud coverage, horizontal airflow over 

the elevated GrIS can produce clouds through adiabatic cooling. Regional moisture transport 

induced by block circulation impacts GrIS surface processes outside of the high pressure center 

by promoting cloud growth (i.e., Johansson et al., 2017) and increasing latent heat flux into the 

surface. Moisture transport activity is highly correlated with Greenland blocking (i.e., Välisuo et 

al., 2018) and has increased in frequency over the last 20 years (Mattingly et al., 2016). 

Precipitation resulting from block-induced moisture transport can directly impact GrIS surface 

mass balance and energy exchange processes through snow accumulation, rainfall-induced 

runoff, and the associated surface albedo changes (Mattingly et al., 2018; Doyle et al., 2015).  

 The relative contributions of Greenland blocking energy flux changes, cloud formation, 

warm air transport, and moisture transport to GrIS melt processes is regionally variable because 

of GrIS topography. The studies that examine Greenland blocking-induced atmosphere-surface 

interactions do so by exploring seasonally-averaged blocking conditions (e.g., Lim et al., 2016; 

Mioduszewski et al., 2016; Hofer et al., 2017). Given the quasi-stationary nature of Greenland 

blocking (Chen et al., 2017), these GrIS surface processes likely vary with block location. The 
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importance of GrIS surface processes on global climate processes mandates that the impacts of 

different Greenland block locations should be better understood. Furthermore, the effects of 

future Greenland blocking on surface energy fluxes could change as GrIS albedo and mass 

decrease and regional atmospheric temperatures and moisture increase.  

 

1.6 Specific Aims: Thesis Outline 

 Understanding how the GrIS responds to the short-term melt triggers discussed in section 

1.5 is important for predicting GrIS mass balance and global sea level rise changes in a warmer 

climate. The general science question explored in this dissertation is: “How do light-absorbing 

aerosols, clouds, and Greenland blocking affect GrIS surface energy fluxes?”. Chapter 2 (Ward 

et al., 2018) examines the impacts of light-absorbing aerosols like BC and dust on GrIS 

snowmelt and surface energy fluxes. The different responses of GrIS surface processes to 

atmospheric and in-snow aerosols are tested in a suite of model runs with varying prescribed 

aerosol content. These atmospheric and in-snow aerosol quantities are then combined in another 

suite of global climate model runs to understand their combined effects. Chapter 3 (Ward et al., 

2020, submitted) focuses on how different Greenland block locations affect regional cloud 

coverage using observational cloud data. The combined impacts of these cloud changes and 

Greenland block-induced airflow are then examined to better understand how block location 

affects net surface energy fluxes. Finally, Chapter 4 (in preparation) examines how Greenland 

blocking surface energy fluxes could change in the future, as produced by global climate 

modeling. 
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Chapter 2. Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning-

Based Absorbing Aerosols in the Atmosphere and Snow 

(Ward et al., 2018) 

 

2.1 Introduction 

One of the most important influences on Earth’s climate system is the production, 

transport, and deposition of aerosols. These tiny solid or liquid particles can influence incoming 

solar radiation (insolation) directly through scattering and absorption, or indirectly by serving as 

cloud condensation nuclei (CCN) and generating clouds that reduce insolation at the surface. 

Although most aerosol species predominantly scatter insolation and cool the surface, some 

species strongly absorb insolation. Of these light-absorbing aerosols (LAA), black carbon (BC) 

has the highest absorptivity. BC is produced by the incomplete combustion of biomass, biofuels, 

or fossil fuels and tends to be emitted along with less absorptive species (Bond et al., 2013; 

Chung & Seinfeld, 2002; Hansen & Nazarenko, 2004; Koch et al., 2009; Ocko et al., 2012). The 

radiative and meteorological effects of BC are difficult to assess because the processes of 

emission, transport, and deposition distribute it heterogeneously across the globe (Liu et al., 

2012; Ramanathan & Carmichael, 2008). As BC emissions continue to evolve in the future, 

regional atmospheric temperature and precipitation patterns could change in response (Menon et 

al., 2002). 
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BC is especially important for the climate system and local energy budget because it 

efficiently absorbs radiation in the visible wavelengths (0.4–0.7 μm), which make up the largest 

portion of energy emitted by the Sun (Bond et al., 2013; Koch et al., 2009). Through the direct 

aerosol effect, BC presence can lead to localized warming in the atmosphere or on the surface, 

affecting atmospheric stability, cloud formation, and sensible and latent heat fluxes at the surface 

(Ban-Weiss et al., 2011; Flanner, 2013; Ramanathan & Carmichael, 2008). Indirect effects of 

LAA that result from cloud formation can also significantly impact these processes. Unlike 

greenhouse gases, which warm the surface regardless of height in the atmosphere, the altitude of 

BC is important when considering its net energy impact at the surface. Regardless of its position, 

BC in the atmosphere leads to positive top-of-atmosphere forcing on a global scale due to its 

high absorptivity. Direct surface radiative forcing from BC in the atmosphere is negative because 

it reduces surface insolation. In an idealized modeling framework focusing on the Arctic, Flanner 

(2013) determined that the altitude of BC is an important factor for surface temperature response. 

Flanner’s (2013) results indicate that BC suspended in the lowest portion of the atmosphere leads 

to surface warming. This surface warming decreases as BC is suspended at higher altitudes, 

eventually transitioning to surface cooling with BC suspended above roughly 450 hPa (Flanner, 

2013). Haywood and Ramaswamy (1998), Ramanathan and Carmichael (2008), and Ban-Weiss 

et al. (2011) also note the importance of vertical aerosol distribution on surface processes. 

Several processes and feedbacks impact the net effect of atmospheric aerosols. Localized 

atmospheric warming resulting from suspended BC can lead to cloud burn-off (i.e., cloud droplet 

dissipation). In this process, local air becomes unsaturated as a result of increasing air 

temperatures and cloud droplets evaporate (Ban-Weiss et al., 2011; Flanner, 2013; Ramanathan 

& Carmichael, 2008; Sand et al., 2013; Wang, 2004). BC-based warming can also lead to 
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changes in the vertical lapse rate of the atmosphere and local stability, depending on BC altitude. 

Within the aerosol layer, diabatic warming associated with the aerosols leads to local 

destabilization of the atmosphere and can result in cloud formation (Ban-Weiss et al., 2011; 

Wang, 2004). High-altitude BC often leads to atmospheric stabilization and inhibits convective 

low cloud formation as a result of warming the air aloft and cooling the surface (Ban-Weiss et 

al., 2011; Flanner, 2013). Decreased atmospheric stability results from the presence of deposited 

BC. Deposited BC leads to surface warming, resulting in steepening of the lower tropospheric 

adiabatic lapse rate and atmospheric destabilization (Ban-Weiss et al., 2011; Flanner, 2013). 

LAA are especially influential on the climate of snow- and ice-covered polar regions. 

Flanner et al. (2007) determined that absorptive biomass burning and fossil fuel emissions led to 

Arctic air warming by 0.5 − 1.61℃. This is large relative to the global emission-based warming 

of 0.10 − 0.15℃ (Flanner et al., 2007). In-snow impurities like BC and dust also increase 

surface energy fluxes into the surface through snow-albedo feedback mechanisms. BC and dust 

darken the snow and enhance solar energy absorption at the surface. As a result of this extra 

energy, snowmelt and snow aging are enhanced (Hansen & Nazarenko, 2004). In the perennial 

snow that covers the GrIS, meltwater can cause impurities to percolate downward into the 

snowpack, though buried impurities can also become reexposed when overlying snow is 

removed, further reducing surface albedo (Painter et al., 2012). The outsize impact of LAA on 

high-albedo areas suggests that these aerosols could have a significant impact on the Greenland 

Ice Sheet (GrIS), a high albedo, perennially snow and ice covered surface, with implications for 

sea level rise. If the entire GrIS were to melt, projected sea level rise is estimated to be 7.4 𝑚𝑚, 

which could lead to the destruction of populous coastal cities across the globe (Gregory et al., 

2004; Hanna et al., 2008). One of the climatic factors that could enhance future GrIS melt is 
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altered presence of LAA in the Greenland region. BC and other LAA are transported to the GrIS 

through global circulation mechanisms and cyclonic storms. Measurements and simulations 

indicate that LAA transport to the Greenland region normally begins to increase in March, with 

concentrations peaking in the summer months before tapering off in autumn (Jiao et al., 2014; 

Polashenski et al., 2015). However, Greenland currently receives lower concentrations of BC 

than other Arctic locations (Jiao et al., 2014). As a land mass of perennial snow and ice cover, 

though, the GrIS is more susceptible to the effects of snow darkening than most other areas of 

the Arctic. 

Biomass burning-based BC emissions contribute roughly 40% of all global BC 

emissions, which suggests that biomass burning is an important influence on global climate 

(Ramanathan & Carmichael, 2008). The frequency of sustained, extreme biomass burning 

depends on regional temperature and precipitation. Higher temperature and lower precipitation 

conditions are more conducive to larger-scale, uncontrollable fire activity. Boreal climates are 

warmer and drier now than they have been for much of the past 10,000 years (Kelly et al., 2013). 

Under future climate scenarios, it is predicted that fire frequency, burned area, severity, and fire 

season length will increase (Flannigan et al., 2009, 2013; Stocks et al., 1998). There is already 

evidence of fire-induced change across the circumboreal (Jolly et al., 2015; Soja et al., 2007). In 

addition to boreal forests, it has been predicted that biomass burning activity in other regions will 

also increase where fire suppression is not practiced (Marlon et al., 2013). For example, 

Spracklen et al. (2009) used global climate model-based meteorological output and stepwise 

regression techniques to test this hypothesis for the western United States. They found that the 

total land area affected by biomass burning will increase by 54% by the middle of the 21st 

century as a result of changing regional climate patterns (Spracklen et al., 2009). With increased 
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biomass burning activity, more BC could be emitted and transported to sensitive environments 

like the GrIS. The resulting BC could lead to greater GrIS snowmelt as a result of surface albedo 

reduction. We have observed that BC produced from biomass burning can be transported to the 

GrIS. Recent measurements of elevated GrIS BC have been shown to be coupled with high 𝑁𝑁𝑆𝑆4+ 

mixing ratios, suggesting that these BC samples were produced from remote biomass burning 

events (Keegan et al., 2014; Polashenski et al., 2015). Thomas et al. (2017) confirmed that BC 

deposited on the GrIS in early August of 2013 originated from biomass burning activity in 

Quebec and western Canada using a combination of transport modeling, satellite data analysis, 

and snow pit measurements. Although the quantity of BC deposited from the fire activity cited 

by Thomas et al. (2017) could have led to significant GrIS albedo reduction, Polashenski et al. 

(2015) determined that this was not the case because the BC was buried by fresh snow days after 

its deposition. Given that sunlight intensity decreases in August, this magnitude of BC on the 

GrIS would have been more effective at reducing surface albedo if it had taken place in late 

spring or early summer (Polashenski et al., 2015). However, biomass burning is a key and 

uncertain source of Arctic LAA in the summer. 

Although many studies have investigated the direct radiative forcing of BC and other 

LAA on a global scale (e.g., Ban-Weiss et al., 2011; Bond et al., 1998; Clark et al., 2015; 

Flanner et al., 2007; Jacobson, 2001, 2004; Wang, 2004) and in the Arctic (e.g., Flanner, 2013; 

Jiao et al., 2014; Sand et al., 2013; Wang et al., 2011) using various modeling techniques, the 

relative impacts of biomass burning-based atmospheric and deposited LAA on GrIS snowmelt 

have yet to be investigated. In this study, we use idealized global climate modeling techniques to 

examine the relative impacts of atmospheric and deposited LAA on GrIS snowmelt and surface 

energy fluxes from June through August. First, we describe the methods we use for setting up the 
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model simulations and analyzing the results in section 2.2. We then demonstrate how different 

aerosol concentrations and positional combinations lead to varying GrIS snowmelt and surface 

energy patterns in section 2.3. Finally, we summarize the results and implications of this research 

in the conclusion. 

 

2.2 Methods 

To explore the extent to which atmospheric and deposited LAA can affect GrIS snowmelt 

and other climatic conditions in the summer, we conduct four sets of experiments. The “AOD-

ONLY” experiment varies atmospheric aerosol burden without any BC or dust in the GrIS snow. 

Similarly, we explore the effects of changing atmospheric aerosol single-scatter albedo (SSA) in 

runs with constant atmospheric aerosol burden (“Variable SSA” or “VSSA”). We analyze 

different SSA values because the ratio of BC to organic carbon (OC) in smoke depends largely 

on the biomass type being burned (Bond et al., 2013). OC is less absorptive than BC, so more 

OC in a smoke plume indicates higher SSA (Bond et al., 2013). We examine the climate effects 

of BC and dust deposited on the GrIS by changing in-snow aerosol mixing ratios and zeroing out 

all atmospheric aerosols in the “IN-SNOW” runs. Finally, to evaluate the effects of aerosols 

present simultaneously in the atmosphere and on the GrIS surface, we conduct the “BOTH” runs. 

Although BOTH more accurately depicts LAA conditions (i.e., high atmospheric LAA are 

required for high deposited LAA content), we conduct AOD-ONLY, VSSA, and IN-SNOW to 

isolate the climate impacts of LAA location. For all of these simulations, we use the Community 

Earth System Model (CESM), version 1.0.3. We apply CESM with a spatial resolution of 

1.9° × 2.5° and a time step of 30 min. Although the spatial resolution may seem somewhat 

coarse, the land surface of Greenland is present in 121 grid cells that we use for our analysis. We 
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run each simulation for 11 model years and analyze monthly model output. To accommodate the 

time required for atmospheric equilibration, we discard the first year of each model simulation 

for spin-up purposes. Regardless of the experiment, the aerosol burdens and optical properties 

we specify at the start of each model run remain constant for the entire simulation. We 

specifically investigate the climate response during the summer (June, July, and August) because 

this is when Greenland receives the greatest amount of insolation. During these months, the 

direct radiative forcing that results from suspended LAA is responsible for air temperature 

enhancement throughout the troposphere (Screen et al., 2012). Although aged, hydrophilic BC 

can indirectly affect the propagation of radiation by serving as CCN, we do not address these 

effects on Greenland’s climate in this study. 

For each simulation, we couple Community Atmosphere Model 4.0 (CAM4) and 

Community Land Model 4.0 (CLM4) while prescribing annually repeating present-day 

climatological sea surface temperatures and sea ice. While the use of fixed sea surface 

temperatures does not capture the full climate response to aerosols, we use this setup because 

less model noise is produced, the model output contains less interannual variability, and less 

spin-up time is needed, all of which facilitate a more straightforward interpretation of the effects 

of aerosol loading above and on the GrIS. The SNow, ICe, and Aerosol Radiation model 

(SNICAR) is a standard component of CLM that we adapt for our experiments to simulate the 

radiative effects of aerosols in snow on the GrIS. SNICAR is a two-stream, multilayer, multiple-

scattering radiative model (e.g., Flanner & Zender, 2005). SNICAR calculates surface albedo 

and vertical heating in the snowpack using solar zenith angle, ice effective grain size, and BC, 

OC, and dust mass concentrations (Oleson et al., 2010). Snow grains and impurities are 

represented as spheres for Mie calculations that are used in the two-stream setup (Oleson et al., 



27 
 

2010). Although SNICAR normally diagnoses impurity mass changes in each snow layer 

associated with new snowfall and meltwater percolation, we choose to maintain constant mass 

mixing ratios in each layer for experiments conducted here, ensuring consistency with our 

imposition of constant aerosol burdens in the atmosphere. 

Because the purpose of this study is to isolate the climate effects of LAA above and on 

the GrIS, we prescribe identical three-dimensional climatological aerosol fields (Lamarque et al., 

2010) outside of Greenland in all experiments. We define the Greenland area to span land within 

latitude and longitude ranges of 60 − 85°𝑁𝑁 and 20 − 60°𝑊𝑊 respectively. Within this region, we 

manually vary atmospheric and terrestrial aerosol burdens, as well as aerosol SSA. For the 

atmospheric aerosol simulations, we impose a specific aerosol burden in the lowest five vertical 

layers of CAM, or approximately the lowest 2 km of the atmosphere overlying the GrIS. All 

aerosols are zeroed out above the lowest five atmospheric layers in CAM. Although we could 

perform additional simulations with LAA placed at different altitudes above Greenland, we do 

not explore the vertical dimension in this study. Flanner (2013) finds that air temperature and net 

radiation at the surface decrease as the altitude of BC increases. Given the similar setup to their 

study, we hypothesize that this would also be the case for our AOD-ONLY simulations. It is 

important to emphasize that the aerosols within this Greenland region are not advected by the 

model. Instead, aerosol quantities and properties that we define remain constant over all of the 

Greenland region throughout the entire simulation. 

To determine how varying atmospheric LAA burdens affect GrIS snowmelt, we specify 

aerosol optical depth (AOD), or the opacity associated with the suspended particles, over the 

entire Greenland region. Functionally, we achieve this by setting the burdens of hydrophobic BC 

and OC, each of which have unique values of mass extinction cross section and SSA, to the exact 
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quantities that achieve the desired AOD and SSA. We distribute their total burdens evenly 

among the five lowest atmospheric layers of CAM. Suspended BC and OC burdens are also 

distributed uniformly across the Greenland region. All other aerosol species are absent from 

Greenland’s atmosphere. We choose AOD as a proxy for aerosol concentration because much of 

the available atmospheric aerosol data over Greenland are measured in terms of AOD. We 

examine the climate response to atmospheric aerosols by changing AOD while maintaining 

constant aerosol SSA in the AOD-ONLY simulations. We note again that the imposed aerosols 

do not directly affect cloud microphysics. These LAA only affect the propagation of radiation 

through the atmosphere, which subsequently impacts diabatic heating and bulk thermodynamic 

processes. The choice of values for the AOD-ONLY cases is based on AOD measurements taken 

by Strellis et al. (2013) over Summit, Greenland, in the summer of 2011. These measurements 

were taken using handheld Sun photometers; AOD = 0.09 ± 0.03 (used in case AOD = 0.09) was 

the average value over the entire summer, and AOD = 0.21 (used in case AOD = 0.21) was the 

maximum measurement (Strellis et al., 2013). Based on in situ scattering measurements that 

Strellis et al. (2013) also took over Summit, the average SSA of the suspended aerosols was 0.93 

± 0.03. We incorporate these measurements in our AOD-ONLY runs by imposing constant SSA 

= 0.93 in every case. We also consult other Arctic-based AOD measurements to establish 

extreme scenarios of aerosol loading associated with high-impact biomass burning events. Using 

measurements taken over select Arctic locations during the summer of 2004, Stohl et al. (2006) 

determined that the average AOD of LAA produced by extensive remote biomass burning 

activity was 0.50, which we use for our third AOD-ONLY case. For the final two AOD-ONLY 

cases, we set extremely high AOD values of AOD = 0.75 and AOD = 1.0, which are 50% and 

100% larger than the AOD = 0.50 case, respectively. Thomas et al. (2017) showed that for 
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intense fires 550 nm AOD values (Moderate Resolution Imaging Spectroradiometer [MODIS] 

Aqua) were close to 1 over the source fires in Canada and over Hudson Bay in summer 2013. 

