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ABSTRACT

The emergence of “soft” robots, whose bodies are made from stretchable mate-

rials, has fundamentally changed the way we design and construct robotic systems.

Demonstrations and research show that soft robotic systems can be useful in rehabil-

itation, medical devices, agriculture, manufacturing and home assistance. Increasing

need for collaborative, safe robotic devices have combined with technological ad-

vances to create a compelling development landscape for soft robots.

However, soft robots are not yet present in medical and rehabilitative devices,

agriculture, our homes, and many other human-collaborative and human-interactive

applications. This gap between promise and practical implementation exists because

foundational theories and techniques that exist in rigid robotics have not yet been

developed for soft robots. Theories in traditional robotics rely on rigid body dis-

placements via discrete joints and discrete actuators, while in soft robots, kinematic

and actuation functions are blended, leading to nonlinear, continuous deformations

rather than rigid body motion.

This dissertation addresses the need for foundational techniques using continuum

mechanics. Three core questions regarding the use of continuum mechanical mod-

els in soft robotics are explored: (1) whether or not continuum mechanical models

can describe existing soft actuators, (2) which physical phenomena need to be incor-

porated into continuum mechanical models for their use in a soft robotics context,

and (3) how understanding on continuum mechanical phenomena may form bases

for novel soft robot architectures. Theoretical modeling, experimentation, and de-

sign prototyping tools are used to explore Fiber-Reinforced Elastomeric Enclosures

(FREEs), an often-used soft actuator, and to develop novel soft robot architectures

based on auxetic behavior.

This dissertation develops a continuum mechanical model for end loading on

xv



FREEs. This model connects a FREE’s actuation pressure and kinematic configura-

tion to its end loads by considering stiffness of its elastomer and fiber reinforcement.

The model is validated against a large experimental data set and compared to other

FREE models used by roboticists. It is shown that the model can describe the

FREE’s loading in a generalizable manner, but that it is bounded in its peak perfor-

mance. Such a model can provide the novel function of evaluating the performance

of FREE designs under high loading without the costs of building and testing pro-

totypes. This dissertation further explores the influence viscoelasticity, an inherent

property of soft polymers, on end loading of FREEs. The viscoelastic model de-

veloped can inform soft roboticists wishing to exploit or avoid hysteresis and force

reversal. The final section of the dissertations explores two contrasting styles of aux-

etic metamaterials for their uses in soft robotic actuation. The first metamaterial

architecture is composed of beams with distributed compliance, which are placed

antagonistic configurations on a variety of surfaces, giving ride to shape morphing

behavior. The second metamaterial architecture studied is a “kirigami” sheet with

an orthogonal cut pattern, utilizing lumped compliance and strain hardening to per-

manently deploy from a compact shape to a functional one. This dissertation lays

the foundation for design of soft robots by robust physical models, reducing the

need for physical prototypes and trial-and-error approaches. The work presented

provides tools for systematic exploration of FREEs under loading in a wide range

of configurations. The work further develops new concepts for soft actuators based

on continuum mechanical modeling of auxetic metamaterials. The work presented

expands the available tools for design and development of soft robotic systems, and

the available architectures for soft robot actuation.
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CHAPTER 1

Introduction

1.1 Motivation

Living organisms including plants, invertebrates, and humans benefit from com-

pliance in their bodies every day, whether bending in the wind, crawling through

tight spaces, or absorbing the shock of a footfall. Advances in polymer chemistry,

economic interests, and evolving social needs have introduced a capability and will

to mass produce mechanisms that emulate these natural ones.

Mass-produced compliant mechanisms range from the mundane to the high-tech.

Shampoo lids and other kinds of packaging often have a thin piece of plastic acting

as a hinge. The compliance of a zip-tie allows it to wrap around objects of different

sizes. Roboticists can create safer, easier to use, more precise, and more collaborative

robots by incorporating compliant hardware into their mechanical designs [18]. These

compliant parts may be lumped into specific locations in the robot (e.g. [33, 134]), or

distributed across the entire robot’s body [67, 84, 147]. The latter are early examples

of “soft” robots: robotic mechanisms characterized by bodies made almost entirely

from soft, stretchy materials.

Soft robotics research has been by economic needs in manufacturing, agriculture,

and medical care. Devices have been researched in many of these areas, including

rehabilitation [38, 120, 176], medical devices [23, 44], agriculture devices [89], and

in-home assistive devices [1].
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(a) (b)

Figure 1.1: A soft robot (left) and a rigid robot (right, Fanuc).

The promise shown by soft robots for human-collaborative uses is not yet realized

outside of academia because of an inherent contradiction: the key aspects of soft

robots that give them this great potential are also the ones that make them difficult

to understand and challenging to deploy. These key aspects are listed below.

1. Soft mechanisms do not resemble traditional robots in a kinematic sense. The

traditional format of a robot, with a separate power source (e.g. a battery),

actuation (e.g. servo motors) and structure (e.g. metal linkages), is the basis

for much of current theory in robotics [2]. However, in many proposed soft

robot designs, these parts are not necessarily distinguishable from one another.

For example, in the chemically powered soft robots of Shepherd et al. [151]

and Mirvakili et al. [101], dissipated chemical energy changes the structure

and attributes of the soft robot: its internal volume expands and its interior

is pressurized. Or, in articulated soft robots like [71], soft actuators form the

robot’s main structure.

2. Compared to rigid robots, soft robots undergo large local deformations during

typical use [135], enabling them to deform around delicate objects or maneuver

in small spaces. This idea does not fit comfortably into existing robotic theory:
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a soft, stretchy body can be said to have infinite degrees of freedom (DoF) [166]

because it can be deformed or undergo tension and compression in any local

region. With infinite DoF to choose from, it is a challenging task to isolate

which of those is important and how the context may inform that importance.

Further, the local deformations undergone by these materials often have a non-

linear stress response, making it difficult to create linear systems of differential

equations that describe the robot’s motion. It follows that traditional control

algorithms and design methods have limited success for soft robots.

3. Finally, soft robots are often impedance- or compliance-matched to their en-

vironments [50, 74, 92]. For a robot to handle delicate items like biological

tissues, to deform around obstacles, or to avoid injuring a human collaborator

while still effectively completing a task, a its kinetics may be coupled to those

of relevant environmental actors. These coupled dynamics may be nonlinear,

especially if the robot changes shape.

These characteristics – blended function across the robot’s structure, deforma-

bility across a robot’s surface, and nonlinear impedance matching – give soft robots

their core advantages of “mechanical intelligence” [135] and “inherent” potential for

safety [7]. However, it is also because of these characteristics that problems in soft

robot design and control have not been solved. Without a well-developed theory of

soft robotics, we lack the fundamentals to create effective devices.

1.1.1 Overview

Roboticists have developed theories for a variety of traditional robot architectures

by building simplified expressions of a robot’s physics that still capture the core

phenomena most important to the use of the robot in its intended context. Soft

roboticists have generally operated earlier in this modeling life cycle, depicted in

Figure 1.2. Most existing soft robotic architectures have been created in the last

decade, and a large part of the soft robotics community continues to focus on novel

soft robot architectures and simple models that enable proof-of-concept devices to

be created (e.g. [8, 36, 53, 57, 69, 151]).
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Figure 1.2: Life cycle of design and modeling of soft robots.

Work to improve models for soft robot use in context is increasing; older archi-

tectures like McKibben actuators have been more thoroughly investigated [73, 74,

166, 182] and newer ones are beginning to have more sophisticated models associated

with them. However, even these improved soft robot models are not exhaustive: they

might neglect external loads in certain directions ([26]) or from certain environmen-

tal actors (e.g. gravity), or approximate the robot’s deformation with a thin beam

approximation, [95, 175], or approximate behavioral properties like elasticity with

lumped, linear components [33]. While these modeling techniques are mostly viable

in the cases in which they are evaluated, they can potentially fall short in a larger

use context: for example, a soft robot that is impedance-matched to its environment

will almost certainly encounter significant end loads. And, a nonlinearly elastic com-

ponent approximated with a simpler one could have unexpected shape changed or

unaccounted-for instabilities.

Another way soft roboticists face these challenges is by using data-driven models

whose parameters do not reflect physical quantities. Soft roboticists often use mea-

surements taken on an already-built or already-proven system to determine task-

appropriate model structure and parameters. These data-driven approaches can

include machine learning or fitting virtual physical parameters (e.g. fitting values in

a compliance matrix without reasoning about physical components).

Several researchers have shown that behavioral simplifications and data-driven
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approaches can work. However, since soft robotics is a new field, we still lack the tools

to assess a priori what simplifications are admissible, or what data-driven approaches

are viable. This work aims to study key phenomena underlying soft robot

behavior, while building tools and reasoning based on these phenomena

that can be used to design and control soft robots.

Understanding key phenomena (or, even, knowing which phenomena are ‘key’) is

especially difficult in soft robotics. When thinking about physical phenomena in en-

gineering systems, we might choose to reason either about gross behaviour of bodies,

or about the ways that individual constituent particles interact. Most of the time,

a method of reasoning is clearly dictated by the task. A roboticist making a simple

model of a rigid manipulator would not reason about the molecular arrangement

inside its metal links, and would instead be concerned with gross parameters like

their strength. A chemist or materials scientist trying to model a stereolithography

process, on the other hand, would reason about particles and connect this reasoning

to curing behavior a polymer.

In soft robotics, the scale on which we should reason is not clear. Researchers have

had success when reasoning about gross body behaviour [95], but have also success-

fully reasoned about material microstructure to create novel soft robotic functionality

[83]. Both of these scales can work, but each can also be intractable. A soft robot’s

physics might be oversimplified to the point of providing to useful information, and

particle-level reasoning including many potential physical phenomena can be compu-

tationally heavy. This kind of physics could require too much computation, may be

subject to randomness that isn’t important to gross object behaviour, or may depend

on too many unknown parameters or conditions to yield a meaningful prediction.

This dissertation will investigate a view between these two extremes. Continuum

mechanics offers a wealth of physical theories for material behavior with various

properties under various conditions. Unlike rigid robotics, continuum mechanical

theory describes material behavior. But unlike chemistry or statistical mechanics,

continuum mechanical theory does not consider the activity of individual material

particles. Instead, we use continuum mechanics to reason about the behavior of

homogenized blocks of material. Since material behaviour, but not necessarily ma-
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terial chemistry, plays an important role in soft robot behaviour, it makes sense to

investigate whether, and how, we can reason at this scale in soft robotics.

My dissertation will investigate how techniques and frameworks from continuum

mechanics might be useful in soft robot design, modeling and control. I propose

to show how insight about material behaviour how reasoning about homogenized

blocks of material can improve our understanding of soft robots. I will highlight

three behaviors which either have already formed, or might in the future form the

basis for significant advances in soft robotics. They are:

1. Nonlinear Elasticity,

2. Viscoelasticity,

3. Auxetic, or Negative Poisson’s Ratio (NPR) behaviour.

Soft robots often have highly elastic bodies. Common design frameworks for soft

robots like PneuNets [67] and Fiber Reinforced Elastomeric Enclosures (FREEs)

[8] involve patterning highly elastic polymers (e.g. PDMS, rubbers) with stiffer re-

straining elements (e.g. beams, fiber networks) to design soft robots with desirable

shape changes on actuation. In continuum mechanics, hyperelastic material models

are often used to describe highly stretchy polymers. These models focus on creating

nonlinear representations of a material’s strain energy density, i.e. the Helmholtz

free energy stored inside the material as it locally expands or contracts [107]. In

contrast to linear elastic models, these strain energy models can predict stress in

materials at large deformations [156]. Ideally, models like these would allow design

of better-suited soft systems to specific tasks, increased resilience, and better moni-

toring of the robot’s activity during operation. Though researchers have shown that

nonlinear elastic models can reflect soft robotic behaviour in specific cases, it is un-

clear how viable these techniques are in larger parameter spaces: we do not know

what applications (if any) can best benefit from use of nonlinear elasticity, and we

do not understand how nonlinear elastic models generalize across the diverse styles

and constructions of today’s soft robots. For these reasons, I will first investigate

how nonlinear elasticity models can be used to predict loading on FREEs.

6



A second inherent property of polymeric soft robots is viscoelasticity, i.e. en-

ergy dissipation over time in a stressed material, which can cause stress relaxation,

creep, and hysteresis. While soft roboticists are beginning to incorporate nonlinear

elasticity into their models, viscoelasticity is a largely untouched phenomenon. Some

researchers say it is “difficult” [69] to model: this may be due to experimental barriers

in characterizing physical parameters, potential for heavy computation requirements,

or challenges in identifying appropriate viscoelastic models for observed phenomena.

Frequently, viscoelasticity is characterized on existing systems with data-driven tech-

niques as a way of correcting errors in calculated plant dynamics [54, 72]. Frequently,

this hysteretic behaviour is seen as an undesireable phenomenon that should be miti-

gated; the common choice of low-hysteresis polymers like silicone in the construction

of soft robots is evidence if this view. However, viscoelastic energy dissipation can

also be advantageous if we seek to add damping to soft robotic systems or match

impedance with the environment.

Auxetic, or negative Poisson’s ratio (NPR) behavior might also be desirable in

soft robotic systems. Including negative Poisson’s ratio materials in soft systems

further expands the space of possible kinematics that the soft robot may have, pos-

sibly enabling better customization of that system to specifc tasks or environments.

Auxetic materials have several other potential advantages in soft robotics that are

not obvious: they can offer large net shape changes without large local strains, in

contrast to the hyperelastic systems described above [19], can be designed to absorb

shock and sound, and may have superior toughness and tear resistance than positive

Poisson’s ratio materials [179].

1.1.2 State of the Art

This project exists at the intersection of mechanical modeling and robotics. For

this reason I will first give a brief overview of existing mechanical techniques for

modeling soft, stretchy bodies, and then describe their current usage in soft robotics

research.

Physicists, mathematicians, and engineers have created models that describe soft,
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Figure 1.3: Schemata representing three ways to model soft devices. (a) Approx-
imating the device with a lumped-parameter model. (b) A continuum mechanical
model on a homogenized system with stresses σ. (c) Molecular models. On the left,
a molecule of SBR Rubber [20]. On the right, a representative volume element of a
generalized rubber [6].

stretchy bodies at several different scales, and used them in several different contexts.

We can differentiate them both by scale and by the phenomena considered at each

scale. Lumped-parameter models, like those in Figure 1.3a, tend to operate at the

scale of the body, separated into discrete elements (Figure 1.3a shows two springs

and a damper) with separate, well-defined static or dynamic behaviors. Analysis of

lumped systems becomes more computationally expensive as lumped elements, or

networks of lumped elements are added. At the opposite end in terms of physical

scale are molecular and atomistic models. Visual examples of such models are shown

in Figure 1.3c; the left image is the lowest-energy configuration of a molecule of

Styrene Butadyene Rubber (SBR) found in [20]; the right image is a representative

volume element of a generalized elastomer used in a statistical rubber model in

[6]. Because an elastomeric body is composed of many molecules that can have

several physical interactions, molecular mechanical models are often computationally

expensive. Continuum models fall somewhere in between these two extremes. By

assuming that behaviors are homogenized across a body or a portion of a body, we

can describe nonlinear behaviour of infinitesimally small volumes using a reduced
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amount of computation compared to large, complicated discrete models.

Continuum mechanical models can describe soft, stretchy objects with nonlin-

ear loading-deformation characteristics, without the scaling computational load of

an atomistic model. This balance makes them a strong candidate for use in soft

robotics. Below, I summarize relevant continuum mechanical models in the three

key areas described above, and describe how soft roboticists are currently imple-

menting continuum mechanical reasoning.

1.1.3 Nonlinear Elasticity

A nonlinear elastic material is one whose stress and strain have a nonlinear rela-

tionship and where dissipation within the material is not significant. Both natural

(e.g. biological tissues) and man-made (e.g. filled rubber in tires) stretchy materials

are often studied using nonlinear elasticity theory. Many engineering applications for

soft, highly elastic materials are concerned with defining boundaries on performance.

We might ask, for example, what kind of load profile is required to break a rubber

film. And, indeed, nonlinear continuum models have been studied for these purposes

for decades [156]. Study of failure mechanisms like fracture of soft materials is an

active research topic [27]. Nonlinear elastic models are also useful to characterize

biological systems like arteries [62].

Nonlinear, elastic, incompressible materials have a specific constitutive relation-

ship, derived from physical principles [131]. Rubber is often modeled under this

description. This constitutive relationship connects the Cauchy stress tensor σ to

the deformation gradient F, a tensor describing the finite deformation of the body.

The expression uses the Helmholtz free energy per volume (Ψ(F, b̄)) dependent on the

deformation gradient and any other relevant parameters (b̄) and a Lagrange multi-

plier (q) that ensures expansions in the material’s principal directions defined by the

identity tensor (I) follow volume conservation. The constitutive equation is shown

below in Equation 1.1:

σ =
∂Ψ(F, b̄)

∂F
FT − qI. (1.1)
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Possible expressions for Ψ(F) are varied. Depending on the phenomena that

a researcher wishes to capture, they may build an expression for Ψ that includes

terms relating to specific phenomena or principles. One example is the neo-Hookean

model [130], which captures Helmholtz free energy stored due to stresses in principal

directions of the material. Another example is the Mooney-Rivlin model[102, 130],

which accounts for the neo-Hookean energy with improvements at higher stretches

( > 50%).

The soft robotics community is increasingly using this constitutive law for both

design and control purposes. Klute et al. [73] use a Mooney-Rivlin strain energy

density function to characterize the elastic stresses present in the elastomeric blad-

der of a McKibben actuator, concluding that the stresses stored by this bladder play

an important role in the overall behaviour of the actuator. This work was recently

extended in [154], where researchers use a constrained maximization formulation to

solve the resulting problem when the fibers are allowed to be wound in asymmetic

helices and the tube has pinched ends. Soft robotics authors also build on models de-

veloped for biomechanical systems: the authors of [26] use a theory of fiber-reinforced

elastic material first presented to characterize the mechanical behaviour of the ar-

terial walls [62]. Continuum mechanical theory predicts a reversal in direction of

motion and/or axial force of a fiber-reinforced nonlinear-elastic tube [34, 51] that

has been observed in soft robot prototypes [8].

However, these investigations are limited by assumptions that do not necessarily

apply to the system’s context of operation. In [73] and [154], the fibers are treated

as completely inextensible, and in [26] external loads from the environment are not

considered (e.g. leading due to contact in a haptic system, a wearable system, or

manipulation of an object). Further, the importance of elastic nonlinearities across

the wide variety of system architectures, tasks, and environments seen in soft robotics

is not yet well characterized.
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1.1.4 Viscoelasticity

Viscoelasticity is an umbrella term to describe material behaviour that is simul-

taneously influenced by both viscous phenomena, i.e. dissipative forces inside of the

material structure, and elastic phenomena, i.e. energy storage inside the material

structure under strain. Polymers like rubber [167] and silicone [129] are inherently

viscoelastic in many of their use cases.

Similarly, biomechanical systems like arterial walls [61] and ligaments [113] have

been found to be exhibit viscoelastic behaviour.

Viscoleasticity is a subject of extensive study in theoretical continuum mechanics

[119, 133, 177], and is increasing in importance in robotics. Because viscoelasticity is

an inherent property of polymers, and because soft robots are made from a wide va-

riety of polymers, viscoelastic phenomena like creep, stress relaxation, and hysteresis

are present on some level in every soft robotic system.

Soft roboticists often rely on extensive mechanical characterization of already-

realized systems to understand their time-dependent properties. For example, the

authors of [72] use a neural network and a full mechanical characterization to model

hysteresis in a soft tactile sensor. In [169] and [103], cyclic experiments are done

to characterize hysteresis of Pneumatic Artificial Muscles (PAMs) and PneuNets.

Though appropriate mechanical characterization can successfully inform models of a

particular system, it cannot necessarily inform the creation of new systems, predict

how viscoelastic materials act together (e.g. a soft robot manipulating biotissue, or

a soft robot made of a polymeric composite), or appropriately inform the control of

such a system outside of known situations.

For these reasons, soft roboticists are beginning to use continuum viscoelastic

theory in hardware design and controller development. The simplest viscous polymer

models consider the polymer’s elemental volumes as combinations of linear springs

and dampers. At their simplest, they can be arranged in series, i.e. the Maxwell

element in Figure 1.4a, or in parallel, i.e. the Kelvin-Voigt model in Figure 1.4b.

These simple models enable the creation of differential equations that connect

stresses and strains in the material, and may be solved under known initial conditions.
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(a) Maxwell material ele-
ment comprised of a spring
and damper in series.

(b) Kelvin-Voigt material el-
ement comprised of a spring
and damper in parallel.

(c) Standard Linear Solid
material element.

Figure 1.4: Kelvin-Voigt, Maxwell, and Standard Linear Solid model diagrams.

For example, [105], authors use a hyperelastic Yeoh rubber in parallel with a damper

as in the Kelvin-Voigt model to create a dynamic model of a soft actuator. The

dynamic model created there is shown to allow position control of a parallel module

of FREEs.

However, these simple models have key limitations in a robotics context. The

series damper of the Maxwell model describes liquid-like behaviour under imposed

forces or deformations in the limit where time goes to infinity, limiting its potential

accuracy for longer-term use situations of a soft robot. The parallel damper of the

Kelvin-Voigt model does not allow for any instantaneous energy storage, meaning

that this model may overestimate the necessary energy input to move a soft robot

quickly. Indeed, the model presented by [105] increases in error as the input pressure

rate to their system increases.

The Standard Linear Solid (SLS), modeled by the combination of springs and

damper shown in Figure 1.4c, offers elastic-like behaviour in both the instantaneous

and infinite-time cases. The authors of [153] use a Standard Linear Solid model to

describe the impedance of a soft robotic fingertip, demonstrating that such a model

could be used to match impedance to softer environments.
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However, even the SLS model is limited in its ability to capture the viscoelas-

tic behaviour of polymers. A material whose elemental volumes are described as

combinations of linear springs and dampers will necessarily exhibit a proportional

scaling between stresses and strains, but mechanicians as well as soft roboticists

[26, 120], have repeatedly observed that this stress-strain linearity does not exist in

their systems under normal operation circumstances.

As novel, functional materials are developed for use in soft robotic systems, an

understanding of inherent viscoelastic behaviour will become increasingly important.

Further, designs for soft robots are becoming more sophisticated - incorporating

patterns of constraining elements and stretching elements, or incorporation of light-,

magnetic-, temperature-, or electric field-influenced polymers. These developments

require the development of a viscoelastic theory that can describe a wide variety

of nonlinear viscoelastic behaviour for individual materials as well as patterns of

materials that may differ in viscoelastic properties.

1.1.5 Auxetic Materials

Auxetic materials expand in all directions under tension, often due to specific

geometry of their microstructure [80, 82, 89]. Auxetic behaviour is a designed or

“mechanically programmable” property of a soft material. Unlike hyperelasticity

and viscoelasticity, auxetic behaviour is not inherent to the polymers we see in soft

robotics. This behavior may be incorporated by deliberately building structure or

microstructure with specified geometry that influences the Poisson’s ratio.

Soft system prototypes and design methodologies using auxetic repeating cells

have been developed. Of particular interest, mechanical “meta” materials have

been created by modifying the macrostructure of existing materials such as poly-

mers and foams. Some of these are based on projections of planar lumped compliant

mechanisms [76, 77, 97]. Others are focussed on the relationship between the aux-

etic property and loading performance: [88] gives an overview of how networks of

asymmetrically wound helical fibers or beams, exhibit auxetic behaviour and loading

asymmetry. In [85], researchers show that a mechanical instability in certain foams
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can cause them to behave like auxetic materials.

Further, auxetic materials and metamaterials are popular in sports applications

like shoe soles because of their potential shock-absorption properties [29, 137]. How-

ever, many of these design methodologies become more complex as the amount and

dimension of repeating units increases, or require additional physical understanding

to predict loading capabilities, failure, and other three-dimensional effects.

1.2 Organization of the Document

This dissertation discusses whether continuum mechanical models are capable of

describing soft actuators, evaluates viscoelasiticity for its potential effects on soft

actuator behaviour, and leverages auxetic behaviour of metamaterials to develop

new designs concepts for soft robots . Chapter 2 offers a solution to a nonlinear

elastic problem reflecting a deformed soft robotic actuator, and clarifies its potential

use through two design case studies. Chapter 3 presents a validation of the model of

Chapter 2 across the actuator design space and a comparison with other models of the

same actuator for use in a robotics context. Chapter 4 presents a viscoelastic model

for fiber-reinforced actuator and a simulation-based study of the effect of viscoelastic

phenomena like stress relaxation and hysteresis on soft actuators. Chapters 5, 6

and 7 present various studies of auxetic metamaterials in soft robotics. Chapter 5

presents a design building block for synthesis of auxetic reinforcements for soft robots

with a kinematic evaluation. Chapter 6 presents an expansion of the basic kinematic

ideas of Chapter 5 to include patterning of auxetic mechanisms on a wider variety

of surfaces. It further investigates the effects of auxetic reinforcements on fluid flow

within a soft pneumatic robot. Chapter 7 presents kirigami patterns as a separate

design building block for auxetic soft robot reinforcement, and shows how strain

hardening of a deformed kirigami metamaterial may be leveraged in soft robotics.

Chapter 8 offers conclusions of the dissertation and a pathway for future work.
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CHAPTER 2

Nonlinear FREE Model and Design Case Studies

This chapter has been previously published and is used with permission from the

American Society of Mechanical Engineers (ASME). It may referenced as:

Sedal, Audrey, Bruder, Daniel, Bishop-Moser, Joshua, Vasudevan, Ram, and

Kota, Sridhar. A Continuum Model for Fiber-Reinforced Soft Robot Actuators.

Journal of Mechanisms and Robotics 10(2): 024501.

2.1 Introduction

The Fiber-Reinforced Elastomeric Enclosure (FREE) is a pneumatic actuator

which consists of an elastomeric tube with fibers wound around it in specified helical

configurations. Pneumatic actuators can be particularly useful in soft robotic appli-

cations due to their flexibility under loading, physical adaptability, and the ready

availability of air, the working fluid [135]. Pneumatically actuated soft robots have

demonstrated capabilities in biomimetic locomotion [96, 150, 160], assistive wearable

devices [111, 139], and manipulators [98, 99]. Fiber reinforcement enables soft robots

to create sophisticated motions and loading, including axial extension, rotation, and

torsion [8–10, 78], but poses additional complexity in modeling.

Soft roboticists have developed a variety of methods to determine the behavior of

FREEs under internal pressure. Many of these models rely on kinematic or kinetic

assumptions that constrain the design space, like fiber symmetry [148, 164] and
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negligible external loading [26]. Others are built on assumptions that simplify the

model formulation but demand lengthy experimental parameter determination like

fitting shear moduli with an equibiaxial tension experiment [154], or separate design

characterization for every prototype [13]. Finite element methods (FEM) can predict

FREE movement [79]; however, the time-consuming nature of FEM and its inability

to predict trends make it intractable for design optimization or control. It is therefore

important to develop a model that captures the nonlinear relationship between a

FREE’s material, loading, and deformation and the coupling behavior it exhibits

between axial stretch and torsion.

This chapter relates a FREE’s torsional stiffness to its deformation and internal

fluid pressure by extending a known hyperelastic composite modeling framework [62].

A major advantage of this formulation is its ability to predict physical phenomena,

like torsion and radial expansion, in a computationally tractable way with a minimum

of experimental parameter determination. In Section 2.2, a continuum model is

described for a FREE with one fiber family, which is the simplest system exhibiting

a combination of elongation and twist when pressurized. In Section 2.3, the model’s

computation and its experimental validation are explained. Section 2.4 compares

the model’s predictions with the measured behavior, and quantifies error. Section

2.5 illustrates possible design cases where the model is useful. Section 2.6 discusses

potential avenues for error reduction and Section 2.7 describes possible future work.

2.2 Model

The properties of the FREE determine its behavior and impact decisions about

how to model it. Our prototypes are made of latex rubber tubes with embedded

woven threads. Therefore, we consider the FREE wall as a composite material with

a hyperelastic matrix and embedded fibers.

The mode is built on four key assumptions:

1. A continuum approximation that ignores voids in the material and irregularity
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Figure 2.1: FREE behavior when relaxed.

Figure 2.2: FREE behavior when relaxed (left) and pressurized (right) [13].
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in the fiber deposition.

2. Neglecting interaction effects like sliding friction between the fiber and elas-

tomer, and local buckling. This enables us to superpose the stress contributions

of the fiber and elastomer. Models considering these assumptions have cap-

tured the behavior of composites in a number of engineering contexts [58, 62];

a detailed study of the effects of interaction effects in FREEs is left to future

work.

3. The composite material of the FREE wall is assumed to be incompressible.

This assumption is justified for FREEs since they are mainly composed of

natural rubber, which commonly assumed to be incompressible [43].

4. Finally, the deformed FREE is assumed to be roughly cylindrical. This assump-

tion is justified by the photos taken of inflated FREEs, as shown in Figures 2.1

and 2.2.

Together, these assumptions constitute a simple and efficient continuum framework

that captures the key behaviors of FREEs, including nonlinear behavior of the fiber

and elastomer, and axial stretch-torsion coupling.

2.2.1 Continuum Mechanical Framework

Below, the continuum framework are given and the key equations of the FREE

actuator model are presented. Further foundational reading may be found in [34, 43,

62, 107]. 
End-to-End Rotation Φ

Axial Stretch λz

External Radius ro

⇔


Internal Pressure P

Twisting Moment M

(Axial Force F)

 (2.1)

The FREE has three kinematic quantities and three loading quantities which

fully define its shape and loading. When any three of the quantities in Equation 2.1
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are fixed, the rest of the quantities are fully defined. So, we fix three quantities and

use the continuum framework to create a system of equations that will allow us to

solve for the others.

Since we are interested in the unique torsion-generating capabilities of FREEs, we

solve for the twisting moment. To do this, we fix rotation Φ, axial extension λz and

internal pressure while measuring the twisting moment. Under the continuum and

cylindrical assumptions noted above, we create a geometric definition of the FREE’s

change of shape, and relate it to the stresses stored in the FREE wall. Integrating

these stresses across the surfaces on which they act gives the loading.

2.2.2 Defining FREE Movement

Before finding the loading, a mathematical description of the FREE’s shape-

changing activity must be derived. This section presents the deformation gradient

for a FREE, defining the continuous deformation of its surface.

Consider a FREE with a single fiber family that is wound at an angle Γ from

the central axis, and consider a point on the FREE skin with coordinates R,Θ, Z as

shown in in Figure 2.3. When inflated, the FREE undergoes a length change L→ l,

a radius change Ro, Ri → ro, ri, and the rotation of one endcap relative to another in

radians defined by Φ. Assuming that the FREE is not buckled, the transformation

of any point in the FREE wall can be written as a change of cylindrical coordinates

from R,Θ, Z → r, θ, z as shown in Figure 2.3. The sign conventions used here are

shown in Figure 2.4.

r =

√
R2 −R2

i
l
L

+ r2
i , (2.2a)

θ = Θ + Z
Φ

L
, (2.2b)

z =
l

L
Z = λzZ (2.2c)
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L

 Φ

l

(r, θ, z)(R, Θ, Z)

z

r

θ
Ri

Ro

ri

ro

γΓ

Figure 2.3: Motion of a point on the FREE wall. As the FREE inflates, the reference
point changes coordinates (in the cylindrical coordinate system shown) from (R, Θ,
Z) to (r, θ, z).

F F

M M

 Φ

γ

l

P

ri

ro

Figure 2.4: Torsional moment, rotation, and fiber angle sign conventions.

20



Γ

L

MRo

Ri

Figure 2.5: Fiber direction on a continuum element of the FREE wall.

Assuming incompressibility of the FREE skin, no end effects, and uniform stretch-

ing, the relationships of Equations 2.2a, 2.2b, 2.2c define this shape change.

The deformation gradient F, shown below, is the gradient of the coordinate trans-

formation in Equations 2.2a, 2.2b, 2.2c.

F =


∂r
∂R

∂r
R∂Θ

∂r
∂Z

r∂θ
∂R

r∂θ
R∂Θ

r∂θ
∂Z

∂z
∂R

∂z
R∂Θ

∂z
∂Z

 =


R
rλz

0 0

0 r
R

rΦ
L

0 0 λz

 (2.3)

As the FREE deforms, the helix created by the fiber changes. We define a unit

vector M tangent to the fiber in the FREE’s initial configuration as shown in Figure

2.5, and we can see below that pre-multiplying it by F gives the deformed, stretched

fiber direction:

M =

 0

sin(Γ)

cos(Γ)

 (2.4)

m = FM =

 0
r
R

sin(Γ) + rΦ
L

cos(Γ)

λz cos(Γ)

 (2.5)

This fiber transformation applies only to a taut fiber; configurations where the

fiber buckles inside the substrate are left to future work. These mathematical de-
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scriptions are used in the following section to find expressions for the stresses.

