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ABSTRACT

The separation of spatially evolving turbulent boundary layer flow near regions of ad-

verse pressure gradients has been the subject of numerous studies in the context of flow

control. Although many studies have demonstrated the efficacy of passive flow control

devices, such as vortex generators (VGs), in reducing the size of the separated region,

the interactions between the salient flow structures produced by the VG and those of the

separated flow are not fully understood. Here, wall-resolved large-eddy simulation of a

model problem of flow over a backward-facing ramp is studied with a submerged, wall-

mounted cube being used as a canonical VG. In particular, the turbulent transport that

results in the modulation of the separated flow over the ramp is investigated by varying

the size, location of the VG, and the spanwise spacing between multiple VGs, which

in turn are expected to modify the interactions between the VG-induced flow structures

and those of the separated region. The horseshoe vortices produced by the cube entrain

the freestream turbulent flow towards the plane of symmetry. These localized regions

of high vorticity correspond to turbulent kinetic energy production regions, which effec-

tively transfer energy from the freestream to the near-wall regions. Numerical simula-

tions indicate that: (i) the gradients and the fluctuations, scale with the size of the cube

and thus lead to more effective modulation for large cubes, (ii) for a given cube height

the different upstream cube positions affect the behavior of the horseshoe vortex—when

placed too close to the leading edge, the horseshoe vortex is not sufficiently strong to

affect the large-scale structures of the separated region, and when placed too far, the dis-

persed core of the streamwise vortex is unable to modulate the flow over the ramp, (iii)
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if the spanwise spacing between neighboring VGs is too small, the counter-rotating vor-

tices are not sufficiently strong to affect the large-scale structures of the separated region,

and if the spacing is too large, the flow modulation is similar to that of an isolated VG.

Turbulent boundary layer flows are inherently multiscale, and numerical simulations of

such systems often require high spatial and temporal resolution to capture the unsteady

flow dynamics accurately. While the innovations in computer hardware and distributed

computing have enabled advances in the modeling of such large-scale systems, com-

putations of many practical problems of interest are infeasible, even on the largest su-

percomputers. The need for high accuracy and the evolving heterogeneous architecture

of the next-generation high-performance computing centers has impelled interest in the

development of high-order methods. While the new class of recovery-assisted discontin-

uous Galerkin (RADG) methods can provide arbitrary high-orders of accuracy, the large

number of degrees of freedom increases costs associated with the arithmetic operations

performed and the amount of data transferred on-node. The purpose of the second part

of this thesis is to explore optimization strategies to improve the parallel efficiency of

RADG. A cache data-tiling strategy is investigated for polynomial orders 1 through 6,

which enhances the arithmetic intensity of RADG to make better utilization of on-node

floating-point capability. In addition, a power-aware compute framework is suggested

by analyzing the power-performance trade-offs when changing from double to single-

precision floating-point types—energy savings of 5 W per node are observed—which

suggests that a transprecision framework will likely offer better power-performance bal-

ance on modern HPC platforms.
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CHAPTER 1

Introduction

Many processes in nature are inherently nonlinear. Multiscale problems are an example of such

complex systems, where the dynamic coupling between a wide range of length and time scales

contributes to the nonlinearity. Multiscale problems are prevalent in areas such as turbulent flows,

magnetohydrodynamics, solid mechanics, and quantum mechanics, among other fields. Experi-

ments of such complex systems have helped in advancing our fundamental understanding of the

underlying physical phenomena. However, experiments of complex multiscale problems are costly

to design, manufacture, and implement. Due to the wide range of spatial and temporal scales that

must be investigated, and the multiphysics aspects of the complex multiscale systems, diagnostic

tools can only offer limited information about the flow dynamics. The sensitivity of these systems

to the initial conditions and material properties make it difficult to attain good experimental repro-

ducibility. Computational physics has enabled researchers to harness the increase in computing

power by designing and developing mathematical algorithms to conduct numerical simulations,

which circumvent the challenges faced by the experiments. Numerical simulations offer a cost-

effective way of exploring the relevant parameter space, isolating the physical effects of interest,

and providing a complete description of the system’s evolution. While numerical simulations have

proven to be promising tools to study complex problems, the large number of degrees of free-

dom that are required to characterize multiscale systems of interest, such as turbulence, pose an

exorbitantly high demand on the computational resources, which cannot be satisfied even on the

most powerful supercomputers. This has spawned the need to build larger computational systems.

However, to extract the benefits of these large computing systems, new methods have to be de-

1



signed and developed. This issue has attracted the attention of many researchers and has propelled

investigations in areas including model development, computer hardware, application, and system

software, and other related areas.

1.1 Turbulence: a multiscale problem

We continuously engage with fluids of various types—gases or liquids, the motion of which can

be described by the well-known Navier-Stokes equations (NSE). The strong nonlinearity of the

NSE leads to one of the most intriguing features of fluid dynamics: Turbulence, where the flow is

characterized by chaotic and highly unsteady motion of diverse spatial and temporal scales (Pope,

2000). Turbulence is prevalent in many practical applications, such as atmospheric flow, flow over

an aircraft, flow over road vehicles, flow in chemical mixing chambers, and is an ongoing area of

research. Understanding the universal nature of turbulent flows has eluded researchers for a long

time. Feynman et al. (1964) has referred to turbulence as “the most important unsolved problem

of classical physics”. Kolmogorov (1941) hypothesized turbulence to have a continuous cascade

of scales and energy, and provided a foundation connecting the underlying nature of all turbulent

flows. This cascade is driven by large energetic flow structures and continues until the turbulent

fluctuations are dissipated into heat at the smallest scales. Of particular interest is the problem

of separation and control of wall-bounded turbulent boundary layer (TBL) flow, where previous

research has shown that the presence of a wall alters the turbulence dynamics (Wu & Moin, 2009).

The term wall-bounded refers to the flow configuration where the fluid motion occurs in contact

with a solid surface. Wall-bounded TBL flows are common in many internal and external flow

systems—atmospheric flow overland, flow in diffusers, and flow over aircraft wings are a few

examples. Based on the speed of the flow under consideration, the variations in density may be

significant, which is governed by the ratio of fluid velocity (u) to the speed of sound in the medium

(c), known as Mach number (M). As a rule of thumb, if M . 0.3, the flow is considered to be

incompressible and compressible in other scenarios. The problem of interest in the present work
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lies in the incompressible wall-bounded turbulent flow regime.

1.2 Modulation of turbulent boundary layer flow

In the vicinity of a solid surface, the flow forms a thin region where the viscous effects dominate,

the shear stress is high, and the magnitude of flow velocity is low compared to the freestream. At

the point where the fluid meets the solid surface, a no-slip boundary condition must be met, which

mandates that the fluid is at rest relative to the surface. Since the fluid far away continues to flow

at the freestream velocity, the difference in the flow behavior in the wall-normal direction results

in a steep velocity gradient. The region between the surface and the point at which the flow attains

99% of the freestream velocity is referred to as the boundary layer (Prandtl, 1904) and denoted as

δ. Reynolds (1883) established that the boundary layer flow is characterized as laminar or turbulent

based on the Reynolds number defined as,

Re =
UL
ν

(1.1)

where U is the flow velocity, L is the characteristic length and ν is the kinematic viscosity of the

fluid. For a fluid moving on a flat surface if the Re > 5 × 105, the boundary layer transitions from

a laminar to a turbulent regime.

Many external flow systems are characterized by open flow with a spatially evolving TBL,

where the boundary layer thickness grows in the streamwise direction (Wu & Moin, 2009). Fig-

ure 1.1 shows that a TBL consists of an inner region (with inner variables: friction velocity uτ and

viscosity ν), and an outer region (with outer variables: U and δ). The characteristic length scale in

the inner region is much smaller than the outer region, and it is densely populated with coherent

structures (Reynolds, 1894; Kline et al., 1967). The outer region has larger coherent structures

known as the hairpin vortices, which are organized in packets, and are of the size of the boundary

layer thickness (Brown & Thomas, 1977; Adrian et al., 2000).

The separation of spatially evolving TBL from the surface occurs when the flow along the
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Figure 1.1: Mean turbulent boundary layer velocity profile normalized by the outer variables.

surface decelerates rapidly, either due to strong adverse pressure gradient (APG) or due to change

in geometry. Figure 1.2 shows a schematic of a spatially evolving TBL separating from a smooth

surface in the presence of an APG. In the limit of high Re, consider the streamwise momentum

equation inside a TBL

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ

∂p
∂x

+ ν
∂2u
∂y2 (1.2)

At the solid surface, if the flow is considered steady state then ∂u/∂t = 0, and due to no-slip

condition u = v = 0. This results in,
dp
dx

= µ
∂2u
∂y2

On the surface, ∂2u/∂y2 must always have the same sign as the pressure gradient dp/dx, and in case

of APG, dp/dx > 0. However, at the edge of the boundary layer, ∂2u/∂y2 < 0. Therefore, there

must exist an inflection point between the inner and outer regions. The point in the streamwise

direction where the velocity gradient becomes so steep that (∂u/∂y)y=0 = 0 is defined as the point

of separation. The presence of an APG affects the formation of turbulent structures and their

corresponding transport inside a spatially evolving TBL (Durbin & Belcher, 1992) and gives rise
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Figure 1.2: A schematic representation of turbulent boundary layer separation on a smooth surface
in the presence of adverse pressure gradient.

Figure 1.3: Visualization of air-flow separation for flow over a road vehicle. Photo credit:NASA
(2010).

to non-equilibrium turbulent energy transport (Aubertine & Eaton, 2005). In the separation bubble,

a region of recirculating flow forms, which may give rise to undesirable effects—from reducing

lift on aircraft wings to increased drag on vehicles and reducing efficiency in chemical mixing

chambers. For external flow over a road vehicle, figure 1.3 shows air-flow separation near the rear

end of the vehicle, while figure 1.4 shows the increase in aerodynamic drag, as a result of flow

separation at larger speeds.

Control of the separated flow could be exploited to reduce the losses described above. When

a turbulent flow encounters a strong APG, it expends its energy to overcome the APG. According

to the Bernoulli equation, the kinetic energy gradient
(

1
2∆u2

)
is balanced by the pressure gradient

(∆p/ρ). Conversely, one might expect that energizing the flow mitigates the separation of flow.
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Figure 1.4: Increase in the aerodynamic drag on a road vehicle as a function of its speed. Adapted
from Barnard (2001).

Energizing the TBL can be achieved by inducing strong stream-wise and span-wise vortices near

the wall, which entrain high momentum fluid from the freestream to the near-wall region. The

methods used to facilitate this momentum transfer can be classified into two categories: passive

and active flow control. This dissertation work focuses on employing passive control strategies.

1.2.1 Wall-mounted cube as a passive vortex generator

Brown et al. (1968), Calarese et al. (1985), Englar (2001), Logdberg (2006), Mohan et al. (2013),

Wilson et al. (2019), and Fisher et al. (2020), among others, explored passive control techniques

such as vortex generators (VGs) to reduce drag and improve performance in a variety of engineer-

ing applications. VGs are effective when the point of separation is fixed spatially (Rao & Kariya,

1988). Selby et al. (1990) used transverse grooves and observed a reduction of the separation

bubble size over a backward-facing, curved ramp when the grooves were located one boundary

layer thickness upstream of the ramp. Experimental investigation of VGs with different shapes and

configurations by Lin (2002) on a backward-facing, curved ramp demonstrated that the submerged

VGs of height 65% below the boundary layer thickness generates streamwise vortices that enhance

turbulent mixing, and was substantiated in a parallel study by Jenkins et al. (2002). Figure 1.5
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Figure 1.5: Relative effectiveness of flow separation control versus device category. Lin (2002),
©Elsevier. Reproduced with permission. All rights reserved.

shows the relative effectiveness of separation control for different device categories studied by Lin

(2002). Flat-plate boundary layer flow over submerged VGs of different shapes has also been in-

vestigated in the past (Ashill et al., 2002; Yao et al., 2002; Elbing et al., 2013; Iyer & Mahesh,

2013). However, it is difficult to generalize findings across the different shapes (e.g., Wishbone,

Doublet Wheeler (Lin et al., 1991)) as the flow features appear to be problem dependent. For this

reason, a cubic VG is considered as a canonical geometry in this study.

The flow structures that form around a wall-mounted cube placed in fully-developed turbulent

flow have been well documented in previous studies. Martinuzzi & Tropea (1993) investigated the

flow over surface-mounted prismatic obstacles with an aspect ratio (width-to-height ratio W/H) in

the range 1 and 24 and concluded that for a fully-developed channel flow with W/H < 6 the flow

is nominally two dimensional in the middle of the wake. Numerical simulations (Shah & Ferziger,

1997; Krajnovic & Davidson, 1999, 2002; Hwang & Yang, 2004) indicate that the presence of the

cube causes the TBL to break down and form a horseshoe vortex system (HVS) upstream of the
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Figure 1.6: Iso-surfaces of Q-criterion colored with vorticity magnitude for flow over a wall-
mounted cube in a spatially evolving turbulent boundary layer. Shinde (2018), Reproduced with
permission.

cube, with small-scale hairpin and toroidal structures emanating from the top and sides of the cube

and a separation bubble in the near wake, which is consistent with the experimental observations

of Martinuzzi & Tropea (1993). Castro & Robins (1977) concluded that for Reynolds number

over 4, 000 based on the cube height, there are no discernible Reynolds number effects on the flow

separation and reattachment in the near-wake of the cube. Shinde et al. (2017) showed that for

spatially evolving TBL flow over a wall-mounted cube on a flat plate, the flow structures that form

around the wall-mounted cube are similar to those observed in the fully-developed channel flow.

Shinde et al. (2017) further concluded that the strength of the HVS and its relative transport of TKE

in the near-wake increases with the cube height relative to the boundary layer thickness. However,

the TKE decays within a few cube heights as the streamwise vortices of the cube are weaker than

the more complex VGs investigated by Lin (2002). Figure 1.6 shows the vortical structures around

a wall-mounted cube in a spatially-evolving TBL.

In a numerical setup, a cubical geometry offers other advantages: (i) a face-on cube has a single

length dimension associated with it, as opposed to the large parameter space needed to describe

the complex VGs investigated by Lin (2002), and (ii) The cube produces similar large streamwise

coherent structures in its wake, the HVS, as discussed before, which are essential flow features

8



Figure 1.7: Turbulent boundary layer separation over a backward-facing ramp.

associated with VGs. The proposition to use a wall-mounted cube as a passive VG gives rise to

three critical questions: (a) how does the modulation of flow separation depend on the cube height

relative to the boundary layer thickness? (b) how does the position of the cube relative to the region

of APG affect the flow modulation? (c) when using an array of equally-spaced cubes, how does

the spacing between neighboring cubes affect the modulation of flow? We seek to answer these

questions by studying flow separation and its modulation by wall-mounted cubes in a canonical

flow geometry of backward-facing ramp.

1.2.2 Modulation of turbulent flow separation over a backward-facing ramp

Separation of spatially evolving TBL flow over a backward-facing ramp occurs in a variety of

internal (diffusers, mixing chambers) and external (airfoils, road vehicles) flow systems. At suffi-

ciently high Reynolds number, pressure changes in the expansion region oppose changes in viscous

stresses, and ultimately lead to flow separation, with reattachment beyond the end of the ramp.

Figure 1.7 illustrates flow separation over a backward-facing ramp of height H. In the separation

bubble, a region of recirculating flow forms, whose size is on the order of the ramp height and the

flow near the ramp surface moves in the upstream direction as opposed to freestream flow. Given

that they have a fixed point of separation, backward-facing steps or ramps (Armaly et al., 1983;

Adams, 1984; Westphal et al., 1984; Kourta et al., 2015) are commonly considered to study flow

separation.
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The streamwise location where the separated shear layer reattaches to the bottom surface is

called the reattachment point. Although the separation point is fixed, the reattachment location

depends on the inflow conditions and the geometry of the flow domain (Ra & Chang, 1990). Kaik-

tsis et al. (1991) found that the interaction of the separated shear layer with the freestream results

in an unsteady oscillatory flow behavior, which causes the reattachment location to oscillate. Di-

rect numerical simulations (DNS, Le et al., 1997) were used to explain the time variation of the

streamwise reattachment location as a consequence of shedding large-scale structures in the sepa-

rated region.

In the case of a diffuser, the flow dynamics is similar to that of a backward-facing ramp. Herbst

et al. (2007) conducted simulations of turbulent flow in an axisymmetric diffuser and showed that

the separation region is governed by the jet-like inflow, which penetrates further into the diffuser.

DNS of three-dimensional separated flow in a diffuser by Ohlsson et al. (2010) concluded that the

position of the separation line likely determines the overall diffuser pressure recovery. However,

Cherry et al. (2008) demonstrated that there is significant sensitivity to the geometry in separated

flow, and therefore, the flow behavior is problem-dependent. In other flow configurations such as

turbulent flow over a backward-facing smooth, curved ramp, Song et al. (2000) observed elonga-

tion and lifting of eddies, which scale with the ramp height, in the region of an adverse pressure

gradient. El-Askary (2009) conducted LES for flow over a smooth, curved ramp and reported the

existence of high Reynolds stresses in the separated region.

The high stresses and losses associated with the separated region are often undesirable and call

for flow control strategies. As explained in section 1.2.1, passive VGs have shown to be effective

when the point of separation is fixed spatially, such as in the flow configuration of a backward-

facing ramp. This dissertation work focusses on investigating the interactions of the VG-induced

flow structures with that of the large-scale structures in the separated region. For that purpose,

a wall-mounted cube is used as a canonical VG, and it is expected that the interaction of the

horseshoe vortex with the hairpin structures in the separation region over the ramp will lead to flow

modulation. For this canonical study, the three questions stated in section 1.2.1 can be reformulated
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more specifically in fluid dynamics terms: (i) how the VG height affects the interaction between the

horseshoe vortex and the separated region? (ii) how the position of the VG, relative to the leading

ramp edge, affects the interaction between the horseshoe vortex and the separated region? (iii)

in the case of multiple VGs (array of cubes), what is the effect of the spanwise spacing between

the neighboring VGs on the interaction between the horseshoe vortex and the separated region?

The canonical study proposed here will help us understand the fundamentals physics underlying

the modulation of spatially evolving TBL flow over a backward-facing ramp and the transport

mechanism that reduces the size of the separated region.

1.3 Challenges in large-scale simulations of turbulent flows

It is known that in a turbulent flow, the range of significantly excited scales of motion in both

space and time is of the order Re3/4, and as Re increases, so does the range of scales. Many

problems of scientific interest belong in the high Reynolds number regimes. Therefore, to calculate

a time-dependent high Reynolds number flow in three dimensions, it is necessary to perform order

(Re3/4)4 = Re3 computational work (Sagaut, 2001). Thus, a flow at Reynolds number 2Re requires

roughly 10 times more computational work and poses serious limitations on numerical simulations

of high Reynolds number and complex flows. This fact, amongst other challenges in computational

physics, has spurred improvements in areas such as computational hardware, distributed memory

computing, linear and nonlinear solver technologies, and algorithmic development.

In practice, numerical approximations of high Reynolds number turbulent flows is achieved

by solving a set of surrogate equations, which contain a reduced range of scales. The process

of reducing the range of scales is called filtering. Consider the set of governing equations that

describe a given multiscale problem as

∂u
∂t

+ F (u) = 0, x ∈ Ω, t ∈ [0, t], (1.3)

subjected to boundary and initial conditions, where F is a non-linear differential operator and Ω is
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Figure 1.8: Illustration of the energy spectrum in a turbulent flow showing the different modeling
techniques.

the spatial computational domain. When a filter K is applied to governing equations,

K
∂u
∂t

+KF (u) = 0, (1.4)

the range of scales in equation 1.3 can be reduced. Defining the filtered variable asKu = ũ, adding

and subtracting F (ũ), and assuming that the filter is invariant leads to the filtered equations of

motions,
∂ũ
∂t

+ F (ũ) + [KF (u) − F (ũ)] = 0. (1.5)

The scales represented in the evolution of the filtered variable in equation 1.5 can be significantly

lower than that of the original governing equation (Pope, 2000). However, the bracketed terms in

equation 1.5 has the full state u, which is an unknown quantity in the filtered problem and results

in a closure problem. The unclosed term is typically modeled by a subgrid-scale model, which

only depends on the filtered state. The type of filtering and the choice of subgrid-scale defines the

modeling approach used.

In turbulent flows, common modeling techniques are the Reynolds-averaged Navier-Stokes

(RANS), and large-eddy simulation (LES) approaches. Figure 1.8 shows a graphical illustration of
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an energy spectrum in an idealized turbulent flow (Davidson, 2004). While the RANS approaches

use an averaging filter and model all the scales, the LES approach resolves the larger energy-

producing eddies and models the residual motions. The RANS approach is the most widely used

method for the practical simulation of turbulent flows and is successful in computing the first-order

statistics (Slotnick et al., 2014; Wilcox, 1998). However, RANS models are known to perform

poorly in capturing the unsteady dynamics (Rodi, 1997). The lack of accuracy of RANS methods

has led to great interest in LES methods, which provides an intermediary level of accuracy (Bose

et al., 2010) between the RANS-based methods and the direct numerical simulations (DNS), which

resolves all the scales in the flow problem. In the context of wall-bounded turbulent boundary

layer flow, this dissertation leverages the LES method, in particular, wall-resolved LES (Frère

et al., 2018) approach to investigate the modulation of the separation of turbulent flow. In order to

understand the transport of energy in the separated region, a high wall-resolution is required with

no wall-modeling (Bose & Park, 2018), such that the near-wall resolution is ∆+
y = 1.0 in the wall-

normal direction. Here the dimensionless grid spacing in wall coordinates is given as ∆+ = (∆uτ/ν)

where ∆ is the grid spacing in physical dimensions, uτ is the friction velocity at the wall and ν is the

kinematic viscosity of the fluid. Details of different modeling strategies are laid out in the literature

by Pope (2000), Berselli et al. (2005), and Davidson (2004), among others.

The innovations in computer hardware and distributed computing have enabled advances in the

modeling of complex turbulent flows. For example, figure 1.9 shows how the increase in available

floating-point operations per second (FLOPS) has enabled research and development of different

parts or components of an aircraft using different modeling techniques. A multiphysics LES over

a full aircraft would require on order 1021 operations Buttner (2019), which is not achievable at

present, even on the largest supercomputers. The “Vision 2030” study (Slotnick et al., 2014), pre-

sented a technology road map to lay the foundation for the development of a future framework and

environment where physics-based, accurate predictions of complex turbulent flows, including flow

separation, can be accomplished. Figure 1.10 shows this road map, where different technologies

are rated based on their readiness level (TRL) as low (red), medium (yellow), and high (green).
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Figure 1.9: Research and development of aircraft parts and components using different turbulent
modeling techniques. Adapted from Buttner (2019).

While LES is an ongoing area of research (low TRL), it is plausible that wall-resolved LES for

complex 3D flows can be used at appropriate Reynolds numbers.

1.3.1 Simulations of turbulent flows on the next-generation HPC platforms

Advancing science in the areas including climate science, ocean surface modeling, high-energy-

density physics, and related fields, requires the development of the next-generation computational

models to satisfy the accuracy and fidelity needs of the targeted problems. The potential impact of

these models on computational physics is twofold: (i) researchers can account for more physics of

the problem under consideration, and (ii) increases in the resolution of the system variables, such

as the number of spatial zones, or time steps, improves the simulation accuracy. Both of these

impacts place higher demands on computational hardware and software.

To meet these science needs, the computational capabilities of the fastest supercomputers must

continue to grow. However, the transition from current sub-petascale and petascale computing to

exascale computing is expected to be as disruptive as the transition from vector to parallel com-

puting in the 1990s (Dongarra et al., 2014). Historically, these developments have been driven by
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Figure 1.10: CFD 2030 Vision: Technology development roadmap. Slotnick et al. (2014), Repro-
duced with permission from NASA.
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the notion that larger computing systems enable simulations of higher fidelity while minimizing

numerical artifacts. However, this strategy of adding more CPUs to computing clusters to achieve

greater FLOP counts, motivated by Moore’s law, has shifted in recent years, in large part due to the

resulting power requirements (200 MW) and corresponding costs, as well as reaching Dennard’s

scaling (Dennard et al., 1974) namely, limitations in memory bandwidth and capacity. Instead,

exascale (1 exaflop = 1018 FLOPS) machines, are anticipated to consist of heterogeneous architec-

tures with reduced clock speeds and memory per processor. The proposed exascale architectures

present significant challenges for scalable software development and deployment.

An accurate representation of complex flow phenomena can only be achieved if the discretiza-

tion error is small, which can be achieved either by increasing the mesh resolution or by employ-

ing high-order methods. High-order methods are usually defined as having an order of accuracy

greater or equal to two, which implies that the error E from the numerical discretization, decreases

as E ∼ O(hn), where h is the characteristic grid spacing and n ≥ 2. Tan et al. (2005), Desjardins

et al. (2008), Bermejo-Moreno et al. (2013), Colella et al. (2011), Loffeld & Hittinger (2019),

and others have explored the high-order variants of the traditional finite difference (FD) and fi-

nite volume (FV) methods, generally used in spatial discretization of the governing equations, and

have reported that high-order schemes achieve the desired accuracy on a lower resolution mesh as

compared to their respective low-order versions. This attribute of high-order methods makes them

more desirable, especially for complex flow problems. However, it is well known that traditional

FD schemes at high-orders are prone to aliasing errors (Rogallo & Moin, 1984), which can lead to

violation of the invariance of the governing equations with erroneous results, and do not perform

well on unstructured meshes that are refuired for complex geometries. On the other hand, high-

order schemes in both FD and FV methods rely on large numerical stencils, which dictate how

much information from the neighboring cells is needed to compute the solution approximation.

The dependency of high-order FD and FV methods on large stencils introduces several compli-

cations. In parallel computation, the increased stencil leads to more data movement and increased

communication time. Boundary conditions can be difficult to implement and require the addition
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of ghost cells. For implicit time solvers, these high-order FV methods with larger stencils re-

quire more memory and adversely impact the stability of iterative algorithms (Fidkowski, 2004;

Mavriplis, 2002). Such issues become more prominent when conducting massively parallel simu-

lations such as the simulations of Bermejo-Moreno et al. (2013) and Godenschwager et al. (2013)

with over a trillion cells on more than a million cores. Moreover, as the trends in high-performance

computing (HPC) shift towards exascale computing and beyond, the gains in performance are

coming from additional computational units. On these heterogeneous architectures, the decreasing

power cost of FLOP has exposed the power cost of data motion. Thus, FLOP is no longer the

primary (on-node) cost factor for numerical simulation. A new trade-off must be made between

data motion, memory usage, and operations (Brown et al., 2010; Ashby et al., 2010; Lucas et al.,

2014; Heroux et al., 2020).

The discontinuous Galerkin (DG) method combines the aspects of the finite element and the

FV methods (Cockburn et al., 2000). Arbitrary high-orders of accuracy can be achieved by adding

degrees of freedom to each element to represent the solution as a high-order polynomial. Since the

solution is allowed to be discontinuous across elements, borrowing from the FV method, the flux

between immediately adjacent elements is used to exchange information, which preserves a com-

pact stencil (Henry de Frahan, 2016). Thus, as demonstrated by Heinecke et al. (2014), Houba et al.

(2019), and others, the DG method can scale easily on modern HPC platforms. Recovery-assisted

DG method (RADG, Johnson, 2019) interpolates a high-order flux at the element interfaces by

using the information from adjacent elements. Therefore, RADG preserves a compact stencil and

further increases the accuracy of the solution approximation. While the DG methods present many

advantages, the large number of degrees of freedom inside each element poses a challenge for

on-node data motion and memory usage.

Furthermore, in scientific computing, most applications involving numerical computations with

large dynamic range are performed using either the double-precision (binary64) or the single-

precision (binary32) floating-point types, described by the IEEE 754 standard (Zuras et al., 2008).

In these applications, the execution of FLOP emerges as a significant contributor to energy con-
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sumption. An experimental investigation by Gautschi et al. (2017) shows that more than 50% of

the energy consumption for a floating-point-intensive application comes from the FLOP and mov-

ing the operands from data memory to registers and vice versa. When such intensive calculations

are performed at large-scale on modern HPC platforms, the power consumption and temperature

control pose a developmental bottleneck (Deng et al., 2013). The issue of power efficiency has

garnered considerable concern in the supercomputing platform design and usage. At high-orders,

the large number of degrees of freedom in the DG method is expected to increase the total FLOP

count, which can potentially affect the power consumption of the nodes. Therefore, energy con-

sumption, including challenges in memory usage, data, and task parallelism, suggests that to ex-

tract the benefits of modern HPC systems, high-order methods, including DG-based algorithms,

must be optimized. The optimization of RADG constitutes the second part of this dissertation.

