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ABSTRACT

Structure determination is an important step in understanding the mechanisms

of functional non-coding ribonucleic acids (ncRNAs). Experimental observables in

solution-state nuclear magnetic resonance (NMR) spectroscopy provide valuable in-

formation about the structural and dynamic properties of RNAs. In particular,

NMR-derived chemical shifts are considered structural “fingerprints” of RNA con-

formational state(s). In my thesis, I have developed computational tools to model

RNA structures (mainly secondary structures) using structural information extracted

from NMR chemical shifts.

Inspired by methods that incorporate chemical-mapping data into RNA secondary

structure prediction, I have developed a framework, CS-Fold, for using assigned chem-

ical shift data to conditionally guide secondary structure folding algorithms. First,

I developed neural network classifiers, CS2BPS (Chemical Shift to Base Pairing

Status), that take assigned chemical shifts as input and output the predicted base

pairing status of individual residues in an RNA. Then I used the base pairing status

predictions as folding restraints to guide RNA secondary structure prediction. Exten-

sive testing indicates that from assigned NMR chemical shifts, we could accurately

predict the secondary structures of RNAs and map distinct conformational states of

a single RNA.

Another way to utilize experimental data like NMR chemical shifts in structure

modeling is probabilistic modeling, that is, using experimental data to recover native-

like structure from a structural ensemble that contains a set of low energy structure

models. I first developed a model, SS2CS (Secondary Structure to Chemical Shift),
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that takes secondary structure as input and predicts chemical shifts with high accu-

racies. Using Bayesian/maximum entropy (BME), I was able to reweight secondary

structure models based on the agreement between the measured and reweighted

ensemble-averaged chemical shifts. Results indicate that BME could identify the

native or near-native structure from a set of low energy structure models as well as

recover some of the non-canonical interactions in tertiary structures. We could also

probe the conformational landscape by studying the weight pattern assigned by BME.

Finally, I explored RNA structural annotation using assigned NMR chemical

shifts. Using multitask learning, eleven structural properties were annotated by clas-

sifying individual residues in terms of each structural property. The results indicate

that our method, CS-Annotate, could predict the structural properties with reason-

able accuracy. We believe that CS-Annotate could be used for assessing the quality

of a structure model by comparing the structure derived structural properties with

the CS-Annotate derived structural properties.

One major limitation of the tools developed is that they require assigned chemical

shifts. And to assign chemical shifts, a secondary structure model is typically as-

sumed. However, with the recent advances in singly labeled RNA synthesis, chemical

shifts could be assigned without the assumption about the secondary structure. We

envision that using the chemical shifts derived from singly labeled NMR experiments,

CS-Fold could be used for modeling the secondary structure of RNA. We also believe

that unassigned chemical shifts could be used for selecting structure models. Native-

like structures could be recovered by comparing optimally assigned chemical shifts

with computed chemical shifts (generated by SS2CS). Overall, the results presented

in this thesis indicate we could extract crucial structural information of the residues

in an RNA based on its NMR chemical shifts. Moreover, with the tools like CS-Fold,

SS2CS, and CS-Annotate, we could accurately predict the secondary structure, model

conformational landscape, and study structural properties of an RNA.
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CHAPTER I

Introduction

1.1 Central dogma and non-coding RNAs

1.1.1 Overview

The central dogma of molecular biology1 states that genetic information is stored

in deoxyribonucleic acid (DNA) and passed to protein by ribonucleic acid (RNA).

Protein then carries out the cellular functions encoded by genetic information from

DNA. Thus, for a long time, RNA was considered to be the intermediate of ge-

netic information. However, it was discovered that only 2% of the human genome

is translated into proteins.2 The remaining transcripts are thought to be functional

non-coding RNAs (ncRNAs). An ncRNA is an RNA molecule that does not code for

proteins. Examples of functional ncRNAs include transfer RNAs (tRNAs), ribosomal

RNAs (rRNAs), small RNAs (such as microRNAs3), and long ncRNAs (lncRNAs)4).

Currently, for even the most thoroughly studied organisms, such as Escherichia

coli, there are still many non-coding sequences waiting to be discovered. Intriguingly,

in human genes, there are more lncRNAs than protein-coding RNAs, with compara-

ble expression level.5 By combining experimental detection methods (such as RNA

sequencing6) and computational tools, new, functional ncRNAs are continually being

identified and studied.
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1.1.2 Examples of functional non-coding RNAs

Among these ncRNAs, the discovery of catalytic RNA in 1982, or ribozyme,7 was

especially surprising for the scientific community at that time because the prevailing

scientific opinion was that proteins were the only catalytic molecules in cells. Though

RNA base pairs are perfect for storing and carrying genetic information, RNAs have

some structural features that appeared to preclude them from working as catalysts.

For example, ribozymes, as catalytic RNAs, only have four unique nucleotides that

can be used to facilitate reactions in their active sites.8 By comparison, proteins can

have twenty different amino acids. Also, RNAs lack positively charged functional

groups, which can be used to neutralize negative charges of catalytic transitional

states (at neutral pH)9 or to stabilize a leaving group.

Another long-held assumption was that ribozymes were all metalloenzymes8 that

would require divalent metal ions (such as Mg2+) as cofactors to function. How-

ever, this assumption is incorrect. Most self-cleaving ribozymes10 do not require

metal ions.11 Their catalytic activity is attributed more directly to nucleotide bases.

Hepatitis delta virus (HDV)-like, hammerhead, hairpin, Neurospora Varkud satellite

(VS), glucosamine-6-phosphate synthase (glms), and twister ribozymes12–17 are all

self-cleaving ribozymes using a general acid-base catalysis model to function.

Another example of a class of functional RNAs is the riboswitch. Riboswitches

are segments of messenger RNA (mRNA), located at the 5’-untranslated region (5’-

UTR), that regulate gene expression by “switching” between different conformational

states. The conformational change of a riboswitch can be triggered by specific cel-

lular metabolites,18 including single molecules (such as glycine19) and more complex

compounds (such as vitamin B12
20). There are two structural domains in riboswitch:

the aptamer domain and the expression platform (Figure 1.1). The aptamer domain

is more structurally conserved while the expression platform is less conserved. The

aptamer domain can sense and bind to specific ligands by forming a special binding
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pocket. The ligand binding event triggers structural rearrangement, at the level of

secondary structure and possibly tertiary structure, across the riboswitch that enables

it to regulate downstream gene expression.

Aptamer Domain

ligand-free
“ON”

ligand-bound
“OFF”

Expression 
Platform

Figure 1.1: Transcriptional control of riboswitch. Adapted from reference.21

1.2 RNA structure determination

1.2.1 Overview of RNA structure

To understand the molecular mechanisms of functional ncRNAs, it is important

to know their structures. For example, the function of ribozymes and riboswitches is

dependent on their structures as structure dictates how they form catalytic domains

and how they form “pockets” that accommodate their cognate ligands, respectively.

RNAs are polymers that consist of monomers called “nucleotides” (nts) or “residues”.

A nucleotide contains a nucleobase, a ribose sugar ring, and a phosphate group. RNA

can have two purine bases, adenine (A) and guanine (G), and two pyrimidine bases,

uracil (U) and cytosine (C) (Figure 1.2).

There are three different levels of RNA structure:
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Adenine Cytosine Guanine Uracil

Figure 1.2: Four RNA bases.
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Figure 1.3: The three levels of structure for the group II intron Sc.ai5γ RNA
(PDBID: 2LU0).

• the primary sequence or 1D structure (Figure 1.3A), which is the string of

nucleotides that make up the RNA molecule;

• the secondary structure or 2D structure (Figure 1.3B), which is the connectiv-

ity between nucleotides: helical stem regions formed by base pairs and single-

stranded regions (including hairpins, internal loops, and junctions).

• the tertiary structure or 3D structure (Figure 1.3C), which is how an RNA

chain folds in 3D space.

The function of an RNA depends largely on its tertiary structure.
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1.2.2 Determining RNA structure using experimental techniques

To determine RNA structure experimentally, one accurate method is X-ray crys-

tallography. The first crystal structure of RNA was published in 1947 for tRNA.22

For a long time, this was the only available RNA tertiary structure.23 Now, there

are over 800 RNA-only structures solved by X-ray crystallography that have been

deposited in the Protein Data Bank (https://www.rcsb.org/), with a median se-

quence length of 61 nts (Table 1.1). Despite efforts in biochemistry characterization

that help grow better crystals, many X-ray structures still suffer from poor resolu-

tion (> 2.5Å)24 since RNA molecules are relatively small, dynamic, and harder to

crystallize compared to proteins.

One way to conquer the potential ambiguities in X-ray derived structures is

to combine experimental data (electron density maps) with computational model-

ing. Chou et al.24 incorporated electron density data into the energy function of

Rosetta,25–27 one of the most commonly used tools for RNA 3D modeling that is

based on fragment assembly. This tool, referred to as ERRASER, was based on a

three-step real-space refinement and was shown to improve structure resolution on a

data set of 24 crystal structures of RNAs of different sizes.

Table 1.1: Size of RNA solved by different experimental methods

Residue count statistics X-ray Solution NMR Other methods

mean 120 29 1040
min 6 8 17
25% 33 18 98
50% 61 24 244
75% 107 32 1533
max 2998 155 4446

RNA can adopt and interconvert between different conformational states to per-

form important biological functions. For example, riboswitch RNA regulates gene
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expression by “switching” between ligand-bound state (holo state) and ligand-free

state (apo state). To study the structure of an RNA to better understand its flexibil-

ity, another powerful and widely applied technique is nuclear magnetic resonance

(NMR) spectroscopy.

Figure 1.4: RNA structures deposited in the Protein Data Bank (PDB) per year
before 2020.

As shown in Table 1.1, out of 1441 RNA structures deposited in the PDB as of

March 2020, 883 structures were solved using X-ray crystallography, with sizes ranging

from 6-2998 nts. In comparison, 519 structures were solved by solution NMR. Among

these 519 structures, the largest RNA has 155 nts. Structures determined by solution

NMR are often much smaller than structures solved by X-ray crystallography as it is

more difficult to crystallize the smaller RNAs.

The reason that NMR is well-suited for studying the structures of these small

and flexible RNAs is that NMR provides a set of experimental observables including

chemical shifts and other structural restraints (such as nuclear Overhauser effect

(NOE) distances and dihedral angles) which contain information about structural and

dynamic properties of biomolecules. Among all the observables from NMR, chemical

shift data are of the most significant value because they can provide information

about conformational states that are accessible to a given RNA. Details of chemical

6



shifts and their use in guiding RNA structure modeling will be discussed in Section

1.4.

Although NMR provides valuable information about RNA conformational states,

it suffers from limitations when studying large RNA molecules (>50 nts). Resonance

assignment is complicated by severe spectral overlap and fast relaxation.28 Fortu-

nately, with recent developments such as selective labeling, advances in 2D spectra

like NOESY, and utilization of experimental restraints such as residual dipolar cou-

plings (RDCs), more precise and more accurate structures can be captured.29–32

1.2.3 Computational modeling

Solving RNA structures with NMR spectroscopy is often quite challenging, partic-

ularly for large RNAs.33 Most of the RNA structures derived from NMR experiments

that have been deposited in the PDB are small RNAs (with an average size ∼29

nts; Table 1.1). Besides, both X-ray crystallography and NMR spectroscopy exper-

iments can be expensive, tedious, and time-consuming. Despite recent advances in

other methods such as small-angle scattering (SAXS),34 there is now much interest in

developing and applying computational structure prediction methods (in silico meth-

ods), which can be used, in principle, to reduce the effort needed to “determine”, or,

more accurately, model the structure of RNAs.

It is a widely held view that RNA folding is hierarchical35 in nature, meaning

that secondary structure elements are formed first from which tertiary (3D) structure

emerges. Thus, to mimic the hierarchical nature of RNA folding, many RNA modeling

tools decompose the structure prediction into two discrete steps: first, the secondary

structure is predicted from its sequence (i.e., its primary structure). Then, given the

predicted secondary structure, tertiary models are built that are consistent with the

predicted secondary structure. Recently, however, the hierarchical nature of RNA

folding has been called into question. An NMR study36 on the mechanism of the
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fluoride riboswitch has provided evidence that even with identical tertiary structures,

riboswitches may access conformational states with different secondary structures to

perform transcription regulation functions. Despite the debate over whether RNA

folding is concurrent or hierarchical, a well-predicted secondary structure is required

for generating high resolution tertiary structure models.

1.2.3.1 Secondary structure prediction

RNA secondary structure describes the connectivity within an RNA sequence

(Figure 1.3B): nucleotides can either form base pairs or be unpaired. Secondary

structures can be evolutionarily conserved,37 even more conserved than primary se-

quence, and are indicative of critical biological functions. Knowledge about these

conserved regions helps RNA classification and phylogenetic study.38

When multiple RNA sequences are available, one common approach for secondary

structure prediction is comparative analysis. The comparative approach scans se-

quences from the same family (homologous sequences) and identifies conserved sec-

ondary structures: these regions have the same connectivity but may contain differ-

ent nucleotides. Nucleotides at covariant base pairs change together but ultimately

maintain the same secondary structure. Comparative analysis has been successfully

utilized to predict the secondary structure of large RNAs such as the 16s ribosomal

RNA and 23s ribosomal RNA,39 both with over a thousand nucleotides. There is

also a keen interest in using multiple sequence alignment to study lncRNAs. lncR-

NAs may contain unidentified translated regions or transcriptional noise.40 Thus, a

fast quantitative tool is needed to locate possible conserved regions. Methods, such

as R-scape,37 perform covariation analysis and statistical tests to determine whether

lncRNAs have functional, conserved structures.

Comparative analysis requires multiple sequences to make predictions, and the

quality of the prediction is mainly dependent on existing structures. When a single
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sequence is to be analyzed, the thermodynamics approach is used to predict its

secondary structure. The principle of thermodynamics based methods is to identify

the structure(s) with the lowest free energy. To do this, fragments of RNA sequences

are evaluated in terms of their folding energy according to the nearest neighbor pa-

rameters which were determined using optical melting experiments.41 The searching of

the lowest energy structure is done through dynamic programming to save computa-

tion time. All possible base pairs and secondary structures are considered (implicitly)

by combing the energy of shorter fragments.

However, free energy minimization sometimes does not provide the correct an-

swer because: (1) energy is calculated based on a set of experimentally measured

parameters which can be inaccurate; (2) RNA might not adopt the lowest energy

structure. RNA may transition between different structures, sometimes higher en-

ergy structures, to function, especially when interacting with other molecules such as

when binding with small ligands.

To improve prediction accuracy, experimental data can be added as restraints to

guide the folding and free energy minimization. For example, the RNAstructure suite

allows users to input chemical mapping data like SHAPE reactivities42,43 to guide

structure prediction.

Table 1.2: List of secondary structure prediction programs44–48

Tool Description

MFold free energy minimization, dynamic programming
RNAfold statistical sampling using equilibrium probabilities
RNAstructure free energy minimization, allows the use of experimental data

(e.g. SHAPE reactivities)
RNAalifold multiple sequence alignment
ContraFold statistics based, conditional log-linear models
SPOT-RNA deep learning, transfer learning

Recent advances in machine learning also inspired new prediction tools. For ex-
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ample, SPOT-RNA48 applied deep neural network models (that have been proven

successful in predicting protein contact maps49) on a recently released large database

of RNA sequences and their annotated secondary structures. It then applied the

transfer learning techniques to improve structure prediction using a small set of high

resolution structures.

1.2.3.2 Tertiary structure prediction

The biological function of RNAs largely depends on their complex tertiary (3D)

structures. Given the challenges of solving structures experimentally, computational

tools have been developed to model the 3D structures of RNA. Many of these methods

were inspired by similar approaches developed for protein modeling.

Most methods for RNA 3D modeling can be grouped into two categories: physics-

based approaches and knowledge-based approaches. Physics-based approaches

use principles of physics and chemistry to explore free energy landscape and model

biophysical events while knowledge-based approaches extract information from exist-

ing database such as sequences and known structures.

One example of physics-based modeling is molecular dynamics (MD) simulations.

MD simulations are Molecular Mechanics (MM) method that is based on Newtonian

mechanics. MD simulations calculate molecule’s motion in a given time interval.

The trajectories of particles and forces applied to particles are calculated by solving

the Newton’s equation. Due to its timescale, nanoseconds to microseconds, MD

simulations are suitable for studying conformational changes such as ligand unbinding

process,50 and can be used to explore and construct the folding landscape of an

RNA. However, MD simulations cannot deal with a biological process that involves

chemical reactions. For example, the breaking of covalent bonds should be studied

with Quantum Mechanics (QM) methods.

MD simulations have two major limitations: inaccurate force field and inefficient

10



sampling. The calculation of force and motion is dependent on the force field used.

Two widely used force fields for RNAs are CHARMM and AMBER.51,52 However,

since MM makes some approximations compared to QM, the force field cannot depict

all interactions involved. Advances53,54 have been made to achieve better parametriza-

tion, but RNA force fields are still less accurate compared to protein force fields. The

second limitation is the computational cost. Although MD simulations are less com-

putationally expensive compared to QM methods, the timescale is still too short

for many biological processes. For example, the timescale for the ligand unbinding

process is significantly longer than regular MD simulations.50 In addition, when the

folding landscape is very “rugged”, it is easy for the structure to be trapped in local

minima for a long time. Recent advances, including a scaled-MD method,50 have been

made to accelerate such simulations.

In addition to physics-based approaches, knowledge-based approaches have been

successful in protein prediction and have inspired new RNA prediction methods. One

example is Rosetta and its analog in RNA prediction: fragment assembly of RNA

(FARNA). FARNA is a de novo prediction method that does not rely on homolo-

gous structures, secondary structure predictions, or experimental data. It builds a

structure library consisting of conformations of 3 nt fragments from the crystal struc-

ture of the large ribosomal subunit (PDBID: 1FFK) which has ∼2700 nts. It also

uses a coarse-grained representation of RNA bases to speed up the simulation. The

assembly of fragments is done through Monte Carlo simulation. This process starts

from an extended chain and forms a native-like structure that is supposed to have

the lowest free energy. The simulation is guided by an energy function that takes into

account previously seen conformations in experimentally solved structure (including

structural details like backbone preference and side chain preference). The authors,

Das and Baker, later presented an optimized protocol, FARNA/FARFAR,26 that

was further optimized with a step of full-atom refinement by incorporating Rosetta
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energy function. FARNA/FARFAR was validated to predict native structure with

high resolution, including recovering noncanonical interactions.

Aside from MD simulations and fragment assembly, there are other programs

available where different inputs (sequence or secondary structure), models (all-atom or

coarse-grained) and simulation methods (MD or Monte Carlo) can be applied. Some

commonly used programs are RNAComposer, NAST, SimRNA, and MC-sym.55–58

1.3 Functionally important RNA transient state

To carry out biological functions, some ncRNAs may sample different conforma-

tional states and fluctuate between a ground state (i.e., the lowest free energy state)

and transient states (i.e., higher free energy states) contingent on environmental con-

ditions. Transient states are local minima in the RNA free energy landscape.59,60

The conformational transition between the ground state and transient states involves

structural rearrangements such as pseudoknot (an RNA secondary structure in which

half of one helical segment is intercalated between another helical segment) formation,

base pair reshuffling, and base-flipping.61 For example, while the hairpin ribozyme has

a very simple structure compared to other ribozymes, it can undergo different docked

states to carry out catalytic activities.62 The fluoride riboswitch, on the other hand,

can access an excited state where an important base pair is broken to trigger struc-

tural rearrangement and terminate downstream gene expression.36

The structures of these transient states provide significant information regarding

RNA function. However, due to their low populations and short lifetimes,61 these

transient states are “invisible” to conventional experimental techniques, so the struc-

tural and dynamic properties of RNA transient states have yet to be thoroughly

studied.

Increasingly, there is a keen interest in applying NMR spectroscopy to study the

transient states of RNAs. Many features of NMR make it suitable for character-
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izing less populated transient states:63 it can be used to characterize structures of

biomolecules at high resolution; it can provide different types of observables which

contain structural and dynamic properties of different conformational states; it can

be used to probe motions at different timescales ranging from picoseconds to seconds,

or even longer, which is suitable for sparsely populated transient states. Although it

is not currently possible to detect the NOE distances associated with these transient

states, it is now possible to characterize the 1H and 13C chemical shift “signatures” of

RNA transient states using techniques based on saturation transfer36,64 and relaxation

dispersion.59,65

1.4 NMR spectroscopy and its application to RNA struc-

tural and dynamics study

1.4.1 Basic theory of NMR spectroscopy

Spin, or spin angular momentum, is an intrinsic property of nuclei. The magnitude

of spin angular momentum, L, is given by L = ~
√
S(S + 1) where S is the spin

quantum number. S will be 0 if the nucleus has an even number of protons and an

even number of neutrons. The magnetic dipole moment associated with the spin is

µ = γ∗ ~S . Here, the constant γ is called the gyromagnetic ratio and is a characteristic

that belongs to a specific nucleus.

When an external magnetic field (B0) is applied, the nucleus’ spin can either align

parallel or anti-parallel to the external field. The parallel alignment is slightly more

populated because of the lower energy. The population difference is characterized

by the Boltzmann distribution: Nparallel/Nanti = exp(∆E
kT

), where ∆E is the energy

difference between two alignments. The energy difference between two states can

be calculated with: ∆E = γ ∗ ~ ∗ B0. Although parallel alignment is slightly more

favorable in terms of energy and thus, causing a bulk magnetization (M0) over all
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identical nuclei, the energy difference between two states is still quite small. Therefore,

to increase the signal to noise ratio, one of the instrument design options is to use

stronger B0 to increase the energy difference. The precession frequency, or Larmor

frequency of the magnetization along B0 is:

ω0 = 2πν = γB0, (1.1)

where ν is the resonance frequency of the nucleus.

B0

M0

B1

x

y

pulse
B0

Mz

x

y

decay Fourier Transform

Resonant 
Frequency

Figure 1.5: How NMR works (adapted from the web66).

A radio-frequency pulse (B1) that is perpendicular to B0 is then applied to the

sample (Figure 1.5A), causing the equalization of populations between the two spin

states. M0, which was parallel to the external field, is now flipped to the transverse

plane (Figure 1.5A). The non-equilibrium transversal magnetization (black arrow in

Figure 1.5A) will relax back to the original equilibrium state (Mz) and the resultant

decay in the transverse plane can be measured. The signal is then Fourier transformed

into a characteristic resonant frequency that is unique for different types of nuclei.

1.4.2 Chemical shift

According to Eq. 1.1, the same nuclei should have the same Larmor frequency

because γ is a characteristic that is dependent on the nucleus type. However, in

the presence of an external magnetic field, the nucleus of an atom can either be
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shielded or deshielded from the external field, depending on its chemical environment

or electronic environment. We use the shielding constant σ to describe how much the

resonance frequency is affected:

ν =
γ

2π
B0(1− σ). (1.2)

To get a more direct picture of the physio-chemical environment around a nucleus,

we define “chemical shift” as:

δ =
ν − νref
νref

106, (1.3)

with the unit parts per million, or ppm. ν and νref are the resonance frequency of

the nucleus and the reference nucleus.

