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Abstract 

 

 The warming temperatures and increased drought predicted to occur over the course of 

the next century have the potential to profoundly impact the composition and structure of global 

plant communities. Because of the relevance of forest ecosystems in storing a large amount of 

the planet’s carbon and thus in regulating the earth’s climate, there is a major effort to forecast 

forest composition, structure, and functioning. Accurate predictions will require the application 

of studies that identify how climate drivers (and interactions between multiple drivers) affect 

physiological processes that underlie patterns of demography and assembly. In forest systems, 

community composition is strongly shaped by bottleneck effects that occur during recruitment at 

small size classes, size classes that are highly vulnerable to climate change. In this dissertation, I 

investigated how climate change will affect the seedling demography of two temperate tree 

species that commonly co-occur across eastern North America: Acer saccharum (sugar maple) 

and Quercus rubra (northern red oak). In chapter 2 I investigated how potential climate-driven 

shifts in seedling foliar phenology (in relation to shifts in canopy phenology) could affect the 

ability of seedlings to maintain positive net carbon assimilation over the growing season, a 

dynamic that is commonly referred to as phenological escape. I also modeled how environmental 

conditions drive photosynthetic rates and used that information to estimate the relative 

proportion of carbon that is assimilated in different seasons. In my third chapter I used the same 

photosynthesis models to estimate annual carbon assimilation for individual tree seedlings and 

then modeled the relationship between carbon assimilation and demographic performance 

(growth and survival). I used results from both chapters to project how climate change in my 



 x 

study region could affect seedling demography directly (e.g., via changes in respiration rates 

associated with higher temperatures) and indirectly (e.g., via changes in access to light caused by 

different phenology shifts between seedlings and the canopy). In my last chapter I used a 

greenhouse study to investigate how seedlings of these two species respond to drought, 

specifically looking for differences in stomatal regulation of leaf water potential, reductions in 

photosynthetic capacity, reduction of non-structural carbohydrates, and loss of hydraulic 

conductivity.  

My results suggest that climate change will primarily affect seedling recruitment via changes 

in annual carbon assimilation. Although I found evidence that seedlings are likely to gain access 

to light with warming spring temperatures (thereby increasing net carbon assimilation in spring), 

elevated leaf respiration rates in hotter and drier summers would outweigh these gains and lead 

to net reductions in annual assimilation. In turn, these reductions would reduce seedling 

demographic performance and lead to less growth and higher mortality rates. Access to water 

could affect plant performance via reductions in photosynthetic rates, but seedlings of both 

species are also highly vulnerable to hydraulic failure during severe drought events. In sum, my 

results indicate that seedlings of both species may experience steep reductions in performance 

under extreme climate change, but that phenological escape dynamics may be enough to 

compensate for these reductions under more conservative climate change scenarios. 
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Chapter 1 Introduction 

 

 Climate change is expected to affect the composition, structure, and health of plant 

communities across the world, including temperate forests, my study system. Globally, 

temperate forests cover 767 million hectares and account for ~29.9% of the world's carbon 

storage, accounting for 0.72 Pg C year-1 (Pan et al. 2011), roughly equivalent to the CO2 

produced from the combustion of 81 billion gallons of gasoline1. Therefore, it is imperative that 

scientists understand the processes and mechanisms that underlie plant responses to 

environmental change and how these may shift within the context of global climate change.  

One of the most effective ways to predict the structure and function of future forests is by 

measuring the demographic performance of tree seedlings under varying climate conditions. Tree 

seedlings are more likely than adult trees to experience directional mortality (Green et al. 2014), 

because of limited storage tissue and an inability to access critical resources (e.g., water via deep 

taproots or light via high canopies). Therefore, mortality that occurs during the seedling stage 

acts as a bottleneck that determines which species will eventually make it into the forest canopy 

(Harper 1977, Grubb 1977). Understanding recruitment dynamics and their relation to climate 

drivers will allow scientists to make more accurate predictions of likely dynamics and will allow 

forest managers to make more informed decisions to prepare for the future. 

 

 

1https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references 
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 Demographic performance of tree seedlings is affected by a combination of resource 

availability, biotic interactions, and interactions between the two, and one of the most important 

limiting resources for seedlings in temperate forests is light availability (Canham 1988). Light 

levels under closed tree canopies (i.e., once canopy trees have fully expanded their leaves) can be 

2-3 orders of magnitude lower than in open canopy conditions (see Chapter 2) and are often 

insufficient to fulfill seedling carbon demands via photosynthesis. Although the role of canopy 

gaps in tree recruitment is well-established in the scientific literature (Canham 1988, Popma and 

Bongers 1988), tree seedlings must also be able to establish and survive in full shade conditions 

long enough to take advantage of gaps once they open.  

To do so, seedlings of many temperate tree species make use of a strategy known as 

phenological escape (Jacques et al., 2015), where they expand their leaves in spring up to several 

weeks before the canopy closes in order to make use of high light availability (Augspurger 

2008). Tree seedlings have been shown to assimilate ~80% of their net annual carbon budget 

during this period (Kwit et al. 2010), which is consistent with other studies which measured the 

contribution of early spring photosynthesis for herbaceous spring wildflower species (Heberling 

et al. 2019a, Heberling et al. 2019b). Furthermore, there is strong support in the literature for the 

relationship between plant carbon status and demographic performance (e.g., growth, fecundity, 

and survival; (Hlásny et al. 2011, Hoch et al. 2013, Lusk and Del Pozo 2002, Piper et al. 2009), 

so it is likely seedlings that leaf late in spring will experience reductions in performance 

associated with reduced access to high light availability during this critical period. 

 If this is true, climate change is likely to play an important role in determining 

demographic outcomes. Warmer springs have been extensively linked to earlier spring leaf-out 

phenology in temperate biomes (Piao et al. 2019), and there is evidence that the magnitude of 
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these shifts vary widely by species (Cleland et al. 2007), guild (Heberling et al. 2019b), and 

ontogeny (Cavender-Barres and Bazzaz 2000). For example, if tree seedling leaf-out is more 

sensitive to climate than canopy leaf-out is (i.e., if seedlings experience relatively earlier 

phenology in response to the same climate cues), the duration of high light access in spring 

would increase in the future. This would lead to greater spring carbon assimilation and, 

consequently, increased seedling demographic performance and recruitment. However, the 

opposite would also be true if seedling phenology is less sensitive to climate change compared to 

canopy tree phenology, as has been found for temperate wildflowers (Heberling et al. 2019a). 

Furthermore, the response of seedling leaf-out phenology to climate change may depend on 

species, which would result in increased performance for species that track climate and reduced 

performance for those that do not.  

Although important, changes in spring carbon assimilation will only determine part of a 

seedling’s annual carbon budget. Temperate forests in the U.S. Great Lakes region, my study 

region, are expected to experience increased growing season temperatures and more frequent 

drought events (particularly in summer) due to regional climate change (Handler et al. 2014) 

which could affect recruitment separately from changes in phenology. Hotter summers will lead 

to reductions in net carbon assimilation via increased respiration, which is more sensitive to 

temperature than photosynthesis (Caemmerer 2000), though this may be offset by increases in 

atmospheric CO2 concentration or by plant acclimation to high temperatures (Larigauderie and 

Körner 1995, Smith and Dukes 2012). Drought associated with climate change could likewise 

affect seedling carbon assimilation and demography even if precipitation increases (as it is 

predicted to do in spring; Handler et al. 2014). Plant water availability has been shown to 
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decrease at high temperatures due to elevated evapotranspiration rates and increases in 

precipitation may not compensate for it (Sherwood and Fu 2014).  

Plant drought tolerance is often characterized along a gradient of iso/anisohydry 

(McDowell et al. 2008), with drought-tolerant anisohydric species at one end and drought-

intolerant isohydric species at the other. Species are sorted along this gradient by their stomatal 

response to drought. Isohydric (“same-water”) species close their stomata during drought, 

reducing water lost to atmospheric evaporation and maintaining interior water pressures. This 

allows this group to limit the occurrence of xylem cavitation and damage to the water column, 

but it also prevents them from taking CO2 into the plant, thereby limiting or stopping 

photosynthetic carbon assimilation. Anisohydric species keep their stomata open during drought 

events, allowing them to maintain photosynthetic rates but exposing them to increased risk of 

cavitation. Isohydric plants are more vulnerable to dying during long droughts from carbon 

starvation (i.e., when the plant exhausts labile carbon storage pools and is no longer able to 

maintain basic metabolic rates; Sala et al. 2010, Sala et al. 2012). Anisohydric plants are more 

vulnerable to dying from hydraulic failure during extreme droughts when catastrophic embolism 

cuts off water supply to aboveground tissues (Sperry et al. 2002).  

Adults of temperate tree species vary widely along this gradient (Adams et al. 2017), but 

it is unclear whether tree seedlings follow the same categorization. For example, Cavender-Bares 

and Bazzaz (2000) found that Quercus rubra seedlings showed a more isohydric response to 

drought even though adults of that species fall on the anisohydric end of the gradient. This 

difference is likely partially due to seedlings’ relative inability to access deep water resources, 

for which maintaining photosynthetic capacity would be better suited. The lack of light in the 

forest understory is also a potential factor, as shaded seedlings may be unable to photosynthesize 
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even with ample water availability (Piper and Fajardo 2016), making an isohydric response less 

costly overall. If seedlings tend toward isohydric responses to drought, a reduction in water 

availability could compound on the negative effects of shade and result in lower performance 

than would otherwise be expected. 

Taken together, all of this suggests that accurate projections of seedling demographic 

performance under climate change will require the integration and synthesis of information 

pertaining to multiple ecological and ecophysiological processes. In this dissertation, I combine 

results from a field experiment and a glasshouse study to investigate how climate affects seedling 

phenology in relation to changes in canopy phenology, photosynthetic carbon assimilation in 

seedlings, drought response, and demography. I then use that information to forecast 

demographic performance for tree seedlings by combining it with climate change scenarios 

predicted for the Great Lakes region, where my study is based. 

The climate change scenarios that I used in my predictions are based off projections made 

for the Great Lakes region by Handler et al. (2014), which are summarized in Table SI 2.2 in 

Chapter 2. The scenarios incorporate changes to average climate conditions predicted to occur by 

the end of the century, consistent with the Parallel Climate Model B1 (PCM B1; Washington et 

al. 2000) and Geophysical Fluid Dynamics Laboratory A1FI (GFDL A1FI; Delworth et al. 2005) 

climate change projections that are commonly used in ecological forecasting (IPCC, 2014). PCM 

B1 was developed to represent what future climate conditions might look like assuming the 

significant conservation and reduction of global CO2 emissions and GFDL A1FI predicts the 

‘business-as-usual’ climate conditions where emissions trends are assumed to continue into the 

future. We chose to use these two scenarios in particular because they bracket the scenarios used 
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by the Intergovernmental Panel on Climate Change and therefore represent a realistic range of 

possible climate conditions at the end of the century. 

 

Phenological escape of temperate tree seedlings 

 The period of time between when understory plants leaf out and when temperate forest 

canopies close is critically important for the performance of understory plant species. Previous 

research has shown that plants ranging from herbaceous perennial wildflowers to deciduous tree 

seedlings rely on this window of high light availability to assimilate between 50-100% of their 

annual carbon budget (Kwit et al. 2010, Heberling et al. 2019a). Additionally, annual carbon 

assimilation has been linked to plant demographic performance metrics such as growth (Korol et 

al. 1991, Hlásny et al. 2011), fruiting (Hoch et al. 2013), and survival (Lusk and Del Pozo 2002, 

Piper et al. 2009), suggesting that changes to spring light availability will greatly affect the 

performance of understory plants in deciduous forests. The duration of this period depends on 

the relative phenology of both understory and canopy plants, and recent findings suggest that 

access to spring light may be changing for some species due to differences in climate change 

sensitivity relative to the canopy (Heberling et al. 2019b). However, this area of research has 

been understudied, particularly with respect to phenological escape of woody plant species. 

 In Chapter 2, I used a field experiment to investigate the climate drivers of phenological 

escape dynamics for seedlings of two temperate tree species commonly found co-occurring 

across eastern North America. Contrary to recent work investigating this dynamic in wildflowers 

(Heberling et al. 2019b), I found that seedling leaf-out in spring for both species was more 

sensitive to climate change than the timing of canopy closure was, suggesting that seedlings will 

gain access to light in spring in the future. I used gas exchange measurements to quantify 
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seasonal carbon assimilation for both species and to estimate the change in carbon associated 

with the projected increase in light in spring and the projected increases in temperature and 

reductions in precipitation in summer, relative to current climate conditions. My results suggest 

that years with greater spring light availability will lead to greater assimilation rates in spring for 

seedlings of both species, but that this increase will be offset by increased respiration rates in 

summer, especially under the extreme climate change scenario forecasted for the study region.  

 

Climate change effects on seedling growth and survival 

 Phenological escape has been indirectly linked to understory plant survival, growth, and 

allocation to reproduction (Routhier and Lapointe 2002, Seiwa 2003, Augspurger 2008), and 

directly linked to the carbon assimilation of tree seedlings (Kwit et al. 2010) and herbaceous 

spring wildflowers (Heberling et al. 2019b). However, to the best of my knowledge, no study has 

yet combined these approaches to quantify how changes in spring phenology mechanistically 

affect understory plant demographic performance. In Chapter 3, I used the modeling approach 

developed in my second chapter to estimate annual carbon assimilation for individual seedlings 

in my field experiment and then modeled the relationship between carbon assimilation and 

seedling performance (growth and survival). I then used the same climate change scenarios 

described above to predict future demographic performance for seedlings of my two target 

species. 

I found statistically significant relationships between annual carbon assimilation and 

demographic performance for both species (growth and survival for Acer saccharum and 

survival for Quercus rubra). The predicted decreases in carbon assimilation suggest that climate 

change will result in substantial decreases in performance of both species if global carbon 
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emissions are not reduced. Importantly, despite the overall reduction in annual carbon 

assimilation predicted in Chapter 2, the increases in spring carbon assimilation associated with 

phenological escape dynamics will allow both species to have better demographic performance 

than would otherwise be expected (Prasad et al. 2014). 

 

Seedling physiological response to drought 

 Much of the forest drought response literature focuses on arid systems such as the 

Mediterranean or the American southwest where droughts are frequent and where many tree 

species are already near their physiological limits (Allen et al. 2015). Still, many other regions 

and biomes are expected to experience changes in precipitation patterns and increases in 

evapotranspiration that will result in prolonged, intensified, or more frequent drought (Dai 2011, 

Sherwood and Fu 2014). This includes the U.S. Great Lakes region where climate change is 

expected to result in increases Spring precipitation, but paradoxical increases in drought events 

during the summer due to both lower summer precipitation and increased temperature (Handler 

et al. 2014).  

 In Chapter 4 I used a glasshouse dry-down experiment to quantify drought response for 

seedlings of the same two species I investigated in Chapters 2 and 3. Drought can affect tree 

seedling recruitment directly via hydraulic failure (i.e., catastrophic embolism of xylem) or 

indirectly via reduced photosynthetic capacity associated with isohydric stomatal behavior and 

subsequent carbon starvation (McDowell et al. 2008). I measured the effects of drought and 

shade (which can both exacerbate carbon starvation and ameliorate the effect of high 

temperature) on three metrics related to drought tolerance: nonstructural carbohydrate 

concentrations ([NSC]), photosynthetic capacity, and xylem conductivity. Despite adults of my 
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two study species being classified differently along the isohydric/anisohydric gradient (A. 

saccharum is considered isohydric while Q. rubra is anisohydric), seedlings of both species 

showed very similar responses to reduced water availability. Seedlings exhibited decreases in 

[NSC] and reductions in photosynthetic capacity characteristic of isohydric stomatal regulation. 

Isohydry was also supported by the relatively conservative internal water pressures maintained 

by both species (> -1 MPa), although there were a few instances where Q. rubra seedlings were 

able to withstand more negative pressures, suggesting they may have a slightly greater 

inclination for anisohydric behavior. 

 

Tree recruitment under future climate change 

 The role of climate change in shaping future forests is complicated and nuanced, a fact 

that has been emphasized recently by studies showing that climate change responses are often 

non-linear and depend on combinations of climate drivers that have no present analog (Jackson 

and Williams 2005, Wolkovich et al. 2012). One solution for this problem is to prioritize studies 

that investigate the roles of multiple climate drivers on the physiological mechanisms that 

underlie the ecological phenomena of interest. In this dissertation I used such an approach to link 

shifts in phenology to tree seedling performance via changes in seasonal and annual carbon 

assimilation. As I conclude in Chapter 5, despite increases in early spring light availability and 

consequent increases in spring carbon assimilation, scenarios forecasting hotter and drier 

summers could result in elevated respiration costs for temperate tree seedlings that result in 

reduced performance projected under climate change if global CO2 emissions are not reduced. 

Still, the increase in spring carbon assimilation results in higher projected performance than 
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would otherwise be expected, suggesting that phenological escape dynamics will play an 

important role in determining future forest communities.  
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Chapter 2 Tree Seedling Carbon Accumulation 

 

ABSTRACT 

Climate change is projected to impact plant performance in several ways. On one hand, 

warmer springs will increase the length of the growing season; on the other hand, warmer and 

drier summers will likely have a negative impact on plant carbon assimilation. In forests, 

understory plants heavily rely on high light availability early in spring for their annual carbon 

budget, thus it is important that their growing season is extended at the same rate or faster than 

that of the canopy. At the same time, although warmer temperatures could result in increased 

photosynthetic assimilation, they would also disproportionately increase plant respiration. This is 

especially true in summer when respiration costs are highest, and so it will be important that 

increases in summer respiration do not offset increases in spring assimilation. 

In this study, we assessed the interactive impact of earlier springs and warmer summers 

on seedling performance of two dominant eastern North American tree species, Acer saccharum 

and Quercus rubra. We used photosynthetic parameters obtained from in situ gas exchange 

measurements to predict if the combined changes in spring phenology and summer temperature 

will result in significant shifts in seedling net annual carbon accumulation. Our results indicate 

that seedling leaf out is more sensitive to warming than the canopy and that seedlings will 

therefore gain access to light in spring, thereby increasing the amount of gross annual assimilated 

carbon by 39 to 50%. However, our results also indicate that this increase in gross assimilation 

will be largely offset by 71 to 124% increases in gross annual respiration costs due to higher 

temperatures. Finally, we found these responses were context dependent, with seedlings having 
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higher performance when planted under A. saccharum adult trees than when planted under Q. 

rubra adult trees. We simulated carbon budgets under climatic scenarios to assess future 

recruitment of these species. Overall, seedling carbon budgets are projected to decrease, and in 

some cases, especially under Q. rubra canopies, seedlings are not likely to sustain a positive 

carbon budget. This mechanistic approach of assessing future tree recruitment under climate 

change provided valuable insight into future tree demographic dynamics. 

 

INTRODUCTION 

With the onset of global warming, plant species are undergoing a variety of physiological 

changes triggered by their new environment. Plants in temperate forests are experiencing longer 

growing seasons due to warmer spring and fall seasons (Menzel and Fabian 1999, Chuine and 

Beaubien 2001, Chuine 2010, Fu et al. 2014, Piao et al. 2019), but also reduced photosynthetic 

performance due to hotter and drier summers (McDowell et al. 2008, Elliott et al. 2015). 

However, despite their potential impact, the synergistic consequences of changes in light and 

water availability on plant performance have rarely been quantified (but see Sack 2004, 

Niinemets 2010), thereby leaving an important gap in our ability to understand and anticipate 

plant performance within multiple climatic contexts. 

Shifts in plant phenology have been one of the most widely reported responses of 

organisms to current climate change (Ibáñez et al. 2010, Menzel and Fabian 1999, Piao et al. 

2019). However, few studies have addressed the implications that such phenological trends 

might have on individuals and the resulting implications for their populations and communities 

(but see Visser et al. 1998, Visser and Holleman 2001, Heberling et al. 2019). Climate change 

has led to a global advancement in the onset of spring in temperate biomes (Root et al. 2003, 
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Piao et al. 2019) and canopies are developing sooner (Richardson et al. 2006, Keenan et al. 

2014), but it is unknown whether seedling phenology is adjusting at the same rate (Wolkovich et 

al. 2012, Heberling et al. 2019). Little is currently known about the biochemical pathways that 

link climatic drivers to plant phenology, and so it is difficult to identify a mechanism that fully 

explains the differences in phenology observed across ontogenetic stages. Still, such changes 

could occur as a result of differences in climatic cues (e.g., air temperature versus temperature 

buffered by snow (Chen et al. 2015), which would differently affect the development of foliar 

buds in canopy trees and seedlings, respectively) or potentially via differential gene expression 

(Wilczek et al. 2010). 

In the case of temperate forest ecosystems, seedlings of deciduous trees experience leaf-

out several days before their adult counterparts and some have been shown to rely on that period 

of high light availability before the canopy develops to fix most of that year’s carbon (Kwit et al. 

2010). If phenological shifts differ among species, and the time between seedling and canopy 

leaf-out increases for some but decreases for others (Fig. 2.1a), competitive abilities could shift 

and consequently alter species’ relative performance (survival and growth). These changes could 

eventually affect the structure, diversity, and functioning of the future ecosystem (Green et al. 

2014, Umaña et al. 2016). 

Shifts in fall foliar phenology (i.e. the timing of leaf coloring and leaf senescence) will 

also alter the length of the growing season. Although less studied, it has also been suggested to 

play a significant role in determining net carbon budgets for deciduous plants in temperate 

systems (Gill et al. 1998, Fridley 2012). Seedlings of many temperate tree species retain their 

leaves until after the canopy has reopened in order to make use of a second peak in understory 

light availability (Gill et al. 1998, Augspurger 2008, Kwit et al. 2010). Autumn canopy 
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reopening (i.e., canopy leaf senescence) is projected to shift later with warming (Piao et al. 

2019), and it is possible that seedling leaf senescence may shift at a different rate than the 

canopy, leading to a dynamic similar to the one in spring. Therefore, it is important that studies 

addressing the annual carbon budgets of understory plants take into account both leaf-expansion 

in spring and leaf senescence in fall. 

Global warming is also likely to impact growing conditions (Pryor et al. 2014), and 

potentially affect photosynthetic activity of coexisting species differently (Oren et al. 1999). Net 

photosynthetic rates (Fig. 2.1b) are the sum of carbon gained from assimilation rates, which can 

be limited by water, light, and access to CO2, and carbon lost from respiration, which is 

exacerbated by high temperatures. Annual carbon accumulation (also referred to as carbon 

budget or carbon balance) integrates net photosynthesis over the course of the growing season. 

Photosynthetic and respiration rates differ by species (Patrick et al. 2009), time (Baurle et al. 

2012), and local climate environment (Peltier and Ibáñez 2015), but they are also strongly 

affected by how a plant responds to drought (Elliott et al. 2015, Marchin et al. 2015, Fahey 

2016). Many drought-intolerant species follow an isohydric response to drought: they close their 

stomata to restrict water loss, which simultaneously restricts photosynthetic activity. After 

extended drought conditions, these plants may experience reduced photosynthetic performance, 

and even death, due to carbon starvation (i.e., depletion of the plant’s carbon balance; McDowell 

and Sevanto 2010). In contrast, many drought-tolerant species are classified as anisohydric, 

meaning they keep stomata open during drought, maintain photosynthetic rates and growth, but 

increase their risk of death via hydraulic failure during intense droughts (McDowell et al. 2008).  