1.4 Objectives of this thesis

This dissertation focusses on large-scale simulations of complex turbulent flows. It has two parts:

(i) physics-based investigations to understand control of flow separation over a ramp, and (ii) a

numerical investigation of optimization strategies to improve the parallel efficiency of an in-house,

recovery-assisted discontinuous Galerkin framework for large-scale computations of complex tur-

bulent flows on next-generation HPC platforms. The objectives of the two parts are,

1. Modulation of turbulent boundary layer flow: to understand the role of turbulent transport

in the modulation of flow separation over a backward-facing ramp using cubic vortex gen-

erators. In particular, wall-resolved large-eddy simulations are conducted to investigate the

dependence of the flow in the separated region on the configuration of the VGs. The modula-

tion of the separated flow over the ramp is expected to depend on the interaction of the large-

scale structures in the separated region with the horseshoe vortex system produced by the

cube, which is dictated by the size, proximity of the cube to the ramp, and spacing between

the neighboring cubes (in case of multiple VGs). Two sets of studies are conducted—single
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cube studies to investigate the dependence on cube height and its positions; and multiple

VGS using an array of equally-spaced cubes to study the role of spanwise spacing.

2. Optimization of high-order discontinuous Galerkin method for next-generation HPC plat-

forms: to numerically investigate optimization strategies to improve the parallel efficiency of

the in-house, recovery-based discontinuous Galerkin (RADG) framework to facilitate sim-

ulations of complex turbulent flows on the next-generation HPC platforms. To minimize

(on-node) data transfer and leverage the large FLOP capability on modern HPC nodes, a

data tiling strategy is explored that improves the arithmetic intensity, which is the measure

of the amount of work done per byte of data transferred, of the RADG framework. In addi-

tion, numerical simulations of complex flows require high precision only in a small region

of interest. Therefore, it is conjectured that a lower precision calculation can be performed

in other regions. Transprecision calculations have other advantages, including low mem-

ory usage and possibly reducing energy consumption. A power-aware compute framework

is explored that can evaluate and help design a transprecision framework for a given flow

problem.

1.5 Thesis outline and contributions

This dissertation is split into two main parts:

1. Modulation of turbulent boundary layer flow: The first part of this thesis is a physics-based

study to advance the state-of-the-art in our understanding of the modulation of separated

turbulent flow by passive vortex generators. To accomplish the aforementioned objectives,

wall-resolved large-eddy simulations of flow over a backward-facing ramp are performed.

For our findings to be applicable to many engineering applications, spatially evolving tur-

bulent boundary layer flow over a backward-facing ramp is considered. This computational

campaign is conducted using the open source OpenFOAM (Weller et al., 1998) libraries,

which have been shown to scale well on HPC platforms. Two sets of studies are considered,
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one with a single, isolated wall-mounted cube (Tandon et al., 2020a) and the other using an

array of equally-spaced cubes (Tandon et al., 2020b). These two studies form the basis of

different chapters in this part of the thesis.

(a) The study of the interactions of the salient flow structures that form around a vortex

generator (VG) with those of the separated region for flow over a backward-facing

ramp with a single, wall-mounted cube is presented in Chapter 2. The dependence of

the turbulent transport on the configuration of the cube, namely its height relative to

the boundary layer thickness and its position with respect to the leading ramp edge, is

illustrated.

(b) Modulation of flow over a backward-facing ramp with multiple VGs is presented in

Chapter 3. A spanwise array of equally-spaced, wall-mounted cubes is used as multiple

VGs. The dependence of the flow modulation on the spacing between the neighboring

cubes of the array is illustrated.

2. Optimization of high-order discontinuous Galerkin method for next-generation HPC plat-

forms: This is the second part of this thesis, which numerically investigates optimization

strategies to increase the parallel efficiency of an in-house recovery-assisted discontinuous

Galerkin (RADG) method for next-generation HPC platforms. The different optimization

strategies form the basis of individual chapters in this part of the thesis.

(a) The on-node cost of data transfer is evaluated for the RADG method in Chapter 4.

In particular, a class of high-order RADG discretizations for hyperbolic systems of

conservation laws is theoretically analyzed for spatial discretizations for polynomial

orders one through six in arbitrary dimensions. Three cache models are considered:

the limiting cases of no-cache, an infinite cache, and a more practical finite-sized cache

model. Models are validated experimentally by measuring floating-point operations

and data transfers on an XSEDE Stampede2 Kinght-Landings node. A data tiling strat-

egy in case of finite-sized cache is shown to increase the arithmetic intensity necessary
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to make better utilization of on-node floating-point capabilities on modern HPC plat-

forms (Tandon & Johnsen, 2020).

(b) The cost of floating-point operations, in the context of energy consumption, is inspected

in Chapter 5. Energy consumption for large-scale simulations on ALCF’s Theta super-

computer using high precision (IEEE 754 binary64) and low precision (IEEE 754 bi-

nary32) are presented. A power-aware compute framework for RADG is demonstrated

that maintains a balance between the desired accuracy and power consumed on modern

HPC platforms (Tandon et al., 2020c).

3. Important conclusions for the two parts of this thesis are summarized in Chapter 6, high-

lighting the major contributions and possible avenues for future research.

4. Appendices provide additional details including model validation and verification, case setup

and initialization in OpenFOAM, and other details used in the two parts of this thesis.
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Part I:

Modulation of Turbulent Boundary Layer

Flow

22



CHAPTER 2

Modulation of Flow Over a Backward-Facing Ramp by a

Wall-Mounted Cube

This chapter is adapted from Tandon et al. (2020a). The separation of spatially evolving turbulent

boundary layer flow near regions of adverse pressure gradients has been the subject of numerous

studies in the context of flow control. Although many studies have demonstrated the efficacy of

passive flow control devices, such as vortex generators (VGs), in reducing the size of the sepa-

rated region, the interactions between the salient flow structures produced by the VG and those of

the separated flow are not fully understood. In this article, wall-resolved large-eddy simulations

are conducted at a Reynolds number of 19,600 based on the inlet boundary layer thickness and

freestream velocity, to study flow over a backward-facing ramp modulated by a submerged, wall-

mounted cube. In particular, the turbulent transport that results in the modulation of the separated

flow over the ramp is investigated by varying the size and location of the VG, which in turn is

expected to modify the interactions between the VG-induced flow structures and those of the sep-

arated region. The horseshoe vortices produced by the cube entrain the freestream turbulent flow

towards the plane of symmetry. These localized regions of high vorticity correspond to turbulent

kinetic energy production regions, which effectively transfer energy from the freestream to the

near-wall regions. While the gradients and the fluctuations scale with the size of the cube and thus

lead to more effective modulation for large cubes, for a given cube height the different upstream

cube positions affect the behavior of the horseshoe vortex—if placed too close to the leading edge,

the horseshoe vortex is not sufficiently strong to affect the large-scale structures of the separated
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region and if placed too far the dispersed core of the streamwise vortex is unable to modulate the

flow over the ramp.

2.1 Introduction

Separation of spatially evolving turbulent boundary layer (TBL) flow over a backward-facing ramp

occurs in a variety of internal (diffusers, mixing chambers) and external (airfoils, road vehicles)

flow systems. At sufficiently high Reynolds number, pressure changes in the expansion region op-

pose changes in viscous stresses, and ultimately lead to flow separation, with reattachment beyond

the end of the ramp. In the separation bubble, a region of recirculating flow forms, which may give

rise to undesirable effects—from reducing lift on aircraft wings to increased drag on vehicles and

reducing efficiency in chemical mixing chambers. Given that they have a fixed point of separation,

backward-facing steps or ramps (Armaly et al., 1983; Adams, 1984; Westphal et al., 1984; Kourta

et al., 2015) are commonly considered to study flow separation. Although the separation point is

fixed, the reattachment location depends on the inflow conditions and the geometry of the flow

domain (Ra & Chang, 1990). The shear layer exhibits an unsteady behavior as the separated flow

and the freestream interact (Kaiktsis et al., 1991) and thus gives rise to a moving reattachment

point (Friedrich & Arnal, 1990; Ötügen, 1991). Direct numerical simulations (DNS, Le et al.,

1997) were used to explain the time variation of the streamwise reattachment location as a conse-

quence of shedding large-scale structures in the separated region. In the case of a diffuser, Herbst

et al. (2007) showed that the separation region is governed by the jet-like inflow, which penetrates

further into the diffuser. Ohlsson et al. (2010) concluded that the position of the separation line

likely determines the overall diffuser pressure recovery, though there is significant sensitivity to

the geometry (Cherry et al., 2008). Song et al. (2000) observed elongation and lifting of eddies,

which scale with the ramp height, in the region of adverse pressure gradient for turbulent flow over

a backward-facing curved ramp. In addition, El-Askary (2009) reported high Reynolds stresses in

the separated region.
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Control of the separated flow could be exploited to reduce the losses described above. Brown

et al. (1968), Calarese et al. (1985), Englar (2001), Logdberg (2006), Mohan et al. (2013), Wilson

et al. (2019), and Fisher et al. (2020), among others, explored passive control techniques such

as vortex generators (VGs) to reduce drag and improve performance in a variety of engineering

applications. VGs are effective when the point of separation is fixed spatially (Rao & Kariya,

1988). Selby et al. (1990) used transverse grooves and observed a reduction of the separation

bubble size over a backward-facing, curved ramp when the grooves were located one boundary

layer thickness upstream of the ramp. Experimental investigation of VGs with different shapes and

configurations by Lin (2002) on a backward-facing, curved ramp demonstrated that the submerged

VGs of height 65% below the boundary layer thickness generates streamwise vortices that enhance

turbulent mixing, and was substantiated in a parallel study by Jenkins et al. (2002). Flat-plate

boundary layer flow over submerged VGs of different shapes has also been investigated in the past

(Ashill et al., 2002; Yao et al., 2002; Elbing et al., 2013; Iyer & Mahesh, 2013). However, it is

difficult to generalize findings across the different shapes (e.g., Wishbone, Doublet Wheeler (Lin

et al., 1991)) as the flow features appear to be problem dependent. For this reason, a cubic VG is

considered as a canonical geometry in this study.

The flow structures that form around a wall-mounted cube placed in fully-developed turbulent

flow have been well documented in previous studies. The presence of the cube causes the TBL

to break down and form a horseshoe vortex system (HVS) upstream of the cube, with small-scale

hairpin and toroidal structures emanating from the top and sides of the cube and a separation bubble

in the near wake (Martinuzzi & Tropea, 1993; Krajnovic & Davidson, 2002; Hwang & Yang,

2004). Castro & Robins (1977) concluded that for Reynolds number over 4, 000 based on the cube

height there are no discernible Reynolds number effects on the flow separation and reattachment

in the near-wake of the cube. However, many external flow systems are characterized by open

flow with a spatially evolving TBL, where unlike fully-developed channel flow, the boundary layer

thickness grows in the streamwise direction (Wu & Moin, 2009). The presence of an adverse

pressure gradient affects the formation of turbulent structures and their corresponding transport
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inside a spatially evolving TBL (Durbin & Belcher, 1992) and subjects the boundary layer to non-

equilibrium turbulence (Aubertine & Eaton, 2005). Shinde et al. (2017) showed that for spatially

evolving TBL flow over a wall-mounted cube on a flat plate, the strength of the HVS and its

relative transport of TKE in the near-wake increases with the cube height relative to the boundary

layer thickness. However, the TKE decays within a few cube heights as the streamwise vortices of

the cube are weaker than the more complex VGs investigated by Lin (2002).

The objective of this work is to understand the role of turbulent transport in the modulation

of flow separation over a backward-facing ramp using cubic VGs. In particular, wall-resolved

large-eddy simulations (LES) are used to investigate the dependence of the flow in the separated

region on the size and position of the VGs. The modulation of the separated flow over the ramp

is expected to depend on the interaction of the large-scale structures in the separated region with

the HVS produced by the cube, which is dictated by the size and proximity of the cube to the

ramp. The problem set-up and the numerical methods are described in section 2.2. Section 2.3

examines turbulent flow modulation and transport for the baseline case, while section 2.4 studies

the dependence of the flow on cube height and position. The article ends with concluding remarks

in section 2.5.

2.2 Problem Description

A schematic of spatially evolving turbulent boundary layer flow over a backward-facing ramp with

a submerged, wall-mounted cube present near the leading ramp edge is shown in figure 2.1. The

3-D flow domain consists of an inlet section, followed by a ramp of height H at a fixed inclination

of φ = 25o with the horizontal, and an expansion section. A cube of height h is placed in the inlet,

with its downstream face at a distance of xvg from the ramp edge. A turbulent boundary layer flow

of thickness δ0 and freestream velocity U0 is prescribed at the inlet, with Reynolds number defined

as Re = U0δ0/ν. The inlet length is Li = 12δ0 + h + xvg and the length of the expansion section

is Lx = 15H. The spanwise width is Lz = 4H and the domain height in the expansion section is
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(b) 3-D computational domain.

Figure 2.1: Backward-facing ramp flow configuration.

Ly = 4H.

Wall-resolved large-eddy simulations (LES) are conducted by solving the filtered incompress-

ible Navier-Stokes equations,
∂

∂xk
ũk = 0 , (2.1)

∂

∂t
ũi +

∂

∂xk
ũĩuk − ν

∂2

∂x2
k

ũi +
∂

∂xk
τR

ik +
1
ρ

∂

∂xi
p̃ = 0, (2.2)

where ũ is the filtered velocity, p̃ is the filtered pressure, ν is the kinematic viscosity, ρ is the

density, and τR
ik ≡ ũiuk − ũĩuk is the subgrid-scale stress that requires modeling. The indices i, j, k

denote the streamwise (x), wall-normal (y), and spanwise (z) directions, respectively.

A second-order accurate finite volume approach with implicit time marching is used in the

OpenFOAM framework (Weller et al., 1998). The equations are solved based on the PIMPLE

algorithm—a combination of the PISO (Pressure Implicit with Splitting of Operator, Issa, 1986)

and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations, Caretto et al., 1973) algorithms—

with two outer corrector steps. The dynamic k-equation eddy-viscosity LES model of Kim &

Menon (1995) is used as it adequately captures the back-scatter of turbulent kinetic energy in the

region upstream of the cube, as well as the unsteadiness of the vortices around the cube (Krajnovic
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& Davidson, 2002). A variable time step is used with a maximum Courant number of 1.0. The

numerical framework has been verified and validated against the DNS data of Le et al. (1997)

for flow over a backward-facing step (Tandon et al., 2017). The field quantities and the turbulent

statistics are averaged for over 60 flow-throughs starting from t ≈ 750H/U0 to avoid contamination

by initial transients.

At the inlet, the time-varying velocity is prescribed using a synthetic inflow method (Shinde

et al., 2017) for a spatially evolving turbulent boundary layer (TBL) with a freestream turbulence

intensity of 1%. The synthetic inflow requires a transition length of approximately 12δ0 to develop

into a realistic TBL of desired thickness. The bottom wall of the inlet section, the exposed faces

of the cube, the ramp surface, and the bottom wall of the expansion region have no-slip boundary

conditions. A no-stress slip wall is applied at the upper boundary of the domain, with

v = 0,
∂u
∂y

=
∂w
∂y

= 0. (2.3)

Similar no-stress slip wall conditions are applied on the lateral sidewalls of the domain. At the

outlet, a convective boundary condition is prescribed (Lowery & Reynolds, 1986),

∂ui

∂t
+ Ue

∂ui

∂x
= 0, (2.4)

where Ue is the constant mean exit velocity.

The inclination of the ramp is fixed as φ = 25o with respect to the horizontal. Ahmed et al.

(1984) investigated the variation of drag forces with the slant angle and found 20o < φ < 30o to

better reduce the overall drag on an idealized car body. A slant angle of φ = 25o is a common

choice for fundamental studies (Kourta et al., 2015). The Reynolds number Reδ0 = U0δ0/ν based

on the mean inlet velocity U0 and the boundary layer thickness δ0, is 19, 600, which corresponds

to 40, 000 based on H or 4, 000 for the smallest h under consideration. The choice of Reynolds

number is sufficiently large that there is no discernible Re-dependence (Castro & Robins, 1977;

Kourta et al., 2015), and it is relevant to a variety of external aerodynamics applications. In accor-
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dance with Le et al. (1997), the height of the domain is tall enough to investigate the formation

of turbulent shear layers on top of the cubes and at the leading edge of the ramp, yet avoid any

interactions with the upper boundary of the domain. In addition, the width of the domain Lz = 4H

is adequate to prevent lateral confinement (Tandon et al., 2018).

A non-uniform structured grid is employed, where high spatial resolution is achieved through

local mesh refinement. The region between 3H upstream of the leading edge and 6H downstream

in the expansion region has a uniform resolution in the spanwise and streamwise flow directions

with grid spacing in wall units ∆+
x ≈ ∆+

z ≈ 25. The wall-normal direction has a stretched mesh

with the grid spacing near the bottom wall given as ∆+
y ≈ 1. With this high wall-normal resolution,

no wall-model is necessary, thus providing higher fidelity in the reattachment region.

To understand the dependence of the interaction of the horseshoe vortex system with the shear

layer on the turbulent transport, different cube heights and positions are considered and compared

to the corresponding flow with no VG. Based on Lin (2002), who suggests that VGs with height

h ≤ 0.65δ0 are likely to produce strong streamwise vortices that result in effective flow modulation,

the baseline case for this work is taken to be xvg = 3h and h/δ0 = 0.6. For a fixed location

xvg/h = 3, the following cube heights are considered: h/δ0 = 0.2, 0.6, and 1.0; for a fixed cube

height h/δ0 = 0.6, the position is varied as followed: xvg/h = 0, 3, and 6. These latter values are

motivated by studies of flat-plate TBL flow over a wall-mounted VG (Shinde et al., 2017), which

indicated that larger h increases the transport of TKE in the near-wake of the cube by the HVS and

that the TKE decays within a few cube heights in the near-wake of the cube, with higher decay rate

for larger cubes.
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(a) no VG. (b) baseline case (h/δ0 = 0.6, xvg/h = 3).

Figure 2.2: Iso-surfaces of the Q−criterion colored with the time-averaged streamwise vorticity
(ωx).

2.3 Modulation of separated flow over a backward-facing ramp

by a wall-mounted cube

2.3.1 Velocity and vorticity fields

To provide an understanding of the impact of a vortex generator (VG) on separated flow over a

ramp, the flow in the baseline case (h/δ0 = 0.6, xvg/h = 3) is first qualitatively compared to that

with no VG. Figure 2.2 shows the iso-surfaces of the Q-criterion (Hunt et al., 1988) to illustrate

the vortical structures. When there is no VG present, the turbulent boundary layer (TBL) separates

at the leading edge and penetrates the expansion region as a shear layer (Herbst et al., 2007). The

separated shear layer is dominated by turbulent structures of varying length-scales and vorticity,

where the largest structures are on the order of the ramp height (Song et al., 2000; Kourta et al.,

2015). In the presence of a VG, the HVS forms near the upstream face of the VG. The legs

of the HVS extend in the near-wake to form a connected turbulent structure at the leading ramp

edge with a counter-rotating flow pattern. Near the plane of symmetry in the expansion section,

the counter-rotating vortex pair interacts with the eddies in the separated region, which increases

the size of the counter-rotating vortex pair. Flow is entrained by the counter-rotating vortex pair

towards the plane of symmetry and near the wall, which indicates a reduction of the size of the
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(a) no VG. (b) baseline case.

Figure 2.3: Time-averaged streamwise velocity (U x) contours with streamlines along the plane of
symmetry (z = 0) for flow over a backward-facing ramp with and without a VG.

separated region over the ramp due to flow modulation by the VG. To better illustrate the separated

region, figure 2.3 shows contours of the time-averaged streamwise velocity component (U x) with

streamlines along the plane of symmetry for the configuration with no VG and the baseline case

(h/δ0 = 0.6, xvg/h = 3). In the absence of a VG, the flow forms a recirculation region whose

height is of the order of the ramp height H and whose streamwise length is approximately 5H. In

the presence of a VG, the spatially evolving TBL breaks down upstream of the cube and forms

small recirculation zones along the top and downstream faces of the cube, as expected (Martinuzzi

& Tropea, 1993). A given streamline from the top of the cube shows little deflection to the bottom

of the ramp as the flow follows the outline of the recirculation region downstream of the cube

and the ramp. Only a small recirculation zone is observed close to the bottom edge of the ramp;

otherwise, the flow remains attached to the ramp.

More precise locations of the points of separation and reattachment are obtained by analyzing

the streamwise variation of the skin friction coefficient, C f = τw/
1
2ρU2

∞, along the bottom wall

in the plane of symmetry, where τw = µ (∂u/∂y)y=0 is the shear stress. The point of reattachment

Xr is the first point in the expansion section where C f > 0. Figure 2.4 shows the streamwise

variation of C f evaluated based on the time-averaged velocity field. When no VG is present, the

mean reattachment location is Xr = 5.7H. When a VG is present, the reattachment location is

Xr = 3.0H, which is consistent with the smaller separation bubble size in figures 2.2 and 2.3.

31



-5.0 0.0 5.0 10.0 15.0
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

Figure 2.4: Streamwise variation of the skin friction coefficient along the plane of symmetry (z = 0)
for ( ) the baseline case (N, Xr = 3.0H) and (− − −) the no VG (4, Xr = 5.7H) flow.

Analysis of the instantaneous flow field reveals that in both the cases, the reattachment region

oscillates at a well defined period about a mean value, consistent with previous studies of separated

flow over backward-facing ramps and steps (Kaiktsis et al., 1991; Le et al., 1997; Kourta et al.,

2015). Figure 2.5 shows the time evolution of Xr. When no VG is present, the reattachment

location oscillates between 5.0H < Xr < 7.5H, with a period of 20H/U0 corresponding to a

Strouhal number of 0.05. The presence of a VG gives rise to oscillations of similar amplitude

(2.0H < Xr < 5.5H) but with a shorter period of 10H/U0, corresponding to a Strouhal number of

0.1. This behavior is consistent with the smaller recirculation region size.

The vorticity is examined to better understand the dynamics leading to flow modulation in the

separated region. Figure 2.6 shows the time-averaged streamwise vorticity (ωx) contours along the

y-z planes in the inlet section and over the ramp. In this figure, the streamwise direction is directed

into the page. The spatially evolving TBL breaks down upstream of the cube to form the HVS

(Martinuzzi & Tropea, 1993; Hwang & Yang, 2004; Devenport & Simpson, 1990). In figures 2.6a

and 2.6b, the y-z plane passes through the downstream face of the cube located at x/H = −0.75,

which corresponds to xvg/h = 3. Localized regions of high vorticity magnitude are visible along

the surface of the cube and the bottom wall, corresponding to the HVS. The sign of these high

vorticity centers indicates a counter-rotating flow pattern in which the flow from the freestream is
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Figure 2.5: Time evolution of the reattachment point for: , the baseline case; − − −, no VG
flow.

entrained towards the plane of symmetry down towards the bottom wall. The counter-rotating flow

gives rise to spanwise velocity in the two legs of the HVS, which draws them closer to one another

(Devenport et al., 1997; Iyer & Mahesh, 2013; Leweke et al., 2016; Asselin & Williamson, 2017).

This interaction between the HVS legs results in a connected counter-rotating vortex pair near the

leading ramp edge at x/H = 0. In figures 2.6c and 2.6d, the y-z plane passing through the leading

ramp edge at x/H = 0 shows the evolution of turbulent structures into a counter-rotating vortex

pair in the near-wake of the VG. The vicinity of the counter-rotating vortex pair to the bottom wall

subjects it to significant strain, thus increasing its lateral width.

Figure 2.7 shows the interaction of the counter-rotating vortex pair of the VG with the large-

scale hairpin structures in the expansion section over the ramp at x/H = 0.5. The separated flow

over the ramp is dominated by large hairpin structures (Doligalski, 1994; Wu & Moin, 2009) that

are of the order of the ramp height (Kourta et al., 2015). The counter-rotating vortex pair with high

ωx stretches, turns, and entrains the turbulent hairpin structures in the separated region around itself

(Corsiglia et al., 1976). The flow entrainment increases the size of the counter-rotating vortex pair.

Due to the proximity of the counter-rotating vortex pair to the bottom wall in figures 2.6 and 2.7,

the shear produced along the wall gives rise to the formation of a secondary vortex sheet (Harvey &

Perry, 1971), which is stretched and turned by the primary HVS (Luton & Ragab, 1997; Dehtyriov
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(a) x/H = −0.75, no VG. (b) x/H = −0.75, baseline case.

(c) x/H = 0, no VG. (d) x/H = 0, baseline case.

Figure 2.6: Time-averaged streamwise vorticity (ωx) contours along y-z planes in the inlet section.
The streamwise flow direction (+x) is directed into the paper and the downstream face of the cube
is shown in black. The inlet section is normalized by h.
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(a) no VG. (b) baseline case.

Figure 2.7: Time-averaged streamwise vorticity (ωx) contours along y-z plane in the expansion
section over the ramp at x/H = 0.5. The streamwise flow direction (+x) is directed into the paper
and the expansion section is normalized by H.

et al., 2020), causing it to spread over a wider spanwise distance. These vorticity contours illustrate

that flow modulation in the separated region is caused by interactions of vortex structures produced

by the VG with those in the separated region.

The entrainment of freestream fluid toward the ramp is more precisely elucidated by examining

the spanwise variation of the time-averaged velocity U. Figure 2.8 shows the mean velocity com-

ponents in the spanwise direction near the ramp edge at x/H = 0 and over the ramp at x/H = 1. The

TBL flow in the inlet is attached whether or not a VG is present. The streamwise component U x is

an order of magnitude greater than the other components. In the presence of a VG, a 30% decrease

in U x in the plane of symmetry between −1 < z/h < 1 is observed, while Uy becomes negative and

Uz exhibits symmetric behavior within a length of one cube height. Negative Uy indicates that the

flow is directed towards the bottom wall, and positive Uz in the negative z half-domain implies flow

towards the plane of symmetry. Such behavior is characteristic of a counter-rotating vortex pair

(Angele & Muhammad-Klingmann, 2005), where the entrainment of flow from the sides and the

outer-flow regions towards the near-wall regions leads to reattachment. Over the ramp at x/H = 1,

the separated flow typically has negative U x and positive Uy, a manifestation of the recirculation

bubble. The counter-rotating vortex pair induced by the VG alters the flow dynamics of the sep-

arated region such that near the plane of symmetry (between −2 < z/h < 2) U x is positive and
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(a) no VG, x/H = 0
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(b) baseline case, x/H = 0
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(c) no VG, x/H = 1
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(d) baseline case, x/H = 1

Figure 2.8: Spanwise variation of the time-averaged velocity field (U) at x/H = 0 and x/H = 1,
and y = 0.5h.
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(a) x/H = 0.
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(b) x/H = 1.

Figure 2.9: Spanwise variation of the Reynold stresses at y = 0.5h for the baseline case (h/δ0 = 0.6,
xvg/h = 3): , u′2; , v′2; , w′2; ——, u′v′; − − −, u′w′; −·−·, v′w′.

Uy is negative, indicating that the flow is attached and directed towards the bottom wall in the

downstream direction. The spanwise variations of the mean velocity over the ramp further support

the notion that the modulation of flow over the ramp is due to the interaction of the HVS with the

separated region.

The entrainment of flow by the counter-rotating HVS towards the plane of symmetry and the

wall enhances the momentum of the near-wall flow. The high-momentum flow structure (Bross

et al., 2019) affects the changes in viscous stresses and balances the pressure changes in the ex-

pansion section, which opposes flow separation. To understand the corresponding momentum

transport, figure 2.9 shows the spanwise variation of the Reynolds stress components for the base-

line case in the inlet section and over the ramp. Near the leading ramp edge at x/H = 0, the positive

peaks of u′2 on either side of the plane of symmetry correspond to the center of the counter-rotating

vortices and indicates transfer of momentum in the streamwise direction by the HVS, which is char-

acteristic of a counter-rotating streamwise flow. The peaks in v′2 and w′2 in the plane of symmetry

represent wall-normal and spanwise transport of momentum by the HVS to the near-wall region

and towards the plane of symmetry, respectively. As illustrated by the negative peak of u′v′, the
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streamwise momentum (u′ ≥ 0) is transported towards the bottom wall (v′ ≤ 0), i.e. from the outer

region to the near-wall region. In the negative z half-domain, the streamwise momentum (u′ ≥ 0)

is transported towards the positive spanwise direction (w′ ≥ 0), i.e. towards the plane of symmetry,

giving rise to the positive peak in u′w′ in the left half. Similar behavior is observed in the expansion

region, with the difference being that the turbulent fluctuations in the expansion region are on the

order of the ramp height. Therefore, the HVS of the wall-mounted cube enhances the momentum

in the near-wall region, which modulates the separated flow and reduces the size of the separation

region over the ramp.

