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Abstract

Numerical optimization has been applied towingdesignproblems for over 40 years.
Over the decades, the scope and detail of optimization problems have advanced
considerably. At the present time, the state-of-the-art in wing design optimization
incorporates high-fidelity modeling of the steady-state aeroelastic response of the
wing at both on-design and off-design operating conditions. Reynolds-averaged
solutions of the Navier–Stokes equations coupled with linear finite element anal-
ysis offer the highest fidelity modeling currently tenable in an optimization con-
text. However, the complexity of implementing and cost of executing high-fidelity
aerostructural optimization have limited the extent of research on the topic. The
goal of this dissertation is to examine the general application of these tools to wing
design problems and highlight several factors pertaining to their usefulness and
versatility.

Two types of wing design problems are considered in this dissertation: refin-
ing and exploratory. Refining problems are more common in practice, especially
for high-fidelity optimization, because they start from a good design and make
small changes to improve it. Exploratory problems are intended to have liberal
parametrizations predisposed to have significant differences between the original
and final designs. The investigation of exploratory problems yields novel findings
regarding multimodality in the design space and robustness of the framework.

Multimodality in the design space can impact the usefulness and versatility of
gradient-based optimization in wing design. Both aerodynamic and aerostructural
wing design problems are shown to be amenable to gradient-based optimization
despite the existence of multimodality in some cases. For example, a rectangular
wing with constant cross-section is successfully converted, through gradient-based
optimization, into a swept-back wing with transonic airfoils and a minimum-mass
structure. These studies introduce new insights into the tradeoff between skin-
friction and induced drag and its impact on multimodality and optimization. The
results of these studies indicate that multimodality is dependent on model fidelity
and geometric parametrization. It is shown that artificial multimodality can be
eliminated by improving model fidelity and numerical accuracy of functions and
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derivatives, whereas physically significant multimodality can be controlled with
the application of geometric constraints.

The usefulness of numerical optimization inwing design hinges on the ability of
the optimizer to competently balance fundamental tradeoffs. With comprehensive
access to the relevant design parameters and physics models of the aerostructural
system, an optimizer can converge to a better multidisciplinary design than is pos-
sible with a traditional, sequential design process. This dissertation features the
high-fidelity aerostructural optimization of an Embraer regional jet, in which si-
multaneous optimization of airfoil shape, planform, and structural sizing variables
yields a significantly improved wing over the baseline design. For a regional jet,
it is shown that the inclusion of climb and descent segments in the fuel burn com-
putation has a significant impact on the tradeoff between structural weight and
aspect ratio. Another study addresses the tradeoff between cruise performance and
low-speed, high-lift flight characteristics. A separation constraint at a low-speed,
high-lift condition is introduced as an effective method of preserving low-speed
performance while still achieving significant fuel burn reduction in cruise.

xvi



Chapter 1

Introduction

Wingdesign is a complicated endeavor. Tobe viable in apractical application awing
must generate lift, but do it stably and efficiently. Every contour of its surface plays a
role, for better or for worse, in overall aerodynamic performance. It must withstand
critical load conditions, yet any nonessential structural weight only detracts from its
effectiveness. Additionally, a wing is generally expected to performwell at a variety
of flowconditions in spite of aeroelastic deformations. All of these reasons andmore
give rise to a wonderfully intricate design problem, one that stymied dreamers for
millennia and continues to demand significant effort in the modern era. At present,
state-of-the-art wing design involves using numerical optimization in conjunction
with high-fidelity computational models in order to determine the optimal wing
for a set of requirements. These tools enable the human designer to spend less time
manually iterating and instead focus on asking the right questions and interpreting
results. However, high-fidelity wing design optimization is still relatively new and
industry has a long history of success with more traditional design methods. The
responsibility of demonstrating and promoting its value rests with academia and
researchers. The purpose of this dissertation is to demonstrate the value of using
gradient-based optimization to explore the design space in aerostructural wing
design problems. Some of the questions examined include

• Is the design space multimodal? What are the implications of multimodality
for a gradient-based optimizer?

• How does model fidelity affect the result of the optimization? What is the
appropriate model for a given design problem?

• How do different design parameters influence wing performance? Does si-
multaneous optimization of all parameters produce a different design than a
more traditional design method?

1



Given the open-ended nature of these questions, I do not expect to provide com-
prehensive answers that would be applicable to all cases. Rather, for the three case
studies presented herein, the aim is to provide a template and encourage designers
to use it to answer their own questions.

1.1 A Brief History of Wing Design

In 1799, Sir George Cayley first conceived of the fixed-wing airplane, brilliantly
decoupling the lift problem from the thrust problem1 in contrast to the bioinspired
flapping flight concepts of his day. The following century saw numerous attempts
at powered flight end in failure due to a collective preoccupation with muscling
the aircraft into the air with more powerful (and heavier) engines. In contrast, the
Wright brothers (among others) found success by taking a more holistic approach
to aircraft design. They rigorously tested hundreds of airfoil shapes, leading to
aerodynamically efficientwings andpropeller blades. They also selected an efficient
structural designwhich enabled a higher aspect ratio for theirWright Flyer than they
had previously used on their gliders2. Finally, they mastered the control of their
aircraft through the novel use of wing warping. Individually, any one of these
improvements may not have been sufficient, but taken altogether, they produced a
step change in aircraft performance. Since that first success, the integrated nature
of the aircraft has been one of its defining characteristics.

In the early days of aviation, experimental testing was the best way to build un-
derstanding of the aircraft anddetermine how to improve its performance. Thiswas
partly due to the fact that key aspects of aerodynamic theory were still undiscov-
ered. Experimental testing was well-suited to the kinds of basic parameter sweeps
being investigated at that time, however it is not an efficient tool for an iterative
design process. It did not take long for aerodynamicists to uncover important new
concepts—the Kutta-Joukowski theorem (1906), Prandtl’s boundary layer (1904)3

and lifting line (1918)4 theories, and Munk’s thin airfoil theory (1922)5 to name a
few—that greatly enhanced design intuition. These theoretical breakthroughswere
too general to be useful in detailed design comparisons, but they paved the way for
more practical numerical methods that could have a place in the design process.

The gap between theory and practical designwas bridgedwith the introduction
of the National Advisory Committee for Aeronautics (NACA) family of airfoils by
Jacobs in 19316. The simplicity of the NACA airfoil definition, combined with the
exhaustive empirical data published for a variety of camber and thickness distribu-
tions, made theNACA airfoils an invaluable tool in thewing design process. Around
the same time, Theodorsen 7 generalized the conformal transformation (originally
developed by Joukowski) to allow the calculation of pressure distributions for air-

2



foils of any arbitrary shape. It would take another 30 years before methods were
developed (and computerswere capable enough) to calculate pressure distributions
over arbitrary three-dimensional bodies. These so-called panel methods were first
introduced for two-dimensional and axisymmetric shapes by Smith and Pierce 8 .
Hess and Smith 9 published the generalized method for three-dimensional bodies
in 1967. Although the accuracy of inviscid panel methods would be surpassed in
short order, they continue to be used in aircraft design to the present day. In later
years, Hess explained the reason for their enduring usefulness: “Even when their
results fail to give the proper experimental values, they are frequently useful in
predicting the incremental effect of a proposed design change or in ordering var-
ious designs in terms of effectiveness”10. This statement underscores the value of
computational fluid dynamics (CFD) in the design process, regardless of its fidelity
to reality. This is not to say that a very low-fidelitymodel should be used in detailed
wing design. Rather, for every legitimate aerodynamics model, there is a subset of
the design space over which the model will provide useful information fromwhich
design decisions can be made. Critically, the designer must still determine at what
stage of the design process and with respect to which design parameters a given
model fidelity is useful.

Regardless of the method used to analyze the design, there remains the funda-
mental issue of selecting the design parameters for a given iteration of the design
cycle. Ideally, the designer should have some intuition regarding the tradeoffs in
the design space and the sensitivity with respect to different parameters. This is a
tall order even for experienced designers, yet the alternative is basically educated
guessing. RichardWhitcomb famously spent hours in the wind tunnel with a putty
knife, painstakingly modifying the wing section until arriving at the supercritical
airfoil. One solution is to invert the problemandfind the geometry that corresponds
to a prescribed pressure distribution. This inverse design method was pioneered
by Jacobs who, despite his great success with NACA airfoils, came to the realization
that “continued empirical testing of airfoils, no matter how systematic, would not
lead to greatly improved shapes except by luck”6. Mangler 11 and Lighthill 12 inde-
pendently worked on solving the same problem, and modern inverse airfoil design
methods derive from their efforts. However, inverse design methods presuppose a
knowledge of the optimum pressure distribution, which is not generally the case in
design problems. The solution to these shortcomings in the design process came in
the form of numerical optimization.
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1.2 Numerical Optimization of Wings

The solution of general engineering design problems via numerical optimization
originated in structural mechanics. Prior to 1960, optimal structural design was
carried out with specialized formulations that would not have been generalizable to
a broader class of problems. Schmit 13 recognized that engineering design problems
were naturally suited to be framed as general nonlinear optimization problems.
Schmit’s innovation was motivated by the desire to solve more general structural
design problems (e.g. multiple load conditions, custom objective functions, etc.),
but in generalizing the methodology, he also opened the door to numerous other
engineering applications. Schmit called his method “structural synthesis”, which
aptly conveys the fusion of various research fields which is characteristic of design
optimization.

The first application to airfoil design was the result of a collaboration between a
former student of Schmit and two National Aeronautics and Space Administration
(NASA) aerodynamicists. Hicks et al. 14 demonstrated gradient-based optimization
on airfoils in inviscid flow using the transonic small-disturbance equations. They
were motivated by the need for a better automated design method—one that was
simple to implement, generalizable to different flow regimes and three dimensions,
and capable of handling generic constraints. In 1978, Hicks and Henne 15 extended
themethod to optimize the design of a three-dimensionalwingusing a full potential
inviscid aerodynamics code. Regarding their work, they stated: “The primary
objective of this investigation was to demonstrate the usefulness and versatility
of numerical optimization in wing design.” In three optimization problems, they
used the eponymous Hicks–Henne bump functions to optimize a wing for various
objectives and constraints. Thus, more than 40 years ago, the primitive form of
wing design optimization emerged. The intervening years have seen remarkable
advances in computing capability, modeling fidelity, and optimization efficiency, all
of which have improved the usefulness and versatility of numerical wing design.
Yet the basic idea remains the same as that presented by Hicks and Henne.

Numerical design optimization has benefited immensely from progress in gen-
eral computing and numerical analysis. The fidelity of CFD tools increased as panel
methods gave way to solutions of the full potential equations, the Euler equations,
and finally the Reynolds-averaged Navier–Stokes (RANS) equations. Each of these
advances enabledmore accurate predictions of the complex physical phenomena in-
herent to transonic flow conditions. The scope and complexity of problems that can
be realistically analyzed has also increased with the exponential rise of computer
processing power andmemory limits. At present, second-order finite volume RANS

solvers are widely used in industry to complement and gradually replace wind tun-
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nel testing. Modeling accuracy is of paramount importance to design optimization
because it limits the degree of detail that can be admitted in the parametrization.
A good aerodynamic design is often determined by small or nuanced design fea-
tures, yet it is pointless to give the optimizer control of these features if they are not
accurately represented in the physical model.

At the same time, the cost of the optimization problem mounts with higher
model fidelity and greater numbers of design variables. This rising cost can be
alleviated by using gradient-based optimizers, which generally require fewer func-
tion evaluations to converge to an optimum, thus reducing the total computational
time. However, the cost of naïvely computing derivatives by finite differencing
also scales with the number of design variables. The fundamental innovation that
paved the way for high-fidelity aerodynamic shape optimization was the adoption
of the adjoint method from control theory by Pironneau. He applied adjoint theory
to obtain minimum drag profiles for Stokes flow16 and the incompressible Euler
equations17. Later, Jameson 18 derived the adjoint of the compressible Euler equa-
tions and used it to optimize airfoils19 and wings20. The cost of using the adjoint
approach to compute derivatives is independent of the number of design variables.
Hicks and Henne 15 used finite differences to calculate derivatives and were limited
to 11 design variables in their optimizations. By contrast, Jameson 20 optimized
the positions of up to 4,224 surface mesh points in one of his first forays into wing
optimization. While this was an impressive demonstration of the scalability of the
adjoint method, it is far from being the ideal way to parametrize a wing.

Computer-aideddesign (CAD) software is anatural first choice fordesignparametriza-
tion because it allows for intuitive design variables and is ubiquitous in industry.
In fact, manymodern CAD packages can be bundled into comprehensive computer-
aided engineering (CAE) frameworks that often include optimization capabilities.
However, CAD has not yet been widely adopted for aerospace optimization appli-
cations because it has not been adapted to work with the adjoint method. Many
researchers have approximated CAD derivatives using finite differences, but this
approach is untenable for more than a handful of design variables due to com-
putational cost. Instead, more nimble methods have been adopted for geometric
parametrization in wing design. These methods provide more intuitive control of
the geometry than merely displacing mesh points, yet offer efficient gradient cal-
culation and negligible computational overhead. Samareh 21 gave a comprehensive
review of such methods.

Aerodynamic shape optimization (ASO) lies at the intersection of numerical
optimization, CFD, and CAD. The fruits of ASO are too numerous to be compre-
hensively reviewed here, but I will highlight some of the key milestones. Reuther
et al. 22 extended the applicability of adjoint optimization to large-scale problems
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with full-configuration, multiblock CFD meshes through improvements to the de-
sign parametrizationmethod, mesh perturbation scheme, and parallel implementa-
tion23,24. The development of the RANS adjoint25–27 enabled the realization of more
practical designs, especially in the transonic regime. It was later shown that signif-
icant differences arise between Euler and RANS-optimized wings28,29. ASO has been
applied to conventional30–32 and unconventional aircraft33–35. It has proven use-
ful for exploring nonplanar wings36,37 and wingtip devices38,39. The development
of a set of benchmark optimization problems by the AIAA Aerodynamic Design
Optimization Discussion Group (ADODG) was an important step in establishing
expectations and standards for ASO. For a more thorough review of the history of
ASO, see Jameson and Ou 40 , and for a deeper look at recent advances, see Skinner
and Zare-Behtash 41 .

Wing design is inherently a multidisciplinary problem, with the two dominant
disciplines being aerodynamics and structures. Any design that is produced byASO

either blatantly violates structural requirements or is handicapped by overly conser-
vative constraints which are put in place to prevent such violations. An optimizer
needs access to rich information from both aerodynamic and structural models in
order to optimally balance fundamental tradeoffs in the wing design problem. The
structural optimization community was first to consider multidisciplinary effects
in wing design. Haftka 42 optimized a wing structure subject to flutter constraints
modeledwith second-order piston theory aerodynamics. Soon thereafter, Haftka 43

combined a lifting line model with a simple finite element model to perform one
of the earliest aerostructural optimizations. But at these early stages, the prospect
of analyzing—let alone optimizing—a high-fidelity model considering both aero-
dynamics and structures was out of the question. An eminent aircraft designer of
that era, Dietrich Küchemann, presciently wrote, “This should be one of the aims
for the future: we want an integrated aerodynamic and structural analysis of the
dynamics of the flying vehicle as one deformable body, and to use that for design
purposes”44. This yearning for more integrated analysis of aircraft wings was actu-
ally part of the more expansive multidisciplinary analysis and optimization (MDAO)
movement, which is covered in more detail by Martins and Lambe 45 .

Küchemann’s dreamof a high-fidelity aerostructural designoptimization frame-
work began to come to life at the turn of the 21st century. With increasingly sophis-
ticated CFD and computational structural mechanics (CSM) tools came the need for
transfer schemes46–48 that could accurately represent the fluid-structure interaction
(FSI). The development of efficient aerostructural solvers andmethods for multidis-
ciplinary derivative computation opened the door to high-fidelitymultidisciplinary
design optimization (MDO). Maute et al. 49 optimized a simple swept wing using
Euler CFD and structural finite element analysis (FEA), but they only used the direct
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method to calculate derivatives and were thus limited in the number of design
variables. Martins et al. 50 developed the coupled adjoint for aerostructural systems
and applied it to the optimization of a supersonic business jet51. Since then, many
researchers have employed aerostructural optimization using the RANS equations
and complete finite-element wingbox descriptions52–56. This advancement in the
modeling fidelity used in optimization is only possible with efficient parallel im-
plementation, adjoint sensitivity calculation, and rapid, robust solvers. However,
even when all of these details are considered, a high-fidelity optimization can be
quite computationally expensive.

1.3 Motivation and Objectives

The preceding two sections have narrated the evolution ofwing design, culminating
in the development of MDO. Currently, the aircraft industry is in the process of
incorporating MDO into its standard design cycle. However, the transformation is
by nomeans complete or even fully supported. Borrowing a phrase fromHicks and
Henne 15 , the objective of this dissertation is to further validate the “usefulness and
versatility of numerical optimization inwing design.” Thewords useful and versatile
are unexpectedly fitting for the content covered herein. The following paragraphs
expand on how I demonstrate usefulness and versatility in this dissertation.

Versatility implies robustness, generality, and flexibility. Optimization is touted
as an invaluable tool for studying and designing unconventional aircraft for which
there is no historical data to inform design decisions. A versatile MDO framework
should adapt easily to any aircraft configuration and explore the design space to
find the optimal design. Gradient-based optimizers are often criticized in this
respect because, by construction, they converge to a single local minimum, which
may or may not be the global optimum. This criticism carries the implication that
MDO is better suited for refining already good designs rather than exploring novel
design spaces. Many researchers have studied exploratory optimization problems
to determine whether this is a valid claim. Airfoil optimization problems have
been shown to be unimodal and well-disposed to solution by a gradient-based
optimizer57. Likewise, optimization of the local airfoil shape of three-dimensional
wings (fixed planform) is a unimodal problem58–60

When planform variables are added to the design problem, multiple local min-
ima do appear in the design space57,61,62. However, it would be irresponsible to
conclude from these results that MDO is not appropriate for these types of prob-
lems. A more conscientious study of the fundamental reasons for multimodality
is warranted. In some cases, the local minima are so close to each other that the
differences are insignificant, given the modeling tolerances58. Alternatively, the
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designs might be quite different but the objective can be very similar due to a very
flat design space. Sometimes local minima may exist due to known physical phe-
nomena (e.g. forward and aft swept wings). Local minima might also exist when
the modeling fidelity is inadequate to distinguish between two designs that have
very slight differences. In this dissertation, I study two different exploratory op-
timization problems with the goal of elucidating the fundamental reasons for the
existence of multiple local minima.

A useful optimization framework is one that can readily be applied to practical
design problems (as opposed to academic studies). The usefulness of MDO in wing
design has already been well demonstrated in the literature. In this dissertation, I
address a few of the practical aspects of wing design optimization. With regards to
themultimodality issues previously discussed, I propose specific design constraints
to eliminate or mitigate multiple local minima from the design space. Throughout
the dissertation I also provide practical tips for optimization practitioners, such
as the use of successive optimization runs with increasingly finer grids to reduce
overall computational cost.

One of the common pitfalls of wing optimization is the tendency for the op-
timizer to maximize performance at specific design conditions at the expense of
robust performance across the entire flight envelope63. This problem is frequently
addressed by including the performance at multiple design conditions in a single,
composite objective function. In the literature, however, multipoint optimization is
usually aimed at improving robustness in cruise flight, where the aircraft spends
most of its time24,58,64. In this dissertation, I show that awing optimized formultiple
cruise flight conditions still may not be flightworthy at low-speed, high-lift condi-
tions. I experiment with using a separation constraint to ensure good low-speed
performance on a cruise-optimized wing design.

The capstone optimization problem of this dissertation involves the redesign of
an Embraer regional jet wing. For this short-haul aircraft, I show the importance
of considering the performance of the entire flight profile, including climb, cruise,
and descent segments, rather than just optimizing for cruise performance as is
often done in the literature for larger aircraft. The final results of this optimization
problem are a definitive demonstration of the benefits of simultaneously optimizing
twist distribution, cross-sectional shape, planform, and structural sizing in order to
arrive at the best wing design.

In all of these studies, our approach is to use optimization to extract design
insights and understand tradeoffs. Philosophically speaking, I do not see MDO as
a threat to the human designer but rather as a tool to improve the efficiency and
innovative potential of the design process.
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1.4 Contributions and Outline

The original contributions in this dissertation are listed here:

1. Developed new insights into the tradeoff between viscous and inviscid drag
in relation to optimization and multimodality.

