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ABSTRACT

This thesis focuses on developing and implementing new statistical methods to

address some of the current difficulties encountered in the analysis of

high-dimensional correlated biomedical data. Following the divide-and-conquer

paradigm, I develop a theoretically sound and computationally tractable class of

distributed statistical methods that are made accessible to practitioners through R

statistical software.

This thesis aims to establish a class of distributed statistical methods for regression

analyses with very large outcome variables arising in many biomedical fields, such

as in metabolomic or imaging research. The general distributed procedure divides

data into blocks that are analyzed on a parallelized computational platform and

combines these separate results via Hansen’s (1982) generalized method of

moments. These new methods provide distributed and efficient statistical inference

in many different regression settings. Computational efficiency is achieved by

leveraging recent developments in large scale computing, such as the MapReduce

paradigm on the Hadoop platform.

In the first project presented in Chapter III, I develop a divide-and-conquer

procedure implemented in a parallelized computational scheme for statistical

estimation and inference of regression parameters with high-dimensional correlated

responses. This project is motivated by an electroencephalography study whose

goal is to determine the effect of iron deficiency on infant auditory recognition

xii



memory. The proposed method (published as Hector and Song (2020a)), the

Distributed and Integrated Method of Moments (DIMM), divides responses into

subvectors to be analyzed in parallel using pairwise composite likelihood, and

combines results using an optimal one-step meta-estimator.

In the second project presented in Chapter IV, I develop an extended theoretical

framework of distributed estimation and inference to incorporate a broad range of

classical statistical models and biomedical data types. To reduce computational

speed and meet data privacy demands, I propose to divide data by outcomes and

subjects, leading to a doubly divide-and-conquer paradigm. I also address

parameter heterogeneity explicitly for added flexibility. I establish a new theoretical

framework for the analysis of a broad class of big data problems to facilitate valid

statistical inference for biomedical researchers. Possible applications include

genomic data, metabolomic data, longitudinal and spatial data, and many more.

In the third project presented in Chapter V, I propose a distributed quadratic

inference function framework to jointly estimate regression parameters from

multiple potentially heterogeneous data sources with correlated vector outcomes.

This project is motivated by the analysis of the association between smoking and

metabolites in a large cohort study. The primary goal of this joint integrative

analysis is to estimate covariate effects on all outcomes through a marginal

regression model in a statistically and computationally efficient way. To overcome

computational and modeling challenges arising from the high-dimensional

likelihood of the correlated vector outcomes, I propose to analyze each data source

using Qu et al.’s quadratic inference funtions, and then to jointly reestimate

parameters from each data source by accounting for correlation between data

sources.
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CHAPTER I

Introduction

1.1 Motivation

Recent technological and computational advances have greatly reduced the cost

of data generation and storage, leading to a new era of “big data”: data that is

massive in volume, velocity, variety and complexity (Secchi, 2018). The wealth of

information available presents an opportunity to gain unique insights in biomedical

research. In particular, these developments have paved the way for new, exciting

and meaningful scientific research in fields such as neuroscience, genomics,

personalized medicine, and many more. Statisticians and applied researchers tend

to formulate a hypothesis about the data generated by a scientific study and test

its validity, with accompanying measures of uncertainty, to gain insights into the

data. Several difficulties arise when applying this approach to high-dimensional

data. With increasingly complex data, it becomes increasingly difficult to ask the

right questions of the data, and obtain a meaningful and nuanced answer.

Moreover, high dimensionality can lead to incorrect statistical inference and

scientific conclusions due to noise accumulation, spurious correlations, and

incidental endogeneity (Fan et al., 2014). Finally, classical statistical methods are

burdened with tremendous, and oftentimes prohibitive computational costs when
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applied to high-dimensional datasets.

In this dissertation, I focus on developing divide-and-conquer solutions to the

problem of analyzing high-dimensional response vectors with complex correlation

structure. I describe the key computational and statistical challenges posed by this

problem below.

1.2 Big Data Challenges

1.2.1 Modelling Challenges

When Big Data consists of a large number of correlated random variables, as is

frequently the case for example in brain imaging, modelling their joint distribution

can be challenging for many reasons. It can be difficult to model the full distribution

of the data or high-order moments, especially as the number of moments increases

beyond the sample size, because of a lack of information on them. Additionally,

it can be challenging to capture the variety and heterogeneity of the data without

using a large number of parameters, or to determine homogeneity/heterogeneity of

these parameters. To address some of these difficulties, Qu et al. (2000) propose

the Quadratic Inference Function (QIF) for generalized linear models with correlated

outcomes. While this function does not model the correlation parameters, it imposes

a correlation structure on the entire high-dimensional correlation structure, which

can be statistically inefficient. In practice, when dealing with complex multi-level

dependent data, it is ideal to begin by modelling local correlation structures and

aggregate them into a global correlation specification. Indeed it is relatively easy

to use a simple correlation structure, such as compound symmetry or AR(1), to

appropriately capture local correlation. I will propose methods to estimate and

carry out inference in a computationally efficient distributed fashion for a set of

parameters of interest without modelling higher-order moments. The flexibility of
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these methods allows the high-dimensional response to have a complex multi-level

correlation structure, minimizing loss of statistical efficiency.

1.2.2 Computational Challenges

One of the key computational challenges with correlated big data stem from

inverting large matrices and optimizing over a large number of parameters (Cressie

and Johannesson, 2008; Banerjee et al., 2008). Furthermore, iterative algorithms

need to repeatedly evaluate an objective function over a very large dataset, which

can be time consuming. Modern computing platforms use distributed systems to

store data on different servers, and recent computing and algorithmic advances

allow statistical methods to be run in a distributed fashion when the data on

different servers are independent; computing platforms include the MapReduce

paradigm on the Hadoop platform (Khezr and Navimipour, 2017) and Apache

Spark (Zaharia et al., 2010); recent algorithmic advances include kernel ridge

regression (Zhang et al., 2015b) and matrix factorization (Mackey et al., 2015). It

is unclear how to proceed, however, when data on different servers are dependent.

Moreover, these platforms are not accessible to applied researchers working in the

biomedical field, who tend to work with R or SAS. Finally, some of these platforms,

such as Apache Spark, still have an iterative component to them that is

computationally challenging. I will provide distributed estimation and inference

solutions for correlated distributed data problems that are of interest to applied

researchers, with an R package for ease of implementation.

1.2.3 Theoretical Challenges

Theoretical challenges related to a large number of covariates p with a small

sample size n are discussed in Johnstone and Titterington (2009). More frequently,
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biomedical big data includes a large number of observations on a large number of

subjects. These massive datasets are often created by combining various datasets

from different sources, such as multi-center cohort studies or consortia, which can

lead to data heterogeneity and modelling challenges, as discussed above. More

importantly, this data aggregation relies on a crucial independence assumption that

is often not met. While the literature on combining information from independent

sources is extensive (Singh et al., 2005; Xie et al., 2011; Lin and Xi, 2011; Xie and

Singh, 2013; Chen and Xie, 2014; Claggett et al., 2014; Yang et al., 2014a; Battey

et al., 2015; Liu et al., 2015; Tang and Song, 2016), to my knowledge no method

has been proposed to combine information from dependent sources that provides a

thorough description of the accompanying theory. In this dissertation, I establish

needed methodology and asymptotic results for combining information from

dependent sources.

1.3 Objectives

In this thesis, I focus on developing and implementing new statistical methods

to address some of the current difficulties encountered in the analysis of

high-dimensional correlated biomedical data. Following the divide-and-conquer

paradigm, I develop a theoretically sound and computationally tractable class of

distributed statistical methods that are made accessible to practitioners through R

statistical software.

This thesis aims to establish a class of distributed statistical methods for regression

analyses with very large outcome variables arising in many biomedical fields, such

as in genetic or imaging research. The general distributed procedure divides data

into blocks that are analyzed on a parallelized computational platform and
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combines these separate results via Hansen (1982)’s generalized method of

moments. These new methods provide distributed and efficient statistical inference

in many different regression settings. Computational efficiency is achieved by

leveraging recent developments in large scale computing, such as the MapReduce

paradigm on the Hadoop platform.

In Chapter III, I aim to address the modelling, computational, and theoretical

challenges related to estimation and inference for regression parameters with

high-dimensional responses with multi-level nested correlation structure. This

project is motivated by an electroencephalography study whose goal is to determine

the effect of iron deficiency on infant auditory recognition memory. I develop the

Distributed and Integrated Method of Moments (DIMM) (Hector and Song,

2020a), a divide-and-conquer procedure implemented in a parallelized

computational scheme. The DIMM divides responses into subvectors to be

analyzed in parallel using pairwise composite likelihood, and combines results using

an optimal one-step meta-estimator.

In Chapter IV, I aim to generalize the DIMM to types of analyses other than

regression, and to further reduce the computational burden associated with

high-dimensional correlated data. I also aim to establishing a clear theoretical

foundation for this generalized DIMM. I develop an extended theoretical framework

of distributed estimation and inference to incorporate a broad range of classical

statistical models and biomedical data types. To reduce computational speed and

meet data privacy demands, I propose to divide data by outcomes and subjects,

leading to a doubly divide-and-conquer paradigm. I also address parameter

heterogeneity explicitly for added flexibility. I establish a new theoretical

framework for the analysis of a broad class of big data problems to facilitate valid
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statistical inference for biomedical researchers. Possible applications include

genomic data, metabolomic data, longitudinal and spatial data, and many more.

In Chapter V, I propose a distributed quadratic inference function framework to

jointly estimate regression parameters from multiple potentially heterogeneous data

sources with correlated vector outcomes. This project is motivated by the analysis

of the association between smoking and metabolites in a large cohort study. The

primary goal of this joint integrative analysis is to estimate covariate effects on all

outcomes through a marginal regression model in a statistically and

computationally efficient way. To overcome computational and modeling challenges

arising from the high-dimensional likelihood of the correlated vector outcomes, I

propose to analyze each data source using Qu et al. (2000)’s QIF, and then to

jointly reestimate parameters from each data source by accounting for correlation

between data sources.
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CHAPTER II

Modelling Correlated Data: a Framework

2.1 Introduction

The first part of this chapter is devoted to describing general approaches to

modelling correlated data, and the second part to the general framework proposed

in this thesis. I consider inference for an M -dimensional vector of correlated

responses yi with associated covariate X i, for i = 1, . . . ,N . Denote

yi = ( yi1 . . . yiM )

T

, X i = ( xi1 . . . xiM ) .

Covariates xij, j = 1, . . . ,M , are q-dimensional column vectors and may include an

intercept. In a parametric or semi-parametric framework, the goal is to efficiently

estimate and carry out inference for a parameter of interest θ, where yi are

independent realizations of Y i which depend on θ through their distribution:

Y i∣X i
ind.
∼ f(y∣X =X i;θ,Γi), i = 1, . . . ,N.

Γi represents other parameters required for the specification of the distribution of

yi. Denote by Θ the parameter space of θ. Two main models are of interest and

detailed below:

(a) (Marginal Dispersion Model) One can assume marginal densities of Y i belong
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to the dispersion model family of distributions (Jørgensen, 1987):

f(yij;µij, σ
2
ij) = a(yij;σ

2
ij) exp{−

1

2σ2
ij

d(yij;µij)} , j = 1, . . . ,M,

with mean µij and dispersion σ2
ij. d(y, µ) is the deviance function, and a(y;σ2)

is a normalizing term. Given a known link function h, the mean and dispersion

parameters can be modelled as

h(µij) = η(xij;β), log(σ2
ij) = ξ(xij;ζ) j = 1, . . . ,M,

where η and ξ are systematic components. The parameter of interest θ may be any

subset of (β,ζ). θ may take several forms such as a vector of regression coefficients in

the Generalized Linear Model (GLM), a set of nonparametric regression functions as

in the Generalized Additive Model (GAM), a nonparametric function and a vector of

regression coefficients as in the semi-parametric model, and many more. See Chapter

4 of Song (2007) for a thorough discussion.

(b) (Marginal Quantile Regression) Quantile regression (Koenker and Bassett,

1978) models the quantiles of the response, rather than the mean, as a function of

covariates. It provides a more comprehensive description of the relationship

between response and covariates because it has ability to model any point in the

distribution. To model the marginal quantiles of yi, following Lu and Fan (2015)

let the τ th quantile of yij given xij be

Qτ(yij ∣xij) = x
T
ijθτ . (2.1)

In median regression, the parameter of interest becomes θ = θ2 (where the 2 indicates

the 2-quantile). Quantile regression also has the advantage of not specifying the error

distribution, contrary to GLM. Thus, marginal quantile regression is useful when

distributional assumptions of GLM fail or when trying to achieve an analysis robust
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to outliers in the data. Many modifications and extensions to the simple quantile

regression model in (2.1) have been proposed, including Yang and He (2015) for

spatially correlated data.

2.2 Estimation

2.2.1 Joint Modelling Approaches

Joint modelling approaches reconstruct the full distribution of Y i to estimate θ.

The Maximum Likelihood Estimator (MLE) maximizes the likelihood of the data as a

function of the parameter of interest. When the elements of Y i are independent, the

joint likelihood can be constructed by multiplying the marginal likelihoods. When

data are correlated, however, this construction is much more difficult due to the

presence of high-order moments.

Specific examples of low-dimensional joint distributions exist in the literature. For

example, for correlated binary data the log-linear model (Bishop et al., 1974) and the

Bahadur representation (Bahadur, 1961) model the joint distribution of correlated

binary random variables. For the former, interpretation of association parameters as

conditional odds ratios is restrictive (Song, 2007). For the latter, maximum likelihood

can fail to converge when the number of repeated observations M is small, such as

M = 10 (Lipsitz et al., 1995).

In low-dimensional settings, Song (2000) studies a unified framework for dispersion

models generated by Gaussian copulas. See also Chapter 3 of Joe (1997) and Chapter

3 of Joe (2014) for details on building joint distributions using Fréchet classes and

vine copulas respectively.
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2.2.2 Likelihood-Derived Approaches

Composite Likelihoods

Composite likelihoods (Lindsay, 1988) provide a principled approach to

constructing a pseudo-likelihood by making assumptions on the functional form of

low-dimensional marginal or conditional likelihoods of the data without specifying

the full joint distribution; see Varin et al. (2011) for a comprehensive review.

Generally, given nonnegative weights wj and a set of likelihoods Lj(θ), the

composite likelihood is constructed following:

LCL(θ) =
J

∏
j=1

Lj(θ)
wj .

The simplest example derives from assuming working independence and multiplying

univariate marginals: LICL(θ) = ∏
N
i=1∏

M
r=1 f(yir∣X i,θ). Perhaps of more interest in

a setting with correlated data is the pairwise composite likelihood (Cox and Reid

(2004), Varin (2008)):

LPCL(θ) =
N

∏
i=1

M−1

∏
r=1

M

∏
t=r+1

f(yir, yit∣X i,θ,γ)

The composite likelihood inherits many desirable properties from the marginal

likelihoods under suitable regularity conditions, such as unbiasedness, but

computation time suffers greatly as dimension M of the response increases. Indeed,

since the Bartlett identity does not hold, composite likelihood methods require the

computation of the sensitivity matrix, which can be time consuming. Additionally,

the pairwise composite likelihood requires the evaluation of a large number of

bivariate marginals at every iteration of the optimization algorithm.

Wedderburn’s Quasi-Likelihood

Wedderburn (1974) observed that only a specification of the mean and covariance

of the response was necessary to compute the MLE of regression parameters in a
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GLM, thus avoiding the need to fully specify the multivariate distribution of the

data. He replaced assumptions on the likelihood with assumptions on the mean and

covariance by defining a function, termed quasi-likelihood, which only specified the

mean-covariance relationship and had similar properties to the likelihood function.

Take for example the linear regression model Y i = X
T
i θ + εi, with E(εi) = 0 and

V = E(εiεTi ). Define the quasi-likelihood function q as the weighted sum of squared

residuals:

q(θ) = −
1

2

N

∑
i=1

(Y i −X
T
i θ)

T
V −1 (Y i −X

T
i θ) .

Its derivative takes the form

∂q

∂θ
=Q(θ) =

N

∑
i=1

X iV
−1
(Y i −X

T
i θ). (2.2)

Q(θ) behaves like a score function and is called the quasi-score function, since

E {Q(θ)} = 0 and E {−∂Q(θ)/∂θ} = ∑
N
i=1X iV

−1XT
i = Var{Q(θ)}. Solving

Q(θ) = 0 for θ yields a consistent estimator for θ. There are no assumptions on the

functional form of the distribution of the error term εi (or Y i); the quasi-likelihood

approach relies only on the existence of the first two moments of the response.

The quasi-likelihood approach focuses on estimating the mean parameters while

treating second-order moments as nuisance parameters. When Σi = Var(Y i∣X i) is

unknown, a plug-in estimate is used to estimate θ. Estimation efficiency relies on

choosing Σi as close to the true covariance structure as possible (Fitzmaurice et al.,

1993). As the correlation structure of the response becomes more complex, more

nuisance parameters are needed to capture the underlying structure of the data,

which can be computationally intensive. Additionally, simple cases where this

approach fails are highlighted in Crowder (1987).
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2.2.3 Estimating Equation Approaches

Generalized Estimating Equations

Perhaps the most famous approach to modelling correlated data is the

generalized estimating equation proposed by Liang and Zeger (1986). Closely

related to Wedderburn’s quasi-likelihood, it estimates mean parameters in GLMs,

forgoes the specification of a joint distribution and treats second moments as

nuisance parameters. It goes one step further, however, by not providing an

objective function from which the estimating equation is derived. Liang and Zeger

generalize the quasi-score function (2.2) to non-normal data and replace V by a

working correlation matrix that depends on nuisance parameters. They show that

their estimator of θ is semi-parametrically efficient when the correlation structure

of the response is correctly specified, and that the estimator is still consistent even

when the correlated structure is misspecified. This approach is available for discrete

as well as continuous data, and has seen numerous extensions and applications.

Limitations of the generalized estimating equations are well-known. Simple

examples where estimation fails are outlined in Crowder (1995), Wang and Carey

(2003), and Chaganty and Joe (2004). Computational issues related to inverting

large matrices as M grows large and estimating a large number of nuisance

parameters are covered in Cressie and Johannesson (2008) and Banerjee et al.

(2008). Finally, model selection relies on subjective information criteria because

there is no objective function to evaluate model fit.

Generalized Method of Moments

Hansen (1982) introduced the generalized method of moments to estimate a

parameter that is over-identified; that is, a parameter that has more estimating

equations than it has components. For example, if yir is Poisson(λ) distributed,
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the mean and variance parameter λ satisfies the moment conditions E(yir) = λ and

Var(yir) = λ. Deriving the moment conditions for the mean and variance yields two

estimating equations for λ, and solving these does not lead to a unique solution. To

overcome this challenge, Hansen (1982) proposed solving a quadratic form of the

estimating equations as follows:

arg min
θ
QN(θ) = arg min

θ
ΨT
N(θ)WΨN(θ),

where ΨN(θ) is the vector of over-identifying estimating equations for θ and W is a

positive semi-definite weight matrix. Under suitable regularity conditions defined in

Hansen (1982) and, more generally, in Newey and McFadden (1994), the minimizer

of QN(θ) is consistent and asymptotically normal. Moreover, Hansen showed that an

optimal choice of W , corresponding to the inverse sample covariance of ΨN , leads to

an estimator that has asymptotic covariance at least as small as any other estimator

derived from the same estimating equation. I hereafter refer to this property as

Hansen optimality. Finally, the generalized method of moments also provides a

goodness-of-fit test derived from a χ2 statistic to facilitate model fit evaluation. The

generalized method of moments receives a thorough treatment in Hall (2004).

Quadratic Inference Functions

For longitudinal data, Qu et al. (2000) propose Quadratic Inference Functions

(QIF) to estimate mean regression parameters in a generalized linear model setting.

They model the inverse working correlation matrix of the response by a linear

combination of known basis matrices. This approach allows them to build a vector

of over-identified moment restrictions on the mean regression parameters, leading to

a modified generalized method of moments equation where correlation parameters

do not need to be estimated and the weight matrix depends on the parameter of
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interest. The quadratic inference function estimator minimizes this quadratic form,

and is shown to be semi-parametrically efficient when the true correlation structure

of the response belongs to the class of linear combinations used to model the

inverse working correlation. Additionally, the estimator is still Hansen optimal

when the true correlation does not belong to this class. A list of the advantages of

quadratic inference functions over generalized estimating equations, such as model

selection, robustness, and treatment of nuisance parameters, is given in Hu and

Song (2012). Quadratic inference functions suffer computationally from the

iterative optimization procedure and inversion of large matrices.

2.3 A Unifying Framework: Estimating Function Theory

With the exception of the generalized method of moments and quadratic inference

functions, each of these approaches leads to an estimator of θ that is the root of some

estimating function

Ψ(θ;y,X) = 0.

In the joint modelling framework, this function is the score function derived from

the likelihood, but the estimating function is the only necessary part of the

estimation process. In the case of the generalized method of moments and

quadratic inference functions, finding the root of the estimating function can be

generalized to finding its minimum. Alternatively, taking first derivatives of the

quadratic form leads to estimating functions, and finding their root leads to an

estimator of θ.

The estimation approaches described in section 2.2 can be unified under estimating

function theory, which justifies why the quasi-likelihood, generalized estimating

equations, generalized method of moments and quadratic inference functions are
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able to estimate θ without a full specification of the distribution of Y . Let us start

with some definitions from Godambe (1960) and Song (2007).

Definition 1 (Estimating function). Let X be the sample space. A function Ψ ∶

Θ × X → Rp is called an estimating (or inference) function if Ψ(θ; ⋅) is measurable

for any θ ∈ Θ and Ψ(⋅;x) is continuous in a compact subspace of Θ containing the

true parameter θ0 for any sample x ∈ X .

Definition 2 (Additive estimating function). An estimating function Ψ is additive

if Ψ(θ;X) =
N

∑
i=1
ψ(θ;X i) where X i ∈ X . ψ is called the kernel estimating (or

inference) function.

Definition 3 (Unbiased estimating function). An estimating function Ψ is unbiased

if Eθ (Ψ(θ;X)) = 0 for all θ ∈ Θ.

Definition 4 (Regular inference function). An estimating function Ψ(θ;X) is

regular if

(i) it is unbiased: Eθ (Ψ(θ;X)) = 0 for all θ ∈ Θ.

(ii) ∇θΨ(θ;X) exists for almost all X ∈ X and for all θ ∈ Θ.

(iii) For any bounded function g(x) independent of θ, ∫X g(x)Ψ(θ;x)f(x;θ)dx is

differentiable under the integral sign.

(iv) The variability matrix vψ(θ) = Eθ {Ψ(θ;X)ΨT
(θ;X)} exists and is positive-

definite.

(v) The sensitivity matrix sψ(θ) = Eθ {∇θΨ(θ;X)} is non-singular.

Optimal estimating function theory was initially developed by Godambe (1960)

and Durbin (1960), and summarized in Godambe and Heyde (1987). If an additive

regular estimating function has a unique zero at the true value, then its root is a
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consistent estimator of θ. Additionally, if its second derivative is bounded in a

neighbourhood of the true value, this estimator is asymptotically Normal. More

details are available in McLeish and Small (1988), Godambe (1991) and Heyde

(1997). The key ideas of this thesis derive from two observations.

First, an estimating function for the parameter θ can be constructed from subsets

of the whole data if θ is homogeneous over the entire response Y . Typically,

statistical methods are concerned with using as much of the data as possible to

achieve large sample results. With big data, using all of the data is

computationally prohibitive, and subsets of the data typically provide adequate

sample size. Using subsets of the data, however, raises concerns of biased

sub-sampling and generalizability to the whole sample; additionally, subsetting Y

yields results that only hold for that subset. The trick is to derive estimating

functions for each data subset, and combine them in a computationally tractable

and statistically efficient way.

Second, rather than combining data or estimators directly, one can combine

estimating functions. As functions of the data and the parameter, estimating

functions inherently take into account sampling uncertainty and behave like

random variables. Whereas the joint distribution of the data or the estimators may

be intractable, with suitable regularity conditions the estimating functions inherit

asymptotic normality from the Central Limit Theorem and their joint distribution

can be reconstructed with ease. Maximizing this distribution yields the same

optimization problem as combining the estimating equations using the generalized

method of moments.

These two keys observations lead to a novel approach to high-dimensional

correlation data analysis. The following informal steps describe the general
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framework proposed by this dissertation:

(i) Divide the data {yi,X i}
N
i=1 into blocks {yi,sub,X i,sub}

N

i=1
for sub = 1, . . . , S.

(ii) Estimate the parameter of interest in blocks {yi,sub,X i,sub}
N

i=1
, sub = 1, . . . , S,

separately and in parallel using additive estimating functions. Each block yields

an estimator θ̂sub of θ.

(iii) Combine individual estimators θ̂sub.

This can be visualized in Figure 2.1 for S = JK. The notation sub is used to denote

blocks: for example, for sub = 1, yi,sub = {(yi1,11, . . . , yim1,11)} for i = 1, . . . , n1. In

Chapter III, in step (i) the data is divided at the outcome level to form blocks of

low-dimensional sub-responses. In step (ii), the blocks are analyzed using pairwise

composite likelihood. In step (iii), the estimators are combined using a one-step

meta-estimator derived from the optimal generalized method of moments equation.

In Chapter IV, in step (i) the data is divided at the outcome level as in Chapter

III and additionally at the subject level, as in Figure 2.1, to form blocks of low-

dimensional sub-responses on a subset of the population. In step (ii), I outline a

broad class of estimating functions that can be used to obtain θ̂sub. In step (iii) I

generalize the one-step meta-estimator from Chapter III to account for block-specific

sample sizes. In Chapter V, in step (i) the data is divided at the outcome and subject

level as in Chapter IV.
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(iii) (iii) 

(ii) (ii) 

(i) 

Figure 2.1: Schematic of general procedure.
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CHAPTER III

A Distributed and Integrated Method of Moments for
High-Dimensional Correlated Data Analysis

3.1 Introduction

This chapter focuses on developing a systematic divide-and-conquer procedure,

readily implemented in a parallel and scalable computational scheme, for statistical

estimation and inference. We consider a regression setting with high-dimensional

correlated responses with multi-level nested correlations. The proposed Distributed

and Integrated Method of Moments (DIMM) is flexible, fast, and statistically

efficient, and reduces computing time in two ways: (i) in the distributed step,

composite likelihood is executed in parallel at a number of distributed computing

nodes, and (ii) at the integrated step, an efficient one-step meta-estimator is

derived from Hansen (1982)’s seminal generalized method of moments (GMM) with

no need to load the entire data on a common server.

Let Y i be the M -dimensional correlated response for subject i, i = 1, . . . ,N , and

µi = E(Y i∣X i,β) the mean response-covariate relationship of interest for some

M × p dimensional matrix of covariates X i and a p-dimensional parameter of

interest β. In this chapter we consider the case where the dimension M of Y i may

diverge to infinity, while the dimension p of β is fixed. For convenience this is

referred to as high-dimensional correlated response or, in short, high-dimensional
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response. We model µi by a generalized linear model of the form h(µi) = X iβ,

where h is a known link function. The difficulties associated with current methods

for high-dimensional correlated response modeling stem from computational

burdens and modeling challenges associated with a high-dimensional likelihood.

The generalized estimating equation (GEE) proposed by Liang and Zeger (1986),

one of the widely used methods for the analysis of correlated response data, uses a

quasilikelihood approach based on the first two moments of the response to avoid

the specification of a parametric joint distribution. GEE is not well suited to

high-dimensionality due to the potentially large number of nuisance parameters to

estimate and the inversion of large matrices; see Cressie and Johannesson (2008)

and Banerjee et al. (2008). Additionally, common assumptions by GEE on the

correlation structure of the response are too simple to capture multi-level nested

correlations, resulting in a substantial loss of efficiency; see Fitzmaurice et al.

(1993). Simple cases where the estimator of the nuisance parameter does not exist

are also outlined in Crowder (1995). Mixed effects models are also popular in the

literature to analyze correlated outcomes, and in the linear mixed-effects model

regression parameters may be interpreted as population-average effects, similar to

the interpretation given by the GEE approach. In the nonlinear case, the

interpretation of the population-average effects is obstructed by the random effects.

Unfortunately, mixed effects model estimation can be computationally expensive

due to the inversion of large matrices and non-convexity of the objective function

(Laird et al. (1987), Lindstrom and Bates (1988), Perry (2017)). Additionally,

when the correlation of the response is complex, computation may become

prohibitive due to the large number of random effects required to estimate mean

parameters efficiently. The computational burden can increase significantly due to
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the evaluation of high-dimensional integrals with respect to the distributions of

random effects in nonlinear models (Chapter 4 of Song (2007)).

Composite likelihood (CL) was proposed by Lindsay (1988) as a method to perform

inference on β by only considering low dimensional marginals of the joint

distribution. Pairwise CL, in particular, constructs a pseudolikelihood by

multiplying the likelihood objects of pairs of observations. In this way, CL is free of

the computational burden of inverting high-dimensional correlation matrices and

benefits from an objective function that facilitates model selection. Pairwise CL

has been used with longitudinal (Kuk and Nott (2000), Kong et al. (2015)), spatial

(Heagerty and Lele (1998), Arbia (2014)), spatiotemporal (Bai et al. (2012),

Bevilacqua et al. (2012)), and genetic (Larribe and Fearnhead (2011)) data. A

well-known bottleneck of CL is the high computational cost of evaluating a large

number of low-dimensional likelihoods and their derivatives, a problem exacerbated

by large M .

The use of CL relies on knowledge of low-dimensional dependencies among Y i in

order to specify pairwise CLs properly. Fortunately, in practice, observations within

Y i can often be partitioned into groups of sub-responses with simple correlation

structures according to previous science: for example, genomic response data can

be grouped by gene or genetic function, metabolomic data by pathway, spatial data

by proximity, and brain imaging data by brain function regions. This substantive

scientific knowledge may be used to strategically partition response variables in

order to speed up computations. The method of divide-and-conquer is a state of

the art approach to analyzing data that can be partitioned. In the current

literature, this method proposes to randomly split subjects into independent groups

of subjects in the “divide” step (or “Mapper”) and combines results in the
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“conquer” step (or “Reducer”); see for example kernel ridge regression (Zhang

et al. (2015b)) and matrix factorization (Mackey et al. (2015)). The independent

groups can be analyzed in parallel, greatly reducing computation time. Chen and

Xie (2014) and Battey et al. (2015) use this approach to analyze large datasets by

combining information from independent sources. These methods are not well

suited to our problem due to assumptions of independence. Chang et al. (2015)

propose a divide-and-conquer CL approach for high-dimensional spatial data, but

their Bayesian hierarchical model relies on the Metropolis-Hastings algorithm for

estimation, which is time-consuming. Indeed, their divide-and-conquer strategy is

primarily adopted in model building rather than to reduce computational speed.

Extending the divide-and-conquer approach to our problem, we propose to split the

high-dimensional correlated response into subvectors to form correlated response

groups according to substantive scientific knowledge. Each subvector is analyzed

separately, then results from these analyses are combined. While this method is

computationally appealing, our groups of data are correlated, leading to new

methodological challenges. In particular, correlation between groups of data must

be taken into account when combining results. To our knowledge, our method is

among the few attempts, including Li (2017) and Chang et al. (2015), to establish a

rigorous theoretical framework for combining results from correlated groups of

data. The key technique to establish the related theoretical framework relies on an

extended version of the confidence distribution (CD) based on pairwise CL to

derive a GMM estimator of β. For discussion on the CD and related work with

independent cross-sectional data, see Singh et al. (2005), Xie et al. (2011), Xie and

Singh (2013) and Liu et al. (2015); for CD approaches to meta-analysis of

independent studies, see Claggett et al. (2014) and Yang et al. (2014b); for a
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Figure 3.1: (a) Average P2 amplitude for iron sufficient children under stimulus of mother’s voice.
Color plot and additional plots in Appendix D. (b) Layout of the 64 channel sensor net with brain
regions related to auditory recognition memory.

divide-and-conquer approach with independent scalar responses, see Lin and Xi

(2011). We invoke an optimal weighting matrix that non-parametrically accounts

for between-group correlations to alleviate the computational and modeling

challenges associated with existing methods. We illustrate our method with a

motivating cohort study to assess the association between iron deficiency and

auditory recognition memory in infants. Electrical activity in the brain during a

2000 milliseconds period was measured in 157 infants under two vocal stimuli using

an electroencephalography (EEG) net consisting of 64-channel sensors on the scalp

as visualized in Figure 3.1a. For each sensor and each stimulus, three important

event-related potentials (ERPs) related to auditory recognition memory were

calculated; as shown in Figure 3.2, P2 averages electrical signal between 175 and

300 milliseconds, P750 between 350 and 600 milliseconds, and late slow wave

(LSW) between 850 and 1100 milliseconds. The investigator wanted to analyze the

data in sub-regions, where 46 of the nodes belong to six brain function regions
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Figure 3.2: Plot of electrical potential for subject 1 at electrode 2 over time.

related to auditory recognition memory, as seen in Figure 3.1b. The complex

data-generating mechanism results in a response of dimension

M = 46(nodes) × 3(ERPs) × 2(stimuli) = 276 that has a multi-level nested

correlation structure that is difficult to model, including longitudinal correlations

between the three ERP’s, spatial correlations between the 46 nodes and within the

six brain function regions, and correlations within each voice stimulus. Due to this

complex correlation structure and the large number of response variables,

traditional methods for correlated data analysis are greatly challenged. Zhou and

Song (2016) developed a method to analyze the LSW outcome, but no existing

method is suitable to analyze this dataset in its entirety. We develop DIMM, a fast

and efficient method to analyze all 276 responses simultaneously by partitioning the

response according to ERPs and brain function regions. DIMM also performs well

with higher dimensional correlated outcomes, as seen in simulations.