However, detection of AOD over the Greenland ice sheet during fire event was limited by cloud 

cover. Although aerosol extinction associated with AOD > 0.50 has not been measured in the 

generally pristine Greenland atmosphere, we simulate the unrealistic AOD = 0.75 and AOD = 

1.0 cases to achieve high signal-to-noise ratios and more wholly characterize the sensitivity of 

Greenland’s climate to atmospheric LAA. The values of aerosol properties that we use for all of 

our simulations are shown in Table 2.1. Given the measured range of SSA values by Strellis et 

al. (2013), we conduct two additional runs with AOD = 0.50 and varying SSA values (i.e., SSA 

= 0.90 and SSA = 0.96) in the VSSA experiment to examine how changing SSA affects 

Greenland’s climate (Table 2.1). 

Because aerosols also darken snow surfaces after being deposited, we run a suite of five 

IN-SNOW simulations to assess the effects of LAA deposited on the GrIS. In these simulations, 

we vary BC and dust mixing ratios in snowpack based on measured and theoretical values. We 

include dust in our simulations because dust also contributes to the absorption of sunlight in 

snow (Painter et al., 2007). Unlike with the AOD-ONLY and VSSA experiments, we represent 

deposited LAA quantities as mixing ratios because these are the quantities for which we have 

measurements. Although we specify BC and dust mixing ratios throughout the entire snow 

column, we note here that it is the presence of LAA only in the top several centimeters of snow 

that causes most of the sunlight absorption. We simulate BC with a number mean radius of 50 

nm using one size bin. We distribute specified dust mixing ratios among the four size bins 

applied by SNICAR, with lognormal size functions partitioned into each of the bins. The 

minimum particle sizes of these four bins are 0.01, 1.0, 2.5, and 5.0 μm, and the corresponding 
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volume fractions for the assumed size distribution are 44.53%, 43.66%, 10.37%, and 1.45%, 

respectively. 

To concisely represent the total amount of LAA in snow, we refer to the combined 

mixing ratios of BC and dust in this discussion using a black carbon equivalent (BCE) metric 

with units of ng/g: 

BCE = [BC] + ∑ �[Dust]i ∗
MACDust,i
MACBC

�4
i=1       (2.1). 

In this equation, [BC] is the mixing ratio of BC, [Dust]i is the mixing ratio of dust in size bin i, 

and the mass absorption cross sections (MACs) for dust in bin i and BC are MACDust,i and 

MACBC, respectively. This metric represents the equivalent BC mixing ratio when we take into 

account the MAC of BC and dust for each aerosol bin that are based on calculations performed 

by SNICAR. The BC and dust mixing ratios for each case are listed with the corresponding BCE 

values in Table 2.1. 

 
Table 2.1: LAA Model Input for each Experimenta 

Experiment BOTH VSSA** AOD-ONLY* IN-SNOW 
Rank AOD BC (ng/g) Dust (ng/g) BCE (ng/g) SSA 
1 0.09 2.6 54.8 2.7 0.90 
2 0.21 15 328 15.7 0.93 
3 0.50 58.8 1360 61.8 0.96 
4 0.75 88.2 2040 92.8 -- 
5 1.00 117.6 2720 123.7 -- 

* 𝑆𝑆𝑆𝑆𝑆𝑆 = 0.93 for each case. 
**𝑆𝑆𝐴𝐴𝐴𝐴 = 0.50 for each case. 
aAOD, BC and Dust mixing ratios (and the associated BCE for each case), and SSA values used in CESM for AOD-
ONLY, IN-SNOW, BOTH, and VSSA simulations. 

 

We first consult measurements taken by Polashenski et al. (2015) from snow pits dug in 

northwestern Greenland during early summer 2013 and August 2014 to constrain mixing ratios. 

Although Polashenski et al. (2015) directly measured BC mixing ratios within each snow pit, 
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they were only able to measure mixing ratios of individual ions and element components of dust. 

Based on previous research and their findings, Polashenski et al. (2015) determined that the ratio 

of Ca2+ to dust concentration ranges from 0.21 to 0.29. Therefore, we multiply their Ca2+ mixing 

ratio measurements by a factor of 4 to infer the dust mixing ratios we impose on the GrIS. Per 

Polashenski et al. (2015), the lowest BC and dust mixing ratios we use for the IN-SNOW 

scenario (i.e., BCE = 2.7 ng/g) are representative of average snow pit LAA mixing ratio 

measurements. The elevated snow pit BCE value based on BC and dust measurements reported 

by Polashenski et al. (2015) is 15.7 ng/g, which we use as our second IN-SNOW case. Based on 

maximum values of additional measurements taken on the GrIS in the early 2000s, we set our 

third IN-SNOW case BCE as 61.8 ng/g (Bory et al., 2003; McConnell et al., 2007). To achieve a 

stronger signal and again explore the linearity of climate response to very large mixing ratios of 

LAA in Greenland snow, we increase the BC and dust mixing ratios from the BCE = 61.8 ng/g 

run by 50% (BCE = 92.8 ng/g) and 100% (BCE = 123.7 ng/g) for the final IN-SNOW 

simulations. 

Finally, we combine the AOD values from AOD-ONLY scenario with BC and dust 

mixing ratios from the IN-SNOW cases in the BOTH experiment. Because the AOD-ONLY and 

IN-SNOW experiments each contain five cases, we match up the associated burdens in each 

experiment from lowest to highest. The purpose for conducting this suite of runs is to explore the 

net effects and potential nonlinear responses of atmospheric and in-snow LAA acting in 

combination, which may differ from the sums of individual impacts identified from AOD-ONLY 

and IN-SNOW cases. Like in the AOD-ONLY scenario, we maintain SSA = 0.93 for suspended 

aerosols in all BOTH model runs.  
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We calculate changes in Greenland’s climate attributable to aerosol presence by 

comparing all of the aforementioned runs to a control simulation. We define this control 

simulation, termed CONTROL, to have AOD = 0 and an in-snow BCE of 0 ng/g within the 

Greenland region. The model boundary conditions and specified aerosol concentrations outside 

of Greenland for CONTROL are the same as the variable runs. For each simulation, we find 

differences in temperature, snowmelt, and energy fluxes by calculating ∆𝑉𝑉𝑉𝑉𝑦𝑦 = 𝑉𝑉𝑉𝑉𝑦𝑦𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶 −

𝑉𝑉𝑉𝑉𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶, where Var is the variable of interest and CASE is one of the non-CONTROL 

simulations. Furthermore, we test for statistically significant differences between each case and 

CONTROL by using two-sample t test calculations. This test is done for each grid cell over the 

Greenland region, as well as on spatially averaged data. All of our statistical calculations involve 

n = 10 summer seasons that are analyzed. For this analysis, we require a confidence interval of 

95% for a run to be significantly different from CONTROL (p ≤ 0.05). To maintain consistency 

when determining area-weighted spatial averages of the climate state for each case, we filter out 

sea-based grid cells by using the CESM landfrac field, which provides the fraction of land 

present in each grid cell. We use a threshold landfrac ≥ 0.83 to define the land mass of Greenland 

in order to exclude data from nearby Iceland. In the case of the grid-by-grid statistical analysis, 

though, we do not take land fraction into account. 

 

2.3 Results and Discussion 

In this section, we examine how temperature, snowmelt, and surface energy fluxes 

change with increasing atmospheric and deposited aerosol loads. First, we compare how air 

temperature changes vertically with respect to CONTROL for different AOD, SSA, and in-snow 

LAA mixing ratios. Next, we discuss snowmelt rate changes for the different LAA experiments 



33 
 

using two-dimensional difference maps and spatially averaged statistics. We then show how 

changes in the surface energy balance relative to CONTROL explain simulated differences in 

snowmelt. Finally, to explain the GrIS-averaged sign of change in surface energy flux, we 

examine each component of the surface energy balance. 

 

2.3.1 Vertical Temperature Profile Deviations 

To gain a better understanding of the different physical mechanisms that lead to changes 

in melt for all aerosol experiments, we first examine changes in vertical profile air temperature in 

the lower troposphere. For this portion of the analysis, we average three-dimensional temperature 

data horizontally over Greenland. The vertical temperature difference (ΔT) plots for all 

atmospheric and deposited aerosol cases are shown in Fig. 2.1, where the vertical coordinate 

represents the mean height above the GrIS surface of each hybrid sigma-pressure layer within 

CAM. 

From these plots, we see that increasing atmospheric LAA presence causes localized 

warming within the aerosol layer as a result of the direct absorption of sunlight. We observe this 

warming in the AOD-ONLY and VSSA experiments. When we maintain constant SSA in the 

AOD-ONLY experiment, we find that ΔT increases monotonically with higher atmospheric 

aerosol content through the lowest 1.5 km of the troposphere. We determine that decreasing SSA 

(i.e., increasing aerosol absorptivity) for the VSSA runs also leads to a monotonic increase in ΔT 

in the same altitude range. However, temperature change at the surface (ΔTs) is lower than ΔT 

within the aerosol layer because of surface dimming for all AOD-ONLY and VSSA cases. 

Above the aerosol layer, ΔT is lower and remains positive through 7 km for all AOD-ONLY 

cases and the VSSA cases with SSA ≤ 0.93. The SSA = 0.96 case depicts non-significant 
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negative ΔT just above 2 km because there is less sunlight absorption inside the aerosol layer so 

less heat energy is transferred to higher altitudes. 

 

Fig. 2.1: Spatially-averaged vertical profile difference plots for tropospheric air temperature, 
relative to CONTROL, for (A) AOD-ONLY, (B) VSSA, (C) IN-SNOW, and (D) 
BOTH simulations. The horizontal dashed line at ~2km represents the upper-most LAA 
altitude for the atmospheric aerosol runs. 
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In contrast to the AOD-ONLY and VSSA experiments, ΔT is positive at the surface and 

decreases with height for all but the smallest of the IN-SNOW runs. With the exception of the 

BCE = 92.8 ng/g case, we determine that ΔTs increases monotonically as we increase BC and 

dust mixing ratios. Insolation is more readily absorbed at the surface as albedo decreases because 

of the “in-snow” direct aerosol effect, resulting in surface and lower atmospheric warming. 

Although we do not observe any surface temperature change for BCE = 2.7 ng/g (i.e., ΔTs ≈ 0), 

we suspect that this is simply because there is not enough BC and dust in the snow to trigger 

substantial “in-snow” direct aerosol effect. Despite ΔTs being lower for the BCE = 92.8 ng/g 

case than BCE = 61.8 ng/g, the difference is not statistically significant, so we attribute this non-

monotonic behavior to model noise. For all IN-SNOW runs, we find that only the unreasonably 

large BCE = 123.7 ng/g case results in significant ΔTs. Without the effects of atmospheric 

aerosols in IN-SNOW, ΔT steadily decreases with altitude because anomalous heating originates 

at the Earth’s surface. We note here that we find negative, decreasing ΔT with height through 

most of the atmosphere for BCE = 15.7 ng/g. We attribute this to model noise and variability 

since no ΔT are statistically significant. 

Like in the AOD-ONLY and VSSA experiments, ΔT in the BOTH experiment increases 

monotonically with LAA amount in the aerosol layer and on the surface. All but the AOD = 

0.09; BCE = 2.7 ng/g BOTH runs maintain low positive ΔT from the top of the aerosol layer 

through 7 km, as we see in AOD-ONLY and VSSA. We calculate larger ΔT for the BOTH AOD 

= 1.0; BCE = 123.7 ng/g case than the AOD = 1.0 AOD-ONLY case because of the combined 

warming effects of atmospheric and deposited LAA. 
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2.3.2 GrIS Snowmelt (QMELT) Deviations 

The ΔT trends we discuss in the previous section illustrate how suspended and deposited 

aerosols affect air temperature at the surface and in the lower atmosphere. These ΔT patterns, 

along with surface energy flux changes described later, influence snowmelt difference 

(ΔQMELT) patterns across the GrIS. To explore the ΔQMELT patterns that result when we 

impose different aerosol loads, we analyze the statistical results and plots of two-dimensional 

and spatially averaged ΔQMELT (Figs 2.2 and 2.3, respectively). We note that there is positive 

melt on the central GrIS for CONTROL with surface air temperature below 265K (8K below 

freezing). These QMELT results (not shown) are unusual because the central GrIS rarely 

experiences melt during the summer months (e.g., Nghiem et al., 2012). We hypothesize that the 

snowmelt at temperatures below freezing over central Greenland in the model could lead to 

overestimations of QMELT. 

The effect of atmospheric aerosols on ΔQMELT varies based on both aerosol prevalence 

and SSA. In the AOD-ONLY and VSSA cases, we find that none of the melt patterns are 

statistically different from CONTROL (Figures 2 and 3). However, despite the small snowmelt 

changes, certain patterns do emerge with changing AOD and SSA. First, we observe slightly 

positive ΔQMELT around the periphery of the GrIS for lower AOD values (AOD ≤ 0.50). The 

enhanced marginal melt rates of the AOD-ONLY runs are caused by a combination of the 

warming lower troposphere and the absence of substantial surface dimming. We also observe 

this trend for the SSA = 0.90 and SSA = 0.93 VSSA cases. In contrast to the GrIS margins, 

however, we observe ΔQMELT ≤ 0 over the central portion of the ice sheet in these AOD-

ONLY and VSSA simulations.  
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Fig. 2.2: ΔQMELT for the (first row) AOD-ONLY, (second row) IN-SNOW, (third row) BOTH, 
and (fourth row) VSSA experiments. 
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Fig. 2.3: Spatially averaged snowmelt (QMELT) and net surface energy (𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 changes relative 
to CONTROL for the (a) AOD-ONLY, (b) VSSA, (c) IN-SNOW, and (d) BOTH 
experiments. 

 

Even with the direct aerosol effect enhancing air temperature within the aerosol layer, the 

amount of energy that is transferred to the surface is not large enough to induce positive 

snowmelt changes. The unrealistically large AOD (i.e., AOD ≥ 0.75) and SSA = 0.96 cases 

produce mostly negative snowmelt change (i.e., less melting) over the GrIS. For the AOD = 0.75 

and AOD = 1.0 runs, the effects of excessive surface dimming and limitations on sensible heat 

transfer from the warmed atmosphere lead to less total energy reaching the surface (Flanner, 

2013). The negative ΔQMELT we observe over the entire GrIS in the SSA = 0.96 case results 
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from increased solar irradiance being scattered by the aerosols away from the surface, combined 

with minimal atmospheric heating. 

By increasing in-snow BC and dust mixing ratios, we see that ΔQMELT for the IN-

SNOW experiment increases across the GrIS. Furthermore, in all but the lowest IN-SNOW case, 

significant positive ΔQMELT occurs at some location on the GrIS, with the cases defined by 

BCE ≥ 61.8 ng/g having significant snowmelt changes almost everywhere. Because deposited 

LAA lowers the GrIS snow albedo, enhanced melt is expected (e.g., Warren & Wiscombe, 

1980). However, based on historical in-snow BC and dust measurements, we emphasize that the 

high LAA presence associated with cases depicting significant melt on any large scale are very 

rare. The largest BC mixing ratio measured in a central Greenland ice core dating back to 1788 

was 58.8 ng/g and only occurred once during this time span (McConnell et al., 2007). In our 

simulations, this corresponds to the BCE = 61.8 ng/g case. We emphasize that the BCE = 92.8 

ng/g and BCE = 123.7 ng/g mixing ratios have never been observed in Greenland snow or ice 

(i.e., Doherty et al., 2010; McConnell et al., 2007; Polashenski et al., 2015). Warming snow and 

increasing snowmelt also trigger an acceleration of snow aging, where snow grain sizes increase 

as a result of vapor redistribution, melting and refreezing of water. Enlarged snow grains enable 

greater albedo perturbation from LAA in snow (Flanner et al., 2007). For all of the IN-SNOW 

simulations, we find that the northeastern and southwestern margins of the GrIS experience 

negative ΔQMELT. We determine that this is caused by an average decrease of snow depth (as 

measured by liquid water depth equivalent; see Figure 2.4) in the equilibrium state of the 

simulations. With less snow available for melting, the rate at which melt occurs after reaching 

equilibrium decreases. 
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Fig. 2.4: Change in GrIS snow water equivalent with respect to CONTROL for the AOD-
ONLY, IN-SNOW, BOTH, and VSSA cases. 
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The ΔQMELT spatial patterns and statistical results we find for the BOTH cases are very 

similar to those of the IN-SNOW experiment. However, despite the strong feedback associated 

with deposited aerosols, the effects of atmospheric aerosols do reduce the rate at which 

ΔQMELT increases for the BOTH runs. When we compare ΔQMELT between the IN-SNOW 

and BOTH simulation suites, ΔQMELTBOTH < ΔQMELTIN_SNOW (compare the lower panels of 

Figure 3). In the BOTH scenario, some of the surface heating from deposited LAA is 

counteracted by the dimming effects of atmospheric aerosols. We can see that the magnitude of 

ΔQMELT across most of the GrIS is slightly lower for the BOTH experiment than the IN-

SNOW experiment (Fig. 2.2). 

Based on the ΔQMELT trends we see with increasing atmospheric aerosol burden and in-

snow aerosol mixing ratios, we can conclude from these modeling experiments that snowmelt of 

the GrIS is more sensitive to the presence of deposited aerosols than atmospheric aerosols when 

both are varied similarly in relation to their mean and extreme observed values. We can see from 

the surface energy balance values shown in Figure 2.3 that deposited aerosols are more effective 

at enhancing melt because surface energy flux increases ubiquitously as in-snow LAA mixing 

ratios are increased. The sign of impact that atmospheric aerosols have on the surface energy 

balance is less clear because of the competing effects of surface dimming, tropospheric warming, 

and potential indirect cloud feedbacks. 

 

2.3.3 Surface Energy Budget Changes 

Although snowmelt rates respond to changing surface air temperature (compare Figs 2.1 

and 2.3), the extent to which snow surfaces with temperatures close to melting can warm is 

limited. However, because large surface energy fluxes can lead to large changes in snowmelt 
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with little change in surface temperature, we expect a more direct relationship between 

ΔQMELT and net surface energy flux changes (∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇). To determine ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 for each model 

simulation, we sum the following vector energy quantities at the surface: net solar flux 

(∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 = ∆�𝑆𝑆𝑊𝑊↓ − 𝑆𝑆𝑊𝑊↑�, where 𝑆𝑆𝑊𝑊↓ and 𝑆𝑆𝑊𝑊↑ are incoming and outgoing solar energy, 

respectively), net longwave energy flux (∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 = ∆�𝐿𝐿𝑊𝑊↓ − 𝐿𝐿𝑊𝑊↑� for longwave energy flux, 

LW), net sensible heat flux (ΔSH), and net latent heat flux (ΔLH). For each of the energy flux 

components, we assume that positive energy fluxes are directed at the surface and negative 

energy fluxes flow upward from the surface (e.g., 𝑆𝑆𝑊𝑊↑ and 𝐿𝐿𝑊𝑊↑  are negative in each 

calculation). We compute the grid-by-grid ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 as follows: 

∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + ∆𝑆𝑆𝑆𝑆 + ∆𝐿𝐿𝑆𝑆     (2.2). 

