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ABSTRACT

Highway bridges are critical infrastructure elements supporting commercial and personal traf-

fic. However, bridge deterioration coupled with insufficient funding for bridge maintenance remain

a chronic problem faced by the United States. With the emergence of inexpensive sensors and wire-

less sensor networks (WSN), structural health monitoring (SHM) has gained increasing attention

over the last decade as a viable means of assessing bridge structural conditions for asset manage-

ment. Collected SHM data provides a quantitative basis for bridge performance assessment and

to detect damages, thereby allowing informed maintenance decisions to be made. While intensive

research has been conducted on bridge SHM, few studies have clearly demonstrated the value of

SHM to bridge owners, especially using real-world implementation in operational bridges.

This thesis first aims to enhance existing bridge SHM implementations by developing a cyber-

physical system (CPS) framework that integrates multiple long-term bridge SHM systems using

the Internet with intelligent transportation systems including traffic cameras and weigh-in-motion

(WIM) stations located along the same corridor. To demonstrate the efficacy of the proposed CPS,

a 20-mile segment of the northbound I-275 highway between Newport and Romulus, Michigan is

instrumented with four traffic cameras, two bridge SHM systems and a WIM station. Real-time

truck detection algorithms are employed to intelligently trigger the bridge SHM systems for data

collection during large truck events. Such a triggering approach is shown to be able to improve the

efficiency of data acquisition by up to 70% (as compared to schedule-based data collection). Lever-

aging computer vision-based truck re-identification techniques applied to videos from the traffic

cameras along the corridor, a two-stage data integration pipeline is proposed to fuse bridge input

data (i.e. truck loads as measured by the WIM station) and output data (i.e. bridge responses to a

xix



given truck load). From August 2017 to April 2019, over 20,000 truck events have been captured

by the proposed CPS framework. To the author’s best knowledge, the CPS implementation is the

first of its kind in the nation and offers large volume of heterogeneous input-output data thereby

opening new opportunities for novel data-driven bridge condition assessment methods.

Built upon the developed CPS framework, the second half of the thesis focuses on use of the

data in real-world bridge asset management applications. Long-term bridge strain response data

is used to investigate and model composite action behavior exhibited in slab-on-girder highway

bridges. Partial composite action is observed and quantified over negative bending regions of the

bridge through the monitoring of slip strain at the girder-deck interface. It is revealed that un-

desired composite action over negative bending regions might be a cause of deck deterioration.

The analysis performed on modeling composite action is a first in studying composite behavior

in operational bridges with in-situ SHM measurements. Second, a data-driven analytical method

is proposed to derive site-specific parameters such as dynamic load allowance and unit influence

lines for bridge load rating using the input-output data. The resulting rating factors more rationally

account for the bridge’s systematic behavior leading to more accurate rating of a bridge’s load-

carrying capacity. Third, the proposed CPS framework is shown capable of measuring highway

traffic loads. A truck with a mobile WSN installed is used in the CPS framework to measure the

truck dynamics when it crosses a bridge. The collected data enables a two-stage system identi-

fication approach to be developed for vehicle-bridge interaction modeling. The paired WIM and

bridge response data can also be used for training a learning-based bridge WIM system where

truck weight characteristics such as axle weights are derived directly using corresponding bridge

response measurements. Such an approach is successfully utilized to extend the functionality of an

existing bridge SHM system in the I-275 corridor for truck weighing purposes achieving precision

requirements of a Type-II WIM station (e.g. vehicle gross weight error of less than 15%).

xx



CHAPTER 1.

Introduction

1.1 Cyber-physical Systems in Civil Engineering

The concept of cyber-physical system (CPS) was first formalized by the National Science Foun-

dation (NSF) during its first workshop on CPS in Austin, TX in 2006 and later recognized as a

promising direction of the development of networking and information technologies by the Presi-

dent’s Council of Advisors on Science and Technology (PCAST) in 2007 [1, 2, 3]. By definition, a

CPS is an engineered system that integrates sensing, communication and computation technology

into physical systems which can then be intelligently monitored, connected, coordinated and con-

trolled [3, 4, 5]. It is typically composed of two critical component types: physical systems and

cyber (or digital) systems. The architectural paradigm of a CPS can be illustrated as Figure 1-1.

The physical system is the bases of a CPS and the target subject that the CPS is built to enhance.

Depending on the domain of the CPS application, physical systems can range from manufacturing

systems (e.g., welding machines, conveyors) [2] and transportation systems (e.g., aircraft, automo-

biles, traffic control systems) [6] all the way to medical devices (e.g., surgical robots) [7]. On the

other hand, the cyber system is made up of a combination of cutting edge technologies, such as em-

bedded systems, wireless sensing devices, communication infrastructures, and data management

platforms. These cyber elements augment the function of the physical entities of a CPS to provide

the capabilities of sensing, computing, communicating, and controlling [2]. Sensors and moni-

toring systems are the starting point of a CPS; they measure data and gather information from the

physical system so that the physical system state is quantitatively identified for further analyses and

control. The communication layer employs communication technologies (i.e. wired or wireless)
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Figure 1-1: Schematic cyber-physical system paradigm.

to provide connectivity among different components within the cyber system. The communication

network also facilitate interaction between different CPS that interact. In many respects, CPS is

closely intertwined with the “Internet of Things (IoT)” especially from the aspect of state aware-

ness and connectivity built by the cyber system components embedded with physical systems [8].

The computing systems integrated with CPS act as the brain of the CPS by automatically process-

ing collected information and making decisions based on analysis outcomes. Depending on the

design of the CPS, the computing system can be a centralized platform (e.g., cloud-based server),

an edge-computing device (e.g., single board computer) directly tethered with sensors, or multiple

edge-computing nodes cooperating in a distributed manner (e.g., in-network computing facilitated

by local area network (LAN) connections) [9]. Finally, the control system achieves the objective

of affecting the behavior and performance of the physical system by closing a feedback loop that

allows data from the monitoring system to be used as an input to a control loop implemented in the

computing system with outputs driving actuation of the physical system.

The rapid maturing of CPS as an established approach to enhancing the performance of physi-

cal systems is due to the emergence of new technologies in the computer and electronic fields. For

example, embedded systems technologies including micro-controller, wireless transceivers and
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miniaturized sensors has allowed low cost sensors to be quickly deployed in physical systems.

Further, information technologies are offering increasing access to computational power including

cloud-based computing and distributed database systems at a low cost. Various realms including

manufacturing, health care, robotics and other industrial sectors have significantly profited from

recent developments in CPS technologies over the last decade [3]. Similar to other domains, the

adoption of CPS solutions has become one of the fastest-growing research topics in civil engineer-

ing [10, 11].

Transportation is one of the earliest areas in civil engineering that has embraced the benefits

brought by CPS [12, 13, 14]. Intelligent transportation systems (ITS) utilize CPS architectures

to equip conventional transportation systems (e.g., highway systems) with various types of high-

tech devices such as sensors (e.g., radar detectors, cameras and inductive loops) [15] and actuators

(e.g., smart traffic lights and dynamic traffic signs) [14]. These CPS elements allow traffic to

be monitored and controlled with low latency. Aside from transportation infrastructures, a great

amount of effort has also been made to build smarter vehicles that have perception and connectivity

technology coupled with abundant computational capability that empower the vehicle to drive

autonomously and to communicate with other vehicles and infrastructures for safer and faster

travels. Such transformations are currently taking place all over the world covering almost every

aspect of human mobility including driving, navigation, ride sharing and parking.

Another area now empowered by CPS is the smart city. Smart cities adopt CPS solutions to

transform almost every aspect of urban life [16]. Energy transmission and consumption in cities

is a domain where CPS plays an important role. For example, smart power grids are implemented

to help better understand demand and supply relationships within the network and identify net-

work issues (e.g., connection) at an early stage [17, 18]. Heat, air ventilation, and cooling (HAVC)

systems in buildings can also be controlled by CPS in an intelligent and automatic way for better

energy efficiency [19]. Instrumented with reliable sensors (e.g., flow meters) and smart actua-

tors (e.g., automatic gate, valves), urban water networks can also be monitored and controlled in

real-time for flood hazard management [20, 21]. Real-time measurements and reports of living

3



metrics, such as air quality, humidity and public safety, just to name a few, significantly facilitate

the interaction that people have every day with their living environment [22]. The abundant data

collected over time through CPS architectures embedded in the built environment offer a more

resilient approach to offering infrastructure services to urban communities.

Structural health monitoring (SHM) and structural control is another field in civil engineering

where the principles of the CPS framework are extensively leveraged [23, 24, 25, 26]. SHM re-

quires sensor networks to be deployed on a structure, such as a building or a bridge, to collect data

related to the structure’s responses (e.g., vibration and deformation) and its relevant environmen-

tal and operational conditions (EOC) (e.g., temperature and external loads) [27]. The structural

condition of the asset can then be quantitatively estimated through analyses based on the collected

data. The assessed condition can then inform which actions (e.g., load posting and structural re-

habilitation) can be taken to ensure safe use of the structure. When integrated with information

systems, such as building information modeling (BIM) or bridge information modeling (BrIM),

the measurements obtained from SHM can be better visualized and interpreted for asset manage-

ment purposes [28]. Structural control on the other hand relies on the data collected to perform

closed-loop control of the system to mitigate structural responses to extreme load events (e.g.,

earthquake) in order to prevent damage [29]. Driven by recent advances in CPS technology, this

dissertation explores the creation of a CPS framework for bridge SHM. Specifically, the objective

objective of the CPS will be to enhance existing practices of bridge condition monitoring and asset

management.

1.2 Structural Health Monitoring and Asset Management for Bridges

According to the ASCE 2017 Infrastructure Report Card, the United States has witnessed a con-

tinuous improvement on the condition of national road bridges over the last decade. For example,

the deficient bridge ratio dropped from 12.3% in 2007 to 9.1% in 2016 [30]. However, as of 2016,

the situation is still not optimistic with 39% of the nation’s 614,387 bridges being 50 years or older

with 13.6% of them rated as functionally obsolete [30]. What makes it worse is that, on average,
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there were 188 million trips across a structurally deficient bridge each day in 2016 [30] with user

demands increasing every year (for instance, highway vehicle miles traveled increased 0.2% per

year from 2004 to 2014) [31]. Considering most bridges were designed for an expected lifespan of

50 years, it was estimated that around $123 billion is needed to clear the backlog of bridge main-

tenance and rehabilitation in the limited states [30]. Consequently, aging and deteriorating bridges

pose a potential risk to public safety making it an urgent issue for the country.

Routine visual inspection (VI) conducted by trained inspectors and engineers is the most com-

mon practice in the United States to assess bridges’ conditions [32, 33]. It is recommended by

the Federal Highway Administration (FHWA) that VI should be performed at least once every

24 months for a bridge [34, 35]. However, several limitations are associated with VI: 1) VI is a

discrete monitoring process and the scheduled inspection frequency might result in ignorance of

early-stage damage; 2) it might be difficult if not impossible to inspect some places of the struc-

ture due to limited accessibility or safety concerns; 3) inspection results are subject to inspectors’

subjective judgement which introduce some challenges for objective interpretation; 4) VI is costly

to perform in terms of labor, equipment and in some cases the downtime of the bridge to traffic

[32, 33]. When it comes to material defects hidden from view (e.g., corrosion of reinforcement

steel-bars, delamination of composite components), non-destructive testing (NDT) methods (e.g.,

electromagnetic testing and ultrasonic testing) can be adopted to exam the local condition of the

structural element [36, 37]. While NDT provides a quantitative basis for condition evaluation, it too

is costly due to the equipment needed and the trained personnel required to perform such methods.

Also, these methods tend to be highly localized so prior knowledge of an issue is necessary.

With rapid growth of sensing technology, bridge structural health monitoring (SHM) has gained

wide acceptance in both academia and industry in recent years [38, 27, 39]. A bridge SHM system

usually consists of two parts: a sensor network and post-collection damage detection algorithms.

The target bridge needs to be instrumented with sensors (e.g., accelerometers, strain gauges, ther-

mistors) and a data acquisition system (e.g., wired or wireless sensor, signal communications,

analog-to-digital conversion, data storage) to automatically collect data pertaining to bridge behav-
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iors (e.g., vibration and deformation) and EOC (e.g., temperature and wind speed) continuously

or at regular intervals. The observations are fed into an automated pipeline for data processing,

feature extraction and performance assessment aiming to not only classify structural damage states

but also identify damage (e.g. existence, location, severity). Existing damage detection algorithms

mainly depend on two major sources of bridge responses: bridge vibration/accelerations and strain

responses [38]. Vibration-based SHM frameworks seek to extract bridge dynamic characteristics

(including natural frequencies, mode shapes, modal strain energy, and damping ratios) from vi-

bration measurements and consider the changes of those characteristics over time as indicators of

damage [40, 38, 41, 42]. While vibration-based methods are extensively explored, there is a grow-

ing interest in strain-based damage detection frameworks for bridge SHM [38]. Strain-based meth-

ods either directly observe discrepancies in terms of the amplitudes of strain time-histories [43] or

derive unique metrics (e.g., neutral axis positions) for damage detection [44, 45, 46]. In contrast

to manual inspection, the SHM approach offers quantitative measurements reflecting bridge struc-

tural conditions and thus avoids the issue of misinterpretation [47, 48]. Another benefit is that

monitoring performed by SHM can be carried out more frequently (often continuously) than man-

ual inspection, which allows condition assessment and decision-making to be based on a more

rational condition-based framework [49, 32]. Although SHM provides a wealth of data, VI still

represents the most comprehensive and proven approach to asset management. However, as SHM

evolves it can grow to complement and potentially replace VI.

Since the emergence of bridge SHM, the technology has undergone constant refinement and

improvements. The first trend has been the replacement of wired (tethered) sensor networks with

wireless sensor networks (WSN) [50, 39, 51]. Numerous SHM systems deployed in operational

bridges using WSNs have demonstrated the potential for WSNs for bridge SHM applications [39,

51]. The WSN is growing into a preferred approach for bridge SHM due to its low cost and less

laborious installations. In addition, recent advances in edge computing and embedded systems are

allowing SHM systems to be deployed in a distributed fashion using WSNs to further enhance its

efficiency and computing capabilities.
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Second, as SHM sensing technology (especially WSNs)have grown more mature, there has

been a growth in long-term bridge SHM programs implemented in practice [47, 33, 52]. Tempo-

rary bridge SHM systems are usually deployed to: 1) address specific time-sensitive issues known

to bridge owners, 2) act as quick testbeds for emerging techniques, or 3) to serve as data-collection

platforms for bridge load rating [38]. In contrast, long-term programs mainly focus on the evo-

lution of bridge condition over time and the effects of various EOCs on structural performance.

Abundant bridge data can be collected using long-term SHM systems which accelerates the devel-

opment of novel data-driven methods for bridge condition assessments. Some notable long-term

bridge SHM programs include the Stork bridge (cable-stayed) in Switzerland monitored since 2006

[53], the Tamar bridge (suspension) in the United Kingdom monitored from 2006 to 2009 [54], the

Jindo bridge (cable-stayed) in South Korea monitored from 2009 to 2012 [55], the Mjosund bridge

(steel box-girder) in Norway monitored from 2000 to 2001 [56], the Cleddau bridge (steel box-

girder) in the United Kingdom monitored from 2011 to 2013 [57], the New Carquinez bridge

(suspension) in California monitored from 2011 to 2016 [58], Aizhai Bridge (suspension) in China

monitored since 2013 [59], Tsing Ma Bridge (suspension) in Hongkong, China monitored since

1997 [60] and the Telegraph Road bridge in Michigan monitored since 2011 [61]. A thorough

review and comparison of these long-term bridge monitoring programs can be found in [33].

Third, researchers have focused on developing SHM methodologies for local damage detec-

tion in recent years. Bridges are usually designed and constructed with systematic structural re-

dundancy to enhance safety. Minor structural damage (e.g., concrete deck cracking, constrained

bearings) commonly seen in bridges typically occur in local areas and may only lead to lim-

ited reductions in overall structural performance instead of a severe loss of functionality with a

safety concern [49]. Such a fact makes it challenging for SHM algorithms, especially those based

on global structural behaviors and frequency-domain signals (e.g., natural frequencies), to have

sufficient sensitivity to identify local but small levels of damage [62, 49, 46]. To make things

more challenging, it is known that dynamics characteristics like modal frequencies are sensitive to

EOC parameters (e.g., ambient temperature), often more so than to damage, which renders many
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theoretically-proven damage detection algorithms impractical for field use [63, 62, 64]. Robust

SHM technology help address some of these challenges and limitations by facilitating denser sen-

sor installations that offer spatially high-resolution bridge data that can lead to the development

of novel damage detection algorithms. For example, local damage in bridges can be detected and

localized with dense sensor networks (DSN) of strain gauges by constructing a mutual informa-

tion matrix among different sensing channels within the network [65]. Sensor data reconstruction

techniques allow anomalies to be identified at a specific sensing location by comparing measured

time-history data with predicted ones. Such an approach can be realized using bidirectional re-

current neural networks (RNN) within a dense network of accelerometers, which is robust against

environmental changes [66]. In another case, the auto-regressive with exogenous input (ARX)

model and sensor clustering damage identification technique have been shown to detect artificial

damage on a full-scale girder bridge using a dense network of inexpensive geophones [67]. In gen-

eral, local damage detection algorithms offer more informative assessments of bridge conditions

for decision making, and thus, more practical in real-world applications.

Despite recent advances in SHM, the SHM approach has not been widely accepted as an al-

ternative to VI at this stage of development [49]. From a technical perspective, each bridge SHM

system needs to be tailored for the specific target bridge considering its unique structural proper-

ties (e.g., geometry and materials) and potential damage patterns; this demands considerable efforts

from engineers in the design of SHM systems. In terms of efficacy, few examples of SHM systems

so far have managed to clearly demonstrate their value and effectiveness (when considering their

costs) to the bridge owners, stakeholders and investors [33]. The necessity of customization, not-

yet-validated commercial viability, and high long-term system maintenance cost make widespread

adoption of SHM a slow process. An even more fundamental challenge for SHM is that most ex-

isting SHM methods have only been evaluated with simulation and laboratory experiments, which

cannot represent the realistic and complex scenarios experienced by operational bridges in real-

world environments. This is due to the fact that researchers lack access to operational bridges.

More access to bridges, especially over long time periods, would allow researchers to explore
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how to develop new approaches to bridge management that take full advantages of response data,

especially as deterioration occurs. But today, only limited data sets of bridges being in both un-

damaged and damaged states are available making it difficult for methods proposed by researchers

to be evaluated and compared [52]. Two notable benchmark SHM programs yielding data with

damage states are: 1) the I-40 highway bridge in Albuquerque, New Mexico had its plate girders

cut at different levels to simulate fatigue damages with vibration data before and after the damages

were measured by 26 accelerometers [68]; and 2) the Z24 bridge, which was a pre-stressed con-

crete highway bridge in Switzerland that was monitored for one year and applied with a sequence

of progressive damage states before its demolition [69]. Some other examples include creating

artificial damages through steel girder flange cut [70] or installing sacrificial components [45] in

real bridges for damage detection algorithm development. One area where there has been great

effort to deploy SHM systems has been in long-span bridges [71, 72]. While long-span bridges are

critical bridges to transportation networks and require more resources for maintenance, these SHM

systems are often applied to newer bridges where deterioration is less prevalent. There is a more

pressing need and opportunity for the SHM community to develop SHM systems for short-span

bridges considering the fact that they make up a large fraction of the National Bridge Inventory

(NBI) [27]. With the lack of binary state data (damage versus undamaged), many SHM algorithms

have to be developed using methods that work on a statistically unsupervised manner. Clearly the

gap in access to real bridges needs to be filled to transform in-lab experiments to real monitoring

exercises that hold greater promise for advancing SHM [44]. In this dissertation, a series of novel

applications of long-term SHM data collected from two SHM systems which are deployed in two

short-span highway bridges in Michigan are presented to showcase the effectiveness and value of

bridge SHM.

1.3 Cyber-physical System-enabled Bridge Structural Monitoring

Driven by recent advances in CPS technology, current research in SHM is now going beyond sim-

ply deploying sensors on civil infrastructure systems and collecting desired data to using more in-
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novative techniques and tools such as data management platforms and data-driven analytics geared

towards asset management [73, 74]. With the great amount of data generated from increasing de-

ployments of long-term SHM systems, it has become a necessity for SHM engineers to develop

scalable database management systems (DBMS) to ease the storage, management and access to

enormous volumes of data [75]. Early-stage development of DBMS for SHM applications has

mainly involved the use of relational database solutions such as MySQL for bridge data storage

and retrieval [76, 77]. Hybrid solutions have also been explored. For example, SenStore was an im-

plementation that takes advantages of non-relational database systems by building a hybrid DBMS

based on Hierarchical Data Format (e.g. HDF5) and relational databases (e.g. PostgreSQL) [75].

The HDF5 portion of the system enables efficient storage of time history data while PostgreSQL of-

fers efficient querying of monitoring system information. Recently, the benefits of NoSQL DBMS

have been further explored to build cloud-based distributed peer-to-peer DBMS featuring high

scalability and fault-tolerance [78, 79]. Following the success of Building Information Model-

ing (BIM) in the architecture, engineering and construction (AEC) industry, Bridge Information

Modeling (BrIM) can be performed following the OpenBrIM standard. BrIM has been used in

the design of MongoDB NoSQL DBMS for better atomicity and interpretability among different

groups of users involved in SHM [80, 79]. Web-based and mobile-based applications have been

written on top of the BrIM-based DBMS with a friendly graphical user interface (GUI) to enhance

the visualization and access of heterogeneous SHM data stored in the DBMS [81].

Another difference that separates CPS-enabled SHM systems from conventional SHM systems

is the integration of cross-domain and inter-network sensors to collect heterogeneous information

for monitoring purposes [82]. Intensive studies have been conducted aiming at the integration of

SHM systems and Intelligent Transportation Systems (ITS) to leverage data sources other than

traditional bridge response data and environmental data [83]. CPS architecture can facilitate the

integration of SHM and ITS systems. Traffic cameras commonly used in ITS provide image data

regarding the passage of vehicular traffic over bridges, which can help identify realistic operational

conditions and special events (e.g. overloaded trucks) experienced by the bridges [84]. Weigh-in-
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motion (WIM) stations are another ITS innovation that offers direct quantitative measurements

of vehicular loads (e.g., axle weight, axle spacing, gross vehicle weight, etc.), especially those

from trucks. This data can be used to understand the truck loads experienced by the bridges.

As a result, WIM data can provide input load data difficult to capture using sensors installed on

bridges to enable structural analyses that can not be conducted with bridge outputs only [85].

For example, discrepancies between estimates of vehicle characteristics calculated by a calibrated

bridge-WIM system and those directly measured by pavement-based WIM stations can be used

as an indicator of bridge damages [86]. Apart from traffic cameras and WIM stations, other ITS

sources include crowd-sourced smartphone vibration data [87] and vehicle-based mobile sensors

[88] among others.

CPS can also integrate other data sources that can impact SHM. Integration among multiple

bridge SHM systems possible by CPS has also been investigated. The correlation among strain

responses of two adjacent bridges to the same group of vehicular loads measured by dense sensor

networks can potentially reveal damage that has occurred to one or both of the bridges [65]. Two

adjacent bridges instrumented with SHM systems can also work in a multi-agent manner with one

SHM system activating the other when trucks are present [89].

Reviews of existing implementations of WSN-based bridge SHM systems reveal that power

constraints is still a profound challenge associated with WSNs for SHM applications [39, 90]. Be-

sides hardware solutions (e.g., low power-demand devices, energy harvesting [91]), the CPS ap-

proach can be used to mitigate this issue through distributed edge computing or intelligent control

of SHM systems. Using distributed computing techniques, the extraction of desired information

(e.g., model frequencies) or screening of data (e.g., selecting data corresponding to special loading

events) can be completed within wireless sensors. As a result, to reduce power consumption, only

information of interest, instead of the entire set of raw data, is transmitted [25, 74]. A SHM system

can also be intelligently controlled such that the sensor network stay asleep until occurrences of

certain structural events (e.g., structural damages or trucks with heavy loads). This can be realized

using a separate sensor (e.g., an accelerator or an anemometer) as a trigger of the main network
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constantly detecting events of interest beforehand [55].

In addition to the CPS innovations discussed, sensor anomaly detection (e.g., faulty sensor

detection) [92] and the adoption of new communication middlewares (e.g., LTE, 5G) [93] are also

exciting innovations that will accelerate CPS adoption for bridge SHM.

1.4 Data-driven Methods for Bridge Damage Detection and Performance Assessment

The emergence of reliable and inexpensive sensing technology has accelerated the deployment of

long-term bridge SHM systems with dense sensor networks. These systems have the potential to

produce massive amounts of SHM data. The acquired data especially its vast size has opened a new

horizon for the development of data-driven methodologies for damage detection and performance

assessment in bridge infrastructures. In general, the objective of data-driven methods is to find

statistically significant patterns in data to identify the health conditions of the target structure [94].

Since data-driven methods don’t rely on detailed physics-based models (e.g., finite element method

models) which often involve approximations and assumptions, they can often be carried out with

relatively low computational demand but also potentially higher accuracy in damage detection [65].

These methods follow a similar procedure consisting of two major phrases: baseline model training

(or updating) based on available data and use of a trained model for monitoring (i.e., detection of

damages and modifications) [52, 94, 95].

A prerequisite of baseline model training is to select features from data that are sensitive to

changes in structural conditions, especially damage states of interest, but not sensitive to nor-

mal variation of EOCs such as seasonal temperature fluctuation [96]. With selected features, the

essence of the baseline model training step is to find non-intersecting subspaces representing dif-

ferent states of structural health. Depending on the dimension of the features, the feature space can

either be separated by a baseline threshold for a single value damage index or a set of planes (or

hyper-planes) for multi-variable indicators [97].

One of the most direct ways of feature selection is to adopt features commonly used in mechan-

ical model-based SHM methods and use them in a statistical manner. For example, load distribu-
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tion factors of girders and neutral axis locations can all be used as indicators of bridge structural

soundness [43]. A collection of modal frequency sets under different EOCs can also be extracted

from long-term bridge vibration data using the stochastic subspace identification (SSI) technique

[98, 99, 100]. Unlike mechanics-based methods, data-driven frameworks can use training data

from when the structure is known to be in a healthy state to make future decisions through com-

parisons between newly extracted indicators and baseline (healthy) indicators without consulting

theoretical parameters derived from mechanical analysis.

While mechanical parameters of bridge systems are usually preferred as health indicators for

effective interpretation, features do not necessarily need to have physical significance. For ex-

ample, the coefficients of trained auto-regressive (AR) models have been widely used as features

[96, 101]. Moving principal component analysis (PCA) can be applied to time-history data over a

long observation period to reduce the data dimensionality and extract major principle components

as features [102, 103]. Damage detection can be conducted by observing the evolution of extracted

principle components through robust regression analysis (RRA); changes in main eigenvectors may

imply changes of structure performance at a location near corresponding sensors [102]. Recent re-

search has also been performed in artificial symbolic metrics such as statistical manipulation of raw

bridge response measurements. These methods have shown that raw data manifests sufficient sen-

sitive information for condition assessment [104]. For example, peak (maximum) strain has been

directly used in strain-based bridge SHM [43]. Different statistics such as root mean square (RMS),

standard deviation and mean of the largest 10 measurements were successfully used as features for

the health monitoring of the Sunrise movable bridge in Ft. Lauderdale, Florida based on four years

of acceleration data [52]. Some other options of symbolic metrics include k-bin histograms and

interquartile range (IQR) representing the statistical distribution of raw data [105, 104, 106]. Be-

sides symbolic metrics of data in the time domain, those of processed frequency domain data (e.g.,

fast Fourier transform (FFT) of raw acceleration data) have also proven to be an effective addition

to feature sets [106]. Signal processing techniques including the wavelet transform, Hilbert-Huang

transform (HHT) and Teager-Huang transform (THT) have also been employed to convert raw data
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into usable time-frequency domain features [107]. Spatial and temporal correlation hidden in data

collected from sensors at multiple locations is another information source for structural condition

representation. Correlation coefficients among different features from different sensors have been

evaluated as powerful features for baseline learning through RRA [52].

After features are determined, they can be fed into machine learning models to recognize pat-

terns regarding bridge structural conditions [94]. Common models include classification models

(such as kernel-based support vector machine (SVM), Bayesian decision trees (BDT) ) [105, 107],

clustering models (such as k-means clustering) [106] and regression models (such as AR, Gaussian

process regression (GPR), support vector regression (SVR)) [101, 61]. While classification and

clustering models produce easily interpretable outputs (either a class label or a numerical distance

from cluster centroids), statistical process control methods, such as mean and moving range (X-

MR) control charts, are usually employed with regression models for damage detection [101, 61].

For example, prediction errors of trained GPR models can be used as samples for X-MR control

charts [61].

EOC parameters (e.g., wind speed, temperature, vehicular loads) often have a strong influence

on features, especially those with physical significance. EOC variability often prohibits direct

use of the features for damage detection. For example, the correlation analysis between modal

properties and ambient temperature reveals that uncertainties associated with modal properties due

to effects of EOCs [95]. Such an issue makes it critical to perform necessary data normaliza-

tion before feeding features into machine learning models for reliable detection results [108, 95].

The process of data normalization aims to eliminate undesired components in data that are in-

duced by EOC influences. Regression models such as GPR, SVR and artificial neural networks

are usually used to learn the mapping from EOCs to EOC-induced bridge responses (e.g., thermal

response) [61, 95]. The trained regression models can predict EOC-induced responses allowing

them to be removed from the measurement data. Signal processing in the frequency domain is

also a means of data normalization. In the Tsing Ma Bridge SHM program, temperature- and

traffic-induced strain components are separated from the measurement data through wavelet-based
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multi-resolution analysis [109]. Many studies also attempt to derive features that are less dependent

upon EOCs. Complex poles directly calculated by SSI, instead of real poles, are clustered using

fuzzy c-means (FCM) clustering for the Z-24 bridge, which shows better sensitivity to damages

than to EOCs [110]. EOCs can also be integrated as a feature into the baseline model training pro-

cess. For example, the three dimensional relationship among local axial mechanical strain, global

unrestrained displacement and uniform temperature variation has been established by clustering

methods for the long-term health monitoring of a long-span tied-arch bridge in [111].

The latest research in the SHM field explores the effectiveness of deep learning methods for

the monitoring of SHM systems and structure integrity [112]. Among all applications using deep

learning, vision-based methods have received the most success in bridge SHM due to the easy

application of such tools for binary data collection. Convolutions neural networks (CNN) trained

with a large amount of labelled images are able to identify structural damage (e.g., deck cracks)

outperforming human inspectors [113]. Raw SHM time-histories can also be converted into images

and fed into a CNN to learn multi-category data anomaly classification [114].

1.5 Research Objectives and Dissertation Outline

Leveraging recent advances in CPS-related research, this doctoral dissertation focuses on the cre-

ation and application of a CPS framework tailored for civil infrastructure monitoring, especially in

the SHM of highway bridges. Following the philosophy of CPS design, a connected corridor-based

bridge SHM network is deployed along a section of the northbound I-275 freeway in southeast

Michigan. The SHM network consists of two SHM systems installed on two short span highway

bridges, a pavement-based two-lane WIM station and a series of traffic cameras along the 20-mile

corridor. With the CPS installation initiated in 2011, a great amount of data from a heterogeneous

set of data sources has been collected to date. To the best of the author’s knowledge, this network

is the first implementation of its kind with the value of the generated long-term data shown to be

high.

This doctoral research program has three primary objectives surrounding the advancement of
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CPS-enabled bridge SHM. First and foremost, this study aims to transform the concept of CPS-

enabled bridge SHM to a real-world implementation such that the effectiveness and benefits of

CPS can be tested under realistic field conditions. This goal is achieved by the installation of the

aforementioned corridor-based bridge SHM network in Michigan. A considerable fraction of the

research effort has been dedicated to the design and implementation of the CPS-based network.

The network integrates several physical and cyber components, such as bridge SHM systems,

cameras and cloud-based database platforms located on the Internet. Within each bridge SHM

system, sensors and a dedicated base station at each bridge are connected wirelessly using Zig-

Bee. Different subsystems at different locations are also linked to the Internet by cellular wireless

communications. Many intelligent software modules, especially those utilizing real-time computer

vision techniques, are deployed to facilitate the process of automatic system control, data transmis-

sion and data management. The efficacy of the network and many novel SHM applications driven

by the data collected using the network are proven in this dissertation .

The second goal of this study is to demonstrate the value of long-term bridge SHM data in

bridge performance assessment. While many long-term bridge SHM systems have been deployed,

few studies clearly show the value of long-term measurement data. In this dissertation, the com-

posite action behavior exhibited by one of the two bridges is investigated in detail using four years

worth of bridge strain response and environmental data. Undesired partial composite action is ob-

served over the negative bending region of a bridge span revealing the potential causes to rapid

deterioration of bridge decks in negative bending region. A large amount of data also makes it pos-

sible to develop data-driven bridge condition evaluation methods. Fused with WIM data collected

along the same corridor, long-term measurements of of bridge girder strain under traffic loads is

used to extract site-specific load rating parameters which allows more realistic rating factors to be

obtained. These applications show that long-term bridge SHM data provides an opportunity for

better bridge asset management and design consideration.

The last objective of this study is to propose novel methodologies for bridge asset manage-

ment that leverage the connectivity established by the CPS-enabled SHM system design. Apart
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from data-driven load rating, the fusion of WIM data and bridge SHM data can also be used for

data-driven bridge weigh-in-motion (BWIM), especially when the large volume of data is avail-

able. Recent years have witnessed the use of bridge sensors for weighing passing vehicles [115].

However, mechanics-based methods often suffer from the inaccuracy associated with the very na-

ture of the inverse problem and uncertainties associated with bridge response measurements. This

study shows that such issues can be resolved by leveraging the computational complexity of deep

learning methods along with a large volume of load-response training data. The linkage between

geometrically adjacent bridge SHM systems also allows bridge responses to same traffic loads to

be paired. This type of previously unavailable data is utilized in this thesis for the exploration of a

data-driven joint SHM strategy among multiple bridges. Herein, a learning-based model is trained

to predict time-histories of one bridge response using the measured time-histories of another bridge

to the same vehicular load. The discrepancy between the measured and predicted responses can be

used as an indicator of bridge health. Such an approach further reduces the dependence of SHM

frameworks on physics-based models and bridge-specific structural information.

The outline of the dissertation is illustrated in Figure 1-2. Chapter 2 first proposes the concept

of the CPS-enabled bridge SHM system and then describes in detail the composition and opera-

tion of the CPS framework implemented along a 20-mile corridor of northbound I-275 between

Newport and Romulus, Michigan. A two-stage data integration procedure is used to fuse a diverse

set of data streams to match the response data of different bridges to the same truck load. The

effectiveness of the SHM system and the data integration process are evaluated in terms of data

collection efficiency and data quality. Chapter 3 focuses on the computer vision techniques that

are employed in the CPS framework data integration process. Multiple object detection and re-

identification algorithms are compared in terms of accuracy and inference time to evaluate which

offer the best performance.

Chapter 4 and Chapter 5 showcase the value of long-term bridge data for bridge performance

assessment. Chapter 4 uses long-term bridge monitoring data to quantitatively assess the compos-

ite action exhibited in slab-on-girder highway bridges and investigates the potential relationship
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Figure 1-2: Chapter layout of the dissertation.

between composite action and deck deterioration over negative bending regions. The degree of

composite action in composite and noncomposite sections of the bridge spans are quantitatively

investigated using the position of neutral axis and the magnitude of slip strain as key response

parameters correlated to composite action. It is shown that unintended nonlinear partial compos-

ite action exists in negative bending regions of the bridge. It is also concluded that the observed

partial composite action results in higher tensile strains in the deck which is a likely culprit to

accelerated deck deterioration. Chapter 5 utilizes the integrated bridge strain response and WIM

data for extracting site-specific load rating parameters, especially dynamic load allowance and unit
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influence lines. The two bridges within the CPS system are used as test beds for the proposed

data-driven load rating methods. The resultant rating factors are compared with those obtained

from conventional approximate and refined (finite element method) approaches.

Chapter 6 and Chapter 8 focus on the estimation and modeling of vehicular loads. Chapter 6

introduces a comprehensive wireless monitoring system that seamlessly integrates a mobile wire-

less sensor network installed in a tractor-trailer truck to measure dynamic truck behavior with

a stationary wireless monitoring system installed in a bridge to measure vibrations and strains.

Time-synchronized truck-bridge response data is used as the basis for modeling the interactions

between the truck and the bridge. A two-stage subspace system identification modeling frame-

work is proposed to create accurate input-output behaviors of the bridge response. Chapter 8

shows that paired bridge response and WIM data can be used as training data for a learning-based

bridge WIM (BWIM) approach. The effectiveness of the method is first evaluated using simulation

data and then tested using real data from the I-275 corridor.

Chapter 7 explores the feasibility of jointly monitoring structural health conditions of two ad-

jacent bridges in a data-driven approach. An emerging encoder-decoder model is trained using

bridge data with no damage present. Simulation data with artificial damage is used to evaluate the

effectiveness of the trained model for bridge damage detection.

Chapter 9 concludes the dissertation by summarizing the research conducted in this thesis with

key study findings and contributions identified. Future research directions are also presented in

this chapter.

19



CHAPTER 2.

Structural Health Monitoring System Framework for Highway Bridges with

Cyber-physical System Enabled

2.1 Introduction

An integral element of highway operations and management is the asset management of highway

structural assets including bridges. For example, there are 616,096 bridges in the United States

requiring significant investment to ensure they are safe for use and resilient to external loading

[116]. As the national inventory of bridges ages, increasing levels of funding will be required to

maintain bridge safety given existing asset management methods which rely on visual inspection

methods. Given an $8 billion annual investment shortfall for maintaining our national bridge inven-

tory, more cost efficient methods are needed for bridge asset management [117]. Recent advances

in structural health monitoring (SHM) including the emergence of new sensors and scalable ana-

lytical frameworks have the potential to improve asset management decisions potentially leading

to lower long-term management costs [118]. The adoption of SHM for bridges offer asset man-

agers data-driven methods that can improve the quantification of structural conditions for asset risk

assessment [38]. Current bridge SHM paradigms are based on systems designed to collect environ-

mental and structural response data using sensors and a data acquisition system. Bridge response

data can be used for damage detection [119], capacity estimation [120] and risk assessment [121].