2.3.2 Turbulent kinetic energy transport to the near-wall region

The horseshoe vortex system (HVS) produced by the cube draws fluid from the freestream and

injects it into the near-wall region, thus energizing the boundary layer flow. To better understand

energy transfer by the VG, the evolution of turbulent kinetic energy (TKE) is considered,

∂

∂t

(
1
2

q2
)

= −
1
2

U j(u′iu
′
i), j︸         ︷︷         ︸

Ck

− (u′iu
′
j)Ui, j︸       ︷︷       ︸

Pk

−
1
2

(u′iu
′
iu
′
j), j︸         ︷︷         ︸

Tk

+
1
2

(
1

Re
+ ντ

)
(u′iu

′
i), j j︸                     ︷︷                     ︸

Dk

−
1
2

(
1

Re
+ ντ

)
(u′i, ju

′
i, j)︸                     ︷︷                     ︸

εk

− u′i p
′
,i︸ ︷︷ ︸

Πk

(2.5)

where q2/2 is the TKE, Re is the Reynolds number based on mean velocity U0 and boundary

layer thickness δ0, and ντ is the eddy viscosity in the subgrid-scale model. The over-bar rep-

resents the time-averaging and the terms on the right hand side of equation 2.5 are convective

(Ck), production (Pk), turbulence transport (Tk), viscous diffusion (Dk), viscous dissipation (εk)

and velocity-pressure gradient (Πk).

In the presence of a VG, the production and transport of TKE downstream in the wake of the

cube by the shear layer formed along the top and flow structures generated around the cube is better

understood by inspecting the terms of the TKE budget in equation 2.5 along different sections of the

ramp. Figure 2.10 shows the spanwise-averaged TKE contributions in the upstream inlet section
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(a) x/H = −0.875 (x/h = −3.5).
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Figure 2.10: Normalized span-averaged TKE contributions in the inlet section for baseline case
(h/δ0 = 0.6, xvg/h = 3): −·−·, convection; , production; −−−, transport; ——, diffusion; ,
dissipation; · · · · · · , velocity-pressure gradient.

for the baseline case. The main contributions to the TKE production ((u′iu
′
j)Ui, j) are the steep

velocity gradients along the surfaces of the cube and the Reynolds stress tensor, which depends on

the turbulent structures that form around the cube. The spike in TKE production in figure 2.10a lies

inside the shear layer (y/h ≈ 1.2) produced at the top of the cube and corresponds to the negative

peak of the turbulent transport term, which indicates TKE transfer away from the outer regions of

the shear layer to the near-wall region at the top of the cube. At the leading ramp edge, the spanwise

velocity gradient is zero near the plane of symmetry, such that the only term contributing to the

production of TKE in the plane of symmetry is u′v′Ux,y. On the other hand, the counter-rotating

flow imparts spanwise velocity to the HVS due to which u′w′Ux,z also contributes to the production

of TKE. Therefore, in figure 2.10b the attached flow near the leading edge has significant TKE

production while energy is transferred from the freestream to the near-wall regions. The positive

convective term within y/h < 1.0 implies that the HVS convects the TKE introduced by the cube

downstream to the near-wall region and towards the plane of symmetry. For flow around the VG in

the inlet section, dissipation of TKE is negligible relative to its production. Figure 2.11 shows the

ratio Pk/εk along the y-z plane near the downstream face of the cube (x/H = −0.75). Consistent

with the observations of Shinde (2018), regions with large Pk/εk ratio exist around the VG, thus
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Figure 2.11: Non-equilibrium turbulent regions observed along the y-z plane at x/H = −0.75 for
the baseline case (h/δ0 = 0.6, xvg/h = 3).

denoting regions of non-equilibrium turbulence.

The TKE contributions in the expansion region are shown in figures 2.12 and 2.13 both in

terms of outer and inner coordinates to illustrate the dependence of the large-scale structures on the

outer variables (mean velocity U0 and ramp height H) and the variation in near-wall behavior with

respect to the inner variables (friction velocity uτ and kinematic viscosity ν). In the recirculation

region, between 0 < x/H < 6, the larger turbulent fluctuations introduced by the counter-rotating

flow and the resulting vortex breakdown leads to a higher magnitude of TKE production than

in the inlet section. The impingement of the shear layer at the reattachment location x/H ≈ 6

generates fluctuations and leads to production of TKE. In the outer region, low dissipation with

high TKE production is consistent with the observations of Le et al. (1997) for a backward-facing

step. The negative peak in the turbulent transport signals energy transfer to the near-wall region.

As expected, the dissipation and diffusion dominate inside the viscous layer for y+ < 5.

Figure 2.13 shows the TKE contributions in the recovery zone at locations x/H = 10 and

x/H = 15. The significant decrease in the magnitude of TKE production in the outer regions and

the higher dissipation and diffusion, especially in the near-wall region, explains the overall drop

in the magnitude of the TKE. Moreover, the attached flow results in a favorable pressure gradient

with p′,x < 0, such that the velocity-pressure gradient has a positive peak within y+ < 5. Positive

convection indicates that the attached flow convects the TKE in the streamwise direction towards

the plane of symmetry. At 15H downstream from the ramp, the TBL is in a state of non-equilibrium

turbulence as the production of TKE is not balanced by its dissipation. In addition, the flow exhibits
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Figure 2.12: Normalized span-averaged TKE contributions in the recirculation region for baseline
case (h/δ0 = 0.6, xvg/h = 3): −·−·, convection; , production; − − −, transport; ——, diffusion;

, dissipation; · · · · · · , velocity-pressure gradient.
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Figure 2.13: Normalized span-averaged TKE contributions in the recovery region for baseline case
(h/δ0 = 0.6, xvg/h = 3): −·−·, convection; , production; −−−, transport; ——, diffusion; ,
dissipation; · · · · · · , velocity-pressure gradient.
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non-zero transport and non-zero convection of TKE inside the shear layer, which implies continual

transfer of energy in the streamwise direction and towards the bottom wall. Although boundary

layer recovery is not the primary focus of this work, it is observed that the TBL does not recover

by the end of the domain.

2.4 Dependence of the flow modulation on the cube configura-

tion

The intensity of the interaction of the horseshoe vortex system with the separated region is expected

to depend both of the cube size and its proximity to the ramp edge. This section examines the flow

dependence on these two parameters.

2.4.1 Dependence of the flow modulation on the cube height

First, the dependence of the flow modulation in the separated region on the cube height (relative to

the boundary layer thickness) is examined by considering a fixed cube location of xvg/h = 3 and

varying the cube heights h/δ0 = 0.2, 0.6, and 1.0. Earlier studies of Escauriaza & Sotiropoulos

(2011) and Krajnovic & Davidson (2002) on turbulent boundary layer (TBL) flow around a bluff

body placed in a channel showed that the formation of the HSV upstream of the cube causes the

flow to separate at an upstream location Xvg
s where the backflow from the cube meets the incoming

inflow. Thereafter, the flow reattaches at a downstream location Xvg
r in the near-wake of the cube,

such that the flow is attached within a few cube heights downstream. The point of separation and

reattachment are obtained from the skin friction coefficient C f . Figure 2.14 shows the streamwise

variation of C f for different cube heights in the inlet section near the VG, evaluated based on the

time-averaged velocity. Table 2.1 lists the values of Xvg
s and Xvg

r obtained from figure 2.14 for the

cube heights under consideration. Consistent with the study of Shinde et al. (2017), when scaled

by h, the separation and reattachment lengths of the cube are effectively constant, which indicates

that these separated regions upstream and downstream of the cube depend on the cube height only.

43



-10 -8 -6 -4 -2 0
-0.04

0.00

0.04

0.08

Figure 2.14: Streamwise variation of the skin friction coefficient along the plane of symmetry
(z = 0) for cube heights: , h/δ0 = 0.2; , h/δ0 = 0.6; · · · · · · , h/δ0 = 1.0.

h/δ0 xvg/h Xvg
s /h Xvg

r /h

0.2 3.0 1.08 1.50
0.6 3.0 0.99 1.51
1.0 3.0 0.93 1.53

Table 2.1: Separation (Xvg
s ) and reattachment (Xvg

r ) lengths for the cubes along the plane of sym-
metry (z = 0).

In the present context, this observation implies that for a larger cube size the reattachment location

is closer to the ramp edge. It follows that the size of the separation region (length and volume)

depend on the cube height. Figure 2.15 shows the reduction in the length and volume of the

separated region relative to the case with no VG. Clearly, an increase in cube height offers more

significant modulation of flow over the ramp. However, it must be noted that varying the cube

height also affects the total forces acting on the cube. The coefficient of drag Cd is evaluated by

adding the contributions from the skin friction on the exposed faces of the cube and the form drag

due to flow separation around the cube. Table 2.2 lists the values of mean reattachment location Xr

and Cd for each cube height. For the h/δ0 = 1.0 cube, the reduction in the volume of the separated

region is approximately 40% more than that of the h/δ0 = 0.6 cube, but Cd increases by 25%.

To better understand the energy transfer, the evolution of turbulent kinetic energy (TKE) is ex-

amined for the different cube heights. Figure 2.16 shows the spanwise-averaged TKE contributions
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Figure 2.15: Reduction in the size of the separation region for cube heights: �, h/δ0 = 0.2;
N, h/δ0 = 0.6; , h/δ0 = 1.0.

h/δ0 xvg/h Xr/H Vs/H3 Cd

no VG – 5.73 6.97 –
0.2 3.0 5.22 6.79 0.6
0.6 3.0 3.01 5.17 0.8
1.0 3.0 2.19 4.42 1.0

Table 2.2: Mean reattachment location (Xr) measured along the plane of symmetry (z = 0), the
volume of separation (Vs), and the coefficient of drag (Cd) for different cube heights.
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Figure 2.16: Normalized span-averaged TKE contributions at the top of the cube at x/h = −3.5 for
different cube heights: −·−·, convection; , production; − − −, transport; ——, diffusion; ,
dissipation; · · · · · · , velocity-pressure gradient.

from equation 2.5 on the top of the VG (x/h − 3.5) for the three cube heights. The production of

TKE in the shear layer at the top of the cube increases with increasing cube height as the contri-

butions to TKE production from the turbulent fluctuations and the velocity gradients increase with

increasing cube height. As described in the previous section, the positive peak of TKE production

corresponds to the negative peak in TKE transport, which indicates transfer of energy from outer

shear layer to the near-wall region. The magnitude of negative peak of TKE transport increases

for larger cube heights, which indicates that the energy transfer depends on the cube height. The

influence of cube height on the size of turbulent structures can be visualized by examining vorticity

contours. Figure 2.17 shows wx contours along the y-z plane passing through the downstream face

of the cube at xvg = 3h for all the three cube heights. The horseshoe vortex system (HVS) scales

with the cube height, as its height is approximately 0.4h for all cubes. However, the spreading of

the HVS in the spanwise direction is inversely related to the cube height. Figure 2.18 shows pres-

sure contours in the neighbourhood of the cubes to quantify the role of spanwise pressure gradients

present in such flows (Simpson, 2001). The cube with h/δ0 = 1.0, due to its larger size, results in

a larger region under the influence of spanwise pressure gradient. Hence, the HVS of cube with

h/δ0 = 1.0 is compact and constrained closer to the cube compared to smaller cube heights.

The compact HVS of larger wall-mounted cubes increases the vortex strength of the HVS,

thereby increasing the effective entrainment for flow modulation. The vortex strength Γ is evaluated

46



(a) h/δ0 = 0.2. (b) h/δ0 = 0.6. (c) h/δ0 = 1.0.

Figure 2.17: Contours of the streamwise component of the time-averaged vorticity (ωx) in the
upstream inlet section at x/H = −0.75 for different cube heights. The black face depicts the
downstream face of the cube. The streamwise flow direction (+x) is directed into the paper and the
inlet section is normalized by h.

(a) h/δ0 = 0.2. (b) h/δ0 = 0.6. (c) h/δ0 = 1.0.

Figure 2.18: Contours of the time-averaged pressure along the y-z plane at x/H = −0.75 upstream
form the leading ramp edge for different cube heights. The black face depicts the downstream face
of the cube and the inlet section is normalized by h.
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Figure 2.19: Streamwise vortex strength of the streamwise vortices for the cube heights: ,
h/δ0 = 0.2; , h/δ0 = 0.6; , h/δ0 = 1.0.

by considering the area integral of wx inside a fixed rectangular region along a y-z plane of width

2H in the positive z direction and height y = 2H from the bottom. By considering a half-domain

in the spanwise direction, the vortex strength of one of the legs of the counter-rotating pair of the

HVS can be examined. Figure 2.19 shows the streamwise vortex strength of the HVS. As expected,

the strength of the HVS is larger for larger cubes. Between 0 < x/H < 6, the separated shear layer

is subjected to large strain and deformation due to which the vortices disperse and their circulation

decreases. Thereafter, strong dissipation near the bottom wall in the attached flow further dissipates

the turbulent structures, giving rise to a decrease in vortex strength.

As explained in section 2.3, the HVS entrains the large-scale structures in the separated region,

thus modulating the flow near the plane of symmetry. The strength and size of the HVS affect

the entrainment: the stronger and larger HVS of the h/δ0 = 1.0 cube entrains more flow from

the freestream to the near-wall regions, consequently increasing the transport of momentum. In

addition, the size and strength of the HVS also affects the turbulent fluctuations that are generated

due to the flow interactions in the separated region, which in turn affects the TKE production and

transfer in the expansion region. Figure 2.20 shows the spanwise-averaged TKE contributions over

the ramp at x/H = 0.5. The production and transfer of TKE increases with the cube height. Similar

to the baseline case, the separated shear layer has negligible dissipation of TKE for all the cube

heights considered.
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Figure 2.20: Normalized span-averaged TKE contributions at x/H = 0.5 for different cube heights:
−·−·, convection; , production; − − −, transport; ——, diffusion; , dissipation; · · · · · · ,
velocity-pressure gradient.

Figures 2.21 and 2.22 show the spanwise-averaged TKE contributions in both inner and outer-

coordinates to examine the effect of cube height on the transfer of energy in the expansion section.

At x/H = 6, the relative decrease in the TKE production for all the cases is attributed to the

decay of the strength of the counter-rotating vortex pair in the expansion region. The strain and the

velocity gradients in the expansion section increase with the cube height, which facilitates faster

decay of turbulent structures for larger cubes. However, in the near-wall region, the peaks of the

TKE including production, diffusion, and dissipation shift closer to the bottom wall as the cube

height is increased because in the attached flow the height of the boundary layer scales inversely

with the cube height. Furthermore, the attached flow has a favorable pressure gradient and convects

the TKE in the streamwise direction and towards plane of symmetry.

Figure 2.22 shows the TKE contributions near the end of the domain at x/H = 15 for the

different cube heights. Compared to the flow in the recirculation region (0 < x/H < 6), the

TKE production is significantly lower in the outer-flow for all the cube heights and is balanced by

dissipation of TKE. However, close to the bottom wall the velocity gradients continue to contribute

to the TKE production, which is convected downstream and towards the plane of symmetry.
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Figure 2.21: Normalized span-averaged TKE contributions at x/H = 6 for different cube heights:
−·−·, convection; , production; − − −, transport; ——, diffusion; , dissipation; · · · · · · ,
velocity-pressure gradient.
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Figure 2.22: Normalized span-averaged TKE contributions at x/H = 15 for different cube heights:
−·−·, convection; , production; − − −, transport; ——, diffusion; , dissipation; · · · · · · ,
velocity-pressure gradient.
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2.4.2 Dependence of flow modulation on the cube location

The dependence of the flow modulation in the separated region on the proximity of the cube to

the leading edge of the ramp is examined by considering cubes of a fixed height h/δ0 = 0.6 and

varying their positions xvg/h = 0, 3, and 6. The size of the inlet is adjusted such that the inflow

is located 12δ0 from the upstream face of the cube. The flow separation Xvg
s and reattachment

Xvg
r around the cube is obtained from the skin friction coefficient C f . Figure 2.23 shows the skin

friction coefficient in the streamwise direction in the inlet section along the plane of symmetry.

Table 2.3 lists the values of Xvg
s and Xvg

r for the cube positions under consideration. Except for the

case xvg/h = 0, where the downstream face of the cube is aligned with the leading ramp edge and

the separated flow around the cube does not reattach in the near-wake, similar values are obtained

for the separation and reattachment points for different cube positions. This behavior indicates that

the flow around the cube is primarily influenced by the cube height and has little dependence on the

proximity of the cube to the region of adverse pressure gradient, unless the cube is within 1.5h from

the ramp. Le et al. (1997) showed that on a backward-facing step the effect of adverse pressure

gradient is observed close to the step and does not affect the flow in the inlet section. Accordingly,

the cube placed at xvg/h = 0 has a more prominent effect on the pressure changes than the cubes

placed farther upstream, which is further substantiated from the skin friction values where the peak

of C f is lower for the cube placed at xvg/h = 0 (Durbin & Belcher, 1992). The size of the separate

region depends on the interaction between the HSV and the shear layer, and thus on the location

of the VG. Figure 2.24 shows the reduction in the size of the separation region relative to that of

the flow with no VG. A non-monotonic relation is observed, such that the reduction in separation

length is highest for the cube located at xvg/h = 3. The reduction in the volume of the separated

region is on the same order for all the different cube locations. In addition, the coefficient of drag

Cd is evaluated by adding the contributions from the skin friction on the exposed faces of the cube

and the form drag due to the separation of flow around the cube. Table 2.4 lists the values of the

mean reattachment location Xr and Cd for each cube position. For the cube located at xvg/h = 0,
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Figure 2.23: Streamwise variation of the skin friction coefficient (C f ) along the plane of symmetry
for cube positions: − − −, xvg/h = 0; , xvg/h = 3; · · · · · · , xvg/h = 6.

h/δ0 xvg/h Xvg
s /h Xvg

r /h

0.6 0.0 1.05 –
0.6 3.0 0.99 1.51
0.6 6.0 0.91 1.61

Table 2.3: Separation (Xvg
s ) and reattachment (Xvg

r ) lengths for the cubes along the plane of sym-
metry (z = 0).

the contributions from the form drag due to proximity of the cube to the adverse pressure gradient

region increases the overall drag to Cd ≈ 1. Of the locations considered in the present study, the

xvg/h = 3 produces the greatest reduction in separation length and separation volume over the

ramp, while maintaining a lower coefficient of drag.

The non-monotonic effect on the flow modulation observed in figure 2.24 can be better under-

stood by examining the formation and interaction of turbulent structures in the vorticity contours.

Figure 2.25 shows the time-averaged streamwise vorticity contours near the leading ramp edge at

x/H = 0 for the different cube positions. For the cube located at xvg/h = 0, the downstream face

of the cube is aligned with the leading ramp edge at x/H = 0, and the spatially evolving turbulent

boundary layer (TBL) forms localized regions of high vorticity corresponding to the horseshoe

vortex system (HVS, Martinuzzi & Tropea, 1993). The case xvg/h = 3, corresponds to the base-

line case examined in section 2.3, where the HVS extends in the near-wake of the cube to form a
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Figure 2.24: Reduction in the size of the separation region for cube positions: ∆, xvg/h = 0; N,
xvg/h = 3; 4, xvg/h = 6.

h/δ0 xvg/h Xr/H Vs/H3 Cd

no VG – 5.73 6.97 –
0.6 0.0 4.72 4.97 1.0
0.6 3.0 3.01 5.17 0.8
0.6 6.0 4.04 5.10 0.8

Table 2.4: Mean reattachment location (Xr) measured along the plane of symmetry (z = 0), the
volume of separation (Vs), and the coefficient of drag (Cd) for different cube locations.
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(a) xvg/h = 0. (b) xvg/h = 3. (c) xvg/h = 6.

Figure 2.25: Contours of the streamwise component of the time-averaged vorticity (ωx) along the
leading ramp edge at x/H = 0 for different cube positions. The black face in (a) depicts the
downstream face of cube, while the dash-dotted line in (b) and (c) depicts the upstream location
of the cube. The streamwise flow direction (+x) is directed into the paper and the inlet section is
normalized by h.

counter-rotating vortex pair. Although a similar flow behavior is observed for the case xvg/h = 6,

the vortex pair traverses a larger streamwise distance before encountering the leading ramp edge

and is subjected to prolonged diffusion due to wall effects, which results in a more stretched, dis-

persed and a less intense counter-rotating vortex pair.

To illustrate the interaction of the counter-rotating vortex pair with the large hairpin structures

in the separated region, figure 2.26 shows vorticity contours along the y-z plane at x/H = 0.5 in

the expansion section over the ramp. For the cube placed at xvg/h = 0, the small-scale turbulent

eddies with high vorticity are asymmetrically turned and stretched by the large hairpin structures

in the separated region, allowing modulation in the positive z half-domain. Furthermore, the high

strain in the expansion region causes the small-scale structures to decay rapidly, thus reducing the

effectiveness of flow modulation. On the other hand, the counter-rotating vortex pair for the cubes

placed at xvg/h = 3 and 6, modulate the flow along the plane of symmetry, as expected. The

dispersed counter-rotating vortex pair in the latter cube configuration modulates flow over a larger

spanwise region of −3 < z/h < 3.

The effective entrainment of flow by the HVS and the resulting counter-rotating vortex pair

depends on its vortex strength. The vortex strength Γ is evaluated by considering the area integral

of wx inside a fixed rectangular region along a y-z plane of width 2H in the positive z direction and
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(a) xvg/h = 0. (b) xvg/h = 3. (c) xvg/h = 6.

Figure 2.26: Contours of the streamwise component of the time-averaged vorticity (ωx) over the
ramp at x/H = 0.5 for different cube positions. The streamwise flow direction (+x) is directed into
the paper and the expansion section is normalized by H.

height y = 2H from the bottom. Figure 2.27 examines the vortex strength of the counter-rotating

vortex pair for the three cube positions. As expected, the compact HVS for the cube the placed

at xvg/h = 0 results in high vortex strength at the leading ramp edge. However, the small-scale

turbulent eddies decay rapidly in the expansion section and are unable to entrain the large hairpin

structures in the separated region by contrast to the larger counter-rotating vortex pair. Thus, for

the cube placed at xvg/h = 0, the modulation of flow over the ramp is different from that of other

cube configurations. On the other hand, the dispersed counter-rotating vortex pair for the cube

located at xvg/h = 6 has a lower vortex strength at the leading ramp edge and remains consistently

lower than that of the cube placed at xvg/h = 3, which indicates that the flow modulation for the

latter configuration is more effective.

The counter-rotating flow draws the fluid from the freestream and injects it into the near-wall

region, thereby energizing the boundary layer flow. The evolution of the turbulent kinetic energy

(TKE) in equation 2.5 demonstrates the effect of upstream cube position on the production and

transfer of TKE to the inner-wall region. Figure 2.28 shows the spanwise-averaged TKE contri-

butions at the leading ramp edge at x/H = 0. For the cube placed at xvg/h = 0, the steep velocity

gradients near the surface and the turbulent structures formed around the cube, contribute to the

production of TKE. In addition, the shear layer separating on the top of the cube results in TKE pro-

duction in regions beyond y/h > 1. The counter-rotating vortex pair of cubes placed at xvg/h = 3
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Figure 2.27: Streamwise vortex strength of the time-averaged streamwise vorticity for cube posi-
tions: ——, xvg/h = 0; , xvg/h = 3; · · · · · · , xvg/h = 6.
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Figure 2.28: Normalized span-averaged TKE contributions near the leading ramp edge at x/H = 0
for different cube positions: −·−·, convection; , production; − − −, transport; ——, diffusion;

, dissipation; · · · · · · , velocity-pressure gradient.
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Figure 2.29: Normalized span-averaged TKE contributions over the ramp at x/H = 0.5 for dif-
ferent cube positions: −·−·, convection; , production; − − −, transport; ——, diffusion; ,
dissipation; · · · · · · , velocity-pressure gradient.

and 6 has contributions from u′v′Ux,y and u′w′Ux,z to TKE production, consistent with the behavior

observed in section 2.3.2. However, the more dispersed counter-rotating vortex pair for xvg/h = 6

generates more turbulent fluctuations resulting in a greater magnitude of TKE production near the

ramp edge. Positive convection and the negative TKE transport in all the cases indicates that the

energy is transported downstream towards the plane of symmetry and near the wall.

Figure 2.29 shows the transfer of TKE over the ramp in the expansion section at x/H = 0.5. The

counter-rotating vortex pair produced by the cube interacts with the separated flow and generated

turbulent fluctuations, which leads to production of TKE. For the cube placed at xvg/h = 0, the

interaction of the turbulent structures generated around the cube with the separated shear layer

contributes to the production of TKE in the region 0 < y/H < 0.5. However, for the more spread

and dispersed counter-rotating vortex pair in the case with xvg/h = 6, a larger region of flow over

the ramp is under the influence of the counter-rotating flow, which explains the slightly larger

peak in TKE production. Similar to the baseline case the flow over the ramp in all the cases has

negligible dissipation and the peak in TKE production corresponds to the negative peak in turbulent

transport, thus indicating transfer of energy from the freestream towards the bottom wall.

Figures 2.30 and 2.31 show the TKE contributions near the reattachment location at x/H = 6

and near the end of the domain at x/H = 15, where the TKE production, transport, convection

and diffusion is of similar order in both the outer-flow and inner-wall regions for the three cube
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Figure 2.30: Normalized span-averaged TKE contributions at x/H = 6 for different cube positions:
−·−·, convection; , production; − − −, transport; ——, diffusion; , dissipation; · · · · · · ,
velocity-pressure gradient.
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Figure 2.31: Normalized span-averaged TKE contributions at x/H = 15 for different cube po-
sitions: −·−·, convection; , production; − − −, transport; ——, diffusion; , dissipation;
· · · · · · , velocity-pressure gradient.

positions. Similar energy transfer for all cube positions demonstrates that beyond x/H ≥ 6, the

flow behavior is independent of the proximity of the cube to the region of adverse pressure gradient.

Similar to the observations in section 2.3.2, it follows that in the attached TBL beyond x/H ≥ 6

the velocity gradients near the bottom wall continue to contribute to the production of TKE. In

addition, the TBL is in a state of non-equilibrium turbulence as the TKE production is not balanced

by its dissipation, and does not recover by the end of the domain for all the cube positions.

2.5 Conclusions

Wall-resolved large-eddy simulations are conducted at a Reynolds number of 19, 600, based on

the inlet boundary layer thickness and freestream velocity, to study flow over a backward-facing

ramp modulated by a submerged, wall-mounted cube used as a canonical vortex generator (VG). In
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particular, the turbulent transport that results in the modulation of the separated flow over the ramp

is investigated by varying the size and location of the VG, which in turn is shown to modify the

interactions between the VG-induced flow structures and those of the separated region. Numerical

results indicate that the horseshoe vortex formed upstream of the wall-mounted cube interacts with

the hairpin vortices in the separated region, stretching, turning, and entraining them, which results

in a counter-rotating vortex pair near the plane of symmetry. Analysis of the spanwise variation of

Reynolds stresses in the inlet and expansion section indicates the transfer of momentum towards

the plane of symmetry and the near-wall region, which supports the claim that flow modulation by

the wall-mounted cube is localized near the plane of symmetry. Moreover, these localized regions

of high vorticity are associated with the production of turbulent kinetic energy, thus illustrating an

effective mechanism of energy transfer from the freestream to the near-wall regions.

Modulation of the separated flow depends on the relative intensity of the interaction between

the horseshoe vortex system and the shear layer, which depend on the size and location of the

cube. Since the horseshoe vortex scales with the height of the cube, larger cubes induce a stronger

counter-rotating flow with more effective transport of momentum over wider region around the

plane of symmetry of the ramp. However, the drag originating from the skin friction forces and

pressure forces increases with cube height. On the other hand, the upstream position of the cube

changes the behavior of the counter-rotating flow induced by the horseshoe vortex in the inlet

section. When the cube is placed far upstream, the strength of the dispersed counter-rotating

vortex pair is too low to modulate the separated flow. If the cube is too close to the leading

edge, the small-scale turbulent structures formed are entrained by the larger vortical structures in

the separation region before fully developing, thus failing to produce a counter-rotating flow of

sufficient strength to effectively reduce the size of the separated region. The optimal configuration

in the present study is a cube with h/δ0 = 0.6 and xvg/h = 3, as evidenced by the significant

reductions in the separation length and the volume of separation over the ramp, while maintaining

low coefficient of drag.