Our proposed Distributed and Integrated Method of Moments (DIMM) loses

minimal estimation efficiency for two reasons: first, CL performs well on smaller

groups of responses with simple but well-approximated local correlation structure;
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and second, we use an optimal weighting matrix in the GMM. More importantly,

our method is computationally attractive for two reasons: first, pairwise CL only

evaluates low-dimensional likelihoods and CL analyses can be run in parallel; and

second, we provide a closed-form of the combined estimator that only depends on

CL estimates and group-specific sufficient statistics. Finally, this chapter

contributes to the existing literature with two key innovations: DIMM provides a

rigorous theoretical framework for combining estimates from dependent groups of

data, and is scalable to large M . In addition, the proposed DIMM is illustrated on

a complex dataset that has previously not been analyzed in its entirety.

The rest of the chapter is organized as follows. Section 3.2 describes DIMM.

Section 3.3 discusses large sample properties. Section 3.4 presents the closed form

one-step meta-estimator, and its implementation in a parallel and scalable

computational scheme. Section 3.5 illustrates DIMM’s finite sample performance

with simulations. Section 3.6 presents the EEG data analysis. Section 3.7

concludes with a discussion. Proofs of theorems and additional simulation and data

analysis results are deferred to Appendices A-D.

3.2 Formulation

Let {yi,X i}
N
i=1 be N independent observations, where the dimension M of yi is

so big and potentially diverging that a direct analysis of the data is

computationally intensive or prohibitive. Let f(Y i;Γi,X i) be the M -variate joint

distribution of Y i∣X i, where Γi contains parameters of high-order dependencies

that may be difficult to handle computationally. We aim to obtain a statistically

efficient (small variance) and computationally fast estimator for the regression

coefficient β given the challenges arising from the high-dimensionality and complex
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dependencies of the response. Our DIMM solution uses a divide-and-conquer

approach based on pairwise CL methodology for locally homogeneous data blocks.

We formulate an informal definition of homogeneous correlation: we say a vector of

random variables is homogeneously correlated if their covariance (or second

moments) can be parametrized with a small number of parameters. For example,

responses with compound symmetric or AR(1) covariance structures are

homogeneously correlated.

3.2.1 Division: Distributed Composite Likelihoods

For each i ∈ {1, . . . ,N}, we propose to split the M -dimensional response yi and

associated covariates into J blocks {yi,j,X i,j}
N

i=1
for j = 1, . . . , J , J finite, as follows:

yi = ( yTi,1 . . . yTi,J )T and X i = ( XT
i,1 . . . XT

i,J
)T . Within block j, let mj be

the dimension of subject i’s response, ∑
J
j=1mj = M , where

yi,j = (yi1,j, . . . , yimj ,j)
T

∈ Rmj is subject i’s jth sub-response vector and

X i,j ∈ Rmj×p is the associated covariate matrix, and p is finite. For each j, {yi,j}
N

i=1

are independent realizations of the random variables Y i,j ∣X i,j whose mj-variate

distributions conditional on X i,j are denoted by f(yi,j;Γi,j,X i,j). Parameter Γi,j

encodes information on the marginal moments of Y i,j. This yields J regression

models hj(µi,j) = X i,jβj, where µi,j = E(Y i,j ∣X i,j,βj) is the marginal mean of

Y i,j, j = 1, . . . , J . For simplification of the technical presentation, we assume

homogeneity of the link function hj and the regression parameter βj hold such that

hj ≡ h and βj ≡ β for j = 1, . . . , J ; we drop the subscript j by using β and h to

denote βj and hj. On some occasions, homogeneity may not hold, for example

when each sub-response Y i,j corresponds to continuous, count, or dichotomous

outcomes. In this case, we propose to perform a sub-group analysis by combining

regression parameter estimates over the blocks where homogeneity in hj and βj

26



holds; this approach will be illustrated in Section 3.6. Additionally, we propose a

formal test of the homogeneity assumption in Section 3.3. To create blocks, we

suggest splitting the response data according to substantive scientific knowledge,

resulting in homogeneous correlations within each response subvector that are

suitable for simplifications in structure. If such knowledge is lacking, data

pre-processing may help to learn structural features of dependencies. As long as

appropriate conditions are satisfied, estimation remains consistent, but may not be

efficient, when the data split is not aligned with the true dependence structure.

We can obtain an estimate of β for each of the J blocks of data using pairwise CL

methods. The above partition enables us to reduce the challenge of modeling

M -order dependencies to that of modeling mj-order dependencies of

(approximately) local homogeneity. In addition, there may be tremendous

computational burdens associated with the log likelihood or its derivative, such as

the computation of a high-dimensional inverse covariance matrix in the multivariate

normal model. CL has been suggested by many researchers (see Varin et al. (2011)

and references therein) to resolve this difficulty, and takes the following form:

Lj(β,γj;yi,j) =
mj−1

∏
r=1

mj

∏
t=r+1

fj(yir,j, yit,j;β,γj,X i,j), (3.1)

where γj only contains information on second-order moments of Y i,j. Let β0, γj0

the true values of β ∈ Rp and γj ∈ Rdj respectively, dj finite, and denote

γ = ( γT1 . . . γTJ )T , γ0 = ( γT10 . . . γTJ0
)T . The nature of the data partition

gives rise to different dependence parameters γj, allowing us to make simplifying

assumptions on the high-order dependencies of Y i,j. Here, density fj can be chosen

according to the data type under investigation as bivariate margins of an mj-variate

joint distribution. For example, fj can be bivariate Normal for continuous data, or,

using bivariate dispersion models generated by Gaussian or vine copulas, can be

27



bivariate Poisson or Bernoulli for count or dichotomous data; see Chapter 6 of Song

(2007) and Chapter 3 of Joe (2014). We set fj bivariate Normal for the EEG data.

Within block j, the log-CL for the first and second moment parameters is

c`j(β,γj;yj) = log
N

∏
i=1

Lj(β,γj;yi,j) =
N

∑
i=1

mj−1

∑
r=1

mj

∑
t=r+1

log fj(yir,j, yit,j;β,γj,X i,j).

Define ψj.sub(β;yi,j,γj) = (1/m2
j)∑

mj−1
r=1 ∑

mj

t=r+1∇β log fj(yir,j; yit,j;β,γj,X i,j) ∈ Rp

and

gj.sub(γj;yi,j,β) = (1/m2
j)∑

mj−1
r=1 ∑

mj

t=r+1∇γj
log fj(yir,j; yit,j;β,γj,X i,j) ∈ Rdj . The

pairwise CL estimating equations for the mean and covariance parameters are,

respectively:

Ψj.sub(β;yj,γj) =
1

N

N

∑
i=1

ψj.sub(β;yi,j,γj) = 0 ∈ Rp, (3.2)

Gj.sub(γj;yj,β) =
1

N

N

∑
i=1

gj.sub(γj;yi,j,β) = 0 ∈ Rdj . (3.3)

Following Varin et al. (2011), the maximum composite likelihood estimators (MCLE)

of β and γj within block j, denoted respectively by β̂j and γ̂j, are the joint solution

to the system of unbiased estimating equations in (3.2) and (3.3). It is worth noting

that the original CL proposed by Lindsay (1988) advocated for the use of weights

in the log-CL function to improve estimation efficiency. This approach is shown to

work well in Bevilacqua et al. (2012). Lindsay (1988) determined that the optimal

weights that minimize the variance of the maximum composite likelihood estimator

depend on higher order moments of the estimating function, and therefore can be

demanding to compute. Again, we see the trade-off between computational and

statistical efficiency.

Generally, γj is block-specific and unknown, and β̂j depends on γ̂j. When γj is

a function of β only, as in generalized linear models, finding β̂j amounts to profile

28



likelihood estimation. If γj is known or absent, then the above simplifies to finding

β̂j as the solution to Ψj.sub(β;yj,γj) = 0. We denote β̂MCLE = (β̂1

T
, . . . , β̂J

T
)T

and γ̂MCLE = (γ̂1
T , . . . , γ̂J

T
)T . In some practical studies where interest is in block-

specific mean parameters and combined dependence parameters, we can treat β as

a nuisance parameter and γj as the parameter of interest by switching the roles of

Ψj.sub and Gj.sub. In the case where both β and γj are of interest and believed to be

homogeneous over all blocks, we replace Ψj.sub with (ΨT
j.sub,G

T
j.sub)

T . The description

of DIMM in the rest of the chapter, including Section 3.4, holds with these minor

changes.

3.2.2 Integration: the Generalized Method of Moments

Suppose that we have successfully obtained J estimates of β based on J

estimating equations (3.2). In the integration step, we treat each estimating

equation Ψj.sub(β;yj,γj) = 0 as a moment condition on β coming from block j,

j = 1, . . . , J . We would like to derive an estimator β̂c of β that satisfies all J

moment conditions. Unfortunately, there is no unique solution to all J estimating

equations because they over-identify our parameter; that is, the dimension of

parameter β is less than Jp, the dimension of the equation restrictions on β. To

overcome this, we invoke Hansen (1982)’s seminal GMM to combine the moment

conditions that arise from each block. Stack the J estimating equations by letting

ψ(β;yi) = (ψT
1.sub(β;yi,1,γ10), . . . ,ψ

T
J.sub(β;yi,J ,γJ0))

T ∈ RJp for each subject i,

and

ΨN (β;y) = ( ΨT
1.sub(β;y1,γ10) . . . ΨT

J.sub(β;yJ ,γJ0) )

T

=
1

N

N

∑
i=1

ψ(β;yi) ∈ RJp.

Define the outer-product as a⊗2 = aaT for a ∈ RJp. Since ΨN(β;y) = 0 has no

unique solution, following Hansen’s GMM we minimize a quadratic form of ΨN with
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weight matrix V̂ N,ψ, the Jp × Jp sample variance-covariance matrix of ΨN(β;y)

evaluated at the MCLE’s:

V̂ N,ψ =
1

N

N

∑
i=1

(ψT
1.sub(β̂1;yi,1, γ̂1), . . . ,ψ

T
J.sub(β̂J ;yi,J , γ̂J))

T ⊗2
, (3.4)

Then define the combined GMM estimator of β as:

β̂c = arg min
β

{NΨT
N(β;y)V̂

−1

N,ψΨN(β;y)} = arg min
β
QN(β). (3.5)

To solve (3.5), we replace γj0 by γ̂j in the evaluation of ΨN(β;y). The role of the

γj’s is two-fold: first, their specification parametrizes the second order moment in

the block bivariate distributions in addition to the regression model for first

moments; second, they may improve estimation efficiency of β. Note that using

plug-in estimators γ̂j may impact efficiency of β̂c, but it will generally not affect

consistency. A finite sample improvement on the efficiency may be obtained by

re-estimating γj in the integration step, but this could become computationally

intensive since these parameters are block-specific and heterogeneous. We notice

similarities of (3.5) to Qu et al. (2000) but with a completely different way of

constructing moment conditions, and to Wang et al. (2012) but with a completely

different way of partitioning data and the added generality of allowing

between-block correlations. The uniqueness of DIMM stems from combining

estimating equations Ψj.sub with GMM instead of combining β̂j or data blocks

{yi,j,X i,j}
N

i=1
directly. This new approach allows us to find a GMM estimator β̂c

that benefits from a wealth of established theoretical properties. The sample

covariance V̂ N,ψ is not parameter dependent and can therefore accommodate any

between-block covariance, including unstructured. By using the sample covariance

V̂ N,ψ we not only account for between-block correlations but find the optimal

GMM estimator in the sense that β̂c has variance at least as small as any other
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estimator exploiting the same moment conditions, hereafter referred to as “Hansen

optimal”. The combined GMM estimator β̂c will yield significant computational

advantages when the dimension of ΨN is smaller than that of Y by reducing the

computational burden associated with handling Y directly. This is often the case

in applications where M is very large, J is between M and p, and the number of

covariates p is small enough that p≪M/J .

To better understand our estimator, we can show that β̂c maximizes a density in a

manner similar to the classic maximum likelihood estimator (MLE) by deriving the

quadratic form in (3.5) using an extended version of the confidence distribution

(CD) (or density) (Fisher (1930)). For more discussion on CD and applications to

MLE with independent cross-sectional data, refer to Xie and Singh (2013), Singh

et al. (2005), and Liu et al. (2015). So far, little work has been done on the

development of CD for correlated data. Of note, a dissertation by Li (2017)

considers a sequential split-and-conquer copula approach to extend the CD to

combine information from correlated datasets. The proposed copula method

assumes a known joint distribution or a known correlation matrix, which is mostly

for theoretical convenience, and takes advantage of the structure of the spatial

Gaussian process model to sequentially transform the dependent datasets into

independent datasets. Li (2017) considers the case N = 1 and M → ∞ for

applications in spatial data modeling. Additional work on deriving a consistent

estimator of the correlation matrix is required in order to make this method

practically useful. Ψj.sub are sufficient statistics for β within each block and are

asymptotically Normally distributed under mild assumptions by the Central Limit

Theorem (CLT). Their joint distribution is the distribution of ΨN , which is also

asymptotically Normal under the same mild assumptions of the CLT. Then if V̂ N,ψ
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is a consistent estimator of the variance of ΨN ,
√
N V̂

−1/2

N,ψΨN(β0;y) asymptotically

follows a standard normal distribution. By maximizing the distribution of ΨN as a

function of β, we can find an estimator that accounts for correlation between

sufficient statistics and is the most likely value to arise from the data. We define

the confidence estimating function (CEF) as Fψ(β0) = Φ(
√
N V̂

−1/2

N,ψΨN(β0;y)),

where Φ(⋅) is the Jp-variate standard normal distribution function. Define the

density of the CEF as

fψ(β) = φ(
√
N V̂

−1/2

N,ψΨN(β;y))∝ exp{−
N

2
ΨT
N(β;y)V̂

−1

N,ψΨN(β;y)} , (3.6)

where φ(⋅) is the Jp-variate standard normal density. The CEF density has the

advantage over the confidence density of not having a sandwich estimator for the

variance, and thus not requiring the computation of a sensitivity matrix. It reflects

the joint distribution of the J estimating equations (3.2). Maximizing fψ(β) in (3.6)

yields the minimization defined in (3.5). The formulation in (3.6) is different from

the aggregated estimating equation approach proposed by Lin and Xi (2011) for

independent scalar responses.

3.3 Asymptotic Properties

In this section we study the asymptotic properties of β̂c with J and p fixed,

where we allow M to diverge, implying that mj diverges for at least one sub-response

dimension mj. Due to the use of a simple correlation structure in each block, the

dimension dj of γj is fixed. It follows from (3.2) and (3.3) that Ψj.sub and Gj.sub are

expressed as sums of 2-dimensional marginal likelihoods as mj →∞. Following Cox

and Reid (2004)’s study of the behavior of the CL when the dimension of the outcome

grows with the sample size, we can similarly show the consistency of (β̂j, γ̂j) with no

conditions required on the divergence rate of M . This is formalized in the following
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Proposition.

Proposition 1. Let j ∈ {1, . . . , J} such that mj →∞. Suppose Ψj.sub and Gj.sub are

unbiased at (β0,γj0) and their expectations have a unique zero at (β0,γj0). Then

(β̂j, γ̂j) are consistent estimators of (β0,γj0) as N →∞.

The proof is given in Appendix A. Proposition 1 justifies why standard

asymptotic theory is applicable even when M → ∞. Ψj.sub and Gj.sub are unbiased

if the bivariate marginals fj are correctly specified. Existing model diagnostics can

help detect ill-posed model structures on the fj.

Let vψ(β) = limM→∞Eβ {ψ(β;yi)ψ
T
(β;yi)} ∈ RJp×Jp and

sψ(β) = limM→∞ −∇βEβψ(β;yi) ∈ RJp×p be, respectively, the positive definite

variability matrix and the sensitivity matrix of ΨN . Let [v−1
ψ (β)]

i,j
be the rows

(i − 1)p + 1 to ip and columns (j − 1)p + 1 to jp of matrix v−1
ψ (β). We assume

throughout that V̂ N,ψ is nonsingular. Let ∥⋅∥ be the Euclidean norm. Let the

variability and sensitivity matrices in block j respectively be

vj,ψj
(β) = lim

M→∞
V arβ {

√
NΨj.sub(β;yj,γj0)} = lim

M→∞
Eβ {ψ⊗2

j.sub(β;yi,j,γj0)} ,

sj,ψj
(β) = lim

M→∞
−∇βEβ {Ψj.sub(β;yj,γj0)} = lim

M→∞
−∇βEβ {ψj.sub(β;yi,j,γj0)} .

As a GMM estimator, β̂c enjoys several key asymptotic properties for valid statistical

inference under mild regularity conditions C.1-C.3 listed in the Appendix, including

consistency and asymptotic normality. We show in Lemma III.1 that V̂ N,ψ in (3.4)

converges to the true variability matrix of the estimating equations.

Lemma III.1 (Hansen optimality). Under condition C.1, V̂ N,ψ
p
→ vψ(β0) as N →

∞.

The proof of Lemma III.1, given in Appendix A, is straightforward, and makes

use of the consistency of the MCLE’s and the Central Limit Theorem. Lemma III.1
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shows our GMM estimator is Hansen optimal because we use a weighting matrix

that converges to the true variance of the estimating equations. Asymptotically, β̂c

has variance at least as small as any other estimator exploiting the same CL

moment conditions. Since the pairwise CL is not a full likelihood, there are no

general efficiency results about β̂j. In the linear setting with normally distributed

responses, the mean and variance fully specify the joint distribution within each

block, and therefore, if the first two moments are correctly specified, the MCLE

loses minimal estimation efficiency. The MCLE in the nonlinear setting will

inevitably lose some efficiency because higher order moments are not modeled.

Extensive simulations were performed in the dissertation of Jin (2011) for linear

and binary correlated data that show that the CL approach performs quite well,

and generally shows little loss of efficiency in comparison to the full likelihood

approach in the cases of compound symmetry, AR(1), and unstructured correlation

structures. This means DIMM generally performs well. In Theorems III.1 and

III.2, we show that β̂c is consistent and asymptotically normal under mild moment

conditions.

Theorem III.1 (Consistency of β̂c). Given conditions C.1 and C.2, β̂c
p
→ β0 as

N →∞.

Theorem III.2 (Asymptotic normality of β̂c). Given conditions C.1, C.2 and C.3,

√
N (β̂c −β0)

d
→ N (0, j−1

ψ (β0)) as N → ∞, where the Godambe information of

ΨN(β;y) can be rewritten as jψ(β) = s
T
ψ(β)v

−1
ψ (β)sψ(β) =

J

∑
i,j=1

sTi,ψi
(β) [v−1

ψ (β)]
i,j

sj,ψj
(β).

The proof of Theorem III.1, given in Appendix A, derives from the consistency

of the GMM estimator due to Hansen (1982) and, more generally, to Newey and
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McFadden (1994). The proof of Theorem III.2 follows from Theorem 7.2 in Newey

and McFadden (1994) and Theorem III.1. Theorems III.1 and III.2 do not require

the differentiability of Ψj.sub and QN . Instead, they require the differentiability of

their population versions, and that ΨN behave “nicely” in a neighbourhood of β0.

These theoretical results provide a framework for constructing asymptotic confidence

intervals and conducting Wald tests, so that we can perform inference for β when M

diverges. Using an optimal weight matrix improves statistical power so DIMM can

detect signals other methods may miss.

So far, we have been vague about how the data partition should be done, only

suggesting it be done according to established scientific knowledge. There may be

some uncertainty about how to partition data, which we discuss in Section 3.7. A

formal approach to testing if the data split was done appropriately can be interpreted

as a test of the over-identifying restrictions: if the blocks are improperly specified

(in number, size, etc.), the estimating equation ΨN will have mismatched moment

restrictions on β. Formally, we can show that QN evaluated at β̂c follows a chi-

squared distribution with (J − 1)p degrees of freedom.

Theorem III.3 (Test of over-identifying restrictions). Let β̂c = arg min
β
QN(β).

Given conditions C.1, C.2 and C.3, QN(β̂c)
d
→ χ2

(J−1)p
as N →∞.

The proof is given in Appendix A. Since the test statistic depends on β̂c, it should

be performed after estimation of the model parameters to determine goodness-of-

fit. It can be computed in a distributed fashion by computing ψj.sub(β̂c;yi,j, γ̂j)

in parallel and plugging into the formula for QN . DIMM has the advantage of an

objective function that allows for formal testing, whereas GEE model selection relies

on information criteria that can be subjective. The test can also be thought of as

a test of the homogeneity assumption on the mean parameter β, since the model
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h(µi) = X iβ translates into moment restrictions on β. Unfortunately, it may be

difficult to tell if invalid moment restrictions stem from an inappropriate data split

or incorrect model specification. Residual analysis for model diagnostics can remove

doubt in the latter case.

3.4 Implementation: the Parallelized One-Step Estimator

In practice, searching for the integrated solution of the GMM equation (3.5) can be

very slow or computationally prohibitive. Iterative methods must repeatedly evaluate

ΨN(β;y) at each candidate β, which requires the computation of the pairwise CL

from each block at every iteration. Additionally, it may not be the case that the

dimension of ΨN is smaller than that of Y . We propose a meta-estimator of β that

delivers a one-step update via a linear function of MCLE’s β̂j. Our derivation of

the one-step estimator is rooted in asymptotic properties of the estimating equations

Ψj.sub and ΨN in a neighbourhood of (β0,γj0), in a similar spirit to Newton-Raphson.

Let [V̂
−1

N,ψ]i,j be the rows (i − 1)p + 1 to ip and columns (j − 1)p + 1 to jp of matrix

V̂
−1

N,ψ. Let Sj,ψj
(β;yj) be a

√
N -consistent sample estimate of sj,ψj

(β). We can

obtain a one-step estimator of β:

β̂DIMM = (
J

∑
i,j=1

STi,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj))

−1
J

∑
i,j=1

STi,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj)β̂j.

(3.7)

With β̂DIMM in (3.7), DIMM can be implemented in a fully parallelized and

scalable computational scheme following, for example, the MapReduce paradigm on

the Hadoop platform, where only one pass through each block of data is required.

These passes can be run on parallel CPUs, and return values of summary statistics

{β̂j,ψj.sub(β̂j;yi,j, γ̂j),Sj,ψj
(β̂j;yj)}

J
j=1. After computing V̂ N,ψ as a function of

these summary statistics, computation of β̂DIMM in (3.7) can be done in one step.
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Big data stored on several servers never need be combined, meaning DIMM can be

run on distributed correlated response data. β̂DIMM can also be used for sub-group

analyses, as in Section 3.6, to combine estimates from specific sub-groups of

interest. In the following asymptotic theory, we assume J , p and dj are fixed; we

allow M to diverge. We show in Theorem III.4 that the one-step estimator β̂DIMM

in (3.7) has the same asymptotic distribution as and is asymptotically equivalent to

β̂c.

Theorem III.4. Given conditions C.1, C.2, C.3 and C.4, β̂DIMM and β̂c have

the same asymptotic distribution:
√
N (β̂DIMM −β0)

d
→ N (0, j−1

ψ (β0)) as N → ∞.

Moreover, β̂c and β̂DIMM are asymptotically equivalent:
√
N ∥β̂DIMM − β̂c∥

p
→ 0 as

N →∞.

The proof of this theorem is given in Appendix A. The additional conditions

specify the convergence rate of the MCLE’s β̂j to ensure the proper convergence

rate of β̂DIMM . These are necessary because the computation of the one-step

estimator relies solely on the MCLE’s. This theorem is the key result that allows us

to use the one-step estimator, which is more computationally attractive than β̂c,

without sacrificing any of the asymptotic properties enjoyed by β̂c, such as

estimation efficiency.

Finally, it is clear from Theorem III.4 and the form of the Godambe information

jψ(β) = ∑
J
i,j=1 s

T
i,ψi

(β)[v−1
ψ (β)]i,jsj,ψj

(β) that under conditions C.1-C.4, a

consistent estimator of the asymptotic covariance of β̂DIMM is

(N ∑
J
i,j=1S

T
i,ψi

(β̂i;yi)[V̂
−1

N,ψ]i,jSj,ψj
(β̂j;yj))

−1. Equipped with β̂DIMM and an

estimate of its asymptotic covariance, we can do Wald tests and construct

confidence intervals for inference on β. When conditions C.1-C.4 hold, it is clear

that QN(β̂DIMM)
d
→ χ2

(J−1)p
as N →∞, allowing us to test the goodness-of-fit of our
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model. For reasonably large Jp, say ≈ 5000, inversion of V̂ N,ψ can be numerically

unstable, although we have never encountered such a situation. In this case, there

are several options from the literature, such as linear shrinkage estimation (Han

and Song (2011)). Our preference is to use a regularized modified Cholesky

decomposition of V̂ N,ψ following Pourahmadi (1999). Computation of a regularized

estimate of V̂
−1

N,ψ requires the inversion of a diagonal matrix, which is fast to

compute, and the selection of a tuning parameter by cross-validation. Details are

available in the Appendix B, and our R package allows for the implementation of a

regularized weight matrix.

In summary, DIMM proceeds in three steps:

Step 1 Split the data according to established scientific knowledge to form J blocks

of lower-dimensional response subvectors with homogeneous correlations.

Step 2 Analyze the J blocks in parallel using pairwise CL. MCLE’s are obtained

using the R function optim. We run 500 iterations of Nelder-Mead with

initial values β = (1, . . . ,1)T . End values of this optimization are used as

starting values for the BFGS algorithm, which yields β̂j. We return

{β̂j,ψj.sub(β̂j;yi,j, γ̂j),Sj,ψj
(β̂j;yj)}

J
j=1.

Step 3 Compute V̂ N,ψ and then find β̂DIMM in (3.7).

An R package to implement DIMM is available and will be submitted to the

Comprehensive R Archive Network (CRAN) shortly. We conclude this section with

a brief discussion of the computational complexity of DIMM with general

block-covariance structure. All methods depend on N in the first order, which is

therefore omitted from the discussion. Let mmax = maxj=1,...,Jmj and first consider

the case where M is finite. In Step 2, inverting the two-dimensional covariance

matrices is O(22+ε) for some ε > 0, and summing over all pairs of observations is
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O(m2
j). In Step 3, inverting V̂ N,ψ is O((Jp)2+ε). This yields a general

computational complexity of O((Jp)2+ε + m2
max) for DIMM. By contrast, GEE is

generally O(M2+ε) = O(J2+εm2+ε
max) due to the inversion of the covariance matrix of

the outcome. DIMM is computationally advantageous when

p2+ε ≤m2+ε
max −m

2
max/J

2+ε. As M diverges, mmax and M are of the same order since J

is fixed, and O(m2+ε
max − m

2
max/J

2+ε) = O(M2+ε − M2) so that DIMM becomes

increasingly advantageous as M diverges. For computational complexity of mixed

effects models see Perry (2017), which discusses various estimation procedures

whose iterations are at best approximately O(q3), where q is the number of fixed

and random effects. In the linear model, considering the simplest mixed model case

with nested random effects for subjects and response groups, we can compare these

two methods and find that DIMM is computationally advantageous when

(Jp)2+ε +m2
max ≤ (p +NJ)3 for fixed M . As M diverges, DIMM is O(M2) and its

advantage depends on the relative rates of convergence of M and N .

3.5 Simulations

We examine through simulations the performance and finite sample properties in

Theorem III.4 of the one-step estimator β̂DIMM under the linear regression setting

µi = X iβ, where µi = E(Y i∣X i,β), Y i ∼ N (X iβ,Σ). We consider two sets of

simulations: the first illustrates DIMM for different dimensions M of Y , J = 5 for

all settings, with an intercept included in X i, and varying number of covariates;

the second pushes DIMM to its extremes with very large M and J , and five

covariates. In both settings, to mimic the infant EEG data, we let Σ = S ⊗A with

nested correlation structure, where ⊗ denotes the Kronecker product, A an AR(1)

covariance matrix, and S a J × J positive-definite matrix.
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{Y i,X i}
N
i=1 can be partitioned into J blocks of data with local AR(1) covariance

structure. Data within each block is modeled using the bivariate normal marginal

distribution. We note that β̂j has a closed-form solution following generalized least

squares (GLS): estimating β̂j can be done by iteratively updating

β̂j
(k)

= (XT
j Σ̂

(k)

j Xj)
−1XT

j {Σ̂
(k)

j }−1yj and Σ̂
(k)

j , where Σ̂
(k)

j has a known covariance

structure, for k = 1,2, . . . until convergence. We use GLS because it performs

slightly faster, with the exception of Figure 3.4 where we use optim for

computational reasons. True value of β is set to β0 = (0.3,0.6,0.8,1.2,0.45,1.6)T in

the case of five covariates, and subsets thereof for fewer covariates.

We discuss the first set of simulations. Let sample size be N = 1,000 and the AR(1)

covariance matrix A have standard deviation σ = 2 and correlation ρ = 0.5. CL

estimation of β̂j is done first by using the correct AR(1) block covariance structure

(DIMM-AR(1)). To evaluate how our method performs under covariance

misspecification, we estimate β̂j using a compound symmetry (DIMM-CS) block

covariance structure.

We compute β̂DIMM from (3.7) and its covariance, and report root mean squared

error (RMSE), empirical standard error (ESE), mean asymptotic standard error

(ASE), and mean bias (BIAS) with M = 200 and five scalar covariates (Table 3.1)

and with M = 1,000 and two vector covariates (Table 3.2). We compare DIMM to

estimates of β obtained using GEE with a compound symmetry covariance

structure (GEE-CS) and independence covariance structure (GEE-IND) using the

R package geepack (Højsgaard et al. (2006)), using a linear mixed-effects (LMM)

model with nested random intercepts for subject and
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Table 3.1: Simulation results: RMSE, BIAS, ESE, ASE with five covariates, N = 1,000, M = 200,
J = 5, averaged over 500 simulations.

measure×10−2 DIMM-AR(1) DIMM-CS GEE-CS GEE-IND LMM GLS-oracle

β0 RMSE/BIAS 4.34/−0.35 4.32/−0.32 4.88/−0.33 4.88/−0.33 4.85/−0.33 4.12/−0.36

ESE/ASE 4.33/4.21 4.32/4.21 4.87/4.85 4.87/4.85 4.84/5.07 4.11/4.12

β1 RMSE/BIAS 1.83/0.03 1.84/0.04 2.09/0.08 2.09/0.08 2.07/0.09 1.8/0.06

ESE/ASE 1.83/1.78 1.84/1.78 2.09/2.05 2.09/2.05 2.07/2.14 1.8/1.74

β2 RMSE/BIAS 3.41/−0.04 3.47/−0.07 3.75/0.08 3.75/0.08 3.69/0.09 3.24/−0.02

ESE/ASE 3.41/3.23 3.47/3.23 3.76/3.72 3.76/3.72 3.7/3.89 3.25/3.17

β3 RMSE/BIAS 1.51/0.14 1.51/0.14 1.67/0.09 1.67/0.09 1.66/0.1 1.45/0.13

ESE/ASE 1.50/1.45 1.51/1.45 1.67/1.67 1.67/1.67 1.66/1.74 1.45/1.42

β4 RMSE/BIAS 5.50/0.23 5.49/0.2 5.98/0.19 5.98/0.19 5.94/0.2 5.26/0.29

ESE/ASE 5.50/5.15 5.49/5.15 5.98/5.92 5.98/5.92 5.94/6.19 5.25/5.04

β5 RMSE/BIAS 3.53/−0.09 3.56/−0.07 3.99/−0.08 3.99/−0.08 3.97/−0.1 3.42/−0.04

ESE/ASE 3.53/3.21 3.56/3.21 3.99/3.74 3.99/3.74 3.97/3.9 3.43/3.18

Block sizes are (m1,m2,m3,m4,m5) = (45,42,50,34,29). X1 ∼ N (0,1), X2 ∼ Bernoulli(0.3), X3 ∼

Categorical(0.1,0.2,0.4,0.25,0.05), X4 ∼ Uniform(0,1), and X5 =X1 ×X2.

block membership with AR(1) within-group correlation using the R package nlme,

and using GLS with known covariance (GLS-oracle) (our code). The latter can

be considered the “oracle setting”, as we do not estimate the covariance of the

response but use the true covariance to estimate β. In the Appendix C, we include

simulations that show the statistical efficiency gain of using V̂ N,ψ to take into account

the correlation between blocks. For these simulations, we compute an estimator

derived by using a diagonal weighting matrix instead of V̂ N,ψ in equation (3.7), and

compare the length of 95% confidence intervals. We examine type-I error of the

test H0 ∶ βq = 0 for q = 1, . . . , p for each simulation scenario, and the chi-squared

distribution of test statistic QN(β̂DIMM) with M = 200, J = 3,5, with one and

two covariates (see Appendix C). Simulations are conducted using R software on a

standard Linux cluster with 16GB of random-access memory per CPU. CL evaluation

is coded in C++ but minimization of the CL occurs in R. One simulation in each of

the following settings failed to converge with LMM: one
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Table 3.2: Simulation results: RMSE, BIAS, ESE, ASE with two covariates, N = 1,000, M = 1,000,
J = 5, averaged over 500 simulations.

measure×10−2 DIMM-AR(1) DIMM-CS GEE-CS GEE-IND LMM GLS-oracle

β0 RMSE/BIAS 0.71/0.01 0.72/0.01 0.82/0.01 0.82/0.01 0.82/0.01 0.69/0.00

ESE/ASE 0.71/0.72 0.72/0.72 0.82/0.82 0.82/0.82 0.82/0.85 0.69/0.7

β1 RMSE/BIAS 0.15/0.00 0.19/0.00 0.21/0.00 0.21/0.00 0.15/0.00 0.13/0.00

ESE/ASE 0.15/0.19 0.19/0.19 0.21/0.2 0.21/0.2 0.15/0.16 0.13/0.13

β2 RMSE/BIAS 0.45/0.01 0.45/0.01 0.52/0.00 0.52/0.00 0.51/0.00 0.44/0.02

ESE/ASE 0.45/0.46 0.46/0.46 0.52/0.52 0.52/0.52 0.51/0.52 0.44/0.45

Block sizes are (m1,m2,m3,m4,m5) = (225,209,247,170,149). X1 ∼ NormalM(0, S), where S is a positive-
definite M ×M matrix, X2 a vector of alternating 0’s and 1’s to imitate an exposure.

covariate with M = 500, five covariates with M = 500, one covariate with

M = 1,000. This is because of the numerical instability of LMM with

high-dimensional outcomes.