As we can see from the Greenland maps, spatially averaged plots, and the statistical 

results (Figures 2.5 and 2.2 and Table 2.2, respectively), ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and ΔQMELT are very similar 

for each experiment. For the AOD-ONLY simulations, ΔQMELT and ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 initially increase 

with lower atmospheric aerosol burdens before becoming negative due to strong surface 

dimming. In the VSSA experiment, average snowmelt and net surface energy decrease with 

highly scattering atmospheric aerosols but remain slightly positive when SSA ≤ 0.93. In contrast 

to the purely atmospheric aerosol cases, increasing in-snow BC and dust mixing ratios leads to 

increasing ΔQMELT and ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 as a result of decreasing surface albedo. Based on these 

results, we can state with a good degree of certainty that changes in surface energy dictate melt 

pattern changes. However, the changes in each energy component with additional aerosol cannot 

be determined from this information alone. We can use the relative magnitudes of solar and 

turbulent energy fluxes in ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 to determine how each of these fluxes are influenced by 

changes in LAA abundance, location, and optical properties (Fig. 2.6). 
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Fig. 2.5: ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 for the AOD-ONLY, IN-SNOW, BOTH, and VSSA experiments. 

 

Deviations in Net Surface Energy Flux (𝑬𝑬𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻) in JJA 
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Table 2.2: Net Surface Energy Component Differencesb 

Experiment ∆𝑺𝑺𝑺𝑺𝒏𝒏𝒏𝒏𝑻𝑻 ∆𝑳𝑳𝑺𝑺𝒏𝒏𝒏𝒏𝑻𝑻 ∆𝑺𝑺𝑺𝑺 ∆𝑳𝑳𝑺𝑺 
Aerosol  
Scenario Case ∆𝐒𝐒𝐒𝐒↑ ∆𝐒𝐒𝐒𝐒↓ ∆𝐋𝐋𝐒𝐒↑ ∆𝐋𝐋𝐒𝐒↓ -- -- 

AOD-
ONLY 

(AOD=) 
(for 

SSA=0.93) 

0.09 0.93 -1.53 1.20 0.36 
6.98 -6.04 -2.64 1.11 -- -- 

0.21 0.24 -2.82 2.02 0.95 
12.95 -12.71 -2.36 -0.46 -- -- 

0.50 -0.25 -6.59 4.61 2.53 
24.50 -24.75 -3.05 -3.54 -- -- 

0.75 -4.13 -5.52 5.53 3.67 
34.11 -38.24 -2.96 -2.56 -- -- 

1.0 -5.49 -6.55 6.43 4.21 
42.42 -48.27 -2.87 -3.69 -- -- 

VSSA 
(SSA=) 

(for 
AOD=0.50) 

0.90 -2.19 -5.24 4.60 2.95 
32.09 -34.28 -4.50 -0.74 -- -- 

0.96 -4.90 -1.22 2.47 1.95 
19.62 -24.52 0.65 -1.87 -- -- 

IN-SNOW 
(BCE 

(ng/g)=) 

2.7 3.21 -1.86 -0.43 -0.21 
0.31 2.91 -0.08 -1.77 -- -- 

15.7 3.81 -0.23 -1.39 -0.59 
7.46 -3.65 -0.49 0.27 -- -- 

61.8 11.65 -2.38 -1.61 -1.86 
18.87 -7.22 -3.78 1.39 -- -- 

92.8 11.52 -0.62 -2.39 -1.95 
23.69 -12.16 -2.81 2.19 -- -- 

123.7 14.50 -1.37 -2.60 -2.37 
28.37 -13.87 -5.16 3.79 -- -- 

BOTH 
(AOD, BCE 

(ng/g)=) 

0.09;  
2.7 

1.99 -2.60 0.89 0.43 
5.92 -3.93 -0.06 -2.53 -- -- 

0.21; 
15.7 

3.13 -2.68 1.42 0.82 
19.11 -15.98 -3.78 1.09 -- -- 

0.50; 
61.8 

7.29 -6.13 2.15 1.16 
39.36 -32.07 -5.62 -0.51 -- -- 

0.75; 
92.8 

5.36 -5.82 3.62 2.38 
51.97 -46.61 -7.18 1.36 -- -- 

1.0; 
123.7 

6.20 -8.07 4.39 2.84 
60.45 -54.24 -7.23 -0.84 -- -- 

 

bDifferences (in units of W/m2) are with respect to CONTROL. Positive ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, ∆𝑆𝑆𝑆𝑆, 
and ∆𝐿𝐿𝑆𝑆 depict energy flow into the surface. Gray boxes highlight statistical significance. 
∆𝑆𝑆𝑊𝑊↑ < 0 and ∆𝐿𝐿𝑊𝑊↑ < 0 indicate increased upwelling in the variable case, while ∆𝑆𝑆𝑊𝑊↓ < 0 
and ∆𝐿𝐿𝑊𝑊↓ < 0 indicate less downwelling energy. 
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Fig. 2.6: Spatially averaged surface energy flux component changes for (a) AOD-ONLY, (b) 
VSSA, (c) IN-SNOW, and (d) BOTH scenarios. In each plot, 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is the net solar 
energy, 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is the net longwave energy, SH is sensible heat flux, and LH is latent 
heat flux. 

 

Increasing the mass of LAA in the atmosphere generally leads to negative ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 

through the process of surface dimming (Fig. 2.6A). As expected, spatially averaged ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 

(red line) values are negative when AOD ≥ 0.5 in the AOD-ONLY simulations. Unexpectedly, in 

spite of the increasing LAA burden in the atmosphere, the AOD = 0.09 and AOD = 0.21 cases 

(Fig. 2.6) exhibit positive ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇. This occurs in the model because these aerosols lead to so- 

𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 
𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 
SH 
LH 
𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
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called cloud burn-off while simultaneously allowing most of the insolation to transmit through 

the sparsely concentrated aerosol layer (Ban-Weiss et al., 2011; Ramanathan and Carmichael, 

2008). We can verify cloud burn-off by calculating the change in cloud radiative forcing (ΔCRE) 

between each AOD-ONLY case and CONTROL: 

∆𝐶𝐶𝐶𝐶𝐸𝐸 = ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇,𝑐𝑐𝑇𝑇𝑛𝑛𝑇𝑇𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠 − ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇      (2.3), 

where ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇,𝑐𝑐𝑇𝑇𝑛𝑛𝑇𝑇𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠 is clear-sky solar flux. Negative ΔCRE indicates higher cloud radiative 

effect in CONTROL. High latitude clouds are difficult to model because cloud phase, optical 

thickness, and altitude result from the combination of large-scale circulation, boundary layer, and 

microphysical processes, among others (Curry et al., 1996; Kay & Gettelman, 2009). de Boer et 

al. (2012) and Kay et al. (2012) determined that cloud fraction is underestimated in the Arctic at 

all altitudes in CAM4. de Boer et al. (2012) also determined that liquid water path was 

overestimated and ice water path was underestimated by CAM4 in the high latitudes. We 

hypothesize that these cloud biases could impact our assessment of cloud changes and surface 

energy balance over Greenland. Based on de Boer et al. (2012) cloud composition findings in 

CAM4, we can assume that liquid clouds are over-represented in our simulations. Liquid clouds 

are more reflective than ice clouds, so CONTROL clouds might have a high-albedo bias. We 

speculate that burn-off of these liquid clouds could lead to overestimated ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 and net surface 

energy changes. Bearing these potential cloud biases in mind, we see low-level cloud burn-off 

for the AOD = 0.09 and AOD = 0.21 runs relative to CONTROL in Fig. 2.7 and in ΔCRE 

calculations (i.e., ∆𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐴𝐴=0.09 = −1.6 𝑊𝑊/𝑚𝑚2 and ∆𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐴𝐴=0.21 = −3.6 𝑊𝑊/𝑚𝑚2). This is 

further supported by the ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 results we discuss later in this section. We also observe lower 

surface albedo and upwelling solar energy in these cases (not shown), suggesting that decreasing 

GrIS snow albedo leads to enhanced absorption of sunlight at the surface. 
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Fig. 2.7: Low cloud fraction changes for all cases relative to CONTROL. 
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We speculate that these changes result from snow aging processes induced by elevated 𝑆𝑆𝑊𝑊↓, 

whereby snow grains become larger and result in lower near-infrared surface albedo (e.g., 

Flanner and Zender, 2006). 

Like the AOD-ONLY cases with AOD ≥ 0.50, we determine that ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is negative for 

all of the VSSA cases (Fig. 2.6B). Given that AOD = 0.50 for all of the VSSA runs, we know 

that surface dimming causes the reduction of sunlight at the surface. However, the mechanism 

diverting energy away from the GrIS depends on aerosol SSA. We find that ∆𝑆𝑆𝑊𝑊↑ (Table 2.2) is 

more positive (i.e., there is less upwelling energy in the variable case) and ∆𝑆𝑆𝑊𝑊↓ is more 

negative (i.e., there is less downwelling energy) for the SSA = 0.90 case due to enhanced LAA 

absorption. The values of ∆𝑆𝑆𝑊𝑊↑ and ∆𝑆𝑆𝑊𝑊↓ are roughly the same magnitude for SSA = 0.90, so 

its resulting ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is less negative than ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 for SSA = 0.96. 

In contrast to the atmospheric aerosol cases, the effects of deposited LAA on ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 are 

more straightforward (Fig. 2.6C). As we see from the IN-SNOW ΔQMELT and ΔT results, 

∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 becomes more positive with enhanced BC and dust mixing ratios due to the “in-snow” 

direct aerosol effect. Similarly, despite simultaneous atmospheric LAA presence, ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇also 

increases with enhanced aerosol burdens in the BOTH experiment. This further demonstrates 

that the presence of deposited BC and dust is generally more influential on the amount of solar 

energy absorbed at the surface than the presence of suspended LAA. 

However, when we compare ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 between the IN-SNOW and BOTH experiments, we 

see that the largest ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 value in the BOTH runs (Fig. 6D) is not statistically significant and is 

roughly half the magnitude of the largest ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 for IN-SNOW. This results from the 

competing effects of surface dimming and surface darkening present in the BOTH experiment. 

We determine that IN-SNOW ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is highest with the largest BC and dust mixing ratios, but 
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because of dimming, the BOTH case with the highest ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is AOD = 0.50; BCE = 61.8 ng/g. 

These results suggest that the net impact of LAA is lower when both atmospheric and deposited 

aerosols are acting. The effects of deposited (atmospheric) LAA at high latitudes are often 

modeled independently; we assert that neglecting atmospheric (deposited) LAA in model 

simulations may lead to non-negligible biases in net surface energy flux. 

For all of the experiments, we determine that average ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 (purple line) negatively 

contributes to ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The upwelling longwave term, 𝐿𝐿𝑊𝑊↑, responds to surface temperature 

changes via the Stefan-Boltzmann relationship. However, the downwelling longwave energy flux 

change patterns (𝐿𝐿𝑊𝑊↓) depend on aerosol location. In all but the AOD = 0.09 case, we find 

negative ∆𝐿𝐿𝑊𝑊↓. Although the LAA lead to localized warming in the atmosphere that could cause 

positive ∆𝐿𝐿𝑊𝑊↓, the low-level (Figure 7) and midlevel cloud burn-off that result from the LAA 

reduce cloud-based 𝐿𝐿𝑊𝑊↓. The negative ∆𝐿𝐿𝑊𝑊↓ values that we calculate in the AOD-ONLY and 

VSSA experiments suggest that the effect of cloud removal slightly outweighs that of 

tropospheric warming. 

When we examine the deposited aerosol cases (i.e., IN-SNOW and BOTH), we find that 

the magnitude of ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 largely depends on the presence of atmospheric LAA. As we observe 

in the IN-SNOW cases, ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is negative and remains mostly constant. Similar to the AOD-

ONLY and VSSA experiments, BOTH ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 becomes more negative as the atmospheric 

aerosol burden increases. The highest BC and dust mixing ratio cases in IN-SNOW and BOTH 

show the BOTH case having a ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 magnitude that is at least three times larger than the IN-

SNOW equivalent. When we compare cloud burn-off between all experiments, we find the 

smallest low-level cloud fraction change in the IN-SNOW cases. Therefore, cloud-based 𝐿𝐿𝑊𝑊↓ in 

the IN-SNOW runs does not decrease to the extent that we observe in the other cases (Fig. 2.7). 
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Furthermore, unlike the atmospheric aerosol experiments, IN-SNOW ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 only depends on 

BC and dust mixing ratios; the GrIS surface does not receive any statistically significant change 

in 𝐿𝐿𝑊𝑊↓ from the atmosphere relative to CONTROL. 

Unlike the shortwave and longwave energy fluxes, increasing AOD and decreasing SSA 

lead to positive ΔSH (orange line) and ΔLH (green line; i.e., more downward directed flux or 

less upward directed flux). Both of these changes occur as a result of the direct aerosol effect. 

With increasing atmospheric LAA burdens or decreasing SSA, more insolation is absorbed in the 

aerosol layer. As we have seen with the ΔT analysis, this leads to increasing ΔT within the 

aerosol layer. By the Clausius-Clapeyron relationship, local saturation specific humidity also 

increases. These air temperature and saturation specific humidity enhancements lead to positive 

sensible and latent heat flux changes. Research by Wang (2004) also supports this positive 

change in heat energy flux as a result of LAA presence. Wang (2004) used a suite of global 

climate models to determine how BC affects radiative energy in the climate system. In response 

to negative radiative forcing at the surface caused by BC in the atmosphere, Wang (2004) 

suggested that the positive sensible and latent heat fluxes served as a compensating mechanism 

to offset the negative energy balance at the surface. This result is apparent in our AOD-ONLY 

and VSSA model simulations. In the AOD-ONLY and VSSA scenarios, ΔSH and ΔLH are the 

only positive energy components of ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. However, as we can observe from Figs. 2.6A and 

2.6B, the negative ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 and ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 are collectively comparable to ΔSH and ΔLH. This is 

why we do not calculate significant ΔQMELT or ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 in any of these cases. 

Deposited aerosols in IN-SNOW lead to changes in the magnitude and sign of ΔSH and 

ΔLH relative to the BOTH runs. To compensate for energy being added to the surface via 

positive ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, the IN-SNOW simulations exhibit negative ΔSHand ΔLH. Air temperature and 
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specific humidity increase at the surface (e.g., Fig. 1) relative to CONTROL and create changes 

in temperature and specific humidity gradients that lead to negative heat flux changes. As we can 

see from Fig. 2.6, the values of ΔSH and ΔLH for IN-SNOW decrease slightly with increasing 

deposited LAA mixing ratios and are comparable to the magnitude of ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇. Overall, the only 

positive energy contribution to ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 for IN-SNOW is ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇. However, ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 for each BC 

and dust mixing ratio case is much larger than the sum of ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, ΔSH, and 

ΔLH, which is why ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and ΔQMELT are positive for all IN-SNOW cases. 

In contrast to the IN-SNOW experiment, the BOTH simulations all depict positive ΔSH 

and ΔLH. This indicates that for surface sensible and latent heat flux changes, atmospheric 

aerosols are more influential on the direction of energy flow than their in-snow counterparts. We 

also note that of all of the experiments involving atmospheric aerosols, ΔSH and ΔLH 

magnitudes are the smallest in the BOTH scenario because of the offsetting impacts of in-snow 

aerosols. However, despite positive ΔSH and ΔLH for all BOTH cases, we can see from Fig. 2.6 

that solar energy changes still contribute more to ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. Unlike all of the other simulations, the 

only surface energy component that leads to energy depletion in ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 in BOTH is ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇. 

However, the combination of ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, ΔSH, and ΔLH all contribute more energy to the surface 

than longwave energy emission removes, so ΔQMELT and ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 both increase. 

 

2.4 Conclusion 

In this study, we use CESM to better understand the relative impact of atmospheric and 

deposited LAA on the climate of Greenland. To achieve this goal, we compare idealized 

simulations with varying LAA mixing ratios to a local-to-Greenland no-aerosol control run (i.e., 

CONTROL) by using a series of independent two-sample t-tests. By comparing variable aerosol 
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simulations to CONTROL, we are able to determine the effects of LAA on the climate of 

Greenland, and we are also able to determine how increasing aerosol burdens can impact these 

results. 

We determine that air temperature changes (ΔT) throughout the lower portion of the 

atmosphere and at the surface are caused by local LAA. In the AOD-ONLY runs, air temperature 

within the aerosol layer and at the surface increases monotonically with respect to CONTROL. 

However, ΔTs is smaller than ΔT within the aerosol layer for all AOD-ONLY cases because of 

surface dimming caused by the suspended LAA. We observe the same ΔT patterns seen in the 

AOD-ONLY cases at both the surface and in the lower troposphere for the VSSA runs. We 

further determine that decreasing SSA leads to a monotonic increase in ΔT as a result of the 

increasing absorbing capabilities of the LAA. Deposited aerosols also affect the ΔT trends we 

observe, but the patterns differ from those we see with atmospheric aerosols. With the exception 

of the BCE = 92.8 ng/g case in the IN-SNOW experiment, ΔTs increases monotonically because 

of the “in-snow” direct aerosol effect. We attribute the non-monotonic ΔTs increase for the 

BCE=92.8 ng/g run to model noise and variability. We also demonstrate that ΔT decreases in 

magnitude with altitude for all IN-SNOW runs. When we simulate the presence of both 

atmospheric and deposited LAA, the resulting air temperature change trends are similar to those 

in AOD-ONLY, but the ΔT values are positively skewed in the lower troposphere and at the 

surface for higher LAA cases.  

Along with the changes in tropospheric air temperature, we determine that snowmelt and 

surface energy flux changes associated with LAA largely depend on aerosol location. Increasing 

atmospheric LAA burden leads to surface dimming and enhanced air temperatures just above the 

surface. These offsetting effects of atmospheric LAA lead to non-statistically significant changes 
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in melt and net surface energy flux across the entire GrIS for the AOD-ONLY and VSSA 

experiments. For the AOD-ONLY cases, we show that both snowmelt and net surface energy 

flux initially increase with enhanced LAA burden before decreasing as a result of surface 

dimming. We find further evidence of surface dimming by the negative ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 component of 

∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 when AOD ≥ 0.50. In contrast, we calculate positive ΔFSNS in the AOD ≤ 0.21 cases 

because of cloud burn-off. Although the sign of ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 for the AOD-ONLY experiment 

depends on the AOD value, we observe that both ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 and snowmelt changes (ΔQMELT) 

transform from positive to negative at the same AOD value. This indicates that ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is very 

influential for subsequent snowmelt changes. The change in net longwave energy flux negatively 

impacts the surface energy balance for all atmospheric aerosol cases. In contrast, ΔSH and ΔLH 

positively contribute to ∆𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 as a result of localized warming in the air above the GrIS. We 

observe this pattern in all experiments involving the presence of atmospheric aerosols, regardless 

of whether in-snow impurities are also present. In the VSSA experiment, ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 is negative for 

all cases because of absorption or scattering by the moderately high aerosol load imposed in the 

lower troposphere. As a result of decreased surface albedo from in-snow LAA overwhelming 

dimming caused by atmospheric LAA, though, the BOTH simulations all maintain positive 

∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇. 