The sensitivity of chemical shifts to the surrounding environment indicates that

chemical shifts report on both the structural and dynamical properties of atoms, and

as such, are considered “structural fingerprints”.

1.4.3 Chemical shifts based modeling of RNA structure

Chemical shifts are the primary and most accurately measured NMR observables,

and are, sometimes, the only observables that can be obtained from NMR spec-

troscopy. As alluded to above, they are also recognized as the structural fingerprints

of biomolecules because they are sensitive to the environment (chemical and physical)

surrounding a nucleus.

Chemical shift data have been used to guide and improve protein modeling, such

as CS-ROSETTA,67 but they are less explored in RNA structure modeling. Extract-

ing structural information from chemical shift data is an urgent task because other

structural restraints, such as NOE distances, which are the interproton distance, and

RDCs, representing the relative orientation of nuclei, are more difficult to access and
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interpret68 for RNA due to its structural flexibility.

1.5 Machine learning

Chemical shifts are affected by multiple factors,68 such as electronegativity, anisotropy,

and hydrogen bonding. This complexity makes it challenging to develop an explicit

function to describe the inherent structural information of chemical shifts. In order

to extract useful patterns directly from available chemical shift data, we designed

and developed novel computational tools using machine learning that can guide the

structure prediction of RNA.

1.5.1 Overview of machine learning

Artificial intelligence (AI) has gained much attention in the last decade. It has

changed the way we think and live: online advertising is optimized with recommen-

dation systems; chatbots help customers navigate through websites; driving safety

is improved with co-pilot technology, etc. AI has also changed the natural science

community. With the help of machine learning algorithms like deep neural networks

and the development of powerful supercomputers, scientists can rapidly parse through

mountains of data to discern useful patterns or detect abnormal data points.

Machine learning (and deep learning) are central techniques of AI. Machine

learning is about learning from data. Common types of machine learning are su-

pervised learning, unsupervised learning, and reinforcement learning. In this thesis,

the algorithms I applied all belong to supervised learning. In supervised learning,

an algorithm learns to map input data X to output data y. Simply speaking, we

have a set of labeled historical data, for example, experimental data like chemical

shifts or other NMR restraints along with the NMR derived structures, and we build

a predictive model based on these known data. In the previous example, chemical

shifts, or other experimental observables, are variables or features, and NMR derived
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structures are outcomes or labels. With the trained machine learning model, we are

able to predict the label given a set of new features, that is, we can predict structure

from NMR chemical shifts. In the past, the Frank lab has used machine learning tools

to predict chemical shifts from the 3D coordinates of RNAs69 and proteins,70 as well

as predict solvent accessible surface area from coarse-grained models of proteins.71

Figure 1.6: Workflow of developing a machine learning application (adapted from
reference72).

Shown in Figure 1.6 is the general workflow of training a supervised learning

model. Given a data set, the first step is to extract features. Data exploration and

feature engineering are necessary to improve the quality of the model. Statistics, such

as mean and variance, can be calculated to better understand features. Depending on

algorithms used, imputation may be done before training to fill in missing data. In

the case of image classification, data augmentation may also be necessary to ensure

the model has enough training data points. Other feature engineering steps include

dimension reduction, feature selection, and feature scaling.

Now that feature/label pairs have been constructed, the data set is split into

three parts to train a model: training set, validation set, and testing set. An

initial model will be built using the training set. The validation set is then fed into

this model to evaluate the validation score. The training accuracy and validation
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accuracy are used to guide hyperparameter tuning. Hyperparameters are parameters

that determine model architecture and optimization that aren’t learned in the model

training process. They may affect how fast the training is done or whether the

algorithm can converge or not, but, in principle, they should not affect how good

the model is when predicting new data points. For example, in neural networks, the

learning rate is a hyperparameter and should be defined before training the model.

After model training, the final step is to evaluate model performance. To do

that, we feed the testing set into the optimized model and assess the model accuracy.

The purpose of having this left-out testing set is to ensure the model performance is

calculated on an unseen data set so that the performance measurement is unbiased.

One potential problem with machine learning models is overfitting, which occurs

when the model does not generalize well so that it cannot predict the outcome of

unseen data with similar accuracy compared to when it is applied on training data.

This happens when the model is too complex. By reporting and comparing the

training error and validation error, we can stop the training process at a certain

point where the balance between training error and validation error is reached. Other

techniques to avoid overfitting will be discussed in details in later chapters.

1.5.2 Artificial neural networks

Artificial neural networks, or ANNs, are inspired by biological nervous systems.

With the recent advances in computing powers and algorithms design, neural net-

works have become deeper and deeper, making it possible to deal with complex data

sets. Shown in Figure 1.7 is a very simple form of neural networks, with one in-

put layer (green), one hidden layer (blue), and one output layer (orange). Input

data (x1, x2, x3, x4) are fed into the hidden layer, each circle representing a hid-

den neuron. The input layer is connected with the hidden layer through a set of

weights (w
(1)
11 , w

(1)
12 , ...). The value of the hidden node can be calculated with f(g(x))
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Figure 1.7: The architecture of neural network with one hidden layer. The ANN
has one input layer (green), one hidden layer (blue), and one output layer (orange).
The highlighted connections are weights associated with the first hidden neuron at
Layer 2, or the first hidden layer.

where f is the activation function and g(x) is a linear model of x, for example:

a
(2)
1 = f(w

(1)
11 x1 +w

(1)
12 x2 +w

(1)
13 x3 + b

(1)
1 ), where w

(l)
ij represents the weight of the con-

nection between the ith node on layer l and the jth node on layer l+1, and similarly,

b
(l)
j is the weight between the intercept node on layer l and the jth node on layer l+1.

By calculating node values for all hidden layers and the output layer, the output value

hW,b(x), or as in Figure 1.7, a
(3)
1 , can also be calculated.

The next step is to train and minimize the loss function of the neural networks

model:

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W l
ij)

2

=

[
1

m

m∑
i=1

(
1

2

∥∥∥hW,b(x(i))− y(i)
∥∥∥2
)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W l
ij)

2,

(1.4)
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where hW,b(x
(i)) is the predicted outcome of the ith data point, y(i) is the actual

output of the ith data point, m is the number of training samples, λ is a penalty

constant, nl is the number of layers, sl is the number of nodes at layer l, and W
(l)
ij is

the weight between the ith node at layer l and jth node at layer l + 1.

The loss function has two terms: the mean squared error between predicted and

actual output and the squared weights. The second term is a regularization term to

ensure the model will not overfit.

To minimize this loss function (Eq. 1.4), gradient descent is used to update

parameters, here, the weights:

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
j = b

(l)
j − α

∂

∂b
(l)
j

J(W, b),

(1.5)

where α is the learning rate, one of the hyperparameters that can be tuned.

The calculation of the partial derivative of the loss function J with respect to

each parameter W
(1)
ij is done through back propagation. That is, the derivative

for parameters at layer l is associated with the error at layer l + 1. Thus, given the

error at the final layer (since both predicted and actual output are already known),

the derivative for previous layers can be calculated and weights can be updated via

gradient descent:

∇W (l)J(W, b;x, y) = δ(l+1)(a(l))T

∇b(l)J(W, b;x, y) = δ(l+1).

(1.6)

Here δ(l+1) is the error at layer l + 1. Through iterations of forward and backward

propagation, the weights of the neural networks can be optimized.
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1.5.3 Random forest

Random forest73 is an advanced predictive modeling technique based on decision

trees.74 Decision trees are tree-shaped graphs made of interconnected nodes that can

be used to determine the probable outcome based on the data used to build it. At

every node of a decision tree (except the terminal node, which is called a leaf ),

data points are split into branches, based on some features. This partitioning is done

recursively until a stopping condition is met. A final decision can then be made based

on the estimation of the outcome in each terminal node. The splitting is optimized

through learning to minimize the training error (for regression) or minimize impurity

(such as Gini index, for classification).

Decision trees are useful due to their simplicity, low bias, and high interpretability.

However, they usually exhibit a high variance (overfitting issue), which means the

model can change significantly if new training data are used to build the model, and

are not robust. To overcome this limitation, random forest uses an approach called

bagging where a “forest” of de-correlated decision trees are built instead of a single

decision tree. Each tree in the forest will learn the model based on a subset of samples

(bootstrap samples), and each tree will contribute to the final result. Random forest

is, therefore, an example of ensemble learning method.

1.6 Thesis outline

Determining the structure of biomolecules is an important first step in understand-

ing how they execute specific cellular functions. Recent advances in NMR, such as

CEST NMR spectroscopy and NMR R1ρ relaxation dispersion spectroscopy,64 make it

possible to access chemical shift signatures associated with RNA transient states. In

contrast, NOE-derived distances and other NMR observables, which are convention-

ally used to determine RNA structures, remain inaccessible for these transient states.

21



The goal of my thesis was to develop and apply computational tools for accurately

modeling the structures (secondary structures in particular) of RNA conformational

states, including sparsely populated transient states, based on their chemical shift

signatures.

Inspired by methods that incorporate chemical mapping data as restraints in RNA

secondary structure prediction, I developed a CS-Fold framework for conditional pre-

diction of RNA secondary structures with NMR chemical shifts. First, I developed

ANN-based classifiers that predict the base pairing status of individual residues in

an RNA based on their assigned chemical shifts. Then I used these predictions as

restraints to guide secondary structure folding of RNA. Extensive testing indicated

that, from assigned NMR chemical shifts, we could accurately predict the secondary

structures of RNAs and map distinct conformational states of a single RNA. The

study on conditional prediction of RNA secondary structure is presented in Chapter

II.

I then explored the probabilistic modeling of RNA secondary structures using

chemical shifts in Chapter III. Given a simulated ensemble of structure models, I

first developed a method that can predict chemical shifts from given secondary struc-

tures of RNA. Using Bayesian/maximum entropy (BME), I was able to reweight sec-

ondary structure models based on the agreement between the measured and predicted

chemical shifts. The results indicated that using BME and predicted chemical shifts,

we could recover native-like structures from a set of low energy structure models.

In Chapter IV, I further explored whether NMR chemical shifts can be used to

annotate other structural features of RNAs. Structural features such as base pair,

stacking interaction, syn or anti conformation, solvent accessibility, and sugar puck-

ering modes are important for understanding RNA structure–function relationship.

In this chapter, I applied multi-task learning with neural network classifiers to extract

such structural information from NMR chemical shifts.
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Finally, in the Appendix, a PyMOL plugin (PyShifts) that was implemented by

my colleague Jingru Xie and me, is presented. PyShifts is designed for visualizing

and analyzing structure ensembles of biomolecules. NMR-derived chemical shifts

provide valuable information about the conformational state(s) accessible to a given

biomolecule. Our examples show that PyShifts could be used to predict chemical

shifts from 3D coordinates, visually detect referencing errors, identify the “best”

structure model, and cluster structure ensembles into different conformational states.
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CHAPTER II

Conditional Prediction of RNA Secondary

Structures Using NMR Chemical Shifts

The contents of this chapter were published in the following reference:

Kexin Zhang, and Aaron T. Frank. ”Conditional Prediction of Ribonucleic Acid

Secondary Structure Using Chemical Shifts.” The Journal of Physical Chemistry B

124.3 (2019): 470-478.

Inspired by methods that utilize chemical-mapping data to guide secondary struc-

ture prediction, we sought to develop a framework for using assigned chemical shift

data to guide RNA secondary structure prediction. We first used machine learning

to develop classifiers which predict the base pairing status of individual residues in

an RNA based on their assigned chemical shifts. Then, we used these base pair-

ing status predictions as restraints to guide RNA folding algorithms. Our results

showed that we could recover the correct secondary fold of most of the 108 RNAs

in our data set with remarkable accuracy. Finally, we tested whether we could use

the base pairing status predictions that we obtained from assigned chemical shift

data to conditionally predict the secondary structure of RNA. To achieve this, we

attempted to model two distinct conformational states of the microRNA-20b (miR-
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20b) and the fluoride riboswitch using assigned chemical shifts that were available

for both conformational states of each of these test RNAs. For both test cases, we

found that by using the base pairing status predictions that we obtained from as-

signed chemical shift data as folding restraints, we could generate structures that

closely resembled the known structure of the two distinct states. A command-line

tool for Chemical Shifts to Base-Pairing Status (CS2BPS) predictions in RNA has

been incorporated into our CS2Structure Git repository and can be accessed via:

https://github.com/atfrank/CS2Structure.
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2.1 Introduction

Like proteins, ribonucleic acids (or RNAs), play critical functional roles within

cells, and like proteins, RNA function is determined by its structure.1–3 RNAs, how-

ever, do not necessarily adopt a single structure. Instead, RNAs can adopt and in-

terconvert between distinct conformational states that are kinetically linked to form

a complex network of accessible states. Such networks enable RNAs to, for exam-

ple, function as regulatory switches by responding to environmental stimuli such as

changes in temperature or changes in ligand or metabolite concentration.4–8 Mapping

the conformational landscape of RNAs,4,9 which consists of the set of conformational

states accessible to that RNA, is crucial in unraveling the complex relationships be-

tween their sequence, their structure, and their function.

Determining the secondary structure of an RNA, under a specific set of physio-

chemical conditions, is a crucial first step in uncovering links between its sequence, its

structure, and its function.10 In silico methods can be used to predict the secondary

structure of an RNA from sequence by identifying the secondary structure that mini-

mizes its folding free energy.11–13 However, the structure that an RNA adopts depends

not only on its sequence but also on the physiochemical environment in which the

RNA “resides”. Urgently needed are methods that can predict the RNA structure

from sequence, conditioned on the physiochemical environment of an RNA.

Herein, we implemented and tested a framework for conditionally predicting the

secondary structure of RNAs based on assigned chemical shift data.14,15 Specifically,

we trained a set of machine learning classifiers that take as input the assigned chemical

shifts of individual residues in an RNA and then predict the base pairing status of

each residue. We then used these base pairing predictions as restraints to guide the

folding of the target RNA. We discovered that the secondary structures generated

using our chemical shift derived base pairing status predictions as restraints were more

consistent with NMR-derived secondary structure models than the models generated
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without these restraints. Moreover, for the microRNA-20b (miR-20b) and the fluoride

riboswitch, we were able to accurately predict their secondary structure conditioned

on the available chemical shift data for two distinct conformational states.

Collectively, our results demonstrate that the information content in assigned

chemical shift data can be leveraged to conditionally predict the secondary structure

of an RNA by combining machine learning tools and existing structure prediction

algorithms. With access to the assigned chemical shift fingerprints of individual

conformational states of an RNA, the hybrid modeling approach described in this

study could be used to generate a hypothetical map of its conformational landscape,

which will be particularly powerful when some of these states correspond to difficult-

to-characterize transient states.16,17

2.2 Methods

2.2.1 Data preparation

2.2.1.1 Structure and chemical shift data set

For 115 RNAs, atomic NMR structures and NMR chemical shifts were down-

loaded from the Protein Data Bank (PDB: http://www.pdb.org) and the Biologi-

cal Magnetic Resonance Data Bank (BMRB: http://www.bmrb.wisc.edu/), respec-

tively. Next, for each RNA, LARMORD18 was used to predict chemical shifts using

the coordinates of the first model in the NMR bundle. Because 13C chemical shifts

frequently contain systematic referencing errors,19 a structure-based approach was

used to identify systematic referencing errors and (if necessary) correct 13C data for

each RNA. Briefly, a Bayesian inference approach was used to identify systematic

offsets in the difference between experimental chemical shifts and chemical shifts

computed using LARMORD. For each type of non-exchangeable 13C nuclei (namely,

C1’, C2’, C3’, C4’, C5’, C2, C5, C6, C8), the corresponding chemical shift data

31



were assumed to contain a systematic error if the mean estimated offset (µerror) was

> 2 ppm and the ratio of the mean estimated offset and the standard deviation

(µerror/σerror) was > 5. This approach19 was able to reproduce experimentally vali-

dated referencing errors previously identified by Aeschbacher et al. The R code used

to detect and correct the chemical shifts and the corrected data set are available at:

https://github.com/atfrank/CS2Structure.

After correcting (if necessary) the chemical shift data for each of the 115 RNAs

in our initial data set, we determined the weighted (or reduced) mean absolute error

(wMAE) between the corrected experimental chemical shifts and chemical shifts com-

puted from the first model of each of the NMR bundles. RNAs that exhibited 1H or

13C wMAE that was > 1.5 × IQR (the interquartile range), were considered outliers

and removed from our data set. The PDBIDs of the RNAs that were removed are:

(1) 1S9S, (2) 1TJZ, (3) 2LC8, (4) 2AHT, (5) 2MQT, (6) 2M24, and (7) 5KMZ. For

the remaining 108 RNAs (Table B.1), the secondary structures were retrieved using

the program DSSR from the 3DNA suite.20,21 From the secondary structure model,

the base pairing status of each residue in the RNA was determined. In this work,

we currently only included canonical base pairing interactions (that is, GC and AU

Waston–Crick base pairs and GU wobble base pairs) and ignored noncanonical base

pairs due to their overall under-representation in our data set.

2.2.1.2 Chemical Shift Imputation

To impute missing chemical shift data, we used the R package MICE (multivariate

imputation by chained equations).22 MICE assumes the probability of a data point

being missing depends only on the observed data. To impute chemical shifts using

MICE, separate regression models are built for the chemical shifts of each nucleus

type based on the chemical shifts of other nucleus types. Next, multiple cycles of

imputation are carried out using predictive mean matching (pmm). The pmm method
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first identifies a set of observed chemical shifts whose regression-predicted values are

closest to the regression-predicted value of the missing data point and then randomly

selects one of those observed values to fill in the missing point.

For each of the 108 RNA systems in our data set, the imputed non-exchangeable

(namely, C1’, C2’, C3’, C4’, C5’, C2, C5, C6, C8, H1’, H2’, H3’, H4’, H2, H5, H5’,

H5”, H6, H8) chemical shifts, along with the residue types and base pairing status

of individual residues were combined to produce a single data structure (See Figure

2.1B) in which the rows corresponded to individual residues from each of the 108

RNAs and the columns corresponded to different nucleus types.

2.2.2 CS2BPS Classifiers

To predict the base pairing status of individual residues in an RNA based on the

observed chemical shifts of atoms in those residues, we constructed artificial neural

network (ANN) classifiers.23 In an ANN, input features and output labels are con-

nected through one or more layers of hidden neurons (Figure 2.1A). The neurons on

adjacent layers are connected to each other through a linear transformation followed

by an activation function. When training neural network, gradient descent is per-

formed to update network weights through back-propagation until a tolerable loss is

achieved.

Here, we built a chemical shift-based ANN classifier (referred to hereafter as,

Chemical Shift to Base-Pairing Status classifier, CS2BPS) consisting of two dense

layers and one dropout layer (the dashed lines between the second hidden layer and the

output layer in Figure 2.1A; worked as regularization to avoid potential overfitting).

For a given residue i, the chemical shift data of residues i, i− 1, and i+ 1, along with

the residue types of i, i − 1, and i + 1 were fed into the CS2BPS classifier and the

classifier output the probability of residue i being unpaired (Figure 2.1C).

Hyperparameters, namely, the loss function, learning rate, dropout rate, batch
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Figure 2.1: (A) Illustration of the artificial neural networks (ANNs) that we used
to train our Chemical Shifts to Base-Pairing Status (CS2BPS) classifiers. The
ANNs take as input (through the input layer) chemical shifts associated with an
RNA residue and return (through the output layer) the probability of that residue
being unpaired. (B) When developing the CS2BPS classifiers, we first obtained a
data set containing NMR chemical shifts and NMR-derived secondary structures for
108 RNAs. Using a leave-one-RNA-out approach, we then trained a collection of
independent CS2BPS classifiers. (C) Illustration of what we refer to as the CS-Fold
framework, in which the optimized CS2BPS classifiers were used to predict the base
pairing status of individual residues of a given RNA from its chemical shift data. The
CS2BPS-derived base pairing status predictions were then used as restraints in RNA
folding simulations to predict the secondary structure of the RNA.
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size, optimization method and number of epochs were optimized through grid search

cross validation. The CS2BPS base pairing status classifier was trained using Keras24

with a TensorFlow backend.25 For each CS2BPS classifier, we used a network con-

taining two hidden layers followed by a dropout layer. The adjacent input and hidden

layers were connected through ReLU activation function. A sigmoid activation was

used on the output layer (Figure 2.1A).

Initial Dataset 
108 RNAs

Leave-one-out

Remove “Twins”

Generate Ensemble
of CS2BPS ModelsOptimized

Model

Figure 2.2: Leave-one-RNA-out Cross Validation.

Using a leave-one-RNA-out approach, independent sets of CS2BPS classifiers were

generated for each RNA in our data set (Figure 2.2). For each RNA, RNAs in

the training set with high sequence similarity (≥ 80%), determined using the tool

vsearch,26 were first removed from the training set to avoid the “twinning” effect.

Next, a set of independent CS2BPS classifiers were generated and then used to predict

the base pairing status of individual residues in the left-out (testing) RNA. Here, we

generated an ensemble of classifiers (six CS2BPS classifiers) for each left-out RNA.

To quantify the accuracy of the classifiers, we computed the sensitivity or the

true positive rate (TPR) (defined as the probability that a base paired residue is

predicted to be base paired) and the specificity or the true negative rate (TNR)
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(defined as the probability that an unpaired residue is predicted to be unpaired) and

the overall accuracy (defined as the fraction of residues in an RNA whose base pairing

status are correctly predicted), for each testing RNA. Here, the predicted base pairing

status corresponded to the average base pairing probability calculated from those six

CS2BPS classifiers (see above). We reported the best-tuned parameters of the first

set of classifiers for all 108 RNAs in Table B.2.

2.2.3 Assess the use of CS2BPS classifiers to guide secondary structure

prediction

To assess the use of the CS2BPS classifiers to guide secondary structure predic-

tion, we implemented a CS-Fold framework. Within this CS-Fold framework, the

base pairing status predictions, which were calculated by averaging the results of

six independent CS2BPS classifiers, were used as restraints in RNA folding simu-

lations (Figure 2.1B). Similar to the approach used to incorporate SHAPE-derived

restraints27–30 into RNA folding simulations, we utilized a restraint term of the form

∆G = ∆Gthermo + ∆Gcs, (2.1)

where ∆G is the folding free energy, ∆Gthermo is thermodynamic free energy, and

∆Gcs is the base pairing restraint term which has the functional form

∆Gcs = m

N∑
i

[ln (pi + 1) + b] . (2.2)

Here m and b are restraint parameters that influence the magnitude of the restraint

free energy relative to the thermodynamic free energy, and pi is the probability of a

residue being unpaired (Figure 2.1C) that is calculated by averaging the predictions

from the ensemble of six CS2BPS classifiers. In the CS-Fold framework, we first

used the folding algorithms from the RNAstructure modeling suite31 to generate a
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set of possible secondary structure models of each of the 108 RNAs in our data set,

incorporating the CS2BPS predictions as folding restraints (Figure 2.1C).