In Table 3.1, β̂DIMM appears consistent since BIAS is close to zero. RMSE, ESE

and ASE are approximately equal, meaning DIMM is unbiased and has correct

variance formula in Theorem III.4. Moreover, DIMM mean variance is generally

smaller than GEE and LMM mean variance. In data analyses, this results in

increased statistical power and more signal detection. Finally, DIMM is close to

attaining the estimation efficiency under the GLS-oracle case of known covariance,

which is the best efficiency possible. In Table 3.2, we corroborate these observations

for spatially/longitudinally-varying vector covariates. Our method also still

performs well when dimension is equal to sample size. Finally from Figure 3.3, we

see that DIMM is computationally much faster than GEE and LMM and maintains

appropriate confidence interval coverage, corroborating the theoretical asymptotic

distribution in Theorem III.4 for large sample size. For fixed mj, DIMM is scalable,

since the dimension of the response in each block does not increase. We remark

that CPU time consists of time spent by the CPU on calculations and is generally

shorter than elapsed time, especially for analyses that use the entire data such as
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GEE, LMM and GLS-oracle. Elapsed time depends greatly on implementation and

hardware, and is harder to compare between methods. For DIMM, CPU time is the

sum of maximum CPU time over parallelized block analyses and CPU time spent

on other computations, such as computing V̂ N,ψ and β̂DIMM .

We now discuss the second set of simulations. We let sample size N = 1,500 and

consider a very challenging linear regression problem with high-dimension

M = 10,000, and J = 12 such that

(m1, . . . ,m12) = (917,863,988,734,906,603,756,963,915,856,641,858). We let X i

be a matrix of five covariates and an intercept, and the AR(1) covariance matrix A

with standard deviation σ = 16 and correlation ρ = 0.8. We compute β̂DIMM from

(3.7) and its estimated covariance, and plot RMSE, ESE, ASE, and BIAS in Figure

3.4. We were unable to compare DIMM with existing competitors due to the

tremendous computational burden associated with such high-dimensional M . As in

the first set of simulations, β̂DIMM is consistent with ignorable BIAS. RMSE, ESE

and ASE are approximately equal, confirming the large-sample properties of DIMM

in this numerical example. ASE slightly underestimates ESE for certain covariate

types. This could be due to the high-dimensionality Jp = 72 of
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Figure 3.3: Upper panels: comparison of computation time on log10 scale of five methods for varying
dimension M based on 500 simulations. Lower panels: comparison of 95% confidence interval coverage of
four methods for varying dimension M based on 500 simulations. Left column has X1 ∼ N (0,1); middle
column has X1 ∼ NM(0, S), where S is a positive-definite M ×M matrix, and X2 a vector of alternating 0’s
and 1’s; right column has X1 ∼ N (0,1), X2 ∼ Bernoulli(0.3), X3 ∼ Multinomial(0.1,0.2,0.4,0.25,0.05),
X4 ∼ Uniform(0,1), and X5 an interaction between X1 and X2.
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ΨN , or the poorer performance of GMM in smaller samples (see Section 3.7). Beyond

theoretical validation, the simulation results presented in this section highlight the

applicability, flexibility and computational power of DIMM. The empirical evidence

from simulations is encouraging and advocates the ability of DIMM to deal with

high-dimensional correlated response data with multi-level nested correlations.

3.6 Application to Infant EEG Data
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Figure 3.5: Correlation of electrical amplitude at three ERP’s for iron sufficient children under stimulus
of mother’s voice (color plot and additional plots in Appendix D).

We present the analysis of the infant EEG data introduced in Section 3.1. EEG

data from 157 two-month-old infants under two stimuli at 46 nodes was used. Six

brain regions were identified by the investigator as related to auditory recognition

memory, with an additional reference node (VREF), as visualized in Figure 3.1b:
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left frontal-central (11, 12, 13, 14, 15, 18, 19), middle frontal-central (3, 4, 6, 7, 8,

9, 54), right frontal-central (2, 53, 56, 57, 58, 59, 60), left parietal-occipital (24, 25,

26, 27, 28, 29, 30, 32), middle parietal-occipital (31, 33, 34, 35, 36, 37, 38, 39, 40),

and right parietal-occipital (42, 43, 44, 45 46, 47, 48, 52).

The primary scientific objective of this study is to quantify the effect of iron

deficiency on auditory recognition memory. From cord blood at birth, 50 infants

were classified as iron deficient (sufficiency status = 1) and 107 as iron sufficient

based on serum ferritin and zinc protoporphyrin levels. Additional available

covariates are age and type of stimulus (mother’s voice coded with

voice stimulus = 1). The response for one infant has a complex nested correlation

structure with response dimension M = 276; see Figure 3.5. This figure aligns with

substantive scientific knowledge and suggests a partition of data into 18 blocks of

response subvectors, one for each ERP and brain region. It also corroborates prior

knowledge of high correlations within frontal-central regions, parietal-occipital

regions, and between ERPs P2 and P750.

Let Y i,j be the vector of EEG measurements in one brain region and ERP (block j,

j = 1, . . . ,18) for infant i, and consider the linear model with block-specific

coefficients:

E (Y i,j) = β0,j + β1,jagei,j + β2,jvoice stimulusi,j + β3,jsufficiency statusi,j. (3.8)

Instead of assuming global homogeneous covariate effects, which is not biologically

meaningful, we perform analyses based on certain locally homogeneous covariate-

response relationships to identify specific regions affected or not by iron deficiency.

Through individual block analyses (see Appendix D) and existing knowledge, we

identify homogeneous covariate effects across frontal-central regions in each ERP

(M = 42 for each ERP), the left parietal-occipital region in P2 and P750 (M = 32),
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the middle and right parietal-occipital regions from P2 (M = 34), the middle and

right parietal-occipital regions from P750 (M = 34), and parietal-occipital regions

from LSW (M = 50). As mentioned previously, DIMM’s flexibility allows us to

conduct sub-group analyses by combining blocks of homogeneous effects to improve

statistical power.

We use an inverse normal transformation of the responses for each analysis. To

estimate regression parameters using DIMM, we assume a compound symmetric

covariance structure of the response within each brain region and each ERP; block

analyses are run in parallel; we compute the one-step estimator β̂DIMM for the set

of homogeneous regions of interest. We compare DIMM to GEE-CS and LMM with

nested random intercepts for subject, stimulus, ERP and brain region with within-

group compound symmetry correlation structure to reinforce gains in computation

time and statistical power. Based on simulations mimicking our data setting (see

Appendix D), we find that DIMM, GEE-CS and LMM have adequate power. We

present iron sufficiency status effect estimates for selected sub-group analyses in

Table 3.3 (complete results available in Appendix D).

Table 3.3: Select EEG data analysis results: iron sufficiency status effect estimates and statistics
for each combination scheme.

combine region, ERP method
estimate

p-value
CPU CPU

(s.d.×10−2) seconds time ratio*

left, middle and right fc, P2 GEE-CS 0.103 (12.0) 0.39 0.72 0.55

LMM 0.103 (11.8) 0.38 1.97 1.49

DIMM 0.087 (11.9) 0.47 1.32 1

left po, P2 & P750 GEE-CS −0.174 (8.3) 0.04 0.22 0.43

LMM −0.174 (8.3) 0.04 1.47 2.86

DIMM −0.226 (8.1) 0.005 0.51 1

left, middle and right po, LSW GEE-CS 0.041 (8.7) 0.64 0.55 1.41

LMM 0.041 (7.4) 0.58 3.53 9.07

DIMM 0.087 (8.4) 0.30 0.39 1

fc, frontal-central; po, parietal-occipital; s.d., standard deviation. *CPU time ratio is computed as CPU
time of method divided by CPU time of DIMM.
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DIMM finds a more precise estimate than GEE for all analyses, and for a majority

of analyses for LMM. This is because the covariance structures assumed by GEE

and LMM over the entire response may not be close to the true covariance, resulting

in a loss of efficiency. DIMM always performs faster than LMM, and for half the

analyses DIMM also performs faster than GEE. This is because of the parallelization

of DIMM. DIMM may be slower than GEE in the few analyses because of the limited

sample size and small response dimensionality, limiting the improvements of DIMM

over GEE. Nonetheless, in data simulations (see Appendix D), on average DIMM

performs faster than GEE. Effect estimates from GEE, LMM and DIMM tend to be

in the same direction, increasing confidence in our results. The estimated effect for

the left parietal-occipital region in P2 & P750 is significant: iron deficient infants had

expected transformed left parietal-occipital P2 & P750 amplitude 0.226 units lower

than iron sufficient infants of the same age and sex. We find more precise estimates

faster than using GEE and LMM by making better model assumptions and running

analyses in parallel. The proposed DIMM shows promise in simple data analyses,

and has the theoretical justification to perform well in more complex scenarios.

3.7 Discussion

The proposed DIMM, published as Hector and Song (2020a), allows for the fast

and efficient estimation of regression parameters with high-dimensional correlated

response. Simulations show the scalability of DIMM for fixed J and confirm key

asymptotic properties of the DIMM estimator. The β̂DIMM estimator can be

implemented using a fully parallelized computational scheme, for example using the

MapReduce paradigm on the Hadoop platform. Investigators split data into blocks

of responses with simple and homogeneous covariance structures. The data
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partition may be driven by some established scientific knowledge or certain

data-driven approaches. Errors in prior knowledge can lead to misspecification of

the data split, which may be checked via model diagnostics or goodness-of-fit tests.

If sample size is large enough, investigators may consider imposing no or limited

structure on γj to avoid misspecifying response blocks.

In the linear regression setting, the mean and variance of the composite likelihood

approach fully specify the joint distribution of the subresponse yi,j, and minimal

inferential efficiency is lost in the block analysis when the model is correctly

specified. Empirical evidence from the simulations in Section 3.5 support this

argument. In the nonlinear setting, inferential efficiency will inevitably be lost in

the block analyses because the pairwise composite likelihood is a misspecified

likelihood. This loss can be mitigated by using trivariate (or higher) marginal

distributions to construct the block-specific estimating equations. By using the

optimal weight matrix in the GMM, we avoid assumptions on the between-block

covariance structure, and any further loss of efficiency. This may seem

counter-intuitive given that divide-and-conquer approaches typically lead to a loss

of efficiency. With DIMM, there is a trade-off between efficiency and homogeneity

in the parameter β. Indeed, the assumption of homogeneity in β can be restrictive

but allows us to borrow information across blocks and use an efficient GMM,

controlling the variance of β in the process.

In practice, potential trade-offs between number of blocks J and block size mj

should be evaluated when there is no strong substantive knowledge to guide the

choice of partition. Our numerical experience has suggested that although large J

leads to smaller mj and therefore faster computation and less strict model

assumptions, DIMM may yield inefficient results due to large dimensionality of the
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integrated CL score vector ΨN . On the other hand, large mj but small J will have

the opposite effect of slower computation and stricter model assumptions within

each block but better combination of results.

Finally, issues related to poor performance of GMM in small samples have been

documented in the literature and must be considered when sample size is small (see

Hansen et al. (1996) and others in the same issue). In this case, to reduce the

dimensionality of the integrated CL score vector ΨN , we suggest integrating

analyses from a small number of blocks for more reliable results, as done in Section

3.6.

DIMM utilizes the full strength of GMM to combine information from multiple

sources to achieve greater statistical power, an approach that has been shown to

work well with longitudinal data; see for examples Wang et al. (2012) and Wang

et al. (2016). DIMM has the potential to combine multimodal data, an important

analytic task in biomedical data analysis for personalized medicine. Indeed,

response data in each block can be modeled using any pairwise distribution fj,

where {fj}
J
j=1 can be made compatible with f(Y ;Γ) using Fréchet classes (see

Chapter 3 of Joe (1997)). We anticipate numerous extensions to DIMM, including

the addition of penalty terms to CL estimating equations, and allowing for spatially

varying mean parameter β and prediction of neighbouring response variables. Also

of interest is the study of the asymptotic behavior of the DIMM estimator when J

is allowed to grow with the sample size. Additional conditions to regularize the

process of block (and dimension) growth, such as in Donald et al. (2003), Newey

(2004) and Qu et al. (2008), could be considered to study the GMM estimator β̂c,

but much work remains to study the DIMM estimator β̂DIMM since the dimensions

of ΨN and V̂ N,ψ depend on J , introducing additional theoretical challenges. We
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anticipate that DIMM will be useful for many types of data, including genomic,

epigenomic, and metabolomic, indicating the promising methodological potential of

DIMM.
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CHAPTER IV

Doubly Distributed Supervised Learning and Inference with
High-Dimensional Correlated Outcomes

4.1 Introduction

Although the divide-and-conquer paradigm has been widely used in statistics

and computer science, its application with correlated data has been little

investigated in the literature. We provide a theoretical justification, with

theoretical guarantees, for divide-and-conquer methods with correlated data

through a general unified estimating function theory framework. In particular, in

this chapter we focus on the large sample properties of a class of distributed and

integrated estimators for supervised learning and inference with high-dimensional

correlated outcomes. We consider N independent observations {yi,X i}
N
i=1 where

both the sample size N and the dimension M of the response vector yi may be so

big that a direct analysis of the data using conventional methodology is

computationally intensive, or even prohibitive. Such data may arise, for example,

from imaging measurements of brain activity or from genomic data. Denote by

f(Y i;X i,θ,Γi) the M -variate joint parametric distribution of Y i conditioned on

X i, where θ is the parameter of interest and Γi contains parameters, such as for

high-order dependencies, that may be difficult to model or handle computationally.

Statistical inference with big data can be extremely challenging due to the high
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volume and high variety of these data, as noted recently by Secchi (2018). In the

statistics literature, methodological efforts to date have primarily focused on

high-dimensional covariates (i.e. high-dimensional X i) with univariate responses

(corresponding to M = 1); see Johnstone and Titterington (2009) for an overview of

the difficulties and methods in linear regression, and the citations therein for

references to the extensive publications in this field. By contrast, little work has

focused on high-dimensional correlated outcomes (corresponding to large M),

which pose an entirely new and different set of methodological challenges stemming

from a high-dimensional likelihood. The divide-and-combine paradigm holds

promise in overcoming these challenges; see Mackey et al. (2015) and Zhang et al.

(2015b) for early examples of the power of divide-and-combine algorithms. Some

recent divide-and-combine methods for independent outcomes can be found in

Singh et al. (2005), Lin and Zeng (2010), Lin and Xi (2011), Chen and Xie (2014),

and Liu et al. (2015), among others.

More recently, Hector and Song (2020a) proposed a Distributed and Integrated

Method of Moments (DIMM), a divide-and-combine strategy for supervised

learning and inference in a regression setting with high-dimensional correlated

outcomes Y . DIMM splits the M elements of Y into blocks of low-dimensional

response subvectors, analyzes these blocks in a distributed and parallelized

computational scheme using pairwise composite likelihood (CL), and combines

block-specific results using a closed-form meta-estimator in a similar spirit to

Hansen (1982)’s seminal generalized method of moments (GMM). DIMM

overcomes computational challenges associated with high-dimensional outcomes by

running block analyses in parallel and combining block-specific results via a

computationally and statistically efficient closed-form meta-estimator. DIMM is
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easily implemented using MapReduce in the Hadoop framework (Khezr and

Navimipour (2017)), where blocks of data are loaded only once and in parallel.

DIMM presents a useful and natural extension of the classical GMM framework,

which easily accounts for inter-block dependencies. DIMM also improves on the

classical meta-estimation where results from blocks are routinely assumed to be

independent. DIMM is still challenged, however, when estimating a homogeneous

parameter in the presence of heterogeneous parameters. Additionally, it is also

challenged computationally when the sample size N is large; the strategy of

dividing high-dimensional vectors of correlated outcomes into blocks is insufficient

to address the excessive computational demand, since the sample size remains large

in the block analyses. Thus, another division at the subject level is inevitable to

mitigate the computational burden arising from matrix inversions and iterative

calculations in the block analyses.

This chapter proposes a new doubly divided procedure to learn and perform

inference for a homogeneous parameter of interest in the presence of heterogeneous

parameters with a general class of supervised learning procedures. The double

division at the response and subject levels further speeds up computations in

comparison to DIMM and results in a double division of the data, visualized in

Table 4.1: a division of the response Y , and a random division of subjects into

independent subject groups, resulting in blocks of data with a smaller sample of

low-dimensional response subvectors. We consider a general class of supervised

learning procedures to analyze these blocks separately and in parallel. Then we

establish a GMM-type combination procedure that yields a meta-estimator of the

parameter of interest. This proposed estimator is more general than the DIMM

estimator in Hector and Song (2020a), and thus appealing in many practical
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settings where analyzing data with both large M and N is challenging. We achieve

a doubly divided learning and inference procedure implemented in a distributed

and parallelized computational scheme. The proposed class of supervised learning

procedures is very general, including many important estimation methods as

special cases, such as Fisher’s maximum likelihood, Wedderburn (1974)’s

quasi-likelihood, Liang and Zeger (1986)’s generalized estimating equations, Huber

(1964)’s M-estimation for robust inference, with possible extensions to

semi-parametric and non-parametric models.

Block
Group

Subject 1 . . . Subject n1 . . . . . . Subject 1 . . . Subject nK

1 y11,11 . . . yn11,11 . . . . . . y11,1K . . . ynK1,1K

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
m1 y1m1,11 . . . yn1m1,11 . . . . . . y1m1,1K . . . ynKm1,1K

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 y11,J1 . . . yn11,J1 . . . . . . y11,JK . . . ynK1,JK

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
mJ y1mJ ,J1 . . . yn1mJ ,J1 . . . . . . y11,JK . . . ynKmJ ,JK

Table 4.1: Double division of outcome data on both the dimension of responses (into blocks) and
sample size (into groups).

The proposed Doubly Distributed and Integrated Method of Moments (DDIMM)

not only provides a unified framework of various supervised learning procedures of

parameters with heterogeneity under the divide-and-combine paradigm, but

provides key theoretical guarantees for statistical inference, such as consistency and

asymptotic normality, while offering significant computational gains when response

dimension M and sample size N are large. These are useful and innovative

contributions to the arsenal of tools for high-dimensional correlated data analysis,

and to the collection of divide-and-combine algorithms, which have so far

concentrated on independently sampled data. In this chapter, we focus on the
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theoretical aspects of doubly distributed learning and inference, including a

goodness-of-fit test based on a χ2 statistic. We also study consistency and

asymptotic normality of the proposed estimator as the number of data divisions

diverges. This includes theoretical justifications for distributed inference when the

dimension of the response and the number of response divisions diverges, which

allows the analysis of highly dense outcome data.

The rest of the chapter is organized as follows. Section 4.2 describes the DDIMM,

with examples introduced in Section 4.3. Section 4.4 discusses large sample

properties of the proposed DDIMM. Section 4.5 presents the main contribution of

the chapter, a closed-form meta-estimator and its implementation in a parallel and

scalable computational scheme. Section 4.6 illustrates the DDIMM’s finite sample

performance with simulations. Section 4.7 concludes with a discussion. Additional

proofs and simulation results are deferred to Appendices E-G. An R package is also

available.

4.2 Formulation

We begin with some notation. Let ∥⋅∥ be the `2-norm for a D-dimensional vector

a and a D1 ×D2-dimensional matrix A defined by, respectively:

∥a∥ = (
D

∑
d=1
a2
d)

1/2

for a = [ad]
D
d=1 ∈ RD,

∥A∥ = (
D1

∑
d1=1

D2

∑
d2=1

A2
d1d2

)

1/2

for A = [Ad1d2]
D1,D2

d1,d2=1 ∈ RD1×D2 .

We define the stacking operator S(⋅) for matrices {Ajk}
J,K
j=1,k=1, Ajk ∈ RDjk

1 ×D2 , as

S (Ajk,Aj′k′) = ( AT
jk AT

j′k′
)

T

∈ R(D
jk
1 +Dj′k′

1 )×D2 ,

SJ (Ajk) = ( AT
1k . . . AT

Jk
)

T

∈ RDk
1×D2 ,

SJK (Ajk) = ( AT
11 . . . AT

J1 . . . AT
1K . . . AT

JK
)

T

∈ RD1×D2 ,
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where Dk
1 = ∑

J
j=1D

jk
1 , D1 = ∑

K
k=1D

k
1 . Consider the collection of samples {yi,X i}

N
i=1,

where X i ∈ RM×q is fixed, Y i ∈ RM , q,M ∈ N. The number of covariates q is

considered fixed in this chapter. Let θ,ζ take values in parameter spaces Θ ⊆ Rp,

Z ⊆ Rd, both compact subsets of p- and d-dimensional Euclidean space respectively.

Let p, d ∈ N, and consider θ to be the parameter of interest, and ζ to be a potentially

large vector of parameters of secondary interest. Let θ0 ∈ Θ,ζ0 ∈ Z be the true

values of θ and ζ respectively. Consider a class P = {Pθ,ζ} of parametric models

with associated estimating functions Ψ of parameter θ (e.g. Ψ can be the derivative

of some objective function). Suppose we want to learn the parameter θ by finding

the root of Ψ(θ;y,ζ) = 0, which is computationally intensive or even prohibitive

due to the large dimension M of y, the large sample size N , or the large dimension

d of ζ. We focus on a divide-and-combine approach utilizing modern distributed

computing platforms to alleviate the computational and modelling challenges posed

by analyzing the whole data.

4.2.1 Double Data Split Procedure

First, for each subject i, DDIMM divides the M -dimensional response yi and its

associated covariates into J blocks, denoted by:

yi = ( yTi,1 . . . yTi,J )

T

and X i = ( XT
i,1 . . . XT

i,J
)

T

, i = 1, . . . ,N.

Division into blocks is not restricted to the order of data entry: responses may be

grouped according to pre-specified block memberships, according to, say, substantive

scientific knowledge, such as functional regions of the brain. In this chapter, with

no loss of generality, we use the order of data entry in the data division procedure.

Further, DDIMM randomly splits the N independent subjects to form K disjoint

subject groups {yi,jk,X i,jk}
nk

i=1
. Then each group has sample size nk, k = 1, . . . ,K,
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with ∑
K
k=1 nk = N . Refer to Table 4.1 for notation detail. For ease of exposition, we

henceforth use the term “group” to refer to the division along subjects, and “block”

to refer to the division along responses. We also use the term “block” to refer to the

division along both responses and subjects.

We call {yi,jk,X i,jk}
nk

i=1
block (j, k), j = 1, . . . , J and k = 1, . . . ,K. Within block

(j, k), let mj be the dimension of the sub-response, yi,jk = (yi1,jk, . . . , yimj ,jk)
T ∈ Rmj ,

and X i,jk ∈ Rmj×q the associated covariate matrix, with ∑
J
j=1mj =M . For each block

j ∈ {1, . . . , J}, we have K independent subject groups {yi,jk}
nk,K

i=1,k=1
. In contrast,

each group k ∈ {1, . . . ,K} has nk subjects and for each subject i ∈ {1, . . . , nk}, the J

response blocks {yi,jk}
mj

j=1
are dependent.

The primary task is to solve Ψ(θ;y,ζ) = 0 to learn parameter θ ina supervised way

over the entire data. Given the above double data split scheme, this task becomes

a divide-and-combine procedure: the first step is to solve the following system of

block-specific estimating equations: for j ∈ {1, . . . , J}, k ∈ {1, . . . ,K},

Ψjk(θ;yjk,ζjk) = 0, (4.1)

Gjk(ζjk;yjk,θ) = 0, (4.2)

where Gjk is an estimating function used to learn parameters ζjk (e.g. correlation

parameters) that are allowed to be heterogeneous across blocks such that

ζ = SJK (ζjk). The true values (θ0,ζjk0) of (θ,ζjk) are the values such that

Eθ0,ζjk0S(Ψjk(θ0;yjk,ζjk0),Gjk(ζjk0;yjk,θ0)) = 0. Parameters ζjk0 take values in

parameter space Zjk ⊂ Rdjk for some djk > 0 such that ζ0 = SJK (ζjk0),

Z = ⨉
J,K
j=1,k=1Zjk, d = ∑

K
k=1∑

J
j=1 djk. Let ζk0 = SJ (ζjk0) and ζk = SJ (ζjk). This is a

similar approach to GEE2, proposed by Zhao and Prentice (1990), with details also

in Liang et al. (1992), where unbiased estimating equations for the nuisance
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parameters are added in order to guarantee consistency. In this way, we impose

homogeneity of the parameter of interest θ across blocks but allow heterogeneity of

the parameters of secondary interest. We assume that the class of parametric

models P yields block-specific estimating functions satisfying the following

regularity assumptions:

(A.1) (i) Ψjk and Gjk are unbiased; that is, for all θ ∈ Θ, ζjk ∈ Zjk,

Eθ,ζjkS(Ψjk(θ;Y jk,ζjk),Gjk(ζjk;Y jk,θ)) = 0.

(ii) Eθ0,ζjk0S (Ψjk(θ;Y jk,ζjk),Gjk(ζjk;yjk,θ)) has a unique zero at (θ0,ζjk0).

(iii) Ψjk and Gjk are additive: for some kernel inference functions ψjk and gjk,

they take the form

⎛
⎜
⎜
⎝

Ψjk(θ;yjk,ζjk)

Gjk(ζjk;yjk,θ)

⎞
⎟
⎟
⎠

=
1

nk

nk

∑
i=1

⎛
⎜
⎜
⎝

ψjk(θ;yi,jk,ζjk)

gjk(ζjk;yi,jk,θ)

⎞
⎟
⎟
⎠

.

We define Ψjk and Gjk as being “weakly regular” based on the above conditions

(A.1) (i)-(iii) in which the defining properties of a regular inference function are

applied to its mean; see Song (2007) Chapter 3.5 for a definition of regular

inference functions. Additional conditions on the class P will be described

throughout the chapter where appropriate. Within block (j, k), denote by θ̂jk and

ζ̂jk the joint solution to (4.1) and (4.2), estimators of θ and ζjk respectively. For

notation purposes, let θ̂list = SJK(θ̂jk), ζ̂k = SJ(ζ̂jk), and ζ̂list = SJK(ζ̂jk). Due to

the homogeneity of θ, the next step is integration of the block-specific estimators

θ̂jk. By contrast, ζ̂jk remain heterogeneous and potentially high-dimensional. In

the rest of the chapter, for convenience of notation, we suppress the dependence of
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Ψjk, Gjk, ψjk and gjk on yjk and yi,jk:

Ψjk(θ;ζjk) = Ψjk(θ;yjk,ζjk), Gjk(ζjk;θ) =Gjk(ζjk;yjk,θ),

ψi,jk(θ;ζjk) = ψjk(θ;yi,jk,ζjk), gi,jk(ζjk;θ) = gjk(ζjk;yi,jk,θ).

4.2.2 Integration

Integrating block estimates θ̂jk into an estimator of θ, denoted by θ̂c, will yield

a more efficient estimate of θ. In the integration step, our intuition is to treat each

system of equations S (Ψjk(θ;ζjk),Gjk(ζjk;θ)) = 0 as a “moment condition” on θ

contributed by block (j, k), j = 1, . . . , J , k = 1, . . . ,K. Technically, we want to derive

an estimator θ̂c of θ that satisfies all JK moment conditions that effectively makes

use of the JK estimates of θ obtained from equations (4.1) and (4.2). To address

the issue that θ is over-identified by the JK moment conditions, we invoke Hansen

(1982)’s seminal generalized method of moments (GMM) to combine the moment

conditions that arise from each block. Another significant advantage of GMM is

that it allows us to incorporate between-block dependencies, which cannot be easily

done in classical meta-estimation. To this end, define the subject group indicator

δi(k) = 1(subject i is in blocks (j, k) for some k ∈ {1, . . . ,K} and for all j = 1, . . . ,

J) for i = 1, . . . ,N , k = 1, . . . ,K. For subject i, let

ψi(θ;ζ) = SJK (δi(k)ψi,jk(θ;ζjk)) , gi(ζ;θ) = SJK (δi(k)gi,jk(ζjk;θ)) ,

where clearly only one SJ (δi(k)ψ
T
i,jk(θ;ζjk)) is non-zero. Let a⊗2 denote the outer

product of a vector a with itself, namely a⊗2 = aaT . Then we can define ΨN(θ;ζ) =

(1/N)∑
N
i=1ψi(θ;ζ). It is easy to show that

ΨN(θ;ζ) =
1

N
SJK (

nk

∑
i=1

ψi,jk(θ;ζjk)) =
1

N
SJK (nkΨjk(θ;ζjk)) .
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Similarly, define GN(ζ;θ) = (1/N)∑
N
i=1 gi(ζ;θ) = (1/N)SJK (nkGjk(ζjk;θ)). Since

Ψjk and Gjk satisfy assumptions (A.1) for each j and k, ΨN and GN are additive,

unbiased, and Eθ0,ζ0S (ΨN(θ;ζ),GN(ζ;θ)) has a unique zero at (θ0,ζ0). For

convenience, we denote

TN(θ,ζ) =

⎛
⎜
⎜
⎝

ΨN(θ;ζ)

GN(ζ;θ)

⎞
⎟
⎟
⎠

, τ i(θ,ζ) =

⎛
⎜
⎜
⎝

ψi(θ;ζ)

gi(ζ;θ)

⎞
⎟
⎟
⎠

. (4.3)

We assume that the class P yields ψ, g satisfying the following conditions:

(A.2) (i) Both ψjk and gjk are Lipschitz continuous in θ and ζ, namely for

j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}, and some constants cjk, bjk > 0, for all

(θ1,ζjk1) , (θ2,ζjk2) in a neighbourhood of (θ0,ζjk0),

∥ψi,jk(θ1;ζjk1) −ψi,jk(θ2;ζjk2)∥ ≤ cjk ∥(θ1,ζjk1) − (θ2,ζjk2)∥ ,

∥gi,jk(ζjk1;θ1) − gi,jk(ζjk2;θ2)∥ ≤ bjk ∥(θ1,ζjk1) − (θ2,ζjk2)∥ .

(ii) The sensitivity matrix −∇θ,ζEθ,ζτ i(θ,ζ) is continuous in a compact

neighbourhood N(θ0,ζ0) of (θ0, ζ0), and positive definite;

(iii) The variability matrix Eθ0,ζ0 (τ i(θ,ζ)
⊗2) is finite and positive-definite.

Note that TN(θ,ζ) = 0 has no unique solution because its dimension is bigger than

the dimension of θ. To overcome this issue, we follow Hansen’s GMM for over-

identified parameters. Let W be the weight matrix in the GMM equation (4.4).

Classical GMM theory states that any positive semi-definite matrixW can be used to

guarantee consistency and asymptotic normality of the resulting estimator, and that

an optimal choice of W , corresponding to the inverse covariance of the estimating

function TN in (4.3), leads to an efficient GMM estimator. In our setting, a possible
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formulation for a GMM estimator of (θ,ζ) is

(θ̂c, ζ̂c) = arg min
θ,ζ

QN(θ,ζ∣W ), where (4.4)

QN(θ,ζ∣W ) = T T
N(θ,ζ)WTN(θ,ζ).

In (4.4), the weight matrix W is a positive semi-definite (JKp + d) × (JKp + d)

matrix. The heterogeneity of ζ allowed by the use of GN can lead to theoretical and

computational challenges due to the high-dimensionality of the parameter, a problem

from which GEE2 also suffers. See Chan et al. (1998) and Carey et al. (1993) for a

discussion on the computational burden of inverting large matrices in GEE2. Note

that block-specific estimators ζ̂list are consistent; the only possible improvement from

re-learning ζ in an iterative procedure between θ̂c and ζ̂c is a gain in efficiency. This

is not necessary since ζ are parameters of secondary interest and their efficiency is in

general not of interest. We will derive a closed-form meta-estimator of θ that avoids

re-learning of ζ in Section 4.5.

Following the work of Hansen (1982), we define a particular instance of the estimator

in (4.4) by specifying W as the inverse sample covariance of TN . We will show

in Section 4.4 that this choice of W is optimal for the efficiency of the resulting

estimator. Let V̂ N be the sample covariance of TN(θ0,ζ0):

V̂ N =
1

N

N

∑
i=1

(τ i(θ̂list, ζ̂list))
⊗2

=
1

N

N

∑
i=1

⎛
⎜
⎜
⎝

ψi(θ̂list; ζ̂list)

gi(ζ̂list; θ̂list)

⎞
⎟
⎟
⎠

⊗2

, (4.5)

where ψi(θ̂list; ζ̂list) = SJK (δi(k)ψi,jk(θ̂jk; ζ̂jk)). Letting W = V̂
−1

N yields the

following optimal GMM estimator:

(θ̂opt, ζ̂opt) = arg min
θ,ζ
T T
N(θ,ζ)V̂

−1

N TN(θ,ζ). (4.6)

We assume that W and V̂ N are nonsingular; see Han and Song (2011) for optimal

weighting matrix with QIF when the sample covariance is ill-defined. Before

62



presenting large-sample properties of (θ̂c, ζ̂c) and (θ̂opt, ζ̂opt) in Section 4.4, we

demonstrate in Section 4.3 the flexibility of our framework through several

important supervised learning methods.