Summers are projected to become drier in many forest ecosystems, and vegetation 

forecasts subsequently predict an increase in drought-tolerant anisohydric species (Gustafson and 
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Sturtevant 2013). However, such studies largely ignore the potential for temperate plants to 

offset the increased carbon costs associated with summer drought and warming by increasing 

their access to high light availability (and therefore increasing carbon assimilation) at either end 

of the growing season. Although drought-tolerant species are likely to outperform intolerant 

species in the long term, seedling performance over years to decades will depend on the 

combined response to both earlier spring growth and summer drought, and of that we know little 

(Sack and Grubb 2002, Sack 2004, Niinemets 2010, Hartmann 2011). For instance, increased 

spring light availability may mitigate the effects of summer shade- and drought-induced carbon 

starvation in seedlings of isohydric species. 

These species are already photosynthetically limited by water in the summer and so drier 

summers might not have a large impact in their carbon budgets. Concurrently, changes in spring 

light availability may not affect late-leafing seedlings of anisohydric species, but, even if they are 

drought-tolerant, drier summers would likely have a negative effect on their growth as they are 

photosynthetically active during the whole growing season. These scenarios, although plausible, 

contradict most predictions made of forest responses to global warming. Thus, a considerable 

knowledge gap must be filled as to how these varying responses to climate change interact to 

affect overall plant carbon assimilation and performance. 

To gain a better understanding of how the multifaceted effects of climate change may 

affect seedling performance under projected scenarios, we measured foliar phenology and 

growing season photosynthesis in seedlings of two temperate tree species with contrasting spring 

phenologies and hydraulic strategies. We asked the following questions: 1) Could warming 

temperatures lead to tree seedlings increasing, maintaining, or losing access to light in spring and 

fall? 2) How might projections of increasing temperatures and decreasing water availability 
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affect seedling carbon assimilation? 3) What are the combined effects of these two processes on 

net annual carbon assimilation and how might carbon assimilation change under forecasted 

conditions?  Answering these questions will inform ecologists how tree seedling carbon budgets 

are affected by their environment and will yield important insight into how temperate tree 

recruitment may change in the future. 

 

METHODS 

Experimental Design 

Study Locations 

Our study took place at three locations in southeast Michigan, USA: Saginaw Forest 

(42.270977 N, 83.806022 W), Radrick Forest (42.287083 N, 83.658056 W), and the E. S. 

George Reserve (42.457104 N, 84.020226 W). All three locations have similar climates, 

averaging 22 °C in summer (June-August) and -6 °C in winter (December-February); annual 

precipitation is 925 mm and is evenly distributed throughout the year. Radrick Forest and E. S. 

George Reserve are mesic temperate hardwood forests dominated by Acer, Prunus, and Quercus 

species whereas plots at Saginaw Forest are former monocultures of Acer saccharum and 

Quercus rubra planted in the early 1900’s.   

 

Study Species 

We chose to use two species for this study that would allow us to generate hypotheses 

about roles of phenological and hydraulic traits: Acer saccharum (Marsh.) and Quercus rubra 

(L.). A. saccharum is late-successional, Q. rubra is mid-successional, and both species are 

common across our study region and regularly co-occur. A. saccharum is one of the earliest 
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species in temperate hardwood forests to expand its leaves in spring, whereas Q. rubra is 

typically one of the last (Augspurger and Bartlett 2003). The opposite is true at the end of the 

growing season where A. saccharum undergoes color change and leaf senescence much earlier 

than Q. rubra. These differences suggest that A. saccharum and Q. rubra may differ in 

sensitivity to the climate cues that trigger their foliar phenology. With respect to hydraulic 

features, A. saccharum has diffuse-porous xylem (narrow conduits) and demonstrates isohydric 

stomatal behavior in response to drought (Roman et al. 2015), both of which help this species 

avoid catastrophic xylem embolism (i.e. hydraulic failure). In contrast, Q. rubra is ring-porous 

(wider xylem conduits) and anisohydric (Roman et al. 2015), traits which allow the species to 

maintain photosynthetic activity during drought but leaving them more vulnerable to hydraulic 

failure. This is beneficial to Q. rubra in extended drought periods that are moderate in intensity, 

whereas A. saccharum runs the risk of succumbing to carbon starvation. A. saccharum and Q. 

rubra are both predicted to decrease in importance value across eastern North America under 

climate change (Iverson et al. 2008), but the former is expected to experience a stronger decline, 

particularly in the location of this study (southeastern Michigan). 

 

Field experimental set up 

We transplanted seedlings of the study species at all three sites in three cohorts (2014-

2016). Seeds of each species (for seed sources see Table SI 2.1) were cold stratified over winter 

according to published protocol before being germinated in large tubs containing potting soil 

(Sun Gro Horticulture; Agawam, MA, USA) in a greenhouse. Approximately four weeks after 

germination, we gently removed them from the soil and transplanted them bare root in the field. 

Because seedling survival and growth may be additionally modified by biotic interactions 
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associated with neighboring adult trees via soil mechanisms such as plant-soil feedbacks 

(McCarthy-Neumann and Ibáñez 2012), allelopathy (Pellissier and Souto 1999, Gómez-Aparicio 

and Canham 2008, Ruan et al. 2016), and nutrient availability (Phillips and Fahey 2006, Classen 

et al. 2015), at each site seedlings were planted under both A. saccharum and Q. rubra trees. 

There were three replicate canopy trees per canopy species and site. Depending on seedling 

availability in each year, five to ten seedlings per target species were transplanted in separate 

rows extending from the base of each adult canopy tree (for detailed number of seedlings planted 

see Table SI 2.1). 

 

Data collection 

Environmental data 

We established environmental data stations at each site that measured temperature (°C), 

relative humidity (%), soil moisture (%), and photosynthetically active radiation (PAR; μmol 

photons m-2 s-1) at hourly intervals. Temperature and relative humidity were measured using 

HOBO U23 Pro v2 data loggers (Onset Computer Corporation; Bourne, MA, USA) placed at 

central locations at each site. Soil moisture and PAR were measured using Smart Sensors in 

combination with HOBO Micro Stations (Onset Computer Corporation). 

 

Leaf Phenology 

Canopy phenology was measured as the change in light availability in the understory 

measured by the PAR sensor. Day of canopy closure in the spring was defined as the day in 

which the average daytime PAR (between 1000-1700 hours) dropped below 100 μmol m-2 s-1 and 

then did not increase above that threshold for one week (in order to rule out the possibility of low 
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light resulting from cloudy days). We estimated the day of canopy reopening in the fall as the 

day at which average daytime PAR (between 1000-1700 hours) increased above 20 μmol m-2 s-1 

without then decreasing below that value for more than a day (to account for cloudy weather). 

This value is much lower than the threshold we used to estimate canopy closure in spring 

because there is significantly less radiation in fall due to the angle the sunlight passes through the 

atmosphere (Fig. SI 2.6). 

Seedling foliar phenology was measured on a weekly basis in spring and fall beginning 

the year following transplantation (e.g., 2015 for the first cohort). We recorded the date of leaf 

expansion in spring and leaf color change and senescence in fall for each individual at weekly 

intervals. We used standardized initial leaf expansion, autumnal leaf color change, and leaf 

senescence (i.e., “initial leaf occurrence”, “colored leaves”, and “falling leaves” sensu Denny et 

al. [2014]). A previous study noted a significant drop in net carbon assimilation associated with 

high respiration rates during the breakdown and resorption of photosynthetic machinery in fall 

(Collier and Thibodeau 1995). In order to account for this elevated respiration early in fall, we 

recorded two fall phenophases that differ in the total amount of leaf area that has undergone 

color change associated with nutrient resorption. Fall1 was defined as the period of time 

beginning with the onset of leaf color change and ending when 50% of leaf area had changed 

color. Fall2 was defined as the period between the end of Fall1 and when all leaves had fully 

senesced. Leaf coloration was measured visually and did not include discoloration caused by 

foliar pathogens. We measured foliar phenology for four years (2015-2018) and canopy 

phenology for 9 years (2010-2018). 

  

Photosynthesis and Carbon Assimilation Data Collection 
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We used a LI-6400 Portable Photosynthesis System equipped with a CO2 mixer 

assembly, LI-02B LED red/blue light source and LI-06 PAR sensor (Li-COR Biosciences, 

Lincoln, NE, USA) to measure in situ gas exchange for a subset of transplanted seedlings 

following spring leaf expansion and continuing through the growing season. Gas exchange 

measurements were taken once every two weeks in spring and fall and approximately monthly 

during the summer for the 2015-2017 growing seasons. We constructed A-Ci (at 400, 300, 200, 

100, 50, 400, 400, 600, 800, 1000, 1250, and 1500 ppm CO2) and A-Q curves (at 1500, 1000, 

750, 500, 250, 125, 60, 30, 20, 10, and 0 μmol photon m-2 s-1) for each seedling, maintaining 

ambient humidity and temperature. Leaves smaller than the cuvette were traced in the field and 

leaf area was measured using ImageJ software (Schneider et al. 2012). Soil moisture was 

measured at the individual seedling level during each measurement using a Fieldscout TDR300 

Soil Moisture Meter (Spectrum Technologies, Aurora, IL, USA).  

 

Analyses 

 Projecting the effects that climate change will have on seedling phenology and carbon 

assimilation involves great uncertainty. This includes both the uncertainty surrounding what 

future climates will look like as well as the uncertainty entailed in making long-term predictions 

using data collected across random variability of climate drivers. The climate change scenarios 

we use here to project the possible changes in phenology and carbon assimilation of temperate 

tree seedlings represent the best- and worst-case climate scenarios developed by the IPCC 

(2014). Therefore, although it is unlikely that either of the two scenarios accurately portrays 

environmental conditions in 2100 in their entirety (Hausfather and Peters 2020), they can still 
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serve to bound our expectations for what seedling performance could look like at the end of the 

century. 

  The second source of uncertainty, associated with using random variability to make 

long-term predictions, arises from two main sources. First, climate change is projected to result 

in no-analog environmental conditions (Jackson and Williams 2005) that include combinations 

of drivers that are not represented in field experiments without direct manipulation (e.g., Sendall 

et al. 2014). Second, climate change relationships are often nonlinear, and it can therefore be 

difficult to predict the effects of climate change past the limits of observed variability 

(Wolkovich et al. 2012). Still, capitalizing on natural variability to infer potential future 

performance is currently one of the best tools we have to forecast ecological change (Ibáñez et 

al. 2013). 

 

Phenology 

Day of canopy closure (spring) and canopy reopening (fall) was analyzed for as far back 

as we had been taking these measurements (2011 for E. S. George Reserve, 2012 for Radrick 

Forest, and 2015 for Saginaw Forest; n = 20 because of occasional missing data). Canopy tree 

leaf-out is tightly linked to climate cues such as temperature forcing (Ibáñez et al. 2010), winter 

vernalization (Roberts et al. 2015), and frost occurrence (Vitasse et al. 2014) as well as 

photoperiod (Way and Montgomery 2015), which varies latitudinally rather than temporally. We 

tested the effects of monthly and seasonal average, minimum, and maximum temperatures and 

frost occurrence (number of days per month or week with average daytime temperature < 0 °C) 

on day of canopy closure and seedling leaf expansion and chose the models with the best fit to 
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use in this analysis (Fig. SI 2.7ii). We analyzed day of canopy closure for each site s, and year y, 

using a normal likelihood distribution: 

𝐶𝑎𝑛𝑜𝑝𝑦𝐶𝑙𝑜𝑠𝑢𝑟𝑒𝑠,𝑦 ~ 𝑁(𝜇𝑠,𝑦, 𝜎2) 

The mean, μ, is modeled with linear relationships to different climatic factors (n) and site random 

effects (α): 

𝜇𝑠,𝑦 = 𝛼𝑠 + 𝛽𝑛 × 𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝐹𝑎𝑐𝑡𝑜𝑟𝑛,𝑦 

𝛼𝑠𝑖𝑡𝑒~𝑁(𝜌𝛼 , 𝜎2
𝛼) 

Seedling spring foliar phenology was modeled similarly, but in this case included individual 

random effects (since we have individual level phenology across years). Additional analysis did 

not reveal a significant effect of canopy species, seed source, or planting cohort on seedling 

phenology, so they were not included in the final models. For all three analyses (canopy closure 

and seedling phenology for two species), we used non-informative prior distributions in our 

estimation of parameters, 𝛽𝑛 ~ N(0, 1000), 𝜌𝛼 ~ logN(1, 1000), and 1/𝜎2
𝛼 ~ Gamma(0.001, 

0.001). 

For seedling fall phenology we estimated the timing of the three events that defined the 

end of Summer through the end of Fall: 1) Fall 1: onset of leaf color change, 2) Fall 2: greater 

than 50% leaf coloring, and 3) leaf senescence. As with spring phenology, we evaluated the 

relationship between fall phenology and canopy reopening and several climate variables 

including monthly and seasonal average, minimum, and maximum temperature; monthly and 

seasonal average, minimum, and maximum soil moisture; and monthly and weekly frost 

occurrence (number of days with average daytime temperature < 0 °C). Similarly, we included 

individual random effects in the seedling models and site random effects in the canopy reopening 

models. 



 26 

Seedling phenology models included data for all seedlings that successfully established 

and survived for at least one year. Because of growing season mortality in the year following 

planting, sample size was higher in spring (n = 43, 24, 47, and 23 for A. saccharum in 2015, 

2016, 2017, and 2018, respectively, and n = 23, 17, 95, and 46 for Q. rubra) than in fall (n = 25, 

15, 30, and 18 for A. saccharum and n = 15, 11, 59, and 36 for Q. rubra). The photosynthetic 

model used data collected from a subset of these seedlings (n = 35 and 37 for A. saccharum and 

Q. rubra, respectively). 

 

Photosynthesis and Carbon 

We analyzed our gas exchange data using an adaptation of the Farquhar et al. (1980) 

model of C3 photosynthesis originally developed by Patrick et al. (2009) and then further 

modified by Peltier and Ibáñez (2015). Patrick et al. (2009) adapted the Farquhar et al. (1980) 

model into a Bayesian framework and incorporated light dependency of potential electron 

transport according to Farquhar and Wong (1984) and mesophyll conductance according to 

Caemmerer and Evans (1991), Caemmerer (2000), and Niinemets et al. (2009). Peltier and 

Ibáñez (2015) then included linear relationships with additional explanatory variables (i.e., soil 

moisture and vapor pressure deficit; VPD) and allowed seasonal variation of certain parameters. 

A detailed description of the model (Fig. SI 2.7i) can be found in Supporting Information 2.2 

along with tables of associated parameter definitions (Table SI 2.5) and parameter posterior 

estimates (Table SI 2.6).  

Because we were interested in the role of phenology in these parameters, we estimated 

photosynthesis model parameters for each of the following phenophases : 1) spring period 

between leaf-out and the day of canopy closure; 2) summer, defined as the time between canopy 
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closure and the beginning of leaf coloration; 3) Fall 1, the time between the onset of coloration 

and when a specific leaf had surpassed 50% of coloration; and 4) Fall 2, measurement taken 

between 50% coloration and leaf senescence. Preliminary data analysis did not indicate 

differences in photosynthetic rates based on seed source or cohort (age), so these variables were 

not included in the analysis. 

 

Predicting photosynthetic performance over the growing season 

We simulated current average climate conditions by averaging hourly temperature, soil 

moisture, and relative humidity data collected from our environmental sensors across all three 

sites between 2014-2018 (Fig. SI 2.7iii). VPD was calculated from relative humidity and 

temperature and then both VPD and soil moisture data were centered around their respective 

annual means. Climate conditions were then estimated for two climate change scenarios in the 

year 2100 (Table SI 2.2, Handler et al. 2014) that assume either a global reduction in carbon 

emissions (Scenario 1) or maintained levels of carbon emissions (Scenario 2). We transformed 

‘current climate’ temperature, soil moisture, and VPD simulated data by applying climate 

projections for our study region (Table SI 2.2; Handler et al. 2014). Spring and fall light 

availability were accounted for by using the posterior estimates of canopy close and reopening 

from the canopy phenology models and shifting simulated light data under current conditions to 

match projected phenology dates. We then used parameter estimates (mean and variances) from 

our photosynthesis and phenology models combined with the simulated climate data to estimate 

annual carbon assimilation, respiration, and accumulation for seedlings of each species (Fig. SI 

2.7iv). A full description of simulated data generation, including the approximation of summer 

light availability, can be found in Supporting Information 2.3. 
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All models were run using OpenBUGS 3.2.3 (Lunn et al. 2009). Model code and 

associated data for phenology and photosynthesis models are available (see Data Availability). 

Phenology models were run for 50,000 iterations and posterior densities were calculated 

following a 10,000-iteration burn-in period. Photosynthesis models were run for 8,000 iterations 

following a 2,000-iteration burn-in. Convergence for parameters in both sets of models was 

assessed visually and by using the Brooks-Gelman-Rubin statistic from two independent chains 

(Gelman and Rubin 1992). Parameter values (means, variances, and covariances) were estimated 

from their posterior distributions. Climate effects (β in phenology models) were considered 

significant if the 95% confidence intervals of their posterior distributions did not overlap zero.  

 

RESULTS 

Spring Canopy and Seedling Phenology 

The variation in average spring, February, and August temperatures that were observed 

over the course of our experiment was of the same order of magnitude as the projected changes 

in seasonal temperature (see Table SI 2.2) made by Handler et al. (2014). Average observed 

February temperature in our study ranged from -11.1 to 1.3 °C (expected change in Scenario 1 is 

+ 1.4 °C from a baseline temperature of -6.4 °C and is + 4.1 °C for Scenario 2), average March-

April temperature ranged from 2.5 to 6.5 °C (projected Scenario 1 change + 0.9 °C from a 

baseline temperature of 5.1 °C, projected Scenario 2 change + 3.3 °C), and average August 

temperature ranged from 18.7 to 22.4 °C (projected Scenario 1 change + 1.2 °C from a baseline 

temperature of 18.3 °C, projected Scenario 2 change + 6.2 °C). 

The best model predicting spring phenology included average February temperature and 

average Spring (March-April) temperature for both canopy and seedlings (based on deviance 
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information criterion, DIC; Spiegelhalter et al. 2002; Fig. 2.2a). Fits (R2, predicted vs observed 

values) for our spring phenology models were 0.55 for A. saccharum seedlings, 0.39 for Q. rubra 

seedlings, and 0.38 for canopy closure. Average spring temperature (SpT) was negatively and 

significantly associated with spring leaf-out (leaf-out took place earlier in years with warmer 

springs) in all three models (Fig. 2.2b). However, average February temperature (FebT) was 

positively and significantly associated with A. saccharum seedling leaf-out, negatively and 

significantly associated with Q. rubra seedling leaf-out, and positively, but non-significantly, 

associated with canopy closure (Fig. 2.2b).  

Modeled canopy closure shifted 1.6 and 5.4 days earlier in Scenarios 1 and 2, 

respectively, relative to current climate conditions (Fig. 2.2c). A. saccharum seedling leaf-out 

shifted 2.4 and 9 days earlier in the two climate change scenarios, leading to increased 

differences between seedling leaf-out and canopy close from 18.4 days in current conditions to 

19.2 days in Scenario 1 and 21.5 days in Scenario 2. Q. rubra seedlings shifted leaf-out 2.3 and 8 

days earlier in the two climate change scenarios, leading to increased difference between leaf-out 

and canopy close from 12.2 days in current conditions to 12.9 days in Scenario 1 and 14.3 days 

in Scenario 2. 

 

Fall Canopy and Seedling Senescence Phenology 

The best model predicting fall phenology for both canopy reopening and seedling 

phenophases included August average temperature (based on DIC). Leaf senescence model fit 

(Fig. 2.2d; R2, predicted vs. observed values) was 0.87 and 0.39 for A. saccharum and Q. rubra 

seedlings, respectively, and 0.64 for the canopy closure model. The timing of all three events 

shifted later with increases in average August temperature; the association was significant for Q. 
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rubra senescence and canopy reopening but not for A. saccharum (Fig. 2.2e). Senescence in A. 

saccharum seedlings was projected to occur prior to canopy reopening under current conditions 

and both future climate scenarios, resulting in no net change to fall light availability for this 

species (Fig. 2.2f). In contrast, Q. rubra seedlings are projected to experience a decrease in 

access to light prior to leaf senescence from 14.2 days under current climate conditions to 11.9 

days in Scenario 1 and 2.3 days in Scenario 2. Information for other Fall events is provided in 

Figures SI 2.8 and 2.9. 

 

Photosynthesis analysis 

Model fits for the seedling carbon assimilation models (R2, predicted vs. observed) were 

0.72 for A. saccharum seedlings and 0.76 for Q. rubra seedlings. Photosynthetic parameter 

estimates (Fig. SI 2.10; Table SI 2.6) were largely consistent with previous research published 

for these two species (Peltier and Ibáñez 2015). Soil moisture had significant positive effects on 

net photosynthesis, whereas negative effects of VPD were more apparent in fall (Fig. SI 2.11). 

Projected daily rates of net carbon assimilation peaked in spring (i.e., carbon assimilation rates 

were much higher than respiration rates; Tables SI 2.3 and 2.4) for seedlings of both species, in 

both canopy treatments, and in all three climate simulations (Fig. 2.3a-b and 2.4a-b). Projected 

daily net assimilation rates decreased as the canopy closed and were relatively constant 

throughout the remainder of the growing season, although there was a consistent drop in net 

assimilation rates at the beginning of fall associated with the onset of leaf color change (Fig. 

2.3a-b and 2.4a-b).  

Acer saccharum seedlings planted under A. saccharum adults were predicted to maintain 

positive net assimilation rates throughout the summer under current climate conditions and in 
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climate Scenario 1 (Fig. 2.3a). In Scenario 2, projected net assimilation rates became negative for 

a large portion of summer before becoming positive again in late summer, associated with 

increased water availability from increased rainfall. In contrast, when planted under Q. rubra 

adults, A. saccharum seedlings are predicted to have net negative assimilation rates for most of 

the growing season in all three climate simulations (Fig. 2.3b). Projected net assimilation rates 

were particularly negative in Scenario 2, which was the only species-canopy-scenario 

combination to have days where all hours were projected to have negative carbon assimilation 

rates.  

Quercus rubra seedlings in current climate conditions are predicted to have similar 

responses between the two canopy treatments (Fig. 2.4a-b), with net positive daily assimilation 

rates in spring as well as in late summer, again corresponding to periods of increased water 

availability. This pattern was maintained under Scenario 1, but seedlings in both treatments 

suffered under Scenario 2 with long periods of time in summer with consistently negative carbon 

assimilation rates (Fig. 2.4a-b). Projected net carbon assimilation rates were negatively affected 

when planted under Q. rubra canopies (Fig. 2.4b).  