The present study is limited to a single cube. The VG geometry may affect the horseshoe vortex
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and thus affect the flow separation region in different ways. Furthermore, in practice, interactions

of flow structures produced by multiple VGs in different arrangements would likely also affect

the separated region. Future studies of these phenomena would improve our understanding of

separation modulation using passive vortex generators.
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CHAPTER 3

Modulation of Flow Over a Backward-Facing Ramp by an

Array of Wall-Mounted Cubes

This chapter is adapter from Tandon et al. (2020b). The efficacy of passive flow control devices,

such as vortex generators (VGs), in reducing the size of the separated region has been demonstrated

in numerous studies. However, the interactions between the salient flow structures produced by the

VGs and those of the separated flow are not fully understood. In this article, wall-resolved large-

eddy simulations are conducted at a Reynolds number of 19,600 based on the inlet boundary layer

thickness and freestream velocity, to study flow over a backward-facing ramp modulated by an

array of equally-spaced, submerged, wall-mounted cubes. In particular, the turbulent transport that

results in the modulation of the separated flow over the ramp is investigated by varying the span-

wise spacing between the neighboring cubes, which in turn is expected to modify the interactions

between the VG-induced flow structures and those of the separated region. The counter-rotating

vortex pairs produced by the VGs entrain the freestream turbulent flow towards the near-wall re-

gion. These localized regions of high vorticity correspond to turbulent kinetic energy production

regions, which effectively transfer energy from the freestream to the near-wall regions. The size

of the vortex pairs depends on the height of the cubes, and thus for a given cube height and up-

stream position, the spanwise spacing between the cubes affect the behavior of the counter-rotating

vortices—if the spacing is low, the counter-rotating vortex pairs are not sufficiently strong to affect

the large-scale structures of the separated region, and if the spacing is too large, the flow modula-

tion is similar to that of an isolated VG.
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3.1 Introduction

Separation of spatially evolving turbulent boundary layer (TBL) flow near regions of adverse pres-

sure gradient occurs in a variety of flow systems (internal and external). The separated flow, char-

acterized by recirculating flow, may give rise to undesirable effects—reducing lift on wings, in-

creasing drag on ground vehicles, and reducing efficiency in chemical mixing chambers. Given

their fixed point of separation, backward-facing steps or ramps (Westphal et al., 1984; Kaiktsis

et al., 1991; Le et al., 1997; Herbst et al., 2007; Kourta et al., 2015) are commonly considered to

study flow separation. Control of flow separation could be exploited to reduce the losses described

above.

Brown et al. (1968), Calarese et al. (1985), Englar (2001), Logdberg (2006), Mohan et al.

(2013), Wilson et al. (2019), and Fisher et al. (2020), among others, explored passive control

techniques such as vortex generators (VGs) to reduce drag and improve performance in a variety of

engineering applications. VGs are effective when the point of separation is fixed spatially (Rao &

Kariya, 1988). Experimental investigation of VGs with different shapes and configurations by Lin

(2002) on a backward-facing, curved ramp demonstrated that the submerged VGs of height 65%

below the boundary layer thickness generates streamwise vortices that enhance turbulent mixing,

and was substantiated in a parallel study by Jenkins et al. (2002). Flat-plate boundary layer flow

over submerged VGs of different shapes has also been investigated in the past (Ashill et al., 2001;

Yao et al., 2002; Elbing et al., 2013; Iyer & Mahesh, 2013). However, it is difficult to generalize

findings across the different shapes (e.g., Wishbone, Doublet Wheeler (Lin et al., 1991)) as the

flow features appear to be problem dependent. For this reason, a cubic VG has been considered as

a canonical geometry in previous studies of Shinde et al. (2017), Shinde (2018) and in Chapter 2.

Modulation of a spatially evolving TBL flow over a backward-facing ramp by a single sub-

merged, wall-mounted cube (Chapter 2) showed that the horseshoe vortex system (HVS) of the

cube produces a counter-rotating vortex pair that stretches, turns and entrains the large hairpin

structures in the separated region around itself and reduces flow separation near the plane of sym-

64



metry. Furthermore, the localized flow modulation by a single cube is dependent on the cube size

and its proximity to the leading ramp edge. To increase the efficacy of flow modulation multiple

VGs have also been used in the past (Ashill et al., 2001; Jenkins et al., 2002; Pujals et al., 2010).

Shinde (2018) reported that for a spatially evolving TBL flow over an array of equally-spaced,

submerged wall-mounted cubes of height h with spacing 3h on a flat-plate, the interaction between

neighboring HVS results in the wall-normal ejection of low-momentum flow, which lead to the

amplification of large-scale structures and increase in TKE production in the near-wake of the

cubes. However, for a larger spacing of 7h, the flow behavior is similar to that of the single cube

case. The wall-normal ejection results in secondary turbulent flows (Barros & Christensen, 2014;

Vanderwel & Ganapathisubramani, 2015; Yang & Anderson, 2018), which depend on the span-

wise spacing of VGs and alters the flow dynamics in the outer region, such that for small spanwise

spacing, high-momentum pathway are observed above the wall-mounted cubes that decreases the

drag coefficient (Yang et al., 2019).

The objective of this work is to understand the role of turbulent transport in the modulation

of flow separation using an array of equally-spaced cubic VGs. In particular, wall-resolved large-

eddy simulations (LES) are used to investigate the dependence of the flow in the separated region

on the spanwise spacing of the VGs. Modulation of the separated flow over the ramp is expected

to depend on the interaction of the large-scale structures in the separated region with the turbulent

structures that are formed due to the interaction between the HVS of neighboring cubes, which

is dictated by the spanwise spacing between the cubes in an array. The problem set-up and the

numerical methods are described in section 3.2. Section 3.3 examines turbulent flow modulation

and transport for an array of wall-mounted cubes and studies the dependence of the flow on the

spanwise spacing between the cubes. The article ends with concluding remarks in section 3.4.
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Figure 3.1: Backward-facing ramp flow configuration.

3.2 Problem Description

A schematic of spatially evolving turbulent boundary layer flow over a backward-facing ramp with

an array of equally-spaced, submerged, wall-mounted cubes present near the leading ramp edge is

shown in figure 3.1. A similar computational geometry and domain is considered as in Chapter 2,

so that the fluid dynamics of a line array of VGs can be compared to those corresponding to a single

VG. The 3-D flow domain consists of an inlet section, followed by a ramp of height H at a fixed

inclination of φ = 25o with the horizontal, and an expansion section. A line array of wall-mounted

cubes of a fixed height h and separated by a spanwise distance Lz, is located at a distance of xvg

from the ramp edge. A turbulent boundary layer flow of thickness δ0 and free-stream velocity U0 is

prescribed at the inlet, with Reynolds number defined as Re = U0δ0/ν = 19, 600. The inlet length

is Li = 12δ0 + h + xvg, length of the downstream expansion region is Lx = 15H and the domain

height in the expansion region is Ly = 4H.

Similar to the previous study (Chapter 2), wall-resolved large-eddy simulations (LES) are con-

ducted by solving the filtered Navier-Stokes equations,

∂

∂xk
ũk = 0 , (3.1)
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∂

∂t
ũi +

∂

∂xk
ũĩuk − ν

∂2

∂x2
k

ũi +
∂

∂xk
τR

ik +
1
ρ

∂

∂xi
p̃ = 0, (3.2)

where ũ is the filtered velocity, p̃ is the filtered pressure, ν is the kinematic viscosity, ρ is the

density, and τR
ik ≡ ũiuk − ũĩuk is the subgrid-scale stress that requires modeling. The indices i, j, k

denote the streamwise (x), wall-normal (y), and spanwise (z) directions, respectively.

A second-order accurate finite volume approach with implicit time marching is used in the

OpenFOAM framework (Weller et al., 1998). The equations are solved based on the PIMPLE

algorithm—a combination of of PISO (Pressure Implicit with Splitting of Operator, Issa, 1986),

and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations, Caretto et al., 1973) algorithm—

with two outer corrector steps. To adequately capture the back-scatter of the turbulent kinetic

energy observed in the region upstream of the cube (Krajnovic & Davidson, 1999), the dynamic

k-equation eddy-viscosity LES model of Kim & Menon (1995) is used. A maximum Courant

number of 1.0 enables variable time step size. The field quantities and the turbulent statistics are

averaged for over 60 flow-throughs starting from t ≈ 750H/U0 to avoid contamination by initial

transients.

At the inlet, a time-varying velocity field is prescribed using a synthetic inflow method (Shinde

et al., 2017) for a spatially evolving turbulent boundary layer (TBL) with a free-stream turbulence

intensity of 1%. The synthetic inflow requires a transition length of approximately 12δ0 to develop

into a realistic TBL. The bottom wall of the inlet section, the exposed faces of the cube, the ramp

surface, and the bottom wall of the expansion region have no-slip boundary conditions. A no-

stress slip wall is applied at the upper boundary of the domain, and at the outlet, a convective

boundary condition is prescribed (Lowery & Reynolds, 1986). A line array of wall-mounted cubes

is represented by a single cube in the inlet section, with periodic boundaries enforced along the

lateral sidewalls.

A non-uniform structured grid is employed, where high spatial resolution is achieved through

local mesh refinement. The region between 3H upstream of the leading edge and 6H downstream

in the expansion region has a uniform resolution in the spanwise and streamwise flow directions
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with grid spacing in wall units given as ∆+
x ≈ ∆+

z ≈ 20. To provide high fidelity in the reattachment

region, the near-wall region is resolved with ∆+
y ≈ 1, such that no wall-model is necessary.

To understand the dependence of the interaction of multiple horseshoe vortex systems (HVS)

with the shear layer on the turbulent transport, different spanwise spacings between the neighboring

cubes are considered and compared to the flow with a single VG (Chapter 2), which suggests the

optimal height and upstream position as h/δ0 = 0.6 and xvg/h = 3 respectively. It is expected that

at small spacings the HSV of neighboring cubes strongly interact, though perhaps not optimally;

as the spacing is increased, an ”optimal” configuration is achieved such that the HVSs exhibit

strongest interactions. Beyond that spacing, the interaction are likely less intense, up a critical

spacing beyond which the HSVs no longer interact in the separated region. For the fixed height

and position of the cube, the following spanwise spacings between the neighboring cubes in a line

array are considered: Lz/h = 3, 5 and 7. Shinde (2018) varied the inter-cube spacing between

3h and 7h for TBL flow over an array of equally-spaced cubes on a flat plate and reported that

with spacing 3h the interaction between the adjacent VG-induced flow structures results in the

wall-normal ejection of low-momentum flow in the near-wake of the cubes with amplification of

large-scales in the outer flow regions. However, for spacing 7h, the flow dynamics reached the

limit of a single cube case.

3.3 Dependence of the flow modulation over a backward-facing

ramp on the spanwise spacing between the wall-mounted

cubes

3.3.1 Velocity and vorticity fields

The dependence of the flow modulation in the separated region on the spanwise spacing between

cubes is examined by considering array of cubes with fixed location xvg/h = 3 and height h/δ0 =

0.6, and varying the spanwise spacing Lz/h = 3, 5, and 7. To provide an understanding of the
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(a) single VG (h/δ0 = 0.6, xvg/h = 3). See Chap-
ter 2. (b) multiple VGs (h/δ0 = 0.6, xvg/h = 3, Lz/h = 3).

Figure 3.2: Iso-surfaces of the Q−criterion colored with the time-averaged streamwise vorticity
(ωx).

impact of multiple vortex generators (VGs) on separated flow over a ramp, the flow with Lz/h = 3

is first qualitatively compared to that with single VG baseline case (h/δ0 = 0.6, xvg/h = 3) of

(Chapter 2). Figure 3.2 shows the iso-surfaces of the Q-criterion (Hunt et al., 1988) to illustrate

the vortical structures. When there is a single VG present, the horseshoe vortex system (HVS,

Martinuzzi & Tropea, 1993) produced by the cube generates a counter-rotating vortex pair in the

near-wake of the cube that interacts with the large-scale structures in the separated region over the

ramp (Song et al., 2000; Kourta et al., 2015) and entrains flow towards the plane of symmetry. In

the presence of multiple VGs, identical HVS are formed around each cube, which interacts with

the HVS of the neighboring cube and forms similar counter-rotating vortex pairs in the near-wake

of each cube at the leading ramp edge. Multiple counter-rotating vortex pairs interact and entrain

the separated flow, which results in flow modulation of a larger region over the ramp in contrast

to the single VG flow. The flow behavior described in figure 3.2 suggests that the interaction of

the HVS between neighboring cubes depends on the spanwise spacing between cubes, which is

expected to influence the modulation of the separated flow over the ramp.

The flow separation Xvg
s and reattachment Xvg

r around the cubes (Escauriaza & Sotiropoulos,

2011; Krajnovic & Davidson, 2002) is obtained from the skin friction coefficient C f = τw/
1
2ρU2

∞,

where τw = µ (∂u/∂y)y=0 is the shear stress. Figure 3.3 shows C f along the streamwise direction for

the different spanwise spacing between the cubes, evaluated based on the time-averaged velocity.
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(a) Flow separation and reattachment around the
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(b) Flow reattachment in the expansion section.

Figure 3.3: Streamwise variation of the skin friction coefficient (C f ) along the plane of symmetry
for spanwise spacing: , Lz/h = 3; , Lz/h = 5; , Lz/h = 7.

h/δ0 xvg/h Lz/h Xvg
s /h Xvg

r /h

0.6 3.0 3.0 0.78 1.54
0.6 3.0 5.0 0.82 1.58
0.6 3.0 7.0 0.82 1.54

Table 3.1: Separation (Xvg
s ) and reattachment (Xvg

r ) lengths for the cubes along the plane of sym-
metry (z = 0).

70



In the inlet section, the point of separation is the first point where C f < 0 near the upstream face of

the cubes, and the point of reattachment is the first point when C f > 0 in the near-wake of the VGs.

Table 3.1 lists the values of Xvg
s and Xvg

r for the spanwise spacing of the cubes under considera-

tion. Similar values are obtained for the separation and reattachment points for different spanwise

spacing, which indicates that for the configuration of cube arrays considered in this study, the flow

around the multiple VGs is primarily influenced by the cube height and has little dependence on

the spanwise spacing between the neighboring cubes. Yang et al. (2019) evaluated drag forces on

sparsely packed cube arrays and found that when the spacing between the cubes decreases, sec-

ondary turbulent flow manifests due to the interaction of flow structures of neighboring cubes and

reduces the drag forces on the cubes, which explains the low peak in C f for Lz/h = 3 as opposed

to the flow with Lz/h = 7. In the expansion section, the mean reattachment location Xr is the first

point where C f > 0 after the turbulent boundary layer (TBL) flow separates at the leading edge. As

the spanwise spacing between the cubes decreases the separation length increases, which suggests

that the size of the separated region depends on the interaction between the HSV and the shear

layer, and thus on the spanwise spacing between the VGs. Figure 3.4 shows the reduction in the

size of the separation region relative to that of the flow with the single VG baseline case (Chapter

2). Negative values in figure 3.4 indicates that multiple VGs with Lz/h = 3 significantly increase

the size of the separated region. While for higher Lz, the length of the separated region is approxi-

mately 20% lower than the single VG case, the volume of the separated region is reduced as much

as 20% for Lz/h = 5. In addition, the coefficient of drag Cd is evaluated by adding the contributions

from the skin friction on the exposed faces of the cubes and the form drag due to the separation

of flow around the cubes. Table 3.2 lists the values of the mean reattachment location Xr and Cd

for the different cases. As explained before, the reduction in spanwise spacing between VGs re-

duces the drag, which explains the low coefficient of drag of Cd = 0.58 for Lz/h = 3 case. Of the

spanwise spacing considered in the present study, the Lz/h = 5 produces the greatest reduction in

separation volume over the ramp, while maintaining a lower coefficient of drag.

The effect of varying the spanwise spacing between the VGs on the flow modulation observed
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Figure 3.4: Reduction in the size of the separation region for the spanwise spacings: , Lz/h = 3;
, Lz/h = 5; , Lz/h = 6.

h/δ0 xvg/h Lz/h Xr/H Vs/H3 Cd

0.6 3.0 – 3.01 2.45 0.80
0.6 3.0 3 6.99 4.02 0.64
0.6 3.0 5 3.72 1.96 0.78
0.6 3.0 7 3.84 2.21 0.82

Table 3.2: Mean reattachment location (Xr) measured along the plane of symmetry (z = 0), the
volume of separation (Vs) is evaluated near the ramp in a region 10H×1.25H×2H (L×W×H), and
the coefficient of drag (Cd) for different spanwise spacings. The values in the first row correspond
to the single VG baseline case of [TODO: cite JFM].
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in figure 3.4 can be better understood by examining the formation and interaction of turbulent

structures in the vorticity contours. Figure 3.5 shows the time-averaged streamwise vorticity con-

tours in the inlet section for the different cases. At x/H = −0.75 near the downstream faces of the

cubic VGs, the decrease in spanwise spacing increases the spanwise blockage, which results in the

horseshoe vortex system (HVS) of individual cubes in Lz/h = 3 case to be spatially constrained

near the cube surface as opposed to the larger Lz cases considered. The high vorticity centers ex-

tend in the near-wake of individual cubes to form multiple pairs of counter-rotating vortex-pairs

near the leading ramp edge at x/H = 0. The height of the counter-rotating vortex pairs is approx-

imately 0.8h for all the cases, which suggests that the effective size of the counter-rotating vortex

pairs depends only on the height of the array and has a negligible effect of the spanwise spacing;

however, the lateral spreading of the counter-rotating vortices increases with Lz. Figure 3.6 shows

the effect of the spanwise spacing between the cubes on the interaction between the separated

region and the counter-rotating vortex pairs over the ramp surface for different cases. Half-way

down the ramp at x/H = 0.5, the interaction between the separated region and the HVS results in

the formation of enlarged counter-rotating vortex pairs (Chapter 2), which are of the order of the

ramp height. As before, the spreading of the vortices increases with an increase in the spanwise

spacing. Furthermore, localized regions of high vorticity are observed in outer flow regions be-

tween 0 < y/H < 0.5 for Lz/h = 3 and 5, a manifestation of turbulent interactions between the

neighboring HVS. For Lz/h = 7, the large spanwise spacing results in negligible interaction be-

tween the neighboring VG-induced turbulent structures, and the flow behavior is similar to that of

an isolated single VG. Near the downstream ramp edge at x/H ≈ 2, the compact counter-rotating

vortex pairs for Lz/h = 3 case succumb to the large velocity gradients and strain in the expansion

section over the ramp, which causes dispersion and decay of turbulent structures and ultimately

separation of flow. In the case of larger spanwise spacing with Lz/h = 5 and 7, while the turbulent

structures disperse due to large strain in the expansion section, the continuous entrainment of flow

by the counter-rotating vortex pairs contributes to the increase in their size, which facilitates the

reduction of the size of the separated region over the ramp.
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(a) Lz/h = 3, x/H = −0.75. (b) Lz/h = 5, x/H = −0.75. (c) Lz/h = 7, x/H = −0.75.

(d) Lz/h = 3, x/H = 0. (e) Lz/h = 5, x/H = 0. (f) Lz/h = 7, x/H = 0.

Figure 3.5: Contours of the streamwise component of the time-averaged vorticity (ωx) in the inlet
section near the downstream face of the cubic VGs at x/H = −0.75 and along the leading ramp
edge at x/H = 0 for the different spanwise spacings. The black face in (a)-(c) depicts the down-
stream face of cubes. The streamwise flow direction (+x) is directed into the paper and the inlet
section is normalized by h.

(a) Lz/h = 3, x/H = 0.5. (b) Lz/h = 5, x/H = 0.5. (c) Lz/h = 7, x/H = 0.5.

(d) Lz/h = 3, x/H = 2. (e) Lz/h = 5, x/H = 2. (f) Lz/h = 7, x/H = 2.

Figure 3.6: Contours of the streamwise component of the time-averaged vorticity (ωx) over the
ramp at x/H = 0.5 and near the downstream ramp edge at x/H = 2 for the different spanwise
spacings. The streamwise flow direction (+x) is directed into the paper and the expansion section
is normalized by H.
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The effect of spanwise spacing between the cubes on the entrainment of freestream fluid to-

wards the near-wall region can be more precisely elucidated by examining the spanwise variation

of time-averaged velocity U in the inlet and expansion section for the three cases. Figure 3.7

shows the mean velocity components in the spanwise direction near the ramp edge at x/H = 0

and over the ramp at x/H = 1. The TBL flow in the inlet is attached in all the cases, where the

streamwise component U x is an order of magnitude greater than the other components. In the

presence of multiple VGs, the flow is spanwise-periodic and results in the formation of multiple

counter-rotating vortex pairs. In each counter-rotating vortex pair a 30% decrease in U x in its plane

of symmetry is observed, while Uy becomes negative and Uz exhibits a sine-wave like variation

(Pujals et al., 2010), with a wavelength of Lz. Negative Uy indicates that the flow is directed to-

wards the bottom wall, and positive Uz in the negative z half-domain implies flow towards the

plane of symmetry. Such behavior is characteristic of a counter-rotating vortex pair (Angele &

Muhammad-Klingmann, 2005), where the entrainment of flow from the sides and the outer-flow

regions towards the near-wall regions leads to reattachment. For lower spanwise spacings Lz/h = 3

and 5, slightly positive Uy near regions of interaction of neighboring counter-rotating vortex pairs

suggests wall-normal ejection of low momentum fluid, which produces secondary turbulent flows

(Barros & Christensen, 2014; Vanderwel & Ganapathisubramani, 2015; Yang & Anderson, 2018)

and alters the outer flow dynamics. However, for Lz/h = 7, secondary flow regions are not observed

due to negligible interaction between the neighboring vortex pairs. Over the ramp at x/H = 1, the

interaction between the counter-rotating vortex pairs and the separated region leads to modulation

of flow such that in the plane of symmetry of individual vortex pairs, the attached flow has positive

U x and negative Uy. For Lz/h = 3, the width of the region of flow modulated by each counter-

rotating vortex pair is about 1.8h, which is 60% of its spanwise spacing, whereas for Lz/h = 5

and 7 the width of the modulated region is 2.4h (≈ 45% of its Lz) and 2.8h (≈ 40% of its Lz)

respectively. Therefore, flow modulation by multiple VGs depends on the height of the cubes and

the spanwise spacing between them. However, the lower magnitude of the peaks of U x and Uy in

Lz/h = 3 case suggests that the modulation of flow by the counter-rotating vortex pairs is weaker
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(a) Lz/h = 3, x/H = 0.
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(b) Lz/h = 5, x/H = 0.
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(c) Lz/h = 7, x/H = 0.
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(d) Lz/h = 3, x/H = 1.
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(e) Lz/h = 5, x/H = 1.
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(f) Lz/h = 7, x/H = 1.

Figure 3.7: Spanwise variation of the time-averaged velocity field (U) at x/H = 0 and x/H = 1,
y = 0.5h: , U x; , Uy; , Uz. The vertical dotted lines depict the spanwise width of the
domain.

in comparison to that of Lz/h = 5 and 7.

The entrainment of flow by the counter-rotating vortex pairs enhances the momentum of the

near-wall flow. The high-momentum flow structure (Bross et al., 2019) affects the changes in

viscous stresses and balances the pressure changes in the expansion section, which opposes flow

separation. To understand the corresponding momentum transport, figure 3.8 shows the spanwise

variation of the Reynolds stress components for the different cases in the inlet section and over the

ramp. Near the leading ramp edge at x/H = 0, consistent with the single VG study, two positive

peaks of u′2 in each counter-rotating vortex pair are observed, which corresponds to the centers of

the vortices and indicates the transfer of momentum in the streamwise direction by the HVS. The

peaks in v′2 and w′2 in the center of each vortex pair represents wall-normal and spanwise transport

of momentum by the HVS to the near-wall region and towards the center plane of the vortex pair,

respectively. As illustrated by the negative peak of u′v′, the streamwise momentum (u′ ≥ 0) is
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(a) Lz/h = 3, x/H = 0.
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(b) Lz/h = 5, x/H = 0.
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(d) Lz/h = 3, x/H = 1.
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(e) Lz/h = 5, x/H = 1.
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(f) Lz/h = 7, x/H = 1.

Figure 3.8: Spanwise variation of the Reynold stresses at x/H = 0 and x/H = 1, and y = 0.5h:
, u′2; , v′2; , w′2; ——, u′v′; −−−, u′w′; −·−·, v′w′. The vertical dotted lines depict the

spanwise width of the domain.
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transported by each vortex pair towards the bottom wall (v′ ≤ 0), i.e. from the outer region to

the near-wall region. In the left half of the vortex pair, the streamwise momentum (u′ ≥ 0) is

transported towards the right half (w′ ≥ 0), i.e. towards the plane of symmetry of each vortex pair,

giving rise to the positive peak in u′w′ in the left half. The interactions between the neighboring

vortex pairs are more prominent for Lz/h = 3 case, where, the wall-normal ejection of flow creates

small recirculation zones between the neighboring cubes and thus results in a larger u′v′ value.

Similar behavior is observed in the expansion region, with the difference being that the turbulent

fluctuations in the expansion region are on the order of the ramp height. However, the lower peak

of u′2, v′2 and w′2 for Lz/h = 3 case indicates that the momentum transport to the near-wall region

is less effective as compared to that of Lz/h = 5 and 7.

3.3.2 Turbulent kinetic energy transport to the near-wall region

The counter-rotating vortex pairs produced by the array of cubes draw fluid from the freestream

and injects it into the near-wall region, thus energizing the turbulent boundary layer (TBL) flow.

To better understand energy transfer by multiple VGs, the evolution of turbulent kinetic energy

(TKE) is considered,
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(3.3)

where q2/2 is the TKE, Re is the Reynolds number based on mean velocity U0 and boundary

layer thickness δ0, and ντ is the eddy viscosity in the subgrid-scale model. The over-bar rep-

resents the time-averaging and the terms on the right hand side of equation 3.3 are convective

(Ck), production (Pk), turbulence transport (Tk), viscous diffusion (Dk), viscous dissipation (εk)

and velocity-pressure gradient (Πk).

The evolution of TKE demonstrates the effect of spanwise spacing between the cubes on the
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Figure 3.9: Normalized span-averaged TKE contributions near the leading ramp edge at x/H = 0
for different spanwise spacings: −·−·, convection; , production; −−−, transport; ——, diffusion;

, dissipation; · · · · · · , velocity-pressure gradient.

production and transfer of TKE to the inner-wall region. Figure 3.9 shows the spanwise-averaged

TKE contributions at the leading ramp edge at x/H = 0. The counter-rotating vortex pairs of cubes

have contributions from u′v′Ux,y and u′w′Ux,z to TKE production, consistent with the behavior

observed in single VG flow (Chapter 2). However, the lower spacing of Lz/h = 3 generates a

larger number of compact counter-rotating vortex pairs for a given ramp width that generates more

turbulent fluctuations resulting in a greater magnitude of TKE production near the ramp edge.

In addition, wall-normal ejection of flow between neighboring vortex pairs for Lz/h = 3 and 5

results in the formation of secondary turbulent flows that contribute to TKE production beyond

y/h > 0.2. The negative peak in TKE transport corresponds with the peak in TKE production in

all the cases and indicates the transport of energy near the wall. The convection of TKE is defined

in equation 3.3 in terms of outer-scale velocity U. The amplification of large-scale structures due

to wall-normal ejection results in an increased magnitude of convection for the Lz/h = 3 case.

Figure 3.10 shows the transfer of TKE over the ramp in the expansion section at x/H = 0.5.

The counter-rotating vortex pairs produced by multiple VGs interact with the separated flow and

generates turbulent fluctuations, which leads to the production of TKE. For the spanwise spacing

Lz/h = 3, the interaction of the secondary turbulent flow with the separated shear layer contributes

to the production of TKE in the region 0 < y/H < 0.5. However, for the larger counter-rotating

vortex pairs in the case with Lz/h = 5 and 7, a larger region of flow over the ramp is under the
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Figure 3.10: Normalized span-averaged TKE contributions over the ramp at x/H = 0.5 for different
spanwise spacings: −·−·, convection; , production; − − −, transport; ——, diffusion; ,
dissipation; · · · · · · , velocity-pressure gradient.

influence of the counter-rotating flow, which explains the larger peak in TKE production. Similar

to the single VG study (Chapter 2), the flow over the ramp in all the cases has negligible dissipa-

tion, and the peak in TKE production corresponds to the negative peak in turbulent transport, thus

indicating the transfer of energy from the freestream towards the bottom wall.