2.2.3 Relating Stress and Strain through Strain Energy

Previous successful models for hyperelastic fiber-reinforced tubes use invariant-

based strain energy functions to approximate the Helmholtz free energy [62]. In

contrast with statistical or stretch-based models, invariant-based models are built

from quantities which are invariant to changes in the FREE’s configuration that

reflect the directional properties of the material. For example, a tensile force in any

direction in space on an isotropic material will create the same stresses. Or, if our

anisotropic FREE has rotated in space but not undergone any stretching, it will not

store any strain energy. A detailed discussion of invariants can be found in [107],

and a derivation of all of the invariants of a pressurized fiber-reinforced tube can be

found in [62].

In order to demonstrate the usefulness of a continuum framework in this soft

actuator design context, we use the simplest available strain energy models - that is,

the ones that depend on the fewest possible invariants. Out of the several possible

invariants for a single fiber-family tube, the neo-Hookean model (Eq. 2.7) has one

invariant for the matrix and the standard fiber model (Eq. 2.8) has one invariant

for the fiber. For designers seeking greater accuracy, or using elastomer and fibers

with different (e.g. shear) behavior, models including additional invariants may be

used in the same framework presented here. Many of these models are discussed in

[43, 107], and [62].

Stress is connected to strain though a strain energy function Ψ = f(F, Ci), where

F is the deformation gradient and Ci are material properties. Ψ models the Helmholtz

free energy (in units of energy per reference volume) of the deformed body. We find

the total strain energy Ψ through superposition of elastomer and fiber energy:

Ψ = Ψelastomer + Ψfiber (2.6)

A modeling framework like this one enables a choice of any physically viable

strain energy model. To demonstrate the viability of our continuum framework for
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modeling FREEs, we choose the simplest available strain energy models. The neo-

Hookean model [107] used for the elastomer and the standard fiber model for the

fiber [34] enable the choice of any material moduli C1 for the elastomer and C2 for

the fiber. These energy models are shown below:

Ψelastomer =
C1

2
(I1 − 3) (2.7)

Ψfiber =
C2

2
(I4 − 1)2 (2.8)

I1 = tr(FTF) = λ2
z +

r2

R2
+

R2

λ2
zr

2
+
r2Φ2

L2
(2.9)

I4 = (FM) · (FM)

= M · (FTFM)

= λ2
zcos

2(Γ) +
r2Φ2cos2(Γ)

L2
+

2
r2Φcos(Γ)sin(Γ)

LR
+
r2sin2(Γ)

R2

(2.10)

In Equation 2.10, “·” symbolizes a vector dot product. I1 and I4 are invariants

related to the motion undergone by the FREE skin and the fibers (Eqns. 2.9, 2.10).

The Cauchy or “true” stress tensor gives the magnitudes of differential stresses

in the FREE in cylindrical coordinates. The relationship between Cauchy stress σ,

strain energy, and deformation is shown below:

σ =

 σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz

 =
∂Ψ

∂F
FT − pI (2.11)

Here, the hydrostatic pressure variable p is a Lagrange multiplier arising from

the incompressibility of the FREE wall.
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When the strain energy is known, we can relate it to stress with the Cauchy

stress expression shown in Equation 2.11. A detailed explanation of the Helmholtz

free energy, its relation to energy density in the material, and a derivation of the

Cauchy Stress can be found in [40].

Using deformation gradient (Eq. 2.3) and the strain energy models (Eqns. 2.7,

2.8), we can find the Cauchy stress tensor with the constitutive relation in Eqn. 2.11.

C = FTF,

b = FFT
(2.12)

Equation 2.12 introduces the right (C) and left (b) Cauchy-Green deformation

tensors, which are useful quantities for computing the stress. Below, we use the

superposition of the fiber and matrix with the chain rule and Equations 2.7, 2.8, 2.9

and 2.10 to evaluate Equation 2.11:

σ =
∂Ψelast + Ψfiber

∂F
FT − pI

=
∂Ψelast

∂I1

∂I1

∂F
FT +

∂Ψfiber

∂I4

∂I4

∂F
FT − pI

=
C1

2

∂I1

∂F
FT + C2(I4 − 1)

∂I4

∂F
FT − pI

=
C1

2

∂tr(FTF)

∂F
FT + C2(I4 − 1)

∂(FM) · (FM)

∂F
FT − pI

=
C1

2
2FFT + C2(I4 − 1)2FM(FM)T − pI.

(2.13)

An alternate expression of Equation 2.13 using Equation 2.12 and the definition

of the tensor product ⊗ [107] is shown below.

σ = −pI + C1b + 2C2(I4 − 1)FM⊗ FM. (2.14)
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2.2.4 Contribution of Internal Pressure

The Cauchy stress depends on r, which is not a fixed quantity here. We find the

new radii through the FREE’s hydrostatic equilibrium equations, along with the in-

compressibility assumption of Equation 2.2a and fiber extensibility. The relationship

between pressure P and the deformed FREE radii is shown below:

− P =

∫ ro

ri

1

r
(σrr − σθθ)dr (2.15)

A detailed derivation of Equation 2.15 is below.

In FREE applications, length and rotation are often controlled, but radius change

is left free. Under the fixed pressure, stretch and twist, the new radii ri and ro need

to be determined.

Radius can be determined by assuming the deformed FREE stresses satisfy hy-

drostatic equilibrium; that is, that on an arbitrarily chosen subsection of the FREE

wall, there is no net stress. The FREE wall needs to be incompressible for this equi-

librium to hold [34, 107]. This assumption is justified for FREEs since elastomers

are often assumed to be incompressible, and the fibers have less volume overall than

the elastomeric matrix.

∇ · σ = 0 (2.16)

In cylindrical coordinates, Equation 2.16 becomes the system of partial differential

equations shown below.

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = 0

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ = 0

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz = 0

(2.17)

Equation 2.16 shows hydrostatic equilibrium, which is expanded in cylindrical
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coordinates in Equation 2.17. With our previous assumptions of uniformity in z and

around the FREE wall, we can conclude that none of the stresses vary in the θ- or

z directions along the FREE wall. Additionally, we can see by the form of F that

σrθ = σrz = 0 and Equation 2.17 reduces to:

∂σrr
∂r

+
1

r
(σrr − σθθ) = 0

1

r

∂σθθ
∂θ

= 0

∂σzz
∂z

= 0

(2.18)

Eqns. 2.17 then simplify to Eq. 2.18. Because of axial symmetry and uniform

stretch, we are primarily interested in the first hydrostatic equilibrium equation.

Re-arranging it, we have:

−∂σrr
∂r

=
1

r
(σrr − σθθ) (2.19)

We use the boundary conditions σrr(ri) = P and σrr(ro) = Patm = 0. Integrating

Equation 2.19 in r, and then applying a change of variables from r to R (using Eq.’s

2.2a and 2.2b) gives:

σrr(ri) =

∫ ro

ri

1

r
(σrr − σθθ)dr

=

∫ Ro

Ri

R

r

1

R
(σrr − σθθ)

dr

dR
dR

=

∫ Ro

Ri

R

r

1

R
(σrr − σθθ)

R

λzr
dR

=

∫ Ro

Ri

R

R2 −R2
i + r2

i λz
(σrr − σθθ)dR

(2.20)

Here, using Equations 2.14 and 2.2a, and substituting 2.3 with the FREE dimensions:
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σrr − σθθ = C1
R2

r2λ2
z

− 2C2(I4 − 1)

(
rΦcos(Γ)

L
+
rsin(Γ)

R

)2

(2.21)

Applying the boundary condition gives:

−P = −p(ri) = σrr(ri)

=

∫ Ro

Ri

R

R2 −R2
i + r2

i λz
(σrr − σθθ)dR

(2.22)

Under incompressibility of the FREE wall,

ro =

√
r2
i +

R2
o −R2

i

λz
and r =

√
r2
i +

R2 −R2
i

λz
(2.23)

due to volume conservation.

Equations 2.22 and 2.23 enable us to find the new interior and exterior radii ri

and ro. Once Equation 2.22 is solved, we know all of the kinematic quantities in the

FREE’s deformed configuration and can solve for the loads. Please note that this

procedure yields a different results when the fibers are inextensible.

We can find the expression for p by adding dp
dr

to both sides of Equation 2.19:

dp

dr
=

d

dr
(σrr + p) +

σrr − σθθ
r

(2.24)

We can note that using equation 2.11 that σrr + p in Equation 2.24 is only a

function of the deformation. Then, we can replace σrr + p with Qrr and perform a

change of coordinates from r to R:

dp

dR
=
dQrr(R)

dR
+
σrr − σθθ
R r
R

dr

dR
(2.25)

Integrating Equation 2.25 under the same boundary condition (Eq. 2.22) gives the

hydrostatic pressure expression necessary to find the radial, axial, and circumferential
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σθ
σ z

z

z
σ zz

σθθ

σθθ σrr

σrr

Figure 2.6: Differential element of the FREE wall and associated stresses

forces:

p(R) = Qrr(R)− P +

∫ R

Ri

R

R2 −R2
i + r2

i λz
(σrr − σθθ)dR. (2.26)

2.2.4.1 Torsional Load

Given the deformed radius (Eq. 2.15) and the constitutive relationship between

stress and deformation (Eq. 2.11), we can now solve for each component of the FREE

wall stress, visualized in Figure 2.6.

Of specific interest here is the torsional load produced by the FREE, which we

find by integrating the contribution to the moment caused by the shear stress σθz

direction across the deformed cross-section of the FREE wall. Since σθz is an off-

diagonal entry of σ, p does not appear in the expression for the moment.

M =

∫∫
A

σθzrdA (2.27)

where

σθz = C1λz
rΦ

L
+ 2rC2λz cos(Γ)(I4 − 1)

(
Φ cos(Γ)

L
+

sin(Γ)

R

)
. (2.28)

The expression in Equation 2.27 gives the torsional moment as a function of the

FREE’s initial state, deformation and material parameters.

Equation 2.28 affords a heuristic way to understand several facets of FREE behav-

ior in torsion without fabricating a FREE or doing extensive experimental parameter
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determination. We can understand:

1. Sensitivity of a given design to the deformation, including the FREE’s length

change λz,

2. Coupling effects between moment M and axial force F ,

3. Relative tension storage in the fiber due Ψfiber and elastomer due to Ψelastomer,

respectively,

4. The effect of proposed material properties C1 and C2 on the design’s torque

generation ability.

2.2.4.2 Model Discussion

One key advantage of this model is its ability to be used as a heuristic framework

to help designers understand FREE behavior in situations where various behaviors

are fixed and others are unknown. Here, we outline some of the insights that this

model captures.

The problem setup described above has fixed P , Φ, and λz. We then need Equa-

tions 2.15, 2.27 and 2.28 to find the torsional moment. However, as noted in Section

2.1, the FREE is fully determined when only three of the kinematic and force quan-

tities are fixed. Below, we examine potential variations of the problem where input

P remains fixed but the axial stretch λz and/or the twist angle Φ may be uncon-

strained, or the radius r is constrained. Validating each variation of the problem

experimentally is left to future work, as is a detailed study of the force generation

capabilities of FREEs.

First, we can contrast the problem setup described previously with one in which

the length change of the FREE is not fixed (e.g. if the end of the FREE were on a

roller). Then, the net axial force would be zero by default. Since the axial stretch of

the FREE λz is still a part of the shear stress expression in Equation 2.28, we need

to solve an additional equation to find the moment.
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Axial force is found by integrating the axial stress and sum it with the force due

to pressure on the ends of the FREE to fund the force:

F =

∫∫
A

σzzdA+ 2πr2
iP (2.29)

where

σzz =− p+ C1λ
2
z+

2C2λ
2
z cos2(Γ)

(
λ2
z cos2(Γ) +

r2Φ2 cos2(Γ)

L2

+
2r2Φ cos(Γ) sin(Γ)

LR
+
r2 sin2(Γ)

R2

) (2.30)

Since the FREE’s length is unconstrained, we can expect that it produces no

axial force. Solving Equation 2.29 with F = 0 in conjunction with the hydrostatic

pressure as described below gives the FREE’s axial stretch λz. Plugging λz back

in to Equations 2.15,3.21 and 2.28 gives the moment. A similar procedure can be

used for other fixed, nonzero values of axial force by setting F to a different value in

Equation 2.29.

When the twist angle Φ is unconstrained, there will be no resultant torsion on the

FREE. So, we can then find Φ by setting M = 0 in Equation 3.21 with the pressure-

radius relationship defined in Equation 2.15. Similarly, setting M = Mknown in

Equation 3.21 gives the twist at that fixed moment.

If length and twist are unconstrained, then the FREE is moving without any

constraints and both F and M are fixed to zero.

If either the inner or outer radius of the FREE were to be fixed (e.g. through a

pipe or bladder) it becomes straightforward to solve for P , F , and M under fixed

Φ and λz since the kinematic quantities already appear in Equations 2.15, 2.28, and

2.30. If either or both of Φ or λz are unconstrained instead, we can again use the

procedures outlined above to find them.
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2.2.5 Significance of Fiber Extensibility

Fiber extensiblity expands the design space for FREEs past what is afforded

by the inextensibility assumption: we can now design FREEs with new kinds of

helical constraining elements such as polymers. The expanded design space includes

fibers which may be more readily available, stronger, or have desired properties for

the required working environment of the FREE without aligning closely with an

inextensibility assumption.

We can further contrast this model with a version in which the fiber is assumed

to be inextensible. An inextensible fiber will have I4 → 1 and will store stress

without lengthening or shortening, i.e. C2 → ∞. However, a fully inextensible

fiber will primarily store tension when the interior volume of the FREE has a non-

cylindrical shape. (Consider a FREE with fibers parallel to the central axis that

turns into an ellipsoid when inflated.) This behavior changes the kinematics and

the pressure-radius relationships from what is presented here. Then, we may either

1) solve for the deformed shape with a series of partial differential equations with

known boundary conditions at the FREE endcaps, which is not computationally

expedient, or 2) assume a different deformed shape of the FREE, though our photos

of inflated FREEs indicate that a cylinder most closely approximates the deformed

FREE. A detailed mathematical description of the hydrostatic pressure balance for

inextensible fibers can be found in [118].

2.2.6 Model Implementation and Testing

The model results were compared with experimental measurements of torsion of

FREEs at various deformations and pressures.

2.2.7 Model Computation

The model was implemented on Wolfram Mathematica for a sample set of single

fiber-family FREEs with reference lengths of 9.7-10.1cm, initial external radii varying

from 6.3 to 7.4mm, at fiber angles of Γ = 60°, Γ = 40° and Γ = 30°. Fabrication

31



error causes variation in the radius of each sample: the FREEs are made by hand-

layering elastomer and fiber over a commercially extruded elastomeric tube, so there

is variation from sample to sample and some variation along the wall of each FREE

sample.

Each of the elastomer and fiber properties, C1 and C2, can be observed in a simple

tension test. The elastomeric matrix was tested between 0 and 300% strain. Fitting

to the Neo-Hookean model gave C1 = 0.5 MPa, which agrees with values from the

literature [43]. The fiber was found to have C2 = 1 MPa. The total computation

time for this data set was about 14 seconds.

2.3 Preliminary Experimental Validation

The FREE’s axial stretch, rotation, and interior pressure were fixed while the

torsional loading was measured. The position-controlled test bed that performed the

experiment is shown in Figure 2.7. The FREE was clamped at each end while a

linear actuator at the left end extended the FREE axially, a servo rotated one end,

and the air inlet enabled pressurization. The load cells shown measured axial force

and moment at a rate of 1Hz. (The force measurements were used only for error

analysis, which is explained further below.) The camera photographed the FREE in

its deformed and pressurized state, allowing buckled configurations to be observed.

The scheme of imposing deformation and measuring loading is frequently used in

mechanics experimentation.

2.3.1 Measurement Techniques

After deformation and internal pressure were fixed, the FREE was held in place

for 20 seconds to allow it to approach static equilibrium. Pressure was fixed using a

pressure regulator (Wilkerson ER1). Force and torque measurements were sampled

at 1Hz over the 20 second period in several such conditions with strain-gauge sensors

(LoadStar RAS1-25lb and LoadStar RST1-6Nm respectively), and pressure feedback

was taken at 1Hz. Each data point in Figures 2.8a thru 2.8c represents a sample over
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Figure 2.7: The position-fixed test bed, which measures torsion at various deforma-
tion and pressure states.
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one second. Measurements were taken at various rotations for each FREE sample

at extensions between 1mm and 2mm. These small pre-extensions were applied to

limit the possibility of reaching critical buckling conditions. Since the cylindrical as-

sumption is violated if the FREE wall is buckled, analysis of buckled configurations

is left to future work. The resulting axial stretches 1.009 < λz < 1.021 were used in

the inputs to Equation 2.28 when the model predictions were calculated, and each

sample had the same λz throughout the tests. Test inclusion criteria were measure-

ments in which the pressure was increased relative to the previous measurement and

the FREE did not buckle. A detailed analysis of the associated axial force is left

to future work. Moment produced by the mounting of the FREE to the grips was

subtracted from the measured torque.

2.3.2 Measurement Error

Sensor noise, sensor cross-talk, parasitic friction, FREE wall irregularity, and

stress relaxation are the known potential sources of error.

The torque and force sensors employed here have a quoted accuracy of 0.02% for

the force sensor and 0.2% for the torque sensor. However, since they are mounted in

series we need to account for cross-talk - that is, the possibility that an axial force

imposed on a torsional load cell may change its resistance reading. To characterize

cross-talk error, we imposed axial forces between 0 and 12N without torsion on

the RST1. We measured 0.6Nmm/N of cross-talk error due to axial force on the

torque sensor. While testing the FREEs we took force measurements (none of which

exceeded 11N) throughout, enabling us to calculate the cross-talk error of each FREE

in each specific configuration. Parasitic friction was an additional concern. To avoid

bending moments on the force and torque sensors, a Delrin bushing was placed at

the interface between the torque sensor and air inlet as shown in Figure 2.7. Friction

from the torque sensor sliding against the bushing may introduce error to the force

measurements. To estimate this error, we used a spring scale to cycle between tensile

loads of 6N and 0N at a rate of roughly 0.05Hz (comparable to the 20s time that the

FREEs were held fixed). Comparing the force sensor readings at 0N after 6 cycles
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gave a range of 0.08N. Carrying this force sensor error forward into the cross-talk

error, we found 0.6Nmm/N × 0.08 N = 0.0048 Nmm of additional error. The sensor

error, cross-talk error and parasitic friction error are included in the error bars of the

measurements plotted in Figures 2.8a thru 2.8c.

During fabrication, irregularities occur in the wall thickness between FREEs and

along wall of each FREE. The radius inputs to the model are the mean of three

measurements on the same sample. The shaded lines in Figures 2.8a, 2.8b, and 2.8c

represent the model predictions at ± 1 standard deviation of radius. The standard

deviations were: 0.14mm for the Γ = 60◦ FREE, 0.1mm for the Γ = 40◦ FREE, and

0.13mm for the Γ = 30◦ FREE.

Since FREEs are made partly from rubber, we expected that experimental error

would arise from relaxation of the FREEs over time. However, upon observation of

our torsion measurement over 20s, we did not see changes in torsion measurements

that exceeded sensor noise and cross-talk as characterized above. Therefore, time-

dependent behavior of FREEs is left for future study.

2.4 Results

The model quantifies the relationship between torsional loading on the FREE and

FREE deformation in the R, Θ and Z directions. Figures 2.8a thru 2.8c show the

experimental data plotted against the moment predictions for each FREE sample at

various internal pressure and deformation states.

The Root Mean Square Error (RMSE) between the measured data and the model

predictions is shown in Tables 2.1, 2.2, and 2.3. Some predictions do not fall within

the experimental and fabrication error as described above. We expect that higher

accuracy could be achieved by using more refined strain energy models which take

shears, interaction between the fiber and elastomer, and the woven nature of the fibers

into account. Without these refinements, the model captures the general concave-up

relationship between pressure, torque and deformation.

Torques shown in Figures 2.8c-2.8a are not necessarily 0 when P = 0. This is due

to the axial stretch of up to +1mm imposed on these FREEs; the model captures a
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Table 2.1: TORQUE ERROR for 60 °DESIGN ANGLE.

Φ [°] 0° 20° 40° 60°
M Error [Nmm] 2.6 2.1 2.0 1.9

Table 2.2: TORQUE ERROR for 40 °DESIGN ANGLE.

Φ [°] 0° 20° 40°
M Error [Nmm] 5.5 5.4 8.1

Table 2.3: TORQUE ERROR for 30 °DESIGN ANGLE.

Φ [°] 10° 30° 50°
M Error [Nmm] 6.9 4.4 6.8

coupling effect between axial stretch and torsion.

2.5 Design Case Studies

The continuum model is useful for finding not only the particular operating con-

ditions leading to a desired FREE torque, but also for exploring the space of available

designs and operating conditions to satisfy a variety of constraints. Two case studies

are presented. The first shows the model as an analysis tool for determining opera-

tional parameters, and second uses the model for design synthesis. In the first case

study, the pressure is found for a given FREE to produce the desired torque at a

given torsion. The second case study shows the the fiber design angle Γ of a FREE

to produce the desired torque for a given operating pressure and torsion.

2.5.1 Selection of Operating Parameters

Once a FREE is manufactured at a given fiber angle Γ, it is important to control

the behavior. In many instances this means controlling the pressure to derive a
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Figure 2.9: Torque by pressure curve for a FREE with design angle Γ = 40◦ at
various deformations.

desired moment and twist. The problem is formulated in Equation 2.31.

Choose P

s.t. M = Mspec

Φ = Φspec

λz = λz,spec

(2.31)

Equation 2.27 is used to relate the pressure to torque for a given torsion. Ge-

ometry was assumed to be Γ = 40 °, and relaxed length, interior radius and wall

thickness 79mm, 4mm, and 1mm respectively. Axial stretch λz was assumed to be

1.013 (that is, a length change of +1mm). Material properties were C1 = 0.64MPa

and C2 = 4MPa. To obtain Mspec = 30N-mm and Φspec = 60, we find the required

pressure to be 34.1 kPa. This analysis is shown in Figure 2.9, along with the opera-

tional space of pressure, torque, and twist.
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2.5.2 Design Synthesis of Fiber Angle

If operating parameters are known, we can determine which design angle Γ of

FREE will satisfy the task requirements. In this case study, we apply the model to

find the design angle Γ that produces a desired range of twist angles Φ and a desired

torque at a given pressure. This problem is stated in Equation 2.32.

Find all Γ

s.t. M = Mspec

P = Pspec

λz = λz,spec

Φ ∈ {Φmin,Φmax}

(2.32)

We use identical initial dimensions and material properties as the previous case

study. Equation 2.27 is again used to define the relationship between torque, ro-

tations (Φ), and design angle (Γ) for a fixed pressure and 10°steps of design angle.

Mspec = 30Nmm. Pspec = 40 kPa, Φmin = 40°, and Φmax = 95°are used for this case

study.
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Figure 2.10 shows the torque-rotation angle Φ relationships for each design angle

Γ. The areas where the grey surface and green lines intersect demonstrate the feasible

design angles Γ that meet the required rotation angle Φ and torque constraints. The

feasible design examples are then see that the feasible designs are Γ = 20◦, Γ = 40◦,

and Γ = 50◦ with deformations of 51.08°, 51.06°and 90.1°respectively.

The model can be used to compute a feasible design set or optimize parameters

in both the continuous and discrete domains for a variety of operating conditions.

2.6 Discussion

The general concave-upward trends of the measurements are captured by the

model, demonstrating the viability of the model as a heuristic tool for FREE design

synthesis and further justifying the model assumptions. Furthermore, the material

properties characterized for the elastomer and fiber indicate that fiber extensibility

does contribute to the FREE behavior.

The RMSE exceeds the estimated measurement error. More features may be

added to the model to improve its accuracy such as higher-fidelity elastomer mod-

els [43], fiber-matrix interaction models [58], a fiber model specifically for woven

materials [114] and corrections for irregularities in the geometry. The fabrication

process may produce minor perturbations in the fiber angle which may cause the

model to disagree with the experiments. Or, local bulging may occur between the

fibers, breaking the framework’s assumption of evenly distributed fibers throughout

the FREE wall.

2.7 Conclusion

The model presented in this paper has the potential to be the basis for a heuristic,

top-down design methodology for pneumatic soft robots, in which material proper-

ties, fiber angles, and tube dimensions can be chosen for any given application,

deformation, or loads. We use a continuum mechanical framework to relate the dis-
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placement, torsional loading, and internal pressure of fiber-reinforced soft pneumatic

mechanisms. The model captures the fundamental trends of experimental data at

each of the configurations tested as well as the nonlinearity of a FREE’s behavior due

to coupling between loading and deformation. The assumptions of this continuum

framework can be used to calculate FREE torsion and design FREEs with minimal

experimental parameter determination, in an expanded design space that includes

extensible fibers. The moment-pressure relationship of a proposed FREE and its

moment-rotation relationship are presented as specific examples of the use of the

model in a design context.

We illustrated the possibility of such a model both to find operating conditions

for an existing FREE design which allow it to meet a given torque requirement, and

to find the feasible design space for a FREE under known conditions.

Future directions of this work include experimental verification on the complete

single-fiber FREE design space, an exploration of axial loading on FREEs, and a

study of how material defects and manufacturing variation affect FREE torsion.

2.8 Summary

Fiber-reinforced elastomeric enclosures (FREEs) generate sophisticated motions

when pressurized, including axial rotation, extension, and compression, and serve as

fundamental building blocks for soft robots in a variety of applications. However,

most modeling techniques employed by researchers do not capture the key charac-

teristics of FREEs to enable development of robust design and control schemes. Ac-

curate and computationally efficient models that capture the non-linearity of fibers

and elastomeric components are needed. This paper presents a continuum model

that captures the nonlinearities of the fiber and elastomer components as well as

non-linear relationship between applied pressure, deformation and output forces and

torque. One of the key attributes of this model is that it captures the behavior

of FREEs in a computationally tractable manner with a minimum burden on ex-

perimental parameter determination. Without losing generality of the model, we

validate it for a FREE with one fiber family, which is the simplest system exhibiting
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a combination of elongation and twist when pressurized. Experimental data in multi-

ple kinematic configurations shows agreement between our model prediction and the

moments that the actuators generate. The model can be used to not only determine

operational parameters but also to solve inverse problems, i.e., in design synthesis.

42



CHAPTER 3

Experimental Validation of Nonlinear Elastic

Continuum Model and Model Comparison

This chapter has been previously published and is used with permission from SAGE.

It may referenced as:

Sedal, Audrey, Wineman, Alan, Gillespie, Brent R., and Remy, C. David. Com-

parison and Experimental Validation of Predictive Models for Soft, Fiber-Reinforced

Actuators. International Journal of Robotics Research.

3.1 Introduction

Soft robots make use of elastic behavior in their constituent materials and there-

fore often encounter physical phenomena that are neglected in rigid robotic the-

ory. Since soft robots are made from deformable materials and deform themselves,

such behaviors include unexpected relationships between expanding and constrain-

ing structural elements, as well as deformation- and direction-dependent nonlinear

stiffnesses. Accurate soft robot models need new fundamental frameworks that cap-

ture multi-dimensional elastic behavior. Further exacerbating the modeling need is

the great variety of available soft system designs and control techniques that may

require models. Authors publishing under the soft robotics umbrella make use of

a broad set of structural schemes at both the actuator level (e.g. cable robots vs.
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fluid-driven robots) and the system-wide level (e.g. rigid connection between actua-

tors vs. monolithic soft systems), as well as broad choices of materials, models, and

functionalities [135]. A number of candidate modeling approaches can be considered

to address the need for competent soft robot models.

Successful soft robot modeling approaches appearing in recent literature can be

broadly placed into two groups: data-driven strategies and first principle-based

strategies. Data-driven strategies have been used on physically realized systems

to characterize dynamic behavior, and, in some cases, to develop control policies.

Diverse schemes have been proven on a variety of soft systems, including neural net-

works [46–48, 163], genetic algorithms [49], and other regression techniques [15, 37,

170]. Within first principles-based models, two subcategories emerge. [32] and others

[13, 15, 33, 141, 164] show that lumped-parameter models can be used in design and

control tasks. Continuum mechanical formulations have recently been demonstrated

to be useful in soft system design and control [25, 26, 31, 52, 104, 122, 168]. First

principles-based models can also be used to study specific behaviors of soft actuators

such as interactions between components [164, 174].

Many of the models cited above were developed as part of a larger effort to

demonstrate capabilities of specific soft systems. Others perform the complementary

task of exploring a design space comprised of many possible systems, and determining

the optimal design for a given task. Yet, a broad comparison of model structure and

features is missing: why, when, and how data-driven models, lumped-parameter

models, and continuum mechanical formulations succeed and fail in soft robotics is

not well understood.

The aim is to build this understanding by showing how these three model types

compare in capturing the gross behavioral trends and specific features of a popular

class of soft actuators. First, we developed three distinct soft actuator models —a

lumped-parameter model, a continuum mechanical model, and a neural network—

that relate the multi-dimensional loading and deformation of this actuator. These

models differ in mathematical structure, reaching from simple linear equations to

integral expressions to sums of weighted functions. The models also differ in how

many parameters they require to be identified from experiment, and in the phys-
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ical meaning (if any) of the parameters. Next, we generated benchmark data by

testing eight soft pneumatically driven actuator samples with varied design parame-

ters, across 22,880 kinematic configurations and pressures. Finally, we compared the

models on the gross behavioral features that they were able to capture, and on their

performance at predicting kinetics across the design space.

In particular, soft, fiber-reinforced, pneumatic actuator known as the Fiber-

Reinforced Elastomeric Enclosure (FREE) [8], or Fiber-Reinforced Soft Actuator

(FRSA) [26], were investigated. The FREE consists of a cylindrical, elastomeric

tube whose wall is embedded with 1, 2, or 3 families of fibers wound in helices. The

helical pitch of these fibers guides the motion that the tube undergoes when inter-

nally pressurized. FREEs are used in several existing systems including exoskeletons

[75, 111, 121, 155], soft manipulators [99, 124], grippers and hands [31], vibration iso-

lators [142], bio-inspired slithering systems [12], and parallel groupings that augment

force generation [132].

FREEs are a strong candidate for comparative study because they have core

mechanical features that are shared in other soft robot architectures. The pres-

surizeable, nonlinear and hyperelastic wall of the FREE is shared by the PneuNet

[150] and other soft inflatable robot architectures, while the constraint provided by

the fiber is structurally similar to fiber constraints in soft cable-driven robots like

the octopus-inspired robot created by [84]. We use single fiber-family FREEs be-

cause their asymmetric fiber arrangement causes coupling between length change

and twisting when the FREE is pressurized [26, 143]. Together, these key behaviors

contrast with the behavior of traditional rigid or series elastic actuators: the FREE

design exhibits unexpected relationships between expanding and constraining ele-

ments, as well as a nonlinear direction-dependent deformation-loading relationship.

FREE models hence demand different governing assumptions than a traditional ac-

tuator and may not change their behaviour in a predictable manner when the design

angle of the fiber family is changed. In a related contribution on a FREE-based

manipulator and one McKibben actuator, [136] have compared several models in a

control task, noting which ones seemed best-suited for control of that system. Com-

plementing this work, we focus on evaluating model features quantitatively across a
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Figure 3.1: Face, side, and isometric views of a FREE in an unloaded, un-pressurized
reference configuration (top) and a loaded, pressurized configuration (bottom).

broad space of available designs. The FREE serves as a useful investigative platform

that captures core problems in soft robotics.

In this work, we investigate the performance of three distinct models on a set

of 8 single fiber-family FREEs that span the space of possible designs in terms of

fiber angle. Spanning the full variety of available designs allows us to undertake a

more meaningful study of model behaviour than could have been undertaken had we

trained and evaluated on the same system. By evaluating performance under various

combinations of fitting and test data, we can quantitatively understand the unique

dependencies present in each model between its peak performance, generalizability,

and required quantity of training data. In Section 3.2, we present each of the three

models and the performance metric on which they are compared. In Section 3.3,

we describe the actuator samples and experiments. In Section 3.4, we present the

experimental results and error analysis of the models. In Section 3.5, we compare the

gross trends and specific features of each model to those of the data, and compare

the performance of the models.

3.2 Modeling

Each model was formulated to relate the FREE’s deformation, design parameters,

and loading quantities. The unloaded reference configuration of the FREE is a thick-

walled, cylindrical tube with length L, inner radius Ri, and outer radius Ro that is

wound with a helical fiber family. The angle Γ between a line tangent to the helix

and the axis of the tube defines the geometry of the fiber family (see Figure 3.1).

The set of design parameters p̄ =
[
Γ L Ri Ro

]
describes the FREE’s unloaded

geometry.

For simplicity, we limited the degrees of freedom (DoFs) under consideration to

the FREE’s axial elongation and to its end-to-end rotation about the longitudinal
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axis. This is the intended region of motion of this actuator. The radius is left free

to expand or contract. We assumed all other DoFs to be physically constrained.