When we impose BC and dust in GrIS snow, we find that snowmelt and net surface 

energy increase with increasing LAA mixing ratios because of reduced surface albedo. In the IN-

SNOW and BOTH experiments, snowmelt increases with higher aerosol burdens. Unlike the 

BOTH scenario, the IN-SNOW positive energy balance of the GrIS is due to the dominating 

positive ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 relative to negative ∆𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, ΔSH, and ΔLH. The relative magnitudes of 

ΔQMELT for the IN-SNOW runs are comparable to the corresponding 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 deviations, while 
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changes in snowmelt for the BOTH experiment depend on ∆𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇, and to a lesser extent, ΔSH 

and ΔLH. Overall, we find that in-snow aerosols affect snowmelt more than their atmospheric 

counterparts. However, the snowmelt and net surface energy changes we calculate for these 

experiments show that LAA in the atmosphere reduce the impact of aerosols on the ground by a 

factor of 2. This finding highlights the offsetting effects of atmospheric aerosols and emphasizes 

the importance of including atmospheric LAA when simulating the climate effects of deposited 

LAA, especially on ice- and snow-covered terrain. 

Although this research demonstrates the relative effects of atmospheric and deposited 

LAA on air temperature, snowmelt, and surface energy fluxes for the GrIS, there are several 

aspects of Greenland’s climate and the effects of biomass burning that we do not address. Most 

importantly, we investigate the effects of LAA in a highly idealized modeling environment. We 

maintain constant and spatially uniform aerosol burdens in the snow and lower atmosphere for 

the duration of each simulation rather than explicitly representing aerosol advection from remote 

locations into the Greenland region (e.g., Thomas et al., 2017). Atmospheric circulation 

mechanisms lead to spatially heterogeneous aerosol distributions on the surface and in the 

atmosphere. For example, atmospheric LAA from biomass burning generally decrease from west 

to east over the GrIS because of plume dilution and LAA depositional processes. Although BC 

and OC can serve as CCN after transport and aging processes (i.e., Bond et al., 2013), the bulk 

aerosol setup we use neglects this process. BC and OC CCN affect cloud lifespan, cloud albedo, 

and incident radiation at the surface. Wang et al. (2018) confirm that aerosol microphysical 

effects make up a large portion of the total aerosol forcing in the Arctic. Inclusion of these 

effects in our experimental setup would have impacted our findings. Along with simulating 

spatially homogeneous aerosol burdens, the larger atmospheric and in-snow aerosol mixing 
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ratios we impose (i.e., rank 4 and rank 5 on Table 1) are extreme burdens that have not been 

observed over Greenland (McConnell et al., 2007; Polashenski et al., 2015). LAA mixing ratios 

similar to the BCE = 61.8 ng/g case have only been measured in GrIS snow once during the last 

215 years, and monthly concentrations of BC in GrIS snow that exceed 5 ng/g have occurred 

only two or three times in each decade since 1950 (McConnell et al., 2007). Because biomass 

burning and its transport are spatially and temporally episodic, simulating the constant presence 

of biomass burning aerosols over and on the surface of Greenland leads to more radiative forcing 

than would be realistic for the region (Clark et al., 2015). However, regardless of emission 

source, multiple studies have found that BC and other aerosols are most prevalent over the GrIS 

during the summer months (Jiao et al., 2014; Sand et al., 2013). Biomass burning and 

anthropogenic aerosols transported to the GrIS from other areas of the northern hemisphere are 

suspended at various levels in the atmosphere (e.g., Jiao & Flanner, 2016), which we also do not 

take into account for our atmospheric   aerosol experiments. 

Although the purpose of this study is to explore Greenland’s climate response to 

idealized, clearly defined distributions of LAA, it would be noteworthy to take these factors into 

account to depict a more realistic representation of the response of Greenland’s climate. 

Furthermore, in the case of our experimental setup, it would also be useful to examine the effects 

of LAA SSA by expanding SSA deviations to AOD values apart from AOD = 0.50. Overall, the 

results from these idealized and well-defined experiments indicate that BC and dust can affect 

snowmelt and the climate of Greenland when suspended in the atmosphere or, especially,   

deposited on the surface. 
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Chapter 3. Impacts of Greenland Block Location on Clouds and Surface Energy Fluxes 

over the Greenland Ice Sheet 

(Ward et al., 2020; submitted) 

 

3.1 Introduction 

Many atmospheric processes affect Greenland Ice Sheet (GrIS) surface energy fluxes and 

subsequent surface mass balance changes. Clouds impact the GrIS surface by reflecting 

insolation away from the surface (i.e., cooling) while also trapping and reemitting longwave 

energy (i.e., warming). Over snow-covered surfaces like the GrIS, the magnitude of this cloud 

radiative forcing is affected by cloud properties like ice-to-liquid cloud content ratios, cloud 

height, and cloud water path (i.e., Shupe and Intrieri, 2004). Liquid-bearing clouds, which are 

most common over Greenland during the summer months (Shupe et al., 2013; Miller et al., 2015; 

Van Tricht et al., 2016; Lenaerts et al., 2017), enhance net radiative surface energy flux by 

largely increasing longwave energy fluxes and only marginally dimming surface insolation 

(Shupe and Intrieri, 2004; McIllhatan et al., 2017). Optically-thin, low-lying liquid-bearing 

clouds are optimal for increasing surface radiative energy flux (Bennartz et al., 2013; Van Tricht 

et al., 2016). In recent years and in future climate projections, liquid-bearing clouds contribute to 

melt over much of the GrIS (Bennartz et al., 2013; Van Tricht et al., 2016; Hofer et al., 2019). 
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One factor that increases Greenland cloud fraction is enhanced atmospheric water vapor 

from local- and remotely sourced moisture transport (Johansson et al., 2017). Although 

summertime moisture amounts and source regions vary regionally over Greenland (e.g., 

Nusbaumer et al., 2019), a large portion of atmospheric water vapor originates over the North 

Atlantic. This warmer, moister air moves over the GrIS surface and can influence not only 

clouds but also skin surface temperatures and snowmelt rate (Pfahl et al., 2015; Mattingly et al., 

2018). Over the last 20 years, available water vapor over Greenland has increased with warming 

air temperatures (Mattingly et al., 2016) and will likely affect Greenland’s future climate through 

increased cloud cover. 

Atmospheric dynamics affect GrIS surface processes by influencing cloud formation, 

moisture transport, and temperature advection. These processes are complicated by airflow 

changes that result because of the elevated GrIS surface. Greenland “blocks” (i.e., quasi-

stationary anticyclones lasting for days-to-weeks) increase GrIS melt through warm air advection 

and cloud suppression (Box et al., 2012; Fettweis et al., 2013; Hanna et al., 2014; McLeod and 

Mote, 2016; Hofer et al., 2017; Mattingly et al., 2018). The resulting cloud reduction and warm 

air advection from blocking enhance insolation and sensible heat fluxes, respectively, which can 

enhance surface melt (Hanna et al., 2014; Rajewicz and Marshall, 2014; Lim et al., 2016; 

Mioduszewski et al., 2016; Hofer et al., 2017). In addition, Greenland blocking is likely related 

to regional atmospheric moisture transport processes (i.e., Mattingly et al., 2018; Nusbaumer et 

al., 2019), and thus also cloud patterns and phase. Over Summit, liquid-bearing clouds have 

larger water paths and are longer-lived during block-like (i.e., ridging) flow regimes (Edwards-

Opperman et al., 2018). Summertime Greenland blocking activity has significantly increased 

over the past twenty years (i.e., Fettweis et al., 2013; Rajewicz and Marshall, 2014; Belleflamme 



58 
 

et al., 2015; Hanna et al., 2016; McLeod and Mote, 2016) and is another potential contributor to 

GrIS snowmelt enhancement (Rignot et al., 2008; Fettweis et al., 2011; Shepherd et al., 2012; 

Tedesco and Fettweis, 2019).   

The surface mass balance and energy flux effects resulting from different wind patterns 

and cloud locations vary spatially over the GrIS. Compared to eastern Greenland, 

westerly/southerly winds produce more cloud cover over western Greenland in the summer 

months that significantly reduces insolation while enhancing longwave fluxes and surface melt 

(Cawkwell and Bamber, 2002; Cullather and Nowicki, 2018). Moisture transport over western 

Greenland also has a larger impact on local GrIS snowmelt because the air is warmer and moister 

than over eastern Greenland (Mattingly et al., 2018). The effects of Greenland blocking on cloud 

cover (e.g., Lim et al., 2016; Hofer et al., 2017), temperature advection, and subsequent 

snowmelt and surface energy flux processes (e.g., Fettweis et al., 2013; Belleflamme et al., 2015; 

Tedesco et al., 2016b) also exhibit spatial variability and have been explored in previous studies. 

However, these studies investigate average blocking conditions that do not account for the quasi-

stationary nature of Greenland blocks (e.g., Chen and Luo, 2017). Different block locations 

could produce variations in cloud, moisture transport, and surface energy flux patterns by 

changing air source regions and how block airflow interacts with the GrIS surface, which could 

directly impact GrIS surface mass balance processes.  

In this study, we use a combination of reanalysis and satellite cloud data to document and 

differentiate the effects of summertime (i.e., June through August) Greenland block location on 

cloud formation, moisture transport, and surface energy flux processes over the GrIS. First, we 

describe the datasets, blocking detection algorithm, and statistical methods we use for this study. 

Next, we explore the impacts of block location on cloudiness in terms of moisture transport, 
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temperature, and airflow patterns. We then explore the implications of cloud changes on 

Greenland-wide cloud radiative forcing and total surface energy fluxes.  

 

3.2 Methods 

We use Modern-Era Retrospective Analysis for Research and Applications, version 2 

(MERRA-2) reanalysis data to find blocks and analyze their associated meteorological and 

surface energy flux patterns over the GrIS (Gelaro et al., 2017). Although output variability 

exists between different reanalysis datasets because of varying observational sources and data 

assimilation schemes (e.g., Graham et al., 2019), MERRA-2 compares favorably to state-of-the-

art ERA5 (CS3, 2017) output (Figs. A.1-A.2), which agrees well with observations over the 

Arctic (Delhasse et al., 2020). Because we are interested in blocking-induced cloud and surface 

energy flux anomalies that could materially impact summer surface melt, we analyze blocks in 

June, July, and August (JJA) from 2002 through 2018. We include days in late May and early 

September if they are part of early June and late August blocking events, respectively.  

 To detect blocks in the MERRA-2 dataset, we use a modified version of the Dunn-

Sigouin et al. (2013) algorithm (hereafter referred to as D-S) (see Table 3.1). The multi-step 

approach of the D-S algorithm requires the satisfaction of multiple conditions to classify events 

as blocks (Dunn-Sigouin et al., 2013). In brief, the D-S method tracks contiguous groupings of 

500mb geopotential height anomalies (𝑍𝑍500′ ) meeting minimum pre-established amplitude 

threshold (A) and area requirements (S) over time. For each latitude/longitude grid, we calculate 

𝑍𝑍500′  between May 16 and September 15 with the following formula: 

 𝑍𝑍500′ (𝑛𝑛) = 𝑍𝑍500(𝑛𝑛) − 𝑍𝑍𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐(𝑛𝑛)                    (3.1),  
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where 𝑍𝑍𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐(𝑛𝑛) is the climatological average 500mb geopotential height. 𝑍𝑍𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐 is defined using a 

Gaussian-weighted, 31-day moving window centered on day n for all 17 years (2002-2018) of 

500mb geopotential height data. Gaussian weighting places more emphasis on days close to n, 

incorporating seasonal variability in 𝑍𝑍500. In the D-S algorithm, a block is recorded if 1) the 𝑍𝑍500′  

areas between consecutive days overlap (O) by a certain percentage, and 2) these anomalies exist 

for a predefined number of days (D). Although the original D-S detection algorithm further tests 

for a 𝑍𝑍500 gradient reversal equatorward of the block, we do not maintain this requirement 

because persistent high pressure ridging is a prominent variety of blocking in the Greenland 

region (Fettweis et al., 2013; Hanna et al., 2014; Tedesco et al., 2016b). The original and 

modified D-S thresholds are listed in Table 1. More details about the D-S algorithm can be found 

in Dunn-Sigouin et al. (2013).  

Table 3.1: Dunn-Sigouin (D-S) algorithm original and modified parameters 
Threshold Units Original D-S Modified D-S 
Duration (D) Days 5 4 
Amplitude (A) Unitless 1.5 1.2 
Spatial Scale (S) 𝑘𝑘𝑚𝑚2 2.5 × 106 1.0 × 106 
Overlap (O) Percentage 50 50 

 

 The block location for each block day detected in the modified D-S setup is determined 

using the equal-area block quadrants defined in Fig. 3.1A. For each block day, we first find the 

local maximum 𝑍𝑍500′  latitude/longitude coordinate that is closest to Greenland; if there are 

multiple 𝑍𝑍500′  local maxima, we choose the 𝑍𝑍500′  data point with the largest magnitude. We then 

find its corresponding 𝑍𝑍500 maximum latitude/longitude grid point and bin it in one of the four 

Greenland block quadrants (Fig. 3.1A). Because midlatitude ridging can result in 𝑍𝑍500 center 

points south of our Greenland domain, we allow 𝑍𝑍500 to lie marginally outside of the defined 

block quadrants.  
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Fig. 3.1: A) Equal-area Greenland block quadrants. The quadrants are Northwest (NW), 
Northeast (NE), Southwest (SW), and Southeast (SE). B) Present-day topography of the 
GrIS derived from MERRA-2 surface geopotential data. 

 

We use Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Collection 6, 

Level 2 cloud data (product code MOD06), which extends from 2002 to present (Platnick et al., 

2017), to analyze cloud conditions during Greenland blocking. We choose MOD06 data because 

of its high spatial and temporal coverage, as well as its incorporation of processing algorithm 

improvements for high latitude opaque cloud detection and characterization over the reflective 

GrIS snow (Ackerman et al., 1998; Liu et al., 2010; Platnick et al., 2017). The cloud water path 

and cloud optical thickness fields we use are produced by the combination of 1.6μm and 2.1μm 

bands for better surface-cloud differentiation (Platnick et al., 2001). Although MOD06 data are 

accompanied by detection uncertainties, we do not include these here.  

To better compare the MERRA-2 data to the corresponding daily cloud conditions, we 

spatially aggregate 1x1km and 5x5km along-swath gridded granule MOD06 data onto the 0.5° ×
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0.625° MERRA-2 grid and average all resulting cloud data for each day. This regridded, daily-

averaged MOD06 data covers 60 − 85°𝑁𝑁 latitude and 93.125°𝑊𝑊 − 13.125°𝐸𝐸 longitude to 

accommodate clouds corresponding to blocking in each block quadrant. We first aggregate 

1x1km fields onto the 5x5km grid for each MODIS granule. Because cloud water path data is 

only collected during the day, we exclude “nighttime” pixels with solar zenith angle values 

exceeding 81.36° degrees for all other cloud variables (Platnick et al., 2017). We then aggregate 

5x5km granule data onto the larger MERRA-2 grid by averaging the closest 5x5km data points 

onto each MERRA-2 grid point. Apart from cloud fraction and cloud phase, all MOD06 

variables are averaged onto the MERRA-2 grid with cloud fraction weighting for each MODIS 

granule. Finally, we average (using cloud fraction weighting) each MERRA-2 gridded MOD06 

data field over time to create daily average cloud fields.  

 Because cloud formation depends on the presence of atmospheric moisture, we evaluate 

moisture transport (𝑘𝑘𝑔𝑔 𝑚𝑚−1𝑠𝑠−1) during blocking in each block quadrant, during all blocks 

combined, and during non-block days (i.e., JJA 2002-2018 days that do not exhibit blocking) to 

gain a first-order understanding of the effects of blocking on clouds and surface processes. 

Similar to Woods et al. (2013), we calculate daily gridded total column moisture transport as:  

 𝐹𝐹 = 1
𝑔𝑔 ∫ 𝑄𝑄(𝑝𝑝) ∗ 𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝𝑝𝑝𝑠𝑠

400         (3.2).  

In (2), F is the resulting total column moisture flux, g is the acceleration of gravity (9.8𝑚𝑚 𝑠𝑠2⁄ ), 

𝑄𝑄(𝑝𝑝) is specific humidity at pressure level p, 𝑊𝑊(𝑝𝑝) is the wind velocity at p, and p ranges from 

pressure at the surface (𝑝𝑝𝑠𝑠) to 400mb (Woods et al., 2013). Because of GrIS surface elevation 

variability and daily changes in atmospheric pressure, 𝑝𝑝𝑠𝑠 is spatially and temporally variable in 

our Greenland domain. 
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GrIS surface energy balance is important to disentangle the effects of block location and 

subsequent cloud processes on snowmelt. We calculate total surface energy flux as the sum of 

net shortwave energy, net longwave energy, sensible heat flux, and latent heat flux at each point 

in the Greenland domain (e.g., van den Broeke et al., 2017; Lenaerts et al., 2019). We note that 

turbulent heat fluxes are positive when directed into the surface. We do not include conductive 

heat flux in our surface energy balance calculation because its magnitude is negligible in ice 

covered regions (Yang et al., 2011). In addition, to examine the impacts of clouds in each 

blocking case on net surface radiative fluxes, we calculate total cloud radiative forcing using all-

sky (all) and clear-sky (clr) quantities:  

 𝐶𝐶𝐶𝐶𝐹𝐹𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐹𝐹𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝑆𝑆 = �𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇,𝑐𝑐𝑇𝑇𝑐𝑐� + �𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇,𝑐𝑐𝑇𝑇𝑐𝑐�    (3.3). 

Because high-latitude insolation varies strongly with time of year, our subsets of regional block 

and non-block days are subject to different mean insolation. To account for this, we use 

MERRA-2 downwelling top-of-atmosphere shortwave energy data to scale shortwave flux-

related fields so they represent consistent “summer-mean” values. We calculate GrIS-wide top-

of-atmosphere incoming solar radiation averages for summer (i.e., all days in JJA), “Control” 

(i.e., JJA non-block days), and block days in each blocking scenario. We divide this summer 

average by the corresponding “Control” and block day mean insolation to calculate shortwave 

scaling factors that are used to normalize our filtered surface and cloud shortwave fluxes. These 

scaling factors are listed in Table S2. Surface energy flux components are considered to be 

positive in the downward direction because they positively contribute to total surface energy. 

 We differentiate surface energy fluxes, meteorological conditions, and cloud properties 

between block days in each quadrant, “All Blocks”, and non-block days (“Control”) using two-

sample t-testing for each coordinate and spatial averaging over the GrIS. In the case of spatial 
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averages, we define GrIS pixels as those having at least 50% land ice coverage, as defined with 

the MERRA-2 land ice surface fractions.  

 

3.3 Results and Discussion 

3.3.1 Blocking Statistics 

Here, we briefly describe the frequency characteristics of block days for “All Blocks” and 

individual block quadrants. We find a total of 205 summer block days associated with 30 

blocking events. Four of these blocking events extend outside of JJA (see Table A1 in Appendix 

1 for block day list). There are ~12.1 block days per summer, on average, with a standard 

deviation of ~10.5 days. This year-to-year variability in block day count results from varying 

synoptic- to planetary-scale dynamics. We find above-average summer block day counts in 2003, 

2006-2008, 2012, and 2015- 2016 (Fig. 3.2), which aligns well with previously reported 

Greenland blocking frequencies (e.g., Fettweis et al., 2011; Fettweis et al., 2013; Hanna et al., 

2016; Tedesco et al., 2016b). 