4.3 Examples

We now present five examples to illustrate the flexibility of the unifying framework

considered in this chapter.

4.3.1 Likelihood-based methods

Consider the multidimensional regression model h(µi,jk) = X i,jk( θT βTjk )T ,

where µi,jk = E(Y i,jk∣X i,jk,θ,βjk) is the mean vector of Y i,jk given X i,jk, βjk, and

the p-dimensional parameter θ (p ≤ q the number of covariates, which may include an

intercept), and h is a known component-wise link function. Let ζjk be parameters of

the second-order moments of Y i,jk, such as dispersion parameters, and parameters in

βjk (which may be empty). If the full likelihood of Y i,jk is computationally tractable,

Ψjk and Gjk correspond to the score functions, and θ̂jk and ζ̂jk may be given by the

maximum likelihood estimates (MLEs). DDIMM can be applied straightforwardly

by following the procedure in Section 4.2.

If the full likelihood is computationally intractable or difficult to construct, one

can instead use pseudo-likelihoods such as the pairwise composite likelihood. The

pairwise composite likelihood, originally proposed by Lindsay (1988) and detailed in

Varin et al. (2011), provides the following forms of the equations for (4.1) and (4.2):

Ψjk(θ;ζjk) =
1

nk

nk

∑
i=1

mj−1

∑
r=1

mj

∑
t=r+1

∇θ log fj(yir,jk; yit,jk;θ,ζjk,X i,jk),

Gjk(ζjk;θ) =
1

nk

nk

∑
i=1

mj−1

∑
r=1

mj

∑
t=r+1

∇ζjk log fj(yir,jk; yit,jk;θ,ζjk,X i,jk),
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for some bivariate marginal fj which can be chosen according to the nature of the

response data. As long as the bivariate marginals fj are correctly specified, the

composite score functions Ψjk and Gjk satisfy the regularity conditions in (A.1).

Hence the DDIMM can be used to overcome the computational challenges related

to the MLE and pairwise composite likelihood. We refer readers to Chapter 6 of

Song (2007) and Chapter 3 of Joe (2014) for details on constructing multivariate

distributions using Gaussian and vine copulas respectively, but note that direct

computation of the MLE is computationally very challenging when mj ≥ 4.

Examples of applications of Gaussian copulas can be found in Song et al. (2009),

Bodnar et al. (2010), Bai et al. (2014), and in the importance sampling algorithm

proposed in Masarotto and Varin (2012), among others.

4.3.2 Generalized estimating equations

More generally, Wedderburn (1974)’s quasi-likelihood is a popular alternative

method of supervised learning that does not require a fully specified

multidimensional likelihood; it receives a full treatment in Heyde (1997). Consider

Liang and Zeger (1986)’s marginal mean model h(µi,jk) = X i,jk( θT βTjk )T for

the analysis of longitudinal data, where µi,jk = E(Y i,jk∣X i,jk,θ,βjk) is the

marginal mean vector of serially correlated outcomes Y i,jk given X i,jk, βjk, and

the p-dimensional parameter θ (p ≤ q), and h is a known component-wise link

function. In this setting, ζjk consists of parameters in βjk (which may be empty),

parameters for the variances of Yit,jk, t = 1, . . . ,mj, and a nuisance parameter αjk

which fully characterizes a working correlation matrix Rjk(αjk). In the case where

βjk is empty, the generalized estimating equation (GEE) proposed by Liang and

Zeger (1986) yields the the kernel inference function ψjk(θ;ζjk) = D
T
i,jkΣ

−1
i,jkri,jk in

(A.1) (iii), where Di,jk = ∇θµi,jk, ri,jk = yi,jk −µi,jk, and Σi,jk =Ai,jkRjk(αjk)Ai,jk,
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where Ai,jk = diag{(V ar(Yit,jk))1/2}
mj

t=1. In GEE2, Gjk in (4.2) is specified as

another unbiased inference function satisfying (A.1) and (A.2). DDIMM provides a

procedure for the application of distributed methods to high-dimensional

longitudinal/clustered data.

4.3.3 M-estimation

DDIMM can be applied to many learning methods proposed in robust statistics.

In the robust statistics literature due to Huber (1964) and, more generally, Huber

(2009), an M-estimator is defined as the root of an implicit equation of the form

Ψjk(θ̂jk) = ∑
nk
i=1ψjk(θ̂jk) = 0, where ψjk(θ) = ∇θρ(θ), ρ is a suitable function that

primarily aims to provide estimators robust to influential data points, and θ̂jk ∈ Rp,

and ζjk is empty or known; additional details are available in Huber (2009) for the

case when ζjk is unknown. In the context of longitudinal data, Wang et al. (2005)

robustify the generalized estimating equations of Liang and Zeger (1986) by replacing

the standardized residuals with Huber’s M -residuals.

4.3.4 Joint mean-variance modelling

Following Pan and Mackenzie (2003), one can jointly model the marginal means

and covariances of the longitudinal responses with h(µi,jk) = X i,jk,1β, log(σ2
i,jk) =

X i,jk,2λ, and φirt,jk = X irt,jk,3γ for 1 ≤ t < r ≤ mj, where h is a known component-

wise link function, β ∈ Rq1 , λ ∈ Rq2 and γ ∈ Rq3 are unconstrained parameters, µi,jk =

E(Y i,jk∣X i,jk,1,θ) andX i,jk,1 ∈ Rmj×q1 a submatrix ofX i,jk, σ2
i,jk = S (V ar(Yir,jk))

mj

r=1

and X i,jk,2 ∈ Rmj×q2 a submatrix of X i,jk, and φirt,jk are specified in Zhang et al.

(2015a). Estimating functions Ψjk and Gjk in (4.1) and (4.2) are given in detail in

Zhang et al. (2015a). There is some choice depending on the problem considered as

to whether θ = β, θ = (λ,γ), or θ = (β,λ,γ). In the first case, learning of variance
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parameters only helps improve estimation efficiency. This type of framework is widely

applied in biomedical studies where the mean parameters are of primary interest. In

the second case, learning of covariance parameters is of interest and β is treated as

a nuisance parameter. This is the situation where prediction is of primary interest,

such as in kriging in spatial data analysis. In the third case, Gjk is null, and learning

of variance parameters is of interest to the investigator. This case occurs for example

in the study of volatility for risk management in financial data analysis.

4.3.5 Marginal quantile regression for correlated data

Consider the marginal quantile regression model QYit,jk ∣Xit,jk
(τ) =X it,jkθ, where

QYit,jk ∣Xit,jk
(τ) = F −1

Yit,jk ∣Xit,jk
(τ) = inf{yit,jk ∶ FYit,jk ∣Xit,jk

(yit,jk) ≥ τ} is the τth quantile

of Yit,jk∣X it,jk, τ ∈ (0,1), where fYit,jk ∣Xit,jk
(yit,jk) is the conditional distribution

function of Yit,jk given X it,jk, t = 1, . . . ,mj. Many estimating functions Ψjk and Gjk

for the learning of θ and association parameters ζjk of Y i,jk have been proposed;

see Jung (1996), Fu and Wang (2012), Lu and Fan (2015), and Yang et al. (2017)

for examples.

Each of these five examples requires additional work to fully develop a divide-and-

conquer strategy via DDIMM, including specific computational details. Here we

only present the general framework with a high-level discussion that sheds light on

DDIMM’s promising generality and flexibility, and its coverage of a wide range of

supervised learning methods. The theoretical results presented in Sections 4.4 and

4.5 are developed under a general unified framework of estimating functions that

includes the above five examples as special cases.
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4.4 Asymptotic Properties

In this section we assume that K and J are fixed; this assumption will be relaxed

in Section 4.5. Let nmin = mink=1,...,K nk and nmax = maxk=1,...,K nk. Suppose W
p
→ w

as nmin → ∞. In this section we study the asymptotic properties of the GMM

estimator (θ̂c, ζ̂c) proposed in (4.4) and its optimal version proposed in (4.6). We

assume throughout that subjects are monotonically allocated to subject groups; that

is, as nmin → ∞, a subject cannot be reallocated to another group once it has been

assigned to a subject group. Define the variability matrix of τ i(θ,ζ) in (4.3) as

v(θ,ζ) = V arθ0,ζ0 {τ i(θ,ζ)} =

⎛
⎜
⎜
⎝

vψ(θ,ζ) vψg(θ,ζ)

vTψg(θ,ζ) vg(θ,ζ)

⎞
⎟
⎟
⎠

where vψ(θ,ζ) = V arθ0,ζ0 {ψi(θ;ζ)}, vg(θ,ζ) = V arθ0,ζ0 {gi(ζ;θ)}, and vψg(θ,ζ) =

Eθ0,ζ0 {ψi(θ;ζ)gTi (ζ;θ)}. Let the sensitivity matrix of τ i(θ,ζ) be

s(θ,ζ) = −∇θ,ζEθ0,ζ0τ i(θ,ζ) =

⎛
⎜
⎜
⎝

sθψ(θ,ζ) sζψ(θ,ζ)

sθg(θ,ζ) sζg(θ,ζ)

⎞
⎟
⎟
⎠

, where (4.7)

sθψ(θ,ζ) = SJK (
nk

N s
θ
ψjk

(θ,ζjk)) , s
ζ
ψ(θ,ζ) = diag{

nk

N s
ζ
ψjk

(θ,ζjk)}
J,K

j=1,k=1
,

sθg(θ,ζ) = SJK (
nk

N s
θ
gjk

(θ,ζjk)) , sζg(θ,ζ) = diag{
nk

N s
ζ
gjk(θ,ζjk)}

J,K

j=1,k=1

sjk(θ,ζjk) =

⎛
⎜
⎜
⎝

sθψjk
(θ,ζjk) sζψjk

(θ,ζjk)

sθgjk(θ,ζjk) sζgjk(θ,ζjk)

⎞
⎟
⎟
⎠

.

Following Theorem 3.4 of Song (2007), block-specific estimates θ̂jk and ζ̂jk are

consistent given assumptions (A.1). Consistency and asymptotic normality of the

GMM estimator (θ̂c, ζ̂c) in (4.4) have been established by Hansen (1982) and, more

generally, by Newey and McFadden (1994). To establish consistency and asymptotic

normality for the combined estimator (θ̂c, ζ̂c), we consider the following additional

regularity conditions:
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(A.3) Following Newey and McFadden (1994), define

Q0(θ,ζ∣W ) = Eθ,ζ {T
T
N(θ,ζ)}wEθ,ζ {TN(θ,ζ)} .

Assume Q0(θ,ζ∣W ) is twice-continuously differentiable in a neighbourhood of

(θ0,ζ0).

(A.4) Let (θ̂c, ζ̂c) = arg min
θ,ζ

QN(θ,ζ∣W ). Following Newey and McFadden (1994),

assume QN(θ̂c, ζ̂c∣W ) ≤ inf
θ∈Θ,ζ∈Z

QN(θ,ζ∣W ) + εN with εN = op(1). In addition,

assume that θ0, ζ0 are interior points of Θ and Z respectively, and that for any

δN → 0,

sup
∥(θ,ζ)−(θ0,ζ0)∥≤δN

N1/2

1+N1/2∥(θ,ζ)−(θ0,ζ0)∥
∥TN(θ,ζ) − TN(θ0,ζ0) −Eθ0,ζ0TN(θ,ζ)∥

p
→ 0.

Theorems IV.1 and IV.2 do not require the differentiability of TN and QN . Instead,

they require the differentiability of their population versions, and that TN behaves

“nicely” in a neighbourhood of (θ0,ζ0), in the sense that higher order terms are

asymptotically ignorable. The following two theorems state the consistency and

asymptotic normality of (θ̂c, ζ̂c) given in (4.4) under Newey and McFadden’s mild

moment conditions given in (A.3) and (A.4).

Theorem IV.1 (Consistency of (θ̂c, ζ̂c)). Suppose assumptions (A.1)-(A.3) hold

with (θ̂c, ζ̂c) defined in (4.4). Then (θ̂c, ζ̂c)
p
→ (θ0,ζ0) as nmin →∞.

The proof of Theorem IV.1 follows closely the steps given in Hansen (1982) and

Newey and McFadden (1994), and thus is omitted.

Theorem IV.2 (Asymptotic normality of (θ̂c, ζ̂c). Suppose assumptions (A.1)-(A.4)

hold with (θ̂c, ζ̂c) defined in (4.4). Then as nmin →∞,
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N1/2

⎛
⎜
⎜
⎝

θ̂c − θ0

ζ̂c − ζ0

⎞
⎟
⎟
⎠

d
→ N (0, j−1

(θ0,ζ0)s(θ0,ζ0)ṽ(θ0,ζ0)s
T (θ0,ζ0)j

−1
(θ0,ζ0)) ,

where ṽ(θ,ζ) =wv(θ,ζ)w, and where the Godambe information j(θ,ζ) of TN(θ,ζ)

takes the form j(θ,ζ) = s(θ,ζ)wsT (θ,ζ).

The proof of Theorem IV.2 follows easily from Theorem 7.2 in Newey and McFadden

(1994) and Theorem IV.1 above. We note that requiring K to be finite implies that

N and nmin are asymptotically of the same order. We will relax this assumption

in Section 4.5. Conditions (A.3) and (A.4) allow us to consider non-differentiable

kernel inference functions in the block (j, k) analysis, extending Hector and Song

(2020a)’s DIMM beyond CL kernel inference functions. We can now consider quantile

regression, M-estimation, and more general estimation functions than the score or

CL score equations.

A test of the over-identifying restrictions follows from Hansen (1982) and Hector

and Song (2020a). This test is useful for detecting invalid moment restrictions,

which can inform our choice of data partition and model. Formally, we show in

Theorem IV.3 that the objective function NQN evaluated at (θ̂c, ζ̂c) follows a χ2

distribution with (JK −1)p degrees of freedom. Unfortunately, it may be difficult to

tell if invalid moment restrictions stem from an inappropriate data split or incorrect

model specification. Residual analysis for model diagnostics can remove doubt in the

latter case.

Theorem IV.3 (Test of over-identifying restrictions). Suppose assumptions (A.1)-

(A.4) hold with (θ̂c, ζ̂c) defined in (4.4). Then as nmin → ∞, NQN(θ̂c, ζ̂c∣W )
d
→

χ2
(JK−1)p

.

The proof of Theorem IV.3 can be carried out with some minor changes from that of
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Theorem 3 in Hector and Song (2020a). The GMM provides an objective function

with which to do model selection even when the block analyses do not, such as with

GEE and M-estimation. In the following, Theorem IV.4 and Corollary IV.1 show

our combined GMM estimator derived from (4.6) is optimal in the sense defined by

Hansen (1982): it has an asymptotic covariance matrix at least as small (in terms

of the Loewner ordering) as any other estimator exploiting the same over-identifying

restrictions. We refer to this property as “Hansen optimality”.

Theorem IV.4. Suppose assumptions (A.1)-(A.2) hold. Then as nmin →∞, V̂ N
p
→

v(θ0,ζ0), i.e. w = v−1(θ0,ζ0).

Proof. The proof uses the consistency of the block estimators and the Central Limit

Theorem, and is given in Appendix F.

Corollary IV.1 (Hansen optimality). Suppose assumptions (A.1)-(A.4) hold with

(θ̂c, ζ̂c) defined in (4.4). Let j(θ,ζ) as given in Theorem IV.2. Then as nmin →∞,

N1/2

⎛
⎜
⎜
⎝

θ̂opt − θ0

ζ̂opt − ζ0

⎞
⎟
⎟
⎠

d
→ N (0, j−1

(θ0,ζ0)) .

The theoretical results given in Theorems IV.1-IV.4 provide a framework for

constructing asymptotic confidence intervals and conducting hypothesis tests, so that

we can perform inference for θ when M and/or N are very large. Using an optimal

weight matrix improves statistical power so DDIMM may detect some signals that

other methods may miss. Since we consider a broad class of models P, there are

no general efficiency results about the block-specific estimator θ̂jk. When a learning

method based on Ψjk has known efficiency results and performs well enough, DDIMM

generally inherits “local” efficiency to achieve overall efficiency.

Remark 1. We discuss efficiency for selected examples in Section 4.3.
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(i) In Example 4.3.1, when the score function exists and satisfies mild regularity

conditions, its variance is given by Fisher’s information, and is a lower bound on

the variances of estimating functions for θ and ζ. This, coupled with Hansen’s

optimality, means that using the score function for ψjk and gjk yields an efficient

estimator of θ and ζ. In an unpublished dissertation, Jin (2011) studied the efficiency

of the pairwise composite likelihood under different correlation structures. Hector

and Song (2020a) showed empirically that the efficiency of the pairwise composite

likelihood propagates to the combined estimator.

(ii) In Example 4.3.2, it is known that the GEE estimator θ̂jk in Example 4.3.2

is semi-parametrically efficient when the correlation structure of the response yi,jk is

correctly specified. This, coupled with Hansen’s optimality, means that using GEE’s

for ψjk with the correct correlation structure of the response yi,jk yields an efficient

estimator of θ.

Remark 2. The GMM estimator (θ̂opt, ζ̂opt) can be interpreted as maximizing an

extension of the confidence distribution density, as discussed in Hector and Song

(2020a). The confidence distribution approach is used for independent data in Xie

and Singh (2013). Briefly, we can define the confidence estimating function (CEF)

as U(θ,ζ) = Φ(N1/2V̂
−1/2

N TN(θ,ζ)), where Φ(⋅) is the (JKp + d)-variate standard

normal distribution function. Clearly, U(θ,ζ) is asymptotically standard uniform at

(θ0,ζ0) as long as V̂ N is a consistent estimator of the covariance of TN . Then we

can define the density of the CEF as u(θ,ζ) = φ(N1/2V̂
−1/2

N TN(θ,ζ)). Maximizing

u(θ,ζ) with respect to (θ,ζ) yields the minimization defined in (4.6).

By framing our estimator as a GMM estimator, the theoretical framework of DIMM

established only for CL can be extended to include a data split at the subject

level and a generalization of Ψjk and Gjk. Adding moment conditions allows the
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proposed method to enjoy the power and versatility of the GMM, and the necessary

theoretical results to support its use. This divide-and-conquer strategy benefits

from handling low dimensional blocks of data and estimating equations, yielding

tremendous computational gains.

4.5 Distributed Estimation and Inference

Despite the computational gains offered by the divide-and-combine procedure

and the GMM estimator, iteratively finding the solution (θ̂opt, ζ̂opt) (or (θ̂c, ζ̂c)) to

(4.6) can be slow due to the high-dimensionality of parameter ζ and the need to

repeatedly evaluate Ψjk and Gjk. To overcome this computational bottleneck, we

propose a meta-estimator derived from (4.6) that delivers a closed-form estimator

via a linear function of block estimates (θ̂list, ζ̂list). We define the DDIMM estimator

for (θ,ζ):

⎛
⎜
⎜
⎝

θ̂DDIMM

ζ̂DDIMM

⎞
⎟
⎟
⎠

= (
K

∑
k=1

J

∑
i=1

n2
kĈk,i)

−1 K

∑
k=1

J

∑
i=1

n2
kĈk,i

⎛
⎜
⎜
⎝

θ̂ik

ζ̂list

⎞
⎟
⎟
⎠

. (4.8)

where Ĉk,i is a function of sample variability and sensitivity matrices and block-

specific estimators θ̂jk and ζ̂jk defined in detail in Section 4.5.1. If we do not plan

to conduct inference for ζ, which is treated as a nuisance parameter, taking [Ĉ
−1
]
p∶

to be rows 1 to p of matrix (∑
K
k=1∑

J
i=1 n

2
kĈk,i)

−1 leads to the closed-form estimator

of θ:

θ̂DDIMM = [Ĉ
−1
]
p∶

K

∑
k=1

J

∑
i=1

n2
kĈk,i ( θ̂

T

ik ζ̂
T

list
)

T

. (4.9)

We briefly define sample sensitivity matrices that will appear in the main body of

the chapter. Let Sθψjk
(θ,ζjk) be a n

1/2
k -consistent sample estimator of sθψjk

(θ,ζjk),
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and similarly define Sζψjk
(θ,ζjk), S

θ
gjk

(θ,ζjk) and Sζgjk(θ,ζjk). Let

Sjk(θ,ζjk) =

⎛
⎜
⎜
⎝

Sθψjk
(θ,ζjk) Sζψjk

(θ,ζjk)

Sθgjk(θ,ζjk) Sζgjk(θ,ζjk)

⎞
⎟
⎟
⎠

.

Note that the uppercase S denotes the sample sensitivity matrix, and the lower-case

s denotes the population sensitivity matrix. Let Ŝjk = Sjk(θ̂jk, ζ̂jk) and similarly

define Ŝ
θ

ψjk
, Ŝ

ζ

ψjk
, Ŝ

θ

gjk
and Ŝ

ζ

gjk
. Sensitivity formulas are summarized in Appendix

E.

The DDIMM estimator in (4.9) can be implemented in a fully parallelized and

scalable computational scheme, where only one pass through each block of data

is required. The block analyses are run on parallel CPUs, and return the values

of summary statistics {θ̂jk, ζ̂jk,ψi,jk(θ̂jk; ζ̂jk),gi,jk(ζ̂jk; θ̂jk), Ŝjk}
J,K
j,k=1 to the main

computing node, which computes θ̂DDIMM in (4.9) in one step.

4.5.1 Construction of Ĉk,i

We give details on the construction of Ĉk,i. Readers may wish to omit this section

on a first reading, as these details are not necessary for an understanding of the main

body of the chapter. We consider the optimal case where the GMM weighting matrix

takes the form:

W = V̂
−1

N =

⎛
⎜
⎜
⎝

V̂ N,ψ V̂ N,ψg

V̂
T

N,ψg V̂ N,g

⎞
⎟
⎟
⎠

−1

=

⎛
⎜
⎜
⎝

V̂
ψ

N V̂
ψg

N

V̂
ψg T

N V̂
g

N

⎞
⎟
⎟
⎠

.

For convenience, we introduce a subsetting operation, with technical details available

in Appendix E: we let [V̂
ψ

N]
ij∶k

subset the rows for the parameters corresponding to

block (i, k) and the columns for the parameters corresponding to block (j, k) of

matrix V̂
ψ

N . Similarly define [V̂
g

N]
ij∶k

, and [V̂
ψg

N ]
ij∶k

. For η ∈ {θ,ζ}, let
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Â
η

k,ij = (Ŝ
θ T

ψjk
[V̂

ψ

N]
ji∶k

+ Ŝ
θ T

gjk
[V̂

ψg T

N ]
ji∶k

) Ŝ
η

ψik
+ (Ŝ

θ T

ψjk
[V̂

ψg

N ]
ji∶k

+ Ŝ
θ T

gjk
[V̂

g

N]
ji∶k

) Ŝ
η

gik
,

B̂
η

k,ij = (Ŝ
ζ T

ψjk
[V̂

ψ

N]
ji∶k

+ Ŝ
ζ T

gjk
[V̂

ψg T

N ]
ji∶k

) Ŝ
η

ψik
+ (Ŝ

ζ T

ψjk
[V̂

ψg

N ]
ji∶k

+ Ŝ
ζ T

gjk
[V̂

g

N]
ji∶k

) Ŝ
η

gik
.

Define Dik as the sum of the dimensions of ζ11, . . . ,ζi−1k, and Dk as the sum of the

dimensions of ζ11, . . . ,ζJk−1, with technical details in Appendix E. Let dk = ∑
J
j=1 djk.

Then we can define the following,

Ĉk,i =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J

∑
j=1
Â
θ

k,ij 0p×Dik

J

∑
j=1
Â
ζ

k,ij 0p×(d−dik−Dik)

0Dk×(p+d)

B̂
θ

k,i1 0d1k×Dik B̂
ζ

k,i1 0d1k×(d−dik−Dik)

⋮

B̂
θ

k,iJ 0dJk×Dik B̂
ζ

k,iJ 0dJk×(d−dik−Dik)

0(d−dk−Dk)×(p+d)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.10)

4.5.2 Asymptotic results for K and J fixed

In this section we assume that K and J are fixed, which will be relaxed in Sections

4.5.3 and 4.5.4. Recall that we assume subjects are monotonically allocated to subject

groups: as nmin → ∞, a subject cannot be reallocated to another group once it has

been assigned to a subject group. Consider the following condition:

(A.5) For each j = 1, . . . , J , k = 1, . . . ,K, θ̂jk = θ0+Op(n
−1/2
k ) and ζ̂jk = ζjk0+Op(n

−1/2
k ).

For any δN → 0,

sup
∥(θ,ζ)−(θ0,ζ0)∥≤δN

N1/2

1+N1/2∥(θ,ζ)−(θ0,ζ0)∥
∥TN(θ,ζ) − TN(θ0,ζ0) −Eθ0,ζ0TN(θ,ζ)∥ = Op(N−1/2).

Consequently, some large-sample results can be established which are helpful in

studying the asymptotic behaviour of θ̂DDIMM .
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Lemma IV.1. Suppose assumptions (A.1), (A.2) and (A.5) hold. Then we have

consistent estimation of information matrices:

V̂ N = v(θ0,ζ0) +Op(N
−1/2),

Ŝjk = sjk(θ0,ζjk0) +Op(n
−1/2
k ) for each j, k, and

1

N2

K

∑
k=1

J

∑
i=1

n2
kĈk,i = Ŝ

T
V̂

−1

N Ŝ = j(θ0,ζ0) +Op(N
−1/2),

where Ŝ =

⎛
⎜
⎜
⎜
⎝

S (
nk

N Ŝ
θ

ψjk
)
J,K

j=1,k=1
diag{

nk

N Ŝ
ζ

ψjk
}
J,K

j=1,k=1

S (
nk

N Ŝ
θ

gjk
)
J,K

j=1,k=1
diag{

nk

N Ŝ
ζ

gjk
}
J,K

j=1,k=1

⎞
⎟
⎟
⎟
⎠

.

Proof. A detailed proof is given in Appendix F.

We show in Theorem IV.5 that the proposed closed-form estimator

(θ̂DDIMM , ζ̂DDIMM) in (4.8) is consistent and asymptotically normally distributed.

Theorem IV.5. Suppose assumptions (A.1), (A.2) and (A.5) hold. Let j(θ,ζ) as

given in Theorem IV.2. As nmin →∞,

N1/2

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

d
→ N (0, j−1

(θ0,ζ0)) .

Proof of Theorem IV.5: Here we present major steps, with all necessary details

available in Appendix F. First, we show that θ̂DDIMM and ζ̂DDIMM are consistent.

Define

λ(θ,ζ) =
1

N2

K

∑
k=1

J

∑
i=1

n2
kĈk,i

⎛
⎜
⎜
⎝

θ − θ̂ik

ζ − ζ̂list

⎞
⎟
⎟
⎠

. (4.11)

By definition, λ(θ̂DDIMM , ζ̂DDIMM) = 0. As shown in Lemma F.0.0.1 in Appendix

F, λ(θ0,ζ0)
p
→ 0 as nmin → ∞. Given that ∇θ,ζλ(θ,ζ) exists and is nonsingular,

for some (θ∗,ζ∗) between (θ̂DDIMM , ζ̂DDIMM) and (θ0,ζ0), the first-order Taylor
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expansion leads to

λ(θ̂DDIMM , ζ̂DDIMM) − λ(θ0,ζ0) = ∇θ,ζλ(θ,ζ)∣θ∗,ζ∗
⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

, (4.12)

which converges in probability to 0 as nmin → ∞. This implies that (θ̂DDIMM ,

ζ̂DDIMM)
p
→ (θ0,ζ0) as nmin →∞.

Now we derive the distribution of (θ̂DDIMM , ζ̂DDIMM). With a slight abuse of

notation, let θ̂list − θ0 = SJK (θ̂jk − θ0). We show in Lemma F.0.0.2 in Appendix

F that

⎛
⎜
⎜
⎝

Ψjk(θ0;ζjk0)

Gjk(ζjk0;θ0)

⎞
⎟
⎟
⎠

= Ŝjk

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

+Op(n
−1
k ). (4.13)

Recall the form of TN in (4.3). By the Central Limit Theorem, N1/2TN(θ0,ζ0)
d
→

N (0,v(θ0,ζ0)). Then with Ŝ defined in Lemma IV.1, it follows from equation (4.13)

that

N1/2Ŝ ( (θ̂list − θ0)
T (ζ̂list − ζ0)

T )

T
d
→ N (0,v(θ0,ζ0)) .

Moreover, by Lemma IV.1 and Slutsky’s theorem we have:

N1/2 ( (θ̂list − θ0)
T (ζ̂list − ζ0)

T )

T
d
→ N (0, j−1

(θ0,ζ0)) .

Using the fact that the sum of jointly (asymptotically) Normal variables is

(asymptotically) normal, by Lemma IV.1 and Slutsky’s theorem again, we have

N1/2

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

= N1/2 (
K

∑
k=1

J

∑
i=1

n2
kĈk,i)

−1 K

∑
k=1

J

∑
i=1

n2
kĈk,i

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂list − ζ0

⎞
⎟
⎟
⎠

is asymptotically distributed N (0, j−1
(θ0,ζ0)).

This key theorem allows us to use θ̂DDIMM , which is more computationally attractive

than θ̂opt defined in (4.6), without sacrificing any of the nice asymptotic properties
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for inference. Additionally, it follows easily from Theorem IV.5 that, under suitable

conditions, the closed-form estimator (θ̂DDIMM , ζ̂DDIMM) in (4.8) has the same

asymptotic distribution as and is asymptotically equivalent to the GMM estimator

θ̂opt in (4.6).

Corollary IV.2. Suppose assumptions (A.1)-(A.5) hold with (θ̂opt, ζ̂opt) defined in

(4.6). Then (θ̂DDIMM , ζ̂DDIMM) and (θ̂opt, ζ̂opt) are asymptotically equivalent: as

nmin →∞,

N1/2

XXXXXXXXXXXXXXXX

⎛
⎜
⎜
⎝

θ̂DDIMM − θ̂opt

ζ̂DDIMM − ζ̂opt

⎞
⎟
⎟
⎠

XXXXXXXXXXXXXXXX

p
→ .

Proof. A detailed proof is given in Appendix F.

The computation of θ̂DDIMM in (4.9) relies solely on block-specific estimators

(θ̂list, ζ̂list) and values of summary statistics from each block. To guarantee the

appropriate asymptotic distribution of θ̂DDIMM , we assume in condition (A.5) that

these block-specific estimators areN1/2 consistent estimators of the true values, which

restricts the scope of possible block-specific inference methods. For inference methods

not satisfying this N1/2 consistency in condition (A.5), it is still possible to use θ̂opt

in (4.6).

4.5.3 Asymptotic results for diverging K with J fixed

We show in Theorem IV.6 that the asymptotic distribution of (θ̂DDIMM , ζ̂DDIMM)

remains unchanged as the number of subject groups K grows with the sample size.

Theorem IV.6. Suppose N δ−1/2K is bounded as nmin → ∞ for a positive constant

δ < 1
2 , and assumptions (A.1), (A.2) and (A.5) hold. Let H ∈ Rh×(p+d) a matrix of

rank r ∈ N, h ∈ N, r ≤ h, with finite maximum singular value σ̄(H) <∞. Let j(θ,ζ)

as given in Theorem IV.2. Then, as nmin → ∞, we show that the limiting value
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jH(θ0,ζ0) of Hj−1
(θ0,ζ0)H

T is a positive semi-definite and symmetric variance

matrix, and that

N1/2H

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

d
→ N (0, jH(θ0,ζ0)) .

Proof [Proof of Theorem IV.6] Here we present major steps, with all necessary details

available in Appendix F. First, we know that ∥H∥ ≤ rσ̄(H). Let λ(θ,ζ) defined by

(4.11), such that λ(θ̂DDIMM , ζ̂DDIMM) = 0. We show in Lemma F.0.0.3 in Appendix

F that ∥λ(θ0,ζ0)∥ = Op(N−1/2−δn
1/2
max) and ∥{∇θ,ζλ(θ,ζ)}

−1
∥ = Op (N1/2+δn−1

max).

From the first-order Taylor expansion in (4.12), we have

XXXXXXXXXXXXXXXX

H

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

XXXXXXXXXXXXXXXX

≤ ∥H∥ ∥(∇θ,ζλ(θ,ζ)∣θ∗,ζ∗)
−1
∥ ∥λ(θ0,ζ0)∥

≤ rσ̄(H)Op(n
−1/2
max ).

Then H(θ̂
T

DDIMM , ζ̂
T

DDIMM)T −H(θT0 ,ζ
T
0 )

T
p
→ 0 as nmin →∞.

To derive the distribution of H(θ̂
T

DDIMM , ζ̂
T

DDIMM)T , first consider an arbitrary

k ∈ {1, . . . ,K}. For convenience, denote

T k(θ,ζk) = S (SJ (Ψjk(θ;ζjk)) ,SJ (Gjk(ζjk;θ))) ,

τ i,k(θ,ζk) = S (SJ (ψi,jk(θ;ζjk)) ,SJ (gi,jk(ζjk;θ))) .