While monitoring systems can reliably measure bridge behavior, such systems typically lack the

capability to measure the vehicular loads inducing measured responses. As a result, bridge SHM

frameworks often rely on output-only algorithms where the lack of a quantified input hinders accu-

racy, robustness, and generality. The challenges associated with output-only analyses are routinely
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encountered in bridge modal analysis and time-series modeling where the absence of load measure-

ments lead to simplifying assumptions such as the excitation source being a white noise process

[122]. While this assumption may be reasonable in long-span bridges excited by a dense flow of

traffic, it is often not suitable in short- and medium-span bridges where span lengths may only

accommodate a small number of vehicles at a time. Furthermore, the ratio of vehicular live load

to dead loads in short- and medium-span bridges is larger than in long-span bridges which places

even greater importance on acquiring data related to vehicular loading [120]. Researchers have

previously explored ways of acquiring data on vehicle loading of bridges. For example, controlled

load testing using calibrated but unmonitored vehicles has been explored [123]. Another strategy

is the use of instrumented trucks whose dynamics are recorded when driving over an instrumented

bridge; combining time-synchronized data from the truck and bridge can offer input-output data

sets for system identification and health assessment methods [124]. However, the cost and com-

plexity of controlled truck loading prevents it from being applied to most bridges.

Advances in wireless communications and connected vehicles have opened opportunities for

connectivity within highway systems including between vehicles and infrastructure. The SHM of

bridges can benefit from connectivity by integrating bridge monitoring data with roadside traffic

data sources including traffic cameras and weigh-in-motion (WIM) systems [83, 123]. For ex-

ample, extensive research has explored the use of traffic cameras installed adjacent to bridges to

capture images of vehicles loading the bridge. If roadside video and bridge monitoring data are

synchronized, bridge responses can be visually linked to the vehicles inducing them [125, 84, 126,

127]. Others have explored the use of traffic video to extract traffic characteristics (e.g., speed, tra-

jectory) using techniques from the field of computer vision. Gandhi et al. utilized an instrumented

segment of a roadway to measure the road response to vehicles and to link vehicle loads to fea-

tures extracted from roadside video using low-pass filtering, background subtraction with shadow

suppression, and Kalman filtering methods [128]. Fraser et al. extended the work of Gandhi et

al. by advancing similar computer vision methods to spatially map vehicle trajectories on a mon-

itored bridge [129, 128]. Chen et al. adopted the use of a temporary camcorder to capture bridge
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traffic so that vehicle type, speed and location were estimated for a spatial-temporal traffic model

that maps traffic to bridge responses [130]. In a different approach, Zaurin and Catbas proposed

the use of background subtraction methods using traffic cameras to identify vehicles crossing an

instrumented small-scale bridge in the laboratory. Strain measurements synchronized with vehicle

trajectories were then used to estimate unit influence lines (UILs) of the bridge [131] with UILs

later used as damage-sensitive features for health assessments [132]. All of these approaches use

cameras to acquire the state of traffic on a bridge but do not offer quantitative data specific to

vehicular loading.

WIM stations are widely used in highway systems to acquire weight data on vehicles in a

corridor including their gross weight, axle counts, axle spacing and axle weights. Traffic loads

measured by WIM stations allow statistical models of vehicle live loads to be created for bridge

load rating [133], fatigue analysis [134], and condition assessment [135, 136]. Researchers have

begun to explore the fusion of cameras with WIM stations to assess bridge loads. For example,

Han et al. adopted a traffic camera and a WIM station on a segment of the Xuanda Highway

(China) to identify heavy trucks so that their temporal frequency and corresponding load profiles

can be statistically modeled [133]. Chen et al. also explored the fusion of WIM stations and traffic

cameras on the Hangzhou Bay Bridge to track truck bridge loads using background subtraction for

truck identification and particle filters for trajectory estimation [130]. It also has been proposed

recently to integrate WIM data into Bridge Information Modeling (BrIM) frameworks to improve

the management of transportation infrastructure elements such as bridges [137]. While these stud-

ies have proven the utility of combing WIM stations with traffic cameras, they were also limited

by the need to collocate the WIM station and camera at the asset of interest (i.e., bridge). With

WIM stations costly to install, such stations also tend to be sparsely distributed in a network and

are rarely collocated with bridges.

The goal of this study is to create a cyber-physical system (CPS) framework that integrates

roadside traffic data collected using traffic cameras and WIM stations with response data collected

using SHM systems on bridges. By using computer vision to spatially link measurements collected
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Figure 2-1: (a) Functional diagram of the CPS components and connectivity; (b) locations of the
cyber-physical system (CPS) components for tracking truck loads in the I-275 highway corridor.

at different locations in the corridor, the proposed CPS framework does not require collocation of

the WIM station with a bridge. The study adopts a 20-mile highway corridor along northbound

I-275 between Newport and Romulus, Michigan for the design and deployment of the proposed

CPS architecture. As illustrated in Figure 2-1(b), along this corridor are two instrumented highway

bridges, one WIM station, and four traffic cameras, each connected to the Internet through cellular

communications. To link bridge response data to the same vehicle, the CPS framework uses low-

cost traffic cameras collocated with the bridge monitoring systems and WIM stations to capture

images of the traffic associated with each measurement location. Computer vision methods based

on convolutional neural networks (CNN) are adopted to automate the identification of heavy trucks

at each measurement location and to link data associated with the same truck observed at the differ-

23



ent measurement locations. The CPS framework also leverages real-time truck identification using

computer vision to trigger the bridge monitoring systems for more efficient data collection using

a solar powered wireless SHM system. The proposed approach to linking response data collected

at multiple locations in a corridor to the same truck event has many benefits including the ability

to map truck weights to bridge responses and to correlate bridge responses to one another under

the same load conditions. While the work is motivated by improving the asset management of

highway structural assets, the proposed CPS system offers many other uses integral to operational

management of highways including optimal routing of truck loads on bridges in a road network

[117], quantitative tracking of truck loads in a network [138] and optimal infrastructure investment

planning [139]. This chapter begins with a detailed description of the CPS architecture imple-

mented in the I-275 corridor including a description of the triggering strategy adopted by the CPS

to collect response data specific to truck load events. The chapter presents the CNN methods used

to identify trucks at multiple locations based on camera images. Bridge response and WIM data

corresponding to the same truck event are used to correlate bridge responses and truck weights,

thereby offering a novel approach to baselining bridge behavior for SHM. The chapter concludes

with a summary of findings and a description of future work.

2.2 Cyber-physical System Architecture

Cyber-physical systems (CPS) are systems in which sensors, actuators, and software components

are linked and integrated to monitor, analyze, and control the physical system [5]. Unlike tradi-

tional monitoring and control systems, CPS utilize computing platforms made available through

communication interfaces (wireless or wired) where data can be aggregated, curated and analyzed.

With the scalable computing resources available via the Internet, CPS often expand the repertoire

of computing methods from exclusively physics-based to also encompass data-driven methods

such as machine learning techniques [140]. CPS architectures have been applied to a wide range of

infrastructure applications including connected and autonomous vehicles [141], early earthquake

warning systems [142], and smart grids [143], just to name a few. In this study, a CPS architecture
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is proposed for highway corridors (i.e., the physical system) where heavy trucks load the corri-

dor assets such as bridges. The role of the CPS is to improve the performance of SHM systems

installed on bridges by quantitatively observing the truck loads. As shown in Figure 2-1(a), the

CPS architecture contains three major types of components: namely, physical components, sensing

modalities and Internet-based computing. The physical components of the system include highway

bridges and passing vehicles. The sensing components of the CPS architecture include the bridge

SHM systems that monitor bridge responses to traffic, WIM stations that measure the speed, gross

weight and weight distributions of vehicles, and traffic cameras that capture optical data of the ve-

hicles in the corridor. Notated as solid arrows in Figure 2-1(a), each of these sensing components

are connected to the Internet via cellular communication where data can be communicated for stor-

age in cloud-based database management systems and processed by deployed computing modules.

The communication interfaces are also used by the CPS architecture to communicate commands to

the sensing components where data collection processes can be actuated (i.e., triggered) as shown

as dash arrows in Figure 2-1(a). The CPS architecture is designed to use the traffic camera images

to identify trucks as they excite the monitored bridges and later cross over the WIM station. The

CPS architecture is also designed to automate the identification of the same truck in the images so

that truck weight parameters can be tied to bridge responses, thereby providing input-output data

for bridge health assessments.

In this study, a 20-mile (32.2 km) segment of the northbound I-275 corridor between Newport

and Romulus, Michigan is selected as a testbed to implement and demonstrate the CPS framework.

The geographic locations of the CPS components along I-275 including two bridge SHM systems

(i.e., Telegraph Road Bridge and Newburg Road Bridge), one WIM station and four traffic cameras

are illustrated in Figure 2-1(b). One camera (labeled Cam-1) is installed at the southern end of the

corridor to first identify vehicles entering the highway. The three remaining cameras (labeled Cam-

2 through Cam 4) are installed at each bridge and the WIM station. From south to north, the travel

distances between adjacent measurement locations are 2 miles (3.2 km), 4.5 miles (7.2 km), and 7

miles (11.3 km), respectively. It should be noted that exits are present along the 20-mile corridor
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Figure 2-2: (a) Telegraph Road Bridge carrying I-275 northbound traffic over Telegraph Road; (b)
overview of the wireless SHM system installed.

with one exit present between the Telegraph Road Bridge and Newburg Road Bridge and three

between the Newburg Road Bridge and the WIM station; there are no exits between Cam-1 and

the Telegraph Road Bridge. These exits allow trucks to enter and exit between the measurement

locations, making truck re-identification a more challenging problem for the CPS architecture.

2.2.1 Highway Bridge SHM Systems

Along the selected I-275 northbound corridor, two highway bridges carrying I-275 traffic over

local roads are monitored: Telegraph Road Bridge (TRB) and Newburg Road Bridge (NRB). Both

bridges were built in 1973 and are owned by the Michigan Department of Transportation (MDOT).

The TRB, shown in Figure 2-2, is a deck-on-steel girder bridge carrying three lanes of northbound

I-275 on seven girder lines. One of the bridge lanes is the merge lane associated with the highway
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Figure 2-3: (a) Newburg Road Bridge carrying I-275 northbound traffic over Newburg Road; (b)
overview of the wireless SHM system installed.

exit at the bridge location. The bridge spans a total of 224 feet (68.28 m) consisting of a main span

of 128 feet (39.01 m) and two abutment spans of 48 feet (14.63 m) each. The reinforced concrete

deck of bridge is 8 in. (20.3 cm) thick and is in composite action with the steel girders on the main

span (but not in composite action on the abutment spans). The abutment spans are each supported

on one end by the bridge abutments and a pier 6 feet (1.83 m) from the span end that is adjacent to

the main span. The main span is connected to the cantilevered ends of the abutment spans through

pin-and-hanger assemblies. Located 4.5 miles (7.2 km) north of the TRB, the NRB is a single span

bridge with a total length of 105 feet (32.00 m) as shown in Figure 2-3. NRB carries three lanes

of I-275 northbound traffic with seven steel plate girders and a 9 in (22.9 cm) reinforced concrete

deck in composite action with the girders.
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Figure 2-4: Narada wireless sensor nodes for field deployments in TRB and NRB: (a) Narada
sensor with conditioning circuits and interfaced sensor (shown is an accelerometer); (b) power
system of a Narada sensor node including rechargeable battery and solar charge controller; (c)
weather-proof enclosure installed on a girder flange with strain gauge welded to the girder web.

The TRB and NRB had SHM systems installed in 2011 and 2016, respectively, using wire-

less sensors as the main data acquisition platform. Each wireless SHM system is composed of a

wireless base station and a number of Narada wireless sensing nodes that have been developed

at the University of Michigan [144]. Up to four sensors can be interfaced with one Narada node

with an internal 16-bit analog-to-digital converter (ADC); sensors are attached to the ADC via a

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) switch (that allows sensors to be

turned on and off by the node to save power) and signal conditioning circuits (e.g., low-pass fil-

ters) as shown in Figure 2-4(a) [145]. Internal to Narada is a 256 kB of SRAM that allows data

to be stored locally before communication. The Narada nodes use power amplified IEEE802.15.4
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Figure 2-5: (a) Base station of the bridge SHM systems; (b) traffic camera installation along I-275.

transceivers (Texas Instruments CC2420) for wireless communication between nodes and the base

station. Each Narada node is placed in a weather-proof plastic enclosure along with a 12V sealed

lead acid (SLA) battery (PowerSonic PS-1229) with a 2.9A-hr capacity and a solar charge con-

troller (Morningstar SunSaver SS-6L-12V) which controls the recharging of the battery using 10W

solar panels (UL-Solar 10W 12V) installed along with the enclosure (Figure 2-4(b)). The enclo-

sure has rubber coated rare earth magnets (Figure 2-4(c)) on its base allowing it to be magnetically

mounted to the steel girders of the bridges. A more detailed description on the wireless sensing

node can be found in O’Connor et al. [61].
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Each base station (Figure 2-5(a)) is programmed to send operational commands to the Narada

nodes (e.g., sleep, wake-up), trigger data collection, synchronize the nodes, collect sensor mea-

surements and forward sensor data to a cloud database [146]. The primary component of the base

station is an embedded Linux server implemented on a single board computer (Nvidia Jetson TX2).

Attached to the Jetson TX2 are two radios: one is an IEE802.15.4 transceiver (Texas Instruments

CC2420) that communicates with the Narada nodes on the bridges and the other is an LTE cellular

modem (AT&T Velocity MF861) that communicates with a cellular network to access cloud ser-

vices on the Internet. An external high-gain omni-directional antenna is attached to the CC2420

radio to improve the quality of communications between the base station and the Narada nodes.

The base station is solar powered by a 110W solar panel (UL-Solar 110W 12V) that is used to

recharge a 12V 40A-hr SLA battery (PowerSonic PS-12350NB) using a solar charge controller

(Morningstar SunSaver SS-20L-12V) included in the base station enclosure.

This study applies Hitec HBWF-35-125-6-10GP-TR weldable strain gauges, BDI ST350 strain

transducers, Silicon Design 2012-002 uniaxial accelerometers and Texas Instruments LM35DT

thermistors for the measurements of steel girder strain responses, concrete slab strain responses,

acceleration responses and the temperature of the bridge, respectively. The sensor layout of the

TRB system is shown in Figure 2-2(b). A total of 14 accelerometers are distributed along Girder

1 and 7 at the main span in addition to an extra one (A15) located at the center of the bridge. The

accelerometers are mounted to the bottom flange of girders using structural adhesive (i.e., epoxy)

to measure vehicle-induced vibrations. Vibration data measured by the accelerometers are used

to identify the modes and frequencies of the TRB for model updating (which is beyond the scope

of this chapter). The TRB also features six locations where a BDI strain transducer is installed

in the slab and three strain gauges are installed along the depth of the girder; these six locations

are identified using BDI transducers B1 to B6 along Girder 2 and 6. At each of the six locations,

the BDI strain transducer is bolted to the bottom surface of the bridge slab and the three strain

gauges are installed on the web 3 in. (7.62 cm), 27 in. (68.58 cm) and 51 in. (129.54 cm) above

the top surface of the girder bottom flange. Such an installation allows the profile of girder strain
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responses to vehicular loads to be estimated for the assessment of composite behavior exhibited at

the girder-deck interface [147]. Each location also has one thermistor to measure temperature. S19

and S23 are two strain gauges installed near the bottom pin hole on the two hanger plates of the

middle girders. S20, S21 and S22 are three strain gauges welded to the web of the steel girders 3

in. (7.62 cm) above the bottom flange to measure the longitudinal bending strain at mid span of the

corresponding girders caused by vehicular loads. Compared to the TRB, the NRB SHM system

is a lighter weight configuration as shown in Figure 2-3(b). S1, S2 and S4 are three strain gauges

welded to the girder web at mid span 3 in. (7.62 cm) above the bottom flange. S3 is installed 51 in.

(129.54 cm)above the bottom flange at the same location as S4. B1 to B4 are four BDI transducers

measuring bottom slab longitudinal strains especially local tensile strain peaks caused by direct

wheel loads to identify the speed and the number of axles of a passing truck. A1 is used to identify

the dominant frequencies of the NRB and T1 is to measure the bridge temperature. Calculated

from measured acceleration data, the TRB and NRB exhibit a first modal frequency of 2.4 Hz and

4.2 Hz, respectively. Accordingly, sampling frequencies are set to be 100 Hz, 200 Hz and 1 Hz

for strain gauges, accelerometers and thermistors, respectively. This study will mainly focus on

girder longitudinal strain responses measured at mid span of each bridge to demonstrate the data

collected by the CPS.

2.2.2 Weigh-in-motion (WIM) Station

The second data source on the I-275 corridor is a WIM station that records vehicle weight data.

WIM stations are widely used by transportation officials to monitor highway freight movement

and to track compliance to truck weight limits [148]. Compared to traditional weigh stations

that require vehicles to exit the highway to measure their weight, WIM stations are built into the

road pavement and take measurements without slowing traffic. Various WIM station types exist

depending on the sensing transducer type used to make weight measurements (e.g., piezoelectric,

bending plates, pressure cells). WIM stations often provide more than simply the gross vehicle

weight but also the weight carried by each axle (or axle group), axle spacings, and vehicle speed.
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Figure 2-6: Weigh-in-motion (WIM) station underneath the Pennsylvania Road Bridge: (a) sensors
installed in the pavement of I-275 northbound; (b)data acquisition system on site to collect the
WIM data.

Along the I-275 northbound corridor is one WIM station (Figure 2-6) located at Pennsylvania Road

in Romulus, MI roughly 7 miles (11.3 km) north of the NRB. The WIM station is a two-lane Type II

WIM station with quartz sensors installed under the pavement of each lane. For each lane, the WIM

station records 9 vehicular load attributes: time, Federal Highway Administration (FHWA) vehicle

class, vehicle speed, vehicle gross weight, number of axles, axle weights, axle spacing, direction

and lane. The WIM station has a road-side data collection unit Figure 2-6(b)) that communicates

measurements via a fiber optic network to a data server managed by the Michigan Department of

Transportation (MDOT).

2.2.3 Traffic Camera Systems

As notated in Figure 2-1, four traffic cameras are installed by the authors along the I-275 roadside

with a direct view of traffic: at the interchange of I-275 with I-75 (Cam-1), Telegraph Road Bridge

(Cam-2), Newburg Road Bridge (Cam-3) and the WIM station beneath the Pennsylvania Road

Bridge (Cam-4). Each camera station is responsible for collecting roadside images of traffic on

northbound I-275, storing image data locally, and transmitting the images using a cellular modem.
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Figure 2-7: Traffic image of the same truck captured by the four cameras along the I-275 NB
corridor: (a) Cam-1; (b) Cam-2; (c) Cam-3; (d) Cam-4.

As shown in Figure 2-5(b), a Logitech C930e webcam camera is enclosed in a water-proof enclo-

sure and mounted to a post on the highway roadside. The camera is controlled by a single board

Linux server based on the Nvidia Jetson TX2 which internally contains a hex-core ARMv8 64-bit

central processing unit (CPU) and an integrated 256-core Nvidia Pascal graphics processing unit

(GPU). The inclusion of the GPU in the TX2 is beneficial for Cam-1 where images of trucks enter-

ing the corridor will be processed directly on the server to provide real-time triggering of the SHM

systems within the CPS. The Nvidia Jetson TX2 is contained in a weather-proof enclosure and is

set-up identically to the ones used on the TRB and NRB (i.e., same battery, charge controller, and

solar panel). For communications, an LTE modem (AT&T MF861) is used for the roadside server

to communicate data to and receive commands from the CPS architecture. The camera can cap-

ture images with a maximum resolution of 1920×1080 pixels but in this study, it is set to capture

images at a frame rate of 10 frames per second (FPS) with a 1280x720 pixel resolution. Reducing

the resolution helps reduce the time to transmit and process data. Each traffic image is labelled
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Figure 2-8: Computational framework of the cloud-based cyber-infrastructure database and com-
puting platform.

with the time it is captured by the server. The server maintains clock synchronization based on the

network time protocol (NTP) implemented via the cellular communication interface. Four sample

images are presented in Figure 2-7 where the same truck is captured at Cam-1 through Cam-4.

2.2.4 Cloud-based Data Management and Computing Platform

A prerequisite to the implementation of a CPS architecture for observing and analyzing truck loads

on the infrastructure assets of the I-275 corridor is the development of a scalable database system

that can be used to store large sets of heterogeneous data (e.g., sensor data, camera feeds), expose

data for analytics with low latency, and automate cyber-physical operations. For such a purpose,

a NoSQL (Not Structured Query Language) database architecture based on Apache Cassandra (an

open-source distributed NoSQL database management system) is implemented in a peer-to-peer

distributed fashion for scalable and fault-tolerant data storage and management [146, 79]. The

detailed architecture is shown in Figure 2-8 where the core database is built upon virtual machines
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provided by commercial cloud computing platforms such as Microsoft Azure which is used in

this study. The use of the cloud allows the CPS architecture to have maximum scalability as data

sets and analytical needs grow. While the physical locations of the distributed database nodes are

abstracted by the virtual machine framework within the cloud platform, virtual machines allow the

CPS to scale the use of cloud computing resources up and down, as needed. Multiple peripherals

such as RESTful web services (based on REpresentational State Transfer (REST) technology) and

data processing applications are then designed on top of the database system which can be accessed

from different end clients for data retrieval, visualization and interpretation purposes.

To support the integration and analysis of data collected from multiple sources, several auto-

mated data analytic modules are deployed on high-performance computing clusters which are also

hosted on the cloud platform. These modules are developed to perform a variety of processing tasks

associated with integrating data from multiple sources (e.g., vehicle detection and bridge response

data filtering), characterizing bridge behavior (e.g., frequency identification and modal analysis)

and long-term structural health monitoring (e.g., bridge response correlation) leveraging the com-

puting available at the measurement locations (e.g., the CPU and GPU on the roadside servers) and

cloud. This study will primarily focus on the analytical modules related to data integration (as will

be later presented as grey blocks in Figure 2-11).

2.3 Computer Vision-based SHM System Triggering

Of primary interest in assessing the performance and condition of bridges is how they respond to

vehicle live loads. For example, most existing bridge SHM frameworks utilize live load-induced

bridge responses for damage detection and capacity evaluation [38]. While all vehicles induce a

dynamic response in bridges, it is the large trucks that induce the greatest dynamic response of-

fering high signal-to-noise ratio (SNR) measurements. Also, the load magnitude associated with

trucks are a bigger contributor to long-term structural deterioration [149]. Solar-powered wireless

SHM systems such as those used in this study are limited by their available power (especially dur-

ing low-sunlight conditions during the winter months) and are therefore not operated continuously;
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rather, they are designed to collect data regularly on a defined schedule. Due to collection of data

being on a schedule, there is no guarantee that the data collected during each collection cycle will

contain vehicles of primary interest such as heavy trucks. This limits the utility of the data set

while consuming precious energy resources by the system. A much more effective approach to

collecting data from bridge SHM systems is if the system could be triggered by the presence of

heavy trucks which are the load of greatest interest. Triggering based on truck events can generate

a rich set of bridge response data for SHM analyses while minimizing the consumption of limited

SHM system battery power.

In this study, the CPS architecture is designed to apply computer vision methods on the cam-

era images to identify trucks and to trigger the bridge SHM systems to collect data based on the

identification of a truck. Architecturally, Cam-1 (Figure 2-1) at the southern end of the corridor is

deployed to serve as the trigger camera. Cam-1 continuously records northbound traffic with an

embedded truck detector implemented in the camera server. Once a truck entering I-275 is identi-

fied by Cam-1, the camera’s server sends a trigger message to the TRB, NRB, Cam-2, Cam-3 and

Cam-4 to begin data collection based on an estimated time of arrival of the truck at each down-

stream location. This triggering strategy ensures the same truck can be tracked at each location.

While some trucks may exit the corridor, the framework would capture the trucks that remain on

the corridor without exiting.

To intelligently detect passing vehicles, especially trucks, two object detection algorithms,

YOLOv3-tiny and YOLOv3, are trained using a customized vehicle data set. After training, given

an input image, the models are able to detect and localize three classes of vehicles (i.e., cars, pick-

up trucks, trucks) in the image using a set of rectangular bounding boxes. The two algorithms are

selected over other algorithms for their high accuracy and fast inference speed. While this chapter

focuses on the architecture design and evaluation of the proposed CPS-enabled bridge SHM archi-

tecture, a detailed description and comparison of these object detection algorithms are provided in

Chapter 3. When deployed upon the Nvidia Jetson TX2 which is the server hardware used at Cam-

1, the YOLOv3-tiny model is capable of being executed in real time at an equivalent frame rate
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Figure 2-9: Truck detection results: (a) truck detected by the trigger using YOLOv3-tiny at Cam-1;
(b) truck detected using YOLOv3 at the TRB; (c) truck detected using YOLOv3 during a rainy day
at the NRB; (d) a pick-up truck and a car detected using YOLOv3 at the WIM station.

of 15 frames per second which satisfies real-time detection requirements of the CPS. In addition,

the average precision of the YOLOv3-tiny in detecting trucks for an IOU threshold of 0.5 and 0.75

is 97.46% and 96.65%, respectively. The YOLOv3 model is used to perform vehicle detection on

traffic images captured by the other cameras (namely, Cam-2 throughCam-4) using a server with a

Nvidia Titan Xp GPU that is accessible to the CPS via the Internet. The time of execution for this

more extensive CNN model on the Titan Xp is 19.7ms per image. The average precision for trucks

is higher than that of YOLOv3-tiny with AP0.5 and AP0.75 at 98.91% for both IOU thresholds.

Some visual results of vehicles detected by the two YOLO models are shown using images from

the I-275 corridor under different field conditions in Figure 2-9.

With the aim of capturing the same truck traveling along the I-275 highway corridor, the first

camera at the interchange of I-275 and I-75 (Cam-1) is used as the trigger for data collection in

the CPS (Figure 2-10). The embedded YOLOv3-tiny model in the Cam-1 server is continuously
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Figure 2-10: Trigger-based data acquisition strategy of the proposed CPS system.

executed in real-time to process camera images. Once a truck is detected by the detector, the Cam-

1 server uploads the image of the detected truck into the Cassandra database hosted in the cloud

and sends a wake-up message to the TRB SHM system server and the Cam-2 server using the low

latency User Datagram Protocol (UDP). The wake-up message sent by the Cam-1 server contains

the time to start data collection at the TRB bridge accounting for the distance between Cam-1 and

the TRB and assuming a truck speed of 60 miles per hour (96.6 km per hour): this is estimated

to be 120s. Due to this truck speed being conservative, the TRB data collection is commanded to

occur 70s after the truck is detected (50s before the estimated time of arrival). After the TRB SHM

system and Cam-2 receive their wake-up messages, both systems start their data collection at the

time given by Cam-1 and collect data for 100s putting the mid-point in time for the data collection

cycle at 120s after the truck is detected at Cam-1. After data is collected, the images and bridge

response data are uploaded to the Cassandra database.

Following the same pattern, the SHM and camera systems at the NRB and WIM station are

triggered in a similar fashion. Using the same conservative truck speed, the time the truck would

take to travel between TRB and NRB is approximately 270s; hence Cam-1 commands the NRB
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SHM system and camera system to collect data for 120s with the mid-point of that data collec-

tion cycle being 390s after the truck is detected at Cam-1 (i.e., 330s after trigger). Cam-4 at the

WIM station is similarly triggered by Cam-1 to collect data for 360s with the mid-point of the data

collection cycle being 810s after the truck is detected at Cam-1. All data collected in the same trig-

gered cycle is stored and logged with timestamps in the cloud database for further data integration.

It should be noted the increasing data collection window prescribed at TRB (100s), NRB (120s)

and the WIM station (360s) is designed to account for uncertainties associated with the truck speed

and to maximize the chance of capturing the same truck first detected at Cam-1 at each subsequent

location.

When the TRB SHM system was first installed in 2011, a schedule-based data collection strat-

egy was used to collect data with a support vector machine (SVM) classifier adopted to automate

the identification of bridge response data containing large truck loads [61]. The schedule adopted

for the TRB SHM system collected data for 100s every two hours. Since 2016, the CPS trigger

strategy has been in use in lieu of the schedule-based strategy. To quantify the improvement of the

trigger strategy compared to the schedule strategy in terms of data acquisition efficiency, two sets

of data are collected at the TRB during July 2017. The first set records data at the TRB for 200

cycles (100s of bridge response data every half an hour) over daytime periods (i.e., 8 AM to 6 PM)

onthe weekdays of two consecutive weeks. The second set is 200 data sets based on the trigger

strategy over the same period during weekdays in the following two consecutive weeks. For the

second set, it was controlled that Cam-1 sleeps for half an hour after each triggering event such

that only one data collection cycle is activated every half an hour. The design of the schedule- and

trigger-base data collection processes was to roughly ensure the statistical sampling of trucks were

from similar distribution functions to make a fair comparison.

First, the number of truck events detected in each cycle were compared. The schedule-based

strategy leads to 79.5% of the data cycles containing totally 456 truck events while the trigger

strategy has 99% of its data cycles containing totally 775 truck events. To consider the dependence

of the effectiveness of the trigger-based data collection on the data collection duration, another
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experiment was performed with the TRB triggered by Cam-1 with varying data collection dura-

tions. With the data collection cycle set to be 100, 30, 25, 20, 15 and 10 s, the percentage of trucks

captured at TRB is 99.1%, 95.5%, 95%, 94.5%, 90.5% and 74.5%, respectively. These results

confirm the triggering strategy significantly outperforms the schedule-based SHM sensing strategy

and is a powerful approach to maximizing the value of data collected by the solar-powered CPS

data collection elements per unit of power consumed. They also suggest the time period of data

collection at the TRB can be as short as 30s to preserve battery power at each wireless node.

2.4 Two-stage Data Integration by Truck Re-identification

To establish an input-output relationship between trucks and bridges, data corresponding to the

same truck event collected at the TRB, NRB and WIM station must be matched with each other.

This goal is achieved by two stages of data integration. The first stage is one of local integration

where data collected by the bridge SHM system or WIM station must be synchronized with the

camera data at the same location. The output of this stage of integration are segmented images

of trucks detected and the corresponding bridge response data set or WIM record. The second

stage is one of global integration where truck events captured at different locations are matched

with one another through re-identification of the same truck in traffic images at the different data

collection components in the CPS. Re-identification of the same truck at different camera locations

will be done using a CNN-based embedding network with a nearest neighbor strategy applied to

its output. At the end of the two-stage integration process, the final result will be TRB and NRB

bridge response data and a WIM record linked to the same truck that is travelling northbound in

the I-275 corridor.

The proposed data integration pipeline is organized within a microservices architecture which

has gained popularity for building large-scale distributed web applications [150]. In a microser-

vices architecture, a single application is developed as a suite of decoupled smaller services with

each service running on its own independently but communicating with one another via lightweight

communication mechanisms [150]. As depicted in Figure 2-11, the microservice architecture for
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Figure 2-11: Data integration procedure following a microservices architecture: grey boxes corre-
spond to computational modules and white boxes correspond to module input and outputs.

the integration of data across the CPS has computational modules (grey blocks) with defined func-

tionality and a set of inputs or outputs (white blocks). A module output can be stored in the CPS

database or as JavaScript Object Notation (JSON) file which can be further accessed by subse-

quent modules. This microservice architecture allows each module to be modified or upgraded

without influencing the functionality of the entire application. In this study, the integration process

is implemented in Python and performed autonomously in the CPS cloud computing platform (i.e.,

Azure).

2.4.1 Stage I: Local Integration

The local integration stage first extracts truck events separately from both traffic images and mea-

sured bridge responses collected at the same location during the same triggered data collection

cycle. First, bridge strain response data and traffic images captured during the same cycle are re-

trieved from the database with their associated time stamps. Truck events at the bridge are detected

from the strain response data measured by the three strain gauges installed on the bottom web at the

midspan of girders 2, 4 and 6 in each bridge. As shown in Figure 2-2(b) and Figure 2-3(b), those

sensors are denoted as S4, S20, S13 in the TRB, and S1, S2, S4 in the NRB. A script running a

peak detection algorithm identifies the dominant strain peak (local maxima) greater than a defined

response threshold (e.g., 12 µε) after the strain data has been filtered by a 2 Hz Butterworth low-
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Figure 2-12: Time synchronization between bridge response data and traffic images by construct-
ing two truck presence matrices at NRB with blue dash squares indicating information correspond-
ing to the same truck in all three figure elements: (a) truck events identified from bridge strain data
by detecting strain response peaks; (b) extracted truck event from Cam-2 images by detecting
trucks using trained vehicle detector (blue bounding box) and identification of truck lane using
box lower right corner (yellow circle) compared to lane boundaries (red lines); (c) truck presence
matrices using extracted truck event information from strain data (top) and image data (bottom).

pass filter. These large strain peaks are assumed to be induced by heavy loads like trucks crossing

the bridge. The left and right bounds of the peak defined at 0 µε are taken as the start and end

time of the corresponding truck event. By comparing the peak strain at each girder-line, the lane in

which the truck is located can be identified with the peak value among the three gauges assigning

the lane (due to each strain gauge being beneath a different lane).

Truck events are also identified from the traffic images with the detected vehicle class output

from the trained YOLOv3 model executed in the cloud environment. Sequential camera images

showing the same truck are assigned to the same truck event. Another analytical service is imple-

mented to assign the detected truck to a lane on the bridge. This service first identifies the image

pixels corresponding to the highway lane markings (e.g., white dash lines) using image processing

techniques including Canny edge detection [151] and color thresholding on an image with no vehi-

cles present in the camera field of view. The identified pixels of the lane markings are input into a
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Figure 2-13: Result of time synchronization for integrating NRB strain response data with traffic
images collected at Cam-3 (data collected August 2, 2017 at 6:34 pm).

polynomial fitting tool to calculate a continuous geometric boundary corresponding to edge of the

lanes. This process is conducted daily due to slight movements of the installed traffic cameras over

time due to vibration induced by traffic or weather conditions. The lane that a detected truck is in

can be determined based on the relative position of the predicted bounding box (i.e., the position

of the right bottom corner) with respect to the lane boundaries previously extracted from an image

without a vehicle present as shown in Figure 2-12(b).

SHM data and traffic images are collected by different systems with their own clocks. While

these clocks are synchronized over the cellular interface using the Network Time Protocol (NTP)

regularly (i.e., every 20 min), they may not be perfectly aligned. Experience with the system de-
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ployed on I-275 suggests the time offset is typically less than 1s but in extreme cases can be as

large as 5 s, thereby inhibiting direct data integration using the local data timestamps. As a result,

time synchronization between the SHM and camera datasets is necessary. Using truck event infor-

mation extracted from the bridge and camera data, two sparse matrices are constructed to represent

the truck presence from the traffic images and SHM data collected in the same data collection

cycle. As visualized in Figure 2-12(c), this truck presence matrix has three rows representing the

three lanes in which passing vehicles can travel; each column represents a discretized timestamp

from the start of a data collection cycle. An entry is zero (black in Figure 2-12(c)) if no truck is

present in that lane at that instant in time and one (white in Figure 2-12) if a truck is detected at

that time. As the sampling rate of traffic images is 15 Hz, the truck presence information (i.e.,

a binary array) extracted from the camera is up-sampled using bilinear interpolation to have the

same sampling rate (i.e., 100 Hz) as the bridge strain data. After the two truck presence matrices

are obtained, cross-correlation is performed via fast Fourier transform (FFT) [152] to calculate the

clock offset between the servers of the two data collection systems. As a result, truck event data

collected in a single data collection cycle at the two systems can be synchronized in time; this

allows a truck image to be linked to each strain peak identified in the strain data from each bridge.

An example of four integrated truck events captured in the same data collection cycle at TRB are

shown in Figure 2-13. By the same logic, traffic images and WIM records can be synchronized

and linked.

2.4.2 Stage II: Global Integration

After the local integration stage, truck events captured in the same triggered data collection cycle

are extracted at the two bridges and WIM station separately. The second stage aims to globally

integrate these locally integrated data sets (i.e., truck image with a strain response or WIM station

entity) for the same truck observed at the different locations. This global linking is done entirely

by matching (or re-identifying) the same truck from images collected at the two bridges and WIM

station. Among all traffic images assigned to a truck event at each measurement location, the one
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Figure 2-14: Heatmap of a correlation matrix for truck matching between two data sets collected
at different bridge locations (NRB and TRB). Distance greater than 50 is clipped to 50 for better
visualization.

that has the largest bounding box and includes the front part (e.g., tractor) of the truck is picked for

vehicle re-identification. That image is cropped using the predicted bounding box to remove the

redundant background. Such an image would contain the most information of the truck appearance

and will therefore give better accuracy for re-identification.

Truck re-identification is conducted following a mutual nearest neighbor strategy. Multiple

truck events can be captured at each measurement location during one data collection cycle. Fur-

thermore, not all of the truck events captured at one location will be observed by the CPS architec-

ture at subsequent locations because trucks may exit the corridor between two adjacent locations

or not be within the assumed speed range that defines the time of data collection at each location

relative to the trigger at Cam-1. To perform truck matching between two locations, every possible

pair of truck images collected during the same data collection cycle at each location are compared

through a similarity function which outputs a distance-based scalar metric (to be defined shortly).

Consequently, a correlation matrix with m rows and n columns is used to store the similarity func-

tion output for the m truck events captured at the first location to the n truck events captured at

the second location. A sample of a correlation matrix is shown in Figure 2-14 to show the re-

identification between the TRB where 5 trucks were identified and NRB where 10 trucks were

identified in the same collection cycle. In a mutual nearest neighbor strategy, two images with
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index i and j are assumed to belong to the same truck if and only if the similarity metric at element

(i, j) in the correlation matrix is below a pre-determined threshold and is the minimum of i-th row

and j-th column simultaneously. Taking the matrix shown in Figure 2-14 as an example, four pairs

of truck images are potential matches if the threshold is set to be 5: namely, T5 & N3, T4 & N4,

T3 & N7 and T1 & N10.