 

Fig. 3.2: Block day counts for each summer season (JJA) from 2002 to 2018. 
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Binning block days to our defined block quadrants (i.e., Fig. 3.1A) provides us with 

additional information about preferred blocking regions around Greenland. From Fig. 3.3A, and 

in agreement with previous studies (i.e., Häkkinen et al., 2014; McLeod and Mote, 2015; 

Cullather and Nowicki, 2018), the average “All Blocks” block center is located over south-

central Greenland. We also see that average NW and NE blocks are smaller with higher 

geopotential heights than SW and SE blocks. Overall, we find that the southwest (SW) and 

southeast (SE) block quadrants contain more block days (69 and 80 days, respectively) than the 

northwest (NW) and northeast (NE) block quadrants (35 and 21 days, respectively). However, 

northern quadrant block days comprise 27% of Greenland blocking activity and are thus 

important to Greenland’s climate. 
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Fig. 3.3: Composite 500mb geopotential height plots for A) “All Blocks”, B) “Control”, C) NW, 
D) NE, E) SW, and F) SE block days. Day counts are listed above each panel. Black 
boxes in C-F represent the corresponding block quadrant boundaries. 
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3.3.2 Clouds and Block Location 

 In this section, we explore MOD06 cloud fraction (Fig. 3.4) and cloud water path (Fig. 

3.6) changes over the Greenland Ice Sheet for “All Blocks” and individual block quadrants with 

respect to “Control”. We use moisture transport and wind fields (Fig. 3.5) to explain the resulting 

cloud anomaly patterns for each blocking case.  

 We can see in Fig. 3.4 that cloud fraction anomaly distributions are different between 

“All Blocks” and individual block quadrants. Regardless of block location, however, composite 

500mb geopotential height block centers (Fig. 3.3) are collocated with negative cloud fraction 

anomalies because of high pressure subsidence (Box et al., 2012; Hanna et al., 2014; Rajewicz 

and Marshall, 2014; Lim et al., 2016; Mioduszewski et al., 2016; Hofer et al., 2017). In the case 

of “All Blocks”, cloud fraction anomalies are negative over most of the GrIS (Fig. 3.4C). The 

most negative of these cloud fraction changes is located over southern Greenland and coincides 

with the average “All Blocks” high pressure center (Fig. 3.3A). In agreement with previous 

studies (e.g., Hofer et al., 2017; Delhasse et al., 2018), limited positive cloud fraction anomalies 

in north-central Greenland result from onshore, westerly airflow (Fig. 3.5A) that cools 

adiabatically and condenses. Overall, Greenland-average cloud fraction decreases by 0.04 “All 

Blocks”. 
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Fig. 3.4: MOD06 cloud fraction. Panels A and B show absolute cloud fraction for “All Blocks” 
and “Control”, respectively, and their difference is in panel C. Quadrant-based cloud 
fraction changes with respect to “Control” are in panels D through G, with GrIS 
averages in the lower right-hand corner of each panel. The black boxes are the 
corresponding quadrant boundaries. Cross-hatching in panels C through G represents 
statistically significant differences (95% confidence level). 
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Fig. 3.5: Vertically integrated moisture transport (contours) and winds (arrows). The reference 
wind speed and arrow size are shown below each panel. 
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 Outside of the block centers for each block location, we find that NW and NE block day 

cloud fraction change patterns are markedly different from those for SW and SE block days. In 

these cases, easterly winds flow (Fig. 3.5C-D) downslope from central Greenland and warm 

adiabatically to inhibit cloud formation. NW block days also produce significant cloud fraction 

enhancements over the eastern half of the GrIS (Fig. 3.4D) because of rising northerly airflow 

(Fig. 3.5C). Despite these small regions of increased cloudiness, Greenland-average cloud 

fraction is reduced by 0.09 and 0.12 during NW and NE block days, respectively (Fig. 3.4D-E). 

Cloud fraction anomaly spatial patterns reverse for SW and SE block days. Namely, SW and SE 

block days produce enhanced cloud fractions over portions of western Greenland and cloud 

fraction reductions over eastern Greenland. Cloud fraction changes for southern Greenland block 

days more closely represent “All Blocks” cloud fraction changes because they constitute a 

majority of all block days. Positive cloud fraction anomalies over northern Greenland are 

produced by westerly-based winds moving upslope over the GrIS margins (Fig. 3.5E-F) that 

adiabatically enhance cloud cover (i.e., Neff et al., 2014; McLeod and Mote, 2015; 

Mioduszewski et al., 2016; Mattingly et al., 2018). SE block days reduce cloud fractions along 

the eastern GrIS margins because westerly airflow adiabatically warms as it descends from the 

central GrIS towards the eastern shoreline. Similarly for SW block days, we calculate reduced 

cloud coverage over southeastern Greenland because of downslope airflow. Despite more 

prevalent cloud fraction enhancement over the GrIS during SW and SE block days, GrIS-average 

cloud fraction anomalies are still negative (-0.004 and -0.02, respectively). 

Cloud water path changes are helpful for explaining cloud radiative forcing and surface 

energy flux anomalies produced by blocking. For “All Blocks”, “Control”, and individual block 

location cases, cloud water path spatial patterns (Fig. 3.6) are similar to their corresponding 
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cloud fraction patterns; areas of reduced cloud fraction align with areas of decreased cloud water 

path, and vice versa. 

 

Fig. 3.6: Same as Fig. 3.4, but for cloud water path (𝑔𝑔 𝑚𝑚2⁄ ). 
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In addition to the interaction of anticyclonic airflow with Greenland’s topography, available total 

column moisture is another contributing factor to cloud water path changes (Table 3.2).  

 

Table 3.2: Total Column Water Vapor (Blocking values are anomalies) 
Day Set Total Column Water Vapor (𝑔𝑔/𝑚𝑚2) 
“Control” 55.30 
“All Blocks”  8.80 
NW 3.70 
NE 7.10 
SW 11.00 
SE 9.50 

 

Despite greater total column water vapor over the GrIS for each blocking case compared to 

“Control” that coincides with atmospheric warming, the corresponding cloud water path changes 

are negative because of increased stability. We also find that cloud water path changes are at 

least 4 times more negative for NW and NE block days than SW and SE block days because of 

lower Greenland-average total column water vapor (Table 3.2). NW and NE block days tend to 

transport colder, drier northerly air onto the GrIS (Fig. 3.6C-D). When this already dry air flows 

downslope to the GrIS margins, it dries further and results in larger cloud water path reductions. 

Regional moisture availability for different block days also varies by block location because of 

moisture source region. Column-integrated moisture transport indicates that SW and SE block 

days source moisture from the North Atlantic Ocean to the south (e.g., Neff et al., 2014; McLeod 

and Mote, 2015; Mioduszewski et al., 2016; Mattingly et al., 2018), while NW and NE block day 

moisture originates from the Arctic Ocean and Greenland Sea, respectively, which are colder 

bodies of water (Nusbaumer et al., 2019). Overall, absolute cloud water paths range from 

20𝑔𝑔 𝑚𝑚2⁄  to 80𝑔𝑔 𝑚𝑚2⁄  over the GrIS during block days (Fig. A.3). Cloud water paths below 

40𝑔𝑔 𝑚𝑚2⁄  allow more radiative energy to transmit to the surface (Bennartz et al., 2013). As we 
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see from the composite block cloud water path anomalies, spatial distributions of optically-thin 

clouds over Greenland vary with block location. 

From these results, we can see that cloud anomaly patterns differ by block location, 

especially between northern quadrant and southern quadrant block days. NW and NE block days 

produce greater cloud fraction and cloud water path reductions relative to “Control”, especially 

over western Greenland. In contrast, SW and SE block days enhance (reduce) cloud fraction and 

cloud water paths over portions of western (eastern) Greenland. These differences arise from 1) 

block airflow over Greenland’s elevated surface and 2) moisture prevalence and source region. 

However, cloud fraction and cloud water path changes are spatially similar for each blocking 

case. As we will see in the following section, cloud properties for different block locations can 

directly affect energy fluxes received at the surface. 

 

3.3.3 Cloud Radiative Forcing and Block Location 

 In the previous section, we found that NW and NE quadrant blocking produces greater 

GrIS-wide cloud fraction and cloud water path reductions than SW and SE block days. We 

combine our cloud results with MERRA-2 shortwave and longwave cloud radiative forcing data 

to investigate the impacts of block location on surface radiative energy. To disentangle the 

effects of clouds on radiative fluxes, we use clear-sky and all-sky shortwave and longwave 

fluxes to calculate cloud radiative forcing (equation 3.3). Although cloud radiative forcing does 

not account for net surface energy changes, it is a useful metric for explaining radiative impacts 

of the actual clouds. All energy fluxes are defined as positive in the downward direction (i.e., 

into the surface). 
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 Clouds in “All Blocks” and “Control” days produce negative absolute shortwave cloud 

radiative forcing because of scattering (Fig. 3.7A-B). 

 

Fig. 3.7: Same as Fig. 3.4, but for MERRA-2 derived surface net shortwave cloud radiative 
forcing at the surface (𝑊𝑊/𝑚𝑚2). 
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However, because cloud fraction and cloud water path reductions in “All Blocks” reduce 

scattering above the surface, positive shortwave cloud radiative flux anomalies result over most 

of the GrIS. Similarly, we find positive (negative) shortwave cloud radiative forcing anomalies 

for negative (positive) cloud fraction changes in each of the block quadrant cases (Fig. 3.7D-G); 

NW and NE block days produce significant shortwave cloud radiative forcing enhancements 

over western Greenland and within their respective block quadrant boundaries, while SW and SE 

block days exhibit positive shortwave cloud radiative forcing changes over portions of eastern 

Greenland. Overall, Greenland-average shortwave cloud radiative forcing anomalies are largest 

for NW and NE block days (+3.63 𝑊𝑊/𝑚𝑚2 and +4.71𝑊𝑊 𝑚𝑚2⁄  respectively; Fig. 3.7E, G).  

 We see the changes of the opposite sign in longwave cloud radiative forcing during 

blocking (Fig. 3.8). Greenland blocking produces significantly negative surface longwave cloud 

forcing (i.e., less absorbed longwave energy at the surface). “All Blocks” longwave cloud 

radiative forcing anomalies are significantly negative over most of the GrIS. Similarly, blocking 

in each block quadrant produces negative longwave cloud radiative forcing anomalies in regions 

of reduced cloudiness. Despite positive atmosphere temperature anomalies (i.e., Fig. 3.9), 

reduced cloud cover decreases downwelling longwave energy (i.e., Shupe and Intrieri, 2004; 

Miller et al., 2015) while surface-based upwelling longwave energy remain approximately 

constant (not shown), which produces negative changes in net longwave cloud radiative forcing 

(van As et al., 2012; Lenaerts et al., 2019).  
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Fig. 3.8: Same as Fig. 3.4, but for MERRA-2 derived surface net longwave cloud radiative 
forcing at the surface (𝑊𝑊/𝑚𝑚2). 
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Fig. 3.9: Same as Fig. 3.4, but for MERRA-2 2m-temperature (K). 
 

Unlike our shortwave cloud radiative forcing results, we find NW and NE blocking produces 

Greenland-average longwave cloud radiative forcing reductions (−8.37 𝑊𝑊/𝑚𝑚2 and 
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−9.65 𝑊𝑊/𝑚𝑚2) that are 2-3 times greater than those for SW and SE block days because of larger 

cloud fraction and cloud water path reductions.  

When we compute net cloud radiative forcing anomalies for each blocking case (Fig. 

3.10), we find that longwave cloud radiative forcing anomalies outweigh shortwave cloud 

radiative forcing anomalies and result in dominantly negative net cloud radiative forcing. These 

net cloud radiative forcing anomaly patterns resemble cloud fraction and cloud water path 

changes during all blocking scenarios. The larger impact of longwave cloud radiative forcing we 

find in net cloud radiative forcing anomalies aligns with previous studies on Greenland cloud 

radiative forcing (Miller et al., 2015; Van Tricht et al., 2016). NW and NE blocks produce the 

most negative net cloud radiative forcing changes (−4.75 𝑊𝑊/𝑚𝑚2 and −4.94 𝑊𝑊/𝑚𝑚2, 

respectively) that have magnitudes approximately 2 times larger than net cloud radiative forcing 

anomalies for SW and SE block days (−2.45 𝑊𝑊/𝑚𝑚2 and −1.23 𝑊𝑊/𝑚𝑚2).   

NW and NE block days produce larger positive shortwave cloud radiative forcing 

anomalies and more negative longwave cloud radiative forcing anomalies than southern quadrant 

blocking because of greater cloud cover reductions. In the case of shortwave cloud radiative 

forcing changes, positive ice cloud fraction and negative liquid cloud fraction changes during NE 

and SE block days also increase net shortwave cloud radiative forcing (compared to NW and SW 

block days, respectively) by reducing cloud albedo. For each block location, however, longwave 

cloud radiative forcing changes outweigh shortwave cloud radiative forcing changes, resulting in 

negative cloud radiative effects over the GrIS because of reduced cloudiness. These findings 

demonstrate that block location is important not only for cloud changes over Greenland but also 

for associated cloud radiative forcing anomalies. 
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Fig. 3.10: Same as Fig. 3.4, but for MERRA-2 derived total surface cloud radiative forcing 
(𝑊𝑊/𝑚𝑚2). 
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3.3.4 Surface Energy Fluxes and Block Location 

Because changes in net surface energy fluxes are impacted by factors other than cloud 

presence (e.g., air temperature, moisture availability, and surface albedo), we calculate net 

surface shortwave and longwave flux anomalies for each block location. Overall, Greenland-

average net radiative flux (i.e., the sum of net shortwave and net longwave fluxes) increases for 

all blocking cases (Figs. A2 and A.3). Unlike southern quadrant block days, negative net 

longwave flux anomalies produced by northern quadrant blocking partially offset positive 

changes in net shortwave fluxes. SW and SE block days produce positive surface shortwave and 

longwave flux anomalies (SW block day net longwave responses are quite small) because of 

smaller cloud fraction reductions and moisture transport processes (Fig. A.4). These positive net 

radiative flux anomalies correspond to negative Greenland-average total cloud radiative forcing, 

which highlights the importance of other phenomena apart from clouds for impacting surface 

radiative fluxes. 

 Sensible and latent heat fluxes are also important for total surface energy input during 

blocking. As we can see from Fig. 3.11, significant sensible heat flux anomalies are dominantly 

positive for all block locations. However, NE and SE block days produce larger Greenland-wide 

sensible heat anomalies (+8.98 𝑊𝑊/𝑚𝑚2 and +5.49 𝑊𝑊/𝑚𝑚2, respectively) than NW and SW block 

days. Since warm air advection and adiabatic warming of descending airflow have both been 

shown to contribute to greater downward-directed sensible heat flux (e.g., Box et al., 2012; 

Fausto et al., 2016; Välisuo et al., 2018), we examine 2m-temperature anomalies and wind 

patterns for these cases. All block locations exhibit significantly positive 2m-temperature 

anomalies (Fig. 3.9), but block circulation patterns for NE and SE block days suggest large 

regions of descending adiabatic warming and onshore southerly airflow over western Greenland, 
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respectively (Fig. 3.5). NW and SW block days, on the other hand, produce large areas of 

adiabatic cooling as air ascends to higher GrIS elevations and results in smaller sensible heat 

anomalies. 

 

Fig. 3.11: Same as Fig. 3.4, but for MERRA-2 sensible heat flux (𝑊𝑊/𝑚𝑚2). Positive quantities are 
directed into the surface. 
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Although latent heat flux anomalies are non-negligible, they are small in comparison with 

radiative and sensible heat fluxes, so we do not include these findings here (see supplementary 

information Fig. A.6). 

 Now that we have examined cloud radiative forcing, radiative fluxes, and turbulent heat 

fluxes associated with different Greenland block locations, we will look at the impact of block 

location on total surface energy flux (𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), defined as the sum of net shortwave, net longwave, 

sensible, and latent heat fluxes, respectively:  

 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + 𝑆𝑆𝑆𝑆 + 𝐿𝐿𝑆𝑆          (3.4).  

All blocking locations produce large positive surface energy flux changes (Fig. 3.12) along the 

lower albedo GrIS margins (e.g., Tedesco et al., 2011). With the exception of NW block days, 

we also calculate significant positive changes over sub-areas of the GrIS interior. These net 

energy flux changes in the accumulation zone are statistically significant relative to “Control” 

because the high albedo snow surface reduces energy absorption and have important snowmelt 

implications (e.g., van den Broeke et al., 2009). In contrast, NW block days produce significantly 

negative net surface energy flux anomalies over most of the central GrIS because of the 

combined influence of cloud changes and northerly cold air advection. Reduced cloud cover 

produces negative net fluxes that outweigh positive sensible heat flux changes that are limited by 

the colder, drier overlying air. Negative net energy flux anomalies over central Greenland during 

NW block days counteract positive changes along the GrIS margins and produce the lowest 

Greenland-average net surface flux change (+7.12 𝑊𝑊/𝑚𝑚2) of all block locations. Positive 

average net shortwave energy (+10.75 𝑊𝑊/𝑚𝑚2) is the largest contributor to enhanced net surface 

energy and more than offsets negative net longwave energy (−6.14 𝑊𝑊/𝑚𝑚2) change. Out of the 

remaining blocking locations, NE block days produce the largest Greenland-wide net surface 
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energy change (+12.36 𝑊𝑊/𝑚𝑚2) because of the combined influence of spatially-averaged net 

shortwave (+7.10 𝑊𝑊/𝑚𝑚2) and sensible heat flux (+8.98 𝑊𝑊/𝑚𝑚2) anomalies.   

 

Fig. 3.12: Same as Fig. 3, but for MERRA-2 derived total surface energy flux (𝑊𝑊/𝑚𝑚2). 
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   Although “All Blocks”, SW, and SE block days produce similar spatial patterns and 

Greenland-wide average net surface energy flux anomalies (+9.57 𝑊𝑊/𝑚𝑚2, +9.61 𝑊𝑊/𝑚𝑚2, and 

+9.62 𝑊𝑊/𝑚𝑚2, respectively), the relative contribution of component fluxes to total energy change 

varies by block location. Net shortwave (+5.08 𝑊𝑊/𝑚𝑚2) and sensible heat flux (+4.89 𝑊𝑊/𝑚𝑚2) 

anomalies are almost equally responsible for positive Greenland-wide surface energy changes 

during “All Blocks”. In contrast, spatially-averaged net shortwave energy change 

(+6.50 𝑊𝑊/𝑚𝑚2) is responsible for over 60% of the corresponding net surface energy change 

during SW block days and average sensible heat change (+5.49 𝑊𝑊/𝑚𝑚2) produces almost 60% of 

total surface energy flux change during SE block days. As with NE block days, sensible heating 

is a large contributor to positive surface energy flux change during SE block days because from 

warm air advection from lower latitudes onto the GrIS that results from the composite block 

location. 

 Greenland block location affects spatial and Greenland-average surface energy fluxes 

through the production of different cloud patterns, moisture transport and source region, and 

adiabatic heating resulting from orographic airflow. NW block days are unique from other 

blocking in other locations because they produce negative net surface energy flux anomalies over 

the central GrIS and result in the lowest Greenland-average net surface energy flux change. 