2. Demonstrated practical ways to reduce multimodality in the design space.

3. Demonstrated plank to transonic wing with aerostructural optimization.

4. Pioneered low-speed separation constraint to improve off-design robustness.

5. Investigated impact of mission analysis method on optimization of short-haul
aircraft.

6. Demonstrated industrial application of MDO on Embraer regional jet.

The dissertation is organized as follows: Chapter 2 introduces the MDO of
aircraft configurations with high fidelity (MACH) framework, which has been devel-
oped at the University of Michigan for the purpose of high-fidelity aircraft design
optimization. Since the tools in the MACH framework are used throughout the
dissertation, I opt to introduce them all at once rather than repeatedly in each
succeeding chapter. In Chapter 3, I study an exploratory ASO benchmark prob-
lem and the multimodality present in its design space. In Chapter 4, I extend our
study of exploratory wing optimization to the aerostructural design space. I also
experiment with various methods for producing robust optimal designs, especially
with regards to off-design, low-speed performance. Chapter 5 deals with the opti-
mization of the Embraer regional jet wing and the study of the impact of mission
analysis on the optimized wing design. Finally, in Chapter 6 I draw conclusions,
restate contributions, and propose future avenues of research.
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Chapter 2

Overview of the MACH
Framework

The MACH framework offers an automated approach to aircraft design65. At its
core is a coupled aerostructural analysis and adjoint capability, but MACH also
encompasses numerous other modules that contribute to the overall goal of au-
tomated aircraft design. The components of MACH used in this dissertation are
depicted in the extended design structure matrix (XDSM)66 diagram in Figure 2.1.
The XDSM diagram highlights both the component hierarchy and the data (grey
lines) and process (black arrows) flows. In particular, this XDSM diagram shows
how the framework handles the design optimization problem in Chapter 5, which
incorporates aerostructural and mission analyses. All of the MACH modules are
implemented in the Python programming language, although many of them wrap
compiled code for more computationally heavy tasks. The framework is designed
to be lightweight and modular, so that simpler problems can be solved by only
including the necessary modules. For instance, an aerodynamic analysis can be
carried out with a simple Python script that only imports a subset of the modules
shown in Figure 2.1. This chapter provides a brief introduction to each of the
modules used in the work presented in this dissertation.
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2.1 Optimization Algorithm

The framework is optimizer-agnostic and has been tested with a variety of differ-
ent optimizers60. We typically use pyOptSparse∗ because it provides a common
interface to a variety of different optimizers, allowing the user to switch the op-
timizer without having to reprogram the problem definition. In this dissertation
we use SNOPT67 (wrapped with pyOptSparse) exclusively. SNOPT is a sequential
quadratic programming (SQP) optimizer which has been used extensively for both
aerodynamic shape optimization and aerostructural design optimization.

2.2 Geometry

2.2.1 Geometric Parametrization

The geometry is parametrized with a free-form deformation (FFD) scheme68 imple-
mented in pyGeo† by Kenway et al. 69 . The FFD formulation is attractive because
it parametrizes the geometric changes rather than the geometry itself, enabling
control of objects for which the underlying geometric definition is unknown. In
pyGeo, an FFD volume is a structured three-dimensional grid of B-spline control
points. The process of embedding a set of points in the FFD volume involves exe-
cuting a Newton search to find the parametric position of each point in the B-spline
reference space. Any number of point sets can be embedded in the FFD volume.
As the positions of the FFD control points change, the embedded point sets de-
form continuously according to the B-spline mapping. Conveniently, the derivative
of an embedded point with respect to the B-spline control points is defined (and
computed) analytically.

All that remains is to decide how to control and coordinate the displacement of
the control points. In the pyGeo implementation, the design variables can be set
up to enact local or global changes of the embedded geometry. The global design
variables allow the user to coordinate the movement of multiple FFD control points
to create large-scale deformations. This coordination is facilitated by a user-defined
B-spline reference axis curve. Transformation properties such as translation, ro-
tation, and scaling design variables can be specified at each reference axis control
point. The B-spline representation of the reference axis ensures a smooth variation
of these transformation properties between the control points. Each FFD control
point is linked to a parametric position along the reference axis and assumes the
transformation properties corresponding to that point of attachment. The various
points used in the parametrization scheme are indicated in Figure 2.2. The user can

∗https://github.com/mdolab/pyoptsparse
†https://github.com/mdolab/pygeo
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Figure 2.2: The geometric parametrization uses FFD control points for local control and a B-spline
reference axis for global control.

create custom functions to specify how the transformation properties are applied
to the reference axis control points. When multiple design variables affect a given
control point, the operations are combined linearly. In general, a global design vari-
able will produce a nonzero derivative for multiple control points. The derivatives
of the FFD control points with respect to the global design variables are computed
using the complex-step method.

The local design variables control the displacement of individual control points
for precise shape modifications. The user can choose whether the displacement is
along a global coordinate axis (G, H, or I) or along a local reference axis defined
by the FFD grid. In the latter case, the displacement direction is dependent on any
rotations imposed by the global design variables.

2.2.2 Geometric Constraints

In addition to directly choosing the type, number, and bounds of geometric de-
sign variables, the user can also apply geometric constraints to restrict the design
space. These constraints are often used to prevent design changes that would
violate requirements that are not considered in the optimization problem. For
instance, thickness constraints are used in ASO to prevent thickness decrease that
would otherwise be prevented by structural constraint violations if the structure
was modeled. The geometric constraints in the MACH framework are points-based.
Each constraint is defined by one or more points which are embedded in the FFD

volume. For example, a thickness constraint is defined with two points and vol-
ume constraint is defined with a grid of points making up a number of hexahedra.
Some of the available constraints are depicted in Figure 2.3. Updates to the point
coordinates and their derivatives are calculated inexpensively with pyGeo. The
values and derivatives of the constraints are easily calculated with respect to their
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Figure 2.3: Various point-based geometric constraints are possible in the MACH framework. Linear
constraints can also be added to the FFD control points.

constitutive point sets.
In addition to the point-based constraints, pyGeo also offers functionality to

create linear constraints on the FFD control points. For example, the LE/TE con-
straint forces the leading edge and trailing edge control points to move in equal and
opposite directions to prevent shearing twist. Without this linear constraint, there
would be a dependency between the twist variables and the shape variables, which
is generally undesirable in an optimization context.

2.3 High-fidelity Physics Modeling

2.3.1 Aerodynamic Analysis

The flow solver in MACH is ADflow‡. ADflow is a finite-volume CFD solver for
cell-centered multiblock and overset meshes. It solves the compressible Euler,
laminar Navier–Stokes, and RANS equations with a second-order accurate spatial
discretization. The solver employs a variety of numerical methods to converge to
a steady-state solution, including multigrid, approximate Newton–Krylov (ANK),
and Newton–Krylov (NK) algorithms. The combination of these various iterative
methods makes ADflow robust and fast70. ADflow also solves the discrete adjoint
equations, enabling efficient computation of derivatives independent of the number
of design variables. The solution of the discrete adjoint in ADflow relies on the
ADjoint71,72 approach, which uses automatic differentiation (AD) to compute partial
the derivatives and a Krylov method to solve the linear system.

‡https://github.com/mdolab/adflow
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Figure 2.4: Representative depiction of smeared stiffness model.

2.3.2 Mesh Warping

The mesh used for solving the fluid dynamics equations must be representative
of the geometry as it changes throughout the optimization process. Rather than
regenerating the mesh at each iteration, we modify the coordinates of the original
mesh to make them consistent with the updated geometry in a process known as
mesh warping. In the setup phase, the surface coordinates of themesh are embedded
in the FFD volume. At each iteration, the updated surface coordinates are sent to
themeshwarping algorithm, IDWarp§. IDWarp uses an inverse-distanceweighting
method to update the volumemesh coordinates based on the changes to the surface
mesh73. The derivatives of the volumemesh nodeswith respect to the surfacemesh
nodes are computed using automatic differentiation (AD).

2.3.3 Structural Analysis

MACH uses the Toolkit for the Analysis of Composite Structures (TACS)¶ to model
the structural mechanics of wings. TACSwas developed by Kennedy andMartins 74

specifically for the analysis and optimization of the thin-walled structures typical
in aircraft. Typically, we analyze wingbox structures comprising ribs, spars, and
skins. Each part of the structure is discretized with quadrilateral shell elements,
which are grouped into rectangular panels. In the simplest case, the panels are
modeled with isotropic constitutive properties. Alternatively, virtual stiffeners can
be incorporated into the panel stiffness matrix to achieve the effect of a blade-
stiffened panel (see Figure 2.4) Each panel can have its own variables to control
panel thickness, stiffener thickness, stiffener height, and stiffener pitch.

The structural model is used to predict stress and buckling limits which can be
used as constraints in an optimization problem. Rather than constrain the structural
failure on an element-by-element basis, we aggregate the failure constraints using
theKreisselmeier–Steinhauser (KS) function. TheKS is a conservative approximation
of the maximum, meaning that it will overestimate the failure of the structure and
provideuswith a conservative design. Without constraint aggregation, therewould

§https://github.com/mdolab/idwarp
¶https://github.com/gjkennedy/tacs
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be thousands of structural constraints, each of which would require an adjoint
calculation. To make the adjoint approach worthwhile, it is necessary to have far
fewer function outputs than design variables.

2.3.4 Aerostructural Coupling

The structural node displacements and aerodynamic surface loads are transferred
between the aerodynamic and structural meshes using a rigid link, load and dis-
placement transfer schemefirst introduced by Brown 47 and subsequently described
in the context of MACH65,75,76. We obtain the solution of the aerostructural system
with aGauss–Seidel iterative scheme. AKrylovmethod is used to solve the coupled
adjoint of the multidisciplinary system.

2.4 Mission Analysis

Often the objective of an aircraft design optimization problem is to decrease direct
operating cost (DOC). The cost of fuel makes up a significant portion of DOC. Addi-
tionally, aircraft original equipment manufacturers (OEMs) and airlines are increas-
ingly pressured to reduce the detrimental effects of fuel burn on the environment.
Thus, excess fuel burn comes at a premium both financially and environmentally.

There are various methods to estimate fuel burn computationally. For prelimi-
nary takeoff weight estimation, the fuel burn for a given segment of the mission is
reasonably predicted using fuel fractions extracted from historical data. However,
for the purposes of optimization it is necessary to derive a formula relating the fuel
burn to the actual design of the aircraft. The Bréguet range equation is a simple
yet mathematically sound relationship between the aerodynamic, structural, and
propulsion performance of the aircraft. For a jet aircraft the rate of weight change
is proportional to thrust

d,
dC = −) 2) (2.1)

where 2) , the thrust-specific fuel consumption (TSFC), is dependent on the engine
model, Mach number, and altitude. When divided by the instantaneous flight
speed, this can be transformed into an integral equation to compute range.

d,
dC
dB
dC

=
−) 2)
+

dB
dC =

+

−) 2)
d,
dC

' =

∫
dB
dC dC =

∫
+

−) 2)
d, (2.2)
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For range covered in cruise, we can assume steady flight, meaning ) = � and
! = , . Additional assumptions of constant flight speed, TSFC, and !/� yield the
Bréguet range equation.

' =
+!

2)�

∫
−1
,

d,

' =
+

2)

!

�
ln ,2
,3

(2.3)

In this equation, ,2 and ,3 refer to the aircraft weight at the beginning and end
of cruise, respectively. Although Equation 2.3 bears the name of French aviation
pioneer Louis Bréguet, according to Cavcar 77 it was independently derived by
Devillers 78 in 1918 and Coffin 79 in 1920. Equation 2.3 can be further rearranged to
calculate fuel burn as follows:

,2
,3

= exp
(
2)'�

+!

)
(2.4)

This equation succinctly relates the three dominant disciplines affecting fuel burn,
enabling the optimizer to balance them appropriately. However, due to the stated
assumptions, Equations 2.3 and 2.4 apply specifically to a cruise-climb flight mode,
in which altitude steadily increases to enable the constant !/� assumption.

For amoregeneral approach to range and fuel burn estimation,MACH framework
contains a module called MissionAnalysis. Liem et al. 80 created MissionAnalysis
to enable surrogate-based mission analysis within the context of an aerostructural
optimization problem similar to the one we are considering here. More details
on the approach used are given in their paper. Although the basic function of
MissionAnalysis remains the same,wemade somesignificant changes to improve its
generality and practicality. Originally, the code was written with internal surrogate
models for the aerodynamics (�!, �� , and �"H ). This approach required the
creation of aerodynamic data sets with respect to altitude, Mach number, angle of
attack, and tail angle at every optimization iteration. Tomake the codemore general,
we replaced the internal surrogate model with a set of callback functions through
which the user can provide aerodynamic and engine data to MissionAnalysis.
Derivatives of the functions of interest with respect to external design variables are
also supported in the code. Derivatives in MissionAnalysis are computed using
automatic differentiation to achieve machine precision.

InMissionAnalysis, the variousmission segments are brokenup into integration
intervals. The fuel burn, distance, and elapsed time for each interval are computed
using integral equations similar to Equation 2.2. The states of the mission model
system are theweights at the interval endpoints. A solution to the nonlinear system
is obtained by driving the weight differences between endpoints of consecutive
intervals to zero. As in Liem et al. 80 , a line-search stabilized Newton’s method
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is used to solve the nonlinear system and the Jacobian is calculated using finite
differences. For our purposes in this dissertation, the solver is set up to perform
in the following manner. The user or optimizer provides the solver with a fixed
weight, an initial fuel weight, and a cruise altitude. The solver converges the
residuals to zero to reach a valid state for the prescribed inputs. The outputs of
the solver are the range, duration, and fuel burn over the course of the mission.
Incidentally, the input fuel weight and the output fuel burn can be different if the
aircraft starts with more than enough fuel to complete the given mission. With this
setup, it is possible for the optimizer to choose inputs that lead to an impractical
solution. For example, if the drag at a given altitude is greater than the maximum
available thrust, the solution will be invalid. Therefore, in addition to the standard
outputs, MissionAnalysis computes slack functions that can be used to force a valid
solution. For the climb segments, the slack function at each node along the mission
profile is the actual climb rate minus the required residual climb rate. For the cruise
and descent segments, the slack function is the available thrust minus the required
thrust. In an optimization problem, these slack functions are constrained to be
greater than zero.

2.4.1 Conceptual-level Aircraft Model

pyConcept is amodule in theMACH framework that can be used to calculate geomet-
ric parameters such as reference area, mean aerodynamic chord, and sweep angle.
The wing geometry is represented by points located along the leading and trailing
edges and the location of maximum thickness on the baseline geometry. These
points are extracted from airfoil slices of the baseline wing and then embedded in
the FFD. Geometric parameters are then dependent on the FFD design variables via
the embedded points.

pyConcept also provides estimates of aerodynamic performance based on fun-
damental geometric properties. For instance, induced drag can be approximated
as

��,8 =
�2
!

��' 4
(2.5)

where both �' and 4 can be calculated solely from geometric properties and flow
conditions. Similarly, parasitic drag is computed using the component buildup
method suggested by Raymer 81 , wherein the drag of each component is a function
of wetted area, the flat-plate skin friction coefficient, a form factor, and an interfer-
ence factor. These estimates are not expected to yield accurate predictions, but are
intended to capture the trends due to changing geometric parameters. The novelty
of this approach is that we are able to maintain the FFD parametrization as a means
of adjusting the geometric parameters relevant to the conceptual formulas. Like
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everything else in the MACH framework, the fundamental philosophy in develop-
ing this capability was to allow for efficient, accurate derivative computation. The
derivatives of the pyConcept functionswith respect to the geometric parameters are
analytically derived and the derivatives of the geometric parameters with respect
to the airfoil points are computed with the complex-step method. The derivatives
of the points with respect to the design variables are already handled in pyGeo,
and in the end, derivatives of the pyConcept functions with respect to the design
variables are obtained by combining the three different sets of gradients using the
chain rule.
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Chapter 3

Exploration of Aerodynamic Wing
Design

This chapter reports on a study of the sixth benchmark optimization problem from
the AIAA Aerodynamic Design Optimization Discussion Group (ADODG)∗. The
purpose of this benchmark problem is to study multimodality in the design space
of a subsonic, rectangular wing. This test case differs from the Common Research
Model (CRM) wing optimization problem in that it gives the optimizer much more
freedom to modify the shape of the baseline wing. Practical design constraints
are neglected in favor of liberating the optimizer to explore the entire design space
and perhaps discover a novel optimal design for the prescribed conditions. We
use this test case as a foundation for a series of optimization studies in which we
explore the physical reasons formultimodality in aerodynamicwing design. In Sec-
tion 3.1, we introduce the test case and the tools used to perform the optimizations.
Before reporting the results of the full test case, we investigate in Section 3.2 the
implications of including each design variable with some preliminary optimization
studies. Then we analyze the full case and provide some concluding commentaries
in Sections 3.3 and 3.5, respectively. In this work, our purpose is not necessarily
to do an exhaustive search of the design space to find all possible local minima,
or even to rate this problem in terms of its multimodality. Other researchers have
done excellent work in addressing these goals61,82. Our aims are to show whether
or not multiple local minima exist, clarify the factors influencing multimodality in
the problem, and elucidate whether or not multimodality should be a concern for
practical applications of MDO in aircraft design.

∗https://sites.google.com/view/mcgill-computational-aerogroup/adodg
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Table 3.1: Baseline geometry performance at �! = 0.2625

Grid Cells  �� (cts) ��,E (cts) ��,? (cts)

Euler L3 180,992 3.023 42.694
Euler L2 1,447,936 3.030 38.997
RANS L2 306,432 3.206 144.013 76.378 67.636
RANS L1 2,451,456 3.205 130.545 69.702 60.843

3.1 Methodology

3.1.1 Multi-Fidelity Approach

The main goal of the ADODG Case 6 optimization problem is to study the existence
of multiple local minima in the design space. In addition to this primary goal, we
seek to understand whether such local minima reflect the real physics involved,
or are merely artifacts of the modeling and discretization errors. In addressing
these two goals, we found it useful to combine results from multiple sources of
information. All told, we use three different physics models to analyze the aerody-
namic performance of the wing: the RANS equations with a Spalart–Allmaras (SA)
turbulence model, the compressible Euler equations, and a vortex-lattice method
(VLM). The RANS and Euler equations are solved using ADflow28,83 and the VLM is
implemented in OpenAeroStruct84. The details of these solvers and their respective
workflows are described in the following two sections.

3.1.2 Geometry description

The baseline wing geometry for the Euler and RANS analyses is planar with a
chord of 1.0 m and a NACA-0012 airfoil cross-section. The wingtip cap is a perfect
revolution about the airfoil chord line and adds 0.06 m to the 3.0 m rectangular
portion of the wing, bringing the total semispan to 3.06 m. The Euler geometry
has a sharp trailing edge, while the RANS geometry has a blunt trailing edge with a
thickness of 2.52 mm. We generate the surface meshes using Ansys ICEMCFD and
extrude the volume meshes using hyperbolical marching. The meshes are oriented
with the x-axis in the streamwise direction, the z-axis out the wing, and the y-axis
in the vertical direction. The quality of these meshes is tested in a grid convergence
study at the nominal baseline condition (" = 0.5, '4 = 5 × 106, �! = 0.2625), the
results of which are plotted in Figure 3.1. The drag values converge nearly linearly
as the number of cells to the power of 2/3 is increased, indicating asymptotic
convergence. Table 3.1 lists the data for the baseline grids that are used in the
optimization studies. For these meshes, G is the streamwise direction and H is the
lift direction.
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Figure 3.1: Grid convergence study at " = 0.5, '4 = 5 × 106 and �! = 0.2625.

3.1.3 Wing parametrization

Our parametrization uses both global and local design variables, which are ex-
plained in detail in Section 2.2.1. Figure 3.2 depicts the FFD volume with the
control points as black dots and the design variables definitions shown with color-
coordinated arrows. The nominal FFD volume has nine spanwise control sections
and 12 chordwise control points per section with half of the points on the upper
surface and the other half on the lower surface. The global variables are linked to
the displacement and rotation of axial control points (shown as red squares) along
the reference axis. Each of these axial control points dictates the globalmovement of
an entire FFD control section. For example, the blended winglet shown in Figure 3.2
was created by setting the dihedral variable with the following values:

Gdihedral = [0, 0, 0, 0, 0.03, 0.09, 0.24, 0.51, 1]

The user defined function for the dihedral variable displaces each of the nine axial
control points in the H-direction according to the corresponding value in Gdihedral.
Additionally, the dihedral function is set up to rotate the FFD sections so that they
remain perpendicular to the reference axis. The local shape variables are handled
differently. Each spanwise control section is assigned a unique reference framewith
the section plane normal as the 4̂: axis, the 4̂8 axis alignedwith the streamwise direc-
tion, and 4̂ 9 = 4̂: × 4̂8 . The local shape variables control the movement of the control
points along their respective 4̂ 9 axes. When the reference axis is displaced vertically,
the control sections and their respective reference frames are automatically rotated
to remain perpendicular to it. This behavior is depicted in the formation of the
blended winglet on the wing in Figure 3.2. The displacement vectors of the local
shape variables in the wingtip control section are rotated as the winglet forms to
allow sectional control of the airfoil section of the winglet. This functionality en-
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Figure 3.2: Geometric parametrization of the aerodynamic multimodality optimization problem.
The wing surface is embedded in the FFD volume. Design variable definitions are indicated with
arrows.

sures that the wing surface does not shear, causing negative volumes, when large
changes in dihedral are introduced.

3.1.4 Low-fidelity Optimization: OpenAeroStruct

OpenAeroStruct84 is an open-source low-fidelity aerostructural optimization suite
developed using the OpenMDAO framework85. The aerodynamic analysis in Ope-
nAeroStruct is performed using a VLM to compute induced drag and a modified
flat-plate skin-friction drag approximation to estimate parasite drag. These low-
fidelity models provide reasonable estimates at a low computational cost. A single
analysis takes less than one second and a full optimization takes on the order of 10
seconds on a single processor. We use this low-fidelity code because it allows us
to explore the design space quickly and gain insights that can be further explored
with high-fidelity methods. For the analyses in this study, the baseline geometry
consists of a 1m × 3.06m rectangular half-wing discretized by 50 spanwise panels
andmirrored across the symmetry plane. The thickness-to-chord ratio and location
of maximum thickness from the NACA-0012 airfoil are used in the computation of
skin friction drag. The geometry is parametrized using B-splines to interpolate
variable changes to the geometry. Using B-splines allows a reduction in the num-
ber of design variables so that 50 panels can be manipulated with only 9 spanwise
control points.
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3.1.5 Optimization convergence

All of the optimization results presented herein are converged to a feasibility tol-
erance of at least 1 × 10−6, which corresponds to six digits of accuracy in the lift
coefficient. The optimality tolerance for every result is at least 2.5 × 10−4, and for
the majority of the results, it is less than 1 × 10−5.