 

Carbon accumulation simulation 

When integrated over the growing season, modeled carbon accumulation reflected the 

trends in net carbon assimilation rates. Seedlings of both species were predicted to 

constructpositive carbon budgets in spring across both canopy treatments and in all three climate 

simulations (Fig. 2.3c-d and 2.4c-d). By the end of summer, estimated carbon accumulation 

ranges from strongly positive (e.g., seedlings of both species under A. saccharum in current 

climate conditions and in Scenario 1; Fig. 2.3c and 2.4c), to neutral (e.g, Q. rubra under A. 
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saccharum in Scenario 2; Fig. 2.4c), to strongly negative (e.g., A. saccharum seedlings under Q. 

rubra in Scenario 2; Fig. 2.3d). Projected carbon accumulation changed little in fall, with 

seedlings of both species and in all climate scenario-canopy combinations tending to maintain 

carbon levels from the end of the summer. Climate scenario played a large and obvious effect on 

carbon accumulation. Projected net carbon accumulation in summer declined more sharply in 

Scenario 2 than in current conditions or Scenario 1, reaching negative values in three out of the 

four species-treatment combinations (Fig. 2.3c-d and 2.4c-d). Only A. saccharum seedlings 

under conspecific canopy trees are projected to maintain positive carbon budgets across the 

entire growing season under the most extreme scenarios (Fig. 2.3c), and then only because of the 

sharp increase in projected spring assimilation. Q. rubra seedlings under A. saccharum canopy 

trees in Scenario 2 are also projected finish the growing season with positive carbon 

accumulation, but only after a short period in fall with net negative accumulation (Fig. 2.4c). 

Growing season respiration was projected to increase more in the two climate change 

scenarios compared to projected assimilation from photosynthesis (Fig. 2.5, Tables SI 2.3 and 

2.4). Differences in canopy treatment effects were primarily driven by differences in projected 

respiration costs, with consistently greater respiration for both species of seedling when growing 

below Q. rubra adults (Fig. 2.5b) than when planted below A. saccharum adults (Fig. 2.5a). 

Carbon lost to respiration was estimated to increase by 71-124% (across both species) in the 

more extreme climate change scenario (Scenario 2) whereas carbon gain from photosynthesis 

would only increase by 39-50% under the same conditions. Projected increases in gross carbon 

gain were strongest in spring, where predicted increases in access to light led to 75-167% 

increases in carbon gained, and projected increases in respiration costs were strongest in summer 

(79-163% increases). Although across all three climate simulations the spring seasonal bin 
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represented only 11% or 7% of the total length of the growing season (A. saccharum and Q. 

rubra, respectively), estimated spring gross carbon assimilation accounted for 18-22% of annual 

gross assimilation under current climate conditions and 24-33% in Scenario 2. Seasonal values 

can be found in Tables SI 2.3 and 2.4. 

 

DISCUSSION 

Climate change is projected to simultaneously affect growing season length (Piao et al. 

2019) and summer water availability (Choat et al. 2012); however, few studies account for both 

effects when making predictions of future tree recruitment. In this study, we investigated the 

combined effects of temperature and water availability on seedling phenology, i.e., growing 

season length, and carbon assimilation for two species dominant in North America eastern 

temperate deciduous forests. We found that tree seedling phenology is more sensitive to warming 

than canopy tree phenology in spring, resulting in an increase in high light availability and 

consequently in seedling net carbon accumulation. When extrapolating our results to projecte 

changes in climate conditions, we found that this increase in spring carbon assimilation could 

allow A. saccharum to escape negative summer carbon balances and to increase performance 

under the more moderate climate scenario. Quercus rubra seedlings may also benefit from 

extending growing seasons but not to the same extent that A. saccharum did. The differences in 

projected performance between the two species favor future performance of A. saccharum. 

However, we also found this effect was not homogeneous under the forest canopy; the tree 

species under which the seedlings were growing mattered. Seedling performance of the two 

species was higher under A. saccharum adults than under Q. rubra adults. Together, these results 

suggest that under the moderate climate scenario, and despite drier summers, the effects of 
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earlier springs will benefit isohydric A. saccharum seedlings more relative to anisohydric Q. 

rubra seedlings. This unexpected result points out the importance of considering the multifaceted 

effects of global warming on tree seedling performance. 

 

1) Could warming temperatures lead to tree seedlings increasing, maintaining, or losing access 

to light in spring and fall? 

Light availability is often a limiting factor for understory plants growing in temperate 

forests (Canham et al. 1999, Kobe et al. 1995), in which nutrients and water are often abundant 

relative to light. Access to light has strong implications for carbon assimilation (Kwit et al. 2010, 

Heberling et al. 2019) and can also indirectly affect plant performance by altering the direction 

and magnitude of plant-soil feedbacks (McCarthy-Neuman and Ibáñez 2012). Tree seedlings in 

temperate forests expand their leaves up to several weeks prior to canopy closure in order to 

increase access to high light availability (Augspurger 2008, Kwit et al. 2010) and will also 

maintain leaves later into fall (Gill et al. 1998). However, growing season length is expanding at 

both ends of the season for canopy trees, and it was previously uncertain if tree seedling 

phenology is shifting at the same rate (Heberling et al. 2019).  

The phenology of leaf color change and senescence is also well-documented for canopy 

trees in the northern hemisphere (Gill et al. 2015) and deciduous plants across Europe and Asia 

(Piao et al. 2019). However, differential responses among tree seedlings and the canopy has 

received relatively little attention, and no study we are aware of has assessed the impact of these 

differences in seedling performance. Furthermore, we also accounted for impact of fall 

phenology on seedlings ability to accumulate carbon. Even if light availability is much less in 
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fall than it is in spring, seedlings are still photosynthetically active and may rely on that period of 

time to maintain a positive carbon balances (Gill et al. 1998).  

Our results suggest that seedling access to light will increase in spring and will either 

decrease (for Q. rubra seedlings) or remain at zero (for A. saccharum seedlings) in fall. This 

stands in contrast to previous work which found that shifts in spring canopy phenology were 

outpacing shifts in spring leaf out phenology of wildflower species (Heberling et al. 2019) and 

suggests that tree seedling performance will not be as affected as herbaceous plant performance 

under future climate conditions. Furthermore, A. saccharum spring phenology was found to be 

shifting at a faster rate than Q. rubra spring phenology, suggesting that climate change will have 

different effects between the two species, potentially leading to different photosynthetic 

performance. 

 

2) How will increasing temperatures and decreasing water availability affect seedling carbon 

assimilation? 

Warmer temperatures associated with climate change are projected to reduce tree 

performance (Zhao and Running 2010, Williams et al. 2012) and increase tree mortality if 

precipitation is insufficient (McDowell et al. 2008, Allen et al. 2010). In plants, carbon 

assimilation can be limited by water availability (Niinemets 2010) and VPD (Oren et al. 1999) 

via plant stomatal regulation (Wilson et al. 2000). Summer carbon assimilation rates for both 

species in this study were positively associated with soil moisture and VPD (Fig. SI 2.11). 

Projected reductions in water availability, coupled with higher respiration demand driven by 

increased temperatures (Table SI 2.4), led to sharp declines in net carbon assimilation rates and 

net accumulation following canopy closure (Fig. 2.3 and 2.4). Negative carbon accumulation is 
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shown in the bottom panels of both figures but is potentially unrealistic given that seedlings are 

likely to die shortly after reaching negative accumulation due to a limited capacity to store 

carbon from previous years.  This agrees with previous research that found that, although 

respiration and photosynthesis rates are both positively associated with increases in temperature, 

respiration has a stronger dependency on temperature than photosynthetic rates (Caemmerer 

2000), and therefore increases in respiration costs are likely to outweigh increasing 

photosynthetic gains under future warming. 

Our findings echoed results from previous research which suggested that access to light 

in fall is far less important than access to spring light when considering plant performance and 

carbon dynamics (Gill et al. 1998, Kwit et al. 2010). Our projections show relatively little 

difference in fall carbon accumulation across climate scenarios (Tables SI 2.3 and 2.4), despite 

substantial losses in light availability for seedlings of one of the species (Q. rubra, Fig. 2.2f). 

The other species, A. saccharum, was also less sensitive to fall temperatures compared to the 

canopy. However, leaves of this species senesce prior to canopy reopening (Fig. 2.2f), so there 

we did not predict any net loss in light availability under climate change scenarios. Importantly, 

even if seedlings were able to significantly add to their carbon budgets in fall, it would likely be 

irrelevant for three out of the four species-treatment combinations in the more extreme climate 

scenario because they would have run out of carbon (e.g. reached negative carbon accumulation) 

prior to canopy reopening. Only A. saccharum seedlings planted under conspecific canopy trees 

are predicted to be able to maintain positive carbon balances over the entire growing season 

under the more extreme climate scenario. Q. rubra seedlings planted under A. saccharum trees 

are also predicted to finish with a slightly positive carbon balance, but only after first reaching 



 37 

negative carbon accumulation early in fall, suggesting that these seedlings will need to rely on 

stored carbon in order to survive long-term. 

Changes in estimated net carbon assimilation and respiration were strongly modulated by 

the species of canopy tree the seedlings were planted under. Seedlings of both species 

experienced significant reductions in net annual carbon accumulation when planted under Q. 

rubra canopy trees compared to when planted under A. saccharum canopy trees (Fig. 2.6c-d and 

2.7c-d), despite no significant difference in water or light availability between the two treatments 

(data not shown). This reduction in carbon accumulation was attributable to more negative 

respiration rates for both species in the Q. rubra canopy treatment (Fig. 2.5b). The cause of this 

difference is likely not attributable to abiotic factors because canopy phenology, summer canopy 

openness, and soil moisture did not significantly differ between treatments (data not shown), 

however the underlying cause for this difference deserves further study. 

Tree seedling performance may be affected by biotic interactions with neighboring 

canopy trees, as previous studies have found that temperate tree seedling survival is significantly 

affected by plant-soil feedback effects (McCarthy-Neumann and Ibáñez 2012, 2013), allelopathy 

(Pellissier and Souto 1999, Gómez-Aparicio and Canham 2008), composition of mycorrhizal 

communities associated with neighboring canopy trees (Phillips and Fahey 2006), and nutrient 

availability (Classen et al. 2015). Differences in canopy structure and composition have also 

been shown to create diverse microclimates that may differentially mitigate the effects of climate 

change on seedling performance (Dobrowski et al. 2015). Furthermore, tree seedling 

photosynthetic performance has been shown to be directly affected by soil nitrogen content 

(Reich et al. 1998, Cannell and Thornley 2000), which can be strongly associated with 

neighboring canopy species (Finzi et al. 1998, Phillips and Fahey 2006), and by increases in the 
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production of secondary metabolites in response to damage from foliar herbivores (Zangerl et al. 

1997). Together, this evidence suggests that interactions with neighboring canopy trees may 

modulate photosynthetic performance of tree seedlings.  

We posit that our observations on higher respiration rates when planted under Q. rubra 

canopy trees may be due to increased levels of leaf nitrogen for seedlings in that canopy 

treatment. Leaf respiration rates have been found to correlate with leaf nitrogen concentration 

(Reich et al. 1998, Cannell and Thornley 2000), and although we did not measure the availability 

of mineral nitrogen as part of this study, previous studies working in similar systems have found 

higher rates of nitrogen mineralization (Finzi et al. 1998, Phillips and Fahey 2006) and higher 

amounts of organic nitrogen (McCarthy-Neumann and Ibáñez 2012) in soils associated with Q. 

rubra compared to soils collected from beneath A. saccharum. Soil nitrogen has recently been 

demonstrated to affect leaf nitrogen content (Tang et al. 2019), so it is possible that this 

mechanism is leading to higher respiration in our tree seedlings when they are planted below Q. 

rubra canopy trees. 

A second possible explanation could be if pressure from natural enemies (e.g., 

herbivores) was higher under one canopy compared to the other, we might expect to see an 

associated increase in the production of plant secondary metabolites (Zangerl et al. 1997), and a 

consequent increase in respiration. However, we measured leaf damage as a part of a concurrent 

study and found no significant difference in leaf herbivory or pathogen damage between species 

of seedlings or between canopy treatments (data not shown), suggesting that this is not the 

underlying cause here.  
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3) What are the combined effects of these two processes on net annual carbon assimilation and 

how might carbon assimilation change under forecasted conditions?  

We found that the projected increase in access to light in spring allowed seedlings to 

increase net carbon assimilation enough to offset rising respiration costs associated with warmer 

and drier summers, but only when planted near A. saccharum canopy trees. Seedlings of both 

species in the more extreme climate scenario are projected to be able to maintain positive annual 

carbon budgets in this planting treatment (Fig. 2.5a), whereas both species had strongly negative 

carbon accumulation when planted under Q. rubra canopy trees (Fig. 2.5b). Importantly, A. 

saccharum seedlings currently perform better than Q. rubra seedlings under A. saccharum 

canopy trees and are projected to continue to do so, suggesting A. saccharum seedlings may 

outcompete Q. rubra seedlings under climate change when establishing under conspecific trees. 

However, although Q. rubra seedlings currently outperform A. saccharum seedlings when 

growing under Q. rubra canopy trees, this advantage disappears in the more extreme climate 

scenario as seedlings of both species are projected to reach negative carbon balances. This 

suggests that, unless global carbon emissions are reduced, Q. rubra seedlings will not outperform 

A. saccharum seedlings in either of these two canopy treatments. 

Still, earlier leaf out and later leaf senescence may lead to an increased risk of frost 

damage from late spring and early fall frosts (Vitasse et al. 2014). Forecasts for our study region 

(Handler et al. 2014) predict that date of last frost in spring and first frost in fall are shifting at 

approximately the same rate as canopy tree phenology, suggesting that there is a possibility that 

faster shifting seedling phenology may increase seedling exposure to frost events and potentially 

counteract the benefits of increased access to light. Late frost would then disproportionately 
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affect early-leafing A. saccharum seedlings compared to late-leafing Q. rubra seedlings, 

offsetting any potential benefits of early phenology. 

 

CONCLUSION 

Taken together, our results indicate that the process underlying these species’ seedling 

carbon assimilation depends on a combination of seasonal access to light, the ability to withstand 

negative carbon accumulation in summer, and interactions with neighboring canopy trees. 

Seedlings are predicted to benefit from longer springs and to suffer from hotter, drier summers. 

Interestingly, our models project that Q. rubra seedlings will be unable to maintain positive 

carbon balances if global carbon emissions are not reduced (Scenario 2), regardless of biotic 

environment, whereas A. saccharum seedlings may be able to survive when located near 

conspecific canopy trees. Therefore, our results suggest that A. saccharum would continue to 

successfully recruit in areas where it is already established whereas Q. rubra would decrease in 

abundance across the landscape, despite their relatively higher drought tolerance. 

Our approach was novel because it combined two potential mechanisms, shifting 

phenology and seasonal photosynthetic performance, that are projected to affect seedling carbon 

budgets under the predicted climate scenarios for the region. Integrated assessment provided a 

more realistic assessment of future trends than those from individual processes (Ibáñez et al. 

2017). Furthermore, although limited to two canopy treatments, we were able to assess the 

effects of the biotic environment on seedling photosynthetic performance. Parameters from our 

models can help fit future recruitment dynamics and inform vegetation models that seek to 

predict changes in forest structure and composition. Finally, our results suggest that seedling 

performance of temperate tree species will suffer with climate change, which in turn could lead 
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to a change in the structure and composition of these forests. Without a reduction in current 

carbon emissions, we are likely to see strong changes in eastern North American forests in the 

coming century.  
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FIGURES 

Figure 2.1 - Conceptual diagram of phenological shifts and consequent changes to net carbon 

assimilation 

(a) As spring temperatures in temperate forests increase with climate change, leaf expansion 

phenology of canopy trees (green triangles) is expected to shift earlier. However, it is unclear if 

leaf expansion of tree seedlings (blue circles) will shift at a rate that is (i) slower than, (ii) equal 

to, or (iii) faster than the rate of canopy phenology shifts. This has strong implications for the 

ability of seedlings to access light (height of black bars). (b) Net carbon accumulation (black) is 

calculated as the sum of gross carbon assimilation (solid grey) and gross respiration costs 

(hatched grey). Under current climate conditions, tree seedlings are able to maintain slightly 

positive net carbon accumulation due to assimilation being greater than respiration. However, 

carbon accumulation in future climate conditions will depend on whether seedlings experience 

decreased (i), maintained (ii), or increased (iii) access to spring light and an associated increase 

in gross carbon assimilation. 
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Figure 2.2 - Phenological shifts in response to temperature 

(a and d): Observed (symbols, jittered slightly so they are distinguishable from on another) day 

of year of (a) canopy closure and seedling leaf out phenology as a function of average March-

April (listed here as ‘spring’) and February temperatures, and (d) canopy reopening and seedling 

senescence phenology as a function of average August temperatures. Lines represent posterior 

predicted means (bold lines) and 95% predictive intervals (light lines). (b and e): Posterior 

estimated mean values (and 95% confidence intervals) of phenology model β parameters for (b) 

spring and (e) fall phenology. Posterior estimates are considered significant if the confidence 

interval does not overlap 0. (c and f): Predicted phenology dates (means and 95% predictive 

intervals) for (c) seedling leaf out and canopy closure and (f) seedling senescence and canopy 

reopening under current average climate conditions (C), a moderate climate change scenario 

(S1), and a business as usual climate change scenario (S2). 
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Figure 2.3 - Seasonal carbon assimilation: A. saccharum seedlings 

Posterior estimates of mean daily net assimilation rates (a and b) and simulated net carbon 

accumulation (c and d) of A. saccharum seedlings planted beneath A. saccharum (left two 

panels) and Q. rubra (right panels) canopy trees. Line type and color represent predictions under 

current climate conditions (solid, black), climate in 2100 under Scenario 1 (dashed, blue), and 

under Scenario 2 (dotted, red).  *Values fall outside the range of the figure; the full extent of this 

panel is included in Appendix S1: Figure S7. 
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Figure 2.4 - Seasonal carbon assimilation: Q. rubra seedlings 

Posterior estimates of mean daily net assimilation rates (a and b) and simulated net carbon 

accumulation (c and d) of Q. rubra seedlings planted beneath A. saccharum (left two panels) and 

Q. rubra (right panels) canopy trees. Line type and color represent predictions under current 

climate conditions (solid, black), climate in 2100 under Scenario 1 (dashed, blue), and under 

Scenario 2 (dotted, red). 
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Figure 2.5 - Projected annual carbon assimilation 

Predicted annual carbon gain, carbon loss, and carbon accumulated over one growing season for 

A. saccharum (blue) and Q. rubra (yellow) seedlings planted under (a) A. saccharum and (b) Q. 

rubra canopy trees in current climate conditions and two climate change scenarios. Lighter-

colored bars represent gross carbon assimilation and hatched bars represent gross respiration. 
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SUPPORTING INFORMATION 

Supporting Information 2.1 - Supplementary Tables and Figures 

Table SI 2.1 - Seed sources 

Seed source and planting information for each cohort of both species. A. saccharum was not 

planted in 2015 due to poor seed quality and insufficient germination. Seedlings were planted at 

all three sites in 2014, but due to insufficient germination in 2015 and 2016, we only planted at a 

subset of the sites. Site abbreviations: Radrick Forest (RF), George Reserve (GR), and Saginaw 

Forest (SF). *Seeds obtained from Sheffield’s Seed Company, coordinates unspecified. 

 

Year Species 
North/ 

South 

 Source 

Coordinates 

Number of 

Seedlings 

Sites 

Planted 

2014 

Acer 

saccharum 

North 
 46.8005, -89.6304  75 All sites 

 46.6004, -85.2085 10 RF, GR 

South 
 42.659685, -

84.440532 
85 All sites 

Quercus 

rubra 

North 
 44.9232, -84.6967 25 GR 

 45.8769, -87.0477 60 RF, SF 

South  Illinois* 85 All sites 

2015 
Quercus 

rubra 
South 

 42.436982, -

84.559407 
30 RF 

2016 

Acer 

saccharum 
South 

 Kentucky*  

(Northern Zone 6) 
120 RF, GR 

Quercus 

rubra 
South 

 42.437869, -

84.560008 
120 RF, GR 
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Table SI 2.2 - Climate projections for study region 

Predicted changes in temperature and soil moisture for scenarios S1 and S2. 

 

Season 
Predicted 

[CO2] (ppm) 

Predicted Change in 

Temperature (°C) 

Predicted Change in 

Soil Moisture (%) 

 S1 S2 S1 S2 S1 S2 

Winter (Dec-Feb) 

550 970 

1.4 4.1 20.0 14.5 

Spring (Mar-May) 0.9 3.3 11.0 35.6 

Summer (June-Aug) 1.2 6.2 10.2 -38.8 

Fall (Sep-Nov) 1.5 4.6 -3.3 15.2 
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Table SI 2.3 - Seasonal carbon assimilation 

Integrated gross carbon assimilation (μmol CO2 m
-2; means and 95% predictive intervals) binned 

seasonally for each of the three climate simulations. These values were calculated by setting 

respiration rate to 0 μmol CO2 m
-2 s-1 and therefore represent only carbon gained from 

photosynthesis 

 

  Acer canopy Quercus canopy 

 Season Current Scen. 1 Scen. 2 Current Scen. 1 Scen. 2 

Acer 

seedlings 

Spring 
1.87 

(1.80, 1.95) 

2.74 

(2.66, 2.82) 

5.00 

(4.91, 5.10) 

2.56 

(2.48, 2.65) 

3.62 

(3.56, 3.68) 

5.37 

(5.31, 5.43) 

Summer 
5.99 

(5.93, 6.04) 

6.58 

(6.53, 6.63) 

7.99 

(7.96, 8.01) 

6.44 

(6.42, 6.46) 

7.23 

(7.21, 7.25) 

8.78 

(8.76, 8.79) 

Fall1 
1.07 

(1.05, 1.08) 

1.31 

(1.30, 1.32) 

1.81 

(1.75, 1.87) 

1.18 

(1.18, 1.19) 

1.43 

(1.42, 1.44) 

2.11 

(2.06, 2.16) 

Fall2 
1.22 

(1.17, 1.26) 

1.15 

(1.10, 1.19) 

0.40 

(0.39, 0.41) 

1.37 

(1.36, 1.38) 

1.25 

(1.24, 1.26) 

0.42 

(0.42, 0.43) 

Total 
10.14 

(10.05, 10.14) 

11.77 

(11.67, 11.87) 

15.20 

(15.09, 15.32) 

11.55 

(11.46, 11.64) 

13.53 

(13.46, 13.60) 

16.68 

(16.60, 16.76) 

Quercus 

seedlings 

Spring 2.67 
(2.59, 2.75) 

3.45 
(3.37, 3.53) 

4.66 
(4.58, 4.75) 

2.33 
(2.25, 2.41) 

3.18 
(3.10, 3.26) 

4.22 
(4.14, 4.29) 

Summer 7.69 
(7.68, 7.71) 

8.30 
(8.28, 8.31) 

9.24 
(9.22, 9.25) 

7.73 
(7.71, 7.74) 

8.34 
(8.32, 8.35) 

9.34 
(9.32, 9.36) 

Fall1 1.30 
(1.29, 1.30) 

1.66 
(1.65, 1.67) 

3.02 
(3.01, 3.03) 

1.28 
(1.25, 1.30) 

1.72 
(1.70, 1.73) 

3.17 
(3.15, 3.18) 

Fall2 1.30 
(1.28, 1.32) 

1.26 
(1.25, 1.27) 

1.15 
(1.14, 1.16) 

1.31 
(1.29, 1.33) 

1.25 
(1.24, 1.26) 

1.13 
(1.12, 1.14) 

Total 12.96 

(12.88, 13.04) 

14.66 

(14.58, 14.75) 

18.07 

(17.98, 18.15) 

12.64 

(12.55, 12.72) 

14.49 

(14.41, 14.57) 

17.86 

(17.78, 17.94) 
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Table SI 2.4 - Seasonal respiration 

Integrated gross carbon loss due to respiration (μmol CO2 m
-2; means and 95% predictive 

intervals) binned seasonally for each of the three climate simulations. 