Thus, the current, loaded kinematic state of the FREE is defined by its new length

l and its end-to-end twist angle ϕ. The vector of generalized coordinates is hence

given by ~q =
[
l ϕ

]T
. The forces corresponding to the coordinates in ~q are the

axial load F and the axial moment M , given by the vector of generalized forces

~τ =
[
F M

]T
. An important consequence of this assumption is that the modeled

FREE retains its cylindrical shape under any deformation in our choice of kinematic

state ~q. This assumption is valid for cylindrical FREEs which have not undergone a

buckling instability. It is also a good approximation for a lightly bent actuator whose

bending radius greatly exceeds its cross-sectional radius. Then, for a FREE with a

given set of design parameters p̄, the goal of our modeling effort is to characterize

the relationship between the kinematic state ~q and the generalized force output ~τ ,

and to express this relationship as a function of the applied fluid pressure P .

Without loss of generality, we chose to formulate this relationship in terms of

a force prediction problem and sought to develop and compare different types of

models that establish the following functional relationship:

~τ = f(~q, P, p̄). (3.1)

The inverse problem of finding an actuator’s kinematic state ~q given its generalized

forces ~τ and design parameters p̄ may be solved numerically, in the case of first prin-

ciples models, or by re-training, in the case of data-driven models. The three models

presented in the following sections differ significantly in their mathematical structure

and in the number of free parameters that must be identified through experimental

data. The physical meaning (if any) of these parameters is also discussed.

3.2.1 Linear Lumped-Parameter Model

The primary assumption of our first model is that fibers of the FREE are inex-

tensible and create a perfect kinematic constraint forming a helix that encloses the

47



elastomeric tube. Considering only the unbuckled case in which the FREE retains

its cylindrical shape, we use this assumption to derive an analytic expression for the

outer radius ro of the deformed FREE (Fig. 3.1) as a function of the state ~q and the

design parameters p̄ [15]:

ro (~q, p̄) =

√
B2 − l2
|Φ + ϕ|

. (3.2)

Here, the fiber length B is given by B = L 1
cos Γ

and the initial wrapping angle Φ by

Φ = L
Ro

tan Γ.

Neglecting the wall thickness of the FREE (i.e., assuming that the inner radius

ri ≈ ro), we can employ this expression to compute the volume V of the fluid inside

the FREE:

V (~q) = πlr2
i = π

lB2 − l3

(Φ + ϕ)2
. (3.3)

Taking the partial derivative of this expression with respect to the kinematic state ~q

yields the fluid Jacobian JV :

JV =
∂V

∂~q
=
[
πB

2−3l2

(Φ+ϕ)2
−2π lB2−l3

(Φ+ϕ)3

]
. (3.4)

The transpose of this Jacobian allows us to compute the generalized forces ~τfluid that

are created by the fluid pressure P [15]:

~τfluid = JTV P. (3.5)

These fluid forces are summed with the elastic forces that result from the defor-

mation of the FREE wall in axial compression, axial twist, and radial compression:

~τ = ~τfluid + ~τwall. (3.6)

The second major assumption of this model is that the FREE wall provides a linear

elastic response to deformations in ~q. Using ∆~q =
[
l − L ϕ

]T
for the deformation

along the generalized coordinates, we can compute these elastic forces as:
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~τwall = −K∆~q = −

[
ka kc

kc kb

]
∆~q. (3.7)

The stiffness matrix K is a positive-definite, symmetric matrix that is found by

fitting model parameters ka, kb, and kc to experimental data. The diagonal elements

in this matrix, ka and kb, approximately correspond to the lumped stiffness of the

wall in axial compression and twist, respectively. Because of the fibers in a FREE, it

is necessary to also include off-diagonal elements kc in K. As expressed in Eq. (3.2),

motion in l and ϕ induces a change in the radius of the FREE and hence a radial

compression of the wall. The elastic response to this compression is transferred by

the fibers back into the generalized torques ~τ . This effect causes an elastic coupling

between the twist and axial directions, resulting in the off-diagonal terms in K.

We can express the complete lumped parameter model for a FREE by combining

these expressions:

~τ = JTV P −K∆~q, (3.8)

which is the special form of Eq. 3.1 for the linear lumped-parameter model.

For this particular model, it is worth noting that the radius ro, the volume V ,

and the fluid Jacobian may have singular terms when ϕ = −Φ = − L
Ro

tan Γ. This

deformation corresponds to a configuration in which the actuator has been rotated

such that the fibers are parallel to the tube’s central axis. In this case, the radius and

internal volume become ill-defined and the fibers can store any amount of tension

or compression in axial directions. In this formulation, the model parameters that

must be fit experimentally are the three parameters of lumped stiffness ka, kb, and

kc.

3.2.2 Nonlinear Continuum Model

In our second model, we predict the generalized forces ~τ in Equation (3.1) with

a continuum-based, non-linear relationship. Though we continue to assume that the

FREE is a cylindrical tube, its wall thickness is no longer neglected and the fiber is

considered to be extensible. Extensible fibers cannot kinematically define the tube’s
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geometry; the radius and internal volume of the FREE in this model depend not

only on the generalized coordinates ~q, but also on the internal pressure P . Finally,

we replace the assumption of a linear elastic response and replace it with a nonlinear

response arising from consideration of the wall’s deformation and occupied volume.

To establish a well-defined problem, we assume that:

1. The actuator deforms from a thick-walled tube to a thick-walled tube of dif-

ferent dimensions,

2. the volume occupied by the material of the FREE wall stays constant (i.e. the

FREE wall is incompressible, as evidenced for rubbers according to [43]), and

3. the fiber is perfectly embedded into the elastomer and evenly distributed through

it, such that the interaction phenomena are homogenized throughout the FREE

wall and the fiber remains locally tangent to the elastomeric tube.

These assumptions enable a modified implementation of a continuum mechanical

framework proposed by [62]. This specific model implementation has been presented

before [143] and is summarized here for completeness.

Under the assumptions listed above, the FREE transforms from a tube with

initial dimensions {L,Ri, Ro} for length, interior radius, and exterior radius, and no

end-to-end twist (ϕ = 0) to a tube with new dimensions {l, ri, ro} and end-to-end

twist ϕ (Figure 3.1). To define this deformation, we track an arbitrarily chosen

elemental volume in the FREE wall. The elemental volume has location coordinates

~X = [R Θ Z]T in the FREE’s load-free configuration, and coordinates ~x = [r θ z]T

in the current, loaded configuration such that ~x = g( ~X). The following functions

define the new coordinates ~x = g( ~X) of any point ~X in the unloaded configuration:
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r =

√
R2 −R2

i

λz
+ r2

i , (3.9)

θ = Θ + Z
ϕ

L
, (3.10)

z = λzZ, (3.11)

where λz :=
l

L
. (3.12)

The deformation gradient F, which describes the deformation of the particles in

the FREE, is defined as:

F =


∂r
∂R

∂r
R∂Θ

∂r
∂Z

r∂θ
∂R

r∂θ
R∂Θ

r∂θ
∂Z

∂z
∂R

∂z
R∂Θ

∂z
∂Z

 =


R
rλz

0 0

0 r
R

rΦ
L

0 0 λz

 . (3.13)

In Holzapfel’s framework [62], composite materials are modeled by considering the

“strain energy,” i.e. Helmholtz free energy, stored in the deformed material.

The previously listed assumptions allow us to write the strain energy Ψtotal of

the FREE wall as a superposition of the free energy from the elastomer and the free

energy from the fiber:

Ψtotal = Ψisotropic + Ψanisotropic. (3.14)

Here, each free energy depends on the deformation gradient F so as to describe the

following features in the FREE wall material behaviour: the fiber is a “standard”

fiber that is anisotropic in space [43, 62] and the elastomer is an isotropic neo-

Hookean solid [107]. The neo-Hookean solid model introduces a material parameter

C1 and the invariant quantity I1 = I1(FTF) associated with the elastomer’s isotropy

[157], such that:

Ψisotropic =
C1

2
(I1 − 3), (3.15)

The standard fiber model gives the energy associated with the fiber anisotropy by

introducing a material parameter C2 and the invariant quantity I4 = I4(FTF,Γ)
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Figure 3.2: Arbitrary elemental volume of the FREE wall (marked by a star) with
relevant stresses shown.

associated with the fiber stretch [157]:

Ψanisotropic =
C2

2
(I4 − 1)2. (3.16)

The stresses (i.e. Internal forces per area) inside the FREE wall are found by

taking the derivative of the total Helmholtz free energy Ψtotal with respect to the

deformation gradient F and including a Lagrange multiplier b that accounts for the

FREE wall incompressibility. The expression for three-dimensional stress stored in

the deformed FREE wall is then:

σ =

 σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz

 =
∂Ψtotal

∂F
FT − bI. (3.17)

Using the continuum approach enables a system of partial differential equations

for the stresses which express the equilibrium of the material under ~τ . In cylindrical

coordinates and under the symmetry of the FREE, it is possible to manipulate these

equations to develop an expression for b. See the Appendix of [143] for a detailed

derivation. Since the FREE’s radii ri and ro are unconstrained, we use the same

equations of equilibrium in [143], subject to the boundary condition of the FREE’s
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internal pressure P , to solve for ri:

−P =

∫ ro

ri

1

r
(σrr − σθθ)dr (3.18)

where ro is found using the material’s incompressibility:

ro =

√
r2
i +

R2
o −R2

i

λz
. (3.19)

Having established ri and ro, we compute the axial force and moment on the

FREE by integrating the stresses over the radius of the FREE:

F = −2π

∫ ro

ri

σzzrdr + πr2
iP (3.20)

M = −2π

∫ ro

ri

σθzr
2dr. (3.21)

Here, the stresses are expressed in terms of p̄, ~q, and P through the use of Eqs.

(3.17), (3.14), and (3.13). This establishes a nonlinear expression:

~τ = fc(~q, P, p̄). (3.22)

In this formulation, the model parameters that must be fit experimentally are the

two material parameters C1 and C2 which represent the stiffness of the elastomer

and fiber.

3.2.3 Neural Network Model

In our third model, we predict the generalized forces in Eq. (3.1) with a data-

driven approach using a neural network. Our network implementation is based on

the previous success of neural networks in modeling the kinetics [47] and statics [48]

of a system structurally similar to the FREE. In particular, we implemented the

neural network presented by [48] using the inputs and outputs of the FREE statics
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Figure 3.3: Schematic of the neural network, with inputs ~q, p̄ and P (xi for i ∈
{1, ..., 7}), hidden layer neurons oj with j ∈ {1, ..., 6} and outputs F and M .

problem as defined in Eq. (3.1). We refer to the reader to this publication for a more

detailed description of the neural network, but summarize our implementation below

for completeness.

The set of inputs to our neural network consisted of the kinematic state ~q, the

internal pressure P , and the design parameters p̄ of each sample. The outputs of

the neural network were the components F and M of the generalized forces ~τ . This

neural network was implemented as a shallow network with a single fully connected

hidden layer containing 6 neurons using a hyperbolic tangent activation function. A

schematic of the neural net with inputs xi, weights and biases w, u, o and b, and

outputs F,M is shown in Fig. 3.3.

The weights wi,j and uj,k, and biases oj and b1,2 were fit experimentally through

training with a back propagation algorithm. With our chosen network topology, 7

inputs, 2 outputs, and 6 neurons on a fully-connected hidden layer, the network had

a total of 42 weights wi,j, 12 weights uj,k, 6 biases oj and 2 biases b1,2. This gives a

total of 62 parameters that must be computed using training data. However, unlike

in the other models, these parameters have no physical interpretation.

3.3 Hardware Experiments

To determine the predictive ability of each model, we performed a suite of ex-

periments on a set of eight FREE samples spanning the design space under various

loading conditions and imposed kinematic states.
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Sample 1 2 3 4 5 6 7 8
Γ (°) 15 25 36 40 50 62 73 76

L (mm) 90.48 120.52 98.42 90.48 120.40 99.00 128.9 103.22
Ri (mm) 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.77
Ro (mm) 6.13 6.62 6.74 6.13 6.41 6.36 6.40 6.18

Table 3.1: Design parameters p̄: fiber orientation Γ (°) and initial dimensions of
length L, inner radius (Ri) and outer radius (Ro) for each sample.

3.3.1 Samples

All sample FREEs were made from cotton thread (“Aunt Lydia’s”, Size 10)

adhered to rubber tubing. Natural rubber tubing with specified 9.5 ± 0.25 mm inner

diameter, 1.6 ±0.02 mm thickness (Kent Elastomer) was coated with a thin layer of

rubber cement (Elmer’s), resulting in sample wall thickness between 1.3 and 2 mm.

During winding, the fiber angle was prescribed by a 3D-printed template inserted

into the rubber tube. Fiber spacing was 1.67 ± 0.25 mm. After winding, a thin layer

of liquid latex (TAP) was applied by hand to further secure the fibers on the tube.

Samples were cut between 8 and 12 cm in length.

We created eight samples with fiber orientations Γ spanning the design space

Γ ∈ (0°, 90°) in increments of roughly 10°. Fiber orientation of the finished samples

was measured through a photograph in three locations and averaged. Standard

deviation of the measured fiber orientation did not exceed 1°. Though Γ is the main

design variable, our samples also differed somewhat in length and wall thickness. The

dimensions of length and thickness were measured with a micrometer three times on

each FREE sample and averaged. Standard deviation of sample length and thickness

measurements did not exceed 0.10 mm and 0.13 mm respectively. Table 3.1 shows

the fiber orientation and initial dimensions of each sample.

After fabrication, the samples were fit using parallel zip ties to the barbed side

of 9.5 mm (3/8 in) single barb to “1/8 in NPT” style pneumatic fittings.
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Figure 3.4: FREE test bed. The sample FREE, shown with blue fibers, is mounted
in the center. On the right (wr.t the reader), the linear actuator and servo motor
fix the length and twist. On the left, the torque sensor and load cell measure the
loads while the FREE is inflated via the air inlet through a flexible, lightweight tube.
Between the air inlet and the sensors is a cylindrical Teflontm bushing. Top and side
camera take low resolution video and high resolution photos.
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3.3.2 Testing Platform

Each sample was fitted into a custom-built testing platform (Figure 3.4) designed

to elongate, twist and pressurize the samples under computer control (NI LabVIEW)

while measuring loading at the tip and photographing the sample’s outer wall.

3.3.3 Testing Protocol

Prior to testing, test bed error was characterized. The linear actuator and ro-

tational servo were tested to ensure position control capabilities within 0.146 mm

and 0.35° respectively. Cross-talk between the load cells was measured using known

forces and torques between 0 and 10 N and 0 and 100 Nmm. Error due to cross-talk

on the force sensor was 3.43E-3 N/Nmm, and the same error on the torque sensor

was 6E-1 Nmm/N. Parasitic friction on the platform was measured by cycling known

tensile loads between 0 and 7 N, and was found not to exceed sensor resolution.

Each FREE sample was mounted into the test bed using custom NPT thread

attachments and teflon tape. Aligned markings were placed on the FREE sample

and mounting points to observe potential slippage. Then, each sample was tested for

all possible combinations of the following kinematic states ~q and internal pressures

P :

∆l(mm) = {−5,−4, ...,−1, 0, 1, ..., 4, 5} (3.23)

∆ϕ(°) = {−120,−110, ...,−20,−10,−1, 1, 10, 20, ..., 110, 120} (3.24)

Pin(Volts× 10−1) = {0, 1, 2, 3, 4, 5, 6, 7} (3.25)

Iterating through these configurations, we first commanded the rotational servo

and linear actuator to create a desired end-to-end rotation and axial stretch/compression.

As shown by Eqns. (3.23)-(3.25), each sample was tested in 286 distinct kinematic

states ~q. Then, gauge pressure was set by a voltage signal that corresponded to

pressures between 0 and 72.5 kPa. Each sample was inflated to a control signal for

72.5 kPa in eight steps, and deflated back to atmospheric pressure in two additional
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steps during which measurements were also taken. Overall, this resulted in 2,860

configurations tested per sample. After the command pressure was reached, each of

these configurations was held for 20 seconds while data (force, torque, and pressure)

were collected at 1 Hz. This data set was synchronized and averaged to yield a sin-

gle measurement triplet of ~τ , ~q, and P . Throughout each test, the top camera took

time-stamped video at 15 fps to capture any unforeseen events. After the 20 seconds,

the side camera photographed the FREE sample wall and then the command for the

next configuration was sent. Each photo was later manually classified as to whether

the FREE sample had buckled in the given configuration or not. All buckled samples

were excluded from further analysis. Over all eight samples, loading data and images

were collected for 22,880 configurations. After testing was completed, samples were

inspected and it was verified that none had been damaged throughout the test.

3.3.4 Model Comparison Procedure

Parameter fitting and model evaluation were performed on the separated data

sets. We randomly partitioned the data obtained from the un-buckled configurations

of each sample into a training set (80% of the data) and test set (20% of the data).

Thus, there were eight distinct, randomly chosen and randomly ordered training sets,

and eight distinct and randomly chosen test sets. We then created two additional

training-test pairs by aggregating the training and test data for the even-numbered

samples (Samples 2, 4, 6, and 8) and by aggregating the training and test data from

all the samples.

As an aggregated error metric across a set of n data, we expressed the model error

E as the root mean square error (RMSE) of force and moment errors normalized by

their maximal measured values across all samples Fmax
meas and Mmax

meas, respectively.

This error metric was both used to fit model parameters to training data and to

determine model performance against test data:
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E =

√√√√ 1

n

n∑
i=1

(
F i
meas − F i

model

Fmax
meas

)2

+

(
M i

meas −M i
model

Mmax
meas

)2

(3.26)

Model parameters were fit to training data by minimizing the error metric E

(Eq. (3.26)). The fitting operation was undertaken for each of the three models

individually on all ten training data sets. Each individually trained model, with its

corresponding parameter values, was then used to predict the relationship between

loading, pressure, and kinematic state for each of the eight test data sets and the two

aggregate test sets. Predicted values were then compared with the measured values

to determine model performance using E. For the continuum model, we additionally

calculated E on all test sets using model parameters gathered from tests on isolated

materials.

The three model parameters ka, kb, and kc of the linear lumped model were fit

through a constrained minimization of E over a given training data set. The required

positive-definiteness of the stiffness matrix K was implemented as a positivity con-

straint on the eigenvalues of K. The constrained optimization problem was solved

with a gradient based interior-point algorithm (fmincon) in Matlab. The algorithm

was initialized at order of magnitude estimates of ka = kb = kc = 1.

In a similar fashion, we found the two parameters of the nonlinear continuum

model, using the positivity constraint C1,2 > 0. The initial estimates for C1 and

C2 were 2 × 105 and 106 Pa respectively. These are order of magnitude estimates

based on previous physical measurements of rubber and cotton fibers [43, 143]. The

constrained optimization problem was again solved using fmincon. In addition to

fitting C1,2 from composite sample measurements as described above, we also evalu-

ated the continuum model’s performance using individual constituent values of C1,2

of the elastomer and fiber respectively from [143].

The 62 parameters of the neural network were fit with back propagation on nor-

malized input values. We performed training using an unconstrained gradient based

method (Levenberg-Marquardt algorithm), implemented with Matlab’s train func-
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Figure 3.5: Images from experiment of sample configurations: (a) un-buckled, (b)
axially buckled, (c) torsionally bucked, and (d) both axially and torsionally buckled.

tion. Unlike the other models, the neural network requires the data to be partitioned

into 3 sets. Thus, we used 64% for training, 16% for validation, and 20% for testing.

Up to 1000 epochs were permitted. The training of the neural network was based on

E2 as objective function, which has the same global minimum as E.

Parameter optimization was performed in MATLAB on a laptop computer (MSI

WE63). Computation took roughly 10 minutes for the linear model, 45 minutes for

the continuum model, and 5 minutes for the neural network.

3.4 Results

3.4.1 Buckling

Out of the 22,880 tested configurations, 12,611 conditions (55.1%) were unbuck-

led, while 10,269 (44.9%) showed signs of either axial buckling, torsional buckling,

or both (Figure 3.5). Since the geometric assumptions of Section 3.2 are broken

in buckled FREEs, they were not included in subsequent analysis. The remaining

un-buckled configurations are indicated in Figure 3.6h. It is not too surprising that

the FREEs buckled under several tested conditions: the broad, standardized set of

kinematic states and pressures imposed on all samples irrespective of their designed

operating range included many configurations outside of the typical range of use of

a given FREE.

We were not able to identify a clear pattern for when buckling occurred. While
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Figure 3.6: Diagrams showing admissible data (from un-buckled trials) to be used for
analysis. Data are organized by kinematic state ~q for all 8 samples. The horizontal
axis is the length change l − L in mm, while the vertical axis gives the twist ϕ
in degrees. At each of these kinematic states, the FREE did not necessarily stay
buckled or un-buckled across the pressure range imposed. The relative proportion of
admissible (i.e. un-buckled) measurements at each kinematic state ~q is reflected by
the color of the circle.

there appears to be some tendency for buckling under axial compression and negative

end-to-end rotations, this did not hold for all samples: buckling was also observed in

axial stretch and positive end-to-end rotation. Furthermore, some samples buckled

primarily at high input pressures, while others buckled at low pressures. This lack of

a pattern is likely attributed to the presence of multiple different modes of buckling

that depend on a sample’s initial geometry, loading, kinematic state and fiber angle

[56, 90], as well as defects and imperfections in the samples. A deeper investigation

and classification of the observed buckling modes was not the focus of this project.

61



3.4.2 Actuator behavior & Model Features

To highlight the general behavior of the models, we first present a selection of

data: two data sets recorded at specified kinematic states with corresponding com-

parisons of the modeled (all three models) and measured axial force F and moment

M as functions of input pressure P (Figures 3.7 and 3.8).

As a further precursor to the comparison of performance by all three models, we

present all the recorded behavior of a particular FREE sample (Figure 3.9). Figure

3.7 shows the data for Sample 6 at ~q = [4mm 80°]T (i.e. under axial extension and

positive twist) at 10 pressure values between 1.54 kPa and 63.9 kPa. The models

shown here were all trained on the data from Sample 6. Figure 3.7a shows the axial

force F arranged as a function of internal pressure P , and Figure 3.7b shows the

moment M as a function of P . Figure 3.7c shows the same measurements arranged

to show the F -M relationship parameterized by P . Similarly, Figure 3.8 shows the

data for Sample 3 at ~q = [−5mm 10°]T (i.e. axial compression and positive twist)

and five pressure values between 37.3kPa and 64.4kPa, with all model parameters

trained on Sample 3. In the data set of Figure 3.8, five configurations, all at pressures

lower than 37.3kPa, have been excluded from the analysis because the sample was

buckled.

In Figure 3.9, F -M relationship parameterized by P is shown for Sample 3 for

the full set of un-buckled measurements across all imposed axial stretch and twist

configurations listed in Eqns. 3.23 and 3.24. Here, the F -M relationship is shown

as a vector (i.e. the vector of generalized forces ~τ). The correspondence of the

data sets is shown by the pink insert, also present in Figure 3.8d. From the full

behavior of the sample in Figure 3.9, we can observe general system trends including

the relative influence of kinematic state and internal pressure on the magnitude and

direction of F and M . The forces and torques produced at un-buckled configurations

are characterized by behaviors due to the wall’s elasticity, and behaviors due to the

pressure input. Force and moment offsets reflect elastic behavior of a FREE at an

imposed kinematic state ~q, at P ≈ Patm. Loading trends reflect how the loads ~τ

change as a function of pressure input P . Both of these depend on the initial design
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parameters p̄.

In general, the generalized forces ~τ produced by an actuator are highly dependent

on its kinematic state ~q. Throughout the experimental data set, larger magnitudes

of ~τ tend to occur at higher pressures P and larger deformations ~q. This is reflected

for Sample 3, where the magnitudes of ~τ in the upper right and left quadrants of

Sample 3’s kinematic space (Figure 3.9) are larger than those in the center. Further,

the largest magnitudes of ~τ of Sample 3 occur in the upper right quadrant, where

the kinematic states impose tension on the fibers. In the lower left quadrant, low

forces occur near kinematic states where the FREE was buckled for all the pressures

P tested (Figure 3.6c). These low forces may indicate the onset of the buckling in-

stability, where the fibers are no longer in tension but the wall has not yet buckled.

At each kinematic configuration, the direction of ~τmeas can vary with pressure. Com-

prehensive measurements for all samples at all un-buckled configurations are found

in the data packet available as a supplement to this paper.

Model comparisons to these data are also shown in Figures 3.7 and 3.8. The

shapes of the pressure-force, pressure-moment, and force-moment relations for the

linear model (shown in blue) are all straight lines. The x− and y− intercepts of

each of these straight lines are set by the experimentally determined parameters

of the FREE wall stiffness matrix K, while the fluid Jacobian JV determine their

slopes as a function of pressure P . The lines of the linear model (straight by

design) and continuum model (slightly curved, because of model nonlinearities in

terms of geometry and strain energy) continue in the same direction outside the

range of available data. In contrast, the line of the neural network model changes its

direction outside the range of available data: it did not necessarily extrapolate in a

comparable way to the linear and continuum models.

Model performance varied widely across samples, kinematic states, and input

pressures. The curves of Figures 3.7 and 3.8 are representative of how each model’s

mathematical structure affects its behavior, and give a visual aid to conceptualize

the error metric used in this study. However, they should not be used to draw

conclusions about which model is most accurate across the data set, or about the

physical behaviour of FREEs with other fiber angles or kinematic configurations. A
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gross performance comparison of the models organized by experimental parameter

training set is given in Section 3.4.3.

3.4.3 Model Comparison

After partitioning the data into training and test sets, we evaluated model perfor-

mance for every possible training-test pair. The result is 100 error calculations per

model, which are depicted on the heat maps of Figure 3.10. Since the parameters of

the continuum model may also be fit through separate experiments on the FREE’s

individual component materials, 10 additional error figures are shown in Figure 3.11.

The heat map of the linear model (Figure 3.10, left) is characterized by two

low-error rectangular zones: a larger one at the top right and a smaller one at the

bottom left. The low-error rectangular zones show regions where the linear model

generalizes. When the stiffness parameters in K are fit to any of Samples 2 through

4, the model extrapolates relatively well in the corresponding test sets, shown by

the relatively paler regions in the subplot. Similarly, models trained on Samples 5

through 8 extrapolate well across those test sets. Indeed, the lowest error achieved

by the linear model is 2.15% for the training and test sets of Sample 8. This is also

the lowest error achieved by any of the models for any training-test pair. Along the

bottom, top, and left edges of the heat map, bands of higher error appear; these occur

near the singularity described in Section 3.2.1. The value of twist that gives a singular

configuration of Sample 1 occurs at ϕ = − L
Ro

tan(Γ) = 122.4°; some kinematic states

of Sample 1 in this experiment nearly overlap with the singularity. Because of this

proximity to the singularity, the linear model parameter fit and loading predictions

for Sample 1 are poor compared to other samples. The “All” test set, which includes

Sample 1, also has higher error. Here, the fitted parameters of the stiffness matrix

K differed by a maximum factor of 63.8 across all samples (ka trained from Sample

8 vs. ka trained from Sample 1), but by a maximum factor of 2.9 within the range

of Samples 5 through 8 (ka of Sample 8 vs. ka of Sample 5) , and a maximum factor

of 3.8 between Samples 3 and 4 (ka of Sample 4 vs. ka of Sample 3).

The heat map of the continuum model (Figure 3.10, center) is characterized by
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Figure 3.7: Force and moment models (curves) compared to measurement (black
squares) for Sample 6 at ~q = [4mm 80°]. From top left: (a) force F by pressure,
(b) moment M by pressure, and (c) curves of ~τ = [FM ]T parameterized by pressure
P . In subfigures (a)-(c), solid lines show the predictions of ~τ corresponding to the
pressures P ∈ {1.54, 63.9} in which loading measurements were taken. Dashed lines
show a larger modeled range for this sample from P = 0 kPa (upper left end) to
P = 70.0 kPa (lower right end).
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its low variation in error: no regions of the map are particularly bright or dark.

Instead, regions of relatively high and low error of the continuum model form hor-

izontal “bands” corresponding with the test set used. For example, the error of

Samples 7 and 8 is lower than the minimum error of Sample 2, no matter to which

measurements the parameters C1,2 were fit. A particularly dark band occurs when

the test set used is Sample 4, but the maximum error of this model (28.7% for the

model parameters fit from the Sample 2 training set and tested on the Sample 4 test

set) is still substantially lower than the maximum error of the other models. This

lower range of error is further reflected in the lower range of parameters fit across the

design space. Here, the parameters fit within the continuum model differed across

all samples by a maximum factor of 2.5, (C1 ∈ {1.23× 105, 3.12× 105} for Sample

8 and C2 ∈ {0.88× 106, 1.07× 106} for Sample 5).

The continuum model was also evaluated with the physical parameters C1,2 of

individual constituent materials (i.e. elastomer and fiber) in [143]. These are shown

in Figure 3.11. The minimum error here (6.52%) is close to the minimum error

achieved in the earlier heat map (6.57%), within the tolerance used , while the

maximum error is slightly higher (28.7% vs 34.1%). Material constants used here

(C1 = 5× 105 Pa and C2 = 1× 106 Pa) and the material constants identified in our

experiment were within an order of magnitude.

The heat map of the neural network (Figure 3.10, right) is characterized by its

bright, low-error diagonal. Performance of the neural network is especially strong

when training and test data from the same sample are used, shown by the lower errors

on the diagonal of the heat map. Indeed, the neural network produces the lowest

error of any model for the test sets of Samples 1 through 7, though the linear model

has the lowest error for Sample 8. Further, the relatively lower errors of Samples 6,

7, and 8 persist in the neural network model, shown by the brighter region of the

heat map in the upper right hand quadrant. Elsewhere, the neural network has much

higher off-diagonal errors.

The neural network heat map in Figure 3.10 provides evidence of over-fitting

when aggregate training sets are used. Neural networks trained on one of the

eight single-sample data sets are ill-equipped to extrapolate or interpolate to other
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designs: since the design parameters p̄ remain constant throughout the entire training

set, weights and biases tend toward relatively low values which are often orders of

magnitude less than the weights for kinematic state variables or input pressures. In

contrast, the aggregate sets offer variation in the design parameters p̄ (according

to Table 3.1). This variation gives more information which allows fitting of higher-

magnitude weights on the design parameters, and the possible expectation that the

neural network become capable of interpolating and extrapolating (i.e., generalizing)

to new FREE designs. Yet, the ability of the neural network to generalize diminishes

further when this design variation is introduced. When trained on Samples 2, 4, 6,

and 8, the neural network performed relatively poorly at predicting the behavior of

Samples 1, 5 and 7, with 134%, 56.4%, and 39.6% error respectively. The influence

of this effective addition of parameters is also seen by comparing neural network

error on Sample 5: trained on Samples 2,4,6, and 8, the neural network gives 56.4%

load prediction error on Sample 5. This is higher than its error on Sample 5 when

trained only on Sample 2 (45.4%) , only on Sample 6 (36.2%) , only on Sample

7 (32.4%) , or only on Sample 8 (27.7%) . Indeed, error here was lower when we

effectively ignored the differences in design parameters than when we tried to fit to

them.

3.5 Discussion

Though specific modeling techniques have been validated against realized soft

robotic systems in the past, a model comparison across classes of models on a broader

design parameter space has not been made. To address this gap, we developed

and compared distinct models that relate the loading and deformation of Fiber-

Reinforced Elastomeric Enclosures (FREEs). Three static models were developed

and evaluated: a linear lumped-parameter model, a nonlinear continuum mechanical

model, and a neural network. We compared predictions of the three models to 12,611

loading measurements that form the broadest (to the authors’ knowledge) data set

of FREE loading. The data set spans eight varied designs under over hundreds of

distinct kinematic deformations and input pressures. Together, these evaluations
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Figure 3.11: Normalized error of the continuum model using material properties C1,2

determined on the individual constituent materials in [143]. Maximum and minimum
normalized error are shown on the test set for which they occurred, and mean error
is noted above the figure.

of model performance enable a comparison of the models for peak performance,

generalizability, and system identification effort.

We begin this discussion by regarding the peak performance of each model. Intu-

ition may suggest that each model would perform best when its system identification

and evaluation use measurements from the same sample — i.e., the diagonal of the

heat maps of error in Figure 3.10. The neural network heat map displays this pattern

in a pronounced way, with a brighter diagonal than the linear or continuum models.

The average neural network error along the diagonal for the eight samples is 5.51%

, while the same average error is 17.4% for the linear model and 17.0% for the

continuum model. Along the diagonal, the neural network achieves the lowest error

(13.65%, 6.42%, 6.95%, 5.47%, 1.62%1.76%, 3.0% and 5.84% for Samples 1-8 respec-

tively). Bounded high performance could be especially useful for building models

that support control schemes for already-realized soft systems in clearly defined en-

vironments. [48] use the neural network for this task, learning inverse statics of their

soft tentacle system from measurements taken across all of its possible kinematic

configurations.
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We have shown an example where peak performance of a model is high for a

specific set of design parameters. We now consider how well the models generalize

across the eight samples. A model that generalizes well maintains its performance

even as its training and test set vary, resulting in a uniform color across its heat map.