3.1.6 Optimization Problem

The complete optimization problem of ADODGCase 6 (with someminor alterations)
is defined in Table 3.2. Twist variables are defined at every axial control point
except at the root and  is used to match the �! constraint. The chord variables
affect all nine axial control points. In the Euler cases, when local shape variables
are inactive, the chord scales while maintaining constant C/2. Dihedral is defined
as the vertical displacement of each axial control point. Additionally, the FFD

section corresponding to each axial control point rotates to align the twist rotation
and any shape variable displacements to be perpendicular to the wing surface.
Sweep is defined as the streamwise displacement of each axial control point. In the
official ADODG case, the limits on sweep extend to 1m forward and backward in
the streamwise direction. In our optimizations, we reduced these limits to 0.5m to
avoid problemswith excessivemeshwarping. Both dihedral and sweep are fixed at
the root. As explained previously, the local shape variables perturb the wing cross-
section perpendicular to the wing surface, such that they have some dependence
on the dihedral variable. All control points in a given section are perturbed in a
uniform direction, as indicated in Figure 3.2. The planform area, (, is computed
as the area of the wing projected onto the x-z plane. Constraints for volume (+)
and thickness (C) are handled by first setting up a 2D grid of points inside the
surface of the wing. Then these points are projected to the surface of the wing to
create a 3D grid confined within the wing. We compute + as the sum of the cell
volumes and C as the difference between the projected points on the upper and lower
surface. The thickness constraints are evaluated at ten uniformly spaced chordwise
locations ranging from 0.0052 to 0.992 for ten sections along the span. There are an
additional eight thickness constraints added in the wingtip cap, making a total of
108 thickness constraints. We removed the root bending moment constraint from
the official optimization problem. The root bending moment constraint is related
to structural requirements, and in these results we want to consider solely the
influence of aerodynamics on the wing design. The optimization cases treated in
Section 3.2 are subproblems of this full problem, and the variables and constraints
are defined as stipulated in this full problem description unless otherwise stated.
All optimizations are run at Mach 0.5 and a Reynolds number of 5 million.
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Table 3.2: ADODG Case 6 Optimization Problem Statement

Quantity Lower Upper Units

minimize �� 1 – – –
with respect to  1 −3.0 6.0 degrees

� 8 −3.12 3.12 degrees
chord 9 0.45 1.55 m
dihedral 8 −0.45 0.45 m
span 1 2.46 3.67 m
sweep 8 −0.5 0.5 m
shape 108 −0.5 0.5 m
Total 143

subject to �! 1 0.2625 0.2625 –
( 1 3.06 3.06 m2

+ 1 +0 – m3

C 108 0.5C0 1.5C0 m
Total 112

3.2 Parametrization Studies

3.2.1 Twist Optimization

We begin with a simple twist optimization problem as a means of verification for
our optimization framework. The twist optimization case has a long theoretical
history and has also been extensively studied as a numerical optimization problem
in ADODG Case 386–88. The elliptical twist distribution is well known as the theo-
retical optimum for this case because it generates the constant spanwise downwash
required to minimize induced drag89. This theoretical result is a useful metric with
which to gauge the performance of our optimization framework. Figure 3.4 shows
the optimal twist and lift distributions for the three levels of fidelity. We see very
similar trends from each of the analyses, but there is a noticeable offset between the
lift distributions from ADflow and the VLM results. This discrepancy is due to the
rounded wingtip cap used for the Euler and RANS geometries. In the lifting-line
model, the entire span is used to generate lift, whereas with the wingtip cap, the
leading and trailing edges are truncated at 3m of span and the last 0.06m of span is
incapable of generating the lift required to complete the elliptical distribution. As a
result, the optimizer converges to a wing that generates an elliptical lift distribution
extending from the root to the edge of the wingtip cap, represented by the shifted
elliptical curve in Figure 3.4. The VLM results match the original elliptical curve
because they are obtained from a 2D surface for which the problems discussed
above are irrelevant. Table 3.3 lists the drag counts of the optimized wings and the
percent difference from the baseline drag value, %Δ�� . As an added verification,
we experimented with varying the number and spacing of the twist variables along
the span and also started the optimization from ten random starting points. All of
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Figure 3.4: Wings optimized with respect to twist variables generate an elliptical lift distribution.

Table 3.3: Twist optimization results

Case Grid �! Drag counts %Δ��
Euler L3 0.2625 42.105 −1.38
RANS L2 0.2625 143.377 −0.44
VLM – 0.2625 128.779 −0.42

these variations yielded consistent results, which leads us to confirm the theoretical
assertion that there is a single twist distribution that produces the lowest drag.

3.2.2 Chord Optimization

Different behaviors arise when drag is minimized by varying the chord distribution
while keeping the twist constant. Theoretically, the elliptical chord distribution
should be optimal for minimizing induced drag, and historically, this concept has
been put to the test in the design of actual aircraft, most notably the Supermarine
Spitfire. The optimization problem is to minimize drag with respect to the chord
distribution, subject to the constraint that �! = 0.2625. Since the lift coefficient
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is normalized by (, which may vary with changes in the chord, we must also
constrain ( to be constant. The inviscid and viscous results are henceforth discussed
separately for each case to better explore and highlight the unique characteristics
of each.

Euler

For the Euler chord optimizations we use the L3 mesh and change the bounds
on the chord variables to (0.1, 2.0) to allow the planform to match an ellipse as
close as possible. As in the twist optimization, the inviscid chord optimization
yields predictable results. We take this predictability as an opportunity to test
the sensitivity of the result to the chosen parameterization. We vary the number
of spanwise FFD sections and corresponding chord variables and also compare the
difference between scaling about the trailing edge and the quarter-chord. As shown
in Figure 3.5, regardless of these modifications, each optimization converges to an
elliptical lift distribution. The effect of varying the number of FFD control sections is
marginal. However, we can see from the results in Table 3.4 that scaling the chord
about the trailing edge allows more than double the drag reduction compared with
scaling about the quarter-chord. This discrepancy was previously observed in a
thorough investigation of the differences in induced drag performance between
elliptical and crescent (elliptical with straight trailing edge) planforms by Smith
and Kroo 90 . Theoretically, both of these planforms should produce a constant
downwash and generate minimum induced drag. Smith and Kroo point out that
these optima were derived using lifting-line theory, which relies on a tip vorticity
of infinite strength to complete the constant downwash distribution. In nature,
such a singularity is impossible, and therefore, even for a perfectly elliptical wing,
there is a slight upwash at the tip. They found that the crescent wing produced a
more constant downwash near the tip, which led to a more nearly elliptical span
loading and a lower overall induced drag than the elliptical wing. This findingmay
seem to contradict Munk’s well-known Stagger Theorem89, which maintains that
any streamwise arrangement of lifting elements should generate the same induced
drag. However, the Stagger Theorem is also based on lifting-line theory, and suffers
from the sameassumptions in the translation to reality. Thus, although theoretically,
a straight wing and a swept wing of the same span and chord distribution generate
equal induced drag, in reality, differences in tip downwash will most likely cause
slight differences in induced drag too.

To test the multimodality of this problem, we started the optimization from
ten random starting points. Nine of the starting points converged to the elliptical
planform and one failed prematurely due to mesh warping errors. These results
indicate that there is no multimodality in chord optimization for inviscid flow.
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Figure 3.5: Elliptical planform and lift distributions obtained from optimization with respect to
chord variables.

Table 3.4: Chord optimization results

Case Grid �! Drag Counts %Δ��
Euler 1/4 chord L3 0.2625 41.726 −2.27
Euler 6 trailing edge L3 0.2625 40.439 −5.28
Euler 9 trailing edge L3 0.2625 40.412 −5.35
Euler 17 trailing edge L3 0.2625 40.356 −5.48
RANS L2 0.2625 142.544 −1.02
RANS mode 1 L1 0.2625 129.214 −1.02
RANS mode 2 L1 0.2625 129.178 −1.05
RANS monotonic L1 0.2625 129.296 −0.96
RANS L1 0.5 234.663 −1.23
RANS L1 0.8 503.049 −3.85

RANS

When adding viscous effects to the chord optimization, it is important to consider
the tradeoff between induced drag and parasite drag, and its relationship to chord
length. For the purposes of this discussion, since we are dealing with subsonic flow
of a fairly streamlined geometry, we can reasonably assume that the majority of
the viscous contribution to drag is made up of skin friction drag. However we do
recognize that viscosity also introduces pressure drag due to separation, especially
as �! increases. While induced drag is sensitive to the spanwise distribution of lift,
skin friction drag is highly dependent on the local chord length. The shear stress
at the wall is directly related to the velocity gradient normal to the wall. For 2D
laminar flow over a flat plate,

�F = �
3D

3H
(3.1)

This equation provides an approximation to the shear stress on an airfoil. At the
leading edge, the boundary layer is very small and the velocity changes rapidly over
a small distance, resulting in a large shear stress. As G/2 increases, the boundary
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Figure 3.6: The viscous drag on a flat plate in laminar flow can be reduced by increasing the aver-
age BL thickness over the plate. ('4 = 106)

layer (BL) fills out and the velocity gradient at the wall becomes much more mild.
The result is that extending the chord reduces the average drag per unit length. This
relationship is well known and Blasius 91 provided the following analytic solution
for the flat plate case,

23 =
1.328√
'4

, (3.2)

where the Reynolds number is based on the local chord. Multiplying by the local
chord length we find that for constant flow conditions, the skin friction drag per
unit span is proportional to the square root of the local chord length, i.e.,

3 ∝
√
2 (3.3)

To illustrate this point, imagine we want to minimize the drag of a flat plate
in laminar flow at zero angle of attack with a fixed planform area. If the chord
distribution and span are variables, the chord distribution will grow to its upper
limit and the span will adjust to satisfy the area constraint. However, if span is
fixed, or has a hard lower limit, an interesting compromise takes place. The optimal
chord distribution will have the maximum possible extent of the span at the upper
limit of the chord variable. For example, if we split our plate into two independent
sections and incrementally add Δ2 to the chord of one section while subtracting
the same Δ2 from the other, we get a decrease in skin friction drag as shown in
Figure 3.6. In the absence of other constraints, lower skin friction drag can always
be achieved by transplanting wing area from a thin-BL region to a thick-BL region.
The spanwise location of the maximum chord region is irrelevant, and as such, a
purely skin friction dragminimization problem theoretically has an infinite number
of local minima.

The problem becomes more complex when the objective function is a combi-
nation of both skin friction and induced drag. Minimum skin friction drag favors
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Figure 3.7: The optimal chord distribution for viscous flow is heavily dependent on �!.

radical changes in the chord distribution to maximize thick-BL coverage, but op-
timal inviscid drag calls for an elliptically tapered wing. The optimal planform
shape will balance these considerations taking into account the relative weights of
each drag component. For instance, if drag is mostly induced (i.e., at high �!),
the planform will take on a nearly elliptical profile. However, if we make some
slight modifications to the planform, we may get some improvement in the skin
friction drag while not straying too far from the elliptical lift distribution. This line
of reasoning helps to explain the results we get from the RANS chord optimization,
shown in Figure 3.7. These results are obtained using the RANS L1 mesh. For a
given �!, we can estimate the minimum possible contribution of induced drag to
the total drag using Prandtl’s induced drag approximation ��,8 = �!/��'. For
�! = 0.2625, parasite drag makes up roughly 70% of the total drag, and the optimal
planform shape is far from elliptical. As �! increases and induced drag increases
relative to parasite drag, the optimal design more closely approaches the elliptical
planform. However, even when �! is relatively low, the optimal lift distribution
oscillates close to the elliptical profile. This is not surprising because in reality,
even a rectangular wing has a span loading not far removed from the elliptical
ideal. Figure 3.7 shows the lift distribution of the baseline wing at �! = 0.2625. As
seen in the Euler results in Table 3.4, going from a rectangular wing to an elliptical
wing produces a 2–6% drag reduction. So, while the elliptical planform is ideal,
the rectangular wing is certainly not a terrible starting point. This accounts for the
rather meager gains in aerodynamic performance observed in the twist and chord
optimizations overall.

To address whether this tradeoff between parasite and induced drag leads to
multimodality at low �! values, we first turn to a simpler aerodynamics model.
Figure 3.8 shows the results of optimizing 20 random initial planforms at five dif-
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Figure 3.8: Optimization using OpenAeroStruct confirms multiple optimal chord distributions at
low �!.

ferent �! values with OpenAeroStruct. A tradeoff exists between minimizing skin
friction drag by maximizing chord and forming an elliptic planform to minimize
induced drag. As expected, based on our previous discussion, the deviations from
the elliptical lift distribution increase dramatically as �! drops to zero. A corre-
sponding decrease in skin friction drag is small but noticeable. As �! increases,
induced drag makes up a greater portion of the total drag, and thus the planform
approaches an elliptical shape and multimodality decreases. In the high-fidelity
case we see similar trends. We optimize three randomly generated planforms at
�! = 0.2625 with the RANS L1 mesh and the optimizer converges to two different
planform modes. Wary of this result, we vary the number of control points used
as design variables to rule out the possibility that our parametrization is biasing
the results. We optimize the baseline geometry with 6 and 17 spanwise variables
and compare the result with the baseline optimization with 9 spanwise variables.
Despite the variance in flexibility allowed by the number of spanwise control points,
the optimizer converges on a very similar, albeit not identical, planform shape in all
three cases. These experiments suggest that there are a limited number of modes
with which the optimizer can minimize skin friction drag while still maintaining
a sufficiently elliptical lift distribution so that the total drag decreases. The results
for both of these tests are shown in Figure 3.9. Incidentally, we began the chord
optimization tests with the RANS L2 mesh, but found a lack of multimodality in
the low �! cases. Since this did not agree with our hypothesis, we refined the
mesh and found that the finer mesh yielded sharper spanwise curvature due to
the refinement of the spanwise grid spacing. We surmise that the coarseness of
the L2 mesh causes an increase in drag when the optimizer attempts to create the
large-amplitude spanwise variations seen in Figure 3.9 and thus artificially limits
the design space. However, it should be noted that the same physical phenomenon
is apparent in both meshes, although its effect is dampened due to the coarseness
of the mesh.
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Figure 3.9: (a) Three optimizations from random chord distributions yield two local minima. (b)
Varying the number of chord variables changes the optimal distribution slightly.
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Figure 3.10: Forcing the chord distribution to decrease monotonically increases drag by less than
one count.

While these results are intriguing, we are ultimately interested to see howmuch
of a benefit these spanwise oscillations really provide. The VLM results suggest a
drag decrease on the order of one to two counts. We add a monotonic constraint
to the optimization of the L1 grid as a crude substitute for a more meaningful con-
straint, such as manufacturing cost and structural considerations. This constraint
forces the chord distribution to decrease monotonically from root to tip. The result
is plotted in Figure 3.10 and detailed in Table 3.4. Adding the monotonic constraint
only increases the drag by a fraction of a drag count. This difference is not mean-
ingful because it is within the modeling error. Furthermore, even if this difference
were meaningful, it would be hard to justify the added manufacturing costs and
structural penalties that would accompany building a wing with such spanwise
curvature.
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Figure 3.11: Optimizing from 10 unique starting points with respect to chord and twist variables
using Euler analysis yields a single optimum.

3.2.3 Chord and Twist Optimization

Since we can reach an elliptical distribution with only chord design variables or
only twist design variables, one may assume that a combination of both twist and
chord variables would be redundant and lead to multimodality. We explore this
possibility in this section.

Euler

For the chord and twist optimization with Euler analysis we use the Euler L3 mesh
and nine axial control points, corresponding to nine chord variables and eight twist
variables. Once again, the limits on the chord variables are relaxed to 0.1 ≤ 2 ≤ 2.0
for the Euler cases. When initialized with ten different geometries, each generated
with random chord and twist distributions, the optimizer converges to a single
optimal solution. The optimal chord and twist distributions are superimposed over
the randomlygenerated seeds in Figure 3.11. Theuniformity of these results suggest
that the chord and twist variables are not necessarily interchangeable. In Table 3.5,
we see that the addition of twist variables makes a negligible improvement in drag
compared with the chord-only optimization (Table 3.4).

RANS

The RANS optimizations are run using the RANS L1 mesh and the nominal 9-section
FFD. The results are displayed in Figure 3.12. We expect to see the oscillatory
behavior observed at low �! in the chord optimization to be exaggerated in this
case because the twist can compensate for the deviations from the elliptical lift
distribution that oscillations in the chord distribution would otherwise cause. The
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Figure 3.12: An optimization with both twist and chord variables tolerates more variation in the
chord distribution at a lower �!. As �! increases, the planform shape oscillations disappear.

Table 3.5: Chord and twist optimization results

Case Grid �! Drag Counts %Δ��
Euler 1/4 chord L3 0.2625 41.517 −2.76
Euler L3 0.2625 40.408 −5.35
RANS L1 0.2625 128.802 −1.34
RANS L1 0.5 233.591 −1.68
RANS L1 0.8 480.496 −8.16

higher �! results, like the Euler results, show little evidence of multimodality due
to redundancy in the variables. For �! = 0.2625, the oscillations in the chord
distribution are more prominent, which implies that the addition of twist variables
grants more freedom to the chord variables to minimize skin friction drag. Once
again, the improvement in drag gained from the chord and twist optimization is
fairly insignificant due to the fact that there is only so much that can be improved
with twist and chord variables.

3.2.4 Dihedral and Twist Optimization

Nonplanar wings have the potential to reduce induced drag beyond what is attain-
able with a planar wing and an elliptical lift distribution. Previous optimization
studies have verified this result55,92. We include twist variables in this subproblem
because we want to allow the optimizer to converge to an elliptically loaded planar
wing if that is the optimal design. However, we first assess the parametrization
of the dihedral variables by conducting an optimization with just dihedral. Since
we expect the most variation in dihedral to occur toward the wingtip, we want to
make sure that our parametrization allows enough flexibility to capture the optimal
shape. We vary the number of control points and experiment with spacing them
uniformly along the span and clustering themmore heavily toward the wingtip. In
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Figure 3.13: Comparison of different quantities and spanwise distributions of control points for an
optimization with dihedral variables.

Figure 3.13 we compare the winglet-down optimized results for six different possi-
ble parametrizations. All six parametrizations achieved an elliptical lift distribution,
but the cases with only six variables prevented the optimizer from converging to
the optimal winglet cant angle. We choose to use the FFD with nine control points
clustered toward the wingtip as the nominal FFD because it gives a sufficient degree
of freedom to the optimizer for the kind of design space exploration we seek to
do. Note that we recover two local minima in the dihedral-only optimizations: an
upturned winglet and a downturned winglet. The upturned winglet shapes are
achieved when starting the optimization from random starting points; Figure 3.13
shows only the optima found when starting from the baseline geometry.

Euler

Now we combine twist and dihedral to see if the coupling between these two sets
of variables affects the number of optimal designs. We start with running 15 op-
timizations starting from unique dihedral distributions. These initial distributions
can be seen in the top frame of Figure 3.14 In the optimization with L3 meshes, the
optimizer converges on multiple local minima. Five of the optimizations converge
to an upturnedwinglet shape and the rest converge to a downturnedwinglet. Those
that converge to the winglet-down shape share a very similar wingtip design, but
vary in the vertical displacement of the main wing. These differences can be seen
in the middle frame of Figure 3.14. The next set of optimizations starts from the
colored distributions in the middle frame of Figure 3.14, but uses L2 meshes. The
designs obtained in the optimizationwith finermeshes are shown in the final frame
of Figure 3.14. The transition to finermeshes reveals that some of themultimodality
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Figure 3.14: Results of optimizing the dihedral distribution first with L3 meshes and then with L2
meshes.

Table 3.6: Dihedral and twist optimization results. The �! = 0.8 result was obtained by regenerat-
ing the volume mesh to fix problems with the formation of negative volumes.

Case Grid �! Drag Counts %Δ��
Euler L3 0.2625 39.909 −6.52
RANS L2 0.2625 143.327 −0.48
RANS L2 0.5 244.969 −2.79
RANS L2 0.8 455.178 −15.21

observed in the first optimization was due to the coarseness of the mesh, and not
to any physical phenomenon. In the end, the optimizer converged to a wing with
an upturned winglet and a wing with a downturned winglet. In inviscid flow,
increasing the horizontal and vertical extent of the wing helps to decrease drag.
In the downturned winglet design, the optimizer has maximized the utilization
of vertical space by changing curvature in the middle of the wing. Although this
is optimal for inviscid analysis, the penalty in parasite drag due to the increased
surface area would make this wing suboptimal in realistic analysis.