For each of the 108 RNAs in our data set, CS-Fold simulations were carried out

using the folding algorithms Fold,12 MaxExpect,32 and ProbKnot33 from the RNAs-

tructure modeling suite. Fold predicts secondary structures by free energy minimiza-

tion. MaxExpect generates secondary structure models that contain highly probable

base pairs. And ProbKnot, like MaxExpect, generates secondary structure models

that contain highly probable base pairs, but allows pseudoknots. In all CS-Fold simu-

lations, m and b were set to 1.8 kcal/mol and 0.6 kcal/mol, respectively. These values

corresponded to the default values used to incorporate normalized SHAPE reactivities

into RNA folding simulations.34 To select the best model among structures generated

by Fold, MaxExpect, and ProbKnot algorithms, with and without CS2BPS-derived

predictions as restraints, we defined the consistency score as the fraction of {sfold}

that is identical to {sCS2BPS}, where {sfold} is the base pairing status of individual

residues from Fold, MaxExpect, and ProbKnot generated structures and {sCS2BPS} is

the base pairing status derived from the CS2BPS classifiers. Among these six possible

structures, the one that has the highest consistency score with CS2BPS base pairing

status predictions was selected as the final predicted secondary structure model for a

given RNA.

To assess the accuracy of the CS-Fold generated secondary structure models, we

used the program scorer,11 from the RNAstructure suite. Given a reference secondary

structure model and a comparison structure, scorer calculates the sensitivity or true

positive rate (TPR), defined as the fraction of base pairs in the comparison structure

that also appeared in the reference structure, and positive predictive value (PPV),

defined as the fraction of reference base pairs that also appeared in the comparison

structure. In our case, the reference structure is the native NMR-derived structure

and the comparison structure is the CS-Fold predicted structure.
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2.3 Data analysis and results

2.3.1 Base pairing status from chemical shifts

We began our study by training a set of machine learning classifiers to predict

the base pairing status of individual residues in an RNA from the 1H and 13C chem-

ical shift “fingerprints” of each residue. To develop these classifiers, we utilized the

artificial neural network machine learning technique (Figure 2.1A). Briefly, an artifi-

cial neural network (ANN) takes in information through an input layer, then passes

it through one or more hidden layers and finally passes it through an output layer.

Our ANN classifiers, which we refer to as Chemical Shift to Base-Bairing Status

(CS2BPS) classifiers, are fed the chemical shifts for individual residues in an RNA

as well as the chemical shifts of the residues before and after it. The network outputs

the base pairing status of each residue (i.e., the probability that a given residue is

base paired to some other residue). We note that for residues that are predicted to

be base paired, our CS2BPS classifiers do not identify their base pairing partner.

Using a data set containing NMR chemical shifts and NMR-derived secondary

structures for 108 RNAs, we built six independent CS2BPS classifiers for each RNA

in our data set using a leave-one-RNA-out approach (Figure 2.2). Briefly, to build

each classifier, data associated with one of the 108 RNAs (the left-out RNA) were

removed from the data set. Then six CS2BPS classifiers were trained using data from

the other RNAs (i.e., the training set). The resulting CS2BPS classifiers were then

tested on the left-out RNA. To mitigate bias due to the “twinning” effect in which

data in training set closely resemble the left-out data, when building each CS2BPS

classifier, we also excluded from the training set data associated with any RNA(s)

that exhibited a high sequence similarity (≥ 80%) to the left-out RNA (see Methods).
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Figure 2.3: (A and B) CS2BPS Classification Accuracy. Shown are circular bar
plots of (A) the sensitivity or true positive rate (TPR) and (B) the specificity or
true negative rate (TNR). Accuracy statistics are based on a leave-one-RNA-out
analysis. As a guide, the 0.5 accuracy levels are shown in white dashed lines. In
the plots, bars are grouped based on whether only 1H (orange) or whether both 1H
and 13C (blue) non-exchangeable chemical shifts were available in the corresponding
RNA systems. (C-E) Representative examples of CS2BPS predictions. Shown are the
CS2BPS predictions projected onto the native structures of (C) the fluoride riboswitch
(PDBID: 5KH8), (D) the simian immunodeficiency virus (SIV) RNA (PDBID: 2JTP),
and (E) the group II intron Sc.ai5γ RNA (PDBID: 2LU0). Green circles indicate that
our CS2BPS predictions were consistent with the base pairing status in the native
structure, whereas white circles indicate that our CS2BPS predictions were incorrect.
Residues labeled with ‘*’ exhibited high variance (see Table B.3, B.4, and B.5) in
their base pairing classification across six independent CS2BPS classifiers.
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2.3.1.1 Overall Accuracy

Figure 2.3 summarizes the accuracy of the 108 CS2BPS classifiers. Reported are

the true positive rate (TPR) and the true negative rate (TNR). Here a residue is base

paired if its mean classification probability was ≥ 0.4. This classification threshold

was chosen so as to maximize the overall classification accuracy (that is, the fraction

of residues whose base pairing status were correctly predicted).

The mean TPR and the mean TNR of the CS2BPS classifiers were 0.95 and 0.72,

respectively; TPR values ranged between 0.77 and 1.00 (Figure 2.3A) and TNR values

ranged between 0.00 and 1.00 (Figure 2.3B). These results indicate that our CS2BPS

classifiers were better at identifying base paired residues than unpaired residues. The

comparatively lower TNR of our CS2BPS classifiers can be attributed to an imbalance

in our data set; the total number of base paired and unpaired residues contained in our

data set were 2329 and 1023, respectively (Table 2.1). This imbalance in our data

set might also explain why the classification threshold that maximized the overall

classification accuracy was 0.4, rather than 0.5.35

Table 2.1: Residue base pairing status in data set

Residue type Number of paired residues Number of unpaired residues

adenine (A) 386 363
guanine (G) 779 206
cytosine (C) 686 173
uracil (U) 478 281

Total 2329 1023

Out of the 108 systems in our data set, 22 corresponded to systems for which only

1H chemical shifts were available. For these 22 systems with only 1H chemical shifts,

and for which the corresponding 13C chemical shifts had to be imputed (see Methods),

the mean TPR value was 0.93 (Figure 2.3A; orange); by comparison, the mean TPR

value for systems for which both 1H and 13C chemical shifts were available was 0.96
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(Figure 2.3A; blue). On the other hand, for systems for which only 1H chemical shifts

were available, the mean TNR value was 0.67 (Figure 2.3B; orange), compared to

0.73 for systems for which both 1H and 13C chemical shifts were available (Figure

2.3B; blue). As such, the CS2BPS classifiers exhibited lower TPR and TNR when

only 1H chemical shifts were available (Figure 2.3A and 2.3B); however, the reduction

in performance was modest.

2.3.1.2 Accuracy by residue types

Table 2.2: CS2BPS TPR and TNR by residue types

Residue type TPR TNR Instances

A 0.90 0.80 749
G 0.96 0.66 985
C 0.97 0.56 859
U 0.92 0.64 759

Shown in Table 2.2 is a breakdown of the CS2BPS performance for individual

residue types, namely A (adenine), G (guanine), C (cytosine), and U (uracil). The

TPRs ranged between 0.90 and 0.97. For G and C residues, the TPRs were 0.96 and

0.97, respectively. By comparison, the TPRs for A and U residues were 0.90 and 0.92.

The TNRs for individual residue types ranged between 0.56 and 0.80. For G and C

residues, the TNRs were 0.66 and 0.56, respectively. By comparison, the TNRs for

A and U residues were slightly higher: the values were 0.80 and 0.64, respectively.

2.3.1.3 Accuracy by base pair types

Though our CS2BPS classifiers cannot predict the base pairing partners for residues

that are estimated to have a high probability of being base paired, we were nonethe-

less interested in exploring whether our CS2BPS classifiers were able to correctly

predict the base pairing status of both residues in individual base pairs. To explore
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this, all of the GC (or CG), AU (or UA), and GU (or UG) canonical base pairs were

identified, and a TPR score was calculated for each base pair type.

Table 2.3: CS2BPS TPR and TNR by base pair types

base pair type TPR1 TNR Instances

GC 0.93 N/A 1374
AU 0.88 N/A 772
GU 0.75 N/A 183

1 Here, TPR or “sensitivity” is defined as the probability that both residues in a base pair are
correctly predicted to be base paired.

In this case, the TPR was defined as the probability that both residues in a base

pair were correctly predicted to be base paired. We found that for GC, AU, and

GU base pairs, the TPR values were 0.93, 0.88, and 0.75, respectively (Table 2.3).

Examining the number of instances of each base pair type in our database indicates

these differences in TPR is most likely a result of an imbalance among the different

types of base pairs in our data set: the total instance of GC base pairs was 1374

compared to only 772 and 183 for AU and GU, respectively (Table 2.3).

2.3.1.4 Examples from leave-one-RNA-out cross validation

Shown in Figure 2.3C-E are detailed comparisons between actual and predicted

base pairing status for three representative RNAs in our data set. For the first exam-

ple, the 47-nt fluoride riboswitch RNA (PDBID: 5KH8),36 our CS2BPS predictions

exhibited TPR and TNR values of 0.93 and 0.53, respectively (Figure 2.3C). This was

one of the four structures in our data set that contained pseudoknot interactions and

whose overall prediction accuracy was only around the 9th percentile. Interestingly,

for this RNA, most of the residues that participated in long-range tertiary contacts

were correctly predicted to be base paired (namely, residues 7-12 and 39-44) (Figure

2.3C). For this RNA, the major source of error was the misclassification of residues
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35-38 and 45-47. Interestingly, for 5 misclassified residues (namely, residue 5, 36,

37, 42, and 44), we found significant variance in their classification across the six

independent CS2BPS classifiers (Figure 2.3C; Table B.3).

The second example, the 34-nt simian immunodeficiency virus (SIV) RNA (PDBID:

2JTP)37 was selected because its classification accuracy was identical to the median

classification accuracy (0.88) across the entire data set. For this RNA, our CS2BPS

predictions exhibited TPR and TNR values of 0.85 and 1.00, respectively (Figure

2.3D). The errors were due to residues 11, 15, 16, and 24 being misclassified as un-

paired. As was the case for some of the misclassified residues in the fluoride riboswitch,

two of the misclassified residues of the SIV RNA also exhibited high variance in their

CS2BPS classification (Figure 2.3D; Table B.4).

For the third example, the 49-nt group II Intron Sc.ai5γ RNA (PDBID: 2LU0),38

our CS2BPS predictions exhibited TPR and TNR values of 0.97 and 0.94, respectively

(Figure 2.3E). The only two residues that were misclassified, residue 7 and 37, also

exhibited high variance in their CS2BPS classification (Figure 2.3E; Table B.5).

In general, we discovered that the TNR was significantly lower than the TPR

for CS2BPS classifiers. In some cases, we found that a fraction of residues that

were misclassified exhibited high variance in their base pairing predictions (See Table

B.3, B.4, and B.5). It should be noted that not all residues with high prediction

variance were misclassified. Collectively, however, these results show that, given a

set of assigned 1H and 13C chemical shifts for a given RNA, our CS2BPS classifiers

could be used to predict the base pairing status of individual residues.

2.3.1.5 Chemical shifts error analysis

To assess the sensitivity of our CS2BPS predictions to non-systematic errors in

the chemical shift data, we simulated the presence of errors by adding “noise” to

the measured chemical shifts of each RNA system in our training set and then used
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Here, σ is the standard deviation calculated from published experimental chemical
shifts of specific residue and nucleus type.

the “noisy” chemical shifts as inputs to our CS2BPS classifiers. Shown in Figure

2.4 are the TPR and TNR values for noise-levels ranging between 0.0 and 3.0σ,

respectively, where σ is the standard deviation of experimental RNA chemical shifts

deposited in BMRB. As expected, both the mean TPR and TNR decreased as the

noise-levels increased, with the TNR exhibiting greater sensitivity to the added noise.

For example, at the 1σ, 2σ, and 3σ noise-levels, TPR values were 0.91, 0.89, and 0.89

whereas the TNR values were 0.46, 0.28, and 0.22 (Figure 2.4). By comparison, the

TPR and TNR values that we observed when using the original noise-free data were

0.95 and 0.72 (Figure 2.4), respectively. These results indicate that the performance of

the predictions is indeed sensitive to the presence of errors in the chemical shift data.

For unpaired residues in particular, for the prediction to be better than random (TNR

> 0.5), errors in the chemical shifts, assuming that normally distributed, must be <

0.75σ. These results, coupled with the observation that we could achieve reasonable

accuracy when predicting base pairing status for residues in RNA for which all the

13C had to be imputed, strongly suggest that the errors introduced by imputation

were mostly likely less than 0.75σ.
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2.3.2 Guiding RNA secondary structure prediction

Next, we examined whether the residue-wise base pairing probabilities that were

predicted using our CS2BPS classifiers could be used to guide RNA secondary struc-

ture modeling. Given that an RNA can adopt distinct conformational states, each

with a set of distinct chemical shift fingerprints, we sought to develop an approach

that allowed us to predict the secondary structure of an RNA conditioned on a set of

assigned chemical shift data. Such a method would be useful in mapping the structure

landscape of an RNA from available chemical shift data.

2.3.2.1 Overall Accuracy

To predict RNA secondary structure conditioned on a set of chemical shifts, we

implemented a CS-Fold framework in which CS2BPS-derived pairing predictions were

used as restraints in RNA folding simulations (Figure 2.1C). Within this modeling

framework, chemical shifts were taken as inputs and fed into a CS2BPS classifier to

predict the base pairing status of individual residues. These predictions were then

used as restraints to guide RNA folding to produce a secondary structure model.

This modeling approach closely resembles the approach used to guide modeling using

chemical mapping data.29,30

Briefly, for each of the 108 RNAs in our data set, we predicted its secondary struc-

ture using the Fold, ProbKnot, and MaxExpect algorithms in RNAstructure suite,

both with and without the single residue pairing restraints derived from the corre-

sponding CS2BPS classifiers (Eq. 2.1, 2.2). Among these six predicted structures,

the structure that was most consistent with the CS2BPS base pairing predictions

was selected and then compared to the NMR-derived reference secondary structure

model. In the cases where more than one structure had the same consistency, the

structure with the lowest folding free energy was chosen.

Shown in Figure 2.5 are circular bar plots of the TPRs (which is defined as the
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Figure 2.5: (A and B) CS-Fold Accuracy. Shown are circular bar plots of (A)
the TPR and (B) the PPV values obtained when comparing the reference NMR
secondary structure of each RNA to the model obtained from folding the RNA using
CS2BPS-derived base pairing probabilities as folding restraints. As a guide, the 0.5
accuracy levels are shown in white dashed lines. (C-E) CS-Fold results. Shown are
the comparison between CS-Fold predicted structures and secondary structure models
derived from NMR bundle for (C) the fluoride riboswitch (PDBID: 5KH8), (D) the
simian immunodeficiency virus (SIV) RNA (PDBID: 2JTP), and (E) the group II
intron Sc.ai5γ RNA (PDBID: 2LU0). base pairs that are shown as green lines were
present in both the CS-Fold structure and the NMR structure, whereas base pairs
that are shown as red dashed lines were only present in the CS-Fold structure and base
pairs that are shown as black dashed lines were only present in the NMR structure.
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fraction of base pairs in the predicted structure that also appeared in the NMR-

derived structure) and PPVs (which is defined as the fraction of base pairs in the

NMR-derived structure that also appeared in the predicted structure) for the CS-

Fold results of the 108 RNAs in our data set. In general, the CS-Fold generated

structures exhibited high TPR (0.97) and high PPV (0.95) values. For RNAs for

which only 1H chemical shifts were available, the prediction TPR and PPV were 0.98

and 0.99, respectively (Figure 2.5A and 2.5B). In comparison, for RNAs for which

both 1H and 13C chemical shifts were available, the TPR and PPV values were 0.96

and 0.94, respectively (Figure 2.5A and 2.5B).

2.3.2.2 Accuracy by base pair types

Shown in Table 2.4 are the TPRs for the recovery of GC, AU, and GU base pairs in

the CS-Fold generated structures. In general, CS-Fold framework was able to recover

all three base pair types with high TPRs, 0.97, 0.98 and 0.90 for GC, AU and GU

base pairs, respectively. The slightly lower TPR for GU base pairs was most likely

due to the lower instances of GU base pairs in the 108 RNAs data set. Our data

set contained 184 of GU base pairs compared to 772 AU and 1378 GC base pairs,

respectively.

Table 2.4: CS-Fold TPR and TNR by base pair types

base pair type TPR1 TNR Instances

GC 0.97 N/A 1378*
AU 0.98 N/A 772
GU 0.90 N/A 184*

* Here, TPR is defined as the fraction of a certain base pair type that is correctly recovered in
CS-Fold generated structures. Note that the instances of GC and GU base pairs differ from
those in Table 2.3 (labeled with ‘*’) because there were some residues for which chemical shift
data were not available and were not included in Table 2.3.

47



2.3.2.3 Representative examples

Shown in Figure 2.5C-E are detailed comparisons between the native secondary

structures and the CS-Fold results for the fluoride riboswitch RNA (PDBID: 5KH8)

(Figure 2.5C), the SIV RNA (PDBID: 2JTP) (Figure 2.5D), and the group II intron

Sc.ai5γ RNA (PDBID: 2LU0) (Figure 2.5E), respectively. For each structure, only

the canonical base pairs are shown.

For the fluoride riboswitch RNA, the TPR was 0.93 (Figure 2.5C). The predicted

CS-Fold structure recovered 5 out of the 6 pseudoknotted base pairs as well as all

of the non-pseudoknotted base pairs. Interestingly, for the pseudoknotted U12-G39

base pair that was missing in the CS-Fold structure, our CS2BPS classifier predicted

both of these residues to be base paired (Figure 2.5C). For this RNA, the PPV was

also high (0.93); the CS-Fold structure only contained a single extraneous A5-U12

base pair (Figure 2.5C).

For the SIV RNA and the group II intron Sc.ai5γ RNA, the majority of the

base pairs in the reference NMR models were correctly recovered, 11 out of 13

(TPR=0.85)(Figure 2.5D) and 16 out of 16 (TPR=1.00)(Figure 2.5E), respectively.

In both cases, no extraneous base pairs were found in the CS-Fold structures.

2.3.2.4 Application of CS-Fold to the microRNA-20b pre-element

To test whether the CS-Fold framework could be used to conditionally predict the

secondary structure of an RNA, we first applied it to the 23-nt long microRNA-20b

(miR-20b) pre-element, for which two distinct conformational states have recently

been characterized using NMR spectroscopy: an unbound (apo) state (Figure 2.6A)

and a Rbfox RRM protein-bound (holo) state (Figure 2.6B).39 When interacting with

the conserved Rbfox RRM protein, two canonical base pairs that are present in the

apo state are disrupted (Figure 2.6A and B), enabling the protein and the RNA to

interact in a sequence-specific manner. In addition to atomic structures, the assigned
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Figure 2.6: CS-Fold results for (A) the apo state and (B) the holo state of miR-20b
RNA. Shown in (C) are residues G1, G11, G15, U18, and C23, which, based on the
secondary structure of the holo state of miR-20b were initially thought to be “mis-
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the miR-20b-Rbfox complex were revealed to be hydrogen bonded to Rbfox RRM
protein.
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chemical shift data corresponding to the apo and holo conformational states were

available, enabling us to test whether we could use the two sets of assigned chemical

shifts to conditionally predict structures of the miR-20b RNA. Using the apo and

holo chemical shifts, we predicted the base pairing status of each residue in miR-20b

using our CS2BPS classifiers and then used the CS-Fold framework to predict their

secondary structures.

Shown in Figure 2.6A and 2.6B are the detailed comparisons between the native

secondary structures and the predicted structures. In the case of the apo state,

the TPR and PPV between native and predicted CS-Fold structures were both 1.00

(Figure 2.6A), indicating that we were able recover the native secondary structure.

Similarly, for the holo state, the TPR and PPV between native and predicted CS-

Fold structures were 1.00 and 0.80, respectively (Figure 2.6B). The only error in the

CS-Fold generated structure of the holo state was an extraneous base pair between

residues G1 and C23. These results indicate that by biasing the folding algorithms

using CS2BPS predictions, we were able to conditionally predict the two distinct

conformational states of the miR-20b RNA.

Though the CS-Fold structures closely resembled the reference NMR structures

of apo and holo states, respectively, the CS2BPS predictions which we used as fold-

ing restraints to predict their structures, contained what appeared, initially, to be

several inconsistencies. For example, in the apo state, residues U6, C17, and U18

were “misclassified” as being base paired (Figure 2.6A). Closer examination of the

structure of the apo state (PDBID: 2N7X) revealed that these residues were, however,

involved in noncanonical base pairs, which we ignored in the study, because of their

under-representation in our data set and due to the fact that Fold, MaxExpect, and

ProbKnot algorithms currently only predict canonical base pairs. Similarly, in the

holo state, residues G1, G11, G15, C17, U18, and C23 were all “misclassified” as being

base paired, on the basis of the holo state secondary structure of the miR-20b RNA
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(Figure 2.6B). Closer examination of the structure of the holo state (PDBID: 2N82)

(including the Rbfox RRM protein) revealed that with the exception of C17, these

residues were involved in hydrogen bond interactions with the Rbfox RRM protein

(Figure 2.6C).

2.3.2.5 Application of CS-Fold to the Fluoride Riboswitch

As a second test of whether the CS-Fold framework could be used to conditionally

predict the secondary structure of an RNA, we next applied it to model two distinct

states of the fluoride riboswitch. The first state, referred as the Mg2+-free state,

corresponds to the riboswitch RNA in the absence of Mg2+ ions and its cognate

fluoride ion and the second state, the apo state, corresponds to the riboswitch in the

presence of Mg2+ ions but also in the absence of fluoride. Bo and Zhang recently used

NMR spectroscopy to build a secondary structure model of the free state, and from

their study, a set of assigned C1′/H1′ and C8/H8 chemical shift data were available

for the free state.40 Bo and Zhang also used NMR spectroscopy to determine the

atomic structure of the apo state, and from this study, a nearly complete set of

assigned chemical shift data were available for the apo state.40 In the absence of

Mg2+ ions, the fluoride riboswitch exists predominantly as a pair of non-nested hairpin

loops (Figure 2.7A) whereas in the presence Mg2+ ions, it exists predominantly as

a pseudoknotted structure (Figure 2.7B). With access to experimentally-validated

secondary structure models, along with a set of assigned chemical shifts, we applied

our CS-Fold framework to model the structure of the Mg2+-free and apo states of the

fluoride riboswitch.

Because only the C1′/H1′ and C8/H8 for guanine residues were available for the

Mg2+-free state, for consistency, we carried out CS-Fold for both states with only

C1′/H1′ and C8/H8 chemical shift data for guanine residues in the fluoride riboswitch.