To generalize well, a model might need to extrapolate to new design parameters, out-

side of the range in training, or interpolate between parameters used in the training

set. The continuum model follows this pattern, having the smallest error range of

all models across the training-test pairs (22.13%) , and the lowest average error of

17.3% . In contrast, the linear model has an error range of 76.1% and a mean error

of 29.3% , and the neural network has an error range of 160.38% and a mean error

of 30.4% . Instead of contrasting diagonals and off-diagonals, the continuum model

heat map has horizontal “bands” of similar color, with Samples 6-8 performing best.

These results suggest that the continuum model’s nonlinear mathematical structure

is crucial to its performance: neither its parameters C1,2 (as noted in Section 3.4.3)

nor its range of error differ as much as those of the other models across training sets.

The linear model also generalizes, but does so in rectangular regions, described in

greater depth in Section 3.4.3. This type of linear model has successfully predicted

loads for specified parallel combinations of FREEs [15], but faces limitations due its

singularity and the delineation of the training-test pairs for which it performs best.

When training and test samples differ, the neural network fails to generalize. This

behavior is indicated by the bright diagonal and contrasting darker off-diagonals on

the neural network heat map. The neural network’s higher amount of experimentally

determined parameters (62) and its lack of pre-defined physical structure are the

likely cause of this behavior. The neural network over-fits when evaluated over

the relatively sparse (compared to the kinematic configurations and input pressures)

design set, and potentially captures artifacts like fiber irregularity. While physical

models with parameter tuning also have this risk, in this analysis they are more

likely to extrapolate and interpolate in ways that are physically consistent. In a

neural network, on the other hand, weights are assigned to specific input-output

pairs, making this structure much more flexible to learning about new parameter

relationships. These new physical phenomena, however, may not occur again or in
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the same ways on a different sample.

In general, the performance of all models presented here is best for Samples 6-8

for any training set used. The key distinction of these samples from Samples 1-5

is in the winding angle Γ of the helical fiber (Table 3.1), though the initial dimen-

sions also differ slightly. Improved performance may, then, be due to the relatively

more important role of a high-angle fiber in constraining the radial expansion of

the FREE, making it act more like a cylindrical piston and better constraining the

radial expansion of the FREE. Or, higher fiber angles may be easier to manufacture

consistently. This phenomenon should be the subject of future study.

Though our results show that the continuum model’s structure is crucial in its

performance, it is not clear which aspect of its nonlinear structure is most important.

In contrast to the nonlinear strain energy models presented here, [25] show that finite

element material models with nonlinear actuator deformations but linear stress-strain

relationships have sufficient accuracy to enable control of a PneuNet-like soft robot,

a soft cable robot, and a compliant mechanism. To our knowledge, a continuum

model structure with linear material and nonlinear deformation assumptions has not

been evaluated systematically for fiber-reinforced actuators; studying how structural

aspects of continuum models of FREEs affect their behavior should be the subject

of future work.

We can also compare the system identification effort necessary in each of the

models. A model with more experimental parameters is likely to require more dense

experimental data to perform well, hence leading to a longer and more exacting data

collection scheme. In contrast, a model with an appropriate mathematical structure

may perform well with fewer experimentally determined parameters and less data

collection. The linear model and the continuum model have 3 and 2 experimentally

determined parameters respectively, contrasting with the neural network which has

62 experimentally determined parameters. Even when the linear and continuum

model fail, they do not reach error figures as high as the maximum errors of the neural

network. As indicated by Figures 3.7 and 3.8, the physical assumptions on which

these models are built give them mathematical structure which enables extrapolation

across kinematic states and input pressures. Figures 3.10 and 3.11 show that they

73



can also extrapolate across designs. The continuum model has the most flexibility in

system identification. This is because the parameters C1,2 have physical meaning that

relates to the stiffnesses of a FREE’s constituent materials, rather than its design.

As shown by the comparable errors of the continuum model in Figures 3.10 and 3.11,

a roboticist could fit C1,2 using data from any existing FREE or from un-assembled

constituent materials, and obtain comparable model performance as they might on

the exact system that they plan to use. For the linear model, generalization occurs

in bounded regimes (shown by the brighter rectangles of the linear model heat map

in Figure 3.10): roboticists, then, are able to perform system identification for this

model from a limited choice of other assembled FREE designs.

The key manner in which to improve the performance of the linear and contin-

uum models is to incorporate additional or refined physical phenomena. These new

phenomena could be specific to an experiment or context, including interactions be-

tween our sample and test bed or the effect of defects in the FREE wall. It is possible

that for some phenomena to be incorporated into a model, new experimentally deter-

mined parameters will need to be added. And, as parameters are added, roboticists

will presumably have to trade between model performance and expedient system

identification. However, the results here suggest that an appropriate mathematical

structure can reduce the need for experimental parameters and fitting procedures.

The neural network is likely to require the strongest system identification effort.

This paper has shown that the same neural network architecture, with the same

number of neurons, can at once outperform first principles-based models in some

cases and under-perform in others. Specifically, we see instances when the neural

network over-fits even when trained on a larger quantity of measurements compared

to other cases: in the composite training set of Samples 2, 4, 6, and 8, the neural net

is trained on thousands of data points but fails to generalize to similar FREE designs.

For example, the neural net can predict the behaviour of Sample 2 (Γ = 25°) and

Sample 4 (Γ = 40°) when trained on those samples, but does not as accurately learn

the behaviour of Sample 3 (Γ = 36°.) As noted in Section 3.4.3, the neural network

has a strong performance when trained on data for a single sample with a dense array

of kinematic states and input pressures, but over-fits when trained on multiple FREE
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samples, which more sparsely occupy the available design space. This distinction

between sparse and dense data requirements is especially important in design tasks.

A roboticist wishing to evaluate the performance of a new, not-yet-constructed design

would likely prefer to extrapolate from few data points, as each one could have a

lengthy fabrication process. To further investigate the issue of potential over- or

under-fitting in the training of the neural net, we performed a detailed parameter

study in which we varied the hidden layer size of the neural network architecture

between 3 and 68 neurons. The mean error (average of the heatmap in figure 3.10)

across 5 training trials for each layer size is shown in Figure 3.12. The data seem

to confirm that the chosen network size of 6 neurons is adequate and that adding

further model parameters does not improve the average neural network performance

when unknown samples are included in the testing data.

In addition to the performance-, generalization-, and system identification-based

metrics above, we might evaluate the models on the ease of performing the parameter

fitting computation. To keep uniformity in the parameter fitting techniques used, we

used Matlab’s Levenberg-Marquardt implementation for all parameter fitting in this

work. All fits were performed using Matlab’s Levenberg-Marquadt implementation,

and for the physical models all fits were performed from the same starting points

of [1, 1, 1] for the linear model and [2, 10] × 105 for the continuum model. With

this uniform fitting procedure, convergence was reached in all cases within the 1000

epochs allowed for the neural network, and from the initial starting points stated

above for the physical models. This uniformity of training procedure shows that

all three of these models can be trained with a standard method in a reasonable

amount of time, and converge. Even using these potentially slow methods, one could

train all of these models in a few hours of work. Optimizing the training time,

and selecting specific techniques for model training are useful avenues for future

work. However, this contrasts with the varying experimental effort required by each

model. Gathering data for just one of the samples took roughly 15 hours, and we see

from Figure 3.10 and the subsequent discussion that each model requires a different

amount of training measurements.

Limitations of our study are discussed below. We chose three models —a linear
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lumped-parameter model, a continuum model, and a neural network— to span a wide

space of first principles-based (for the linear and continuum models) and data-driven

(for the neural network) techniques. The linear and continuum models are the sim-

plest of their respective classes, and any improved versions of these will inherit their

core structure from the models presented here. Conclusions we draw about these

classes of models are likely to hold for refined model versions even as performance

may improve. In contrast, the neural network is not equally representative of the

broad class of data-driven models. It is a popular choice in recent soft robotics mod-

eling work, but its core features and fit parameters are not necessarily inherited by

other data-driven techniques. Other data-driven methods relying on fundamentally

different mathematical structures may be better at capturing the FREE’s underly-

ing physics. [159] note that deep learning techniques have “been shown to learn

predictive physics-based models.” [14] show the potential of the Koopman operator

in modeling parallel structures of FREEs and [140] uses deep reinforcement learning

to model a manipulator made from FREEs. Further, ensemble-based methods, like

those proposed in [115], might be helpful in addressing network over-fitting.

We chose to study FREEs specifically because they share core structural features

with both PneuNet-type soft robots and soft cable robots. Despite these similarities,

the modeling styles presented here may have different behaviors when applied to

other actuator styles. One result of the choice to analyse FREEs as compared

to other soft robots is an implicit limitation to the stretches undergone. In our

experiment and anticipated use cases, engineering strains on FREEs do not exceed

values of about 25%. A strain of 25% is large, and firmly in the nonlinear behavioural

regime according to classical continuum mechanics. Yet, other soft robot examples

(e.g. [67]) likely do undergo larger strains than that, reaching the order of 100% -

and our work does not capture soft systems at these levels of strain. A similar model

comparison on non-FREE actuators is an avenue for future work.

The test settings defined in Eqns. 3.23, 3.24, 3.25 were applied uniformly to all

samples, knowing already that many of these settings were not within the typical

operating range of the individual samples. These settings thus resulted in buckled

actuators that were excluded from the data set after the experiments were finished.
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Figure 3.12: Mean heat map prediction error (%) over 5 randomized neural network
trials, organized by the quantity of neurons on the hidden layer.

The advantage of this strategy was that it allowed us to generate the largest possible

data set without overly restricting the possible testing conditions for each sample.

Even after the removal of the buckled states, each sample had still at least 412, up

to 2600, and an average of 1576 individual data points). The disadvantage of this

approach was that such an a-posteriori selection can potentially introduce bias in

the data. It is thus important to note that our results are only valid for un-buckled

FREEs.

The static nature of the experimental validation is another limitation of this work.

We also did not model or analyze hysteresis in this work. Measuring hysteresis could

require a FREE experiment spanning several timescales (in contrast to this experi-

ment, where the timescale is kept uniform), and offers the potential to evaluate novel

mechanical models. It is an important avenue for future work. Further, the addition

of significant inertial forces to an experiment would clearly change the loading out-

comes. A new experiment would be required for a study of the dynamic behavior of

FREEs, but all of the models presented here could be adapted to include dynamics.
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The linear and continuum models here may be extended to include dynamics [142],

and the neural network could be fit on experimental data that includes dynamic

phenomena. Having demonstrated the strengths and weakness of these models on

predicting the static behavior of FREEs, a dynamic investigation should be the next

step.

The work presented here provides a broad experimental benchmark enabling com-

parison of distinct modeling styles found across the soft robotics literature. While

the modeling approaches presented here have been previously proven on a variety of

individual, fully functional soft robotic systems, a comparison on a common data

set spanning a design and configuration space had not yet been realized. Naturally,

selecting how to model a complex system is an endeavor that is best undertaken

with multiple factors in mind, including whether any mechanisms underlying system

behavior are known, whether data for parameter-fitting, model training, and model

validation are available, and for what purposes and to what performance require-

ments the model will be deployed. This work first built a large and comprehensive

data set that allowed us to rigorously assess the performance of three distinct models.

Oftentimes a comprehensive data set it not available and experiments are expensive.

Such is usually the case, for example, in the enterprise of design, when data may only

exist from rough prototypes or not at all. It then becomes necessary to build or train

a model on a small, narrow, or sparse data set and then to depend on the model’s

ability to extrapolate or interpolate (by generalize, we signify a capacity to both

extrapolate and interpolate). Off-diagonal cells pertaining to FREE samples 1-8 in

the heat maps of Fig. 10 can be considered tests of extrapolation from narrow data

sets, in that fiber angle and length parameters did not vary in the fitting/training

sets. Cells pertaining to aggregate data set formed using the even-numbered FREE

samples and tested on individual FREEs 3, 5, and 7 are tests of interpolation. Ev-

idently, even though a broad variation in fiber angle was present in this aggregate

data set, that variation was still too sparsely sampled for the training needs of the

neural net as indicated by the checkered pattern in column 9 of Fig. 3.10c.

The results shown here confirmed some behaviors already suggested by intuition

(e.g. that models with a higher number of experimentally determined parameters
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may also have the highest peak performance). Yet, this analysis also uncovered trends

of model performance and physical system behavior across the fiber-reinforced soft

actuator design space that are not observable in isolated cases. A study like the

one presented here would, of course, be impossible to perform on all permutations

of articulated FREE-based systems. This is where our work complements existing

papers like those of [136], [140], [163], [99] and others. The broad, actuator-level

understanding presented here can help roboticists in various phases of soft system

development and validation: our demonstration of the strengths, weaknesses, and

failure points of each of these models can guide model choice for articulated systems

of FREEs or soft actuators similar to FREEs, guide design as roboticists find which

schemes best suit their modeling capabilities, and inform the development of a next

generation of improved soft actuator models.

3.6 Summary

Successful soft robot modeling approaches appearing in recent literature have

been based on a variety of distinct theories, including traditional robotic theory, con-

tinuum mechanics, and machine learning. Though specific modeling techniques have

been developed for and validated against already realized systems, their strengths

and weaknesses have not been explicitly compared against each other. In this work,

we show how three distinct model structures —a lumped-parameter model, a con-

tinuum mechanical model, and a neural network— compare in capturing the gross

trends and specific features of the force generation of soft robotic actuators. In partic-

ular, we study models for Fiber Reinforced Elastomeric Enclosures (FREEs), which

are a popular choice of soft actuator and that are used in several soft articulated sys-

tems, including soft manipulators, exoskeletons, grippers, and locomoting soft robots.

We generated benchmark data by testing eight FREE samples that spanned broad

design and kinematic spaces and compared the models on their ability to predict

the loading-deformation relationships of these samples. This comparison shows the

predictive capabilities of each model on individual actuators and each model’s gen-

eralizability across the design space. The continuum mechanical model generalized
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best across the design space similarly-sized FREEs with differing fiber orientations,

but did not achieve as high a peak performance as the neural network even when

fit and evaluated fon the same FREE sample. Its nonlinear structure and explicit

description of fiber stretchability allowed it to model FREEs in kinematic configu-

rations where the fiber was nearly parallel to the FREE’s central axis. The results

highlight the essential roles of mathematical structure and experimental parameter

determination in building high-performing, generalizable soft actuator models with

varying effort invested in system identification.
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CHAPTER 4

Nonlinear Viscoelastic Model

This chapter (except Section 4.1) has been submitted for publication as a journal

article and upon publication may be referenced as:

Sedal, Audrey and Wineman, Alan. Force Reversal and Energy Dissipation in

Composite Tubes through Non-Linear Viscoelasticity of Component Materials.

4.1 Motivation: “Magic Angle” and Stress Relaxation in

FREEs

The previous chapters focused on quasi-static, time-independent responses of

FREEs to internal pressure and imposed end displacement. The experiments in the

previous chapters were carefully designed so that a quasi-static response rather than a

dynamic response or a damped one could be measured. While the previous modeling

work provides understanding of fundamental behaviors of FREEs, understanding of

damping is used to create effective robotic systems such as walking robots [117] when

stretchable polymers form the robot’s main structure.

Yet, the effect of viscoelasticity on behavior of fiber-reinforced polymers is not

as well established in solid mechanics or in soft robotics. Phenomena such as the

“magic angle” phenomenon [34, 51], in which changes of fiber orientation determine

whether a fiber-reinforced material will undergo tension or compression at a given
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stretch, can significantly change the behavior of a soft robot. It is not yet known

how these phenomena can interact to change FREE behavior.

Figure 4.1 shows an example of the magic angle phenomenon occurring in the

data set of Chapter 3. At low pressures (P < 10kPa), the FREE is under a tensile

force, but as its internal pressure increases, the constraint by the fiber causes it to

move into the tensile regime.

Viscoelastic behavior was observed in FREEs in the data set of Chapter 3. In the

sign convention of this data set, a compressive force is positive and a tensile force is

negative. Figure 4.2 shows stress relaxation of a FREE having a single fiber family

with fiber angle Γ80° with respect to the tube’s central axis, under and imposed

axial extension of +4mm and no imposed twist. Despite internal pressure staying

relatively similar throughout this time frame, the FREE force relaxes from a tensile

force of 2.44N to one of 2.38N. The curve showing force over time follows a path

resembling exponential decay, which is common in viscoelastic polymers.

For evaluation of a quasi-static model as in Chapter 3, this quantity of stress

relaxation (which is similar to stress relaxation occurring elsewhere in the dataset)

is not problematic. However, a full exploration has not been done of what circum-

stances may cause viscoelastic effects to be more influential. Further, novel polymers

that are developed to be “active” in response to heat, magnetic or electric fields, or

polymers that are developed to improve the resilience and extend the lifetime of

FREEs may have the byproduct of undergoing additional stress relaxation as a con-

sequence of their chemical composition. Interaction with the magic angle effect, use

of novel “active” polymers, and controllers that aim to increase the precision and

energy efficiency of soft robot motion could all benefit from a deeper exploration of

viscoelasticity.

An exhaustive experimental study on the wide variety of component materials

and configurations of soft actuators is prohibitively large. Instead, a new theory

is proposed that is base don physical principles and describes viscoelastic effects in

both the fiber and the matrix of a FREE. A simulated study is performed with

the goal of finding combinations material properties, configurations, interaction with

known physical effects (such as the magic angle phenomenon) that could produce
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Figure 4.1: Transition of force from tensile (P < 10kPa) axial force to compressive
(P ≥ 10kPa) axial force on a FREE with a single fiber family having fiber angle
Γ = 80° w.r.t. the tube’s central axis, at an imposed axial extension of +5mm and
an imposed twist of 10°. In the sign convention of this data set, a compressive force
is positive and a tensile force is negative.
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time. In the sign convention of this data set, a compressive force is positive and a
tensile force is negative.
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unexpected behaviour in FREEs.

In the remaining parts of this chapter, the sign convention of Chapter 3 is not

used. Instead, a tensile force is positive and a compressive force is negative.

4.2 Introduction

Soft, anisotropic materials consisting of a matrix embedded with patterned fil-

aments are commonly found in nature. Skin, blood vessels, ligaments, plants and

muscle all share this basic structure. In “soft” robotics, a subfield of robotics con-

cerned with building systems that leverage soft materials to create safer and more

mechanically intelligent systems, researchers have used such structures extensively to

create actuators [86], manipulators [16, 106] and shape-morphing robots [60]. Unlike

traditional robots, soft robots are compliant in all directions except for the actuated

direction, meaning that they can bend around obstacles or conform to the shape of

delicate objects without breaking them. This compliance gives soft robots special po-

tential in human-interactive applications like assistive technology, in-home robotics,

and surgical devices.

Reinforced soft structures offer key functional advantages over un-reinforced soft

structures. These structures transmit stress anisotropically, meaning that they can

be especially stretchy or stiff in selected directions. For example, muscles are strong in

axial tension, and that muscle-like anisotropy has been mimicked robotically by soft

“Pneumatic Artificial Muscles” (PAMs) [21]. In mechanics, nonlinearly elastic fiber-

reinforced materials have been studied extensively [55, 64, 100, 125]. The anisotropy

and resulting robotic behaviour of FREEs have been extensively studied [22, 26, 145].

In contrast, viscoelastic phenomena in soft robots are less studied. Polymers used

in soft robots, such as rubber [167] and silicone [129], are inherently viscoelastic.

They act as elastic solids, but internal friction between long-chain molecules influ-

ences behaviour. Damping, hysteresis, energy dissipation and creep are key facets

of soft robotic behaviour that result from viscoelasticity of a soft robot’s component

materials. Because viscoelasticity is an inherent property of polymers, and because

soft robots are made from a wide variety of polymers, viscoelastic phenomena are
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present on some level in every soft robotic system.

Understanding viscoelasticity can enable development of devices that match stiff-

ness characteristics with human tissues and absorb impact. For example, Parnell and

De Pascalis [112] propose a novel soft, viscoelastic metamaterial with tunable impact

absoprtion and applicability in soft robotics. Further, bio-mechanical systems like

the walls of arteries [61], muscle [70], skin and ligaments [113] have been found to

be both anisotropic and viscoelastic; soft robot designs that accurately match be-

haviour with human tissues would then need to have viscoelasticity. With nonlinear,

anisotropic models of viscoelasticity, soft robots can achieve their potential for safer,

more seamless human interaction.

Viscoelastic behaviours of soft robots are most often characterized on a finished

system after its construction, rather than chosen beforehand with specific function-

ality in mind. In soft robotics, it is common practice to rely on extensive mechanical

characterization of already-constructed systems to understand their time-dependent

properties. For example, Kim et al. [72] use a neural network and a full mechanical

characterization to model hysteresis in a soft tactile sensor. Van Damme et al. [169]

and Hos̆ovskỳ et al. [65] use cyclic experiments to characterize hysteresis and damp-

ing of Fiber-Reinforced Elastomeric Enclosures (FREEs). Bai et al. [3] characterize

the viscoelastic behaviour of dielectric elastomer actuators with cyclic experimen-

tation. Mosadegh et al. [103] perform experiments to characterize hysteresis of

silicone elastomer moulded “PneuNets.” Della Santina et al. [32] use a rigid-body

approximation of a soft PneuNet-like robot to experimentally characterize its damp-

ing properties. In control of soft robots, linear viscoelastic models have been used.

Shimoga and Goldenberg [153] use the Standard Linear Solid model to describe and

characterize impedance control for a soft finger tip. Mustaza et al. [105] add some

nonlinearity: they use a nonlinear spring to describe a hyperelastic rubber in parallel

with a linear damper to develop a dynamic model of a soft actuator similar to the

Kelvin-Voigt model. In each of these cases, viscoelastic behaviour is characterized

on a robotic system that has already been designed and built.

With an appropriate modeling tool, soft roboticists could leverage knowledge

of viscoelastic polymeric behaviours to design and control higher-performing soft
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systems. Damping and hysteretic behaviour could be analyzed before a system’s

construction and carefully matched to the impedance requirements of the robotic

task at hand. Common models of viscoelastic are linear and fall into three cate-

gories [178]: the Maxwell model (Fig. 4.3c), the Kelvin-Voigt model (Fig. 4.3d),

and the Standard Linear Solid (SLS) (Fig. 4.3e). However, viscoelasticity in soft

robotics is difficult to analyse in a generalizeable way with linear models of vis-

coelasticity. A material whose elemental volumes are described as combinations of

linear springs and linear dampers will necessarily experience a linear scaling between

stresses and strains, but mechanicians as well as soft roboticists [26, 120], have re-

peatedly observed stress-strain nonlinearity in soft, fiber-reinforced systems under

normal operation circumstances. Indeed, Mustaza et al.[105] add elastic nonlinearity

to the viscoelastic model that they develop for control. Below, we present a model

that tracks the evolution of a material’s stresses and anisotropy over time as the

various patterned materials each relax according to their own chemistry. This work

will show new physical phenomena resulting from stress relaxation properties of a

pressurized tube’s fibers and matrix, highlighting how these properties combine with

design parameters like fiber orientation to produce differing end behaviours.

In this paper, we develop and examine a non-linear viscoelastic model of soft,

fiber-reinforced actuators. With this model, roboticists can simulate, inspect and

optimize actuator designs for broad applications under a variety of environmental

conditions. We study a thick-walled, fiber-reinforced tube in which two fiber families

are wound symmetrically around a pressurizeable soft circular tube. This archi-

tecture shows the basic features of anisotropy and how this anisotropic behaviour

changes as the fiber and matrix each relax at their own pace. In Section 4.3, we

present the constitutive equation. In Section 4.4, the problem of a pressurized, thick-

walled, fiber-reinforced tube is formulated. Section 4.5 gives the governing equations

of the problem. Sections 4.6 and 4.7 concern the numeric solutions: Section 4.6

outlines the numerical methods used, while Section 4.7 discusses pertinent examples.

Section 4.8 offers concluding comments.

87



Г

L

λz L
P

ff

(a)

(b)

Non-linear

(c) (d) (e) (f)

Ri 

Ro 

ri 
ro 

Figure 4.3: (a) Tube actuator in reference configuration with initial fiber angle Γ,
initial length L, internal radius Ri, external radius Ro and atmospheric pressure in
the interior. (b) Actuator in the current configuration with internal pressure P ,
length λzL, radii ri,o and force f on the endcaps. The representative volume element
shown in grey may be modelled in a variety of ways: (c) the Maxwell mechanical
analog, (d) the Kelvin-Voigt mechanical analog, (e) the Standard Linear Solid, or
(f) a non-linear formulation.

4.3 Constitutive Equation

In soft robotics, fiber-reinforced tubular actuators are most often made with a

braided structure of discrete polymeric fibers. This braid can be adhered to an

elastomeric tube, or moulded with elastomer around the fibers. These actuators

have been given a variety of names: McKibben actuators and Pneumatic Artificial

Muscles (PAMs) [21, 22], fiber-reinforced Elastomeric Enclosures (FREEs) [8], or

Fluidic Flexible Matrix Composites (F2MCs) [116, 149]. Throughout the work we

will refer to this actuator as a FREE, even though the internal pressurization may

come through any working fluid and not necessarily a gas.

We anaylse such actuators under a homogenization assumption - i.e., assuming

that the fibers are continuously distributed rather than forming discrete parts of the

structure [34, 51]. We further assume that there are no interaction effects such as

friction between the elastomer and the fiber components. These assumptions enable

a simple analysis for this exploration of time-dependent effects in such actuators.
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Further, the homogenization assumption chosen here enables the use of an analytical

framework where additional phenomena, e.g. fiber-matrix interaction, or tempera-

ture effects, can be added later as necessary.

A distinguishing feature of nonlinear viscoelastic materials is that the stress at

some instant during the response depends on the preceding history of deformation.

This means that it is necessary to distinguish between the current time t and a

typical earlier time s, with s ∈ (−∞, t]. We assume that at all times t < 0, the body

is at rest in a stress-free configuration: this is taken as the reference configuration.

The position of a particle in the body in its reference configuration is given by X

and at later time t by x(t). The quantities needed to describe that deformation are

presented next.

The tube’s deformation over time is described by a relationship of the form:

x(t) = χ(X, t), t ≥ 0. (4.1)

For clarity, there will be no further explicit indication of the independent variable

X in the remaining equations. The deformation gradient is

F(t) = ∂x(t)/∂X. (4.2)

The nonlinear fiber-reinforced material of the tube is assumed to be incompressible.

Then, det F(t) = 1 for all particles and all times. The right Cauchy-Green strain

tensor C at a time t is given by:

C(t) = F(t)TF(t). (4.3)

The invariants of C(t) are:

I1[C(t)] = tr[C(t)], (4.4)

and

I2[C(t)] =
[
I1[C(t)]2 − tr[C(t)2]

]
/2 (4.5)
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We further assume that the material can be described by the Pipkin-Rogers single-

integral constitutive equation for nonlinear viscoelastic response [119],[177]. For an

incompressible nonlinear viscoelastic solid, the Pipkin-Rogers constitutive equation

can be written as:

σ = −q(t)I + F(t)Π(t)F(t)T , (4.6)

Π(t) = R[C(t), 0] +

∫ t

0

∂

∂(t− s)
R[C(s), t− s]ds. (4.7)

Here, σ gives the Cauchy stress. The function q(t) is a Lagrange multiplier in-

cluded due to the incompressibility of the tube wall. A tensor-valued, deformation-

dependent relaxation property is denoted by R[C, t]. In a step deformation history

when the right Cauchy-Green strain tensor C is fixed, R[C, t] decreases monotoni-

cally from the initial values R[C, 0] to a non-zero limit denoted by R[C,∞].

For a material with two fiber families whose directions in the reference configu-

ration are denoted by unit vectors L and M [157],

R[C, t] = α0[I[C], t]I + α1[I[C], t]C + α2[I[C], t]C2

+α3[I[C], t]L⊗ L + α4[I[C], t](L⊗CL + CL⊗ L)

+α5[I[C], t]M⊗M + α6[I[C], t](M⊗CM + CM⊗M)

+α7[I[C], t](L⊗M + M⊗ L). (4.8)

The symbol I[C] denotes the set of invariants including I1 and I2 (Eqns. 4.4 and

4.5) and the invariants listed below:

I3 = 1,

I4 = LTCL, I5 = LTC2L,

I6 = MTCM, I7 = MTC2M. (4.9)

Invariants I1−3 are associated with the matrix, and I4−7 are associated with the
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fibers.

4.3.1 Relation to Nonlinear Elastic Fiber Reinforced Materials

There are two important cases when the Pipkin-Rogers constitutive equation for

an incompressible non-linear viscoelastic fiber reinforced material becomes indepen-

dent of the preceding deformation and depends only on the current deformation.

1. A step change in deformation at t = 0.

In a step change, F(0−) = I and F(0+) 6= I. Then C(0+) = F(0+)TF(0+) 6= I.

The stress is given by (4.10) with F = F(0+), C = C(0+) and scalar coefficients

α̃i = αi[I[C(0+)], 0+].

2. A fixed deformation as t→∞.

Let the body approach a fixed deformed state, i.e. F(t) → F(∞). Then, as

in linear viscoelasticity ([178]), because of stress relaxation, it can be expected

that the stress in the fixed deformed state is given by (4.10), with F = F(∞),

C = C(∞) = F(∞)TF(∞) and scalar coefficients α̃i = αi[I[C(∞)],∞].

The stress then responds only on the current deformation and is given by:

σ = −qI + F
[
α̃0[I[C]]I + α̃1[I[C]]C + α̃2[I[C]]C2 + α̃3[I[C]]L⊗ L

+α̃4[I[C]](L⊗CL + CL⊗ L)

+α̃5[I[C]]M⊗M + α̃6[I[C]](M⊗CM + CM⊗M)

+α̃7[I[C]](L⊗M + M⊗ L)
]
FT , (4.10)

which is the constitutive equation for an incompressible fiber reinforced elastic solid.

4.3.2 Specific Assumptions on Material Properties

Several assumptions can now be made about the scalar coefficients αi[I[C], t]. It

is first assumed that the fiber families have identical properties so that in Eqn. 4.8 ,
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α3 = α5 and α4 = α6. Second, as is done in previous work using this model [34, 51],

that α4 = α6 = α7 = 0.

The scalar coefficients of αi[I[C], t] are given as

α0[I[C], t] = 2G1(t)[1− I2Φ] + 2G2(t)[I1 − 2I2Φ] (4.11)

α1[I[C], t] = 2G1(t)I1Φ + 2G2(t)[2I1Φ− 1] (4.12)

α2[I[C], t] = −2Φ[G1(t) + 2G2(t)] (4.13)

α3 = 2G3(t)[I4 − 1]. (4.14)

Here,

Φ = exp[−(I1 − 3)]. (4.15)

The functions Gi(t), i ∈ {1, 2, 3} are relaxation functions, chosen as exponential

functions in terms of instantaneous value Gi(0), asymptotic value Gi|t→∞, and time

constant τi. The functions G1,2(t) are associated with the Mooney-Rivlin terms of

the matrix, while the function G3(t) is associated with the fiber. We assume that

G2(t) = 0, i.e. a neo-Hookean matrix. Then we rename G1(t) = Gm(t) for the

relaxation function associated with the matrix and G3(t) = Gf (t) for the relaxation

function associated with the fiber.

This choice for the scalar coefficients αi[I[C, t] in terms of Gi(t) is made so that

the limits at t = 0 and as t→∞, the constitutive equation 4.10 has the same form

as the standard reinforcing model used in previous studies [34, 51]. The function

Φ (Eqn. 4.15) is chosen so that the constitutive equation approaches the linearized

theory in the limit of small strains.

Gm(t) = Gm|t→∞+(Gm(0)−Gm|t→∞)e−
t
τm (4.16)

Gf (t) = Gf |t→∞+(Gf (0)−Gf |t→∞)e
− t
τf . (4.17)

To simplify the notation throughout the rest of this paper, we use Gm(∞) to

denote Gm|t→∞ and Gf (∞) for Gf |t→∞. Normalizing all stresses in the pressure
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P (t) by Gm(0) = 1 and all time units by τm gives normalized functions Ḡm,f (t) as

Ḡm(t) =
Gm|t→∞
Gm(0)

+

(
1− Gm|t→∞

Gm(0)

)
e−t (4.18)

Ḡf (t) =
Gf |t→∞
Gm(0)

+

(
Gf (0)

Gm(0)
− Gf |t→∞

Gm(0)

)
e
−t τm

τf . (4.19)
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Figure 4.4: Relative stiffness Gf (t)/Gm(t) for a fiber-reinforced material with
Gm(∞)/Gm(0) = 0.75, Gf (0)/Gm(0) = 10, Gf (∞)/Gm(0) = 7.5. At t = 0,
Gf/Gm = 10, and as time approaches infinity, Gf/Gm reaches an asymptote of
10 as well. In between, the various values τf/τm affect the relative stiffness of the
fiber to the elastomer, which influences the role of the fiber in determining stresses.