To develop a robust similarity function, a CNN-based embedding network is used to convert

each truck image into a vectorized feature representation with the Euclidean distance between the

feature vectors used as a measure of the similarity between the two truck images. Similar to vehicle

detection, details regarding the implementation and evaluation of the CNN-based embedding net-

work will be described in Chapter 3 to avoid distraction. The trained embedding network obtains

a precision of 100% on the test data, a recall of 95.00% and a F1-score of 0.97. Using this truck

re-identification strategy, truck events captured at different locations but within the same collection

cycle can be matched.

2.5 Results and Discussions

2.5.1 Integrated CPS Data

A complete data set containing response data from bridges, truck weight information measured by

the WIM station and truck images taken at the bridges and the WIM station are obtained if the truck

is re-identified at all three measurement locations; a sample is presented in Figure 2-15 to showcase

such a data set. In some cases, the same truck might be observed at only two of the three locations;

this data is also added to the database of integrated response data. This section presents some uses

of the data collected related to SHM analyses. Specifically, the linked data between the bridges

and WIM station for the same truck can serve as a powerful basis for correlating responses across

the corridor and baselining performance using a consistent traffic load set. The results presented

herein correspond to over one year of data collected by the CPS from August 2017 to April 2019.
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Figure 2-15: An example of a complete data set collected by the CPS system containing response
data from two bridges, WIM data and truck images captured at each location (data collected Octo-
ber 19, 2017 at 6:29 pm).

2.5.2 Truck Travel Time

The travel time of trucks between adjacent locations along the corridor can be calculated based on

the timestamps of each truck passing all three data acquisition locations in the I-275 corridor. The

three histograms plotted in Figure 2-16 show the distribution of travel time of trucks from the TRB

to the NRB, from the NRB to the WIM station and from the TRB to the WIM station, respectively.

These results confirm the time windows assigned to each location by the Cam-1 trigger are suitable

for the majority of trucks observed in the corridor. It takes 248.48s and 392.30s on average for

trucks to travel from the TRB to the NRB and from the NRB to the WIMS, respectively. Based

on the distance between different locations along the corridor and the travel time extracted, trucks

travel at a speed of approximately 64.5 mile per hour (103.8 km per hour) which agrees with the

average speed observed at the WIM station. It can also be observed that longer travel distances

introduce larger variations truck travel times because of the higher uncertainty associated with

traffic conditions over a longer distance.
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Figure 2-16: Histograms of truck travelling time between different segments along the corridor:
(a) from the TRB to the NRB; (b) from the NRB to the WIM station; (c) from the TRB to the WIM
station. Data corresponds to collection period from August 1, 2017 to April 30, 2019.

Bridge # Truck events Slow lane Middle lane Fast lane Multiple trucks Change lane

TRB 15,875 1,085 13,206 964 561 59
NRB 24,719 17,727 5,619 27 1,308 38

Table 2-1: Statistics of truck events matched from the Telegraph Road Bridge and the Newburg
Road Bridge with the WIM station.

2.5.3 Truck Weight and Bridge Response Correlation

Given the bridge data that is linked to the WIM station data, correlations between the maximum

truck-induced bridge strain response and the gross weight of the corresponding trucks can be in-

vestigated using the globally integrated data sets. This is very beneficial for load rating of bridges

due to the integrated data offering in-situ bridge responses corresponding to a quantitative measure

of the truck weight [153]. Depending on which lane of the bridge that a vehicle is in, three cor-

relations can be created for the bridge response data measured by each sensor on each bridge. To

do so, only the cases of a single truck crossing the bridge are selected with the cases of multiple

trucks traversing the bridges simultaneously or in succession with a short headway are ruled out.

In addition, data with trucks changing lanes while on the bridges are not considered. These more

complicated scenarios are excluded not because they cannot be handled, but simply to establish a

clearer linear correlation of bridge responses using the collected data as a way to demonstrate the

effectiveness of the proposed CPS. The cases in which trucks and small vehicles (e.g., cars) are
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Figure 2-17: Correlation between bridge maximum strain responses and corresponding gross ve-
hicle weight measured by the WIM station: (a) TRB strain measured at S20; (b) NRB strain
measured at S2 (data collected from August 1, 2017 to April 30, 2019).

on the bridges at the same time are kept assuming the bridge response associated with the small

vehicles are negligible compared to those of trucks. Figure 2-17(a) presents a scatter plot showing

the correlation between the maximum strain response measured by gauge S20 on the TRB and the

corresponding vehicle gross weights. Similarly, Figure 2-17(b) is a scatter plot of the maximum

strain responses measured by gauge S2 on the NRB relative to the truck gross weights. Shown

in both plots are three different scenarios, namely trucks on slow lane, middle lane and fast lane.

Statistics of the truck events can be found in Table 2-1. As expected, there exists a strong positive

linear correlation between the bridge strain response and the vehicle weight, as would be expected.

The variations observed in the plots are mainly attributed to the various types of truck load con-

figurations (including truck lengths and weight distributions), varying truck positions within an

assigned lane and truck speeds. The variances observed in these relationships could possibly be

reduced by distinguishing vehicles by their FHWA vehicle class or by removing cases where small

vehicles are present.
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Figure 2-18: Correlation between TRB maximum strain responses (measured by S20) and NRB
maximum strain responses (measured by S2) to the same truck loads (data collected from August
1, 2017 to April 30, 2019).

2.5.4 Bridge Response Correlation

Apart from mapping vehicle weights to bridge responses, the correlation between the responses

of two bridges to the same vehicle load set can be also investigated and could naturally account

for some of the variations associated with the previous cluster analyses. Maximum bridge strain

responses measured by gauge S20 of the TRB and corresponding strain peaks measured by gauge

S2 of the NRB are presented in Figure 2-18. Statistics of the truck events can be found in Table

2-2. Three major scenarios are presented depending on the lane that vehicles cross the bridges in:

1) on the slow lane of the TRB and the slow lane of the NRB, 2) on the middle lane of the TRB

and the slow lane of the NRB, and 3) on the middle lane of the TRB and the middle lane of the

NRB. An even stronger linear correlation between the two bridges’ responses can be observed and

the variation of the data around the linear regression would be much smaller when compared to the

correlation between bridge responses and gross weights measured at WIM station.
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TRB-slow TRB-middle TRB-fast Total

NRB-slow 1,227 12,851 737 14,815
NRB-middle 91 3,647 289 4,027
NRB-fast 0 6 10 16

Single truck 18,858
Multiple trucks 2,282
Change lane 203

Total # truck events 21,343

Table 2-2: Statistics of truck events matched between the Telegraph Road Bridge and the Newburg
Road Bridge.

2.6 Summary and Conclusions

By leveraging computer vision techniques and cloud computing platforms, this study proposed a

CPS framework to integrate vehicle-induced responses of two highway bridges measured by wire-

less SHM systems with corresponding vehicle weight information measured by a nearby WIM

station located along the same highway corridor. In the framework, traffic images collected at each

measurement location serves as the primary data source for integrating the data from the different

locations along the same highway corridor to the same truck loads. The trained YOLOv3-tiny

module with an average precision of 96.65% for truck detection is deployed in the first traffic cam-

era to detect incoming trucks in real-time and to trigger data acquisition processes downstream in

the highway corridor. The trigger-based data acquisition strategy proved to be at least 24.5% more

efficient than previously used schedule-based data collection strategies leading to the collection of

more bridge response data of greater value due to truck events present. Collected data was later

automatically processed by a two-stage data fusion pipeline consisting of local truck detection

and global re-identification so that data corresponding to the same truck events can be integrated

for further analysis. The trained YOLOv3 model at the first stage had a truck detection average

precision of 98.91% providing accurate detection results for further data analysis. The second

stage employed a mutual nearest neighbor truck re-identification strategy by encoding truck im-

ages into feature vectors using a customized CNN embedding network trained by a triplet network
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architecture, yielding a F1-score of 0.97. With the CPS framework implemented along the I-275

northbound highway corridor, around 20,000 data sets (including bridge response, load informa-

tion and traffic images) of truck events have been collected since August 2017. Expected linear

correlations are observed between peak bridge responses and corresponding truck gross weights,

and between peak bridge responses of the two bridges to the same truck loads.

To the best of the authors’ knowledge, this is the first CPS framework ever proposed to dramat-

ically enhance the value of data collected for bridge SHM. The proposed system is highly scalable

due to its proven abilities to automate the identification of trucks, mapping their travel history in

corridors, and triggering SHM data collection in response. These leads to the quantitative mapping

of vehicle loads to measured structural responses of multiple bridges. The impact of this innova-

tion on the operational management of highways is enormous. For example, the CPS platform can

serve as foundation for data-driven bridge damage detection methods, bridge load rating, and other

health assessment approaches that are difficult to conduct without load information with bridge

response data. By considering adjacent bridges located in close proximity experiencing similar en-

vironmental and operating conditions (EOC), the health of one bridge could be determined based

on its response relates to the adjacent bridge. Such a framework may potentially derive innova-

tive data-driven approaches for the diagnosis and prognosis of bridge structural health conditions.

Specifically, the correlation between responses of different bridges to same load profile can be

used to detect structural deterioration in the bridges through statistical process control methods.

The CPS framework also offers a rich data set for supporting other decisions integral to highway

operations including use of bridge responses to estimate the magnitude and spatial trajectories of

truck loads in a highway network. The work lays a foundation for additional future research, part

of which will be described in following chapters. In the presented study, only cases of a single

truck were considered when performing the response correlation analyses. Introducing more com-

plex loading scenarios in the correlation analysis including scenarios where multiple trucks are on

a bridge could be investigated in future studies to allow a larger portion of the acquired data to be

utilized. To do so, ways of combining the load effect of each truck weight based on their location
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on the bridge to the net bridge response would be needed in order to perform a proper correlation

analysis. One drawback of the current vision-based CPS is that it has been developed primarily

for daytime use; future work is now focused on expanding the capabilities of the system to operate

reliably during night or under extremely harsh weather (e.g., snowstorms). The CPS framework

is also being extended to include other ways of identifying and tracking trucks based on wireless

telemetry such as DSRC (Dedicated Short-Range Communications). DSRC could be a powerful

approach to overcoming the challenges associated with computer vision methods applied to night

and snow images.
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CHAPTER 3.

Computer Vision for Truck Load Detection and Re-identification Within the

Cyber-physical System Framework

3.1 Introduction

Tremendous progress has been made over the past decade in computer vision technology. Deep

learning-based approaches to object detection, object tracking and semantic segmentation have

shown remarkable performance in solving fundamental problems in many application areas includ-

ing in intelligent transportation systems (ITS). Particularly, learning-based vehicle detection and

re-identification methods have been previously proposed for large-scale urban surveillance [154],

traffic flow analysis (e.g., vehicle speed estimation and accident detection) [155], and smart traffic

signal control at road intersections [156]. Concurrent to the advancement of computer vision has

been a growth in the capabilities of cost-efficient sensing technologies including low-cost sensors,

wireless telemetry, and “smart” sensors capable of local data processing (i.e., edge computing)

[157]. These advances have impacted the structural health monitoring (SHM) field as witnessed

by the increasing number of monitoring systems that have been deployed in operational bridges

[38]. While existing bridge SHM systems can accurately measure bridge responses (e.g., strain)

and environmental conditions (e.g., temperature), most lack the capability of directly measuring

traffic loads that induce bridge responses; this renders health assessment algorithms ill-posed and

hinders their accuracy and generality [83, 64]. The possibility of vehicle detection by computer vi-

sion stands to dramatically enhance bridge monitoring by integrating vehicle load data with bridge

response data for SHM analysis.
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In the previous chapter, a truck re-identification framework is proposed to track truck loads

in highway corridors with the aim of linking truck loads to bridge responses based upon the pro-

posed CPS architecture. To recap, the framework utilizes traffic video feeds acquired at bridges

and a WIM station along the same corridor as the basis for tracking trucks. First, the framework

employs a convolutional neural network (CNN) detector to identify and segment vehicle events at

each camera location (i.e., at each bridge or WIM station). Cameras are time synchronized with

the bridge monitoring system and the WIM station to ensure trucks identified are linked to the

bridge responses and vehicle weight measurements collected, respectively. Next, the trained vehi-

cle detector is modified and fine-tuned within a triplet architecture to extract a vectorized feature

representation of each truck image captured by the CNN detectors. Using a mutual nearest neigh-

bor strategy, the Euclidean distance between the feature vectors of each captured truck is selected

to serve as a scalar metric of truck similarity; high similarity implies the truck is successfully

re-identified. Once a truck is detected at the bridge and later re-identified at the WIM station, mea-

sured bridge responses can be accurately associated with the weight parameters (i.e., gross vehicle

weight, axle weight distributions, and axle spacings) of the truck as measured by the WIM station.

Such a framework allows bridge responses to be precisely mapped to their corresponding vehicular

loads using the CPS architecture described in Chapter 2. In this chapter, details of methodologies

and corresponding comparison studies are described. Multiple CNN models are explored for ve-

hicle detection at each measurement point in the CPS (namely at the bridges and WIM station).

The various CNN models are compared using precision-recall curves to identify the most robust

single-stage detector. In the next section, the implementation of the truck re-identification algo-

rithm is presented. Finally, the chapter concludes with a summary of key findings and a description

of future work.

3.2 Object Detection Algorithms

Object detection is a challenging computer vision problem that has been intensively researched

over the past decade [158]. Object detection refers to automated methods that identify, locate, and
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classify target objects within an image. Operation of transportation systems including managing

vehicles on highways and users using public transit has emerged as one of the most active appli-

cation domains for object tracking by computer vision methods [159]. Recent advances in deep

learning have improved object detection techniques. This study leverages recent advances in deep

learning-based object detection techniques, especially CNNs, for truck detection within the CPS

architecture. Generally, there are two primary CNN architectures for object detection: two-stage

and one-stage detectors. Two-stage detectors such as Regions with CNN features (R-CNN) [160],

Fast R-CNN , Faster R-CNN [161] and their variants are designed with one stage used to propose

candidate regions of interest in an image and the second stage used to perform object classifica-

tion and detection for each region of interest generated by the first stage. In contrast, one-stage

detectors such as You Look Only Once (YOLO) [158, 162, 163], Single Shot Detector (SSD)

[164], RetinaNet [165, 166] and their variants, cast object detection into a single regression prob-

lem which predicts object classes, bounding boxes and confidence scores simultaneously within a

single network inference. While two-stage detectors generally enjoy higher precision compared to

one-stage detectors, their computational speeds are slower [166].

With real-time truck identification at Cam-1 requiring near real-time execution, this study

adopts a one-stage detector framework for the identification of trucks. Four one-stage object detec-

tion paradigms proposed by other researchers are tested for truck identification: YOLOv3 [163],

YOLOv3-tiny [163], RetinaNet [165] and SSD [164]. All four architectures utilize CNNs as the

backbone for their feature extractions. Camera images of a pre-determined resolution and size

are set as the CNN input while the CNN output is the location (i.e., bounding box) and detection

confidence of the target object within the box. A brief description of the four architectures will be

presented; interested readers are invited to read the implementation details of each method in the

original papers. Based on evaluation results, the YOLOv3-tiny and YOLOv3 detectors are used

within the CPS design in this study [163]. Recently, proposal-free and anchor-free object detection

algorithms [167, 168] have emerged claiming to have a more straightforward design. Despite be-

ing innovative in their design, these algorithms cannot compete with YOLO in terms of inference
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Figure 3-1: Framework design of YOLO for dense object detection.

speed due to their heavy backbone architectures and need for potential post-processing steps to

recover bounding boxes.

3.2.1 You Only Look Once (YOLO)

YOLO is a single-stage CNN architecture for object identification where the input is the raw image.

Its input-output design is illustrated in Figure 3-1. YOLO splits the image into an S-by-S grid with

each grid cell responsible for predicting B candidate bounding boxes whose centroid fall inside

that cell area and contains the object [158]. It should be noted the bounding box can be much

larger than the cell itself and only the box centroid needs to be in the cell. The number of predicted

candidate boxes B depends on the number of box priors selected for approximately representing

the shape and dimension of the final bounding boxes [162]. Each bounding box is defined by a

(5 + C) element vector including information of its centroid x and y coordinates, box width, box

height, a box confidence score representing the likelihood that the box contains an object, and the

conditional probabilities corresponding to C target object classes given a detected object in the

box. YOLO utilizes its underlying CNN network to encode an input image into a tensor with a

shape of S × S × (B × (5 + C)) containing the various bounding box predictions for the image

[162]. For each predicted bounding box, its class confidence scores are equal to the product of

the box confidence score and corresponding conditional class probabilities. Independent logistic

classifiers are then used to determine the final class for each predicted bounding box; logistic
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YOLOv3 Network

Repeat Layer Type # Output Channels Size Stride Output Size

1 Convolutional 32 3 1 256 × 256
2 Convolutional 64 3 2 128 × 128

1
3 Convolutional 32 3 1
4 Convolutional 64 3 1

Residual 128 × 128

5 Convolutional 128 3 2 64 × 64

2
6,8 Convolutional 64 3 1
7,9 Convolutional 128 3 1

Residual 64 × 64

10 Convolutional 256 3 2 32 × 32

8
11, 13, 15, 17, 19, 21, 23, 25 Convolutional 128 1 1
12, 14, 16, 18, 20, 22, 24, 26 Convolutional 256 3 1

Residual 32 × 32

Detection (1) 24 1 1 32 × 32

27 Convolutional 512 3 2 16 × 16

8
28, 30, 32, 34, 36, 38, 40, 42 Convolutional 256 3 1
29, 31, 33, 35, 37, 39, 41, 43 Convolutional 512 1 1

Residual 16 × 16

Detection (2) 24 1 1 8 × 8

44 Convolutional 1024 3 2

4
45, 47, 49, 51 Convolutional 512 1 1
46, 48, 50, 52 Convolutional 1024 3 1

Residual 8 × 8

Detection (3) 24 1 1 8 × 8

Table 3-1: Layer types and primary parameters of the YOLOv3 model.

classifiers allow an object to be assigned to multiple classes which is beneficial when classes have

overlap. Due to its model design, there might be multiple bounding boxes for the same object;

non-maximal suppression (NMS) is then used by YOLO to remove bounding box duplications

with lower scores. A global confidence threshold can also be set such that the model only outputs

predictions with confidence scores higher than the defined threshold.

The third generation of the YOLO architecture, namely YOLOv3, features a deep 53-layer

CNN architecture termed “Darknet-53” [163]. The overall backbone composition of Darknet-53

is shown in Table 3-1. Darknet-53 consists of 52 convolutional layers in total. In Darknet-53, each
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convolutional layer is made of a set of convolutional filters generating feature maps given its inputs

followed by a batch normalization (BN) operation [169] and a leaky ReLU activation [170]. For a

single convolutional layer in YOLOv3, the properties of the convolutional filters are mainly defined

by the number of output channels, the kernel size and the stride. The input of one convolutional

layer is the output of the previous one and thus the total number of filters in one convolutional

layer is the product of the number of input channels and the number of output channels. During

forward inference, each filter kernel performs a convolutional operation on its corresponding input

channel and all generated results (with the same size) are aggregated in a way that each output

feature map channel is a combination of the processed information of all of the input channels.

BN is a straightforward operation adjusting the output scale of the convolution filters to be in the

range of 0 to 1. Such an operation makes it easier for the network parameters to converge to a local

minimum and thus network learning is faster. Its operation is defined as:

µB =
1

m

m∑
i=1

xi

σB =
1

m

m∑
i=1

(xi − µB)2

x̂i =
xi − µB√
σ2
B + ε

yi = γx̂i + β ≡ BNγ,β(Xi)

(3.1)

where xi is the output of convolutional filters in the same layer, m is the total number of output

channels, and are two learnable parameters updated during training and yi is the output of BN op-

eration. Leaky ReLU is added to the architecture to introduce nonlinearity into each convolutional

layer; the ReLU operation is defined as

y = 1(x < 0)(αx) + 1(x ≥ 0)(x) (3.2)

where 1 is an indicator function having output of 1 when the condition inside the parentheses is
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met and 0 otherwise. α is a small constant and represents the “leaky” aspect of the ReLU function.

In YOLOv3, it is set to 0.1. The Darknet-53 backbone network also contains several residual

(skip) connections [171] which directly add the activation outputs of a specific previous layer into

those of the current layer. Skip connections were first proposed in the residual network (ResNet)

to enable the convolutional layers to preserve an identity mapping of its input [171]. The sizes of

the feature maps generated by primary convolutional layers are also shown in Table 3-1.

The YOLOv3 network also incorporates feature pyramid network (FPN) like up-sampling tech-

niques [166] to improve its prediction performance (especially for detecting small objects). More

specifically, it features three convolutional detection heads responsible for producing final dense

predictions at different scales, which improves its performance on detecting objects of different

sizes. As described previously, each detection head outputs a dense bounding box prediction by

predicting a tensor of size S × S × (B × (5 + C)) utilizing an additional convolutional layer.

For example, in Table 3-1 the detection (1) layer before layer 27 outputs 32× 32× (3× (5 + 3))

indicating the location and class information of the predicted bounding boxes, where 32×32 is the

size of the feature map, 3 is the number of anchor boxes predefined for this scale, (5+3) represents

the bound box features which include four elements for bounding box location, one element for

the bounding box confidence score and three elements for the class confidence score (i.e., truck,

pick-up truck, and car classes). Unlike intermediate convolutional layers for feature extraction,

this convolutional detection layer doesn’t have a BN module and uses simple linear activation.

When a fast execution speed is an important requirement, a reduced-order version of YOLOv3

called YOLOv3-tiny can also be used. follows the same logical design as YOLOv3 but adopts a

much more compact CNN backbone (i.e., 13 convolutional layers as opposed to 52) thereby reduc-

ing its computational cost and speeding its execution for real-time applications. The backbone of

YOLOv3-tiny is shown in Table 3-4 [163]. YOLOv3 has three variants supporting image inputs of

different sizes. This study selects the YOLO models that accept 416-by-416 pixel images as inputs

for a balance of speed and accuracy [163]. The input image resolution is fixed by the CNN archi-

tecture; images from cameras of different resolutions must be modified to conform to the required
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input image resolution.

3.2.2 RetinaNet

The RetinaNet CNN architecture consists of a backbone network and two task-specific sub-networks.

The backbone network stacks an FPN on top of ResNet in order to extract several feature maps

at different spatial scales from the input image [165, 166, 171]. The two sub-networks are re-

sponsible for object classification and convolutional bounding box regression based on the feature

maps extracted by the backbone network [165]. In addition to its innovative unifying architecture,

RetinaNet utilizes a novel loss function called focal loss. Focal loss was designed to resolve the

challenging issue of class imbalance which is often encountered in one-stage detectors [165]. To-

wards this end, focal loss dynamically scales a cross entropy function during training to allow the

training to focus more on those objects difficult to classify. The version which has the ResNet-

50-FPN as its backbone is used in this study because it offers a good balance between speed and

precision [165]. Input images of the RetinaNet model are resized such that the shorter side equals

600 pixels.

3.2.3 Single Shot Detector (SSD)

The SSD architectures select the VGG-16 [172] CNN architecture as the base network but discards

the fully connected layers and adds auxiliary convolutional layers for extracting features at multiple

scales [164]. The SSD divides each feature map into grid cells where each cell has a set of default

boxes of different dimensions and aspect ratios associated [164]. For each default bounding box,

the confidence for all object classes are predicted and the box location is adjusted to better match

the object location through regression performed by the CNN. The SSD version which takes 300-

by-300 pixels images as the network inputs is adopted in this study.
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Total
Images

Online
Images

I-275
Images

Total Vehicle
Instances

Numbers
of Trucks

Number of
Pick-up Trucks

Number
of Cars

Training
Set 2600 1142 1458 4391 2947 344 1100

Test Set 900 0 900 1226 566 178 482

Total 3500 1142 2358 5617 3513 522 1582

Table 3-2: Statistics associated with customized vehicle data sets used for training and validation
of CNN detectors.

Figure 3-2: Sample images in the customized vehicle detection data set: (top row) images from the
Internet; (middle) images from the I-275 corridor; (bottom) images from the I-275 corridor under
varying weather conditions.

3.3 Automatic Vehicle Detection

3.3.1 Customized Vehicle Dataset

The primary objective of this study is to detect three vehicle classes from camera images: large

trucks, pick-up trucks and cars (e.g., sedans, SUV, vans). The four selected single-stage object

detectors (YOLOv3, YOLOv3-tiny, RetinaNet, SSD) have their initial CNN architectures fixed

with preliminary weights pre-trained on ImageNet [173] included. These four detectors are further

fine-tuned and later tested using a diverse set of images manually prepared to improve the detectors

for vehicle detection. The resultant data set is a combination of pictures of trucks crawled from the

Internet and those manually selected from the traffic images captured by the four cameras installed
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along the I-275 corridor. Ground truth bounding boxes are manually labelled in all figures by the

authors using a customized annotation tool. The entire data set used to train the four detectors

contains a total of 3,500 vehicle images. Approximately 70% of the pictures are used for CNN

training with 30% held for testing. As listed in Table 3-2, the training set has 2,600 vehicle images

that contain a total of 4,391 vehicle instances (2947 trucks, 344 pick-up trucks, and 1100 cars).

In contrast, the test set is composed of 900 vehicle images with a total of 1,226 vehicle instances

(566 trucks, 178 pick-up trucks, and 482 cars). One additional arrangement of the split is that all

the vehicle pictures obtained online belong to the training data set. The reason for selecting online

images for training is to generalize the detection capability of the CNN so that it can potentially

detect vehicles that may not commonly appear in the videos captured on the I-275 highway cor-

ridor. To further generalize the detection capabilities of the four detectors, vehicle images from

the Internet and the I-275 cameras are intentionally diversified to include a wide range of weather

and illumination conditions (e.g., snow, rain or glare). This tactic ensures the final trained CNN

architectures will offer robust detection performance even under harsh operational circumstances.

Some sample images used to train the CNN architectures are shown in Figure 3-2.

3.3.2 Model Training

The four object detectors are based on open-source scripts published by the authors of the original

work. More specifically, the implementation of YOLOv3 and YOLOv3-tiny is based on Darknet

which is an open source neural network framework written in C and CUDA [174]. Similar to the

original YOLOv3 model, the batch size is 64 and the initial learning rate is 0.001. The final model

is trained for 23,000 iterations. RetinaNet is based on Detectron which is a software system de-

veloped by Facebook based on Python and the Caffe2 deep learning framework for novel object

detection models [175]. The SSD implementation adopts the original open source code using the

Caffe framework [164]. The model parameters of all four CNN architectures are initialized using

the publicly available weights pre-trained based on the ImageNet dateset [173]. During further

training using the data set of Table 3-2, back-propagation methods are used to update the CNN
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Model mAP0.5 mAP0.75 Speed AP truck
0.5 AP pickup

0.5 AP car
0.5 AP truck

0.75 AP pickup
0.75 AP car

0.75

YOLOv3 93.64% 92.56% 19.7ms 98.91% 88.44% 93.58% 98.91% 85.73% 93.04%
YOLOv3-tiny 88.11% 86.20% 3.2ms 97.46% 82.13% 84.73% 96.65% 79.25% 82.71%
RetinaNet 93.98% 92.50% 77.3ms 97.67% 90.02% 94.25% 96.80% 86.82% 93.89%
SSD 90.68% 88.57% 48.2ms 98.03% 81.77% 92.26% 95.89% 78.58% 91.25%

Table 3-3: Test results of four selected single-stage vehicle detection models trained using the
customized dataset.

weights to achieve a high level of detection accuracy and precision. Only minor changes (e.g., ob-

ject classes, learning rate, batch size) are made to the original implementation to accommodate the

customized training dataset and specific machine hardware used in this study so that convergence

of loss is achieved during training. For example, the number of classes, the number of GPUs, the

learning rate and the batch size are modified according to the hybrid (i.e., Internet and from I-275)

training set. Both the training and testing processes are performed on an NVIDIA Titan Xp GPU.

3.3.3 Model Testing

After training, the four detectors are evaluated using the independent testing data set. The per-

formance of each detection is based on average precision (AP) per class [176], mean AP (mAP)

[176] and inference speed. By definition, precision is defined as the fraction of predictions that are

correct (i.e., true positives dived by the number of true and false positives) and recall is defined as

the fraction of ground truth events correctly predicted (i.e., true positives divided by the number of

true positives and false negatives). Hence, average precision is an average of the maximum preci-

sion metrics at various recall rates. In the four object detectors, a global confidence threshold can

be established to control the lower bound of the confidence score that a detector can have, and thus

the number of prediction outputs. Consequently, a change of the global confidence threshold leads

to a change of the precision and recall obtained on the test data. AP is calculated by averaging

maximum precisions at different recall levels per class and mAP is the mean of AP of all de-

tectable classes. AP is also associated with an intersection over union (IOU) threshold where IOU

is the percentage of the detected object bounding box overlapping with the ground truth bounding

box (i.e., a bounding box perfectly bounding the detected object). A higher IOU threshold means
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Figure 3-3: Comparison of precision-recall curves of the trained detection models per object cate-
gory using different IOU thresholds.

the predicted bounding box of the detected object needs to have more overlap with the ground

truth to be considered a correct detection. In this study, mAP and AP per class are both evaluated

for two different intersection over union (IOU) thresholds: 0.5 and 0.75 which are denoted using

subscripts (e.g., AP0.5 and AP0.75). Because predicted bounding boxes will also be used in other

analyses such as detecting which lane the vehicle is in and for vehicle matching, a relatively high

IOU threshold of 0.75 is investigated besides the most common 0.5 threshold used in computer

vision studies. The detailed evaluation results (benchmarked using a Nvidia Titan Xp GPU) for

the four detectors are shown quantitatively in Table 3-3 with the most competitive result bolded in

each column. In addition, the precision-recall curves per vehicle class of the four detectors with

two different IOU thresholds are presented in Figure 3-3 for comparison. The inference speed

refers to the average time needed to perform vehicle detection on a single image, and it depends

not only on the model complexity, but also on the computing hardware upon which the detector is

implemented.
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As shown in Figure 3-3, all four detectors achieve relatively high mAPs. This may be because

vehicles have low variance on their appearance and the test images are limited to ones captured

from the four identical cameras along the I-275 corridor. More specifically, YOLOv3 shows the

highest accuracy for truck detection while RetinaNet slightly outperforms others in pickup and

car detection due to the use of focal loss which addresses the class imbalance between large truck

classes and small car classes. However, the lightweight YOLOv3-tiny model exhibits the fastest

inference time while still achieving a sufficiently high level of accuracy, especially for truck de-

tection - the average precision of the YOLOv3-tiny in detecting trucks for an IOU threshold of 0.5

and 0.75 is 97.46% and 96.65%, respectively.

Consequently, the YOLOv3-tiny model is deployed in the NVIDIA TX modules in the field for

real-time truck detection at CAM-1 where latency is the most important performance metric. When

deployed upon the Nvidia Jetson TX2 which is the server hardware used at Cam-1, the YOLOv3-

tiny model is capable of being executed in realtime at an equivalent frame rate of 15 frames per

second which satisfies real-time detection requirements of the CPS. YOLOv3 is selected as the

primary detector used to detect trucks in the bridges and WIM station images (namely, Cam-2

through Cam-4) offline because real-time performance is not required - the time of execution for

this more extensive CNN model on the Titan Xp is 19.7ms per image. The YOLOv3 model is

used to perform vehicle detection on traffic images captured by the other cameras using a server

with a Nvidia Titan Xp GPU that is accessible to the CPS via the Internet. Its average precision

for trucks is higher than that of YOLOv3-tiny with AP0.5 and AP0.75 at 98.91% for both IOU

thresholds. Besides, YOLOv3 is far superior when discriminating between the three different

vehicle classes as is seen with notably higher AP scores for pickup-trucks and cars in Table 3-3.

As a result, the higher precision and recall performance of YOLOv3 is desirable for confirmation of

trucks crossing the bridges and WIM station. The YOLOv3 detection is an offline post-processing

process performed on a server using an NVIDIA Titan Xp GPU after all data is uploaded into the

cloud. Some qualitative detection results are shown in Figure 2-9 in Chapter 2. When using the

models, the confidence threshold is set to 0.8 with the model only returning predictions with class
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probabilities higher than this threshold. This high threshold minimizes false alarms in the real-time

implementation of YOLOv3-tiny at Cam-1.

3.4 Truck Re-identification

The YOLOv3-tiny single-stage detector trained in the previous section and embedded in CAM-1

is used for real-time truck detection with the CPS architecture designed to autonomously trigger

the bridge monitoring systems and subsequent cameras along the I-275 corridor. This triggering

strategy is designed to capture bridge responses and truck weight measurements for the same truck

as it may travel north on I-275. To confirm the same truck is evident at each section of the corri-

dor, the YOLOv3 detector is implemented offline to extract truck events at each bridge and WIM

station using videos from CAM-2, CAM-3 and CAM-4. Identified truck objects at each camera

are collected during the data collection window triggered by CAM-1. This section describes the

truck re-identification method used to match the same truck at different locations based on a mutual

nearest neighbor strategy using extracted features from the truck objects identified. As multiple

images (video frames) are associated with a single truck, the image that has the largest bounding

box while shows the entire truck head is selected for the re-identification purpose. The image is

cropped around the bounding box to remove redundant background information. Such an image is

assumed to contain the most useful information of that truck’s appearance and thus gives the best

accuracy for re-identification.

Two approaches are explored to extract features from cropped truck images and to measure

the similarity between a pair of images. One approach is to use traditional hand-crafted features

and match detected key points between two candidate images with a stereo matching method.

For example, the percentage of matched key points can be a direct measure of similarity between

two trucks from two different images. The second approach is to extract a feature vector from

each image using a learning-based CNN model and use the reciprocal of the Euclidean distance

between the two feature vectors as a similarity metric.
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3.4.1 Stereo Matching for Re-identification

In the first approach, the truck re-identification problem is posed as a wide baseline stereo matching

problem. Stereo matching aims to estimate the fundamental matrix of a geometric transformation

between images and to extract a common set of key points given two images with distinct views

(e.g., views differing by rotation, translation or significant changes in illumination) of an identical

object [177]. In a standard baseline matching problem, the first step is to detect key points and

describe local features in two input images separately. The second step involves tentatively linking

extracted key points of the two images followed by geometric verification using parameter estima-

tion techniques such as RANSAC [178, 179]. In this study, two bounding box images of the same

truck taken at different locations are treated like two images taken at the same location with distinct

views. Thus, the ratio of the number of matched key points to the number of total extracted key

points from the two input images can be used as a metric to describe the similarity between them.

Due to large view transformations (e.g., tilt) and environment changes (e.g., illumination) associ-

ated with images taken at different locations in the I-275 corridor, commonly used short baseline

stereo algorithms such as SIFT [180] and SURF [181] prove to be unsuccessful in robustly detect-

ing key points; they are not considered further due to their lower than desired performance levels.

As an alternative, the Affine-SIFT (ASIFT) algorithm which is designed for wide baseline stereo

matching is explored [182]. ASIFT is fully affine invariant and has improved matching accuracy

by synthesizing a series of views for both input images through image deformation (i.e., scale

and tilt) before the feature detection step [182]. The approach entails n2 independent matching

problems derived from the original single matching problem where n is the number of synthesized

(deformed) views per image. ASIFT also has a step of filtering out accumulated false matches that

enhances its performance [182]. ASIFT is more robust than SIFT and SURF but its speed is not

sufficiently fast in this application. In this study, the SIFT and SURF implementations in OpenCV

and the ASIFT code published by the original author are evaluated.

The final approach explored is a wide baseline stereo matching algorithm called matching on

demand with view synthesis (MODS) [179]. In addition to view synthesis introduced in ASIFT, the
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Figure 3-4: Same truck with top matched feature points highlighted by the MODS algorithm: (left)
TRB and (right) NRB.

most significant advantage of MODS is the employment of a combination of different detectors and

descriptors. Following an iterative strategy, MODS adaptively attempts more powerful but slower

detectors and descriptors until sufficient proof is found for a match [179]. In the meantime, MODS

also synthesizes more views for each image, if necessary. Such an on-demand approach tackles

the matching problem with a balance between matching robustness and computational speed. The

implementation of MODS published in C++ by the original author is adopted in this study [179].

An example of matched pairs using the MODS algorithm is shown in Figure 3-4 with matched key

points highlighted between the two views of the same truck at TRB and NRB. It is observed that

the algorithm works well even in the case of harsh weather conditions (e.g., raining or snowing) or

blurred images due to low light conditions and a slow shutter speed. As shown, MODS is able to

match two truck images even when the views are transformed and with a partial occlusion of the

complete truck. However, MODS performance is degraded with low contrast images such as those

with glare or haze.