Although we find similar total surface energy flux anomaly patterns between the remaining 

blocking cases, moisture and airflow changes over the GrIS dictate the relative contribution of 

turbulent and radiative heat flux anomalies. Sensible heat fluxes contribute more to net surface 

energy flux changes for NE and SE block days because of enhanced warm air advection and 

subsidence over southern and western Greenland. Net solar energy anomalies are the largest 

contributing energy source to net surface energy changes for NW and SW block days.  
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3.4 Conclusion 

In this study, we use a combination of MERRA-2 meteorological reanalysis data and 

MODIS collection 6, level 2 cloud data to assess the impacts of Greenland block location on 

regional clouds and Greenland Ice Sheet (GrIS) surface energy fluxes in the summer months of 

2002-2018. We find block days using a modified setup of the D-S block detection algorithm 

(Dunn-Sigouin et al., 2013) and separate individual block days using uniquely defined equal-area 

block quadrants over Greenland. We use moisture transport, winds, and temperature data to 

explain how block location affects clouds and surface energy fluxes and compare these results on 

a quadrant-by-quadrant basis.  

From 2002 through 2018, we find 30 Greenland block events in June, July, and August 

(JJA), totaling 205 block days. Of these years, the summers of 2003, 2006-2008, 2012, and 

2015-2016 had higher-than-average block day counts, while no blocking activity occurs in 2002, 

2013, or 2017. Although we verify block activity for each day in our record, we emphasize that 

block days found by the D-S algorithm (and others) are sensitive to changes in algorithm 

threshold values. Although most (73%) of these block days are located in the SW and SE block 

quadrants, understanding cloud and energy flux changes during NW and NE block days (27% of 

all block days) is also important to fully understanding Greenland blocking.  

All Greenland block locations produce negative Greenland-average cloud fraction and 

cloud water path changes, as demonstrated previously (e.g., Lim et al. 2016; Mioduszewski et 

al., 2016; Hofer et al., 2017; Tedesco and Fettweis, 2019). However, the extent to which cloud 

coverage and water path decrease, as well as the cloud change patterns over Greenland, vary by 

block location. Negative cloud fraction and cloud water path anomalies are at least four times 

greater for NW and NE block days than SW and SE block days because SW and SE quadrant 
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block days import warmer, moister air over the GrIS to damp the extent of cloud reduction 

caused by block dynamics.   

 Cloud radiative forcing anomalies vary in magnitude and spatial distribution for different 

block locations. Greenland-average shortwave cloud radiative forcing values are greater for NW 

and NE block days and correspond to large cloud fraction and cloud water path reductions. 

However, cloud water path changes in eastern Greenland blocks produce greater shortwave 

cloud radiative forcing anomalies than western Greenland blocks at the same latitude. Longwave 

cloud radiative forcing and total cloud radiative forcing anomalies are negative for all block 

locations, with NW and NE block days producing anomalies at least 2 times as great as SW and 

SE block day anomalies. Larger longwave cloud radiative forcing anomaly magnitudes indicate 

that Greenland blocking cloud changes negatively impact the amount of radiative energy 

absorbed by the surface.  

 During all except NW block days, total surface energy flux is positive over most of the 

GrIS, with the largest flux anomalies located along the ice sheet margins and minimal yet 

statistically significant increases over the central GrIS. Although NW block days also produce 

large positive net surface energy anomalies over the GrIS margins, net energy anomalies are 

negative over central Greenland. Large cloud reductions and northerly cold air advection over 

the central GrIS greatly reduce net longwave surface flux to more than offset the positive surface 

energy contribution of net shortwave and sensible heat anomalies. Because of these negative 

total energy flux changes, NW block days produce the least positive Greenland-average net 

surface net energy change (+7.12 𝑊𝑊/𝑚𝑚2). NE block days produce the greatest Greenland-

average net energy flux change (+12.36 𝑊𝑊/𝑚𝑚2) because of the combined influence of large 

positive net shortwave and sensible heat flux anomalies. Although net surface energy flux 
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anomalies are similar for “All Blocks”, SW, and SE block days, the component flux anomalies 

that contribute to these changes are different because of changes in dominant air and moisture 

source regions.  

These results all highlight the importance of block location for cloud and surface energy 

flux patterns over the GrIS. However, some of our chosen methods could affect these findings. 

One of the most significant constraints in this study is block detection itself. Because there is no 

concrete definition for blocking, we can justify changes we make to the D-S algorithm 

thresholds. However, changing these thresholds or using a different detection method to find 

Greenland blocks from meteorological data could affect the block days identified.  

This study demonstrates that blocks in northern Greenland more effectively reduce cloud 

cover and decrease total cloud radiative forcing at the surface. Along with clouds, air 

temperature and moisture also contribute to surface energy changes during blocking, especially 

for blocking over southern Greenland that draws warm, moist North Atlantic air over the GrIS. 

Our findings can be used to further understand the impact of block location on GrIS snowmelt 

processes through the examination of clouds and surface energy fluxes. 
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Chapter 4. Future Greenland Ice Sheet Surface Flux Anomalies Produced by Atmospheric 

Blocking in the CMIP6 Models  

(Ward et al., 2020b, in prep) 

 

4.1 Introduction 

Summertime blocking activity (i.e., persistent, quasi-stationary anticyclonic circulation 

(Rex, 1950)) has increased over Greenland since the start of the 21st century (Fettweis et al., 

2013; Rajewicz and Marshall, 2014; McLeod and Mote, 2015; Hanna et al., 2018a) and was 

accompanied by increased Greenland Ice Sheet (GrIS) surface energy and snowmelt (Fettweis et 

al., 2011, 2013; Box et al., 2012; Belleflamme et al., 2013; Hanna et al., 2014; Neff et al., 2014; 

Lim et al., 2016; Mioduszewski et al., 2016; Delhasse et al., 2018; Hanna et al., 2018a). 

Blocking induces melt by decreasing cloud cover in the high pressure region (e.g., Hofer et al., 

2017), advecting warm, moist air over the GrIS (van den Broeke et al., 2011; Franco et al., 2013; 

Häkkinen et al., 2014; Fausto et al., 2016; Tedesco et al., 2016b; Välisuo et al., 2018), and 

promote cloud growth via orographic airflow processes (Bonne et al., 2015). As we demonstrate 

in Chapter 3 (Ward et al., 2020; submitted), energy and cloud response magnitudes to historical 

blocking depend on block location. Although atmospheric temperature, moisture, and energy 

flux responses to blocking can individually affect GrIS surface mass balance, the modeled 

response of melt to blocking with increased temperatures is two times greater than the response 

for temperature increase alone (Delhasse et al., 2018; Hofer et al., 2019). The summers of 2012, 
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2015, and 2019 exhibited extensive GrIS snowmelt (Nghiem et al., 2012; Tedesco et al., 2016b; 

Tedesco and Fettweis, 2020) that was coincident with frequent blocking activity. During one 

specific 2012 melt episode (10-12 July) (Nghiem et al., 2012), clouds, moisture transport, and 

blocking all contributed to snowmelt over >98% of the GrIS surface (Bennartz et al., 2013; Neff 

et al., 2014; Mattingly et al., 2018). Relative contributions of these phenomena to observed 

surface melt varied over the GrIS. 

 Greenland blocking produces radiative and non-radiative energy flux responses over the 

GrIS. A large contributor to total surface energy during blocking is increased net shortwave flux 

response to subsidence-produced cloud reduction (Lim et al., 2016; Hofer et al., 2017; Tedesco 

and Fettweis, 2020). Although the GrIS surface is highly reflective, pre-conditioned snow that 

has undergone previous melt will absorb more sunlight during blocking. Over western 

Greenland, block-based warm air advection increases sensible heat input into the GrIS, 

especially along the GrIS margins and lower ablation zones (Fausto et al., 2016; Lim et al., 2016; 

Cullather and Nowicki, 2018). The impact of net longwave fluxes during blocking is more 

uncertain. Southerly warm air advection increases lower atmosphere air temperatures and 

enhances downwelling longwave fluxes, while the absence of clouds negates this effect (Hofer et 

al. 2017; Cullather and Nowicki, 2018). Variability associated with block-produced cloud spatial 

patterns, preexisting GrIS albedo conditions, and solar energy seasonality leads to uncertainty in 

the relative impacts of shortwave and longwave energy responses to blocking. Cullather and 

Nowicki (2018) found positive net longwave flux anomalies that correspond to positive 500mb 

geopotential height anomalies indicative of blocking for each GrIS basin melt location. On the 

other hand, Hofer et al. (2017) calculate negative net longwave flux anomalies over the GrIS 

because of greater upwelling longwave flux changes that result from surface warming.  
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 There is more uncertainty in future Greenland blocking frequencies, structure (i.e., 

circulation, geopotential height, and temperature), and associated GrIS surface energy fluxes. 

Blocking frequencies in the larger North Atlantic region are projected to remain the same 

(Delhasse et al., 2018) or decrease slightly (Dunn-Sigouin and Son, 2013; Hanna et al., 2018b) in 

RCP 8.5 warming scenario Coupled Model Intercomparison Project, phase 5 (CMIP5) model 

output. Downwelling shortwave energy will likely decrease as longwave downwelling increases 

because of a warmer future regional mean state combined with greater atmospheric moisture 

availability for cloud production over Greenland (Delhasse et al., 2018). Despite these findings, 

the validity of CMIP5 data to forecast blocking trends and the resulting surface energy fluxes is 

questionable. Hanna et al. (2018b) report that CMIP5 models are not only unable to reproduce 

summer Greenland blocking frequencies from 2000 onward, but they also do not capture the 

hypothesized enhancement in geopotential heights that should result from atmospheric warming. 

The CMIP6 (i.e., CMIP, phase 6) data archive is the newest global climate model output 

repository containing simulations from the newest model versions (e.g., Eyring et al., 2016). 

These new data could be an excellent tool for reexamining Greenland blocking trends. 

 Future Greenland blocking trends and surface energy flux responses over the GrIS have 

not yet been explored with CMIP6 output. We will use this newly-released data to analyze how 

Greenland blocking total surface energy flux anomalies (and the relative contributions of 

component fluxes) change in the middle of the twenty-first century (2040-2059) and the end of 

the twenty-first century (2080-2099) for the highest projected warming scenario. To complete 

this project, we first describe the data we use, our methods for block detection, and statistical 

analysis techniques in the methods section (4.2). We analyze these results and their implications 
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for Greenland’s future climate in the Results (4.3) section before summarizing our findings and 

their implications for future research in the Conclusion (4.4). 

 

4.2 Methods 

 We use historical and future global climate model simulations from the Coupled Model 

Intercomparison Project, phase 6 (CMIP6) data archive to characterize GrIS surface energy flux 

responses to blocking and how these change with time (Eyring et al., 2016). We define three 20 

year periods in historical and future simulations to examine these responses: 1) “Historical” 

(1986-2005) (i.e., Meredith et al., 2019), 2) “Mid-Century” (2040-2059), and 3) “Late-Century” 

(2080-2099). For Mid-Century and Late-Century, we analyze shared socioeconomic pathway 

(SSP) 5 (i.e., O’Neill et al., 2017) simulations with a representative pathway concentration 

(RCP) value of 8.5 𝑊𝑊/𝑚𝑚2 (RCP 8.5; van Vuuren et al., 2011). This SSP/RCP combination 

represents the scenario in which humanity continues the “business-as-usual” approach while 

increasing average global surface radiative forcing by 8.5 𝑊𝑊/𝑚𝑚2. O’Neill et al. (2017) defines 

this SSP/RCP outcome (hereafter referred to as SSP585) by continued use of fossil fuels, 

infrastructure built around fossil fuels, and minimal international cooperation for energy policy 

change. Out of all available CMIP6 future simulations, the SSP585 scenario represents the 

largest warming projection (O’Neill et al., 2017) by the end of the 21st century, which has 

important implications for GrIS surface mass balance changes. 

We detect individual blocks for all time periods and models using daily-resolved 500mb 

geopotential height output (more details about block detection methods are in the next 

paragraph). Daily-resolved fields are necessary for blocking because 1) blocking occurs on time 

scales of days to weeks (Rex et al., 1950), and 2) separating out individual blocks from non-
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block days produces a more accurate representation of the impacts of blocking on GrIS surface 

processes, as opposed to seasonal averages. We assess daily net shortwave (𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇), net 

longwave (𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇), sensible heat (SH), and latent heat (LH) fluxes individually for each model 

and time period. Net shortwave and net longwave results are produced by subtracting the 

corresponding upwelling fluxes from downwelling fluxes. Individual energy fluxes are summed 

together to calculate daily net surface energy flux (𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇): 

 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 + 𝑆𝑆𝑆𝑆 + 𝐿𝐿𝑆𝑆      (4.1). 

In equation 4.1, all component fluxes are positive when directed into the surface (i.e., 

downward). 

We select the five CMIP6 models (Table 4.1) with daily-resolved geopotential height and 

surface energy flux output.  

Table 4.1: CMIP6 Model Information. Spatial resolutions are defined with latitude by longitude 
dimensions. Hereafter, we refer to models by their “Model Alias”. 
Model Model Alias Institution, 

Country 
Simulation 

Variant 
Spatial Resolution 

CanESM5 CanESM CCCma, Canada r1i1p1f1 T63 (2.8° × 2.8°) 
CESM2 CESM NCAR, USA r1i1p1f1 0.9° × 1.25° 
CESM2-
WACCM 

WACCM NCAR, USA r1i1p1f1 0.9° × 1.25° 

CNRM-CM6-1 CNRM CNRM, France r1i1p1f2 TL127 (1.4° × 1.4°) 
UKESM1-0-LL UKESM MOHC, UK r1i1p1f2 N96 (1.875° × 1.25°) 

 

Future CNRM upwelling shortwave fluxes are only available in a high resolution (i.e., not listed 

in Table 4.1) format, so we use bilinear interpolation to regrid these data to the native CNRM 

horizontal resolution. Finally, we calculate blocking and surface energy flux statistics for 

MERRA-2 reanalysis data so as to disentangle potential biases within the chosen historical 

CMIP6 simulations and extrapolate mid- and Late-Century biases (Gelaro et al., 2017). 
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Because blocks at the beginning of June (end of August) can extend into late May (early 

September), we search for block days in the Historical, Mid-Century, and Late-Century period 

data from May 16 through September 15. Block days from May or September are only included 

when the block event extends into June or starts in late August. To find blocks, we use a multi-

step version of the Greenland Blocking Index (GBI) method (Hanna et al., 2018b). More 

specifically, we calculate two area-weighted average 500mb geopotential heights: “GBI1” over 

the Greenland region (60 − 80°𝑁𝑁 and 20 − 80°𝑊𝑊) and the zonal mean from 60 − 80°𝑁𝑁 over all 

longitudes (i.e., 𝑍𝑍500������) (Hanna et al., 2018b). We find the final GBI index, GBI2 using the 

equation 4.2:  

𝐺𝐺𝐺𝐺𝐺𝐺2 = 𝐺𝐺𝐺𝐺𝐺𝐺1 − 𝑍𝑍500������         (4.2). 

Unlike GBI1 alone, GBI2 reduces the likelihood of detecting false block days that result from 

atmospheric warming-based geopotential height increases (i.e., Belleflamme et al., 2013). Once 

we calculate GBI2 for all days in a given dataset, we standardize these values using the 

respective daily GBI2 climatology. If five consecutive days produce standardized GBI2 values 

exceeding a GBI2 value of 0.75, these days constitute a blocking event. A GBI2 threshold of 

0.75 allows for variability in blocking strength and is more inclusive of ridging and weak closed 

blocks that can both impact GrIS surface processes (Belleflamme et al., 2015; Mioduszewski et 

al., 2016; Tedesco et al., 2016b; Hofer et al., 2017).  

All June, July, and August (JJA) days that are not block days are classified as “non-

block”, or “Control” days. Because the purpose of this study is to understand how surface energy 

fluxes during Greenland blocking compare to “Control” surface energy fluxes, we statistically 

compare block and “Control” days separately for each data source and each time span (e.g., 

Historical, Mid-Century, and Late-Century). For this reason, we do not use historical “Control” 
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days as the control for future simulations produced by the same global climate model. Radiative 

and non-radiative surface energy flux anomalies for block days are calculated over the respective 

global climate model grid. Greenland-wide average surface energy flux changes are area-

weighted and only computed for GrIS grids with a minimum of 50% land ice coverage. We use 

MERRA-2 land ice fraction data to inform the status of each grid. Since the models have 

different spatial resolutions (Table 4.1), we regrid the MERRA-2 land ice fraction for each of the 

models. 

 

4.3 Results and Discussion 

4.3.1 Blocking Statistics for CMIP6 and MERRA-2 

 We first examine Greenland blocking frequency, GBI2, and GBI1 trends in the 

Historical, Mid-Century, and Late-Century time periods for MERRA-2 and each CMIP6 model. 

Summer season block day counts are highly variable for all time periods and for all models (Fig. 

4.1). We attribute this blocking activity variability to planetary-scale dynamics, like the North 

Atlantic Oscillation (NAO) (e.g., Hanna et al., 2015; Lim et al., 2016). Average summertime 

GBI1, a proxy for Greenland blocking activity, is anticorrelated with the North Atlantic 

Oscillation (NAO) Index (e.g., Hanna et al., 2016), but whether NAO triggers blocking or vice 

versa is still unknown. Due to interannual variability in block day counts, we do not find any 

statistically significant trends in block day counts with respect to time for any model. 
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Fig. 4.1: Block day counts per summer (UKESM summer length is 120 days instead of 123 
days) for MERRA-2 and CMIP6 models over each time span. 
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Although previous studies have cited increasing summer Greenland blocking activity from 2000 

through the present (e.g., Fettweis et al., 2013; Hanna et al., 2018b), we only analyze blocks 

from 1986-2005 and do not include the most recent block activity enhancements from the mid-

2000s onward (e.g., Tedesco et al., 2011, 2016b; Tedesco and Fettweis, 2020). 

 We examine average summer day count, GBI2, and GBI1 statistics to further characterize 

Greenland blocking activity and extrapolate atmospheric changes over time (Table 4.2).  

Table 4.2: CMIP6 and MERRA-2 Summer-Average Block Statistics (123 total possible days)* 
Model/Reanalysis Variable 1986-2005 2040-2059 2080-2099 

CESM 
Day Count 17.85 15.95 15.75 
GBI2 33.13 29.42 37.99 
GBI1 5538.14 5651.60 5727.49 

WACCM 
Day Count 17.15 16.35 15.35 
GBI2 39.02 48.92 29.22 
GBI1 5545.39 5632.99 5709.54 

CanESM 
Day Count 16.30 17.10 17.60 
GBI2 50.96 48.36 27.21 
GBI1 5603.26 5672.96 5724.86 

CNRM 
Day Count 16.80 16.10 17.35 
GBI2 71.58 51.99 42.40 
GBI1 5623.43 5641.64 5710.88 

UKESM* 
Day Count 14.05 17.55 15.75 
GBI2 43.55 35.23 17.55 
GBI1 5596.74 5658.70 5731.41 

MERRA-2 
Day Count 14.35 -- -- 
GBI2 36.85 -- -- 
GBI1 5576.82 -- -- 

*UKESM summer season is 120 days long. 
 