Since both the matrix and the fiber are viscoelastic in this model, their relative

stiffness, and therefore their relative contributions to net loading, can change over

time. Figure 4.4 shows some of the potential diversity in the shape of the relative

stiffness curves Gf (t)/Gm(t). The initial and final values of stiffness are the same

of all of the examples shown. Yet, if the fiber relaxes more quickly or more slowly

than the matrix, the stiffness behaviour of the system changes. For example, in

Figure 4.4, Gf (t)/Gm(t) initially decreases when τf/τm < 1 and initially increases

when τf/τm > 1. In some cases, the fiber becomes less stiff relative to the matrix
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before reaching its stiffness asymptote, while in others, the fiber initially becomes

even stiffer than the matrix. For example, the case with τf/τm = 0.15 has a local

minimum of relative fiber stiffness around 8.4, but the case with τf/τm = 3 has a

local maximum of fiber stiffness around 11.3.

4.4 Formulation for Fiber-Reinforced Tubes

Here, we formulate the problem for nonlinearly viscoelastic, thick-walled cylindri-

cal tubes reinforced by two families of nonlinear viscoelastic fibers symmetric about

the tube’s central axis (Fig. 4.3a). Consider a tube in its reference configuration

with length L, inner radius Ri, outer radius Ro. For the first family, the fiber angle

relative to the tube’s axis is defined by Γ. The angle of the second fiber family is

then −Γ. Circular caps enclose the tube at each end.

A uniform pressure P (t) is distributed over the inner surface of the tube, and an

axial force f is applied to each end of the tube, parallel to its axis. The outer surface

of the tube, other than the caps, is traction-free. In the current configuration, the

tube has length l(t), inner radius ri(t) and outer radius ro(t), as shown in Fig. 4.3 b.

The coordinates of a particle are (R,Θ, Z) in the reference configuration and

(r, θ, z) in the current configuration. Particles in the incompressible tube wall will

undergo the time-dependent motion defined by:

r(t) =

√
R2 −R2

i
l(t)
L

+ r2
i (t),

θ = Θ,

z(t) =
l(t)

L
Z. (4.20)

The current outer radius ro(t) is related to the current inner radius ri(θ) by

ro(t) =

√
L(R2

o −R2
i )

l(t)
+ r2

i (4.21)
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Let

λz(t) =
l(t)

L
. (4.22)

The deformation gradient is

F(t) =


R

r(t)λz(t)
0 0

0 r(t)
R

0

0 0 λz(t)

 . (4.23)

Let

λr(t) =
R

r(t)λz(t)
(4.24)

and

λθ(t) =
r(t)

R
. (4.25)

By the incompressibility constraint,

λz(t) =
1

λr(t)λθ(t)
. (4.26)

The right Cauchy-Green tensor is

C(t) =

 λr(t)
2 0 0

0 λθ(t)
2 0

0 0 λz(t)
2

 . (4.27)

The invariants of C(t) in Eqns. 4.4 and 4.5 are

I1[C(t)] = λr(t)
2 + λθ(t)

2 +
1

(λr(t)λθ(t))2
, (4.28)

I2[C(t)] =
1

λr(t)2
+

1

λθ(t)2
+ (λr(t)λθ(t))

2. (4.29)

For symmetric helical fiber families, we can describe the fiber directions L and
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M by

L =

 0

sin(Γ)

cos(Γ)

 ,M =

 0

− sin(Γ)

cos(Γ)

 . (4.30)

The invariant I4 (Eqn. 4.9 in terms of the stretches is then

I4 = λ2
θ sin2(Γ) + λ2

z cos2(Γ). (4.31)

In Eqns. 4.6 and 4.7, let σ = −q(t)I+F(t) where F(t) = F(t)Π(t)F(t)T . Then,

using Eqn. 4.23 and Eqns. 4.27-4.31,

F11 = Frr =

(
R

r(t)λz(t)

)2

[R11[C(t), 0] +

∫ t

0

∂

∂(t− s)
R11[C(t), t− s]ds]

F22 = Fθθ =

(
r(t)

R

)2

[R22[C(t), 0] +

∫ t

0

∂

∂(t− s)
R22[C(t), t− s]ds] (4.32)

F33 = Fzz = λz(t)
2[R33[C(t), 0] +

∫ t

0

∂

∂(t− s)
R33[C(t), t− s]ds].

With Eqns. 4.3 and 4.7 and the assumption that α3 = α5 and α4 = α6 the matrix

expression for R[C, t] is given by
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R[C(t), s] = α0(t, s)

 1 0 0

0 1 0

0 0 1

+ α1(t, s)

 λ2
r(t) 0 0

0 λ2
θ(t) 0

0 0 λ2
z(t)



+α2(t, s)

 λ4
r(t) 0 0

0 λ4
θ(t) 0

0 0 λ4
z(t)

+ 2α3(t, s)

 0 0 0

0 sin2(Γ) 0

0 0 cos2(Γ)



+4α4(t, s)

 0 0 0

0 λθ sin2(Γ) 0

0 0 λz cos2(Γ)

+ α7

 0 0 0

0 −2 sin2(Γ) 0

0 0 2 cos2(Γ)

 .(4.33)

With the assumption that α4 = α7 = 0 given in Section 4.34.3.2, R is diagonal

with components

R11 = α0(s) + α1(s)λ2
r + α2(s)λ4

r (4.34)

R22 = α0(s) + α1(s)λ2
θ + α2(s)λ4

θ + 2α3(s) sin2(Γ) (4.35)

R33 = α0(s) + α1(s)λ2
z + α2(s)λ4

z + 2α3(s) cos2(Γ) (4.36)

Since F in Eqn. 4.23 and each matrix in the expression for R (Eqns. 4.34, 4.35,

4.36) is diagonal, the Cauchy stress σ is diagonal as well.

Explicit expressions for the stress components are obtained by combining the

expressions for αi in Eqns. 4.11-4.14, 4.34-4.36, and 4.33.

4.5 Governing Equations

Eqns. 4.21 and 4.22 show that the deformation of the FREE depends parame-

terically on R (or, equivalently ri(t)) and λz(t). By Eqn. 4.33, Fii then also depend

on R.

It is assumed that the motion of the PAM is slow enough that inertial effects can
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be neglected. It is also assumed that body forces can be neglected. The stresses on

the PAM must then satisfy these partial differential equations of equilibrium at each

time t at every point in the current configuration. Letting Fii(r) = Fii,

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
= 0, (4.37)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+ 2
σrθ
r

= 0, (4.38)

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

= 0. (4.39)

As shown earlier, F is a function of r and t, or equivalently, R and t. In gen-

eral, the Lagrange multiplier q = q(r, θ, z, t) is an unknown function that is to be

determined by analysis. When the stresses are substituted into the equilibrium equa-

tions, Eqn. 4.38 implies ∂q/∂θ = 0 and Eqn. 4.39 implies ∂q/∂z = 0. Thus, here

q = q(r, t). Since σ is diagonal, σrθ = σrz = 0 and Eqn. 4.37 reduces to

∂σrr
∂r

+
σrr − σθθ

r
= 0. (4.40)

Integrating Eqn. 4.40, noting that the PAM’s interior pressure is equal to the

radial stress at the interior boundary (i.e., −P = σrr(ri)), and recalling that σ =

−qI + F , we obtain the result

q(r) = P + Frr +

∫ r

ri

Frr −Fθθ
r′

dr′ (4.41)

Performing the change of variables r′ → R′ to the integral in Eqn. 4.41 gives

q(r) = P + Frr +

∫ R

Ri

Frr −Fθθ
R′λθ(t)2λz(t)

dR′ (4.42)

which gives an explicit expression for q(r, t). Further, given that the PAM is operating

in an environment at atmospheric pressure, the boundary condition at the exterior

surface is given by σrr(ro) = 0. Then, from 4.10:
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−P =

∫ ro

ri

Frr −Fθθ
r

dr. (4.43)

Performing the change of variables r → R to the integral in Eqn. 4.43 gives

−P =

∫ Ro

Ri

Frr −Fθθ
Rλθ(t)2λz(t)

dR. (4.44)

The equation for the internal pressure is then

−P (t) =

∫ ro(t)

ri(t)

Frr −Fθθ

r
dr. (4.45)

With q(r) from Eqn. 4.42,

σzz = −P + Fzz −Frr +

∫ R

Ri

Fθθ −Frr
R′λθ(t)2λz(t)

dR′. (4.46)

The net axial force on the cross-section of the tube N is found by integrating the

axial stress across the tube wall, giving

N = 2π

∫ Ro

Ri

σzzRλθ(t)λr(t)dR. (4.47)

Th relation between the axial force f on the end cap of the tube, the force on

the cross-section on the tube, and the force from the interior pressure P on the end

of the tube is

f = N − Pπr2
i (t). (4.48)

The equation for the axial force is then

f(t) = −Pr2
i π + 2π

[
Pr2

i

2
+

∫ ro

ri

(Fzz −Frr) +
1

2
(Frr −Fθθ)rdr

]
. (4.49)
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The axial force f(t) is presented above in terms of the internal pressure P (t) as

well as λz(t) and ri(t). If any two quantities of {f(t), P (t), λz(t), ri(t)} are specified,

there then exists a system of equations that may be solved to find the remaining two

quantities. Together, Equations 4.45 and 4.49 form the governing Equations of the

system.

4.6 Numerical Methods of Solution

To investigate the effect of material properties on force-displacement behaviour,

we considered the resultant force of a FREE with geometric design parameters

p̄ = {L,Γ, Ri, Ro} and material properties Gf (t), Gm(t), and τf/τm. The geometric

parameters in p̄ refer to the actuator length, fiber angle (with fiber orientations for

each family defined in Eqn. 4.30), and internal and external radii in the reference

configuration. Each of these parameters is given in 4.1. The actuator length is

normalized such that L = 1, and radii are normalized such that Ri = 1. To make

a study possible, limitations are applied to the design parameter space: all cases

studied here have Ro = 1.2. The fiber orientation was varied in this study with

Γ ∈ {20, 40, 60, 80}°.
The material stiffnesses and the internal pressure are are normalized by Gm(0) =

1, and the time constants are normalized so that τm = 1. To make a study pos-

sible, limitations are applied to the material stiffnesses: Gm(∞)/Gm(0) = 0.75,

Gf (0)/Gm(0) = 10, Gf (∞)/Gm(0) ∈ {7.5, 8}. The time constant ratio τf/τm was

varied in this study.

Limitations on the operating conditions are given in Table 4.2. The axial stretch

λz(t) was varied, but always had the form kh(t), where h(t) is a step function and k

is a constant. Various cases of pressure input P (t) are studied.

Specific choices were also made in the numerical solution methods. Both time

and space integrals were solved numerically with the trapezoidal rule.

Error due to numeric approximation is estimated by halving the size of the radius

and time increments (when applicable) and measuring the difference between two

results for the same configuration. Error did not exceed 1.3%, and error bars on the
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Parameter Type Symbol
Material Stiffnesses Gm(0) = 1

Gm(∞)/Gm(0)
Gf (0)/Gm(0)
Gf (∞)/Gm(0)

Material Relaxation Time Constants τm = 1
τf/τm

Design Parameters L
Γ
Ri

Ro

Table 4.1: Parameter table of FREE material properties and design parameters. Due
to both the to normalized variables used and the large available parameter space,
some parameters are fixed. Fixed and variable parameters in our study are noted in
the table.

Parameter Type Symbol
Axial Stretch λz(t) = l(t)/L

Input Pressure P (t)

Table 4.2: Operating parameters tested for FREEs in this study. Owing to the large
possible space of time-valued functions, step stretches are studied here along with
step, pulse or cyclical applied internal pressure.
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graphs do not exceed the thickness of the lines shown.

Space integrals were solved with the trapezoidal rule in increments of size 5.71×
10−3 or 2.86× 10−3. Time integrals were also solved with the trapezoidal rule with

time steps of either 1.60 × 10−2 or 8.0 × 10−3. Details of each simulation are given

alongside the result plots in the following section.

4.7 Numerical Examples

We studied the model behaviour for a variety of FREE designs with differing fiber

orientations Γ under various input pressures and operating conditions. As noted in

Section 4.5, if any two of the quantities l, ri, f, P are known, a system of equations

exists such that the remaining quantities can be found.

One key assumption of this work is that pressure control into the tube is achiev-

able; in practice, pressure regulators with proportional, integral and/or derivative

control may be used to set a specific pressure inside a FREE. Dynamics associated

with fluid flow into the FREE and compressible fluid volume are left to future work.

Therefore, we have chosen to set the interior pressure P (t) as a step function or sinu-

soid, and impose a length change λz(t) as a step function. We found that under these

conditions, axial force reversal and energy dissipation of the FREE were apparent.

4.7.1 Transition of End Force Under Step Pressure

Figure 4.5 shows the axial force f on the end of a FREE with Γ = 40° at various

step stretches λz ∈ [0.85, 1.15] and a step pressure input of P = 0.15. The instan-

taneous response is shown in dark purple, while the response as t → ∞ is shown

in light purple. Both the instantaneous and long-term responses to step pressure

have a concave-up relationship with length. For λz = 1.005 ± 0.001, the curve for

the instantaneous force response crosses over the curve for the long-term response;

this crossover point is marked by C40°
. At the point when these curves cross, the

instantaneous axial force and force when t→∞ are the same.

Each of the transitions A → A’ and B → B’ shows an exponential transition
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Figure 4.5: End force response of a FREE with Γ = 40°, τf/τm = 1, Gm(∞) = 0.75,
Gf (0) = 10, and Gf (∞) = 7.5 under step pressure P = 0.15. (a) Axial force on the
FREE under step stretch conditions λz ∈ [0.85, 1.15] at t = 0 (dark purple line) and
as t → ∞ according to Eqn. 4.25(light purple line). The point where the two force
curves cross is marked with a circle. Radius increments of size 1.25×10−3 were used.
(b) Decrease in FREE end force over time at step λz = 1.05 and step P = 0.15. The
points A and A’, showing the instantaneous force response and horizontal asymptote
respectively, correspond to A and A’ in part a, and the curve corresponds to the
black arrow connection between A and A’ in part a. (c) Increase in FREE end force
from compression to tension at step λz = 0.92 and step P = 0.15. The points B and
B’, showing the instantaneous force response and horizontal asymptote respectively,
correspond to B and B’ in part a, and the curve corresponds to the black arrow
connecting B and B’ in part a. For parts b and c, radius increments of size 2.5×10−3

were used and time increments of size 0.015 were used.
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Figure 4.6: End force response of a FREE with τf/τm = 1, Gm(∞) = 0.75, Gf (0) =
10, and Gf (∞) = 7.5 under step pressure P = 0.15 and step stretch conditions
λz ∈ [0.85, 1.15]. Instantaneous response at t = 0 is shown by a dark purple line
and long-term response as t → ∞ is shown by a light purple line. (a) Force on a
FREE with Γ = 20°. (b) Force on a FREE with Γ = 60°. (c) Force on a FREE
with Γ = 80°. The pale orange boxes correspond to the same range of f and λz in
all graphs. Each point where the instantaneous and long-term force curves cross is
marked with a black circle. Radius increments of 1.25× 10−3 were used for all cases
shown here.

toward a horizontal asymptote. For λz exceeding the crossover point C, the axial

force on the FREE decreases over time. Points A and A’ in Figure 4.5(a), where

λz = 1.05, show one example of the decrease. The transition from A to A’ is shown in

further detail in Figure 4.5(b). Here, the instantaneous force is 1.772 but decreases

to 1.611 when t = 3. For λz less than the “no-change” value, the force on the

FREE increases over time. The transition from B to B’ is shown in part (c) of

Figure 4.5. Between points B and B’, when λz = 0.92, the FREE transitions from

an instantaneous compressive end force to a long-term tensile end force. At t = 0,

f = −0.093, but at t = 3 the force has risen to 0.096.

Similar force transitions exist in other FREE designs. Figure 4.6 shows the rela-

tionship between stretch λz and the instantaenous and long-term axial forces on the

forces on FREEs Γ = 20°, Γ = 60° and Γ = 80°.

All of the examples in Figure 4.6 exhibit the same crossover phenomenon as

the example in Figure 4.5. For stretches λz to the left of the crossover point, the

instantaneous force response less than the long-term force response, and the FREE

has a net increase in force. For λz to the right of the crossover, the FREE undergoes
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a net decrease in force. Further, the FREEs with Γ = 20° (Fig. 4.6a) and Γ = 60°

(Fig. 4.6a) exhibit a net transition from axial compressive forces to tensile forces

over time.

However, a FREE’s intial fiber orientation Γ does affect the location of the

crossover point and the force behaviour around it. The value of Γ greatly affects

the range of forces f output by the FREE. For example, the FREE with Γ = 20°

(Fig. 4.6a) has axial forces f ∈ (−4, 12) while the FREEs with Γ = 60° and Γ = 80°

have axial forces f ∈ (−2, 2).The location of the crossover point C20°
in Figure 4.6a

is located at λz ∈ [1.004, 1.005] and f ∈ [1.282, 1.382]. The FREE with Γ = 20°

then has its “no-change” condition of axial force at a slightly elongated configura-

tion and a relatively axial force. The FREE with Γ = 60° (Fig. 4.6b) has C60°
at

λz ∈ [9.940× 10−1, 9.952× 10−1] and f ∈ [2× 10−3, 3× 10−3]; a slightly compressive

axial stretch and a lower force. The FREE with Γ = 80° has its crossover C80°
at

λz ∈ [9.964 × 10−1, 9.976 × 10−1] and f ∈ [−1 × 10−3, 2 × 10−2]; again a slightly

compressive axial stretch and a low force. The behaviour around the crossover point

also differs with Γ. For the FREEs with Γ = 20° (Fig. 4.6a) and Γ = 40° (Fig. 4.5),

the instantaneous and long-term force-stretch curves are concave-up. For Γ = 80°

(Fig. 4.6c), the force-stretch curves are concave-down. The curves for the FREE

with Γ = 60° (Fig. 4.6b) have a relatively straight appearance and are only slightly

concave-down.

4.7.2 Effect of Relaxation Time on Axial Force

Even when the instantaneous and long-term properties of two FREEs are the

same, the ratio of relaxation times τ/τm influences output behaviour in finite time.

One example of such an influence is shown in Figure 4.7. In part a, the axial

forces on FREEs with the same step inputs (λz = 0.95 and P = 0.2), fiber ori-

entation Γ = 40° and relaxation properties (Gm(∞)/Gm(0) = 0.75, Gf (0)/Gm(0) =

10, Gf (∞)/Gm(0) = 7.5) are shown. Yet, the relaxation time ratio τf/τm varies in

each case. We can see from Figure 4.7b that though the instantaneous force at t = 0

is the same, the axial force behaviour for t ∈ (0, 0.4] differs with τ . The FREE with
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Figure 4.7: (a) Time-valued axial force f on FREEs with Γ = 40° under step stretch
λz = 0.95 and step pressure P = 0.2. For these FREEs, Gm(∞)/Gm(0) = 0.75,
Gf (0)/Gm(0) = 10, Gf (∞)/Gm(0) = 7.5, and fiber relaxation time τf varies between
0.1 and 10. (b) Enlarged shaded (orange) part of the graph in part a, showing FREE
forces for t ∈ [0, 0.4]. For all cases shown here, radius increments of 2.5× 10−3 were
used. For τ = {0.3, 1, 3, 10}, time increments of size 6.25 × 10−3 were used. For
τ = 0.1, time increments of size 3.125× 10−3 were used.
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τf = 0.1 decreases in axial force, hitting a minimum of f = 0.528 at t = 0.1406. The

other FREEs all increase in axial force as time increases. The FREEs with τf > 1

increase initially. They reach local maxima in between t = 2 and t = 5, and then

decrease toward the force asymptote at 0.665± 0.002. Although we show results for

t ∈ [0, 8], we expect that all curves will eventually reach a common asymptote as

t→∞.

The shape of the axial force curves over time somewhat resembles the shape of the

curves for Gf (t)/Gm(t) shown in Figure 4.4, which shows the evolution of the relative

stiffness of the fiber to the matrix under the same conditions for Gm(0), Gf (0), and

Gf (∞). As shown in Figure 4.4, cases when τf/τm > 1 have curves Gf/Gm that

initially increase, reach a local maximum, and decrease toward the asymptote (here,

Gf (∞)/Gm(∞) = 10). The initial increase and local maximum mirror the axial force

output of the FREE when τf/τm = 3 and τf/τm = 10 in Figure 4.7. Cases when

τf/τm < 1 initially decrease in relative stiffness Gf (t)/Gm(t), reaching local minima,

and then increase toward the same asymptote. This behaviour is mirrored by the

case when τf/τm = 0.1 in Figure 4.7. The case when τf/τm = 0.3 does not have a

local force minimum, but Figure 4.7b shows that its initial force curve is concave-up.

The qualitative similarity of behaviour in axial force and Gf (t)/Gm(t) shows how

the changing relative fiber and matrix stiffnesses affect FREE outputs.

4.7.3 Hysteresis under Cyclic Pressure Inputs

Visco-elastic analysis shows how FREEs dissipate energy during pressure cycles.

Figure 4.8 shows energy dissipation of one FREE. Figure 4.8a shows the force re-

sponse of the FREE to the cyclic pressure shown part b of the same figure. Figure

4.8c shows how the pressure input varies with the FREE’s resultant internal radius

ri. The area enclosed in each subsequent loop indicates energy dissipation through

the pressure cycling process.

Further, the energy dissipation of the FREE changes over time. Initially, the

FREE is at P = 0 and ri = 1, but it does not return to these initial conditions even

when the pressure is subsequently reduced to zero. The FREE appears to eventually
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Figure 4.8: (a) Axial force of FREE with Γ = 60°, τf/τm = 1, Gm(∞) = 0.75,
Gf (0) = 10, and Gf (∞) = 8, an imposed axial stretch of λz = 1 and (b) an input
pressure consisting of three periods of a sinusoid of frequency 0.75. (c) Input pressure
P by calculated internal radius ri for the FREE. Radius increments of size 2.5×10−3

and time increments of size 1.25× 10−2 were used.

reach a limit cycle with larger minimum and maximum ri. Despite these changes in

radius and energy storage, the output force of this FREE f changes relatively little.

The low change in force here contrasts with the behaviours shown in the previous

studies, where the f changes significantly.

The design parameter Γ affects both axial force output and energy storage in

FREEs. Figure 4.9 shows the force and radius response of various FREEs to the

a “pulse” pressure input consisting of one period of a sinusoid followed by zero

pressure. Figure 4.9a shows the axial force on FREEs with Γ ∈ {20, 40, 60, 80}°,
part (b) shows the pressure input used, and part (c) shows the pressure input P

versus interior radius ri. The FREE with Γ = 20° has the highest output force as

well as the largest hysteresis loop. In addition to having the highest tensile force,

the FREE with Γ = 20° has a force reversal into the compressive regime at the end

of the pulse, as shown in Figure 4.9a. Its hysteresis loop has a higher peak radius,

and a shape that deviates most, compared to the other examples shown here, from
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Figure 4.9: (a) Axial force of FREEs with Γ ∈ {20, 40, 60, 80}°, τf/τm = 1, Gm(∞) =
0.75, Gf (0) = 10, and Gf (∞) = 8, an imposed axial stretch of λz = 1 and (b) an
input pressure “pulse” consisting of one period of a sinusoid of frequency 0.75 followed
by zero pressure input. (c) Input pressure P by calculated internal radius ri for each
of the FREEs of varying Γ. Radius increments of size 2.5−3 and time increments of
size 1.25× 10−2 were used.
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an ellipse. This loop indicates nonlinearity in the FREE and higher levels of energy

dissipation. Finally, the hysteresis loop for the FREE with Γ = 20° has a horizontal

segment at P = 0. This flat segment indicates that the radius ri decreases with time

even after the pressure has returned to zero.

For the FREEs shown here, the hysteresis loop size decreases as Γ increases.

Following the FREE with Γ = 20°, each subsequent loop between Γ = 40° and

Γ = 80° shown has less variation in radius and less internal area. fiber orientations

that are more closely aligned with the tube’s center line (i.e. Γ = 20° and Γ = 40°)

tend to have higher tensile axial forces and larger hysteresis loops.

4.8 Conclusion

The approach presented here addresses the mechanical response of a pressurized

tubular actuator, composed of nonlinear time-dependent materials, when it is likely

to deform into the component materials’ nonlinear response regimes. We have shown

that the material and layout properties can introduce unusual phenomena in the

response of the structure. In particular, relative stress relaxation between the fiber

and matrix, as well as fiber layout properties, are found to be key parameters that

produce force reversal and hysteresis in the actuator. The tools developed here can

be leveraged to design soft actuators that accommodate time-dependent changes in

required tasks or in the environment.

Soft robot design and control would benefit from understanding nonlinearity and

viscoelastic effects in fiber-reinforced, inflatable devices. The Pipkin-Rogers consti-

tutive theory used here accounts for the essential features of the nonlinear viscoelas-

ticity of both the fiber and the matrix, and is convenient for analysis. The model

used here is suitable for materials with strongly nonlinear and time-dependent stress-

strain relationships undergoing large deformations.

This study establishes the effect of fiber orientation and relative fiber and matrix

relaxation times on the soft, pressurized composite tubes making up PAMs. We per-

form a detailed study of parameters Γ, τf/τm, and input axial stretch λz and pressure

P (t) in selected subspaces to illustrate their influence on each PAM’s relaxation be-
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haviour in terms of change in radius and axial force on the closed ends of the PAM.

We found that when both the fibers and matrix relax under stress, axial force on

PAMs can increase or decrease over time (Fig. 4.5). These changes in force can

include a transition from axial compression on the PAM to axial tension. The exact

stretch λz at which this transition occurs depends on fiber orientation Γ, even if the

internal pressure P and fiber and matrix relaxation properties are kept equal (Fig.

4.6). Further, we found that changes in the relative relaxation time of the fiber and

matrix τf/τm influences the time-dependent behaviour of otherwise-similar PAMs

under step pressure P (t). As shown in Figure 4.7, a short time τf/τm can result

in an initial decrease in axial force, while a large time constant ratio can result in

an increase to a local maximum. Finally, we showed how time and fiber orientation

influence hysteresis in PAMs whose fibers and matrix are viscoleastic (Figs. 4.8 and

4.9).

The fiber orientations and normalized stiffness values studied here are in the same

range as experimental results from previous studies of PAMs [143, 145], where the

fiber was found to be 5-10 times stiffer than the matrix. The stretch ratios encoun-

tered in the study here are consistent with stretch ratios in PAMs, not exceeding 40%

(i.e., λθ ≤ 1.4 for the PAM with Γ = 20° in Fig. 4.9). Stretch ratios in other soft

actuators that lack fiber reinforcement like PneuNets [67] are higher, on the order of

hundreds of percent.

Future work in this area would involve expanding this analysis beyond the as-

sumption of perfect pressure- and length control. While this context is useful for a

number of applications of PAMs, such as the parallel configurations of the OctARM

device [99] and the soft manipulator of Bruder at al. [16], other contexts can be imag-

ined in which the length of a PAM is not constrained or where the weight on the

PAM plays a more important role. Or, pressure-based control may not be available

and volume-based fluidic control may be preferred. For example, the quasi-linear vis-

coelasticity theory developed by De Pascalis et al. [30] describes the time-dependent

inflation of a viscoelastic bladder. It may be that a different constitutive theory is

found to better describe the behaviour of a particular choice of materials used in a

specified soft robotic actuator. The results presented here show the features of the
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response that could be expected to occur when both the fiber and the matrix are

allowed to relax.

Here, each simulation was run with radius and time increments specified in Sec-

tion 4.6. In general, cases with lower τf/τm required more time steps to reach the

precision criteria discussed. We believe this is because systems with low τf/τm ex-

hibit rapidly changing stiffness due to anisotropy. Such a change is shown in Figure

4.4, where the ratio Gf/Gm for τf/τm = 0.15 has the largest-magnitude slope com-

pared to cases with larger τf/τm, occurring between t = 0 and t = 0.5. If material

properties evolve relatively quickly, it is likely that smaller time steps are needed

to capture this evolution accurately. Sensitivity of novel and existing numeric tech-

niques to these parameters should be studied.

Our focus on fiber layout, relative fiber and matrix relaxation, axial force, and

hysteresis addresses key issues encountered in the use of soft actuation. The approach

presented here bridges the gap between continuum mechanical theory and the study

of soft robotics in cases where time-dependent polymeric architectures are used.

4.9 Summary

Fiber-reinforced, fluid-filled structures are commonly found in nature and em-

ulated in devices. Researchers in soft robotics have used such structures to build

lightweight, impact-resistant and safe robots. The polymers and biological materials

in many soft actuators have these advantageous characteristics because of viscoelastic

energy dissipation. Yet, the gross effect of underlying viscoelastic properties have not

been studied. Nonlinear viscoelasticity is explored in soft, pressurized fiber-reinforced

tubes, which are a popular type of soft actuation and a common biological architec-

ture. Relative properties of the reinforcement and matrix materials lead to a rich

parameter space connecting actuator inputs, loading response, and energy dissipa-

tion. We solve a mechanical problem in which both the fiber and the matrix are

nonlinearly viscoelastic, and the tube deforms into component materials’ nonlinear

response regimes. It is shown that stress relaxation of an actuator can cause the re-

lationship between the working fluid input and the output force to reverse over time
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compared to the equivalent, non-dissipative case. It is further shown that differences

in design parameter and viscoelastic material properties can affect energy dissipa-

tion throughout the use cycle. This approach bridges the gap between viscoelastic

behavior of fiber-reinforced materials and time-dependent soft robot actuation.
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CHAPTER 5

Auxetic Beam Reinforcement for Soft Robots

This chapter has been previously published and is used with permission from the

Institute of Electrical and Electronics Engineers (IEEE). It may be referenced as:

Sedal, Audrey, Fisher, Michael, Bishop-Moser, Joshua, Wineman, Alan, and

Kota, Sridhar. Auxetic Sleeves for Soft Actuators with Kinematically Varied

Surfaces. 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 464-471.

5.1 Introduction

Soft fluidic robots have the inherent ability to interact safely across several loci

within their environments [78, 135]. These interactions have been applied in exo-

suits [42], in-home assistance [7], surgery [24], pipe inspection [45, 147], and motion

through continuum media such as water or dirt [71, 94, 108, 165]. Desired motions

and shapes are often generated by a reinforcing layer of fibers adhered to the actuator

[8, 45], shape memory alloys [147], or braided sleeves [22, 164] placed on the actuator’s

outside surface. While these methods have created an array of useful kinematics,

there are numerous tasks and applications that would be enabled or greatly improved

through a novel reinforcement system with enhanced functionality. Examples include

robots in continuum environments, where control over both diameter and length of

the entirety of the actuator are critical for functionality, or anchoring and grasping
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applications, where actuator shape may change over its length or circumference as

the robot interacts with the environment.

A reinforcement method for soft fluidic actuators comprised of repeating negative

Poisson’s ratio (NPR) structures enables the generation of a rich set of kinematics.

This includes novel length-radius relationships and easy implementation of complex

motions. Selectively varying the parameters of the NPR structure throughout the

actuator opens the possibility for the creation of a near infinite set of motions and

shapes.

While the value of auxetic elements has been demonstrated at the material mi-

crostructure level [81, 152], applications in soft macro-scale structures have been

more limited. Soft actuators made from foams with auxetic voids have been realized

[85], but tolerance and repeatability are limited by fabrication methods that are

still highly experimental [28]. Outside of soft actuators, larger-scale shearing auxetic

structures have been demonstrated using networks of helical beams [88]. Lumped-

compliant mechanisms such as re-entrant honeycombs [17, 81] or petal structures

[173] have also been employed to generate auxetic behavior. However, these design

approaches may suffer from sliding friction, leading to power loss and imprecision

[164], inability to change kinematic behavior circumferentially across the actuator

surface, or stress concentrations, leading to limited operating ranges and pre-mature

failure.

This chapter presents a novel framework for reinforcement of a soft actuator using

a generalized NPR element, henceforth called a Representative Auxetic Element

(RAE). Key contributions include:

1. A novel design analysis method that enables the generalization of the RAE, and

ways to pattern it circumferentially or axially to achieve a variety of motions.

2. Experimental validation of the newly enabled kinematic behavior.

3. A comparison of the actuator behavior to traditional re-entrant honeycomb

and McKibben actuator structures.

115



Figure 5.1: The Representative Auxetic Element (RAE) demonstrated on (clockwise
from top left): a model sleeve, extending actuators, s-curve actuator, extending
actuator, simple bending actuator, and varying diameter actuator. The Michigan
logo is 50mm wide.

Section 5.2 introduces the RAE, defining its key design parameters and con-

trasting it with existing actuator reinforcements. Sections 5.3 and 5.4 describe the

Poisson’s function method for creating soft actuator sleeves with patterned RAEs.