3.4.2 CNN-based Representation Learning for Re-identification

CNNs have been shown to be a powerful tool for the extraction of meaningful features (e.g., lines,

shapes, colored patterns) from images; as a result, they can potentially be used for object re-

identification. Within a CNN, each intermediate convolutional layer is responsible for extracting a

feature map from previous network outputs. Some particular combination of those convolutional

layers can be used to serve as a feature extractor to convert the characteristics of an image into a
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Figure 3-5: (a) The traditional YOLOv3-tiny CNN architecture; (b) modified YOLOv3-tiny CNN
architecture for truck image matching.

feature vector [183]. In this study, a CNN-based approach to vehicle re-identification is considered;

the approach leverages the previously trained YOLOv3-tiny model to extract features from traffic

images for truck re-identification. The first 12 layers of the YOLOv3-tiny model are preserved

and combined with: 1) a global average pooling (GAP) layer [184] (layer 13) and 2) two fully

connected layers as a new embedding network (layers 14 and 15). The architectures of the two

models are illustrated in Figure 3-5 and the layer types and primary parameters of the embedding

network are listed in Table 3-4 [163]. The first 12 layers of the embedding network are identical

to those of the YOLOv3-tiny network and thus each convolutional layer is followed by a batch

normalization and then activated by a leaky rectified linear unit (ReLU) [163]. The total number

of convolutional layers and fully connected layers in the CNN, seven and two, respectively, are

determined by ablation experiments in order to extract the most profitable features for vehicle

re-identification. The idea of adding the GAP layer is to enforce each feature map to represent

meaningful characteristics of trucks and to reduce the dimensionality of the input fed into the

subsequent fully connected layers to try to avoid overfitting. The proposed embedding network

takes 416-by-416 pixels images as inputs, which is similar to the original YOLOv3-tiny model
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YOLOv3-tiny Network Embedding Network

Layer Type # Filter Size Stride Type # Filter Size Stride

0 Convolutional 16 3 1 Convolutional 16 3 1
1 Max pooling 2 2 Max pooling 2 2
2 Convolutional 32 3 1 Convolutional 32 3 1
3 Max pooling 2 2 Max pooling 2 2
4 Convolutional 64 3 1 Convolutional 64 3 1
5 Max pooling 2 2 Max pooling 2 2
6 Convolutional 128 3 1 Convolutional 128 3 1
7 Max pooling 2 2 Max pooling 2 2
8 Convolutional 256 3 1 Convolutional 256 3 1
9 Max pooling 2 2 Max pooling 2 2
10 Convolutional 512 3 1 Convolutional 512 3 1
11 Max pooling 2 2 Max pooling 2 2
12 Convolutional 1024 3 1 Convolutional 1024 3 1
13 Convolutional 256 1 1 GAP 13
14 Convolutional 512 3 1 Fully connected 1024
15 Convolutional 24 1 1 Fully connected 512
16 Detection
17 Convolutional 128 1 1
18 Up-sampling 2
19 Concatenation
20 Convolutional 256 3 1
21 Convolutional 24 1 1
22 Detection

Table 3-4: Layer types and primary parameters of the YOLOv3-tiny model and the modified em-
bedding network.

but is fed cropped truck images instead of the entire raw traffic images. The network output is a

512-entry feature vector for each truck image for matching.

Two general architectures, Siamese network [185] and triplet network [186], are used during

training to learn similarity metrics between input images. The goal is to let the embedding network

learn to extract vision features useful for truck re-identification. The primary differences between

the two architectures are their input forms and the loss functions used. As shown in Figure 3-6(a),

two identical CNNs, namely the prementioned embedding network, exist in a Siamese network

with both CNNs sharing the same weights at all times [185]. During training, a pair of images

either of the same truck or of different trucks is taken as an input to the Siamese network with each

71



Figure 3-6: Coupled network architectures for the embedding network training: (a) Siamese net-
work architecture; (b) triplet network architecture.

image fed to one of the two CNNs. The outputs of the two CNNs (i.e., two feature vectors) are

then passed to a contrastive loss function [185]. The contrastive loss function, L, has the form:

Lcontrastive = (1− Y )
1

2
(Dw)2 + (Y )

1

2
{max(0,m−Dw)}2 (3.3)

Dw = ‖Gw(x1)−Gw(x2)‖2 (3.4)

where Y is the label of an image pair that is set to 0 if two input images belong to the same

truck and 1 if the they are from different trucks, Dw the Euclidean distance between the outputs

of the two branch networks which can be computed by Equation 3.4 where Gw(x1) and Gw(x2)

are the vectorized outputs of the two CNNs, and m is a positive distance margin. The role of

the contrastive loss function is to train the embedding networks to pull the feature vectors of two

similar trucks together while separating those of dissimilar trucks. If the distance between two

different trucks is larger than the specified margin, it then stops contributing to the loss.

Ltriplet =
n∑
i=0

max(‖Gw(xai )−Gw(xpi ))‖
2
2 − ‖Gw(xai )−Gw(xni ))‖22 + α, 0) (3.5)

A triplet network, shown in Figure 3-6(b), has three identical embedding networks. All three

sub-networks have identical weights. During training, the network is fed with a triplet of truck

images without any explicit labels attached. Among the three input images, one image is the

anchor image, one is the positive image which shows the same truck as the anchor image and the

last is the negative image of a truck that is different from the anchor image [186]. A triplet loss
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Figure 3-7: Samples of manually prepared positive truck image pairs.

function (Equation 3.5) is employed to learn the parameters of the embedding network, in such a

way that the feature vector of the positive truck image is trained to be closer to that of the anchor

image than the negative sample by a margin α [186].

To train the embedding network, 1,300 truck image pairs are manually picked by the authors.

Within each pair, the two images belong to the same truck but are captured at different locations

in the I-275 corridor. Each traffic image is cropped and resized to 416-by-416 pixels to remove

background objects; samples are shown in Figure 3-7. To prevent overfitting of the embedding

network during training, the datasets are also augmented by flipping the images both vertically and

horizontally, which results in a total of 3,900 image pairs for training. During the training of the

Siamese network, negative pairs are randomly generated in each iteration by combining a truck

image from one pair to a different truck image that has been processed identically (i.e., flipping

vertically, flipping horizontally or unchanged). The total number of negative pairs is set to be

equal to that of positive pairs in each iteration. The negative samples in each data set for the triplet

network are generated following the same logic. Following this approach, the Siamese and triplet

networks see an abundance of different negative samples than positive samples throughout the en-

tire training process. The CNN of the embedding network is initialized using the corresponding

weights of the trained YOLOv3-tiny model. The weight of this part is frozen for the first 5 epochs

and then fine-tuned in the training process along with the fully connected layers which are ran-

domly initialized using an Xavier uniform distribution [187]. A dropout rate of 0.5 is also added

before the first fully connected layer to overcome overfitting. The two embedding networks are

trained using an Adam optimizer [188] with a base learning rate of 5 × 10−4 and a batch size of
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Method Precision Recall F1-score Speed per comparison (sec) Device

CNN-based
triplet 100% 95.00% 0.9743 0.0035 GPU

Siamese 100% 93.57% 0.9668 0.0032 GPU

Wide Stereo
Baseline

MODS 98.49% 93.57% 0.9597 1.73 CPU
ASIFT 99.22% 91.43% 0.9517 20.52 CPU

Short Stereo
Baseline

SIFT 93.68% 63.57% 0.7574 0.06 CPU
SURF 90.13% 52.14% 0.6606 0.08 CPU

Table 3-5: Evaluation results of truck re-identification using MODS, embedding network trained
from Siamese and triplet network

32. The margin is set to be α = 5 due to this margin offering the best performance as observed

using the data from I-275. The entire process is implemented using the PyTorch framework [189]

and is executed on an NVIDIA Titan Xp GPU. After the training of the embedding network, the

reciprocal of the Euclidean distance (i.e., L2 distance) between the two truck images’ embedding

vectors is selected to be the proxy for their similarity.

3.4.3 Evaluation

To evaluate the performance of the two approaches (i.e., hand-crafted stereo matching features

and CNN-based embedding network) for truck re-identification, 150 truck image pairs that are

not included in the training set of the CNN-based embedding networks are selected to serve as a

testing data set. The 150 images are split into 15 sets of 10 trucks to mimic the real application in

this study, which leads to 1500 (15*10*10) similarity metric calculations. The performance of the

models is evaluated in terms of precision, recall, F1 score [190] and inference speed. The F1 score

is the harmonic mean of precision and recall which can calculated as

F1score =
2× recall × precision
recall + precision

(3.6)

The results are compared in Table 3-5. Since the CNN embedding networks trained from the

Siamese and the triplet network follow the same procedure during testing, they have inference

speeds close to one another. In addition, cumulative match characteristic (CMC) curves averaged
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Figure 3-8: Cumulative match characteristic curves for truck matching using SURF, SIFT, ASIFT,
MODS, and CNN-based embedding networks (Siamese and triplet networks).

from all 15 test sets are plotted in Figure 3-8. According to the evaluation results, the embedding

network trained from the triplet architecture gains the highest F1 score as well as the fastest speed;

it is thus employed for the truck re-identification in the production version of the system. Never-

theless, all methods fail to distinguish some extremely similar truck pairs. Some false positives are

shown in Figure 3-9. For examples, some trucks seen at different locations along the corridor may

come from the same freight transportation company or they are of the same truck type with the

same color. Besides, a truck image in one set might be matched with a distinct but similar truck in

another set if the same truck is not captured in the second set. The performance also downgrades

in the case of harsh weather (e.g., raining or snowing), blurring (dark light and low shutter speed)

or low contrast images (e.g., glare or haze). Those false positives might be ruled out by checking

if the corresponding travel time is feasible or the input-output mapping of the two bridge systems

are reasonable, which will be discussed in the next section.

3.5 Summary and Conclusions

In this chapter, a computer vision-based truck re-identification framework is proposed to automati-

cally link truck-induced bridge response data measured by bridge SHM systems to truck load data

measured by a nearby WIM station following the framework proposed in Chapter 2. The first
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Figure 3-9: Examples of false positives of matched truck during the truck re-identification phase:
top row are images at the Telegraph Road Bridge and the bottom row are images at the Newburg
Road Bridge with manual checking revealing these are not the same truck.

stage of the truck re-identification involves training CNN models for vehicle detection. Trained

using a customized data set, four advanced CNN architectures are evaluated in this study in terms

of average precision and inference speed. Being the fastest detector, YOLOv3-tiny is selected for

real-time detection of incoming trucks to trigger the subsequent systems so that all systems can

track the same trucks along the corridor. YOLOv3 is used to identify truck events captured by

the cameras at the bridge SHM systems and the WIM station offline due to its high precision and

fast execution speed. At the second stage, features are extracted from identified truck images to

match identical trucks captured at different locations following a mutual nearest neighbor fashion.

Multiple hand-crafted feature extraction algorithms and customized CNN-based feature extraction

models are compared for truck re-identification purpose. It is shown that the CNN-based embed-

ding network trained using a triplet architecture outperforms its hand-crafted counterparts. Linked

by the matched truck images, the corresponding data collected by different systems (i.e., bridge

SHM systems and WIM station) can be fused. Future work will be focused on adopting a deeper

CNN architecture to extract features from truck images and visualizing extracted features for a

better interpretation of the model working mechanism.
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CHAPTER 4.

Partial Composite Action and Durability Assessment of Slab-on-girder

Highway Bridge Decks in Negative Bending Using Long-term Structural

Monitoring Data

4.1 Introduction

Stringer/multibeam bridges are a common highway bridge type in the United States accounting for

over 40% of the National Bridge Inventory (NBI) [191]. This type of bridge consists of a concrete

deck on top of parallel steel girders with the deck often designed to be in composite action with

the girders [192]. The purpose of composite action is to let components with different materials

act cooperatively against external loads. A composite slab-on-girder bridge under positive bending

moment has the concrete deck mainly in compression and steel girders mainly in tension, result-

ing in both high load-carrying capacity of the span and reduced tensile load on the slab. This is

achieved by installing connectors at the girder–deck interface, such as steel studs welded to the top

flange surface of the steel girders [193, 194]. Multispan slab-on-girder bridges that have internal

supports experience negative bending moments over the supports. The flexural capacity gained by

composite action is unnecessary over the internal support and can lead to higher tensile strain in the

top surface of the bridge deck. Hence, older slab-on-girder bridges were designed without com-

posite action in the negative moment sections of their spans. Current design methods supported by

AASHTO specifications encourage composite action over the full span although composite action

over the internal support will induce high tensile strain in the concrete deck over the support [192].

To control cracks, AASHTO prescribes additional steel reinforcement in negative bending regions

by establishing a minimum area of steel in the deck section.
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According to the 2017 ASCE Infrastructure Report Card, the condition of US bridges has im-

proved with structurally deficient bridges in the national inventory dropping from 12.3% in 2007

to 9.1% in 2016 [30]. While the percentage of structurally deficient bridges may have gone down,

the national bridge inventory is rapidly aging with 39% of the 614,387 highway bridges in the US

now 50 years or older [30]. This growing inventory of aging bridges will necessitate increasing

attention to ensure bridges remain safe and cost efficient for further operation. Based on the NBI,

54% of bridges rated as structurally deficient are steel stringer/multibeam bridges although they ac-

count for only 40% of the national inventory [191]. This suggests that stringer/multibeam bridges

require more attention than other bridge types in the NBI. A significant concern associated with

slab-on-girder bridges is long-term deck deterioration including concrete cracking and spalling. In

Michigan, where stringer/multibeam bridges make up 43% of the Michigan Department of Trans-

portation (MDOT) inventory, poor deck condition is listed as the most significant highway bridge

issue in the state’s long-range transportation plan [195, 191]. Deck deterioration can result from

a number of factors such as concrete shrinkage and the corrosion of steel reinforcement, but it

is often accelerated in multispan bridges above internal supports, in which decks are subject to

higher tensile strains due to negative bending moment [196, 197]. This is especially true for older

bridges designed without shear connectors (or explicit composite action) in their negative moment

sections. In Michigan, there are 979 steel multistringer bridges in the MDOT inventory without

full composite action (compared with 2,576 with composite action). When shear connectors are

not used, it is assumed by the designer that the section has zero composite action, which implies

complete freedom for the deck lower surface to displace relative to the top surface of the girder

flange. However, the assumption made during the design of negative moment sections does not

reflect the true in-service behavior of these sections. Specifically, partial composite action will

be observed in sections without shear connectors owing to surface friction and chemical bonding

between the concrete and steel [196]. While not fully composite nor noncomposite, these sections

can be characterized by a measure of the degree of composite action (DCA). Partial composite

action (as defined by DCA) is important to consider because it controls the ultimate limit states
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and serviceability of the bridge deck making it an important management issue in bridge engineer-

ing [198]. More specifically, compared with noncomposite design, unintended partial composite

action will lead to an increase in tensile strain in the top layer of concrete decks over negative

bending regions.

Partial composite action was first systematically studied by Newmark et al. who carried out

numerous experimental studies of slabs bonded to steel surfaces in a lab setting [199]. Since that

seminal study, different analytical models have been proposed to model the nonlinear and time-

dependent behavior of composite structural components [200, 198, 201, 202]. More recently, a

generalized analytical model has been proposed for composite beams with no restrictive assump-

tions on the connection and interaction between the components [203, 204]. Finite-element mod-

eling has also been intensively used to model partial composite interaction in composite beams

[205, 206]. From previous studies, DCA has been found to strongly affect the flexural stiffness

and strain distribution of composite beam sections [207, 208]. In particular, partial composite ac-

tion over negative bending regions is a major research topic in the bridge engineering community

[196]. In sections designed to not have composite action in negative bending, partial composite

action can elevate deck strains, resulting in durability issues over the service life of the deck. Even

in negative bending sections designed with shear connectors, cracks in these decks near the con-

nectors reduce the connector stiffness, thereby limiting their effectiveness; this in turn results in a

reduction of composite action [208] and changes the moment distribution in the span [209].

Currently, visual inspection is the primary method of observing bridge conditions and deciding

upkeep and retrofit strategies. Structural monitoring can also be used to augment visual inspec-

tions to overcome the limitations of visual methods (e.g., interpretability and accessibility) [32].

Monitoring data can be a valuable resource that helps engineers understand bridge behavior, vali-

date design assumptions, and detect anomalous bridge behavior including damage [210, 211, 99].

Most prior research on composite action has been carried out by means of theoretical analysis,

experimental study in the laboratory, or by finite-element analysis. Comparatively, few studies

have explored DCA in operational bridges over long observation periods. One of the few examples
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of in-service assessment was done by Cardini and DeWolf who installed a dense group of strain

gauges on a multispan composite highway bridge to assess the location of the section neutral axis

to identify deck cracking [43]. The same technique was later applied using Fiber Bragg grating

strain sensors for damage detection [211]. A relative displacement sensor has also been developed

to directly measure the relative slip between the concrete deck and steel girder in composite bridges

[212].

The primary goal of this chapter is to use long-term structural monitoring of operational multi-

span slab-on-girder bridges to study the DCA in positive and negative bending sections of bridges

under vehicular loads. An emphasis is placed on modeling partial composite action in negative

moment sections, in which shear connectors are not used and the designer has assumed no com-

posite action is present. A highway bridge, Telegraph Road Bridge, located in Monroe, Michigan,

has been monitored with a wireless structural monitoring system continuously since 2011. The

bridge is a three-span slab-on-girder bridge consisting of two tail spans cantilevering past internal

piers to support the bridge center span via pin and hanger assemblies. The monitoring system

measures flexural strain in the steel girder–concrete deck section at numerous locations along the

bridge span, thereby providing an extensive data set from which DCA can be studied. The study

uses a data-driven approach to measure slippage at the deck–girder interface as a function of live

load magnitude to quantify and model DCA in span sections with and without shear connectors

(i.e., positive and negative bending, respectively). Regression modeling of measured slip strain and

bottom-girder strain is used to extract a parametric model that describes the behavior of composite

action in each steel girder–concrete deck section. This parametric model serves as the basis of

analyses of strain in the bridge deck to understand how composite action affects long-term deck

durability. Analytical and numerical modeling reveals that partial composite action in sections of

negative bending results in significantly higher top surface strains of the deck not accounted for

in design when no composite action is assumed; this reduces the long-term durability of the deck.

The chapter concludes with a summary of key findings and a description of future work that can

be performed to refine the DCA models developed.
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Figure 4-1: Telegraph Road Bridge (Monroe, Michigan): (a) perspective view of bridge; (b) view
of bridge from bottom; (c) severe deck deterioration of northern tail span (October 2010); (d)
spalled concrete at steel girder interface on tail span (June 2012).

4.2 Telegraph Road Bridge Monitoring Program

The Telegraph Road Bridge (Figure 4-1) is a three-span slab-on-girder highway bridge located in

Monroe, Michigan, and carries three lanes of northbound Interstate 275 over Telegraph Road. The

slab-on-girder cross section is shown in Figure 4-2. The bridge was constructed in 1973 and is

owned by MDOT. The bridge carries truck loads with approximately 6,000 trucks crossing daily,

as measured from the weigh-in-motion station at Pennsylvania Road (which is 12 miles north of

Telegraph Road) [213]. As shown in Figure 4-3, the bridge spans 224 ft. (68.28 m) and has a

33-degree skew. The center span of the bridge is 128 ft (39.01 m) and is supported at its two ends

by pin-and-hanger connections. Load from the main span is transferred by the pin-and-hanger

connections to tail spans located on both sides (i.e., north and south). Each tail span is 48 ft (14.63

m) long and supported by an abutment on one end and a concrete pier located 6 ft (1.83 m) from

the pin-and-hanger assemblies at the other. The piers induce negative moments in the tail spans
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Figure 4-2: Interior cross section of Telegraph Road Bridge with key structural dimensions docu-
mented for the tail (wing) and main spans.

when vertical load is applied to the main span.

Each span contains an 8-in. (20.32 cm) thick concrete slab placed upon seven 54-in. (136.16

cm) deep steel-plate girders. Steel shear studs are welded to the steel girders of the main span

spaced at 18 in. (45.72 cm) to provide full composite action in the section. However, studs are not

installed in the tail spans and it was assumed during design that composite action does not develop

in the section [192]. Figure 4-2 shows a typical girder-deck T-beam cross section of the Telegraph

Road Bridge with the dimensions of the girders shown for both the tail and main spans. The web

and flange thicknesses of the main span girders are larger owing to higher flexural stress demand.

Two layers of steel reinforcement are included in the concrete slab with #4 and #5 reinforcement

bars placed on the top and bottom layers, respectively. An additional set of #6 reinforcement bars

are added to the top layer over the piers in regions of negative moment to support higher tensile

strain demand. The effective width of the T-beam section in Figure 4-2 is 99 in. (2.51 m) which is

the distance between the centerlines of two adjacent girders [192, 214].

4.2.1 Bridge Condition

The Telegraph Road Bridge has been repaired multiple times over its 45 years of service. The

latest rehabilitation was a resurfacing of the bridge deck in 2011 due to deteriorating deck condi-

tions. Table 4-1 is a summary of the condition ratings assigned to the deck during biennial bridge
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Figure 4-3: Sensor layout of the wireless sensing network drawn on the schematic diagram of the
Telegraph Road Bridge with sensor types and location convention defined.

safety inspections from 2001 to 2015. From 2001 to early 2011, the deck condition score dropped

from 5 (fair) to 4 (poor) as increasingly more concrete cracks and spalls were observed. On-site

observation of the top deck in 2010 [Figure 4-1(c)] demonstrated severe deck deterioration in the

tail spans with large areas of the top deck spalled. Additional evidence of tail span deck distress

were areas of shallow spalling at the top flange–haunch interface [Figure 4-1(d)]. During the 2011

deck repair, hydro-demolition was performed to remove the upper half of the original concrete

slab followed by a new silica fume–modified concrete overlay placed upon the remaining slab.

The original concrete deck had a nominal compressive strength of 3,000 psi (20.7 MPa) but the

new overlay was specified with a 7,000 psi (48.3 MPa) compressive strength; cylinder tests during

the 2011 resurfacing resulted in compressive strengths between 6,400 psi (44.1 MPa) and 7,400

psi (51.0 MPa). After resurfacing, the decks obtained a condition rating of 7 representing a good

condition for the deck. The 2013 and 2015 inspections rated the deck as 6 (fair) owing to the

development of traverse cracks appearing in the top deck surface.

Deck deterioration on the Telegraph Road Bridge is a persistent issue that requires continuous

attention to ensure decks offer a safe road condition to traffic. While deck deterioration is com-
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Year Score Southern tail span Main span Northern tail span

2001 5 (Fair) Few open spalls; transverse
cracks throughout

Few open spalls; transverse
cracks throughout

Few open spalls; transverse
cracks throughout

2003 5 (Fair) Few open spalls; transverse
cracks throughout

Few open spalls; transverse
cracks throughout

Few open spalls; transverse
cracks throughout

2005 4 (Poor) 1.77 m2 (19 SFT) of bit
patched areas, 2.51 m2 (27
SFT) of concrete patched ar-
eas, and no open spalls

0.19 m2 (2 SFT) of bit
patched areas, 7.62 m2 (82
SFT) of concrete patched ar-
eas, and 0.93 m2 (10 SFT) of
open spalls

3.44 m2 (37 SFT) of bit
patched areas, 8.45 m2 (91
SFT) of concrete patched ar-
eas, and 1.39 m2 (15 SFT) of
open spalls

2006 4 (Poor) 1.77 m2 (19 SFT) of bit
patched areas, 2.51 m2 (27
SFT) of concrete patched ar-
eas, and 0.19 m2 (2 SFT) of
open spalls

0.19 m2 (2 SFT) of bit
patched areas, 7.62 m2 (82
SFT) of concrete patched ar-
eas, and 0.46 m2 (5 SFT) of
open spalls

3.44 m2 (37 SFT) of bit
patched areas, 8.45 m2 (91
SFT) of concrete patched ar-
eas, and 1.39 m2 (15 SFT) of
open spalls

2008 4 (Poor) 2.32 m2 (25 SFT) of bit
patched areas, 2.51 m2 (27
SFT) of concrete patched ar-
eas, and 1.39 m2 (15 SFT) of
open spalls

0.56 m2 (6 SFT) of bit
patched areas, 7.62 m2 (82
SFT) of concrete patched ar-
eas, and 0.56 m2 (6 SFT) of
open spalls

2.60 m2 (28 SFT) of bit
patched areas, 8.45 m2 (91
SFT) of concrete patched ar-
eas, and 1.39 m2 (15 SFT) of
open spalls

2010 4 (Poor) 3.72 m2 (40 SFT) of bit
patched areas, 2.51 m2 (27
SFT) of concrete patched ar-
eas, and 1.11 m2 (12 SFT) of
open spalls

2.32 m2 (25 SFT) of bit
patched areas, 8.36 m2 (90
SFT) of concrete patched ar-
eas, and 1.39 m2 (15 SFT) of
open spalls

4.65 m2 (50 SFT) of bit
patched areas, 8.45 m2 (91
SFT) of concrete patched ar-
eas, and 2.32 m2 (25 SFT) of
open spalls

2011 7 (Good) New concrete overlay New concrete overlay New concrete overlay
2013 6 (Fair) Several transverse cracks

along center line and reference
lines

Several transverse cracks
along center line and refer-
ence lines

Several transverse cracks
along center line and refer-
ence lines

2015 6 (Fair) Several transverse cracks
along center line and reference
lines

Several transverse cracks
along center line and refer-
ence lines

Several transverse cracks
along center line and refer-
ence lines

Table 4-1: Deck surface condition of the Telegraph Road Bridge from 2001 to 2015.

mon to many slab-on-girder bridges in northern climates, the Telegraph Road Bridge exhibits some

unique damage patterns. First, in 2009 the two tail spans had much more severe deck deterioration

than the main span (as supported by bridge safety inspection reports from 2001 to 2010, as reported

in Table 4-1). An intuitive explanation to these observations is that the midspan experiences posi-

tive bending moments during vertical loading with the section composite action ensuring the deck

is in compression. In addition, diurnal and seasonal thermal variations will introduce tensile ex-

pansion in the deck. In contrast, the tail spans have large areas of the span in negative bending due

to the pier support on the interior of the spans. Although the two tail spans are designed to be non-

composite, there is likely some degree of composite action occurring at the girder–slab interface
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Figure 4-4: Highlights of Telegraph Road Bridge instrumentation: (a) base station with solar panel
used for power; (b) installation of strain sensors (BDI strain transducer on slab and metal foil
gauges on girders); (c) wireless sensor enclosure for strain gauge data collection magnetically
mounted to steel girder flange; (d) internal components of wireless sensor node.

owing to adhesion, chemical bonding, and mechanical friction [196]. As a result, it is hypothesized

that the deck in the negative bending region of the tail spans experience much greater tensile strains

than considered during design. Hence, the existing steel reinforcement is likely insufficient for the

higher tensile strain demand leading to larger cracks and a more rapid deterioration of the decks

owing to surface water and chlorides penetrating into the deck.

4.2.2 Structural Health Monitoring System Configuration

To investigate the potential causes of the observed deterioration in the deck and also to better

understand the composite behavior manifested in the bridge, a long-term structural health moni-

toring (SHM) system was installed on the Telegraph Road Bridge in September 2011 shortly after

the new concrete overlay was installed. O’Connor et al. provide a detailed review of the SHM

system and its design; only a brief review of the SHM system pertinent to the assessment of the

deck behavior will be offered herein [61]. The SHM system is comprised of a base station and a

Narada wireless sensor network (WSN) (University of Michigan, Ann Arbor, Michigan), as shown
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in Figure 4-3. The base station, shown in Figure 4-4(a), contains a single board computer (Nvidia

TX2) that wirelessly sends operational commands to the WSN including time synchronization, the

start of data collection (with a specified sample rate), and request to receive data. The base station

also aggregates data from the WSN during each data collection cycle before transmitting data to

a cloud-based database system via a cellular modem (AT&T Velocity MF861) [146]. The base

station is powered by a 12V rechargeable battery (PS-12350NB, PowerSonic, Reno, Nevada) that

is charged using a solar charge controller (Sun Saver 10L, Morningstar, Newtown, Pennsylvania)

and a solar panel (110W 12V, UL-Solar, Brea, California). The single board computer, battery,

cellular modem, and charge controller are contained within a water-tight metal enclosure bolted to

the bridge concrete barrier.

Narada wireless sensing nodes [144] are responsible for collecting measurements from a vari-

ety of physical sensors interfaced (e.g., accelerometers, strain gauges, thermistors). Narada [Fig-

ure 4-4(d)] has a 16-bit analog to digital converter that can sample data from four channels with

a maximum sample rate of 100 kHz. The node uses a power amplified IEEE802.15.4 transceiver

(Texas Instruments CC2420) for wireless communications. The nodes deployed are contained

within small water-tight enclosures [Figure 4-4(c)] along with conditioning circuitry, solar charge

controllers (Morningstar SunSaver SS-6L-12V), and 12V rechargeable batteries (PowerSonic PS-

1229). A small solar panel (UL-Solar 10W 12V) is attached to each node to recharge the node

battery.

The WSN consists of nodes measuring three response parameters: acceleration, strain, and

surface temperature. The system has six locations with a local array of strain measurements that

is identical at each location. On Girder Line 2 (and identically on Girder Line 6) arrays are in-

stalled above the north pier denoted as NE and NW, south pier denoted as SE and SW, and on the

centerline of the main span denoted as ME and MW (Figure 4-3). At each of these six locations,

four strain sensors and one thermistor are installed. As shown in the section schematic of Figure

4-2, at each location three Tokkyo Sokki FLA-6-11-3LT 6 mm 120 Ω metal foil strain gauges are

installed on the girder web 3 in. (7.62 cm), 27 in. (68.58 cm), and 51 in. (129.54 cm) from the
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top surface of the bottom flange to measure girder strain responses. One additional Bridge Diag-

nostics, Inc. (BDI) ST350 strain transducer is bolted to the bottom surface of the concrete deck

using bolt fasteners to measure strain. The four strain gauges combined can provide strain mea-

surements at different positions along the height of the slab–girder cross section which serve as the

basis for estimating the strain profile of the cross section subject to vehicular loads. One thermis-

tor (USP13187, US Sensor, Orange, California) is mounted to the girder using thermal epoxy to

measure structural temperature which will be used to eliminate temperature-induced sensor error

as well as for correlating bridge behavior with temperature. The strain gauges, BDI sensor, and

thermistor are shown in Figure 4-4(b). The strain sensors (metal foil) and thermistors are inter-

faced to each Narada node using a Wheatstone bridge and instrumentation amplifier (amplified by

1,000x and 1x, respectively) with a MOSFET switch included to allow the nodes to turn power on

and off to the sensors. The BDI sensors which have a full bridge embedded in them are interfaced

using an instrumentation amplifier (amplifying by 500x) with a MOSFET switch. There is also

a small array of vertically oriented uniaxial accelerometers (Silicon Design 2012-002) installed

along Girder Lines 1 and 7 to measure vibrations from which natural frequencies of the bridge can

be identified and used for model updating.

4.2.3 Data Management and Processing

The Telegraph Road Bridge monitoring system has been operated on a scheduled basis since it was

deployed in 2011. The system is turned on every 2 h to collect data for 1 min with strain, accelera-

tion, and temperature sampled at 100, 200, and 1 Hz, respectively. The first modal frequency of the

bridge is estimated to be around 2.5 Hz from collected acceleration data [61]. A typical response

is shown in Figure 4-5 showing time synchronized data from the strain gauges on the bottom of the

girder web (S1 at NE, S4 at ME, and S7 at SE on Girder Line 6; S10 at NW, S13 at MW, and S16

at SW on Girder Line 2) along with two accelerometers installed along the centerline of the main

span (A4 and A11). During this 60-s segment of data, two trucks are captured and classified on

the basis of the strain magnitude: a large truck at around 8 s and a smaller truck at 47 s. Negative
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Figure 4-5: Typical strain responses and acceleration responses measured by the structural health
monitoring system with truck events identified and baseline shifted for each sensor for better visu-
alization.

bending is evident on the two tail spans, as seen by the negative strain measurement at S1, S7, S10,

and S16.

The data analysis performed in this chapter is primarily focused on the bridge dynamic response

to truck loads to investigate the correlation between the flexural behavior of each section and load

magnitude. In addition, the static bottom-deck strain response without the presence of vehicular

loads will be used to investigate the thermal expansion of the bridge deck. Data is collected on the

basis of the established schedule over 3.5 years of observation (October 1, 2013–April 30, 2016).

An automated algorithm is used to process all of the measurement data to identify truck events

(thereby eliminating data associated with no vehicles and cars). To distinguish bridge responses

associated from trucks, a threshold based peak-picking algorithm is applied to the strain measured

at the bottom of the girder webs (such as those shown in Figure 4-5). The approach begins with

first passing the strain data through a low-pass filter (with a cut-off frequency of 2 Hz) to eliminate

high-frequency signal noise. Then, the maximum measured strain from across all six lower web

strain gauges is identified; those with maximum strains above a defined threshold (e.g., 5 µε) are
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Figure 4-6: Analytical model of the concrete slab and steel girder composite section: (a) cross sec-
tion with key dimensions; (b) side profile with force and moments defined under flexural moment.

identified as truck-induced responses. The time history before and after the maximum strain is

searched to find when the response is oscillating around the 0 µε baseline at all of the lower web

strain gauges to isolate the truck event in the time history data. In Figure 4-5, the dotted vertical

lines correspond to the truck start and end time of the isolated truck event while the solid vertical

line correspond to the time of maximum strain.

4.3 Model of Slab-Girder Flexural Behavior

A model is required to help analyze the measured bridge strain response and to describe the behav-

ior of the bridge under loading. This study adopts a model based on the Newmark model for the

theoretical analysis of the slab-on-girder span behavior [199, 207]. The model consists of two Eu-

ler–Bernoulli beams (namely the steel girder and the overlying reinforced concrete slab) coupled

by means of deformable shear connectors, friction, and chemical bonding. Several assumptions

are made to simplify the analysis. First, it is assumed that plane sections remain plane and perpen-

dicular to the longitudinal axis which ensures a linear strain profile through the two beam sections.

Second, it is assumed that the reinforcement bars are bonded perfectly to the surrounding concrete

89



so slip between the steel bars and concrete slab can be neglected [196]. Third, it is assumed that

the concrete slab and the steel girders are vertically compatible (i.e., they do not separate) and

share the same vertical displacement under external load. Fourth, flexural and axial stresses are

assumed to dominate while shear and torsion stresses are neglected in the Euler–Bernoulli beam

model [198]; this is owing to shear deformation being very small when elements are in bending

[202]. Finally, the Young’s modulus of the concrete is assumed to be identical in tension and

compression in the linear region. The Newmark model is sufficiently descriptive and allows the

measured strain response of monitored bridge beam sections to be interpreted on the basis of sim-

ple beam mechanics. While more advanced analytical models exist, such as the generalized model

proposed by Focacci et al. [203], the simpler model used herein is a reasonable model choice. A

typical T-beam section (Figure 4-2) under a positive bending moment M is shown in Figure 4-6.

Three equilibrium conditions must be established in the section: moment equilibrium in the total

section, lateral force equilibrium of the concrete section, and lateral force equilibrium of the steel

section, as established in Eqs. 4.1, 4.2, and 4.3, respectively

M = Ms +Mc + Fid (4.1)

Fc = Fi (4.2)

Fs = Fi (4.3)

where d = distance between the equivalent geometry centroids of the reinforced slab and the girder;

Fc = internal resultant force acting on the slab; Fs = internal resultant force acting on the steel

girder; and Fi = interaction force at the concrete–steel interface. The relative slip at the con-

crete–steel interface, ξ, is defined as the relative longitudinal deformation between the concrete

slab and the steel girder, which can be calculated as [193]

ξ(x) = uc(x)− us(x) +
∂v(x)

∂x
d (4.4)
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where uc(x) and us(x) are the lateral displacements of the slab and girder at their centroids, and

v(x) is the vertical displacement of the section. Assuming small rotations, the first derivative of

vertical displacement relative to longitudinal length is the rotation of the section plane.

The section behaves differently for three cases: noncomposite action, full composite action,

and partial composite action. The full composite action case is obtained from the infinite stiffness

of the shear connectors ensuring no slip at the contact interface (ξ = 0). In this case, the concrete

slab can be replaced with an equivalent steel slab based on the modulus ratio α = Es/Ec, where

Es and Ec are the Young’s modulus of the steel and concrete, respectively [193]. The slab and

girder then act together to resist the external moment, M . In the case of noncomposite action, free

sliding is allowed between the slab and girder owing to Fi = 0. The concrete slab and steel girder

act against the net section moment separately with the moment partitioned into two portions of the

section (Ms and Mc) on the basis of the ratios of flexural rigidity

Ms =
EsIs

EsIs + EcIc
M and Mc =

EcIc
EsIs + EcIc

M (4.5)

where Is and Ic = area moment of inertia of the slab and girder, respectively. The cases of full

composite action and noncomposite action represent the upper and the lower bounds for the behav-

ior at the slab–girder interface. Partial composite action has some slip at the slab–beam interface

with an interface force, Fi, present on the contact surface. The slip is smaller than that associated

with the noncomposite case. Response parameters, rpc, of the partial composite beam can therefore

be represented as a weighted mean of the two limit cases of the full, rfc, and noncomposite, rnc,

beam responses [193]

rpc = ηrfc + (1− η)rnc (4.6)

where η is a nondimensional control parameter ranging from zero to one to adjust the DCA. The

neutral axis of a beam is defined as the axis in which longitudinal strain/stress in the section is

zero under external loads (e.g., moment and normal force). The neutral axis subject to the moment
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Figure 4-7: Three cases of slip strain depending on the degree of composite action shown within the
strain profile of the composite section: (a) full composite action (DCA = 1); (b) partial composite
action (0 < DCA < 1); (c) noncomposite action (DCA = 0).

load induced by vehicular loads is selected in this study, serving as an important parameter for

describing the partial composite action case. In the case of noncomposite action, the steel girder

and the concrete slab act separately under moment; the steel and concrete sections have their own

neutral axes at their geometric centroids, Gs and Gc, respectively. When full composite action is

exhibited, the entire cross section acts together with a single neutral axis located at Gf which falls

between Gs and Gc, as shown in Figure 4-6. As slip begins to develop at the concrete deck–steel

girder interface owing to the emergence of partial composite action, the neutral axis in the girder

moves downward from Gf to some location between Gs and Gf . The dropping of the neutral

axis from Gf can also be an indication of deck cracking and a weakening of the interface between

the shear stud and the surrounding deck for the full composite case. As a result, the neutral axis

position has been proposed as a damage-sensitive feature to assess the condition of bridge decks

in many studies [43, 215, 209, 211]. In this study, the neutral axis position is estimated from the

strain measurements taken in each section of the Telegraph Road Bridge and is used as an indicator

of the DCA maintained at the girder–deck interface.