 
CESM and WACCM produce block day count reductions in the future. In contrast, CanESM 

block days increase and CNRM and UKESM average day count changes are non-monotonic 

with time. Like CMIP5 models (e.g., Dunn-Sigouin and Son, 2013), CMIP6 models do not 

produce robust Greenland blocking frequency changes in future simulations. All models produce 

greater GBI1 values with time, which we attribute to continuing atmospheric warming through 

the end of the 21st century in the SSP585 case (van Vuuren et al., 2011). However, average GBI2 
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changes are in disagreement between the models. In CanESM, CNRM, and UKESM, GBI2 

averages decrease over time, while CESM and WACCM GBI2 average trends are non-

monotonic (Table 4.2). We believe these GBI2 inconsistencies highlight differences in 

dynamical processes between each of these models. GBI2, which is the difference between 

Greenland- and northern high latitude-average 500mb geopotential height (equation 4.2, Section 

4.2), is useful for determining the relative strength of Greenland blocks relative to the average 

high latitude geopotential height conditions. Lower GBI2 values indicate smaller differences in 

Greenland-regional geopotential heights and imply less intense blocking conditions. We 

hypothesize that increasing (decreasing) average block day counts (GBI2) in CNRM, CanESM, 

and UKESM could result in more frequent, yet weaker, blocking activity over Greenland at the 

end of the 21st century.   

 Spatial distributions of 500mb geopotential height for each case are shown in Fig. 4.2. 

With the exception of CNRM (Fig. 4.2J-L), MERRA-2 and CMIP6 model average Greenland 

block 500mb geopotential heights form anticyclonic ridges, regardless of time period. We see 

ridging because of varying strengths in blocks found using the GBI2 detection technique 

(Section 4.2). Some block days are likely weak ridges while others are cut-off high pressure 

systems. Closed geopotential height isolines in CNRM correspond to the highest average GBI2 

values, which suggests that the dynamical processes in CNRM favor stronger Greenland 

blocking than the other models. 
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 Overall, inter-model Greenland blocking variability among the CMIP6 models in our 

ensemble is quite high. Furthermore, we do not find any change in Greenland blocking seasonal 

frequencies over any time period. Summertime blocking activity has increased over Greenland 

since 2000 (e.g., Fettweis et al., 2011, 2013), but we do not see this trend because of how we 

define Historical blocking. Although average GBI1 increases into the future for all models, we 

find varying trends in GBI2 that highlight different dynamical processes between the models. 

However, despite inter-model variability in spatially-averaged Greenland blocking statistics, 

composite block day geopotential height maps exhibit anticyclonic circulation. 
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Fig. 4.2: Composite 500mb geopotential height maps for MERRA-2 and CMIP6 block days in 
the Historical, Mid-Century, and Late-Century time spans.  
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4.3.2 Surface Energy Fluxes 
 
 We examine changes in individual net surface energy flux (equation 4.1) anomaly 

components in order to better understand 1) how blocking affects radiative and turbulent energy 

fluxes, and 2) how these changes impact net surface energy flux anomalies over the Historical, 

Mid-Century, and Late-Century time periods. We will limit the discussion of component flux 

anomalies to those that are statistically significant over the GrIS. 

 

4.3.2.1 Net Shortwave Fluxes 

 Net shortwave energy surface fluxes depend on the amount of downwelling shortwave 

radiation that transmits through the atmosphere and surface albedo. Because downwelling 

shortwave fluxes are highest in the summer, block days in late May or early September will 

exhibit smaller absolute flux magnitudes than block days in meteorological summer (i.e., June, 

July, and August). This trend exists between the CMIP6 models and time periods; absolute 

incident GrIS-average shortwave energy is significantly anticorrelated to the number of 

May/September days (𝑦𝑦 = −0.60) (Fig. 4.3). 
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Fig. 4.3: Greenland-average downwelling shortwave flux with respect to the combined count of 

May and September Greenland block days for each time period. Historical average 
symbols are filled, Mid-Century (2040-2059) symbols are striped, and Late-Century 
(2080-2099) symbols are outlined. 

 

Large May/September day counts decrease the expected net shortwave response to blocking 

because less downwelling shortwave energy reaches the surface. Because we do not account for 

downwelling shortwave flux seasonality, we recognize that our CMIP6 and MERRA-2 results 

are likely affected.  

 One of the main drivers behind surface energy change during historical Greenland 

blocking is the net shortwave flux response at the GrIS surface that results from cloud reduction 

(e.g. Mioduszewski et al., 2016; Lim et al., 2016; Hofer et al., 2017). Although MERRA-2 net 

shortwave anomalies are dominantly positive everywhere except northern Greenland, negative 

net shortwave energy changes are produced by blocking in the historical CMIP6 simulations 

(Fig. 4.4). 
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Fig. 4.4: Net shortwave energy flux blocking anomalies (relative to “Control” days) for 
MERRA-2 and Historical (1986-2005), Mid-Century (2040-2059), and Late-Century 
(2080-2099) CMIP6 model output. Cross-hatched areas are significant on a 95% 
confidence interval. 



103 
 

Net shortwave flux change patterns over Greenland also vary for each historical simulation, 

which suggests that the impacts of block circulation on cloud or surface albedo processes may be 

different between the models.  

 Mid-Century and Late-Century SSP585 simulations produce greater (i.e., more positive) 

net shortwave energy flux changes during block activity. We find more consistent net shortwave 

anomaly patterns in the Mid-Century simulations; increased (decreased) fluxes occur over 

southern (northern) Greenland (Fig. 4.4). 500mb geopotential height patterns (Fig. 4.2) indicate 

regional subsidence and cloud reduction is collocated with composite block centers over 

southern Greenland (e.g., Rajecwicz and Marshall, 2014; Hofer et al., 2017). Over northern 

Greenland, negative net shortwave flux anomalies likely result from onshore airflow that moves 

over the GrIS surface and cools adiabatically to increase cloud cover and reduce available 

incident shortwave energy (Mioduszewski et al., 2016; Hofer et al, 2017; Delhasse et al., 2018).  

 As we see with Historical blocking, Late-Century net shortwave flux anomaly patterns 

are markedly different between the models. Some (CESM and CanESM) solely produce positive 

anomalies that likely result from aggressive cloud reductions, while the others maintain the 

positive-to-negative changes from southern to northern Greenland that we observe in Mid-

Century output. UKESM alone produces smaller GrIS-wide net shortwave flux anomalies in 

Late-Century when compared to Mid-Century. In this case, we hypothesize that atmospheric 

warming and enhanced moisture content are responsible for increased cloud production over sub-

areas of the GrIS, despite subsiding airflow produced during blocking (Bennartz et al., 2013; 

Franco et al., 2013).  

 To better understand the mechanisms behind net shortwave flux anomalies, we examine 

the corresponding surface albedo and downwelling shortwave flux anomalies (Figs. 4.5 and 4.6). 
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Fig. 4.5: Same as Fig. 4.4, but for surface albedo anomalies. 
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Fig. 4.6: Same as Fig. 4.4, but for downwelling shortwave flux anomalies. 
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Overall, larger downwelling shortwave flux changes during blocking correspond to larger 

net shortwave fluxes and decreased surface albedos, regardless of time period. A notable 

exception is Historical UKESM blocking, which produces negative net shortwave flux changes 

that correspond to greater surface albedo despite enhanced downwelling shortwave fluxes (Figs. 

4.4M, 4.5M, and 4.6M). This suggests that UKESM model surface albedo changes are less 

sensitive to downwelling shortwave flux perturbations than other models. This could be 

especially important during late May block days since GrIS albedo is greatest in the spring 

months (Box et al., 2012). 

We find that all historical CMIP6 models underestimate GrIS-average net shortwave 

changes with respect to MERRA-2 (Fig. 4.7): 

 

Fig. 4.7: Greenland-average net shortwave anomalies for blocking in the historical (1986-2005), 
Mid-Century (2040-2059), and Late-Century (2080-2099) time periods. 
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Because MERRA-2 produces the lowest May/September block day count (Fig. 4.3), this 

negative bias in net shortwave flux anomalies could partly result from downwelling shortwave 

seasonality biases produced by CMIP6 greater Historical May/September block day counts. 

However, since CMIP6 Historical May/September block day counts are lower than the 

corresponding day counts in Mid- and Late-Century blocking (Fig. 4.3; CESM is an exception), 

CMIP6 model energy flux parameterizations could struggle to correctly produce expected net 

shortwave flux anomalies. In this case, it is plausible that the positive Greenland-average Mid-

Century and Late-Century net shortwave flux anomalies should be larger. Regardless, we 

observe larger Greenland-wide net shortwave flux responses to Mid-Century and Late-Century 

blocking. We also find that the spread in GrIS-average net shortwave flux anomalies (along the 

y-axis in Fig. 4.7) in each time period is quite high. Although larger and variable future net 

shortwave flux anomalies could be produced by changes in block dynamics in individual models, 

we conclude that enhanced shortwave absorption at the surface results from lower (and highly 

variable) GrIS absolute albedo in future simulations (not shown). 

 

4.3.2.2 Net Longwave Fluxes 

 Unlike net shortwave energy responses, net longwave flux anomalies produced by 

blocking depend on decreased cloud coverage and warm air advection, both of which have 

offsetting effects (i.e., Shupe and Intrieri, 2004; Hofer et al., 2017). Across all time periods and 

models, we find that negative (positive) net shortwave flux anomalies correspond to positive 

(negative) net longwave flux anomalies (Fig. 4.8). 
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Fig. 4.8: Same as Fig. 4.4, but for net longwave flux anomalies. 
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We hypothesize negative correlations in net shortwave and net longwave flux anomalies result 

from cloud changes produced by the models. In areas where blocking reduces cloud cover, 

downwelling fluxes decrease because terrestrial longwave energy transmits through the 

atmosphere (Franco et al., 2013; Fausto et al., 2016) while minimal upwelling longwave flux 

changes occur because the GrIS surface temperature is restricted by melting point of water (e.g., 

Lenaerts et al., 2019). We will confirm this by examining corresponding CMIP6 cloud data. 

 Greenland-wide net longwave flux anomalies are negative in MERRA-2 and CMIP6 

models except UKESM Historical and Late-Century simulations. UKESM Late-Century 

blocking increases net longwave flux by +1.17 𝑊𝑊/𝑚𝑚2 (Fig. 4.9). This provides further evidence 

that UKESM produces more regional atmospheric moisture than other CMIP6 Late-Century 

simulations. 

 

Fig. 4.9: Same as Fig. 4.7, but for Greenland-average net longwave flux anomalies. 
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Similar to net shortwave fluxes, the Greenland-average MERRA-2 net longwave flux change has 

a larger magnitude (i.e., more negative) than all Historical CMIP6 net longwave flux anomalies. 

CMIP6 models also struggle to agree on future net longwave flux changes to Greenland blocking 

in Late Century (Fig. 4.8), indicating that longwave energy responses to blocking are very 

uncertain in the future.  

 GrIS-average net longwave flux anomaly magnitudes tend to be smaller than the 

corresponding net shortwave flux anomalies in all models except WACCM and CanESM (Fig. 

4.9). This indicates that net shortwave flux changes contribute more to GrIS surface energy 

processes than net longwave fluxes during Greenland blocking, which has been found in 

previous studies (e.g., Hofer et al., 2017; Lim et al., 2016; Mioduszewski et al., 2016).  

 As we see with net shortwave fluxes, net longwave flux anomalies vary greatly between 

models and time periods. We hypothesize that net longwave flux anomaly patterns are roughly 

anticorrelated with net shortwave flux anomalies because of blocking-produced cloud changes. 

Net longwave flux changes become more variable in the future simulations and are thus highly 

uncertain. Overall, net shortwave flux anomalies generally outweigh net longwave flux 

anomalies in most simulations. 

 

4.3.2.3 Sensible Heat Fluxes 

 Our work in Chapter 3 also demonstrates that sensible heating is an important contributor 

to net surface energy changes during blocking, especially over western Greenland where warm, 

moist air from the North Atlantic is transported over the GrIS (Franco et al., 2013; Fausto et al., 

2016). Regardless of time period, we find that most blocking cases produce positive changes in 

sensible heat flux over areas of the GrIS (Fig. 4.10).  
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Fig. 4.10: Same as Fig. 4.4, but for sensible heat flux anomalies. 
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Only Historical simulations produce areas of negative sensible heat flux anomalies (i.e., directed 

outward from the GrIS surface). Because GrIS surface warming is limited by the melting point of 

frozen water (e.g., Lenaerts et al., 2019) and blocking warms the lower atmosphere (Fettweis et 

al., 2011, 2013; Hofer et al., 2017), negative sensible heat flux anomalies in Historical CMIP6 

simulations indicate subdued warm air advection over the GrIS. This could arise for a variety of 

reasons, including low Greenland blocking wind speeds or imported air mass temperature 

characteristics. As we see with net radiative flux anomalies, MERRA-2 sensible heat flux 

changes are greater over the GrIS. MERRA-2 produces positive sensible heat anomalies 

everywhere except a small region in north-central Greenland and more accurately depict 

atmospheric warming produced by blocking activity. Overall, Greenland-averaged MERRA-2 

sensible heat flux change is more than 2 𝑊𝑊/𝑚𝑚2 greater than any of the CMIP6 output (Fig. 

4.11). 

 

Fig. 4.11: Same as Fig. 4.7, for sensible heat flux.  
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 Mid-Century and Late-Century sensible heat flux anomalies are similar in magnitude 

(Figs. 4.10, 4.11) and are larger than Historical anomalies for each CMIP6 model. Anomalies 

decrease at higher altitudes (i.e., the central GrIS) because airflow cools adiabatically as it moves 

upslope. Future sensible heat changes likely result from increased atmospheric temperature 

produced by warm air advection during blocking (van den Broeke et al., 2011). 500mb 

geopotential height patterns and pressure gradient patterns are similar between all time periods 

(Fig. 4.2), which suggests that sensible heat changes might not be caused by wind speed 

anomalies.  

 

4.3.2.4 Latent Heat Fluxes 

 Latent heat flux anomalies can result from a combination of specific humidity, wind, or 

precipitation responses to blocking. Like the other energy flux anomalies, we find that latent heat 

flux anomalies are more positive for future Greenland blocking. Historical CMIP6 simulations 

produce positive and negative anomalies over the GrIS, with Greenland-average changes ranging 

from −0.81 𝑊𝑊/𝑚𝑚2 for CanESM to +0.33 𝑊𝑊/𝑚𝑚2 for CESM (Fig. 4.12 and Fig. 4.13; next 

page). Anomaly patterns over the GrIS also vary between the CMIP6 models. As we see with 

MERRA-2, only CanESM is able to replicate positive latent heat flux changes over central 

Greenland and negative anomalies over the GrIS margins (Fig. 4.12J). Unlike GrIS-average 

radiative and sensible heat flux anomalies, CMIP6 historical simulations do not appear to 

produce any bias in latent heat responses to blocking. 
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Fig. 4.12: Same as Fig. 4.4, but for latent heat flux anomalies. 
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Fig. 4.13: Same as Fig. 4.7, but for spatially-averaged latent heat flux anomalies. 
 

All Mid-Century CMIP6 models except CanESM produce positive (negative) latent heat 

anomalies over the GrIS margins (central GrIS). Southerly warm, moist airflow from the North 

Atlantic moves over the GrIS margins and condenses to transfer additional latent heat to the GrIS 

surface (Tedesco and Fettweis, 2012). Over central Greenland, the orographic airflow that 

contributed to GrIS marginal positive anomalies is less moist than the surface and produces 

negative latent heat anomalies. In contrast, all Late-Century simulations produce positive latent 

heat flux anomalies over central Greenland. This could arise from GrIS surface elevation 

changes (i.e., Hakuba et al., 2012) or warmer airflow compared to Mid-Century simulations. 

Overall, Greenland-averaged Mid-Century and Late-Century latent heat flux changes are similar.  
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4.3.2.5 Net Surface Energy Fluxes 

 Greenland blocking has been cited as one of the main contributors to observed 

summertime negative surface mass balance changes through increasing energy input 

(Mioduszewski et al., 2016; Hofer et al., 2017; Delhasse et al., 2018). Surprisingly, historical 

CMIP6 net surface energy flux anomalies do not exhibit positive energy contributions (Fig. 

4.14). This contradicts MERRA-2 net surface energy flux anomalies, which are positive over all 

but the highest GrIS elevations. We find that CMIP6 spatially-averaged anomalies are too low 

for all CMIP6 models (Fig. 4.15), which is not surprising given the aforementioned net 

shortwave, net longwave, and sensible heat flux anomaly biases. Greenland-average net energy 

change during MERRA-2 blocking is at least 4 𝑊𝑊/𝑚𝑚2 larger than all of the other CMIP6 

models. Since Greenland blocking is supposed to enhance net surface energy, negative net 

surface energy changes could negate or even reverse expected GrIS snowmelt rates. 

In Mid-Century and Late-Century, net surface energy flux anomalies are positive. Apart 

from CNRM, all models produce positive net energy changes over all of the GrIS during future 

blocking. CNRM produces small areas of negative net energy flux anomalies over northwestern 

Greenland because of large negative net shortwave flux changes (see Fig. 4.4). GrIS-wide net 

energy anomalies are similar between Mid-Century and Late-Century (Fig. 4.15), with less 

variability between models in Mid-Century (net energy flux anomaly range: +7.64 𝑊𝑊/𝑚𝑚2 to 

+8.52 𝑊𝑊/𝑚𝑚2) than Late-Century (+7.38 𝑊𝑊/𝑚𝑚2 to +10.71 𝑊𝑊/𝑚𝑚2). 
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Fig. 4.14: Same as Fig. 4.4, but for net surface energy flux anomalies. 
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Fig. 4.15: Same as Fig. 4.7, but for Greenland-average net energy flux anomalies. 

 
 Between all three time periods, we examine the relative contributions of radiative and 

non-radiative flux changes to net surface energy anomalies produced by blocking (Table 4.3). 

 
Table 4.3: Percent Contribution of Component Energy Anomalies to Net Surface Energy 
Anomalies. Highest percentages for each case are highlighted in yellow. 

Model Simulation 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 SH LH 
CESM Historical 51.3 17.1 21.2 10.4 

Mid-Century 29.3 22.1 38.9 8.9 
Late-Century 41.9 32.6 21.9 3.6 

WACCM Historical 25.4 28.6 12.7 33.3 
Mid-Century 25.8 16.1 43.9 14.2 
Late-Century 16.5 23.0 42.3 18.0 

CanESM Historical 32.3 39.4 10.8 17.5 
Mid-Century 0.2 13.5 67.6 18.7 
Late-Century 31.0 16.6 40.2 12.2 

CNRM Historical 62.5 22.8 12.0 2.7 
Mid-Century 55.9 14.8 25.8 3.5 
Late-Century 63.0 7.0 23.5 6.4 

UKESM Historical 69.3 3.6 17.7 9.4 
Mid-Century 30.4 5.1 47.2 17.3 
Late-Century 18.6 15.9 41.3 24.3 

MERRA-2 Historical 45.9 26.1 27.8 0.3 



119 
 

In agreement with previous studies (e.g., Fausto et al., 2016; Hofer et al., 2017), we find that net 

shortwave and sensible heat flux anomalies are the largest contributors over all models and time 

periods (~41% of all cases for both flux varieties). Net longwave and latent heat anomalies are 

the largest contributors to net surface energy change during Historical CanESM and Historical 

WACCM blocking, respectively.  