Remarkably, despite the sparsity of the assigned chemical shift data we utilized, we
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were able to build reasonably accurate models for both the Mg2+-free and apo states

using the CS-Fold framework. For instance, for the free state the TPR was 1.00 and

PPV was 0.89 (Figure 2.7A), indicating that the CS-Fold structure closely resembled

the experimentally-validated secondary structure model. For the apo state, the TPR

and PPV were 0.93 and 0.93, respectively (Figure 2.7B). Interestingly, we achieved

the same accuracy using complete chemical shifts of the apo state (Figure 2.5).

2.4 Discussion

In this study, we generated a set of artificial neural network classifiers that were

capable of predicting the base pairing status of individual residues in RNAs directly

from their non-exchangeable 1H and 13C chemical shift signature. These classifiers,

which we referred to as CS2BPS classifiers, were able to identify base paired residues

with relatively high true positive rate (TPR), regardless of the residue and base pair
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types (Table 2.2 and 2.3). In cases where only 1H chemical shifts were available, we

found that the base pairing status of residues could still be accurately predicted (Fig-

ure 2.3A and 2.3B). Indirectly, this observation suggests that the errors introduced

by the MICE imputation, which we estimated to be 1.25 ppm for 13C nuclei (see

Table B.7), was below the noise-level that would significantly reduce our prediction

accuracy (see Figure 2.4).

Heavily inspired by previous work in which single nucleotide SHAPE reactivities

were used to guide RNA folding algorithms,27–30 we also explored whether the base

pairing status predictions derived from our CS2BPS classifiers could be used to guide

RNA secondary structure folding algorithms. Within what we refer to as a CS-Fold

framework, in which the CS2BPS-derived base pairing status predictions (represented

as single-residue pairing probabilities) were used as folding restraints (Eq. 2.1 and

2.2), we found that we could recover the correct fold of most of the 108 RNAs in

our data set with remarkable accuracy. When guiding the Fold, Probknot, and Max-

Expect algorithms from RNAstructure suite31 with our CS2BPS-derived predictions

and then identifying the structure with the highest base pairing status consistency

with our CS2BPS predictions, we were able to achieve mean TPR and PPV values

of 0.97 and 0.95, respectively (Figure 2.5). By comparison, the TPR and PPV values

were 0.94 and 0.93, 0.95 and 0.92, and 0.94 and 0.93, respectively (Table B.6), when

using Fold, ProbKnot, and MaxExpect by themselves (that is, not restrained using

our CS2BPS predictions).

To test whether we could conditionally predict the secondary structure of an RNA,

we applied our CS-Fold approach to microRNA-20b (miR-20b). For this RNA, two

distinct conformational states, the free (apo) state and the protein bound (holo) state,

were recently characterized using NMR spectroscopy.39 Access to the structures and

chemical shift data associated with both states of miR-20b enabled us to test whether

we could use the CS-Fold framework to conditionally predict its secondary structure.
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We discovered that we could recover, with high TPR and PPV the canonical base

pairs for the apo and those for the holo conformational states of miR-20b, respectively

(Figure 2.6A and 2.6B). Similar results were obtained when we applied the CS-Fold

framework to the fluoride riboswitch (Figure 2.7). Collectively, these results suggest

that given the chemical shifts for individual conformational states of an RNA, the

CS-Fold modeling approach might be a viable technique for predicting the structure

of each conformational state.

One significant limitation of our method is that it requires assigned chemical

shifts. Indeed, when chemical shifts have been assigned for an RNA, base pairing

interactions within the RNA (and thus the secondary structure) can be directly de-

termined using NOESY NMR experiments.41 Moreover, to assign chemical shifts, a

secondary structure model is typically assumed. The CS-Fold does not, therefore,

provide a significant advantage over conventional NMR methods for determining the

secondary structure of RNAs. Immediately, we envision that the CS-Fold framework

we demonstrated in this work can, however, be used as a tool to independently vali-

date NOESY-derived secondary structural models of RNAs. With recent advances in

singly-labeled RNA synthesis,42 the chemical shifts of spin-active nuclei on individual

residues in an RNA can, in principle, be unambiguously assigned, without any as-

sumptions about the secondary structure that is adopted by the RNA. In such cases,

we envision that the CS-Fold framework we described here will be an indispensable

tool for objectively modeling the secondary structure of RNA based on chemical shifts

derived from sets of singly-labeled NMR experiments.

Increasingly, there is keen interest in characterizing the transient states of RNAs.

Unfortunately, it is not currently possible to detect the NOEs associated with these

transient states. As such, conventional methods cannot be used to infer the secondary

structure associated with the transient state or states of an RNA. Fortunately, it is

now possible to characterize the 1H and 13C chemical shift signature of RNA transient
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states using techniques based on saturation transfer36,40 and relaxation dispersion.16,43

The results we presented for the miR-20b RNA and the fluoride riboswitch, suggest

that with access to these 1H and 13C chemical shifts, a CS-Fold framework, which

utilizes predictions derived from CS2BPS classifiers like the ones we developed in this

work, could be used to generate putative models for the transient states of RNAs.

To facilitate the community-wide use of our CS2BPS classifiers, we make avail-

able to the academic community a command-line tool with which users can predict

the base pairing status of individual residues in an RNA from their assigned chem-

ical shifts. These CS2BPS predictions can then be used to guide RNA secondary

structure prediction using external tools like Fold, ProbKnot, and MaxExpect (from

the RNAstructure suite) or other RNA folding tools that accept and incorporate

single residue pairing probabilities as folding restraints. The command-line tool

has been incorporated into our CS2Structure repository and can be accessed via:

https://github.com/atfrank/CS2Structure. The input file of chemical shifts can

be downloaded from BMRB and prepared using the script in our repository.
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CHAPTER III

Probabilistic Modeling of RNA Structure

Ensembles Using NMR Chemical Shifts

In the previous chapter, I have developed a framework for conditional prediction of

RNA secondary structures with available experimental data like NMR derived chem-

ical shifts. This framework enabled us to model the distinct conformational states of

miR-20b RNA and fluoride riboswitch RNA based on chemical shifts associated with

each conformational state.

In this chapter, I will discuss an alternative way of modeling RNA secondary struc-

tures. As mentioned, one may generate secondary structure models using free energy

minimization available in many RNA modeling programs. However, the identification

of the “best” structure model among low energy structure models can be challenging.

In this chapter, I have used probabilistic modeling, or Bayesian/maximum entropy

(BME) approach, to be more specific, to reweight structural ensemble using exper-

imental data like chemical shifts, and identify the structure model that best agrees

with available experimental data. Our results indicate that chemical shifts have the

resolving power to separate native-like structures from non-native structures.
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3.1 Introduction

The determination of RNA structures has always been a challenging task due to

the dynamic nature of RNA, especially when sparsely populated transient states are

involved. Frequently used structure determination techniques like X-ray and NMR

provide ensemble-averaged observations and cannot be used to study biological in-

teractions that are faster than the measuring time.1 Recent advances in NMR, such

as relaxation dispersion and saturation transfer, made it possible to study these pre-

viously “invisible” but functionally important conformational states.2,3 For example,

with techniques like CEST NMR, it is now possible to access chemical shifts (although

sparse) for some RNA transient states.

On the other hand, computational methods like RNAstructure (for 2D structure

prediction)4 and FARFAR (for 3D structure prediction)5 has been successful in mod-

eling RNA secondary and tertiary structures. Molecular dynamics (MD) simulations

can also be used to study biological interactions associated with RNA, such as the

ligand unbinding process.6 However, the inaccuracies of the physics and chemistry

principles used to guide the simulations may lead to the disagreement between ex-

perimental measurements and simulated data.

Sometimes neither experimental techniques nor computational tools alone could

generate satisfactory structure models that are capable of describing all related bi-

ological properties and functions of an RNA. Thus, it is natural to combine these

two and develop a method that could lead to structure(s) that satisfy experimental

observations as much as possible.

3.2 Bayesian/maximum entropy

There are two ways of combining experimental observations with simulated data.

The first method is to use experimental data as restraints during simulation, similar

59



to how we implemented the CS-Fold framework discussed in Chapter II in which

base pairing status predictions were used as restraints during the secondary structure

folding. The other method is to generate a structural ensemble of low energy struc-

ture models and then reweight them to match experimental data. The advantage of

the second method is that one can use different tools to back-calculate experimental

data, or perform simulations, thus leading to a more accurate result; moreover, it

would be computationally expensive to include experimental restraints during com-

plex simulation.

Maximum entropy is one of the major methods that can be used for combing

experimental measurements and simulated data. The central idea is to optimize the

weights assigned to each member in the initial simulated structural ensemble (a pri-

ori) so that the agreement between the reweighted ensemble-averaged properties and

the experimental observations can be maximized. Tools developed based on maximum

entropy reweighting have been successfully applied to studying protein structural en-

sembles. For example, the ENSEMBLE program has been implemented to study

the unfolded state of the N-terminal SH3 domain of drk. It also revealed that the

unfolded ensemble is more compact than previously thought, with many native-like

contacts.7 The maximum entropy principle has also been applied to RNA structure

determination and force field refinement. For example, MD simulation was combined

with measurements from solution NMR experiments such as 3J scalar couplings and

NOE distances to improve the Amber force field used for RNA tertiary structure

modeling and study the conformational ensemble of RNA tetranucleotides.8,9

Here in this chapter, we applied a Bayesian/maximum entropy (BME)10 approach

where the error or uncertainty of the experimental data is also taken into account.

The goal of BME is to find a new distribution of conformations, or a set of weights that

can be assigned to each member in the structural ensemble, so that the reweighted

ensemble will maximally agree with the experimental data. Based on this, the new
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distribution P should satisfy the following conditions:10

• the relative entropy between the new distribution P and the initial distribution

P 0 is maximized:

Srel(P‖P 0) = DKL(P‖P 0)

∫
dxP (x)ln[

P (x)

P 0(x)
]; (3.1)

• the ensemble-averaged, back-calculated experimental quantities should agree

with the measured quantities within a tolerance:

< F pred
i + εi >= F exp

i , (3.2)

where i = 1, ...,m, m is the total number of experimental observables, and εi

is the error or uncertainty of the ith measurement;

• the new distribution P is normalized.

From previous studies,11–13 it can be shown that the optimal weights minimize the

following function:

L(w1 . . . wn) =
m

2
χ2(w1 . . . wn)− θSrel(w1 . . . wn), (3.3)

in which:

χ2(w1 . . . wn) =
1

m

m∑
i

(
∑n

j wjF (xj)− F exp
i )2

σ2
i

(3.4)

Srel = −
n∑
i

wjln(
wj
w0
j

). (3.5)

Here, wj and w0
j is the new and initial weight of the jth member in the ensemble, n

is the population of the ensemble, σi is the uncertainty of the measurement F exp
i , and

F (xj) is the back-calculated property from the jth member in the ensemble.
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In the loss function L (Eq. 3.3), the first term (χ2) describes the agreement

between the experimental data and the back-calculated properties from structure

models and the second term (Srel) describes the deviation of the new weights from

the initial weights. In our case, the initial weights should be 1/n if there are n

members in the ensemble.

It was shown that the optimal weights could also be calculated through Maximum

A Posteriori (MAP) estimation9 by minimizing the negative log-likelihood of the

posterior distribution. This method is called Bayesian ensemble refinement, and it is

mathematically equivalent to the Maximum entropy with error or the BME approach

described above in terms of our application.

3.3 Probabilistic modeling of RNA secondary structures

Current computational programs for RNA secondary structure prediction are

largely focused on free energy minimization4,14–17 in which free energy of RNA mo-

tifs are evaluated using a set of nearest neighbor parameters which can be measured

with optical melting experiments.18 Some programs, like RNAstructure, allows the

incorporation of chemical mapping data, such as SHAPE reactivities,19,20 to more

accurately predict the secondary structures.

When the primary sequence for an RNA is available, programs such as AllSub21,22

(within the RNAstructure modeling suite), or MC-Fold,23 could generate possible

low free energy structures, including the lowest energy structure and sub-optimal

structures, for a given sequence.

The goal of this chapter was to develop a method to identify the “best” struc-

ture model from the structural ensemble. Obviously, it would be impossible to do

so if no other information is available. However, with experimental data, such as

NMR chemical shifts, we believe that it is possible to identify the structure that is

most consistent with the experimental data using inherent structural information. In
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this section, I have applied Bayesian/maximum entropy (BME) method (explained

in Section 3.2) to RNA secondary structure prediction in which simulated data

are the structural ensemble generated from programs like AllSub and MC-Fold, and

experimental observables are NMR chemical shifts associated with the target RNA.

3.3.1 SS2CS: Predicting chemical shifts from RNA secondary structures

To use BME to reweight structural ensemble and to identify the “best” structure

model, a method is required to predict or back-calculate NMR chemical shifts from a

given RNA secondary structure. Thus, in this chapter, I have explored the simulation

of NMR chemical shifts, directly from secondary structure models of RNA. If we

can reproduce NMR chemical shifts from the 2D model, then we may be able to

determine the secondary structure of RNAs by generating models, simulating their

chemical shifts, and then identifying the most consistent model with experimental

NMR chemical shifts. Here, we created a tool which we referred to as, Secondary

Structure to Chemical Shifts (SS2CS), that could take RNA secondary structure as

input and output the predicted chemical shifts for different nucleus types.

The machine learning model I applied to develop SS2CS is random forest, a su-

pervised ensemble learning method. Our testing results show that our tool could

predict carbon and proton chemical shifts with high accuracy: the mean absolute

errors (MAEs) were 0.84 ppm for carbon and 0.11 ppm for proton, respectively. The

chemical shifts prediction accuracy of SS2CS is about the same level as when tertiary

structures are used as input in other programs.24

3.3.1.1 Data sets and featurization

For 108 RNAs (the same RNAs we used for training CS2BPS in Chapter II),

the secondary structures were retrieved using the program DSSR from the 3DNA

suite.25 The output secondary structure, a ‘.ct’ file, contains for each nucleotide, or
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each residue, the residue name, residue id, residue ids before and after the current

residue, and the residue id that the current residue is base paired to. It should be

noted that the secondary structure file output from DSSR only contains canonical

base pairing interactions.

The NMR chemical shifts were downloaded from the Biological Magnetic Res-

onance Data Bank (BMRB: http://www.bmrb.wisc.edu/). We applied the same

protocol as discussed in Chapter II to correct (if necessary) 13C data for each RNA

because 13C chemical shifts often contain systematic referencing errors.26 For 5 RNAs

in our data set, whose PDBIDs are 1R7Z, 1R7W, 1Z30, 2LK3, and 2LU0, we found

different measured chemical shifts for the same atom. Thus, these 5 RNAs were

removed from the training set.

In order to predict the nonexchangeable chemical shifts of, namely, C1’, C2’, C3’,

C4’, C5’, C2, C5, C6, C8, H1’, H2’, H3’, H4’, H2, H5, H5’, H5”, H6, and H8, we

first constructed data set for individual nucleus types. Briefly, for each nucleus type,

the chemical shifts associated with this nucleus type from all the RNAs, along with

the secondary structure features of each residue, were combined into a large data set.

The secondary structural features we encoded from the input structure file include

(for residue i):

• length of the RNA

• residue type of residues i, i− 1, and i+ 1

• residue type of residue i’s pairing partner j, if exists

• residue types of the pairing partner of residues i− 1 and i+ 1, if exist

• residue types of residues j − 1 and j + 1, if exist

• residue types of the pairing partner of residues j − 1 and j + 1, if exist
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Figure 3.1: Feature extraction example for the human telomerase RNA (PDBID:
2L3E) in SS2CS.

For example, we show the extracted secondary structural features for the human

telomerase RNA (PDBID: 2L3E) in Figure 3.1. For the highlighted residue i, U4, the

features should be:

35 U C U A G A A G U C.

We repeated this featurization for all nucleus types and constructed individual train-

ing sets. The sample size of these data sets are shown below in Table 3.1.

Table 3.1: Sample size of individual nucleus types

Nucleus type Sample size Nucleus type Sample size Nucleus type Sample size

C1’ 1880 H1’ 3152 C6 1022
C2’ 1655 H2’ 2961 H5 1475
C3’ 1547 H3’ 2509 C8 1109
C4’ 1515 H4’ 2069 H6 1545
C5’ 1271 H5’ 1662 H8 1644
C2 583 H5” 1631 H2 706
C5 997

For most of the nucleus types, the sample size is around 1000 to 2000. But for

C2, C5, and H2, we only have fewer than 1000 samples.
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3.3.1.2 Model selection

Next, I constructed a machine learning pipeline that takes as input the secondary

structure features for each residue, and outputs the predicted chemical shifts for

individual nucleus types for that residue. To do that, I have trained separate machine

learning models for each nucleus type. For model selection, I have tested six classic

regression models, namely, linear regression, ridge regression, support vector machine

regression, random forest regression, extra randomized tree regression, and gradient

boosting regression. Linear regression uses a simple linear model to fit parameters of

features and makes predictions; ridge regression is a linear model with an extra L2

regularization term to prevent overfitting problems; support vector regression (with

radial basis function (rbf) kernel) trains a model that achieves maximal flatness while

restraining all data points to be within an error margin; random forest, as discussed

in Introduction, builds an ensemble of decision trees to avoid overfitting ; extra

randomized trees, similar to random forest, but adds another layer of randomness by

randomly selecting a splitting threshold at each node; and finally, gradient boosting

regression, which is also an ensemble learning technique based on decision trees, uses

boosting to optimize weak learners.

The model selection was performed on the base models, meaning that we used

all default parameters and did not do any hyperparameter tuning. Each secondary

structure–chemical shifts data set was randomly split into training and testing sets

with a 80%/20% ratio. A 10-fold cross validation was then performed on the training

set to calculate train and validation scores. Figure 3.2 shows the learning curves of

random forest regression and linear regression models for H1’ and C1’ chemical shifts

prediction.

Plotting learning curve is an important procedure when training a machine learn-

ing model. It tells us how the model learns with more experience (either by training

time or the number of trained samples), through the training score and validation
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C D

Figure 3.2: Learning curves of 10-fold cross validation. (A-B) Learning curves of
training mean absolute error (MAE) and validation MAE for linear regression model
when predicting C1’ and H1’ chemical shifts, respectively. (C-D) Learning curves of
training MAE and validation MAE for random forest model when predicting C1’ and
H1’ chemical shifts, respectively.

score. For example, Figure 3.2 shows the learning curves of random forest regres-

sion and linear regression models for H1’ and C1’ chemical shifts prediction. As is

shown in Figure 3.2, when predicting C1’ chemical shifts, random forest exhibited

lower training error and validation error compared to linear regression (Figure 3.2A

and C). Error metric used here is the MAE between measured and predicted chemi-

cal shifts. Similarly, for H1’ chemical shifts prediction, random forest also exhibited

lower training error and validation error compared to linear regression (Figure 3.2B

and D). It is worth mentioning that when predicting C1’ chemical shifts with random

forest, both the training error and validation error showed a decreasing trend. This

is probably due to small sample sizes of the H1’ and C1’ chemical shifts, which were
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3152 and 1880, respectively (See Table 3.1). If we could have more training data for

C1’, we may be able to improve the validation score further.

To compare the performance of different regression models, we next plotted the

validation MAE for carbon and proton predictions. As shown in Figure 3.3, random

A

B

Figure 3.3: Cross validation error. (A) is the cross validation MAE for proton
chemical shifts prediction using different models. (B) is the cross validation MAE for
carbon chemical shifts prediction.

forest model (purple line) outperformed other six models when predicting proton

chemical shifts (Figure 3.3A), exhibiting the lowest or one of the lowest MAE for

all proton nuclei. Similarly, for predicting carbon chemical shifts, random forest

also exhibited the lowest MAE for most carbon nuclei. The mean validation MAE

for proton and carbon prediction were 0.12 ppm and 0.91 ppm, respectively (Table

B.9), both are the lowest among six different regression models. Based on the cross

validation result, I have selected random forest as our SS2CS model for predicting

carbon and proton chemical shifts from secondary structures.

Next, I tested the random forest model on the 20% left-out testing set and cal-
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culated the prediction MAE between the predicted chemical shifts and measured

chemical shifts. As shown in Table 3.2, random forest model (without any hyperpa-

rameter tuning) exhibited an MAE of 0.84 ppm for carbon and 0.11 ppm for proton

chemical shifts prediction.

Table 3.2: Testing set MAE when using random forest model

Nucleus type Test MAE Nucleus type Test MAE

C1’ 0.87 H1’ 0.11
C2’ 0.52 H2’ 0.12
C3’ 1.13 H3’ 0.11
C4’ 0.72 H4’ 0.08
C5’ 0.92 H5’ 0.14
C2 1.01 H5” 0.11
C5 0.67 H2 0.17
C6 0.86 H5 0.10
C8 0.87 H6 0.09

H8 0.12

Mean 0.84 Mean 0.11

Currently, in this project, I have not performed any hyperparameter tuning yet;

that is, the model uses all default parameters from the Python scikit-learn27 package.

3.3.2 Secondary structure reweighting

3.3.2.1 Method

Now that with SS2CS, we could extract structural features from a given secondary

structure model and predict its nonexchangeable chemical shifts. Next, we examined

whether SS2CS can be combined with Bayesian/maximum entropy (BME) to reweight

a set of structural ensembles using a data set of 16 RNAs.

We first created an ensemble of low energy secondary structure decoys for a given

RNA sequence using tool MC-Fold from the MC-Sym suite23 (as it allows the for-

mation of pseudoknotted structures). However, for large RNAs, it may take a long
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time to generate decoys using MC-Fold, so we used AllSub from the RNAstructure

modeling suite instead for the largest RNA in our data set, the HIV-1 RNA (PDBID:

2N1Q), which has 155 nts. Using MC-Fold, we were able to get 10 different decoys

whose folding free energies are within 30% of the lowest energy structure. The ex-

ception was the fluoride riboswitch for which we combined decoys generated from

AllSub and MC-Fold together in order to have a diverse structural pool. The decoy

structures were then combined with the DSSR-derived native structure for further

analysis.

Next, for each valid decoy structure, SS2CS was used to extract structural fea-

tures and predict chemical shifts for all nonexchangeable nuclei. In order to avoid

overfitting, we checked and removed (if necessary) chemical shifts associated with the

“twins” of the testing RNA from the training set, that are, RNAs whose sequences

were similar to the testing RNA.

Figure 3.4: The relationship between χ2 and θ. We scanned the value of θ from
1.0 to 200.0 with a step of 1.0 and calculated corresponding χ2 using a reweighted
ensemble. Then, to select the best θ, we started from 200.0 and chose the smallest θ
until the increasing trend did not exist.