Further downstream in the expansion section, the TKE contributions are shown in figures 3.11

to 3.13 both in terms of outer and inner coordinates to illustrate the dependence of the large-scale

structures on the outer variables (mean velocity U0 and ramp height H) and the variation in near-

wall behavior with respect to the inner variables (friction velocity uτ and kinematic viscosity ν).

At x/H = 6, the turbulent flow is attached in all the cases except for Lz/h = 3. As explained

with the vorticity distribution, high strain and large velocity gradients in the expansion section

cause decay and dispersion of turbulent structures, which explains the overall reduction in TKE

for all the cases. In the outer region, low dissipation with high TKE production is consistent with

the single VG study(Chapter 2). The negative peak in the turbulent transport for Lz/h = 5 and 7

signals energy transfer to the near-wall region in the attached flow. As expected, the dissipation

and diffusion dominate inside the viscous layer for y+ < 5.

Figures 3.12 and 3.13 show the TKE contributions at x/H = 10 and near the end of the domain

at x/H = 15, respectively, where the significant decrease in the magnitude of TKE production in

the outer regions and the higher dissipation and diffusion, especially in the near-wall region, ex-
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Figure 3.11: Normalized span-averaged TKE contributions in the expansion section at x/H = 6 for
different spanwise spacings: −·−·, convection; , production; − − −, transport; ——, diffusion;

, dissipation; · · · · · · , velocity-pressure gradient.
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Figure 3.12: Normalized span-averaged TKE contributions in the expansion section at x/H = 10
for different spanwise spacings: −·−·, convection; , production; −−−, transport; ——, diffusion;

, dissipation; · · · · · · , velocity-pressure gradient.

plains the overall drop in the magnitude of the TKE. The TKE production, transport, and diffusion

are of a similar order in both the outer-flow and inner-wall regions for the cases with Lz/h = 5

and 7. For Lz/h = 3, the late reattachment of flow results in TBL with low momentum and large

velocity gradients, which contribute to the TKE production as observed between −0.5 < y/H < 0.

Moreover, the attached flow results in a favorable pressure gradient with p′,x < 0, such that the

velocity-pressure gradient has a positive peak within y+ < 5. Positive convection indicates that the

attached flow convects the TKE in the streamwise direction towards the near-wall regions. Similar

to the single VG study (Chapter 2), at x/H = 15 the TBL is in a state of non-equilibrium turbulence

as the TKE production is not balanced by its dissipation, and does not recover by the end of the

domain for all the spanwise spacings considered in this study.

82



-0.20 -0.10 0.00 0.10 0.20
-1.0

-0.5

0.0

0.5

1.0

(a) Lz/h = 3.

-0.20 -0.10 0.00 0.10 0.20
-1.0

-0.5

0.0

0.5

1.0

(b) Lz/h = 5.

-0.20 -0.10 0.00 0.10 0.20
-1.0

-0.5

0.0

0.5

1.0

(c) Lz/h = 7.

-0.50 -0.25 0.00 0.25 0.50
0

10

20

30

40

50

(d) Lz/h = 3.

-0.50 -0.25 0.00 0.25 0.50
0

10

20

30

40

50

(e) Lz/h = 5.

-0.50 -0.25 0.00 0.25 0.50
0

10

20

30

40

50

(f) Lz/h = 7.

Figure 3.13: Normalized span-averaged TKE contributions in the expansion section at x/H = 15
for different spanwise spacings: −·−·, convection; , production; −−−, transport; ——, diffusion;

, dissipation; · · · · · · , velocity-pressure gradient.
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3.4 Conclusions

Wall-resolved large-eddy simulations are conducted at a Reynolds number of 19,600, based on

the inlet boundary layer thickness and freestream velocity, to study flow over a backward-facing

ramp modulated by an array of equally-spaced, submerged, wall-mounted cubes used as canonical

vortex generators (VGs). In particular, the turbulent transport that results in the modulation of the

separated flow over the ramp is investigated by varying the spanwise spacing between the VGs,

which in turn is shown to modify the interactions between the VG-induced flow structures and

those of the separated region. Although the flow separation and reattachment around the VGs

show little dependence on the spanwise spacing as identical horseshoe vortex systems are formed

around the individual cubes of the array, which extend in the near-wake to form multiple pairs

of counter-rotating vortices. Moreover, these localized regions of high vorticity are associated

with the production of turbulent kinetic energy, thus illustrating an effective mechanism of energy

transfer from the freestream to the near-wall regions. Modulation of the separated flow depends on

the relative intensity of the interaction between neighboring vortex pairs and the shear layer. The

size of the counter-rotating vortex pairs depends on the height of the cubic array; however, their

lateral spreading is governed by the spanwise spacing between the VGs. As a result, the intensity

of the vortex pairs interacting with the shear layer is modified, compared to a problem with a

single VG. For Lz/h = 3, the small spanwise spacing increases the blockage, thus resulting in

more compact counter-rotating vortices, which succumb to high strain and large velocity gradients

in the expansion section, and are therefore are unable to modulate the separated flow over the

ramp. However, for Lz/h = 7, the large spanwise spacing results in negligible interaction between

the neighboring VG-induced flow structures, and the resulting flow modulation over the ramp is

similar to that of an isolated single VG (Chapter 2). On the other hand, the drag originating from

the skin friction forces and pressure forces increases with the spanwise spacing. Based on the

parameters considered in the present study, optimal modulation of the separated region is achieved

with a cubic array with h/δ0 = 0.6, xvg/h = 3, and Lz/h = 5 as evidenced by the significant
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reductions in the volume of separation over the ramp, while maintaining low coefficient of drag.

The present study is limited to a single line array of cubes of given geometry. The VG geometry

and interaction between VGs on different rows may affect the horseshoe vortices and thus affect

the flow separation region in different ways. Future studies of these phenomena would improve

our understanding of separation modulation using passive vortex generators.
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Part II:

Optimization of High-Order Discontinuous

Galerkin Method for Next-Generation HPC

Platforms
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CHAPTER 4

Improving the Parallel Efficiency of Recovery-Assisted

Discontinuous Galerkin Methods on Modern HPC Systems

This chapter is adapted from Tandon & Johnsen (2020). An accurate representation of certain

flow phenomena can only be achieved if the discretization error is small, which can be achieved

by employing high-order methods. A class of recovery-assisted discontinuous Galerkin (RADG)

methods has been shown to provide arbitrarily high orders of accuracy by increasing the solution

polynomial order p. The RADG methods explored here have compact stencils with dependence

only on the nearest neighbors, thus reducing complications with communication in large-scale

computations. Although, an increase in p increases the number of degrees of freedom, thereby

significantly increasing the arithmetic operations performed, the increase in floating-point opera-

tions will be more than offset the reduction in data transfers. The arithmetic intensity of a class of

RADG methods for hyperbolic systems of conservation laws is theoretically analyzed for polyno-

mial order one through six in arbitrary dimensions. Different data cache models are considered and

validated numerically on an Intel-Knights-Landing-based XSEDE Stampede2 node. Theory and

numerical experiments demonstrate that RADG methods are able to provide increases in arithmetic

intensity that will be necessary to make better utilization of on-node floating-point capability.
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4.1 Introduction

High-fidelity numerical simulations of complex turbulent flows often demand high orders of accu-

racy, which can be achieved either by increasing the mesh resolution or by employing high-order

methods. High-order methods are usually defined as having an order of accuracy greater or equal

to two, which reduces the error E from the numerical discretization as E ∼ O(hn), where h is the

characteristic grid spacing and n ≥ 2. Tan et al. (2005), Desjardins et al. (2008), Bermejo-Moreno

et al. (2013), Colella et al. (2011), Loffeld & Hittinger (2019), King & Kirby (2013), and others

have explored the high-order variants of the traditional finite difference (FD) and finite volume

(FV) methods, generally used in spatial discretization of the governing equations. However, it is

well known that high-order accuracy may give rise to aliasing errors in FD schemes (Rogallo &

Moin, 1984), which can lead to violation of the invariance of the governing equations with er-

roneous results, and therefore require special care. Furthermore, high-order accuracy in FD and

FV discretizations is achieved by expanding the numerical stencil, i.e., more information from

neighboring cells is needed to compute the solution at a give cell.

The dependency of high-order FD and FV methods on large stencils introduces several compli-

cations. In parallel computation, the increased stencil leads to more data movement and increased

communication time. Boundary conditions can pose challenges due to the necessity for ghost

cells or a modification of the spatial discretization. For implicit time solvers, these high-order

FV methods with larger stencils require more memory and adversely impact the stability of iter-

ative algorithms (Fidkowski, 2004; Mavriplis, 2002). Such issues become more prominent when

conducting massively parallel simulations such as the flow simulations of Bermejo-Moreno et al.

(2013) and Godenschwager et al. (2013) with over a trillion cells on more than a million cores.

The discontinuous Galerkin (DG) method combines the desirable properties of finite element

and the FV method (Cockburn et al., 2000). Arbitrarily high orders of accuracy can be achieved by

adding degrees of freedom to each element to represent the solution as a high-order polynomial.

Since the solution is allowed to be discontinuous across elements, borrowing from the FV method,
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the flux between immediately adjacent elements is used to exchange information, which preserves

a compact stencil (Henry de Frahan, 2016). Thus, as demonstrated by Bey et al. (1995), Heinecke

et al. (2014), Houba et al. (2019), and others, the DG method exhibits good parallel scaling on

modern HPC platforms. The recovery-assisted DG method (RADG, Johnson & Johnsen, 2019)

uses the information from a pair of neighboring elements to recover a high-order DG approxima-

tion of the flux at the interface of the two neighboring elements. The recovery procedure results

in higher orders of accuracy than conventional DG methods. While the DG methods present many

advantages, the large number of degrees of freedom inside each element, particularly for RADG

methods, poses a challenge for on-node data motion and memory usage.

As high-performance computing (HPC) moves towards exascale computing and beyond, the

gains in performance are coming from using heterogeneous architectures with reduced clock speeds

and memory per processor. The traditional strategy of adding more computational units (CPUs)

to computing clusters to achieve greater FLOP counts, motivated by Moore’s law, has shifted in

recent years, in large part due to the resulting power requirements (200 MW) and corresponding

costs, as well as reaching Dennard’s scaling (Dennard et al., 1974) namely, limitations in memory

bandwidth and capacity. On these heterogeneous architectures, the decreasing power cost of FLOP

has exposed the power cost of data motion. Thus, FLOP is no longer the primary (on-node) cost

factor for numerical simulation. A new trade-off must be made between data motion, memory

usage, and operations (Brown et al., 2010; Ashby et al., 2010; Lucas et al., 2014; Heroux et al.,

2020).

The objective of this work is to systematically address the trade-off between FLOP and bytes

transferred for RADG discretizations of hyperbolic systems of conservation laws. Building on

the formalism of Johnson (2019), the flux discretization is presented and the bounds for solu-

tion polynomial orders one through six, for both the operation count and the arithmetic intensity,

are evaluated. These two quantities are used to determine the on-node performance based on the

roofline model of Williams et al. (2009), which is described in section 4.2. The recovery-assisted

discontinuous Galerkin formulation is presented in section 4.3. Section 4.4 discusses the theoret-
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Figure 4.1: Example roofline model for a fictitious node architecture.

ical bounds for different data cache models, and the empirical verification results are presented in

section 4.5. The chapter ends with concluding remarks in section 4.6.

4.2 Roofline Model

Figure 4.1 shows a roofline model for a fictitious node architecture. The vertical axis is the num-

ber of floating-point operations per second, which is ultimately bounded by the performance of

the processor. The horizontal axis is the arithmetic intensity, expressed in terms of the number of

floating-point operations per byte transferred. The diagonal line is the upper bound on the band-

width, namely the maximum rate at which data can be provided to the processor. The optimal

location on this plot is at the balance point (Williams et al., 2009), where the bandwidth limit and

the processing limit intersect. The arithmetic intensity of several representative algorithms studied

by Williams et al. (2009) are shown, where the computation for low-order stencils is bandwidth-

limited and is unable to exercise the full capability of the node.

Improvements and alternatives to the roofline model have been proposed (Sim et al., 2012;

Zhang et al., 2014; Stengel et al., 2015), introducing additional details such as overlapping com-
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munication and computation. While such details can be included in the roofline model, the basic

roofline model will suffice for this work in order to theoretically understand the trade-offs in im-

plementing recovery-assisted discontinuous Galerkin (RADG) discretizations. The roofline model

has been used to guide the performance optimizations of a wide variety of algorithms (Williams

et al., 2009; Rossinelli et al., 2011; Bermejo-Moreno et al., 2013; Godenschwager et al., 2013;

Rossinelli et al., 2013; Basu et al., 2015; Modave et al., 2016; Karakus et al., 2019). Moving

vertically on the roofline model requires one to leverage all of the performance-enhancing features

of a processor, which is mostly an implementation question that will not be addressed in this work.

Instead, here the roofline model is used to motivate algorithm design. Specifically, an attempt is

made to derive best and worst-case estimates of the algorithmic intensity of RADG methods to

understand the effectiveness of such higher-order methods as a strategy for moving beyond the

bandwidth-limited region of the roofline model.

4.3 Recovery-assisted discontinuous Galerkin methods for hy-

perbolic systems

Consider the hyperbolic system
∂u
∂t

+ ∇.F (u) = 0, (4.1)

where x ∈ RD is the D-dimensional spatial coordinate, t ∈ R+ depicts time, u(x, t) : RD ×R+ → Rn

is a vector of n conserved variables, and F (u) : Rn → Rn×D are the vector-valued flux functions. In

recovery-assisted discontinuous Galerkin (RADG) discretization, the computational domain Ω is

partitioned into M non-overlapping elements Ωm, such that ∩M
m=1Ωm = ∅ and ∪M

m=1Ωm = Ω, and the

elemental boundary is denoted by ∂Ωm. Each element’s set of basis functions φm is a polynomial

basis of at most degree p in a given direction and contains K members. In this work, the DG

method is applied with uniform polynomial order for all elements. This constraint discards the

possible benefits of an hp-adaptive mesh refinement procedure. For uniform grids, a full tensor
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product basis of degree p in each direction is employed, such that, K = (p + 1)D.

The numerical solution Uh within each element is a K-dimensional polynomial expansion

within the solution space φm:

Uh(x ∈ Ωm) = Uh
m(ξ(x)) =

K∑
k=1

φk
m(ξ)Ûk

m, (4.2)

where ξ(x) is a mapping from the physical coordinate x to the reference coordinate ξ on the ref-

erence element Ωre f . The governing equation 4.1 is satisfied in the weak form for element by

integrating against the basis function as,

∫
Ωm

φk
m
∂

∂t
Uh

mdx +

∫
Ωm

φk
m∇.F (Uh)dx = 0, ∀k ∈ {1, 2, . . . , K}. (4.3)

Applying the divergence theorem and integrating by parts gives,

∫
Ωm

φk
m
∂

∂t
Uh

mdx =

∫
Ωm

(∇φk
m).F (Uh

m)dx −
∫
∂Ωm

φk
m(F̃ .n−)ds. (4.4)

The common flux values at the element interface are denoted as F̃ and must be multiplied with

element’s outward normal n− to complete the weak form of governing equation 4.1. In order to

explain the evaluation of the flux terms, first a description of the recovery concept is provided.

4.3.1 Recovery

The RADG schemes for advection problems proposed by Khieu & Johnsen (2014) and extended by

Johnson (2019), employ the recovery operator as a tool approximate the solution U along element-

element interfaces and results in orders of accuracy of 2p + 2 in the cell-average norm. The

recovery concept originates from the observation that the discontinuous polynomial form of Uh is

an attempt to replicate some globally smooth, underlying exact solution U (van Leer & Nomura,

2005). The guiding principle is to recover this underlying solution over a subdomain of the global
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spatial domain Ω. To keep the stencil compact, this subdomain is always chosen to be the union

of two adjacent elements.

Consider a union of two adjacent elements,U =ΩA ∪ ΩB with same polynomial order p. For

each union, a recovery coordinate r must be defined; the origin of this coordinate is the interface

centroid. A recovery basis ψ, supported over U, is defined with the recovery coordinate r. For

this work, Legendre basis for ψ are used. The recovered solution over the union is defined as a

2K-dimensional polynomial expansion in the recovery basis

f (r) =

2K∑
n=1

Ψn(r) f̂ n, (4.5)

where the 2K coefficients in the recovered solution require 2K constraints. Now, let W be some

arbitrary variable approximated in the DG solution space over ΩA and ΩB (for example W = Uh).

The recovered solution Johnson & Johnsen (2019) is required to be weakly equivalent to Wh
A and

Wh
B overU with respect to the K DG basis functions of ΩA and the K DG basis functions of ΩB.

∫
ΩA

φk
A f dx =

∫
ΩA

φk
AWh

A dx ∀k ∈ {1, 2, . . . , K}, (4.6a)

∫
ΩB

φk
B f dx =

∫
ΩB

φk
BWh

B dx ∀k ∈ {1, 2, . . . , K}. (4.6b)

Discrete recovery operator

The constraints of equation 4.6 can be recast in matrix-vector form for a given variable, where the

coefficients f̂ are calculated directly from a combined coefficient vector, [ŴA; ŴB; ], using a single

matrix-vector multiplication. The recovery procedure is used exclusively to calculate the interface

quantity f (0) given the coefficients Ŵ of ΩA and ΩB.
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∫
ΩA

ψφ0
Adx

...∫
ΩA

ψφK−1
A dx

− − −∫
ΩB

ψφ0
Bdx

...∫
ΩB

ψφK−1
B dx

︸             ︷︷             ︸
2K×2K


f̂ 0

...

f̂ K−1

 =



∫
ΩA

φAφ
0
Adx 01×K

...
...∫

ΩA

φAφ
K−1
A dx 01×K

− − − − − −

01×K

∫
ΩB

φBφ
0
Bdx

...
...

01×K

∫
ΩB

φBφ
K−1
B dx

︸                                  ︷︷                                  ︸
2K×2K

 ÛA

ÛB

 (4.7)

In practice, this entire process is stored in the discrete recovery operator, R, for a given interface

f (r = 0) = R

 ÛA

ÛB

 (4.8)

where R has 2K columns and as many rows as the the number of quadrature points along the given

interface. In the implementation used in this work, R is precomputed for each interface and can be

used whenever a recovery operation is required to be performed.

Derivative-based recovery

The discrete recovery operator implementation detailed above relies on the formation of the recov-

ery coordinate, the recovery basis, and the inversion of a linear system for each element-element

interface in the domain. These operations are simpler to implement in 1D, however, in multi-

dimensional case the recovery operator can become ill-conditioned (Johnson & Johnsen, 2019) on

non-cartesian meshes, which threatens the scheme stability and accuracy. Johnson (2019) proposed

a new derivative-based recovery implementation, which is free of recovery basis and the inversion

of the associated linear system in equation 4.8, and replicates the accuracy of the typical recovery

system on 1D meshes and 2D Cartesian meshes. The derivative-based recovery operation depends
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on recovery weights C and takes the following form for arbitrary solution order p

f (r = 0) =
(
C0Uh

A + (1 −C0)Uh
B

)
|x=xI +

p∑
j=1

C j

(
∂ j

∂r j U
h
A −

∂ j

∂r j U
h
B

)
|x=xI (4.9)

where the derivatives are evaluated by direct differentiation of the DG basis functions and all

quantities are evaluated at the element-element interface (x = xI). The derivatives are written in

terms of the recovery coordinate r, which points out of ΩA into ΩB

r(x) =
(x − xI).n−A

h
. (4.10)

Here h is the uniform element width for a given uniform structured grid. As the difference in the

derivatives vanishes, the interface approximation tends towards a linear combination of Uh
A and

Uh
B. In cases where the derivative differences are nonzero, the recovery operation uses the jumps

in the derivatives to form a correction to the interface approximation. In practice, the derivatives

with respect to r in equation 4.9 are populated via the derivatives of the DG basis functions of an

element, given as
∂ j

∂r j U
h
m =

K−1∑
k=0

Ûm
∂ j

∂r jφ
k
m. (4.11)

Since the transformation from x to r is linear, each
(
∂ jφ/∂r j

)
is obtained as follows:

∂

∂r
φ = h

D∑
a=1

na
∂

∂xa
φ,

∂2

∂r2φ = h2
D∑

a=1

D∑
b=1

nanb
∂2

∂xa∂xb
φ,

∂3

∂r3φ = h3
D∑

a=1

D∑
b=1

D∑
c=1

nanbnc
∂3

∂xa∂xb∂xc
φ, etc.

(4.12)

The recovery weights C are functions of the type of recovery and the mesh uniformity index

Q = (hA − hB)/(hA + hB), which goes to zero for a uniform structured grid where hA = hB = h.

For details regarding the evaluation of C and application of derivative-based recovery, readers are
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directed to Johnson (2019).

4.3.2 The steps in residual update

Equation 4.4 can be conveniently re-written, where the term on the left-hand side is expanded by

using the definition in equation 4.2 which gives a K × K mass matrix Mm of the element Ωm that

depends only on the element’s geometry and set of basis functions φm. Additionally, the spatial

residual terms for a given element can be collected in a single residual vector Rm. The mass matrix

can be inverted to directly calculate the temporal derivatives of the degrees of freedom Ûm,

Mrow,col
m =

∫
Ωm

φrow
m φcol

m dx, (4.13a)

Rrow
m (Uh) =

∫
Ωm

(∇φk
m).F (Uh

m)dx −
∫
∂Ωm

φk
m(F̃ .n−)ds, (4.13b)

∂

∂t
Ûm = M−1

m Rm(Uh). (4.13c)

The evaluation of the residual term at every time-step can be further broken down into the

following steps:

1. Collocate Uh on the interface points and use recovery to get high-order solution approxima-

tions. Consider a quadrature point xg along the interface I = ∂ΩA ∩ ∂ΩB shared by ΩA and

ΩB. Let UL and UR be the competing limits of Uh from inside ΩA and ΩB, respectively, at

xg:

UL = lim
x→xg

ŨA, UR = lim
x→xg

ŨB. (4.14)

where ŨA = R[ÛA; ÛB] is the recovered approximation of Uh
A in ΩA and similar for ΩB.

2. Evaluate the common flux F̃ at each quadrature point xg along the interface I = ∂ΩA∩∂ΩB,
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by passing the UL and UR to a Reimann solver

F̃ = Rie
(
UL|xg ,UR|xg ,n

−
A

)
(4.15)

where n−A is the outward normal from ΩA at each xg.

3. Evaluate the solution approximations Uh
m at each interior quadrature point within each ele-

ment Ωm.

4. Over the interior of each Ωm, the flux function F is directly calculated using the DG approx-

imation Uh
m.

4.3.3 Temporal discretization

The DG spatial discretization is typically paired with an explicit time integration method to inte-

grate forward in time from some initial condition U(x, 0). For example, if applying the forward

Euler method, then Ûm(t+∆t) = Ûm(t)+∆t.M−1
m Rm(Uh(t)) for each element Ωm, where the timestep

size ∆t is determined based on the Courant-Friedrichs-Lewy (CFL) constraint. A popular choice

with DG methods is the explicit, four-stage, fourth-order Runge-Kutta method (Cockburn et al.,

1989; Gottlieb & Shu, 1998; Schwartzkopff et al., 2004; Johnson & Johnsen, 2019).

From the perspective of arithmetic intensity for the RADG discretizations of hyperbolic prob-

lems, it is most informative to consider the evaluation of the residual term (effectively, the right-

hand side (RHS) of the equation 4.13. The majority of floating-point operations occur in the

evaluation of this RHS vector. For multi-stage methods like Runge-Kutta, the residual will be

computed at least once for each stage, and the predicted states resulting from the stage evaluations

are weighted and summed. Given that the RHS evaluation is dominant, the details of the time-

stepping are not considered and the focus of this work will be the approximation of the RHS of

equation 4.13.
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4.4 Analysis of arithmetic intensity

This section derives the equations for the floating-point operations (FLOP) and data transfer costs

of the methods as functions of the box size, the number of dimensions of the problem, and the order

of accuracy. A box-structured grid is employed for the present analysis. For large-scale problems,

it is common to subdivide the domain into smaller rectangular boxes that can be computed in

parallel. At each step, boxes are surrounded by a layer of ghost cells containing the neighboring

data upon which the box is dependent, allowing computation in boxes to be done independently.

At the edge of the problem domain, boundary data fill the ghost cells. Boxes are distributed over

processors, with each box assigned to one processor. A processor may possess multiple boxes,

which can be computed in parallel on a multi-core processor, either by assigning a thread to each

box or by assigning multiple threads within a box. At the beginning of each step (and as necessary

during a step), processors communicate to exchange ghost data.

Let, W be the number of ghost cells needed on each side, in each direction. Thus the total

number of ghost cells surrounding a box of length N per side in D dimensions is

Ng = (N + 2W)D
− ND. (4.16)

Figure 4.2 shows a graphical illustration of a 2D box-structured grid employed for RADG dis-

cretization with W = 1. Note that the corner ghost cells may not be required, but to keep the

analysis simple the corresponding costs are included. Furthermore, it is assumed that only one

box is loaded per node and all ghost-filling operations are performed off-node. Except for the

cost of the Riemann solver and the cost of the flux function, the FLOP and data transfer costs in-

crease proportionally to the number of system components. Therefore, without loss of generality,

the single-component case is considered. The costs of the Riemann solver and flux function are

problem-specific, so we leave their costs as parameters in the expressions, denoting their FLOP

costs per face as fR and fF respectively.
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Figure 4.2: Graphical illustration of a 2D box-structured grid employed for RADG methods. Blue
elements constitute the domain of interest and the outer grey elements form the ghost cell region.
For RADG, the ghost cell width is W = 1, giving a total of (N + 2W) elements in each direction.

To derive the bounds on the arithmetic intensity for RADG discretization applied to hyper-

bolic systems, first a degenerate case of no-cache is considered, which is analogous to poor cache

utilization (Olschanowsky et al., 2014). This provides an upper bound on the number of data trans-

fers that must be performed, and thus providing a lower bound on the arithmetic intensity. Then

a fictional infinite-size cache is considered, which provides a lower bound on the number of data

transfers and a limit to performance in the ideal scenario. For a more practical implementation, a

finite-size cache is considered and number of operations are counted for a simple tiling strategy.

4.4.1 Machine model and operation costs

For the purposes of calculating arithmetic intensity, the following abstract machine model is as-

sumed. The machine is composed of a processor and two levels of memory: an unlimited amount

of slow memory and a limited amount of fast memory. Data can be transferred in both directions

between slow and fast memory. Data transferred to a location in either memory overwrites the

previous value held there. At the start of processing, all data are stored in the slow memory and
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the fast memory is empty. Computation is only performed by the processor on data residing in the

fast memory, so any data to be operated on must first be transferred from slow memory. Computa-

tion takes the form of arithmetic operations that load one or more operands from fast memory and

return the result of the computation back to fast memory, never to slow memory. Computation is

not considered complete until the final results are stored back in the slow memory.

The two costs in this model are the data transfers between the slow and fast memory, and the

cost of arithmetic operations. All data transfers are assumed to have the same cost whether to

or from the fast memory and all arithmetic operations are considered to have the same costs. In

particular, the method requires only addition and multiplication operations. Fractional terms, such

as the derivative-based recovery coefficients, can be assumed to be pre-computed by the compiler,

so we assume the method to be free of division operations. To count the number of operations, the

definition of a FLOP is adopted from Golub & Van Loan (2012), where the common operations

such as the vectorized and fused-multiply-add (FMA) operations on modern central processors

(CPUs) and accelerators, are decomposed into their respective stand-alone operations. Therefore,

if vectorized addition of two vectors −→a and
−→
b of length four each results in a new vector −→c =

−→a +
−→
b

of length four, then the number of operations is taken to be four.