 When we separate Historical, Mid-Century, and Late-Century simulations, we find that 

important contributing flux changes vary over time. 3 out of 5 Historical CMIP6 simulations 

produce the largest energy contributions from net shortwave anomalies. Sensible heating 

anomalies become more important contributors in Mid-Century (4 of the simulations) and Late-

Century (3 of the simulations). Per these simulations, future surface energy changes that result 

from blocking will be more sensitive to sensible heating via warm air advection than net 

shortwave flux changes caused by subsidence, surface albedo change, or downwelling shortwave 

flux changes.  

 Averaging CMIP6 Greenland-wide energy flux anomalies provides an ensemble view of 

how blocking will impact surface energy processes in the future (Table 4.4).  

Table 4.4: CMIP6-Average Flux Anomalies for each Time Period (𝑊𝑊/𝑚𝑚2) 
Simulation 𝑆𝑆𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛𝑇𝑇 SH LH 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
Historical -0.94 -0.69 0.22 -0.21 -1.63 
Mid-Century 3.31 -1.80 5.22 1.43 8.17 
Late-Century 5.48 -2.85 4.91 1.64 9.17 

 

Historical blocking produces negative contributions to total surface energy for all except sensible 

heat fluxes, most likely caused by warm air advection. Both Mid- and Late-Century averages 

produce positive flux anomalies for all except net longwave energy, which serves as a surface 

energy sink (e.g., van den Broeke et al., 2011). Although Mid-Century sensible heat changes 

outweigh net shortwave flux changes, Late-Century net shortwave flux anomalies are slightly 
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higher than sensible heat anomalies. This can be partly attributed to notably high CESM net 

shortwave responses to blocking activity in Late Century. It is worth noting that all Late-Century 

Greenland-wide component energy anomalies are more variable than their Mid-Century 

counterparts, so this transition back to dominant net shortwave flux changes is uncertain. 

 Greenland blocking-induced net surface energy changes increase between the Historical 

and future CMIP6 simulations. Historical blocking produces negative net surface energy changes 

that contradict the positive anomalies we calculate for MERRA-2 because of biases in CMIP6 

net shortwave, net longwave, and sensible heat flux anomalies. This potential negative bias in 

Historical simulations indicates that the Mid-Century and Late-Century surface energy flux 

anomalies might be larger than those produced by the SSP585 simulations. Although net 

shortwave and sensible heat flux anomalies are the largest overall contributors to surface energy 

flux changes, we find that sensible heat flux anomalies become more influential during future 

blocking activity. This suggests that warm air transport over the GrIS could become more 

important than cloud reduction during future Greenland blocking episodes for Greenland-wide 

snowmelt acceleration.  

 

4.4 Conclusion 

 In this study, we use CMIP6 model data and MERRA-2 reanalysis data to understand 

GrIS surface energy flux responses to summer Greenland blocking activity over historical (1986-

2005) and future (2040-2059; 2080-2099) time periods in the SSP585 climate change scenario. 

We use the GBI2 technique (Hanna et al., 2018b) to detect Greenland block days for each 

dataset. June, July, and August non-block days serve as the control, which we subtract from 
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block days to find anomaly fields. MERRA-2 block and flux anomalies are used to validate 

CMIP6 historical data and to explain biases in future CMIP6 simulations. 

 Greenland blocking frequencies do not show any trends within each time period. In 

addition, average seasonal block day counts are similar between all time periods. Despite 

increased summertime Greenland blocking frequency over the past 20 years (Fettweis et al., 

2011, 2013; Hanna et al., 2014), we do not find any significant trends in MERRA-2 or CMIP6 

block frequencies because we use an earlier time period (1986-2005). Although we do not find 

any significant changes in GBI2 between the historical and future time spans, GBI1 (i.e., 

spatially-averaged 500mb geopotential height over Greenland) increases with time. Average 

500mb geopotential height patterns depict atmospheric ridging, regardless of time period. 

 Individual CMIP6 net energy flux anomalies are highly variable between each model. 

Anomaly patterns over the GrIS are also different for each model, which suggests inconsistencies 

in CMIP6 blocking representation. CMIP6 historical net shortwave, net longwave, and sensible 

heat flux anomalies disagree with the corresponding MERRA-2 anomalies. Block-caused net 

shortwave and sensible heat flux changes in CMIP6 are at least 2 𝑊𝑊/𝑚𝑚2 lower than the 

corresponding MERRA-2 anomalies, while all CMIP6 net longwave flux anomalies are up to 

2 𝑊𝑊/𝑚𝑚2 larger than MERRA-2. These biases produce MERRA-2 total surface energy flux 

anomaly differences that are over 4 𝑊𝑊/𝑚𝑚2 greater than CMIP6, which suggests that CMIP6 

historical models struggle to reproduce surface energy change conditions during Greenland 

blocking. Assuming model processes are consistent between historical and future simulations, 

the resulting energy flux anomalies we find in the SSP585 simulations could be too low.  

 Mid-Century and Late-Century Greenland blocking produce different energy anomalies 

than Historical models. Net shortwave, sensible heat, and latent heat anomalies all increase in the 
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SSP585 simulations, while net longwave fluxes marginally decrease. We also find more 

consistent energy anomalies between models during Mid-Century blocking. Net shortwave flux 

changes are positive over southern Greenland because of subsidence and reduced cloud cover, 

while net shortwave energy decreases over northern Greenland because of upslope airflow 

produced by block circulation. The opposite is the case for net longwave fluxes because of the 

impact of clouds on downwelling longwave energy. Sensible and latent heat fluxes increase over 

most of the GrIS as a result of enhanced transport of warm, moist air by blocks over the GrIS in 

future simulations. As a result, net surface energy increases uniformly over the GrIS during 

blocking for almost all models. Although these patterns and magnitude changes are similar in 

Late-Century, there is less agreement between models and more uncertainty in the results that 

introduces uncertainty in our interpretations.  

 In 13 out of 15 CMIP6 simulations, net shortwave or sensible heat flux anomalies are the 

largest contributors to net surface energy changes (positive or negative), with Historical 

simulations comprising the two exceptions. Sensible heat flux anomalies increase net surface 

energy during blocking to a greater extent in Mid-Century and Late-Century simulations, which 

suggests that airflow processes and turbulent heat exchange with the surface during blocking will 

be more influential on surface energy than changes in radiative energy. Latent heat flux 

contributes more to surface energy during Mid-Century and Late-Century blocking because of 

enhanced air temperature and moisture content, but these anomalies are smaller than sensible 

heat flux changes. 

  This study provides unique insight into the mechanisms through which Greenland 

blocking affects surface energy, and how these mechanisms will change in the future. We use 5 

CMIP6 models to study these changes over daily time scales, but ensemble studies ideally 



123 
 

include more model data. As the CMIP6 database continues to populate, we will add more 

models that produce daily 500mb geopotential height and surface energy flux fields to gain a 

better idea of average simulated Greenland blocking conditions. We also limit our analysis to 

surface energy fluxes without analyzing meteorological conditions like cloud fraction, air 

temperature, winds, and moisture availability. Adding these fields to the analysis will provide a 

clearer understanding of how the surface energy fluxes are changing.  

 Atmosphere-surface interactions will evolve in the future. Greenland blocking is 

projected to increase energy input into the GrIS. CMIP6 models forecast sensible heat anomalies 

as the main component of GrIS net energy change while net shortwave flux changes become less 

influential on surface processes. Based on these results, Greenland blocking will still be an 

important contributor to net surface energy increase and greater GrIS snowmelt. 
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Chapter 5: Conclusions and Future Work 

5.1 Summary of Findings 

 Greenland Ice Sheet (GrIS) surface melt has become increasingly important to total GrIS 

mass loss. Because the GrIS is the largest reservoir of frozen water in the northern hemisphere, it 

is important that we understand the causes behind its surface melt to better predict how global 

sea level will rise. Complete GrIS melt would increase global sea level by over 7 meters (i.e., 

Gregory et al., 2004; Church et al., 2013), which would have major consequences for society, 

especially those who live close to Earth’s oceans. 

There are many surface melt triggers that vary in duration and spatial coverage over the 

GrIS. The spatial variability in melt pattern responses to these triggers arises from surface 

albedo, temperature, and circulation responses to GrIS topography. GrIS surface albedo increases 

with elevation because of atmospheric adiabatic cooling and lower melt frequency. In contrast, 

the GrIS margins are characterized by aged snow and exposed ice and are thus less reflective. 

Airflow that moves onto the ice sheet is forced aloft by the GrIS margins and often induces 

orographic precipitation and cloud formation processes. 
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Although there are many short-term (i.e., days to weeks in duration) processes 

responsible for GrIS snowmelt and surface energy changes, we focus on the impacts of 

atmospheric and in-snow light-absorbing aerosols (Chapter 2), how changing block location 

impacts clouds and surface energy fluxes (Chapter 3), and how future blocking will contribute to 

GrIS surface energy flux changes in the shared socioeconomic pathway (SSP) 5 and 

representation concentration pathway (RCP) 8.5 scenarios (Chapter 4).  

In Chapter 2, we explored the following science question: How do biomass burning-

produced light-absorbing aerosols in the atmosphere and in the GrIS snow impact snowmelt and 

surface energy processes? We modified the Community Earth System Model (CESM) to assign 

consistent, specific light-absorbing aerosol burdens in the atmosphere, in the GrIS, and in both 

locations simultaneously. For each case, we ran five separate global climate model simulations 

with different aerosol amounts to test the Greenland response to these changing burdens, some of 

which were unrealistically high. We also tested how changing atmospheric aerosol single-scatter 

albedo affected surface processes. GrIS snowmelt anomalies cases with atmospheric light-

absorbing aerosols were insignificant because of the offsetting impacts of shortwave flux 

dimming and tropospheric warming. Although the same is true for single-scatter albedo 

modification, we did find that lower single-scatter albedos produced larger areas of positive melt 

change. Regardless of atmospheric aerosol presence, in-snow BC and dust combined mass 

mixing ratios exceeding 58.8 ng/g produced significant melt over the GrIS. Snowmelt and net 

surface energy flux responses to increasing aerosol burdens were similar for each aerosol 

placement scenario. However, atmospheric and in-snow aerosols influenced radiative and non-

radiative fluxes differently. In-snow aerosols impacted net shortwave fluxes through surface 

albedo reduction and also corresponded to the largest net energy changes. Although atmospheric 
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aerosols were responsible for the largest sensible and latent heat flux changes because of lower 

tropospheric warming, these anomalies were smaller than in-snow net shortwave energy 

changes. From this study, we concluded that knowledge of simultaneous atmospheric and in-

snow aerosol presence is necessary to best understand how light-absorbing BC and dust impact 

Greenland’s climate. 

The focus of Chapter 3 and the data we used were markedly different from Chapter 2. We 

used a combination of MODIS cloud data and MERRA-2 meteorological and surface energy 

data to answer: How does Greenland block location affect cloud and surface energy flux 

patterns? We found that blocks over northern Greenland reduce average cloud cover roughly 4 

times more than blocks over southern Greenland. These differences in cloud changes also impact 

net cloud radiative forcing at the GrIS; shortwave (longwave) cloud radiative forcing is more 

positive (negative) during northern Greenland blocking than southern Greenland blocking. Out 

of all block locations, northwest (NW) block days produce the lowest average change in net 

surface energy over the entire GrIS. Although NW blocking reduces cloud coverage and 

increases net shortwave energy, longwave energy escapes and turbulent heat flux changes are 

negligible. NW block days alone produce significantly negative net surface energy changes over 

the accumulation zone snow. We also determined that eastern Greenland block days exhibited 

higher net surface energy changes than their corresponding western Greenland block days 

because of enhanced sensible heating produced by warm air advection onto the southern GrIS. 

Overall, we concluded that Greenland block location impacts the spatial distribution of cloud and 

energy changes and can lead to different Greenland-average responses.  

We continued to examine the role of blocking on GrIS surface energy fluxes in Chapter 

4. The questions we asked were the following: How will future Greenland blocking affect 
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radiative, non-radiative, and total surface energy fluxes in the greatest warming scenario 

(SSP585)? How do these changes compare to historical trends? To answer these questions, we 

used daily CMIP6 500mb geopotential height and surface energy flux fields from five models. 

We used MERRA-2 data over the same time to benchmark CMIP6 surface energy flux 

anomalies. With the exception of latent heat flux anomalies, historical CMIP6 fluxes were biased 

relative to MERRA-2 and produced negative net surface energy changes during blocking. 

However, Greenland blocking in the future time periods produced positive net surface energy 

changes over most of the GrIS in all models. These corresponded to dominantly positive sensible 

heat flux anomalies and mostly increased net shortwave fluxes. For all models and time periods, 

net shortwave and sensible heat flux anomalies are the largest contributors to net surface energy 

changes. However, we found that sensible heat flux changes are likely to become more important 

because of enhanced atmospheric warming. These results suggest that summertime Greenland 

blocking will continue to be important for positive surface energy changes in the future. 

 

5.2 Future Work 

Greenland blocking has already been established as an important contributor to GrIS 

snowmelt and surface processes, especially since the onset of increased GrIS surface melt at the 

end of the 20th century. We explore surface energy responses to block location and future 

blocking activity without directly examining snowmelt.  

The impacts of summer block location in Chapter 3 are examined through the use of 

observations. In a follow-on study to Ward et al. (2020, submitted), we plan to use the Modèle 

Atmosphérique Régional (MAR) regional climate model to examine how melt trends vary by 

block location. In the MAR setup, we will use MERRA-2 data for boundary conditions so we 
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can use the same block days for each block quadrant. Although observational snowmelt data 

would be ideal, daily MODIS and Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) snowmelt data only extend through December 2017 and December 

2012, respectively. Global climate models are also able to simulate overall GrIS melt trends 

reasonably well (i.e., Vizcaino et al., 2013), but they produce large biases over the steep GrIS 

margins. If MAR is incompatible with MERRA-2 data, we will use the latest version of CESM. 

We will use an offline land model simulation (i.e., no active atmosphere) that assigns MERRA-2 

meteorological data to drive surface responses would be an ideal continuation of the study 

presented in Chapter 3. Although a fully-coupled (i.e., active atmosphere and surface processes) 

model setup in MAR or CESM could demonstrate snowmelt responses to block location change, 

but a new set of block days would have to be detected from the atmospheric model output.  

Because Chapter 4 has not yet been submitted, most future work will be dedicated to 

rounding out this study. One way we could add substance to these findings is to incorporate 

blocking impacts on GrIS snowmelt. Unfortunately, no available CMIP6 models produce daily 

snowmelt, so monthly snowmelt would have to be compared to daily blocking activity. Although 

this would involve comparing data with different time resolutions, the number of block days per 

each month of snowmelt could be used as a weighting factor to better understand model-based 

output over both future time periods.  

Apart from snowmelt, we will add other CMIP6 simulations and data fields to our 

analysis to better understand future Greenland blocking surface energy flux impacts. At the time 

of data acquisition, only 5 CMIP6 models provided daily 500mb geopotential height fields. 

However, since the CMIP6 database is still being populated, it is likely that more models with 

historical and future daily geopotential height and surface energy fluxes will be added. The 
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inclusion of more models will be useful for better understanding average CMIP6 Greenland 

blocking and surface response conditions. Furthermore, only the warmest of the future climate 

change scenarios (i.e., SSP585) is included in this analysis. If the human population chooses 

more sustainable energy sources in the future, the results presented in Chapter 4 may not be 

representative of how surface energy changes with future Greenland blocking activity. We can 

represent the range of Greenland blocking surface response possibilities by including a lower 

SSP scenario. Finally, analyzing simulated meteorological variables (e.g., atmospheric 

temperature, winds, and specific humidity) for each model and time period would be useful for 

understanding why the discussed surface energy flux changes occur.  

The seasonality of downwelling shortwave fluxes at the surface is not accounted for in 

Chapter 4. This results in skewed net shortwave flux anomalies that are likely underestimated 

when more May and September block days are included. We can account for days outside of 

June, July, and August by scaling shortwave flux results with scale factors computed for top-of-

atmosphere downwelling shortwave fluxes (i.e., scaling method used in Chapter 3) for each 

CMIP6 model and time period. Alternatively, another option to correct for lower downwelling 

shortwave fluxes in May and September block days would be to remove block days outside of 

June, July, and August. If there are at least 5 remaining consecutive block days inside JJA, the 

block will remain in the dataset. Otherwise, the remaining days will be removed from the 

blocking dataset. With these research ideas in mind, we are hoping to submit Chapter 4 and 

additional findings for publication by the end of 2020.  

 Apart from the research discussed in previous chapters, we could pursue additional 

science questions related to Greenland surface energy exchange and melt processes in future 

studies. Although Greenland melt is most prevalent in the summer, atmosphere-surface 



130 
 

interactions in other seasons could precondition the GrIS surface albedo to enhance summertime 

melt (e.g., Tedesco et al., 2013). One question we would be interested in pursuing is: How does 

GrIS total surface energy change during autumn, winter, and spring blocking events? As in 

Chapters 3 and 4, we can answer this question with observational data or climate modeling 

techniques. The annual cycle of solar energy input indicates that the importance of turbulent and 

longwave energy flux changes during blocking would increase in non-summer seasons. We 

could also use climate modeling to better understand the extent to which spring blocking activity 

preconditions the GrIS to enhance summer melt. The simplest way to achieve this understanding 

is to run a fully-coupled global climate model for numerous years. We could then compare GrIS 

surface albedo characteristics of high and low blocking frequency spring seasons and explain 

how any changes in albedo result from the corresponding surface energy fluxes. As we see when 

we compare the effects of summertime blocking on surface energy fluxes in global climate 

model output in Chapter 4, the responses vary markedly between different models. Finally, as 

Liu et al. (2016) suggest, declining sea ice coverage in the Arctic increases GrIS melt extent 

through blocking activity. We think it would be interesting to explore how the extent of sea ice 

retreat and the start date of sea ice coverage decline correlates with total GrIS summertime melt. 

Depending on the results regarding springtime blocking activity over Greenland, the potential 

triggering of greater blocking activity as a result of earlier sea ice decline could have 

implications for GrIS surface processes.  
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Appendix: Supplementary Cloud and Surface Energy Flux Figures for Chapter 3 

 

Fig. A.1: Seasonal average sensible heat flux (positive quantities are directed into the surface) 
for MERRA-2 (left column) and ERA5 (right column) reanalysis data products. 
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Fig. A.2: Same as Fig. A.1, but for latent heat flux.  
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Fig. A.3: Composite absolute MOD06 cloud water path over Greenland (JJA, 2002-2018). 
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Fig. A.4: Panels A and B show MERRA-2 absolute net shortwave flux for “All Blocks” and 
“Control”, respectively, and their difference is in panel C. Block quadrant-based net shortwave 
flux changes with respect to “Control” are in panels D through G. The black boxes are the 
corresponding block quadrant boundaries. Cross-hatching in panels C through G represents 
statistically significant differences (95% confidence level). 
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Fig. A.5: Same as Fig. A.4, but for MERRA-2 net longwave flux. 
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Fig. A.6: Same as Fig. A.2, but for MERRA-2 latent heat flux. 
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