 

  Acer canopy Quercus canopy 

 Season Current Scen. 1 Scen. 2 Current Scen. 1 Scen. 2 

Acer 

seedlings 

Spring 
0.24 

(0.23, 0.25) 

0.35 

(0.34, 0.37) 

0.66 

(0.64, 0.69) 

0.22 

(0.23, 0.21) 

0.29 

(0.28, 0.30) 

0.43 

(0.41, 0.44) 

Summer 
3.74 

(3.70, 3.79) 

4.75 

(4.69, 4.80) 

9.83 

(9.73, 9.94) 

8.57 

(8.45, 8.67) 

10.51 

(10.37, 10.64) 

23.31 

(23.02, 23.59) 

Fall1 
1.43 

(1.38, 1.47) 

1.79 

(1.73, 1.84) 

2.23 

(2.18, 2.28) 

1.60 

(1.54, 1.66) 

2.15 

(2.08, 2.22) 

2.38 

(2.32, 2.45) 

Fall2 
0.66 

(0.65, 0.68) 

0.67 

(0.65, 0.69) 

0.21 

(0.20, 0.22) 

1.45 

(1.40, 1.49) 

1.16 

(1.13, 1.20) 

0.39 

(0.37, 0.41) 

Total 
6.08 

(6.01, 6.15) 

7.56 

(7.47, 7.64) 

12.94 

(12.82, 13.06) 

11.84 

(11.70, 11.97) 

14.11 

(13.95, 14.26) 

26.51 

(26.22, 26.80) 

Quercus 

seedlings 

Spring 0.55 
(0.53, 0.58) 

0.73 
(0.69, 0.76) 

1.02 
(0.98, 1.06) 

0.63 
(0.60, 0.66) 

0.83 
(0.79, 0.86) 

1.16 
(1.11, 1.20) 

Summer 6.48 
(6.42, 6.55) 

7.71 
(7.63, 7.79) 

11.62 
(11.50, 11.74) 

8.09 
(8.00, 8.18) 

9.15 
(9.05, 9.25) 

14.65 
(14.49, 14.80) 

Fall1 1.69 
(1.64, 1.74) 

2.31 
(2.25, 2.37) 

4.38 
(4.30, 4.47) 

1.23 
(1.19, 1.26) 

1.40 
(1.37, 1.44) 

3.02 
(2.96, 3.08) 

Fall2 1.40 
(1.36, 1.44) 

1.39 
(1.35, 1.43) 

0.92 
(0.89, 0.95) 

1.74 
(1.69, 1.79) 

1.54 
(1.50, 1.58) 

1.16 
(1.13, 1.20) 

Total 10.13 

(10.04, 10.23) 

12.13 

(12.02, 12.25) 

17.95 

(17.79, 18.11) 

11.68 

(11.57, 11.79) 

12.93 

(12.81, 13.04) 

19.99 

(19.81, 20.16) 
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Figure SI 2.6 - Example light data 

Examples of how canopy closure (a, from 2015) and reopening (b, from 2018) were calculated 

from site-level light data. Colors represent different sites, horizontal lines represent the 

thresholds described in the text (100 and 20 μmol m2 s-1 in spring and fall, respectively), and 

vertical lines represent the calculated day of event for each site. 
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Figure SI 2.7 - General modeling framework 

General modeling framework used for this study. Tab icons represent model input data, 

rectangles represent model parameter outputs and simulations, and the oval represents the final 

simulated estimation of net carbon assimilation. Model flow is described for our seedling 

photosynthetic models (i), seedling and canopy phenology models (ii), environmental simulation 

data generation (iii), and model integration (iv). Colors indicate data and parameters associated 

with gas exchange and photosynthesis (blue), phenology (green), climate/environment (yellow), 

and model integration and final calculations (orange). 

 

 
  



 59 

Figure SI 2.8 - Initial leaf coloring phenology 

(a) Observed (symbols) day of canopy reopening and seedling initial leaf color change as a 

function of average August temperatures. Lines represent posterior predicted means (bold lines) 

and 95% predictive intervals (light lines). (b) Posterior estimated mean values (and 95% 

confidence intervals) of phenology model β parameters. Posterior estimates are considered 

significant if the confidence interval does not overlap 0. (c) Predicted phenology dates (means 

and 95% predictive intervals) for initial leaf color change and canopy reopening under current 

average climate conditions (C), a moderate climate change scenario (S1), and a business as usual 

climate change scenario (S2). 
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Figure SI 2.9 - 50% leaf coloring phenology 

(a) Observed (symbols) day of canopy reopening and seedling 50% leaf color change as a 

function of average August temperatures. Lines represent posterior predicted means (bold lines) 

and 95% predictive intervals (light lines). (b) Posterior estimated mean values (and 95% 

confidence intervals) of phenology model β parameters. Posterior estimates are considered 

significant if the confidence interval does not overlap 0. (c) Predicted phenology dates (means 

and 95% predictive intervals) for 50% leaf color change and canopy reopening under current 

average climate conditions (C), a moderate climate change scenario (S1), and a business as usual 

climate change scenario (S2). 

 

 
  



 61 

Figure SI 2.10 - Posterior estimates of photosynthetic parameters 

Posterior estimates of temperature-corrected photosynthetic parameters (means ± 95% 

confidence intervals for A. saccharum (blue) and Q. rubra (yellow) seedlings planted under A. 

saccharum (circles) and Q. rubra (triangles) canopy trees. 

 

 
  



 62 

Figure SI 2.11 - Posterior estimates of SM and VPD effects 

Posterior estimates (means and 95% confidence intervals) for the direct effects of soil moisture 

(SM) and VPD on Rubisco carboxylation-limited (Vcmax, a-b) and RuBP regeneration-limited 

(Jmax, c-d) carbon assimilation rates. Colors indicate posterior estimates for A. saccharum 

seedlings (blue) and Q. rubra seedlings (yellow). Effects are considered significant if 95% 

confidence intervals do not overlap 0. 
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Figure SI 2.12 - Full version of Fig. 2.3d 

Entire extent of net carbon accumulation of A. saccharum seedlings planted under Q. rubra 

canopy trees. See Figure 2.3 for a full description of the graph. 
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Supporting Information 2.2 - Full description of photosynthesis model 

 The photosynthetic model we use in this analysis is minimally modified from the model 

previously published by Peltier and Ibáñez (2015).  

 

Model Description 

 Following Peltier and Ibáñez (2015), the observed assimilation rate, Aobs, for observation 

i at light level Q and at intercellular CO2 concentration Ci, was modeled with a Normal 

likelihood function with mean μA and variance σ2: 

 𝐴𝑜𝑏𝑠𝑖
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝐴, 𝜎2) (1) 

 

where the value of μA depends on the transitional concentration of CO2 (Ccrit). When a plant is 

Rubisco carboxylation-limited (i.e. when Ci < Ccrit), μA = AV, and when a plant is RuBP-

regeneration-limited (i.e. when Ci > Ccrit), μA = AJ. For each observation i in curve c, the 

assimilation rate is thus equal either to: 

 𝐴𝑉𝑖
=

−𝑏1𝑖 + √𝑏1𝑖
2 − 4 × 𝑎1𝑖 × 𝑐1𝑖

2 × 𝑎1𝑖

 (2) 

 

where 

 𝑎1𝑖 = −
1

𝑔
𝑚𝑐

 (2a) 

 𝑏1𝑖 =
𝑉𝑐𝑚𝑎𝑥𝑐

− 𝑅𝑑𝑐

𝑔
𝑚𝑐

+ 𝐶𝑖𝑖 + 𝐾𝑐𝑐
(

1 + 𝑂𝑖

𝐾𝑜𝑐

) (2b) 

 𝑐1𝑖 = 𝑅𝑑𝑐
(𝐶𝑖𝑖 + 𝐾𝑐𝑐

(
1 + 𝑂𝑖

𝐾𝑜𝑐

)) − 𝑉𝑐𝑚𝑎𝑥𝑐
(𝐶𝑖𝑖 − 𝛤∗

𝑐) (2c) 

 

or to: 

 𝐴𝐽𝑖
=

−𝑏2𝑖 + √𝑏2𝑖
2 − 4 × 𝑎2𝑖 × 𝑐2𝑖

2 × 𝑎2𝑖

 (3) 

 

where 
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 𝑎2𝑖 = −
1

𝑔
𝑚𝑐

 (3a) 

 𝑏2𝑖 =
(𝐽

𝑖
4⁄ ) − 𝑅𝑑𝑐

𝑔
𝑚𝑐

+ 𝐶𝑖𝑖 + 𝛤∗
𝑐 (3b) 

 𝑐2𝑖 = 𝑅𝑑𝑐
(𝐶𝑖𝑖 + 2𝛤∗

𝑐) −
𝐽

𝑖

4
(𝐶𝑖𝑖 − 𝛤∗

𝑐) (3c) 

 

Electron transport rate (Ji) incorporates light dependency: 

𝐽
𝑖

=
𝑄2𝑖 + 𝐽

𝑚𝑎𝑥𝑐
− √(𝑄2𝑖 + 𝐽

𝑚𝑎𝑥𝑐
)

2

− 4 × 𝜃𝑠𝑒𝑎𝑠𝑜𝑛(𝑐),𝑝𝑙𝑎𝑛𝑡(𝑐) × 𝑄2𝑖 × 𝐽
𝑚𝑎𝑥𝑐

2 × 𝜃𝑠𝑒𝑎𝑠𝑜𝑛(𝑐),𝑝𝑙𝑎𝑛𝑡(𝑐)

 
(4) 

 

 𝑄2𝑖 =
𝑄𝑖 × 𝛼(1 − 𝑓)

2
 (5) 

 

The seedlings used in this study did not encounter conditions in which their photosynthetic rate 

was limited by triose phosphate utilization (TPU; Lombardozzi et al. 2018), and so it was not 

included in our model fit. 

Parameters were estimated at the curve level to account for substantial variation among 

individuals. Seasonal bins were assigned to each measurement based on light availability or leaf-

level foliar phenology. For a detailed list of parameters, their definitions, and the prior 

distributions we used to estimate their values, see Table SI 2.5. Measurements taken at the 

beginning of the growing season before canopy closure (assessed post hoc, as described in the 

text) were placed in the Spring bin. Following canopy closure, measurements fell into the 

Summer bin until the leaf being measured had begun to change color. Measurements taken 

between initial color change and when the leaf had achieved >50% color change were binned 

into Fall1 and any measurements taken between then and leaf senescence were binned into Fall2. 

 As with Peltier and Ibáñez (2015), we allowed the θ parameter, an empirical curvature 

factor for the light dependency equation (Eq. 4) to vary across season (fixed effects) and plants 

(random effects): 
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 𝜃𝑠𝑒𝑎𝑠𝑜𝑛(𝑐),𝑝𝑙𝑎𝑛𝑡(𝑐)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝜃𝑠𝑒𝑎𝑠𝑜𝑛(𝑐), 𝜃𝜎2
𝑠𝑒𝑎𝑠𝑜𝑛(𝑐)) (6) 

 

Because this parameter is calculated only using data from the A-Q curves and not from the A-Ci 

curves, we presume that parameter value in each A-Ci curve is equal to that of the A-Q curve 

measured immediately before it. 

The model uses linear Arrhenius functions standardized to 25 °C to account for 

temperature dependence in Rubisco carboxylation and oxygenation rates (Bjorkman et al. 1980, 

Patrick et al. 2009). Maximum Rubisco carboxylation rate, maximum electron transport rate, 

mesophyll conductance, dark respiration, Michaelis-Menten constants for oxygenation and 

carboxylation, and CO2 photocompensation points (Vcmax, Jmax, gm, Rd, Kc, Ko, and Γ*, 

respectively) are all temperature-corrected for each curve, c, at temperature Ti. Following Peltier 

and Ibáñez (2015), the same function was used for all seven parameters (p), where p25c is the 

value of the parameter at 25 °C for curve c and Ep is its associated activation energy: 

 𝑝𝑐 = 𝑝25𝑐 × Exp(𝐸𝑝(𝑇𝑖 − 298) (298 × 𝑅 × 𝑇𝑖)⁄ ) (7) 

 

We also found relationships between light- and CO2-saturated assimilation rates and soil 

moisture by season. In contrast to Peltier and Ibáñez (2015), we found no difference in VPD 

across planting treatments, but instead found differences in VPD by season in our preliminary 

data analysis. We therefore incorporated similar linear terms for seasonal variation in soil 

moisture (as volumetric water content) and VPD for Vcmax and Jmax using mean-centered data (see 

Soil Moisture Sub-model and VPD Sub-model below) in a semi-mechanistic model: 

 
𝑝𝑐 = 𝑝25𝑐 × exp(𝐸𝑝(𝑇𝑖 − 298) (298 × 𝑅 × 𝑇𝑖)⁄ ) + 𝛽1𝑠𝑒𝑎𝑠𝑜𝑛(𝑐)𝑠𝑜𝑖𝑙 𝑚𝑐

+ 𝛽2𝑠𝑒𝑎𝑠𝑜𝑛(𝑐)𝑉𝑃𝐷𝑐 
(8) 

 

Importantly, the addition of soil moisture and VPD here means that estimates for Vcmax and Jmax 

in our model are not equal to the ‘true’ values of these parameters in the absence of stomatal 

limitation, but rather they represent ‘effective’ Vcmax and Jmax under the mean environmental 
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conditions observed in a given species and planting treatment for that species (Peltier and Ibáñez 

2015). 

 The version of this model used by Peltier and Ibáñez (2015) included habitat differences 

in their calculations of temperature-corrected Vcmax25 and Jmax25 because of potential differences 

in acclimation to light levels between their gap and understory planting treatments. Seedlings in 

our experiment did not experience different access to light across planting treatments throughout 

most of the growing season (data not shown), however in our preliminary data analysis we found 

that including planting treatment (i.e., canopy tree under which they were planted) significantly 

improved model performance. Additionally, results from our preliminary analysis showed that 

mesophyll conductance and daytime dark respiration also varied with planting treatment, so we 

decided to account for all four parameters in the same way, taking into account seedling-level 

variation at the same time: 

 

 
𝑝25𝑐 = 𝛼𝑝25𝑠𝑒𝑎𝑠𝑜𝑛(𝑐),𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(𝑐),𝑝𝑙𝑎𝑛𝑡(𝑐) (9) 

 

 

𝛼𝑝25𝑠𝑒𝑎𝑠𝑜𝑛(𝑐),𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(𝑐),𝑝𝑙𝑎𝑛𝑡(𝑐) 

~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑝25𝑠𝑒𝑎𝑠𝑜𝑛,𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ,  𝑝𝜎2
𝑠𝑒𝑎𝑠𝑜𝑛,𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 

(10) 

 

 We fit the model and obtained posterior densities of each parameter using OpenBUGS 

3.2.3 software (Lunn et al. 2009). We ran models separately for each species using two chains 

for a burn-in of 50,000 iterations, after which samples were monitored to assess convergence of 

the chains using the Brooks-Gelman-Rubin statistic (Gelman and Rubin 1992). Chains were run 

after convergence to obtain at least 3000 independent samples for all parameters after thinning to 

remove within-chain autocorrelation. Model fit was evaluated using the R2 between predicted 

and observed values. Parameter posterior estimates (mean, standard deviation, and 95% credible 

intervals) are reported in Table SI 2.6. 
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Soil Moisture Sub-model 

 We collected two soil moisture measurements concurrently with each photosynthetic 

sample (one sample included one A-Q and one A-Ci curve) and then estimated the hourly soil 

moisture environment of each seedling by fitting individual regressions as described in Peltier 

and Ibáñez (2015). Seedling soil moisture measurements (response variable) were predicted 

using site-level average hourly HOBO microstation soil moisture data (explanatory variable, see 

Supporting Information 2.3 for how hourly averages were calculated). The subsequent fit was 

used to predict soil moisture for individual seedlings at specific times t: 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑡, 𝜎2) 

1 𝜎2⁄  ~ 𝐺𝑎𝑚𝑚𝑎(0.01, 0.01) 

Process: 

𝜇𝑡 =  𝛼𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔(𝑡) +  𝛽𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔(𝑡) ∗ 𝐻𝑂𝐵𝑂𝑡 

Priors: 

𝛼𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔(𝑡), 𝛽𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔(𝑡) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1000) 

Curve-level and hourly soil moisture were then standardized around the mean soil moisture from 

the hourly data for use in fitting the photosynthetic model and for calculating assimilation in our 

climate projections, respectively: 

𝑡𝑆𝑜𝑖𝑙𝑀𝑐𝑢𝑟𝑣𝑒/ℎ𝑜𝑢𝑟 =
𝑆𝑜𝑖𝑙𝑀𝑐𝑢𝑟𝑣𝑒/ℎ𝑜𝑢𝑟 − 𝑚𝑒𝑎𝑛𝑆𝑜𝑖𝑙𝑀

2 ∗ 𝑠𝑑𝑆𝑜𝑖𝑙𝑀
 

Model code and data are available (see Data Availability). 

 

VPD Sub-model 

 Rather than include a specific sub-model for VPD (Peltier and Ibáñez 2015), we decided 

to account for changes in VPD associated with climate change by combining individual seedling-
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level VPD data collected by the LI-6400 during photosynthetic measurements and hourly VPD 

calculated from hourly temperature (T, °C) and relative humidity (RH, %) HOBO microstation 

data (see Supporting Information 2.3 for how hourly averages were calculated). Hourly VPD was 

then calculated using the Arrhenius equation: 

𝑒𝑠 = 0.6108 ∗ 𝑒17.27∗(𝑇 𝑇+237.3⁄ ) 

𝑒𝑎 =
𝑅𝐻

100
∗ 𝑒𝑠 

𝑉𝑃𝐷 = 𝑒𝑎 − 𝑒𝑠 

As with soil moisture, curve-level and hourly VPD (tVPD; for use in the photosynthetic model 

and climate change projection models, respectively) were converted to a standardized value 

(tVPDS) following Peltier and Ibáñez (2015) using mean and standard deviation calculated from 

the average hourly VPD calculations: 

𝑡𝑉𝑃𝐷𝑆𝑐𝑢𝑟𝑣𝑒/ℎ𝑜𝑢𝑟 =
(𝑡𝑉𝑃𝐷𝑐𝑢𝑟𝑣𝑒/ℎ𝑜𝑢𝑟 − 𝑚𝑒𝑎𝑛𝑉𝑃𝐷)

2 ∗ 𝑠𝑑𝑉𝑃𝐷
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Table SI 2.5 - Photosynthesis model terms 

Definitions of model parameters and hyperparameters used in photosynthetic model. Subscripts 

indicate the level at which the parameter is estimated: individual observation (i), curve (c), 

season (s), planting treatment (t), or plant (p). Parameters without subscripts are estimated at the 

species level. Prior distributions can be found in the model description above and in Peltier and 

Ibáñez (2015, Table 1). 

 

Abbreviation Definition (units) 

σ Model standard deviation 

Avi, Aji Rubisco carboxylation- and RUBP regeneration-limited rates of CO2 

assimilation (μmol m-2 s-1) 

α PSII activity in bundle sheath (0.85, unitless) 

(Ccrit(c)) Ci (Transitional) Intercellular CO2 concentration (Pa) 

Ep Activation energy for temperature responses of Vcmax, Jmax, gm, Rd, Kc, Ko, 

or Γ* (kJ mol-1) 

f Spectral light quality factor (0.15, unitless) 

𝑔𝑚𝑐
  Mesophyll conductance (μmol m-2 s-1) 

Γ*c CO2 compensation point without dark respiration (μmol m-2 s-1) 

𝐽𝑚𝑎𝑥𝑐
  Maximum electron transport rate (μmol m-2 s-1) 

𝐾𝑐𝑐
, 𝐾𝑜𝑐

 Michaelis-Menten constants for Rubisco for CO2 and O2 (Pa, kPa) 

Oi Intercellular O2 partial pressure (Pa) 

Pi Pressure (Pa) 

Qi (Q2i) Photosynthetically active radiation (μmol m-2 s-1) (absorbed by PSII) 

R Universal gas constant (0.008314 J K-1 mol-1) 

𝑅𝑑𝑐
  Daytime rate of mitochondrial respiration (μmol m-2 s-1) 

Ti Leaf temperature (K) 

𝑉𝑐𝑚𝑎𝑥𝑐
  Maximum Rubisco carboxylation rate (μmol m-2 s-1) 

θs,p, μθs Empirical curvature factor 

θσ2
s Variance associated with μθs 

p25c Temperature adjusted Vcmax, Jmax, gm, Rd, Γ*; Kc; or Ko to 25 °C (μmol m-2 

s-1, Pa, kPa)  

𝛼𝑝25𝑠,𝑡,𝑝  Hyperparameter value for Vcmax, Jmax, gm, or Rd (μmol m-2 s-1) 

𝜇𝑝25𝑠,𝑡  Mean value for Vcmax, Jmax, gm, or Rd (μmol m-2 s-1) 

𝑝𝜎2
𝑠,𝑡

  Variance associated with 𝛼𝑝25𝑠,𝑡,𝑝 hyperparameters 

𝛽1𝑠, 𝛽2𝑠 Soil moisture (𝛽1𝑠) and VPD (𝛽2𝑠) coefficients for 𝑉𝑐𝑚𝑎𝑥25 and 𝐽𝑚𝑎𝑥25 
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Table SI 2.6 - Photosynthesis model posterior parameter estimates 

Final model parameter estimates and 95% credible intervals. 95% credible intervals that do not 

overlap indicate significance. Different symbols indicate highly significant differences between 

species (*), seasons (a, b, c, d), or planting treatments (†). 

 

  Acer saccharum Quercus rubra 

Parameter 
Mean ± s.d. 

(95% CI) 

Mean ± s.d. 