Clearly the computation and data transfer costs for the algorithm are both minimized if the size

of fast memory is large enough to hold all intermediate results. In other words, if the only data

transfers that occur are at the beginning of the problem, when loading the entire problem data into

fast memory, and at the end, when transferring the final result to slow memory. In general, the size

of fast memory is too small (∼ 2.5 MB per core on modern HPC platforms, Loffeld & Hittinger,

2019; top, 2019), so additional memory transfers of intermediate results are necessary. Note that

the case of unlimited fast memory is not necessarily an upper bound on arithmetic intensity. To

minimize the amount of data that must be kept in fast memory, an implementation might redun-

dantly compute some intermediate results such as ghost cell data, and this can actually increase

the arithmetic intensity over the optimal case. However, the number of operations would increase

as well, possibly to a degree resulting in a net loss in performance. Therefore, a tiling strategy
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Figure 4.3: Illustration of a 2D element showing the interior (Qv in yellow) and interface (Qs in
orange) quadrature points for p = 2. Here Qs = (p+1) = 3 for each interface, and Qv = (p+1)2 = 9.

with an arithmetic intensity that is higher than in the infinite-cache case would not necessarily be

a higher-performing strategy. The infinite-cache case is simply the case that minimizes the total

number of operations of the algorithm.

4.4.2 No-cache case

The no-cache case provides a lower bound on the arithmetic intensity in the case when the cache is

poorly utilized. It is assumed that there is just enough local storage (fast memory) to hold all data

needed to perform computations at each cell or face, but when moving to a new cell or face, the

required data must be loaded from slow memory. In addition, it is assumed there is no reuse of data

between steps. Since there is no use of cache and because each computation must load its operands

anew, multi-threading does not affect the total number of data transfers or flop computations.

Figure 4.3 shows an illustration of a 2D element. For a DG order p, the number of degrees of

freedom K = (p + 1)D, for a D-dimensional problem. The interior quadrature points Qv = K, and

the quadrature points on each face is Qs = (p + 1)D−1. Table 4.1 lists the steps in residual update

(section 4.3) and the formula for FLOP count of each step, while table 4.2 lists the cost of data

transfer for each step. For illustration, the cost breakdown for the first step is explained.
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# Calculation FLOP
1 UL or UR, at interface quad. points 2(Qs × 4K) × Nv

2 F̃ (UL, UR), at interface quad. points ( fR × Qs) × Nv

3 Uh at interior quad. points (Qv × 2K) × ND

4 F (Uh) at interior quad. points ( fF × D × Qv) × ND

Table 4.1: Floating-point operations (FLOP) per step for no-cache case.

# Calculation data transfer
1 UL or UR, at interface quad. points 2(R + 2Qv + Qs) × Nv

2 F̃ (UL, UR), at interface quad. points (3Qs) × Nv

3 Uh at interior quad. points (2Qv) × ND

4 F (Uh) at interior quad. points (2D + 1) × Qv × ND

Table 4.2: Data transfers per step for no-cache case.

Floating-point operations: Step 1. Evaluate UL and UR at the interface between neighboring

elements. For each face of the element,

(i) Evaluate a recovered approximation Ũ using the discrete recovery operator R which is a

matrix of size Qs × 2K, resulting in a total of Qs × 4K operations per interface.

To determine the number of faces, for a box containing (N + 2W) elements along any direction D,

there are (N + 2W + 1) planes of faces that touch the interior (N + 2W)D cells of a box. There are

(N + 2W) cells in each of the (D − 1) directions transverse to each plane; recall that the additional

2W cells per direction are the ghost cells needed. Thus, the number of faces in any plane is

(N + 2W)D−1, there are (N + 2W + 1) planes per direction, and there are D directions for a total of

Nv = D(N + 2W + 1)(N + 2W)D−1 faces that must be computed in this step.

For each interface, step 1 requires UL and UR. Thus the recovery is performed twice, one for

each of the two neighboring elements. This gives the total FLOP count for step 1: 2(Qs×4K)×Nv.

Here and in subsequent estimates, the count is approximate as recovery is performed at all faces in

the ghost regions, even if they are not used in the final update. This is a small number of additional

faces (relative to the used faces) because they occur near the outer edges of the (N + 2W)D box.

Data transfers: In Step 1 of the residual update, for each interface of each element
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Figure 4.4: Arithmetic intensity for the no-cache case for RADG method with varying polynomial
order:− −, p = 1; , p = 2; , p = 3; , p = 4; , p = 5; , p = 6.

(i) Load the precomputed recovery operator. One R load.

(ii) Load the degrees of freedoms of both the neighboring elements. 2Qv loads.

(iii) Store the recovered value (Ũ) at each quadrature along the interface. Qs stores.

As explained in the FLOP case, the total number of faces computed is Nv = D(N + 2W + 1)(N +

2W)D−1. Step 1 requires the evaluation of UL and UR at each interface, and thus total data transfer

needed are 2(R + 2Qv + Qs) × Nv. Note that when using double-precision floating-point values,

each transfer is 8 Bytes.

Figure 4.4 shows the arithmetic intensity for RADG orders p = 1 through 6 for the no-cache

case. For box length N ≤ 128, the arithmetic intensity values are below 0.4. In the asymptotic

limit, the maximum arithmetic intensity is achieved by p = 6, with an intensity of 0.37 for a 2D

problem and 0.39 for a 3D problem. Current machines have a flops-to-byte ratio of five or greater

(Williams et al., 2009). As expected, without a cache, a significant arithmetic intensity is not

achievable. Additionally, at large box sizes, the arithmetic intensity is independent of N as with

no-cache, the amount of data transferred is often proportional to the number of operations (Loffeld

& Hittinger, 2019).
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# Calculation data transfer
1 UL or UR, at interface quad. points Qv × (N + 2W)D + (R + 2Qs) × Nv

2 F̃ (UL, UR), at interface quad. points (3Qs) × Nv

3 Uh at interior quad. points (2Qv) × ND

4 F (Uh) at interior quad. points (2D + 1) × Qv × ND

Table 4.3: Data transfers per step for infinite-size cache case.

4.4.3 Infinite-size cache case

Consider an idealized machine with an infinite cache. The number of data values that must be

loaded in each step consists of the entire box’s worth of cells or faces that must be used to compute

each step. Each value must be transferred exactly once. Likewise, the entire box’s worth of results

must be written at the end of the step. Multi-threading may allow the values to be loaded or stored

more quickly, but does not change the total number of values that must be transferred, and therefore

the formulas are agnostic to multi-threading in this case.

The number of floating-point operations computed is identical to the no-cache case, so the

expressions for FLOP counts are those in table 4.1. The data transfers for the infinite-size cache

case is listed in table 4.3. Since the cache is infinite in size, the number of loads in each step is

simply the number of cells or faces that must be touched for input, and the number of stores is the

number of cells or faces written to for output. The breakdown for the first step is described as an

example.

Data transfers: In Step 1 of the residual update, for the entire domain

(i) Load the precomputed recovery operator for all the interfaces. R × Nv loads.

(ii) Load the degrees of freedoms of all the elements. Qv × (N + 2W)D loads.

(iii) Store the recovered values (Ũ) at quadrature points along all the interface. 2Qs × Nv stores.

The total data transfers for step 1 are Qv × (N + 2W)D + (R + 2Qs) × Nv. Similar to the no-cache

case, the corner ghost cell data may not be needed, but for simplicity it is included in this analysis.
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Figure 4.5: Arithmetic intensity for the infinite-size cache case for RADG method with varying
polynomial order:− −, p = 1; , p = 2; , p = 3; , p = 4; , p = 5; , p = 6.

Figure 4.5 shows the arithmetic intensity for RADG orders p = 1 through 6 for the infinite-

size cache case. For 2D and 3D problems, the arithmetic intensity is less than 1.0. Most current

machines have a flops-to-byte ratio of five or greater (Williams et al., 2009). For lower order p

in 2D, the large amount of data transfers per step increases with the box size and overshadows

the increase in FLOP, which results in performance degradation. Therefore, in practice, a high

arithmetic intensity is not achievable without keeping data in cache between steps.

In the idealized case of an infinite-size cache, all data between steps is kept in the cache and

only the input data for the first step and the final result at the last step is transferred. The total

number of flops is still the sum over all steps. Figure 4.6 shows the arithmetic intensity in such

a case for 2D and 3D problems. The aggregate arithmetic intensity is much higher than the per-

step arithmetic intensity. For 2D problems, when the box size has length N = 128, the arithmetic

intensity of the RADG method with order p = 6 is slightly under 8, which is approximately

the machine balance for most current mid-life production HPC machines such as Intel-Knights-

Landing-based machines (XSEDE Stamede2, Koskela et al., 2018). The corresponding arithmetic

intensity for the p = 3 method is around 4. While not high enough to reach the machine balance of

most machines, it is still a large improvement over low-order methods. For p = 1, the arithmetic

intensity is approximately 2 only. For 3D problems, when the box size is of length 128, the p = 3
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Figure 4.6: Arithmetic intensity for RADG method when using cubicle tiles of length N with
varying polynomial order:− −, p = 1; , p = 2; , p = 3; , p = 4; , p = 5; ,
p = 6.

method achieves an arithmetic intensity of about 15, which is on par with state-of-the-art machines

(OLCF’s Summit, YarKhan et al., 2019). For the same box size, p = 6 achieves an arithmetic

intensity over 30.

The arithmetic intensities for the idealized case suggest that the methods have the potential to

improve machine utilization, provided the cache can retain most intermediate data between steps.

Of course, the caches on physical machines do not have an infinite size, so a tiling strategy is

required to make good use of the cache. The arithmetic intensities under a simple tiling strategy is

considered in the next subsection.

4.4.4 Finite-size cache case

A simple approach to using a finite-size cache is to divide the box into cubical tiles. Figure 4.7

illustrates the subdivision of a cubicle box and the data that is kept in the cache in this case. The

starting box is depicted as the outer box with dashed lines. The box is partitioned further into

cubical tiles of length T . Table 4.4 lists the data transfer for the case with a finite-size cache. Three

types of data are used when computing the residual over a tile.

(i) A T D cube of elements that hold the accumulating residual, depicted in figure 4.6 as the inner
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Figure 4.7: Illustration of a tiling strategy to subdivide a domain into cubical tiles.

# Calculation data transfer
1 UL or UR, at interface quad. points Qv × (T D + (T + 2W)D) + R × 2D(T + 2W)D−1

2 F̃ (UL, UR), at interface quad. points -
3 Uh at interior quad. points -
4 F (Uh) at interior quad. points Qv × T D

Table 4.4: Data transfers per step for finite-size cache case with cubical tiles of length T .

cube of the tile. The flux divergence data must be re-accessed for each change in direction

in order to accumulate the contribution of the flux divergence from that direction. As such,

it is ideally kept in cache to avoid an additional transfer from slow memory for each change

in direction.

(ii) An extended cube of (T + 2W)D, shown as the outer surrounding cube of the tile, holds

the starting elemental data, including the ghost cell dependencies of width W. This data

also must be re- accessed for each change of direction, so ideally is kept in cache to avoid

multiple transfers from slow memory.

(iii) Finally import the discrete recovery operator precomputed at all interfaces.

Thus the total amount of data that must be kept in cache per tile is Qv × (T D + (T + 2W)D) + R ×

2D(T + 2W)D−1.

Tiling in this manner is equivalent to subdividing the problem domain into boxes, except that
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data for the ghost cells around the box is not duplicated through explicit ghost cell exchange, but

rather is taken from the shared array of input values. For now, it is assumed that none of the ghost

cell data overlapping with neighboring tiles carries over within the cache when moving between

tiles. This suggests that the expressions for the FLOP in table 4.1 as well as the arithmetic intensity

from figure 4.6, are directly applicable to this case. The size N in the formulas is reinterpreted as

the length of the tile, T , such that the tile size is restricted to fit within the cache.

As discussed earlier, multi-threading would not affect the total number of operations within a

box, and that holds even for a tile. However, if the tiles are computed concurrently, the ordering

of when tiles are computed could be affected. Since the analysis presented here conservatively

assumes that the ghost cell data are never already in the cache, multi-threading over tiles does not

change the expressions for the number of operations that must be performed. Multi-threading can

change the rate (bandwidth and FLOP rate) at which the operations are performed, but does not

affect the balance of operations (arithmetic intensity).

While using cubicle tiles for finite-size cache shows great improvements in balance of opera-

tions, it must be noted that the arithmetic intensity is smaller when partitioning into smaller regions

than large ones, as seen in figure 4.6, so the constraint on the size of the tile limits the maximum

achievable arithmetic intensity. In addition, the ghost cell data overlapping with a neighboring tile

need to be reloaded when moving to that tile, which increases the total communication volume due

to some values being reloaded multiple times. The estimate of data transfer overhead of tiling, as

the increase in data transfers that must be enacted from computing the residual for a box through

tiling versus the data transfers for computing without tiling using an infinite-size cache, is given as

mD × (cost of data transfer per tile)
(cost of data transfer per box with infinite cache)

. (4.17)

Here it is assumed that the length of each tile divides the box length evenly, that is, N = m × T .

Figure 4.8a shows the overhead on 3D problems when subdividing a box of size N = 1283 into

sub-tiles. The data transfer overhead becomes exorbitant if the tile length becomes much smaller
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(b) Required cache size for 3D tiles of length up to
64 on each side.

Figure 4.8: Data transfer overhead and cache size requirement for RADG method with varying
polynomial order:− −, p = 1; , p = 2; , p = 3; , p = 4; , p = 5; , p = 6.

than T = 32 in length. In particular, the overhead when T = 32 for p = 6 method is three times the

cost without tiling and that of p = 3 method is approximately two times the cost without tiling.

Figure 4.8b shows the cache space requirements per component for 3D problems. For p = 6,

the tile of length T = 1 requires 15 MB of cache space, whereas p = 3 requires approximately 1.5

MB for a T = 1 tile. Last-level caches on current HPC-grade machines are sized to approximately

2 to 2.5 MB per core. Therefore, the space requirements for a single-component 3D problem at

higher p cannot fit into the last level of cache sizes of current machines. In addition, the governing

equations of many problems of interest are multi-component. The Euler equations, for example,

have five components in 3D. Therefore, a better implementation of RADG discretization along

with a more economical caching strategy would be needed to realize the full arithmetic intensity

on 3D problems.

4.4.5 Lowering the cache space requirement for 3D problems

Up until now, the Step 1 of residual update was considered to use the discrete recovery operator

R, which was precomputed for each interface and stored. Thus, in the evaluation of Step 1, R of

each interface his loaded from the slow to the fast memory. As an alternative, the derivative-based
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# Calculation data transfer
1 UL or UR, at interface quad. points Qv × (T D + (T + 2W)D) + Qs × D(T + 2W + 1)(T + 2W)D−1

2 F̃ (UL, UR), at interface quad. points -
3 Uh at interior quad. points -
4 F (Uh) at interior quad. points Qv × T D

Table 4.5: Data transfers per step for finite-size cache case with cubical tiles of length T for
derivative-based recovery.
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Figure 4.9: Arithmetic intensity for the finite-size cache case with derivative-based recovery for
RADG method with varying polynomial order:− −, p = 1; , p = 2; , p = 3; , p = 4;

, p = 5; , p = 6.

recovery operation is implemented. Johnson (2019) formulated the derivative-based approach and

verified the accuracy to be same as the discrete operator on 2D and 3D cartesian meshes. Using the

definition of derivative-based recovery from equation 4.9, the total number of operations performed

at each quadrature point is on the order 4K, and thus the FLOP count is same as that described in

table 4.1. Since no discrete operator is saved, the number of loads for step 1 are reduced. The

expected data transfers for this approach are listed in table 4.5.

Figure 4.9 shows the arithmetic intensity for the derivative-based recovery for the case of finite-

size cache with cubical tiling. Due to increased FLOP the arithmetic intensity sees significant

improvement. The efficiency at larger tile sizes decreases because the data residing in the memory
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64 on each side.

Figure 4.10: Data transfer overhead and cache size requirement for RADG method with derivative-
based recovery with varying polynomial order:− −, p = 1; , p = 2; , p = 3; , p = 4;

, p = 5; , p = 6.

increases faster than the FLOP count, thus resulting in a decrease in arithmetic intensity. At tile

length T ≤ 8, the arithmetic intensity for p = 6 is approximately 90, over 20 for p = 3, and about

3.5 for p = 1. Furthermore, the derivative-based implementation relaxes the cache requirements.

Figure 4.10 shows the estimate of data transfer overhead due to tiling, similar to figure 4.8, and

the cache requirements. For p = 6, the data transfer overhead for tile length T ≤ 32 is reduced.

In particular, for T = 8, the data transfer overhead is 1.2 times the cost without tiling. Compared

to the discrete recovery operator implementation, the derivative-based recovery implementation of

reduces the cache size required such that for p = 6, tile of length that can be loaded in 1 MB of

cache has increased to T = 4. Reduction of cache size is valid for lower order p as well, where

the tile length requiring 1 MB of cache storage has increased to T = 8 for p = 3, and T = 16 for

p = 1.

Additional reduction in the cache size requirements can be made by exploring more economical

caching strategies. A simple modification to the cubical tiling was proposed by Loffeld & Hittinger

(2019), where flattened rectangular tiles of size 32 × 32 × 8 were used for an eighth-order finite-

volume scheme, and reported that the cache requirement reduced by half. A similar strategy can be
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Figure 4.11: Vertical flattened rectangular tile iteration.

employed here. While the reduced volume of tile would require less space in the cache, the trade-

off would be that the surface-to-volume ratio of the tile would increase, resulting in higher overhead

for reloading of the ghost cell data. This can be avoided by moving from tile to tile in a vertically

iterated manner. Figure 4.11 illustrates this tiling strategy. For every tile-wide column in the box,

the first tile is computed at the bottom of the column, which is followed by the tile immediately

above it and so on, until the column is completely computed and then a new column is chosen. In a

multi-threading situation, threads would be assigned to columns. It is conservatively assumed that

neighboring columns do not share ghost cell data through the cache. By iterating vertically in this

manner, the ghost cell data at the bottom of a tile are still in cache from the previous tile. Part of

the non-ghost cell data is as well, but for simplicity it is assumed that the data is re-fetched.

For a 3D problem with tile sizes of T × T × H, where H is the height of the tile, the amount of

cache space taken up becomes

Qv(H + 2W)(T + 2W)2 + Qv(HT 2) + QsNF ,

where NF = 2(T + 2W + 1)(T + 2W)(H + 2W) + (H + 2W + 1)(T + 2W)2 is the total number of

interfaces in each rectangular tile. From figure 4.10 we observe that for p = 6, a cubical tile T = 8

requires 5.5 MB of cache. Therefore, a flattened rectangular tile of size 8× 8× 2 is selected, which
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p Tile dim. cache size (MB) Arith. Intensity
1 323 8.5 3.0
1 32 × 32 × 4 1.4* 3.3*

3 323 52.4 17.2
3 32 × 32 × 4 8.5 19.5
3 163 17.5 18.4
3 16 × 16 × 4 2.3* 20.2*

6 323 245.3 75.8
6 32 × 32 × 4 39 87.8
6 163 34.4 82
6 16 × 16 × 4 10.6 91.7
6 83 5.5 93
6 8 × 8 × 4 3.1* 98.6*
6 8 × 8 × 2 2* 106.3*

Table 4.6: The difference in costs of the cubical versus vertically iterated caching strategy.
(*) marked entries suggest an optimal tile size.

reduces the cache space requirement to 2 MB. Similarly for p = 3, the rectangular tile of size

16×16×4 reduces the cache requirement from 8 MB to 2.3 MB. Table 4.6 lists the values of cache

size and arithmetic intensity for different DG orders with different cache tiling. Note that for the

flattened rectangular tile, the arithmetic intensity is enhanced compared to its cubical counterpart.

4.5 Numerical experiments

To verify the arithmetic intensity predictions, the RADG methods from orders one through six,

with discrete recovery operator, were implemented in C++, and hardware performance counters

on a node of an Intel-Knights-Landing-based XSEDE Stampede2 system were used to measure the

floating-point operations (FLOP) and data transfers. The counters were read through the Intel Ad-

visor XE (O’Leary et al., 2017), which provides the related statistic of flops/byte or the arithmetic

intensity. Only the steps of the method as described in section 4.3.2 were tested. Each measurement

was for a single evaluation of the right-hand side of the equation 4.13, and no time integration was

performed. A node on Intel-Knights-Landing-based Stampede2(Towns et al., 2014) has 68 64-bit
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Figure 4.12: Measured versus predicted arithmetic intensity on cubical sub-tiles.

cores. The L2 cache is 1 MB per two-core tile, with a Multi-Channel Dynamic Random Access

Memory (MCDRAM) operating as 16GB direct-mapped L3. Each core has 4 hardware threads,

and slow DDR4 memory of 96GB per node.

A 3D single-component test problem is conducted, where the data are initialized with random

numbers (Loffeld & Hittinger, 2019). A single thread measures the arithmetic intensities for a

single tile. The sizes of the tiles are 4, 16, 32, and 64 in length on a side. Since the cost of the

flux function is ignored in the theoretical models, a no-op flux function is used, which makes no

changes to the inputs (a no-op function). Recall that the flux function is assumed to operate on the

input data in-place, so there is no additional data transfer cost for the flux function if the data is

read from the cache. A no-op function is similarly used for the Riemann solver. Since there is no

flux function or Riemann solver, the cost of the method is wholly independent of the content of the

data.

Figure 4.12 shows the measured arithmetic intensity of the numerical test. The measured num-

ber of bytes moved is always greater than the predicted values by a fixed constant. As a result

the measured arithmetic intensity is lower than the predicted arithmetic intensity. This overhead

is more evident for the 2D case at small tile sizes, because the amount of data moved on small

problems is modest enough that the a small number of cache line overhead becomes of size similar
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to the predicted total data movement. However, for the 3D problems the data movement remains

large compared to the overhead, even when the length per side is small.

4.6 Conclusions

For scientific calculations, it is challenging to efficiently utilize the full floating-point capability

of a machine. On-node performance of an application needs to emphasized along with parallel

scalability for optimal algorithm design. With data motion increasingly becoming the dominant

cost, algorithms that fail to make efficient use of every byte transferred will likely be bandwidth-

limited. The algorithmic intensity of a method should therefore be an important design criterion.

A class of recovery-assisted discontinuous Galerkin (RADG) methods, used for spatial dis-

cretization of hyperbolic conservation laws, achieves higher arithmetic intensities. Estimates for

three cache models are developed—the lower bound case of no-cache, an ideal case of infinite-size

cache, and a finite-sized cache. Theory and numerical experiments suggest that RADG methods

achieve high arithmetic intensity, which is necessary to better utilize on-node floating-point capa-

bility of modern HPC systems.

The present study is limited to DG approximation of smooth solutions and does not consider

the nonlinear treatment necessary to capture discontinuities such as in the case of shocks. Solution

limiting performs in-place operations on data already loaded in the cache which is expected to

contribute to increase in arithmetic intensity. In addition, applications are mapped onto number

of nodes, and data transfer between nodes will add overheads. Finally in this work it was shown

that high algorithmic intensity can be achieved but requires hand optimization of code. In prac-

tice, many applications are written for modularity and maintainability, which poses challenge for

optimization and necessitates further investigation.
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CHAPTER 5

Enabling Power-Performance Balance with Transprecision

Calculations for Extreme-Scale Computations of Turbulent

Flows

This chapter is adapter from Tandon et al. (2020c). In modern scientific computing, the execu-

tion of floating-point operations emerges as a major contributor to the energy consumption of a

compute-intensive applications with large dynamic range. Experimental evidence shows that over

50% of the energy consumed by a core and its data memory is related to floating-point compu-

tations. The adoption of floating-point formats requiring lesser number of bits is an interesting

opportunity to reduce the energy consumption as it allows simplification of the arithmetic circuitry

and reduces the memory bandwidth required to transfer the data between memory and registers. In

theory, the adoption of multiple floating-point types following the principle of transprecision com-

puting allows fine-grained control of floating-point arithmetic while meeting the desired standards

on the accuracy of the final result. In this paper, the power-performance trade-offs for computing

at different precision levels is analyzed for a parallel and distributed framework based on recovery-

assisted discontinuous Galerkin (RADG) methods. The recovery operator of the RADG, operates

on a compact support from neighboring elements and allows high-order approximation of the so-

lution, with potential for massive parallelism. Using PoLiMEr – a power monitoring and manage-

ment tool for HPC applications – fine-grained insights into the power characteristics of the RADG

code on the supercomputer Theta at Argonne National Laboratory are presented. 3D benchmark
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tests indicate a savings of approximately 5 W per node with single precision computing. A mixed

precision approach where all computations except recovery operation is performed in single preci-

sion shows promising results, however, an automated approach for tuning floating-point types and

analyzing the floating-point sensitivity of variables and operations is desirable.

5.1 Introduction

In scientific computing today, most applications involving numerical computations with large dy-

namic range are typically performed using the double-precision (binary64) floating-point type,

described by the IEEE 754 standard (Zuras et al., 2008). In these applications, the execution of

floating-point operations (FLOP) constitutes a major contribution to the energy consumption. Ex-

perimental investigation (Gautschi et al., 2017) shows that more than 50% of the energy consump-

tion for a floating-point-intensive application comes from the FLOP and moving the floating-point

operands from data memory to registers and vice versa. Therefore, when such intensive calcu-

lations are performed at large-scale on current high-performance computing (HPC) centers, the

power consumption and temperature control pose a developmental bottleneck (Deng et al., 2013;

Dongarra et al., 2014); thus, power efficiency has garnered considerable concern in the supercom-

puting platform design and usage.

To advance science in the areas of climate science, ocean flow behavior, space sciences, biol-

ogy, complex materials and others, the compute power of supercomputers must continue to grow

(Brown et al., 2010). The end of Dennard’s scaling Dennard et al. (1974) has arrested increases

in clock speed of processors and the increase in compute power was achieved by adding more

computational units (CPUs). The CPU power consumption can be constrained by power capping

(David et al., 2010; Marincic et al., 2017) to a value below the CPU Thermal Design Power (TDP)

value, where TDP is the maximum amount of power that a node can draw. However, the increasing

component count per node drives the energy consumption (Langer et al., 2015), which suggests

that scaling petascale systems require exorbitantly high power consumption (200 MW, Brown
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et al., 2010). In addition, the size of memory on-chip has failed to keep up with the rising number

of components, which has increased memory latency and the cost of data motion (Ashby et al.,

2010). Therefore, driven by these challenges, the next-generation exascale systems will operate

under strict power budgets (20 MW, Lucas et al., 2014), and are expected to feature heterogenous

architectures. These architectural developments require new method development and redesign of

existing algorithms.

Research on high-order methods (Tan et al., 2005; Desjardins et al., 2008; Bermejo-Moreno

et al., 2013; Colella et al., 2011; Loffeld & Hittinger, 2019), which can achieve orders of accuracy

> 2, shows that these methods have low discretization errors and can achieve desired accuracy with

less number of data points, and therefore exhibit advantages over their low-order counterparts. This

attribute of high-order methods makes them more desirable, especially for complex flow problems.

High-order methods such as the discontinuous Galerkin (DG) method offer arbitrarily high orders

of accuracy by adding degrees of freedom to each element to represent the solution as a high-order

polynomial. Since the solution is allowed to be discontinuous across elements, the flux between

immediately adjacent elements is used to exchange information, which preserves a compact sten-

cil (Henry de Frahan, 2016). Thus, as demonstrated by Bey et al. (1995), Heinecke et al. (2014),

Houba et al. (2019), and others, the DG method exhibits good parallel scaling on modern HPC

platforms. The recovery-assisted DG method (RADG, Johnson & Johnsen, 2019) uses the infor-

mation from a pair of neighboring elements to recover a high-order DG approximation of the flux

at the interface of the two neighboring elements. The recovery procedure results in higher orders

of accuracy than conventional DG methods. While the DG methods present many advantages, the

large number of degrees of freedom inside each element, particularly for RADG methods, makes

them floating-point-intensive.

To reduce the power cost of floating-point-intensive calculations, the number of precision

bits in a floating-point representation can be reduced. Modern architectures offer wide range of

floating-point types, from double precision (binary64) to binary8 (Gustafson & Yonemoto, 2017).

To facilitate extreme-scale computations with RADG methods on emerging HPC platforms under
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restricted power budgets, this work analyzes the power-performance trade-offs when computing at

double and single precision. To gain valuable, fine-grained insights into power consumption char-

acteristics of RADG methods, an energy monitoring and power limiting interface for HPC appli-

cations, called PoLiMEr (Marincic et al., 2017), is used. A brief discussion of the RADG methods

and PoLiMEr is presented in the next section to highlight and identify the floating-point-intensive

calculations. For this work, the 3D Taylor-Green Vortex (TGV) problem (Taylor & Green, 1937)

is used as the benchmark test case. The test problem description and results of the numerical tests

will be explained in section 5.3 and the conclusions are stated in section 5.4.

5.2 RADG framework and PoLiMEr interface

This section introduces the recovery-assisted discontinuous Galerkin (RADG) discretization for

advection-diffusion systems of conservation laws and determines the floating-point intensity to

estimate the code performance for single and double precision. In addition, the details of the

power monitoring and management tool, PoLiMEr, is also provided.