RANS

The addition of viscosity to the model activates a tradeoff between the induced
drag improvement from winglet formation and the rise in parasite drag due to an
increase in wetted area. Before running the RANS analyses, we explore the design
space using OpenAeroStruct to better understand the implications of this tradeoff.
Figure 3.15 compares the optimization results for three general cases: inviscid
analysis, viscous analysis, and viscous analysis with a monotonic constraint. The
monotonic constraint forces the optimizer to form a downturned winglet, but the
results are of interest because they give a metric with which to compare the other
results. The key in the upper left corner provides labels for the different colors. The
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three cases are optimized with 5 different starting points, displayed in the left-most
column, and 5 different lift conditions ranging from �! = 0.1 to �! = 0.8. The front
views of each optimizedwingprofile are shown in each cell of the grid. Belowand to
the right of eachwing profile, slider bars show the relative drag differences between
the viscous-optimized results and the inviscid-optimized result. The horizontal bar
shows the percent difference in inviscid drag, while the vertical bar indicates the
percent difference in skin friction drag compared with a viscous analysis of the
inviscid-optimized result. Moving from the left to the right of the grid, the trend
is an increase in nonplanarity for the viscous results. At low �! values, when
the skin friction drag dominates, the optimizer has an incentive to reduce the arc
length of the front view and thus reduce the effective wetted area. Since only small
changes to the dihedral variables are possible without increasing the wetted area,
the optimizer converges to the same optimum regardless of the starting point. As�!
increases, this incentive diminishes and the optimizer tends towardmore nonplanar
wing shapes where the induced drag can be minimized. The increased freedom to
vary the wing dihedral opens up the design space to multiple local minima. The
inviscid optimization converges to three local minima and the viscous optimization
for �! = 0.8 converges to two optima: an upturned and a downturnedwinglet. The
downturned winglet appears to offer better drag performance compared with the
upturned winglet.

Taking the information from OpenAeroStruct as a reference, we optimize the
RANS L2 baseline planform with respect to eight dihedral and twist variables for
�! = 0.2625, 0.5, and 0.8. The results once again exhibit a strong dependence on �!.
As seen in left-hand side of Figure 3.16, the low �! case deflects only slightly from
the baseline geometry. As �! increases, the vertical extent of the wing expands.
Interestingly, when chord variables are added into the optimization, the trends seen
in the separate chord and dihedral optimizations seem to be linearly combinedwith
no recognizable coupling between dihedral and chord. This combined dihedral,
twist, and chord optimization is presented on the right-hand side of Figure 3.16.
In both of these cases, the �! = 0.5 result converges to a down-turned winglet,
while the �! = 0.8 result converges to an upturned winglet. We run a dihedral and
twist optimization for three wings with randomly distributed dihedral and twist
at �! = 0.5 to investigate the possibility of multiple local minima (Figure 3.17).
Surprisingly, the optimizer converges to an upturned winglet for all three of these
randomly generatedwings, despite the fact that a comparison of drag values reveals
a preference for the downturned winglet. We conclude that in an optimization
where the parametrization allows forwinglet formation, a gradient-based optimizer
can converge to either an upturned or downturned winglet, depending on the
starting position. If removal of one of these optima was desired, it would be trivial
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Figure 3.15: We use OpenAeroStruct to quickly explore the design space of the dihedral and twist
optimization.

to apply a constraint which would force the winglet in the preferred direction.

3.2.5 Adding span and sweep variables

As a final step before considering the full case, we investigate the effects of adding
span and sweep variables to the RANS optimization. Figure 3.18 shows the results
of two distinct optimization problems. The left-hand side shows a comparison
between optimizing with respect to twist, chord, dihedral, and span at �! = 0.2625
and �! = 0.5. The only geometric constraint is planform area. For �! = 0.2625,
the optimizer finds greater benefit in maximizing the chord and does not increase
span to reach the upper bound. The span does increase from the baseline case
though, and the optimizer adds a slight anhedral to the wing. On the other hand,
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(a) Dihedral and twist (b) Dihedral, twist, and chord

Figure 3.16: (a) A nonplanar wing forms as �! increases. (b) The chord varies at low �! and the
winglet forms at a high �!.

Figure 3.17: The optimizer converges on two local minima for �! = 0.5.

for �! = 0.5, the span reaches the upper bound and an upturned winglet is formed.
When sweep is added to the optimization, we find the optimizer tends to sweep

the wingtip back sharply, creating a raked wingtip. When the full bounds recom-
mended in the ADODG case description are used, this sharply swept wing tends to
cause mesh warping errors, resulting in negative volumes. To avoid this problem,
we reduced the bounds to allow sweep to vary from −0.25m to 0.25m. The right-
hand side of Figure 3.18 shows the results of this optimization. The most noticeable
feature of these results is the formation of the raked wingtip. Once again we notice
that the optimizer does not extend to the full bounds of the span variable for the
lower lift case. This time, for �! = 0.5, the optimizer converges on a downturned
winglet. The appearance of the same swept-back wingtip in both local minima,
despite the differences in chord, dihedral, and sweep distribution on the main part
of the wing, suggests that the sweep at the wingtip is highly beneficial to dragmini-
mization. For a wing at incidence to the freestream tip sweep can function similarly
to dihedral, dispersing the shed vorticity over a larger region and reducing vortex

39



(a) Dihedral, twist, chord, and span (b) Dihedral, twist, chord, span, and sweep

Figure 3.18: RANS optimization results starting from the baseline rectangular wing at different �!
values.

drag. Additionally, the wing could be benefiting from more constant downwash
due to the tip sweep, as explained in Section 3.2.2 regarding the crescent wing.

3.3 Full Case Optimization

The results of Section 3.2 emphasized the importance of considering viscous effects
when spanwise chord and dihedral variables are included in the optimization prob-
lem. Therefore, although the ADODG case calls for Euler analysis, we only report
optimization results obtained using RANS analysis in this section. Euler analysis
likelywould producemultiple localminima, however, our purpose is to study phys-
ically meaningful multimodality, and thus we restrict ourselves to RANS analysis.
All of these results are produced using the RANS L2 mesh.

The first result presented here is a solution of the optimization problem in Ta-
ble 3.2. We run the optimization starting from the baseline geometry and two ran-
domly perturbed starting positions. As seen in Figure 3.19, the optimizer converges
on a different local minimum in each case. Despite the apparent differences in plan-
form shape, the final drag values are remarkably similar (see Case 1 in Table 3.7).
Following the trend of these results, we suppose that starting the optimization
from additional points in the design space would reveal more local minima. In
keeping with our purpose, we do not attempt such an investigation, but we would
like to point out some of the trends that have reappeared from Section 3.2 in these
results. True to our previous hypothesis, the chord variation is multimodal—even
more so than before because for a given chord distribution the optimizer has more
design variables with which to tailor the wing shape to minimize induced drag.
Each optimal design has a unique sweep distribution, but there is a commonality
of sharp sweep-back at the wingtip. As expected from our study of the dihedral
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Figure 3.19: Three local minima found with all variables active.

variables, there is very little y-displacement in any of the three solutions due to
the low lift coefficient and the relative unimportance of minimizing induced drag.
Instead of pushing the span to its maximum allowable extent, the optimizer uses
the available planform area to maximize the chord and reduce skin friction drag. In
all three cases, the span increases to a different value, implying that the optimum
aspect ratio varies depending on the shape of the wing. In terms of drag reduction,
all three solutions improve by nearly 11%. The breakdown between viscous and
pressure drag in Table 3.7 reveals a significant reduction in pressure drag. Up to
this point in our investigation we have not used shape variables to tailor the airfoil
cross-section of the wing. It appears that the optimizer has taken advantage of
the shape variables to streamline the wing shape and reduce drag due to viscous
separation. This can also be seen in the pressure plots on the right of Figure 3.19,
where the flattened profiles differ significantly from the well-known steep pressure
gradient of the baseline NACA-0012 airfoils.

In the remaining results, we consider different methods of constraining the
problem to manage the multimodality. We first experiment with adding the root
bending moment constraint back into the problem. The result is a planform similar
toOptimum1 in Figure 3.19, onlywith a shorter span to satisfy the added constraint
and a corresponding increase in drag (see Case 2 in Table 3.7). Since adding this
constraint does not appear to attenuate the multimodality in the chord distribution
we do not investigate further. Next we reintroduce the constraint forcing the chord
distribution to decreasemonotonically from the root to the tip. With this constraint,
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Table 3.7: Full optimization problem results. Percentage change is referenced to the baseline wing.

Case Notes # �! �� (cts) %Δ�� %Δ��,E %Δ��,?

1 All variables 1 0.2625 128.358 −10.87 −1.3 −21.7
2 0.2625 128.847 −10.53 −1.0 −21.3
3 0.2625 128.888 −10.50 −0.7 −21.6

2 Root bending moment constraint 1 0.2625 131.903 −8.41 −2.8 −14.7
3 Monotonic chord constraint 1 0.2625 128.157 −11.01 −0.8 −22.5

2 0.2625 128.116 −11.04 −0.3 −23.1
3 0.2625 128.115 −11.04 −0.3 −23.1

4 Linear chord and sweep 1 0.2625 134.011 −6.95 0.6 −15.4
distributions 2 0.2625 134.011 −6.95 0.6 −15.4

3 0.2625 134.010 −6.95 0.6 −15.4

the optimizer converged on two different local minima in three different runs. The
results are shown in Figure 3.20 and tabulated in Table 3.7 (Case 3). For both of these
optima, the monotonically decreasing chord distribution resulted in slightly better
performance than anyof the optima found in theprevious optimization. Adding the
monotonic constraint gave the optimizer freedom to extend the span to itsmaximum
allowable extent, resulting in better induced drag performance. This can be seen in
the slightly better reduction in pressure drag for the Case 3 optima compared with
theCase 1 optima. These results corroborate our previous assertion thatminimizing
skin friction drag with respect to the chord distribution is a multimodal problem.
The optima found in Case 3 were present in the design space of Case 1, but the
optimizer was unable to find them because of the multimodality due to the chord
variables. Importantly, failing to find the optimal chord distribution prevented the
optimizer frommaximizing span and achieving the optimal aspect ratio. Themajor
difference between the two optima in Case 3 is the sweep distribution. Optimum
1 follows a zig-zag pattern, sweeping back, then forward, then back again at the
tip. Optima 2 and 3 have a more gradual sweep distribution, sweeping forward
until midspan and then back to the tip. Interestingly, the same sweep patterns are
observed in Figure 3.19. The distribution of anhedral is nearly identical across the
optimized designs, but it varies only slightly from a flat wing, indicating the lack
of benefit to be gained from a winglet at low �!.

While these optimized wings certainly perform better than the baseline wing,
there is no disputing the fact that they are unconventional—possibly too unconven-
tional to be practical. The final optimization case attempts to address the tradeoff
between performance and practicality. For this final case, we add a constraint that
the chord and sweep distribution must vary linearly along the span of the wing.
In three different runs, the optimizer converges on a single design, shown in Fig-
ure 3.21. This design appears much more conventional, yet it suffers a 4% increase
in drag compared with the optimized designs from Cases 1 and 3. The optimum
design has maximum sweep andminimum tip chord. The span upper bound is not
reached, probably due to the need to maintain a relatively large root chord in order
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Figure 3.20: Two local minima found when monotonically decreasing chord is enforced.

to not cause a greater increase in skin friction drag.

3.4 Sweep variable study

The distinctive curvature in the sweep distribution of the best-performing optimum
in Table 3.7 warrants further analysis. At subsonic speeds, the effect of sweeping
the wing should be marginal89. Using optimization we can determine whether or
not our modeling approach reflects this hypothesis. We performed an additional
optimization with an identical problem formulation except that the sweep is fixed
to maintain the quarter-chord parallel with the z-axis. The optimized straight wing
achieves nearly the same same drag reduction as the scimitar wing. Table 3.8
shows that the difference is less than one drag count. The optimized geometries
are depicted in Figure 3.22 along with airfoil and �? slices at various spanwise
locations. The airfoil slices are quite similar despite the differences in planform
shape, indicating that there is little coupling between sweep and airfoil shape at this
subsonic, low-�! flow condition. Figure 3.23 shows the variation of aerodynamic
andgeometric properties along the spanof the twowings at thedesign (�! = 0.2625)
and zero-lift conditions. The chord distribution and the lift distributions at the
design point are identical. Likewise, the spanwise variation in viscous drag is
minimal. The major difference between the two wings is the spanwise distribution
of pressure drag. The pressure drag of the straight wing is roughly constant along
the span, while that of the scimitar wing has a similar curvature to its sweep
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Figure 3.21: One optimal design found when chord and sweep distributions are constrained to be
linear.

Table 3.8: Sweep optimization problem results. Percentage change is referenced to the baseline
wing.

Case �! �� (cts) %Δ�� %Δ��,E %Δ��,?
Scimitar 0.2625 128.116 −11.04 −0.3 −23.1
Straight 0.2625 129.036 −10.40 −0.03 −22.2

distribution. Interestingly, the pressure drag of the scimitar wing has a higher peak
than the straight wing, but this is offset by small regions of negative drag at the root
and the tip. It is unclear whether this effect is an artifact of the numerical modeling
or a relevant physical phenomenon. However, given that the integrated effect of
the scimitar sweep distribution is only marginally better than the straight wing,
we conclude that for this design case and flow condition, the optimum design is
relatively insensitive to the sweep variable.

3.5 Summary

Wing aerodynamic optimization with respect to planform variables involves a
strong tradeoff between induced and parasite drag. The inclusion of a viscous
drag model in the optimization is necessary to fully account for this tradeoff and
obtain physically meaningful results. Whenminimizing drag with respect to chord
distribution at low �! values, this tradeoff causes the optimizer to formnonintuitive
wavy chord distributions that minimize skin friction drag at the cost of a perfectly
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Figure 3.22: Comparison of scimitar and straight wing geometries and �? distributions.

0

1000l (N/m)

0.00

0.25

0.50

cl

−100

0

100

d (N/m)
0.00

0.02
cd

0.0

2.5

5.0
Twist

−0.02

0.00

0.02

cd,p

0.0 0.2 0.4 0.6 0.8 1.0

z/b

0

1c (m)

0.0 0.2 0.4 0.6 0.8 1.0

z/b

0.0075

0.0100

0.0125

cd,v

Scimitar

Straight

CL = 0.2625

CL = 0.0

Figure 3.23: Comparison of spanwise variation on scimitar and straight wings.

45



elliptical lift distribution. This tradeoff introduces multimodality into the design
space, which we explained by analyzing a canonical flat plate with zero lift. In
this extreme case, the optimal chord distribution is governed by the motivation to
increase the chord as much as possible to reduce the skin friction drag per unit area
while meeting the wing area constraint, but multiple chord distributions yield the
minimum drag solution. As �! increases, this multimodality is attenuated by the
increasing relative importance of induced drag because the induced drag is also
coupled with the chord distribution.

The benefit of nonplanarity is strongly correlated with the drag tradeoff as
well. When optimizing with respect to dihedral variables, the optimizer forms a
winglet, for both �! = 0.5 and �! = 0.8. The optimizer also displaces the main
wing vertically in the opposite direction of the winglet to maximize the vertical
extent of the wing and thus the vorticity sheet. This trend is amplified for �! = 0.8
compared with �! = 0.5. On the other hand, for a low �! condition, the decrease
in induced drag due to nonplanarity does not outweigh the increase in parasite
drag due to the additional wetted area. Thus, for high �! conditions, dihedral
variables add multimodality to the design space. We find that a down-turned
winglet reduces drag more than an upturned winglet, but both are local minima.
A wing optimized with respect to both chord and dihedral variables appears to
linearly combine the trends found in the separate cases: at low �! the planform is
wavy with indiscernible dihedral, and at high �! the wing tapers to a winglet.

The optimal aspect ratio also depends on the lift condition. A short, stubby
wing is best for low-lift flight dominated by skin-friction drag. On the other hand,
when induced drag is the principal drag component, awingwith a high aspect ratio
is desirable. Importantly, the multimodality in the chord distribution can prevent
the optimizer from achieving the optimal aspect ratio to minimize induced drag.
This is seen in the comparison of Figures 3.19 and 3.20, where the restriction of
the design space to monotonically descreasing chord distributions actually enables
the optimizer to find a chord distribution that allows a higher aspect ratio and
lower overall drag. The designs in Figure 3.20 are present in the design space of
Figure 3.19, yet the optimizer does not find them due to multimodality.

When the optimizer has freedom to control sweep, it frequently converges to
a scimitar-like wing with a sharply swept wingtip. However, when the wing is
parametrized to have zero sweep, the drag is only slightly higher than the scimitar
wing. This indicates that for subsonic flow the design space of the sweep variable
is relatively flat and variations in sweep have minimal impact on the total drag of
the wing.

It is crucial to consider viscous effects when the geometric parametrization
allows the development of a nonplanar wing. In such cases, reducing induced drag
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is an incentive to increase dihedral and form a winglet, which also increases the
total surface of the wing. Viscous effects must be considered in order to balance
the tradeoff between induced drag and parasite drag regarding the formation of
a winglet. All of these results strongly support the use of viscous analysis over
inviscid analysis in realistic wing design optimization.

Although we did find evidence of multimodality for various parametrizations,
we do not find these instances to be an impediment to mainstream use of gradient-
based aerodynamic shape optimization of wings. The use of proper physics mod-
eling and the application of practical design constraints enabled us to arrive at
a single optimal design for the problem considered in this chapter. The insights
gleaned from these results will help other researchers gain a better understanding
of the wing design problem and formulate their problems to avoid possible sources
of multimodality. Our experience is that in practical design problems, the number
of local minima is automatically reduced merely by the standard constraints and
requirements of the design problem. As stated in the introduction, we did not
attempt to, nor did we, conduct an exhaustive search for all of the local minima
in the design space. Our study confirms our opinion that it is not necessary or
economical to engage in such activity for each new design problem.

The problems analyzed in this chapter only consider aerodynamic effects. Real-
world wing design lies at the intersection of multiple disciplines, including aero-
dynamics, structures, and controls, among others. High-fidelity aerostructural
analysis captures the interactions between aerodynamics and structures, the two
disciplines with the strongest coupling in wing design. The use of high-fidelity
aerostructural analysis in the optimization problem will introduce new design
tradeoffs and have different effects on multimodality. Chapter 4 is an investiga-
tion of problems considering aerostructural effects.
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Chapter 4

Exploration of Aerostructural
Wing Design

In this chapter we investigate some aspects of transonic wing design through
aerostructural optimization. Since transonic flow conditions differ significantly
from the subsonic flow considered in Chapter 3, we start by re-evaluating the ef-
fect of sweep in the optimization problem. Then we demonstrate the capability of
the MACH framework to explore the aerostructural design space by optimizing a
rectangular wing in order to arrive at a swept wing typical of the transonic regime.
We report the benefits of using a multi-level optimization acceleration technique
for aerostructural optimization. Finally, we analyze the robustness of an optimized
wing and propose a new method for preserving low-speed aerodynamic perfor-
mance while optimizing for a cruise design condition.

4.1 Problem Description

The CRM was designed as a benchmark for the verification and validation of CFD

solvers across industry and academia93. Subsequently, the CRM wing was adopted
as the test case for a series of benchmark aerodynamic shape optimization prob-
lems58. More recently, theundeflected (jig) shapeof theCRMwas reverse engineered
as a benchmark for aerostructural analysis and optimization. In this work, we start
with a rectangular wing and solve the same optimization problem defined for the
undeflected Common Research Model (uCRM) in Brooks et al. 54 . We created a
rectangular wing with the same reference area and aspect ratio as the uCRM-9. The
cross-section of the wing is the RAE-2822 airfoil with a trailing edge thickness of
5mm. The planform and cross-section of the wing are depicted in Figure 4.1 and
the initial geometric properties are given in Table 4.1.

The objective of the optimization problem is tominimize fuel burn for a specified
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Table 4.1: Rectangular wing specifications

Property Value Units

Reference area 383.12 m2

Half-span 29.38 m
Aspect ratio 9.01
Mean aerodynamic chord 6.52 m
Sweep 0 degrees

Figure 4.1: Rectangular wing definition

Table 4.2: Aircraft specifications

Property Description Value Units

,fixed Fixed mass 100000 kg
,payload Payload 34000 kg
,reserve Reserve fuel 15000 kg
' Mission range 7250 nm
2C TSFC 0.53 hr−1

mission length. The optimizer is free to change the shape of the wing and the sizing
of the wingbox in order to achieve minimum fuel burn. Fuel burn is calculated in
the following manner:

,3 =,fixed +,wing +,payload +,reserve

,2 =,3 exp
(
' 2C ��

+ �!

)
,fuel =,2 −,3

(4.1)

The parameters,wing, �!, and �� are subject to change during the optimization;
fixed properties are defined in Table 4.2 and + is based on the Mach number and
altitude.
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Table 4.3: Grid dimensions

Label #edge #chord #span #off-wall #total Max H+

B2 2 22 33 32 52,096 2.15
A2 3 32 48 44 152,064 1.42
B1 4 44 66 64 416,768 1.19
A1 6 64 96 88 1,216,512 1.12
B0 8 88 132 128 3,334,144 1.15
A0 12 128 192 176 9,732,096 1.15

4.2 Methods

4.2.1 Computational Framework

We use the MACH framework to solve the optimization problem introduced above.
For this study, we consider the solutions of both the multidiscplinary analysis and
the coupled adjoint sufficiently converged when the L2 norm of the residual has
decreased by 1 × 10−5.

4.2.2 Preprocessing

CFDMeshing

We created two series of three meshes, for a total of six meshes, shown in Figure 4.2.
The finestmesh (A0)was created first and then coarsened by a factor of

√
2 to get the

starting mesh for the B-series (B0). The level 1 and 2 surface meshes in each series
were coarsened by factors of 2 and 4, respectively, from the level 0 mesh. All surface
meshes were extruded to a far-field distance of 100 × MAC = 652m with an initial
off-wall spacing of 5.74 × 10−6 m. For these meshes, G is the streamwise direction
and I is the lift direction. The dimensions of the grids are given in Table 4.3.

FEAMeshing

We patterned the structural mesh after the uCRM-9 wingbox. The fore and aft spars
are located at 10% and 65% chord, respectively. The wingbox has 46 ribs, extending
from the symmetry plane to the wingtip. Figure 4.3 shows the placement of the
wingbox within the wing and the discretization of the wingbox. The structural
mesh consists of 16,672 2nd-order quadrilateral shell elements.