After generating chemical shifts predictions using SS2CS, we then applied BME

to the experimental and predicted chemical shifts and assigned weights to individual

decoys in the structural ensemble. According to Eq. 3.3, θ is a global scaling factor
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that controls the relative contribution of the entropy terms in the overall loss function

L. It reflects the trade-off between two terms: (1) χ2, which is the agreement between

experimental data and predicted chemical shifts; (2) Srel, which is the deviation of

the new distribution from the original uniform distribution. To find the best θ, we

scanned different values from 1.0 to 200.0 (with a step of 1.0) and calculated χ2 (using

Eq. 3.4) at different θ.10 Theoretically, the smaller θ is, the more L is dependent on

χ2, and the better agreement we should be able to achieve between experimental

reweighted ensemble-averaged chemical shifts.

Table 3.3: Optimized θ and corresponding χ2 for 16 RNAs in our data set

PDBID θ χ2 PDBID θ χ2

1HWQ 21 4.97 1YMO 25 9.26
2JTP 7 4.12 2L3E 89 1.41
2LUB 6 1.69 2N6X 3 1.10
2N7X 11 1.87 2N82 40 5.95
2NBY 16 2.15 2NC0 23 2.90
5KH8 13 4.73 5KMZ 37 7.30
5V16 3 1.71 6GZK 106 15.94
2N1Q 78 2.37 2LU0 29 2.65

But in reality, we found that for some RNAs, the relationship between θ and χ2

may not be positively correlated. To set a standard for selecting θ, we then started

from 200.0 and chose the smallest θ, after which the positive correlation did not exist.

For example, in Figure 3.4, we show how χ2 changed when we scanned different θ

for four RNA examples. The plots of 1HWQ, 1YMO, and 2JTP behaved like we

expected, exhibiting a positive correlation between χ2 and θ. For RNAs like these,

the optimized θ was the smallest value that the program could converge. Note that

the plot may not start from θ = 1.0 because small θ sometime failed to converge.

However, for 2L3E, the plot when θ was small was unstable. We then selected the

smallest θ (89.0), after which the plot started to increase monotonically. We reported
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the optimized θ and corresponding χ2 values in Table 3.3. The relationship between

χ2 and θ for the remaining RNAs are included in Figure B.3 in Appendix.

There are some potential problems for using a small θ. The initial weights may

be distorted a lot, with a few members assigned the majority of the weights. When

applying BME to combine MD simulation and experimental data, this may cause

significant statistical errors8 since one would want all of the frames from the simulation

to contribute to the ensemble. However, since our goal was not necessarily combining

input from all decoys, a small θ would help us to identify the “best” structure model

in an ensemble.

We then looked at the optimized θ and the corresponding χ2 values for each RNA

ensemble (Table 3.3). As discussed, χ2 measures the difference between experimental

and predicted chemical shifts (after reweighting). Four RNAs (PDBIDs: 1YMO,

2N82, 5KMZ, 6GZK) exhibited a χ2 value that was larger than 5.0. There are multiple

reasons why some RNAs exhibited very large χ2. For example, the decoy ensemble

may not be diverse enough, or most of the decoys are very different from the native

structure, so it is impossible to achieve a good agreement between predicted and

measured chemical shifts no matter how BME reweight them. This may be the case

for 2N82 and 6GZK. Most of the decoys for 2N82 exhibited very low PPV compared

to the native structure, and most of the decoys for 6GZK exhibited both very low

TPR and PPV. Another possible reason is that either the predicted chemical shifts

or the experimental chemical shifts are not accurate enough. The other two RNAs

whose χ2 values were very large, 1YMO and 5KMZ, are both pseudoknots. It is

possible that our SS2CS predictor is not very good at predicting chemical shifts at

pseudoknotted regions due to insufficient featurization, or the experimental chemical

shifts are either not accurate or not enough for the BME to get a good agreement by

reweighting.
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3.3.2.2 Overall result

We reported the overall results of BME reweighting in Table 3.4. In general, among

the 16 RNA secondary structure ensembles we studied, BME was able to recover the

DSSR-derived native structure for 7 RNAs, in which cases BME assigned the highest

weight to the DSSR-derived structure. For structures that were assigned the highest

BME weight, the TPV and PPV values were both larger than 0.80 for 13 structures.

This indicates that in the cases BME was not able to recover the DSSR-derived

native structure it still selected a structure similar to the DSSR-derived structure.

Finally, I further examined the 3D structures of the members that were assigned

the highest BME weight and found that for 9 structures, BME was able to identify

the “best” structure, meaning that BME either selected the DSSR-derived native

structure directly, or it selected a structure that contained noncanonical interactions

that were not highlighted by DSSR.

Table 3.4: Summary of the BME reweighting of 16 RNAs

PDBIDs
Size of

ensemble
BME identified

the DSSR Structure
TPV>0.80
PPV>0.80

BME identified
the “best” structure1

1HWQ 11 X X X
1YMO 11 X
2JTP 11 X
2L3E 11 X
2LUB 11 X X
2N6X 11 X X X
2N7X 11 X
2N82 11 X X X
2NBY 11 X X X
2NC0 11 X X X
5KH8 16 X X X
5KMZ 11
5V16 11 X
6GZK 11
2N1Q 11 X
2LU0 11 X X X

1 Here, the “best” structure means the BME selected structure contained noncanonical interac-
tions that were not highlighted in the DSSR-derive native structure.
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In the following sections, I will discuss some representative examples.

3.3.2.3 Representative example 1: the group II intron ai5γ RNA

We first studied the group II intron ai5γ RNA (PDBID: 2LU0), with 49 nts. As
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Figure 3.5: Low energy secondary structure models of the group II intron ai5γ
RNA (PDBID: 2LU0). The first ten structures were generated by MC-Fold. The
last structure (in the red box) was the DSSR-derived native structure. Green lines
indicate correctly predicted base pairs; red dashed lines represent extraneous base
pairs; black dashed lines represent base pairs missing from the predicted structure.

shown in Figure 3.5, the last structure, shown in the red box, was the DSSR generated

native structure derived from solution NMR. The first 10 structures (Decoy 1-10) were

low energy secondary structure models generated by MC-Fold, exhibiting different
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perturbations in base pairs from the DSSR-derived structure. We calculated the

sensitivity or true positive rate (TPR) and positive predicted value (PPV) between

each decoy and the native structure. For example, for Decoy 1, all of the 16 base

pairs in the native structure were correctly recovered; and 16 out of 21 predicted base

pairs were present in the native structure.

Intuitively, we first examined the error between the predicted chemical shifts and

the measured chemical shifts. For each decoy, we calculated the mean absolute error

(MAE), the root mean squared error (RMSE), and the Kendall τ coefficient (τ)

between the measured and SS2CS predicted chemical shifts.

Table 3.5: Chemical shift error analysis for 2LU0

Structure TPR PPV MAE RMSE τ BME weight

Decoy 1 1.00 0.76 0.53 1.16 0.92 0.00
Decoy 2 1.00 0.80 0.46 1.06 0.93 0.01
Decoy 3 0.94 0.71 0.56 1.25 0.92 0.00
Decoy 4 1.00 0.80 0.52 1.18 0.92 0.00
Decoy 5 1.00 0.76 0.54 1.25 0.92 0.00
Decoy 6 0.69 0.52 0.59 1.30 0.92 0.00
Decoy 7 0.94 0.75 0.50 1.16 0.93 0.05
Decoy 8 1.00 0.76 0.53 1.21 0.92 0.01
Decoy 9 1.00 0.80 0.51 1.08 0.92 0.02
Decoy 10 1.00 0.80 0.51 1.14 0.92 0.00

DSSR Structure 1.00 1.00 0.41 0.96 0.94 0.89

According to Table 3.5, the DSSR-derived native structure exhibited the lowest

MAE and RMSE, and the highest Kendall τ coefficient. This result indicates that

the difference between measured and predicted chemical shifts have the power to

differentiate native-like secondary structure from non-native secondary structures.

We then explored whether BME could be applied to solve this problem as well. We

applied BME to the ensemble of these 11 structures, using SS2CS predicted chemical

shifts as back-calculated properties from simulation and measured chemical shifts as

experimental data, to reweight individual structures. According to Eq. 3.3, BME
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aims to optimize a set of weights that are assigned to each member in the structural

ensemble so that the ensemble-averaged properties can agree with the experimental

observations as much as possible, while not deviating too much from initial weights.

Here, the initial weights are uniformly distributed (1/n where n is the population of

the structures in the ensemble).

The optimized BME weights (Table 3.5) are consistent with the previous analysis,

with the native structure assigned a maximal weight of 0.89. This shows that the

native-like structure could be identified from a set of low energy structure models.

3.3.2.4 Representative example 2: the fluoride riboswitch

In the next example we studied the structural ensemble of the apo state of the

fluoride riboswitch (PDBID: 5KH8) generated by both MC-Fold and AllSub. The

native apo state adopts a pseudoknotted structure. In the structural ensemble (Figure

3.6), Decoy 1-10 were pseudoknotted structures (generated from MC-Fold) and Decoy

11-14 were non-pseudoknotted structures (generated from AllSub). The last structure,

in the red box, was the DSSR-derived native secondary structure. Finally, Decoy 15,

in the blue box, was generated manually by adding two extraneous long range base

pairs (red dashed lines) compared to the DSSR structure: A5-U35 and A37-U45

(Figure 3.7). These two base pairs are not annotated in DSSR-derived structure

since DSSR only includes canonical base pairs, but these are noncanonical long range

interactions. Surprisingly, when not including Decoy 15, the DSSR-derived native

structure, was assigned the highest weight among the first 15 decoys (weight = 0.45;

Table 3.6). But when including Decoy 15 in the ensemble, Decoy 15 was ranked

highest based on the BME weight (0.59).
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Figure 3.6: Low energy secondary structure models of the fluoride riboswitch RNA
(PDBID: 5KH8).
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Table 3.6: BME weights when including/not including the two long range base pairs
for the fluoride riboswitch (PDBID: 5KH8)

Structure TPR PPV
BME weight before

adding Decoy 15
BME weight after
adding Decoy 15

Decoy 1 1.00 0.70 0.00 0.00
Decoy 2 0.93 0.68 0.00 0.00
Decoy 3 1.00 0.74 0.09 0.04
Decoy 4 0.93 0.72 0.00 0.00
Decoy 5 0.86 0.63 0.00 0.00
Decoy 6 1.00 0.70 0.00 0.00
Decoy 7 1.00 0.70 0.07 0.05
Decoy 8 0.93 0.68 0.00 0.00
Decoy 9 0.86 0.67 0.00 0.00
Decoy 10 1.00 0.74 0.16 0.08
Decoy 11 0.57 0.89 0.03 0.01
Decoy 12 0.57 1.00 0.02 0.02
Decoy 13 0.57 0.73 0.01 0.00
Decoy 14 0.57 0.73 0.16 0.12
Decoy 15 1.00 0.88 N/A 0.59

DSSR Structure 1.00 1.00 0.45 0.09

This indicates that the SS2CS predicted chemical shifts contained structural in-

formation about these two long range interactions which were then affected the BME

reweighting.

A37

U45

U35

A5

A B

Figure 3.7: Long range base pairing interactions in the fluoride riboswitch.

In Chapter II, we modeled two distinct conformational states of the fluoride ri-

boswitch: the Mg2+-free state and the apo state (Mg2+-bound state) using CS-Fold

with only C1’/H1’ and C8/H8 chemical shifts for guanine residues. Here, we explored
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Figure 3.8: Distinct conformational states of the fluoride riboswitch. Using available
chemical shifts, which are C1’/H1’ and C8/H8 chemical shifts for guanine residues,
BME assigned the highest weight to (A) for the Mg2+-free state and (B) for the apo
state. The detailed BME weights of each structure in the ensemble were reported in
(C): orange bar represents the apo state BME assignment and light blue bar represents
the Mg2+-free state BME assignment.

whether SS2CS, along with BME, could be used to identify the native structure of

the free and the apo state using corresponding chemical shifts of that state. The free

state, unlike the apo state, does not have the pseudoknotted base pairs. Among the 16

structures in the ensemble, the structure that was assigned the highest weight when

using the free state chemical shifts was Decoy 14, which is indeed a non-pseudoknotted

structure. In Figure 3.8A, we projected the BME selected structure onto the native

structure of the free state of the fluoride riboswitch. We noticed that although the

selected structure had 3 extraneous base pairs compared to the native structure, the

base pairing status, and the pairing partners of all guanine residues were correctly re-
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covered. Since the only chemical shifts we have available were C1’/H1’ and C8/H8 for

guanine residues, the selected structure agreed with the available experimental data.

On the other hand, for the apo state, when we used complete chemical shifts, Decoy

15 was identified by BME weight. And when we used partial chemical shifts, Decoy 3

(Figure 3.8B) was assigned the highest weight. Similarly, although the structure had

extraneous base pairs compared to the native structure of the apo state, it correctly

recovered the pseudoknotted base pairs and the status of all guanine residues.

Another interesting observation is that the BME weights of the apo state is very

sparse, with Decoy 3 assigned most of the weight (orange bar in Figure 3.8C). How-

ever, for the free state (light blue bar in Figure 3.8C), the BME weights are not as

sparse: 8 structures were assigned a nonzero weight and Decoy 13 was assigned a

similar weight (weight=0.26) to Decoy 14 (weight=0.32). One possible explanation

is that the apo conformational state was coordinated with Mg2+, which helps the

RNA fold and stabilizes a single structure. Thus, one conformation dominates the

BME weights. On the other hand, the free state does not bind with Mg2+ and may

interconvert between multiple conformations, making it more difficult for BME to

identify one “best” structure.

3.3.2.5 Representative example 3: the microRNA-20b pre-element

Similarly, in Chapter II, we also modeled the distinct conformational states of the

microRNA-20b pre-element (miR-20b) and showed that CS-Fold was able to predict

the apo and holo structures with high accuracy. In terms of base pairing predictions,

we found that for the apo state, we predicted residues U6, C17, and U18 to be base

paired. By careful examination of the 3D structures, we found there were noncanoni-

cal interactions between residues U6 and U18, and between U7 and C17. Here we used

the same structural ensemble and studied whether the chemical shifts of the apo and

holo state could be used with BME to identify the corresponding structure models.
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Figure 3.9: The BME selected structures for the two distinct conformational states
of miR-20b RNA. (A) is the structure that was assigned the highest BME weight
when using the apo chemical shifts; (B) is the structure with the second highest BME
weight for the apo state; (C) is the highest weight structure when using the holo
chemical shifts. (D) is the noncanonical interaction at residues U6-C17 and U7-U18.

Interestingly, the structure that was assigned the highest weight for the apo state was

the decoy in Figure 3.9A, which contained two extraneous base pairs (Figure 3.9D;

U6-U18 and U7-C17) compared to the DSSR structure. The DSSR structure was

assigned a second highest weight (in Figure 3.9B). On the other hand, for the holo

state, BME was able to identify the DSSR-derive native structure directly (Figure

3.9C).
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Figure 3.10: Low energy secondary structure models of the human HAR1 RNA
(PDBID: 2LUB). The last figure is the 3D structure at residues A27 and G10.

3.3.2.6 Representative example 4: the human HAR1 RNA

We next looked at some examples where BME did not identify the DSSR-derived

native structure. For the human HAR1 RNA (PDBID: 2LUB) (Figure 3.10), most

decoys were highly similar to the native structure (in the red box), making it more

difficult to differentiate the native structure from non-native structures. The structure

that was assigned the highest BME weight was Decoy 2, with a weight of 0.87 (in the

blue box). We then examined the 3D structure of this RNA. Although not annotated

in the DSSR-derived secondary structure, residue G10 and A27 were very close to

each other, making it possible to form a base pair (Figure 3.10). This indicates that
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maybe the DSSR-derived native structure was missing this interaction, and the SS2CS

predictor, along with BME reweighting, was able to recover this interaction between

G10 and A27.

3.3.2.7 Representative example 5: the human telomerase RNA
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Figure 3.11: Decoys with highest and second highest BME weight of 2L3E. (A) the
decoy with the highest BME weight (0.40); (B) the decoy with the second highest
weight (0.26); (C) the detailed 3D structure at residues C12, C13, and G28.

Similarly, for the core domain of human telomerase RNA (PDBID: 2L3E), BME

assigned the highest weight to a decoy structure (Figure 3.11; weight = 0.40), instead

of the DSSR-derived native structure (weight = 0.13). Below, we show the structures

of the highest (Figure 3.11A) and second highest (Figure 3.11B, weight = 0.26) decoy,

each with only one extraneous base pair compared to the native structure. We then

examined the 3D structures at residues C12, C13, and G28, and we discovered that

there was noncanonical interaction between residues C13 and G28 (Figure 3.11C).

This is probably why the decoy shown in Figure 3.11B was assigned a higher BME

weight than the DSSR structure. However, there was no base pairing interaction

between residues C12 and G28, and it is unclear why the decoy in Figure 3.11A was

assigned the highest weight.
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3.3.2.8 Discussion

Chemical shifts contain structural information which may be used to model the

secondary or tertiary structures of RNAs. There are two ways to incorporate chem-

ical shifts into RNA structure prediction. The first method uses chemical shifts

information directly in the modeling process, for example, in the CS-Fold frame-

work we developed to predict RNA secondary structures, the chemical shifts derived

base pairing status predictions were used as restraints when folding secondary struc-

tures. Chemical shifts have also been incorporated in Rosetta modeling and were

validated to improve tertiary structure prediction accuracy.28 However, incorporating

restraints during simulation will increase computational cost. Thus, in this chapter,

we explored the structure resolving power of chemical shifts through probabilistic

modeling of RNA secondary structures.

In this chapter, we developed a chemical shifts predictor, SS2CS, which takes

secondary structure as input and outputs the predicted chemical shifts for nonex-

nageable proton and carbon nuclei. Testing result shows that SS2CS was able to

achieve similar prediction accuracy (MAE was 0.84 ppm for carbon and 0.11 ppm

for proton nuclei) compared to predictors which take tertiary structure as input.24

With the SS2CS derived predictions, we were able to use BME to identify the native

structure or a near-native structure from a low energy structural ensemble. BME was

able to identify the DSSR-derived native structures from a set of MC-Fold (or AllSub)

generated decoys for 7 out of the 16 testing RNAs. For some of the cases for which

BME did not identify the DSSR-derived native structure, we discovered base pairing

interactions between residues which were recovered by BME selected structure, but

not by the DSSR-derived native structure. These interactions may be noncanonical

interactions that were not included in DSSR annotation.
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Table 3.7: Chemical shift error analysis for 1HWQ

Structure TPR PPV MAE RMSE τ BME weight

Decoy 1 1.00 0.64 0.69 1.26 0.88 0.02
Decoy 2 1.00 0.69 0.67 1.22 0.88 0.08
Decoy 3 1.00 0.69 0.71 1.30 0.88 0.01
Decoy 4 1.00 0.69 0.73 1.32 0.88 0.06
Decoy 5 0.89 0.62 0.71 1.27 0.88 0.08
Decoy 6 1.00 0.75 0.69 1.26 0.89 0.06
Decoy 7 1.00 0.75 0.76 1.37 0.88 0.02
Decoy 8 1.00 0.69 0.73 1.32 0.89 0.05
Decoy 9 1.00 0.75 0.64 1.19 0.89 0.15
Decoy 10 1.00 0.69 0.73 1.32 0.88 0.02

DSSR Structure 1.00 1.00 0.73 1.38 0.90 0.45

In general, the structure selected using MAE or RMSE was consistent with the

structure selected using BME weight. However, we noticed that there were cases

(1HWQ, 2NBY, 2NC0, and 5KH8) where BME identified the native structure, but

MAE or RMSE failed to identify the native structure. For example, for the structural

ensemble of the VS ribozyme substrate stem-loop RNA (PDBID: 1HWQ), Decoy 9

exhibited the lowest MAE and RMSE between experimental and predicted chemical

shifts. However, BME was able to recover the DSSR-derived native structure and

assigned the highest weight to it. On the other hand, the variation across different

decoys when using Kendall τ coefficient was very small; thus it is impossible to use it

to select the native structure. These results indicate that BME is more powerful in

identifying the native-like structure compared to MAE, RMSE, or τ .
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CHAPTER IV

Chemical Shift-Based Annotation of RNA

Structure

4.1 Introduction

Extracting and understanding structural properties is a crucial step in RNA func-

tional studies. In this thesis, we have focused on combining experimental data, espe-

cially NMR chemical shifts, with computational tools to improve structure prediction

of RNAs.

NMR provides a set of observables from which an atomic model of the RNA and

descriptions of the RNA dynamics can be reconstructed. In Chapter II and III, the

importance of NMR chemical shifts on RNA structure prediction was highlighted from

two perspectives: (1) base pairing status information can be extracted from chemical

shifts via machine learning models and used as folding restraints to guide secondary

structure prediction; (2) chemical shifts have structural resolving power that could be

used to identify native-like structure from a structure ensemble. The results confirm

that chemical shifts are indeed structural “fingerprints” and are extremely sensitive

to RNA base pairs and tertiary structures. However, full extraction of structural

properties that are contained in chemical shifts is yet to be done.

Here we explored structural annotation using only assigned chemical shifts. Pre-
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vious methods in structural annotation usually require 3D coordinates or secondary

structures as input. For example, MC-Annotate and 3DNA1,2 can perform annota-

tion using tertiary structures to extract a set of structural properties, including base

pairing interactions, sugar puckering modes, stacking interactions, and other con-

formational parameters. These parameters could help understand and reconstruct

conformational transitions. Other programs, such as bpRNA and BPViewer,3,4 fo-

cus more on secondary structure properties including, classification of canonical and

noncanonical base pairs as well as analysis of secondary structure motifs.

The programs and tools mentioned above require an accurate structure model as

input so that the structural parameters can be derived from the coordinates. However,

tools are also needed when no such structure model is available. The annotation,

or the prediction, of structural properties, could help guide or improve secondary

and tertiary structure modeling. For example, in Chapter II, we highlighted the

improvement in secondary structure folding when base pairing status predictions were

incorporated.

Thus, in this chapter, we developed a fast and straightforward approach that uses

only assigned chemical shifts as input and outputs the structural properties through

a series of classifications. The structural properties to be annotated include solvent

accessible surface area (SASA), syn and anti conformation, base pairing status, stack-

ing interaction, and sugar puckering mode. We converted the annotation of structural

properties into a set of classification problems that can be solved with machine learn-

ing techniques. For example, our approach can predict whether a residue/nucleotide

adopts syn or anti conformation using the chemical shifts associated with that residue

(and the neighboring residues).

Different from Chapter III, where independent chemical shifts prediction models

were trained for different nucleus types, here we utilized the idea of multi-task learning

in which the predictions of all properties are generated from a single machine learning
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model. In this chapter, I will introduce multi-task learning with a progressive neu-

ral network to perform structure annotation based on chemical shifts. The model’s

performance was compared with independent multilayer perceptron (MLP) models

and chained MLP models through cross validation. MLP is a class of “vanilla” neural

network models and consists of an input layer, hidden layer(s), and output layer. The

details of the neural network were discussed in Introduction.