5.2.1 Recovery-assisted discontinuous Galerkin (RADG) method

Consider the partial differential equation that describes an advection-diffusion system as:

∂U
∂t

+ ∇.F (U) − ∇.G(U,∇U) = 0, (5.1)

where U is the vector of conservative variables, F is the convective flux and G is the viscous

flux. The initial conditions for the system are defined as U(x, 0). The computational domain Ω, is

partitioned into Ne non-overlapping elements Ωm, such that Ω = ∪
Ne
m=1Ωm. The numerical solution

Uh within each element is a K−dimensional polynomial expansion within the solution space φm:

Uh(x ∈ Ωm) = Uh
m(ξ(x)) =

K∑
k=1

φk
m(ξ)Ûk

m (5.2)

119



where ξ(x) is a mapping from the physical coordinate x to the reference coordinate ξ on the ref-

erence element, Ωre f . The DG solution is defined by the K degrees of freedom (DOF) in each

element, denoted as Ûe in vector form. Each basis function has compact support, meaning that

each member of φm is nonzero only on Ωm. The governing equation (5.1) is satisfied in the weak

form over for every element element by integrating against the basis functions:

∫
Ωm

φk
m
∂

∂t
Uh

mdx =

∫
Ωm

φk
m∇.G(Uh,∇Uh)dx −

∫
Ωm

φk
m∇.F (Uh)dx, ∀k ∈ {1, 2, . . . , K}. (5.3)

Then, to allow communication between the neighboring elements and share common flux values

along the interfaces of an element, integration by parts is performed. These common fluxes are

denoted F̃ and G̃ and must be multiplied with the element’s outward normal, n−, to complete the

DG weak form

∫
Ωm

φk
m
∂

∂t
Uh

mdx =

∫
∂Ωm

φk
m(G̃.n−)ds −

∫
∂Ωm

φk
m(F̃ .n−)ds

−

∫
Ωm

(∇φk
m).(G(Uh

m,∇Uh
m) − F (Uh

m))dx, ∀k ∈ {1, 2, . . . , K}. (5.4)

Over the interior of each Ωm, the DG solution Uh
m is applied directly to calculate the advective flux

F . For the diffusive flux G, the gradient is approximated by an auxiliary variable σ (Johnson &

Johnsen, 2019).

Equation (5.4) can be conveniently re-written, where the term on the left-hand side is expanded

by using the definition in equation (5.2) which gives a K × K mass matrix (Mm) of the element

Ωm that depends only on the element’s geometry and set of basis functions φm. Additionally, the

spatial residual terms for a given element can be collected in a single residual vector (Rm). The

120



mass matrix can be inverted to directly calculate the temporal derivatives of the DOF vector:

Mrow,col
m =

∫
Ωm

φrow
m φcol

m dx, (5.5a)

Rrow
m (Uh) =

∫
∂Ωm

φk
m(G̃.n−)ds −

∫
∂Ωm

φk
m(F̃ .n−)ds

−

∫
Ωm

(∇φk
m).(G(Uh

m,∇Uh
m) − F (Uh

m))dx,
(5.5b)

∂

∂t
Ûm = M−1

m Rm(Uh). (5.5c)

In practice, the DG spatial discretization is typically paired with an explicit time integration

method (such as four-stage, fourth-order Runge-Kutta) to integrate forward in time from some

initial condition U(x, 0). For example, if applying the forward Euler method, then Ûm(t + ∆t) =

Ûm(t) + ∆t.M−1
m Rm(Uh(t)) for each element Ωm, where the timestep size ∆t must be small enough

to maintain numerical stability.

Now, consider a union of two adjacent elements, U =ΩA ∪ ΩB with same polynomial order

p. For each union, a recovery coordinate r must be defined; the origin of this coordinate is the

interface centroid. A recovery basis ψ, supported over U, is defined with the recovery coordinate

r. For this work, Legendre basis for ψ are used. The recovered solution over the union is defined

as a 2K−dimensional polynomial expansion in the recovery basis:

f (r) =

2K∑
n=1

Ψn(r) f̂ n (5.6)

where the 2K coefficients in the recovered solution require 2K constraints. Now, let W be some

arbitrary variable approximated in the DG solution space over ΩA and ΩB (for example W = Uh).

The recovered solution is required to be weakly equivalent to Wh
A and Wh

B over U with respect to
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the K DG basis functions of ΩA and the K DG basis functions of ΩB.

∫
ΩA

φk
A f dx =

∫
ΩA

φk
AWh

A dx ∀k ∈ {1, 2, . . . , K}, (5.7a)

∫
ΩB

φk
B f dx =

∫
ΩB

φk
BWh

B dx ∀k ∈ {1, 2, . . . , K}. (5.7b)

This system can be recast in matrix-vector form (Johnson & Johnsen, 2019), where the coefficients

f̂ are calculated directly from a combined coefficient vector, [ŴA; ŴB; ], using a single matrix-

vector multiplication. The recovery procedure is used exclusively to calculate the interface quantity

f (0) given the coefficients Ŵ of ΩA and ΩB. The entire process is encapsulated in a single operator:

R(Wh
A,W

h
B) = f (0).

5.2.2 PoLiMEr: Power monitoring and management for HPC applications

PoLiMEr is a C/C++ library for monitoring and managing power consumption of HPC appli-

cations (Marincic et al., 2017), enabling scientific computing developers to assess the power and

energy costs with minimal code instrumentation and tie these measurements to application-specific

events. Its power monitoring capability enables users to obtain: 1) time-series data for power and

energy over application runtime as well as user-specified code blocks, and 2) aggregate power

and energy consumption summaries for the whole application and specific code sections. For the

time-series data, power and energy are measured according to a user-configurable interval with

200 ms being the default setting. PoLiMEr’s power management capability enables users to limit

power consumption to achieve power or energy savings. Power can be capped on user-specified

application phases, which is especially useful during memory or IO-heavy phases. Power caps can

be applied on any code block, and can be set to any hardware-supported value.

Power and energy measurements are collected per each hardware-supported power domain a

distributed MPI application occupies, and the readings are available per domain. For instance, on
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the Theta supercomputer, a CPU has one power domain, and one compute node has one CPU. If

RADG is run on 128 nodes, the aforementioned power consumption data are reported per each

node, regardless of the number of MPI ranks per node. Similarly, when power caps are set, they

are set per power domain. Users can also specify if power should be capped on specific domains

(CPUs) only. PoLiMEr assigns one rank from the application per power domain for the monitoring

and power capping tasks.

On HPC systems with Intel CPUs, such as Theta, on which the power consumption of RADG

is characterized, energy consumption is exposed through the file system as Model Specific Regis-

ters (MSR). Reading and writing to MSRs requires elevated user privileges, but supercomputing

facilities can allow for safe access via the msr-safe module (Shoga et al., 2014). Intel’s Running

Average Power Limit (RAPL) interface ensures power caps set through PoLiMEr are respected.

RAPL maintains a moving average of the long-term power cap over a long-term window of time,

allowing for brief violations up to the short-term power cap over a short-term time window depend-

ing on CPU utilization (David et al., 2010). PoLiMEr allows users to set the long- and short-term

power caps and time windows. From empirical evidence, setting both long- and short-term power

limit to a value P results in measured power consumption being below P. This guarantees that

the power budget is strictly obeyed. However, the system will not be enabled to utilize all of P

power. On the other hand, setting the long-term power cap only sets power consumption to P with

occasional brief violations.

Using PoLiMEr’s fine-grained power and energy monitoring capabilities, the impact of mixed

precision in the RADG code on its power and energy consumption is evaluated.

5.2.3 Floating-point operation (FLOP) count

From the discussion in chapter 4, it is understood that the RADG discretization is floating-point-

intensive. Following a similar approach, the FLOP count estimate for an advection-diffusion sys-

tem can be obtained from the equations 5.2, 5.5, 5.6 and evaluation of the discrete recovery operator

R (see section 4.3). Consider a regular, uniform cartesian grid, where the 1D element is a straight
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# Calculation FLOP

1 Ũ, at interface quad. points 2(Qs × 4K) × Nv

2 F̃ , at interface quad. points ( fR f × Qs) × Nv

3 Uh, at interior quad. points (QV × 2K) × ND

4 F (Uh), at interior quad. points ( fF × D × Qv) × ND

5 σ, at interior quad. points ((D × Qv × 2K) + (2D2 × Qv × Qs)) × ND

6 G(σ), at interior quad. points ( fG × D × Qv) × ND

7 σ̃, at interface quad. points (D × Qs × 4K) × Nv

8 G(σ̃), at interface quad. points ( fRg × Qs) × Nv

Table 5.1: Floating-point operations for each step of the residual for advection-diffusion systems.
Here, K = (p + 1)D, QV = K is number of volume quadrature points, Qs = (p + 1)D−1 is number
of quadrature points on each interface, Nv = D(N + 2W + 1)(N + 2W)D−1 is the total number of
interfaces, D is number of spatial dimensions.

edge; a 2D element is a quadrilateral, or square; and a 3D element is a hexahedral, or cube. Fig-

ure 5.1 shows an illustration of a 2D structured grid with quadrature points on a 2D element. The

recovery operator in RADG requires information from nearest-neighbor elements, which ensures

a compact stencil for RADG methods. Therefore, for a structured mesh with N elements in each

direction, RADG methods need only one ghost cell on either side (W = 1) resulting in a total of

N + 2W = N + 2 elements in each direction. Additionally, there are (N + 2W + 1) planes per

direction, and each plane has (N + 2W)D−1 faces, which gives the total number of interfaces in D

directions as Nv = D(N + 2W + 1)(N + 2W)D−1. For a given polynomial order p, the number of

degrees of freedom within each element is K = (p + 1)D, the number of interior quadrature points

is Qv = K, and the number of quadrature points on each interface is Qs = (p + 1)D−1. Table 5.1

provides a rough estimation of the FLOP count for each step of the residual evaluation. Note that

the evaluation of surface and volume fluxes in step 2, 4, 6, and 8, is problem dependent. Therefore,

their costs are labelled fR f , fF , fG and fRg .

Figure 5.2 shows that the FLOP count for 3D advection-diffusion systems of conservation laws,

discretized by RADG methods, increases with increasing number of elements, which increases

the total number of degrees of freedom and the associated arithmetic operations. For a given

element count, a higher polynomial order p has a higher FLOP count, attaining as much as a
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(a) 2D uniform cartesian grid employed for RADG
methods.

(b) For a 2D element with p = 2, Qs = (p + 1) = 3
for each interface, and Qv = (p + 1)2 = 9.

Figure 5.1: Illustration of a 2D uniform cartesian grid with ghost cells and a 2D element: (a) Blue
elements constitute the domain of interest and the outer grey elements form the ghost cell region.
For RADG, the ghost cell width is W = 1, giving a total of (N + 2W) elements in each direction.
(b) Illustration of a 2D element showing the interior (Qv in yellow) and interface (Qs in orange)
quadrature points for p = 2.
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(b) FLOP count for different steps of the residual
evaluation for p = 3.

Figure 5.2: Floating-point operation count for RADG discretization of advection-diffusion systems
with varying polynomial order:− −, p = 1; , p = 2; , p = 3; , p = 4; , p = 5;

, p = 6.

petaflop (1015), as the degrees of freedom in each element depend on p. Major contributions to

the FLOP count comes from Steps 1 and 7, as shown for p = 3, which indicates that the recovery

procedure is floating-point intensive. Therefore, it is essential to investigate and understand the

energy consumption of a RADG-based application and the implications of operating with different

floating-point types.

5.3 Numerical tests

5.3.1 Preliminaries

Two numerical tests are considered to evaluate the floating-point operations (FLOP) count and

the energy consumption of RADG schemes. The first test is scalar advection-diffusion in 1D,

which verifies the convergence rates of RADG schemes and analyses the FLOP count required to

reach a desired error. The second problem is the Taylor-Green vortex (TGV) on a uniform mesh,

simulated through discretization of the 3D compressible Navier-Stokes equations. The TGV flow

tests the method’s energy consumption when computed with different floating-point types. For
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all test cases, the explicit four-stage, fourth-order Runge-Kutta (RK) method for time marching

is applied as benchmark to keep the order of accuracy of advection, diffusion and time marching

are the same. Although other approaches, such as (Prince & Dormand, 1981) may provide higher

accuracy, such higher-order explicit RK schemes are impractical due to memory requirements. The

time step is determined based on the Courant-Friedrichs-Lewy (CFL) and Von Neumann number

(VNN) constraints as described by Johnson & Johnsen (2019). Advective interface fluxes in 1D

scalar advection-diffusion are implemented via the upwind flux and the SLAU2 Riemann solver

(Kitamura & Shima, 2013) for the TGV case. Parallelization is achieved via MPI. The software

Gmsh (Geuzaine & Remacle, 2009) is used to generate all meshes. The larger simulations in TGV

case were conducted on Stampede2 of XSEDE (Towns et al., 2014) and the power measurements

are reported on the Theta supercomputer at Argonne National Laboratory —a Cray XC40 system

ranked #28 by the Top500 project (top, 2019). Theta has 4392 single-socket compute nodes with

second-generation 64-core Intel Xeon Phi 7230 CPUs. The base frequency of each node is 1.3

GHz with turbo frequency up to 1.5 GHz.

5.3.2 Test 1: Scalar advection-diffusion in 1D

The 1D scalar advection-diffusion equation is

∂U
∂t

+
∂(F − G)

∂x
= 0, where F = aU and G = µ

∂U
∂x

. (5.8)

This equation is discretized in 1D to form the linear system described in equation 5.7. Here a = π,

µ = π/100, the spatial domain is x ∈ [0, 8π] and periodicity is enforced along the left and the

right boundaries. Initial condition is U(x, 0) = sin(x), which gives the exact analytical solution

U(x, t) = sin(x− at)e−µt. The solution is marched forward in time or two translational periods such

that, t f = 16.

Three polynomial orders p are considered with varying number of elements N. Table 5.2

lists the grid resolution and the number of degrees of freedom, which for 1D case is given as
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p Number of elements (N) Degrees of freedom (nDOF)

1 {16, 32, 64, 128, 256, 512} {32, 64, 128, 256, 512, 1024}
2 {10, 22, 42, 86, 170, 342} {30, 66, 126, 258, 510, 1026}
3 {8, 16, 32, 64, 128, 256} {32, 64, 128, 256, 512, 1024}

Table 5.2: Mesh resolutions for test case 1.

nDOF = (p + 1)N = KN (see, section 5.2). At t f , the error is quantified in terms of the L2 norm of

the cell-average given as,

ECA =

√√
1
N

N∑
i=1

(U
h
i − U i)2 (5.9)

where the DG and exact solutions in each element Ωi are denoted as U
h
i and U i, respectively. Fig-

ure 5.3 shows the cell-average L2 error. The rate of convergence of RADG schemes for advection-

diffusion systems is 2p+2 for odd p and 2p+1 for even values of p. Therefore for p = 1 and p = 2

both, RADG exhibits 4th order convergence (Johnson, 2019). For high p, the desired error can be

reached with a lower mesh resolution. Consider the desired error tolerance to be on the order 10−6,

shown as a dotted line in figure 5.3. RADG scheme with p = 1 requires approximately 103 degrees

of freedom to achieve the desired accuracy. However, for p = 3, the same error is achieved with

approximately 102 degrees of freedom, which is an order of magnitude less than the p = 1 case.

Figure 5.4 shows the FLOP required to achieve the desired error tolerance for this 1D problem.

The FLOP count is evaluated using the expressions given in table 5.1 for one residual update per

time step. The vertical dotted line corresponds to the error tolerance of 10−6. While the FLOP

count per time step for this trivial 1D test case is not as high as the predictions for 3D problems in

figure 5.2, higher order RADG schemes with p = 3 are predicted to require an order of magnitude

fewer FLOP than p = 1 case to achieve the same level of accuracy.
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5.3.3 Test 2: Taylor-Green Vortex

The Taylor-Green Vortex (TGV, Taylor & Green, 1937) is a standard 3D benchmark problem (Chape-

lier et al., 2014), where the flow exhibits transition from deterministic initial condition to anisotropic

turbulence. The three-dimensional compressible Navier-Stokes equations are solved using the

RADG method described in section 5.2.1. The initial conditions are characterized by velocity V0,

pressure p0, and density ρ0:

u = V0 sin(x/L) cos(y/L) cos(z/L), (5.10a)

v = −V0cos(x/L) sin(y/L) cos(z/L), (5.10b)

w = 0, (5.10c)

p = p0 + (ρ0V2
0/16)[cos(2x/L) + cos(2y/L)][cos(2z/L) + 2]. (5.10d)

The specific flow parameters in the study are L = 1 m, V0 = 1 m/s and ρ0 = 1 kg/m3 with

constant viscosity set to µ = 0.000625 kg/ms such that Reynolds number with respect to the

characteristic length L is Re = ρ0V0L/µ = 1600. The computational domain is −πL ≤ x, y, z ≤ πL

and the boundary conditions are all spatially periodic. The remaining fluid parameters are γ = 1.4,

Rg = 273.15, and Pr = 0.71. The reference pressure p0 is set such that V0 corresponds to a Mach

number of 0.1, thus p0 =
ρ0
γ

(10V0)2. Time is non-dimensionalized by tc = L/V0.

The enstrophy-based kinetic energy dissipation rate (KDER)

ε = 2ε
µ

ρ0
where ε =

1
ρ0V

∫
Ω

ρ

2
(ω.ω)dx. (5.11)

is the metric considered to assess the method. The reference solution is taken from a pseudospectral

code (Carton de Wiart et al., 2014) using 5123 degrees of freedom per equation. Figure 5.5 shows

the enstrophy-based KEDR versus time for different grid resolutions considered (see table 5.3). As

the number of computational elements are increases (holding the order constant with p = 1, the
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p Number of elements per direction (N) Degrees of freedom (nDOF)

1 {32, 64, 128} {643, 1283, 2563}

2 {21, 42, 85} {633, 1263, 2553}

3 {16, 32, 64} {643, 1283, 2563}

Table 5.3: Mesh resolutions for test case 2.
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Figure 5.5: Enstrophy-based KEDR versus time for test case 2. , reference solution.

numerical solution converges to the reference. Similarly, increasing the order p while keeping the

number of degrees of freedom constant also reduces the error. For p = 3 case, the use SLAU2

flux results in unreasonable results at later times, due to polynomial aliasing errors associated

with the nonlinearity of the compressible Navier-Stokes equations. To improve stability a more

dissipative flux can be used or the number of quadrature points can be increased for overintegration.

These techniques were not explored in the present study. However, the increase in accuracy with

increasing p comes at the cost of large FLOP. Referring back to figure 5.2, a spatial resolution of

1283 for p = 3 accounts for FLOP count on the orders of teraflop (1012) per residual evaluation.

Benchmark tests 1 and 2, both verify the floating-point intensive nature of RADG, which is

more prominent in higher dimensions even at moderately high orders of p. Therefore, it can be

expected that large-scale simulations of complex turbulent flows that are of practical importance

will be more computationally demanding. This necessitates investigations to understand energy
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Figure 5.6: Overall power consumption measured with PoLiMEr for test case 2 (TGV) with single
precision (SP) and double precision (DP) calculations using a RADG-based application.

consumption of a RADG-based application.

5.3.4 Power Management with PoLiMEr

To get an understanding of the energy consumption by a RADG-based application on an HPC

platform, this study uses PoLiMEr (Marincic et al., 2017), a power monitoring and management

tool. An in-house C++ code implements the RADG framework described in section 5.2, which

features a parallel and distributed framework through the use of MPI and CUDA programming

environments. The details of parallel scaling of this application are provided in Appendix E.

Benchmark test case 2 (TGV) is simulated on ALCF’s Theta supercomputer (top, 2019), with a

conservative selection of p = 1 and N = 160 in each direction, resulting in total number of degrees

of freedom to be 3203. The benchmark test uses a total of 128 nodes with 64 MPI ranks on each

node and the power trace is collected with PoLiMEr. Figure 5.6 shows the power trace sampled by

PoLiMEr accounting the long initialization process with few peaks, followed by the time-marching

iterations, where most of the work is done. The standard configuration with double precision (DP)

draws approximately 136 W per node. The power consumed is less than the maximum allowed

thermal design power (TDP) of 215 W on Theta, which is because the problem size is sufficiently

132



102 103

nDOF

10−13

10−11

10−9

10−7

10−5

10−3

10−1

E C
A

p = 1, DP
p = 1, SP
p = 2, DP
p = 2, SP
p = 3, DP
p = 3, SP

(a) Convergence of cell-average error for test case 1.

0 2 4 6 8 10
t*

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

En
str

op
hy

-ba
sed

 K
ED

R

p = 1, DP
p = 1, SP

(b) Enstrophy-based KEDR vs time for test case 2,
t∗ = (t/tc).

Figure 5.7: Comparing the performance with single precision (SP) calculations of RADG methods.

big enough to utilize all the resources on the 128 nodes allocated for the run. Modern HPC systems

such as Theta have a machine balance of around 10 and generally require applications to have high

arithmetic intensity to utilize the floating-point capability of the node (see, section 4.4). When

the problem size 3203 is decomposed on to 128 nodes, cores on a given node have approximately

16 degrees of freedom (8 elements), which is not sufficient to completely utilize the machine.

The underutilization of resources results in low FLOP count, which cannot hide communication

latency, thereby resulting in large overheads. Therefore, it can be expected that the increase in the

problem size will increase the power consumption on the node.

In the scenario where power consumption is high, a natural way to lower the workload and the

associated energy consumption is by computing at lesser precision levels. The power trace shown

in figure 5.6 also sampled a single precision (SP) configuration, which reduces the overall power

consumption with savings of approximately 5 W per node. However, this is indicative of the fact

that changing the precision level affects the energy consumption.

Figure 5.7 shows the implications of computing at lower precision levels for both test cases.

For 1D scalar advection-diffusion test, computations at single precision (SP) show a slower conver-

gence compared to their higher precision counterpart. At higher orders of p the error saturates at

approximately 10−7 which is the minimum possible achievable for single precision floating-point
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type (Kaneko & Liu, 1973; Haidar et al., 2017). For p = 3, at larger nDOF the error appears

to increase. This is typical of low-precision computations (Lindstrom, 2014), where the small

errors accumulate over the iterations and degrade the performance eventually causing the appli-

cation to fail. In the TGV case, the single precision run, evaluated on the same configuration

(p = 1, nDOF = 3203) as the double precision setup, has a lower accuracy. Therefore, a power-

performance balance is desired to maintain the desired levels of accuracy while keeping the energy

consumption in control.

5.3.5 Transprecision compute framework for RADG methods

From the formulation of the RADG methods described in section 5.2, two optimization strategies

are considered to assess mixed precision computing: (i) Case 1: Since the DG solution within

each element Ωe is defined as a polynomial expansion of the coefficients Ûe, store and compute

Ûe at higher precision and all other computations at lower precision, (ii) Case 2: the recovery

operations in RADG build a high-order approximation of the solution, such that all computations

except recovery are performed at low precision.

Figure 5.8 shows the performance of the two mixed precision models. For case 1, the DG

coefficients are stored and computed in double precision. The solution accuracy is suboptimal to

the single precision configuration and produces erroneous results. This is attributed to the fact

that multiple casting of coefficients to a lower precision level incurs higher truncation errors which

reduces the performance. On the other hand, the performance of case 2 shows significant improve-

ments over the single precision configuration. Since, case 2 employs recovery operation at higher

precision levels, the approximations near interfaces have increased accuracy that in turn enables

more accurate approximations of volumetric fluxes than case 1.

5.3.5.1 Power Management with PoLiMEr

The effect of mixed precision computation on the overall power consumption is shown in figure 5.9.

As before, PoLiMEr is used to sample the power trace of case 1 and 2 configurations of mixed
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Figure 5.8: Comparing the performance with mixed precision (MP) calculations of RADG meth-
ods.
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Figure 5.9: Overall power consumption measured with PoLiMEr for mixed precision (MP) calcu-
lations on RADG.
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precision on ALCF’s Theta supercomputer using the same benchmark of TGV (see section 5.3.4).

The power consumption by the two mixed precision models is on par with the double precision

configuration of the application. Possible reasons for this may include the larger overheads of

computing at lower precision levels on a 64-bit architecture machine (Purkayastha et al., 2004). In

addition, the recovery operation is floating-point intensive and as discussed in chapter 4, has high

cache memory requirements, which increases the number of data transfers needed, thus consuming

more energy. Note, that the power trace analysis for all the configurations was averaged over

10 runs. In each run the single and double precision configurations were executed on the same

resources (same nodes of the HPC). Since the mixed precision analysis was performed afterwards,

the execution on a separate node may also add to the discrepancies observed.

The power-performance evaluation in case 1 and 2, suggests that manual optimization of appli-

cations, which is tedious, requires fine-grained tuning. Since emerging architectures are expected

to have heterogeneous nodes, optimization for one HPC platform may not always be portable to

other environments. To exploit the available floating-point types offered by the underlying hard-

ware, many studies have started adopting a more automated optimization strategy (Lam et al.,

2013; Rubio-González et al., 2013; Panchekha et al., 2015; Bao & Zhang, 2013). A promising ap-

proach is the use of algorithmic differentiation (Naumann, 2012), which numerically computes a

derivative of a computer program and can be used to study the floating-point sensitivity of variables

and operations in a program. Algorithmic Differentiation Applied to Precision Tuning (ADAPT,

Menon et al., 2018) is C++ library, which enables precision tuning for scientific applications,

thus enabling transprecision computing. The integration of ADAPT with the RADG-based C++

application will be considered in the future studies, and it is expected that a power-aware com-

pute framework can be designed for RADG methods that can enable extreme-scale simulations of

complex turbulent flow problems on the next-generation HPC platforms.

136



5.4 Conclusions

Recovery-assisted discontinuous Galerkin (RADG) methods are highly scalable, and the com-

pact support of the discontinuous solution on nearest neighbors, supports large-scale simulations

on modern HPC platforms. However, RADG discretizations of advection-diffusion problems are

floating-point intensive, achieving up to a petaflop (1015) for a 3D benchmark test of Taylor-Green

Vortex. The energy footprint of RADG methods is assessed by integrating with a power measure-

ment and management library, PoLiMEr. Switching from double to single precision evaluation

of the benchmark test case on 128 nodes on Cray XC40, Theta, results in savings of approxi-

mately 5 W per node at the cost of loss of solution accuracy. A mixed precision configuration,

where all operations except recovery were performed at single precision, shows significant im-

provement in solution accuracy on the 3D benchmark test in comparison to the single precision

configuration. However, manual optimization for floating-point types is tedious and achieving

power-performance balance is not trivial. Therefore, an automated approach for tuning floating-

point types and analyzing the floating-point sensitivity of variables and operations is desirable.
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CHAPTER 6

Conclusions

6.1 Summary

This dissertation is focussed on large-scale simulations of complex turbulent flows in the context

of modulation of turbulent boundary layer separation and optimization of a new class of recovery-

assisted discontinuous Galerkin methods for next-generation HPC platforms. Turbulent boundary

layer flow separation occurs in regions of adverse pressure gradient, e.g., flow over an aircraft wing

at high angle-of-attack, flow near the rear end of a road vehicle at highways speeds, atmospheric

flow around ground structures, and in many other engineering applications. Flow separation can

give rise to undesirable effects such as loss of lift on aircraft wings, or increase in drag of road

vehicles. Passive flow control strategies, such as vortex generators (VGs), have been used in many

engineering applications to delay and reduce the size of the separation region. However, an un-

derstanding of the interactions between the VG-induced flow structures and those of the separated

region is missing.

In part I of this thesis, wall-resolved large-eddy simulation of a model problem of flow over a

backward-facing ramp is studied with a submerged, wall-mounted cube used as a canonical VG.

Numerical simulations are conducted using the open source OpenFOAM (Weller et al., 1998) li-

braries, whose numerical framework and discretization schemes are validated and verified (Tandon

et al., 2017) against the canonical problem of turbulent flow over a backward-facing step (Le et al.,

1997). The focus of this study is to elucidate the effects of the VG configuration, namely its height,

location, and the spacing between neighboring VGs in a line array, on the interaction between the
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VG-induced flow structures and the separated region, and the resulting turbulent transport which

reduces flow separation. For this purpose, three sets of studies are considered at a Reynolds number

of 19,600 based on the boundary layer thickness, and classified under two categories:

• Single VG studies (Tandon et al., 2017, 2018, 2020a) to understand the effect of VG height

and its location on the flow modulation. A single wall-mounted cube is placed upstream

of the leading ramp edge along the plane of symmetry. For a fixed cube position, the cube

height is varied as h/δ0 = 0.2, 0.6 and 1.0, and for a fixed cube height, the upstream location

of the cube is varied as xvg/h = 0, 3 and 6.