By the Central Limit Theorem, n
1/2
k T k(θ0,ζk0) = n

−1/2
k ∑

nk
i=1 τ i,k(θ0,ζk0)

d
→

N (0,vk(θ0,ζk0)) as nk →∞, where vk(θ,ζk) = V arθ0,ζk0 {τ i,k(θ,ζk)}. Define

sk(θ,ζk) =

⎛
⎜
⎜
⎜
⎝

SJ (sθψjk
(θ,ζjk)) diag{sζψjk

(θ,ζjk)}
J

j=1

SJ (sθgjk(θ,ζjk)) diag{sζgjk(θ,ζjk)}
J

j=1

⎞
⎟
⎟
⎟
⎠

, and

jk(θ,ζk) = s
T
k (θ,ζ)v

−1
k (θ,ζk)sk(θ,ζk).
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By (4.13) in the proof of Theorem IV.5, Lemma IV.1, and Slutsky’s theorem,

n
1/2
k jk(θ0,ζk0)

⎛
⎜
⎜
⎝

S (θ̂jk − θ0)
J

j=1

ζ̂k − ζk0

⎞
⎟
⎟
⎠

d
→ N (0, j−1

k (θ0,ζk0)) .

Note that the above vectors are independent for k = 1, . . . ,K. We establish in Lemma

F.0.0.4 in Appendix F that, for some affine transformation matrices Ek, k = 1, . . . ,K,

of 0’s and 1’s,

n2
k

N2

J

∑
i=1

Ĉk,i

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂list − ζ0

⎞
⎟
⎟
⎠

=
nk
N
EkZk +Op (N

−1) ,

and
n2
k

N2

J

∑
i=1

Ĉk,i =
nk
N
Ekjk(θ0,ζk0)E

T
k +Op (n

1/2
k N−1) ,

where n
1/2
k Zk

d
→ N (0, j−1

k (θ0,ζk0)). It is clear that j(θ,ζ) = ∑
K
k=1(nk/N)

Ekjk(θ,ζk)E
T
k . Since Ek has finitely many 1’s, ∥Ek∥ is bounded. Since ∥jk(θ,ζk)∥

is also bounded, ∥j(θ,ζ)∥ = O(KnmaxN−1) = O(1). j(θ0,ζ0) is positive semi-

definite and symmetric, implying that Hj−1
(θ0,ζ0)H

T is also positive semi-definite

and symmetric. Following the monotone convergence theorem, we can write

Hj−1
(θ0,ζ0)H

T
→ jH(θ0,ζ0), where jH(θ0,ζ0) exists and is a proper variance

matrix.

Using the fact that λ(θ̂DDIMM , ζ̂DDIMM) = 0 and K = O(N1/2−δ), we show in Lemma

F.0.0.5 in Appendix F that N1/2H(θ̂DDIMM −θ0, ζ̂DDIMM − ζ0) can be rewritten as

H {
K

∑
k=1

nk
N
Ekjk(θ0,ζk0)E

T
k +Op (n

1/2
maxN

−1/2−δ)}

−1

[
K

∑
k=1

{(
nk
N

)
1/2

Ekn
1/2
k Zk} +Op (N

−δ)].

Since Op(n
1/2
maxN−1/2−δ) = op(1) and Op(N−δ) = op(1), it follows as in the proof of

Theorem IV.5 that as nmin →∞,

N1/2H

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

d
→ N (0, jH(θ0,ζ0)) .
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In practice, Theorem IV.6 suggests that we can tune our choice of K and nmin

to attain the desired trade-off between inference and computational speed: smaller

K and larger nmin will slow computations but improve estimation and asymptotic

normality, whereas larger K and smaller nmin will speed computations but worsen

estimation and asymptotic normality.

4.5.4 Asymptotic results for diverging K and J

In general, asymptotics for diverging J become very complicated and even

analytically intractable depending on how, and to what extent, the dependence

structure evolves as the dimension M of Y goes to infinity (M →∞). Cox and Reid

(2004) propose constructing a pseudolikelihood from marginal densities when the

full joint distribution is difficult to construct, and discuss asymptotics for increasing

response dimensionality. To make the problem of diverging M tractable, we consider

the following regularity conditions:

(A.6) Stationarity: for each M∗ ∈ N and each (M∗ + 1)-dimensional measurable

set B a subset of the sample space of Y , the distribution of Y i satisfies

P {(Yi,r, . . . , Yi,r+M∗) ∈ B} = P {(Yi,0, . . . , Yi,M∗) ∈ B} for every r ∈ N.

(A.7) Let Ck,i be the version of Ĉk,i in (4.10) evaluated at the true values θ0,ζjk0. For

k = 1, . . . ,K, i = 1, . . . , J , (∑
K
l=1∑

J
j=1 n

2
lC l,j)

−1n2
kCk,i = Op(N−δ1) for a constant

0 ≤ δ1 ≤ 1/2. This can be thought of as a type of Lindeberg condition.

(A.8) Conditions required for asymptotically normal distribution and efficiency of the

GMM estimator (θ̂opt, ζ̂opt); see Theorem 5.4 in Donald et al. (2003) and the

spanning condition in Newey (2004). See Newey (2004) for related work on

semiparametric efficiency of the GMM estimator as the number of moment
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conditions goes to infinity.

Remark 3. Condition (A.6) is typical for consistency and asymptotic normality

of the GMM estimator (θ̂opt, ζ̂opt), following Hansen (1982) and Newey (2004). It

is a typical condition for the application of the central limit theorem to stochastic

processes, i.e. to infinite dimensional random vectors. Additionally, in order to make

statements about convergence in probability, (A.6) is required to ensure a valid joint

probability distribution as the dimension M increases.

Remark 4. Condition (A.7) ensures the covariance of the outcome Y i is

appropriately controlled as M →∞. Alternative conditions may be considered, such

as α-mixing (Bradley (1985)), ρ-mixing (Peligrad (1986)), or φ-mixing (Peligrad

(1986)), but this is beyond the scope of this chapter. Condition (A.7) can be

simplified for the case where nk = n for all k = 1, . . . ,K. Then (A.7) becomes

(∑
K
l=1∑

J
j=1C l,j)

−1Ck,i = Op(N−δ1).

In Theorem IV.7 we show the consistency and asymptotic normality of the DDIMM

estimator as K and J diverge to ∞.

Theorem IV.7. Suppose N−δ2nmin and N δ3−1/2KJ are bounded as nmin → ∞ for

constants 0 ≤ δ2 ≤ 1 and 0 < δ3 < 1/2 such that δ3 + δ1 + δ2/2 > 1. Suppose assumptions

(A.1), (A.2), and (A.5)-(A.8) hold. Let H ∈ Rh×(p+d) a matrix of rank r ∈ N, h ∈ N,

r ≤ h, with finite maximum singular value σ̄(H) < ∞. Let jH(θ,ζ) as given in

Theorem IV.6. Then as nmin →∞,

N1/2H

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

d
→ N (0, jH(θ0,ζ0)) .
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Proof Write

H

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

=H

⎛
⎜
⎜
⎝

θ̂DDIMM − θ̂opt

ζ̂DDIMM − ζ̂opt

⎞
⎟
⎟
⎠

+H

⎛
⎜
⎜
⎝

θ̂opt − θ0

ζ̂opt − ζ0

⎞
⎟
⎟
⎠

.

To show the asymptotic distribution of the left-hand side, it is sufficient to show that

H(θ̂
T

DDIMM − θ̂
T

opt, ζ̂
T

DDIMM − ζ̂
T

opt)
T = op(N−1/2).

Given the assumptions of the theorem, we have the asymptotic distribution

of (θ̂opt, ζ̂opt,ik) and (θ̂ik, ζ̂ik): both are consistent estimators of θ0,ζik0 and

asymptotically normally distributed with rates N−1/2 and n
−1/2
k respectively. Then

for each k ∈ {1, . . . ,K},

⎛
⎜
⎜
⎝

θ̂opt − θ̂ik

ζ̂opt,ik − ζ̂ik

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

θ̂opt − θ0

ζ̂opt,ik − ζik0

⎞
⎟
⎟
⎠

−

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂ik − ζik0

⎞
⎟
⎟
⎠

= Op(n
−1/2
k ).

Defining Ĉ
∗

k,i a subset of Ĉk,i in Appendix E, we can rewrite (θ̂
T

DDIMM −

θ̂
T

opt, ζ̂
T

DDIMM − ζ̂
T

opt)
T as follows:

(
K

∑
k=1

J

∑
i=1

n2
kĈk,i)

−1
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

K

∑
k=1

J

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n2
kĈk,i

⎛
⎜
⎜
⎝

θ̂ik − θ̂opt

ζ̂list − ζ̂opt

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

=
K

∑
k=1

J

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
K

∑
l=1

J

∑
j=1

n2
l Ĉ l,j)

−1

n2
kĈ

∗

k,i

⎛
⎜
⎜
⎝

θ̂ik − θ̂opt

ζ̂ik − ζ̂opt,ik

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
K

∑
k=1

J

∑
i=1

[Op(N
−δ1)Op(n

−1/2
k )] = Op(KJN

−δ1n
−1/2
min )

=Op(N
1/2−δ3N−δ1N−δ2/2) = Op(N

1/2−δ3−δ1−δ2/2) = op(N
−1/2).
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4.6 Simulations

In this section we consider two sets of simulations to examine the performance

of the closed-form estimator θ̂DDIMM under the linear regression setting µi =X iθ,

where µi = E(Y i∣X i,θ) and Y i ∼ N (X iθ,Σ). The first set illustrates the finite

sample performance and properties in Theorem IV.5 of θ̂DDIMM with fixed sample

size N , varying number of subject groups K, varying dimensions M of Y , and

fixed number of response blocks J . The second set of simulations illustrates the

performance and properties in Theorem IV.7 of θ̂DDIMM with growing sample size

N and response dimension M of Y , and varying number of subjects groups K

and response blocks J . In both settings, covariates consist of an intercept and two

independently simulated M -dimensional multivariate normal variables, and the true

value of θ is set to θ0 = (0.3,0.6,0.8)T . Simulations are conducted using R software

on a standard Linux cluster.

We describe the first set of simulations. We specify Σ = S⊗A with nested correlation

structure, where ⊗ denotes the Kronecker product, A is an AR(1) covariance matrix

with standard deviation σ = 4 and correlation ρ = 0.8, and S is a randomly simulated

J × J positive-definite matrix. We consider varying dimensions M of Y with fixed

J = 5, and a fixed sample size N = 5,000 with varying K = 1,2,5. We consider

two supervised learning procedures: the pairwise composite likelihood using our

own package, and the GEE using R package geepack and our own package (see

Supplemental Material). With each procedure, we fit the model with an AR(1)

working block correlation structure. Results for the GEE
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Figure 4.1: Plot of simulation metrics for GEE, averaged over 1,000 simulations.
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are in Figure 4.1; results for the pairwise composite likelihood (CL) are in Appendix

F. We see that the mean asymptotic standard error (ASE) of θ̂DDIMM approximates

the empirical standard error (ESE) for all models, with slight variations due to

the type of covariates simulated. This means the covariance formula in Theorem

IV.5 is correct. Additionally, θ̂DDIMM appears consistent since root mean squared

error (RMSE), ASE and ESE are approximately equal. Moreover, we notice the

ASE of θ̂DDIMM decreases as the response dimension M increases. This makes

intuitive sense, since an increase in M corresponds to an increase in overall number

of observations, resulting in increased power. We also see a decrease in the ASE as

the number of groups increases. This is due to the heterogeneity of block covariance

parameters. Lastly, we observe from Table 4.2 that the mean CPU time is very fast

for the GEE, and decreases substantially as the number of subject groups increases.

Response dimension
Number of subject groups
K=1 K=2 K=5

M=200 45 23 11
M=500 351 184 87

M=1,000 1956 961 417

Table 4.2: Mean CPU time in seconds for each setting with the GEE block analysis, averaged over
1,000 simulations. Mean CPU time is computed as the maximum CPU time taken over
parallelized block analyses added to the CPU time taken by the rest of the procedure.

We describe the second set of simulations, where we consider diverging sample size N

and response dimension M , and diverging number of subject groups K and response

blocks J . We consider two settings: in Setting I, we let the sample size N = 5,000

with number of response groups K = 1, and let response dimension M = 4,500 with

number of response blocks J = 6; in Setting II, we let the sample size N = 10,000 with

number of response groupsK = 2, and let response dimensionM = 9,000 with number

of response blocks J = 12. Responses are simulated from a Multivariate Normal

distribution with AR(1) covariance structure, with standard deviation σ = 6 and
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correlation ρ = 0.8. This means there are no heterogeneous block parameters, so we

expect a slightly less efficient estimator since there is less variability in the outcome.

We learn mean and covariance parameters using GEE with an AR(1) working block

correlation structure. Mean bias (BIAS), RMSE, ESE and ASE of θ̂DDIMM are

in Table 4.3. We observe that RMSE, ESE and ASE are very close, indicating

appropriate estimation of θ̂DDIMM and its covariance in Theorem IV.7. We also

confirm DDIMM’s ability to handle large sample size N and response dimension M .

Setting Measure Intercept X1 X2

I RMSE/BIAS 3.89/−1.77 0.64/0.09 0.60/−0.40
ESE/ASE 3.89/3.78 0.64/0.59 0.60/0.59

II RMSE/BIAS 1.86/−0.99 0.28/−0.03 0.28/−0.17
ESE/ASE 1.86/1.70 0.28/0.27 0.28/0.27

Table 4.3: RMSE×10−3, BIAS×10−4, ESE×10−3, ASE×10−3 for each setting and each covariate,
averaged over 500 simulations.

4.7 Discussion

We have presented the large sample theory as a theoretical guarantee for a Doubly

Distributed and Integrated Method of Moments (DDIMM) that incorporates a broad

class of supervised learning procedures into a doubly distributed and parallelizable

computational scheme for the efficient analysis of large samples of high-dimensional

correlated responses in the MapReduce framework. Theoretical challenges related

to combining correlated estimators were addressed in the proofs, including the

asymptotic properties of the proposed closed-form estimator with fixed and diverging

numbers of subject groups and response blocks.

The GMM approach to deriving the combined estimator (θ̂c, ζ̂c) proposed in (4.4)

requires only weak regularity of the estimating equations Ψjk and Gjk. These

assumptions are satisfied by a broad range of learning procedures. The closed-
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form estimator proposed in equation (4.9), on the other hand, requires local n
1/2
k -

consistent estimators in individual blocks of size nk, which is easily satisfied if Ψjk

and Gjk are regular (see Song (2007) Chapter 3.5 for a definition of regular inference

functions). This restricts the class of possible learning procedures, but still includes

many analyses of interest.

A detailed discussion of the limitations and trade-offs of the single split DIMM

with CL block analyses is featured in Hector and Song (2020a). As mentioned

in Section 4.5, the DDIMM introduces additional flexibility in trading off between

computational speed and inference: the number of subject groups K and the smallest

block size nmin can be chosen by the investigator to attain the desired speed and

efficiency.

Particular applications of DDIMM to time series data are immediately obvious.

Similarly, we envision potential application to nation-wide hospital daily visit

numbers of, for example, asthma patients, over the course of the last decade. One

could split the response (hospital daily intake/daily stock price) into J years and into

K groups (of hospitals/stocks), analyze blocks separately and in parallel using GEE,

and combine results using DDIMM. Finally, extensions of our work to stochastic

process modelling are accessible, with more challenging work involving regularization

of θ also of interest.
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CHAPTER V

Joint Integrative Analysis of Multiple Data Sources with
Correlated Vector Outcomes

5.1 Introduction

Data integration methods have drawn increasing attention with the availability of

massive data from multiple sources, with proposed methods spanning the gamut

from the frequentist confidence distribution approach (Xie et al., 2011; Xie and

Singh, 2013) to Bayesian hierarchical models (Smith et al., 1995), as well as several

generalisations of Glass (1976)’s meta-analysis (Ioannidis, 2006; DerSimonian and

Laird, 2015; Kundu et al., 2019). This chapter is substantially motivated by the

analysis of the effect of smoking on metabolites that are upstream determinants

of cardiovascular health. We consider the analysis of multiple independent studies

that collect multiple correlated outcome vectors (metabolic sub-pathways) on each

subject. Of interest is a joint integrative regression analysis of all studies and

outcome vectors, yielding improvements in estimation efficiency. We propose

a distributed quadratic inference function framework for this joint integrative

regression analysis that addresses five major aspects of data integration: correlation

of outcomes, heterogeneity of data sources, statistical efficiency, privacy concerns

and computational speed.

Recent work has primarily focused on synthesizing evidence from independent data
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sources, as in Claggett et al. (2014) and Yang et al. (2014b). In practice, however,

studies may collect correlated outcomes from different structural modalities, such as

high-dimensional longitudinal phenotype, pathway-networked omics biomarkers, or

brain imaging measurements, which collectively form one high-dimensional correlated

response vector for each subject. Of interest is conducting inference integrated not

only over the independent data sources but also over the structurally correlated

outcomes. High-order moments of complex high-dimensional correlated data may

be difficult to model or handle computationally, which has led many to use working

independence assumptions at the cost of statistical efficiency resulting in potentially

misleading statistical inference; see for example the composite likelihood approach

in Caragea and Smith (2007) and Varin (2008). Chapter IV proposes a method to

account for correlation between data sources without specifying a full parametric

model, but their method is burdened by the estimation of a high-dimensional

parameter related to the second-order moments, whose dimension can rapidly

increase and exceed the sample size as the number of data sources increases. To

relieve this burden, we propose a fast and efficient approach that avoids estimation

of parameters in second-order moments with no loss of statistical efficiency.

Traditional data integration methods, such as meta-analysis and the confidence

distribution approach, frequently assume parameter or even likelihood homogeneity

across data sources, which often does not hold in practice. Data source heterogeneity

can stem from differences in populations, study design, or associations, and can result

in first- and higher-order moment heterogeneity. On the other hand, seemingly

unrelated regression (Zellner, 1962) can be inefficient when some parameters are

homogeneous. One approach to dealing with first-order moment heterogeneity is to

include data source-specific random effects, which can be inefficient and may induce

89



misspecified correlation. Another approach is to allow study-specific fixed-effects, as

in Lin and Zeng (2010); Liu et al. (2015); Hector and Song (2020b). In the current

literature there is a lack of computationally fast and statistically efficient methods

to handle high-dimensional second- and higher-order moment parameters, which are

regarded as nuisance parameters in a correlated data integrative setting. With only

one data source, the quadratic inference function (Qu et al., 2000) is widely used to

estimate regression parameters in first-order moments while avoiding estimation of

second- and higher-order moments. Thus, the quadratic inference function minimizes

the excessive burden of handling nuisance parameters. Our proposed distributed

quadratic inference functions estimate regression parameters in mean models for

each data source, thereby avoiding estimation of nuisance parameters in higher-

order moments, and linearly updates the regression parameters according to different

heterogeneity patterns across data sources. Not only does our approach combine the

strengths from both meta-analysis and seemingly unrelated regression, but it is more

flexible than these two methods.

For privacy reasons we may not have access to individual level data when integrating

correlated data sources, in which case it becomes imperative to develop methods

that can be implemented in a computationally distributed fashion. Even with access

to individual level data, distributed algorithms are often preferred for their ability

to significantly reduce the computational burden of traditional inference methods

(Jordan, 2013; Fan et al., 2014). There is a need for distributed methods able

to handle parameter heterogeneity for computationally and statistically efficient

inference with multiple correlated data sources.

Our proposed distributed quadratic inference function approach estimates mean

parameters for study- and outcome-specific models in the integrative analysis of
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correlated outcome vectors while avoiding estimation of second-order moments. It

yields statistically efficient estimation within a broad class of models. Study- and

outcome-specific models are then selectively combined via a meta-estimator similar

in spirit to Hansen (1982)’s generalised method of moments according to some

characterization of data heterogeneity. This new method has two major advantages

over existing methods: the integrated estimator does not require access to individual-

level data, and it can be computed non-iteratively to minimise computational costs.

We illustrate the application of our proposed method through simulations and the

integrative analysis of metabolite sub-pathways in a multi-cohort study.

5.2 Distributed and integrated quadratic inference functions

5.2.1 Model formulation

Consider K independent studies with respective sample sizes nk, k = 1, . . . ,K.

In each study we observe J correlated mi,j-element vector outcomes yi,jk =

(yi1,jk, . . . , yimi,j ,jk)
T , j = 1, . . . , J , for each subject i, i = 1, . . . , nk, with xi,jk the

corresponding mi,j × p covariate matrix. Here xi,jk is assumed to be the study- and

outcome-specific observations on the same variables across outcomes and studies

(e.g. age, sex). Subjects are assumed independent, and let Σi,k be the covariance

matrix of yi,k = (yi,1k, . . . ,yi,Jk)
T . We consider the model E(yir,jk) = hjk(xir,jkθjk),

r = 1, . . . ,mi,j, where hjk is a known link function and θjk is a p×1 parameter vector

of interest. Suppose there exists a known partition P = {Pg}
G
g=1, P a set of disjoint

non-empty subsets Pg, of {(j, k)}J,Kj,k=1 such that θjk ≡ θg and hjk ≡ hg for (j, k) ∈ Pg.

There are G unique values of θjk, j = 1, . . . , J , k = 1, . . . ,K. Let Pg have cardinality

dg such that ∑
G
g=1 dg = JK. We want to estimate and make inference about the true

value θ0 = (θ0,g)
G
g=1 ∈ RGp of θ = (θg)Gg=1 ∈ RGp based on all JK sources of information.

We give an example from Section 5.4 to fix ideas. For K = 4 cohorts, we

91



quantify 24 metabolites from J = 5 carbohydrate sub-pathways: the glycolysis,

gluconeogenesis, and pyruvate metabolism sub-pathway, the pentose metabolism

sub-pathway, the aminosugar metabolism sub-pathway, the fructose, mannose and

galactose metabolism sub-pathway, and the glycogen metabolism sub-pathway.

Given the biological function of these sub-pathways, we model the effect of smoking

on the metabolites in the carbohydrate sub-pathways by integrating its effect over

the four cohorts and the latter four sub-pathways, and integrating the effect of

smoking on the first sub-pathway only over cohorts. This partition corresponds

to P = {P1,P2}, where P1 = {(2, k), (3, k), (4, k), (5, k)}Kk=1 and P2 = {(1, k)}Kk=1.

The proposed method creates a set of moment conditions on θ, with corresponding

estimators, from each data source. We propose an efficient and computationally

attractive estimator that linearly updates data source-specific estimators by

weighting them as a function of their covariance.

We introduce some notation to facilitate the description of the proposed method in

sections 5.2.2 and 5.2.3. For ease of exposition, we henceforth use the term “studies”

to refer to the K disjoint and independent subject groups, “block” to refer to the J

correlated vector outcomes. We refer to study k and block j as data source (j, k). Let

∥ ⋅ ∥ denote the L2 norm on vectors and the Frobenius norm on matrices. Define the

stacking operator S(⋅) for vectors {ajk}
J,K
j=1,k=1, ajk ∈ RD and matrices {Ajk}j=1,k=1,

Ajk ∈ RD×D, as

Sg(ajk) = ag = ( aTj1k1 . . . aTjdgkdg
)

T

∈ RdgD, Pg = {(j1, k1), . . . , (jdg , kdg)} ,

Sg(Ajk) =Ag = ( AT
j1k1 . . . AT

jdgkdg
)

T

∈ R(dgD)×D, Pg = {(j1, k1), . . . , (jdg , kdg)} ,

SG(ag) = ( aT1 . . . aTG )

T

∈ RJKD, SG(Ag) = ( AT
1 . . . AT

G
)

T

∈ R(JKD)×D.

92



Let a⊗2 denote the outer product of a vector a with itself, namely a⊗2 = aaT . Denote

N = ∑
K
k=1 nk the combined sample size over K studies. For each subject i, denote the

combined Mi-dimensional response yi = (yi,1, . . . ,yi,J)
T

over the J blocks such that

∑
J
j=1mi,j = Mi for each i = 1, . . . ,N . Combination across blocks is not restricted to

the order of data entry: responses may be grouped according to pre-specified block

memberships, according to, say, substantive scientific knowledge. In this chapter,

with no loss of generality, we use the order of data entry in the data combination

procedure.

We remark that our proposed method can also be applied as a divide-and-conquer

procedure to a large dataset with N samples on M correlated outcomes. Dividing

this large dataset into JK sources of data with sample size nk and mj-dimensional

outcomes yields the above framework with the simplification Mi =M , mi,j =mj.

5.2.2 Quadratic Inference Functions

We propose to first obtain Qu et al. (2000)’s quadratic inference function estimator

of θjk in data source (j, k). This is a standard analysis that is performed on each

data source individually as if there was no other source of data to improve estimation.

Consider an arbitrary data source (j, k). Let µi,jk = E(yi,jk) the mi,j-dimensional

mean of the outcome yi,jk for i = 1, . . . , nk. Let µ̇θi,jk = ∂µi,jk/∂θjk be an mi,j × p-

dimensional partial derivative matrix and let µ̈θi,jk = (∂2µi,jk/∂
2θjk). Following Qu

et al. (2000), we approximate the inverse working correlation matrix of yi,jk by

∑
sjk
s=1 bs,jkBs,jk where b1,jk, . . . , bsjk,jk are unknown constants and B1,jk, . . . ,Bsjk,jk
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are known basis matrices with elements 0 and 1. Let

Ψjk(θjk) =
1

nk

nk

∑
i=1

ψi,jk(θjk) =
1

nk

nk

∑
i=1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

µ̇θ T
i,jkD

− 1
2

i,jkB1,jkD
− 1

2

i,jk(yi,jk −µi,jk)

⋮

µ̇θ T
i,jkD

− 1
2

i,jkBsjk,jkD
− 1

2

i,jk(yi,jk −µi,jk)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.1)

where Di,jk is the diagonal marginal covariance matrix of yi,jk, and sjk is typically

chosen as sjk = 2. Let Cjk = (1/nk)∑
nk
i=1ψ

⊗2
i,jk(θjk), which depends only on θjk.

The quadratic inference function takes the form Qjk(θjk) = nkΨ
T
jk(θjk)C

−1
jkΨjk(θjk),

and the data source-specific quadratic inference function estimator is θ̂jk =

arg minθjk Qjk(θjk). No nuisance correlation parameter is involved in the estimation.

Under mild regularity conditions, θ̂jk is consistent and asymptotically normal

(Hansen, 1982). When the working correlation structure is correctly specified by the

basis matrix expansion, this estimator is semi-parametrically efficient, i.e. as efficient

as the quasilikelihood; even when the working correlation structure is misspecified,

this estimator is still efficient within a general family of estimators (Qu et al., 2000).

These advantageous properties allow us to derive an efficient integrated estimator in

section 5.2.3.

5.2.3 Integrated Estimator

Define the subject group indicator δi(k) = 1(subject i is in study k) for i =

1, . . . ,N , k = 1, . . . ,K. For subject i, let

ψi,g(θ) = Sg {δi(k)ψi,jk(θjk)} , ψi(θ) = SG {ψi,g(θ)} .

Then we can define ΨN(θ) = (1/N)∑
N
i=1ψi(θ). It is easy to show that

ΨN(θ) =
1

N

N

∑
i=1

SG [Sg {δi(k)ψi,jk(θjk)}] =
1

N
SG [Sg {nkΨjk(θjk)}] .

We define a few sample sensitivity matrices. For data source (j, k), define the

(psjk) × p-dimensional sample sensitivity matrix Ŝjk = −{∇θjkΨjk(θjk)}∣θjk=θ̂jk .
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For the gth set Pg, define Ŝg = Sg(nkŜjk) the matrix of stacked sensitivity

matrices with row-dimension ∑(j,k)∈Pg psjk and column-dimension p. Finally, let

Ŝ = blockdiag{Ŝg}Gg=1 the sample sensitivity matrix of ΨN with row-dimension

∑
G
g=1∑(j,k)∈Pg psjk = ∑

J,K
j,k=1 psjk and column-dimension Gp.

Let θ̂g = Sg(θ̂jk) and θ̂list = SG(θ̂g). Define ψi(θ̂list) = SG[Sg{δi(k)ψi,jk(θ̂jk)}]. Let

V̂ N = (1/N)∑
N
i=1{ψi(θ̂list)}

⊗2 be the sample covariance of ΨN(θ0) with row- and

column-dimension ∑
J,K
j,k=1 psjk. Then we define the integrated estimator of θ as

θ̂ = (Ŝ
T
V̂

−1

N Ŝ)
−1

Ŝ
T
V̂

−1

N SG {Sg(nkŜjkθ̂jk)} . (5.2)

Following similar steps to Hector and Song (2020a), we can show this integrated

estimator is asymptotically equivalent to the minimizer of the optimal combination

of the moment conditions. Estimators from different sets Pg may not be combined

but still benefit from correlation between data sources, captured by V̂ N , leading to

improved statistical efficiency. This is similar to the gain in efficiency in seemingly

unrelated regression (Zellner, 1962). The closed-form estimator in (5.2) depends only

on estimators, estimating equations and sample sensitivity matrices from each data

source. It can be implemented in a fully parallelized MapReduce framework, where

data sources are analyzed in parallel on distributed nodes using quadratic inference

functions and results from the separate analyses are sent to a main node to compute

the integrated estimator. This procedure is privacy-preserving, since the combination

step does not require access to individual level data, and communication-efficient,

since it does not require multiple rounds of communication between the main and

distributed nodes. In addition, it is computationally efficient at each node since

nuisance correlation parameters are not involved in the estimation.

Two special cases of interest arise when Pg are all singletons (G = JK, dg = 1) and

when P = {(j, k)}J,Kj,k=1 (G = 1, d1 = JK). The former case is similar to seemingly

95



unrelated regression, in which JK regression equations are used to estimate JK

parameter vectors. Unlike seemingly unrelated regression, however, we do not make

distributional assumptions on the outcomes since we use estimating equations. The

latter case corresponds to a fully integrated analysis of all JK data sources similar

in spirit to meta-analysis. The estimator θ̂ in (5.2) takes a special form: let V̂ N =

blockdiag{(nk/N)V̂ k}
K
k=1 with block matrices

V̂ k =
1

nk

nk

∑
i=1

{ψi,k(θ̂k)}
⊗2

(k = 1, . . . ,K).

Let [V̂ k]
i;j denote the rows and columns of V̂

−1

k corresponding to blocks i and

j respectively and define the sample Godambe information Ĵ ijk = Ŝik [V̂ k]
i;j
Ŝjk

(Godambe and Heyde, 1987; Song, 2007). The integrated estimator simplifies to

θ̂ = (
K

∑
k=1

J

∑
i,j=1

nkĴ ijk)

−1 K

∑
k=1

J

∑
i,j=1

nkĴ ijkθ̂jk.

Remark 5. Inversion of V̂ N may be numerically unstable or undefined in some

settings. When J , K and/or p are large, the large dimension of V̂ N can lead to

numerical difficulties in its inversion. Using an equicorrelated structure for the

block analysis can also lead to a rank-deficient weight matrix V̂ N (Hu and Song,

2012). To handle these cases we propose to reduce the number of estimating

equations similarly to Cho and Qu (2015): principal components of ΨN with

non-zero eigenvalues are selected so as to maximize the variability explained and

eliminate between-component correlations. These linear combinations of the original

estimating equations have lower dimension than ΨN and yield an invertible sample

variability matrix V̂ N . The method described in Section 5.2 remains unchanged with

the substitution of the principal components for ΨN .
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5.2.4 Large sample theory

Let nmin = mink=1,...,K nk. Define the sensitivity matrices sjk(θjk) =

−∇θjkEθ0,g{ψi,jk(θjk)} for (j, k) ∈ Pg, sg(θg) = Sg{(nk/N)sjk(θjk), (j, k) ∈ Pg}, and

s(θ) = blockdiag{sg(θg)}Gg=1. Define the variability matrix v(θ) = V arθ0{ψi(θ)}.

Regularity conditions required to establish the consistency and asymptotic normality

of the integrated estimator θ̂ in (5.2) are listed in Appendix H. In particular,

assumption H.1 guarantees the consistency and asymptotic normality of the data

source-specific estimators θ̂jk, and assumption H.2 guarantees the consistency and

asymptotic normality of the integrated estimator θ̂ in (5.2). These results are

summarized in Theorem V.1.

Theorem V.1 (Consistency and asymptotic normality). Suppose assumptions H.1-

H.2 hold. Let j(θ) = limnmin→∞ s
T (θ)v−1(θ)s(θ) denote the Godambe information

matrix of ΨN . As nmin → ∞,
√
N(θ̂ − θ0)

d
→ N (0, j−1

(θ0)), and j(θ) has (r, t)th

block element limnmin→∞{sTr (θ0)[v(θ0)]
r;tst(θ0)} where [v(θ0)]

r;t is the submatrix

of v−1(θ0) consisting of rows and columns corresponding to partitions r and t

respectively, r, t = 1, . . . ,G.

The proof of Theorem V.1 can be done similarly to Theorem 9 in Hector and Song

(2020b) and is omitted. It is clear from Theorem V.1 that the asymptotic covariance

of θ̂ can be consistently estimated by the sandwich covariance N(Ŝ
T
V̂

−1

N Ŝ)−1. A

goodness-of-fit test is available from Theorem V.2 below to check the validity of

modelling assumptions and appropriateness of the data source partition P.