Sections 5.5 and 5.6 contain an experimental validation of the auxetic sleeve perfor-

mance, including an evaluation of the Poisson’s function models and an empirical

comparison with McKibben actuator braids. Section 5.7 discusses the experimental

results. Section 5.8 explores avenues for future work.

5.2 The Representative Auxetic Element

We define a Representative Auxetic Element (RAE) whose geometry is shown in

Figures 5.1, 5.2, 5.3 and 5.5. The RAE is a planar distributed compliant mechanism

containing four leaf springs, each comprised of two symmetric circular arcs. Each leaf

spring meets the supporting beam at a right angle in order to provide the minimum
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Figure 5.2: Motion of representative kinematic elements for the proposed reinforce-
ment design and the commonly used McKibben actuator. As shown, the proposed
design will expand or contract in all directions (NPR behavior) while the McKibben
actuator will contract in directions orthogonal to its expansion (positive PR behav-
ior).

stress concentration. The shape of the RAE is defined by two design parameters l

(the leaf spring length) and θ0 (the initial arc angle), both defined in Figure 5.1. The

parameter θ defines the motion of the RAE: large θ results in an RAE compressed

in e1 and e2, while small θ results in an expanded RAE, shown in Figure 5.3. Each

of these parameters is defined according to the skeletal backbone of the RAE, which

is denoted by a dashed line in Figures 5.1 and 5.5b.

5.2.1 Representative Auxetic Element Design Assumptions

The RAE design and analysis follow four key assumptions:

1. The beams of the RAE do not change length. By design, the beam thickness is

small relative to the curved beam lengths so that the centerlines do not deform

[4].

2. The circular arcs of length l remain circular throughout the RAE’s motion,

justified by experimental observations.
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Figure 5.3: Family of deformations with respect to θ for a fixed arc length geometry.

3. The beam of length L2,0 forms a right angle with the circular arc. This is a

design constraint imposed to reduce stress concentrations.

4. There are no restrictions on the magnitude of the Poisson’s ratio of the RAE.

One can distinguish the local Poisson’s ratio of the beam material νmat, which

may be thermodynamically constrained [5], and the structural Poisson’s ratio

of the RAE νRAE.

RAEs may be patterned onto an elastomeric chamber to produce novel shape

changes when the chamber is pressurized. Some possible combinations are shown in

Figure 5.1. Below, we outline functional advantages of an RAE-patterned actuator

when compared to other soft actuation schemes.

As shown in Figure 5.4, the distributed-compliant designs overall store have less

volume of yielded material. In the case of sample 5 in particular, the amount of

yielded material is so small relative to the RAE design that it is only truly visible in

the isometric view.

5.2.2 Comparison with existing soft actuators

Figure 5.4 shows a Finite Element Analysis (FEA) comparison of three RAE

designs across the design space with equivalent re-entrant honeycombs, a common

auxetic structure [81]. This FEA was performed using the yield and tensile speci-

fications of Formlabs’s Durable V2 material. The highest width change seen in the
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Sample RAE Yielded Mat’l Yielded Mat’l
No. Shape Front View Iso View

1

3

5
von Mises (MPa)

120.0
 
 

 
  0.00

18.6 (Yield)

11.97mm
(a) (b) (c)

Figure 5.4: Finite element analysis of Samples 1, 3, and 5 at their highest measured
deformation, presented alongside analysis of comparable traditional re-entrant hon-
eycombs. Column (a) shows the design shape of each element. Columns (b) and
(c) show two views of the FEA results, highlighting the parts of the RAE that have
exceeded the material yield stress.
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experiment (Section 5.6 below) was imposed here to each of the elements; this corre-

sponds to +5% for Sample 1, +20% for Sample 3 and +35% for Sample 5, as depicted

in Figure 5.4. Columns (b) and (c) show the results of this FEA, highlighting those

portions of the element that exceeded the material’s yield stress. In all but Sample

1, where the curved and traditional designs resemble each other closely, the curved

beam design has a visible reduction in the amount of yielded material, implying

higher repeatability and precision of motion for the RAE compared to the re-entrant

honeycomb design.

McKibben Actuators McKibben actuators are soft, pneumatic devices that lever-

age the angle between overlapping, symmetrically wound fiber helices to produce ax-

ial expansion or compression of a cylindrical chamber. Since the fibers are stiffer than

the chamber, they constrain the tube to become either shorter and wider or longer

and thinner [7, 22] when pressurized, as shown in Figure 5.2. The fiber pattern on

the tube causes it to elongate and decrease in width under pressurization (Fig. 5.2).

In contrast, the RAE is designed to become either larger or smaller in all directions.

Further, the RAE design can vary circumferentially on one actuator while the fiber

helices must remain symmetric about the central axis. The relative motion be-

tween fibers in the McKibben braids at their crossing creates friction, causing energy

dissipation and imprecise motion [164]. Unlike the McKibben braid element shown

in Figure 5.2, the RAE can be made as a monolithic structure without overlapping

parts, eliminating this possibility for friction.

Having outlined the potential advantages of an RAE-patterned actuator, we in-

troduce a detailed design methodology for a soft RAE actuator in the following

sections.

5.3 Poisson’s Functions of Representative Elements

In this section we derive expressions for the Poisson’s ratios of representative

elements including the RAE and a representative element of a McKibben actuator

braid. It is shown that the Poisson’s functions of each of these elements are different.
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Figure 5.5: Parameterization of the RAE using a pair of circular arcs. The key
parameters are the arc length l, and arc angle θ.

5.3.1 Defining the Poisson’s Ratio of the RAE

The Poisson’s ratio of the RAE is derived using the design and motion parameters

l and θ under the assumptions described in the previous section. Below, it is shown

that Poisson’s ratio is a function of the motion parameter θ.

5.3.1.1 Relating the RAE Dimensions

The 2D RAE shown in Figure 5.1 has two size dimensions: L1, the deformed

width of the RAE, and L2, its deformed height. In order to define the Poisson’s

ratio, we need to find the relationship between the change in L1 (∆L1) and the

change in L2 (∆L2) in terms of our design and motion parameters l and θ. L1 and

L2 can be related using the Pythagorean theorem on the triangle with hypotenuse

2a shown in Figure 5.5a:

(
L1

2

)2

+

(
∆L2

2

)2

= 4a2

= 16R2sin2

(
θ

2

) (5.1)

However, the width is further constrained. The law of sines on the triangle shown
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in Figure 5.5c is used to find the width:

L1

4
= R sin(θ) (5.2)

Furthermore, since the leaf spring is made of circular arcs, we know that:

R =
l

θ
(5.3)

Finally, using Equation 5.3 to relate R to the design parameter l and the motion

parameter θ, one can find expressions for the height L2 and width L1:

L1(θ, l) = 4
l

θ
sin θ (5.4a)

L2(θ, l) = L2,0 − 2
l

θ

√
4 sin2

(
θ

2

)
− sin2 θ (5.4b)

Now, L1 and L2 are fully parameterized in terms of l and θ.

5.3.1.2 Poisson’s Functions of the RAE

Then, the RAE has two Poisson’s ratios, called ν1 and ν2, in the directions e1

and e2, respectively (Fig. 5.3). Each of these is defined in terms of the engineering

strains ε1 and ε2 or stretches λ1 and λ2 undergone by the RAE [5, 87, 123]:

ν1 = −ε1
ε2

= −λ1 − 1

λ2 − 1
(5.5a)

ν2 = −ε2
ε1

= −λ2 − 1

λ1 − 1
(5.5b)

where λ1 = L1+∆L1

L1
and λ2 = L2+∆L2

L2
.

However, ∆L1 and ∆L2 are nonlinear in θ as shown in Equations 5.4a and 5.4b.

Therefore, the Poisson’s ratio of the RAE is only valid for small perturbations δθ

about a chosen θ.

One can find the instantaneous Poisson’s ratios in each direction using Equations

122



5.5a and 5.5b:

ν1(θ) = − lim
δθ→0

L1(θ+δθ,l)
L1(θ,l)

− 1

L2(θ+δθ,l)
L2(θ,l)

− 1
(5.6a)

ν2(θ) = − lim
δθ→0

∆L2(θ+δθ,l)
∆L2(θ,l)

− 1

∆L1(θ+δθ,l)
∆L1(θ,l)

− 1
(5.6b)

Evaluating these limits gives:

ν1(θ) =
θ cot θ − 1

θ cot

(
θ
2

)
− 1

(5.7a)

ν2(θ) =
θ + θ cos θ − sin θ

θ cos θ − sin θ
(5.7b)

Equations 5.7a and 5.7b show that the Poisson’s ratios of the RAE are functions of

the motion parameter θ. A detailed comparison of the predictions of these equations

with experimental results is found in Section 5.6

5.3.2 Poisson’s Functions of a McKibben Actuator

The motion parameter of a McKibben actuator is the fiber angle α. The design

parameters are the initial fiber angle α0 and fiber spacing q. Figure 5.6 shows the

deformation of a McKibben actuator fiber at various α.

Using methods comparable to those used for the RAE, one can find the dimensions

of the McKibben representative element:

L1(α, q) = 2q sinα (5.8a)

L2(α, q) = 2q cosα (5.8b)

Using the Poisson’s function definitions from Equations 5.5a and 5.5b, one can

find the Poisson’s functions of a McKibben actuator in terms of its motion parameter.
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Figure 5.6: Deformation profile of a McKibben actuator’s repeating element, param-
eterized by α, the fiber angle, and q, the braid spacing.

ν1(α) = − lim
δα→0

L1(α+δα,q)
L1(α,q)

− 1

L2(α+δα,q)
L2(α,q)

− 1
= cot2 α (5.9a)

ν2(α) = − lim
δα→0

L2(α+δα,q)
L2(α,q)

− 1

L1(α+δα,q)
L1(α,q)

− 1
= tan2 α (5.9b)

The Poisson’s functions of individual units for both the curved RAE and the

traditional McKibben braid are now established. The following section will detail

how these elements produce gross behavior when patterned onto soft cylindrical

shells.

5.4 Design Synthesis of the Soft Sleeve

The RAE can be designed and patterned onto any fluidic enclosure to provide

the chosen kinematic behavior when pressurized. In this section, we map the RAE

parameters onto the global motion of a fluidic actuator patterned with RAEs.

5.4.1 Global Deformation

Here, we restrict the kinematics to cylindrical sleeves due to their ability to be

combined in parallel [8] and their popularity as soft graspers [128] and crawlers [45].
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Other geometries are left to future work.

5.4.1.1 Global Width and Length

Designers wishing to create a soft actuator to specific kinematic specifications

may benefit from finding the explicit width-to-height relationship of a given actuator

design parameterized by θ and l of the RAE. Assuming the sleeve has n RAE’s along

its diameter and m RAE’s longitudinally, one can use the expressions for L1 and L2

in Equations 5.4a and 5.4b respectively to design an RAE with the desired axial to

radial expansion relationship. The length h and the diameter w of the sleeve are

defined as follows:

w(θ, l) =
nL1(θ)

π

=
n

π

4l

θ
sin θ

(5.10a)

h(θ, l) = mL2(θ)

= m(L2,0 + ∆L2)

= m

(
L2,0 − 2

l

θ

√
4 sin2

(
θ

2

)
− sin2 θ

) (5.10b)

5.4.1.2 Global Poisson’s Ratio

We have previously found the Poisson’s function of the RAE (Eqns. 5.7a, 5.7b).

Here, we will show that, for a structure patterned throughout with the same RAE,

the Poisson’s functions of the RAE and the Poisson’s functions N1(θ) and N2(θ) of

the structure are equivalent.

Once again using the definition in Equations 5.5a and 5.5b, one can find the

Poisson’s ratio of the entire structure by computing the limits of the global stretch

ratios for small ∆θ:
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N1(θ) = − lim
δθ→0

w(θ+δθ)
w(θ)

− 1

h(θ+δθ)
h(θ)

− 1
(5.11a)

N2(θ) = − lim
δθ→0

h(θ+δθ)
h(θ)

− 1

w(θ+δθ)
w(θ)

− 1
(5.11b)

One can parameterize Equations 5.11a and 5.11b in terms of θ using Equations

5.10a and 5.10b. Since the multipliers m and n/2π cancel, taking the limit and

evaluating then gives:

N1(θ) = ν1(θ) (5.12a)

N2(θ) = ν2(θ) (5.12b)

Thus, N1(θ) and N2(θ) are equivalent to the local Poisson’s functions ν1(θ) and

ν2(θ) for a tube patterned with a single RAE. The same analysis can be done for

the McKibben actuator or any other cylindrical actuator with a repeating element.

Figure 5.7 shows how Equations 5.10a and 5.10b may be used to map the dimen-

sional design space by l. Each curve shown gives the width-to-height relationship of

a design with L2,0 = 17.96mm, m = 11 and n =5 where l varies from 2mm to 16mm.

The shaded area shows the infeasible space, which is bounded by the asymptotes

in ν1(θ) at θ = 3π
4

as shown in Equation 5.7a and in ν2(θ) at θ = 0 as shown in

Equation 5.7b. The instability of ν1 at θ = 3π/4 is the frontier at which the circular

arcs begin to overlap with the beam, and the sign of the Poisson’s ratio flips. This

is reflected by the fact that h is at its global minimum.

A comparison of the sample’s performance with the predictions in Equations

5.10a and 5.10b is found in Section 5.6.

5.4.2 Varying Poisson’s Ratio Along a Sleeve

One can achieve useful kinematics for the auxetic sleeve by printing it with dif-

ferent RAE designs instead of repeating the same one. Be varying the local Poisson’s

126



0 50
100

200

w(θ) [mm]

h(
θ)

 [m
m

]

θ = 3�
4

θ = 0

l = 16mml = 14mm
l = 12mm

l = 10mm

l = 8mm

l = 6mm
l = 4mm

l = 2 mm

Figure 5.7: Curves representing the relationship between height h and width w of
an RAE actuator with m = 12 and n = 5 parameterized by kinematic parameter θ
at fixed beam length l values.

ratio across a chosen region of the sleeve, one can create useful behaviours. Two such

examples are considered below.

5.4.2.1 Bending

Printing RAE’s on one side of the sleeve, with an inextensible soft beam on the

other allows bending with tunable curvature (Fig. 5.1, top right and bottom).

5.4.2.2 Diameter

By varying the RAE design parameters along the z axis of the sleeve, one can

tune the radius of the soft actuator (Fig. 5.1, bottom left). This may be especially

useful for peristalsis, pipe inspection, or other locomotion.
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5.5 Experimental Evaluation

We evaluated the capabilities of the RAE to provide programmable auxetic be-

haviour by 3D printing and actuating a series of five sleeves with various RAE design

parameters.These are then compared to McKibben actuators.

5.5.1 Fabrication

The samples consist of a latex tube (Kent Elastomer, ID 12.7mm, wall thickness

3.2mm) and a 3D printed sleeve with repeating auxetic elements along its circum-

ference and length. The actuator is fabricated by sliding the auxetic sleeve over the

elastomeric tube and closing the end caps. This is done with 1/2in NPT barbed

pneumatic connectors and zip-ties (Figs. 5.8 and 5.9). Supports were added to the

print files to bridge the ends of the RAE in order to make the geometry printable

without overhangs. The sleeves were printed on a Form 2 printer using Durable V2,

washed with isopropyl alcohol for 10 minutes without post-curing. Supports were

removed with flush cutters. The 3D printed sleeves were placed over lengths of latex

tubing. 3/4in barb to 1/4in NPT fittings were attached to both ends of the latex

tubing using zip ties.

5.5.2 Experiment Description & Uncertainties

Five RAE actuator samples were fabricated with varying l and θ0. Design pa-

rameters are shown in Table 5.1. For comparison, we used the same method to

fabricate three McKibben actuator samples with varied motion parameter α0 with

commercial McKibben sleeves from McMaster-Carr (Part #s 9284K3, 9284K6). The

commercial braid’s fiber spacing q was roughly 1.25mm. Design parameters of the

McKibben actuator samples are shown in Table 5.2.

We pressurized each of the samples between 0 and 140 kPa and back in increments

of roughly 5 kPa ±0.9 with small perturbations to the pressure above and below each

target pressure. If a specimen failed, a new one was fabricated and the sample was

pressurized to roughly 5kPa below the failure pressure. At each configuration, we
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Sample L2,0 [mm] l [mm] θ0 m n

1 6.0 6.1 0.48 29 5
2 9.0 6.7 1.11 21 5
3 12.0 7.6 1.56 16 5
4 15.0 8.8 1.9 13 5
5 18.0 10.0 2.1 11 5

Table 5.1: Design parameters of each RAE actuator sample.

Sample h0 [mm] w0 [mm] α0 m n

1 227 15.35 29.4 55 36
2 200 18.7 39.5 54 36
3 135 46.2 75.1 93 38

Table 5.2: Design parameters of each McKibben actuator sample.

Figure 5.8: Experimental platform to measure actuator deformation including sam-
ple, analog pressure gauge, digital pressure transducer, and camera for image mea-
surements. Image scale is 50mm.
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Figure 5.9: Actuator failure occurs due to aneurysms in the elastomeric tubing at
high pressures.

used a scaled image to measure the specimen’s height h and diameter w. Both h

and w were means of three measurements. The uncertainty of each was calculated

based on the standard deviation and image resolution error of ±0.13mm. These

are propagated to find the uncertainties on θ and α and the experimental Poisson’s

functions, which are derived in the following paragraph.

5.5.3 Computing Key Parameters

The motion parameter θ and the Poisson’s functions ν1 and ν2 were computed

from experimental data. Though an attempt was made to measure θi at each test

condition i directly from the images, finding the point at which the circular arcs

meet was imprecise. Instead, the following method was used.

Using h(θ) and w(θ) from Equations 5.10a and 5.10b, one can relate the motion

parameter θ to the measured width and height of the specimen:

πwi
n4l

=
sin θ

θ
(5.13a)

L2,0 −
hi
m

=
l

θ

√
4 sin2

(
θ

2

)
− sin2 θ (5.13b)

130



Since height hi and width wi at each test condition i per specimen are both mea-

sured, θi can be determined from either of the Equations 5.13a and 5.13b. When

predicting ν1(θ), ν2(θ), and h(θ) θ was estimated with Equation 5.13a. When com-

puting w(θ), we used Equation 5.13b.

The values of the Poisson’s functions ν1(i) and ν2(i) at any test point i are given

by a numerical approximation of Equations 5.11b and 5.11b:

ν1(i) = −
wi+δw(i)

wi
− 1

hi+δh(i)
hi

− 1
(5.14a)

ν2(i) = −
hi+δh(i)

hi
− 1

wi+δw(i)
wi

− 1
(5.14b)

The values of h(i) and w(i) can be found in the following way:

δh(i) =
h(i+ 1)− h(i− 1)

2

δw(i) =
w(i+ 1)− w(i− 1)

2

i = 2 + 3k, k = 1, 2, ...

(5.15)

where i+ 1 and i− 1 are both small perturbations about the input pressure at i.

The following section outlines the results obtained with this procedure.

5.6 Results

Using the procedures outlined above, we measured the values of ν1 and ν2 for

each sample at each actuation pressure. These measurements are shown alongside

the Poisson’s function curves in Figure 5.10 for the McKibben actuator samples and

the RAE actuator samples. In addition to these dimensionless Poisson’s functions,

we evaluated the width-height relationship of each RAE actuator. Figure 5.11

shows the height-width data for each specimen alongside prediction curves that are

generated using Equations 5.10b and 5.10a. Tables 5.3 and 5.4 show the Root Mean
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Sample ε ν1 ε ν2 ε h(w) [mm] ε w(h) [mm]

1 0.3 7.6 35.9 3.4
2 0.5 1.2 2.1 0.4
3 0.4 0.2 1.2 0.3
4 1.7 0.3 0.9 0.4
5 6.5 0.3 1.6 1.6

Table 5.3: RMSE for each RAE actuator sample.

Sample ε ν1 ε ν2

1 1.4 0.2
2 0.3 0.4
3 2.2 3.73

Table 5.4: RMSE for each McKibben actuator sample.

Square Error (RMSE) of the predictions and measurements.

5.7 Discussion

RAE actuators achieve large magnitude negative Poisson’s ratios while McKibben

actuators have positive Poisson’s ratios. The trends of Poisson’s ratio and dimensions

determined from the measured data agree with predictions of ν1(θ) and ν2(θ) with

an average error of 1.92 and maximum error of 7.6 for the RAE actuators and and

average error of 1.37 and a maximum error of 3.73 for the McKibben actuators. The

NPR behavior of the RAE actuators is further elucidated in Figure 5.11, where the

positive trend of the height-width relationship of these actuators varies with RAE

design. The height-width relationship of the RAE samples agrees with an average

error of 4.8 mm and a maximum error of 35.9mm. Error was particularly high for

all measurements of RAE actuator Sample 1. Finite element analysis shows that this

sample has larger portions of material in the plastic regime (Fig. 5.4) compared to the

RAE designs where the curved beams are longer, indicating that model assumptions

1 and 2 may have been broken in this design. A new iteration with the same θ0 and

l but lower thickness t is likely to perform more accurately.
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Figure 5.10: Experimental data of measured ν1 (top) and ν2 (bottom) for all samples
with respect to the motion parameter α or θ as defined in Eqns. 5.14a and 5.14b.
Parameter α refers to the McKibben actuator motion and θ refers to the RAE ac-
tuator. Lines represent the Poisson’s functions ν1,2(α) (Eqns. 5.9a, 5.9b) or ν1,2(θ)
(Eqns. 5.7a, 5.7b) for the McKibben and RAE actuators respectively.
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Hysteresis We did not observe significant hysteresis of the sleeve designs in this

experiment. As shown in Figure 5.11, attempts to trace hysteresis loops would largely

fall within the height and width measurement error. This is evidence that the design

of the RAE succeeds in keeping the stresses on the material mostly within the elastic

regime.

Friction Previous studies on McKibben actuators have identified friction between

the overlapping fibers as the major source of error [22, 164]. RAE sleeves are made

of a single monolithic element with no overlapping parts and therefore they do not

have this drawback. However, these modeling methods have assumed that the interior

elastomeric chamber is “rigidly connected”, i.e. there is no slip, to the reinforcing

elements because of the outward-facing air pressure inside the chamber. Therefore,

the friction due to slip between the elastomer and the reinforcements is not considered

[22, 164]. Our design and modeling of RAE actuators have also been predicated on

this assumption, and therefore the interactions between the elastomeric chamber and

the reinforcing sleeves are considered as a minor source of error. This source of error

is likely captured in the error bars on the data in Figures 5.10 and 5.11.

Aneurysm We observed failure by aneurysm of some samples at pressures between

76 and 146 kPa gauge. Aneurysm is an inherent failure mode for soft fluidic actuators:

even in a material without local weaknesses, there will be a pressure at which the

elastomer ruptures. A detailed study of aneurysm specifically would require a new

experimental setup including cameras with a high frame rate to avoid blurring (Fig.

5.9b).

5.8 Conclusion

This work investigates the novel Representative Auxetic Element (RAE) as a

design building block to create a soft sleeve with specified auxetic behavior. Soft

actuators with RAE sleeves achieved negative Poisson’s ratios with both small and

large magnitudes for various designs (Fig. 5.10). These kinematic possibilities can
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enable new soft robotic motion when RAE actuators are combined in series and/or

parallel. . The kinematics of an RAE are mapped to the global deformation of the

actuator by using two design parameters l and θ0 to create a Poisson’s function that

relates Poisson’s ratio to RAE parameters. This method allows designers to mechan-

ically program a soft actuator with a chosen Poisson’s ratio profile. Experimental

data taken across the design space for RAE and McKibben actuators agrees with

the Poisson’s function models with comparable error, showing that RAE patterns

form a novel design space for soft actuators with predictable behaviour.

Future work should lead to analytical connections between the local material

properties, loading, and deformation of the sleeves. It should also investigate series

and parallel actuation of the sleeves to achieve complex robotic motion and evaluate

the suitability of RAE actuators to specific tasks. Characterizing the relationship

between pressure and the motion of the RAE actuator will allow creation of a design

scheme for specified stiffness or compliance as well as Poisson’s ratio. Expanding the

global sleeve kinematics to non-cylindrical sleeve geometries will enable further new

and useful motions.

5.9 Summary

Soft actuators with auxetic, or negative Poisson’s ratio (NPR), behavior offer

a way to create soft robots with novel kinematic behavior. This chapter presents

an original framework for reinforcement of a soft actuator using a generalized NPR

element, called a Representative Auxetic Element (RAE), and an experimental val-

idation of the kinematic behavior that it enables. A generalized kinematic model

is built that enables the design of RAE-patterned actuators and reveal the distinct

auxetic behavior of RAE actuators with comparable model accuracy to the legacy

McKibben actuators. A simple, reproducible way of designing and fabricating RAE

actuators is described and varied prototypes are shown. This design scheme can cre-

ate actuators with specified kinematics like bending, extension, and radial expansion

that vary across the actuator’s surface both circumferentially and axially.
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CHAPTER 6

Design Synthesis of Soft Robots with Auxetic,

Conic Surfaces

6.1 Introduction

There is a need to develop soft robots with the capability to perform complex

sequential tasks without human or electronic intervention or signals. Soft robots

show inherent potential in exploratory and human-interactive tasks due to their me-

chanical intelligence [135]. By leveraging their high, multi-directional compliance,

soft robots can navigate unstructured environments and interact with delicate ob-

jects. In pneumatic soft robots, mechanical designers focus on ways to change a

system’s input-output behaviour. For instance, Fiber-Reinforced Elastomeric Enclo-

sures (FREEs) [8] and PneuNets [67] use arrangements of inextensible fibers with

highly extensible elastomers to design specific directions in which these soft systems

will move instantaneously. These basic design building blocks can be combined to

create robots move in specific ways when actuated but also respond to external stim-

uli by deforming around them. For example, Wang et al. [171] and Deimel et al.

[31] use PneuNets and FREEs to develop grasping robots.

A growing number of soft robot architectures aim to consider behavioural se-

quences rather than instantaneous responses to actuation. Instead of simply con-

sidering instantaneous behaviour, soft roboticists consider successive behaviour of a

soft system under a sustained or repeated input. Peristaltic and pipe-crawling tasks
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for soft robots often consider cyclic actuation of a parallel or segmented structure to

generate locomotion [45, 91, 109, 146]. The vine robot of [57] can be constrained in

specific locations so that it bends around anticipated obstacles (e.g. climbing up and

through a hole). These examples and others show some ways in which sequential

environmental interaction can create new and meaningful behaviours.

Yet, these sequences are shape-constrained. Peristaltic motion is radially sym-

metric, as is the eversion motion of the vine robot. The work in the previous chapter

discusses auxetic patterning on flat surfaces, curved surfaces, and tubes to develop

greater variation in the shapes that that pneumatic soft robots can achieve. Yet, the

initial shape of the soft robot or actuator is still constrained by the surface on which

auxetic beam patterning is achievable. This chapter investigates a way of patterning

auxetic beam networks on conic frusta, expanding the shape morphing capabilities

of these soft actuators.

This chapter shows that soft actuators comprised of conic frusta with auxetic

surfaces can be used to develop soft robots with sequential motion. A new design

framework is proposed. This framework is based on patterning of auxetic beam

networks that enables the creation of pinch points, resistive areas, and reservoirs for

fluidic actuation. The work evaluates how beam network kinetics affect air flow, and

use the developed principles to design a variety of demonstrative non-cyclindrical

soft systems with encoded actuation sequences.

Section 6.2 discusses the compliant beam building block used here, and explains

how antagonistic arrangements of the building block can result in auxetic motion. It

further develops design rules for patterning the design building block onto conic frusta

and cylindrical segments of any size, and describes an experiment on devices made

from combinations of these surfaces. Section 6.3 gives results of the experiments,

and Section 6.4 provides conclusions and avenues for future work.

Soft robots with embedded motion and timing can offer unprecedented dexterity

and efficiency. In particular, complex motions can be performed without compli-

cated controllers or numerous, cumbersome power lines. Dexterous motion can be

mechanically programmed in to a soft robot so that it performs the same sequen-

tial motions in new environments while deflecting around obstacles. This chapter
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presents an early step toward achieving this functionality for an even greater variety

of soft robot morphologies.

6.2 Materials and Methods

A design methodology is presented in which curved beams are patterned in antag-

onistic configurations to create auxetic motion (i.e. a net increase in surface area)

when internal pressure is applied. An antagonistic configuration of Bézier-curved

beams with auxetic behaviour is termed a Representative Auxetic Element (RAE).

RAEs of varying parameters may be patterned on complex surfaces to produce net

shape change. In this section, the proposed design methodology is described in

detail, including developing the RAE through Bézier-curved compliant beams and

patterning RAEs on flat surfaces, curved surfaces and conic frusta.

6.2.1 Curved, Compliant Beams Form a Design Building Block

The kinematics of one compliant beam form a design building block for various

auxetic surfaces. The compliant beam element used in this chapter differs from the

circular segment-based beam of Chapter 5. The curvature and size of this beam

are characterized by a Bernstein polynomial with five control points ~ci = [cx,icy,i]
T ,

i ∈ {0, 1, 2, 3, 4}. The equation for ~x, the position of any point along the curve,

parameterized by t ∈ [0, 1] is then

~x = (1− t)4~c0 + 4t(1− t)3~c1 + 6t2(1− t)2~c2 + 4t3(1− t)~c3 + t4~c4. (6.1)

In the initial design constraints are applied so that, as shown in Figure 6.1:
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~c0 =

[
0

0

]
(6.2)

~c1 =

[
x1

0

]
(6.3)

~c2 =

[
w/2

h/2

]
(6.4)

~c3 =

[
w/2

h

]
(6.5)

~c4 =

[
w

h

]
. (6.6)

Each beam is built from a curve of width w and height h and has length l.

This curve further has a non-dimensional relationship h/w, referred herein as the

“aspect ratio” of the curve. Under the constraints defined by Eqns. 6.1 thru 6.6,

the design of a compliant beam with a rectangular cross-section of side lengths a

and b can be fully characterized by its width w, aspect ratio h/w, thickness b and

depth a. Manufacturing constraints (i.e. printer bed size and resolution) constrain

the available length-scales and thicknesses for patterned beam designs.

Compliant beams can be compressed or stretched by moving control point ~c4. As

~c4 changes, the rest of the curve will deform in such a way as to balance internal

forces. In particular, the horizontal displacement of ~c4 by a distance d . Any imposed

d > 0 will result in a positive vertical displacement of ~c4 and a horiztonal tensile force

Ftens. An imposed d < 0 will result in a negative vertical displacement of ~c4 and a

horiztonal compressive force Fcomp. Figure 6.1 shows kinematics of the basic beam

element and RAE building blocks.

When placed in antagonistic configurations, these curved beams form Represen-

tative Auxetic Elements (RAEs) that can be patterned to create auxetic kinematics.

Figure 6.1D and E show two ways the Bézier-curved compliant beams may be pat-
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Figure 6.1: (A) Design building block: thin Bézier-curved beam with control points
~ci, i ∈ {0, 1, 2, 3, 4}, parameter t and aspect ratio h/w. (B) Same Bézier-curved beam
as part a, shown with deformations under a tensile force Ftens and a compressive force
Fcomp. (C) Cross section of the beam with width a and height b. (D) Two rows of
antagonistically placed curved beams form a Representative Auxetic Element (RAE).
When placed in a symmetric pattern, this RAE compresses about its center under
compressive load. (E) Another example of a RAE, with asymmetric deformation
under a compressive load.

terned to form a RAE; the top schema show a stress-free configuration while the

bottom depict the configuration under compressive forces. In both cases, lateral

compression of each RAE results in longitudinal compression, and vice-versa. This

is one example of the RAEs’ auxetic behavior.

Because the beam is characterized by a 4th-degree curve, it is not possible to

geometrically solve for a unique closest-fitting transformation for a given end dis-

placement d. Therefore, Finite Element Analysis (FEA) is used to understand the

relationship between horizontal displacement of ~c4 and horizontal resultant force F

on the beam.

Finite Element Analysis was performed on a variety of curved beams spanning the

141



10 20 30 40 50 60 700

0.5

1

1.5

2

2.5

3

d/l (%)

F te
ns

 (N
)

h/
w 

= 
0

h/
w 

= 
1

h/
w 

= 
1.

8

Figure 6.2: Resultant force F perpendicular to beam cross-section on a curved beam,
building block extended by distance d, expressed as a percentage of the beam’s total
length l.

feasible space of aspect ratio h/w. Using a linear elastic model with tensile modulus,

tensile strength and yield strength from the data sheet of the intended construction

material [158], the resultant force Ftens due to imposed horizontal displacement d

expressed as a percentage of each beam’s total length l was evaluated. Each design

evaluated had the same cross section dimensions a = 1.75 and b = 0.8. A tetrahedral

mesh was used with an element size of 0.1mm and a tolerance of 0.005. Imposed

horizontal end displacement d was imposed as a percent of the beam’s total length l

in increments of 2% until most of the beam material stress exceeded yield.