(95% CI) 

Model Variance 
0.8489±0.0193* 

(0.8083, 0.8851) 

0.3744±0.01348* 

(0.3355, 0.3954) 

θm 

Spring 
0.224±0.0674 

(0.1053, 0.3696) 

0.5112±0.08364 

(0.3355, 0.6761) 

Summer 
0.3676±0.1015 

(0.1842, 0.5904) 

0.3839±0.07891 

(0.2297, 0.5349) 

Fall1 
0.3823±0.08754 

(0.2083, 0.547) 

0.3414±0.1095 

(0.1013, 0.5459) 

Fall2 
0.5018±0.1198 

(0.2721, 0.7418) 

0.5415±0.09515 

(0.3634, 0.7326) 

θτ (1/θσ2) 

Spring 
164.5±189.2 

(25.34, 710.1) 

29.05±20.38 

(10.88, 77.57) 

Summer 
78.81±252.0 

(12.18, 289.9) 

38.15±32.57 

(12.05, 119.4) 

Fall1 
47.46±60.53 

(12.84, 186.5) 

136.9±573.8 

(14.48, 748.4) 

Fall2 
54.55±87.52 

(13.31, 216.1) 

41.08±34.9 

(12.55, 141.0) 

Temperature 

Egm 
31.73±6.214 

(20.07, 44.54) 

23.28±5.46 

(12.68, 33.4) 

ERd 
108.9±11.48 

(82.91, 125.4) 

73.25±11.55 

(45.92, 91.68) 

EVcmax 
62.79±8.772 

(46.47, 80.07) 

76.28±8.404 

(59.9, 92.4) 

EJmax 
34.01±9.404 

(15.62, 52.4) 

27.09±9.543 

(8.322, 45.84) 

EKc 
57.56±8.582 

(40.2, 74.13) 

45.06±8.391 

(28.72, 61.63) 
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EKo 
-10.64±4.579 

(-19.35, -0.8589) 

-21.6±3.909 

(-29.16, -14.25) 

EΓ* 
155.0±18.3 

(100.3, 175.6) 

137.8±26.67 

(43.32, 162.5) 

Michaelis-Menten 

Constants 

Kc25 
27.82±3.019 

(22.08, 34.15) 

29.48±3.664 

(22.55, 36.96) 

Ko25 
16580±32.06 

(16520, 16650) 

16580±32.35 

(16520, 16650) 

Soil moisture linear 

effects on Vcmax 

(SM1) 

Spring 
10.8±5.602a 

(-0.09325, 21.83) 

0.4084±3.636 

(-5.23, 7.119) 

Summer 
5.215±2.793a 

(0.0254, 11.08) 

1.987±0.7396 

(0.4592, 3.363) 

Fall1 
-13.96±3.471*b 

(-20.77, -7.119) 

-1.057±1.338* 

(-3.852, 1.691) 

Fall2 
4.453±8.832ab 

(-13.09, 21.69) 

7.06±5.771 

(-1.993, 21.27) 

Soil moisture linear 

effects on Jmax 

(SM2) 

Spring 
25.08±2.237*a 

(20.68, 29.23) 

10.98±2.888*a 

(6.832, 17.99) 

Summer 
4.512±0.9711*b 

(2.809, 6.686) 

2.114±0.3167*b 

(1.528, 2.759) 

Fall1 
-17.06±1.553*c 

(-20.09, -13.99) 

-2.756±0.5673*c 

(-3.884, -1.684) 

Fall2 
0.8902±4.623b 

(-8.024, 9.961) 

13.11±6.852ab 

(-0.5896, 24.56) 

VPD linear effects on 

Vcmax 

(VM1) 

Spring 
6.179±4.087a 

(-2.237, 13.44) 

-3.719±6.621 

(-16.39, 8.651) 

Summer 
2.221±3.212a 

(-4.324, 8.16) 

6.133±4.477 

(-2.799, 14.96) 

Fall1 
-21.84±7.651b 

(-38.67, -8.293) 

0.3819±6.712 

(-15.46, 11.91) 

Fall2 
-13.16±11.73ab 

(-40.03, 5.513) 

0.9717±6.873 

(-11.7, 16.02) 

VPD linear effects on 

Jmax 

(VM2) 

Spring 
10.27±1.134a 

(7.767, 12.39) 

7.202±2.075a 

(3.546, 12.31) 
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Summer 
5.491±0.8425b 

(3.886, 7.136) 

9.652±1.633a 

(6.619, 12.84) 

Fall1 
-20.38±2.141*c 

(-25.04, -16.29) 

8.668±7.81*a 

(-6.272, 23.99) 

Fall2 
-6.234±6.085*bc 

(-18.68, 5.435) 

39.94±5.982*b 

(29.01, 52.46) 

μgm25 

(Acer saccharum 

canopy) 

Spring 
0.3642±0.08927 

(0.2303, 0.5907) 

1.076±0.3505 

(0.4828, 1.86) 

Summer 
0.7742±0.355 

(0.2712, 1.638) 

1.319±0.4567 

(0.5942, 2.354) 

Fall1 
0.9614±0.3614 

(0.3681, 1.814) 

4.099±1.578 

(0.6994, 6.728) 

Fall2 
1.277±0.6224 

(0.4226, 2.874) 

4.379±1.55 

(1.335, 7.094) 

μgm25 

(Quercus rubra 

canopy) 

Spring 
1.315±0.6386ab 

(0.3344, 2.846) 

1.029±0.347 

(0.421, 1.818) 

Summer 
0.3386±0.1023a 

(0.1894, 0.5847) 

0.7292±0.1912 

(0.4071, 1.153) 

Fall1 
1.952±0.7851b 

(0.5917, 3.683) 

1.015±0.2965 

(0.5915, 1.726) 

Fall2 
4.557±1.388b 

(1.354, 6.938) 

5.313±2.553 

(0.7998, 10.75) 

gm25 τ (1/σ2) 

(Acer saccharum 

canopy) 

Spring 
37.59±28.76 

(6.721, 110.2) 

2.927±3.467 

(0.5056, 12.91) 

Summer 
10.02±15.12 

(0.708, 55.39) 

2.918±3.388 

(0.4202, 12.52) 

Fall1 
4.121±4.566 

(0.6198, 18.01) 

0.8738±3.425 

(0.1017, 8.375) 

Fall2 
3.226±4.456 

(0.2453, 15.47) 

0.4394±0.7987 

(0.1022, 2.933) 

gm25 τ (1/σ2) 

(Quercus rubra 

canopy) 

Spring 
3.371±7.101ab 

(0.2013, 23.67) 

6.598±8.875 

(0.8123, 31.55) 

Summer 
24.82±21.11a 

(4.302, 81.27) 

6.936±5.023 

(1.726, 20.84) 
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Fall1 
1.101±1.917ab 

(0.1316, 6.65) 

3.486±2.272 

(0.7266, 9.06) 

Fall2 
0.2583±0.4711b 

(0.1011, 1.585) 

0.6274±1.745 

(0.1021, 4.981) 

μRd25 

(Acer saccharum 

canopy) 

Spring 
1.038±0.2004ab 

(0.6894, 1.461) 

1.314±0.3478ab 

(0.685, 2.088) 

Summer 
0.4883±0.1287a 

(0.2883, 0.7896) 

0.7777±0.153a 

(0.5182, 1.121) 

Fall1 
2.249±0.5737b 

(1.017, 3.386) 

2.144±0.7544ab 

(1.087, 4.018) 

Fall2 
1.697±0.9028ab 

(0.4844, 3.813) 

3.2±1.12b 

(1.247, 5.511) 

μRd25 

(Quercus rubra 

canopy) 

Spring 
0.5498±0.143a 

(0.3218, 0.8761) 

1.42±0.4784ab 

(0.7118, 2.563) 

Summer 
1.132±0.2386ab 

(0.724, 1.66) 

0.8321±0.1788a 

(0.5358, 1.234) 

Fall1 
1.957±0.5888b 

(1.091, 3.38) 

1.773±0.631ab 

(0.6715, 3.119) 

Fall2 
3.998±1.488b 

(1.54, 7.041) 

4.718±1.504b 

(1.266, 7.618) 

Rd25 τ (1/σ2) 

(Acer saccharum 

canopy) 

Spring 
3.683±4.619 

(1.177, 7.985) 

1.571±1.671ab 

(0.4042, 5.126) 

Summer 
13.08±8.13 

(3.329, 34.4) 

9.603±5.888a 

(2.496, 24.67) 

Fall1 
1.181±1.779 

(0.2561, 4.163) 

0.8312±0.6785ab 

(0.1315, 2.637) 

Fall2 
5.175±10.97 

(0.1988, 30.75) 

0.4705±0.6351b 

(0.105, 2.084) 

Rd25 τ (1/σ2) 

(Quercus rubra 

canopy) 

Spring 
12.22±9.331a 

(2.791, 36.28) 

1.611±1.471 

(0.2622, 5.486) 

Summer 
1.833±0.8658ab 

(0.6553, 3.859) 

4.701±2.606 

(1.432, 11.28) 

Fall1 
0.7657±0.5356b 

(0.169, 2.012) 

2.902±6.034 

(0.2385, 17.46) 
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Fall2 
0.5611±0.8671ab 

(0.1039, 2.949) 

0.4236±1.056 

(0.1029, 2.995) 

μVcmax25 

(Acer saccharum 

canopy) 

Spring 
16.83±3.574* 

(9.751, 23.78) 

39.57±6.799* 

(23.86, 50.85) 

Summer 
11.67±2.559*† 

(7.371, 17.07) 

30.04±2.697* 

(24.16, 35.59) 

Fall1 
15.39±5.117 

(7.791, 25.73) 

20.6±3.823 

(13.87, 28.41) 

Fall2 
15.29±4.149 

(7.853, 24.87) 

26.29±9.712 

(15.77, 50.33) 

μVcmax25 

(Quercus rubra 

canopy) 

Spring 
10.39±2.87*a 

(5.633, 15.96) 

29.52±6.532* 

(16.0, 40.6) 

Summer 
25.33±2.505†b 

(20.65, 30.23) 

31.17±3.626 

(21.44, 36.85) 

Fall1 
14.71±3.121*a 

(8.454, 20.14) 

26.52±3.705* 

(20.22, 33.51) 

Fall2 
21.07±4.762ab 

(13.31, 32.69) 

26.95±8.471 

(12.56, 46.1) 

Vcmax25 τ (1/σ2) 

(Acer saccharum 

canopy) 

Spring 
0.1488±0.0897 

(0.1007, 0.3822) 

0.1834±0.1518 

(0.1011, 0.5851) 

Summer 
0.1697±0.1538 

(0.101, 0.4851) 

0.164±0.1155 

(0.1009, 0.4544) 

Fall1 
0.2296±0.3661 

(0.1014, 0.8437) 

0.1834±0.1626 

(0.1011, 0.5685) 

Fall2 
0.2126±0.2006 

(0.1015, 0.7184) 

0.1881±0.1833 

(0.1012, 0.5725) 

Vcmax25 τ (1/σ2) 

(Quercus rubra 

canopy) 

Spring 
0.2023±0.2676 

(0.1014, 0.593) 

0.1766±0.1443 

(0.1012, 0.5357) 

Summer 
0.1863±0.1792 

(0.1013, 0.5353) 

0.205±0.2278 

(0.1012, 0.725) 

Fall1 
0.1468±0.07101 

(0.1008, 0.3371) 

0.1937±0.1616 

(0.1014, 0.5766) 

Fall2 
0.1952±0.2114 

(0.1012, 0.6587) 

0.2059±0.2354 

(0.1013, 0.7024) 
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μJmax25 

(Acer saccharum 

canopy) 

Spring 
18.0±1.667*†ab 

(14.99, 21.48) 

41.02±3.55*ab 

(31.77, 47.28) 

Summer 
22.81±1.167*†bc 

(20.53, 25.07) 

42.01±1.35*b 

(39.37, 44.66) 

Fall1 
15.96±1.804*†a 

(12.58, 19.65) 

30.84±2.347*†a 

(26.22, 35.47) 

Fall2 
29.18±3.67c 

(22.79, 37.8) 

41.38±3.421ab 

(33.44, 47.02) 

μJmax25 

(Quercus rubra 

canopy) 

Spring 
11.81±1.447*†a 

(9.034, 14.72) 

33.48±2.211*a 

(29.25, 37.78) 

Summer 
36.9±1.548*†b 

(33.73, 39.74) 

46.24±1.849*b 

(42.5, 49.87) 

Fall1 
30.44±2.292*†b 

(26.35, 35.37) 

46.19±4.084*†ab 

(36.8, 54.19) 

Fall2 
35.15±2.998b 

(29.41, 41.36) 

38.28±3.74ab 

(30.8, 46.09) 

Jmax25 τ (1/σ2) 

(Acer saccharum 

canopy) 

Spring 
0.1096±0.01223 

(0.1002, 0.1427) 

0.1085±0.02027 

(0.1001, 0.1416) 

Summer 
0.1118±0.01538 

(0.1002, 0.1491) 

0.1054±0.006564 

(0.1001, 0.1222) 

Fall1 
0.1349±0.05913 

(0.1006, 0.2636) 

0.1133±0.01525 

(0.1003, 0.1541) 

Fall2 
0.2022±0.3715 

(0.1011, 0.63) 

0.1107±0.01373 

(0.1002, 0.1469) 

Jmax25 τ (1/σ2) 

(Quercus rubra 

canopy) 

Spring 
0.1206±0.06702 

(0.1004, 0.1886) 

0.1098±0.01421 

(0.1002, 0.1415) 

Summer 
0.1107±0.01513 

(0.1002, 0.1435) 

0.1113±0.01383 

(0.1002, 0.148) 

Fall1 
0.1106±0.01312 

(0.1002, 0.1445) 

0.1773±0.2531 

(0.101, 0.5192) 

Fall2 
0.1645±0.1331 

(0.1009, 0.427) 

0.1249±0.04007 

(0.1005, 0.22) 

 

  



 77 

Literature Cited for Supporting Information 2-2: 

Björkman, O., M. R. Badger, and P. A. Armond. 1980. Response and adaptation of 

photosynthesis to high temperatrues. In: Turner, N. C., and P. J. Kramer, editors. Adaptation 

of plants to water and high temperature stress. Wiley, New York, pp. 233-249. 

Dubois, J. J. B., E. L. Fiscus, F. L. Booker, M. D. Flowers, and C. D. Reid. 2007. Optimizing the 

statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of 

photosynthesis. New Phytologist 176: 402-414. 

Evans, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 

78: 9-19. 

Gelman, A. and D. B. Rubin. 1992. Inference from iterative simulation. Statistical Science 7: 

457-511. 

Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. 2009. The BUGS project: Evolution, 

critique and future directions. Statistics in Medicine 28: 3049-3067. 

Niinemets, Ü., A. Diaz-Espejo, J. Flexas, J. Galmes, and C. R. Warren. 2009. Importance of 

mesophyll diffusion conductance in estimation of plant photosynthesis in the field. Journal of 

Experimental Botany 60: 2271-2282. 

Peltier, D. M. P., and I. Ibáñez. 2015. Patterns and variability in seedling carbon assimilation: 

Implications for tree recruitment under climate change. Tree Physiology 35: 71-85. 

  



 78 

Supporting Information 2.3 - Climate data simulation and model projections 

 In order to predict the effects of climate change on seedling photosynthetic rates, we first 

needed to determine what an ‘average year’ of current climate conditions was. The variability of 

climate conditions in the four years included in this study was reasonably wide, so we decided to 

simply average the hourly climatic data (for relative humidity, temperature, and soil moisture) 

across all four years and all three sites, excluding data missing due to sensor damage (Fig. SI 

2.13). VPD was calculated from relative humidity and temperature and then both VPD and soil 

moisture data were centered around the annual mean (see Supporting Information 2.2). 

 Climate conditions in the two climate scenarios were then estimated using the predicted 

seasonal changes in temperature and precipitation for Michigan in 2100 (Handler et al. 2014; 

Table SI 2.2). Projected increases in temperature were added to hourly temperature data, but 

because our measurements differed from the projection units for water availability (soil moisture 

vs. precipitation), we instead used percent change in precipitation to estimate percent change in 

soil moisture for the climate change scenarios. Changes in relative humidity in this region are 

difficult to predict (Handler et al. 2014), so VPD in the two climate change scenarios are based 

solely on predicted changes in temperature. 

 Light availability (photosynthetic active radiation, PAR) was more complicated to 

average and project due to differences in light availability and seasonality between sites. 

Averaging hourly PAR across the three sites worked well for approximating light availability in 

spring and fall (when the canopy was open). After averaging the data, canopy close and 

reopening under the current climate scenario were calculated the same was as described in the 

text using the site-level annual PAR data. Spring and fall light data were then shifted earlier or 

later based on predicted canopy phenology from the phenology models (Fig. 2.2). 
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PAR values in summer were consistently low, however, presumably due to variation in 

sunflecks and cloudiness between sites at any given hour. Therefore, hourly summer PAR was 

estimated by averaging hourly PAR from all three sites across 14 days in the summer of 2018 

when weather was consistently sunny across all three sites. Hourly PAR was then assumed to be 

the same each day starting the day following canopy close and ending the day before canopy re-

opening. It is important to note that this approach means that our projected climate data still does 

not account for potential peaks in light availability due to sunflecks, and so the estimation of 

summer light in this study should be seen as a conservative estimate. 

 Lastly, although CO2 concentrations in the second scenario are elevated such that 

seedling photosynthesis may experience triose phosphate utilization (TPU) limitation instead of 

Rubisco carboxylation or RuBP regeneration limitation, we did not include TPU limitations in 

our projections (Fig. 2.3-2.4). A recent review (Lombardozzi et al. 2018) noted that it is 

particularly important to include TPU limitation in models where the temperature response of 

Vcmax is not accounted for, in part because there is evidence that plant physiological processes 

may acclimate to increased CO2 (Ainsworth and Rogers 2007), which may therefore change 

photosynthetic limitations in the future. Still, in the interest of transparency, we included carbon 

assimilation estimates that include TPU-limitations at TPU = 0.167*Vcmax (Fig. SI 2.14), 

according to Lombardozzi et al. (2018). Although spring carbon assimilation was somewhat 

diminished by the addition of the TPU limitation, the overall trends were the same (i.e., all 

species-treatment combinations that had positive carbon balances without the TPU limitation 

maintained positive carbon balances when it was included). 
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Figure SI 2.13 - Hourly climate data 

Environmental data used in estimation of ‘Current’ climate scenario. Each point represents an 

hourly average of temperature (A), relative humidity (B), or soil moisture (C). 
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Figure SI 2.14 - Net carbon assimilation with TPU limitation 

Net carbon accumulation using a model that includes TPU limitation of carbon assimilation of A. 

saccharum (A and B) and Q. rubra seedlings (C and D) planted under A. saccharum (A and C) 

and Q. rubra (B and D) canopy trees. Different lines and associated shading color represent 

predicted accumulation (and standard deviation of predicted values) under current climate 

conditions (solid, red), climate in 2100 assuming a reduction in global carbon emissions (dotted, 

green), and climate in 2100 assuming no reduction in global carbon emissions (dashed, blue).  

Negative accumulation is shown but is potentially unrealistic given that seedlings are likely to 

die shortly after reaching negative accumulation due to a limited capacity to store carbon from 

previous years. Carbon accumulation was extremely negative for A. saccharum seedlings planted 

under Q. rubra canopy trees (* in panel B) and was not included in this graph. 
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Chapter 3 Carbon Assimilation and Tree Seedling Performance 

 

ABSTRACT 

In temperate forests climate change is expected to result in net reductions to tree seedling 

annual carbon budgets as a result of increased costs in respiration associated with hotter and drier 

summers. This suggests that temperate tree recruitment will suffer from reduced seedling 

demographic performance. However, the beginning of the growing season (i.e., leaf expansion) 

is also advancing in response to warming. Many understory species, including seedlings of 

deciduous tree species, have been shown to rely on early spring light availability, prior to canopy 

closure, to assimilate the majority of their annual carbon budgets. If seedlings and canopy shift 

phenology at different paces this period of high light will also change and will consequentially 

affect seedlings carbon budgets. Despite its relevance to tree recruitment, this relationship 

between earlier springs and drier summers has not been quantified in combination.   

 In this study, we used estimated annual carbon budgets for individual tree seedlings of 

two temperate tree species commonly found across eastern North America (Acer saccharum and 

Quercus rubra), modeled the relationship between carbon accumulation and demographic 

performance (i.e., survival and growth), and then used output from these models to forecast tree 

seedling performance under two climate change scenarios. Annual carbon accumulation was 

found to be significantly and positively associated with survival of seedlings of both species and 

with the growth of A. saccharum seedlings, suggesting that seedlings of these two species rely 

heavily on current growing season carbon accumulation as opposed to stored carbon sources 

from previous years. Moderate climate change was projected to have virtually no effect on 
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seedling performance (growth or survival), but extreme climate change was projected to result in 

dramatic reductions in performance, particularly for A. saccharum. Both species are projected to 

maintain their rates of seedling survival and growth, largely due to increases in spring carbon 

accumulation associated with earlier spring leaf-out relative to canopy closure. Our results 

suggest that phenology shifts, and the seasonal light harvesting they provide, could play a 

significant role in determining future forest recruitment and should be accounted for in 

vegetation models. 

 

INTRODUCTION 

Forest understory plants often struggle to maintain positive carbon budgets due to 

insufficient access to light (e.g., Augspurger et al., 2005). Deciduous tree seedlings often 

overcome this light deficiency by expanding their leaves several days or weeks before the 

canopy closes in order to make use of direct sunlight (Augspurger & Bartlett, 2003; Augspurger, 

2008), a strategy referred to as phenological escape (Jacques et al., 2015). This process has been 

demonstrated to allow plants to assimilate 25-100%, of their annual carbon budget in the first 

few weeks of the growing season (Kwit et al., 2010; Heberling, Cassidy, et al. 2019; Chapter 2). 

The duration of this period is thus critically important for seedling performance. Recently it has 

been shown that climate change is causing understory plant leaf out phenology shift earlier in 

spring at rates that are either faster (Chapter 2) or slower (Heberling, McDonough MacKenzie, et 

al., 2019) than the shift rates of co-occurring canopy trees, leading to projected changes in 

understory light availability in spring, and consequently in the amount of carbon plants are able 

to assimilate. Previous studies have demonstrated that changing access to spring light affects 

understory plant performance (Routhier & Lapointe, 2002; Seiwa 2003; Augspurger, 2008); 
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however, to our knowledge, the quantitative change in carbon assimilation by seedlings during 

this period prior to canopy leaf-out has not previously been measured. 

Determining how carbon assimilation, i.e., photosynthetic performance, of tree seedlings 

affects demographic performance is of critical importance to understand what future forests will 

look like. Tree seedling recruitment is a strong bottleneck that filters which individuals 

eventually recruit into the canopy (Harper, 1977; Grubb, 1977), and it is also the stage at which 

trees are most likely to experience nonrandom, directional mortality (Green et al., 2014, Umaña 

et al. 2016). Most previous studies that have investigated the effects of climate change on tree 

seedling recruitment rely on correlations between demographic performance and environmental 

conditions (e.g., Gamache & Payette, 2005; Batllori et al., 2009), but this has been shown to be 

problematic if these relationships are nonlinear (Wolkovich et al., 2012; Ibáñez et al, 2017) or if 

plants experience novel climates (Jackson & Williams, 2004). Therefore, there is a need for a 

more mechanistic approach to assess future performance. 