4.2 Methods

4.2.1 Data sets

For 108 RNAs, atomic structures and NMR chemical shifts were retrieved from the

Protein Data Bank (PDB: http://www.pdb.org/) and the Biological Magnetic Res-

onance Data Bank (BMRB: http://www.bmrb.wisc.edu/) respectively. Four RNAs

were used as testing set whose PDBIDs are: 2JTP, 2LU0, 5KH8, and 2N1Q. The first

three RNAs were used as representative examples in Chapter II to demonstrate the

accuracy of CS2BPS and CS-Fold. The last RNA, 2N1Q, is the longest RNA in our

dataset with 155 nts.

Figure 4.1: Distribution of annotation targets (structural properties) in the training
set. Class 1 is the positive class and Class 0 is the negative class. “astack” represents
stacking interaction between adjacent bases while “nastack” represents non-adjacent
stacking interaction.
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Shown in Figure 4.1 is the distribution of 11 annotation targets (structural prop-

erties) in our training set. As mentioned in Introduction, I have converted the task

of structural annotation into a series of machine learning classification problems. As

shown in Figure 4.1, Class 1 is the “positive” class (meaning the residue is involved

in such interaction), and Class 0 is the “negative” class (meaning there is no such

interaction). The label of each property indicates the interaction that this nucleotide

is involved in:

• stacking interaction: the first two properties are stacking interactions between

adjacent bases and non-adjacent bases; more nucleotides were involved in adja-

cent stacking.

• base pairing interaction: more nucleotides are paired than unpaired in the train-

ing set; here, we used MC-Annotate derived base pairs instead of DSSR (in

Chapter II) derived base pairs, so noncanonical base pairs are included.

• sugar puckering mode: instead of predicting directly which sugar puckering

mode a residue adopts, we predicted the probability of adopting each sugar

puckering mode, as shown in the next six properties; most RNA nucleotides

adopt C3’-endo puckering mode.

• solvent accessible surface area (SASA): a threshold was calculated using the

mean and standard deviation (SD) of SASA values across the training set.

Nucleotide with SASA value above the threshold was defined as Class 1, and

below the threshold was defined as Class 0.

• syn or anti conformation: different from previous properties, there is no positive

or negative class for syn or anti conformations; we simply defined syn as Class

0 and anti as Class 1.

The structural annotation properties were retrieved from 3D coordinates of RNAs
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using MC-Annotate.1 MC-Annotate takes the PDB files of DNA or RNA and quickly

extracts the structural information to simplify further analysis. The solvent accessi-

bility data (SASA) was also calculated using MC-Annotate.

We combined these annotation properties with chemical shift data associated with

individual residues and of neighboring residues to form a CS-structural properties

dataset. The training set had 3068 samples, each corresponding to a residue, and

the testing set had 284 samples. We included chemical shifts for neighboring residues

because we believe the local physio-chemical environment will have an impact on the

chemical shifts of these neighboring residues. The detailed comparison of how many

neighbors should be included will be discussed in Results.

4.2.2 Multi-task classifiers

We have the dataset with both chemical shift data and the corresponding anno-

tation properties for each residue, and we have converted the problem of structural

annotation to a set of classification problems. The next question is model selec-

tion. Similar to what has been done in Chapter III, where we developed indepen-

dent chemical shifts predictors for individual nucleus types, the most naive approach

would be to develop separate classifiers for different properties/tasks. However, this

approach may be inefficient and may not fully take advantage of the correlation be-

tween different annotation properties. I calculated the Pearson correlation coefficients

between pairs of annotation properties (Figure 4.2) and found that there were corre-

lations between some of the properties. For example, there was a negative correlation

among different sugar puckering modes, since one nucleotide cannot adopt multiple

modes. There was also a negative correlation between SASA and adjacent stacking;

the more stacked a base may be, the smaller surface area it has that is accessible to

solvent.

In addition to the naive approach, we also tried a chained model where the pre-
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Figure 4.2: Correlation between structural properties.

dictions of the previous properties were used as input for the following predictions.

Combining results from chains with a different order of properties, we developed an

ensemble model based on individual chained models and tested it against the naive

classifiers.

The final model I explored is a progressive neural network model.5 Figure 4.3 is a

simple description of a progressive neural network model trained on two tasks (output1

and output2), each with two hidden layers (hj1 and hj2, where j is the jth task). When

training the first task, the model is a regular neural network model with two hidden

layers h
(1)
1 and h

(1)
2 . When training the second task, the parameters learned for the

first task are fixed. The hidden layer for the second task h
(2)
2 takes input from the its

previous layer h
(2)
1 as well as from h

(1)
1 via a lateral adapter layer a (the blue box in

Figure 4.3). Similarly, the output of the second task takes input from h
(2)
2 and h

(1)
2 (via

lateral connection). The lateral connections between different neural networks can

transfer knowledge between tasks and improve convergence speed.5 Moreover, using

a new neural network for a new task could avoid catastrophic inference,6 which is the
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Figure 4.3: Progressive neural network model adapted from reference.5 h
(j)
i repre-

sents the ith hidden layer for the jth task/property. When training the second task
(the second column), the parameters associated with the first task are “frozen” and
served as input via a lateral connection (arrow pointing to the blue box).

tendency of neural networks to forget previously learned knowledge. The progressive

neural network model in this chapter was implemented through DeepChem library in

Python.7

4.3 Results

4.3.1 Model selection

We explored three different methods to perform the multi-task classification using

the training set. The training set combined residues from 104 RNAs, including the

non-exchangeable chemical shifts associated with each residue and the neighboring

residues as well as the 11 annotation properties that were retrieved from the 3D

structure using MC-Annotate. Here, the definition of “neighboring residues” refers

to the three residues before and after the current residue. We started by including

three neighbors, but the impact of the number of neighbors was also explored at the

end of this section. The training set had 3068 samples (or residues) and 167 features

94



including chemical shifts and nucleotide types.

The first method was to develop individual multilayer perceptron (MLP) models

(or vanilla neural network models) for different structural annotation tasks. The

base model used was the MLPClassifier from scikit-learn8 with one hidden layer and

100 hidden neurons. The activation function was ReLU. The model was optimized

using Adam optimizer based on the log-loss function. This approach treated each

annotation property as an independent task and did not use predictions or information

from other tasks.

To utilize the correlation between different properties, I then explored a chained

classifier. In the chained classifier, I still employed the same base learner which was

the MLP classifier with the same architecture as in the first method. However, the

input features for training the model were not just the chemical shifts associated with

each residue and the neighboring residues. Instead, output predictions from previous

tasks, such as the predictions of whether a residue has adjacent stacking, were used as

input features in the training of the subsequent tasks. That is, the last task that was

trained took as input all the predictions from the previous 10 annotation properties.

Since the order of annotation properties did not have any chemical or structural

relevance, and it was impossible for us to know the optimal order in advance, I then

ran 10 random orders and calculated the average predictions based on the 10 random

chains. The performance of the independent MLP classifier and the chained classifier

was compared via a 5-fold cross validation by calculating the balanced accuracy of

the classification for all annotation properties. The balanced accuracy was defined as

the average of “sensitivity” and “specificity”. I used the balanced accuracy instead

of the overall accuracy to better assess the imbalanced dataset.

In Figure 4.4, I show the cross validation results of the first three annotation

properties (adjacent stacking, non-adjacent stacking, and base pairing) when using

independent and chained classifiers. Since it was impossible to know the optimal order
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Figure 4.4: Performance comparison between independent MLP model and chained
model. Shown in the figures are the balanced accuracies of three annotation tasks
(adjacent stacking, non-adjacent stacking, and base pairing interaction) via the 5-fold
cross validation. The first bar in each group (dark red) represents the independent
MLP model; the next 10 bars (salmon) represent chained models with different orders
of annotation properties; the last bar (light blue) represents the ensemble model that
is calculated by averaging the predictions of 10 chained models.
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of properties in advance, I tested 10 random orders (salmon bar). For these three

tasks, some of the chained models performed better than the independent classifiers

(dark red bar). And when using the ensemble classifier (light blue bar), there was

improvement in balanced accuracy for some but not all of the structural properties

(which was also shown in Table 4.1). The results for the other 8 annotation properties

are shown in Supporting Information (Figure B.8, B.9, and B.10).

Table 4.1: Balanced accuracy of validation results using three different models

Property Base model1 Ensemble
classifier2

Progressive neu-
ral network

Adjacent Stacking 0.690 0.681 0.699
Non-adjacent Stacking 0.705 0.727 0.808
Base Pairing 0.769 0.773 0.812
C1’-exo 0.521 0.541 0.642
C2’-endo 0.634 0.627 0.787
C2’-exo 0.538 0.532 0.568
C3’-endo 0.623 0.624 0.661
C3’-exo 0.544 0.564 0.780
C4’-exo 0.536 0.542 0.555
SASA 0.695 0.701 0.719
syn/anti 0.684 0.678 0.762

1 Base model refers to the independent MLP classifiers;
2 Ensemble classifier uses the averaged predictions from 10 chained classifiers.

Shown in Table 4.1 are the averaged balanced accuracy scores of the 5 validation

sets for each annotation property. The performance of the ensemble model and the

base model (independent MLP classifier) was very similar to each other, with slight

improvement when using the ensemble classifier.

I then explored the progressive neural network classifier using the same model

architecture as the MLP classifier with the same number of hidden layers (1), number

of hidden neurons (100), learning rate (0.001), optimizer (Adam), and activation

function (ReLU). I compared and showed the balanced accuracy in Figure 4.5. The

balanced accuracy for each method was calculated from averaging 5 validation sets. As
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Figure 4.5: Balanced accuracy of the base model (independent MLP classifier;
salmon), chained ensemble classifier (orange) and progressive neural network classifier
(blue) averaged from 5 validation sets.

mentioned above, the ensemble classifier did not show significant improvement when

compared with the independent classifier. However, the improvement of balanced

accuracy when using the progressive neural network model is much more significant

compared with the ensemble classifier, as can be seen from Figure 4.5. The model

was worse in predicting sugar puckering modes than in predicting other structural

properties. The impact of the change of sugar puckering on the physio-chemical

environment surrounding an atom may be very subtle and cannot be reflected in

chemical shifts. Based on the cross validation results, the progressive neural network

model was used for the following analysis.

4.3.2 Error analysis

I then trained the progressive neural network model on the entire training set and

tested on the testing set. The testing set consists of residues from 4 testing RNAs

whose PDBIDs are 2JTP, 2LU0, 5KH8, and 2N1Q. The testing set had 284 residues

and 167 features.

In Table 4.2, I reported the balanced accuracy, sensitivity, and specificity of the
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testing set predictions for each property. The balanced accuracy of cross validation

was also reported (in “()”) to for comparison. In general, the performance of the

testing set was consistent with the cross validation results: sugar puckering modes

were predicted with relatively low accuracy, except for C2’-endo. This might be due

to the limited sample size of the training data; it is possible that for these difficult-to-

predict structural properties, a larger training size is needed for the generalization of

the model. Also, as mentioned before, the consistent low prediction accuracy may be

attributed to the weak correlation between chemical shifts and sugar puckering mode.

The change of sugar puckering mode may cause very subtle changes in the surrounding

chemical environment of an atom, thus an insignificant change of chemical shift data.

Table 4.2: The balanced accuracy, sensitivity, and specificity of the testing set
predictions

Property Balanced accuracy1 Sensitivity Specificity

Adjacent Stacking 0.721 (0.699) 0.626 0.816
Non-adjacent Stacking 0.845 (0.808) 0.830 0.861
Base Pairing 0.735 (0.812) 0.681 0.788
C1’-exo 0.668 (0.642) 0.500 0.837
C2’-endo 0.852 (0.787) 0.909 0.795
C2’-exo 0.651 (0.568) 0.615 0.686
C3’-endo 0.597 (0.661) 0.643 0.551
C3’-exo 0.580 (0.780) 0.250 0.911
C4’-exo 0.635 (0.555) 0.667 0.604
SASA 0.735 (0.719) 0.708 0.762
syn/anti 0.662 (0.762) 0.400 0.923

1 : the numbers in the “()” are the mean balanced accuracy values of the cross validation sets.

Shown in Figure 4.6 are the “maps” between the predicted class and the actual

class for four testing RNAs. In the figure, black rectangles indicate that the corre-

sponding structural property was correctly classified; biege rectangles represent false

positive predictions, meaning the predicted structural property did not exist; teal

rectangles represent false negative predictions, meaning that there was such struc-

tural property, but the model did not predict it. The values labeled at the top of
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False PositiveFalse NegativeTrue Positive/Negative

0.68 0.70 0.76 0.470.67 0.520.56 0.91 0.500.62 0.98 0.83 0.66 0.81 0.960.71 0.500.62 0.66 0.780.89 0.98
2JTP 2LU0

0.78 0.86 0.69 0.910.64 0.880.71 0.49 0.430.60 0.52
2N1Q

0.70 0.90 0.78 0.480.94 0.480.83 1.00 0.850.90 0.98
5KH8

Figure 4.6: Prediction maps of structural properties for testing RNAs. Black rect-
angles indicate that for the current residue and structural property, the prediction
was correct; biege rectangles indicate that the predicted structural property did not
exist for the current residue; teal rectangles indicate that the residue had such prop-
erty, but the model failed to predict it. The values at the top of each map are the
balanced accuracy values.

each map are the balanced accuracy values. When predicting base pairing status, all

four testing RNAs had more false negatives than false positives. This is probably be-

cause MC-Annotate included noncanonical base pairs, which could be more difficult

to predict using chemical shifts than canonical base pairs. When predicting syn/anti

conformation, only 2N1Q had false negatives, meaning the model misclassified some

residues with syn conformation as anti conformation. 2N1Q also exhibited the lowest

prediction accuracy among the four testing RNAs when predicting other structural

properties. One possible source of errors was the imputation of missing chemical

shifts, as for 2N1Q, we only had proton chemical shifts and had to impute all carbon

chemical shifts. Moreover, in terms of predicting stacking interactions, all four test-

ing RNAs had more false negatives for adjacent stacking and more false positives for
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non-adjacent stacking. This is probably due to the imbalanced dataset (Figure 4.1).

Residues that exhibited different prediction patterns, that are, residues for which ad-

jacent stacking predictions were false positives and for which non-adjacent stacking

predictions were false negatives, were usually found in regions with complex struc-

tures. For example, internal loop (for 2JTP), three way junction (for 2LU0), and long

range base pairs (for 5KH8).

4.3.3 Impact of neighboring residues

I started by including chemical shifts and nucleotide types associated with 3 neigh-

boring residues as features: for residue i, the features are the chemical shifts and

nucleotide types for residues i− 3, i− 2, i− 1, i, i+ 1, i+ 2, and i+ 3. Chemical shifts

that are not available were imputed using MICE as in Chapter II. Chemical shifts

of neighboring residues that do not exist were encoded as 0. We included neighboring

residues because we believe that the residues in close distance will affect the physio-

chemical environment and this local structural information may be contained in the

chemical shifts of the neighboring residues.

Figure 4.7: Balanced accuracy of validation sets when including different number
of neighboring residues.

I then explored how many neighbors should be included to achieve the best accu-
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racy. Figure 4.7 confirms that our hypothesis was correct, that including neighboring

residues did improve prediction accuracy for most of the structural annotation tasks,

except for C3’-exo sugar puckering and syn/anti conformation. Since syn/anti con-

formation is a global property, it is reasonable that it was not affected by including

neighboring chemical shifts. On the other hand, in terms of stacking interaction and

base pairing status, including features from more neighboring residues improved the

prediction accuracy. This is because these were interactions between different residues

that are spatially close and chemical shifts from neighboring residues may contain

structural information about these interactions. It is also interesting to see that

the number of neighbors included does not affect the accuracy as we hypothesized,

that is, including more neighboring residues will increase the prediction accuracy. In

fact, for some properties, including 2 neighboring residues (i− 2, i− 1, i, i+ 1, i+ 2)

exhibited better balanced accuracy score compared with using 3 neighboring residues.

4.4 Discussion

In this chapter, I developed a method for annotating structural properties, includ-

ing solvent accessibility, base pairing interaction, stacking interaction, conformation,

and sugar puckering mode using only non-exchangeable chemical shifts. The struc-

tural annotation tasks were converted to a set of classification problems, allowing us

to apply machine learning methods. With a careful model selection, we found that

the progressive neural network model was able to utilize the inherent correlations be-

tween different annotation properties and outperformed independent MLP classifier

and chained MLP classifier. The progressive neural network model applied in this

project was built upon DeepChem library in Python. We also explored whether in-

cluding chemical shifts from neighboring residues could enhance model performance.

Although including more features improved prediction accuracy for most of the prop-

erties (Figure 4.7), it is not necessary to include 3 neighboring residues.
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We then applied the trained model to the testing set, which contained residues

from 4 RNAs (2JTP, 2LU0, 5KH8, and 2N1Q). The model was able to predict some

structural properties with reasonable accuracy, exhibiting similar low accuracy when

predicting sugar puckering mode as in validation sets. We hypothesize that sugar

puckering change may be too subtle to be reflected in chemical shifts. The quality of

structural annotation also depends on the proportion of missing chemical shifts data

and the method we used to impute missing data. When there are too many chemical

shifts missing, the annotation accuracy for that RNA may be affected. We currently

used the same technique, MICE, to impute missing chemical shifts, as in Chapter II,

but more tests should be done to improve the accuracy of chemical shifts imputation.

Many questions remain to be answered about the relationships between chemical

shifts and structural properties. For example, by studying the correlation between

missing data and annotation accuracy of each structural property, we could under-

stand the impact of chemical shifts of different nucleus types on each structural prop-

erty. It is also interesting to explore the importance of chemical shifts of spatially

adjacent residues, instead of sequentially adjacent neighbors. Moreover, CS-Annotate

could also be used for evaluating the quality of a structural model by comparing the

structural properties annotated from chemical shifts and properties derived from a

structure.

103



4.5 References

(1) Gendron, P.; Lemieux, S.; Major, F. Journal of molecular biology 2001, 308,
919–936.

(2) Lu, X.-J.; Olson, W. K. Nucleic acids research 2003, 31, 5108–5121.

(3) Danaee, P.; Rouches, M.; Wiley, M.; Deng, D.; Huang, L.; Hendrix, D. Nucleic
acids research 2018, 46, 5381–5394.

(4) Yang, H.; Jossinet, F.; Leontis, N.; Chen, L.; Westbrook, J.; Berman, H.; West-
hof, E. Nucleic acids research 2003, 31, 3450–3460.

(5) Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.;
Kavukcuoglu, K.; Pascanu, R.; Hadsell, R. arXiv preprint arXiv:1606.04671
2016.

(6) McCloskey, M.; Cohen, N. J. In Psychology of learning and motivation; Elsevier:
1989; Vol. 24, pp 109–165.

(7) Ramsundar, B.; Leswing, K. In ABSTRACTS OF PAPERS OF THE AMER-
ICAN CHEMICAL SOCIETY, 2019; Vol. 257.

(8) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel,
O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., et al. Journal of
machine learning research 2011, 12, 2825–2830.

104



CHAPTER V

Conclusions and Perspectives

Recent studies have revealed the existence of thousands of functional non-coding

RNAs (ncRNAs) with complex cellular functions. To better understand the func-

tional mechanism of these RNAs, it is important to determine their structures first.

However, characterizing the structure of an RNA can be challenging both experimen-

tally and computationally. RNA molecules can be very dynamic and thus hard-to-

crystallize, making it challenging to use X-ray crystallography to solve their struc-

tures. To study these hard-to-crystallize RNAs, NMR spectroscopy is widely used.

NMR provides experimental observables, such as chemical shifts and NOE distances,

that can be used to derive the structure of an RNA. In particular, chemical shifts are

considered as structural “fingerprints” and contain information about the surrounding

physio-chemical environment. In my thesis, I have developed different computational

methods that were based on machine learning and probabilistic modeling to extract

information from chemical shifts and use that information to improve the structure

modeling of RNAs.

Predicting the secondary structure of RNAs is typically the first step in exploring

relationships between their sequence, structure, and function. Given the sequence of

an RNA, most algorithms attempt to identify a single structure that is compatible

with that sequence. However, to achieve their function, RNAs typically transition
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between distinct conformational states. As such, to rationalize relationships between

the sequence, the structure(s), and the function of RNA, methods are needed to map

their entire conformational landscape. In principle, if the structural “fingerprints” of

individual conformational states of an RNA can be obtained experimentally, these

could be used together with well-established computational algorithms to “condi-

tionally” predict the structure of each of these states – thus mapping many distinct

conformational states to a single RNA.

In Chapter II, I developed a chemical shift-based folding framework, referred to

as the CS-Fold framework,1 for “conditionally” predicting the secondary structure

of RNAs using assigned NMR chemical shift data. Extensive testing of the CS-Fold

framework proves that from assigned NMR chemical shifts, we could (1) accurately

predict the base-pairing status of individual residues in an RNA (via the CS2BPS

classifiers) and (2) accurately predict the secondary structure of RNAs using folding

restraints derived from our classifiers.

Using experimental data or the information derived from experimental data as re-

straints during structure modeling can be computationally expensive. The alternative

is to generate a set of low energy structure models using free energy minimization and

identify the structure model that is most consistent with experimental data. Thus, in

Chapter III, I have explored using chemical shifts as “filters” to identify the “best”

structure model from a set of low energy structure models. To do this, tools are re-

quired that can back-calculate or predict NMR chemical shifts from a given structure

model. I developed SS2CS, a chemical shift predictor that was based on random

forest technique. When given a secondary structure of an RNA, SS2CS can predict

the nonexchangeable chemical shifts of carbon and proton nuclei with high accuracy:

the mean absolute errors (MAEs) between predicted and measured chemical shifts

were 0.84 ppm for carbon nuclei and 0.11 ppm for proton nuclei.

In Chapter III, I have explored the probabilistic modeling of RNA secondary
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structures using Bayesian/maximum entropy (BME).2 In this application, I investi-

gated whether the difference between measured and predicted chemical shifts could

be used to identify the “best” secondary structure model. For an ensemble of low

energy secondary structure models, I applied BME to reweight members in the en-

semble in order to achieve the best agreement with experimental chemical shifts. The

result indicates that BME weight has the resolving power to recover the native or

near-native structures from a set of low energy secondary structures. BME was able

to identify the DSSR-derived3 native structure for 7 out of the 16 RNA ensembles.

For the structures that were assigned the highest BME weights, 13 of them exhibited

high true positive rates (TPRs) and high positive predicted values (PPVs) (both >

0.80) compared to the native structure. It is also found that BME was able to recover

some noncanonical interactions that were not highlighted in DSSR-derived structures

as DSSR only included canonical base pairs.

These experiments confirmed that NMR chemical shifts provide valuable struc-

tural information of RNAs, which can be used to improve structure modeling or

determine the quality of a structure model. In Chapter IV, I further explored if

there were other structural information that could be extracted from chemical shifts.