Each component of thewingboxmodel is divided into 7 panels in the chordwise
sense and 45 panels in the spanwise sense. Each of these panels consists of multiple
shell elements. The panels of the skins and spars are modeled using smeared
stiffeners, as described in Kennedy and Martins 94 . The panels can also be grouped
into design variable groups so that they share the same values for these parameters.
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Figure 4.2: CFD meshes of baseline wing.

Figure 4.3: The structural mesh has 16,672 2nd-order shell elements.

Geometric parametrization

The geometry is parametrized using an FFD volume, as described in Section 2.2.1.
We use a coarse FFD for the optimizations on the B2 and A2 grids and a fine FFD on
the finer grids. The coarse FFD has 5 control points distributed with cosine spacing
along the chord and 9 control points distributed evenly along the span, making
a total of 90 FFD points (including top and bottom). The fine FFD has double the
number of chordwise control points, for a total of 180. The coarse FFD is needed on
the coarse CFD grids tomaintain an appropriate ratio of CFD points to FFD points. As
this ratio decreases, the optimizer has more and more control over the individual
CFD points and is likely to produce a non-smooth surface. Generally we try to
maintain a ratio of 4 CFD points to a single FFD point. The distribution of the control
points in relation to the wing can be seen in Figure 4.4. The global taper and sweep
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Figure 4.4: Geometric parametrization for rectangular wing optimization problem. On the left,
the wing surface embedded in the FFD volume. On the right, the CRM planform is reproduced by
modifying the FFD control points.

Table 4.4: Flow conditions for high-fidelity analyses

Flight condition Mach Altitude (ft)

Nominal cruise 0.85 37,000
2.56 pull-up maneuver 0.64 0
1.3g cruise buffet 0.85 37,000

design variables can be modified to convert the rectangular wing to a planform
resembling the CRM wing.

4.3 General Optimization Problem

This section contains the description of a general optimization problemwhich is the
basis for all of the results in this chapter. In the following sections, any deviations
fromor additions to the problemwill be expressly stated. The optimizationproblem
is defined in Table 4.5. Bounds and scaling factors for the variables and constraints
are listed in the columns to the left, where applicable. The optimization problem
requires three high-fidelity analyses: 1) nominal cruise, 2) 2.56 pull-up maneuver,
and 3) 1.3g cruise buffet. The flow conditions for these three cases are listed in
Table 4.4.

4.3.1 Objective function

The objective function is calculatedwith Equation 4.1. Asmentionedpreviously, the
optimizer can change,wing, �!, and �� in order to decrease,fuel. The wing mass
is made up of the mass of the finite element model and an additional component to
account for any increase in wing area.

,wing = 2.5,wingbox + 4000 (ref
(ref,orig

(4.2)
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Table 4.5: Rectangular wing aerostructural optimization problem description.

Quantity Lower Upper Scaling
minimize ,fuel 1

with respect to Angle-of-attack 3 0° 10° 0.1
Twist 7 -10° 10° 0.05
Sweep 1 0m 25m 0.01
Chord scaling 3 0.25 2.0 0.1
Sectional shape 180 -50 cm 50 cm 1
Panel thickness 131 2mm 20 cm 100
Stiffener thickness 108 2mm 20 cm 100
Stiffener height 91 5mm 10 cm 100
Stiffener pitch 3 10 cm 30 cm 100
Panel length 108
Fuel tractions 301
Total fuel mass 1
Total number of design variables 937

subject to

Nonlinear
constraints



!nominal = (,2 +,3)/2 1 0 0 1e-6
!2.56 = 2.5,2 1 0 0 1e-6
�!,buffet = 1.3(�!,nominal + 0.05) 1 0 0 1e-6
Structural failure constraints 5 1 1
Buffet-onset constraint 1 0.04 100
(ref − (ref,orig 1 0 0 0.1
Minimum wingtip thickness 15 10% 1
Minimum trailing edge thickness 15 100% 1
Minimum spar height thickness 30 60% 1
Total fuel mass constraint 1
Fuel volume constraint 1
Fuel traction consistency constraints 301
Panel length consistency constraints 108

Linear
constraints



LE/TE constraints 18
Monotonic constraint on chord scaling 2
Cstiff,8 − Cpanel,8 108 -2mm 2mm
ℎstiff,8 − Cstiff,8 108 0
Cpanel,8 − Cpanel,8+1 104 -2.5mm 2.5mm
Cstiff,8 − Cstiff,8+1 104 -2.5mm 2.5mm
ℎstiff,8 − ℎstiff,8+1 88 -5mm 5mm
Total number of design constraints 1013

In order to account for the lack of the fuselage and other surfaces, we make a few
modifications to the lift and drag coefficients calculated by ADflow.

�!,total =
2.2 !wing

(ref @
(4.3)

��,total =
2�wing + 3.453@

(ref @
(4.4)

!wing and�wing refer to the lift and drag generated by the half-body CFDmodel, thus
the factor of 2 in Equations 4.3 and 4.4. The drag area of 3.453m2 in Equation 4.4 is
the product of the baseline reference area and the sum of the drag coefficients for
the fuselage, empennage, and nacelle surfaces. The nacelle and vertical stabilizer
combined contribute 30drag counts, the samevalueused in the uCRMoptimizations.
To calculate the drag markup for the fuselage and horizontal stabilizer, we first
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compute the ratio of the grid-converged drag values from thewing-only CRM case58

and the DPW 4 wing-body-tail geometry. This ratio is then used to calculate the
fraction of the uCRM drag pertaining to the fuselage and horizontal stabilizer. The
complete calculation is as follows:

��,FH = (1 −
��,W,CRM

��,WFH,DPW4
)��,WFH,uCRM ≈ 0.006 (4.5)

where W, F, and H refer to wing, fuselage, and horizontal stabilizer, respectively.
These modifications are used on all of the high-fidelity analyses.

4.3.2 Design variables

Each case has an angle-of-attack variable to enable matching the lift constraint.
There are seven twist variables, each controlling the rotation of one of the spanwise
FFD sections about the leading edge. Thefirst two sections arefixedat zero twist. The
sweep variable corresponds to the streamwise displacement of the wingtip leading
edge. All other FFD sections are displaced linearly to create a straight leading edge.
Chord scaling is controlled at FFD sections 1 (symmetry), 4, and 9. The intervening
spanwise sections are scaled linearly to ensure straight leading and trailing edges.
An example of the sweep and chord scaling variables is shown in Figure 4.4. As
explained in Section 4.2.2, we use an FFD with 90 control points for the coarse CFD

meshes and an FFD with 180 control points for the fine meshes. At each spanwise
section, the FFD control points are restricted to in-plane displacements that are
perpendicular to the freestream. The FFD control points regulate the cross-sectional
shape of the wing.

The structure is divided into 131 design variable groups: 23 for the ribs, 18
for the spars, and 45 groups each for the upper and lower skins. Each of the rib
design variable groups has a single panel thickness variable because the ribs are
not modeled with the smeared stiffeners. The spar design variable groups share a
single variable for stiffener height and another for stiffener pitch. Each spar group
has its own variables for panel thickness and stiffener thickness. A single stiffener
pitch variable is shared by all upper skin groups, and another is shared by all
lower skin groups. All skin design variable groups have their own variables for
panel thickness, stiffener thickness, and stiffener height. Finally, each of the design
variable groups with smeared stiffeners (skins and spars) has a variable for panel
length. The alignment of the stiffeners on the panels is calculated based on the initial
panel reference axis, but does not change in the course of the optimization. Thus,
while the stiffnessmatrix is updated to reflect changes in the length of the stiffeners,
it does not account for changes in the orientation of the stiffeners. For optimization
problems that allow the wing sweep to change, the stiffeners will remain aligned
with the initial sweep. This creates an artificial benefit for thewing sweep to remain
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close to the initial value, because the structure is most efficient when the stiffeners
are aligned with the wing sweep. For small variations in wing sweep, the effect
of this discrepancy is minor, however, for the rectangular wing case, we expect
large changes in wing sweep. We have two ways of managing this issue. First, for
optimization problems that start from the baseline rectangular wing, we manually
set the stiffener orientation to a value that is close to the expected optimal wing
sweep. Second, we use a multi-level approach to optimization, in which successive
optimizations start from where the previous one left off (see Section 4.5).

The weight of the fuel in the wing is applied as a uniform traction to the lower
skin of the wingbox between the symmetry plane and the 44th rib. This region of
the lower skin is made up of 301 panels, each of which receives a design variable
for the weight of fuel to be applied as a traction. Additionally there is a variable
for the total amount of fuel in each case. The cruise and buffet cases have a fuel
load corresponding to the mid-cruise point while the maneuver case has a fuel load
corresponding to the full fuel load.

4.3.3 Design constraints

Each of the analysis points has its own lift constraint. The structural failure con-
straints are computed by aggregating a failure criterion over a group of elements
using the KS aggregation method. There are two types of failure criterion added as
constraints. The stress failure criterion is calculated as the von Mises stress in an
element multiplied by a safety factor and divided by the material yield strength.
The buckling failure criterion is based on the critical buckling load of a stiffened
quadrilateral panel. We include three stress failure constraints: one for the ribs
and spars, one for the upper skin, and one for the lower skin. Two buckling failure
constraints are added: one for the ribs and spars, and one for the upper skin. The
buffet-onset constraint was developed and tested by Kenway and Martins 95 . In
summary, buffet onset is correlated to the percentage of the upper skin with sepa-
rated flow. They determined that the threshold of separated flow should be 4% of
the area of the upper skin. This constraint is added to the 1.3g cruise case, so as to
maintain the required 30% margin to buffet during cruise.

A constraint is added to preserve the original reference area. Thickness con-
straints are added along the wingtip to prevent excessive flattening of the wingtip
cap, which could crush cells in the volume mesh. These constraints limit the thick-
ness of the wingtip cap to a minimum of 10% the original thickness. Any decrease
of the trailing edge thickness is prevented with a set of 15 thickness constraints at
99% chord. Thickness constraints are also added along the fore and aft spars to
prevent decrease beyond 60% of the original value. This set of thickness constraints
was added to prevent excessive thinning of the outboard wing (see Figure 4.11). A
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set of constraints (dubbed LE/TE constraints) are added to the pairs of FFD control
points at the leading and trailing edges of each section to ensure equal and opposite
displacement. This ensures that the shape variables do not cause shearing twist,
which would be redundant with the global twist variables. In Chapter 3, we moti-
vate the use of a monotonic constraint on chord variables to ensure that the chord
decreases monotonically from the root to the wingtip. In this work, we include a
linear constraint on the chord scaling variables to enforce this property.

There are two fuel load constraints to ensure that the total fuel load variable for
each case is consistent with the actual amount of fuel being carried by the aircraft.
Each of the design variable groups with smeared stiffeners has a linear constraint
to maintain a difference of less than 2mm between the panel thickness variable and
the stiffener thickness variable. There are also linear adjacency constraints to limit
the difference in stiffener height, stiffener thickness, and panel thickness between
adjacent panels to 1 cm, 5mm, and 5mm, respectively. There are 64 nonlinear
constraints added to ensure the deformed panel lengths are consistent with the 64
panel length variables. An additional 602 nonlinear constraints exist to ensure that
the fuel traction variables are set to the correct value. Finally, for each fuel load,
there is a constraint to ensure that the total fuel volume can fit inside the wingbox.

4.3.4 Preliminary Structural Optimization

Initially, all of the structural members have uniform thickness and stiffener sizings.
We can start the aerostructural optimization from amore reasonably sized structure
if we first optimize the structural sizing with a set of fixed aerodynamic loads. This
structural pre-optimization is a cycle with five iterations. In each iteration, we
run an aerostructural analysis with the current structural sizing in order to get
the aerodynamic loads. Then we apply the aerodynamic loads to the structure
and run an optimization to minimize the structural mass with respect to the failure
constraints on the 2.56maneuver. We repeat this process five times in order to arrive
at a semi-converged aerostructural state. For the plank geometry, the structural pre-
optimizationproduces awingboxweight (,wingbox) of 11,874 kg,which corresponds
to a total wing weight (,wing) of 37,686 kg. The optimized structure for the CRM-
shaped planform has a wingbox weight of 10,968 kg and a total wing weight of
35,954 kg.

4.4 Aerodynamic Shape Optimization

Before addressing the aerostructural optimization problem presented in Table 4.5,
we take a moment to analyze a few aspects of the transonic ASO problem. In
Section 3.4, we showed that for subsonic flow, the design is relatively insensitive to
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Table 4.6: Aerodynamic shape optimization problem description.

Quantity Lower Upper Scaling
minimize �� 1

with respect to Angle-of-attack 1 0 10 0.1
Twist 7 -10 10 0.05
Chord scaling 3 0.25 2.0 0.1
Sweep 1 0m 25m 0.01
Sectional shape 90 -0.5 0.5 1
Total number of design variables 102

subject to �! = 0.5 1 0 0 1e-6
(ref − (ref,orig 1 0 0 0.1
Minimum wing thickness 400 25% 1
Minimum wingtip thickness 15 10% 1
Minimum trailing edge thickness 15 100% 1
Minimum C/2 along spars 30 60% 1
LE/TE constraints 18
Monotonic constraint on chord scaling 2
Minimum volume constraint 1 100%
Total number of design constraints 958

the sweep distribution. In transonic flow conditions, wave drag is amajor factor and
wing sweep is a desirable feature. Wing sweep has the effect of decreasing C/2 from
the perspective of the flow normal to the leading edge of the wing, which in turn
reduces wave drag. Wave drag can be reduced by sweeping the wing backward or
forward, making the optimization multimodal. We demonstrate this by optimizing
a wing at various fixed sweep angles. The optimization problem description for
this study is found in Table 4.6. These optimizations used the coarsest mesh (B2)
because it was sufficient to reveal the desired trend. Figure 4.5 shows the variation
of �� , �"H , and  for the different optimized wings. As predicted, the variation
of �� is bell-shaped with the peak corresponding to a quarter-chord sweep of 0°.
Interestingly, the optimal angle of attack decreases as the wing is swept forward.

Backward sweep tends to promote wingtip stall. With forward sweep, wingtip
stall is delayed, preserving healthy flow across control surfaces. Despite the fact
that forward sweep is more advantageous aerodynamically, there are additional
aeroelastic effects that complicate the design of forward-swept wings. A conven-
tional aft-swept wing exhibits negative bend-twist coupling which tends to unload
the wingtip as it deflects under aerodynamic forces. A forward-swept wing has
the opposite effect, leading to divergent behavior unless the wing is extremely stiff.
Most aircraft have swept-back wings to reduce structural weight.

For the rest of the studies in this chapter, we restrict the tip sweep to positive
values only in order to eliminate the multimodality observed in Figure 4.5. Before
moving onto aerostructural optimizations, we investigate three more aerodynamic
optimization problems. These optimization problems are based on Table 4.6, but
differ in geometric parametrization and starting configuration. We use amulti-level
optimization procedure, in which successive optimizations are run using increas-
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Figure 4.5: Wave drag can be reduced by sweeping the wing forward or backward, resulting in a
multimodal problem. Each of the plotted points is the result of an aerodynamic shape optimization
at a fixed sweep angle.

ingly finer CFD grids. Each optimization starts from the final state of the previous
optimization. This process saves computational time by convergingmost of theway
to the optimum on coarser grids (see Section 4.5). The three problems are defined
as follows:

Case 1) Straight leading and trailing edges. Start from plank geometry.

Case 2) Straight leading and trailing edges. Start from CRM planform.

Case 3) Curved leading and trailing edges. Start from CRM planform.

The curved leading and trailing edges of case 3 are created with a combination
of chord scaling and G-displacement. As explained in Section 2.2.1, these design
variables are applied at the control points of an FFD reference axis. In this case, the
reference axis is place along the leading edge of the wing, with one control point
at each of the spanwise FFD sections. Chord scaling is enabled at all nine reference
axis control points and G-displacement is enabled at all but the root control point.
These three optimization problems are solved using meshes B2 through A1.

Figure 4.6 shows the planforms of the three optimized wings. Case 1 does not
sweep the wing backward because it gets stuck on the forward side of the curve
in Figure 4.5. The FFD reference axis is located on the leading edge of the wing,
so the chord scales about the leading edge. When the tip chord decreases in size
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Figure 4.6: Planforms

the quarter-chord sweep becomes negative. Once the sweep becomes negative, the
optimizer can see no benefit in sweeping it backward, so the sweep variable remains
at the lower bound (which is the starting value for the plank geometry). The tip
sweep in cases 2 and 3 goes to the upper limit of 25 meters, which is consistent
with the downward slope of the �� curve in Figure 4.5. It is possible that by
relaxing the upper bound of the sweep variable, the optimizer would eventually
locate the optimal sweep angle for the single-point case, but we were unable to
test this hypothesis due to mesh warping restrictions. The spanwise properties
and airfoil cross-sections of the optimized wings are provided in Figure 4.7. The
clear differences in airfoil shape are indicative of the differences in planform shape.
With the exception of the root and the tip sections, case 1 features prototypical
supercritical airfoils—the optimizer’s best chance to compensate for the unswept
planform. The bulging root section of case 1 is necessary to permit thin supercritical
airfoils over the rest of the wing while still satisfying the fuel volume constraint.
By contrast, the cross-sections of cases 2 and 3 exhibit a more conventional forward
loading and camber distribution. The chord distributions of cases 1 and 2 are
practically identical, whereas the chord distribution of case 3 is bell-shaped with a
distinctive flare at the tip. The optimized drag counts for the three cases are 236.8,
224.3, and 223.3, in order of enumeration. Thus, the additional freedom present
in the geometric parametrization of case 3 affords an additional drag reduction of
approximately 1 drag count.
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Figure 4.7: Comparison of three aerodynamic shape optimizations.

4.5 Multi-level Optimization Procedure

In previous work on aerodynamic shape optimization by Lyu et al. 58 , a sequence of
optimizations were performed on progressively finer meshes in order to reduce the
total computational time of the optimization. Each optimization starts where the
previous optimization ends, so that the maximum benefit is extracted from each
mesh. The coarser meshes do not resolve the flow as accurately, but they still can
provide sensitivities that point the optimizer in the direction of the true optimum.
With each successive mesh level, the optimizer finds itself closer to the optimum
with an enriched set of sensitivities to guide its path. For this study, we adopt the
multi-level optimization method with the three coarsest meshes: B2, A2, and B1.
The purpose of this study is to compare themulti-level approach to an optimization
using only the B1 mesh. The optimization problem is a simplified version of the
one laid out in Table 4.5, where the sweep is fixed at 34.9°. Thickness constraints
along the spars are not included in this comparison.

The result of this comparison is shown in Figure 4.8. Both methods converge
to basically the same shape, but the computational cost of the multi-level approach
is 60% of the cost of the single-level optimization. The direct comparison does not
tell the whole story here though. In practice, the process of setting up and trou-
bleshooting a new optimization problem generally requires countless debugging
runs. This author has found great value in having a very coarsemesh handy during
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Figure 4.8: For this problem, the multi-level approach achieves basically the same design as the
single-level optimization on the finest grid—at 60% of the computational cost.

this initial phase. The cost savings due to troubleshooting with a coarse mesh are
not easily accounted for, but probably far outweigh the cost savings due to a single
optimization run.

4.6 Single-point Optimization

Now we look at the full optimization problem described in Table 4.5. For this
problem, we use grid levels B2, A2, B1, and A1 successively to arrive at the final
result. The coarse FFD (90 control points) is used on grid levels B2 and A2 and the
fine FFD (180 control points) is used on grid levels B1 and A1. The optimized wings
from each grid level are shown in Figure 4.9. The planform of the starting geometry
is shown in grey.

The transonic flow condition presents an interesting tradeoff between wave
drag and wing mass in relation to the sweep variable. To decrease wave drag, the
optimizer can increase wing sweep or modify airfoil shape. However, increasing
thewing sweep necessitates a heavier wing to support increased bending loads. On
the B2 wing, the tip sweep reaches the upper limit. The airfoils of the A2 wing are
very similar to the B2 wing, and yet the sweep decreases by 2°, indicating that the
improved resolution of the flow field favors less sweep. The final two optimizations
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Table 4.7: Results of single-point optimization.

Case Grid level FFD ,fuel (kg) ,wing (kg) !/� Sweep (deg)

Starting from plank B2 Coarse 88,740 37,531 20.3 37.3
A2 Coarse 80,727 35,758 21.7 35.2
B1 Fine 77,243 32,725 22.3 36.0
A1 Fine 75,834 31,919 22.5 36.7

Starting from CRM A1 Fine 75,667 31,002 22.5 36.7
Coarse FFD A1 Coarse 76,941 33,027 22.4 33.1
No shape variables A1 Fine 90,928 39,167 20.0 38.1
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Figure 4.9: Each successive level of mesh refinement yields additional design changes.

converge to a sweep value in between the first two. Switching to the fine FFD allows
the optimizer to fine-tune the airfoil shape for the single design point, resulting in
a fairly sharp leading edge and a pronounced suction peak. A distinctive lower
surface concavity forms at the leading edge which is reminiscent of the result of an
airfoil optimization of the RAE-2822 byDrela 63 . The optimizations on the finer grids
are also able to produce more passive load alleviation, as shown in the difference
between the load and twist distribution at the cruise and maneuver design points.