Connecting demographic and physiological performance can bring us closer to that 

mechanism-based forecasting. Plant carbon status, often referred to as a “carbon budget” or 

“carbon balance”, is a particularly important physiological metric because it reflects if plants 

have enough carbon to perform basic metabolic functions needed to survive and grow. Carbon 

status has been experimentally linked to various metrics of plant performance including growth 

(Korol et al., 1991; Hlásny et al., 2011), survival (Lusk & Del Pozo, 2002; Piper et al., 2009), 

and fruit production (Hoch et al., 2013). If carbon sinks (e.g., costs associated with maintenance 

respiration and growth) are larger than carbon sources (i.e., photosynthetic assimilation and 

labile carbon located in storage tissue), plants will die from carbon starvation (Canham et al., 

1999; McDowell et al., 2008; Maguire & Kobe, 2015). Carbon starvation can also occur with 
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positive carbon budgets, potentially as a result of being unable to successfully move labile 

carbon to where it is needed in the plant (Sala et al., 2010). Plants may also experience reduced 

growth due to prioritized allocation of limited carbon to survival-related processes (Imaji & 

Seiwa, 2010). 

Results from previous studies suggest that carbon status may affect growth and survival 

of temperate tree seedlings differently, and that the effects are species specific. Kaelke et al. 

(2001), found that shade-tolerant Acer saccharum and moderately-shade-tolerant Quercus rubra 

tree seedlings experienced modest increases in growth associated with greater canopy openness 

and higher photosynthetic capacity, but that growth plateaued after reaching ~15% maximum 

light availability. In contrast, they found that shade-intolerant Populus tremuloides seedlings 

experienced a near-linear increase in growth for light levels greater than 5%, which suggests that 

differences exist in how much carbon species allocate to growth under non-limiting conditions. 

They monitored seedling survival for one year and they did not find substantial differences 

among the three species. However, they noted that an informal census the following year 

revealed no surviving Populus seedlings in low-light conditions compared to relatively high 

survival of the Quercus and Acer seedlings (Kaelke et al., 2001), suggesting that the relationship 

between demographic performance and carbon status is strongly dependent on shade-tolerance, a 

result which is supported by results from other studies of temperate tree seedlings (Lusk & Del 

Pozo, 2002; Imaji & Seiwa, 2010). If seedling demographic performance is indeed linked to 

carbon assimilation and if seedling carbon budgets decrease due to high respiration rates in 

summer, then increases in spring assimilation associated with earlier leaf-out relative to the 

canopy may be particularly important for recruitment of temperate tree species. 
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In this study, our goal was to evaluate the extent to which seasonal carbon accumulation 

is associated with the performance of seedlings of two temperate tree species. Importantly, this 

study is distinguished from Chapter 2 in that we estimate carbon assimilation at the individual 

level (rather than at the species and treatment levels) and use those data to model seedling 

demographic performance directly. Specifically, we addressed the following questions: 1) Does 

carbon accumulation directly affect the demographic performance (survival and growth) of 

temperate tree seedlings? If so, 2) what does this link between physiological and demographic 

performance tell us about seedling recruitment under scenarios of future environmental change? 

3) Could shifts in the timing of leaf out phenology predicted in Chapter 2 play a significant role 

in determining future seedling demography? Answering these questions may provide a 

mechanistic link between climate change and tree seedling recruitment that could be used to 

improve our predictions of tree population dynamics under climate change conditions. 

 

METHODS 

Experimental Design 

Study locations 

This study took place at three sites in southeastern Michigan, USA: Saginaw Forest 

(42.270977 N, 83.806022 W), Radrick Forest (42.287083 N, 83.658056 W), and the E. S. 

George Reserve (42.457104 N, 84.020226 W). Forests in all three locations were established in 

the early 1900’s following forest clearing and are currently dominated by mid- and late-

successional canopy species, such as Acer, Carya, Prunus, and Quercus. Radrick Forest and the 

E. S. George Reserve have relatively diverse canopies while plots in Saginaw Forest were 

established in former monocultures of Acer saccharum and Quercus rubra. Climate across all 
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sites is similar, with average June-August temperatures of 22 °C, average December-February 

temperatures of -6 °C, and average annual precipitation of 925 mm distributed evenly throughout 

the year. 

 

Study species 

We planted seedlings of two species native to and commonly co-occurring across eastern 

North America: late-successional Acer saccharum (Marsh.) and mid-successional Quercus rubra 

(L.). These two species were chosen because they differ in their shade tolerance (Crow, 1988; 

Lei & Lechowicz, 1990; Walters & Reich, 1996), capacity for phenological escape (Augspurger 

& Bartlett, 2003), and photosynthetic capacity (Kaelke et al., 2001; Peltier & Ibáñez, 2015). Acer 

saccharum seedlings are highly shade tolerant and are typically one of the first species in these 

forests to leaf out in spring whereas Q. rubra seedlings are only moderately shade tolerant and 

leaf out later in spring, sometimes at the same time as canopy closure. Quercus rubra seedlings 

typically have higher maximum photosynthetic rates than A. saccharum seedlings and are also 

considered to be more drought tolerant. Adults of these species have also been demonstrated to 

differ in drought tolerance (Bahari et al., 1985; Abrams, 1990; Loewenstein & Pallardy, 1998), 

stomatal regulation (Loewenstein & Pallardy, 1998; Cavender-Bares & Bazzaz, 2000), and wood 

anatomy (diffuse- vs. ring-porous xylem, respectively; Roman et al., 2015), although most of 

these traits have not been directly measured in seedlings and may not be consistent across 

ontogeny (Cavender-Bares & Bazzaz, 2000). 

  

Field experimental set-up 
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For three consecutive years, 2014-2016, seeds from each species sourced from several 

populations (Table SI 2.1) were cold-stratified and sown in a greenhouse in large tubs of potting 

soil (Sun Gro Horticulture; Agawam, MA, USA). Following germination and development of 

their first true leaves, seedlings were bare root transplanted to the field. At each site and in each 

year, 5-10 seedlings were planted under the canopy of three mature adult A. saccharum 

individuals and three mature Q. rubra individuals (each canopy tree is considered one plot). In 

total we planted 290 A. saccharum seedlings and 320 Q. rubra seedlings. Detailed information 

on the plantings is described in Chapter 2. 

 

Data Collection 

Foliar phenology 

We observed individual dates of seedling leaf expansion in spring and dates of initial leaf 

color change, 50% leaf color change, and leaf senescence in fall beginning the year after planting 

and going through the end of the 2018 growing season. Phenology was observed weekly in 

spring and fall, ending in spring when all seedlings had expanded their leaves or been declared 

dead and ending in fall when all seedlings had fully senesced their leaves. 

 

Seedling growth and survival 

Individual mortality was recorded during the phenology and damage censuses when 

mortality was obvious (e.g., for fully uprooted plants) or during spring of the following year if 

the individual did not produce new leaves. Seedling height (distance from soil to apical 

meristem) was recorded prior to planting to approximate maternal effects (which have been 
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shown to correlate with seedling phenology; Seiwa & Kikuzawa, 1991) and annually thereafter 

at the end of each growing season.  

 

Damage 

Leaf damage can affect seedling demographic performance directly (Gerhardt, 1998; 

Seiwa, 2003) and indirectly through reductions in photosynthetic capacity, so we observed leaf 

damage for all seedlings coinciding with the weekly phenology observations in spring and fall 

and then approximately monthly over the rest of the summer. Leaf damage was assessed by 

approximating the total percent area per leaf removed by herbivory or infected by a foliar 

pathogen to the nearest 5%. Herbivory damage was classified as either mammal (white-tailed 

deer, Odocoileus virginianus) or invertebrate herbivory based on visual analysis. Deer herbivory 

was identified when herbivory also damaged surrounding stem tissue, whereas invertebrate 

herbivory was usually incremental and typically did not damage stem tissue. Plant infection was 

identified as discoloration of leaf tissue not attributable to resorption of nutrients (i.e., leaves 

becoming grey, brown, or black midseason). Although these two types of damage were most 

common, other sources of damage were noted when they occurred, including whole plant 

uprooting (likely by squirrels or chipmunks), stem damage (e.g. stem snapping from a large 

branch falling on top of it), and leaf desiccation (when leaves remained green but became dry 

and brittle). We calculated a percent damage for each seedling which reflected the proportion of 

leaf area lost to herbivory or infection on an annual basis. 

 

Environmental data 
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Environmental data stations were set up at each site to collect data in closed-canopy 

environments. Each station was equipped to measure hourly temperature (°C) and relative 

humidity (%) using HOBO U23 Pro v2 data loggers (Onset Computer Corp., Bourne, MA, USA) 

and hourly soil moisture (%) and photosynthetically active radiation (PAR; μmol photons m-2 s-1) 

using HOBO Smart Sensors in combination with HOBO Micro Stations (Onset Computer 

Corp.). Additionally, plot-level variation in soil moisture was measured using a Fieldscout 

TDR300 soil moisture meter (Spectrum Technologies; Aurora, IL, USA) at multiple times 

throughout the growing season. Plot-level variation in midseason light availability was measured 

by taking hemispherical canopy photos at a height of 1 m above seedling level with a Sigma 

SD14 camera equipped with a Sigma 4.5 mm circular fisheye lens (Sigma Corporation, Japan) 

each year after the canopy at each plot had completely closed. For each photo we calculated the 

Global Site Factor (GSF) using Hemiview software (Delta-T Devices, Cambridge, UK), which is 

a continuous value that represents proportion of canopy openness ranging from zero (fully 

closed) to one (fully open). 

 

Carbon assimilation 

In previous work (Chapter 2) we collected seedling photosynthetic measurements using a 

LI-6400 Portable Photosynthesis System equipped with a CO2 mixer assembly, LI-02B LED 

red/blue light source, and LI-06 PAR sensor (Li-COR Biosciences, Lincoln, NE, USA). 

Measurements were taken for a subset of planted seedlings every two weeks in spring and fall 

and approximately monthly over the summer between 2015 and 2017. For a detailed description 

of photosynthetic methods see Supporting Information 3.2. These data were used to estimate 

hourly carbon assimilation and respiration rates for each seedling using a hierarchical Bayesian 
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adaptation of the Farquhar et al. (1980) model of C3 photosynthesis (Patrick et al., 2009; Peltier 

& Ibáñez, 2015). A full description of the model used in this analysis (including seasonal 

parameter estimates, model code, and gas exchange measurements used to fit the model) is 

included in Chapter 2 (Supporting Information 2.2).  

We were thus able to estimate carbon assimilation rates for at the leaf and seedling levels 

over the entire growing season by inputting hourly climate data (temperature, vapor pressure 

deficit [VPD], soil moisture, and PAR) collected from our site-level environmental stations and 

simulated at the plot level (see Supporting Information 3.2). Using season-specific parameters 

(Supporting Information 2.2), hourly carbon accumulation was then calculated by multiplying 

the assimilation rate (μmol m-2 s-1) by the estimated leaf area (m2) of each seedling. Seasonal and 

annual carbon accumulation was then calculated as the sum of hourly accumulation for each 

seedling (Fig. 3.1). A full description of this process is included in Supporting Information 3.2. 

Importantly, the light estimates used in this study were calculated differently than described in 

Chapter 2 (Supporting Information 2.3); here, light availability was adjusted according to mid-

season canopy openness. The estimates in this chapter tended to be greater than the light 

estimates in Chapter 2. 

 

Analyses 

Survival 

We analyzed seedling survival using a hierarchical Bayesian Bernoulli model where the 

probability of survival (p) for each seedling (i) in year (t), dead Survivali,t = 0 or alive Survivali,t 

= 1, is estimated with likelihood: 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑖,𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑡), and process model: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑡) = 𝑙𝑜𝑔 (
𝑝𝑖,𝑡

1−𝑝𝑖,𝑡
) = 𝛽̅𝑋𝑖,𝑡. We systematically evaluated models for best fit using 
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different combinations of eight covariates and seven categorical variables (Table 3.1), the latter 

included as random effects. Models started with an intercept (β0) and a carbon accumulation term 

(βC): 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑡) = 𝛽0 + 𝛽𝐶 ∗ 𝐶𝐴𝑛𝑛𝑢𝑎𝑙𝑖,𝑡
 

Where CAnnual is each seedling’s annual carbon accumulation for a given year. Values of all 

continuous covariates, including CAnnual, were standardized around their respective means, 

separately for each species (standardized value = [observed – mean]/[2*standard deviation]). 

Covariates and random effects (Table 3.1) were then added one at a time with models being 

iteratively chosen based on best fit according to the area under the receiving operator 

characteristic curve (AUROC; Metz, 1978; Murtaugh, 1996). Importantly, one of the covariates 

tested in the model was leaf-out date (LOD). Because individual leaf-out phenology, and thus 

effects related to light availability, is already included in our estimations of CAnnual, this term 

represented other potential effects related to the timing of leaf-out such as increased risk of frost 

damage (Vitasse et al., 2014). A description of the AUROC criterion is available in Supporting 

Information 3.3, and posterior estimates of intercepts, covariates, and random effects are 

available in Table SI 3.2. Each species was analyzed independently. 

 

Growth  

Only seedlings with non-negative growth values were included in this analysis. Negative 

growth values were generally associated with stem die-back or deer herbivory and did not 

represent the realized growth of each seedling. Growth measurements were standardized around 

the mean and variance for each species, as described above. Seedling growth for each seedling i 

and year t was analyzed with a normal likelihood: 𝐺𝑟𝑜𝑤𝑡ℎ𝑖,𝑡~𝑁(𝜌𝑖,𝑡, 𝜎2), limited to positive 
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values, and process model: 𝜌𝑖,𝑡 =  𝛽0 +  𝛽̅𝑋𝑖,𝑡. We evaluated models for best fit using 

combinations of CAnnual and the same covariates described in the survival analysis, with the 

addition of a seedling random effect. Model selection for growth models was done based on 

comparisons of the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002) and on 

goodness of fit (R2, predicted vs. observed), fully described in Supporting Information 3.3. 

Posterior estimates of all growth model parameters are available in Table SI 3.2. Species were 

analyzed individually. 

In both analyses, covariate parameters were estimated from non-informative normal 

distributions 𝛽∗ ~ 𝑁(0, 1000). Random effect parameters associated with the qualitative 

variables were estimated from hierarchical normal distributions  𝛼∗ ~ 𝑁(0, 𝜎2
𝛼∗). Precision 

parameters (1/variance) were estimated from non-informative gamma prior distributions 

1 𝜎2
𝛼∗ ~ 𝐺𝑎𝑚𝑚𝑎(0.001, 0.001)⁄ .  

All models were run using OpenBUGS software v3.2.3 (Lunn et al., 2009). We tracked 

40,000 iterations for two Monte Carlo chains following a 30,000-iteration burn-in period. 

Convergence of parameters was assessed visually and by using the Brooks-Gelman-Rubin 

statistic (Gelman & Rubin, 1992), and models were iterated until convergence was reached. 

Parameter values (means, variances, and covariances) were estimated from their posterior 

distributions. 

 

Climate change projections 

In order to project changes in seedling performance in response to climate change we 

combined our growth and survival models (i.e., estimated parameter means, variances, and 

covariances) with predicted changes in seasonal carbon accumulation for these two species under 
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simulated current climate conditions and under two climate change scenarios predicted for the 

region (Handler et al., 2014; Fig. 3.1). Current carbon accumulation was estimated as the mean 

accumulation values using all seedlings of each species. Scenario 1 represents the projected 

climate in 2100 assuming reductions in global carbon emissions ([CO2] = 550 ppm) and Scenario 

2 is a more extreme climate scenario that assumes no reduction in global emissions ([CO2] = 970 

ppm) by 2100 projected by the USDA climate change vulnerability assessment for the study 

region (Handler et al., 2014). This reflects increases in average summer temperatures of 1.2 and 

6.2 °C and changes in average summer soil moisture of 10.2% and -38.8% for Scenarios 1 and 2, 

respectively. A table containing the seasonal predicted changes in climate can be found in Table 

SI 2.2. We then applied those changes to the Current climate average values and estimated 

carbon accumulation (Fig. 3.1). Climate projections assumed that continuous covariates besides 

CAnnual were average and binary covariates were zero and projected changes in carbon 

accumulation were averaged across both canopy tree treatments. 

 

RESULTS 

Out of 170 A. saccharum seedlings planted in the 2014 cohort, 34 survived transplant 

stress and the first growing season and only 4 survived through the end of 2018. From the 120 

seedlings planted in the 2016 cohort 36 survived to reach the second growing season and 23 

survived through the end of 2018. Out of the 170 Q. rubra seedlings planted in 2014, 20 survived 

the first growing season and 4 survived through the end of 2018. Six of the 30 Q. rubra seedlings 

planted in 2015 survived the first growing season with only 1 surviving to the end of the study. 

Survival was proportionally highest for the 2016 Q. rubra cohort, with 89 of the 120 seedlings 

surviving the first growing season and 42 seedlings surviving to the end of the study. Quercus 



 96 

rubra seedlings (146.2 ± 34.9 mm) were taller on average than A. saccharum seedlings (76.7 ± 

14.4 mm) at the time of planting but had slightly lower annual growth rates thereafter (19.7 ± 

14.9 mm y-1 and 23.7 ± 16.1 mm y-1, respectively). 

 

Carbon accumulation 

Annual carbon accumulation calculated at the individual level ranged from -0.014 to 

0.364 mol and 0.001 to 0.453 mol for A. saccharum and Q. rubra seedlings, respectively. For A. 

saccharum seedlings, an average of 84.3% of annual carbon was assimilated in spring, 15.9% 

was assimilated in summer and -0.2% was assimilated in fall (i.e., respiration in fall was greater 

than photosynthetic assimilation for this species; Fig. 3.1). In contrast, an average of 52.5% of Q. 

rubra seedling annual carbon was assimilated in spring, 43.5% was assimilated in summer, and 

4.0% was assimilated in fall (Fig. 3.1). These ratios changed in the two climate change scenarios, 

with relatively more assimilation in spring and less assimilation in summer (Fig. 3.1), 

particularly in Scenario 2. For both species, the modeled total annual carbon accumulation 

increased slightly in climate Scenario 1 due to increased spring carbon accumulation but 

decreased dramatically in Scenario 2 due to high respiration costs in summer (Fig. 3.1). 

 

Seedling survival 

The models resulted in AUROC values of 0.913 and 0.890 for A. saccharum and Q. 

rubra, respectively, meaning that the models were able to correctly predict seedling survival 

about 90% of the time. In addition to CAnnual, the best fit survival models for both species 

included covariates for presence of foliar desiccation and percent foliar damage, with the A. 

saccharum survival model also including a term for signs of deer herbivory. The effect of annual 
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carbon was positive and significant for both species while the effects of desiccation and percent 

leaf damage were negative and significant (Fig. 3.2). Deer herbivory had a negative but non-

significant effect on A. saccharum survival (Fig. 3.2a). The best fit A. saccharum model included 

site random effects whereas the best fit Q. rubra model included plot random effects. All 

parameter values can be found in Table SI 3.2. 

 

Seedling growth 

The best fit A. saccharum growth model had a goodness of fit R2 = 0.497; goodness of fit 

for Q. rubra was 0.467. The best fit growth models each included CAnnual and only one other 

covariate. Acer saccharum growth was best predicted by a model that included GSF (i.e., light) 

whereas Q. rubra growth was best predicted by a model that included signs of deer herbivory. 

All covariates were positively associated with growth for both species, but the only significant 

relationship was between CAnnual and A. saccharum growth (Fig. 3.3). Models for both species 

included plot, site, and seedling random effects, with the A. saccharum model also including a 

random effect for year and the Q. rubra model including additional random effects for seedling 

age and planting cohort. All parameter values can be found in Table SI 3.3. 

 

Performance under climate change projections 

Survival 

Seedlings accumulating the estimated average values of annual carbon were predicted to 

survive (i.e., probability of survival ≥ 0.5) in all three climate simulations across both species 

(Fig. 3.4; assuming no desiccation, no leaf damage, and no deer herbivory). Survival estimates 

were consistently higher for A. saccharum seedlings compared to Q. rubra seedlings across all 
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three simulations, although the difference in survival probability between the two species 

decreased in the more severe climate change scenario. Survival under the moderate climate 

change scenario (Scenario 1; filled symbols in Fig. 3.4) was predicted to be very similar to 

survival in current conditions for both species, but survival under more extreme climate change 

(Scenario 2; open symbols in Fig. 3.4) decreased by 17.6% and 6.5% compared to current 

condition survival for A. saccharum and Q. rubra, respectively. 

 

Growth 

Growth projections were qualitatively similar to the survival projections, with A. 

saccharum seedlings expected to have higher growth than Q. rubra seedlings across all three 

climate simulations (Fig. 3.5). The difference in growth between the two species decreased from 

3.56 mm yr-1 under current climate conditions to 0.38 mm yr-1 in Scenario 2. Scenario 1 

predictions did not differ greatly from the current climate predictions, with growth in Scenario 2 

projected to decrease by 4.01 mm yr-1 (17.7%) and 0.83 mm yr-1 (4.3%) compared to growth in 

current conditions for A. saccharum and Q. rubra seedlings, respectively.  

 

DISCUSSION 

For many temperate plant species current trends in climate change will bring earlier 

springs and drier summers (Piao et al., 2019), but only recently have ecologists focused on the 

effect that these changes will have on plant carbon status (Routhier & Lapointe, 2002; Seiwa 

2003; Augspurger, 2008). In particular, the mismatch between the ground layers, where 

seedlings recruit, and the canopy is critical for the annual carbon budget of the seedlings 

(Chapter 2). Previous studies have directly linked plant carbon status to demographic 
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performance (e.g., Korol et al., 1991; Kaelke et al., 2001; Piper et al., 2009), but little work has 

been done linking changes in demographic performance through changes in plant carbon status 

associated with shifting phenologies. Here, we quantified how demographic performance of 

seedlings of two temperate tree species commonly found across eastern North America is 

directly affected by plant carbon status. Furthermore, we used this relationship to assess future 

demographic performance on the basis of predicted carbon accumulation under forecasted 

climate scenarios, i.e., carbon budgets that account for shifting phenology. As expected, our 

analyses show that plant demographic performance (i.e., survival and growth) depend on carbon 

accumulation. Our results also show that phenological escape in spring will allow A. saccharum, 

a drought-intolerant species, to maintain positive recruitment under climate change. However, 

under a more extreme climate change scenario, carbon accumulation will substantially decrease 

in both species resulting in lower demographic performance. 

 

Carbon accumulation and demography 

Plants rely on photosynthetic carbon assimilation to survive, grow, reproduce, and defend 

themselves (Mooney, 1972). Our results reflect that dependency. Survival of both species was 

significantly associated with carbon accumulation (Fig. 3.2), but the relationship between carbon 

and growth was only significant for A. saccharum seedlings (Fig. 3.3a).This likely reflects 

intrinsic differences in shade tolerance between the two species since all seedlings in this study 

were planted in closed-canopy locations. We speculate that shade-tolerant A. saccharum 

seedlings were able to efficiently allocate carbon to survival with enough excess carbon left over 

to allocate to aboveground growth. Moderately-shade-tolerant Q. rubra seedlings assimilated 

enough carbon to facilitate survival but either did not have enough to allocate to aboveground 
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growth or they allocated their excess carbon to other functions such as defense, belowground 

growth, or storage (e.g., Canham et al., 1999). This speculation is consistent with a previous 

study that found that 2-year-old Q. rubra seedlings allocated more carbon to storage than A. 

saccharum, A. rubrum, and Prunus serotina seedlings on a mass basis (Canham et al., 1999). It is 

also consistent with work showing that the cost of allocating carbon to storage decreases under 

low-light conditions (Kobe, 1997), suggesting that understory plants will prioritize storage ahead 

of growth. In addition to labile carbon allocation, tree seedlings have also been demonstrated to 

adjust biomass allocation in response to shade (Curt et al. 2005) and drought (Schall et al. 2012). 