In other words, I investigated whether chemical shifts could be used to annotate a set

of structural properties, including sugar puckering, stacking interactions, syn/anti

conformation, base pairing status, and solvent accessibility. The individual struc-

tural annotation tasks were converted to a series of machine learning classification

problems. For each residue, our CS-Annotate model can annotate the probability

of each structural property for individual residues in an RNA. It is found that the

CS-Annotate model was able to predict most structural properties with decent accu-

racies. However, the model exhibited lower prediction accuracies for sugar puckering,

probably because the change of chemical shifts caused by sugar puckering was too

subtle.
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Overall, in my thesis, I have developed different computational tools to extract

structural information from NMR chemical shifts and use the extracted informa-

tion on the study of RNA structure modeling. There remain many questions that

can be answered. For example, using the CS-Fold framework, we could study some

functional important RNA transient states.4 Due to their low population and short

lifetime, transient states are “invisible” for conventional experimental techniques. It

is also challenging to model their structures by free energy minimization since they

are not the global minimum in the free energy landscape. However, for some transient

states, chemical shifts are accessible via the chemical exchange saturation transfer5

(CEST) NMR. It would be interesting to explore whether CS-Fold could be used to

model the secondary structures of these transient states. On the other hand, the

chemical shifts predictor we developed in Chapter II, SS2CS, used a simple random

forest model built upon a set of secondary structure features. Although the features

of adjacent residues were considered, the current model did not include the impact

of spatially adjacent residues. Residues that are far away in sequence may still have

interactions in 3D structure. I believe that graph neural network6 (GNN) may be a

better alternative since it can take advantage of the whole secondary structure. One

major limitation of the tools developed in this thesis is they require assigned chem-

ical shifts. And to assign chemical shifts, a secondary structure model is typically

assumed. One feasible plan is to explore the use of unassigned chemical shifts in

secondary structure modeling and structure annotation. Using the chemical shifts

predictor, SS2CS, one could predict chemical shifts for a set of secondary structure

models. And based on each secondary structure model, experimental chemical shifts

can be assigned. We believe that the native-like structure model should exhibit the

lowest errors between optimally assigned chemical shifts and experimental (or pre-

dicted) chemical shifts. Based on this assumption, one could optimize the assignment

of experimental chemical shifts and then use the computationally assigned chemical
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shifts to model RNA structures or perform structural annotations.
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APPENDIX A

PyShifts

The contents of this chapter were published in the following reference:

Jingru Xie, Kexin Zhang, and Aaron T. Frank. ”PyShifts: A PyMOL Plugin for

Chemical Shift-Based Analysis of Biomolecular Ensembles.” Journal of Chemical In-

formation and Modeling 60.3 (2020): 1073-1078.

Here we present PyShifts — a PyMOL plugin for chemical shift-based analy-

sis of biomolecular ensembles. With PyShifts, users can compare and visualize dif-

ferences between experimentally measured and computationally predicted chemical

shifts. When analyzing multiple conformations of a biomolecule with PyShifts, users

can also sort a set of conformations based on chemical shift differences and identify the

conformers that exhibit the best agreement between measured and predicted chem-

ical shifts. Though we have integrated PyShifts with the chemical shift predictors

LARMORD and LARMORCα, PyShifts can read in chemical shifts from any source,

and so, users can employ PyShifts to analyze biomolecular structures using chemical

shifts computed by any chemical shift predictor. We envision, therefore, that PyShifts

(https://github.com/atfrank/PyShifts) will find utility as a general-purpose tool
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for exploring chemical shift-structure relationships in biomolecular ensembles.

Introduction

Determining the structure of biomolecules is an important step in understanding

how they execute specific cellular functions. NMR spectroscopy provides a number of

observables that can be used to probe both the structural and dynamical properties

of biomolecules.1,2 In particular, NMR-derived chemical shifts provide valuable infor-

mation about the conformational state(s) that are accessible to a given biomolecule.

Accordingly, chemical shifts are now routinely used to model the secondary3 and

tertiary structure of proteins.4–6 Similar approaches are now being applied to ribonu-

cleic acids (RNAs)7–9 and small molecules.10 A critical component of many chemical

shift-based modeling frameworks is the comparison between experimentally measured

chemical shifts and chemical shifts computed from 3-dimensional (3D) coordinates of

biomolecules.

Here we introduce PyShifts — a PyMOL11 research tool to visualize and analyze

chemical shift differences along a 3D biomolecular ensemble. PyShifts can compute

chemical shifts directly from coordinates that are loaded into PyMOL or load chem-

ical shifts from an external file. Once the chemical shift data is loaded, PyShifts

can be used to compute the difference between those chemical shifts and a refer-

ence set of chemical shifts. Implemented in PyShifts are several features that will

facilitate chemical shift-based modeling of biomolecules, with specific use cases that

include: assessing consistency between measured chemical shifts and a given struc-

tural model; identifying the subset of structures in a larger ensemble that exhibit

the best agreement between measured and computed chemical shifts; assigning con-

formational weights to individual conformers; and finally, clustering structures in an

ensemble based on the (dis)similarity of their computed chemical shifts.
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Related Software

Some of the features in PyShifts resemble those implemented in the PyMOL plu-

gin, Cheshift.12 Like Cheshift, PyShifts can be used to compute chemical shifts for

13Cα and 13Cβ in protein and facilitate comparison between the computed chemical

shifts and a set of experimentally measured chemical shifts. However, PyShifts can

also be used to compute chemical shifts for 1H, 15N, and 13C backbone nuclei from 3D

coordinates of proteins, as well as for 1H, 15N and 13C from 3D coordinates of RNA.

Though PyShifts does not directly compute chemical shifts, it facilitates chemical shift

computation from structure by making calls to external structure-based chemical shift

predictors (see below). PyShifts also contains powerful visualization capabilities that

facilitate detailed comparisons between measured and computed chemical shifts. In

addition, PyShifts is interfaced with tools that enable conformational weights to be

optimally assigned to individual structures in a conformational ensemble and tools

for clustering conformers based on their chemical shift (dis)similarity.

Methods

Basic Usage.

PyShifts takes the name of a loaded PyMOL object as input that stores the

coordinates for one or multiple state(s) of a biomolecule (Figure A.1A). PyShifts

then computes the chemical shifts from the coordinates of the biomolecule using

either LARMORD (for RNA) or LARMORCα (for proteins) (Figure A.1B). For RNA,

PyShifts will compute the chemical shifts for 1H, 13C, and 15N nuclei (specifically, H1,

H3, H1’, H2’, H3’, H4’, H5’, H5”, H2, H5, H6, H8, C1’, C2’, C3’, C4’, C5’, C2, C5,

C6, C8, N1, and N3 nuclei). For proteins, PyShifts will compute chemical shifts for

the backbone nuclei (specifically, HA, HN, CA, CB, C, and N nuclei). In addition

to computing the chemical shifts, PyShifts can also read in chemical shifts for each
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state in the object from an external file (Figure A.1B and A.1C).

Figure A.1: To initialize PyShifts, users specify the name of loaded PyMOL object
(A) from which chemical shifts will be computed using LARMORD or LARMORCα by
setting the mode to LARMORD or LARMORCA, respectively (B). Alternatively, by setting
the mode to Other (B), chemical shifts for the states in the specified PyMOL object
(A) can be read in from a user specified file (C). The computation or loading of
chemical shifts can be initiated by clicking Run button (D).

Error (or Difference) Analysis.

With PyShifts, users can carry out various analyses based on computed or loaded

chemical shifts. In the Error Analysis tab (Figure A.2), when the Compare Shifts

button is clicked (Figure A.2A), PyShifts computes the weighted mean absolute error

(MAE), the weighted root mean squared error (RMSE), and the Pearson correlation

coefficient (R) between computed or loaded chemical shifts and reference chemical

shifts. Typically, users will supply a measured chemical shift file that contains the

chemical shifts relative to which the error analysis will be carried out (Figure A.2B).

If no reference file is specified, analysis will be carried out relative to the first state.
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Figure A.2: PyShifts Error Analysis interface.

Users can specify if all chemical shifts should be used to compute these statistics, or

if only chemical shifts for proton, carbon, and nitrogen nuclei should be used (Figure

A.2). Error statistics (namely, MAE, RMSE, and R) for each state in the reference

object are reported in the Error Table (Figure A.2C).

The weighted MAE and RMSE are calculated using:

MAE =
1

N

∑
i

∣∣∣∣δexp
i − δpred

i

σi

∣∣∣∣ (A.1)

and

RMSE =

√√√√ 1

N

∑
i

(
δexp
i − δpred

i

σi

)2

(A.2)

where δexp
i is the measured chemical shift for nucleus i, δpred

i is the the predicted

chemical shift, σi is the expected accuracy of predicted chemical shifts of type of

nucleus i, and N is the total number of nuclei used in error calculation.
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To facilitate more detailed analyses of differences between reference and computed

chemical shifts, PyShifts allows users to select a single row in the Error Table (Fig-

ure A.2C), which populates a data frame that contains residue name, atom name,

measured chemical shifts, computed chemical shifts, and weighted absolute difference

for each nucleus of interest for the state associated with the selected row (Figure

A.2D). Upon selecting a row in the Error Table, the corresponding structure is ren-

dered in the molecular viewer window (Figure A.2E), with the differences between

measured and comparison chemical shifts encoded in the spheres at each nucleus of in-

terest. The size of the sphere is proportional to magnitude of the difference and color

encodes the sign: red (negative differences) and blue (positive differences). When a

given nucleus in the Chemical Shift Table is selected, the corresponding nucleus is

highlighted in the molecular viewer (Figure A.2F). Highlighting the selected nucleus

allows users to effortlessly identify regions in sites that exhibit large discrepancies

between measured and computed chemical shifts and which may be outliers. Pyshifts

also allows users to control over some aspects of error calculation and rendering in

its Advanced Options tab, which is discussed in the Supporting Information (Figure

B.4).

Multi-model Analysis.

Implemented in PyShifts are several features that facilitate chemical shift-based

analysis of multi-state objects loaded in PyMOL.

A.0.0.1 Assigning Conformational Weights.

PyShifts automatically assigns conformational weights to the set of structures

using Bayesian maximum entropy (BME) method.13 BME is used to weight each

structure in a multi-state PyMOL object, conditioned on user supplied measured

chemical shifts, computed chemical shifts, and expected errors between reference and
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computed chemical shifts. BME derived weights are included in the Error Table

(Figure A.2C).

A.0.0.2 Chemical Shift-Based Clustering.

PyShifts automatically clusters the collection of structures in the reference Py-

MOL object using their computed chemical shifts as clustering features.10 One ad-

vantage of clustering structures based on their computed chemical shifts rather than

their RMSD dissimilarity as is typically done, is that chemical shifts depend only on

interatomic distances and are invariant to translation or rotation. As such, no struc-

ture alignment is required prior to clustering. Currently, PyShifts uses a K-means

clustering algorithm to cluster the set of conformations into a user specified number

of clusters before returning the cluster ID for each state in the object and reporting it

in the Error Table (Figure A.2C). K-means clustering is an unsupervised machine

learning method that divides data points into k clusters based on (dis)similarity of

their features, here, the computed chemical shifts. PyShifts takes as input the com-

plete structure of each conformation and outputs the K-means determined cluster

ID.

A.0.0.3 Sorting Structures.

Each time the Sort button is clicked, the Error Table is sorted and structures

in the molecular viewer are updated to reflect the new order. PyShifts allows users

to sort the collection of structures by MAE, RMSE, or R as well as by BME assigned

weights or cluster ID (Figure A.2F).

Application Examples

Below we briefly describe three use cases that serve to highlight the utility of

PyShifts as a research tool. Below we show applications of PyShifts to NMR ensem-
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bles of RNA. Similar examples of applying PyShifts to proteins are presented in the

Supporting Information (Figures B.5, B.6, B.7).

Sample Case 1: Detecting Referencing Errors.

The presence of referencing errors in chemical shift data can confound chemical

shift-based structural analysis. Accordingly, tools to detect and possibly correct such

errors are urgently needed. Here we demonstrate how PyShifts can be used to visually

detect the presence of systematic errors in measured chemical shifts when a struc-

tural model of the corresponding RNA is available. To accomplish this, we analyzed

the first model in the NMR bundle for the 32-nt U6 intramolecular stem-loop (U6

ISL) RNA (PDBID: 1XHP), which is found in the U2/U6 complex of the spliceo-

some.14 The chemical shift dataset deposited in the BMRB (BMRB ID: 6320) has

been experimentally validated to contain 13C referencing errors.15

Figure A.3: Visual detection of systematic referencing errors. (A-B) Shown is the
projection of the error between measured and computed chemical shifts for the RNA,
U6 ISL onto the first model in the corresponding NMR bundle (PDB ID: 1XHP). At
each nucleus for which computed and measured chemical shifts are available, PyShifts
renders spheres whose radius is proportional to the difference between measured and
computed chemical shifts and whose color indicates whether the difference is negative
(red) or positive (blue).
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In Figure A.3A, the differences between measured and computed 13C chemical

shifts are projected onto the first model in the NMR bundle of U6 ISL RNA, using

PyShifts. The consistently large and negative differences between measured and com-

puted chemical shifts (Figure A.3A) are indicative of a systematic offset. Adding a

2.700 ppm offset prior to computing the differences reduces the weighted MAE from

2.707 to 0.835 (Figure A.3B).

Sample Case 2: Identifying Structure that Exhibit the Best Agreement

Between Computed and Measured Chemical Shifts.

To illustrate how PyShifts could be used to carry out chemical shift-based analy-

sis of biomolecular ensembles, we used it to analyze an ensemble of the 23-nt RNA,

microRNA-20b (miR-20b).16 Specifically, we used PyShifts to examine a 40-membered

ensemble that was composed of the structures from the 20-membered NMR bundle of

the free state of miR-20b (PDBID: 2N7X) and the structures from the 20-membered

NMR bundle of bound state of miR-20b (PDBID: 2N82). Collectively, the NMR

ensemble of the free (Figure A.4A) and bound (Figure A.4B) states of miR-20b in-

dicated that in the presence of protein Rbfox RRM, miR-20b undergoes a 4.33 Å

structural change that involves the disruption of several base-pairs in the apical loop

region of miR-20b pre-element.16

With access to chemical shifts for both free (Figure A.4(A) and bound (Figure

A.4(B) states, we used PyShifts to identify structure(s) in the combined ensemble that

exhibited the best agreement between measured and computed chemical shifts. Shown

in Figure A.4(C,D) is PyShifts’ rendering of structures in the combined ensemble that

exhibited the lowest weighted MAE and RMSE and the highest Pearson correlation

(R), respectively, between computed chemical shifts and measured chemical shifts

of the free (Figure A.4C) and bound state (Figure A.4D). For free state, structures

that exhibited the best agreement between computed and measured chemical shifts
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Figure A.4: (A-D) Structures in the combined ensemble miR-20b ensemble (PDB
ID: 2N7X (free) and PDB ID: 2N82 (bound)), that exhibited the best between com-
puted chemical shifts and the measured chemical shifts of the free (C) and bound (D)
states, respectively.

as quantified using MAE, RMSE and R were structures from the free state NMR

bundle (Figure A.4A, C). Conversely, for bound state, the best structures were from

the bound state NMR bundle (Figure A.4B, D).

Sample Case 3: Clustering Structures Based on Their Chemical Shift

(Dis)Similarity.

To demonstrate the ability of PyShifts to carry out a structural analysis of multi-

state objects in the absence of measured chemical shift data, we used it to cluster

the 40 structures in the combined ensemble of miR-20b. Within this unsupervised
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Figure A.5: Results obtained by clustering the structures of the free-state and
bound-state structures of miR-20b using their computed chemical shifts as features.
After clustering, the structures were sorted in PyShifts based on their cluster ID. As
can be seen, clustering the structures based on their computed chemical shifts and
then sorting them enabled the correct separation of the combined ensemble into two
clusters containing the free-state (red) and bound-state (blue) structures.

machine learning task, we used the computed chemical shifts as clustering features.

Shown in Figure A.5 are the chemical shift-based clustering results we obtained using

PyShifts. Using the computed chemical shifts of free and bound state of miR20-b

as clustering features and the K-means clustering algorithm that we interfaced with

PyShifts, we were able to correctly separate free and bound state structures into their

two distinct clusters.
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APPENDIX B

Supporting Information

Supporting Tables

Table B.1: Train set RNA information

PDBIDs Length Number of unpaired residues Number of paired residues

1A60 44 16 28
1HWQ 30 12 18
1JO7 31 11 20
1KKA 17 5 12
1L1W 29 9 20
1LC6 24 8 16
1LDZ 30 10 20
1MFY 31 13 18
1NA2 30 14 16
1NC0 24 8 16
1OW9 23 9 14
1PJY 22 4 18
1Q75 15 5 10
1R7W 34 10 24
1R7Z 34 10 24
1SCL 29 15 14
1SY4 24 8 16
1SYZ 24 8 16
1UUU 19 7 12
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PDBIDs Length Number of unpaired residues Number of paired residues

1XHP 32 10 22
1YMO 47 17 30
1YSV 27 5 22
1Z2J 45 7 38
1Z30 18 4 14
1ZC5 41 7 34
28SP 28 12 16
28SR 28 12 16
2F87 12 4 8
2FDT 36 8 28
2GVO 18 6 12
2JR4 17 7 10
2JTP 34 8 26
2JWV 29 11 18
2JYM 22 4 18
2K66 22 4 18
2KEZ 24 8 16
2KF0 24 8 16
2KOC 14 4 10
2KXM 27 11 16
2KZL 55 27 28
2L3E 35 11 24
2L5Z 26 8 18
2L6I 16 4 12
2L8H 29 9 20
2LAC 17 7 10
2LBJ 17 3 14
2LBK 17 5 12
2LBL 17 7 10
2LDL 27 9 18
2LDT 31 9 22
2LHP 37 7 30
2LI4 32 4 28
2LJJ 27 9 18
2LK3 24 6 18
2LP9 16 4 12
2LPA 15 3 12
2LPS 34 6 28
2LQZ 27 9 18
2LU0 49 17 32
2LUB 37 7 30
2LUN 28 10 18
2LV0 24 8 16
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PDBIDs Length Number of unpaired residues Number of paired residues

2M12 23 9 14
2M21 21 7 14
2M22 23 7 16
2M4W 17 7 10
2M5U 22 4 18
2M8K 48 16 32
2MEQ 19 7 12
2MFD 19 5 14
2MHI 53 13 40
2MIS 26 8 18

2MNC 16 6 10
2MTJ 47 17 30
2MXL 39 13 26
2N1Q 155 49 106
2N2O 23 11 12
2N2P 23 11 12
2N3Q 62 20 42
2N3R 62 20 42
2N4L 53 9 44
2N6S 36 6 30
2N6T 42 16 26
2N6W 68 20 48
2N6X 43 13 30
2NBY 39 9 30
2NBZ 40 10 30
2NC0 28 8 20
2NC1 67 17 50
2NCI 28 12 16
2O33 20 8 12
2QH2 24 6 18
2QH3 23 7 16
2QH4 18 6 12
2RVO 34 8 26
2Y95 14 4 10
4A4S 22 4 18
4A4T 22 4 18
4A4U 22 4 18
5A17 32 10 22
5A18 32 10 22
5IEM 57 13 44
5KH8 47 19 28
5KQE 36 10 26
5UF3 23 7 16
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PDBIDs Length Number of unpaired residues Number of paired residues

5UZT 31 11 20
5V16 41 11 30
5WQ1 23 5 18

Table B.2: Optimized hyperparameters for CS2BPS classifiers (one of the six runs)

PDBIDs Batch size Dropout rate Epochs Loss Learning rate Optimization

1A60 256 0 25 BCE 0.001 RMSprop
1HWQ 128 0 25 BCE 0.001 RMSprop
1JO7 256 0.1 50 logcosh 0.01 RMSprop
1KKA 128 0.1 25 logcosh 0.001 Adam
1L1W 128 0.1 25 BCE 0.001 Adam
1LC6 256 0 50 BCE 0.001 Adam
1LDZ 256 0.1 25 BCE 0.001 Adam
1MFY 128 0.1 25 BCE 0.001 Adam
1NA2 128 0 25 BCE 0.001 Adam
1NC0 128 0.1 25 BCE 0.001 Adam
1OW9 256 0 25 BCE 0.001 Adam
1PJY 256 0 25 BCE 0.001 Adam
1Q75 256 0.1 50 BCE 0.001 RMSprop
1R7W 128 0.1 50 BCE 0.001 Adam
1R7Z 256 0 50 BCE 0.001 RMSprop
1SCL 256 0.1 50 BCE 0.001 Adam
1SY4 128 0 25 BCE 0.001 Adam
1SYZ 128 0.1 25 BCE 0.001 Adam
1UUU 128 0 25 BCE 0.001 RMSprop
1XHP 128 0.1 25 BCE 0.001 Adam
1YMO 128 0 25 BCE 0.001 RMSprop
1YSV 128 0.1 25 BCE 0.001 Adam
1Z2J 128 0 25 BCE 0.001 Adam
1Z30 128 0 25 logcosh 0.001 Adam
1ZC5 256 0.1 50 BCE 0.001 Adam
28SP 256 0.1 50 BCE 0.001 RMSprop
28SR 128 0.1 25 BCE 0.001 Adam
2F87 128 0 25 BCE 0.001 Adam
2FDT 256 0.1 50 logcosh 0.001 Adam
2GVO 128 0 50 BCE 0.001 Adam
2JR4 128 0 25 BCE 0.001 Adam
2JTP 128 0 25 logcosh 0.001 RMSprop
2JWV 256 0 25 BCE 0.001 Adam
2JYM 128 0.1 25 logcosh 0.001 RMSprop
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PDBIDs Batch size Dropout rate Epochs Loss Learning rate Optimization

2K66 128 0 25 BCE 0.001 RMSprop
2KEZ 256 0 50 BCE 0.001 Adam
2KF0 128 0.1 25 BCE 0.001 Adam
2KOC 128 0.1 25 BCE 0.001 RMSprop
2KXM 256 0.1 50 BCE 0.001 RMSprop
2KZL 128 0.1 50 logcosh 0.001 Adam
2L3E 128 0.1 25 logcosh 0.001 RMSprop
2L5Z 128 0.1 50 logcosh 0.01 RMSprop
2L6I 128 0.1 25 BCE 0.001 RMSprop
2L8H 256 0.1 25 BCE 0.001 RMSprop
2LAC 256 0.1 50 BCE 0.01 Adam
2LBJ 128 0.1 25 BCE 0.001 Adam
2LBK 128 0.1 25 BCE 0.001 RMSprop
2LBL 128 0.1 25 BCE 0.001 RMSprop
2LDL 128 0 25 BCE 0.001 RMSprop
2LDT 128 0.1 25 BCE 0.001 Adam
2LHP 128 0 50 logcosh 0.001 Adam
2LI4 256 0 25 BCE 0.001 Adam
2LJJ 256 0.1 50 BCE 0.001 RMSprop
2LK3 128 0 25 BCE 0.001 Adam
2LP9 128 0.1 25 BCE 0.001 RMSprop
2LPA 128 0 50 BCE 0.01 Adam
2LPS 128 0.1 25 BCE 0.001 Adam
2LQZ 256 0 50 BCE 0.001 Adam
2LU0 256 0 50 BCE 0.001 Adam
2LUB 256 0.1 50 BCE 0.001 RMSprop
2LUN 128 0.1 50 BCE 0.001 RMSprop
2LV0 128 0.1 25 BCE 0.001 Adam
2M12 128 0 50 BCE 0.01 Adam
2M21 256 0.1 25 BCE 0.001 Adam
2M22 128 0.1 25 BCE 0.001 Adam
2M4W 128 0.1 25 BCE 0.001 Adam
2M5U 128 0 25 logcosh 0.001 Adam
2M8K 256 0.1 50 BCE 0.001 RMSprop
2MEQ 128 0.1 25 BCE 0.001 RMSprop
2MFD 256 0 50 BCE 0.001 Adam
2MHI 256 0.1 50 BCE 0.001 Adam
2MIS 128 0 25 BCE 0.001 RMSprop