Figure 4.10 shows that the improvements achieved from each successive opti-
mization are preserved in a grid refinement study. The optimized wings from each
of the four grid levels are analyzed with the finer grids. The flow condition for this
comparison is the cruise condition at �! = 0.5. We chose �! = 0.5 because each of
the wings was optimized to a lift coefficient near 0.5. The baseline grid convergence
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Figure 4.10: Drag convergence study for the baseline and single-point optimized wings. For the
baseline wing, the drag increases as the mesh is refined because the shock is resolved more accu-
rately on finer grids. The improvements on the optimized wings are preserved as the mesh is re-
fined.

is also plotted to show the increase in drag as the large shock structure is captured
more accurately on successively finer meshes. This comparison gives an indication
of the value added for each successive optimization in the multi-level approach.
In comparison to the B2 optimum, meaningful gains are realized in the A2 and B1
optimizations. However, the drag reduction going from the B1 optimum to the A1
optimum is marginal. The minimal differences in the wing design between the B1
andA1 optima suggest that there is no need to continue themulti-level optimization
onto the next grid level.

In addition to starting the optimization with the plank geometry, we also ran
the optimization using the CRM planform as the initial design. In addition to
the differences in starting planform, the initial structural sizing for each of these
runs differs due to the structural pre-optimization (see Section 4.3.4). As shown
in Figure 4.11, the optimizer converges to nearly the same design starting from
the plank geometry and starting from the CRM planform. A closer look at the
differences in final design variables reveals that while the optimizer did converge to
the same general shape, there are significant differences between the two optimized
designs, especiallywith regard to structural sizing (Figure 4.12). Notably, the design
variables of largermagnitude aremore likely to converge to the samevalue, whereas
smaller design variables exhibit greater variance.

Figure 4.11 also shows the effect of the number of shape variables on the overall
design. When the coarse FFD is used, the wing has reduced sweep and is unable to
produce as much passive load alleviation as the wing optimized with the fine FFD.
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Figure 4.11: Comparison of single-point optimized designs. The optimizations starting from the
plank and CRM planforms converge to nearly the same design.

Additionally, the optimizer is unable to tailor the leading edge radius as precisely
with the coarser FFD. The wing optimized without shape variables converges
to a planform design with a constant chord on the inboard section of the wing.
Normally, the optimizer can reduce wave drag by increasing chord while keeping
the thickness constant, but in this case, the optimizer avoids increasing the root
chord because it has no control over the thickness ratio of the wing. As shown
in Table 4.7, including shape variables in the optimization reduces the objective
by 14,000 kg. Further fuel burn reduction of over 1,000 kg is realized by using the
fine FFD over the coarse FFD. This improvement is likely due more to the 2,000 kg
reduction in wing weight than the marginal improvement in !/�.

4.6.1 Synopsis

In this section, we investigated several aspects of the single-point aerostructural
optimization problem. We compared results obtained using various CFD grid levels
and saw that the final cross-sectional shape, planform, and structural sizing are all
affected by the grid level. This comparison also revealed that there are diminishing
returns on using increasingly finer CFD grids. We showed that the optimizer was
able to converge to a similar design from two radically different starting points,
allaying concerns that gradient-based optimization is not suitable for design space
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exploration. Finally, we considered the impact of the number of shape variables
on the overall design and found that the airfoil shape is implicitly linked to the
planform shape and the structural sizing.

4.7 Robust Design Optimization

4.7.1 Background

Single-point optimizations are prone to exhibit poor off-design performance. One
of the most common solutions for this problem is to set an objective function that is
a weighted average of the performance at multiple design points. The set of design
conditions included in the objective is referred to as amultipoint stencil. Thus, even
though the optimization problems solved in Section 4.6 included cruise, maneuver,
and buffet analysis points, we will designate them as single-point designs because
the objective function was only based on a single design point. Using a multipoint
objective improves the average performance across the stencil at the expense of the
nominal design point. However, it can result in intermittent performance, wherein
the design functions optimally at the specified design conditions but poorly in the
intervals. Drela 63 reported this phenomenon in a set of airfoil optimization studies
and showed that increasing the number of points in the stencil helped to curb this
tendency. In wing ASO, Lyu et al. 58 obtained a more robust design using a 5-point
stencil than with a single-point optimization. The multipoint design had a weak
shock across the stencil, whereas the single-point design had completely eliminated
the shock at the nominal design point. They also found that the multipoint design
had a larger leading edge radius than the single-point design. Kenway and Mar-
tins 64 compared different multipoint stencils of varying size and composition and
found a good compromise between robustness and computational expense with
a carefully chosen 5-point stencil. Multipoint optimization has also been demon-
strated in the context of aerostructural wing design52,54,96.

However, while there has been extensive comparison of single-point and mul-
tipoint designs with ASO, the same cannot be said for aerostructural wing opti-
mization. Additionally, most of the past efforts on multipoint design have focused
on robust cruise performance without considering the impact of design changes
at low-speed, high-lift conditions. Preserving low-speed, high-lift performance in
a wing optimization problem is notoriously difficult due to the complications that
arise from modeling and parametrizing high-lift devices. The difficulties associ-
ated with high-lift devices can be avoided by considering clean wing performance
at low-speed, high-lift conditions. To this end, Wakayama and Kroo 97 and Ning
and Kroo 38 have shown that constraining �!,max using critical section theory re-
sults in a more practical planform design. In airfoil optimization, Buckley et al. 98
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added a constraint on �; ,max into the multipoint objective function in order to meet
safety requirements at a low-speed condition. Rather than constraining �!,max,
Khosravi and Zingg 55 simply included climb drag in the multipoint objective func-
tion to encourage improvement in that regime. The whole issue is often skirted by
simply imposing limitations on the geometric parametrization to prevent changes
that would adversely affect high-lift performance (e.g. minimum leading edge
thickness).

4.7.2 Setting the stage

In this section we evaluate the impact of using a multipoint objective in aerostruc-
tural wing design optimization. Sophisticated methods of determining a repre-
sentative set of design conditions and weights have been researched by Toal and
Keane 99 and Liem et al. 96 . However, in this work we use a simple 3-point stencil
in �!-space based on Case 4.2 from Kenway and Martins 64 . The nominal �! is
calculated based on the mid-cruise weight at Mach 0.85 and 37,000 ft, just as in
the single-point optimization problem. The auxiliary design points are analyzed at
�!,nominal ± 0.05 at the same Mach number and cruise altitude. Initially, we tried
�!,nominal ± 0.025, following Brooks et al. 54 , but found little variation between the
single-point and multipoint designs. The three design points are weighted equally,
so the objective function is simply the arithmetic mean of the fuel burn calculated
from !/� at each flow condition. In all other respects, the multipoint optimization
is identical to the problem described in Table 4.5.

We also experiment with a novel approach for ensuring airworthiness at low-
speed, high-lift conditions. Using publicly available flight data of the Boeing 777-
200ER (an aircraft with similar specifications to the CRM), we determined Mach 0.4
and 10,000 ft to be a low-speed flight condition that should exhibit good aerody-
namic performance. This flight condition is shown in relation to the flight data in
Figure 4.13. As will be shown, both the single-point and multipoint designs exhibit
severe separated flow when evaluated at this flight condition at a high angle of
attack. By contrast, a single-point optimization with fixed RAE-2822 cross-sections
performs well. Instead of minimizing the drag at this flight condition, we propose
using a constraint to limit separation on the wing. Our approach is inspired by
buffet-onset constraint of Kenway andMartins 95 and uses the same formulation for
the separation sensor. Based on the analysis of the single and multipoint wings,
the constraint allows no more than 10% of the upper surface of the wing to have
separated flow. The analysis point for the separation evaluation is constrained
to generate enough lift to sustain the nominal takeoff weight (,2) of the aircraft
at Mach 0.4 and 10,000 ft. Both the chosen flight condition and the value for the
upper limit of the separation constraint are somewhat arbitrary and are subject to
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Figure 4.13: Analysis point for low-speed, high-lift separation constraint is placed at the boundary
of the climb profile for the Boeing 777-200ER.

change for other applications. This work is mainly concerned with introducing the
application of a low-speed separation constraint and evaluating its impact on the
optimized design. The correlation of this constraint with established airworthiness
regulations remains for future work.

The main objective of this study is to evaluate the impact of two different robust
optimization approaches: 1) a multipoint objective and 2) a separation constraint at
a low-speed, high-lift flight condition. Here is a summary of the designs considered
in this section:

• (SP) The single-point design fromSection 4.6 (started from the CRMplanform).

• (MP)A three-point designwith�!,nominal, �!,nominal−0.05, and�!,nominal+0.05
at Mach 0.85 and 37,000 ft.

• (SP-LS) A single-point design with a separation constraint at Mach 0.4 and
10,000 ft.

• (SP-NSV) Result of single-point optimization without shape variables (RAE-
2822 cross-sections).

4.7.3 Results

While only the MP optimization problem included the multipoint stencil in the
objective function, the other three optimized designs were analyzed at the multi-
point flight conditions for the purposes of comparison. Characteristics of the four
optimized designs are given in Table 4.8 The multipoint design achieves the best
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Figure 4.15: The multipoint design is very similar to the single-point design, but including the low-
speed separation constraint elicits striking modifications.

average fuel burn, but does slightly worse than the single-point design at the nomi-
nal flight condition. The SP-LS design burns more fuel across the three points than
the SP (+1.0%) and MP (+1.6%) designs, but compared to the SP-NSV design it is
16.0% more fuel efficient. The relative performance of the four designs is shown in
Figure 4.14.

Surprisingly, the airfoils of the multipoint design are nearly identical to the
single-point design (Figure 4.15). Increased sweep on the multipoint design is the
major geometric difference between the two. Accordingly, the multipoint wing is
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slightly heavier than the single-point wing, with most of the weight gain in the
skins and the aft spar. By contrast, the SP-LS wing is substantially different than
the single-point or multipoint wings. One of the most striking differences is the
disappearance of the distinctive concavity at the leading edge of the lower surface.
The SP-LS cross-sections have a larger leading edge radius as a result and seem
more typical of a traditional airfoil. The �? curves feature reduced suction peaks
(due to larger leading edge curvature) and more aft loading than the other designs.
Sweep is reduced by 5° compared with the single-point design. The distribution
of C/2 is significantly lower from 40-80% span, likely decreasing wave drag, which
would otherwise increase due to the reduction in sweep. Passive load alleviation at
the 2.56maneuver condition is severely degraded for the SP-LSwing. The variation
in spanwise loading between the cruise and maneuver conditions is minimal, as
opposed to the SP and MP designs where the cruise loading is elliptical and the
maneuver loading is bell-shaped. Thismeans that the SP-LSwing requires a heavier
structure in order to achieve an elliptical cruise lift distribution and still satisfy the
failure constraints at the maneuver condition. The upper and lower skins see the
greatest increase in weight, but the fore spar is also significantly heavier than the
single-point design.

Given the differences in weight and geometry, the cruise drag polars for the SP,
MP, and SP-LS designs are surprisingly similar (Figure 4.16). These three designs
have nearly the same performance at the nominal cruise point; the variation in
nominal fuel burn is due to the differences in weight rather than the aerodynamic
efficiency. Moving outward from the nominal design point in either direction, the
multipoint design is the most robust, followed by the SP-LS design. The multipoint
design does especially well as �! is increased from the nominal design point. Most
of the improvement in the average fuel burn over the single-point design comes
from the �!,nominal + 0.05 design point. The SP-LS design achieves higher !/�
than the SP design at all three design points yet burns more fuel due to a heavier
structure.

The right side of Figure 4.16 shows the performance of the four designs at the
climb flight condition. The four designs were analyzed across a sweep of angle of
attack at increments of 1°. The SP and MP designs do not converge after the angle
of attack exceeded 9° due to massive separation on the upper surface. Separated
flow leads to a sharp increase in �� as angle of attack is increased for both of these
designs. The trend of the drag polars indicates that the �!,max for these wings
would be lower than the �! required to satisfy the lift constraint ! = ,2. The
multipoint design fares slightly better than the single-point design, but both fail to
meet expected airworthiness at the climb condition. The drag polar of the SP-LS
wing mimics that of the SP-NSV wing up until 9° angle of attack. At that point
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Figure 4.16: The low-speed separation constraint improves robustness at both cruise and climb
flight conditions.

separation ensues, but the 10% threshold is not exceeded until nearly 11° angle of
attack. At 9° angle of attack, the SP-LS wing generates 24% more lift and 54% less
drag than the SP wing. The near-complete elimination of separated flow on the
SP-LS wing at 9° angle of attack is impressive (Figure 4.17).

It is worth noting that the buffet-onset constraint is inactive at the end of the
SP-LS optimization. This suggests that low-speed separation is a more stringent
requirement than buffet-onset. Conversely, the buffet-onset constraint was active
for both the single-point and multipoint designs, but did not improve the low-
speed, high-lift performance of these wings. One possible reason for this finding
is that the low-speed separation constraint has the effect of decreasing the cruise
angle of attack. Separation at the 1.36 flight condition is more likely to occur if the
wing is cruising at a higher angle of attack, as is the case for the SP andMP designs.

4.7.4 Synopsis

Multipoint objective functions typically consider design points in the cruise regime.
While this does result in more robust cruise performance, we have shown that
cruise-optimized designs do not, in general, perform well at off-design (i.e. climb)
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(a) Single-point (b) Single-point with low-speed separation constraint

Figure 4.17: Separation on the upper surface at 9 degrees angle of attack is nearly eliminated with
the low-speed separation constraint.

conditions. Wehave shown that the inclusionof a low-speed separation constraint in
the SP-LS case pushes the optimizer to a completely different design than the single-
point andmultipoint problems. The single-point, multipoint, and SP-LS designs do
not differ significantly in terms of aerodynamic performance at cruise. Rather, the
changes in the wing design seem to have the greatest impact on performance at off-
design conditions. The low-speed separation constraint dramatically improves the
high-lift capability of the wing at low-speed conditions. Additionally, the design
changes required to satisfy the separation constraint have the effect of reducing
passive load alleviation at the 2.56 maneuver loading, resulting in a substantial
increase in structural weight. The differences in fuel burn among the designs are
more related to varying structural weights than significant stratification of cruise
performance. Importantly, the single-point and multiple designs appear to be
unviable concepts due to their poor low-speed, high-lift characteristics, whereas
the SP-LS inspires much more confidence as a practical design.

4.8 Summary

In this chapter we show that a gradient-based optimizer can be used to explore the
aerostructural wing design space. We experiment with a new method for improv-
ing the robustness of an optimized design at low-speed, high-lift conditions. This
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Table 4.8: Optimization results.

Property Units SP-NSV SP MP SP-LS

Combined fuel burn kg 92,145 76,592 76,261 77,518
,3 kg 188,167 180,001 180,191 183,002
Wing weight kg 39,167 31,001 31,191 34,001

Upper skin kg 5,040 3,957 3,976 4,529
Lower skin kg 4,902 3,643 3,637 4,238
Ribs kg 1,691 1,234 1,260 1,235
Fore spar kg 409 165 187 217
Aft spar kg 423 199 214 180

Sweep deg 38.1 36.7 37.4 30.8

Nominal

Fuel burn kg 90,928 75,667 75,817 77,518
Angle of attack deg 5.57 5.77 5.65 4.70
�! 0.5443 0.5075 0.5082 0.5157
�� cts 272.3 226.0 226.4 229.1
!/� 19.99 22.46 22.44 22.51

�!,nominal − 0.05

Fuel burn kg 91,642 79,147 78,972 80,074
Angle of attack deg 4.92 5.19 5.06 4.24
�! 0.4938 0.4575 0.4582 0.4654
�� cts 248.6 211.6 211.3 214.3
!/� 19.86 21.63 21.69 21.72

�!,nominal + 0.05

Fuel burn kg 93,866 74,963 73,995 75,765
Angle of attack deg 6.26 6.33 6.22 5.15
�! 0.5937 0.5575 0.5581 0.5657
�� cts 304.9 246.3 243.6 248.6
!/� 19.48 22.64 22.91 22.75

method involves setting a constraint to limit flow separation at a flow condition
representative of the climb phase. The constraint significantly affects the optimized
design, indicating that post-optimization modifications to a cruise-optimized de-
sign would be unlikely to produce an optimal design. Without the constraint, both
single-point and multipoint optimized designs are not airworthy at the climb con-
dition. This underscores the importance of factoring off-design robustness into the
optimization problem when designing wings.
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Chapter 5

Practical Wing Design
Optimization

Traditionally, the planform, airfoil shape, and structure of a wing are designed
separately. One of the first steps is to determine the area and basic shape of the
wing planform thatwill support themission requirements. Historical data and low-
fidelity models can be used to obtain this basic wing definition rapidly. Eventually,
the in-flight wing shape is designed by aerodynamicists to achieve the desired
performance. It is then the job of structural engineers to design a jig shape and
structure that will revert to the flying shapewhen deformed aeroelastically in flight.
The wing design is then transferred back and forth between the aerodynamics and
structures groups to converge on the lightest wing that can satisfy performance
requirements. While this description is over-simplified, it highlights the separation
that exists between the design of the planform, wing shape, and structure. The
complexity inherent to wing design has led to this segmented approach. Advances
in computing power and numerical methods have enabled MDAO techniques. One
of the aims of MDAO is to remove artificial barriers in the design process that may
have arisen in the past due to organizational practicalities. When the entire design
can be robustly optimized simultaneously, it should be possible to converge to a
better design with a significant reduction in time and resources.

MDO of wings has been an active area of research formany years, especially with
low-fidelity aerostructuralmodels92,100,101. However, only recently has high-fidelity
aerostructural wing optimization reached a level ofmaturity at which realistic wing
design can be done. Some examples include optimization of the CRM54 and the
D8102.

Despite the important work in the academic literature, competition in industry
makes it difficult to determine to what extent these methods have been adopted
and borne fruit. In an effort to bridge this gap between industry and academia, we
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collaborated with Embraer to optimize the wing design of an authentic regional
aircraft using the MACH framework. This collaboration allows us to evaluate the
benefit that could be obtained by applying MDO in the industrial aircraft design
process. In the results presented herein, we compare the baseline wing to a wing
with optimized structural sizing, airfoil shape, and twist distribution. This com-
parison serves as a litmus test for the optimization problem—significant deviation
from the baseline design would indicate a failure to properly capture the design
requirements. Then we extend the optimization problem to include planform vari-
ables, allowing the optimizer more freedom to trade between structural weight
and aerodynamic performance. For each of these wing optimization problems we
model the aerodynamics of the full aircraft geometry, including fuselage, wing, and
empennage. In this way, subtle interactions between the wing and the rest of the
geometry are not neglected, and we can ensure that the optimized design is prop-
erly trimmed. Additionally, we are able to experiment with sizing the horizontal
stabilizer to account for changes in the wing planform.

In the spirit of practical wing design, it is important to choose an objective
function that suitably quantifies the actual performance of the aircraft. Fuel burn is
often used as an objective function inwing design optimization problems because it
represents operating cost. Variousmethods exist for estimating fuel burn, eachwith
assumptions and approximations that influence the outcome of the optimization.
For example, the fuel burn calculation can be based on a single flow condition, or it
can aggregate information frommultiple design points. As explained in Section 4.7,
using numerical optimization to design awing for a single flight condition can have
undesired consequences at off-design conditions63. A multipoint optimization
problem, in which the performance at multiple flight conditions is incorporated
into the objective function, can produce a more robust design.

There are different ways to formulate a multipoint objective function. Com-
monly, the objective function is a weighted average of a figure of merit computed
at each flight condition. However, the weighting has a significant effect on the end
result and it is not always clear how to choose the weights a priori. Liem et al. 96

devised a method to calculate the weights for 25 different flight conditions in order
to achieve minimum fuel burn for the CRM geometry. They generated a surrogate
model of aerodynamic coefficients with aerostructural analyses of the baseline ge-
ometry and then calculated the fuel burn for hundreds of representative missions
using the surrogate model. Finally, they computed the sensitivity of the the total
fuel burn with respect to each of the 25 flight conditions and used this as the weight
in the objective function for the aerostructural optimization. Not surprisingly, the
aircraft optimized with this multi-mission objective function weighting performed
much better than a single-point optimum when tested on the full spectrum of
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Table 5.1: R-jet aircraft Specifications

Description Symbol Units Value

Wingspan 1 m 28.72
Reference area ( m2 95.4
Aspect ratio A 8.6
Maximum takeoff weight MTOW kg 51,800
Operating empty weight OEW kg 27,900

missions.
In the study just cited, all of the flight conditions included in the fuel burn aggre-

gation were sampled from the cruise flight phase. For an aircraft that typically flies
long-range missions, the fuel burn in climb and descent is negligible. However, a
regional aircraft regularly flies missions in which the fuel used in climb and descent
exceeds that used in cruise. Therefore, if fuel burn is the quantitative measure of
aircraft performance, it is important to include design points from the climb and
descent segments in the fuel burn aggregation. Liem et al. 80 addressed this con-
cern in a paper similarly focused on regional aircraft design optimization. They
optimized themission profiles for twomissions of varying range by integrating fuel
burn across the climb, cruise, and descent segments. Then they used the optimized
mission profiles to compute fuel burn while optimizing the aerostructural design
of the aircraft wing. In the present work, we also account for the fuel burn in climb
and descent, albeit in a slightly different way. Furthermore, we take a closer look
at how the design is impacted by the consideration of full mission fuel burn as
opposed to only considering cruise.

5.1 Problem Description

5.1.1 Geometric Modeling

Basic specifications of the Embraer regional jet are provided in Table 5.1. Embraer
furnished the CAD descriptions of the fuselage, wing, and empennage surfaces that
define the outer mold line (OML). Each component of the geometry is meshed
individually using structured hexahedral cells and then combined into a single
overset mesh (Figure 5.1). The grid used for optimization has just over 2 million
cells. The finite element model of the wingbox is based on a structural layout from
Embraer. Thewingboxmesh consists of 8,018 quadrilateral cells which aremodeled
as second-order mixed interpolation of tensorial components (MITC) shell elements.
Together, the OML and wingbox form the baseline design of the aircraft, which, for
the purposes of this study, has been designated R-jet.