The lack of strong relationships between growth and carbon in our study could thus be partially 

explained by increased biomass allocation to belowground growth (a variable we did not 

measure). 

Survival models for both species also showed significantly negative associations with 

desiccation and foliar damage due to pathogens and herbivory. We already accounted for the 

negative effects that decreased water availability can have on photosynthetic performance 

(Supporting Information 3.2), so this additional effect of desiccation suggests that temperate tree 

seedlings are also vulnerable to dying from hydraulic failure (McDowell et al., 2008). Hydraulic 

failure, whereby plants die from catastrophic embolisms resulting from extremely negative water 

potentials, is particularly common in arid ecosystems such as the U.S. southwest (McDowell et 

al., 2008), but it commonly occurs in mesic systems as well (Hoffmann et al., 2011; Choat et al., 

2012). This dynamic may be accentuated for tree seedlings because of their relative inability to 

access deeper sources of water (Cavender-Bares & Bazzaz, 2000). Similarly, leaf damage, after 

accounting for photosynthetic area in our carbon accumulation calculations (Supporting 

Information 3.2), also reduced survival. We can only speculate about the mechanism behind this 
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effect, but one possible explanation is that foliar damage is correlated with systemic damage 

such as whole-plant infection that could be a contributing factor in mortality (Jain et al., 2019). 

The impact of deer herbivory was found to be important for A. saccharum survival and 

Q. rubra growth but with opposite effects. Although the association between A. saccharum 

survival and deer herbivory was negative, signs of deer herbivory had a positive association with 

Q. rubra growth, suggesting that seedlings of this species grew more in response to deer 

herbivory events. This result, although initially counterintuitive, is consistent with previously 

documented compensatory growth dynamics (McNaughton, 1983), and could reflect a potential 

trade-off between growth and foliar defense (Coley, 1988). Therefore, our results speculatively 

suggest that Q. rubra seedlings are allocating assimilated carbon to storage in the form of non-

structural carbohydrates that they can then mobilize for regrowth following herbivory. 

 

Seedling performance under scenarios of climate change  

Climate change vegetation forecasts for temperate forests often predict an increase in 

drought-tolerant anisohydric tree species (e.g., Gustafson & Sturtevant, 2013), largely due to 

decreased water availability. However, our results suggest that, at least with respect to tree 

seedling recruitment, drought-intolerant species like A. saccharum could maintain their 

recruitment performance if they are able to shift their spring phenology faster than canopy trees 

shift theirs; A. saccharum seedlings maintained higher performance than the moderately drought-

tolerant Q. rubra seedlings across all three climate simulations assessed in this study (Fig. 3.4 

and 3.5). Although Q. rubra seedlings accumulate more carbon per individual, they are bigger 

seedlings with likely higher maintenance respiration costs (Amthor, 1984) and allocate a greater 

proportion of their carbon to root growth and carbon storage (Canham et al., 1999). In our 
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experiment, still ongoing, we did not harvest the seedlings and are therefore unable to estimate 

carbon accumulation on the basis of seedling full biomass (Canham et al., 1999). Thus, even if A. 

saccharum seedlings lose more carbon in absolute terms under Scenario 2 (Fig. 3.1), this loss 

would affect survival and growth to a lesser extent than in Q. rubra seedlings.  

Furthermore, our climate change predictions account for concurrent increases in 

respiration costs associated with warmer summers, so this difference suggests that seedlings are 

allocating assimilated carbon differently, with Q. rubra seedlings allocating proportionately 

more carbon to belowground growth, storage tissue, construction of new leaf tissue, or secondary 

metabolite production. This agrees with previous research which found that Q. rubra seedlings 

maintain non-structural carbohydrate pools in moderately stressful conditions whereas A. rubrum 

seedlings, a similar species to A. saccharum with respect to shade- and drought-tolerance (Houle, 

1994; Hirons et al., 2015), do not (Maguire & Kobe, 2015). It is also consistent with research 

published by Frost and Hunter (2008), who found that defoliation of Q. rubra seedlings led to 

increased allocation of carbon to storage and to growth of replacement leaf tissue. We solely 

measured aboveground vertical growth, so we are only able to speculate about allocation to 

belowground growth or carbon storage in the form of non-structural carbohydrates, the latter of 

which has been shown to correlate with Q. rubra survival (Canham et al., 1999). This suggests 

that A. saccharum may not necessarily outperform Q. rubra in the future. Growth and survival 

for both species did not change under moderate climate change (Scenario 1), whereas more 

extreme climate change (Scenario 2) resulted in sharp decreases in performance, particularly for 

A. saccharum seedlings. The interspecific differences were cause by 1) a greater total decrease in 

predicted annual carbon accumulation, and 2) steeper slopes for the prediction trends for A. 

saccharum compared to Q. rubra. 
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Role of spring phenology in determining seedling demography 

Still, the increase in projected spring carbon assimilation by A. saccharum seedings (Fig. 

3.1) will play a large role in its future demographic performance, particularly under extreme 

climate change conditions. The shift to earlier spring phenology predicted for this species in 

Chapter 2 accounts for a 0.028 mol increase in spring carbon accumulation from the current 

climate scenario, making up more than half of the net annual carbon accumulation for this 

species under Scenario 2. Without this additional carbon assimilation, expected survival would 

drop from 64% to 53%. In contrast, Q. rubra seedlings are projected to gain 0.014 mol of carbon 

accumulation in spring due to earlier leaf out, without which expected survival would only fall 

from 59% to 55%. Therefore, earlier springs will be proportionally more important for A. 

saccharum seedlings than for Q. rubra seedlings under future climate change. 

 

CONCLUSION 

The results from this study suggest that successful temperate tree recruitment under 

climate change scenarios will depend strongly on the capacity of seedlings to access spring light 

via phenological escape mechanisms, particularly for species that rely heavily on spring 

photosynthetic activity for the majority of their annual carbon assimilation. The simulated 

responses to climate change scenarios in our study suggest that climate change will result in 

sharp decreases in performance if global carbon emissions are not reduced, but that the 

magnitude of these reductions could be somewhat attenuated by increasing access to spring light.  
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TABLES AND FIGURES 

Table 3.1 - Covariates and random effects in survival and growth models 

A list of the covariates and random effects evaluated during model selection along with 

descriptions and information for the number of levels included in each random effect. 

Variable 
Type of 

variable 
Description 

Carbon Covariate Annual seedling-level carbon accumulation 

PrevC Covariate Carbon accumulation from previous year* 

%Damage Covariate Percent of total leaf area lost to herbivores and pathogens 

LOD Covariate Leaf-out day in spring 

GSF Covariate Plot-level canopy openness (light available) 

Height Covariate Seedling height at planting 

Desiccation Binary Signs of leaf desiccation 

Deer Binary Signs of deer herbivory 

   

Seed Source Random effect Population of origin (north or south) 

Canopy Random effect Species of tree under which seedlings were planted (2 

species) 

Site Random effect Site planted (3 sites) 

Plot Random effect Plot planted (18 plots) 

Cohort Random effect Year planted (2-3 planting years) 

Age Random effect Seedling age (1-4 ages) 

Year Random effect Year observed (4 years of data collection) 

*Phenology, leaf damage, and other data needed to calculated carbon accumulation were not 

recorded in the year following transplant. Estimation of first year PrevC is described in SI 3.2. 
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Figure 3.1 - Seasonal seedling carbon accumulation 

Seasonal carbon accumulation (averaged across all seedlings) for (a) A. saccharum and (b) Q. 

rubra seedlings in current climate conditions (C), under moderate climate change (S1) and under 

more extreme climate change (S2). Dashed lines and associated numbers indicate the net annual 

carbon accumulation for each scenario. 

 

  



 111 

Figure 3.2 - Survival model parameter estimates 

Posterior estimated means and 95% credible intervals (CI) for survival model parameters for (a) 

A. saccharum and (b) Q. rubra. Asterisks indicate parameter estimates that are significantly 

different from zero. 
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Figure 3.3 - Growth model parameter estimates 

Posterior estimated means and 95% credible intervals (CI) for growth model parameters for (a) 

A. saccharum and (b) Q. rubra. Asterisks indicate parameter estimates that are significantly 

different from zero. 

 

  



 113 

Figure 3.4 - Climate change survival predictions 

Predicted probability of survival (lines; mean ± 95% predictive intervals) as a function of annual 

carbon accumulation for A. saccharum (black) and Q. rubra seedlings (grey). Vertical lines 

represent annual carbon accumulation under current climate conditions and symbols represent 

predicted survival under moderate climate change (Scen. 1; filled symbols) and more extreme 

climate change (Scen. 2; empty symbols). 
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Figure 3.5 - Climate change growth predictions 

Predicted growth (lines; mean ± 95% predictive intervals) as a function of annual carbon 

accumulation for A. saccharum (black) and Q. rubra seedlings (grey). Vertical lines represent 

annual carbon accumulation under current climate conditions and symbols represent predicted 

growth under moderate climate change (Scen. 1; filled symbols) and more extreme climate 

change (Scen. 2; empty symbols). 
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SUPPORTING INFORMATION 

Supporting Information 3.1 - Supplemental Tables and Figures 

Table SI 3.2 - Survival parameter posterior estimates 

Posterior estimate means (and 95% confidence intervals) of covariate parameters and intercepts 

and the mean and 95% C.I.s for variance terms associated with random effects for survival 

models. Bold values indicate covariate estimates that are significantly different from 0 and NA 

indicates that a covariate or random effect was not present in the best fit model for that species. 

  Acer saccharum Quercus rubra 

Intercept  1.802 (-0.531, 4.286) 0.638 (-0.045, 1.277) 

Covariate 

Carbon 3.061 (1.362, 5.06) 2.185 (1.135, 3.371) 

Deer -2.451 (-5.197, 0.166) NA 

Desiccation -5.756 (-10.1, -2.413) -4.195 (-7.421, -2.025) 

%Damage -3.279 (-4.814, -1.961) -2.046 (-3.062, -1.111) 

Random effect 

variance 

Site 3.386 (0.029, 11.01) NA 

Plot NA 38.64 (0.328, 387.1) 

Model AUROC 0.913 0.890 
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Table SI 3.3 - Growth parameter posterior estimates 

Posterior estimate means (and 95% confidence intervals) of covariate parameters and intercepts 

and the mean and 95% C.I.s for variance terms associated with random effects for growth 

models. Bold values indicate covariate estimates that are significantly different from 0 and NA 

indicates that a covariate or random effect was not present in the best-fit model for that species. 

  Acer saccharum Quercus rubra 

Model variance  6.038 (3.882, 9.135) 5.53 (3.722, 8.0) 

Intercept  -0.033 (-0.531, 0.497) -0.021 (-0.823, 0.933) 

Covariate 

Carbon 0.345 (0.079, 0.622) 0.213 (-0.008, 0.436) 

Deer NA 0.486 (-0.224, 1.192) 

GSF 0.155 (-0.105, 0.417) NA 

Random effect 

variance 

Seedling 260.8 (11.06, 1530) 298.1 (13.82, 1598) 

Plot 337 (17.57, 1735) 270.7 (13.93, 1526) 

Site 116.6 (1.152, 830.8) 143.7 (1.126, 1002) 

Age NA 80.65 (1.992, 501.3) 

Year 74.19 (1.583, 507.1) NA 

Cohort NA 112.5 (0.323, 982.7) 

Model DIC 92.92 116.8 

Goodness of fit R2 0.4974 0.4671 
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Figure SI 3.6 - LRI x GSF submodel 

The relationship between mid-summer Global Site Factor (GSF; i.e., canopy openness) and the 

Light Reduction Index (LRI) described in Appendix S3. Blue line and grey shading show mean 

and standard deviation of the regression and black points represent data. 
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Supporting Information 3.2 - Supplemental Methods 

Photosynthetic methods 

Seedlings were randomly chosen for use in the gas exchange measurements while 

allowing for approximately equal representation across species, seed source, and canopy 

treatments at each site (when possible). A maximum of 10 total seedlings were chosen at each 

site at each day of observation and the same leaves on the same seedlings were used for all 

consequent measurements. If a sampled seedling died or lost too much leaf tissue to be 

measured, it was replaced with another of the same species and treatment where available. 

Each gas exchange measurement consisted of a five-minute acclimation period with the 

chamber attached to the leaf followed by the construction of an A-Q curve (at 1500, 1000, 750, 

500, 250, 125, 60, 30, 20, 10, and 0, μmol photon m-2 s-1) and an A-Ci curve (at 400, 300, 200, 

100, 50, 400, 400, 600, 800, 1000, 1250, and 1500 ppm CO2). Leaves that did not cover the area 

of the cuvette (6 cm2) were traced in the field and leaf area was subsequently measured using 

ImageJ software (Schneider et al., 2012). Soil moisture was measured at the time of each 

photosynthetic measurement using the Fieldscout soil moisture meter. The time of day was 

recorded for each measurement to account for possible diurnal variation in photosynthetic 

behavior and all measurements were taken between 0900-1600 hours. During fall, phenophase of 

the measured leaf was also recorded (initial leaf coloring, > 50% leaf coloring). 

 

Plot-level environmental simulations 

Understory environmental factors that affect photosynthesis and phenology (temperature, 

relative humidity, soil moisture, and PAR) were collected hourly at each site at locations with 

closed canopies representative of the variation within the site. Each replicate plot was located 

within approximately 100 meters of the environmental station at each site, so plot-level 
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temperature and relative humidity were assumed to be equal to the site-level data. Plot-level 

VPD was therefore equal to site-level VPD, calculated using the relative humidity and 

temperature data according to methodology described in Chapter 2. Water and light availability, 

however, differed among plots and therefore needed to be simulated at the plot level. 

 

Light simulations 

In order to simulate plot-level light, we first established the relationship between light 

availability and Global Site Factor (GSF), a measure of canopy openness calculated from canopy 

photos for each environmental station. We extracted hourly daytime light values between 0900-

1800 hours for 15 days surrounding the day when the canopy photo was taken for each station in 

each year (day of, seven days before, and seven days after measurement), and averaged these 

values to determine midsummer light availability for each station (PARsummer). We calculated a 

similar value in spring using daytime PAR values from day-of-year 100-114 (PARspring), 

reflecting light availability prior to canopy closure, which occurred after DOY 114 across all 

sites and years.  

We used these values to calculate a light reduction index (LRI = PARspring/PARsummer), 

where high LRI values reflect conditions where summer light availability is much lower than 

spring light availability (i.e., plots with dense canopies and little understory light availability) 

and low LRI reflects open canopies where spring and summer light availability is more similar. 

Because of occasionally missing PAR data (e.g., due to sensor damage) and because of relatively 

low variation in GSF across closed-canopy environmental stations, we supplemented these data 

with LRI calculated for nearby open-canopy environmental stations located at each site. We then 

modeled the relationship between GSF and LRI using a negative exponential model: 
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𝐿𝑅𝐼 ~ 𝑎 + 𝑏 ∗ 𝐸𝑥𝑝(−𝐺𝑆𝐹) 

The model (Fig. SI 3.6) was fit in R (version 3.5.3) using the lm function in the stats package. 

In order to simulate hourly plot-level light, we combined the intercept (a) and slope (b) 

parameters from the LRI model with plot-level GSF measured yearly at the plot level. This 

required us to substitute PARspring in the LRI calculation with hourly PAR data measured at the 

most open environmental station, where canopy closure was minimal (LRI = 1.55). We used this 

approach to simulate hourly light for daytime hours during closed canopy conditions for all plots. 

Nighttime and open-canopy light availability was assumed to be equal to the average PAR across 

the three closed-canopy environmental sensors. Day of canopy closure in spring and reopening in 

fall were determined according to the methodology described in Chapter 2. 

 

Soil moisture simulations 

In order to estimate plot-level soil moisture we first modeled the relationship between 

hourly site-level soil moisture and plot-level soil moisture data collected intermittently over the 

duration of the study period using the Fieldscout soil moisture meter (approximately 5-7 times 

per year, spread evenly throughout the growing season). We fit simple linear regressions for each 

plot using the lm function in the stats package in R: 

𝑆𝑀𝑠𝑖𝑡𝑒  ~ 𝑎 + 𝑏 ∗ 𝑆𝑀𝑝𝑙𝑜𝑡 

Where SMsite is the site-level soil moisture value recorded at the closed-canopy environmental 

station at each site at the hour closest to when the plot-level measurement (SMplot) was taken. We 

then simulated hourly plot-level soil moisture using the intercept and slope parameters estimated 

from the model and the hourly soil moisture data recorded at the site where the plot was located. 
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Carbon accumulation detailed methods 

We made several assumptions when calculating hourly carbon accumulation regarding 

phenology, leaf area, leaf damage, and environmental conditions experienced by the plant. With 

respect to phenology, we assumed that hourly phenophase (used to determine which set of 

photosynthetic parameter values to use) was the same as the phenophase in the most recent 

phenology census. This means that plants were assumed to have leaves beginning the first day 

they were observed to do so and were assumed to maintain them until the day before full 

senescence was observed. This assumption was made for individual leaves on each plant, which 

were tracked separately. 

We did not measure leaf area for every leaf or every plant, so the leaf area used to 

calculate carbon accumulation from the simulated carbon assimilation rates was estimated using 

the average measured area of traced leaves (see Photosynthetic Methods above) and categorical 

leaf-size data observed at the leaf level. Leaves were traced when they did not fill the entirety of 

the 2 cm x 3 cm IRGA cuvette, but this was not always due to the measured leaf being too small. 

For example, leaves were also traced if they had insect herbivory damage to tissue toward the 

center of the leaf that could not be avoided during the measurement. We also recorded the 

relative size of each leaf on each plant (including seedlings not used in the gas exchange 

measurements) as either normal, small (~50% of normal), or very small (~10% of normal). We 

thus calculated the species-specific average leaf area for all normal-sized leaves that had been 

traced (42.36 and 21.56 cm2 for A. saccharum and Q. rubra leaves, respectively), adjusting to 

account for the percent damage to each leaf. Small leaves were assumed to have an area of 50% 

of normal leaf area and very small leaves were assumed to have an area of 10% of normal. 
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Leaf area values used to calculate carbon accumulation were then further modified by 

accounting for reductions in leaf area caused by damage from herbivores and pathogens. We 

used the percent area of leaf damage for each leaf (see Chapter 3 Methods) and the average leaf 

area values described above to estimate the realized leaf area for the hourly assimilation 

calculations. As with phenology, leaf damage was assumed to be equal to the leaf damage 

recorded in the most recent damage census.  

The last assumption we made with respect to carbon accumulation was that the 

environmental conditions each plant experienced were equal to the environmental conditions 

measured at the site level (temperature, VPD) or estimated at the plot level (soil moisture, PAR).  

 

Carbon accumulation in transplant year (PrevC) 

No data other than survival and growth were recorded for seedlings in the year they were 

transplanted because of the likelihood that transplantation would affect their performance and 

health. Therefore, in order to calculate the previous year’s carbon accumulation (PrevC) in the 

transplant year for the seedling survival and growth models, we made several assumptions. We 

assumed that leaf area of each seedling was equal to the average leaf area (not including foliar 

damage) across all other years where that seedling was observed and that seedlings received the 

average percent leaf damage over the transplant growing season. Seedlings were transplanted 

following canopy closure, so light in the first growing season was assumed to be equal to open-

canopy light values until the day of transplant, with leaf-out assumed to be two weeks prior to 

transplant. Seedling phenology in fall was estimated using parameter values from the phenology 

models estimated in Chapter 2. Because of the uncertainty surrounding these assumptions, the 

effects of PrevC were also estimated for each model excluding the estimated transplant-year 
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values. PrevC was not found to have a significant association with the growth or survival of 

either species, regardless of if the transplant-year estimations were included. 

 

References for Supporting Information 3.2 
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Supporting Information 3.3 - Model Selection Criteria 

Survival models: AUROC 

Model selection of survival models was evaluated by comparing the area under the 

receiver operating characteristic curve (AUROC; Metz, 1978; Murtaugh, 1996) using the 

‘pROC’ package in R. The ROC curve plots the relationship between model sensitivity (i.e., the 

proportion of true positive observations that are correctly classified by the model) and model 

specificity (i.e., the proportion of true negative observations that are correctly classified). 

AUROC values range from 0 to 1 where values of 1 indicate that the model correctly 

distinguishes between survival and mortality 100% of the time and values of 0 indicate the 

model correctly distinguishes between classes 0% of the time (i.e., the model is predicting the 

reciprocal). AUROC of 0.5 indicates that a model is incapable of distinguishing between positive 

and negative classes. For model selection in this analysis, a model was considered to have a 

better fit from a previous model if its AUROC value was an improvement of more than 0.01. 

When AUROC values were equivalent, the simplest model was selected. 

 

Growth models: DIC 

Selection of the best fit growth models was done by calculating the Deviance Information 

Criterion (DIC; Spiegelhalter et al., 2002), which is a useful tool for evaluating the explanatory 

power of a model while accounting for (and penalizing) overparameterization. For this study, a 

model was considered to have a better fit than a previous version if its DIC was less than the 

previous model’s DIC by more than 2. In the case of equivalent DIC values (i.e., model DIC 

values differ by < 2), we selected the model with the highest goodness of fit (R2 value when 

comparing predicted vs. observed values). If goodness of fit did not differ by > 0.01, the simpler 

model (the one with fewer parameters) was selected. 
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Chapter 4 Vulnerability to Drought-Related Mortality 

 

ABSTRACT 

 Climate change is expected to cause higher frequencies of drought events across the 

world and as a result there is a substantial body of work focused on investigating drought effects 

on forest species, but these studies tend to focus primarily on drought responses of adult trees. 

Hydraulic strategies employed by seedlings are understudied even though there is evidence that 

seedling drought response can differ from that of adults. Furthermore, there is also evidence that 

demographic performance in the seedling age class will have disproportionately strong effects on 

the assembly dynamics of future forests. Since most tree seedlings recruit under the forest 

canopy, these shaded conditions could also affect their response to drought; either by 

exacerbating the impact via carbon starvation (due to closure of stomata in response to drought), 

or by ameliorating heat stress (due to lower temperature under the canopy). In this study, we 

measured four indices of hydraulic response to drought (leaf water potential, photosynthetic 

capacity, non-structural carbohydrate concentration [NSC], and hydraulic conductivity), as well 

as interaction effects with reduced light treatments, in seedlings of two temperate tree species 

that differ in their adult drought response: isohydric Acer saccharum and anisohydric Quercus 

rubra. We found a strong isohydric response in A. saccharum seedlings that included 

conservation of leaf water potentials (> -1.8 MPa) and reductions in [NSC] consistent with 

reduction of stomatal conductance. Quercus rubra seedlings were able to survive to more 

negative water potentials, but only rarely, and they showed a similar reduction in photosynthetic 

capacity as was found for A. saccharum. Our results suggest that, although Q. rubra seedlings 
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display some anisohydric responses to drought, they are more isohydric than adults. Both species 

seem to be relatively similar in their vulnerability to drought, and we did not find any significant 

differences suggesting drought will affect them differently. 