Theorem V.2 (Homogeneity test). Suppose assumptions H.1-H.2 hold with θ̂

defined in (5.2). Then as nmin → ∞, the statistic QN(θ̂) = NΨT
N(θ̂)V̂

−1

N ΨN(θ̂)

converges in distribution to a χ2 random variable with degrees of freedom ∑
J,K
j,k=1 psjk−
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Gp.

The proof of Theorem V.2 follows from Hansen (1982) and Hector and Song

(2020b). In practice, the computation of the quadratic test statistic in Theorem V.2

can be implemented in a distributed fashion despite requiring access to individual

data sources to recompute ΨN(θ̂). Since ψi(θ̂) becomes available, we recommend

recomputing V̂ N based on ψi(θ̂) to improve numerical performance. Theorem V.2

is particularly useful to compare the fit from different data source partitions, and can

be used to detect inappropriate modelling and strong data heterogeneity requiring

modification of the integration partition. Let P i = {P ig}
Gi

g=1 and Ph = {Phg }
Gh

g=1 two

data source partitions such that P i is itself a nested partition of Ph; let Qi
N(θ̂

i
)

and Qh
N(θ̂

h
) be the statistics from Theorem V.2 based on partitions P i and Ph

respectively, where the same working correlation structures and mean models are

used for both. Then a test statistic of the null hypothesis of parameter homogeneity

in partition P i,

H0 ∶ θjk = θ
i
g, ∀(j, k) ∈ P ig, g = 1, . . . ,Gi,

can be formulated as

Qi
N(θ̂

i
) −Qh

N(θ̂
h
), (5.3)

which under H0 is asymptotically χ2 distributed with degrees of freedom Ghp−Gip.

Failure to reject the null hypothesis implies the smaller partition P i fits as well or

better than the larger partition Ph.

Lastly, we discuss estimation efficiency of our proposed integrated estimator θ̂ in

(5.2), which is asymptotically equivalent to Hansen (1982)’s optimal generalised

method of moments estimator θ̂opt = arg minθΨT
N(θ)V̂

−1

N ΨN(θ). The optimality
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of this estimator Hansen (1982) is achieved within the class of estimators minimizing

the quadratic form ΨT
N(θ)WΨN(θ) with positive semi-definite matrices W .

Additionally, in Theorem V.3 we show the efficiency gain from combining estimators

over data sources for an arbitrary data source (j, k) ∈ Pg. The asymptotic covariance

of θ̂jk is larger than or equal to (in the Löwner partial ordering) the subvector of θ̂

corresponding to Pg, θ̂
g
.

Theorem V.3 (Efficiency gain). Suppose assumptions H.1-H.2 hold with θ̂ defined

in (5.2). Consider an arbitrary data source (j, k) ∈ Pg for some g ∈ {1, . . . ,G}.

The asymptotic covariances, denoted by Avar, of θ̂jk and θ̂
g

satisfy Avar(
√
N θ̂

g
) ⪯

{limnk→∞(N/nk)}Avar(
√
nkθ̂jk), where ⪯ denotes Löwner’s partial ordering in the

space of nonnegative definite matrices.

The proof of Theorem V.3 is given in Appendix H. The gain in statistical efficiency

given by Theorem V.3 is due to the use of between-block correlation, captured by

V̂N , and to the combination of estimators within each Pg.

Remark 6. The proposed method is a generalization of Wang et al. (2012), which

only allows for combining over independent data sources. Here we introduce a non-

diagonal weight matrix V̂ N to incorporate correlation between data sources, leading

to improved statistical efficiency. We also propose a closed form integrated estimator

that is more computationally advantageous than their iterative minimization

procedure, leading to improved computational scalability.

5.3 Simulations

We examine the performance of the integrated estimator θ̂ through three sets

of simulations. In the first and third sets, for simplicity P = {(j, k)}J,Kj,k=1 (G = 1,

d1 = JK) and Mi =M for i = 1, . . . ,N . The second set explores the performance of
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the selective combination scheme with a partition of {(j, k)}J,Kj,k=1 and confirms the

distribution of statistic QN(θ̂) in Theorem V.2. Simulations are conducted using

R software on a standard Linux cluster. In all simulations, covariates consist of

an intercept and two independent M -dimensional continuous variables drawn from

Multivariate Normal distributions with non-diagonal covariance matrices. True

values of the regression parameters are drawn from uniform distributions on (−5,5).

The first set of simulations considers the logistic regression log{µir,jk/(1 − µir,jk)} =

X ir,jkθ with µir,jk = E(Yir,jk∣X ir,jk,θ), r = 1, . . . ,mj, where Y i is a M -variate

correlated Bernoulli random variable. We illustrate the finite sample performance

of θ̂ in two settings: in Setting I, K = 2 with n1 = n2 = 5000, J = 4 with block

response dimensions 163, 181, 260, 396 such that M = 1000; in Setting II, K = 4

with n1 = n2 = n3 = n4 = 5000, J = 8 with block response dimensions 227, 252,

357, 381, 368, 276, 226, 413 such that M = 2500. The true value of θ is set to

θ0 = (−4.44,1.11,−2.22). Y i is simulated using the SimCorMultRes R package

(Touloumis, 2016) with data source-specific AR(1) correlation structures. We

estimate θ with an AR(1) working block correlation structure. Root mean squared

error (RMSE), empirical standard error (ESE), asymptotic standard error (ASE),

mean bias (B), 95% confidence interval coverage (CI), 95% confidence interval length

(L) and type-I error (ERR) of θ̂ averaged over 500 simulations are presented in Table

5.1. We see from Table 5.1 that the ASE of θ̂ approximates the ESE, confirming the

covariance formula in Theorem V.1. Additionally, θ̂ appears consistent since RMSE,

ASE and ESE are approximately equal, and the bias B is negligible. We observe

appropriate 95% confidence interval coverage and proper Type-I error control.

The second set of simulations again considers the logistic regression

log(µir,jk/(1 − µir,jk)) = X ir,jkθ with µir,jk = E(Yir,jk∣X ir,jk,θ), where Y i is a
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Table 5.1: Logistic regression simulation results with homogeneity partition P = {(j, k)}J,Kj,k=1 (G = 1,

d1 = JK).

(a) Setting I: K = 2 with n1 = n2 = 5000, J = 4 with block response dimensions 163, 181, 260, 396 such that
M = 1000.

RMSE×10−3 ESE×10−3 ASE×10−3 B×10−4 CI L×10−3 ERR
Intercept 4.89 4.86 4.83 −5.84 0.95 18.74 0.05
X1 1.43 1.42 1.40 1.79 0.94 5.45 0.06
X2 2.45 2.43 2.48 −3.49 0.95 9.65 0.05

(b) Setting II: K = 4 with n1 = n2 = n3 = n4 = 5000, J = 8 with block response dimensions 227, 252, 357,
381, 368, 276, 226, 413 such that M = 2500.

RMSE×10−3 ESE×10−3 ASE×10−3 B×10−4 CI L×10−3 ERR
Intercept 2.29 2.20 2.21 −6.31 0.95 8.62 0.05
X1 0.66 0.64 0.63 1.76 0.95 2.48 0.05
X2 1.19 1.14 1.13 −3.36 0.95 4.42 0.05

M -variate correlated Bernoulli random variable of dimension M = 500 from J = 5

blocks with (m1, . . . ,m5) = (130,75,92,115,88). We consider the integration

of two studies of respective sample sizes n1 = n2 = 5000. The underlying

partition is P = {Pg}
G
g=1 with G = 3, P1 = {(1, k), (2, k)}Kk=1, P2 = {(3, k)}Kk=1

and P3 = {(4, k), (5, k)}Kk=1 with respective true values θ0,1 = (−4.44,1.11,−2.22),

θ0,2 = (0.222,−0.888,−0.444) and θ0,3 = (−1.554,−3.108,0.777). Y i is simulated

as in the first set of simulations. We estimate θ and present summary results

averaged over 500 simulations in Table 5.2 for the exchangeable working block

correlation structure and in the Supplementary Material for the AR(1) working

block correlation structure. From Table 5.2 we again observe correct estimation

of the asymptotic covariance, minimal bias and proper Type-I error control for

regression parameters. The integrative procedure seems to work well with partial

heterogeneity of mean effects.

The third set of simulations considers the linear regression µi,jk = X i,jkθ with

µi,jk = E(Y i,jk∣X i,jk,θ), where Y i ∼ N (X iθ,Σ). We illustrate the finite sample

performance of θ̂ with K = 10 studies where nk = 10000 for all k for a total

sample size of N = 100000, and J = 250 response blocks where mj = 400 for
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Table 5.2: Logistic regression simulation results with P = {P1,P2,P3}, P1 = {(1, k), (2, k)}Kk=1,
P2 = {(3, k)}Kk=1 and P3 = {(4, k), (5, k)}Kk=1, and exchangeable working block correlation structure.

(a) Summary results for P1 = {(1, k), (2, k)}
K
k=1.

RMSE×10−3 ESE×10−3 ASE×10−3 B×10−4 CI L×10−3 ERR
Intercept 10.89 10.62 10.30 −24.48 0.93 40.06 0.07
X1 3.16 3.11 3.03 5.94 0.94 11.84 0.06
X2 5.58 5.44 5.36 −12.26 0.93 20.86 0.07

(b) Estimates for P2 = {(3, k)}
K
k=1.

RMSE×10−3 ESE×10−3 ASE×10−3 B×10−4 CI L×10−3 ERR
Intercept 3.22 3.22 3.37 −2.16 0.95 12.93 0.05
X1 2.25 2.25 2.21 −0.48 0.95 8.57 0.05
X2 1.51 1.51 1.53 −0.06 0.95 5.98 0.05

(c) Estimates for P3 = {(4, k), (5, k)}
K
k=1.

RMSE×10−3 ESE×10−3 ASE×10−3 B×10−4 CI L×10−3 ERR
Intercept 4.72 4.69 4.80 −6.06 0.95 18.66 0.05
X1 6.36 6.25 6.31 −11.73 0.94 24.48 0.06
X2 2.03 2.01 2.04 2.82 0.95 7.98 0.05

all j for a total response dimension M = 100000 of Y . The true value of θ is

set to θ0 = (1.1,2.2,3.3)T . Responses are simulated from a Multivariate Normal

distribution with block-AR(1) covariance structure with data source-specific variance

and correlation parameters. We estimate θ with an AR(1) working block correlation

structure. RMSE, ESE, ASE, B, CI, L and ERR of θ̂ averaged over 500 simulations

are presented in Table 5.3. We observe in Table 5.3 slight inflation of Type-I error

due to under-estimation of the asymptotic covariance. This is potentially due to the

high-dimensionality of ΨN and V̂ N , which have dimension JKpd = 15000, leading

to numerical instability. This under-estimation is similar to the generalised method

of moments case and is discussed in Section 5.5. The performance of our method

in this ultra-high dimension is nonetheless remarkable: with 1010 data points with

high-variability in both outcomes and covariates, the procedure is able to estimate

and infer the true mean effects with minimal bias and only slight under-coverage.

In the Supplementary Material, a quantile-quantile plot of the chi-squared statistic

from Theorem V.2 in the second set of simulations illustrates its appropriate
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Table 5.3: Linear regression simulation results with homogeneity partition P = {(j, k)}J,Kj,k=1 (G = 1,

d1 = JK).

RMSE×10−4 ESE×10−4 ASE×10−4 B×10−6 CI L×10−4 ERR
Intercept 2.26 2.25 1.99 −21.03 0.93 7.81 0.07
X1 0.35 0.35 0.31 −0.15 0.92 1.22 0.08
X2 0.35 0.35 0.31 1.07 0.93 1.22 0.07

asymptotic distribution. Lastly, we observe mean CPU times of 1.4 and 2.1 minutes

for logistic regression Settings I and II respectively in simulation set one, 11.2

seconds for the selective logistic regression in simulation set two, and 17.9 hours for

the linear regression setting in simulation set three, which is computationally very

fast.

5.4 Real Data Analysis

We illustrate the application of the proposed method to an integrative analysis

of four studies of untargeted metabolites. The Metabolic Syndrome in Men study

is a population-based study of 10197 Finnish men with the aim of investigating

nongenetic and genetic factors associated with the risk of Type 2 diabetes,

cardiovascular disease, and cardiovascular risk factors (Laakso et al., 2017). The

Centers for Disease Control and Prevention list smoking as a major cause of

cardiovascular disease and the 2014 Surgeon General’s Report on smoking and

health reported that smoking was responsible for one of every four deaths

from cardiovascular disease. Investigating the association between smoking and

metabolites can provide insight into the etiology of metabolic diseases such as

cardiovascular disease.

Using the Metabolon platform, the Metabolic Syndrome in Men study profiled

N = 6223 men in K = 4 separate samples with sample sizes n1 = 1229, n2 = 2950,

103



n3 = 1045 and n4 = 999. They measured 1018 metabolites belonging to 112 sub-

pathways grouped in eight pathways with distinct biological functions. To facilitate

interpretations, we focus on the effect of smoking on each of the eight pathways

one at a time. For each pathway s = 1, . . . ,8, we investigate the association

between smoking and metabolites in pathway s using our distributed and integrated

quadratic inference functions approach to account for heterogeneity and correlation

in metabolite sub-pathways. To highlight this pathway-specific implementation of

our method, we add a superscript s to M and J to emphasize that these are pathway-

specific variables. A schematic of the metabolite data structure is given in Table 5.4.

Consider pathway s ∈ {1, . . . ,8}. To illustrate the statistical efficiency gains

Table 5.4: Metabolite data structure schematic.

k 1 . . . 4
i 1 . . . n1 . . . 1 . . . n4

s j r

1
1
⋮ y1

11 . . . y1
14

m1

1 ⋮ ⋮ ⋮ ⋮ ⋮

J1
1
⋮ y1

J11 . . . y1
J14

mJ1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1
1
⋮ y8

11 . . . y8
14

m1

8 ⋮ ⋮ ⋮ ⋮ ⋮

J8
1
⋮ y8

J81 . . . y8
J84

mJ8

from accounting for correlation between sub-pathways and combining models over

independent studies, we first estimate sub-pathway and study specific effects and

integrate them over studies (but not over sub-pathways); we then create a partition of

sub-pathways in s by selectively combining sub-pathways based on prior knowledge.

More specifically, we first estimate a heterogeneous model with partition Ps,h =
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{P
s,h
j }J

s

j=1, Ps,hj = {(j,1), . . . , (j,K) ∶ sub-pathway j is in pathway s} that yields

unique values of the regression coefficients for each sub-pathway. We then create

a partition Ps,i of Ps,h with respective cardinalities Gs by selectively combining sub-

pathways based on prior knowledge and estimate an integrative model. Details on

the combination scheme can be found in Appendix I along with plots and tables

of parameters estimates. Note that the energy pathway is only constituted of two

sub-pathways which cannot be combined.

We describe the marginal model for metabolites in pathway s. Denote by Js the

number of sub-pathways and M s the number of metabolites in pathway s. Let ysir,jk

denote the value of metabolite r ∈ {1, . . . ,mj} in sub-pathway j ∈ {1, . . . , Js} for

subject i ∈ {1, . . . , nk} in study k ∈ {1, . . . ,K}, and let ysjk = (ysir,jk)
nk,mj

i,r=1 . Consider

the marginal regression model

E(ysir,jk) = θ
s
jk,0 + θ

s
jk,1smokingi,k + θ

s
jk,2agei,k + θ

s
jk,3BMIi,k + θ

s
jk,4drinkingi,k+

+ θsjk,5bpmedsi,k + θ
s
jk,6lipidmedsi,k,

i = 1, . . . , nk, r = 1, . . . ,mj, j = 1, . . . , Js, k = 1, . . . ,4,

(5.4)

where smokingi is subject i’s smoking status (0 for non-smoker, 1 for smoker), agei.k

is subject i’s age (range: 45.3 to 74.4 years), BMIi,k is subject i’s BMI (range: 16.9

to 55.4 kg/m2), drinkingi,k is an indicator for subject’s i’s alcohol consumption (0

for non-consumer, 1 for consumer), bpmedsi,k is an indicator for subject i’s blood

pressure medication use (0 for no use, 1 for use), and lipidmedsi,k is an indicator for

subject i’s lipid medication use (0 for no use, 1 for use), at the time of data collection.

Let θsjk = (θs0,jk, . . . , θ
s
6,jk).

Based on the integrative models, we find that the effect of smoking is significant in

multiple sub-pathways. Of note, in the Xenobiotics pathway, the Tobacco metabolite

sub-pathway is combined with multiple sub-pathways. The estimated effect of
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smoking in this integrated sub-pathway is 0.13 with a standard error of 0.011 and p-

value 1.21×10−30 (95% confidence interval: 0.11,0.15). We observe that by combining

sub-pathways in the integrative model we are able to borrow information across sub-

pathways and obtain more precise inference.

5.5 Discussion

The proposed method can be viewed as a generalization of both seemingly

unrelated regression and meta-analysis, striking a balance between the two that

leverages correlation and partial homogeneity of regression equations. The

distributed quadratic inference approach is privacy-preserving and computationally

appealing because data source analyses can be run simultaneously in parallel and

only one round of communication is necessary to compute the integrated estimator in

(5.2). The test of model fit proposed in Theorem V.2 and the χ2 test of homogeneity

in (5.3) are derived from the unique properties of the generalised method of moments

and provide a principled approach to model building that is lacking with other state

of the art high-dimensional correlated data analysis techniques, such as generalised

estimating equations.

The selective combination scheme over a data source partition has also been studied

in Wang et al. (2016) and Tang and Song (2016). While we require specification of

the data partition, their methods learn the partition in a data-driven way, which can

be advantageous. Inference with the fused lasso, however, is burdened by debiasing

methods that can be ill-defined or computationally burdensome. Additionally, the

fused lasso approaches do not provide a formal procedure to test the validity of the

parameter fusion scheme, relying instead on visualization such as dendograms. Our

method is clearly advantageous when an approximately known partition exists.
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Limitations of the proposed method include the need for a pre-defined partition of

data sources defining regions of parameter homogeneity, which typically is given by

related scientific knowledge but may occasionally be lacking in practice. Data pre-

processing and learning and the test in (5.3) may help in determining an appropriate

partition. Additionally, standard errors tend to be underestimated in small sample

sizes or when the dimension of the moment conditions is large; this phenomenon

has been well documented in the generalised method of moments (see Hansen et al.

(1996) and others in the same issue).
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CHAPTER VI

Summary and Future Work

Substantially motivated by analytic and computing needs in the analysis of high-

dimensional correlated outcome data, this dissertation proposes novel distributed

statistical methods with accompanying theory and R software implementations that

address several modelling, computational and theoretical challenges.

The proposed methods specify local first and second-order models and aggregate

them to form a complex, flexible model on the entire data. This formulation

alleviates the modelling challenges stemming from high-dimensional likelihoods by

avoiding the specification of high-order moments and incorporating heterogeneity

of modelled moments. In Chapter III, local models specify first and second-order

moments via the pairwise composite likelihood, which uses a working independence

assumption between pairs of observations to avoid modelling moments of order

higher than two. In Chapter IV, local models are generalized from the pairwise

composite likelihood to a broad class of estimating functions for learning and

carrying out inference on homogeneous and heterogeneous first and second-order

moment parameters. In Chapter V, the estimation of second-order moments in

marginal regression models is avoided altogether through the use of quadratic

inference functions. These local model specifications allow heterogeneity in first
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and second-order moments across subvectors of the high-dimensional response, and

leverage this heterogeneity for more precise estimation of the parameter of interest.

Computational challenges arising from inversion of large matrices and iterative

procedures over large amounts of data are overcome by estimating parameters on

sub-datasets and aggregating results using a closed-form estimator. This distributed

and parallelizable procedure circumvents the need for access to individual datasets

and meets data privacy needs. It is communication efficient, requiring only one

round of communication between distributed datasets and the main computing

node. As shown in simulations and data analyses, CPU computing times are greatly

reduced, and the distributed architecture reduces demands on random-access and

read-only memory (RAM and ROM respectively). The R software implementation

in Rcpp and RcppParallel makes for a user-friendly platform for direct use by

biomedical investigators.

Theoretical challenges arise when integrating estimating functions or estimators from

correlated data. The generalized method of moments provides a natural framework

by non-parametrically estimating correlation between estimating functions. This

approach also has intuitive justifications from standard estimating function theory

and confidence estimating functions. The generalized method of moments benefits

from a wealth of established properties but is burdened by the high computational

cost of iteratively minimizing a quadratic form over the entire data. One of the

key contributions of this dissertation is an asymptotically equivalent closed-form

estimator that benefits from the same asymptotic properties conducive to inference

and that is much more computationally tractable. Finally, theoretical challenges of

estimation and inference when the dimension of the outcome diverges are addressed

in Chapters III and IV.
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A summary of the relative advantages and limitations of the three methods proposed

in Chapters III, IV and V is given in Table 6.1. We first discuss the importance

of the data split. The proposed methods split response data into blocks with

the goal of creating low-dimensional responses with simple second order moment

structures. This data split should be done according to pre-existing biological

knowledge of the group structure of the outcome. The validity of the division can

be checked by verifying the validity of the moment conditions on the parameters

through a χ2 goodness-of-fit test, as in Theorems III.3, IV.3 and V.2. When the

data split is invalid, the sub-responses in each block will not have simple second

order moment structures, resulting in a loss of efficiency in Chapters IV and V and

incorrect standard error estimates in Chapter III (hence the limitation “quality of

γ̂j” in Table 6.1). This can be mitigated by assuming an unstructured second order

moment structure in each block, given sufficient data. This highlights a trade-off

between data split and inference. Future work should explore the consequences

of a misspecified data split through sensitivity analyses. Next, we discuss the

stability of the inverse of the sample covariance matrix of estimating equations,

V̂ N , which affects the stability of the estimators proposed in this dissertation.

In Big Data settings, the sample size is typically large enough that the inverse

is stable: V̂ N is symmetric positive definite and invertible. If sample size is not

large enough, the inverse can be replaced by the generalized inverse as in Wang

et al. (2012) or a ridge estimator as in Han and Song (2011). Alternatively one

may take the principal components of the estimating equations as in Cho and Qu

(2015) to reduce their dimension and impose orthogonality, resulting in an invertible

sample covariance matrix. These steps may slow computations and reduce the

computational advantages of our methods. Finally, we highlight that Chapters
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IV and V do not require marginal distributional assumptions on the outcome,

and Chapter III only requires the specification of bivariate marginals. Future

work should explore through sensitivity analyses the robustness of the proposed

estimators to highly skewed outcome data.

Three important estimation methods were considered in the distributed step of

the methods proposed in this dissertation: the pairwise composite likelihood (CL),

generalized estimating equations (GEE), and quadratic inference functions (QIF).

Several considerations may guide the choice of appropriate method in practice. The

first consideration should be the target parameter of interest: both the CL and

GEE can be used when the target are second order moments, whereas the QIF can

not. Next, an investigator should evaluate the degree of certainty on the form of

the distribution of the outcomes. The CL assumes an explicit form for the bivariate

distribution between pairs of observations, whereas the GEE and QIF do not. The

use of distributional assumptions versus estimating equations is also sometimes

more of a philosophical consideration. An investigator should also consider their

knowledge of second order moment structure. All three methods provide consistent

estimates of model parameters regardless of how well specified this structure is.

When this structure is correctly specified, the GEE and QIF are semi-parametrically

efficient, as is the CL with Normally distributed outcomes. The CL will result in a

small loss of efficiency with non-Normal outcomes. When the second order moment

structure is misspecified, the CL estimator will have incorrect estimates of standard

errors, the GEE estimator will be inefficient, and the QIF estimator will still be

efficient within a class of estimating equations. Computation time varies greatly

depending on implementation and specific application. In various simulations

considered in this dissertation, the general take-away is that the QIF tends to

111



outperform the CL and GEE in terms of computational speed, likely because the

QIF does not need to estimate parameters of second order moments.

Table 6.1: Comparison of advantages and limitations of methods proposed in Chapters III, IV and
V.

Chapter III Chapter IV Chapter V

Estimation CL zero-mean, “weakly” QIF
regular, additive
estimating equation

Advantages only estimate mean general & flexible only estimate mean
and covariance

homogeneous & hetero- combination over sets with
geneous parameters parameter homogeneity

fast faster fastest

Limitations quality of γ̂j high-dimensional ζ inversion of V̂ N

Future research should extend the methods proposed in this dissertation to

the integration of multimodal data, an important analytic task in biomedical

data analysis for personalized medicine. The method proposed in Chapter V

jointly estimates marginal regression parameters and integrates them over regions

of parameter homogeneity, so that integrated estimators may come from different

model specifications. This framework needs only minor work to ensure the valid

construction of the multivariate distribution of different outcome types, such as

binary, count and continuous outcomes.

Also of interest is the extension to high-dimensional covariate settings where the

dimension of the parameter of interest is larger than the individual sample sizes in

each data source. One approach is the inclusion of penalty terms in the analysis of

each data source followed by fusion of similar estimates in the integration step (Tang

and Song, 2016). This framework relies on debiasing of the estimators from each

data source, which can be challenging. Additionally, this does not accommodate the

case where the dimension of the parameter of interest is larger than the combined
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sample size. Alternative approaches through random data splitting (Wang et al.,

2020) show promise and should be explored.

Finally, extensions of the proposed methods to stochastic processes, such as spatial

or time series data, are of particular interest since these settings display very large

dimension, correlation and heterogeneity. The mean regression parameter can be

expressed as an expansion of known basis matrices with unknown coefficients that

are the parameter interest and can be estimated through the methods proposed in

this dissertation. Careful consideration should be given to the construction of the

joint distribution of the outcome in the theoretical justification.
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APPENDIX A

Chapter III: Proofs

Conditions for proofs of Chapter III

Let Θ be the compact parametric space of β and γ. We list the regularity conditions

required to establish large samples properties in the chapter.

C.1 Assume Eβ0
ΨN(β;y) has a unique zero at β0, Eγj0

Gj.sub(γj;yj,β0) has a

unique zero at γj0, −∇βEβψ(β;yi) is smooth in a neighbourhood of β0 and positive

definite, vψ(β0) is finite, positive-definite and nonsingular, and

∥ψj.sub(β1;yi,γj1) −ψj.sub(β2;yi,γj2)∥ ≤ C (∥β1 −β2∥ + ∥γj1 − γj2∥)

for all β1,γj1,β2,γj2 in a neighbourhood of β0,γj0 and some constant C > 0.

C.2 Following Newey and McFadden (1994), assume Q0(β) =

Eβ {ΨT
N(β;Y )}v−1

ψ (β0)Eβ {ΨN(β;Y )} is twice-continuously differentiable in

a neighbourhood of β0.

C.3 Let β̂c be as defined in (3.5), and β0 an interior point of Θ. Following Newey

and McFadden (1994), assume QN(β̂c) ≤ inf
β∈Θ

QN(β) + op(1), and, for any δN → 0,

sup
∥β−β0∥≤δN

√
N

1 +
√
N ∥β −β0∥

∥ΨN(β;y) −ΨN(β0;y) −EβΨN(β;Y )∥
p
→ 0.
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C.4 For each j = 1, . . . , J , assume β̂j = β0 + Op(N−1/2) and γ̂j = γj0 + Op(N−1/2).

Assume

sup
√
N

1+
√
N∥(β,γj)−(β0,γj0)∥

∥Ψj.sub(β;yj,γj) −Ψj.sub(β0;yj,γj0) −Eβψj.sub(β;yi,j,γj0)∥ = Op(N−1/2).

for any δN → 0, where the supremum is taken over the ball ∥(β,γj) − (β0,γj0)∥ ≤ δN .

Proof of Proposition 1: We follow the argument of Cox and Reid (2004). Let

U j.sub(β,γj;yi,j) =
mj−1

∑
r=1

mj

∑
t=r+1

U j.sub,rt(β,γj; yir,j, yit,j)

=

mj−1

∑
r=1

mj

∑
t=r+1

∇β,γj
log fj(yir,j, yit,j;β,γj,X i,j).

Let (β∗,γ∗j ) be between (β̂j, γ̂j) and (β0,γj0). A Taylor expansion of

U j.sub(β̂j, γ̂j;yi,j) around (β0,γj0) yields

U j.sub(β̂j, γ̂j;yi,j) = 0 =
1

m2
j

mj−1

∑
r=1

mj

∑
t=r+1

U j.sub,rt(β0,γj0; yir,j, yit,j)+

⎛
⎜
⎜
⎝

β̂j −β
∗

γ̂j − γ
∗
j

⎞
⎟
⎟
⎠

T

1

m2
j

mj−1

∑
r=1

mj

∑
t=r+1

∇β,γj
U j.sub,rt(β,γj; yir,j, yit,j)∣β0,γj0

.

The first term in the expansion has mean 0 and variance that has leading terms in

mj corresponding to

1

4m4
j

mj

∑
r,t,v,w=1
r≠t≠v≠w

E {U j.sub,rt(β0,γj0; yir,j, yit,j)U
T
j.sub,vw(β0,γj0; yiv,j, yiw,j)} = Op(1).

As N → ∞, the CL score function (1/N)∑
N
i=1U j.sub(β0,γj0;yi,j) converges in

probability to 0. Similarly, one can show ∇β,γj
U j.sub(β,γj;yi,j)∣β0,γj0

has bounded

variance. Consequently, consistency of the block-specific MCLE’s β̂j and γ̂j can be

established using Theorem 3.4 of Song (2007).

Proof of Lemma III.1. Denote ψ(β̂MCLE;yi) = (ψT
1.sub(β̂1;yi,1, γ̂1), . . . ,ψ

T
J.sub(β̂J ;

yi,J , γ̂J))
T . By consistency of the MCLE due to Proposition 1 and C.1, β̂j−β0 = op(1)
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and γ̂j − γj0 = op(1). Since J , p finite, ∥β̂MCLE −β0∥ = op(1) and ∥γ̂MCLE − γ0∥ =

op(1). Then by C.1,

∥ψ(β̂MCLE;yi) −ψ(β0;yi)∥ ≤ C (∥β̂MCLE −β0∥ + ∥γ̂MCLE − γ0∥) = op(1).

Plugging into V̂ N,ψ, we have V̂ N,ψ = 1
N ∑

N
i=1ψ

⊗2
(β̂MCLE;yi) =

1
N ∑

N
i=1ψ

⊗2
(β0;yi) +

op(1). Since 1
N ∑

N
i=1ψ

⊗2
(β0;yi) = vψ(β0) + op(1), then, V̂ N,ψ = vψ(β0) + op(1).

Proof of Theorem III.1. It is sufficient to show that, by conditions C.1 and C.2,



118

1
NQN(β) converges uniformly in probability to Q0(β).

∥
1

N
QN(β) −Q0(β)∥

= ∥ΨT
N(β;y)V̂

−1

N,ψΨN(β;y)

− 2Eβ (ΨT
N(β;Y )) V̂

−1

N,ψΨN(β;y) + 2Eβ (ΨT
N(β;Y )) V̂

−1

N,ψΨN(β;y)

− 2Eβ (ΨT
N(β;Y )) V̂

−1

N,ψEβ (ΨN(β;Y )) + 2Eβ (ΨT
N(β;Y )) V̂

−1

N,ψEβ (ΨN(β;Y ))

−Eβ (ΨT
N(β;Y ))v−1

ψ (β0)Eβ (ΨN(β;Y ))∥

= ∥ΨT
N(β;y)V̂

−1

N,ψΨN(β;y) −ΨT
N(β;y)V̂

−1

N,ψEβ (ΨN(β;Y ))

−Eβ (ΨT
N(β;Y )) V̂

−1

N,ψΨN(β;y) +Eβ (ΨT
N(β;Y )) V̂

−1

N,ψEβ (ΨN(β;Y ))

+ 2Eβ (ΨT
N(β;Y )) V̂

−1

N,ψΨN(β;y) − 2Eβ (ΨT
N(β;Y )) V̂

−1

N,ψEβ (ΨN(β;Y ))

+Eβ (ΨT
N(β;Y )) V̂

−1

N,ψEβ (ΨN(β;Y )) −Eβ (ΨT
N(β;Y ))v−1

ψ (β0)Eβ (ΨN(β;Y ))∥

≤ ∥[ΨN(β;y) −EβΨN(β;Y )]
T
V̂

−1

N,ψ [ΨN(β;y) −EβΨN(β;Y )]∥

+ 2 ∥Eβ (ΨT
N(β;Y )) V̂

−1

N,ψ [ΨN(β;y) −EβΨN(β;Y )]∥

+ ∥Eβ (ΨT
N(β;Y )) [V̂

−1

N,ψ − v
−1
ψ (β0)]Eβ (ΨN(β;Y ))∥

≤ ∥ΨN(β;y) −EβΨN(β;Y )∥
2
∥V̂

−1

N,ψ∥

+ 2 ∥EβΨN(β;Y )∥ ∥ΨN(β;y) −EβΨN(β;Y )∥ ∥V̂
−1

N,ψ∥

+ ∥EβΨN(β;Y )∥
2
∥V̂

−1

N,ψ − v
−1
ψ (β0)∥

= Op(N
−1/2) + op(1).

It follows that sup
β∈Θ

∥ 1
NQN(β) −Q0(β)∥

p
→ 0 as N →∞. By Theorem 2.1 in Newey and

McFadden (1994), the combined GMM estimator satisfies β̂c
p
→ β0 as N →∞.