We also created a supplementary wing-onlymodel of the aircraft called R-wing.
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Figure 5.1: Computational grids for the R-jet configuration.

Table 5.2: The R-wing mesh yields a 1500x decrease in proc-hours for a single aerostructural analy-
sis when compared with the R-jet overset mesh.

Geometry Cells N Cores Solution time Adjoint time

R-jet 2,071,850 79 1261 s 587 s
R-wing 30,528 1 87 s 77 s

This wing geometry has the same general specifications detailed in Table 5.1, but it
differs from the R-jet in that it has an RAE-2822 cross-section, a straight trailing edge,
and a conventional wingtip (as opposed to a winglet). The R-wing wingbox has
the same basic layout as the R-jet, but the ribs are all aligned with the freestream.
Table 5.2 shows the size of the R-wing CFD mesh and the substantial reduction in
computational expense when compared with the full R-jet overset mesh. The R-
wing mesh reduces the proc-hours by 1500 and 1000 times for analysis and a single
adjoint, respectively. The primary purpose for creating the R-wing geometrywas to
enable rapid optimization cycles for studying the effects of mission analysis on the
optimized design. However, a side benefit of having an inexpensive computational
model is that it accelerates the inevitable troubleshooting process for a brand new
optimization problem. Generally, optimizer parameters and scaling factors tuned
on the simple model should be applicable to the more expensive model.
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Figure 5.2: Computational grids for the R-wing configuration juxtaposed with the R-jet grids.

5.1.2 Mission Description

The objective of the design problem is to minimize the average fuel burn of three
representative missions, weighted as follows:

, fuel = 0.5,fuel,NOM + 0.2,fuel,LR + 0.3,fuel,HS (5.1)

Details of the three missions can be found in Table 5.3. The total fuel burn for
each of these missions is the difference in weight from takeoff (,0) to landing (,5),
where the basic mission profile is defined as indicated in Figure 5.3. It is expected
that most of the fuel is burned in the climb and cruise segments, and that the ratio
of climb fuel burn to cruise fuel burn will decrease as the mission range increases.
For instance, in Liem et al. 80 the climb and cruise segments accounted for 32% and
26% of the total fuel burn for a 500 nm mission and 13% and 68% of the total for a
2000 nmmission. For aircraft that typically flymissions where the distance covered
in climb is small compared to the total mission range, the benefit of incorporating
the climb segment into the total fuel burn objective is negligible. In such cases,
it would still be important to consider flightworthiness requirements of the climb
segment as constraints in the optimization problem (as shown, for example, in
Section 4.7). However, as the ratio of climb range to cruise range increases, it
becomes more important to consider the fuel burned in climb, especially because
the fuel burn per mile is greater in climb than in cruise. It is well known that more
fuel is burned in climb than in cruise for an equal distance covered. To simplify
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Figure 5.3: Basic mission profile.

Table 5.3: Mission details

Code Description Range (nm) Mach Altitude (ft) Payload (kg)

NOM Nominal 600 0.78 36,000 10,000
LR Long-range 1000 0.74 36,000 10,000
HS High-speed 300 0.80 36,000 10,000

the estimation of climb fuel burn, the hypothetical cruise fuel burn over the climb
distance is augmented with a climb fuel increment factor, which is computed from
empirical data sets103,104.

It is instructive to visualize the variation in the relationship between the climb
and cruise segments with respect to mission range, payload, and cruise altitude.
Figure 5.4 was created by computing the fuel burn over the climb and cruise seg-
ments for missions ranging from 300 to 2000 nm with varying payloads and cruise
altitudes. The data was generated using the mission analysis, engine model, and
aerodynamic model described in Section 5.2, applied to the R-jet aircraft. The first
two rows of Figure 5.4 show the ratios of climb fuel to cruise fuel and climb range
to cruise range, respectively. As expected, both ratios increase exponentially as the
total mission range decreases. Also, the ratios increase with increasing payload and
cruise altitude. At any given data point, the magnitude of the fuel ratio is more
than twice that of the range ratio, confirming that the fuel burn per mile is greater
in climb than in cruise. The inverse of the rate of fuel burn per distance covered,
known as specific range, is plotted in the final row of Figure 5.4. Here again, we
see that the specific range in cruise is more than twice that achieved in climb. In
all of these plots, the data corresponding to the R-jet payload and cruise altitude
are highlighted in blue. From this preliminary study, it is apparent that for the
600 nm nominal mission and especially the 300 nm high-speed mission, it is critical
to include the climb fuel burn in the objective function. In Section 5.3, we show
how the optimized design is impacted by this modeling decision.
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Figure 5.4: The ratio of climb fuel burn to cruise fuel burn grows exponentially as mission range de-
creases. The left column shows data for five different payload weights and the right column shows
data for four different cruise altitudes. The data corresponding to the R-jet aircraft description is
highlighted in blue.

5.2 Computational Framework

The results in this chapter are obtained using the MACH framework, which is de-
scribed in Chapter 2. In this section, we elaborate on additional details of the
computational framework that are specific to the R-jet problem.

5.2.1 Mission Analysis

For the mission profile depicted in Figure 5.3 the formula to compute fuel burn is

,fuel =,5

(
,0
,1

,1
,2

,2
,3

,3
,4

,4
,5
− 1

)
(5.2)

The final weight of the aircraft, ,5, is the sum of the operating empty weight
(OEW), payload, and reserve fuel. It varies during the optimization due to changes
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Table 5.4: Four methods for calculating the fuel burn and range of a mission.

Full-Bréguet Full Mission Cruise-Bréguet Hybrid

,0/,1 0.98 0.98 0.98 0.98
,1/,2 1.0 MissionAnalysis 0.977/0.976/0.977 MissionAnalysis
,2/,3 Bréguet MissionAnalysis Bréguet Bréguet
,3/,4 1.0 MissionAnalysis 0.993/0.993/0.992 MissionAnalysis
,4/,5 0.995 0.995 0.995 0.995

Climb range (nm) 0 MissionAnalysis 110/116/105 MissionAnalysis
Cruise range (nm) 600/1000/300 MissionAnalysis 373/769/67 MissionAnalysis
Descent range (nm) 0 MissionAnalysis 117/115/128 MissionAnalysis

in the structural sizing and wing shape. The fuel fractions in Equation 5.2 can be
calculated in variousways. At themost basic level, they can be taken from historical
data. In this work, the takeoff (,0/,1) and landing (,4/,5) fuel fractions are
fixed at 0.98 and 0.995, respectively. The climb and descent fuel burn can also be
representedwith fixed values. In Chapter 4, the climb and descent fuel fractions are
implicitly set to unity, while Equation 2.4 is used to approximate fuel burn over the
entire mission range. This approximation is appropriate for medium to long-haul
flights (Figure 5.4), and is often used in the literature. Alternatively, the climb and
descent fuel fractions can be set to historical values, and the cruise fuel burn can
be computed based on a restricted range corresponding to the estimated distance
covered in cruise flight.

For a more general solution, the fuel burn and distance of the climb, cruise,
and descent segments can be integrated using MissionAnalysis. As described in
Section 2.4, this entails splitting the mission profile into multiple intervals and an-
alyzing the aerodynamic and engine performance at the interval endpoints. For
example, the data for Figure 5.4 was generated using 31 intervals for climb, 15
intervals for cruise, and 18 intervals for descent. The climb and descent profiles are
split into subregions characterized by accelerated (decelerated), constant calibrated
airspeed (CAS), and constant Mach flight (Figure 5.3). The integration intervals are
apportioned to the various subregions to achieve an acceptable level of resolution
across the mission profile. The mission is solved simultaneously by driving the
weight differences between endpoints of consecutive intervals to zero. Thousands
of aerodynamic analyses are required to converge to a valid solution, and thou-
sands more are necessary to calculate sensitivities. The cost of using CFD for these
aerodynamic analyses would be exorbitant. Liem et al. 80 used CFD to generate
a surrogate model of aerodynamic properties at each optimization iteration. The
surrogate model was then used to efficiently process the aerodynamic analyses
required to solve the mission problem. In this work, we use a conceptual-level
aerodynamic model provided by pyConcept to reduce the computational cost of
the mission analysis.
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As stated in the chapter introduction, one of the aims of this study is to evalu-
ate the impact of using different fuel burn computation methods on the optimized
wing design. The four methods considered are listed in Table 5.4. Whenever
three values are given, separated by slashes, they correspond to the nominal, long-
range, and high-speedmissions of Table 5.3. For all methods, MissionAnalysis uses
aerodynamic data from pyConcept whereas the Bréguet equation is always used
in conjunction with high-fidelity aerostructural solutions from MACH. Thus, the
Hybrid method uses a combination of low-fidelity data for climb and descent and
high-fidelity data for cruise. The fixed fuel fractions and ranges for the Cruise-
Bréguet method are the values calculated for the baseline configuration using the
Full Mission method. It is worth noting that none of these methods in and of
themselves are novel contributions. Some of them are frequently used in the liter-
ature and have already been demonstrated in this dissertation. For example, the
Full-Bréguet method was used in Chapter 4 and the Full Mission method was used
to analyze the missions for Figure 5.4. The unique contribution of this study lies in
comparing the methods to each other, with a special focus on how they impact the
final design in a wing optimization problem.

5.2.2 Aerodynamic Analysis

Asmentioned previously, both high-fidelity and low-fidelity aerodynamics models
are used in the optimization problems presented in this chapter. The high-fidelity
data areproducedusing the coupledaerostructural analysisdescribed inSection2.3.
To account for the lack of fuselage and empennage in the R-wing configuration, we
apply an additive dragmarkup of�/@ = 0.75m2 and amultiplicative lift markup of
1.05. With these markups included, the mission fuel burn computed for the R-wing
configuration is similar to that of the R-jet configuration. The computational grids
for the aerodynamics and structures are shown in Figure 5.1 for R-jet and Figure 5.2
for R-wing. By contrast, the conceptual-level formulas in pyConcept require only a
few data points representing the basic shape of the wing geometry. The required
points are extracted from slices of the R-wing and R-jet wing surfaces. For a given
cross-section slice, pyConcept uses points on the leading and trailing edges and a
point on each of the upper and lower surfaces at the location of maximum thickness
(Figure 5.5). With these points, pyConcept can compute necessary quantities such
as planform area, quarter-chord sweep, and the value and location of the MAC. As
explained in Section 2.4.1, these points are embedded in the FFD so that they are
updated as the design changes during the optimization.

On the baseline configuration, the drag estimation frompyConceptmatcheswell
with the high-fidelity aerostructural result at the cruise flow condition (Figure 5.6).
As the speed and altitude of the flow condition decrease, the low-fidelity analysis
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Figure 5.5: Points are extracted from the R-wing and R-jet wings in order to create a basic represen-
tation of the geometry in pyConcept.

underestimates drag by as much as 20%. Importantly, the difference between low-
fidelity andhigh-fidelity analyses on anoptimizeddesign is less thanor equal to that
of the baseline design. We note that the terms high-fidelity and low-fidelity in this
instance are used in a relative sense. The CFD mesh used for the R-wing analysis
is relatively coarse and is only used to obtain rough estimates of aerodynamic
performance. However, it does provide richer information than the pyConcept
model.

5.2.3 Engine Model

The engine performance is represented using a surrogate model built from engine
data of thrust and fuel consumption with respect to true airspeed, altitude, and
temperature. We use a surrogate model from the Surrogate Modeling Toolbox
(SMT)∗ called Regularized minimal-energy tensor-product splines (RMTS)105. SMT

is especially suited to gradient-based optimization because it provides analytic
gradients of the functions of interest with respect to the independent variables. The
available thrust at a given flight condition is throttled to the value needed to satisfy
minimum residual climb limits (in climb) or offset drag exactly (in cruise). The
relationship between engine fuel consumption and throttle setting is modeled as a
quartic polynomial based on engine data. All of the engine data were provided by
Embraer.

5.3 Simple Wing Optimization

In this section, we compare three differentmethods ofmission analysis and evaluate
their impact on the optimization of the R-wing configuration. We first compare
multipoint optimizations of the Cruise-Bréguet and Hybrid methods (considering

∗https://github.com/SMTorg/smt
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Figure 5.6: On both baseline and optimized designs, the low-fidelity drag polar from pyConcept
coincides with the high-fidelity aerostructural result at cruise flow conditions. The error in the low-
fidelity method grows as the speed and altitude decrease.

the three missions of Table 5.3). Then we conduct single-point optimizations of
each mission individually using the former methods plus the Full-Bréguet method.

5.3.1 Optimization Problem

The R-wing optimization problem is given in Table 5.5. For this study, the aggre-
gated fuel burn objective functiondefined byEquation 5.1 has been augmentedwith
an additional term, operating empty weight, to create a multi-objective problem.
The objective function is repeated here for clarity:

minimize �, fuel + (1 − �)OEW (5.3)
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Table 5.5: Description of the full R-wing optimization problem. The quantities for each design vari-
able correspond to the green curve in Figure 5.7.

Quantity
minimize �, fuel + (1 − �)OEW 1

with respect to Angle of attack 4
Twist 4
Planform variables (span, chord, sweep) 7
Sectional shape 128
Structural sizing 356
Panel lengths 146
Fuel load tractions 108
Total fuel mass 4
Mission fuel weights 12

subject to Range constraints 3
Trim constraints (! =,) 4
Structural failure constraints 4
Planform area cannot decrease 1
Wing geometric constraints 76
Miscellaneous mission constraints 159
TACS linear constraints 420
TACS nonlinear constraints 258
Fuel load constraints 4

The parameter � is varied between 0.5 and 1.0 to generate a Pareto front that
illustrates the tradeoff between aircraft weight and fuel burn. The Pareto front was
not extended below � = 0.5 because it was apparent from the trend of the curve
that further reductions in structural weight would incur an unacceptable increase
in fuel burn. We also experiment with three different combinations of geometric
design variables. This brings the final tally of optimization runs to 24: 2 mission
analysis methods, 4 points along the Pareto front, and 3 different sets of design
variables.

For each optimization problem there are four different high-fidelity analysis
points, each of which has a design variable to control angle of attack. We consider
three combinations of geometric variables

1. Only twist variables (at 4 spanwise stations)

2. Twist and planform variables (1 span, 1 sweep, and 5 chord scaling)

3. Twist, planform, and local shape variables

The structure is parametrized with the blade-stiffened panels described in Sec-
tion 2.3.3. The number of structural design variables for each case remains the
same. Fuel load traction variables are used to vary the tractions on the skin panels
so that, in aggregate, they impart a load equal to the total fuel mass variable. The
total fuel mass variable, in turn, is constrained to be consistent with the actual fuel
burn of the given mission for the current iterate. For the optimizations using the
Hybrid mission analysis, there are two variables corresponding to the initial and
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final weights of the climb and descent segments of the three missions. For these
studies we do not allow the cruise altitude to vary from 36,000 ft.

Each mission is constrained to achieve its specified range. The high-fidelity
analysis point for each mission is constrained to generate enough lift to support the
mid-cruise weight (the average of,2 and,3). Yield stress and buckling constraints
are evaluated under the loads imposed by a 2.56 pull-up maneuver at Mach 0.734
and 15,000 ft. This design point also carries a payload of 13,000 kg and a full fuel
load of 12,900 kg. Yield stress failure constraints are aggregated over the upper
and lower skins separately. Buckling constraints are aggregated over the ribs and
spars, and separately over the upper skin. The geometry is constrained so that the
thickness cannot decrease at 1% and 99% chord. Additionally, at 60% chord the
thickness cannot decrease below 80% of the originally value. The chord variables
are constrained to decrease monotonically from root to tip. For the case with shape
variables, constraints are applied to the FFD points at the leading and trailing edges
to ensure that theymove in equal and opposite directions to prevent shearing twist.
Wealsoplace a constraint that theplanformarea cannotdecreasewhen theplanform
variables are active. The Hybrid mission analysis method uses constraints to force
the mission slack functions to be greater than or equal to zero (see Section 2.4).
The linear constraints in TACS consist of adjacency constraints to prevent large
differences in thickness between adjacent panels. The nonlinear constraints in TACS

include compatibility constraints for the panel lengths and fuel tractions. Finally,
as mentioned previously, each mission has a total fuel mass variable that must be
constrained to match the fuel burn of the current iterate.

5.3.2 Results

Figure 5.7 shows the two sets of Pareto curves generated for thewing-only optimiza-
tion. The design variables and constraints for each of the red, blue, and green curves
are given in the final three columns of Table 5.5. Each Pareto front is created by
varying � between 0.5 and 1. As expected, adding design variables to the problem
shifts the Pareto front to the lower-left hand corner, signifying overall improvement
in the design. Most of the benefit of additional geometric freedom comes in the
form of reduced fuel burn, especially for higher values of �. Impressively, there is
roughly a 1-2% reduction in fuel burn between each of the Pareto fronts.

Each point along the Pareto front is accompanied by a scaled outline of the
planform and a number referring to the aspect ratio of the optimized wing. Inter-
estingly, when only cruise fuel burn is considered in the optimization objective, the
aspect ratios do not increase significantly beyond the baseline geometry, even when
� = 1. However, when the full mission fuel burn (including climb and descent) is
considered, the aspect ratios for higher � values increase significantly. The plots
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Figure 5.7: Pareto fronts from optimizations using different methods of fuel burn calculation.

in Figure 5.7 highlight these differences. The right-hand plot shows the expected
trend, that the aspect ratio should increase in order to decrease fuel burn.

For a regional jet, themass of fuel burned over a standardmission is on par with
the mass of the wingbox structure. Therefore, the fuel burn reduction resulting
from a decrease in wingbox mass is closer in magnitude to that achieved through
aerodynamic enhancements than it would be for an aircraft with a longer mission.
This seems to be the reason why accounting for the fuel burn over the entire
mission causes an increase in aspect ratio for � = 1. When only the cruise segment
is considered, the benefit of increasing aspect ratio does not outweigh the penalty in
fuel burn due to the increase in structural mass required to support a higher aspect
ratio. This result validates our use of mission analysis for the full configuration
optimization study. Perhaps for a larger aircraft, constant fuel fractions would be
sufficient, but for a regional jet, the gains made in fuel burn reduction over climb
and descent really matter.

One possible explanation for the increased emphasis on drag reduction in the
Hybridmethod results is that the low-fidelitymodelused in themission calculations
is over-predicting the possible drag reduction on the climb and descent segments.
On the contrary, post-optimization high-fidelity analysis of points along the climb
and descent profiles yields greater drag reductions than were predicted by the
low-fidelity analysis (Figure 5.8). Thus, it is more likely that using the low-fidelity
aerodynamic analysis in the mission calculations yields a conservative result for
the optimized design.
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Figure 5.8: The low-fidelity aerodynamic analysis used in MissionAnalysis underestimates the drag
reduction at several points along the climb and descent profiles.

5.3.3 Synopsis

In wing design, the optimal aspect ratio is dependent on the tradeoff between
structural weight and fuel burn. The balance between structural weight and fuel
burn canbe adjusted explicitly by controlling their relative importance in aweighted
average objective function. For instance, in our Pareto front studies, the wings
optimized for minimum fuel burn (� = 1) had higher aspect ratios than those with
more emphasis on structuralweight (� = 0.5). On the other hand, the optimal aspect
ratio is implicitly dependent on the relativemagnitudes of the structural weight and
fuel weight—specifically the quantities that are variable in the optimization. For
a short-haul regional jet, the fuel and the wing structure have weights of similar
magnitude. Thus, the assumptions built into the fuel burn calculation can have a
significant impact on the balance between fuel weight and structural weight and,
by extension, the aspect ratio of the optimized wing. Modeling the climb segment,
and including its fuel burn in the objective function, increases the incentive for the
optimizer to reduce fuel burn through drag reduction.
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5.4 Full Aircraft Optimization

Now that we have demonstrated the value of including mission analysis in the
optimization of a simple wing geometry, we will move on to optimizing the wing
of the full R-jet configuration. The primary aim of this optimization problem is
to see how the optimizer alters the design of the original regional jet. Since the
baseline wing is already a “good” design, major differences between the baseline
and optimized designs indicate either a shortcoming of the optimization problem
or a previously unattainable improvement that is made possible with the MDO

approach. We start by sizing the wingbox structure to achieve minimum mass
while still satisfying the structural constraints for the baseline configuration. In
this way, comparisons of structural weight, and as a result fuel weight, between the
baseline and optimized designs are fair. The full optimization problem includes
variables to modify the twist distribution, cross-sectional shape, and planform of
the wing, in addition to the structural sizing variables. The horizontal tail is also
allowed to change in size to match planform changes in the wing.

As an intermediary step, we also optimize thewingwithout planform variables.
To differentiate between them we designate the reduced problem S+T (shape and
twist), while the full problem is labeled S+T+P (shape, twist, and planform). The
result of the S+T problem informs our assessment of the success of the S+T+P
optimization. While we fully expect the S+T+P optimized design to perform better
than the baseline, itwould be difficult to determinewhether the improvementswere
due to the merits of MDO or to missing constraints in the optimization problem.
The result of the S+T optimization provides a clearer picture of the benefit of
simultaneously optimizing the structure, planform, and cross-sectional shape of
the wing.