The results of this analysis, shown in Figure 6.2, give an overview of the loading-

deformation behaviour of Bézier beams of varying aspect ratio. As the aspect ratio

increases, the beams can undergo increasing amounts of end displacement before

reaching a mostly yielded state. The beam with aspect ratio 0 is a straight beam,

and its force increases most in proportion to d/l.

The results shown here can serve as a design baseline for development of beam

systems with specified size and stiffness.
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6.2.2 Patterning on Curved Surfaces and Conic Frusta

Here, rules are developed for patterning RAEs onto flat surfaces, curved surfaces,

and conic frusta. From these patterning rules, a variety of 3D auxetic surfaces with

varying compliance can be generated. Figure 6.3 shows a complex funnel-shaped

surface decomposed into cylindrical segments and conic frusta. The following sections

detail geometric rules for patterning RAEs on such surfaces.

Kinematics for patterning Representative Auxetic Elements (RAEs) onto flat sur-

faces, curved surfaces, and cylindrical segments are given in [144] for beams composed

of circular segments. For patterning Bézier curved beams, similar relationships can

be used. For patterning a flat surface of height L and width Y with one row of n

RAEs whose beams have width w, aspect ratio q, and are initially separated by a

vertical distance d,

Y = nw (6.7)

L = 2w
q

+ d. (6.8)

A cylindrical surface of length L, radius R and opening angle γ can be projected

to a flat surface of height L and width Y = γR, allowing the previous methods to be

used. Figure 6.3 B shows a cylindrical segment from the complex surface in Figure

6.3A with radius R, height L and opening angle γ = 2π. This can be projected to

the flat sheet shown in Figure 6.3C, with height L and with 2πR.

Since only a whole RAE element will produce auxetic behavior, n is constrained

to be a natural number. A consequence of this constraint is that only an even number

of Bézier-curved beams may be used to pattern a sheet.

To create the closed shapes demonstrated in this work, combinations of flat sur-

faces, surfaces with circular curves, and conic frusta are used. To pattern RAEs

on a frustum, a similar strategy to the one for curved surfaces is followed: first, a

geometrically flattened frustum is considered. It is filled with distorted RAEs such

that they fit in to the dimensions of the flattened frustum surface.
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Figure 6.3: (A) Complex funnel-shaped device composed of cylindrical surfaces and
conic frustum. (B) Cylindrical surface of length L and radius R. (C) Example of
Patterned RAEs on the cylindrical surface which can be flattened to a rectangle of
width 2πR and height L. (D) Conic frustum having radii R1 and R2 and height H.
(E) Example of patterned RAEs on the conic frustum shown in D, which can be
flattened to an arc-like sheet with radii r1 and r2 and opening angle α.

A circular cone segment of radii R1 and R2 and height H is shown in Figure 6.3D.

The flattened frustum (Fig. 6.3E) can be described by two circular segments of arc

angle α at distance
√
H2 + (R2 −R1)2 apart. The arc angle α is given by

α = 2π
R2√

H2 + (R2 −R1)2

(
1 + R1

R2−R1

) . (6.9)

The distance r1 of the inner circle from the origin is

r1 =
√
H2 + (R2 −R1)2

R1

R2 −R1

. (6.10)

The distance r2 is

r2 = r1 +
√
H2 + (R2 −R1)2. (6.11)

144



To pattern RAEs on flattened frusta, single rows of compliant beams are consid-

ered. Two compliant beams arranged in opposition are called an antagonistic beam

pair. For auxetic behaviour to be maintained, these rows should meet the following

compatibility conditions. As in curved sheets and cylindrical segments, only a nat-

ural number of RAEs (and therefore an even number of compliant beams) can be

used to avoid discontinuities on the beam lattice. Further, adjacent rows of compli-

ant beams with radii ri are not allowed to overlap or create discontinuities. Finally,

the RAE beams must be distorted to fit into the conic pattern. Control points ~c0 and

~c4 move so that two characteristic widths w1 = x1 = ~c1|1−~c0|1 and w2 = ~c4|1−~c3|1
emerge. This constraint can be expressed in terms of the width wi of a compliant

beam in that row, where, for 2m RAEs per row, giving:

αri = 2mwi. (6.12)

The height of each compliant beam hi is then constrained by the fact that com-

pliant beams on different rows should not intersect. For a frustum with p + 1 rows,

all patterned with 2m antagonistic beam pairs, with index i ∈ [1, p] and compliant

beam thickness b,

2(hi + b) < ri − ri−1. (6.13)

Aspect ratio of beam patterned on a conic frustum is measured w. r. t. the flat,

undistorted beam.

It is possible to transition from a row having 2m antagonistic beam pairs (i.e.,

4m individual beams per row)and flattened frustum radius r2 to one having a smaller

flattened frustum radius r1 and m antagonistic beam pairs (i.e., 2m individual beams

per row); the resulting RAE is horizontally asymmetric is shown in Figure 6.1D.

Because of radial symmetry, a frustum patterned with an even number of asymmetric

RAEs like those of Figure 6.1D should nonetheless experience symmetric deformation

in the radial and hoop directions under internal pressurization.
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Using the expressions for α and ri in terms of frustum dimensions (Eqns. 6.9, 6.10

and 6.11) under the constraints in Eqn. 6.12 and 6.13 allows us a relation between

dimensions of the frustum and admissible RAE patterns.

6.2.3 Experiments

Fluidic devices were developed from compound auxetic surfaces to test how rela-

tive compliance of fluidic reservoirs and pinch points affect sequence in soft robotics

actuation.

Using the design rules outlined in the previous section, three devices having the

funnel-like shape shown in Figure 6.4A were constructed. The structures consisted

of a cylindrical surface with L = 54mm and R = 34.5mm patterned with 3 rows

of 8 RAEs. The base of the cylinder attached to a conic frustum of R1 = 19.5mm,

R2 = 34.5mm and H = 38mm patterned with 2 rows of 8 RAEs. A second frustum

with R12.5mm =, R2 = 19.5mm and H = patterned with one row of 4 RAEs

attached to the first frustum. A cylindrical pinch zone with R = 2.5mm, L = 10mm

and one row of 2 RAEs was attached to the second frustum. All RAEs had the cross

section dimensions a = 1.75mm and b = 1mm. Fluctuations in the total length of

the device were ±1mm due to fabrication variation. The devices were 3D printed on

a Sinterit Lisa model using their proprietary material Flexa Grey.

The devices were separated into zones: a fill zone consisting of the larger cylin-

drical surface, a transition zone consisting of the first frustum, and a pinch zone

consisting of the second frustum and the smaller cylinder. Devices were compared.

Each was designed with varying triads of RAEs patterned on each of these sections,

as shown in Figure 6.4. Five devices total were constructed and tested.

A plastic film produce bag (Amazon.com) was folded and placed within each

device so that the bag’s opening extended out of the device’s fill zone, and the

bottom of the bag extended 15cm from the pinch zone. The bag and the device were

mounted vertically on a Bunsen stand. The bag opening was attached to a 3.175mm

ID tube, that routed air from a lab air compressor. A pressure sensor (Honeywell,

SSCDANN005PGAA5) was mounted off the air inlet tube near the bag opening. A
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Figure 6.4: Compliance combinations on auxetic pinch devices. (A) Auxetic valve
schematic showing cylindrical fill zone, conical pinch point with a small-diameter
outlet and transition zone in between. (B)-(F) Schemata of samples tested with
varying compliance levels in fill zone transition zone, and pinch zone. Numbers
shown are the aspect ratio h/w of RAEs used. An aspect ratio of 0 corresponds to
a horizontal, straight beam. The highest aspect ratio used was 1.8.

pressure gauge with digital display was also mounted near the bag opening. A hole

was punched in the bottom of the produce bag below the pinch zone and a 1.58mm

ID tube was secured. This tube was attached to a second pressure sensor. The test

platform used to conduct experiments is shown in Figure 6.5.

The air compressor was set to 517±17 kPa and a manual regulator was opened

slowly to allow flow into the device; this controlled the pressure at the air inlet. When

the produce bag began to observably expand, the manual regulator was released and

left at its current opening state. After the lower portion of the produce bag appeared

to be fully expanded, the pressure in the air compressor was vented to eventually

reach atmospheric pressure. At the conclusion of each test, the air inlet tube was

released from the air compressor allowing the device to drain more fully. Throughout,

the pressure sensors recorded air inlet and produce bag pressures at 8Hz. A 1080P

webcam (Logitech) took 30fps video of each test. Each test was repeated three times,

or until the auxetic device broke. Video stills of one test are shown in Figure 6.6.
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Air Compressor
(not shown)

Pressure
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(not shown)
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(not shown)
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6.35cm

Figure 6.5: Platform used to test effect of auxetic devices on fluid flow. Device is
shown in center with produce bag inside. Pressure gauge with digital readout is
located at the top right. Fluid-carrying tubes are marked with gold lines. The air
compressor and pressure sensors are not shown. The device shown in the photo is
the same as Figure 6.4D.
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(a) (b) (c)

Figure 6.6: Photos of the device test for the device design shown in Figure 6.4D. (a)
Device at atmospheric pressure. (b) Initial response to pressurization P1. (c) The
fill zone is fully expanded and the bottom bag is almost fully expanded.

6.3 Results

The above experiment was performed on five devices. Using similar principles,

prototype devices showing sequential actuation were made.

6.3.1 Combining Fluidic Reservoirs and Pinch Points

Pressure at the air inlet and the lower portion of the produce bag are shown with

respect to time in Figures 6.7 - 6.11. For all cases, P1 refers to measurements from

the air inlet pressure sensor while P2 refers to measurements at the bottom of the

bag after the pinch zone.

Figure 6.7 shows the response of P2 to air inlet pressure input P1 for a device

with beams of aspect ratio 0 in the fill, transition, and pinch zones (Fig. 6.4B). Here,

P2 tracks P1 more closely than it does in the tests shown below. In particular, the

step-like inputs at 50s in the second test (Fig. 6.7b) and 20s in the third test (Fig.

6.7c) only result in small differences between P1 and P2, on the order of 0.5kPa. The

volume constraint provided by the device is a likely reason for closer tracking; air

coming into the device from the compressor fills a smaller volume before it becomes
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Figure 6.7: Pressure P1 and P2 for a produce bag and device with beams of aspect
ratio 0 in all zones (Fig. 6.4B). (a) First test, (b) second test, (c) third test.

compressed by the produce bag walls.

Figure 6.8 shows the response of P2 to air inlet pressure input P1 for a device

with beams of aspect ratio 0 in the fill and transition zones and 1 in the pinch zone

(Fig. 6.4C). Here, P2 follows P1 slightly, but less closely than it did for the device

having beams of aspect ratio 0 in all zones. The device broke by tearing at the pinch

zone at 100s in the first trial.

Figure 6.9 shows the response of P2 to air inlet pressure input P1 for a device with

beams of aspect ratio 1 in the fill zone and 0 in the transition and pinch zones (Fig.

6.4D). Here, P1 follows P2 slightly, but less closely than it did for the device having

beams of aspect ratio 0 in all zones. After the first trial, the bag was incorrectly

mounted to the device and therefore only one test is shown.

Figure 6.10 shows the response of P2 to air inlet pressure input P1 for a device

with beams of aspect ratio 1.8 in the fill and transition zones, and 1 in the pinch zone

(Fig. 6.4E). Here, a clear delay between P2 and P1 is evident in all trials. Step-like

inputs of P1 at time 19s in the first trial, time 3s in the second trial, and time 53s

in the third trial are lagged by P2 by approximately 28s in the first trial, 47s in the

second trial, and 30s in the third trial. After it begins to rise, P2 follows P1, but,

again, does not become equal to P1 while P1 is significantly higher than atmospheric

pressure. The device broke by fracture of the pinch zone at 120s in the third trial.

Figure 6.11 shows the response of P2 to air inlet pressure input P1 for a device
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Figure 6.8: Pressure P1 and P2 for a produce bag and device with beams of aspect
ratio 0 in the fill and transition zones and 1 in the pinch zone (Fig. 6.4C). The device
broke by tearing at the pinch zone at 100s in the first trial.
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Figure 6.9: Pressure P1 and P2 for a produce bag and device with beams of aspect
ratio 1 in the fill zone and 0 in the transition and pinch zones (Fig. 6.4D). After the
first trial, the bag was incorrectly mounted to the device.
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Figure 6.10: Pressure P1 and P2 for a produce bag and device with beams of aspect
ratio 1.8 in the fill and transition zones, and 1 in the pinch zone (Fig. 6.4E). (a)
First test, (b) second test, (c) third test. The device broke by fracture of the pinch
zone at 120s in the third trial.
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Figure 6.11: Pressure P1 and P2 for a produce bag and device with beams of aspect
ratio 1.8 in all zones (Fig. 6.4F). (a) First test, (b) second test, (c) third test.
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with beams of aspect ratio 1.8 in all zones (Fig. 6.4F). Here, a clear delay between

P2 and P1 is evident in the first and third trials. Step-like inputs of P1 at time 4s in

the first trial and time 9s in the third trial are lagged by P2 by approximately 13s in

the first trial and 6s in the third trial. The second trial, with no step-like P1 inputs,

shows closer tracking of P2 with P1.

These experiments show that devices with auxetic fill zones and pinch areas

can affect air pressurization over time in a soft fluidic chamber. In particular, the

possibility of a delay between inlet pressure and the pressure reached inside a chamber

is established. Further, head loss between P1 and P2 is observed in several trials.

6.3.2 Fluid-Sequenced Device Prototypes

Using the pressurization lag effect established in the previous experiments, pro-

totype devices that actuate sequentially were created. Pressurization of these proto-

types was done manually using a squeeze valve attached to an air compressor set at

103 ±17 kPa, via a 3.175mm inner diameter tube.

Figure 6.12 shows selected frames from a video of a device containing 3 fill zones

with beams of aspect ratio 1.0, placed in series with transition zones with beams of

aspect ratio 1.8, and pinch points with beams of aspect ratio 0 between them. These

frames, selected in increments of 4s, show the sequential nature of the inflation of

this prototype. The squeeze valve connecting the compressed air to the prototype is

opened at t = 0s. At a time t = 4s, the rightmost fill zone has expanded. At t = 8s,

the rightmost fill zone is fully expanded. At t = 12s, the center fill zone has begun

to expand, and by t = 16s, all fill zones have expanded.

Figure 6.13 shows selected frames from a video of a device containing 3 fill zones

with beams of aspect ratio 1.8, placed in series with transition zones with beams

of aspect ratio 1.8, and pinch points with beams of aspect ratio 1.8 between them.

These frames, selected in increments of 2s, show the sequential nature of the inflation

of this prototype the differs from the inflation of the prototype with beams of aspect

ratio 0 in the pinch zone. Inflation begins at t = 0s. When t = 2s, the rightmost

fill zone has begun to expand, while at t = 4s, both the rightmost and center fill
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Figure 6.12: Video frames selected at intervals of 4 seconds for a prototype device,
filled with one produce bag, containing beams of aspect ratio 0 at the pinch and
transitions zones, and beams of aspect ratio 1.8 in fill zones.

zones have expanded. At t = 6s, all fill zones are approximately equally expanded.

Between t = 6s and t = 8s, all fill zones reach maximum expansion. In each series

device prototype, positioning of the fill zones against the background causes them to

push against the background and rotate when their volume increases.

Figure 6.14 shows selected frames from a video of a device containing 3 fill zones

with beams of aspect ratio 1.8 in a parallel configuration. Each fill zone is placed in

series with a pinch zone, and the beam aspect ratio used in each pinch zone varies

between 0 and 1.8. A strain-limiting beam is left on each fill zone so that the structure

bends as volume increases. Inflation begins at t = 0s. When t = 2s, the bottom

structure begins to bend out of the plane of the page. At t = 4s, the bottom structure

bends further out of the plane of the page while the middle structure begins to bend

out of the plane of the page. By t = 12s, the bottom and middle structure have

bent further out of the plane of the page while the top structure has bent upwards.

Black circles with white outlines are overlaid on every frame to compare the current

end point of each structure with its location at atmospheric pressure. The moving

shadows of each structure also provide a way to compare motion. Figure 6.15 shows

the same device’s sequential motion as it knocks down three separate rows of dominos
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Figure 6.13: Video frames selected at intervals of 2 seconds for a prototype device,
filled with one produce bag, containing beams of aspect ratio 1.8 in all zones.

under pressurization from a bike pump.

6.4 Conclusion

This chapter establishes basic design rules for patterning auxetic beam networks

on curved surfaces and conic frusta as well as compatibility conditions for combin-

ing differently patterned surfaces. Bézier-curved beams were introduced as a design

building block whose antagonistic placement results in an auxetic surface. Kinemat-

ics and loading behaviour of these design building blocks were studied.

By building devices consisting of connected auxetic surfaces with differing kine-

matic and kinetic properties, the potential of this design framework to create devices

that act as expandable fluidic reservoirs with pinch points was demonstrated. The

pilot study performed shows the existence of a delay effect as air from a pressurized

source fills two expandable volumes separated by chambers of varying compliance.

However, these results open questions for further analysis and experimentation.

First, the mechancial analysis presented here connects deformation to loading on

the level of the design building block. Devices made from various beam networks

and surfaces should be analyzed as well for development of appropriate soft robot
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Figure 6.14: (a)-(f): Video frames selected at intervals of 2 seconds for a prototype
device containing varying pinch zone designs. All actuators in this compound device
have beams of aspect ratio h/w 1.8 in the fill zones and one strain limiting beam in
the center, but varying aspect ratio of beams in the pinch zones. For the pinch zone
marked by A, h/w = 0. For the pinch zone marked by B, h/w = 1. For the pinch
zone marked by C, h/w = 1.8. Black circles with white outlines mark the positions
of the ends of each structure in the device before they are inflated. This device is
filled with three produce bags; one per bending actuator. Ends of the produce bags
extend past the ends of the auxetic structures.
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Figure 6.15: Video frames at intervals of 1s of bending actuator device performing
sequential domino task. All actuators in this compound device have beams of aspect
ratio h/w 1.8 in the fill zones and one strain limiting beam in the center, but varying
aspect ratio of beams in the pinch zones. For the pinch zone marked by A, h/w = 0.
For the pinch zone marked by B, h/w = 1. For the pinch zone marked by C,
h/w = 1.8. Ends of the produce of the produce bag stick out of the auxetic structures
and are covered with masking tape.
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designs.

Second, while the pilot experimental study establishes the time lag effect of air

flow within these devices and its potential usefulness in soft robotics, conclusions

about how the compliance of the design building blocks affects the timing behaviour

cannot yet be drawn. Intuition says that the relative volume change of each device’s

fill zone and the compliance at the opening of the pinch zone should influence the

behaviour of the working fluid. Yet, quantitative differences between designs are

difficult to identify because the inlet pressure P1 is significantly different in every

trial. Further, while a pressurization delay of P2 and a head loss P1−P2 are observed

in several trials, it is difficult to judge which phenomenon is dominant. Using an

electronic pressure regulator rather than a manual valve would greatly increase the

repeatability of each experiment so that designs could be compared. Multiple tests

of a given device should be performed at varying pressure inputs so that head loss

and time delay may be compared and assessed.

Several prototype devices show promise for useful devices in soft robotics such as

locomotion robots and manipulators. A more detailed, experiment-based study of

fill and pinch zone design can clarify the connection between design building blocks

and specific functionality.

6.5 Summary

There is a need to develop soft robots with the capability to perform complex

sequential tasks without human or electronic intervention or signals. This chapter

examines how auxetic design bluiding blocks may be used to design soft robots that

combine fluidic resistance and volume capacity for sequential motion. The work

presented here establishes basic design rules for patterning auxetic beam networks

on curved surfaces and conic frusta as well as compatibility conditions for combin-

ing differently patterned surfaces. Bézier-curved beams were introduced as a design

building block whose antagonistic placement results in an auxetic surface. Kinemat-

ics and loading behaviour of these design building blocks were studied through Finite

Element Analysis (FEA).
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CHAPTER 7

Design and Deployment of Soft Robots with

Strain-Hardening Auxetic Kirigami

This chapter has been previously published and is used with permission from the

Institute of Electrical and Electronics Engineers (IEEE). It may be referenced as:

Sedal, Audrey, Memar, Amirhossein, Liu, Tianshu, Mengüç, Yiǧit, and Corson,

Nick. Design of Deployable Soft Robots through Plastic Deformation of Kirigami

Structures. IEEE Robotics and Automation Letters 5(2): 2272 - 2279.

7.1 Introduction

Deployable robots can transit from a compact form factor into an expanded shape

better-suited for specific tasks or environments. This characteristic of deployability

is useful for robots that need to be transported in a confined space (e.g. a space shut-

tle or underwater vehicle) before reaching their intended operating environment, or

robots that need to pass through small spaces (e.g. a cave opening) before beginning

an exploratory task.

A suitable deployable robot should be easy to fabricate, able to change function

when it changes scale, and have a deployed shape that is well-suited to its intended

usage. Therefore, designing for deployability requires careful consideration of the

structural components involved. Rigid parts of the robot structure need to be inte-

grated in a compact way, yet need to be arranged, connected and actuated so that
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a desired deployed shape is achievable. Some “tensegrity” designs mix rigid beams

with tensile elastic components to achieve a desired deployment shape [41, 110, 180].

Other modules [181, 183] integrate rigid panel-like elements with flexible hinges;

these are often termed “origami” robots. However, robots made with discrete, rigid

components may have limited, and often complicated deployment schemes. Further,

they often require fabrication of special components and high-effort assembly process.

One way to reduce the volumetric and kinematic limitations from rigid compo-

nents is to replace them with soft pneumatic structures. Soft pneumatic structures

are intrinsically deformable in their non-deployed state, meaning that they can be

easily folded, pressed, or packed into compact configurations while retaining the abil-

ity to transform into their deployed shapes. The structures in [161] deploy through

the inflation of truss-like pneumatic tubes, which become stiffer as air pressure in-

creases. Easy fabrication and assembly is another key advantage of soft pneumatic

structures in deployable robotics. The relatively simply constructed vine robot in

[11] can deploy and operate in a variety of conditions, under a variety of environmen-

tal constraints. In [138], inflatable furniture and other static objects are fabricated

by heat-sealing the flat cut sheets of inextensible thermoplastic polymer. In each

of these examples, no advanced or especially precise fabrication is required, yet the

devices achieve the specified deployed shapes. However, purely pneumatic soft struc-

tures have limitations in their deployed state. Such designs often require a minimum

pressure to retain their deployed shape while functioning [161], resulting in a consis-

tent power input requirement. Woven reinforcement materials, such as the meshes

used in Meshworm [146] and CMMWorm [63], also offer tunable deformations con-

strained by the fibers in the mesh, but tuning the elastic recovery of such a structure

without additional actuation is difficult due to fibers sliding against one another.

Further, the motion of these robots in their deployed state is not necessarily easy to

design or control: the deployable vine robot of [11] does not have a simple retraction

scheme, and the tendon actuation of [161] limits the space of available motions.

Compared to other structures and materials that can achieve large-scale stretch-

ing and recovery, kirigami structures have two key advantages. They are easier to

fabricate and offer the possibility for mechanical programming of their kinematics in
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the simple fabrication process. Kirigami-patterned mechanisms are easy to fabricate

due to the fact that they can be cut on planar sheets of material, have mechanically

programmable stiffness properties and offer the potential to be integrated into de-

ployable robots. By patterning networks of thin cuts on a flat sheet, it is possible

to change the kinematics of the sheet material under loading and design a variety

of behaviours. Kirigami-patterned structures are already an often-used basis for de-

ployable static structure design, appearing in mechanisms and structures ranging

from millimeter-scale [172], to architecture scale [77]. Further, kirigami patterns can

be integrated with soft pneumatic actuation. Deformations of a kirigami structure

can add function to a low-stiffness or low-impedance soft system.

In [35], various arrangements of buckled kirigami cuts are shown to produce linear

and rotational actuation. Controlled buckling of a kirigami structure in [127] causes

asymmetric friction that enables an extending actuator to crawl on rough surfaces.

Because of their scalability, relatively easy fabrication, and design degrees of freedom,

kirigami-based structures present a promising opportunity in the design of deployable

robots.

Design of deployed states for kirigami structures has been well-investigated in

the kinematic context [77, 162]. In contrast, loading properties of a kirigami struc-

ture require more characterization: while kirigami structures have been analyzed for

their elastic stiffness [68], buckling response [126], and ultimate tensile strength [66],

elasto-plastic deformation and loading have been neglected. Yet, plasticity occurs

in a great variety of materials and has the potential to be leveraged in robotics; in

particular, the phenomenon of strain hardening under plastic deformation can pro-

duce deployable robots with mechanical intelligence. A plastically deformed robot

structure has unique benefits: it can be kept in its deployed state without requiring

a consistent power input, while elastic recovery in the deployed structure can ac-

commodate external loads. To utilize the benefit of plasticity, a material with large

range for plastic deformation and hardening needs to be chosen.

Loading-deformation behaviour of a robotic structure can be mechanically pro-

grammed by imposing plastic deformation. Depending on the initial cut dimensions

and degree of plastic deformation undergone, the shape and size of the elastic recov-
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ery curve will change (Fig. 7.1), as will the resulting stiffness profile of the structure.

In the case of the strain-hardening material shown in Fig. 7.1, a cut structure can be

loaded to a specific point, and then operate in its deployed state with a springback

range wider than the initial elastic range of the robot.

This chapter proposes a design methodology for robotic kirigami structures that

takes use-case deformation, loading and stiffness into consideration from the begin-

ning of the design process. A a model for plasticity in the stretching of a kirigami

structure is developed. Then, a design methodology showing ways to leverage me-

chanical plasticity in a deployable robotics context is described. Specifically, creation

of kirigami structures that have an increased elastic region, and specified stiffness,

in their deployed states is shown. The benefits of such a plastically-deformed struc-

ture are demonstrated through integration into a soft, deployable crawling robot.

Methodology is shown for design the deployed shape of the kirigami structure such

that its corresponding springback characteristics matches the stiffness of the actua-

tor to which it is attached. By better understanding the plastic loading properties

of kirigami structures in robotic applications, roboticists can create stronger designs

with precise mechanical behaviour and known loading characteristics.

7.2 Plastic Kirigami Model and Validation

This section described a static analysis on the plastic deformation of a kirigami

cut structure. The model presented below relies on three key assumptions: that

there is no buckling of the structure, no out-of-plane motion of the structure, and

that the joints in the structure act as Euler-Bernoulli beams with no length change

along their neutral axes.

7.2.1 Plastic Kirigami Model Description

This work considers kirigami structures with orthogonal patterned cuts for our

modeling and experimentation. However, a similar approach can be applied to other

types of cuts. The orthogonal patterned cuts on a sheet with length l0 and width w0
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Figure 7.2: Kirigami structure in initial (left) and deformed (right) states. This
structure has 2 rows of n cuts of length a, and m cuts of length b. The distance
between orthogonal cuts is δ, and the width of the cuts is c. Its initial width is w0

and its initial length is l0. When an axial force f is applied, the structure has length
l and opening angles θa and θb as shown.

are shown in Fig. 7.2. The first cut family has 2 rows of n cuts of length a, and the

second cut family has m cuts of length 2b. The distance between orthogonal cuts

is δ. To understand loading on the structure, it is important to understand these

kinematics alongside the elasticity and plasticity of the material. Consideration of

the same sheet in a deformed configuration after a tensile force f is applied to it

(Fig. 7.2) can follow. The opening angle between two cuts segments of length a is

θa. The opening angle between two cut segments of length b is θb = π − θa.
The kinematic relation between l in terms of a, b, and θb, derived in [162], is given

by
l

l0
=
a

b
cos

θb
2

+ sin
θb
2
. (7.1)

In the deformed configuration, each rectangle of material in the sheet will have

horizontal forces f on each of its corners (Fig. 7.2c). The total moment τ applied

through joints on each of these 4 corners is balanced by the moment due to misalign-

ment of the axial force f :

τ = f

[
a sin

(
θb
2

)
− b cos

(
θb
2

)]
. (7.2)

The bending moment M on each cut junction relates to the total moment τ

by τ = 4M . Yet, this moment M also depends on the properties of the joint in
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Figure 7.3: Kirigami cut junctions during deformation. Top: Two adjacent kirigami
structures as defined in Fig. 7.2 with 2n cuts of length a, m cuts of length b, force
f applied in the x direction, and opening angles of θa,b. Center: Kirigami repeating
element, from the larger cut structure with moment τ on each corner. Bottom left:
A cut junction of height δ and thickness t, with local coordinates x′ and y′. Bottom
right: cut view of the same cut junction with stresses shown by white arrows. For
|y′|< yp, the stresses are elastic. For |y′|> yp, the stresses are plastic.
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its bent state. To develop this relationship, it is necessary to assume that the cut

junctions act as elastic-plastic bending beams, where tensile stress is assumed to be

small compared to bending stress. Each cut junction is considered as a beam with

bending angle θa, radius of curvature ρ, height δ and thickness t, with coordinates x′

and y′ describing the location of a point on the cut beam’s cross-section (Fig. 7.3).

In [126], similar assumptions are made, but plasticity is neglected. For a structure

in equilibrium, one can find that the moment is a function of both the kinematic

properties and the beam stresses σxx. Then, the following relationship can be used

to find M and the corresponding force on the structure f :

M =
f

4

[
a sin

(
θb
2

)
− b cos

(
θb
2

)]
=

∫ t
2

− t
2

∫ δ
2

− δ
2

y′σxx(y
′, ρ)dy′dx′.

(7.3)

A development of the relationship between the sheet’s material properties and

its stress σx′x′ by approximating the cut structure material as a bilinear isotropic

hardening material [59] is shown below. The 1D constitutive equations for the stress

σ, in terms of the Young’s modulus E, elastic and plastic strains εelast and εplast,

yield stress σyield, and hardening function (here, a constant) Eh are then

σelast = Eεelast (7.4)

for the elastic case. Stress σplast for a material in the plastic regime with linear

isotropic hardening is written in terms of the plastic modulus Eh as

σplast = σyield + Eh(εxx − εyield). (7.5)

Here, the plastic strain is the difference between the deformed strain and the

yield strain: εplast = ε− εelast. Since the elastic regime of this material is linear, one

can assume that
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σyield = Eεyield. (7.6)

Assuming the central axis of the beam does not change length , the strain in the

beam is given by

εx′x′ =
y′

ρ
. (7.7)

Initially, the moment M is fully elastic across the whole cross-sectional area A of

the beam, giving

M(ρ) =

∫∫
A

y′σe(x, ρ)dA

=
E

ρ

∫ t
2

− t
2

∫ δ
2

− δ
2

y′2dy′dx′

=
E

ρ

δ3t

12
.

(7.8)

However, parts of the beam cross-section yield as the curvature 1/ρ increases.

The variable yp is the cross-section coordinate in y′ where the beam transitions from

elastic to plastic deformation (Fig. 7.3). Since the neutral axis of the beam does not

change length, the top part (y′ > yp) of the beam is in tensile plasticity, while the

bottom (y′ < −yp) is in compressive plasticity. The general expression for M(ρ) in

(7.3) is then split about ±yp:

M(ρ) = Melast(ρ) +Mplast(ρ)

= t
E

ρ

∫ yp

−yp
y′2dy′ + 2t

∫ δ
2

yp

y′(σyield + Eh(εxx − εyield))dy′.
(7.9)

It is possible to find the value of yp by setting σyield = σxx(yp) and using (7.4)

and (7.7):
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σyield = E
yp
ρ
. (7.10)

Assuming that the beam bends as a circular segment, and that the cut kerf of

the laser cutter c is 0.25mm, it is possible to find ρ (shown in Fig. 7.3) as a function

of θb as

ρ(θb) =
c

π − θb
. (7.11)

Finally, equating the expressions for M(ρ) from (7.3) and (7.9), and isolating the

force f gives

f(θb) =
4M(ρ(θb))

a sin ( θb
2

)− b cos ( θb
2

)
. (7.12)

The force f in (7.12) tends toward infinity as its denominator tends to zero. This

model’s singularity at a sin( θb
2

)− b cos( θb
2

) = 0 is equivalent to the kinematic locking

equations shown in prior analysis [162].

Using the relationship between the axial force f on the structure, the kinematic

parameter θb, and the cut pattern parameters a, b, δ and t, designers can select pa-

rameters for kirigami structures that have specified loading-deformation relationships

during plastic deformation.

7.2.2 Experimental Validation of Plasticity Model

To experimentally verify the plasticity model, a tensile experiment on 4 sheets of

varying design parameters b and δ was performed. The kirigami pattern samples were

cut from 0.178mm (0.007in) thickness sheets of BoPET (Mylar, DuPont-Teijin) using

a CO2 laser cutter (Epilog Fusion M2). BoPET was chosen because of its known

strain-hardening property [39] and compatibility with CO2 laser cutters. The values

of design parameter chosen for each sample can be found in Table 7.1. Common

parameters for each sample were thickness t = 0.178mm, cut length a = 12.70mm,

n = 10 and m = 12.
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Table 7.1: Set Design Parameters for Validation Samples

Sample no. b (mm) δ (mm)
1 7.367 0.305
2 3.556 0.305
3 1.078 0.305
4 7.367 0.406

The kirigami sheet samples were tested on a tensile machine (Instron, 2350 load

cell) using the ASTM standard tensile test method for plastics. Force f and axial

elongation l − l0 were measured.