The relationship between slip in the steel–concrete interface and moment is an important prop-

erty related to the shear stiffness at the interface. In a laboratory setting, the shear stiffness at an
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interface with shear studs can be extracted from push-out tests for individual shear connectors in

which the beam is gradually loaded with increasing axial loads [216, 199]. However, such tests

are not feasible in an operational bridge. Instead of using slip, this study adopts slip strain, εslip,

which is defined as interface slip per unit longitudinal (i.e., x-axis in Figure 4-6) length of the

beam. More specifically, the slip strain is equal to the difference between the strain of the bottom

fiber of the deck and the strain of the top fiber of the girder [207, 203, 199]. Slip strain, εslip, is

used to quantify the DCA where [207, 217]

DCA = 1−
εslip|pc
εslip|nc

(4.7)

In doing so, DCA is essentially equal to η of Eq. 4.6 where

εslip|pc = (1− η)εslip|nc (4.8)

with εslip|pc essentially equal to zero owing to full composite action. As shown in Figure 4-7, the

slip strain is zero in the case of full composite action and reaches to its maximum value in the

case of noncomposite action. The partial composite action case has a slip strain, εslip|pc, at an

intermediate value between zero and εslip|nc. Traffic load and resulting bending moment in the

instrumented cross section cannot be directly measured. As a result, the strain response measured

by the bottom-web gauges will be used as a proxy for the moment magnitude in the section. The

relationship between the slip strain, εslip, and strain on the bottom of the steel girder, εbw, will be

used to map the shear stiffness of the interface between the deck and the girder.

4.4 Observed Behavior of Slab-Girder Sections

4.4.1 Processing of Girder and Deck Strain Measurements

The strain data collected in the six sections (NE, ME, SE, NW, MW, and SW) on the Telegraph

Road Bridge is processed to observe the flexural behavior of the slab–girder sections. A typical

strain response in the NE section due to a truck load is shown in Figure 4-8(a). A high DCA is
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Figure 4-8: Process of neutral axis position estimation: (a) typical strain time history to truck
loading at NE; (b) best fit linear strain profile with axial force (and corresponding strain) eliminated
to impose equilibrium on the section.

evident at the section with maximum negative (compressive) strain at the bottom web strain gauge

(S1) and the maximum positive (tensile) strain at the deck bottom surface, as measured by the

BDI transducer (S4). In processing the strain data, it will again be assumed that plane sections

remain plane and the deck is compatible with the steel girder. A linear strain profile is fit to the

three strain measurements in the girder (i.e., top web, middle web, and bottom web) using the least

square method, as shown in Figure 4-8(b). The linear strain profile fit to the measurements can

be sensitive to a number of factors with signal-to-noise ratio (SNR) as the most important factor

[211]. To ensure a high SNR, only heavy truck load events are considered, which ensure a high

amplitude strain response in the section; furthermore, the estimation of neutral axis and slip strain,

εslip, is performed using the maximum strain response for each truck event captured in the data [as

shown in Figure 4-8(a)].

The strain profile, εtot, estimated in the section using the measurements, is shown in Figure

4-8(b). Based on the assumptions, the slope of the linear profile of strain in the girder is assumed

to also occur in the deck. The strain profile is converted to a stress distribution. To do so, the

steel girder is assumed to be in its linear response with axial stress, σ, linearly proportional to axial

strain, ε, through the material modulus, E, with Poisson’s ratio considered. The tensile strength of
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the concrete is considered during calculation. Concentrated axial forces, F , in each layer of steel

reinforcement is estimated on the basis of the strain at the height of the steel reinforcement and

the area, A, of the steel (F = AEε). Under pure bending, M(x), the sum of forces in the section

must be zero. Using the stress profile in the steel girder and the concentrated forces in the steel

reinforcement, the sum of force in the section is calculated. The sum of forces is typically small

but not zero in the six sections of the Telegraph Road Bridge. This can be due to a number of

factors such as measurement noise, response parameters not explicitly accounted for in the simpler

model (e.g., longitudinal shear in the skewed deck), or potentially some mild restrictions in the

beam supports. To focus on the flexural response of the beam sections and to establish equilibrium

in the section, the uncertainties are treated as an equivalent axial force in the section inducing axial

strain (εax), as shown in Figure 4-8(b). This axial strain, εax, is subtracted from the strain profile,

εtot, to isolate the flexural strain profile, εflex. It is the flexural strain profile, εflex, that is used to

estimate the neutral axis of the section. Slip strain, εslip, is calculated on the basis of the difference

in the top girder strain extrapolated from the fitted linear strain profile, εtot, and the strain measured

by the BDI transducer at the bottom deck surface.

4.4.2 Neutral Axis Behavior

During the observation period (October 1, 2013–April 30, 2016), over 2,000 truck events were

observed. Histograms of the estimated neutral axis at the six instrumented sections are plotted in

Figure 4-9. It should be noted that each histogram has a different number of observed events, N ,

based on the quality of the linear fit of strain through the height of the steel section. The coefficient

of determination, R2, is used to assess the linear regression with R2 > 0.75 used as the acceptance

criteria. Besides, data samples with strain measurement at the bottom of the steel girder less than 5

µε are not considered for estimating neutral axis locations owing to their low SNRs. Also plotted

in Figure 4-9 are the theoretical neutral axis locations for sections in full (FC) and noncomposite

(NC) action as indicated by dashed lines. Using the geometries of Figure 4-2, the neutral axis when

the spans are in full composite action are Gf = 51.84 in. (131.68 cm) and 45.02 in. (114.35 cm)
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Figure 4-9: Histograms of estimated position of neutral axis at the six measurement locations. The
as-designed neutral axis under assumption of full and no composite action is also shown for the
as-designed sections.

from the bottom of the girder for the tail and main spans, respectively. Using the elastic modular

ratio of the steel to the concrete, the neutral axis position is calculated by transforming the area

of the concrete slab section into an equivalent steel section taken into account the area of steel

reinforcement bars and different concrete materials [218]. In the case of noncomposite action, the

neutral axis sits at the centroid of the steel girder section which is Gs = 26.61 in: (67.59 cm) and

23.83 in. (60.53 cm) for the tail and main spans, respectively.

As expected, the neutral axis at the main span sections (ME and MW) have an average neutral

axis within 1 in. (2.54 cm) to the theoretical full composite action neutral axis. This indicates

that the shear studs and concrete deck are in excellent condition. The average neutral axis at ME

is higher [45.14 in. (114.66 cm)] than that at MW [44.97 in. (113.11 cm)] implying a stronger

coupling between the girder and the deck at this location. At locations NE, NW, SE, and SW, the

neutral axes lie between the two limit positions, Gs and Gf , revealing partial composite action.
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Figure 4-10: Scatter plots of the relationship between strain at the bottom of the steel girder and
the estimated neutral axis positions.

While the neutral axis position estimated at SE and SW have larger standard deviations [4.26 in.

(10.82 cm) and 4.31 in. (10.95 cm), respectively] than those at NE and NW [2.99 in. (7.59 cm)

and 2.98 in. (7.57 cm), respectively], the neutral axis at NW is higher than those at the other three

locations [45.51 in. (115.60 cm)].

The high degree of variation in the average neutral axis at the four tail span sections is attributed

to variations in friction and chemical bonding on the steel–concrete interface. This would suggest

sensitivity of the neutral axis on load (i.e., larger loads will more easily overcome the friction

and chemical bonding) and environment (i.e., temperature). To illustrate the potential correlation

between the neutral axis position and the load, the estimated neutral axis and bottom-web strain

measurement (which is used to indicate the magnitude of section moment) are plotted in Figure

4-10. When the bottom-web strain is small (i.e., small traffic load), the estimated neutral axis

exhibits a larger variation owing to the lower SNR associated with the strain measurements. As

the load increases, the SNR rises and the uncertainty in the estimated neutral axis reduces. The
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Figure 4-11: Correlation between estimated neutral axis position and ambient temperature with
Gaussian process regression prediction.

neutral axis mean does not vary for the full composite sections (ME and MW) but exhibits depen-

dence on load for the tail span sections confirming that larger loads are overcoming the friction and

chemical bonding at the steel–concrete interface resulting in the neutral axis trending toward the

noncomposite neutral axis. Figure 4-11 presents the correlation between neutral axis and temper-

ature. The results of a Gaussian process regression (GPR) [219] are overlaid to model neutral axis

dependency on temperature. It can be observed that the average neutral axis goes down slightly

with the elevation of temperature. It is also observed that neutral axis temperature dependency is

most pronounced in the four partial composite sections (as opposed to the full composite sections).

4.4.3 Slip Strain Curves

Slip strain, εslip, is plotted as a function of the maximum strain at the bottom web, εbot, for each

truck event, as shown in Figure 4-12. Contrary to the extraction of neutral axis position, data

samples with strain measurement at the bottom of the steel girder less than 5 µε are considered to
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Figure 4-12: Bottom-web strain and slip strain relationships at the six measurements locations.

provide samples near the origin despite their low SNRs. Based on the scatter plots of Figure 4-12,

load–slip curves are obtained by a linear regression analysis using a quadratic functional form

εslip = aε2bot + bεbot (4.9)

The function is forced to intercept the origin assuming slip only occurs with the presence

of external load. The estimated parameters of Equations 4.9 are presented in Table 4-2. Other

functional forms were attempted but the quadratic function offered the greatest fit with respect

to the coefficient of determination. Also plotted on Figure 4-12 are the theoretical curves of slip

strain as a function of bottom-web strain for full- and noncomposite action for each section. The

slip strain curves at ME and MW are close to the theoretical full composite action case, as is

expected. It is interesting to note that the studs at MW appear to be weaker than at ME with some
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modest loss of composite action occurring under load conditions; this might suggest the start of

local cracking in the deck near the studs. The slip–strain curves at the negative moment sections

NE, NW, SE, and SW again show partial composite action that is quadratic in nature. Among

the four negative moment sections, NW shows the highest degree of coupling associated with

partial composite action. After the NW section, the NE section exhibits a little more composite

action than the SE and SW sections. Evidence for this are the second-order coefficients at NE and

NW being less than those at SE and SW (Table 4-2). Based on Figure 4-12, it is clear that the

northern tail span is experiencing more friction and bonding on the steel–girder interface resulting

in a higher DCA. This will induce greater tensile stress in the top of the deck slab which could

accelerate deterioration. This observation confirms the inspection findings in the biannual bridge

inspection presented in Table 4-1. The area of patched spalling on the top deck is always greater

in the northern span compared with the southern tail span.

4.4.4 Deck Expansion

The deck behavior under thermal load is also considered over the same observation period. Figure

4-13 plots the static responses (without the presence of vehicles on the bridge) measured by the six

BDI strain transducers as a function of ambient temperature. The manufacturer of the transducer

(Bridge Diagnostics, Inc.) provides a calibration that minimizes temperature-induced error of the

transducers so that the actual thermal strain in the deck can be estimated. As expected, the thermal

strain is linearly proportional to the ambient temperature showing no indication of undesired con-

strained expansion. The coefficient of thermal expansion, αT , ranges from 4.4 to 8.1 µε/◦F which

is reasonable given the fact that the coefficient of thermal expansion for concrete is between 3 and

8 µε/◦F while that of steel is around 6.7 µε/◦F [192]. It is concluded that the decks are free to

expand and no restraint is imposed that would limit thermal expansion.
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Figure 4-13: Correlation between static deck strain and ambient temperature with estimated con-
crete coefficient of thermal expansion.

4.5 Modeling of Deck Strain under Partial Composite Action

As previously described, the tail spans of the Telegraph Road Bridge have a history of accelerated

deterioration with cracking and spalling present in the top deck surface, especially in the negative

moment sections of these spans. This suggests greater strain in the top surface of the deck lead-

ing to long-term durability issues associated with water penetrating the section and corroding the

steel reinforcement. The thermal expansion of the tail spans is confirmed to not be impeded; this

suggests that the culprit is associated with the flexural response behavior of the tail spans in their

negative bending regions. The quadratic model of Eq. 4.9 between slip strain, εslip, and bottom-

web strain, εbot, in the negative bending regions of the tail span can be used to assess the strain in

the concrete deck. The current strain profile can be compared with that assumed by the designer

when designing the negative moment span as a no-composite action. This will serve as the basis

for assessing the deck for long-term durability issues.
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Figure 4-14: Relationship between the magnitude of negative bending moment imposed: (a) degree
of composite action; (b) strain increase at the top surface of the deck (compared with no composite
action); (c) strain increase in the top-layer rebars (compared with no composite action).

4.5.1 Analytical Model Calibration

Given the regressed quadratic relationship between slip strain, εslip|pc, and bottom-web strain,

εbot|pc, described in Eq. 4.9, the analytical model discussed in section “Model of Slab-Girder

Flexural Behavior” can be calibrated to reflect the actual composite behavior exhibited at the spe-

cific measurement location. The calibrated analytical model can then be used to estimate the strain

profile in the negative bending sections of the tail spans. This would permit the DCA [Eq. 4.7],

strain in the top surface of the deck, and strain in the top-layer deck steel reinforcement to be

calculated analytically as a function of net flexural moment, M . Eq. 4.6 can used to find the pa-

rameter η ∈ (0, 1) that describes the partial composite section strain as compared to the case of no

composite action. Given η, the strain profile in the partial composite action section can be calcu-

lated for each applied moment, M , from which slip strain and bottom girder strain is extracted. A

range of moments is applied in this analysis to yield a slip strain versus bottom girder strain curve.

Then, a line search strategy is used to find the optimal control parameter, η ∈ (0, 1), for each mo-

ment for which there is minimal error between the observed (Figure 4-12) and the analytical slip

strain–bottom girder strain curve.

Given this calibrated model, Figure 4-14 is the model estimation of DCA, top deck strain

and top steel reinforcement strain as a function of net section moment for the NE, NW, SE, and
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Figure 4-15: Strain profiles of the section in different cases of composite action under a 58 kN · m
moment.

SW negative moment sections. For the top deck strain [Figure 4-14(b)] and the top-layer steel

reinforcement strain [Figure 4-14(c)], the partial composite action section is compared with the

no-composite action section to determine the strain increases. As expected, DCA degrades with

an increase in the applied load [Figure 4-14(a)]. As a result, the strain increases in the top fiber of

the concrete deck and in the top layer of the steel reinforcement because estimates by the model

of the instrumented section are lower than the as-designed no-composite section. Depending on

the moment magnitude and the DCA, the increase of the tensile strain in the deck top fiber and

in top reinforcement bars range from 12% to 24% and from 120% to 250%, respectively. Such

an increase will inevitably result in the concrete slab experiencing more serious cracking [220].

Figure 4-15 is an example of the strain profiles in the four negative moment sections (NE, NW, SE,

and SW) for no (NC), partial (PC), and full (FC) composite action under a moment of 42,779 lbf

· ft (58 kN · m) which results when a 62,500-lb (28.3 t) truck is on the bridge in the middle lane

(Figure 4-2) at midspan.
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Parameter NE NW ME MW SE SW

Coefficients of Eq. 4.9
a 0.0039 0.0033 0 -0.0002 0.0121 0.0830
b -0.2424 -0.0029 0.0023 -0.0417 -0.1267 -0.1775
Coefficients of Eq. 4.10
Fmax 40,000 40,000 - - 80,000 80,00
α -36.98 -19.97 - - -583.57 -534.46
β 1.12 1.87 - - 1.90 1.90

Table 4-2: Estimated coefficients for Equations 4.9 and 4.10 for each measurement location con-
sidered.

4.5.2 Finite Element Modeling

The analytical modeling is based on an isolated two-dimensional deck–girder cross section which

cannot represent the complexity of the actual bridge. To simulate a more realistic scenario of the

observed partial composite behavior, a finite element method (FEM) model [Figure 4-16(a)] is built

in CSiBridge, which is a commercial structural analysis software for bridge design and modeling

[221].

The geometry and material properties of the structural components (e.g., concrete deck, steel

girders, hanger plates) used in the model are based on the bridge drawings and construction records

before the deck overlay. More specifically, the minimum yield stress strength of steel as Fy = 50

Ksi (344 MPa); the 28-day compressive cylinder strength of the concrete as f ′c = 3 Ksi (20.7 MPa);

concrete elastic modulus as Ec = 1820
√
f ′c =3,152 Ksi (21,732 MPa) [192]; and, concrete tensile

strength as ft = 0.23
√
f ′c =398 psi (2.74 MPa) [192]. The concrete starts to lose tensile strength

when tensile stress exceeds ft. The beneficial effect of tension stiffening between the cracked con-

crete sections is not modeled in this study. The deck is modeled using shell elements. The top

flange, web, and bottom flange of each steel girder is modeled separately using connected shell

elements. The hanger plates, cross-bracings, and stiffeners are all modeled using frame elements.

Abutments and piers are modeled as pinned supports and rollers, respectively, with additional tran-

sitional and rotational springs deployed in the unconstrained degrees of freedom for extra stiffness.

To investigate the strain increase in the deck and reinforcement bars caused by the partial compos-
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Figure 4-16: (a) Finite-element model for the Telegraph Road Bridge in CSiBridge; (b) link el-
ements deployed along the deck–girder interface for modeling the partial composite action; (c)
estimated load–slip curves obtained from collected strain responses.

ite action compared with the noncomposite action, the concrete deck is manually meshed into

19,464 refined elements with longitudinal reinforcement bars explicitly modeled and embedded in

the deck using frame elements. The total model contains 26,660 shell elements and 5,486 frame

elements.

The full composite action over the main span is modeled using body constraints to restrain the

relative displacement between the deck and underlying girders. Nodes on the girder top flanges

are connected to the corresponding nodes associated with the deck every 30.48 cm (12-in.) to

be consistent with rest of chapter citation of dimensions along the longitudinal direction of the

bridge. For the tail spans in which there is partial composite action, two approaches could be used

to model the interaction: one is deploying distributed springs with longitudinal stiffness between

the deck and the girder [198] and the other is to generate smeared interaction forces (e.g., friction)

along the steel–concrete interface [193]. This study adopted distributed springs which is common

to implement in finite-element analyses. In CSiBridge, as shown in Figure 4-14(b), the spring is
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achieved by link elements connected to two joints (one on the deck and the other on the girder) and

provides stiffness to relative displacement in the specified degree of freedom which, in this case, is

along the longitudinal length of the girder. In the bridge model, the vertical stiffness of the link is

set to be infinite to ensure that the slab and girder remain in contact at all times.

The longitudinal stiffness of the link is set based on nonlinear load–slip curves extracted from

the measurement data. Using the measured section strain in the negative bending sections, the

vertical distribution of strain is estimated, as illustrated in Figure 4-8. The friction force is then

extracted from an equilibrium analysis of the girder [Eq. 4.3] while slip strain is obtained directly

from the measurements. The slip at the contact interface is the product of the measured slip strain

and the spring spacing in the model which is set to be 12 in. (30.48 cm) for the two tail spans.

Figure 4-14(c) plots the calculated slip versus friction force for the four negative moment sections.

Many analytical models have been introduced to describe load–slip curves for individual shear

connectors. This study applies the constitutive relationship proposed in [222] and extended in

[223]. The relationship between friction force F attributed to a single shear connector and the

corresponding slip s is modeled using the following exponential-like formula:

F (s) = Fmax(1− e−βs)α (4.10)

where Fmax is the ultimate connector strength and α and β are two constant parameters controlling

the shape and initial slope of the curve, respectively. Although the formula is proposed for shear

connectors, it still provides a good fit for the estimated frictional force and the relative slip to model

the partial composite action without shear connectors, as shown in Figure 4-14(c). A grid search

along with nested least-squares–based regression is performed to optimize the three functional pa-

rameters (Fmax , α, and β) to achieve the best fit. The estimated parameters are listed in Table 4-2.

In the model, the DCA for the tail span girders is assumed constant along each girder. To model the

girder lines which are not monitored, a statistical model is assumed for the parameters of Eq. 4.10.

Probability distributions of Fmax , α, and β are estimated using a maximum likelihood estimation

with a Rayleigh distribution using the parameters from the four sections monitored. The Rayleigh
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Figure 4-17: Simulation results of bottom-web strain versus slip strain curves at the four measure-
ment locations on the tail spans: (a) NE; (b) SE; (c) NW; (d) SW.

distribution is selected because it is a continuous probability distribution for positive random vari-

ables (e.g., spring coefficients). The spring properties on the girder lines without monitoring data

are then randomly sampled using the distributions of Fmax , α, and β. In CSiBridge, the continuous

nonlinear curves of slip versus friction force are discretized as piecewise linear functions.

The fully constructed CSiBridge model is validated in the time and frequency domains us-

ing previously collected truck test data [145] and extracted modal properties [224], respectively.

Two comparative models are also built in CSiBridge with the tail spans modeled with no and full

composite action. The full composite action model uses rigid body constraints at the deck–girder

interface while the no-composite action model uses link elements at the deck–girder interface with

zero stiffness along the longitudinal direction (and infinite stiffness vertically). To verify the effec-

tiveness of the choices made in modeling the deck–girder interface, the bottom-web strain versus

slip strain curves at the NE, NW, SE, and SW are plotted from the simulation results (of a single

truck driving over the bridge) and compared with the regressed curves from Figure 4-12. As shown
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Figure 4-18: Simulation results of tensile strain experienced on the deck top surface at the four
tail span measurement locations for an unsprung four-axle 28.3-t (62,500 lb) truck driving at 88.5
km/h (55 mi/h): (a) NE; (b) SE; (c) NW; (d) SW.

in Figure 4-17, despite the presence of slight discrepancies, the simulation results are close to the

analytical curves. Some discrepancies may result from both the skewness of the bridge as well as

from the fact that the girder lines are coupled through the deck (which contrasts with isolating the

girder lines, as was done in Figure 4-12).

With the tail span slab durability of primary interest, the strain of the deck top surface at the

four monitored negative moment locations are plotted in Figure 4-18 for the no (NC), partial (PC),

and full composite (FC) action models under an unsprung 62,500-lb (28,349 kg) truck driving at

55 mi/h (88.5 km/h) in the center lane. Compared with the noncomposite action case for which

the bridge is designed, a significant increase of the tensile strain is experienced by the top fiber of

the concrete deck in the partial composite action. Comparing the partial composite action and the

noncomposite action, the spatial distribution of the longitudinal tensile strain increases of the deck

top surface is presented as a percent increase in Figure 4-19. In order for a clearer visualization,

percentages that are greater than 100% are clipped to be 100%. As expected, the increase in tensile

108



Figure 4-19: Simulation results of spatial distribution of longitudinal tensile strain increase (in
percentage) in the deck top surface for the partial composite action case compared with the no
composite action case.

strain in the deck mainly concentrates in the negative bending regions, especially above the gird-

ers; this is consistent with the observation of deck cracks often occurring over girder lines in real

bridges [225]. More specifically, the northern tail span experiences higher tensile strain increases

than the southern tail span. Considering the midspan, it undergoes a modest decrease in the top

surface tensile strain because of moment redistribution associated with the change in flexural rigid-

ity of the tail spans. While the percent increase in tensile strain is informative, if the tensile strain

is small, even a large percent increase can be insignificant. As an alternative, Figures. 4-20(a and

b) plot two histograms of the maximum longitudinal tensile stress in the top-layer reinforcement

bars and in the deck over the pier caps, respectively, between the no and partial composite action

cases. The reinforcement bars and the deck in the partial composite action take considerably higher

tensile stresses then those in the noncomposite action under vehicle loads. Partial composite ac-

tion not only introduces higher tensile stresses in the concrete deck compared to the no composite

action case, but it also redistributes larger moment loads to the negative bending regions due to the

larger flexural rigidity the partial composite action section offers. Consequently, the tensile strain

increase at the deck top surface obtained from FEM simulation is much larger than that calculated

from the analytical model of section “Analytical Model Calibration.”
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Figure 4-20: Simulation results of histograms of maximum tensile stress over the interior pier
supports (negative bending region) experienced by: (a) top-layer rebars; and (b) deck top surface.

4.6 Extensions to Deck Durability

It has been seen that the observed partial composite action can lead to significant increases of stress

and strain in the concrete deck over the negative bending regions. While the primary contribution

of this chapter is the monitoring and modeling of the composite action behaviors exhibited in

the bridge, this section explores the potential relationship between the observations and analysis

outcomes made previously to the deck durability issues reported prior to the deck overlay repair in

2011.

Concrete cracking and spalling are two major forms of deck deterioration that influence the

serviceability of a bridge and pose a potential danger to vehicles [225, 226]. Cracking and spalling

have occurred on the Telegraph Road Bridge tail spans over its lifespan with the spatial distribution

of deterioration consistent with the strain results of section “Modeling of Deck Strain under Partial

Composite Action.” However, besides vehicular live loads, cracks in bridge decks can be induced

by several other factors including shrinkage, creep, and temperature variation [220]. The shrinkage

and creep effect of the concrete, especially drying and thermal shrinkage, can lead to restrained

deformation of the concrete deck and therefore induce tensile stresses and cause early cracks [225,

227]. Temperature differences occur right after concrete casting owing to the heat generated by the
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Figure 4-21: Estimated bridge responses to live load, dead load, temperature variation, and shrink-
age with black dashed lines indicate the limit state of cracking: (a) stress responses; (b) strain
responses. (Note: negative responses due to dead load over the main span are represented by
hatching patterns in the same color.)

cement hydration process during curing. The early cracks that result effectively reduce the tensile

strength of the hardened concrete. Later, environmental temperature changes can produce large

tensile strains in the concrete deck. Environmental temperature changes are typically nonlinear

across the cross section of the superstructure often leading to restrained deformation in the concrete

deck [228]. Strain associated with temperature, shrinkage, and creep of the deck is impossible to

measure in the field for existing bridges and can only be estimated. The dead (self-weight) and

vehicular live load strain can be evaluated with greater accuracy to assess the durability of the

bridge deck. The simulation of the bridge in CSiBridge has demonstrated that partial composite

action not accounted for in the bridge design introduces higher tensile strains in the top of the

bridge deck over the negative bending regions under vehicular loading.

To assess the durability of the Telegraph Road Bridge, the tensile limit of the concrete must

be estimated. Concrete will crack when its tensile stress exceeds its tensile strength or when the

tensile strain exceeds between 100 and 120 µε [220]. The 95th percentile of the tensile strength,

f
′
t95, can be taken as the tensile strength of the concrete for the determination of crack formation,

which can be calculated as f ′t95 = 2.7(f
′
c)

2/3 [220]. Using this relationship, the concrete tensile

strength in the Telegraph Road Bridge before deck resurfacing is 562 psi (3.87 MPa). The depth
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of cracking can be calculated by considering the maximum concrete tensile strain of 150 µε [black

dash line in Figure 4-21(b)] [220].

To begin to quantify the impact of DCA on deck crack development, the values of the stresses

and strains experienced by the deck top surface owing to various causes (shrinkage/creep, thermal

load, dead load, and live load) at the measurement locations over the negative bending regions are

estimated for three different DCA scenarios (no, partial, and full composite action) based on intact

concrete. For comparison, the same stress and strains are estimated for the locations over the main

span in which full composite action exists in positive moment. In this chapter, the tensile stresses

due to the live and dead load of the deck top surface are derived from the CSiBridge simulations.

The restrained tensile stresses due to temperature variation at the deck top surface are calculated

using the recommended temperature gradient for Michigan based on the AASHOTO design speci-

fication [192, 229]. The negative temperature variation across the bridge superstructure section can

introduce a tensile stress of 272 psi (1.88 MPa) to the extreme tensile fiber of the deck which results

in a tensile strain of 86 µε. The detailed calculation for these stresses is beyond the chapter scope

and therefore not shown. In this study, the restrained stress due to shrinkage takes the restrained

stresses corresponding to a 100 µε uniform shrinkage in the deck of a typical continuous-span

bridge with steel girders as a reasonable approximation [228]. The resulting stress can be as large

as 315 psi (2.17 MPa). Additional shrinkage stresses may develop over the interior supports of

continuous-span bridges but are neglected here. Besides, the higher DCA between the deck and

the girders is supposed to bring larger restrained stresses to the bridge superstructure. However, the

bridge responses to shrinkage, creep effect, and temperature variation are assumed to be identical

for all cases to simplify the analysis.

Figure 4-21 plots the estimated shrinkage/creep, thermal load, dead load, and live load stress

and strains at the top of the deck at the six monitored sections. While these stresses and strains

are estimates, the plot gives a sense of the elevation in stress and strain in the top deck due to

partial composite action. From the standpoint of the stress, we can see from Figure 4-21(a) that

partial composite action contributes an addition 0.34–0.69 MPa (50–100 psi) of tensile stress in
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the deck. Similarly, from Figure 4-21(b), the additional tensile strain ranges from 25 to 75 µε. If

the deck exceeds its strain limit for cracking, then the higher tensile strain also opens those cracks

wider. It has been shown that the width of flexural concrete cracks is positively proportional to

the strain within reinforcing steels [230]. As a result, the tensile strain increase in the reinforcing

steels caused by the partial composite action enlarges the width of the cracks and the depth, which

in turn allows greater ingress of the chlorides and expedites the corrosion of the reinforcing steels.

This will lead to durability issues due to concrete spalling stemming from the corrosion of rein-

forcement bars that are exposed to chloride contamination [231, 232]. Deck cracks accelerate the

movement of moisture, oxygen, carbon dioxide, and chlorides through the concrete cover to the

reinforcement bars. In snowy regions such as Michigan, chloride-based deicing salts are applied

during winter to keep bridge surfaces in a safe condition, which leads to an aggravating corrosion

of the reinforcement bars.

4.7 Summary and Conclusions

Deck deterioration has been recognized as one of the most severe issues undermining the service-

ability of slab-on-girder bridges in northern climates. The Telegraph Road Bridge studied in this

chapter is more than 40 years old and has been reported to have consistent deck cracking and

spalling issues in regions of negative bending over interior piers. To study this issue, a long-term

bridge structural health monitoring system was installed in the bridge to measure the composite

action behavior of the bridge at six different locations over a 3.5-year period. Two innovative

features including neutral axis position and slip strain were considered as response features from

which the degree of composite action could be assessed. Partial composite action was character-

ized for the negative bending regions of the bridge by assessing the location of the neutral axis in

the steel girder; neutral axes were approximately between the full and no composite action cases.

In the main span where full composite action was designed, the neutral axis was nearly identical

with its theoretical location. The neutral axis estimation proved to be stable when large vehicular

loads were applied to the bridge span owing to a high SNR associated with the data. The partial
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composite action observed in the bridge tail spans was also observed to have a modest dependency

on temperature whereas the full composite sections were less affected by temperature. To model

the behavior of composite action in each of the instrumented sections, slip strain was modeled as

a quadratic function of the bottom-web strain which is correlated to the moment in the section.

The quadratic functions fit to the monitoring data later served as the basis of assessing the impact

partial composite action has for the long-term durability of the bridge tail span decks. The northern

tail span, compared with the southern tail span, had the greatest degree of partial composite action

evident in the models derived. This correlates to past deck inspections that report the northern

tail span having disproportionately greater deck cracking and spalling compared with its southern

counterpart. The study highlighted how the model for slip strain can be used to model the deck

durability using both analytical and numerical models. Using these models, it is demonstrated that

the as-built tail spans have much higher tensile strains and stresses in both the concrete deck and

internal reinforcement bars owing to the partial composite action that develops on the deck–girder

interface compared with the case of assuming no composite action. Higher than anticipated tensile

strain in the deck top surface and in the top-layer reinforcement will inevitably accelerate the de-

velopment and propagation of concrete cracking and spalling over the tail span decks, especially

in a northern climate area like Michigan where deicing salts are used in the winter.

There are three major contributions associated with this study. First, it highlights the power

of intentionally designing the monitoring system instrumentation to monitor specific behaviors in

bridges; in this study, the strain sensors are installed to monitor DCA in slab-on-girder bridges.

Second, this study represents one of the very few studies of partial composite action in an opera-

tional bridge using long-term monitoring data. Neutral axis and slip strain are offered as response

parameters extractable from long-term monitoring data from which partial composite action can

be tracked and the deck health assessed based on changes in DCA. Partial composite action was

quantitatively confirmed in the bridge tail spans over their negative moment region although they

are designed to have no composite action. Finally, the study discovers that the developed partial

composite action introduces increased tensile strain in the deck and thus affects its durability. Very
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few structural health monitoring studies consider the implication of damage sensitive features on

the prognosis of the structure; in this study, the DCA is linked to deck durability offering bridge

owners a more rational basis for making decisions on the retrofit of their bridge decks.

Future work will be focused on deploying more sensors in the slab–girder cross section to

obtain more information describing the structural behavior of the cross section, and thus allowing

one of the more advanced analytical model previously discussed to be adopted for partial composite

action modeling. Besides, the evolution of the composite behavior and the deck condition in the

Telegraph Road Bridge will also be investigated for a longer period of observation so that changes

in DCA parameters such as neutral axis and slip strain can be correlated to deterioration observed

by biannual bridge inspections. In addition, future efforts will explore instrumentation of additional

negative moment sections to study the statistical distribution of DCA model parameters.
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CHAPTER 5.

Fusion of Weigh-in-motion System and Bridge Monitoring Data for Bridge

Load Rating

5.1 Introduction

Bridges represent critical transportation structures that are designed to safely carry traffic loads

over topographic features such as bodies of water, valleys, and other roads. Their designs ensure

safe operations even when exposed to a wide range of gravity and lateral loads. Traffic loads are

one of the largest live loads bridges that bridges will be exposed to over their life spans, especially

in medium and small span bridges [120]. Given their importance, bridges are regularly inspected to

assess the structural condition of their components. Bridges are also regularly evaluated to ensure

their reserve structural capacity is sufficient to accommodate future live load demands encoun-

tered with some safety margin. If the reserve structural capacity is not sufficient to carry future

live load demands, then bridge rehabilitation, load posting, or closure must be considered to ensure

public safety. Hence, load rating is an essential asset management tool used by bridge owners to

assess the margin between the reserve structural capacity of the bridge and future live load de-

mand. Current load rating practice for highway bridges in the United States is established by the

Manual for Bridge Evaluation (MBE) published by the American Association of State Highway

and Transportation Officials (AASHTO) [35, 233]. As specified in the MBE, bridge load rating

considers the structural design, current structural conditions, material properties and anticipated

future loading of the bridge to assess the margin between reserve structural capacity and traffic live

load demand [35]. Two general load rating approaches are specified by the MBE: approximate and

refined analytical methods. The approximate method uses simplified mechanical models of the
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bridge (e.g., line girder) and empirical parameters (e.g., distribution factors) to analyze the ratio

between reserve structural capacity and live load demand associated with current and future traffic

loads [234, 235]. While analytically easy to execute, such a simplified approach neglects the true,

systematic behavior of the bridge resulting in conservative rating factors [236, 237]. If cost and

time allow, the MBE permits refined load rating analyses that rely on the use of more sophisticated

structural models that better reflect the behavior of the bridge system (e.g., finite element (FE)

analysis). Refined analyses can also include on-site load testing where bridge responses to con-

trolled loads are measured by data acquisition systems installed in the bridge [35, 236]. However,

the costs associated with load testing of operational bridges can be prohibitive for many bridges

thereby resulting in load ratings done exclusively by analytical means [238].

To improve bridge rating accuracy, measurement data can be introduced to lower uncertainties

with analytical methods. For example, material testing can reduce uncertainties associated with the

estimation of material properties when estimating structural capacities [238, 239, 240, 241, 242,

243]. When using refined analytical load rating methods such as those based on three-dimensional

FE models, model validation is essential to ensure the model represents the true bridge behavior

[239, 234]. Such models are best calibrated through vibration testing (e.g., modal parameters)

[244, 245, 246]. As previously mentioned, static load testing can offer insight to the true be-

havior of the bridge including the composite action between structural elements (e.g., deck and

girders) and boundary conditions (e.g., behavior of supports) allowing FE models to be refined

[234, 239, 246, 247, 248, 249]. While short-term instrumentation can provide modal parameters

for model updating or used to measure responses during load testing, there are opportunities for

permanent monitoring system to provide even greater insight into bridge behaviors under varying

operational environments. For example, long-term monitoring allows for probabilistic models of

traffic live load effects to be created through direct or extreme value analyses [250, 251, 252, 253].

While probabilistic live load effect models could improve the accuracy of load rating methods, the

traffic load themselves are not directly measured making ratings based on live load effects diffi-

cult to compare to those based on standardized truck loads associated with MBE-based analytical
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Figure 5-1: Locations of the subsystems of the cyber-physical system along the selected I-275
northbound corridor.

methods. Long-term monitoring has also been explored to quantify live load distribution factors

that represent realistic distributions of the truck loads to bridge girder line. Live load distribution

factors based on measurement reduce the conservative nature of the load distribution factors widely

used in the MBE approximate methods (e.g., 54% of a standard truck load carried by each exter-

nal girder line and 63% by each interior girder line) [242, 234]. Monitoring of bridge responses

synchronously with camera images of trucks crossing the bridge can be used to estimate a unit

influence line (UIL) that can be used to predict design load effects [120]. However, UIL estimated

from the response data have uncertainty due to the absence of the distribution of truck loads across

multiple axles. This uncertainty could be reduced if weigh-in-motion data is then used to measure

the axle spacing and the distribution of vehicle gross weight over the different axles [153].

The goal of this study is to improve the accuracy of analytical load rating methods using long-

term monitoring data collected from a cyber-physical system (CPS) implemented along a highway

corridor that comprehensively integrates bridge response monitoring, truck tracking using traffic

cameras, and measurement of truck loads using weigh-in-motion stations [254]. The study specifi-

cally focuses on statistical modeling of live load parameters to improve the realism of approximate

load rating methods. Using long-term bridge response data, the dynamic load allowance (DLA)

and UIL are extracted from a large database of bridge response-truck weight measurements col-

lected by the CPS. The DLA and UIL extracted from the data represent the true behavior of a

bridge leading to a much more accurate load rating. The benefit of the proposed approach is that it

is non-invasive (e.g., does not require closure of the bridge like in static load testing) and provides
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a powerful statistical basis to aggregating long-term observation of bridge behavior. The study

utilizes a CPS architecture installed along a 20-mile I-275 highway corridor between Newport and

Romulus, Michigan which includes two highway bridges instrumented with long-term wireless

structural health monitoring (SHM) systems, four traffic cameras along the corridor, and a WIM

station for measuring truck gross weight, axle spacing, and axle weights, which is also described in

Chapter 2 and 3 in details. For each of the two highway bridges along the I-275 corridor, three in-

terior girders are rated following the Load and Resistance Factor Rating (LRFR) criteria for design

load rating [35]. The proposed data-driven load rating method using long-term monitoring data

is evaluated by comparing it to rating factors obtained by conventional approximate and refined,

FE-based methods.