For the T+S+P problem, the tail size is constrained to maintain the tail volume
coefficient of the baseline design. Including a tail scaling variable and a tail sizing
constraint in the optimizationproblem is uncommon in the literature, and the effects
are not obvious. The final case presented in this section is a control for the tail sizing
experiment and does not allow the horizontal tail to scale. In all other respects it is
identical to the T+S+P problem.

5.4.1 Tail Sizing Constraint

Adjustments to the wing planform can have global consequences on the design of
the aircraft. For instance, we must take care that the planform of the wing does
not change such that the tail is underpowered to counter the wing moment. This
could occur due to changes in the location of the mean aerodynamic chord or the
overall area of the wing. Raymer 81 suggests the use of a tail volume coefficient to
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match the moments produced by the tail and the wing. This parameter is purely
geometrical, so it was fairly straightforward to add it as a function in pyConcept.
The tail volume coefficient is defined as

2tail =
!tail(tail
2̄(wing

(5.4)

where
!tail = Ḡtail − Ḡwing

and Ḡ is the quarter-chord position of the mean aerodynamic chord (2̄) of the
lifting surface. Each of the parameters used in the expression for 2tail is updated
in pyConcept based on changes in the FFDs of the wing and the tail. Additional
geometric variables are assigned to the FFD enclosing the horizontal tail to allow it
to scale up or down to match the changes in the wing planform.

5.4.2 Optimization Problem

The full optimization problem, corresponding to the S+T+P case, is listed in Ta-
ble 5.6. The optimization problem is very similar to the problem solved in Sec-
tion 5.3, so here we will only make note of the differences. The first major differ-
ence is that the objective function is simply the composite fuel burn, rather than
a weighted average of fuel burn and OEW. The geometric parametrization is also
slightly different for the R-jet. The twist distribution is controlled at six spanwise
stations, whereas the chord can only scale at the mid-span kink, the wingtip, and
the tip of thewinglet. The tail rotates to trim the aircraft and scales tomatch changes
in the planform (in accordance with the tail volume coefficient constraint). For this
problem, we include a constraint to ensure a 30% margin to buffet in cruise flight.
The buffet constraint is formulated based on the method of Kenway and Martins 95

and is applied at the nominal cruise flight condition under a 1.36 load. The tail
volume coefficient is constrained to be greater than or equal to the baseline value.

5.4.3 Results

The results of the optimization are given in Table 5.7 in terms of percentage differ-
ence from the baseline. Fuel burn decreases across all missions, with the greatest
percentage difference in fuel burn coming from the long-range mission. The S+T
design reduces fuel burn by 1.8% compared to the baseline. With the addition of
planform variables, the optimized design achieves an additional 1.8% reduction in
the objective, double that of the S+T design. The structural weight of the S+T+P
design is roughly 5% greater than the baseline, whereas the S+T design actually
reduces the weight by slightly more than 8%. The increase in weight on the S+T+P
wing is necessary to support an increased aspect ratio that is more than 25% greater
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Table 5.6: R-jet optimization problem

Quantity
minimize , fuel 1

with respect to Angle of attack 5
Tail rotation 5
Twist 6
Span 1
Sweep 1
Chord scaling 3
Tail scaling 1
Sectional shape 272
Structural sizing 380
Panel lengths 146
Fuel load tractions 156
Total fuel mass 4
Mission fuel weights 12
Total number of design variables 992

subject to Range constraints 3
Trim constraints (! =, , �",H = 0) 10
Structural failure constraints 4
Planform area cannot decrease 1
Tail volume coefficient constraint 1
Wing geometric constraints 180
Buffet onset constraint (1.36) 1
Miscellaneous mission constraints 159
Structural sizing adjacency constraints 450
Panel length consistency constraints 146
Fuel traction consistency constraints 156
Total fuel mass constraints 4
Fuel volume constraints 4
Total number of design constraints 1119

than the baseline design. Interestingly, the lift-to-drag ratio increases for both the
nominal and long-range missions, but decreases for the high-speed mission. This
is due to the fact that the longer range missions burn more fuel and therefore offer
more in terms of fuel burn reduction than is lost on the high-speed mission.

Airfoil slices and �? distributions of the baseline, S+T, and S+T+P designs are
shown in Figure 5.9. The most noticeable change to the S+T airfoils is a decrease
in thickness-to-chord ratio, especially on the outboard wing. The S+T+P airfoils
feature a decrease in twist and more pronounced aft camber compared to the
baseline. Both optimized designs have a more gradual pressure rise at the nominal
design point, but at the high-speed flight condition, a shock is forming where none
existed on the baseline wing. Remarkably, the �? distributions for the long-range
design point are fairly similar on the three designs.

Spanwise distributions of lift, twist, and C/2 are plotted with respect to normal-
ized span in Figure 5.10. The lift distribution for the S+T design is nearly identical
to that of the baseline wing. Since it has a longer span, the S+T+P design can afford
to generate less lift on the outboard wing, thereby reducing the bending moment
caused by tip loads. In the plot of twist distributions, the effects of passive load al-
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Table 5.7: Relative difference between baseline and optimized R-jet designs.

S+T S+T+P S+T+P (fixed tail)

Fuel burn
Nominal −1.9 −3.6 −3.3
Long-range −2.6 −4.8 −4.5
High-speed −0.7 −1.9 −1.9
Combined −1.8 −3.6 −3.4

Mass
OEW −1.1 +0.7 +0.5
Wing −8.1 +4.9 +3.8

!/�
Nominal +3.1 +6.7 +5.9
Long-range +3.6 +8.0 +7.2
High-speed −1.9 −1.6 −1.4

Geometry
Aspect ratio 0.0 +26.5 +28.8
Span (meters) 0.0 +12.5 +13.5
Sweep (degrees) 0.0 −24.2 −15.2

15%

Airfoil shape

−1

0

1
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Nominal Long-range High-speed

30%

−1

0
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Figure 5.9: Comparison of airfoils and �? distributions for different cases.
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Figure 5.10: Comparison of spanwise lift, twist, and C/2 distributions for different cases.

leviation at the maneuver condition are readily apparent. The bend-twist coupling
in the structure produces a moment to untwist the wing when deflected under the
heavy 2.56 load. As observed in the airfoil slices, the plot of C/2 shows substantial
reduction in thickness in the outboard wing on both optimized designs.

The most striking differences between the baseline and S+T+P designs are the
increase in aspect ratio and decrease in wing sweep, as shown in Figure 5.11. Basic
aerodynamic theory tells us that induced drag and wave drag vary inversely with
span and sweep, respectively. However, both span and sweep are tightly coupled
with the structural response of the wing as well. Any increase in span or sweep
generally requires a heavier wing structure to support the increased moment arm.
To determine the correct tradeoff between span and sweep, it is critical to model
the wing aerostructurally. In this case, the optimizer increases span to reduce
induced drag at the cost of a heavier wing. At the same time, the decrease in wing
sweep lightens the burden on the wing while possibly degrading the high-speed
performance of the wing (as evidenced by the shocks shown on the high-speed
design point in Figure 5.9). The right side of Figure 5.11 shows the deflected state
of the optimized wings at cruise and maneuver conditions.

When the scaling of the horizontal tail is an active design variable, the optimizer
chooses to shrink it in order to reduce drag. Since the wing area cannot decrease,
Equation5.4dictates that the tail area canonlydecrease if thewing sweep is reduced.
With the horizontal tail area fixed, the optimizer still reduces the wing sweep, but
not asmuch as in the former case. In the casewithout fixed tail area, the optimizer is
actually degrading the performance of thewing slightly in order to reap the benefits
of a smaller horizontal tail which leads to better overall performance. Whereas the
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Figure 5.11: Views of planform and deflected wing shape for the optimized wings. The S+T wing
planform is identical to the baseline wing.

designer might be reluctant to sacrifice wing performance and therefore arrive at a
suboptimal overall design, the optimizer has no such inhibitions and is able to find
proper tradeoff between wing performance and tail size. The difference in the sizes
of the horizontal tails can be seen in Figure 5.11.

Contours of the structural failure and buckling criteria as well as the skin thick-
ness and aeroelastic deflection for the baseline and S+T+P designs are shown in
Figure 5.12. The panel thickness on both the upper and lower skins increases to
support the longer wingspan.

5.5 Summary

In Section 5.3, we demonstrated that different methods of calculating fuel burn
can impact the optimized design. We experimented with a method for mission
analysis that combined low-fidelity aerodynamic analyses along the climb and
descent segments with a high-fidelity aerostructural analysis to represent the mid-
cruise point. With this hybrid method, the fuel burn on the climb and descent
segments is included in the objective function and is dependent on the geometric
parametrization. For short-haul missions, where the aircraft burns a significant
portion of the total fuel burn in climb, the correct tradeoffs are more likely to be
achieved with this approach.

In Section 5.4, we test the merits of the MACH framework on the optimization
of an Embraer regional jet. The wing optimized with shape, twist, and planform
variables burns 3.6% less fuel than the baseline design and 1.8% less fuel than awing
optimizedwith only shape and twist variables. When all the variables are included,
the wing span increases substantially and the wing sweep is reduced compared
to the baseline. The significant differences between the baseline and optimized
wings showcase the advantage of simultaneously optimizing all variables while
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(a) Baseline wing structure

(b) S+T+P wing structure

Figure 5.12: Comparison of baseline and optimized wingbox structures. The wing deflection is
normalized by the maximum tip deflection on the baseline wing.

considering the aerostructural coupling of the wing. As mentioned previously,
both span and sweep are tightly coupled with the structural response of the wing
as well. To determine the correct tradeoff between span and sweep, it is critical to
model the wing aerostructurally.

It is likely that in reality, the wing design is influenced by constraints and
requirements that are neglected in this study. Similarly, it is possible that the
level of detail in the modeling is not sufficient to yield a realistic result, and that
adding more detail would change the result. Even so, these results give every
indication that the simultaneous design of wingbox structure, wing planform, and
wing cross-sectional shapes will yield a different wing design than when each is
designed separately.
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Chapter 6

Final Remarks

The goal of this dissertation is to demonstrate the versatility and usefulness of
high-fidelity MDO in aircraft wing design. Broadly speaking, I sought to achieve
this goal by solving a variety of wing design optimization problems and then
carefully analyzing the behavior and output of the optimizer. This dissertation is
especially targeted toward demonstrating the ability of a gradient-based optimizer
to explore the design andbalancemultidisciplinary tradeoffs effectively. I alsomade
special efforts to address common concerns and provide practical suggestions to
the designer. Section 6.1 contains a summary of specific key results and conclusions
from the dissertation. This is followed by enumerated contributions in Section 6.2
and potential avenues for future research in Section 6.3.

6.1 Conclusions

In Chapter 3, I explored the design space of a subsonic wing benchmark problem
with the aim of demystifying multimodality. I found that multimodality is highly
dependent on the tradeoffbetween skin frictiondrag and induceddrag. For thedrag
minimization problem with only chord variables I showed that the number of local
minima goes to infinity as lift goes to zero. As lift and induced drag increase, the
optimizer favors an elliptical chord distribution that will maximize span efficiency
and the design space becomes unimodal. Therefore it is not only the optimal chord
distribution that is dependent on the skin-friction/induced drag tradeoff, but the
topology of the design space itself. If the design space is a collection of peaks and
valleys, varying the ratio of skin-friction to induced drag does more than just scale
the peaks and valleys, rather, it introduces an entirely new landscape. Conversely,
multimodality in the span-constrained, nonplanar wing design problem varies
inversely with the ratio of skin-friction to induced drag. For a high lift condition,
the optimizer will produce either an upturned or a downturned winglet; both
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offer similar reductions in induced drag. As �! decreases and skin-friction drag
overtakes induced drag, the wing is flattened to reduce skin-friction drag and
the design space becomes unimodal. These insights are important because they
improve the designer’s understanding of optimizer behavior. Rather than dismiss
optimization as unsuitable for industrial work upon seeing a strange result or
finding multiple answers to the same problem, the designer can reformulate the
problem to obtain amore satisfactory result. An example of a fix thatwas suggested
for the multimodal chord distribution is a constraint to force a monotonic or linear
chord distribution.

The primary purpose of Chapter 4 was to demonstrate that MDO is an effec-
tive means of exploring the aerostructural wing design space. I showed that an
optimizer could start from a rectangular, constant cross-section wing and traverse
the design space to arrive at a conventional transonic swept wing with custom air-
foils and optimally sized structure. Moreover, the optimizer arrived at the same
design (within a small tolerance) when the optimization began from a swept plan-
form. This demonstration inspires confidence that a gradient-based optimizer is
not doomed to converge to suboptimal local minima when applied to an aerostruc-
tural optimization problem. To reduce the computation cost of this study, I used a
multi-level optimization process, in which the CFD grids are refined in successive
optimization runs, to reduce the overall computational cost by 40%.

Chapter 4 also introduces a novel method to improve off-design robustness
in optimized wings. First I showed that both single-point and multipoint cruise-
optimized designs exhibit massive separation at a low-speed, high-lift flight con-
dition representative of a typical climb profile. A separation constraint applied at
the climb condition restores healthy flowwithout severely degrading cruise perfor-
mance. Typically in wing design optimization, leading edge thickness constraints
are used to prevent the optimizer from excessively reducing the leading edge ra-
dius. A round leading edge prevents separation at large incidence angles, but is not
undesirable for optimum cruise performance. With the proposed low-speed sepa-
ration constraint, adequate curvature was preserved on the leading edge without
having to resort to thickness constraints.

In Chapter 5, I investigated the redesign of an Embraer regional jet. For a
regional jet, the typical mission is no longer dominated by the cruise segment, so
it is important to capture the performance of the aircraft in climb and descent.
I experimented with various methods of aggregating fuel burn in the objective
function of the optimization problem. The results indicate that the planform of
the optimized varies significantly based on whether climb and descent fuel burn
is included in the objective. More precisely, the optimal aspect ratio depends on
the ratio between the variable fuel burn and the variable structural weight. The
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optimizer can reduce fuel burn by increasing aspect ratio, which improves !/� at
the expense of increased structural weight. Conversely, the optimizer can reduce
fuel burn by decreasing aspect ratio, which reduces structural weight but worsens
!/�. For a regional jet, when fuel burn is computed across the entire mission, !/�
has a larger relative impact on total fuel burn than structural weight, so the optimal
aspect ratio is larger. If the fuel burn is calculated solely on the cruise segment,
!/� has less influence on the final design and the optimal aspect ratio is less. This
study demonstrates the effectiveness of usingMDO to determine the correct tradeoff
between competing multidisciplinary engineering systems. It also is a cautionary
example of the importance of providing the optimizer with the correct information
so that it can balance the tradeoff properly.

The final section of Chapter 5 illustrates the benefits of simultaneously opti-
mizing twist, airfoil shape, planform, and structural members in a wing design
problem. Compared to the baseline design, the optimized wing burns 3.6% less
fuel burn than the baseline design. The optimized wing features reduced sweep,
longer span, and increased structural weight. I also compared the result of this
full optimization problem to one in which the planform is restricted to the ini-
tial design and found a 1.8% reduction in fuel burn for the former case. Without
high-fidelity analysis in the optimization loop, it would not have been possible to
properly model the tradeoffs between all of these design parameters. This is not
to say that low-fidelity models do not have a place in the design process—on the
contrary, low-fidelity models were used many times in this dissertation to explore
specific cases. All models are approximations of reality, and the usefulness of a
given model at “predicting the incremental effect of a proposed design change”10

must be determined based on its assumptions and shortcomings. The closing argu-
ment of this dissertation is that high-fidelity, multidisciplinary models are required
for detailed design of aircraft wings, and that gradient-based optimization is a
viable tool for exploring the design space produced by these models.

6.2 Contributions

Most of the tools used in this dissertation had been developed previously. I con-
tributed updates to the MACH framework in the course of the research, most con-
spicuously to the pyGeo and MissionAnalysis codes. However, the major original
contributions in this dissertation are more concerned with application and analysis
than implementation. The most significant of these are listed here.

1. Developed new insights into the tradeoff between skin-friction and induced drag and
its impact on multimodality and optimization. The understanding that there is
a tradeoff between skin-friction and induced drag is not revolutionary. As
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explained in Section 3.2.2, this result is based on fundamental aerodynamic
principles. However, the recognition that this tradeoff has an important im-
pact on multimodality in the design space is a novel contribution. I demon-
strated this effect in a chord distribution optimization and a nonplanar wing
optimization.

2. Demonstrated practical ways to reduce multimodality in the design space. Several
papers have been written reporting significant multimodality in the wing
planform design problem, however, there is little explanation of the funda-
mental reasons for this multimodality or how to deal with it. I showed that
in many cases, multimodality is dependent on the physics model and flow
condition of the design point, both of which are under the control of the de-
signer. In cases where the design point inherently promotes a multimodal
design space, I demonstrated the use of geometric constraints to remove the
multimodality.

3. Demonstrated exploratory high-fidelity aerostructural optimization by converging
from a plank wing to a conventional transonic wing. The transformation from a
constant cross-section, rectangular wing to a typical, swept transonic wing is
the most extreme example of aerostructural design space exploration in the
literature. This result is valuable because it demonstrates that a gradient-
based optimizer is not destined to get stuck at a local minimum close to
the initial starting point. On the contrary, the optimizer is able to traverse
the design space to arrive at a completely different wing design. While this
has been shown in ASO problems, aerostructural optimization problems are
generally more difficult to converge and cannot be assumed to exhibit the
same behavior as purely aerodynamic optimization problems.

4. Pioneered low-speed separation constraint to improve off-design robustness. One of
themajor limitations of high-fidelitywingdesign optimization is the difficulty
of simultaneously maximizing performance at a cruise condition while pre-
serving flightworthiness at low-speed, high-lift conditions. If the off-design
performance is considered in the problem formulation, it is usually with a
low-fidelity model, and if not, geometric constraints must be put in place to
prevent the optimizer from exploiting the omitted requirements. I pioneered
the use of a separation constraint at the low-speed, high-lift flight condition
to improve off-design robustness. The new constraint induced significant
changes in the optimized wing shape, most notably the restoration of a suit-
ably rounded leading edge. As stated in the text, the separation constraint
was previously developed byKenway andMartins 95 to prevent transonic buf-
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fet. The contribution in this dissertation is the application of the separation
constraint to preserve performance at low-speed, high-lift conditions.

5. Investigated impact of mission analysis method on optimization of short-haul aircraft.
In the literature, fuel burn is commonly approximated using the Bréguet
range formula to simplify the optimization problem. I showed that, for a
regional jet, the method of computing fuel burn has a significant impact
on the optimized wing design, especially the aspect ratio. I demonstrated
the use of a novel hybrid mission analysis, in which the climb and descent
segments are represented by a low-fidelity conceptual aerodynamics model
and the cruise segment is represented by the Bréguet range equation with a
high-fidelity analysis point.

6. Demonstrated industrial application of MDO on Embraer regional jet. Industrial
applications are scarce in the literature, giving the impression that MDO is
not yet ready for such problems. In this collaboration with Embraer, I used
MDO to optimize the wing of an authentic regional jet. The optimized wing
is significantly different than the baseline design, showcasing the optimizer’s
facility for balancing multidisciplinary tradeoffs in a way is not possible for
discrete engineering teams.

6.3 Recommendations for Future Work

1. Improve convergence of aerostructural optimizations. In general, aerostructural
optimizations are more difficult to converge and do not converge as tightly
as aerodynamic-only optimizations. This is, at least in part, due to the high
condition number of the stiffness matrix for shell finite elements, which lim-
its the achievable numerical precision for both structural and aerostructural
analyses and gradient computations. Additionally, the KS functions used to
aggregate structural failure criteria are highly nonlinear and can create prob-
lems for gradient-based optimizers. Experience suggests that convergence
deteriorates as the the complexity (i.e. size) of the optimization problem
increases. A more rigorous study of aerostructural optimization problems
should be conducted to determine the extent to which of each of these factors
affects optimization convergence. It would also be an important contribu-
tion to establish more general expectations for the convergence behavior of
aerostructural optimization problems.

2. Allow for changes in the wing-fuselage intersection. In this dissertation, the
geometric parametrizations did not allow the wing-fuselage intersection to
change shape. Allowing the intersection region to change would open up
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new possibilities in terms of the tradeoffs that could be considered in the op-
timization problem. However, intersections are notoriously troublesome for
gradient-based optimization. Work is currently being done in theMDO Lab to
address these issues.

3. Explore more general structural parametrization schemes, both in wingbox layout
and material properties. For the aerostructural problems in this dissertation,
the structure was parametrized with local sizing parameters—both the layout
and material properties of the ribs and spars were fixed. A more flexible
parametrization of either or both of the layout and material properties could
lead to greater coupling between theOML andwingbox designs. This has been
shown in previous work with regard to tow-steered composite fibers, which
could be oriented to more efficiently counteract aerodynamic loads. Other
work has looked into structural optimization of the location, orientation, and
curvature of ribs and spars in awingbox layout, but this has not been extended
to high-fidelity aerostructural optimization.

4. Verify low-speed, high-lift separation constraint. While the separation constraint
at a low-speed, high-lift condition demonstrably improved off-design perfor-
mance in the results presented herein, further work is needed to correlate the
constraint with industry or regulatory requirements.

5. Conduct experimental validation of optimized designs. Some of the designs pro-
duced by the optimizer in this dissertation are quite nonintuitive. In the
literature, experimental validation is rarely used to substantiate the prod-
ucts of optimization, both due to the cost and the fact that most researchers
in the field of MDO do purely computational work. In my opinion, experi-
mental validation of the results of numerical wing optimization would be a
compelling contribution, especially in the case of nonintuitive designs that
deviate significantly from conventional wings.
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