Following the tests, a parameter fit was performed on the recorded force-elongation

data to estimate the Young’s modulus E, yield stress σyield, and plastic modulus Eh.

While these values are given on the Mylar data sheet, it is also known that heating

processes (such as the laser cutting process) have an effect on these parameters. For

this reason, fits are performed fr E, σyield and Eh to the experimental data. The

initial length l0 of each structure was approximated as l0 = 2mb. Then, (7.1) and

(7.12) relates the length changes ∆l = l − l0 to the measured axial force f . With

this formulation for f , Wolfram Mathematica’s implementation of Brent’s principal

axis algorithm was used to minimize the Root Mean Square Error (RMSE) between

the result of the parameterized model expression and the measured extension-force

pairs. For feasibility, the operating region of the deployed robot should not approach

the kinematic singularity. So, for each design, whose elongation at the kinematic

singularity is given by ∆llock, only force-elongation pairs where ∆l ≤ 0.85∆llock were

evaluated. Initial guess values for the material parameters were set as E = 109Pa,

σyield = 107Pa, and Eh = 108Pa, order-of magnitude guesses based on the Mylar

datasheet plots. The fit values for material parameters E, σyield, and Eh are listed

in Table 7.2. The RMSE of force f for the fit was 3.72 × 10−2N. Plots comparing

the measurements to the force-elongation model with fitted parameters are shown in

Fig. 7.4.
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Figure 7.4: Force-elongation measurements (points) and proposed model (lines) for
the tested kirigami structure samples. (a) Sample 1, (b) Sample 2, (c) Sample 3, (d)
Sample 4.

7.3 Relationship between Elasto-Plastic Properties, Oper-

ating Dimensions, and Stiffness

Our design task is to choose the parameters a, b, n, m, t and δ for two benchmarks:

(i) achieving an appropriate range of operating lengths ∆ldep due to elastic recovery

of the structure after a deployment force fdep is applied, and (ii) achieving a stiffness

Z that matches or exceeds that of the actuator in its off-state. The force-elongation

plot in Fig. 7.5 shows the deployment and operating regions of a sample kirigami

structure obtained from both loading and unloading. This plot is used to describe the

relationship between elasto-plastic properties, operating dimensions, and structure

stiffness. This material and cut pattern are also used for the fabrication of the

crawling robot of section 7.4.
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Figure 7.6: Force-controlled cycle experiment on a kirigami structure with a =
12.7mm, b = 7.366mm, n = 10, m = 12, and δ = 0.406mm.
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Table 7.2: Material Parameters fit from Tensile Experiment

Parameter Values (Pa)
E 7.343× 108

σyield 1.045× 107

Eh 5.801× 107

7.3.1 Deployed Length and Elastic Recovery

The desired length range in the structure’s deployed state is determined by both

the structure kinematics and the deployment force fdep. It is assumed that δ << b,

and it is thus negligible when considering the gross deformation of the structure.

In the initial compact configuration of the structure, θb = π, and length l0 = 2mb

(marked as point A on Fig. 7.5). Then, when a force fdep is applied, the opening angle

becomes θb = θdep, and the maximum deployed length l = ldep: this configuration is

marked by point B on Fig. 7.5. The deployment process is the transition between

points A and B. Deployment length ldep and force fdep is determined in terms of θdep

using (7.1) and (7.12) as

ldep = 2m(a cos
θdep
2

+ b sin
θdep
2

). (7.13)

fdep =
4M(ρ(θdep))

a sin (
θdep

2
)− b cos (

θdep
2

)
. (7.14)

The operating region is between points B and C on Fig. 7.5. Given a deployment

force fdep, we are interested in the estimation of length change in springback ∆ldep.

Taking the deployed point B from Fig. 7.5 as a reference configuration, the force

fop ≤ fdep is considered as the operational force that changes the opening angle from

θdep to some θb ∈ [θdep, π]. This force is determined by (7.12), with a perturbation

∆M on the joint bending moment:

fop(θdep, θb) = 4
M(θdep) + ∆M(θdep, θb)

a sin ( θb
2

)− b cos ( θb
2

)
, (7.15)
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Since springback of the beam is purely elastic, ∆M(θdep, θb) based on (7.8) is:

∆M(θdep, θb) = E
δ3t

12

[
1

ρ(θdep)
− 1

ρ(θb)

]
. (7.16)

The length change in springback, ∆ldep is then the distance between ldep and point

C on Fig. 7.5. At point C, the axial force on the structure is zero. Solving (7.15) for

fop = 0 and replacing M from (7.9) gives the criterion for θ0 for which f = 0:

∆M(θdep, θ0) =−M(θdep). (7.17)

Obtaining θ0 from (7.17), the solution for the operating length range ∆ldep is then

∆ldep(θdep, θ0) = ldep − 2m

(
a cos

θ0

2
+ b sin

θ0

2

)
. (7.18)

7.3.2 Stiffness

Stiffness of the structure during operation is given by the slope Z (Fig. 7.5) of

the operating region of the deployed kirigami structure. For simplicity, this region

is approximated as linear. The simplified expression for the structure’s springback

stiffness is then

Zsimplified =
fdep

∆ldep
. (7.19)

Design methodologies incorporating nonlinearity of the springback stiffness are

left to future work.

7.3.3 Cycle Life

Four force-controlled cyclic tensile tests were performed on kirigami samples with

a = 12.7mm, b = 7.366mm, n = 10, m = 12, and δ = 0.406mm. The maximum force

for each test was 0.4N, 0.6N, 0.8N and 1.4N respectively; all within the structure’s

plastic zone. The maximum velocity was 150mm/min. In each case, the structure
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Figure 7.7: Compressive actuator characterization. (a) Compression-Force plot of
deflated everting actuator including data (points) and linear stiffness fit (line). (b)
Schematic of side view of actuator characterization experiment. (c) Schematic of top
view of actuator characterization experiment. In both (b) and (c), I refers to the
force sensor (ATI Nano 17), II refers to the soft everting actuator, and III refers to
the lead screw.

survived over 1000 cycles. Fig. 7.6 shows the force-elongation curve of the structure

in the 1.4N test. Some creep is noticeable: springback on the early cycles is larger

than later cycles due to plastic hardening. The apparent springback impedance

(slope) appears to increase as cycles continue. Yet, a limit cycle appears to be

reached.

7.4 Implementation: Deployable Crawling Robot

In this section, a plastic kirigami structure is designed to match stiffness with

a pneumatic actuator, creating a soft deployable crawling robot. Deploying from a

relatively flat compact state, the robot is small enough to slide through tight spaces.

After deployment, the crawling robot benefits from a longer step length, and body

retraction through springback of the plastically deformed structure.
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Figure 7.8: Schematic of crawling robot components and assembly. (a) Laser-cut
flat kirigami pattern. (b) Everting soft actuator (Left: top view. Right: side view.)
(c) Nylon cap. (d) Actuator and cap placement on kirigami pattern. At point A,
actuator base is taped to kirigami structure. At point B, fabric cap is taped to
kirigami structre. Actuator end is then inserted into fabric cap without tape or glue.
(e) Folding of kirigami pattern over cap and actuator. (f) Crawling robot in compact
state with motion tracking markers. (g) Crawling robot after deployment (markers
not shown).

7.4.1 Actuator Characterization

A soft everting actuator [11] was chosen for integration because of its light weight,

and inability to retract after pressure is applied. The actuator was made from heat-

sealed polyurethane (Elastollan, BASF), and characterized its force in the operating

pressure, as well as its off-state stiffness in recovery at atmospheric pressure. The soft

everting actuator was placed in series with a force sensor (ATI Nano 17) and held in

place with a paper linear guide. It was inflated to 5kPa, and then deflated back to

atmospheric pressure. While at atmospheric pressure, a lead screw system was used

to further compress the actuator by 15mm to measure its off-state stiffness. This
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stiffness test was performed 3 times; data from one of the trials is shown in Fig. 7.7.

Again approximating the actuator stiffness as linear, a line was fit to data from each

of the 3 trials. The average measured stiffness of the actuator was Zact = 9.43 N/m

and the maximum force achieved by the actuator was 1.78N. For effective integration

with the kirigami structure, the off-state stiffness of the actuator should be less than

or equal to the springback stiffness of the structure. In terms of (7.19):

Zact ≤
fdep

∆ldep
. (7.20)

7.4.2 Structure Design and Assembly

The crawler used a kirigami pattern with a = 12.7mm, b = 7.366mm, n = 10,

m = 12, and δ = 0.406mm. It was assembled from 4 adjacent patterns with these

parameters cut on a BoPET sheet of thickness t = 0.356mm. It was then folded the

cut sheet into an enclosure (Fig. 7.8). It was assumed that any unfolding during

deployment did not result in bending forces on the kirigami sheet.

Two sheets of thermoplastic urethane (BASF Elastollan, 0.11mm sheet) were

heat sealed at 145◦C to fabricate the actuator. The everting end was heat sealed

closed, while a plastic tubing (1.57mm inner diameter) was glued to the other end.

The actuator’s diameter was 19mm. A fabric cap (Nylon, 70 Denier) was sewn and

attached to the front end of the kirigami enclosure to transmit actuator force to the

kirigami structure. The everting actuator was coated with talc powder to reduce

friction, and placed the folded actuator with its everting end inside the fabric cap.

The back end of the actuator and a small segment of the tubing were attached to the

back of the enclosure. Anisotropic friction was added to the bottom of the crawler

by attaching angled pins to the kirigami structure. The crawler crawled over sheets

of polyester felt.

7.4.3 Crawler Experiments

Two experiments were performed on the crawler. In each, it was initially deployed

by raising the internal pressure to a specified value Pdep, using a pressure regulator
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(Festo VEAB). Then, a cycle of amplitude Pdep was applied to the actuator at 0.18Hz

for 120 seconds. The position of each end of the crawler was recorded at 100Hz using

an OptiTrackTM system with 2 cameras (Prime 17W). Each marker was tracked

from its initial location at the beginning of the experiment. A schematic of the

experimental setup is given in Fig. 7.9. In the first experiment, Pdep was 4kPa. In

the second experiment, Pdep was 20kPa. The first experiment is referred to as the

“short step” experiment, while the second is the “long step” experiment.

Transmission loss of the system was evaluated. For a deployment scenario with

no transmission loss, the deployed opening angle θdep of the crawler structure along

all 4 sides and all 4 corners would give us Fact,nl = 8f(θdep) with f given in (7.14).

The corresponding extension is then given by (7.7). For a given internal pressure and

ideal cylinder-piston model and assuming the TPU wall does not stretch, we expect

that the force at the tip of the actuator Fact is given by Fact,nl = π(D/2)2P , where

D = 19mm. However, there were transmission losses in converting input pressure to

force and displacement due to the friction of the everting actuator with itself and the

fabric cap. To evaluate the losses, an effective diameter De was considered, giving

Fact,loss = π(De/2)2P . By performing a test where the actuator was inflated to 18

kPa, an effective diameter of De = 11.6mm was estimated. This effective diameter

was later used to predict the crawler’s deformations and step sizes.

Further, the performance of the plasticity model was evaluated in the integrated

crawler. Using the design specifications a, b, n, m, t and δ noted above, the model

predicted the operating ranges, i.e. step sizes, ∆ld1 and ∆ld2. Then, the size of each

step ∆ld1,n and ∆ld2,n was measured for both experiments, as well as the permanent

length change ld,perm in the long-step experiment.

7.4.4 Results

The motion of the crawler was recorded and related to the plasticity model. In

the short-step experiment, the crawler stayed in its elastic region, while in the long-

step experiment it reached the plastic region during deployment. Figures 7.10a and

b show the measured motion of the crawler body for the first 60 seconds in the short-
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Figure 7.9: Schematic of tracking experiment on crawler. Bent pins on the crawler
base enable asymmetric friction on a felt surface. Markers and cameras track the
motion of the crawler across the felt.

and long-step experiments, respectively. Specifically,there is net positive (forward)

motion of both markers while the motion of each marker in one pressure cycle are

annotated. In the short-step experiment, actuator displaced a total of 2.46mm. In

the long-step experiment, the actuator displaced a total of 63.3mm. Table 7.3 lists

the modeled and average measured step sizes and permanent length changes for each

experiment. Using these step sizes, and the corresponding modeled forces (maximum

force of 0.12N in the short step experiment, and 0.25N in the long step experiment)

the structure stiffness was calculated in the short-step experiment as 32.3 N/m per

row of cuts (258.4 N/m overall for the 4-sided structure), and the structure stiffness

in the long-step experiment as 33.4 N/m (267.2 N/m overall for the 4-sided cut

structure). Slippage the pin on felt substrate is observable by the slight relaxation

of the robot’s displacement between steps.

7.5 Discussion

This work developed a model for plasticity in kirigami based on plastic defor-

mation of Euler-Bernoulli beams, and validated it with a variety of samples with

different design parameters. Fitting material properties gave results within the ex-
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Figure 7.10: Two deployment and operation experiments at different levels of defor-
mation. (a) Position along the crawling robot’s forward direction (Fig. 7.9) of the
markers over time for the first 60 seconds of the short-step experiment. (b) Position
along the crawling robot’s forward direction (Fig. 7.9) of the markers over time for
the first 60 seconds of the long-step experiment. In blue, the portion of the force-
elongation curve corresponding to the short-step experiment, with step length ∆ld1

is shown. In red, the portion curve corresponding to the long-step experiment, with
step length ∆ld2 is shown.
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Table 7.3: Predicted and measured step sizes

Experiment
Short Step (mm) Long Step (mm)

∆ldep
Predicted 3.88 9.60

Meas. Mean (Std.) 3.80 (0.02) 8.00 (0.60)

∆ldep,perm
Predicted 0.00 1.77

Meas. Mean (Std.) 0.00(0.00) 1.09 (0.34)

pected order of magnitude based on the data sheet of our chosen material. Agreement

of these parameters is evidence that the plasticity model functions as intended: there

do not appear to be additional hardening or softening phenomena in these structures

that affect the parameter fits. The second, more important piece of evidence that the

plasticity model functions as intended is agreement between model and experiment

across all tested samples (RMSE < 9.4%N), and ability of the model to extrapo-

late using the same material parameters to a sample of higher thickness (Fig. 7.5).

Agreement enables use of the model in a soft, deployable crawling robot. A kirigami

structure was designed whose stiffness during elastic recovery exceeded that of the

soft everting actuator. When the actuator was cyclically pressurized between a set

point and atmospheric pressure, the robot took steps whose sizes were determined

by both the deployment level and the pressure input at that specific cycles.

Plastic deformation benefited the crawler: its step size was greater after deploy-

ment into the plastic region (the long-step experiment), compared to the short-step

experiment where the crawler remained in its elastic region. Cycle life of the struc-

ture design used in the crawler exceeded 1000 cycles even at a larger maximum force

(1.4N in the cycle test vs. 0.25N in the crawler prototype).

The key limitation of this approach is the irreversible nature of the deployment.

After a kirigami structure has been plastically deformed, external forces are required

to return it to its initial kinematic configuration. Then, it will no longer have the

same loading behavior that it had before plastic deformation. Though kirigami struc-
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tures have a long cycle life within the deployed range, creep and out-of-range forces

could significantly shorten the fatigue life of such a structure. Yet, relatively low

expense and ease of manufacturing of kirigami structures make them suitable for

single-use deployments followed by bounded repeating loads and deformations. A

second limitation of our approach is that it assumes an absence of out-of-plane load-

ing on the kirigami structures. The plasticity theory developed here can, however, be

expanded to 3D kinematics and loading. Such an analysis would form the basis for

exploring deployable kirigami robots with more complex 3D geometries: flat struc-

tures could deploy into complex 3D shapes. Further, the crawling robot presented

here is a proof-of-concept prototype. This work can be expanded into the design and

control of more sophisticated kirigami robots using different cut patterns than the

orthogonal ones given here. One example is the rotating triangle pattern used for

deployable shells by [77].

7.6 Conclusion

Usually soft roboticists aim to avoid plastic deformation of parts in robot design.

Yet, in materials that harden under strain, plastic deformation can be valuable tool in

design and control. In this work, a design method is proposed for soft robotic struc-

tures that leverages this plasticity. In easy to fabricate, mechanically programmable

kirigami structures, plastic strain hardening can enable deployability from an initially

compact state to a larger functional volume, and can increase the range of elastic

forces, and range of motion, and therefore work, feasible after deployment. Though

this plastic model does not capture tensile behavior of a kirigami structure near its

kinematic singularity, it provides strong agreement (within 0.037N) within the oper-

ating region, and provides the basis for the deformation-based design methodology

shown in the following section.

The work presented here gives a theoretical and experimental basis for designing

soft robots that leverage a fuller range of polymer properties by including plastic

strain hardening. It is shown that plastic deformation of a kirigami structure can

be used to create a deployable robot with no power draw in its deployed state.
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It is further shown how plasticity can be leveraged to selectively match stiffness

to a soft actuator, enabling robot that is able to crawl uniquely because of these

stiffness matches: the soft actuator lengthening the body, and elastic recovery (a.k.a.

springback) of the kirigami structure contracting it again. This plasticity basis for

soft robot design can be used in a variety of soft robotics applications.

7.7 Summary

Kirigami-patterned mechanisms are an emergent class of structure with auxetic

properties that are easy to fabricate and offer the potential to be integrated into

deployable robots. A design methodology is proposed for robotic kirigami structures

that takes into consideration the deformation, loading, and stiffness of the structure

under typical use cases. It is shown how loading-deformation behavior of a kirigami

structure can be mechanically programmed by imposing plastic deformation. A

model is developed for plasticity in the stretching of a kirigami structure. The

creation of kirigami structures that have an increased elastic region, and specified

stiffness, in their deployed states is shown. Benefits of such a plastically-deformed

structure are shown by integrating it into a soft deployable crawling robot: the

kirigami structure matches the stiffness of the soft actuator such that the deployed,

coupled behavior serves to mechanically program the gait step size.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

The purpose of this dissertation is to introduce and evaluate continuum mechan-

ical models in soft robotics. Robots made from soft and compliant materials have

the potential to be useful in exploratory robots, home and assistive robotics, and

medical applications. Yet, due to compliance across a soft robot’s structure and

impedance matching to their environments, soft robots are difficult to characterize

within existing robotics frameworks.

The gap between promise and effective implementation of soft robots exists be-

cause we lack fundamental tools that can evaluate a soft robotic deformation, rather

than rigid body displacement, and contend with blended actuation and structural

function across a soft robot. In this dissertation, models of nonlinear elasticity, vis-

coelasticity, and auxetic behaviour of materials and structures are proposed with

specific uses investigated in soft robotics ranging from design to embedded mechan-

ical intelligence. This dissertation partially answered core questions about whether

continuum mechanical models can represent soft robotic systems, what physical phe-

nomena should be incorporated into the models, and how physical insight from con-

tinuum mechanics can be used to inspire novel robot architectures.

Continuum mechanical models can describe the behaviour of the Fiber-Reinforced

Elastomeric Enclosure (FREE), a commonly used soft robotic actuator. The contin-
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uum mechanical model presented has certain core functions that previous models had

not achieved: in particular, the model allowed for prediction of end force and torque

on FREEs based on their fiber angle, kinematic configuration, and internal pressure.

In comparison to a linear lumped-parameter model and neural network, the contin-

uum mechanical model generalized best across the eight FREE samples of varying

fiber orientation tested, despite having the lowest peak performance. The continuum

mechanical model performed with similar normalized error for any combination of

data used in parameter fitting. Yet, the lumped-parameter model and neural net-

work achieved a lower normalized error than the continuum mechanical model when

trained and tested on the same FREE sample. Because the continuum mechanical

model generalizes across the design space, it is ideal for evaluating FREE designs that

have not yet been constructed, as well as exploring how changes to material proper-

ties, fiber orientation, tube dimensions, kinematic configuration and actuation may

affect FREE performance without time-intensive prototyping and data collection.

Adding viscoelasticity, an inherent property of polymers, to continuum mechan-

ical models of FREEs enables new predictions. A new continuum mechanical model

for viscoelasticity of both the fiber and elastomer in a FREE was presented (Chap-

ter 4). The work showed the ability to explain new behaviors unaccounted for by

the nonlinear elastic theory including a change in the axial force on a FREE from

compressive to tensile over time. Both the level of relaxation of a FREE’s fiber

and elastomer, as well as the timing of the relaxation, can affect FREE behavior.

Analysis showed that early, rapid fluctuations in the relative stiffness of the fiber

and elastomer result in unusual behaviour of the FREE after a pressure input. It

is possible that rapid initial fluctuations of this type cause FREEs to be difficult to

control in settings where fast motion is required but feedback sample rate is limited.

Experimentation and dynamic analysis of viscoelasticity of FREEs may help to an-

swer emerging questions about how sensing, actuation, and material time-dependence

influence the behaviour of FREE-based robots.

Continuum mechanical models can serve as bases for new soft robot architec-

tures. Concepts for soft robots with augmented functionally based reinforcement

designs consisting of antagonistically patterned compliant, curved beams were dis-
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cussed (Chapters 5 and 6). Soft robot functionality due to plastic deformation of

kirigami-based auxetic reinforcements was also explored (Chapter 7). The continuum

mechanical analysis of the dissertation further showed how the opposing design prin-

ciples of distributed and lumped compliance may be useful in different soft robotic

contexts. The beam-based auxetic actuators (Chapters 5 and 6) utilize distributed

compliance as the key operating principle, while the lumped compliance is key to

the motion of the kirigami-based soft robot design (Chapter 7). Desirable robotic

behaviour are achieved in both of these architectures, despite the differences be-

tween compliance strategy and dominant physical phenomena. Networks of beams

with distributed compliance allow tunable shape morphing behaviour by modifying

the length and orientation of the beams, and strain hardening of lumped-compliant

kirigami junctions allows the stiffness of the robot body to be set according to salient

conditions.

This work established that continuum mechanical models can be useful in rep-

resenting the behavior of soft robots, can be a valuable tool in design of new soft

robotics architectures, and a that a diverse set of physical phenomena may be impor-

tant in soft robotics depending on a robot’s particular morphology and use context.

Models for FREEs, a particular type of soft robot actuator, were investigated (Chap-

ters 2–4). A wide variety of ways that continuum mechanical modeling can inform

the design of novel soft robotic concepts were shown as well (Chapters 5–7). The

work provides a broad set of physical phenomena that may be useful in soft robotics.

8.2 Contributions

The contributions of this dissertation span theory, experiment, and design syn-

thesis. The specific contributions are:

1. The solution to a nonlinear, elastic continuum mechanical problem reflecting

static loading on a FREE. Predictive capability of the solution is shown through

comparison to experimental data and design case studies illustrate ways to
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match a FREE design to its intended operating conditions.

(a) A comparison of models connecting FREE loading and deformation that

are vastly different in mathematical structure. The comparison includes

the nonlinear model that forms the previous contribution.

(b) A data set spanning the FREE design space, loading space, and configu-

ration space. These measurements enabled the model comparison to take

place, as well as future benchmarking studies.

2. A new model for viscoelasticity of FREEs allowing effects of both fiber and

matrix relaxation. The model predicts experimental phenomena in FREEs

that were not well-explained by previous models. Further, it allows predictive

capabilities for FREEs in regimes where their component fiber and elastomer

may be made of novel polymers that are highly viscoelastic.

3. Design methodologies for soft robots with deformable surfaces based on auxetic

behavior

(a) A design methodology for patterning compliant beams to create an auxetic

reinforcement for soft robots.

(b) Prototype demonstrations soft, pressurized devices with auxetic reinforce-

ment undergoing novel shape changes and demonstrations of the influence

of the a soft device’s initial shape on fluid flow within the device.

(c) A design methodology leveraging the springback phenomenon of plasti-

cally deformed auxetic kirigami structures under strain hardening. A

crawling robot prototype providing an example of this design methodol-

ogy.

8.3 Future Work

This dissertation provided partial answers to the questions of: (1) whether con-

tinuum mechanical models can describe soft robotic behaviour, (2) which physical
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phenomena are most important to incorporate into models of soft robots, and (3)

how understanding continuum mechanical phenomena may form bases for novel soft

robotic architectures. Further investigation should seek to provide complete answers

to these questions and highlight particular ways to close the gap between soft robots’

promise and implementation. Throughout this work, both theoretical and practical

challenges have been uncovered. The particular suggested avenues below may form

the next phase of research to make soft robotics useful in the contexts where they

have the most promise.

The question of which physical phenomena are most important in soft robotics

remains open. While elasticity and visco-elasticity have been shown to play an impor-

tant role in FREE behaviour, there exist many other physical phenomena that may

be crucial for deployment of FREEs, as well as other soft actuators in the wide array

of human-assistive and human-collaborative applications where they show promise.

One phenomenon which may prove especially impactful is material aging: a study

of the long-term behavior of FREEs and other soft robots has not yet been per-

formed, and material aging behaviour may significantly alter a FREE’s strength and

repeatability. Key potential use cases for soft robots such as home use, exploration,

and medical care rely on long-term deployment of soft devices in environments which

may have harsh conditions or a lack of availability of maintenance tools. For deploy-

ment of soft robots to be useful in these contexts, it is important to understand how

aging of polymers, bonding agents, and other components affects soft robots’ abil-

ity to perform in their respective use cases. Clearer connections between material

choice, fabrication, and device performance can help soft robot designers and control

engineers develop robots that work reliably outside the lab. A study of long-term

behaviour of soft actuators may incorporate a mathematical model of material aging

into the continuum mechanical frameworks presented throughout this dissertation.

Or, a material aging study may involve repetition of the experimental procedures of

Chapters 3 and 5 on the same samples across time to track how fit parameters and

behavioral trends evolve. The baseline methods for modeling and evaluating soft

actuators provided in this dissertation may form valuable benchmarks for tracking

degradation of actuator performance over time.
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This dissertation has provided tools for evaluation of FREEs that enable model-

based evaluation of loading and deformation in vast design and configuration spaces.

These models have reduced the need for physical prototyping and trial and error in

development of FREE-based soft robotic systems. Yet, the available design concepts,

materials, and use cases for FREEs may still fall outside of the provided experimen-

tal validation. Soft robots operating in particular contexts will not necessarily have

straightforwardly measurable input-output behaviour using the experimental plat-

forms described here. Future design tools in soft robotics should include practices

that take a soft robot’s operating environment into account so that appropriate

materials and configurations are explored rather than an overly vast design and con-

figuration space.

Finally, the work in this dissertation focuses mostly on the actuator level in

soft robotics. The systems observed, such as FREEs and auxetic-reinforced soft

actuators, have a single input from the working fluid. Scaling problems abound as

we try to place fluidic soft actuators in series and parallel configurations. Maintaining

a source of pressurized working fluid becomes challenging as actuators are introduced,

and routing the working fluid to the actuators requires increasingly large volumes.

Further, draining actuators to atmosphere after pressurization becomes slower and

more cumbersome as the drainage pipes get longer and narrower. The result is

that seemingly elegant soft, fluidic devices need to have several hidden tethers, air

compressors, and pumps to operate. New soft robot design methodologies should

incorporate improved, scaled-down hardware for fluid pumping and draining, as well

as chemical and combustion technologies that enable untethered pressurization of

soft actuators [93]. One candidate for acting as scaled-down control hardware is

the auxetic fill zone and pinch point-based design framework presented in through

auxetic beam-based actuation (Chapter 6): the thin auxetic surfaces are mounted

externally to the enclosure and may act as both structure and control hardware.

The work shown here is an exemplar of how soft robotics benefits from inter-

disciplinary study. Continuum mechanical theories, which lie outside of traditional

robotics, bring new understanding to soft robotics. These insights, as well as insights

from other fields that are traditionally outside of robotics, should be leveraged as we
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continue to develop soft robotic technologies.
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[77] Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly.
Rapid deployment of curved surfaces via programmable auxetics. ACM Trans-
actions on Graphics (TOG), 37(4):106, 2018.

198



[78] Sridhar Kota. Shape-shifting things to come. Scientific American, 310(5):
58–65, 2014.

[79] Girish Krishnan, Joshua Bishop-Moser, Charles Kim, and Sridhar Kota. Kine-
matics of a generalized class of pneumatic artificial muscles. Journal of Mech-
anisms and Robotics, 7(4), 2015.

[80] Roderic Lakes. Foam structures with a negative poisson’s ratio. Science, 235:
1038–1041, 1987.

[81] Roderic Lakes. Deformation mechanisms in negative poisson’s ratio materials:
structural aspects. Journal of Materials Science, 26(9):2287–2292, 1991.

[82] Roderic S Lakes. Negative-poisson’s-ratio materials: auxetic solids. Annual
review of materials research, 47, 2017.

[83] Christina Larson, B Peele, S Li, S Robinson, M Totaro, L Beccai, B Mazzo-
lai, and R Shepherd. Highly stretchable electroluminescent skin for optical
signaling and tactile sensing. Science, 351(6277):1071–1074, 2016.

[84] Cecilia Laschi, Matteo Cianchetti, Barbara Mazzolai, Laura Margheri, Maur-
izio Follador, and Paolo Dario. Soft robot arm inspired by the octopus. Ad-
vanced Robotics, 26(7):709–727, 2012.

[85] Arnaud Lazarus and Pedro M Reis. Soft actuation of structured cylinders
through auxetic behavior. Advanced Engineering Materials, 17(6):815–820,
2015.

[86] Young Min Lee, Hyuk Jin Lee, Hyung Pil Moon, Hyouk Ryeol Choi, and
Ja Choon Koo. Azimuthal shear deformation of a novel soft fiber-reinforced
rotary pneumatic actuator. In 2019 International Conference on Robotics and
Automation (ICRA), pages 7409–7414. IEEE, 2019.

[87] BM Lempriere. Poisson’s ratio in orthotropic materials. AIAA Journal, 6(11):
2226–2227, 1968.

[88] Jeffrey Ian Lipton, Robert MacCurdy, Zachary Manchester, Lillian Chin,
Daniel Cellucci, and Daniela Rus. Handedness in shearing auxetics creates
rigid and compliant structures. Science, 360(6389):632–635, 2018.

199



[89] Chih-Hsing Liu, Chen-Hua Chiu, Ta-Lun Chen, Tzu-Yang Pai, Yang Chen,
and Mao-Cheng Hsu. A soft robotic gripper module with 3d printed compliant
fingers for grasping fruits. In 2018 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), pages 736–741. IEEE, 2018.

[90] Qin Liu, Qi Wen, Mohammad Mottahedi, and Hai-Chao Han. Artery buckling
analysis using a four-fiber wall model. Journal of biomechanics, 47(11):2790–
2796, 2014.

[91] XinJiang Lu, Kai Wang, and TeTe Hu. Development of an annelid-like peri-
staltic crawling soft robot using dielectric elastomer actuators. Bioinspiration
& Biomimetics, 2020.

[92] Carmel Majidi. Soft robotics: a perspective—current trends and prospects for
the future. Soft Robotics, 1(1):5–11, 2014.

[93] Carmel Majidi. Soft-matter engineering for soft robotics. Advanced Materials
Technologies, 4(2):1800477, 2019.

[94] Carmel Majidi, Robert F Shepherd, Rebecca K Kramer, George M Whitesides,
and Robert J Wood. Influence of surface traction on soft robot undulation.
The International Journal of Robotics Research, 32(13):1577–1584, 2013.

[95] Andrew D Marchese, Konrad Komorowski, Cagdas D Onal, and Daniela Rus.
Design and control of a soft and continuously deformable 2d robotic manipula-
tion system. In 2014 IEEE international conference on robotics and automation
(ICRA), pages 2189–2196. IEEE, 2014.

[96] Andrew D Marchese, Cagdas D Onal, and Daniela Rus. Autonomous soft
robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft
Robotics, 1(1):75–87, 2014.

[97] Andrew G Mark, Stefano Palagi, Tian Qiu, and Peer Fischer. Auxetic meta-
material simplifies soft robot design. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 4951–4956. Ieee, 2016.

[98] Ramses V Martinez, Jamie L Branch, Carina R Fish, Lihua Jin, Robert F
Shepherd, Rui MD Nunes, Zhigang Suo, and George M Whitesides. Robotic
tentacles with three-dimensional mobility based on flexible elastomers. Ad-
vanced materials, 25(2):205–212, 2013.

200



[99] William McMahan, V Chitrakaran, M Csencsits, D Dawson, Ian D Walker,
Bryan A Jones, M Pritts, D Dienno, M Grissom, and Christopher D Rahn.
Field trials and testing of the octarm continuum manipulator. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Confer-
ence on, pages 2336–2341. IEEE, 2006.
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