• Multiple VG study (Tandon et al., 2019, 2020b), with an array of equally-spaced, wall-

mounted cubes, to understand the dependence of flow modulation on the spanwise spacing

between neighboring VGs. For a fixed height h/δ0 = 0.6 and upstream location xvg/h = 3

the spanwise spacing between neighboring cubes in an array is varied as Lz/h = 3, 5 and 7.

The numerical results demonstrate the dependence of the turbulence transport mechanism on the

intensity of interaction between the horseshoe vortex system of the wall-mounted cube with the

separated region, which in turn depends on the VG configuration. The evolution of turbulent kinetic

energy in the expansion section is analyzed to understand the contributions to the production and

transfer of energy for different VG configurations to derive a better understanding of the flow

modulation mechanism.

Numerical simulations of complex turbulent flows, e.g., wall-bounded turbulent boundary layer

flow, require high spatial and temporal resolution to capture the unsteady flow dynamics accu-

rately. The cost of computation grows with the Reynolds number, which characterizes range of

relevant scales in the flow problem. Since many practical flow problems of interest operate at

high Reynolds number regime, numerical simulations of such complex systems are infeasible,

even on the largest supercomputers, due to the large range of scales that need to be resolved. The

need for high accuracy with low discretization errors and the evolving heterogeneous architecture

of the next-generation high-performance computing centers has impelled interest in the develop-
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ment of high-order methods. While the new class of recovery-assisted discontinuous Galerkin

(RADG) methods (Johnson, 2019) can provide arbitrarily high-orders of accuracy, the large num-

ber of degrees of freedom increases the costs associated with the arithmetic operations performed

and the amount of data transferred on-node. The focus of the part II of this thesis is to improve

the parallel efficiency of RADG methods for modern high-performance computing (HPC) archi-

tectures. First, the on-node performance of RADG methods is assessed by analyzing different

cache memory models. With a finite-sized cache, use of a derivative-based recovery (Johnson,

2019), and an optimized data-tiling strategy, RADG methods show significant improvements to

the arithmetic intensity (Tandon & Johnsen, 2020), which is necessary to make better utilization of

on-node floating-point capability. Second, the power-performance balance of RADG methods is

evaluated for computing floating-point values with double and single precision. Analysis of power-

performance trade-offs suggests savings in power consumption when operating at lower precision,

indicating that a transprecision framework will likely offer better power-performance balance on

modern HPC platforms (Tandon et al., 2020c).

6.2 Key findings and contributions

6.2.1 Part I: Modulation of turbulent boundary layer flow

Separation of turbulent boundary layer flow was reduced over the ramp surface when a wall-

mounted cube was used as a passive vortex generator (Shinde et al., 2016; Tandon et al., 2017).

Consistent with the previous studies on the turbulent flow around a cubic bluff body (Martinuzzi

& Tropea, 1993; Krajnovic & Davidson, 2002; Shinde et al., 2017; Shinde, 2018), a horseshoe

vortex system was observed upstream of the wall-mounted cube. The horseshoe vortex extends

in the near-wake of the cube to form a pair of streamwise vortices, which are weaker compared

to the more aerodynamic vortex generators studied by Lin (2002), and are unable to modulate the

flow at large streamwise distances. However, the simpler design of a wall-mounted cube ensures

that the canonical flow study considered in this work has a reduced parameter space, such that the
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dependence of flow modulation on these parameters is studied with relative ease.

In Chapter 2, the single VG study demonstrates that the horseshoe vortex system interacts and

entrains the hairpin vortices in the separated region to form a counter-rotating vortex pair. The vor-

tex pair entrains high momentum fluid from freestream towards the near-wall region, thereby ener-

gizing the boundary layer and reducing the separation of flow (Tandon et al., 2018). The evolution

of the turbulent kinetic energy (TKE) is studied in the expansion section of the backward-facing

ramp, which indicates that the high vorticity centers of the counter-rotating vortex pair correspond

to regions of TKE production. The analysis of the Reynolds stress distribution along the spanwise

flow direction confirms the transport of momentum by the counter-rotating flow towards the plane

of symmetry and the near-wall regions, thereby reducing flow separation. The size and location of

the wall-mounted cube affects the turbulent transport mechanism and, thus, the modulation of flow

separation (Tandon et al., 2020a). The size of the horseshoe vortex system increases with the size

of the cube, which enhances the production and transfer of TKE to the near-wall region. When the

cube height increases from h/δ0 = 0.6 to 1.0, the volume of separation reduces by 40%, however,

the coefficient of drag for the cube increases by 25%. Change in the upstream location of the cube

also influences the behavior of the horseshoe vortex system such that, when the cube is placed

far upstream, the horseshoe vortex must traverse larger streamwise distance under the influence of

near-wall diffusion. The TKE produced by the horseshoe vortex is diffuses and dissipates close

to the wall, which leads to a dispersed core with low efficiency to modulate the separated region.

However, when the cube is placed too close to the leading ramp edge, the high energy-producing

structures formed around the cube are not fully developed and are subjected to high strain the ex-

pansion section. The turbulent structures decay, and the transfer of TKE is inadequate to modulate

the separated region. For a cube of height h/δ0 = 0.6, the upstream location of xvg/h = 3 offers the

most optimal configuration with high reductions in the volume of separation, and the separation

length along the plane of symmetry.

Deriving from the findings in the single VG case, Chapter 3 studies the modulation of flow

separation over the backward-facing ramp by an array of equally-spaced, wall-mounted cubes
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(Tandon et al., 2019). The array of cubes of height h/δ0 = 0.6, is placed xvg/h = 3 upstream of

the leading ramp edge. Analysis of the flow behavior shows that the size horseshoe vortex system

depends only on the height of the cube, however, its lateral spreading is dictated by the spanwise

spacing between the neighboring cubes of the array, which is consistent with the previous studies

of flow around an array of wall-mounted cubes by Shinde (2018), or multiple cylindrical VGs

studied by Pujals et al. (2010). When the spanwise spacing is too low, the interaction of horseshoe

vortices of adjacent cubes produces larger TKE with a wall-normal ejection of low-momentum

fluid that produces secondary turbulent flow (Yang et al., 2019). However, the compact turbulent

structures are subjected to high strain in the expansion section and an increased diffusion due to

near-wall effects, which reduces their efficiency of flow modulation. When the spanwise spacing

is larger than Lz/h ≥ 5, the interaction between adjacent horseshoe vortices drastically diminishes,

and the flow behavior is similar to that of the single, isolated VG (Tandon et al., 2020b). This

behavior occurs because the counter-rotating flow imparts spanwise motion that brings the two

legs of the horseshoe vortex system closer to one another and thus, restricts it lateral spreading.

Previous studies by Krajnovic & Davidson (2002) and Hwang & Yang (2004) have shown that

5h downstream of the cube, the lateral spreading of the horseshoe vortex system is restricted to

7h. Therefore, Lz/h = 7 offers the most optimal reduction in the size of the separated region over

the ramp—if the spanwise spacing is reduced, the interaction of vortical structures reduces the

efficiency, and if the spacing is increased, the area under the influence is not maximized .

The canonical study of modulation of turbulent boundary layer flow in part I is limited to

the investigation of a single cube and a single array of cubes. The VG geometry and interaction

between VGs in different rows may affect the horseshoe vortices and thus affect the flow separation

region in different ways. Future studies of these phenomena would improve our understanding of

separation modulation using passive vortex generators.
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6.2.2 Part II: Optimization of high-order discontinuous Galerkin method

for next-generation HPC platforms

The parallel efficiency of the new class of recovery-assisted discontinuous Galerkin (RADG) meth-

ods recently proposed by Johnson (2019) is enhanced by analyzing data locality and cache tiling

strategy, and the power-performance trade-offs when computing with different floating-point types.

In Chapter 4, RADG discretizations of hyperbolic systems of conservation laws are analyzed,

and the steps in the residual update involve floating-point intensive computations. The intensity

of arithmetic operations increases with the polynomial order p, which is expected as the number

of degrees of freedom in each element increases with p (Johnson, 2019). Bounds on arithmetic

intensity (Williams et al., 2009), the ratio of total work done per data transferred, are theoretically

obtained by considering three cache memory models. The no-cache and idealized infinite-size

cache models provided the lower bound and ideal performance limits of RADG methods, respec-

tively. The finite-size cache, with a cubical tiling strategy, achieves high arithmetic intensity of

> 10, which is on par with the state-of-the-art machines (OLCF’s Summit, YarKhan et al., 2019).

However, the cache space requirement and the data transfer overheads associated with decom-

posing data into cubic tiles are exorbitantly high due to the use of a discrete recovery operator.

An alternative implementation of derivative-based recovery (Johnson, 2019) drastically relaxes the

cache requirements (< 5 MB) and allows cubic tile lengths of up to T = 16 for p = 3 to be com-

puted with relative high efficiency. In addition, a vertical tiling strategy, originally proposed by

Loffeld & Hittinger (2019), is evaluated to show further improvements in achievable arithmetic in-

tensity and reduction of cache size requirements. Theoretical estimates and supporting numerical

tests demonstrate that RADG methods can achieve high arithmetic intensity and make better use

of floating-point capabilities available on modern HPC platforms (Tandon & Johnsen, 2020).

Chapter 5 analyzes the power-performance balance of RADG methods for advection-diffusion

systems of conservation laws. Following the approach of Chapter 4, the steps in the residual up-

date for a RADG discretization are inspected to show that the steps involving the use of recovery
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operator are floating-point intensive. For a 3D problem on a uniform structured grid, the RADG

methods attain up to a petaflop (1015) per residual evaluation. To ensure operation within the

prescribed power budgets, the associated energy footprint of RADG methods is assessed by in-

tegrating with a power measurement and management library, PoLiMEr Marincic et al. (2017).

Switching from double to single precision evaluation of a benchmark test case on 128 nodes on

Cray XC40, Theta (top, 2019), results in savings of 5 W per node. However, for single precision

computations, the error convergence is slower and for higher polynomial order p, the error satu-

rates at approximately 10−7, which is the minimum possible value achievable for single precision

floating-point type (Kaneko & Liu, 1973; Haidar et al., 2017). A mixed precision configuration,

where all operations except recovery were performed at single precision, shows significant im-

provement in solution accuracy on the 3D benchmark test in comparison to the single precision

configuration. However, manual optimization for floating-point types is tedious and achieving

power-performance balance is not trivial. Therefore, an automated way to tune for floating-point

types and analyze the floating-point sensitivity of variables and operations is desired, which is

where an automated transprecision compute framework will be beneficial.

Previous studies on optimization of DG-based methods for parallel computing include studies

on mixed-precision algorithms (Chapelier et al., 2014; Renac et al., 2015), scalable implementation

on accelerators (Chan et al., 2016; Modave et al., 2016; Henry de Frahan, 2016), many-core pro-

cessors (Heinecke et al., 2014; Müller et al., 2019), improving parallel I/O routines (Rettenberger

& Bader, 2015), and modifying the implementation of schemes (Fidkowski, 2019; Faghih-Naini

et al., 2020). Breuer et al. (2015) presented a framework that minimizes energy and time-to-

solution by increasing the DG order from 2 to 7 while maintaining double-precision accuracy.

The present studies are the first to approach on-node performance optimization and a power-aware

transprecision compute framework for high-order recovery-assisted discontinuous Galerkin meth-

ods. The analyses is limited to DG for smooth solutions and does not consider the nonlinear

treatment necessary to capture discontinuities, such as in the case of shocks. Solution limiting per-

forms in-place operations on data already loaded in the cache, which is expected to contribute to
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an increase in the arithmetic intensity and energy consumption due to increased arithmetic opera-

tions. Solution limiting is known to impact the convergence rate, and therefore the implementation

of a transprecision framework will require special care. In addition, applications in practice are

mapped onto a number of nodes, and data transfer between nodes will add overheads not consid-

ered in chapter 4. Finally, in this work, it was shown that high algorithmic intensity and power-

performance balance can be achieved but requires hand optimization of code. In practice, many

applications are written for modularity and maintainability, which poses a challenge for optimiza-

tion and necessitates further investigation.

6.3 Recommendations for future work

Large-scale simulations of complex turbulent flows is an active area of research and calls for inves-

tigations in model development, computer hardware, application, and system software, and other

related areas. The work presented here can be extended in a number of directions and the following

topics are suggested for future studies.

6.3.1 Modulation of flow separation on backward-facing ramp by multiple

cube arrays

A direct extension of the canonical study presented in part I is the modulation of flow over a

backward-facing ramp by multiple arrays of cubes placed either inline or in a staggered arrange-

ment. Yang et al. (2019) studied turbulent flow over a sparse arrangement of cubes and found

that for lower surface coverage densities, with appropriate streamwise spacing, the secondary tur-

bulent vortices formed above spanwise-heterogenous roughness redistributes the fluid momentum

in the outer layer, leading to high-momentum pathways above the wall-mounted cubes and low-

momentum pathways at the two sides of the wall-mounted cubes, which increases the coefficient

of drag of the cubes. Similar work on turbulent boundary layer flow over cube roughened walls

by Lee et al. (2011) showed the dominance of hairpin vortices in the outer boundary layer. There-
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fore, the arrangement of the multiple rows of cube arrays will affect the behavior of the turbulent

boundary layer, thereby affecting the modulation of flow separation over the ramp. The proposed

study can be also thought of as an optimization problem, with the goal of reducing flow sepa-

ration by considering different arrangements of multiple rows of VGs. Furthermore, uncertainty

quantification and machine learning techniques can also be employed in the optimization problem.

6.3.2 Modulation of flow separation at high Reynolds number

In many applications of interest, the Reynolds number of the flow is much higher than the direct

numerical studies of canonical problems considered (Smits et al., 2011). For example, the friction

Reynolds number of a Boeing 747 aircraft is roughly estimated to be Reτ = 105 under a typical

cruising condition (Iwamoto et al., 2005). For flows of such high Reynolds numbers, where highly

complex turbulent structures exist with a very wide range of turbulent spectra, quantitative knowl-

edge of flow separation and its modulation is required. While the advances in computer hardware

and distributed computing continue to provide the compute power needed to approximate complex

physical systems, the development of high-order numerical methods and algorithms is also desired

(Pirozzoli, 2011). High-order methods based on discontinuous Galerkin approach offer the advan-

tage of arbitrary high-orders of accuracy and high-scalability, which makes them a better candidate

than the high-order finite difference and finite volume schemes, both of which rely on large stencil

size. The development of DG-based schemes for advection-diffusion systems is an ongoing area of

research (Henry de Frahan, 2016; Johnson & Johnsen, 2019; Halila et al., 2019), and can facilitate

simulations of complex turbulent flows.

6.3.3 High-fidelity large-eddy simulations with recovery-assisted discontin-

uous Galerkin methods

Developing large-eddy simulations (LES) algorithms based of discontinuous Galerkin (DG) meth-

ods is an active area of research. To achieve high accuracy and low discretization errors, LES
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approaches demand high resolution. Since DG methods offer the advantage of arbitrarily high ac-

curacy on relatively coarser meshes, they are interesting avenues for LES. Some notable work in

the area revolves around implicit LES (ILES, Uranga et al., 2011; Frere et al., 2015; Renac et al.,

2015; de Wiart & Hillewaert, 2015; Fernandez et al., 2017), where the numerical dissipation of

the discretization scheme to account for the dissipation that takes place in the unresolved scales.

ILES benefits from its easy implementation without a subgrid stress model and currently gains

considerable attention from researchers in the computational fluid dynamics community. Other

areas of research are directed towards new model development for explicit LES. Recent study by

Parish (2018) uses the Mori-Zwanzig approach to decompose the discrete unknowns into a coarse-

scale resolved set and a fine-scale unresolved set for DG methods and facilitates modeling of

under-resolved simulations of turbulent flow. Recovery-assisted DG methods (RADG, Johnson &

Johnsen, 2019) have higher accuracy for advection-diffusion systems than traditional DG methods,

and therefore, can enable high-fidelity LES of complex turbulent flows.

6.3.4 Performance portability of applications

The next-generation high-performance computing (HPC) systems (at exascale and beyond), are

expected to have heterogeneous architectures (Ashby et al., 2010; Brown et al., 2010; Lucas et al.,

2014). This poses a challenge for scientific applications to maintain and demonstrate similar levels

of efficiency across different architectures. The fine-grain optimization of applications comes at

a cost of loss in generality and modularity. Therefore, current trends in computing algorithms is

attracting research in programming models that can maintain performance portability while incur-

ring minimal overheads (Heroux et al., 2020). Performance portable programming libraries such as

Kokkos (Edwards et al., 2014) and RAJA (Beckingsale et al., 2019) offer a high-level abstraction

with multiple backend support for thread-level parallelism on host (processors/CPU) and device

(accelerators/GPU). Figure 6.1 shows implementation of thread-level parallelism using Kokkos for

a model problem of scalar advection, discretized with the recovery-assisted discontinuous Galerkin

(RADG) method. As observed, Kokkos allows building an application with multiple thread-level
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Figure 6.1: Implementation of thread-level parallelism with Kokkos showing performance porta-
bility on three different architectures with minimal overheads.

support—OpenMP, CUDA, etc. Depending on where the application is launched (host or device),

Kokkos abstraction takes care of the associated data coalescing and results in improved perfor-

mance portability, with minimal overheads. It is believed that the on-node performance of RADG

methods can be further improved by invoking thread level parallelism.

6.3.5 Recovery for fault-resilience

Fault resilience is a major roadblock for High-Performance Computing (HPC) executions on ex-

ascale machines. The increased component count requires dramatic architectural changes and new

programming practices. The occurrence of random faults from the failure of hardware or software

malfunction raises the concern that simulations have to either stopped or that the data is missing

in certain regions (subdomains), which will render the results erroneous (Schroeder & Gibson,

2007; Cappello et al., 2014). While many advancements are being made to redesign the hardware

capability, new algorithmic solutions need to be employed in user applications that enable fault-

tolerance Brown et al. (2010); Lucas et al. (2014). Traditional checkpointing methods El-Sayed

& Schroeder (2013); Gainaru et al. (2013); Das et al. (2017), that capture a redundant image of
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the solution and roll back all processors to a previously saved state and restart computations to roll

forward, will carry a lot of overhead in terms of memory buffer required and the restart times of all

processors at exascale. Other approaches based on estimation theories and interpolation methods

Lee et al. (2017) need auxiliary data in the form of a low-resolution solution state or some ana-

lytical result available for the problem. Access to auxiliary data may not be possible for complex

flows, and the reconstruction using low-resolution results can itself return polluted final results.

With these issues in mind, in theory the recovery operation in recovery-assisted discontinuous

Galerkin (RADG) methods, can be thought of as a tool for diagnosis. In the scenario of a node

failure, the data from the elements that interfaces the failed node can be used to recover solution at

the interface of failed node, as the recovery technique uses the data from the neighboring elements

to recover the flux by matching moments of the approximate solution over both the adjacent cells.

This two-element union procedure for recovery can then be iteratively applied to the interior ele-

ments of the failed node. In the scenario of missing data, recovery can be used as a “detector”, such

that if the the DG polynomials and the recovered solution do not agree in a pointwise fashion over

a two-element union, it would be apparent that the numerical approximation is erroneous. Hence,

it may be plausible to build a fault-resilient framework with RADG methods.
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Appendix A

Validation of LES Model And Discretization Schemes
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Figure A.1: Streamwise component of the mean velocity profile sampled at different stream wise
locations for backward-facing step simulations with One-Equation Eddy Viscosity LES model and
compared with DNS data of Le et al. (1997).

In order to choose a suitable large eddy simulation (LES) model in OpenFOAM® that pre-

dicts the separation with less numerical dissipation, a validation study is performed. A backward-

facing step with similar set-up as the DNS study of Le et al. (1997) is simulated with one-equation

eddy-viscosity LES model and tested with three different discretization schemes - a linear upwind

stabilized scheme, a second-order central scheme and second-order central scheme with explicit

correction.

The mean streamwise velocity profiles at different streamwise locations are shown in fig-

ure A.1. The mean flow behavior is similar in two of the three discretization schemes as the

velocity profiles collapse on each other. In order to differentiate, turbulent statistics are shown in
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Figure A.2: Comparison of Reynolds stress profiles of backward-facing step simulations with One-
Equation Eddy Viscosity LES model and various discretization schemes with DNS of Le et al.
(1997).
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figure A.2 for these schemes. We see that the central scheme with one-equation eddy viscosity

LES model replicates the flow features and matches DNS data very well.
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Appendix B

Grid refinement study of turbulent boundary layer flow over a

backward-facing ramp
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Figure B.1: Streamwise component of the mean velocity profile sampled at different streamwise
locations along the plane of symmetry for turbulent flow over a backward-facing ramp.

Property Coarse mesh Medium mesh Fine mesh

Total number of cells (×106) 19.29 23.21 27.16
Number of cells/h 60 100 120
∆+

y in the refined region 5.0 1.0 0.8

Table B.1: Meshing information for turbulent flow over a backward-facing ramp.

To study grid refinement for turbulent flow over a backward-facing ramp (see Chapter 2), three

grid resolutions are designed with different near-wall resolution of ∆+
y = 5.0, 1.0 and 0.8 as listed

in table B.1. The “+” indicates the dimensionless grid spacing in wall coordinates. ∆+ = ∆uτ
ν

where
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∆ is the grid spacing in physical dimensions, uτ is the friction velocity at the wall and ν is the

kinematic viscosity of the fluid.

It is evident from figure B.1 that the results with the coarse mesh differ slightly from those

obtained from the medium and fine meshes. The reason for this disagreement is the inadequate

mesh resolution in the coarse mesh simulations near the wall. Especially after the flow separates at

the ramp edge the generation of turbulent kinetic energy produces small scale flow structures which

cannot be adequately captured by the coarse mesh. Therefore, to obtain mesh independent results it

is necessary to have a grid refinement. We observe that the separation region over the ramp surface

and the subsequent flow reattachment on the bottom wall is adequately captured by medium and

fine grids. Especially the flow behavior near the wall surface is similar. Thus the medium mesh

with wall-normal grid spacing of ∆+
y = 1 is sufficient of our analysis of flow control.
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Appendix C

Spatial two-point correlation study for domain size analysis of

turbulent boundary layer flow over a backward-facing ramp

with a wall-mounted cube

To determine the spanwise extent of the computational domain, we show the streamwise compo-

nent of the spatial two-point correlations for two different doamin widths, Lz = 6H and Lz = 4H,

where H is height of the ramp. The spatial two-point correlations, Ruu, in Figure C.1 show the

extent of the interaction of the streamwise fluctuations between the side lateral wall, located at

z/H = −3 and z/H = −2 respectively, and the plane of symmetry which is fixed at z/H = 0 for

both cases. Figure C.1 shows variation in Ruu along different streamwise stations depicted by x/H.

In the upstream region of the cube at x/H = −3, Figures C.1a and C.1b, we see that the interaction

regions near the lateral side walls for both the cases is smaller as compared to a ramp height. As

one moves closer to the upper ramp edge at x/H = 0, the region of generation of the shear layer and

separation bubble, the interaction region near the lateral side walls grows to the order of a ramp

height for both domain sizes, see Figures C.1c and C.1d. This lateral side wall interaction, that

occurs due to the slip boundary condition imposed on the lateral walls (Chapter 2), is constrained

to a region of the order of a ramp height in the expansion region as well. Figures C.1c and C.1d

show the interaction length at the bottom ramp edge located at x/H = 2.1.

Therefore, based on the spatial two-point correlations, as shown in Figure C.1, we conclude

that the for domain size greater than Lz = 4H, the lateral side wall interactions are constrained to
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a zone that is of the order of the ramp height, H. This confirms that our domain is wide enough,

so that the flow in the wake of the single VG is not affected by the flow behavior along the side

walls. Also, note, that we cannot decrease the size of the domain to less than 4H and this can be

attributed to the flow studies around a cube by Krajnovic & Davidson (2002). For a flow around a

cube, the spanwise extent of the horse-shoe vortex is visible until z/h = 7, where h is height of the

cube. For our largest cube height of h/δ0 = 1.0 in this study that corresponds to roughly z/H = 2.8

in terms of ramp height. Thus, having a domain width Lz < 4H will pollute the results due to

blockage effect and flow interactions from the lateral side walls.

157



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Lz = 4H, x/H = −3.

-3 -2 -1 0 1 2 3
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Lz = 6H, x/H = −3.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Lz = 4H, x/H = 0.

-3 -2 -1 0 1 2 3
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(d) Lz = 6H, x/H = 0.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(e) Lz = 4H, x/H = 2.1.

-3 -2 -1 0 1 2 3
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(f) Lz = 6H, x/H = 2.1.

Figure C.1: Streamwise component of the spatial two-point correlations, Ruu, at different stream-
wise stations given by x/H for spanwise domain size analysis
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Appendix D

The quality index of wall-resolved large eddy simulations

(a) W = 3h. (b) W = 5h. (c) W = 7h.

Figure D.1: LES quality index based on resolved kinetic energy (LES QIk)for the different inter-
cube spacings.

Quality assessment in the LES is not easy similar to traditional RANS models because both

the discretization errors and sub grid scale contribution to the model are proportional to the grid

size (Celik et al., 2005). Good LES simulation tends to DNS as finer grids are implemented,

therefore there is not a grid independent result in traditional LES theory and it is necessary to have

some quality assessments for every LES simulation. Pope (2000) suggests that 80% of the energy

be resolved everywhere for LES with near-wall resolution. Therefore, the quality index for LES

(LES QIk) based on the kinetic energy spectrum can be written as,

LES QIk =
kres

ktot =
kres

kres + ksgs (D.1)

In this study the wall-resolved LES shows more than 80% of the TKE is resolved in the near-

wall regions especially around the surface-mounted cube, see figure D.1. Another metric in the
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(a) W = 3h. (b) W = 5h. (c) W = 7h.

Figure D.2: LES quality index based on the subgrid activity parameter (LES QIν) for the different
inter-cube spacings.

assessment of LES is the sub-grid activity parameter (Geurts & Fröhlich, 2002), which is defined

as

s =
< εt >

< εt > + < εµ >
(D.2)

Here, <> denotes an averaged (or filtered) quantity, εt is the turbulent dissipation, and εµ is the

molecular dissipation. It is stated that by definition s = 1 corresponds to LES, whereas s = 0

corresponds to DNS at infinite Reynolds number (Re). However, evaluation of s can be sometimes

be tedious as it involves calculation of the volume-averaged turbulent dissipation rate, which in-

herently includes both the modeled dissipation and the numerical dissipation; segregation of the

two is necessary but not easy. A modified parameter s∗ (Celik et al., 2005), can be evaluated with

relative when incorporating many assumptions including the relation between turbulent dissipation

rate and turbulent viscosity. Using the modified parameter, quality index for LES can be defined

as,

LES QIν =
1

1 + 0.05( νt+ν
ν

)0.53
(D.3)

Here, nu is the molecular viscosity and νt is the turbulent viscosity. LES QIν > 0.8 is considered

good LES, while value of 0.95 and higher is considered as DNS. In figure D.2, the LES QIν in this

study remains between 0.84 and 0.92, which suggests a good wall-resolved LES study.
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Appendix E

Scalability of RADG on Summit
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Figure E.1: Strong (left) and weak (right) scaling of RADG code on Summit, ORNL.

To perform extreme-scale computations, it is essential to assess the scalability of recovery-

assisted discontinuous Galerkin (RADG) code on HPC platforms. The discontinuous solution

approximation inside each element Ωm and dependence on nearest neighbor (section 5.1) makes

RADG methods highly scalable and easily parallelizable. The in-house RADG-based C++ code

features many-core and multi-GPU compute framework to achieve massive concurrency by using

MPI and NVIDIA’s CUDA programming environment.

Figure (E.1) shows the scaling of the RADG code on Summit supercomputer on the NVIDIA

Volta V100 accelerators. The scaling runs use a benchmark 3D problem of TGV with 160 elements

in each direction and polynomial order of p = 1 for solution approximation, which gives the

total number of degree of freedom (DOFs) above 32 million. The method scales up to 2K nodes
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on Summit, each node with 4 GPUs. Additionally, the weak scaling with 16K DOFs per node

shows good performance up to 2K nodes. Hence, RADG has a high potential for massively-

parallel simulations of turbulent flow problems on machines with an architecture similar to that of

Summit.
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