Proof of Theorem III.3: We take a Taylor expansion of Eβψ(β;yi) about β0:

Eβψ(β̂c;yi) −Eβψ(β0;yi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= ∇βEβψ(β;yi)∣β=β∗(β̂c −β0), (A.1)
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where β∗ lies between β0 and β̂c. By condition C.3,

ΨN(β̂c;y) −ΨN(β0;y) −Eβψ(β̂c;yi) = op(1)
1 +

√
N ∥β̂c −β0∥
√
N

= op (N
−1/2 + ∥β̂c −β0∥) . (A.2)

Then adding (A.1) and (A.2) yields

ΨN(β̂c;y) = ΨN(β0;y) +∇βEβψ(β;yi)∣β=β∗(β̂c −β0) + op (N
−1/2 + ∥β̂c −β0∥) .

(A.3)

As the minimizer of QN(β), β̂c satisfies ∇βEβψ
T
(β;yi)∣β=β∗V̂

−1

N,ψΨN(β̂c;y) = 0.

We premultiply (A.3) by ∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψ and obtain

0 = ∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψΨN(β̂c;y)

= ∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψΨN(β0;y)

+∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψ∇βEβψ(β;yi)∣β=β∗(β̂c −β0)

+ op (N
−1/2 + ∥β̂c −β0∥)∇βEβψ

T
(β;yi)∣β=β̂c

V̂
−1

N,ψ

= ∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψΨN(β0;y)

+∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψ∇βEβψ(β;yi)∣β=β∗(β̂c −β0)

+ op (N
−1/2 + ∥β̂c −β0∥) ,

since ∇βEβψ(β;yi) is smooth in a neighbourhood of β0. Rearranging yields

β̂c −β0 = − [∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψ∇βEβψ(β;yi)∣β=β∗]
−1

×

∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψΨN(β0;y) + op (N
−1/2 + ∥β̂c −β0∥) .

We plug this back into (A.3) to get

√
NΨN(β̂c;y) = [I −∇βEβψ(β;yi)∣β=β∗ {∇βEβψ

T
(β;yi)∣β=β̂c

V̂
−1

N,ψ∇βEβψ(β;yi)∣β=β∗}
−1

∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψ] ×
√
NΨN(β0;y) + op(1).
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By the Central Limit Theorem,
√
NΨN(β0;y)

d
→ N (0,vψ(β0)). Moreover, since

β̂c
p
→ β0,

∇βEβψ(β;yi)∣β=β∗ {∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψ∇βEβψ(β;yi)∣β=β∗}
−1

∇βEβψ
T
(β;yi)∣β=β̂c

V̂
−1

N,ψ

p
→ sψ(β0) {s

T
ψ(β0)v

−1
ψ (β0)sψ(β0)}

−1
sTψ(β0)v

−1
ψ (β0) = G(β0).

Then by Slutsky’s theorem,
√
NΨN(β̂c;y)

d
→

N (0, (I −G(β0))vψ(β0) (I −G(β0))
T
). Finally, write V̂ N,ψ = V̂

1/2

N,ψ (V̂
1/2

N,ψ)
T

such that V̂
1/2

N,ψ

p
→ v

1/2
ψ (β0) and V̂

1/2

N,ψ nonsingular (some normalization may be

required). Then

√
N V̂

−1/2

N,ψΨN(β̂c;y)
d
→ N (0,{v

−1/2
ψ (β0)(I −G(β0))}vψ(β0) {v

−1/2
ψ (β0)(I −G(β0))}

T
) .

We note that this covariance matrix is idempotent with rank Jp − p. Then

QN(β̂c) = NΨT
N(β̂c;y)V̂

−1

N,ψΨN(β̂c;y)
d
→ χ2

(J−1)p as N →∞.

Proof of Theorem III.4: We proceed with the proof in three steps: we first show that

β̂DIMM is consistent, then we show it has the same asymptotic distribution as β̂c.

Finally, we show that β̂c and β̂DIMM are asymptotically equivalent. Some important

results we use include:

• We showed in Lemma III.1 that V̂ N,ψ = vψ(β0) + op(1). Under condition C.4,

we can show that V̂ N,ψ = vψ(β0)+Op(N−1/2). Indeed, using notation from the

proof of Lemma III.1,

∥ψ(β̂MCLE;yi) −ψ(β0;yi)∥ ≤ C (∥β̂MCLE −β0∥ + ∥γ̂MCLE − γ0∥) = Op(N
−1/2).
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Plugging in to the formula for V̂ N,ψ yields

V̂ N,ψ =
1

N

N

∑
i=1

ψ(β̂MCLE;yi)ψ
T
(β̂MCLE;yi)

=
1

N

N

∑
i=1

ψ(β0;yi)ψ
T
(β0;yi) +Op(N

−1/2)
1

N

N

∑
i=1

ψ(β0;yi) +Op(N
−1)

=
1

N

N

∑
i=1

ψ(β0;yi)ψ
T
(β0;yi) +Op(N

−1)

= vψ(β0) +Op(N
−1/2).

Therefore [V̂
−1

N,ψ]
i,j
= [v−1

ψ (β0)]i,j
+Op(N−1/2).

• We require that Sj,ψj
(β̂j;yj) = sj,ψj

(β̂j) + Op(N−1/2). Then by C.4,

Sj,ψj
(β̂j;yj) = sj,ψj

(β0) + Op(N−1/2). Similarly, Sψ(β̂c;y) = sψ(β0) +

Op(N−1/2).

Consistency of β̂DIMM : Define

λ(β) =
J

∑
i,j=1

Si,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj)(β − β̂j).

By definition, λ(β̂DIMM) = 0. Moreover,

λ(β0) =
J

∑
i,j=1

Si,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj) (β0 − β̂j)

=
J

∑
i,j=1

(si,ψi
(β0) +Op(N

−1/2)) ([v−1
ψ (β0)]i,j +Op(N

−1/2))×

(sj,ψj
(β0) +Op(N

−1/2)) op(1)

=
J

∑
i,j=1

op(1) = op(1).

Since ∇βλ(β) exists and is nonsingular, for some β∗ between β̂DIMM and β0 we

can write λ(β̂DIMM) − λ(β0) = ∇βλ(β)∣β=β∗(β̂DIMM − β0) = op(1). Therefore

β̂DIMM = β0 + op(1).
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Distribution of β̂DIMM : We can rewrite

0 = λ(β̂DIMM) =
J

∑
i,j=1

Si,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj) (β̂DIMM −β0 +β0 − β̂j) .

Rearranging yields

β̂DIMM −β0 = {
J

∑
i,j=1

Si,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj)}

−1

×

{
J

∑
i,j=1

Si,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj) (β̂j −β0)} . (A.4)

By Taylor expansion we have

Eβψj.sub(β̂j;yi,j,γj0) = Eβψj.sub(β0;yi,j,γj0) +∇βEβψj.sub(β;yi,j,γj0)∣β=β∗(β̂j −β0)

(A.5)

where β∗ lies between β0 and β̂j. By condition C.4,

Ψj.sub(β̂j;yj, γ̂j) −Ψj.sub(β0;yj,γj0) −Eβψj.sub(β̂j;yi,j,γj0) = Op(N
−1). (A.6)

Adding (A.5) and (A.6), we have

Ψj.sub(β̂j;yj, γ̂j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

−Ψj.sub(β0;yj,γj0) −Eβψj.sub(β0;yi,j,γj0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= ∇βEβψj.sub(β;yi,j,γj0)∣β=β∗(β̂j −β0) +Op(N
−1).

Rearranging yields

Ψj.sub(β0;yj,γj0) = ∇βEβψj.sub(β;yi,j,γj0)∣β=β∗(β0 − β̂j) +Op(N
−1).

Finally, note that

Sj,ψj
(β̂j;yj) = sj,ψj

(β0) +Op(N
−1/2) = −∇βEβψj.sub(β;yi,j,γj0)∣β=β∗ +Op(N

−1/2),

so that

Ψj.sub(β0;yj,γj0) = (Sj,ψj
(β̂j;yj) +Op(N

−1/2)) (β0 − β̂j) +Op(N
−1)

= Sj,ψj
(β̂j;yj)(β0 − β̂j) +Op(N

−1). (A.7)
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Recall that, by the Central Limit Theorem,
√
NΨN(β0;y)

d
→ N (0,vψ(β0)). Then

by equation (A.7), we can write

√
N

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S1,ψ1
(β̂1;y1)(β0 − β̂1)

⋮

SJ,ψJ
(β̂J ;yJ)(β0 − β̂J)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

d
→ N (0,vψ(β0)) .

We have that Sj,ψj
(β̂j;yj) = sj,ψj

(β0) +Op(N−1/2). By Slutsky we can write,

√
N(β̂MCLE −β0) =

√
N

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β̂1 −β0

⋮

β̂J −β0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

d
→ N

⎛

⎝
0,{

J

∑
i,j=1

si,ψi
(β0) [v

−1
ψ (β0)]i,j sj,ψj

(β0)}

−1
⎞

⎠
.

The sum of jointly Normal variables is also normal. Using this and Slutsky again,

we have

√
N(β̂DIMM −β0) =

√
N {

J

∑
i,j=1

Si,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj)}

−1

×
J

∑
i,j=1

Si,ψi
(β̂i;yi) [V̂

−1

N,ψ]
i,j
Sj,ψj

(β̂j;yj)(β̂j −β0)

is asymptotically Normally distributed with mean 0 and variance

j−1
ψ (β0) = {

J

∑
i,j=1

si,ψi
(β0) [v

−1
ψ (β0)]i,j sj,ψj

(β0)}

−1

.

Asymptotic equivalency of β̂c and β̂DIMM : We can write

√
N (β̂c −β0) = Z + op(1)

√
N (β̂DIMM −β0) = Z + op(1),

where Z ∼ N (0, j−1
ψ (β0)). Rearranging yields

β̂c −β0 =
1

√
N
Z + op (N

−1/2) (A.8)

β̂DIMM −β0 =
1

√
N
Z + op (N

−1/2) . (A.9)
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Subtracting (A.9) from (A.8), we get β̂c − β̂DIMM = op (N−1/2). Then

∥β̂c − β̂DIMM∥
p
→ 0 as N →∞.
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APPENDIX B

Chapter III: Regularization of Weight Matrix

Additional details on regularizing V̂ N,ψ

To tackle the potential difficulty of inverting V̂ N,ψ which can arise with large Jp

(Jp ≈ 5000), we propose to use a regularized modified Cholesky decomposition of

V̂ N,ψ following Pourahmadi (1999). The modified Cholesky decomposition of V̂ N,ψ

can be written as T V̂ N,ψT
T
= D where T is lower triangular with 1’s as diagonal

entries and D is diagonal. Entries of T are the negatives of the regression coefficients

from regressing each row of V̂ N,ψ on the previous rows. To achieve sparsity in the

estimate of V̂
−1

N,ψ and to speed up computation, this regression can be regularized

with an L2 norm penalty depending on the choice of a regularization parameter λ. A

regularized estimate of V̂
−1

N,ψ is then Ŵ (λ) = T TD−1T . This computation requires

the computation of the inverse of a diagonal matrix, which is fast to compute, and the

selection of λ, which can be done by cross validation. We can compute an estimate

of β using this regularized inverse as

β̂reg = (
J

∑
i,j=1

Si,ψi
(β̂i;yi) [Ŵ (λ)]

i,j
Sj,ψj

(β̂j;yj))

−1
J

∑
i,j=1

Si,ψi
(β̂i;yi) [Ŵ (λ)]

i,j
Sj,ψj

(β̂j;yj)β̂j.

It follows from Newey and McFadden (1994) that β̂reg is a consistent estimate of

β and has an asymptotically normal distribution under mild conditions on ΨN , Q0



126

in C.2 and Ŵ (λ). Moreover, if Ŵ (λ) is a
√
N -consistent estimate of v−1

ψ (β0) and

conditions C.1-C.4 hold with Ŵ (λ) instead of V̂
−1

N,ψ, then it clearly follows from the

proofs in this chapter that β̂reg is a consistent estimator of β and follows the same

asymptotic distribution as β̂c and β̂DIMM .
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APPENDIX C

Chapter III: Additional Simulation Results

Additional simulation results

We present plots of type-1 error rates for each scenario considered in Section 5 in

Figure C.1, chi-squared Q-Q plot of goodness-of-fit test statistics in Figures C.2-C.5.
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Figure C.1: Comparison of type-1 error rate for three methods for varying dimension M based on
500 simulations. Left column has X1 ∼ N (0,1); middle column has X1 ∼ NM(0, S), where S is a
positive-definite M ×M matrix, and X2 a vector of alternating 0’s and 1’s; right column has X1 ∼
N (0,1), X2 ∼ Bernoulli(0.3), X3 ∼Multinomial(0.1,0.2,0.4,0.25,0.05), X4 ∼ Uniform(0,1), and
X5 an interaction between X1 and X2.



128

●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●
●●●●●●●●

●●●●●●●●●●
●●●●
●●●●●●

●●●●
●●●●

●●●●●●
●●●●●●

●●●●●
●●●●

●●●
●●
●●●●●●

●●●
●●

●●
●●

●●●●●●●●
●●

●●
● ●

● ●

● ●
●

●

●

●

●x=y

0

5

10

15

20

25

0 5 10 15

Χ(J−1)p
2  theoretical quantiles

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

model ● DIMM−AR(1) DIMM−CS

Chi−squared Q−Q plot of Goodness of fit test statistics
with one covariate, M=200, J=3

Figure C.2: Chi-squared Q-Q plot of goodness-of-fit test statistics with theoretical 95% confidence
bands based on 500 simulations with one covariate X1 ∼ N (0,1), M = 200, J = 3, under correct and
incorrect covariance structure specification.
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Figure C.3: Chi-squared Q-Q plot of goodness-of-fit test statistics with theoretical 95% confidence
bands based on 500 simulations with one covariate X1 ∼ N (0,1), M = 200, J = 5, under correct and
incorrect covariance structure specification.
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Figure C.4: Chi-squared Q-Q plot of goodness-of-fit test statistics with theoretical 95% confidence
bands based on 500 simulations with two covariates X1 ∼ NormalM(0, S), where S is a positive-
definite M ×M matrix, and X2 a vector of alternating 0’s and 1’s to imitate an exposure, M = 200,
J = 3, under correct and incorrect covariance structure specification.
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Figure C.5: Chi-squared Q-Q plot of goodness-of-fit test statistics with theoretical 95% confidence
bands based on 500 simulations with two covariates X1 ∼ NormalM(0, S), where S is a positive-
definite M ×M matrix, and X2 a vector of alternating 0’s and 1’s to imitate an exposure, M = 200,
J = 5, under correct and incorrect covariance structure specification.
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APPENDIX D

Chapter III: Additional Data Analysis Results

Additional data analysis simulations and results

We present additional average amplitude density maps in Figures D.1, D.2 and D.3,

additional correlation heatmaps in Figures D.4, D.5, D.6 and D.7, data simulation

results in Table D.1 to ensure sufficient power in the analysis presented in Section

6, block specific MCLE’s from the data analysis in Table D.2, and full data analysis

results in Table D.3.
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Figure D.1: Average P2 amplitude for iron sufficient and deficient children (left and right panels
respectively) under stimulus of mother and stranger’s voice (top and bottom panels respectively).
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Figure D.2: Average P750 amplitude for iron sufficient and deficient children (left and right panels
respectively) under stimulus of mother and stranger’s voice (top and bottom panels respectively).
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Figure D.3: Average LSW amplitude for iron sufficient and deficient children (left and right panels
respectively) under stimulus of mother and stranger’s voice (top and bottom panels respectively).
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Figure D.4: Correlation of electrical amplitude at three ERP’s for iron sufficient children under stimulus
of mother’s voice.
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Figure D.5: Correlation of electrical amplitude at three ERP’s for iron sufficient children under stimulus
of stranger’s voice.
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Figure D.6: Correlation of electrical amplitude at three ERP’s for iron deficient children under stimulus
of mother’s voice.
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Figure D.7: Correlation of electrical amplitude at three ERP’s for iron deficient children under stimulus
of stranger’s voice.
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Table D.1: Iron sufficiency status effect mean squared error (MSE×10−2) and mean variance (mean
var×10−2), 95% confidence interval (CI) coverage, type-1 error, and mean CPU time in seconds for
each combination scheme based on 500 simulations.

combine region, ERP method
MSE×10−2 95% CI type 1 mean CPU

(mean var×10−2) coverage error time

left, middle and right fc, P2 GEE-CS 1.4 (1.4) 0.942 0.058 0.35

ME 1.4 (1.4) 0.958 0.042 3.59

DIMM 1.4 (1.3) 0.934 0.066 0.22

left, middle and right fc, P750 GEE-CS 0.9 (0.9) 0.95 0.05 0.35

ME 0.9 (0.9) 0.954 0.046 3.74

DIMM 0.9 (0.8) 0.946 0.054 0.21

left, middle and right fc, LSW GEE-CS 0.8 (0.8) 0.946 0.054 0.35

ME 0.8 (0.8) 0.948 0.052 3.81

DIMM 0.8 (0.7) 0.938 0.062 0.17

left po, P2 & P750 GEE-CS 0.7 (0.7) 0.952 0.048 0.19

ME 0.7 (0.7) 0.956 0.044 1.65

DIMM 0.7 (0.7) 0.942 0.058 0.24

middle and right po, P2 GEE-CS 1.1 (1.1) 0.946 0.054 0.22

ME 1.1 (1.1) 0.952 0.048 3.37

DIMM 1.1 (1.0) 0.94 0.06 0.25

middle and right po, P750 GEE-CS 0.8 (0.7) 0.94 0.06 0.22

ME 0.7 (0.7) 0.948 0.052 3.17

DIMM 0.8 (0.7) 0.948 0.052 0.25

left, middle and right po, LSW GEE-CS 0.6 (0.6) 0.94 0.06 0.52

ME 0.6 (0.6) 0.944 0.056 4.26

DIMM 0.5 (0.5) 0.932 0.068 0.21

fc, frontal-central; po, parietal-occipital. Real covariate values were used to simulate response data.
Response data was simulated with mean parameter values set to values estimated in Table 3.3, and
covariance set to the sample covariance of the observed response.
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Table D.2: Block specific MCLE’s of β.

Block: functional region and ERP intercept age voice stimulus sufficiency status

left frontal-central, P2 0.04 −0.04 0.04 1.14

middle frontal-central, P2 −0.1 −0.04 −0.01 0.13

right frontal-central, P2 −0.08 −0.01 0.06 0.03

left parietal-occipital, P2 0.16 0.02 −0.02 −0.17

middle parietal-occipital, P2 −0.09 0.01 −0.01 0.00

right parietal-occipital, P2 0.13 0.03 −0.00 −0.07

left frontal-central, P750 0.11 0.01 −0.02 −0.04

middle frontal-central, P750 0.14 0.02 −0.07 −0.02

right frontal-central, P750 −0.18 0.03 −0.03 0.02

left parietal-occipital, P750 −0.02 0.02 −0.03 −0.18

middle parietal-occipital, P750 −0.11 −0.05 0.11 0.09

right parietal-occipital, P750 −0.03 −0.02 0.05 0.11

left frontal-central, LSW −0.04 0.02 0.12 −0.08

middle frontal-central, LSW 0.06 0.04 0.09 −0.14

right frontal-central, LSW −0.14 0.02 0.13 0.02

left parietal-occipital, LSW −0.04 0.00 −0.13 0.05

middle parietal-occipital, LSW 0.12 −0.04 −0.05 0.03

right parietal-occipital, LSW 0.03 −0.03 −0.13 0.05
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Table D.3: Iron sufficiency status effect estimates and statistics for each combination scheme.

combine region, ERP method
estimate

p-value
CPU CPU

(s.d.×10−2) seconds time ratio*

left, middle and right fc, P2 GEE-CS 0.103 (12.0) 0.39 0.72 0.55

ME 0.103 (11.8) 0.38 1.97 1.49

DIMM 0.087(11.9) 0.47 1.321 1

left, middle and right fc, P750 GEE-CS −0.013 (9.6) 0.90 0.37 1.16

ME −0.013 (9.7) 0.90 1.99 6.24

DIMM −0.038 (9.0) 0.67 0.319 1

left, middle and right fc, LSW GEE-CS −0.064 (10.4) 0.54 0.37 1.17

ME −0.064 (9.0) 0.48 1.78 5.62

DIMM −0.073 (9.8) 0.46 0.317 1

left po, P2 & P750 GEE-CS −0.174 (8.3) 0.04 0.22 0.43

ME −0.174 (8.3) 0.04 1.47 2.86

DIMM −0.226 (8.1) 0.005 0.514 1

middle and right po, P2 GEE-CS −0.032 (10.6) 0.76 0.40 0.86

ME −0.034 (10.5) 0.75 2.81 6.02

DIMM 0.009 (10.4) 0.93 0.467 1

middle and right po, P750 GEE-CS 0.096 (8.7) 0.27 0.24 0.51

ME 0.096 (8.6) 0.26 1.46 3.12

DIMM 0.106 (8.7) 0.22 0.468 1

left, middle and right po, LSW GEE-CS 0.041 (8.7) 0.64 0.55 1.41

ME 0.041 (7.4) 0.58 3.53 9.07

DIMM 0.087(8.4) 0.30 0.389 1

fc, frontal-central; po, parietal-occipital; s.d., standard deviation. *CPU time ratio is computed as CPU
time of method divided by CPU time of DIMM.
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APPENDIX E

Chapter IV: Technical Details

Summary of sensitivity matrix formulas

Sensitivity matrices are summarized in Table E.1.

sensitivity of w.r.t.* population sample plug-in sample

ψi,jk θ sθψjk
(θ,ζjk) Sθψjk

(θ,ζjk) Ŝ
θ

ψjk
= Sθψjk

(θ̂jk, ζ̂jk)

ψi,jk ζjk sζψjk
(θ,ζjk) Sζψjk

(θ,ζjk) Ŝ
ζ

ψjk
= Sζψjk

(θ̂jk, ζ̂jk)

gi,jk θ sθgjk(θ,ζjk) Sθgjk(θ,ζjk) Ŝ
θ

gjk
= Sθgjk(θ̂jk, ζ̂jk)

gi,jk ζjk sζgjk(θ,ζjk) Sζgjk(θ,ζjk) Ŝ
ζ

gjk
= Sζgjk(θ̂jk, ζ̂jk)

S (ψi,jk,gi,jk) (θ,ζjk) sjk(θ,ζjk) Sjk(θ,ζjk) Ŝjk = Sjk(θ̂jk, ζ̂jk)

Table E.1: Summary of sensitivity formulas. Formulas that are not used are marked “—”.
*“w.r.t.” shorthand for “with respect to”.

Subsetting operation on variability matrices

Operation [V̂
ψ

N]
ij∶k

extracts a submatrix of V̂
ψ

N consisting of rows

{(i − 1) + (k − 1)J}p + 1 to {i + (k − 1)J}p and columns {j − 1 + (k − 1)J}p + 1

to {j + (k − 1)J}p. Operation [V̂
g

N]
ij∶k

extracts a submatrix of V̂
g

N consisting of

rows 1+Dik to dik+Dik and columns 1+Djk to djk+Djk. Operation [V̂
ψg

N ]
ij∶k

extracts

a submatrix of V̂
ψg

N consisting of rows {(i − 1) + (k − 1)J}p + 1 to {i + (k − 1)J}p



144

and columns 1 + Djk to djk + Djk, where djk is the dimension of ζjk and Djk is

defined in Section 4.5.1.

Cumulative sum of dimensions of ζ

Recall that we define Dik as the sum of the dimensions of ζ11, . . . ,ζi−1k, and Dk as the

sum of the dimensions of ζ11, . . . ,ζJk−1. Specifically, let Dik = ∑
k−1
l=1 ∑

J
j=1 djl +∑

i−1
j=1 djk

for i, k > 1, D1k = ∑
k−1
l=1 ∑

J
j=1 djl for k > 1, and D11 = 0. Let Dk = ∑

k−1
l=1 dl for k > 1 and

D1 = 0.

Definition of Ĉ
∗

k,i

Let k ∈ {1, . . . ,K} and i ∈ {1, . . . , J}. Recall the definitions of Â
θ

k,ij, Â
ζ

k,ij, B̂
θ

k,ij and

B̂
ζ

k,ij in Section 4.5.1. Define

Ĉ
∗

k,i =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J

∑
j=1
Â
θ

k,ij

J

∑
j=1
Â
ζ

k,ij

0Dik×(p+d)

B̂
θ

k,i1 B̂
ζ

k,i1

⋮

B̂
θ

k,iJ B̂
ζ

k,iJ

0(d−dik−Dik)×(p+d)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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APPENDIX F

Chapter IV: Proofs

Proof [Proof of Lemma IV.1] Under conditions (A.2) (i) and (A.5),

∥τ i(θ̂list, ζ̂list) − τ i(θ0,ζ0)∥ ≤
K

∑
k=1

J

∑
j=1

(cjk + bjk)

XXXXXXXXXXXXXXXX

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

XXXXXXXXXXXXXXXX

=
K

∑
k=1

J

∑
j=1

(cjk + bjk)Op(n
−1/2
k ) = Op(n

−1/2
min ).

Plugging this into the formula for V̂ N yields

V̂ N =
1

N

N

∑
i=1

{τ i(θ0,ζ0)}
⊗2
+Op(n

−1/2
min )

1

N

N

∑
i=1

τ i(θ0,ζ0) +Op(n
−1
min)

= v(θ0,ζ0) +Op(N
−1/2).

Recall that we require that Sjk(θ,ζjk) is a n
1/2
k -consistent sample estimate of

sjk(θ,ζjk) in Section 4.5. Then Ŝjk = sjk(θ̂jk, ζ̂jk) + Op(n
−1/2
k ). Then by (A.2),

(A.5), and a Taylor expansion:

Ŝjk = sjk(θ0,ζjk0) + {∇θ,ζjksjk(θ,ζjk)∣θ0,ζjk0}Op(n
−1/2
k ) +Op(n

−1/2
k )

= sjk(θ0,ζjk0) +Op(n
−1/2
k ).
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It follows from the above that

Ŝ =

⎛
⎜
⎜
⎜
⎝

SJK (
nk

N Ŝ
θ

ψjk
) diag{

nk

N Ŝ
ζ

ψjk
}
J,K

j=1,k=1

SJK (
nk

N Ŝ
θ

gjk
) diag{

nk

N Ŝ
ζ

gjk
}
J,K

j=1,k=1

⎞
⎟
⎟
⎟
⎠

= s(θ0,ζ0) +Op (n
1/2
maxN

−1) = s(θ0,ζ0) +Op(N
−1/2).

Then Ŝ
T
V̂

−1

N Ŝ = j(θ0,ζ0) +Op(N−1/2). Lastly, it can easily be shown that

Ŝ
T
V̂

−1

N Ŝ = Ŝ
T
⎛
⎜
⎜
⎝

V̂
ψ

N V̂
ψg

N

V̂
ψg T

V̂
g

N

⎞
⎟
⎟
⎠

Ŝ =
1

N2

K

∑
k=1

J

∑
i=1

n2
kĈk,i.

Proof [Proof of Theorem IV.4] By consistency of block estimates, we have θ̂jk−θ0
p
→ 0

and ζ̂jk − ζjk0

p
→ 0 as nk →∞. By (A.2),

∥τ i(θ̂list, ζ̂list) − τ i(θ0,ζ0)∥ ≤
K

∑
k=1

J

∑
j=1

(cjk + bjk)

XXXXXXXXXXXXXXXX

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

XXXXXXXXXXXXXXXX

.

Then ∥τ i(θ̂list, ζ̂list)∥ = ∥τ i(θ0,ζ0)∥ + op(1). Plugging this into the formula for V̂ N ,

V̂ N =
1

N

N

∑
i=1

{τ i(θ0,ζ0) + op(1)}
⊗2

=
1

N

N

∑
i=1

{τ i(θ0,ζ0)}
⊗2
+ op(1)

1

N

N

∑
i=1

τ i(θ0,ζ0) + op(1)

= v(θ0,ζ0) +Op(N
−1/2) + op(1).

Proof of Theorem IV.5:

The following lemmas complete the proof of Theorem IV.5 given in the chapter,

under the assumed conditions.
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Lemma F.0.0.1. Define λ(θ,ζ) as in (4.11) in the proof of Theorem IV.5. Then

λ(θ0,ζ0)
p
→ 0 as nmin →∞.

Proof Using Lemma IV.1,

λ(θ0,ζ0) =
1

N2

K

∑
k=1

J

∑
i=1

n2
kĈk,i

⎛
⎜
⎜
⎝

θ0 − θ̂ik

ζ0 − ζ̂list

⎞
⎟
⎟
⎠

= Op (n
−1/2
min ){j(θ0,ζ0) +Op (N

−1/2)}

= Op (n
−1/2
min ) +Op (n

−1/2
min N

−1/2)
p
→ 0 as nmin →∞.

Lemma F.0.0.2. The following relationship holds:

⎛
⎜
⎜
⎝

Ψjk(θ0;ζjk0)

Gjk(ζjk0;θ0)

⎞
⎟
⎟
⎠

= Ŝjk

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

+Op(n
−1
k ).

Proof Let j ∈ {1, . . . , J}, k ∈ {1, . . . ,K} fixed. For convenience, denote

T jk(θ,ζjk) =

⎛
⎜
⎜
⎝

Ψjk(θ;ζjk)

Gjk(ζjk;θ)

⎞
⎟
⎟
⎠

, τ i,jk(θ,ζjk) =

⎛
⎜
⎜
⎝

ψi,jk(θ;ζjk)

gi,jk(ζjk;θ)

⎞
⎟
⎟
⎠

.

By first-order Taylor expansion,

Eθ,ζjk {τ i,jk(θ̂jk, ζ̂jk)} = Eθ,ζjk {τ i,jk(θ0,ζjk0)}+

∇θEθ,ζjk {τ i,jk(θ,ζjk)}∣θ∗,ζ∗jk

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

, (F.1)

where (θ∗,ζ∗jk) lies between (θ0,ζjk0) and (θ̂jk, ζ̂jk). By condition (A.5),

T jk(θ̂jk, ζ̂jk) − T jk(θ0,ζjk0) −Eθ,ζjk {τ i,jk(θ̂jk, ζ̂jk)}

= Op(N
−1/2)

1 +N1/2Op(n
−1/2
k )

N1/2
= Op(n

−1/2
k N−1/2). (F.2)
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In other words, the norm of the difference between T jk(θ0,ζjk0) and T jk(θ̂jk, ζ̂jk)−

Eθ,ζjk{τ i,jk(θ̂jk, ζ̂jk)} goes to 0 at a rate faster than (Nnk)−1/2. Adding (F.1) and

(F.2), we have

−T jk(θ0,ζjk0) = T jk(θ̂jk, ζ̂jk) − T jk(θ0,ζjk0) −Eθ,ζjkτ i,jk(θ0,ζjk0)

= ∇θEθ,ζjkτ i,jk(θ,ζjk)∣θ∗,ζ∗jk

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

+Op(n
−1/2
k N−1/2)

= −sjk(θ
∗,ζ∗jk)

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

+Op(n
−1/2
k N−1/2).

Rearranging yields

T jk(θ0,ζjk0) = sjk(θ
∗,ζ∗jk)

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

+Op(n
−1/2
k N−1/2). (F.3)

Finally, note that Ŝjk = sjk(θ0,ζjk0) + Op(n
−1/2
k ) = sjk(θ

∗,ζ∗jk) + Op(n
−1/2
k ). Then

plugging this into (F.3), we have:

T jk(θ0,ζjk0) = (Ŝjk +Op(n
−1/2
k ))

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

+Op(n
−1/2
k N−1/2)

= Ŝjk

⎛
⎜
⎜
⎝

θ̂jk − θ0

ζ̂jk − ζjk0

⎞
⎟
⎟
⎠

+Op(n
−1
k ).

Proof [Proof of Corollary IV.2:] From Theorems IV.2 and IV.5, we can write

⎛
⎜
⎜
⎝

θ̂opt − θ0

ζ̂opt − ζ0

⎞
⎟
⎟
⎠

=
1

N1/2
Z +

1

N1/2
cN1 (F.4)

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

=
1

N1/2
Z +

1

N1/2
cN2, (F.5)
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where cN1,cN2
p
→ 0 as nmin →∞, and Z ∼ N (0, j−1

ψ (θ0,ζ0)). Subtracting (F.5) from

(F.4), we get

⎛
⎜
⎜
⎝

θ̂opt − θ̂DDIMM

ζ̂opt − ζ̂DDIMM

⎞
⎟
⎟
⎠

=
1

N1/2
(cN2 − cN1).

The result follows.

Proof of Theorem IV.6:

The following lemmas complete the proof of Theorem IV.6 given in the chapter,

under the assumed conditions.

Lemma F.0.0.3. Define λ(θ,ζ) as in (4.11) in the proof of Theorem IV.5. Then

∥λ(θ0,ζ0)∥ = Op(N−1/2−δn
1/2
max) and ∥{∇θ,ζλ(θ,ζ)}

−1
∥ = Op (N1/2+δn−1

max).

Proof. Due to the independence between subject groups, V̂
ψ

N , V̂
ψg

N and V̂
g

N are all

block diagonal: V̂
ψ

N = diag{V̂
ψ

k }
K

k=1
, V̂

ψg

N = diag{V̂
ψg

k }
K

k=1
, and V̂

g

N = diag{V̂
g

k}
K

k=1
.

By the independence of subject groups, let

v−1(θ,ζ) =

⎛
⎜
⎜
⎝

vψ(θ,ζ) vψg(θ,ζ)

vψg T (θ,ζ) vg(θ,ζ)

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

diag{ N
nk
vψk (θ,ζ)}

K

k=1
diag{ N

nk
vψgk (θ,ζ)}

K

k=1

diag{ N
nk
vψg T
k (θ,ζ)}

K

k=1
diag{ N

nk
vgk(θ,ζ)}

K

k=1

⎞
⎟
⎟
⎠

.