5.2 Bridge Systems and Measured Data

The details regarding the implemented cyber-physical-system enabled bridge SHM network (Fig-

ure 5-1) has been described in Section 2.2. Herein, the description will not be repeated, and the

focus will be on the instrumentation of strain gauges which measure girder strain responses in the

six target interior bridge girders to be rated to traffic loads. Of primary interest in this study is

the flexural response of the bridges. Hence, the strain gauges installed near the lower flanges of

the girders are the sensors of primary interest. Three gauges are installed on girder lines 2, 4 and

6 on both TRB and NRB. These girder lines are immediately below the three primary lanes of

traffic. The sensors consist of weldable strain gauges (Hitec HBWF-35-125-6-10GP-TR) welded

3 inches (7.62 cm) above the bottom flange of the I-section web (Figure 5-3) at the midspan of the

bridges where the largest bending moment is anticipated when the bridges are vertically loaded by

trucks. The strain gauges on girder line 2, 4 and 6 on the TRB (NRB) are denoted as TS1 (NS1),

TS2 (NS2) and TS3 (NS3), as shown in Figure 5-2. Each strain gauge is interfaced to a Narada

wireless sensor node that collects data at 100 Hz for 100 and 120 seconds at TRB and NRB, re-

spectively, once triggered by the CPS architecture. After data collection, data is communicated by

each Narada node using the IEEE802.15.4 communication protocol to a local base station which
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Figure 5-2: Sensor layout of the strain gauges used in this chapter: (a) Telegraph Road Bridge and
(b) Newburg Road Bridge.

then communicates the strain response via a cellular model to the CPS database server.

Two FE models (shown in Figure 5-4) have also been created in CSiBridge [221] based on the

engineering drawings of each bridge and calibrated using measured response data to known truck

loads. Additional details on the modelling of the two bridges can be found in other papers by the

authors [153, 61, 147]. The CSiBridge models are used to extract dead load effects to be used in

load ratings performed for each bridge.

Also involved is the WIM station along the same I-275 northbound highway corridor, which

provides measurements of truck loads passing the two bridges. The WIM station (Figure 5-1) is
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Figure 5-3: (a) Location of the strain gauge on the rated girder cross section with key dimensions
notated for the Telegraph Road Bridge and the Newburg Road Bridge (dimensions for the Newburg
Road Bridge are shown in parentheses if not identical with the Telegraph Road Bridge dimensions);
(b) a typical strain gauge and Narada wireless sensor installed on a steel girder web.

Figure 5-4: Finite element models of the (a) Telegraph Road Bridge and (b) Newburg Road Bridge.

installed 7 miles (11.27 km) north of the NRB near Romulus, Michigan. It is a type II quartz

station that constantly measures vehicle gross weight, speed, number of axles, axle spacing, axle

weight and vehicle class. According to the standard specification for highway WIM systems,

the type II station has ±30%, ±20%, ±15%, ±1 mph (2km/h), ±0.5 ft (0.15m) tolerance within

a 95% confidence on axle load, axle group load, gross vehicle weight, speed and axle spacing,

respectively [255]. The station along I-275 is installed within two of the three lanes (i.e., slow and

middle lanes).

The installation of the CPS architecture along I-275 (including the SHM systems on TRB and
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Figure 5-5: Examples of truck events that are removed from the original integrated dataset: (a)
truck events that contain multiple trucks on the bridges at the same time; (b) truck events where
trucks change lanes on the bridge.

Figure 5-6: A sample of integrated data set including bridge response data, truck images and
weigh-in-motion data collected by the corridor-based cyber-physical system at (a) Telegraph Road
Bridge, (b) Newburg Road Bridge and (c) weigh-in-motion station.

NRB, four traffic cameras, WIM station and cloud-based database system) was completed in July

2017. Since that time, a large database of corridor data has been collected for each truck event

that triggered the CPS data collection. The database consists of measured strain responses of the

TRB and NRB bridges, weight data from the WIM station, and an image of the confirmed re-

identifies truck at Cam-1 through Cam-4. In this study, the data collected by the CPS from July

2017 to April 2019 is utilized to demonstrate the proposed data-driven load rating approach. For

the purpose of load rating, only the data corresponding to events where a single truck travels on

each bridge are considered in the analysis. In other words, cases where multiple trucks travelling

in parallel or in series on the bridge (as shown in Figure 5-5(a)) are removed from consideration

because they introduce high levels of uncertainty (e.g., it is difficult to estimate distances between

trucks) and unnecessary complicate the estimation of load rating parameters (e.g., unit influence
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Telegraph Road Bridge

Slow Lane Middle Lane Fast Lane Total

1,085 13,206 964 15,255

Newburg Road Bridge

Slow Lane Middle Lane Fast Lane Total

17,727 5,619 27 23,373

Table 5-1: Distribution of integrated data for the Telegraph Road Bridge & Newburg Road Bridge.

lines). Furthermore, cases where trucks are actively changing lanes (as shown in Figure 5-5(b)) are

also excluded. During some of the truck events, there are small vehicles (e.g., cars) present on the

bridges but because their weights are comparatively very small, these cases are not pruned from

the data set used in this load ratings.

Over the 22 months the CPS architecture has been in use along I-275, a total of 15,283 and

23,421 truck events have been observed on the TRB and NRB, respectively, each matched with a

WIM station measurement of the truck gross weight, axle counts, axle distances, and axle weights.

An example of an instance of the integrated data set from June 6, 2018 is shown in Figure 5-6

including mid-span flexural strain at the lower web of each girder on TRB (denoted as TS1, TS2,

TS3) and NRB (denoted as NS1, NS2, and NS3), WIMS station measurement (Figure 5-6(c)), and

pictures of the truck at each location. It should be noted that the number of trucks observed for

each bridge are not expected to be identical due to the presence of a highway exit between the TRB

and NRB where trucks exit and enter northbound I-275. Furthermore, the distribution of the lanes

used by trucks crossing the bridges are summarized in Table 5-1. Trucks tend to take the slow

highway lane as much as possible; in the case of TRB, the “slow” lane is a merge lane making the

middle lane the one commonly taken by trucks already on the corridor. The integrated dataset of

bridge response data and WIMS data will be employed to rate the instrumented girders on both

bridges.
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5.3 Methodology: Data-driven Load Rating Framework

5.3.1 Load and Resistance Factor Rating

Three different analytical methods are presented in the MBE: Load and Resistance Factor Rat-

ing (LRFR), Allowable Stress Rating (ASR) and Load Factor Rating (LFR) methods [35]. ASR

method evaluates the rating factor using allowable stress as the rated member capacity and unfac-

tored (actual) loads. The LFR method uses the strength of rated components for their capacity and

applies factors on dead and live loads established over time by engineering judgement. Finally,

LRFR is a broader rating method offering a range of limit states (i.e., strength, service, fatigue) to

evaluate and explicitly considers bridge deterioration and usage; importantly, it also adopts load

and resistance factors consistent with the reliability index, β, of components established in Load

and Resistance Factor Design (LRFD). A recent study indicates that the LRFR method is becoming

the most popular bridge load rating method in the United States [233]. As a result, it will be used

herein as the baseline analytical method to which the proposed data-driven load rating approach

will be compared. The LRFR method specifies three levels of evaluation (i.e., design, legal and

permit load ratings) with the difference between them primarily in the type of live load scenarios

applied. Design load ratings (where the HL-93 notional vehicle load is used) are performed for

all bridges with the rating factor reported to the National Bridge Inventory (NBI) while legal load

ratings are performed for bridges (where local legal-weight trucks are used) when the design load

rating factor is less than 1. The permit load rating is performed to assess the safety of the bridge

for over-weight trucks may cross a bridge. This paper only showcases the proposed method by

performing a design load rating for the two bridges (TRB and NRB) but the other two rating levels

(legal and permit) can be easily performed following the same framework as that proposed for

design load rating.

In the LRFR method, the general load rating formula at the component level under a single

force effect (i.e., flexure) can be expressed as follows [35]:
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RF =
C − (γDC)(DC)− (γDW )(DW )± (γP )(P )

(γLL)(LL+ IM)
(5.1)

where RF is the rating factor of a structural component (with RF > 1 indicating a bridge with a

safe margin between capacity and demand), C is its capacity given the member’s current structural

condition, DC is the dead load effect due to structural components and attachments, DW is the

dead load effects due to wearing surface and utilities, P is the permanent load effects other than

those from the dead loads, LL is the live load effects, and IM accounts for the additional live load

effect based on the dynamic response of the bridge due to vehicle-bridges interaction (and thus

associated with DLA). All of the γ-values are Load and Resistance Factor Design (LRFD) load

factors for scaling the corresponding load effects [192]. In this study, all capacity and load effects

are presented with respect to strain responses presented in microstrain (i.e., µε).

The capacity of the component can be calculated as follows [35]:

C = φcφsφRn (5.2)

where Rn is the nominal member resistance with φc, φs and φ representing the condition, system

and resistance factors, respectively. The condition factor allows the capacity to reflect the reduction

in the nominal resistance due to structural deterioration and the system factor considers if a bridge

is redundant or non-redundant; both are optional. In this study, the nominal resistance, Rn, of

the girders is calculated based on yield strain at the sensing location in the girder cross section

Figure 5-3 under flexural behavior. The values of DC, DW and P are determined as per the

bridge design drawings and the calibrated finite element models discussed in Section 5.2. Both

inventory- and operating-level ratings under the Strength I limit state (basic load combination

relating to the normal vehicular use of the bridge without wind effects) are investigated for the

target components to represent the upper (β=3.5) and lower (β=2.5) bounds of safe load capacity,

respectively [35, 192, 256]. The values of all γ or φ factors that are adopted according to the MBE

are listed in Table 5-2 along with their considerations.

125



γDC γDW γP γLL (operating)
1.25 1.50 1.00 1.35

γLL (inventory) φs φc φ
1.75 1.00 0.95 (fair condition) 1.00 (for flexure, interior girder)

Table 5-2: Values of selected γ− or φ− factors for load rating.

The load rating methods prescribed by the MBE apply notional vehicle loads on bridges with

the live load effects approximately estimated using girder line analyses. These live load effect

estimates are not reflective of the true behavior of the bridge and therefore lead to conservative load

ratings. Long-term monitoring data that capture the behavior of the bridge system can provide more

realistic estimates of the live load effect variables in the denominator of the load rating formula

(Equation 5.1). One strategy could be to select maximum live load effect as measured over a long

period of observation to estimate the LL + IM parameter of the load rating formula. However,

this approach would lose consistency with the reliability-based rating framework prescribed by

the LRFR methodology. The approach would also be vulnerable to not observing some of the

more extreme load cases during the period of data collect. Hence, a more rational approach is

necessary to ensure live load effect parameters extracted from long-term bridge monitoring data

remain consistent with the reliability basis of the LRFR framework. This study proposes such

a framework for converting bridge response data from trucks of known axle configurations and

weights (as measured by the WIM station) to estimate live load effect parameters reflective of the

true, systematic behavior of bridges leading to more accurate and less conservative load ratings.

5.3.2 Data-driven Load Rating Method

The main contribution of the proposed data-driven load rating method is in how it efficiently cal-

culates realistic live load effects corresponding to standard truck loads while explicitly capturing

systematic bridge behavior and the actual condition of bridge components. As opposed to using the

measured live load effect directly as an input for the load rating formula, the methodology utilizes

measured live load effect to extract UILs and DLA which correspond to the calculation of LL and
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Figure 5-7: Workflow of the proposed data-driven load rating method for estimating realistic live
load effects for a bridge component subject to standard truck loads.

IM in Equation 5.1, respectively.

The proposed data-driven load rating framework is presented in Figure 5-7. The basis of the

proposed methodology is the availability of truck weight data as measured by a WIM station linked

by the CPS architecture to the bridge responses measured by the bridge SHM systems (Figure 5-6).

Given this integrated database of bridge response-truck weigh data, the first step is to process the

dynamic (raw) bridge responses using a low-pass filter to obtain the static bridge response to the

truck load. Subtracting the static response from the raw response, the peak absolute difference is

used in the second step to estimate the DLA (which is the peak absolute difference divided by the

peak absolute static response). Grouping the low-pass filtered bridge responses (i.e., static bridge

responses) with corresponding truck load data (i.e., truck axle spacing and weights) measured by

the WIM station, the third step extracts realistic UILs from the response measurements. In the

fourth step, each UIL vector extracted from the response data is then used to estimate the static live

load effects at a certain sensor location of the bridge to a given truck load model (e.g., HL-93 for

design load rating or local legal-weight loads for legal load rating) by multiplying the UIL vector

with the load model axle weight and superimposing them on the bridge span to yield the static live

load effect, LL, in Equation 5.1. As the fifth and final step, the total load effect is calculated as:

LL+ IM = LL ∗ (1 +DLA) (5.3)
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which is ultimately used for computing a rating factor following Equation 5.1 [35].

The HL-93 design load is used with the extracted UIL to perform design load ratings consistent

with LRFR. All combinations of different load scenarios (e.g., single-lane and multiple-lane loads)

are explicitly considered to generate the maximum live load effect [192]. To perform legal and

posted load ratings, vehicle load models associated with these ratings types can be used in the

same manner as that shown for the design rating HL-93 load. The detailed processes for DLA

and UIL extraction along with the extraction of these parameters for the TRB and NRB will be

presented in section 5.4 and 5.5, respectively.

5.4 Dynamic Load Allowance

5.4.1 Dynamic Load Allowance Extraction

DLA reflects the response amplification of the bridge live load effect due to vehicle-bridge interac-

tions as compared to statically applied truck loads. The additional dynamic effect may come from

two sources: 1) wheel hammering loads induced by poorly maintained bridge deck joints or major

surface imperfections (e.g., potholes); 2) the dynamic interactions associated with the behavior

of a sprung mass vehicle coupling with bridge dynamics [192]. The DLA recommended in the

LRFD design code for girders is 0.33 under the Strength I limit state [192]. The value is empiri-

cally determined based on field tests, which represents an upper bound of the ratio of the dynamic

component to the static response to vehicular loads for most highway bridges [192]. The DLA of a

bridge component is strongly influenced by two categories of factors: one are the bridge properties

(e.g., bridge type, geometry, fundamental frequencies, road roughness) and the other are the vehi-

cle load characteristics (e.g., vehicle speed, weight and suspension system) [257, 258, 259, 260].

Due to these factors controlled the DLA, a bridge will experience variation in its DLA [261].

In this study, a DLA value is extracted for each captured truck event based on the use of low-

pass filtering of the measured bridge strain data [258, 262]. The final DLA value selected for the

load rating purpose is determined according to the vehicle gross weight of the specific design truck

load. The low-pass filter is required to have a cut-off frequency lower than the bridge’s first natural
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Figure 5-8: Illustration of dynamic load allowance (DLA) extraction from measured strain re-
sponses.

frequency and a passband of v/L Hz, where v is the speed of passing vehicles and L is the bridge

span length [258, 262]. The TRB and NRB exhibit their natural frequencies of first mode at 2.5

Hz and 4.5 Hz, respectively, according to modal analysis performed using acceleration responses

in previous studies [224, 213]. Assuming a normal vehicle speed ranging from 55 mph to 80 mph,

the vehicle passing frequency can range from 0.36 Hz to 0.52 Hz for the TRB and from 0.77 Hz

to 1.12 Hz for the NRB. It is also recommended that the cutoff frequency of the filter should be

out of the range between 2 Hz and 5 Hz so that the vehicle body bounce effect is avoided [262].

Consequently, a 10th order Butterworth low-pass filter with a cut-off frequency of 2 Hz is used to

filter out high-frequency dynamic components from measured strain responses to derive the static

bridge responses [262]. Figure 5-8 highlights the process using measured raw strain data from the

NRB (sensor NS2) with the low-pass (static) and raw measure strain response shown. The DLA is

then calculated for a given truck event as follows [257, 258]:

DLA =
max(Rdyn)−max(Rsta)

max(Rsta)
(5.4)

whereRdyn is the dynamic response andRsta is the static response (i.e., low-pass filtered response).
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Figure 5-9: Dynamic load allowance (DLA) values extracted from the Telegraph Road Bridge
girder strain data with truck in different lanes (slow, middle or fast lane) for the three sensing loca-
tions (TS1, TS2, TS3). (Note: solid vertical brown line corresponds to 72-kip HS-20 load, shaded
brown region is the region of interest (ROI) for the HS-20 load considering measurement errors
associated with weigh-in-motion station, green horizontal dash line corresponds to the AASHTO
DLA (0.33) and the green solid line is the selected DLA value (µ+ 3σ) for samples in the ROI.)

5.4.2 Results and Discussion

Each extracted DLA value calculated as per Equation 5.4 has its corresponding truck gross weight

measured by the WIM station. The scatter plots of extracted DLA values versus vehicle gross

weight under different loading scenarios (i.e., truck lane and measured girder flexure) are shown in

Figure 5-9 and Figure 5-10 for the TRB and NRB systems, respectively. Each subplot corresponds

to a girder sensor location (i.e., TS1, TS2, TS3, NS1, NS2 or NS3) and assigned truck lane (i.e.,

slow, middle or fast lane). Only a few samples correspond to trucks using the fast lane on each

bridge as previously observed in the data set collected. It can be observed in each subplot that

the extracted DLA values vary widely with generally decreasing variation as vehicle weights get
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Figure 5-10: Dynamic load allowance (DLA) values extracted from the Newburg Road Bridge
girder strain data with truck in different lanes (slow, middle or fast lane) for the three sensing loca-
tions (NS1, NS2, NS3). (Note: solid vertical brown line corresponds to 72-kip HS-20 load, shaded
brown region is the region of interest (ROI) for the HS-20 load considering measurement errors
associated with weigh-in-motion station, green horizontal dash line corresponds to the AASHTO
DLA (0.33) and the green solid line is the selected DLA value (µ+ 3σ) for samples in the ROI.)

higher. This is expected as lower weight vehicles induce a smaller static strain response, leading to

the DLA calculation being strongly influenced by external factors such as signal-to-noise ratios in

the measurement and coexistence of passenger vehicles on the bridges. This outcome is consistent

with observations reported by other researchers in that estimated DLA values decrease as vehicle

gross weights increase [262, 263]. Considering the trend observed in the extracted DLA values,

this study focuses on DLA values that correspond to truck loads consistent with LRFD and LRFR.

For the TRB and the NRB, the HL-93 load pattern corresponds to an HS-20 truck with a uniform

design lane load [35]. In each subplot of Figure 5-9 and Figure 5-10, the gross weight of the HS-

20 design truck, namely 72 kips, is notated using a vertical solid brown line. A region of interest
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Slow lane Middle lane Fast lane

TS1 (girder 6) 0.22 0.43 1.04

TS2 (girder 4) 0.18 0.32 0.32

TS3 (girder 2) 0.73 0.63 0.25

Table 5-3: Extracted dynamic load allowance (DLA) value for the Telegraph Road Bridge.

Slow lane Middle lane Fast lane

NS1 (girder 6) 0.43 0.84 1.43

NS2 (girder 4) 0.43 0.36 0.30

NS3 (girder 2) 4.30 0.84 0.19

Table 5-4: Extracted dynamic load allowance (DLA) value for the Newburg Road Bridge.

(ROI) is established around the HS-20 truck gross weight to account for the maximum 15% error in

measured vehicle gross weight commonly associated with Type II WIM stations (such as that used

in this study). All DLA samples within the ROI are considered for the extraction of a single DLA

values for the HS-20 design truck load. The final DLA (shown as the solid blue horizontal line in

Figure 5-9 and Figure 5-10) is taken as µ+ 3σ, where µ and σ are the mean and standard deviation

of all the considered samples in the ROI, respectively. This value represents a 99.7% confidence

interval as per a normal distribution and is selected to screen out unrealistically extreme values

which might be caused by factors such as sensor noises or faulty WIM measurements. The DLA

value recommended by the MBE, namely 0.33, is presented as the green dashed line in each subplot

for reference. All extracted DLA values for the selected sensor locations under different loading

scenarios at the two bridges are summarized in Table 5-3 and Table 5-4.

The results tabulated in Table 5-3 and Table 5-4 reveal that the lane assignment of the truck

relative to the girder line has a big impact on the extracted DLA value. Specifically, the DLA

value of a girder tends to be smaller (sometimes less than 0.33) when the vehicular load is in the

lane closest to the girder with that girder taking the largest distribution of the load. This result is

attributed to the larger strain responses for the girder lines closest to the vehicular load resulting

in improved signal-to-noise ratios. The extracted DLA values also reveal the DLA recommended
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Figure 5-11: Illustration of the UIL extraction process under the assumption of the linear superpo-
sition principle.

by the MBE does not reflect realistic bridge conditions observed in the response data collected. .

Taking TRB as an example, the MBE value of 0.33 overestimates the DLA when vehicular loads

are in close proximity to the instrumented girder line (e.g., TS1-slow lane, TS2-middle lane, and

TS3-fast lane) as shown in Figure 5-9 and Table 5-3. For cases where the truck load is not on the

lane directly above the instrumented girder line, the estimated DLA can be larger than the MBE

recommended value (e.g., TS3-slow lane); however, such a value usually corresponds to a small

static bridge response as the load distributed to the girder far away is small and thus less significant

[264]. On the other hand, the extracted DLA can be greater than the MBE recommended value

such as that observed in a bridge like NRB as shown in Figure 5-10 and Table 5-4, even when the

vehicular load is close to the instrumented girder line (e.g., NS1-slow lane).

5.5 Unit Influence Line

5.5.1 Unit Influence Line Extraction

A UIL of a bridge represents the load effect at a specific measurement location when a unit axle

load of 1 kip traverses the bridge in a specific lane. In this study, the load effect mapped by the
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UIL will be the girder strain (in µε) at the locations of the strain gauges While theoretically the

UIL is a continuous function, here it is discretized along the bridge length and expressed as a

finite vector for use in numerical computations. Following an assumption of the bridge being a

linear system, the superposition principle can be applied to model truck loads as multiple unit axle

loads. Assuming the truck has a constant velocity of v, the sampling frequency of the sensor is

f , and the bridge length is L, the UIL is discretized into a total of NL = fL / v elements. The

discretized length of the bridge is indexed by k. Hence, for any sensor measurement indexed at k,

the following fundamental input-output relationship holds (as shown in Figure 5-11):

εk =

NA∑
i

1ikwiIik (5.5)

where εk is the strain response corresponding to index k, wi is the ith axle weight of the truck, Iik

is the UIL entry corresponding to the position of the ith axle when the first axle is at index k and

NA is the total number of axles for the truck load. Also, 1ik is an indicator function that is equal

to 1 when the ith axle is on the bridge and 0 otherwise. The UIL entry Iik can be expressed as

[265, 266]:

Iik = Ik−ci (5.6)

ci =
sif

v
(5.7)

where ci the number of discretized indices in the UIL corresponding to si which is the distance

from the first axle to the ith axle (with s1 = 0). Considering the entire process of a multi-axle truck

load entering and exiting the bridge along a certain lane, an error function can be defined for UIL

estimation [267] as follows:

e =

NL∑
k=1

(εk − εmk )2 (5.8)
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where εmk is the kth indexed measured response and εk is the kth indexed predicted response based

on the UIL. Using the algorithm proposed by [265], the optimal UIL vector is found by minimizing

the error in Equation 5.8 which is obtained by setting the partial derivative of the error with respect

to the UIL ordinates to zero:

∂e

∂Ik
= 0 (5.9)

when cN ≤ k ≤ (NL− cN) (which corresponds to the times when all axles are on the bridge). The

resultant set of NL − 2cN equations can be posed as a matrix-vector multiplication [265]:

W × I = R (5.10)

where I ∈ R(NL−2cN )×1 is the UIL vector to be solved for, W ∈ R(NL−2cN )×(NL−2cN ) is a sparse

symmetric positive definite matrix with the following property:

Wp,q =


∑N

i w
2
i , ifp = q∑

i,j wiwj, if |p− q| ∈ {ci − cj}

0, otherwise

(5.11)

and R ∈ R(NL−2cN )×1 is a vector with

Ri =
N∑
j=1

wjε
m
i+cj

(5.12)

Using the set of measured bridge strain data, εmk , and truck load configuration data (particularly

axle weights, wi, and spacings, si), a UIL can be extracted by inversely solving Equation 5.10 to

yield Ik [265, 266].

In this study, the static (low-pass filtered) strain responses measured by the bridge SHM sys-

tems are used as the input strain for the UIL extraction as shown in Figure 5-7. For each observation

of measured truck weight and bridge response in the database, the truck speed, v, is assumed con-

stant throughout the loading process. While truck speed is measured at the WIM station, it is not
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Figure 5-12: All unit influence lines extracted from strain gauge NS-1 when trucks travel along the
middle lane of the Newburg Road Bridge and five examples of fitting unit influence line ordinates
into three common distributions (e.g., Gaussian, T, and log normal distributions).

measured at each bridge. Hence, a range of truck speeds (±10%) centered at the speed measured

at the WIM station is searched for to find the minimum error in Equation 5.8. Considering that the

strain gauge sensor is programmed to sample data with a frequency of 100 Hz and the posted speed

limit of trucks on I-275 is 65 mph, the UILs is discretized with a resolution of 11.4 inches (28.9

cm). While the UIL vector should be discretized to NL = 235 and 111 for the TRB and NRB,

respectively, the actual resultant vectors are longer. This is due to the fact that it is impossible to

determine the exact instant in time when trucks enter and exit the bridges, so a larger time-history

segment of the measured bridges strain responses are used in Equation 5.10. Consequently, small

valued entries usually appear at the head and tail of the extracted UILs; these near-zero entries will

not affect the maximum value of the final predicted response for bridge load rating [265].

5.5.2 Unit Influence Line for Load Rating

Given the large database of bridge-truck data sets available for this study (Table 5-1), an extensive

set of UILs can be extracted for each sensing location and truck lane assignment. With UIL theo-
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Figure 5-13: Correlation between UIL ordinates (5 random slices notated in Figure 5-12) and
corresponding truck load weight (left side). (Note: the normalized histogram of ordinates within
the ROIs are plotted on the right side with fitted distributions overlaid; the number of data samples
within the ROIs is 1,479 for each of 5 cases.)

retically constant for a given strain sensor and lane assignment, the UILs extracted can be treated

statistically to result in a final UIL. To illustrate, the data of strain gauge NS1 (NRB) with truck

assigned to the slow lane will be utilized. Following the procedure previously presented, the UILs

extracted from each sample of the bridge-truck data set are aligned as shown in Figure 5-12. It
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can be observed that the extracted influence lines have similar shapes but vary in amplitude. This

variation can be attributed to a number of likely factors such as variations in truck speed, variation

in truck location within the lane, and measurement (WIM station and strain) noise. The UIL is

also longer then the bridge itself, again attributed to the approach to UIL extraction; ultimately, the

UIL will be reduced to the appropriate size based on the bridge length. Along the UIL length are

histograms corresponding to the extracted UIL ordinates at five locations (notated as vertical dash

lines in Figure 5-12). While different types of distributions have been attempted for fitting the UIL

ordinates, three common distributions (e.g., Gaussian, log normal and T-distribution) are plotted.

It can be visually noted that log normal distribution fits the ordinates best at each UIL location.

The UIL ordinates at the five locations can be further analyzed based on the vehicle gross

weight of the truck event corresponding to each UIL as shown in Figure 5-13. The results of

Figure 5-13 reveal that the amplitude of the extracted UILs are related to the gross weight of the

trucks. Lighter truck loads are more likely to generate larger UILs when compared to heavier

loads. It is suspected that this is due to two reasons: 1) extracting UILs is an inverse problem

where solutions would be sensitive to small truck loads; 2) the co-presence of other small vehicles

(e.g., passenger cars) during a truck would have a greater impact on the inversion problem for

lighter truck loads leading to larger UILs. Similar to the approach of extracting final DLA values,

a ROI is established around the HS-20 design truck load (i.e., the vertical shaded area in Figure

5-13 centered at 72 kips) for each slice of UIL ordinates. The T-distribution is deemed the best

distribution model for describing the 1,497 data points within the ROIs, as shown in Figure 5-13.

This is consistent with the observation made in [268] based on the UILs computed from field tests

conducted when using several similar test trucks.

Taking the average of all extracted UILs is a common practice for the purpose of weigh-in-

motion using bridge responses [266]. However, the average UIL might not be able to reflect the

maximum vehicular live load for load ratings. As a result, three types of UIL are calculated from

all of the extracted UILs can be used in the bridge load ratings herein. The three UILs are: 1)

the average amplitude of all extracted ordinates (blue dash line in Figure 5-13), 2) the amplitude

138



Figure 5-14: Unit influence lines (UILs) extracted for the Telegraph Road Bridge load rating in-
cluding three sensing locations with three different loading lanes. (Note: in each subplot, the 95%
confidence UIL of the UILs within the ROIs, the 95% confidence UIL of all extracted UILs, the
average UIL of all extracted UILs, the UIL extracted from the finite element model is overlaid with
all extracted UILs; the amount of data used for each case is notated inside parentheses.)

corresponding to the 95% confidence of the fitted lognormal distributions of all extracted ordinates

(green dash line in Figure 5-13), or 3) the amplitude corresponding to the 95% confidence of the

fitted T-distribution of ordinates within the HS-20 design truck load ROIs (red dash line in Figure

5-13). As expected, the amplitude of the 95% confidence using the log-normal distribution applied

to all of the UIL ordinate data is the largest among all three.

5.5.3 Results and Discussion

The entire set of extracted UILs and three types of calculated UIL for load rating are plotted in

Figure 5-14 and Figure 5-15 for the TRB and the NRB, respectively. Also plotted are the UILs

obtained from the calibrated FE models with unit kip loads moving along the centerline of the

lanes. It should be noted that the FE-based UILs should not be considered as ground truth since

the FE models do not capture the true systemic bridge behaviors (and do not model vehicle-bridge
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Figure 5-15: Unit influence lines (UILs) extracted for the Newburg Road Bridge load rating includ-
ing three sensing locations with three different loading lanes. In each subplot, the 95% confidence
UIL of the UILs within the ROIs, the 95% confidence UIL of all extracted UILs, the average UIL
of all extracted UILs, the UIL extracted from the finite element model is overlaid with all extracted
UILs. The amount of data used for each case is notated inside parentheses.

interactions) even when they are calibrated. Like the results of DLA extraction, there are fewer

UILs for the case of trucks assigned to the fast lane. The number of UILs in each case is slightly

less than the number of data sets reported in Table 5-1 if the sensor did not capture the entire

process of the truck event (i.e., data acquisition ended before the truck exits the bridge).

5.6 Maximum Live Load Calculation

Given the DLA values and UILs extracted under different loading scenarios, the maximum live

load effect (LL+IM) caused by the standard HL-93 design load can be calculated for all three

girders following Equation 5.3. The LL component of the maximum live load effect are based on

the three UILs for each sensor-lane combination with multi-presence factors utilized when placing

the HL-93 design loads [35]. The DLA value is then used to assess the IM component. The
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TS1 (girder 6) TS2 (girder 4) TS3 (girder 2)

Data-driven method
(average all) 228.58 µε 284.82 µε 232.67 µε

Data-driven method
(95% conf. all) 333.17 µε 372.86 µε 306.63 µε

Data-driven method
(95% conf. ROI) 256.79 µε 293.93 µε 253.54 µε

FEM-based method 202.88 µε 277.40 µε 243.11 µε

Conventional 271.56 µε 271.56 µε 271.56 µε

Table 5-5: Maximum live load effects computed using the proposed data-driven load rating method
and the FEM-based method of the Telegraph Road Bridge girders.

NS1 (girder 6) NS2 (girder 4) NS3 (girder 2)

Data-driven method
(average all) 132.44 µε 216.16 µε 193.47 µε

Data-driven method
(95% conf. all) 191.15 µε 296.26 µε 266.06 µε

Data-driven method
(95% conf. ROI) 139.65 µε 211.88 µε 206.53 µε

FEM-based method 113.12 µε 194.11 µε 167.86 µε

Conventional 194.76 µε 194.76 µε 194.76 µε

Table 5-6: Maximum live load effects computed using the proposed data-driven load rating method
and the FEM-based method of the Newburg Road Bridge girders.

results of the maximum live load effect are listed in Table 5-5 and Table 5-6 for the TRB and

NRB, respectively. In addition, the maximum live load effect as predicted by the FE simulations

in CSiBridge and conventional simplified analysis are included in the two tables. As is evident

in both tables, the maximum live load effects for the data-driven method are mostly higher than

those predicted from FE analyses. To perform load ratings in a manner consistent with the LRFR

approach of the MBE, the maximum live load effect associated with the UIL corresponding to the

95% confidence level in the ROI will be used for the data-driven bridge load rating.
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NS1 (girder 6) NS2 (girder 4) NS3 (girder 2)

Inventory Level
Rating Factor

Conventional 1.45 1.45 1.45
FEM-based 3.25 1.84 2.21
Data-driven 2.63 1.61 1.73

Operating Level
Rating Factor

Conventional 1.88 1.88 1.88
FEM-based 4.22 2.38 2.87
Data-driven 3.31 2.08 2.24

Table 5-7: Rating factors of the Telegraph Road Bridge girders obtained using different methods.

TS1 (girder 6) TS2 (girder 4) TS3 (girder 2)

Inventory Level
Rating Factor

Conventional 1.17 1.17 1.17
FEM-based 1.64 1.17 1.39
Data-driven 1.29 1.10 1.33

Operating Level
Rating Factor

Conventional 1.51 1.51 1.51
FEM-based 2.12 1.55 1.80
Data-driven 1.68 1.46 1.72

Table 5-8: Rating factors of the Newburg Road Bridge girders obtained using different methods.

5.7 Evaluation and Results

With the maximum live load effect and estimate of the dead load effects for each bridge, load

ratings are conducted based on Equation 5.1. The selected γ or φ factors of Table 5-2 are also

used. The resulting data-driven rating factors are compared with those obtained by the FE-based

and the conventional approximate method in Table 5-7 and Table 5-8, respectively, for the TRB and

the NRB. Both inventory and operating level ratings are performed for both bridges. The results

show that the target girders of the two bridges pass the design load rating regardless of the rating

methodology utilized as indicated by rating factors greater than 1. With the RF greater than 1 at

the inventory level reliability, legal load ratings are not necessary for either bridge [35]. The rating

factors obtained using the conventional method are identical for all three girders in each bridge as

it is a common practice to distribute dead load evenly across all girders and the load distribution

factors are the same for interior girders [35, 192, 269]. It can be observed that in most cases

that rating factors calculated using the data-driven approach lie between the conventional and the
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FE-based rating factors.

5.8 Summary and Conclusions

Load rating is a standard asset management approach used to assess the safety of highway bridges.

The LRFR process specified by the MBE is the most popular load rating method in the United

States offering load ratings consistent with the reliability levels associated with the LRFD design

process. Approximate methods are commonly used for load rating of bridge girder lines but more

recently refined analyses based on FE models have grown in popularity. While the FE-based

approaches may offer a higher level of realism in modeling bridge behavior, it does not reflect

the true systemic behavior of the bridge. In this work, a data-driven load rating approach that

explicitly considers the true systematic behavior of a bridge is proposed. The approach is based on

the availability of bridge response data due to a truck event along with measurement of the truck

weight obtained from a WIM station along the corridor. The integration of bridge strain response

data and truck weight data is only possible based on automated visual identification of trucks along

a highway corridor using a CPS architecture. The data driven load rating method utilizes measured

bridge strains to extract the dynamic load allowance (DLA) factor by subtracting the maximum

measured bridge response from the maximum static response obtained by low-pass filtering the

response signal. Similarly, the bridge response data and the measurement of the truck axle weights

and spacing are used to extract UIL. With a large database of truck events on a bridge collected

over a period of time, a statistical approach for estimating the DLA and UIL is proposed based on a

region of interest surrounding the HS-20 design load with a 95% confidence level on the statistical

distribution used in the ROI to model DLA and UIL. The DLA and UIL determined are used to

estimate the maximum live load effect for the HL-93 load model used in the traditional LRFR load

rating framework.

The data driven load rating method is applied to three girder lines on the Telegraph Road

Bridge and Newburg Road Bridge (which are two bridges along the CPS-enable I-275 corridor in

southeast Michigan) using flexural strain response data collected between July 2017 to April 2019.
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Each data set contains paired structural responses measured at bridge girders and truck weight data

(e.g., axle weight and axle spacing) measured at a WIM station. The proposed data driven load

rating approach is shown to generally offer higher rating factors for both bridges than conservative

approximate load rating methods prescribed by the MBE LRFR framework. They are also found to

be lower than the refined load rating methods based on FE modeling which may fail to truly capture

the true systemic behavior of the bridges. All results indicate that the load-carrying capacities of

the selected girder components of both bridges pass the rating at the inventory level reliability with

rating factors greater than 1.
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CHAPTER 6.

Monitoring and Identification of Vehicle-bridge Interaction Using Mobile

Truck-based Wireless Sensor

6.1 Introduction

In the United States there are almost 611,000 bridges in operation [270] but roughly one third of

them are rated as structurally deficient or functionally obsolete [30]. To ensure the National Bridge

Inventory (NBI) remains safe for use and to reduce the large number of deficient bridges, ongoing

bridge maintenance and renovation is necessary. While the causes of deterioration in bridges can

be tied to a diverse set of sources and factors, a dominant cause of long-term deterioration can be

attributed to heavy vehicles (i.e., trucks). To better understand the impact trucks have on bridge

health, vehicle-induced bridge behavior must be better understood. Furthermore, understanding

of vehicle-bridge interaction (VBI) can potentially lead to the control of truck vibrations so that

truck-induced bridge deterioration can be minimized. In VBI, the total response of a bridge can

be divided into two parts. The first part consists of the truck-induced deflection of the bridge as

the truck crosses. The second part is attributed to the dynamic behavior of the vehicle (i.e., sprung

mass) which is based on a complex interaction that is induced by road roughness and the motion

of the bridge itself. The second part of the bridge response is relatively complex to model yet can

generally account for 20% to 30% of the total bridge response [271].