2MNC 128 0.1 25 BCE 0.001 RMSprop
2MTJ 128 0.1 25 logcosh 0.001 Adam
2MXL 128 0 25 BCE 0.001 RMSprop
2N1Q 128 0.1 25 BCE 0.001 RMSprop
2N2O 128 0 25 BCE 0.001 RMSprop
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PDBIDs Batch size Dropout rate Epochs Loss Learning rate Optimization

2N2P 128 0.1 25 BCE 0.001 Adam
2N3Q 128 0 25 BCE 0.001 RMSprop
2N3R 128 0.1 25 BCE 0.001 Adam
2N4L 128 0 25 BCE 0.001 Adam
2N6S 128 0.1 50 logcosh 0.001 Adam
2N6T 256 0.1 50 BCE 0.001 RMSprop
2N6W 128 0 25 logcosh 0.001 RMSprop
2N6X 256 0 25 BCE 0.001 Adam
2NBY 128 0 25 BCE 0.001 RMSprop
2NBZ 256 0.1 25 logcosh 0.001 RMSprop
2NC0 128 0.1 25 BCE 0.001 Adam
2NC1 256 0 25 BCE 0.001 Adam
2NCI 128 0.1 25 BCE 0.001 RMSprop
2O33 128 0.1 25 BCE 0.001 Adam
2QH2 256 0.1 25 BCE 0.001 Adam
2QH3 256 0 50 BCE 0.001 RMSprop
2QH4 128 0.1 25 BCE 0.001 Adam
2RVO 128 0.1 25 BCE 0.001 RMSprop
2Y95 128 0.1 25 BCE 0.001 RMSprop
4A4S 256 0 25 BCE 0.01 Adam
4A4T 128 0.1 25 BCE 0.001 Adam
4A4U 128 0.1 50 BCE 0.001 Adam
5A17 128 0 25 BCE 0.001 Adam
5A18 128 0 25 BCE 0.001 RMSprop
5IEM 128 0.1 25 logcosh 0.001 RMSprop
5KH8 256 0 50 BCE 0.001 Adam
5KQE 256 0 50 BCE 0.001 Adam
5UF3 128 0.1 25 BCE 0.001 RMSprop
5UZT 128 0 50 BCE 0.01 RMSprop
5V16 256 0.1 50 BCE 0.001 Adam
5WQ1 128 0 25 BCE 0.001 RMSprop

1 BCE is binary cross-entropy loss;

Table B.3: CS2BPS predictions for the fluoride riboswitch (PDBID: 5KH8)

Residue Run Variance1

1 2 3 4 5 6

1 0.0001 0.0000 0.0005 0.0010 0.0003 0.0000 0.06
2 0.0001 0.0000 0.0002 0.0017 0.0021 0.0000 0.07
3 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.05
4 0.0003 0.0000 0.0001 0.0002 0.0009 0.0000 0.06
5 0.0011 0.0000 0.0009 0.0040 0.0173 0.2968 0.24
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Residue Run Variance1

1 2 3 4 5 6

6 0.0000 0.0000 0.0000 0.0004 0.0009 0.0000 0.06
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.04
8 0.0000 0.0000 0.0000 0.0008 0.0006 0.0000 0.06
9 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.05
10 0.0178 0.0004 0.0028 0.0098 0.0394 0.0023 0.12
11 0.0250 0.0155 0.0039 0.1050 0.0429 0.0028 0.15
12 0.0194 0.0025 0.2173 0.0715 0.1375 0.0899 0.20
13 0.0004 0.0006 0.0028 0.0095 0.0019 0.0000 0.09
14 0.0010 0.0003 0.0023 0.0029 0.0191 0.0028 0.10
15 0.0000 0.0000 0.0000 0.0004 0.0028 0.0000 0.07
16 0.0000 0.0001 0.0005 0.0029 0.0008 0.0001 0.07
17 0.9959 0.9710 0.9932 0.9843 0.9784 1.0000 0.11
18 0.9997 1.0000 0.9984 0.9969 0.9982 1.0000 0.07
19 0.9998 1.0000 0.9989 0.9999 0.9974 1.0000 0.07
20 0.3816 0.7329 0.9966 0.9417 0.8826 0.0013 0.53
21 0.9999 0.9995 0.9898 0.9969 0.9983 1.0000 0.09
22 0.9780 0.9982 0.9921 0.9933 0.9140 0.9998 0.15
23 0.0052 0.0014 0.0026 0.0184 0.0128 0.0088 0.10
24 0.0339 0.0004 0.0017 0.0174 0.0130 0.0007 0.12
25 0.0070 0.0452 0.0244 0.0587 0.0218 0.0001 0.13
26 0.0017 0.0000 0.0142 0.0031 0.0196 0.0000 0.10
27 0.9993 0.9999 0.9931 0.9992 0.9962 1.0000 0.08
28 0.9975 1.0000 0.9990 0.9998 0.9978 0.9993 0.07
29 1.0000 1.0000 0.9991 0.9994 0.9998 1.0000 0.06
30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.04
31 0.0001 0.0000 0.0002 0.0002 0.0815 0.0000 0.15
32 0.0000 0.0000 0.0000 0.0007 0.0018 0.0000 0.07
33 0.0004 0.0001 0.0004 0.0040 0.0042 0.0001 0.08
34 0.1586 0.0050 0.0558 0.0726 0.0613 0.0080 0.17
35 0.0001 0.0000 0.0001 0.0007 0.0035 0.0000 0.08
36 0.2304 0.0078 0.0620 0.5117 0.5823 0.2636 0.34
37 0.0068 0.0000 0.0005 0.0014 0.2861 0.0080 0.23
38 0.0010 0.0000 0.0000 0.0159 0.0057 0.0423 0.12
39 0.0002 0.0028 0.0001 0.4659 0.0036 0.0493 0.30
40 0.7184 0.0193 0.0048 0.5181 0.2921 0.1885 0.40
41 0.0420 0.0444 0.1527 0.2700 0.1270 0.7488 0.38
42 0.9394 0.2242 0.6976 0.8235 0.3449 0.8605 0.41
43 0.0031 0.0007 0.0077 0.0602 0.0542 0.0001 0.14
44 0.7708 0.9962 0.9629 0.8985 0.8875 0.8598 0.20
45 0.0002 0.0013 0.0031 0.0681 0.0101 0.0001 0.14
46 0.0013 0.0001 0.0008 0.0070 0.0116 0.0000 0.09
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Residue Run Variance1

1 2 3 4 5 6

47 0.0001 0.0000 0.0000 0.0004 0.0012 0.0000 0.07

1 Here, variance was calculated using −1/ log(prediction variance). The bold lines represent “out-
lier” residues with high CS2BPS prediction variance (whose prediction variance was > 1.5 ×
IQR (the interquartile range).

Table B.4: CS2BPS predictions for the simian immunodeficiency virus (SIV) RNA
(PDBID: 2JTP)

Residue Run Variance1

1 2 3 4 5 6

1 0.0015 0.0010 0.0056 0.0096 0.0055 0.0001 0.09
2 0.0553 0.0076 0.0114 0.0242 0.0092 0.0070 0.13
3 0.0721 0.0449 0.0891 0.0976 0.0678 0.1071 0.13
4 0.0018 0.0006 0.0106 0.0180 0.0092 0.0028 0.10
5 0.0021 0.0006 0.0036 0.0100 0.0071 0.0013 0.09
6 0.0008 0.0000 0.0007 0.0013 0.0006 0.0005 0.06
7 0.0016 0.0000 0.0032 0.0116 0.0015 0.0026 0.09
8 0.0217 0.0023 0.0178 0.0346 0.0088 0.0050 0.11
9 0.0048 0.0002 0.0272 0.0112 0.0048 0.0025 0.11
10 0.0043 0.0016 0.0220 0.0598 0.0071 0.0037 0.13
11 0.9373 0.9870 0.8510 0.8956 0.9090 0.9304 0.16
12 0.9630 0.9909 0.7291 0.8032 0.8493 0.4831 0.30
13 0.9608 0.8440 0.4732 0.5568 0.7560 0.4809 0.32
14 0.8537 0.9873 0.6945 0.7748 0.8013 0.8840 0.22
15 0.7419 0.5396 0.7312 0.4204 0.5434 0.8502 0.27
16 0.4963 0.9805 0.5220 0.4225 0.3977 0.9040 0.37
17 0.9962 0.9997 0.9962 0.9975 0.9982 0.9957 0.08
18 0.9861 0.9996 0.9931 0.9936 0.9942 0.9971 0.09
19 0.9718 0.9979 0.9923 0.9990 0.9969 0.9774 0.11
20 0.0157 0.0792 0.0220 0.0087 0.0118 0.0213 0.14
21 0.0105 0.0033 0.0227 0.3151 0.1347 0.0113 0.24
22 0.9912 0.9998 0.9893 0.9854 0.9913 0.8049 0.19
23 0.7439 0.8314 0.8475 0.7549 0.6228 0.7294 0.20
24 0.8946 0.9819 0.8687 0.9284 0.9243 0.9144 0.15
25 0.2970 0.4055 0.2289 0.1883 0.1647 0.5186 0.25
26 0.0269 0.0059 0.1526 0.0655 0.0597 0.0393 0.17
27 0.0144 0.0036 0.0229 0.0173 0.0142 0.0674 0.13
28 0.0106 0.0011 0.0372 0.0148 0.0146 0.0271 0.11
29 0.0181 0.0042 0.0678 0.0181 0.0197 0.0164 0.13
30 0.1026 0.0207 0.1014 0.0956 0.0718 0.0223 0.15
31 0.1394 0.0071 0.1098 0.0323 0.2332 0.0284 0.20
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Residue Run Variance1

1 2 3 4 5 6

32 0.0065 0.0004 0.0208 0.0181 0.0115 0.0061 0.10
33 0.0014 0.0002 0.0091 0.0093 0.0023 0.0027 0.09
34 0.0263 0.0009 0.0323 0.0225 0.0334 0.0124 0.11

1 Here, variance was calculated using −1/ log(prediction variance). The bold lines represent “out-
lier” residues with high CS2BPS prediction variance (whose prediction variance was > 1.5 ×
IQR (the interquartile range).

Table B.5: CS2BPS predictions for the group II intron Sc.ai5γ RNA (PDBID: 2LU0)

Residue Run Variance1

1 2 3 4 5 6

1 0.0019 0.0071 0.0021 0.0006 0.0000 0.0021 0.08
2 0.0000 0.0000 0.0003 0.0003 0.0000 0.0003 0.06
3 0.0000 0.0000 0.0006 0.0024 0.0000 0.0004 0.07
4 0.1217 0.0074 0.1288 0.2312 0.0259 0.2124 0.21
5 0.3120 0.7393 0.4139 0.4779 0.1860 0.4989 0.30
6 0.9402 0.7611 0.5340 0.8485 0.9698 0.9211 0.28
7 0.2835 0.4900 0.5154 0.9249 0.6068 0.6851 0.33
8 0.1511 0.0571 0.1356 0.4864 0.0001 0.1577 0.28
9 0.0003 0.0001 0.0142 0.0031 0.0000 0.0047 0.10
10 0.1476 0.9891 0.4186 0.2001 0.0000 0.2334 0.48
11 0.0307 0.0015 0.1826 0.1690 0.0050 0.1927 0.21
12 0.9992 0.9995 0.9797 0.9459 1.0000 0.9756 0.13
13 0.0330 0.0262 0.1051 0.0246 0.1489 0.2349 0.20
14 0.4399 0.4969 0.1999 0.0375 0.0001 0.2801 0.31
15 1.0000 1.0000 0.9998 0.9973 1.0000 0.9955 0.08
16 1.0000 1.0000 1.0000 0.9986 1.0000 0.9972 0.07
17 0.9999 0.9999 0.9915 0.9877 1.0000 0.9862 0.10
18 1.0000 1.0000 1.0000 0.9994 1.0000 0.9997 0.06
19 0.0002 0.0001 0.0085 0.0004 0.0000 0.0036 0.09
20 0.0761 0.0510 0.3046 0.1181 0.0000 0.1899 0.23
21 0.9438 0.9967 0.8031 0.9051 1.0000 0.7763 0.21
22 0.9759 0.9935 0.9817 0.9686 0.9999 0.9475 0.13
23 0.9926 0.9513 0.8415 0.9305 0.9792 0.8993 0.17
24 0.0019 0.1350 0.0813 0.0312 0.1470 0.3329 0.23
25 0.0033 0.0006 0.0180 0.0104 0.0000 0.0274 0.11
26 0.0014 0.0005 0.0020 0.0022 0.0000 0.0033 0.07
27 0.0001 0.0002 0.0028 0.0004 0.0000 0.0015 0.07
28 0.0001 0.0000 0.0052 0.0027 0.0000 0.0055 0.08
29 0.9064 0.9965 0.9598 0.9475 1.0000 0.8572 0.17
30 0.9988 1.0000 0.9974 0.9871 1.0000 0.9882 0.10
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Residue Run Variance1

1 2 3 4 5 6

31 1.0000 1.0000 0.9999 0.9947 1.0000 0.9991 0.08
32 1.0000 1.0000 1.0000 0.9882 1.0000 0.9985 0.09
33 0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.05
34 0.0000 0.0000 0.0005 0.0003 0.0000 0.0025 0.07
35 0.0000 0.0001 0.0011 0.0026 0.0000 0.0020 0.07
36 0.0000 0.0000 0.0009 0.0043 0.0000 0.0007 0.08
37 0.9800 0.9093 0.8339 0.8825 0.5311 0.7985 0.27
38 0.0085 0.0020 0.0357 0.0183 0.0000 0.0517 0.13
39 0.0002 0.0007 0.0055 0.0170 0.0000 0.0023 0.10
40 0.0038 0.0014 0.0111 0.0012 0.0000 0.0067 0.09
41 0.0007 0.0005 0.0153 0.0007 0.0000 0.0089 0.10
42 0.9659 0.9917 0.8497 0.7930 0.9334 0.8147 0.20
43 0.9999 0.9999 0.9976 0.9959 1.0000 0.9915 0.09
44 0.9999 0.9999 0.9991 0.9942 1.0000 0.9911 0.09
45 0.0056 0.0015 0.0373 0.0030 0.0000 0.0099 0.12
46 0.0048 0.0053 0.0345 0.0857 0.0000 0.0532 0.15
47 0.0337 0.0293 0.0442 0.0055 0.0000 0.0290 0.12
48 0.0041 0.0200 0.0295 0.0673 0.0000 0.0145 0.13
49 0.0030 0.0120 0.0054 0.0124 0.0000 0.0080 0.09

1 Here, variance was calculated using −1/ log(prediction variance). The bold lines represent “out-
lier” residues with high CS2BPS prediction variance (whose prediction variance was > 1.5 ×
IQR (the interquartile range).

Table B.6: Secondary structure prediction accuracy with and without CS2BPS
predictions

Algorithms With CS2BPS predictions Without CS2BPS predictions

TPR PPV TPR PPV

Fold 0.96 0.95 0.94 0.93
ProbKnot 0.96 0.93 0.95 0.92

MaxExpect 0.96 0.96 0.94 0.93

1 TPR is defined as the fraction of base-pairs in the predicted structure that also appeared in
the NMR-derived structure. PPV is defined as the fraction of base-pairs in the NMR-derived
structure that also appeared in the predicted structure.

2 TPR and PPV were calculated using the program scorer in the RNAstructure suite; For Fold,
ProbKnot and MaxExpect, values obtained with and without using CS2BPS predictions as
folding restraints are shown. Using Fold, ProbKnot and MaxExpect with and without CS2BPS
predictions, we obtained 6 secondary structure models. Then the base-pairing status consistency
scores between these 6 secondary structure models and CS2BPS predictions were calculated and
the model with the highest consistency score was selected as the CS-Fold secondary structure
model.
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Table B.7: Imputation accuracy for RNAs with both 1H and 13C chemical shifts
and only 1H chemical shifts

Both 1H and 13C chemical shifts Only 1H chemical shifts

Nucleus type Error (ppm) Nucleus type Error (ppm) Nucleus type Error (ppm)

C1’ 1.12 H1’ 0.20 H1’ 0.18
C2’ 0.98 H2’ 0.18 H2’ 0.19
C3’ 1.31 H3’ 0.17 H3’ 0.20
C4’ 0.84 H4’ 0.11 H4’ 0.17
C5’ 1.14 H5’ 0.22 H5’ 0.18
C2 1.68 H2 0.38 H2 0.35
C5 1.65 H5 0.20 H5 0.19
C6 0.88 H6 0.13 H6 0.20
C8 1.63 H8 0.25 H8 0.33

H5” 0.18 H5” 0.12

Mean 1.25 0.20 0.21

1 To estimate the magnitude of errors that are introduced into the chemical shift data via MICE
imputation, we randomly removed 10% of measured chemical shifts from training set for each nucleus
type and then imputed the remaining data set using MICE. We then calculated the mean absolute
error (MAE) between the measured and imputed chemical shifts.

Table B.8: Chemical shift error analysis for 5KH8 without long range base pairs

Structure MAE RMSE R BME weight

Decoy 1 0.72 1.27 0.91 0.00
Decoy 2 0.72 1.24 0.90 0.00
Decoy 3 0.70 1.26 0.91 0.09
Decoy 4 0.71 1.24 0.91 0.00
Decoy 5 0.75 1.32 0.90 0.00
Decoy 6 0.69 1.21 0.91 0.00
Decoy 7 0.71 1.26 0.91 0.07
Decoy 8 0.72 1.23 0.90 0.00
Decoy 9 0.70 1.23 0.91 0.00
Decoy 10 0.68 1.20 0.91 0.16
Decoy 11 0.77 1.37 0.91 0.03
Decoy 12 0.75 1.31 0.91 0.02
Decoy 13 0.76 1.33 0.90 0.01
Decoy 14 0.73 1.31 0.91 0.16

DSSR Structure 0.70 1.22 0.92 0.45
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Table B.9: SS2CS testing error of different models.

Nucleus Linear Ridge SVR RF ET GB

C1’ 0.84 0.84 0.88 0.79 0.88 0.79
C2’ 0.68 0.67 0.66 0.67 0.74 0.65
C3’ 1.38 1.38 1.43 1.27 1.42 1.29
C4’ 0.80 0.80 0.86 0.78 0.86 0.75
C5’ 0.98 0.98 1.06 0.98 1.08 0.94
C2 1.28 1.25 1.35 1.16 1.37 1.28
C5 1.07 1.06 3.03 0.97 1.08 1.01
C6 0.73 0.74 1.08 0.67 0.78 0.66
C8 0.94 0.94 1.43 0.90 1.02 0.87

Mean 0.97 0.96 1.31 0.91 1.03 0.92

H1’ 0.15 0.15 0.15 0.11 0.13 0.13
H2’ 0.13 0.13 0.14 0.12 0.13 0.12
H3’ 0.13 0.13 0.13 0.11 0.12 0.12
H4’ 0.10 0.10 0.10 0.09 0.10 0.09
H5’ 0.17 0.16 0.16 0.13 0.15 0.14
H5” 0.15 0.15 0.14 0.12 0.13 0.12
H2 0.17 0.17 0.26 0.16 0.17 0.16
H5 0.12 0.12 0.14 0.11 0.12 0.12
H6 0.10 0.10 0.11 0.10 0.10 0.10
H8 0.15 0.15 0.20 0.13 0.15 0.14

Mean 0.14 0.14 0.15 0.12 0.13 0.12
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Figure B.1: RNAs that have been removed from CS2BPS model training set (Part
1).
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Figure B.2: RNAs that have been removed from CS2BPS model training set (Part
2).
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Figure B.3: Optimized θ for the remaining RNAs.
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Figure B.4: PyShifts’ Advanced Options interface. In the Advanced Options tab,
users can: (A) toggle whether weighted differences should be computed; (B) add
offsets to measured chemical shifts; (C) set the outlier threshold value; (D) specify
path to the file containing expected chemical shift errors (i.e., σ values in Eq. 1 and
2); (E) change the color palette and size of the spheres used to visualize computed
chemical shift differences; (F) set the number of structures in the Error Table to
display; (G) set number of clusters PyShifts should use for K-means clustering.

A B

Figure B.5: Visual detection of systematic referencing errors in protein. (A-B)
Shown is the projection of the error between measured and computed chemical shifts
for the T120S mutant of the Staphylococcal nuclease onto the X-ray structure (PDB
ID: 2EYO). At each nucleus for which computed and measured chemical shifts are
available, PyShifts renders spheres whose radius is proportional to the difference
between measured and computed chemical shifts and whose color indicates whether
the difference is negative (red) or positive (blue).
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A C

B D

Figure B.6: (A-D) Structures in the combined ensemble of the protein KstB-PCP
(PDB ID: 2MY6 (free) and PDB ID: 2MY5 (bound)), that exhibited the best between
computed chemical shifts and the measured chemical shifts of the free (C) and bound
(D) states, respectively.
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Figure B.7: Results obtained by clustering the structures of the free-state (red ;
PDB ID: 2MY6) and bound-state (blue; PDB ID: 2MY5) structures of the protein,
KstB-PCP, using their computed chemical shifts as features.
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Figure B.8: Performance comparison between vanilla MLP model and chained model
(Part 1). Shown in the figures are the balanced accuracy scores via a 5-fold cross val-
idation assessment. The first bar in each block (dark red) represents the independent
MLP model; the next 10 bars (salmon) represent chained models with random order-
ings; the last bar (light blue) represents the ensemble model that is averaged from 10
chained models.
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Figure B.9: Performance comparison between vanilla MLP model and chained model
(Part 2). Shown in the figures are the balanced accuracy scores via a 5-fold cross val-
idation assessment. The first bar in each block (dark red) represents the independent
MLP model; the next 10 bars (salmon) represent chained models with random order-
ings; the last bar (light blue) represents the ensemble model that is averaged from 10
chained models.
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Figure B.10: Performance comparison between vanilla MLP model and chained
model (Part 3). Shown in the figures are the balanced accuracy scores via a 5-fold
cross validation assessment. The first bar in each block (dark red) represents the
independent MLP model; the next 10 bars (salmon) represent chained models with
random orderings; the last bar (light blue) represents the ensemble model that is
averaged from 10 chained models.
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