Similar to the proof of Lemma IV.1, it can easily be shown that for each k = 1, . . . ,K,

V̂
ψ

k = (N/nk)v
ψ
k (θ0,ζ0) + Op(N−1/2), V̂

ψg

k = (N/nk)v
ψg
k (θ0,ζ0) + Op(N−1/2), and

V̂
g

k = (N/nk)v
g
k(θ0,ζ0) + Op(N−1/2). Consider an arbitrary k ∈ {1, . . . ,K}. Let

(N/nk) [v
ψ
k (θ0,ζ0)]ji = [vψ(θ0,ζ0)]ji∶k, and similarly define [vψgk (θ0,ζ0)]ji and

[vgk(θ0,ζ0)]ji. Then Â
θ

k,ij = (N/nk){aθk,ij +Op(n
−1/2
k )}, where aθk,ij is defined as
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{sθ T
ψjk

(θ0,ζjk0) [v
ψ
k (θ0,ζ0)]ji + s

θ T
gjk

(θ0,ζjk0) [v
ψg T
k (θ0,ζ0)]ji}s

θ
ψik

(θ0,ζ0)+

{sθ T
ψjk

(θ0,ζjk0) [v
ψg
k (θ0,ζ0)]ji + s

θ T
gjk

(θ0,ζjk0) [v
g
k(θ0,ζ0)]ji}s

θ
gik

(θ0,ζ0).

We can show similar results for Â
ζ

k,ij, B̂
θ

k,ij and B̂
ζ

k,ij. Then we can rewrite

∥λ(θ0,ζ0)∥ ≤
K

∑
k=1

Op(n
1/2
k N−1) = Op(Kn

1/2
maxN

−1) = Op(N
−1/2−δn

1/2
max), and

∥∇θ,ζλ(θ,ζ)∥ ≤
1

N2

K

∑
k=1

J

∑
i=1

n2
k ∥Ĉk,i∥

≤ Op (N
−1/2−δn

1/2
max) +O (N−1/2−δnmax) = Op (N

−1/2−δnmax) .

Since ∇θ,ζλ(θ,ζ) is symmetric positive-definite, the above provides a bound on its

eigenvalues. Therefore, ∥{∇θ,ζλ(θ,ζ)}
−1
∥ = Op (N1/2+δn−1

max).

Lemma F.0.0.4. For some matrices Ek, k = 1, . . . ,K, of 0’s and 1’s, the following

asymptotic properties hold:

n2
k

N2

J

∑
i=1

Ĉk,i

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂list − ζ0

⎞
⎟
⎟
⎠

=
nk
N
EkZk +Op (N

−1) ,

and
n2
k

N2

J

∑
i=1

Ĉk,i =
nk
N
Ekjk(θ0,ζk0)E

T
k +Op (n

1/2
k N−1) ,

where n
1/2
k Zk

d
→ N (0, j−1

k (θ0,ζk0)).

Proof Recall that Ĉk,i(θ̂
T

ik − θ
T
0 , ζ̂

T

list − ζ
T
0 )

T = Ĉ
∗

k,i(θ̂
T

ik − θ
T
0 , ζ̂

T

ik − ζ
T
ik0)

T . Let

[v−1
k (θ,ζk)]ij subset the rows for the parameters corresponding to block (i, k) and

the columns for the parameters corresponding to block (j, k) of matrix v−1
k (θ,ζk).

Define jjik(θ,ζjk,ζik) = sjk(θ,ζjk) [v
−1
k (θ,ζk)]ji sik(θ,ζik), and [j−1

k (θ0,ζk0)]i the

submatrix of j−1
k (θ0,ζk0) corresponding to parameters in block (i, k), such that

n
1/2
k {

J

∑
j=1

jjik(θ0,ζjk0,ζik0)}

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂ik − ζik0

⎞
⎟
⎟
⎠

d
→ N (0, [j−1

k (θ0,ζk0)]i
) .
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Then using the results in the proof of Lemma F.0.0.3, let Ek and Ek,i matrices of

0’s and 1’s such that

n2
k

N2

J

∑
i=1

Ĉk,i =
nk
N
Ek {jk(θ0,ζk0) +Op (n

−1/2
k )}ET

k

=
nk
N
Ekjk(θ0,ζk0)E

T
k +Op (n

1/2
k N−1) , and

n2
k

N2

J

∑
i=1

Ĉk,i

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂list − ζ0

⎞
⎟
⎟
⎠

=
nk
N
Ek

J

∑
i=1

Ek,i {
J

∑
j=1

jjik(θ0,ζjk0,ζik0) +Op (n
−1/2
k )}

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂ik − ζik0

⎞
⎟
⎟
⎠

=
nk
N
Ek

J

∑
i=1

Ek,i

J

∑
j=1

jjik(θ0,ζjk0,ζik0)

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂ik − ζik0

⎞
⎟
⎟
⎠

+Op (N
−1) .

To obtain the desired result, define

Zk =
J

∑
i=1

Ek,i

J

∑
j=1

jjik(θ0,ζjk0,ζik0)

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂ik − ζik0

⎞
⎟
⎟
⎠

.

Lemma F.0.0.5. N1/2H (θ̂
T

DDIMM − θT0 , ζ̂
T

DDIMM − ζT0 ) can be rewritten as

H {
K

∑
k=1

nk
N
Ekjk(θ0,ζk0)E

T
k +Op (n

1/2
maxN

−1/2−δ)}

−1

[
K

∑
k=1

{(
nk
N

)
1/2

Ekn
1/2
k Zk} +Op (N

−δ)].
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Proof

N1/2H

⎛
⎜
⎜
⎝

θ̂DDIMM − θ0

ζ̂DDIMM − ζ0

⎞
⎟
⎟
⎠

= N1/2H (
K

∑
k=1

J

∑
i=1

n2
k

N2
Ĉk,i)

−1 K

∑
k=1

J

∑
i=1

n2
k

N2
Ĉk,i

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂list − ζ0

⎞
⎟
⎟
⎠

=H [
K

∑
k=1

{
nk
N
Ekjk(θ0,ζk0)E

T
k +Op(n

1/2
k N−1)}]

−1

⋅

K

∑
k=1

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

nk
N1/2

Ek

J

∑
i=1

Ek,ijik(θ0,ζjk0,ζik0)

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂ik − ζik0

⎞
⎟
⎟
⎠

+Op(N
−1/2)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

=H {
K

∑
k=1

nk
N
Ekjk(θ0,ζk0)E

T
k +Op (Kn

1/2
maxN

−1)}

−1

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K

∑
k=1

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

nk
N1/2

Ek

J

∑
i=1

Ek,ijik(θ0,ζjk0,ζik0)

⎛
⎜
⎜
⎝

θ̂ik − θ0

ζ̂ik − ζik0

⎞
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

+Op (KN
−1/2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=H {
K

∑
k=1

nk
N
Ekjk(θ0,ζk0)E

T
k +Op (n

1/2
maxN

−1/2−δ)}

−1

⋅

[
K

∑
k=1

{(
nk
N

)
1/2

Ekn
1/2
k Zk} +Op (N

−δ)] .
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APPENDIX G

Chapter IV: Additional Simulation Results

Additional simulation results

Simulation metrics for the pairwise composite likelihood (CL) can be found in

Figure G.1.
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Figure G.1: Plot of simulation metrics for CL, averaged over 1,000 simulations.
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APPENDIX H

Chapter V: Proofs

Conditions for proofs of Chapter V

Condition H.1. Conditions for consistency and asymptotic normality of θ̂jk for

data source (j, k) in gth partition set Pg: C−1
jk is positive semi-definite and

C−1
jkE{ψi,jk(θjk)} = 0 if and only if θjk = θg0; θ0 = SG(θg0) is an interior point of

θ = ×Gg=1θg, and θg are compact; ψi,jk(θjk) is continuous at each θjk with probability

one; ψi,jk(θjk) is continuously differentiable in a neighborhood N of θg0 with

probability approaching one; E{ψi,jk(θg0)} = 0 and E{∥ψi,jk(θg0)∥
2
} is finite and

positive-definite; E{supθjk∈θg ∥ψi,jk(θjk)∥} < ∞ and E{supθjk∈N ∥∇θjkψi,jk(θjk)∥} <

∞; [E{∇θg0ψi,jk(θg0)}]
TC−1

jkE{∇θg0ψi,jk(θg0)} is nonsingular.

Condition H.2. For any δN → 0,

sup
∥θ−θ0∥≤δN

N1/2

1 +N1/2 ∥θ − θ0∥
∥ΨN(θ) −ΨN(θ0) −Eθ0ΨN(θ)∥ = Op(N

−1/2).

Proof of Theorem V.3. Let vjk(θjk) = V arθ0,g(ψi,jk(θjk)) . From assumption H.1
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and Theorem V.1, Avar(
√
nkθ̂jk) = {sjk(θ0,g)v−1

jk(θ0,g)sTjk(θ0,g)}
−1, and

Avar(
√
N θ̂) = {sT (θ0)v

−1(θ0)s(θ0)}
−1
,

Avar(
√
N θ̂

g
) = [{sT (θ0)v

−1(θ0)s(θ0)}
−1
]
g
,

where [A]g denotes the submatrix of a matrix A consisting of rows and columns

corresponding to blocks in Pg. Let [v(θ)](j,k) denote submatrix of v(θ) with

consisting of rows and columns corresponding to block (j, k), and let [v(θ)]−(j,k);,

[v(θ)];−(j,k) and [v(θ)]−(j,k) denote the submatrices of v(θ) eliminating respectively

rows, columns, and rows and columns corresponding to block (j, k). Clearly

(nk/N)vjk(θjk) is a submatrix of v(θ): (nk/N)vjk(θjk) = [v(θ)]
(j,k).

Consider (j, k) = (1,1), which is in partition set Pg1 for some g1 ∈ {1, . . . ,G} (this is

without loss of generality since we can reorganize the rows of ψi for (j, k) ≠ (1,1) to

make (j, k) = (1,1)). We write

v(θ) =

⎛
⎜
⎜
⎝

[v(θ)](1,1) [v(θ)];−(1,1)

[v(θ)]−(1,1); [v(θ)]−(1,1)

⎞
⎟
⎟
⎠

.

By Corollary 7.7.4. in Horn and Johnson (1990),

s11(θg0,1)v
−1
11(θg0,1)s

T
11(θg0,1) ≺ s11(θg0,1)

n1

N
[v−1(θ0)](1,1) s

T
11(θg0,1)

where ⪯ denotes Löwner’s partial ordering in the space of nonnegative definite

matrices. By the definition of sg1(θg0,1) in Section 5.2.4, this implies that

{sTg1(θg0,1) [v
−1(θ0)]g1

sg1(θg0,1)}
−1
≺ {

n1

N
s11(θg0,1)v

−1
11(θg0,1)s

T
11(θg0,1)}

−1

= lim
n1→∞

N

n1

Avar(
√
n1θ̂11).

Again by Corollary 7.7.4. in Horn and Johnson (1990), we have that

Avar(
√
N θ̂

g1
) = [{sT (θ0)v

−1(θ0)s(θ0)}
−1
]
g1
≺ {sTg1(θg0,1) [v

−1(θ0)]g1
sg1(θg0,1)}

−1
,

implying Avar(
√
N θ̂

g1
) ⪯ {limnk→∞(N/nk)}Avar(

√
n1θ̂11).
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APPENDIX I

Chapter V: Additional Simulation and Data Analysis
Results

Additional simulation results

We present additional simulation results for setting two in Section 5.3: simulation

metrics with an AR(1) working block correlation structure in Table I.1 and quantile-

quantile plots of test statistics from Theorem V.2 in Figure I.1.

Table I.1: Logistic regression simulation setting two results with P = {P1,P2,P3} and AR(1)
working block correlation structure.

(a) Estimates for P1 = {(1, k), (2, k)}
K
k=1.

RMSE×103 ESE×103 ASE×103 BIAS×104 CI LEN×103 ERR
Intercept 10.86 10.62 10.29 −23.40 0.93 40.00 0.07

X1 3.13 3.08 3.02 5.49 0.94 11.80 0.06
X2 5.53 5.42 5.34 −11.34 0.93 20.81 0.07

(b) Estimates for P2 = {(3, k)}
K
k=1.

RMSE×103 ESE×103 ASE×103 BIAS×104 CI LEN×103 ERR
Intercept 3.15 3.14 3.33 −2.21 0.96 12.78 0.04

X1 2.16 2.16 2.16 −0.29 0.95 8.38 0.05
X2 1.43 1.44 1.47 0.01 0.96 5.77 0.04

(c) Estimates for P3 = {(4, k), (5, k)}
K
k=1.

RMSE×103 ESE×103 ASE×103 BIAS×104 CI LEN×103 ERR
Intercept 4.72 4.69 4.77 −5.60 0.95 18.57 0.05

X1 6.36 6.28 6.28 −10.46 0.95 24.36 0.05
X2 2.03 2.01 2.03 2.82 0.95 7.92 0.05

Additional data analysis results

A dictionary for the short-hand names of the sub-pathways is given in Table I.2.
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Regression parameter estimates from the heterogeneous model with the partition

Ph = {Phg }
J
g=1, Phg = {(g,1), . . . , (g,K)} are displayed in Figures I.2-I.9. Regression

parameter estimates from the integrative model with sub-partition P i of Ph are

displayed in Figures I.10-I.17. Scatterplots of smoking effects for heterogeneous and

integrative models are shown in Figures I.18-I.25. Smoking effect estimates for the

heterogeneous and integrative models are reported in Table I.3 and I.4.
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Figure I.1: Chi-squared quantile-quantile plot of test statistics in Theorem 2 with theoretical 95%
confidence bands based on 500 simulations under correct and incorrect working block covariance
structure. The simulation set-up is that of the second set of simulations (J = 5, P = {Pg}3g=1).
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Table I.2: Dictionary for the short-hand names of the sub-pathways.

Pathway Sub-pathway Short name
Amino Acid Polyamine Metabolism SP1
Amino Acid Leucine, Isoleucine and Valine Metabolism SP2
Amino Acid Phenylalanine Metabolism SP3
Amino Acid Tyrosine Metabolism SP4
Amino Acid Histidine Metabolism SP5
Amino Acid Lysine Metabolism SP6
Amino Acid Glutathione Metabolism SP7
Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism SP8
Amino Acid Glycine, Serine and Threonine Metabolism SP9
Amino Acid Urea cycle; Arginine and Proline Metabolism SP10
Amino Acid Tryptophan Metabolism SP11
Amino Acid Guanidino and Acetamido Metabolism SP12
Amino Acid Glutamate Metabolism SP13
Amino Acid Alanine and Aspartate Metabolism SP14
Amino Acid Creatine Metabolism SP15
Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism SP16
Carbohydrate Pentose Metabolism SP17
Carbohydrate Aminosugar Metabolism SP18
Carbohydrate Fructose, Mannose and Galactose Metabolism SP19
Carbohydrate Glycogen Metabolism SP20
Cofactors and Vitamins Nicotinate and Nicotinamide Metabolism SP21
Cofactors and Vitamins Ascorbate and Aldarate Metabolism SP22
Cofactors and Vitamins Tocopherol Metabolism SP23
Cofactors and Vitamins Vitamin A Metabolism SP24
Cofactors and Vitamins Hemoglobin and Porphyrin Metabolism SP25
Cofactors and Vitamins Pantothenate and CoA Metabolism SP26
Cofactors and Vitamins Vitamin B6 Metabolism SP27
Energy TCA Cycle SP28
Energy Oxidative Phosphorylation SP29
Lipid Fatty Acid, Branched SP30
Lipid Medium Chain Fatty Acid SP31
Lipid Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) SP32
Lipid Plasmalogen SP33
Lipid Lysoplasmalogen SP34
Lipid Lysophospholipid SP35
Lipid Monoacylglycerol SP36
Lipid Phosphatidylcholine (PC) SP37
Lipid Phosphatidylethanolamine (PE) SP38
Lipid Phosphatidylinositol (PI) SP39
Lipid Phosphatidylserine (PS) SP40
Lipid Long Chain Monounsaturated Fatty Acid SP41
Lipid Androgenic Steroids SP42
Lipid Fatty Acid, Monohydroxy SP43
Lipid Pregnenolone Steroids SP44

Continued on next page.



161

Table I.2: Continued from previous page.

Pathway Sub-pathway Short name
Lipid Fatty Acid, Amino SP45
Lipid Fatty Acid Metabolism (Acyl Glycine) SP46
Lipid Fatty Acid, Dicarboxylate SP47
Lipid Fatty Acid Metabolism (also BCAA Metabolism) SP48
Lipid Fatty Acid, Dihydroxy SP49
Lipid Fatty Acid Metabolism (Acyl Carnitine, Monounsaturated) SP50
Lipid Mevalonate Metabolism SP51
Lipid Ketone Bodies SP52
Lipid Secondary Bile Acid Metabolism SP53
Lipid Sterol SP54
Lipid Fatty Acid Metabolism (Acyl Glutamine) SP55
Lipid Progestin Steroids SP56
Lipid Fatty Acid Metabolism (Acyl Carnitine, Short Chain) SP57
Lipid Fatty Acid Metabolism (Acyl Carnitine, Dicarboxylate) SP58
Lipid Long Chain Polyunsaturated Fatty Acid (n3 and n6) SP59
Lipid Long Chain Saturated Fatty Acid SP60
Lipid Fatty Acid Metabolism (Acyl Carnitine, Polyunsaturated) SP61
Lipid Fatty Acid Metabolism (Acyl Choline) SP62
Lipid Dihydrosphingomyelins SP63
Lipid Sphingomyelins SP64
Lipid Short Chain Fatty Acid SP65
Lipid Carnitine Metabolism SP66
Lipid Ceramides SP67
Lipid Fatty Acid Metabolism (Acyl Carnitine, Long Chain Saturated) SP68
Lipid Primary Bile Acid Metabolism SP69
Lipid Phospholipid Metabolism SP70
Lipid Corticosteroids SP71
Lipid Fatty Acid Metabolism (Acyl Carnitine, Medium Chain) SP72
Lipid Diacylglycerol SP73
Lipid Estrogenic Steroids SP74
Lipid Glycerolipid Metabolism SP75
Lipid Hexosylceramides (HCER) SP76
Lipid Lactosylceramides (LCER) SP77
Lipid Endocannabinoid SP78
Lipid Fatty Acid Synthesis SP79
Lipid Inositol Metabolism SP80
Lipid Ceramide PEs SP81
Lipid Sphingolipid Synthesis SP82
Lipid Sphingosines SP83
Nucleotide Pyrimidine Metabolism, Uracil containing SP84
Nucleotide Pyrimidine Metabolism, Cytidine containing SP85
Nucleotide Pyrimidine Metabolism, Thymine containing SP86
Nucleotide Purine Metabolism, Guanine containing SP87
Nucleotide Purine Metabolism, Adenine containing SP88

Continued on next page.
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Table I.2: Continued from previous page.

Pathway Sub-pathway Short name
Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine containing SP89
Nucleotide Pyrimidine Metabolism, Orotate containing SP90
Peptide Acetylated Peptides SP91
Peptide Polypeptide SP92
Peptide Fibrinogen Cleavage Peptide SP93
Peptide Gamma-glutamyl Amino Acid SP94
Peptide Dipeptide SP95
Peptide Modified Peptides SP96
Xenobiotics Food Component/Plant SP97
Xenobiotics Drug - Other SP98
Xenobiotics Xanthine Metabolism SP99
Xenobiotics Chemical SP100
Xenobiotics Drug - Analgesics, Anesthetics SP101
Xenobiotics Benzoate Metabolism SP102
Xenobiotics Tobacco Metabolite SP103
Xenobiotics Drug - Topical Agents SP104
Xenobiotics Drug - Antibiotic SP105
Xenobiotics Drug - Cardiovascular SP106
Xenobiotics Drug - Neurological SP107
Xenobiotics Drug - Respiratory SP108
Xenobiotics Drug - Psychoactive SP109
Xenobiotics Drug - Gastrointestinal SP110
Xenobiotics Bacterial/Fungal SP111
Xenobiotics Drug - Metabolic SP112
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Figure I.2: Estimated regression parameters for the amino acid pathway from the heterogeneous
model.
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Figure I.3: Estimated regression parameters for the carbohydrate pathway from the heterogeneous
model.

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

intercept age BMI bpmeds drinking lipidmeds smoking

−0.05

0.00

0.05

0.10

−1.5

−1.0

−0.5

0.0

Covariate

C
oe

ffi
ci

en
t v

al
ue

Sub−pathway

●

●

●

●

●

SP16

SP17

SP18

SP19

SP20



165

Figure I.4: Estimated regression parameters for the cofactors and vitamins pathway from the
heterogeneous model.
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Figure I.5: Estimated regression parameters for the energy pathway from the heterogeneous model.
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Figure I.6: Estimated regression parameters for the lipid pathway from the heterogeneous model.
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Figure I.7: Estimated regression parameters for the nucleotide pathway from the heterogeneous
model.
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Figure I.8: Estimated regression parameters for the peptide pathway from the heterogeneous model.
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Figure I.9: Estimated regression parameters for the xenobiotics pathway from the heterogeneous
model.
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Figure I.10: Estimated regression parameters for the amino acid pathway from the integrative
model.
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Figure I.11: Estimated regression parameters for the carbohydrate pathway from the integrative
model.
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Figure I.12: Estimated regression parameters for the cofactors and vitamins pathway from the
integrative model.
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Figure I.13: Estimated regression parameters for the energy pathway from the integrative model.
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Figure I.14: Estimated regression parameters for the lipid pathway from the integrative model.
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Figure I.15: Estimated regression parameters for the nucleotide pathway from the integrative model.
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Figure I.16: Estimated regression parameters for the peptide pathway from the integrative model.
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Figure I.17: Estimated regression parameters for the xenobiotics pathway from the integrative
model.
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Figure I.18: Estimated smoking effect for the amino acid pathway from the heterogeneous and
integrative models categorized by significance at the 0.05/8 level.
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Figure I.19: Estimated smoking effect for the carbohydrate pathway from the heterogeneous and
integrative models categorized by significance at the 0.05/8 level.
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Figure I.20: Estimated smoking effect for the cofactors and vitamins pathway from the
heterogeneous and integrative models categorized by significance at the 0.05/8 level.
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Figure I.21: Estimated smoking effect for the energy pathway from the heterogeneous and
integrative models categorized by significance at the 0.05/8 level.
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Figure I.22: Estimated smoking effect for the lipid pathway from the heterogeneous and integrative
models categorized by significance at the 0.05/8 level.
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Figure I.23: Estimated smoking effect for the nucleotide pathway from the heterogeneous and
integrative models categorized by significance at the 0.05/8 level.
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Figure I.24: Estimated smoking effect for the peptide pathway from the heterogeneous and
integrative models categorized by significance at the 0.05/8 level.
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Figure I.25: Estimated smoking effect for the xenobiotics pathway from the heterogeneous and
integrative models categorized by significance at the 0.05/8 level.
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Table I.3: Estimated effects of smoking for the heterogeneous model. Starred sub-pathways have a
significant effect of smoking at level 0.05/8. s.e. standard error.

Sub-pathway Estimate (s.e.×102) p-value
SP1 −0.036 (1.6) 0.022
SP2* 0.075 (1.9) 6.3 × 10−5

SP3 −0.0078 (1.3) 0.56
SP4 −0.038 (1.8) 0.031
SP5* 0.066 (1.6) 2.5 × 10−5

SP6 −0.039 (2.5) 0.11
SP7* −0.12 (1.4) 1.3 × 10−17

SP8* −0.075 (1.5) 8.9 × 10−7

SP9 0.024 (1.3) 0.071
SP10* 0.037 (1.2) 0.0022
SP11* −0.061 (1.8) 0.00058
SP12 −0.044 (2) 0.026
SP13* −0.062 (1.3) 7.1 × 10−7

SP14 −0.026 (1.3) 0.043
SP15 0.0063 (1.4) 0.65
SP16* 0.097 (2) 2.1 × 10−6

SP17 0.039 (1.8) 0.031
SP18 0.051 (3) 0.087
SP19* −0.078 (1.7) 4.2 × 10−6

SP20* −0.055 (1.9) 0.0037
SP21* −0.14 (2.4) 7.7 × 10−9

SP22* −0.16 (1.9) 1.1 × 10−16

SP23 −0.02 (1.6) 0.21
SP24* −0.12 (3.5) 0.00047
SP25* 0.094 (1.7) 3.8 × 10−8

SP26* −0.33 (2.4) 6.1 × 10−45

SP27* −0.35 (3.5) 4.9 × 10−23

SP28* 0.22 (3.5) 2.7 × 10−10

SP29* −0.17 (2) 4.9 × 10−18

SP30* 0.1 (1.6) 1.7 × 10−10

SP31* 0.11 (2.2) 4.2 × 10−7

SP32* 0.2 (2.7) 3.6 × 10−13

SP33* 0.09 (2.3) 8.4 × 10−5

SP34 0.044 (1.9) 0.024
SP35* −0.061 (2.1) 0.0031
SP36 0.017 (2.3) 0.45
SP37* −0.066 (2) 0.0009
SP38* 0.13 (2.4) 1.7 × 10−8

SP39 0.0026 (2.2) 0.91
SP40* −0.1 (2.2) 3.5 × 10−6

SP41* −0.061 (2.1) 0.004
SP42* −0.099 (2.5) 7.8 × 10−5

SP43* −0.089 (2) 9.9 × 10−6

SP44* −0.15 (2.4) 1.1 × 10−10

Continued on next page.
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Table I.3: Continued from previous page.

Sub-pathway Estimate (s.e.×102) p-value
SP45 −0.028 (2.8) 0.32
SP46* −0.18 (2.6) 7.1 × 10−12

SP47* −0.15 (2.4) 6 × 10−10

SP48* −0.049 (1.6) 0.0019
SP49 −0.0084 (1.7) 0.62
SP50* −0.1 (2.8) 0.00015
SP51 −0.063 (2.3) 0.0064
SP52* −0.25 (2.4) 2.2 × 10−26

SP53* −0.16 (1.2) 6.3 × 10−41

SP54 −0.042 (2.1) 0.049
SP55 −0.038 (1.4) 0.0091
SP56 −0.041 (2.1) 0.046
SP57 0.06 (2.3) 0.01
SP58* −0.24 (2.6) 2 × 10−19

SP59* −0.12 (2.9) 1.9 × 10−5

SP60 −0.0026 (2.8) 0.93
SP61* −0.12 (2.4) 8 × 10−7

SP62* −0.38 (2.1) 1.1 × 10−73

SP63* −0.24 (2.3) 1.8 × 10−25

SP64* −0.077 (1.6) 1.3 × 10−6

SP65* −0.27 (2.1) 2.8 × 10−39

SP66* −0.25 (1.9) 1.6 × 10−39

SP67* −0.29 (2.7) 3.4 × 10−26

SP68* −0.091 (1.9) 2.1 × 10−6

SP69 0.00011 (1.4) 0.99
SP70* 0.21 (2.3) 8.5 × 10−20

SP71 0.019 (2.2) 0.4
SP72 0.029 (2.6) 0.26
SP73* −0.13 (1.6) 3.9 × 10−17

SP74* −0.086 (1.8) 1.1 × 10−6

SP75* 0.27 (2.4) 1.3 × 10−29

SP76* 0.12 (1.5) 1.7 × 10−15

SP77 0.045 (2.2) 0.042
SP78* 0.12 (1.2) 5.2 × 10−22

SP79 −0.04 (2.1) 0.06
SP80* 0.22 (2.6) 1.8 × 10−17

SP81* −0.12 (2.1) 1.1 × 10−8

SP82* 0.19 (2.5) 2.9 × 10−14

SP83* 0.2 (1.6) 4.9 × 10−35

SP84 −0.023 (1.7) 0.18
SP85* −0.07 (2.1) 0.00096
SP86* −0.17 (2.9) 2.3 × 10−9

SP87* 0.057 (2) 0.0038
SP88 0.0088 (2.1) 0.68

Continued on next page.



189

Table I.3: Continued from previous page.

Sub-pathway Estimate (s.e.×102) p-value
SP89 −0.038 (2.1) 0.076
SP90* −0.075 (1.6) 2.5 × 10−6

SP91* −0.12 (2.7) 6 × 10−6

SP92* 0.14 (2.1) 4.9 × 10−11

SP93* 0.2 (2.8) 2.9 × 10−13

SP94* 0.081 (2.4) 0.00066
SP95 0.057 (2.6) 0.032
SP96* 0.19 (2.2) 5.2 × 10−18

SP97 0.013 (3.2) 0.69
SP98* 0.13 (1.5) 6.9 × 10−18

SP99* 0.13 (1.1) 3.1 × 10−33

SP100* 0.19 (2) 3 × 10−22

SP101* 0.25 (2.5) 6.2 × 10−24

SP102* 0.21 (2.2) 2.3 × 10−21

SP103* 0.3 (2.8) 6.2 × 10−27

SP104* 0.24 (2.5) 6.4 × 10−22

SP105* 0.24 (2.3) 2.9 × 10−26

SP106* 0.24 (3.1) 4.9 × 10−15

SP107* 0.27 (2.5) 2.8 × 10−28

SP108* 0.3 (2.9) 8.3 × 10−25

SP109* −0.25 (2.2) 1.7 × 10−30

SP110* 0.042 (1) 2.9 × 10−5

SP111* 0.26 (2.8) 1.5 × 10−20

SP112* −0.14 (2.6) 1.7 × 10−8
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Table I.4: Estimated effects of smoking for the integrative model. Sub-pathways separated by a
semi-colon have been combined in the integrative analysis. Starred sub-pathway combinations have
a significant effect of smoking at level 0.05/8. s.e. standard error.

Sub-pathway Estimate (s.e.×102) p-value
SP1; SP9; SP13 −0.017 (1.1) 0.11
SP2* 0.062 (1.8) 0.00048
SP3; SP10; SP14; SP15 0.016 (1) 0.12
SP4; SP7* −0.094 (1.2) 5.2 × 10−15

SP5; SP6 0.033 (1.4) 0.015
SP8* −0.068 (1.5) 6.3 × 10−6

SP11 −0.016 (1.7) 0.35
SP12 −0.038 (1.9) 0.047
SP16* 0.093 (2) 2.1 × 10−6

SP17; SP18; SP19; SP20 −0.025 (1.3) 0.055
SP21; SP22; SP23; SP25* −0.043 (1.1) 7.4 × 10−5

SP24* −0.11 (3.4) 0.00094
SP26* −0.33 (2.3) 3 × 10−49

SP27* −0.33 (3.5) 6.9 × 10−22

SP28* 0.22 (3.5) 2.7 × 10−10

SP29* −0.17 (2) 4.9 × 10−18

SP30* 0.1 (1.5) 8.6 × 10−11

SP31; SP34; SP38; SP76; SP78* 0.094 (0.98) 1.1 × 10−21

SP32; SP57; SP60 0.052 (1.9) 0.007
SP33 0.045 (2) 0.029
SP35 −0.043 (1.7) 0.011
SP36 −0.016 (2.1) 0.45
SP37; SP40; SP42; SP48* −0.071 (1.1) 1.5 × 10−10

SP39 −0.022 (1.9) 0.24
SP41* −0.079 (1.6) 1.2 × 10−6

SP43; SP45* −0.068 (1.2) 1.8 × 10−8

SP44* −0.15 (0.96) 8.6 × 10−56

SP46; SP64* −0.11 (1.2) 8.2 × 10−19

SP47; SP53; SP58 −0.024 (1.5) 0.099
SP49* −0.11 (2.6) 5.5 × 10−5

SP50* −0.073 (2.1) 0.00068
SP51; SP55* −0.18 (1.3) 2.8 × 10−41

SP52; SP59 −0.033 (2) 0.094
SP54 −0.015 (1.1) 0.19
SP56; SP68; SP69; SP72; SP79* −0.027 (0.88) 0.0025
SP61* −0.063 (1.5) 1.9 × 10−5

SP62* −0.31 (1.5) 6.2 × 10−92

SP63; SP66; SP73* −0.18 (1.1) 1.3 × 10−64

SP65* −0.32 (1.8) 3.2 × 10−68

SP67* −0.28 (2.5) 7.7 × 10−28

SP70* 0.18 (2) 1.8 × 10−20

SP71 −0.018 (2) 0.35
Continued on next page.
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Table I.4: Continued from previous page.

Sub-pathway Estimate (s.e.×102) p-value
SP74* −0.13 (1.6) 2.1 × 10−16

SP75* 0.28 (2.3) 1.5 × 10−35

SP77 0.048 (2.2) 0.027
SP80; SP82* 0.16 (1.8) 5.8 × 10−18

SP81* −0.16 (1.8) 4.7 × 10−19

SP83* 0.18 (1.5) 2.3 × 10−35

SP84; SP85; SP87; SP90 −0.031 (1.4) 0.025
SP86* −0.17 (2.7) 4.7 × 10−10

SP88; SP89 −5 × 10−4 (1.8) 0.98
SP91; SP92; SP93; SP94; SP95; SP96* 0.054 (1.4) 0.00021
SP97; SP109* −0.19 (1.8) 1.5 × 10−24

SP98; SP100; SP101; SP102; SP103;
0.13 (1.1) 1.2 × 10−30

SP105; SP106; SP107; SP108; SP111*
SP99; SP110; SP112* 0.039 (0.75) 1.8 × 10−7

SP104* 0.12 (1.6) 2.5 × 10−13
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