To date, there have been a large number of analytical studies that have explored the modeling

of VBI including the dynamic coupling that develops between the vehicle and the bridge. Com-

paratively less research has been devoted to observing VBI experimentally. Kim and Lynch [124]

installed a flexible wireless sensor network on the Yeondae Bridge (Icheon, Korea) to monitor its
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Figure 6-1: Telegraph Road Bridge (Monroe, Michigan).

dynamic response to heavy truck traffic. In addition, they installed a wireless sensor network on a

heavy truck to monitor the truck location and dynamics of its sprung mass. Their study considered

the time-synchronized vertical accelerations of the truck (as measured at its center-of-gravity) and

bridge deck accelerations within an input-output state-space model framework. Using a two-stage

subspace system identification approach, their model accurately predicted bridge responses using

truck vertical accelerations.

This chapter introduces a comprehensive wireless monitoring system that is capable of simul-

taneously recording the dynamic response of highway bridges and the trucks crossing over them.

The study emphasizes a flexible wireless sensor network architecture that allows mobile wireless

sensors installed on a heavy truck to register and transmit time-synchronized acceleration time his-

tories to a permanent and static wireless sensor network installed on a bridge. The mobile sensors

in the truck are intended to measure the truck location (using GPS), horizontal acceleration, and

vertical acceleration of the truck axles and sprung masses. Similarly, the bridge wireless monitor-

ing system includes accelerometers to measure vertical accelerations and strain gauges to measure

bridge bending strain responses. For experimental validation, the wireless monitoring system is

installed on the Telegraph Road Bridge (TRB) located in Monroe, Michigan (Figure 6-1). In ad-

dition, a four-axle tractor-trailer truck used to induce bridge responses is similarly instrumented

with a set of wireless sensors. The study collects data from the mobile and stationary wireless

sensor networks and uses the data to create state-space models of the coupled dynamical systems.

The study highlights the application of the previously proposed subspace system identification
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Figure 6-2: Instrumentation plan on the Telegraph Road Bridge for vehicle-bridge interaction ex-
periments. (Note: the right figure corresponds to each array of the strain gauges notated using red
rectangular on left.)

framework proposed by Kim and Lynch [4] using both bridge accelerations and strain responses.

6.2 Wireless Monitoring System Architecture

The TRB is a three-span highway bridge that carries northbound I-275 interstate highway traffic.

The TRB is designed to support highway traffic using seven steel girders and a steel reinforced

concrete deck. The total length of the bridge is approximately 224 feet (68.28 m) including a main

span of 140 feet (42.67 m) and two end spans each 48 feet (14.63 m). A unique feature of the bridge

is that it supports the main span using pin and hanger connections. Each end span cantilevers 6

feet (1.83 m) past the pier and uses hanger plates (also termed link plates) to catch the load from

the main span girders.

A dense network of Narada wireless sensor nodes has been installed in the bridge (Figure 6-2)

to measure bridge accelerations and strains. With girders being the primary load-carrying mem-

bers, a total of 15 accelerometers and 18 strain gauges have been installed on the TRB girders to

measure their responses during truck loading. Along the external girder lines, a total of 14 uniax-

ial accelerometers (Silicon Designs SD2012-002) have been installed to measure bridge vertical

accelerations. In addition, a single tri-axial accelerometer (Crossbow CXL02TG3) is installed at
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Figure 6-3: Truck instrumentation for vehicle-bridge interaction experiments: (a) a view of instru-
mented and loaded test truck; (b) instrumentation plan of mobile truck sensor network.

the center of the main span to measure vertical, longitudinal, and transverse accelerations. A strain

gauge array is instrumented at six locations with three arrays along Girder 2 and another three

along the span on Girder 6. At each location, three metal foil strain gauges (Tokyo-Sokki 120 Ω)

are installed with one gauge on the web near the lower flange, another mid-height, and the last on

the web near the upper flange. This strain gauge array is intended to measure bending strains and

to identify the location of the cross-section neutral axis. External to the bridge, two laser sensors

(Omron E3FA) are installed at both ends of the bridge to detect when vehicles enter and exit the

bridge. In addition to the wireless sensors, a single base station has been installed to manage the

on-site sensors and to communicate data from the bridge to a data server located at the University

of Michigan [61].

The mobile wireless sensor network is installed in a four-axle tractor-trailer truck (Figure 6-3).

The distance between the first axle and the last axle is 54.75 feet (16.7 m). The two front axles

are associated with the truck while the last two axles are associated with the trailer. A total of 20

acceleration channels are installed on the truck. At each wheel location, one uni-axial accelerom-

eter (Silicon Designs SD2012-010) is installed on the axle itself while another (Silicon Designs

SD2012-005) is installed on the chassis above the axle. Two additional uni-axial accelerometers

(Silicon Designs SD2012-002) are installed in a horizontal direction on the tractor body to measure

truck motions at its center-of-gravity. The truck is also instrumented with a GPS module (U-blox)
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Figure 6-4: Truck speed and location estimation: (a) GPS and laser measured truck speed; (b)
correction of truck position (L is the bridge length and D is the truck length).

to record its speed and location. Each sensor in the truck is connected to a Narada wireless sensor

node allowing the mobile wireless sensors to communicate with the bridge wireless monitoring

system.

6.3 Data Acquisition and Processing

Nine VBI field tests were conducted on the TRB using the instrumented truck. The stationary and

mobile wireless sensor networks measure the response of the bridge and the truck, respectively;

each network is time synchronized to the bridge base station. Prior to testing, the truck is placed

500 feet from the bridge so that the truck-based wireless sensors can register with the bridge

wireless sensor network. Once registered, the truck is commanded to drive over the bridge at a

fixed speed. The truck is driven over the bridge once at 53 mph (23.7 m/s), twice at 55 mph

(24.59 m/s), and six times at 60 mph (26.82 m/s). As the truck is collecting accelerations and

GPS location, the truck wireless sensor network communicates the data to the base station where

it is synchronized with the bridge response data. The truck accelerations, truck GPS coordinates,

bridge accelerations, and bridge strains are all sampled at 200 Hz for 30 seconds. In this chapter,

the VBI test data in which the truck has the speed of 60 mph is taken as an example to showcase

the method and results.
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Figure 6-5: Extraction of the dynamic strain response of the Telegraph Road Bridge.

The duration of the VBI process can be obtained from the laser sensor data that captures the

point in time when the truck enters and exits the bridge. Figure 6-4 plots the point in time when

the truck arrives (13.5 sec) and when it exits (17.8 sec) using green vertical lines; these lines are

repeated in the other figures that follow. The truck’s average speed can be calculated by dividing

the distance between the two laser sensors by the detected traversing time (24.1 m/s). The truck

speed as recorded by the GPS receiver is also plotted and averages around 26.7 m/s. It is assumed

that the 10% difference is attributed to error in the GPS reading. The GPS reading is corrected

using a normalizing constant of 0.9. Using the corrected velocity time history, the location of the

truck on the bridge can be estimated by standard numerical integration of the speed; the result is

shown in Figure 3.1b for the uncorrected and corrected GPS velocities.

The vehicle-induced bridge response includes vertical accelerations and girder bending strains.

The vertical accelerations directly reflect the bridge dynamic response. However, the girder strains

represent a combination of the static deflection to the moving load and a dynamic response at-

tributed to VBI. In order to crudely extract the dynamic component of the bending strain, a low-

pass filter with a cutoff frequency at 5 Hz is applied to the measured strain response (Figure 6-5).

The low-pass component is then subtracted from the original girder strain signal to reveal the dy-

namic component of the girder bending strain signal.
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Figure 6-6: Truck model and system inputs with detailed dimensions notated.

6.4 System Identification for Vehicle-Bridge Interaction

The four-axle tractor-trailer truck is modeled as a pitch-plane whole-vehicle model as shown in

Figure 6-6. In this model, the tractor and trailer are modeled as two sprung masses that are con-

nected to each other by a spring. Four spring-dashpot suspensions assemblages support the tractor

and trailer at each of the axles. The axle itself is treated as an un-sprung lumped mass connected

to the truck or trailer through the spring-dashpot suspension. In total, this model consists of eight

(8) degrees-of-freedom including the vertical displacements and rotation at the center-of-gravity

of both the tractor and trailer and the vertical displacement at each axle.

As the truck drives over the bridge, the truck is dynamically excited by the road roughness

and through interaction with the vibrating bridge. In turn, the vehicle dynamics are imposing

dynamic loads on the bridge. The VBI modeling framework takes the vertical acceleration at the
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center-of-gravity of the tractor and those above each rear axle (associated with the trailer chassis)

as inputs u1, u2 and u3; these inputs are shown in Figure 6-6 by three blue dots. In order to model

the bridge vibrations, the VBI model considers the dynamic bridge responses (i.e., girder vertical

accelerations and high-passed girder bending strains) as model outputs, y. A discrete-time linear

multi-input multi-output (MIMO) state space is used to model the system

x(k + 1) = Ax(k) +B(k)u(k) + w(k) (6.1)

y(k) = Cx(k) + v(k) (6.2)

where u(k) ∈ Rp×1 is the system input at discrete time step k including the vertical accelerations

at the tractor body and trailer chassis at the positions above the last two axles. Here, p is the

number of inputs (which in this study is three). Furthermore, y(k) ∈ Rl×1 is the system output

vector consisting of strains or accelerations with l being the number of measurements considered

as the measured bridge responses. Finally, x(k) ∈ Rn is an unknown n-dimensional state vector

of the system, w(k) ∈ Rn×1 is the process noise associated with the system dynamics, and v(k) ∈

Rl×1 is the measurement noise associated with the sensor system measurement. The process and

measurement noises are both assumed to be uncorrelated white noise signals with zero-mean.

Based on the assumption that the truck will not influence the parameters of the bridge dynamics

and the vibration amplitude of the bridge is small, the system matrix,A ∈ Rn×n, and output matrix,

C ∈ Rl×n, are considered as time invariant. However, because the truck position is changing, the

mapping of the system inputs to the state space is considered to be time variant; hence, the input

matrix B ∈ Rn×p is a function of time step k. The VBI system identification problem can be

considered as the estimation of the matrices A, B(k) and C given the measured system inputs (i.e.,

u(k)) and outputs (i.e., y(k)).

The two-stage system identification methodology (Figure 6-7) as originally proposed by Kim

and Lynch [124] is adopted in this study to determine A, B(k) and C. The modeling strategy con-

sists of two parts: use of bridge free-vibrations to estimateA and C, and use of the forced vibration
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Figure 6-7: Two-stage system identification strategy.

of the bridge to estimate B(k). The laser data is vital to precisely identifying when the truck is

on and off the bridge allowing for the forced and free vibrations to be delineated. The system ma-

trix A and output matrix C are estimated using the output-only stochastic subspace identification

method [272]. During this period, there are no inputs from the truck and thus the input matrix B

is effectively zero. After the matrices A and C are identified, the matrix B can be estimated at

each discrete time step from k = 1 (the time step when the truck enters the bridge) to N (the time

step when the truck exits the bridge) using the forced-vibration response of the bridge, the truck

accelerations and the truck position by a least-squares method [124]. While the methodology of

Kim and Lynch [124] is used, two major modifications are made in this implementation. First, the

original study [124] only considered bridge accelerations as a system output. In contrast, bending

strains of the girders will also be considered as a system output in this study. Second, the previous

study [124] utilized a simpler truck that could be modeled as a single input (i.e., vertical acceler-

ation of the truck sprung mass). Here, a more complex truck is utilized and multiple inputs are

considered.

During free vibrations, the bridge has no imposed load because the truck is off the bridge.

Hence, the original state space model (Eq. 6.1) can be modified as a stochastic discrete-time time-

invariant model as:
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x(k + 1) = Ax(k) + w(k) (6.3)

The output-only stochastic subspace identification (SSI) method proposed by van Overschee

and De Moore [272] is used to determine the system matrix, A, in Eq. 6.3 and the output matric,

C, in Eq. 6.2. A brief introduction of the SSI algorithm is introduced in this chapter but interested

readers are still referred to the classical reference by van Overschee and De Moore [272]. The free-

vibration response data is first assembled as the output Hankel block matrix which is partitioned

as past and future outputs as shown:

Yo|2i−1 =



y(0) y(1) · · · y(j − 1))

...
... . . . ...

y(i− 1) y(i) · · · y(i+ j − 2)

y(i) y(i+ 1) · · · y(i+ j − 1))

...
... . . . ...

y(2i− 1) y(2i) · · · y(2i+ j − 2)


=

[
Y0|i−1

Yi|2i−1

]
=

[
Yp
Yf

]
(6.4)

Orthogonal projections of the row space of the future output, Yf , on the row space of the past

output, Yp, can be calculated using the partitioned Hankel matrix:

Pi = YfY
T
p (YpY

T
p )†Yp (6.5)

Pi−1 = Y −f Y
−T
p (Y −p Y

−T
p )†Y −p (6.6)

Projection Pi−1 differs from projection Pi based on shifting one block row in the delineation be-

tween past and future outputs in Eq. 6.4. Specifically, Y −f and Y −p are defined as Yo|i and Yi+1|2i−1,

respectively. Since the projection is equal to the product of the extended observability matrix, Oi,

and the non-stationary Kalman filter state sequence, X̂i, the projection matrix Pi can be factorized

by singular value decomposition (SVD):
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Figure 6-8: Determination of the system order: (a) stability diagram method; (b) Singular value
decomposition (SVD) method.

Pi = USV T ∼=
[
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]S1 0
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1 )(S0.5

1 V T
1 ) = OiX̂i (6.7)

The one-step shifted state sequence can be calculated

X̂i+1 = O†i−1Pi−1 (6.8)

where Oi−1 is equivalent to Oi with the last block row eliminated. Finally, estimates of A and C

can be calculated by a least-squares solution:

Â
Ĉ

 =

X̂i+1

Yi|i

 X̂†i (6.9)

A critical parameter associated with the SSI algorithm is the system order (i.e., the dimension

(n) of the system matrixA). A stability diagram approach is applied [273] to the modal frequencies

extracted from the estimated system matrix Â by eigenvalue decomposition. As shown in Figure

6-8(a), the stability diagram is shown for modal frequency as the model order is varied from 1 to
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120. The modal frequencies become relatively stable once the model order exceeds 60 with modal

frequencies showing up as vertical columns. Hence, the system order is set to 60 based on visual

inspection of the stability plot. The singular value decomposition method introduced in [272] is

implemented to double check this model order, as shown in Figure 6-8(b).

In the second stage of the system identification methodology, the system model can now be

formulated as

x(k + 1) = Âx(k) +B(k)u(k) + w(k) (6.10)

y(k) = Ĉx(k) + v(k) (6.11)

where the matrices (Â, Ĉ) are the estimated system matrices from the free vibration response.

The objective in the second stage is to estimate the time-varying input matrix B(k). To do so,

the identification problem is formulated as an unconstrained optimization problem over a finite

horizon where the difference between the measured bridge response, y(k), and the predicted bridge

response, ŷ(k), is to be minimized

[B̂(1), B̂(2), · · · , B̂(N)] = argmin
[B(1),B(2),··· ,B(N)]

1

N

N+1∑
k=2

‖y(k)− ŷ(k|k − 1)‖2 (6.12)

where ŷ(k|k − 1) is the one-step ahead prediction of the bridge response calculated at time step

k − 1 [124]. Before the truck arrives, the bridge is assumed to be at rest (x(0) = 0). Hence, the

system state at k = 1, x(1), is also equals zero and ŷ(k|k − 1) can be derived as:

ŷ(k|k − 1) =
k∑
q−1

ĈÂk−qB(q)u(q) (6.13)

The previous unconstrained optimization problem of Eq. 6.12 can be combined with Eq. 6.13

as:
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[B̂(1), B̂(2), · · · , B̂(N)] = argmin
[B(1),B(2),··· ,B(N)]

1

N

N+1∑
k=2

∥∥∥∥∥y(k)−
k∑
q=1

ĈÂk−qB(q)u(q)

∥∥∥∥∥
2

(6.14)

A kernel approximation of B(k) is made based on the estimated truck position at k. The

construction of the binary kernel function is presented in [124] in detail and will not be covered

here. In this study, the truck has more than one input variable; hence, several vehicle position-load

effect kernel functions which allow the continuous moving load trajectory to be spatially mapped

to a finite number of nodes in the bridge model are constructed as Φi(k) ∈ Rn(i = 1, 2, · · · , p).

The input matrix B(k) can be estimated through corresponding scalar time-varying functions,

αi(k)(i = 1, 2, · · · , p)

B(k) = [α1(k)Φ1(k), α2(k)Φ2(k), · · · , αp(k)Φp(k)] = Φ(k)α(k)T (6.15)

This representation of B is included in Eq. 6.13 to yield

ŷ(k|k − 1) =
k∑
q=1

ĈÂk−q

[
p∑
i=1

Φi(q)αi(q)ui(q)

]

=
k∑
q=1

ĈÂk−qΦ(q)



u1(q)

u2(q)

. . .

up(q)


α(q)T (6.16)

The previous optimization problem can then be re-formulated in terms of α̂:

[α̂(1), α̂(2), · · · , α̂(N)] = argmin
[α(1),α(2),··· ,α(N)]

1

N

N+1∑
k=2

‖y(k)− ŷ(k|k − 1)‖2 (6.17)

The solution is obtained through application of the least-squares method and B(k) is calculated
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Figure 6-9: Predicted versus measured bridge response: (top) acceleration at A15; (bottom) strain
at S6.

based on α̂(k) from Eq. 6.15.

6.5 Results and Conclusions

The VBI model is applied to the TRB response data collected during forced truck loading. The

system identification results are excellent with the predicted bridge response (strain and accelera-

tion) matching the real measurements. Two system identification results are shown in Figure 6-9.

The first, plotted in Figure 6-9 (top) shows the predicted bridge acceleration; in the second (Fig-

ure 6-9 (bottom)), the predicted girder strain is shown. There are some discrepancies between the

predicted and measured bridge response that can be possibly due to the nonlinearities of the truck

or bridge system. In addition, the result of the system taking dynamic strains as outputs are not as

good as that of the system taking accelerations as outputs because the dynamic strains extracted

from the measured strain may be not accurate enough (i.e., limitations of using low-pass filtering).
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CHAPTER 7.

Time Series Forecasting For Joint Monitoring of Multiple Highway Bridges

7.1 Introduction

Recent advances in deep learning provide the civil engineering community with powerful and valu-

able tools to solve unique problems emerging within the field. Applications of such techniques

range from the use of computer vision for infrastructure inspection [274] to damage detection for

structural health monitoring (SHM) using measured structural responses [275]. Among all avail-

able deep learning-based methods, encoder-based algorithms have gained extensive attentions for

damage detection. For example, modal properties (including modal frequencies and mode shapes)

of a structure can be fed into a two-stage parallel auto-encoder to predict mass-stiffness parameters

of the same structure [276, 277]. Such an auto-encoder model allows stiffness reduction which

are linked with structural damages to be discovered from vibration data with a high sensitivity.

In another study, by learning identical data reconstruction, an auto-encoder model is trained in a

multi-task learning fashion to detect damages associated with a bridge using vibrations (i.e., ac-

celeration data) of a passing vehicle measured during the vehicle-bridge interaction process [278].

Large amounts of bridge SHM data collected over time not only enable complicated deep learn-

ing models to be employed for structural monitoring purposes but also open new opportunities for

data-driven SHM methods that purely rely on spatial and temporal relationships without consid-

ering mechanical models. For instance, correlation between sensor measurements of two adjacent

bridges to the same traffic loads can be used for damage detection and localization in bridge struc-

tures [65].

This chapter builds upon the successful application of deep learning in civil engineering where
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computer vision is used to track trucks in a corridor with bridges monitored (presented in Chapter

2) [254]. In the work, the traffic along a 20-mile northbound highway corridor is monitored via

cameras. A deep learning technique is used to automatically identify trucks traveling on a bridge

in the corridor and then re-identify the same truck as it traverses another bridge in the same cor-

ridor. Simultaneously, the structural response of the bridges to moving trucks are measured and

synchronized to the same truck load (as confirmed by imagery). In this work, a data-driven model

is built that enables forecasting the response of one bridge to a truck using that of another bridge

whose response corresponds to the same truck. Such a model can be used for multiples purposes

such as structural damage detection and anomaly detection within wireless sensor networks. For

example, by building an accurate model that is capable of forecasting the response of one bridge

using that of another, structural damages and faulty sensors can be identified from inaccurate pre-

dictions. Hence, this model enables joint health monitoring among multiple bridges located in

close geographic proximity (e.g., on the same corridor), for which there is a high likelihood that

the same truck loads are experienced. Another application of joint modeling of bridges would be

enabled by connected vehicles technology. The response of an upstream bridge to a truck contains

information on the characteristics of the truck (i.e., weight). The joint model between the two

bridges can be employed to predict truck impacts on downstream bridges so that the speed of the

truck approaching the second bridge can be set to minimize the response and consumed life of that

bridge (and thus maximize the life span of the bridge). This requires the models to be exclusive to

each bridge pair and take into account the unique complexities inherent to the bridges and the truck

(e.g., suspension system). It is almost impossible to do this with physical models (e.g., finite ele-

ment models) of the bridges which demands high computational powers and cannot be performed

in a timely manner. Hence data-driven models are an attractively scalable solution.

In this work, the use of time series forecast models are explored for the aforementioned task

of predicting bridge responses. A RNN-based sequence to sequence (Seq2Seq) models with two

different types of unit cells are evaluated. Seq2Seq models are originated from the field of neural

machine translation [279] but have been proven to be effective in many other applications such
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Figure 7-1: Illustration of a typical recurrent neural network.

as time series forecasting [280, 281] and anomaly detection [282]. Moreover, an auto-regressive

with exogenous terms (ARX) model is also trained to perform comparison with the RNN-based

Seq2Seq model. ARX models use a linear equation to predict the output of a system using previous

outputs and the current inputs [283]. Such a time series structure is suitable for the purpose of this

work and provides a linear twin for the non-linear Seq2Seq models.

The remainder of this chapter is organized as follows: the next section is devoted to the de-

scription of the encoder-decoder Seq2Seq methodologies. In Section 3, generation of training,

evaluation and test data is first discussed, followed by training and test results using finite element

modeling-based simulation data. The effectiveness of the trained model for bridge damage detec-

tion is also investigated using simulated damage data in Section 4. This chapter concludes with a

summary of the results and a description of future work.

7.2 Recurrent Neural Networks

A recurrent neural network (RNN) can be viewed as a unit cell that is rolled over itself for a finite

number of times. At each time step, the unit cell takes an external input x[i] and the hidden state

from the previous step h[i − 1] as inputs and returns the current hidden state h[i] and the current

output y[i], which is illustrated in Figure 7-1. The network aims at capturing and memorizing

sequential information within in the training data presented to it through the use of hidden states
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Figure 7-2: Illustration of two RNN unit types: (a) gated recurrent unit (GRU); (b) long short-term
memory (LSTM) unit.

from the previous time steps. The main computation of an RNN is associated with the unit cell Φ.

The RNN cells apply a combination of linear matrix multiplications and non-linear activation to

generate the hidden state and output at each timestamp. A basic RNN cell can be formulated as

follows:

h[i] = g1(Whhh[i− 1] +Whxx[i] + bh) (7.1)

y[i] = g2(Wyhh[i] + by) (7.2)

where Whh, Whx, Wyh, bh, bh are parameters (i.e., weights and bias) shared within the RNN tem-

porally at each timestamp and g1, g2 are activation functions (e.g., ReLU or sigmoid) of choice.

The RNN is able to process inputs of any length with weights shared across time. However, it

has been shown that the RNN requires considerable computation time and suffers the difficulty of

remembering information learned a long time ago [284]. Two different more advanced RNN cell

types are used in this study, namely long short-term memory (LSTM) cells and gated recurrent unit

(GRU). A brief description of the two cell types are presented in the following two sub-sections.

For more detailed descriptions, interested readers are referred to [285, 286].
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7.2.1 Gated Recurrent Unit

Figure 7-2(a) shows an illustration of the GRU block. The equations describing the GRU are given

as [286]:

r[i] = σ(Wxrx[i] + bxr +Whrh[i− 1] + bhr)

z[i] = σ(Wxzx[i] + bxz +Whzh[i− 1] + bhz)

n[i] = tanh(Wxnx[i] + bxn + r[i]�Whnh[i− 1] + bhn)

h[i] = (1− z[i])� n[i] + z[i]� h[i− 1]

(7.3)

where tanh is the hyperbolic tangent function, � represents the entry-wise product, and σ repre-

sents the sigmoid function defined as:

σ(x) =
1

1 + exp(x)
(7.4)

Additionally, the index i represents the time index to show how the current hidden state is

related to both the current input and previous hidden state. x[i] and h[i] are the input and hidden

state at time i, respectively. The terms r[i], z[i], and n[i] are the reset, update and new gates,

respectively. Finally, the W ’s and b’s are the weights and biases of the linear transformations.

7.2.2 Long Short-term Memory Cell

Figure 7-2(b) shows an illustration of the LSTM block whose equations are expressed as [285]:
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j[i] = σ(Wxjx[i] + bxj +Whjh[i− 1] + bhj)

f [i] = σ(Wxfx[i] + bxf +Whfh[i− 1] + bhf )

g[i] = tanh(Wxgx[i] + bxg +Whgh[i− 1] + bhg)

o[i] = σ(Wxox[i] + bxo +Whoh[i− 1] + bho)

c[i] = f [i] · c[i− 1] + j[i] · g[i]

h[i] = o[i] · tanh(c[i])

(7.5)

where h and c are called the hidden state and cell state. Moreover, j, f , g and o are referred to

as the input, forget, cell and output gates, respectively. It is emphasized that for the LSTM cell,

at each time step, two sets of vectors are received from the previous time step, namely the hidden

and cell states (h and c). Compared to the standard RNN unit, LSTM can handle the information

contained in a longer period of time.

7.2.3 Encoder-Decoder Sequence to Sequence Model

With its architecture shown in Figure 7-3, the encoder-decoder sequence to sequence model con-

sists of two RNN sub-networks, namely encoder and decoder. In this study, the RNN cell for the

encoder is denoted as ΦE and that for the decoder is denoted as ΦD. The same notation also ap-

Figure 7-3: Sequence-to-sequence model schematics: from the encoder’s side, the context vector
is passed to the decoder with the decoder using it’s own predictions at the previous time step as the
input to the current time step.
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plies for hidden states. The first sub-model, namely encoder, takes a sequence as its inputs and

condenses the information of interest inside the input data into a fixed-length vectorized represen-

tation, which is referred to as the “content vector”. Generally speaking, the functionality of a RNN

cell (e.g., LSTM or GRU) in the encoder can be expressed as Equation 7.6 and the output is usually

ignored. For the GRU cell, the hidden state is basically the h vector in Equations 7.3. While for

the LSTM cell, this hidden state is a concatenated vector of the h and c vectors in Equations 7.5.

The context vector is the last hidden state of the encoder but serves as the input on the decoder’s

side.

hE[i] = ΦE(x[i], hE[i− 1]) (7.6)

Given the context vector, the decoder model decodes and unrolls it into a sequential output. The

functionality of a RNN cell in the decoder can be expressed as Equation 7.7 where both hidden

state hD[i] and output yD[i] are generated at each time step i. For each time step, the decoder

recurrent cell’s output is used as the input to the cell at the next time step. This is in contrast to the

encoder where the actual time series values are used at each time step.

y[i], hD[i] = ΦD(y[i− 1], hD[i− 1]) (7.7)

In general, the sequence-to-sequence model learns a general transformation mapping one se-

quence into another. The RNN architecture is used to model an encoder whose weights is opti-

mized through training to output the low-dimension context vector using input time series x[i]; the

decoder then uses the context vector to feed another RNN that outputs another time series y[i]. In

this study, x and y correspond to responses of two adjacent bridges to the same truck loads.

The dimensions of the hidden states of the encoder and the decoder have to be the same. Mean-

while, the dimensions of the hidden state of the decoder could be different than that of the output.

Hence, a fully connected layer is used on the decoder side of the model. This layer acts as follows

(Equation 7.8): let hD[i] be the decoder’s hidden state at time step i; then, this hidden state is mul-

165



tiplied by a weight matrixWdh such the product is a scalar; the scalar is then passed to a tanhshrink

activation function.

y[i] = d[i]− tanh(d[i])

d[i] = WdhhD[i] + bdh

(7.8)

There are a handful of non-linear transformations commonly used with neural networks, how-

ever, the non-linearity function should have a range of (−∞,∞). The tanhshrink activation func-

tion is one of the few that has such characteristics. The weight matrix Wdh, bias vector bdh, along

with the internal weights and biases of the cells are optimized in the training stage so as to mini-

mize the mean squared error (MSE) between the predicted response of the target bridge computed

by the trained model and the actual ground-truth bridge response to the same truck load.

7.3 Bridge Response Forecasting

7.3.1 Dataset

The subjects of this study are the two instrumented bridge systems (Telegraph Road Bridge (TRB)

and Newburg Road Bridge (NRB) which are illustrated again in Figure 7-4) along the I-275 cor-

ridor described in Chapter 2. As previously mentioned, bridge responses of the two bridges to the

same truck loads are matched using computer vision-based truck re-identification algorithms. In

this study, finite element method (FEM) models are created for both bridges in CSiBridge [221]

according to the dimensions and properties of the bridges to evaluate the feasibility of the proposed

Seq2Seq model. The detailed FEM bridge models are shown in Figure 7-5. Numerical simulations

are carried out for the bridges using the same set of trucks to imitate the scenario of monitoring a

given truck passing through the highway corridor loading the TRB and the NRB. For TRB, a total

of 9,052 shell elements are used to model the reinforced concrete slab (1,750) and the steel girders

(7,302). Lateral bracings and rebars are modeled using 454 brace elements. The pin-and-hanger

mechanism and joints are modeled by link elements. The concrete has a Young’s modulus of 3,600

ksi with a Poisson’s ratio of 0.17, the steel used for girders and rebars has a Young’s modulus of
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Figure 7-4: Illustration of bridge response forecasting framework.

29,000 ksi with a Poisson’s ratio of 0.3 and the link plate steel had a Young’s modulus of 30,000

ksi. The dominant modal frequency of TRB is 2.17 Hz. For NRB, a total of 12,139 shell elements

are used to model the reinforced slab (3,840) and steel girders (8,299), and a total of 1,020 brace

elements are used to model the lateral bracings. The concrete has a Young’s modulus of 3,155 ksi

with a Poisson’s ratio of 0.2. The girder steel has a Young’s modulus of 27,000 ksi and a Poisson’s
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Figure 7-5: The CSiBridge models for: (a) Telegraph Road Bridge and (b) Newburg Road Bridge.

ratio of 0.28. The Young’s modulus for the rebar steel is 29,000 ksi. Unlike the TRB, NRB has

two dominant modal frequencies: 4.0Hz and 5.8Hz. The model properties for both bridges have

been fine tuned by model updating, thus, their modal frequencies closely match those observed in

the actual bridges. The simulated responses of both bridges are the strain values at the mid-span

of the central girders as shown in Figure 7-4. Note that in this study, measurements (strains) are

taken at only one point on both bridges.

For the truck load properties, the WIM station located on the same corridor measures nine truck

attributes including: vehicle class based on the Federal Highway Administration (FHWA) protocol,

vehicle speed, number of axles, axle weights and spacings, and the passing lane. The FHWA

classification contains 13 vehicle categories where vehicle classes 1 to 3 represent light weight

vehicles, whose loads on the bridges are not of major interest. Thus, the measured WIM data is

pruned to only consider trucks with a vehicle class between 4 to 13. In addition, according to the

local speed limit (60 mph for trucks) we range vehicle speeds in simulations from 40 to 85 mph.

The sampled WIM data is used for generating TRB and NRB responses using CSiBridge. The

speed of each truck is perturbed using a random variable between -5 and 5 mph so that simulations

of the same truck on the two bridges can vary slightly making the response dataset more realistic.

Trucks are passed over each bridge using a particular lane specific to each bridge. In the real-world,

trucks aren’t restricted to this one lane combination. There are 9 different lane combinations that

the truck may travel over considering each bridge has three lanes. In this paper, only one scenario

is used to validate the variability of the proposed Seq2Seq model. Based on field observations
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(Table 2-2), the most common lane is: trucks pass through the middle lane on TRB and the slow

lane on NRB.

The simulation has a time step of 0.01 seconds (sampling frequency is 100 Hz). Some sample

strain response pairs for the two bridges are shown in Figure 7-4. As can be seen, the strain re-

sponse contains not only the forced response triggered by truck but also the free vibration response

after the truck is off the bridge. Thus, each bridge response can be divided into two parts: (1)

forced response whose duration and amplitude depend on truck speed and weights, and (2) free

vibration response after the truck departs the bridges. To capture enough structural information of

the bridges, the simulation duration is set to 5 and 3 seconds for TRB and NRB, respectively. This

ensures at least four cycles of free vibration are recorded for each bridge. A total of 2,100 truck

events (pairs) are simulated on both bridges. 1,500 pairs of these simulations are used for training

the models, 150 pairs for validation, and 450 pairs for testing.

7.3.2 Model Training

The Seq2Seq model is implemented in PyTorch [189]. This subsection contains technical details of

the implementation and training of the model using PyTorch. A key parameter within the Seq2Seq

model is the dimension of the context vector in the last hidden state of the encoder. A set of four

different hidden dimensions, namely Ĥ = {10, 30, 50, 70} for both cell types are iterated on and

the one that results in the highest performance is selected. To train the model, a stochastic gradient-

based optimizer named Adam [188] is used. Similar to other stochastic gradient-based approaches,

at each iteration, Adam takes a subset of the training dataset (called a mini-batch) and calculates the

gradient of the MSE loss with respect to the weights. Consequently, the size of the mini-batches,

referred to as the batch size, is another important training hyper-parameter. Four different batch

sizes, namely M̂ = {10, 20, 50, 100} are used and the one with the best performance is selected.

The Adam optimizer then takes a step using the gradient at that iteration to update the weights using

a pre-defined learning rate. Adjusting the learning rate throughout training is critically important

in finding a set of network weights representing local minimum in the weight space. Initially, the
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learning rate must be high to allow large enough steps towards the optimal weights but these steps

must be gradually reduced to prevent overshooting a local minimum of the cost function. To adjust

the learning rate, a built-in feature of PyTorch named “ReduceLROnPlateau” is used. This function

keeps track of the MSE on the validation dataset used after each epoch to test the Seq2Seq model.

If this value doesn’t decrease for 10 epochs, it reduces the learning rate to a half of its previous

value. It should be noted that it is up to the user to decide on the learning rate and the number of

epochs to wait before reducing the rate. In this paper, the initial learning rate is selected as 0.02.

Epoch is another hyper-parameter to be set. It refers to the number of times the entire training

dataset (consisting of multiple batches) is iterated to update the RNN weights. Here the dataset in

training is 1500 observations divided into batches (with network weights updated after each batch).

During an epoch the training will repeat the learning process on 15 batches when batch size is 100,

30 times when batch size is 50, and so on. The number of epochs used during training will be

described shortly.

Overall, a maximum of 500 epochs are used for training the Seq2Seq model. However, it was

realized that beyond a certain point, the model overfitted the training data where the error on the

Figure 7-6: Training error (MSE) for the proposed encoder-decoder methods: (a) GRU unit cell,
and (b) LSTM unit cell.
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validation dataset would not decrease (and may increase). Thus, to speed up the process of search

for optimal hyperparameters, training was terminated if the validation error did not decrease for

70 epochs. For each value of hidden dimension and batch size, the set of weights that resulted in

the minimum MSE on the validation dataset were stored. Training errors (MSE) for the encoder-

decoder network model is shown in Figure 7-6. Additionally, a section of each plot has been

magnified to depict the divergence of the training and validation errors.

7.3.3 Model Testing

Root mean squared error (RMSE) is a common metric for reporting the errors of time series models

which will be used in this chapter. The units of the response time series data used is microstrain

(µε) and hence the RMSEs have a unit of µε as well. As shown in Table 7-1, for the encoder-

decoder model with GRU cell units, it was found that using a batch size (M̂ ) of 100 with a hidden

dimension (Ĥ) of 30 resulted in the lowest validation error. In that situation, the validation RMSE

is 1.03 µε. Moreover, for the encoder-decoder model with LSTM cell units, it was found that using

a batch size of 50 with a hidden dimension of 70 resulted in the lowest validation error of 0.95 µε.

By selecting the model with the lowest error on the validation dataset, the issue of over-fitting can

be avoided. Note that the total number of training epochs are different for the two cell types and

this is due to terminating the training procedure when the validation error did not decrease for 70

epochs.

During the testing stage, the test dataset containing 450 observations was used. We emphasize

RMSE of GRU (µε) RMSE of LSTM (µε)

Ĥ \ M̂ 10 20 50 100 10 20 50 100

10 8.61 8.58 8.61 8.89 8.61 2.33 8.61 8.89
30 1.79 1.48 1.35 1.03 1.17 1.75 1.26 1.08
50 2.27 3.12 1.39 1.92 3.41 1.07 1.15 1.02
70 5.25 2.72 1.57 1.50 2.42 1.15 0.95 1.06

Table 7-1: Minimum RMSE of the GRU and LSTM cells during training with different batch sizes
and hidden dimensions.
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Method RMSE (µε) Average Inference Time (ms)

Encoder-decoder (GRU) 0.90 0.89
Encoder-decoder (LSTM) 1.03 1.90
ARX 1.26 5.14

Table 7-2: Test results of the Seq2Seq and ARX modes.

Figure 7-7: Predicted responses for two observations: (a) Sample 1, the RMSE values are 0.28
µε, 0.27 µε and 0.66 µε for the GRU and LSTM of encoder-decode methods and ARX models
respectively, and (b) Sample 2, the RMSE values are 2.90 µε, 3.26 µε and 1.16 µε for the GRU and
LSTM of encoder-decode methods and ARX models respectively.

that the training process was fully independent of this testing dataset. The resulting RMSEs and

the inference time for each model are listed in Table 7-2. The computations were carried out on

a Nvidia GTX 1070 GPU. The RNN-based Seq2Seq is also compared with ARX-based sequence

forecasting model whose performance is also listed in Table 7-2. The details regarding training of

the ARX model can be found in [287].

Furthermore, for two sample observations in the test dataset, the model predictions along with

the actual observations on NRB are shown in Figure 7-7. It can be seen that the GRU-based

encoder-decoder model results in the best performance on the test dataset. The performance of the

encoder-decoder model with LSTM units is close to that of the GRU case. Both encoder-decoder
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models outperform the ARX model in terms of accuracy and inference speed. Despite the ARX

model being simpler, the inference time for this model is much longer than that of the encoder-

decoder models. This should be attributed to the fact that the Seq2Seq models takes batches of data

(for GRU a batch of size 100 and for the LSTM a batch of size 50) whereas the ARX only takes

one observation at a time. In addition, we emphasize the code used for implementing the Seq2Seq

models takes advantage of the built-in features of PyTorch. The code used for implementing the

ARX model is written by the authors without further optimization. It may affect the elapsed time

but should not change the fact that ARX model requires more time than the other two models.

7.4 Conclusions and Future Work

In this study, encoder-decoder-based time series forecasting models are used for jointly modeling

two bridges in a highway corridor. A synthetic dataset is generated using the CSiBridge finite

element models to simulate the responses of two bridges to the same moving loads observed in

the field. The load properties were sampled from the actual measurements captured by the WIMS

station along the instrumented highway corridor. Slight perturbations were added to the speed of

the load to make the dataset more realistic. For the encoder-decoder model, two types of recurrent

cell units, namely GRU and LSTM, are tested to predict the responses of the NRB using those

of the TRB as inputs. Both models showed equally competitive results. An ARX model is also

tested as a linear variant of the Seq2Seq models for the task at hand. Both encoder-decoder models

outperformed the ARX model in terms of accuracy and inference time required for the model.

In future studies, we will seek to implement these models on the experimental dataset captured

from the actual bridges. In such data sets, a lower signal-to-noise ratio (SNR) is expected which

may challenge the Seq2Seq models. Besides, actual datasets also reflect many more complicated

factors that may influence the performance of the model, including the lateral position of a truck

on its lane, larger speed variation for trucks passing two bridges, stochastic vehicle bounce and so

forth. In fact, bridge response may not always resemble the same responses to the same vehicular

loads due to possible causes like temporarily locked bearings [95]. Fortunately, as shown in Chap-
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ter 2, a large set of data has already been collected on the two bridges and the size of the data is

keep growing, allowing a more robust and complex model to be trained. Furthermore, we seek to

investigate the capability of the models in damage detection using a synthetic dataset and compare

it with those of the state-of-the-art methods.
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CHAPTER 8.

Learning-based Bridge Weigh-in-motion

8.1 Introduction

Freight transportation is an indispensable part of everyday economic activities. Among all types

of national freight transportation, truck-based freight transportation dominates as it accounts for

77.5% of the entire freight volume within the United States [270]. As trucks heavily rely on well-

maintained highway infrastructures to travel, it has become a common practice across the world

to implement laws limiting truck weight and size with the purpose of extending the lifespan of

infrastructures (such as bridges) and protecting public safety from severe traffic accidents. Real-

time truck weight measurements such as gross weight and axle weight play an important role

in the enforcement of highway truck size and weight regulations. The long-term statistics also

provide a rational basis for freight transportation planning and highway asset management. Con-

ventional weigh stations and pavement-based weigh-in-motion (WIM) stations are two main types

of highway infrastructures for obtaining truck weight measurements in the United States [288].

Conventional weigh station requires trucks to pull over from highways and measure weights of

axle (or axle group) one by one. Doing so provides accurate measurements of truck load charac-

teristics but adds additional travel time to freight transportation lowering the efficiency. On the

contrary, the WIM station is capable of measuring truck weights without slowing them down at the

expense of sacrificing accuracy. WIM stations usually have weighing sensors (e.g., piezoelectric

sensors, bending plates scales or single load cell scales) buried underneath highway pavements and

connected to data acquisition and power systems. As a result, it is naturally costly to install and

maintain WIM stations.
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Recently, the emergence of bridge WIM technology presents a more cost-effective alternative

for weighing trucks. Extensive studies and field tests have been conducted over the past decade

on bridge WIM technology [115, 289, 290]. With sensors (most commonly strain gauges) in-

stalled in bridges, bridge WIM methods rely on measured bridge responses (e.g., strain) to derive

weights of passing trucks in real time. Existing bridge WIM methods are mainly based on Moses’s

algorithm developed in 1979 [267]. Based on the assumption of linear superposition, once an ac-

curate unit influence line (UIL) is identified, the calculation can be formed as an inverse problem

which is solvable through the least squares methods [267, 115]. This method can be combined

with other optimization techniques such as Tikhonov regularization to further improve accuracy

without adding new instrumentation [291]. The accuracy of such a method heavily depends on

the quality of extracted UIL. Several methods have been proposed to improve the quality of UIL

by using calibrated FEM models [292] or site-specific strain response measurements to test trucks

[265, 293]. The UIL-based method also requires vehicle speed, the number of axles and axle

spacing to be determined before the calculation of axle weight [294]. Conventional bridge WIM

methods usually deploy axle detector (e.g., laser sensors) on bridge road surfaces to directly detect

axles. Recently, researcher have proposed nothing-on-the-road (NOR) or Free-of-Axle Detector

(FAD) approaches for bridge WIM [295]. Wavelet domain analysis [296, 297] and virtual simply

supported beam methods [294] have been proven to be able to extract axle information from strain

data. Optimization such Lasso regression with L1-norm is another approach to identify the number

of axles for the target vehicle [298, 299, 300].

Apart from mechanics-based bridge WIM methods, studies have also been done to explore the

use of machine learning in predicting truck weight information from bridge response measure-

ments. The use of artificial neural networks (ANN) to compute axle weight can be traced back to

as early as 1992 before the success of modern deep learning [301, 302]. Due to immature devel-

opment of deep learning and limited computational power, the flexibility of the models is limited

at that time. More recently, the ANN method was tested on real bridges with nearby WIM data

and corresponding bridge response measurements as training data [303]. However, three separate
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networks are required to derive axle weights and the models are only trained on truck with less than

6 axles. Besides, convolutional neural networks (CNN) can be used for identifying axle number,

vehicle type and vehicle speed for UIL-based bridge WIM with a higher accuracy [304].

In this study, a novel learning-based bridge WIM method is proposed leveraging the recent

advances in recurrent neural networks (RNN). Utilizing a large volume of paired bridge response

and WIM data, a bidirectional RNN model is trained to predict truck weight characteristics in-

cluding axle weight, axle spacing, gross weight and travel lane with length-variant bridge strain

responses as inputs. The proposed method is evaluated using simulation data obtained from finite

element models and proven to be more accurate than the influence line-based bridge WIM method.

It is also shown that the proposed method is robust enough against sensing noises in training data,

especially the noises contained in WIM data. A computer vision-enabled cyber-physical system

is implemented as a test-bed along a 20-mile I-275 northbound highway corridor in Michigan to

demonstrate the viability of such a learning-based bridge-WIM in real world.

8.2 RNN-based Bridge Weigh-in-motion

Considering the long-duration interaction between a bridge and vehicles, sequential bridge re-

sponses contain rich information regarding the characteristics of corresponding vehicles that in-

duce the responses. In this study, an RNN-based machine learning model is proposed to map

bridge responses to vehicular load parameters. The proposed model takes sequential bridge re-

sponses as inputs and outputs properties of interests of corresponding passing vehicles. Fed with

sufficient training data (i.e., bridge responses and ground-truth traffic load properties), the model

can learn the knowledge of the bridge system through proper training. Compared to pavement-

based WIM stations, such an approach allows a handful of sensors to be easily deployed in a

bridge with a relatively low cost for the same purposes.
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8.2.1 Model Architecture

A bi-directional RNN model is utilized for predicting vehicular load parameters using induced

bridge responses as inputs. The architecture of the model is shown in Figure 8-1. The input

sequence (i.e., bridge responses) are represented by S = {s1, s2, s3, ..., sT} where T is the length

of the input sequence, st ∈ Rm contains bridge response measurements from multiple (m) installed

sensors for any specific time step t and st = {st1, st2, ..., stm}. The bi-directional RNN is made up

of two sets of RNN, namely a forward RNN unit and a backward (or reverse) RNN unit. The

Figure 8-1: Bi-directional RNN architecture for estimating traffic load characteristics using corre-
sponding sequential bridge responses.
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forward RNN, represented by Φf , goes through the sequential inputs from the beginning to the end

and the backward RNN, represented by Φb does the opposite. The RNN used in this section is the

long short-term memory (LSTM) unit described in subsection 7.2.2 and it is a common practice to

define the two RNNs in the opposite directions with weights of the same dimensions. The entire

input sequence is available before inference instead of being seen by the model in an online (one-

by-one) manner. At each time step t, a bridge measurement vector st is fed into both the forward

RNN and the backward RNN along with the hidden states (h in Figure 7-2(b)) and cell states (c

in Figure 7-2(b)) from the previous step. In the meanwhile, a concatenation of the hidden states

from two directions will be returned at each time step as ht ∈ R2Ĥ , resulting in a sequence of

hidden states containing extracted information eventually. The Ĥ is the pre-defined dimension of

the hidden state in each direction. The returned hidden state sequence can be treated as a matrix,

H , of shape RT×2Ĥ . Given the hidden states, different types of manipulations, which will be

described in the following subsections, can be used to convert them to the form of desired outputs.

The model outputs are vehicular load characteristics such as axle weight, axle spacing, travel lane

on the bridge and vehicle speed, etc. Depending on the design and training data available, the

model can predict one or multiple types of load characteristics in a multi-task learning fashion.

The axle weight is expressed as a 11-dimension vector as the maximum number of axles allowed

in Michigan is 11. If a truck has less than 11 axles, the extra entries at the tail of this vector will

just be set as 0. The same logic is also used to handle axle spacing such that the output has a fixed

length.

8.2.2 Hidden States Aggregation Module

This subsection describes several types of hidden states aggregation modules evaluated in this

study. Such a module aims to encoding a variable length of hidden state sequence to a fixed

length embedding and ultimately truck load characteristics. The most straightforward approach is

to concatenate the last-step hidden state of the forward RNN (t = T ) and that of the backward

RNN (t = 1) and then feed the concatenated hidden state into a multi-layer full connected neural
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Figure 8-2: Architectures of hidden states aggregation module: (a) concatenation of last-step hid-
den states of RNNs in forward and backward directions; (b) max-pooling of all hidden states
generated by the bi-directional RNN model along the direction of input sequence.

network (same as ANN). The function of the ANN is to perform another layer of linear and non-

linear transformation for dimension reduction such that the final desired output can be generated.

This process is illustrated in Figure 8-2(a).

Another way of aggregation is to take hidden states at all time steps into account and use a max

pooling layer to extract the max value in each dimension of the hidden states along the sequence

direction as shown in Figure 8-2(b). The extracted hidden state vector will also be passed through a

ANN to produce the final predictions. Even though the bi-directional RNN goes through the entire

sequence of strain response input, it is known that RNN may perform poorly on memorizing the

information extracted from early steps till the last step [305]. As a result, max-pooling the entire

set of hidden states has the benefit of aggregating all potentially useful information extracted by

the RNN along the sequence. In addition, compared with the module taking the last-step hidden

states in two directions, this max-pooling approach only adds a negligible computation overhead.
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Figure 8-3: Architecture of the self-attention mechanism .

8.2.3 Attention Mechanism

A more complicated approach to aggregate the generated hidden states is to use the self-attention

mechanism, whose process is illustrated in Figure 8-3 [306]. In general, the attention mechanism

can be considered as a way to take one or multiple weighted sum of the hidden states generated

at all time steps [306]. It is called self-attention in that the weights used for weighted summation

of hidden states are computed directly from the hidden states themselves. The process takes the

entire set of hidden states, H ∈ RT×2Ĥ , as inputs and outputs a matrix A ∈ Rr×T for aggregating

the hidden states in a weighted summation approach where A = {α1, α2, ..., αT} and αt ∈ Rr.
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This process can be formulated as

A = softmax(Ws2tanh(Ws1H
T )) (8.1)

where Ws1 ∈ Rd×2Ĥ and Ws2 ∈ Rr×d are two trainable weight matrices responsible for linear

transformation. In addition, tanh(x) is the hyperbolic tangent activation function:

tanh(x) =
ex − e−x

ex + e−x
(8.2)

and the general softmax function takes a vector x as its input and outputs a normalized vector

whose summation is 1, which can be expressed as Equation 8.3. It is used to convert a vector of

a finite number of entries to a virtual probability distribution, which is used here as the weights

for weighted summation. In this sense, the purpose of self-attention mechanism is actually to

redistribute the importance of hidden states at different time steps for aggregation. It should be

noted that the A contains r groups of weights which can be used to generate r distinct aggregated

vectors. These r vectors can be concatenated as an integrated embedding and fed into ANN for

final predictions. In addition to r, the dimension d of the two intermediate weight matrices is also

a parameter that needs to be defined manually. Compared with the two approaches described in the

previous section, the self-attention mechanism shown here provides a more flexible and dynamic

way for encoding the bridge response sequence into a fixed-length embedding. In this study, we

simply set r = 1.

softmax(x) = ex/
∑

ex (8.3)

8.3 Experiments on FEM Simulation Generated Data

The proposed method is first evaluated using simulation data generated from a finite element model

before being applied to the real-world dataset. For supervised learning like the proposed learning-

based bridge WIM, the training data always includes model inputs (i.e., bridge responses) and
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Figure 8-4: Sample of simulation data (from left to right): a) layout of Newburg Road Bridge
wireless sensor network; b) time-histories of strain gauge measurements generated from finite
element modeling simulation.

ground-truth labels (truck load characteristics such as truck axle weights). In this study, the labels

are the WIM measurements that have been matched with corresponding bridge responses. How-

ever, errors are associated with load measurements captured by real-world WIM sensors due to

intrinsic system errors in equipment and dynamic interaction between vehicle axle and pavements.

The WIM station along the I-275 is a type II WIM station which may subject to up to 30% relative

error with respect to axle weight and 15% relative error with respect to vehicle gross weight in

terms of the 95th percentile error [255]. As a result, the labels of training data available in real-

world dataset is noisy. Evaluating the model with simulation data allows us to start with training

data without noises to test the effectiveness of models with different types of hidden state aggrega-

tion modules and its robustness against noises in labels, which cannot be achieved with real-world

data.

8.3.1 Dataset

A picture of the selected finite element model is shown in Figure 7-5(b). The bridge model is

built based on the engineering drawings of the Newburg Road Bridge and calibrated using bridge

response measurements. In this experiment, only a single loading scenario where trucks traverse

the bridge using the slow lane is considered. The slow lane is the most common lane that trucks

use in reality. Additionally, the model output is set to be only the 11-dimension truck axle weight
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Figure 8-5: Statistics of simulation data for model training (from left to right): 1) distribution of
axle numbers; 2) distribution of gross vehicle weight; 3) distribution of axle weight.

at this stage and the vehicle gross weight can be calculated easily by summing all axle weights.

More complicated combination of model outputs is left for future work using a multi-task learning

method. To generate bridge responses, we randomly take samples of real truck load measurements

captured by the WIM station along the I-275 northbound corridor as truck loads to stimulate the

bridge model. Bridge response time-histories from 3 virtual sensors (GS1, GS2 and GS3 shown

in Figure 8-4(a)) are extracted through simulation and a sample dataset is plotted in Figure 8-4(b).

The three sensors are installed to the girder web at mid span 3 inches (7.62 cm) above the bottom

flange on the corresponding girders. Accordingly, the m described in the subsection 8.2.1 is 3. A

simulation dataset containing totally 3800 bridge response sequences to truck events are generated

eventually. Among these 3800 sequences, 3300 of them are used for model training, 200 are used

for model evaluation and the rest 300 are used for model testing. Statistics regarding training data

including the distribution of the number of axles, axle weight and vehicle gross weight are shown

in Figure 8-5. The distributions for the evaluation and test datasets are similar. It can be observed

that the data is imbalanced in terms of the number of axles as it is most common to see 5-, 2- and

11-axle trucks and less common for the other types. The gross vehicle weight in the sample dataset

ranges from 8.42 kips to 168.93 kips and the axle weight ranges from 0.54 kips to 29.46 kips. Since

the bridge response sequences are generated from the finite element model, it is possible to make

all of them have the same length which is 301 here.
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8.3.2 Model Training

To train the proposed model to learn to predict truck load axle weights from bridge responses, we

feed the training data with a mini-batch of 20 sequences. The Adam optimizer [188] with an initial

learning rate of 0.01 is used for updating network weight through the training. The learning rate

(lr) is decreased following an exponential function of epoch number as follows:

lrepoch = lr0 × 0.96epoch (8.4)

In addition, a norm-based gradient clip with the maximum set to be 2 is employed for a more

stable convergence. The dimension of hidden state in each direction is set to be 512 and all initial

hidden states are set to vectors containing all zeros. The maximum training epoch is set to 250

and an early stop strategy is used depending on the evolution of evaluation loss through training.

For the experiments described in this section, we only predict a 11-dimension axle weight w for

each set of bridge strain response sequences. The loss function is formulated as follows to impose

supervision on each axle weight value:

L = L1smooth(wpred, wlabel) (8.5)

where the wpred is the predicted axle weight vector, wlabel is the ground-truth axle weight vector,

and the L1 smooth function is defined as follows:

L1smooth(x, y) =
1

n

∑
i

zi

zi =

0.5(xi − yi)2, if |xi − yi| < 1

|xi − yi| − 0.5, otherwise

(8.6)

185



Avg. axle
weight error

95th axle
weight error

Avg. gross
weight error

95th gross
weight error

# axle
accuracy

Inference
time

Last-step 13.86% 46.33% 3.35% 9.56% 65.67% 0.0121 sec
Max-pooling 7.56% 25.97% 1.66% 5.88% 89.00% 0.0123 sec
Self-attention 13.04% 44.89% 2.71% 8.83% 83.67% 0.0125 sec

Table 8-1: Test results for the proposed model with three types of hidden state aggregation mod-
ules.

8.3.3 Evaluation

The evaluation in this section includes two parts. Firstly, the accuracy of the three types of hid-

den state aggregation modules is investigated to select the best for real-world use. Secondly, the

robustness of the proposed model against noises in training labels is tested for the selected model

after the first stage.

The accuracy of the model is evaluated with five metrics, namely average axle weight error,

average vehicle gross weight error, 95th percentile of axle weight error, 95th percentile of vehicle

gross weight error and axle number accuracy. For a specific kind of weight xw (i.e., axle weight

or gross weight), the error, e, is defined as Equation 8.7 [255]:

e =
|xwpred − xwlabel|

xwlabel
(8.7)

The error is only calculated based on ground-truth labels and zero-value axle weight is not

counted. For example, if the model predicts out 6 non-zero axle weights for a 5-axle truck the last

axle weight is not calculated since the error will be infinite. The amplitude of the 95th percentile

error is determined such that 95% of the calculated errors are smaller than this value. Regarding

the accuracy of axle number, for a specific truck, if the model predict the correct number of axles

it counts one towards true positives and the final accuracy is calculated as the ratio of true positives

over the total number of trucks. Apart from accuracy, we also compare the inference time to

proceed a single sequence with the same length among three different variations. The training and

test are both performed using a Nvidia XP GPU.
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Noisiness Level (95th percentile) 0% 2.5% 5% 10% 20% 30%

Avg. axle weight error 7.56% 8.27% 9.02 % 9.48% 9.43% 10.09%
95th axle weight error 25.97% 27.93% 30.41% 31.27% 29.76% 31.94%
Avg. gross weight error 1.66% 1.63% 2.56% 2.57% 2.79% 2.95%
95th gross weight error 5.88% 5.11% 8.62% 8.16% 9.68% 8.69%
# axle accuracy 89.00% 87.67% 86.67% 86.67% 88.67% 88.67%

Table 8-2: Test results for the proposed model with training labels corrupted with Gaussian noise
errors.

Three variations of the proposed model with different hidden state modules are trained and

tested using the test dataset with the metrics described above. The results are shown in Table 8-1.

It can be observed from the table that the max-pooling approach obtained the best performance

in terms of accuracy. Both the 95th axle weight error (25.97%) and the 95th gross weight error

(5.88%) meet the accuracy requirement of a Type II WIM station. All three approaches exhibit

very close inference speed. Compared to the ground-truth labels, most of the negative samples

with wrongly predicted axle numbers have a difference of 1. Based on the above outcome, the bi-

directional LSTM model with the max-pooling aggregation module is selected for further analysis.

Real-world WIM station measurements suffer a certain level of noises following a normal

distribution [307]. To test the robustness of the model against noisy training labels, Gaussian

noises are randomly sampled to corrupt the training labels (i.e., axle weights). The mean of the

Gaussian noise is always 0 and the noises are added in terms of relative error according to Equation

8.7. Five stages of noisiness levels are tested where the standard deviation of the Gaussian error

distribution, σ, is increased following the set {0, 0.0125, 0.025, 0.05, 0.01, 0.015} resulting in the

95th percentile error in axle weights being 0, 2.5%, 5%, 10%, 20% and 30%, respectively. It should

be noted that even though the model is trained using noisy labels it is still tested using uncorrected

test labels. The results of the experiment is shown in Table 8-2 and Figure 8-6. It can be observed

that with an increased level of noisiness, the accuracy of the model doesn’t degrade much. With a

30% noisiness level, the accuracy of the model can still nearly satisfy the requirements of a Type II

WIM station. As a result, it can be concluded that it is possible to train a model based on corrupted
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Figure 8-6: Model performance degradation trends with increased levels of noisiness. (Note: red
dash lines represent precision requirements for a type II WIM station.)

training data generated from a Type II WIM station to meet the same criterion for the same type

of WIM station. Besides, it is very likely that better tuned parameters and more training data can

help further improve model performance.

8.4 Experiments on Collected Data

In this section, the proposed bi-directional LSTM method, especially the variant with the max-

pooling hidden state aggregation module, will be tested using real-world data for learning-based

bridge WIM.

8.4.1 Dataset and Model Training

Bridge strain responses measured by three strain gauges installed in the same locations as the

virtual sensors, namely GS1, GS2 and GS3 are used as model inputs to test the effectiveness of the

proposed method. Unlike the experiments conducted on simulation data, the loading scenarios of
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Figure 8-7: Bridge response samples using different lanes of the Newburg Road Bridge along with
corresponding traffic images. (Note: two vertical dash lines represent the left and right boundaries
based on which bridge responses to truck events are segmented accordingly.)

all three lanes are considered in real data-based experiments. However, the dataset is still limited

to the cases where only one truck is on the bridge. Three sample sets of strain response sequences

with trucks using different lanes are shown in Figure 8-7 along with corresponding traffic images.

The responses to specific truck events are segmented from the entire collected data sequences. The

left and right boundaries are notated using vertical dash lines in Figure 8-7.
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In total, a dataset containing 7410 truck events, with each event includes bridge strain responses

measured at 3 the strain gauges and corresponding truck load measurements, is used to demonstrate

the propose method using real-world data. Among the 7410 truck events, 3751, 3635 and 24 trucks

passed the bridge using the slow lane, middle lane and fast lane, respectively. The distribution of

the number of truck axles, axle weights and vehicle gross weights are similar to the ones shown

in Figure 8-5. The dataset is split into three sub-dataset, namely training, evaluation and test,

consisting of 6670, 370 and 370 events, respectively. For this dataset, the maximum sequence

length is 1160 which is much longer than the simulation data. Such a fact makes learning on real-

world data more challenging. To achieve batch training, sequences with length less than 1160 are

padded with zeros at tail such that all input sequences share the same length.

The model with the max-pooling method is trained with the dataset with the aim of predicting

11-dimension axle weights. The training strategy (including batch size, optimizer, etc.) and loss

function are kept identical to the experiments performed on simulation data. The only difference

is that the initial learning rate is adjusted to 0.025 for a more rapid learning.

Figure 8-8: Scatter plots on the predicted values of vehicle gross weights and axle weights and
corresponding WIM measurements in the test dataset.
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8.4.2 Evaluation

Due to the lack of ground-truth labels (i.e., static axle weights), it is impossible to evaluate the

accuracy of the trained model like what has been conducted in the previous section. Instead, for

the test dataset, predicted truck weights (both gross weights and axle weights) and WIM-measured

truck weights are plotted in Figure 8-8 in the form of scatter plots to show their correlation. Plotted

at the same are the precision limits represented by red dash lines. The limits for gross weights and

axle weights are ±15% and ±30%, respectively.

8.5 Summary and Conclusions

Real-time truck weight measurements such as gross weight and axle weight play an important role

in the enforcement of highway truck size and weight regulations. The long-term statistics also pro-

vide a rational basis for freight transportation planning and highway asset management. Recently,

the emergence of bridge WIM technology presents a more cost-effective alternative for weighing

trucks. With sensors installed in bridges, bridge WIM relies on measured bridge responses to de-

rive weights of passing trucks in real time. In this study, a learning-based bridge WIM method

is proposed. Utilizing a large volume of paired bridge response and WIM data, a bidirectional

LSTM network is trained to predict truck weight characteristics including axle weights and gross

weight with bridge strain responses as inputs. The proposed method is evaluated using simulation

data obtained from finite element models and proven to be sufficiently accurate for a type II WIM

station. The robustness of the proposed method against sensing noises in training data is also in-

vestigated. A computer vision-enabled cyber-physical system is implemented as a test-bed along a

20-mile I-275 northbound highway corridor in Michigan. Evaluation using real-world dataset also

demonstrates the feasibility of the proposed bridge WIM approach.

With proper cyber-physical system-enabled enhancements, existing bridge structural health

monitoring systems can be transformed into a bridge WIM station using the proposed method.

According to the traffic statistics made available by the MDOT, the commercial annual average
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daily traffic (AADT) along the selected I-275 corridor is 8,836, which means a few days’ CPS data

might be sufficient for the training of the proposed learning-based bridge WIM method. For future

work,the effects of more factors, such as ambient temperature, size of training dataset, sensor loca-

tions, sensing sampling rate, etc. on the accuracy of the bridge WIM system will be investigated.
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CHAPTER 9.

Conclusions

9.1 Summary of Results and Contributions

Bridge structural health monitoring (SHM) has been intensively studied by researchers and in-

dustrial companies over the last decade and increasingly more real-world bridges have been in-

strumented with long-term SHM systems for structural condition monitoring [38]. While rapid

improvements in bridge SHM have been achieved, there remain technical challenges associated

with existing methodologies. A major limitation is the lack of information and data of traffic

loads (such as vehicle weight) which is one of the major consumers of the service life of bridge

infrastructures, especially for medium- and short-span bridges [129]. As a result, existing bridge

SHM approaches heavily rely on bridge response data and output-only methods hindering their

accuracy. To resolve this issue, this dissertation focuses on the development and applications of

cyber-physical systems (CPS) to enhance existing highway bridge SHM systems including track-

ing truck loads in highway corridors and in doing so, offering insight to loads (inputs) inducing

the bridge responses (outputs) measured. With a powerful CPS deployed, novel SHM applications

can be built upon it that improve asset management decisions.

In this study, a CPS-enabled bridge SHM framework is proposed where bridge SHM systems

and intelligent transportation system sensing technologies (e.g., traffic cameras and WIM stations)

are linked together to form an integrated information network. The work focused on linking two

bridges (Telegraph Road Bridge and Newburg Road Bridge) with measurement of truck weights

along a 20-mile long corridor of northbound I-275 between Newport and Romulus, Michigan.

Leveraging the implemented CPS, this thesis managed to collect abundant bridge input and output
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data which has not been available for SHM analysis in the past. The acquired data not only allows

novel bridge SHM methods to be developed and but also opens up the possibility of using SHM

systems for traffic load monitoring. In addition, the value of SHM methods to inform infrastructure

management is clearly showed in this thesis using the practical real-world implementation of two

operational bridges. Specific infrastructure management applications included the assessment of

long-term bridge deck deterioration and bridge load rating. To the author’s best knowledge, this is

the first time such a system has been developed to scalably collect truck weight data for improved

assessment of bridge performance and health by the SHM community. With that said, the ma-

jor contribution of this study can be summarized as: 1) proposed and implemented a CPS-enabled

bridge SHM network and demonstrated the viability and effectiveness of an automated data collec-

tion network in real world bridge applications; 2) proposed and evaluated several novel data-driven

bridge SHM and highway traffic load monitoring methods based on the wealth of collected CPS

data collected over multiple years, showing the great value that bridge SHM systems can bring to

highway asset management. The summary and contribution of each chapter are summarized as

follows.

In Chapter 2 and Chapter 3, a cyber-physical system (CPS) framework was proposed, designed

and deployed to track truck loads in a highway corridor, to trigger SHM systems to record bridge

responses, and to automate the linking of bridge response data with truck weights collected by

weigh-in-motion (WIM) stations installed along the corridor but not collocated (i.e., separated

miles apart) with the bridges. To link truck weights to bridge responses, computer vision methods

based on convolutional neural network (CNN) architectures were used to automate the detection

and re-identification of trucks using traffic cameras. The single-stage CNN object detector YOLO

was trained using a customized dataset to identify trucks from camera images at each instrumen-

tation site; a high precision in vehicle detection was obtained with the YOLO detector exceeding

95% average precision (AP) for an intersection over union (IOU) threshold of 0.75. To re-identify

the same truck at different locations in the corridor, a CNN-based encoder trained via a triplet net-

work and a mutual nearest neighbor strategy using feature vectors extracted from images at each
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measurement location were adopted. The proposed re-identification method was implemented in

the CPS cloud environment and obtained an F1-score of 0.97. The study also explored the trigger-

ing of bridge monitoring systems based on visual detection of trucks by a traffic camera installed

upstream to the bridges. The triggering strategy proved to be highly efficient with 99% of the

triggered data collection cycles capturing truck events at each bridge. To validate, the CPS archi-

tecture was implemented on the aforementioned 20-mile highway corridor along I-275 that has a

WIM station already installed; four traffic cameras and two bridge SHM systems were installed

along the corridor and integrated with a CPS architecture hosted on the cloud. In total, over 20,000

trucks were observed at all measurement locations over a one year period alone, allowing peak

bridge responses to be correlated to both measured truck weights and to one another.

In Chapter 4, long-term bridge monitoring data collected by the deployed CPS architecture

was used to quantitatively assess the composite action exhibited in slab-on-girder highway bridges

and to investigate the potential relationship between composite action and deck deterioration over

negative bending regions. Telegraph Road Bridge, a three-span highway bridge in Michigan, was

instrumented with a wireless structural monitoring system to observe the flexural response of the

three spans to vehicular loads. The monitoring system was designed to offer data for quantita-

tive assessment of the degree of composite action in composite and non-composite sections of the

bridge spans using the position of neutral axis and the magnitude of slip strain at the concrete-steel

interface as key response parameters correlated to composite action. It was shown that unintended

(i.e., not accounted for in the slab design) nonlinear partial composite action exists in negative

bending regions of the bridge. A calibrated analytical model and a finite-element model were de-

veloped based on empirical observation allowing tensile strains in the deck to be estimated under

load. Estimated surface strains were compared with those with the design assumption of no com-

posite action at the slab–girder interface in the negative bending regions. It was concluded that

the observed partial composite action is resulting in higher tensile strains in the deck top surface

which is a likely culprit to accelerated deck deterioration.

Chapter 5 presented a data-driven approach for site-specific bridge load rating empowered by
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measurements of truck loads. Current bridge rating practices rely on simplified (i.e. approximate)

analytical models and empirical parameters which do not reflect site-specific behavioral properties

of the target bridge, rendering resultant rating factors overly conservative [234, 235]. To reduce

the conservatism associated with conventional bridge rating methods, this study proposed a data-

driven approach to incorporate bridge-specific behavioral responses to offer more accurate model

parameters into the rating process detailed by the Load and Resistance Factor Rating framework of

AASHTO. Among all relevant parameters, those used for calculating live load effects, especially

dynamic load allowance and unit influence lines, were extracted in a probabilistic manner from

integrated bridge structural responses and weigh-in-motion truck weight data collected by the CPS

framework leveraging computer vision techniques. To demonstrate the proposed data-driven rat-

ing method, the Telegraph Road Bridge and Newburg Road Bridge instrumented with long-term

wireless bridge SHM systems were selected as test targets. Totally, six girder components of the

two instrumented highway bridges were rated using the proposed method and the rating factors

were compared with those obtained using conventional approximate and refined (i.e., finite ele-

ment model-based) methods.

Chapter 6 introduced a comprehensive wireless monitoring system that seamlessly integrated

a mobile wireless sensor network installed in a tractor-trailer truck to measure dynamic truck be-

havior with a stationary wireless monitoring system installed in a bridge to measure vibrations

and strains. Doing so showed the potential to add vehicle dynamic loads, especially sprung-mass

trucks, as an integral part of the proposed CPS system. This approach to including vehicles in the

CPS has great promise as vehicles get more instrumented with connected vehicle technology. For

example, in-situ measurement of truck behavior can be used to change trucks for consumed service

life in tool-based transportation systems. Time-synchronized truck-bridge response data was used

as the basis for modeling the interactions between the truck and the bridge. A two-stage subspace

system identification modeling framework was introduced to create accurate input-output models

of bridge behavior. The Telegraph Road Bridge (TRB) was used again as a validation platform.

In Chapter 7, time series forecast models were explored as a tool for jointly modeling the
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response of bridges on the same corridor exposed to identical load conditions. Forecasting models

could be a basis for observing a truck at one bridge to predict how another bridge would behave to

the same truck. This prediction could be used by the CPS to control the truck to lowers its response

on a bridge. Two types of forecast models were built for the task at hand. An encoder-decoder

architecture with two different cell types, namely gated recurrent unit (GRU) and long short-term

memory (LSTM), were explored. To evaluate the performance of the forecast models in taking the

output of one bridge to predict the response of another under the same truck load, finite element

models were built for the Telegraph Road Bridge and Newburg Road Bridge; the finite element

models were then used to simulate a dataset containing 2,100 pairs of bridge responses to the same

truck load. The two encoder-decoder models provided more accurate prediction capabilities of

bridge responses compared to the ARX baseline approach.

Finally, in Chapter 8, a learning-based method was proposed to further explore the use of deep

learning to advance bridge WIM (BWIM) technology. Utilizing a large volume of paired bridge

response and WIM data, a bidirectional recurrent neural network (RNN) was trained to predict

truck weight characteristics including axle weight, axle spacing and gross weight with measured

bridge strain responses used as inputs. The proposed method was evaluated using simulation data

obtained from finite element models and proven to have sufficient precision equivalent to a Type

II WIM station for axle weight and vehicle gross weight prediction. The proposed method was

also proven to be robust against sensing noise in the training labels, which makes it possible to be

implemented in the real world using the proposed CPS-enabled SHM network. The learning-based

BWIM method was also evaluated using the paired bridge response and WIM data collected from

the Newburg Road Bridge showing its effectiveness in real operational bridges.

9.2 Future Research Work

Many aspects of this Ph.D. research can be further improved and explored. For the CPS system, the

computer vision-based truck identification approach can be extended to hardware-based methods

such as radio-frequency identification (RFID), dedicated short-range communications (DSRC) or
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5G. Doing so can enable the CPS architecture to perform well even during night time when truck

detection suffers using computer vision. The accuracy of the computer vision-based truck detec-

tion and re-identification modules can also be further improved by using more advanced computer

vision algorithms that are just emerging. The analysis done in Chapter 3 to model bridge composite

action behavior can be extended for a longer period of time such that changes in bridge measured

composite properties over time can be observed and linked to bridge structural condition (espe-

cially deck deterioration) in a more conclusive manner. The encoder-decoder method proposed

in Chapter 7 for joint bridge response forecasting should be evaluated using real-world data and

tested for bridge damage detection. For example, damage may detrimentally impact the forecast

model allowing it to be used to flag when damage in the two bridges begin to emerge. In Chapter

8, the effects of factors such as training data size and temperature on the accuracy of the proposed

learning-based BWIM system should be further investigated. More sophisticated models and loss

functions can also be developed to predict more types of truck load characteristics including speed

and axle spacing. Addressing the scenario where multiple trucks load a bridge simultaneously is

another important needed to make the proposed method more practical for real operational settings.

Additionally, more work should be done to expand the role of the proposed CPS framework

for load control of the trucks. Future research can be conducted to control the trucks (e.g., speed,

lane and distance between adjacent trucks) based on observations made by the CPS architecture to

mitigate in real-time bridge deterioration due to dynamic trucks and to improve traffic efficiency

(throughput). For example, observed trucks in a corridor can inform how they can be driven in

the corridor when crossing bridges downstream to minimize their dynamic amplification factors.

This could extend the life of bridge with fatigue-like (i.e., repeated cyclic response) deterioration

mechanisms such as deck breakdown and metallic fatigue cracking.

The proposed CPS framework can also be applied to other civil infrastructure domains. For

example, human-beings can be placed in the loop of CPS to form a cyber-physical-social-system

(CPSS) for urban sensing. With people as analog loads, public resources (e.g., public space, furni-

ture) can be better managed and maintained through monitoring resource usage. For example, the
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presented CPS architecture could be used to detect people using computer vision detectors (like

YOLO). People interactions in time and space could be tracked much like truck loads were tracked

in this thesis to understand how they use infrastructure in public spaces (e.g., in transit systems,

parck, etc.)
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algorithms for indirect structural health monitoring of a bridge model via dimensionality
reduction,” Mechanical Systems and Signal Processing, vol. 136, p. 106454, 2020.

[279] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-
works,” in Advances in neural information processing systems, pp. 3104–3112, 2014.

[280] H. Wilms, M. Cupelli, and A. Monti, “Combining auto-regression with exogenous variables
in sequence-to-sequence recurrent neural networks for short-term load forecasting,” in 2018
IEEE 16th International Conference on Industrial Informatics (INDIN), pp. 673–679, IEEE,
2018.

[281] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar: Probabilistic forecasting
with autoregressive recurrent networks,” International Journal of Forecasting, 2019.

[282] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff, “Lstm-based
encoder-decoder for multi-sensor anomaly detection,” arXiv preprint arXiv:1607.00148,
2016.

[283] L. Lennart, “System identification: theory for the user,” PTR Prentice Hall, Upper Saddle
River, NJ, pp. 1–14, 1999.

[284] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Recurrent neural net-
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