 

INTRODUCTION 

Climate change is projected to increase temperatures and affect global patterns of 

precipitation, with many areas expected to become drier and hotter (Meehl and Tebaldi 2004). 

These environmental changes have the potential to strongly affect forest ecosystems (Bartlett et 

al. 2016). As a result, many studies have addressed the effects that water availability has on the 

performance of tree species, but primarily with respect to adults (Bréda et al. 2006, Allen et al. 

2015, Anderegg et al. 2016). However, in areas where projected climate may not significantly 

affect adult trees, relatively few studies address the effect that drought has on saplings and 

seedlings (but see Maguire and Kobe 2015, Kannenberg and Phillips 2020). Relatively small 

changes in water availability are likely to have profound effects on survival of younger life 

stages and consequentially affect forest community assembly (Lebrija-Trejos et al. 2010, Green 

et al. 2014, Bartlett et al. 2016). This represents an important knowledge gap as past research has 

demonstrated that drought response can significantly differ across ontogeny (Cavender-Bares & 

Bazzaz 2000), suggesting that tree seedlings are likely to be affected by drought differently than 

their adult counterparts. Scientists must reconcile these differences in order to better predict the 

effects of climate change on forest demography. 

Drought tolerance is a broad term that encompasses many plant traits including stomatal 

regulation behavior (i.e., iso/anisohydry), root morphology, xylem anatomy, and leaf abscission 

behavior (McDowell et al. 2008, Sevanto et al. 2013, Markesteijn and Poorter 2009, Ellmore et 
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al. 2006, Múnne-Bosch and Alegre 2004). Iso/ansiohydry, referring to whether plants close their 

stomata during drought to limit water loss (McDowell et al. 2008), is an overarching concept that 

has been used to categorize a broad range of other drought-related traits. Plants are typically 

sorted along a gradient ranging from isohydric species which exhibit strong stomatal control on 

one end and anisohydric species which show little or no stomatal regulation on the other. This 

difference in behavior has physiological importance because prolonged stomatal closure (i.e., 

isohydry) can result in the over-depletion of labile carbon reserves caused by reductions in 

photosynthetic capacity, i.e., carbon starvation (Sala et al. 2012, Martínez-Vilalta et al. 2016), 

whereas anisohydric behavior can compromise the water column and result in catastrophic 

embolism and reduce xylem conductivity, i.e., hydraulic failure (Sperry et al. 2002, McDowell et 

al. 2008, Urli et al. 2013). Anisohydric species are typically considered to be more tolerant of 

drought than isohydric species (McDowell et al. 2008), but most species demonstrate some level 

of vulnerability to both carbon starvation and hydraulic failure due to their overlapping effects 

(Sevanto et al. 2013, Adams et al. 2017). Furthermore, a recent study found that plant 

vulnerability to drought is poorly predicted when using a singular plant hydraulic trait (Martínez-

Vilalta and Garcia-Forner 2016), and it has been suggested that plant hydraulics should be 

studied and classified independently of the iso/anisohydry framework (Hochberg et al. 2018). It 

is thus important that ecologists measure multiple drought responses to understand and then 

predict the consequences of drought. 

There are several indicators of hydraulic strategy that can be used to partially explain a 

plant’s response to drought stress; these include regulation of internal water potentials (Thomas 

and Eamus 1999), regulation of photosynthetic capacity (Roman et al. 2015), depletion of non-

structural carbohydrates (Sala et al. 2012, Quentin et al. 2015), and loss of xylem conductivity 
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(Sperry and Tyree 1990). Predawn leaf water potential (ΨPD) is a measure of plant hydraulic 

stress that is more representative of soil moisture conditions compared to midday leaf water 

potential, which is more strongly affected by hydraulic stress imposed by the atmosphere and is 

thus more negative (Cavender-Bares and Bazzaz 2000, Williams and Araujo 2002). ΨPD is 

especially sensitive to soil water availability in drought conditions for anisohydric species (Bréda 

et al. 1995) and is therefore useful as a metric of plant water status in stressful conditions. Water 

potential has strong effects on the regulation of stomatal conductance (Anderegg et al. 2017), and 

stomatal regulation in turn affects ΨPD by allowing a plant to maintain internal water pressures 

above critical thresholds (Sperry et al. 2002, McDowell et al. 2008), below which the plant’s 

water column would snap, resulting in hydraulic failure. Tree species with strict stomatal 

regulation exhibit relatively narrow ranges of ΨPD that are maintained by reductions in stomatal 

conductivity until that threshold is surpassed and the plant dies (Breshears et al. 2009). In 

contrast, species that exhibit anisohydric behavior have much wider variation in ΨPD and can 

survive to much lower water deficits (Breshears et al. 2009). This strategy is common in species 

that have wide xylem conduits that can be refilled easily after water availability is reestablished 

(Ogasa et al. 2013) and species with physiological adaptations that prevent the spread of 

cavitation once it is initiated (Pittermann et al. 2006). Strict regulation of ΨPD tends to be 

associated with species which are more vulnerable to drought (McDowell et al. 2008), although 

there is recent evidence that this is not a fully generalizable rule (Martínez-Vilalta and Garcia-

Forner 2016). 

Plant photosynthetic capacity (i.e., Amax) is tightly linked to stomatal conductance, and 

thus plant water potential, during drought since stomatal closure limits CO2 from entering leaves 

(Cowan and Farquhar 1977). This causes plants with strict stomatal regulation to reach net 
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negative photosynthetic rates at less extreme soil water potentials compared to species that 

exhibit a more anisohydric drought response (McDowell et al. 2008). There is evidence of a 

strong relationship between stomatal regulation and changes in photosynthetic capacity across a 

wide range of species and biomes (Reich and Hinkley 1989, Thomas and Eamus 1999, Wilson et 

al. 2000, Roman et al. 2015). 

Without being able to rely on the assimilation of new photosynthate, isohydric species 

instead mobilize labile carbon sources in order to meet plant energy demands (Sala et al. 2012). 

This source of carbon, commonly referred to as non-structural carbohydrates (NSC), includes 

starch as well as soluble sugars such as glucose (Quentin et al. 2015). Reductions in NSC 

concentrations have been shown to be caused by drought (McDowell et al. 2008, Sala et al. 2012, 

O’Brien et al. 2014) and other stressful conditions such as shade (Maguire and Kobe 2015, Piper 

and Fajardo 2016), and extreme reductions would theoretically result in death via carbon 

starvation, although it is unlikely that plants would need to exhaust their carbon supply to 

experience negative effects (Sala et al. 2010, Sala et al. 2012). For example, refilling xylem 

following cavitation often requires the expenditure of energy (Trifilò et al. 2019) and soluble 

sugars are involved in plant osmoregulation such that reduced sugar content can lead to increased 

vulnerability to xylem cavitation (Sevanto et al. 2013, Adams et al. 2017). Despite the difficulty 

associated with quantifiably measuring carbon starvation, the ability to increase or maintain 

[NSC] during drought is associated with drought-tolerant species that can afford to maintain 

stomatal conductivity due to other physiological and morphological traits (Cavender-Bares et al. 

2000, Martínez-Vilalta and Garcia-Forner 2016). 

Xylem conductivity (or hydraulic conductivity) is the rate at which fluid passes through a 

given stem or branch segment, and decreases with the amount of cavitation (i.e., gas embolisms) 
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present within the segment (Sperry and Tyree 1990, Tyree et al. 1992). Plants that conserve 

hydraulic conductivity through the closure of stomata are typically classified as isohydric and 

experience steep drop-offs in conductivity past a certain threshold (McDowell et al. 2008). 

Anisohydric plants are typically characterized by their more gradual decrease in conductivity that 

occurs across a wider gradient of water availability (McDowell et al. 2008), a strategy that is 

commonly associated with drought tolerance. This strategy often coincides with wide xylem 

conduits (i.e., ring-porous anatomy), which are easier to refill following drought (Ogasa et al. 

2013), and reduced stomatal regulation that provides the energy needed to expend in the refilling 

process (Trifilò et al. 2019). 

Accurate classification of these traits is especially important for forest drought studies 

involving seedlings or saplings, which can substantially differ in hydraulic strategy compared to 

mature canopy trees. Cavender-Bares and Bazzaz (2000) showed that although adult Quercus 

rubra exhibit anisohydric behavior, seedlings were relatively isohydric, even when controlling 

for microenvironment differences between the two groups. The authors speculate that this is in 

part due to seedlings being unable to access deep water sources due to their shallow root profiles 

as well as to their higher vulnerability to environmental stress. Other recent research has also 

demonstrated that saplings received no tangible benefit from anisohydric behavior during 

drought and took longer to recover after the drought ended (Kannenberg et al. 2019), suggesting 

that small size classes will have different vulnerability to drought even if they follow the 

hydraulic strategies of adult trees. Together, results from these studies support the recent call for 

a full quantification of hydraulic responses to drought (Martínez-Vilalta and Garcia-Forner 2016, 

Hochberg et al. 2018) that is more robust in addressing suites of traits and within the context of 

ontogenetic differences. 
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Seedlings are the size class most likely to experience directional mortality effects (Harper 

1977, Grubb 1977, Green et al. 2014), meaning that differences in species’ response to 

environmental drivers should be strongest in this phase of recruitment. Therefore, improving our 

understanding of ontogenetic differences in drought response will be critical to forecast changes 

to forest systems. Predicting future seedling performance will then require an accurate estimation 

of hydraulic traits and behavior; if seedlings tend toward the same hydraulic strategies as their 

adult counterparts, climate change-related drought could accentuate differences in species 

performance based on these traits. However, if seedlings tend to be more isohydric than adult 

trees in general, as suggested by Cavender-Bares and Bazzaz (2000), drought effects could be 

more homogenous across species, increasing the relevance of other drivers of recruitment 

dynamics that affect community assemblage. 

One such driver is light availability, which can severely limit photosynthetic rates even in 

species with high photosynthetic capacities (Farquhar et al. 1980). Shade-tolerant species, i.e., 

species that can withstand prolonged periods in full shade, typically have relatively lower 

respiration demands than shade-intolerant species that allow them to persist on limited resources 

(Boardman 1977). They may also exhibit phenological escape behavior that allows them to 

assimilate the resources they need in a short period of time when light availability is high 

(Jacques et al. 2015). Light limitations can lead to carbon deficits analogous to carbon starvation 

caused by stomatal limitations during drought (Piper and Fajardo 2016) and can strongly shape 

recruitment in forest understories (Coates 2002, Wright et al. 2003, Rüger et al. 2009). 

Furthermore, light availability is likely to affect seedling drought response (Maguire and 

Kobe 2015, Piper and Fajardo 2016). Carbon starvation caused by deep shade can potentially 

compound with carbon starvation caused by stomatal limitations during drought (Holmgren 
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2003, Sevanto et al. 2013). However, there is also evidence that shading can ameliorate drought 

stress (Quero et al. 2006), particularly for drought-intolerant and shade-tolerant species 

(Holmgren et al. 2012). These positive effects of shading are projected to drive seedling 

recruitment in some systems (Dobrowski et al. 2015, Ibáñez and McCarthy-Neuman 2014), and 

should therefore be considered alongside drought when studying the effects of climate change on 

forest demography. 

In order to evaluate the extent to which drought response in tree seedlings differs from 

their adult counterparts, we measured four ecophysiological drought responses (leaf water 

potential, photosynthetic capacity, non-structural carbohydrate concentration [NSC], and xylem 

conductivity) for seedlings of two temperate tree species that commonly occur throughout 

eastern North America: isohydric Acer saccharum and anisohydric Quercus rubra. We used a 

greenhouse experiment to combine artificial drought and shading treatments. Our research 

questions were 1) Does seedling hydraulic strategy differ between species where adult hydraulic 

strategies are different? 2) How is seedling hydraulic strategy affected by light availability? And, 

3) what are the implications for seedling demographic performance under climate change? We 

hypothesize that if seedlings of these species have hydrologic strategies similar to those used by 

their adult counterparts then: 1) the range of leaf water potential experience by A. saccharum 

seedlings is much narrower than those observed in Q. rubra seedlings. 2) Under drought 

conditions, reductions in photosynthetic capacity are steeper in isohydric A. saccharum than in 

anisohydric Q. rubra. 3) The drop in NSC levels under drought is larger for A. saccharum 

seedlings. And, 4) the magnitude of the decrease in xylem conductivity when exposed to drought 

is higher for A. saccharum. Addressing these questions and hypotheses will contribute to our 
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knowledge on how climate change will affect the demographic processes that shape temperate 

forest communities. 

 

METHODS 

We studied two temperate deciduous tree species that commonly co-occur across eastern 

North America, and that differ in their respective tolerances to shade and drought: Acer 

saccharum (Marsh.) and Quercus rubra (L.). Acer saccharum is a strongly shade-tolerant species 

(Lei and Lechowicz 1990) that is intolerant of drought (Coble et al. 2017). It has relatively 

narrow xylem conduits (i.e., diffuse-porous xylem; Ellmore et al. 2006) and has been shown to 

exhibit isohydric stomatal behavior in response to drought (Roman et al. 2015). In contrast, Q. 

rubra is moderately shade-tolerant (Crow 1988) and moderately drought-tolerant (Coble et al. 

2017). Trees of this species have large xylem conduits (i.e., ring-porous xylem; Ellmore et al. 

2006) and exhibit anisohydric stomatal behavior in response to drought (Cavender-Bares & 

Bazzaz 2000). Although wider xylem conduits are more vulnerable to embolism, there is also 

evidence that they are easier to refill following drought (Ogasa et al. 2013), conferring the higher 

drought tolerance generally associated with this trait. Adult Q. rubra trees also develop deeper 

roots than Acer species (Thomsen et al. 2013), which may enhance their relative drought-

tolerance by allowing them to access deeper water sources. 

Seeds of both species (from two different sources) were cold-stratified beginning in 

December 2016 and sown in large plastic tubs filled with potting soil (SunGro Horticulture; 

Agawam, MA, USA) at the Matthaei Botanical Gardens greenhouse (42.2996° N, 83.6630° W) 

the following spring. Once seedlings developed their first true leaves, we carefully removed 

them from the tubs and transplanted them into individual pots (volume = 313 cm3), 
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supplementing new potting soil as needed. Sixteen seedlings of each species x source 

combination were randomly assigned to each treatment group (control, shade, drought, shade and 

drought) for a total of 256 total seedlings; 191 of these seedlings survived to be used in our 

analyses. Initial height for each seedling was measured two weeks following transplantation in 

order to account for maternal effects (Ibáñez and McCarthy Neumann 2014).  

 

Experimental Design 

Following transplantation to individual pots, seedlings were immediately moved under 

moderate shade cloth (~40% ambient PAR) and allowed to grow for an entire growing season 

(summer of 2017) under well-watered conditions. This was done to minimize the effects of first-

year transplant stress and to allow seedlings the ability to assimilate enough carbon to allocate 

photosynthate to storage tissue and other labile carbon pools. Seedlings were moved to an 

outdoor pit following the onset of leaf color change in fall in order to allow seedling foliar 

phenology to respond to natural climate conditions. The pit was used to help insulate seedling 

roots from frost conditions they would otherwise not experience, and seedlings were further 

insulated by surrounding the pots with potting soil. 

Seedlings were removed from the pit and moved back into the greenhouse in early spring 

2018 corresponding to when leaf bud expansion was noted for both species. All pots were moved 

under one layer of shade cloth and were regularly watered until treatments were implemented. 

Environmental sensors were added simultaneously with when the seedlings were moved back 

inside, measuring air temperature and relative humidity (HOBO U23 Pro v2 data loggers) and 

light (HOBO Pendant data loggers; Onset Computer Corporation; Bourne, MA, USA). 

Temperature, relative humidity, and light were all measured at 30-minute intervals. Soil moisture 
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was also measured at the individual (pot) level coinciding with harvesting or gas exchange 

measurement using a FieldScout TDR300 soil moisture meter (Spectrum Technologies; Aurora, 

IL, USA).  

We took pre-treatment measurements of photosynthetic capacity and non-structural 

carbohydrate concentrations approximately four weeks following initial seedling leaf-out (June 

14th), after which treatment conditions were initiated. Our four treatments were drought (D; no 

additional shade cloth added, seedlings are no longer watered), shade (S; extra shade cloth used 

to reduce PAR to 10% of ambient, seedlings remained well-watered), shade and drought (DS; 

extra shade cloth added, seedlings are no longer watered), and a control treatment (C; no 

additional shade cloth, seedlings remain well-watered). 

All seedlings acclimated to the study treatments for two weeks before three harvests were 

made at weekly intervals. Seedlings in each treatment combination were randomly assigned to be 

harvested for measurement of either xylem conductivity or [NSC]. Each harvest included six 

seedlings from each group: two for measurement of xylem conductivity and four for 

measurement of [NSC]. Predawn leaf water potential (ΨPD) was measured on the morning of 

each harvest before sunrise as an approximation for soil water potential. Water potential was 

measured using excised leaves and a Scholander pressure chamber (PMS Instrument Company, 

Albany, OR, USA). 

 

Gas exchange measurements (Amax) 

 The day before each harvest, for each treatment, we measured gas exchange in two of the 

four seedlings selected for the NSC analyses. We used an LI-6400 Portable Photosynthesis 

System equipped with a CO2 mixer assembly, LI-02B LED red/blue light source, and LI-06 PAR 
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sensor (Li-COR Biosciences, Lincoln, NE, USA). We constructed light curves (i.e., A-Q curves) 

for each plant by recording gas exchange at 1500, 1000, 750, 500, 250, 100, 50, 25, and 0 μmol 

photons m-2 s-1 at CO2 concentrations of 400 ppm, ambient temperature, and ambient humidity. 

Maximum photosynthetic capacity (Amax) was calculated using equations published by Marshall 

and Biscoe (1980) and using the nls command in the stats package in R v3.5.3. This parameter 

represents the maximum photosynthetic rate that a leaf is capable of under saturating light 

conditions. Reductions in Amax indicate limitations on the photosynthetic machinery, such as 

from reduced stomatal conductance (Roman et al. 2015). 

 

Non-structural carbohydrate concentrations [NSC] 

 After ΨPD measurement, tissue from seedlings selected for the NSC analysis were 

immediately separated into three pools: leaves (including petioles), stem (above root collar), and 

roots (below root collar). Leaves were microwaved for 180 seconds at 800 watts to stop leaf 

enzyme activity (Quentin et al. 2015) and then all tissues were transferred to a drying oven and 

dried for 48 hours at 70 °C. We weighed each sample, ground them using a ball mill, and then 

stored the samples at 20 °C in airtight containers. We measured out 50 mg of each sample in to 

screw-top conical tubes and soluble sugars were extracted according to Quentin et al. (2015) 

using repeated incubation and centrifuging in 80% ethanol. We measured glucose concentrations 

using a phenol-sulfuric acid colorimetric assay as described by DuBois et al. (1956). Glucose 

concentration was measured against a glucose standard curve using absorbance measured at 490 

nm. Measurements were then converted to units of mg glucose per gram of dry tissue. 

 

Xylem conductivity (k) 
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Following ΨPD measurement, seedlings harvested for xylem conductivity measurements 

were removed from their pots and their root balls were soaked in water for 10 minutes to 

alleviate stress on the water column. We then cut stem segments from each plant underwater, 

recording the length of each segment and its average diameter. Conductance was measured using 

protocol established by Kolb et al. (1996). We slightly modified this protocol by using 20 mM 

KCl solution filtered to 0.22 μm (used to prevent microbial growth within the system that could 

cause artificial xylem blockages). Flow rate of the solution through the stem segment was 

measured at pressures of 0, -8, -16, -24, and -32 KPa. Hydraulic conductance (k) was calculated 

as the slope of the relationship between flow rate and pressure (Sperry and Tyree 1990, Kolb et 

al. 1996). Flow rate was then standardized by segment length and cross-sectional area. Our 

vacuum source was not strong enough to forcefully remove embolisms from the stem segments 

and so we were unable to calculate the percent loss of conductivity. 

 

ANALYSES 

Analyses were performed for each species independently. For each analysis we addressed 

our specific questions by trying different types of relationships between the variables involved 

(e.g., linear, exponential, additive, interactions), and tried several combinations of additional 

explanatory variables (i.e., initial seedling height and seed source). We describe below the 

models with the best fits based on Deviance Information Criterion for the photosynthetic 

capacity model (DIC; Spiegelhalter et al. 2002) and based on residual sum of squares 

comparisons for the other two analyses. Analyses used data from all harvests where seedlings 

from all relevant treatments were alive to be measured, with the exception being xylem 
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conductivity measurements for A. saccharum where there was no data available for seedlings in 

the drought treatment. 

 

Predawn leaf water potential 

Leaf water potential measurements (ΨPD) taken over the span of the experiment (Fig. 1) were 

used to assess the range of water potentials experience by seedlings of each species. 

Measurements were pooled across all seedlings harvested for both NSC and xylem conductivity 

experiments. We conducted a one-way ANOVA in order to assess whether ΨPD differed 

significantly between the two species. 

 

Photosynthetic capacity 

We modeled maximum photosynthetic capacity (Amax) as a function of light treatment and of leaf 

water potential (our proxy for drought effects); thus we combined seedlings from the two shaded 

treatments (S and DS) as well as from the two unshaded treatments (C and D) to assess the two 

light treatments and then used the full range of observed water potentials to account for drought 

treatments. Photosynthetic capacity for seedling i was estimated from a normal likelihood: 

𝐴𝑚𝑎𝑥,𝑖~𝑁(𝜇𝑖, 𝜎2) 

And an exponential process model that described well the reductions in Amax observed in the data 

(Fig. 2a-b): 

𝜇𝑖 = 𝛽1𝑠ℎ𝑎𝑑𝑒(𝑖) ∗ 𝐸𝑥𝑝(𝛽2𝑠ℎ𝑎𝑑𝑒(𝑖) ∗ 𝛹𝑃𝐷𝑖
) 

Parameter β1 represents the maximum photosynthetic rate at water potential equal to zero (i.e., 

full water availability). Parameter β2 indicates the decay rate at which Amax changes in response 

to changes in ΨPD; we used this parameter to assess reductions in photosynthetic capacity. Both 
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parameters were estimated for each shade treatment. The model was also evaluated for the 

effects of seed source and initial height, but they did not improve model fit and so we did not 

include them in the final model. 

Parameter β1 was estimated from non-informative normal priors constrained to be 

positive, β1* ~ N(0,1000), and parameter β2 was estimated from non-informative uniform prior 

β2*~ Uniform(-1,1). Model variance was estimated from a non-informative gamma prior 

distribution 1 𝜎2⁄ ~𝐺𝑎𝑚𝑚𝑎(0.01, 0.01). We ran the model using two Monte Carlo chains for 

40,000 iterations following a 60,000-iteration burn-in period. Analyses were completed using 

OpenBugs statistical software v3.2.3 (Lunn et al. 2009) and model convergence was assessed 

using the Brooks-Gelman-Rubin statistic (Gelman and Rubin 1992). Parameter values (means, 

variances, and covariances) were estimated from their posterior distributions. 

 

Non-structural carbohydrates 

 Since seedling glucose concentrations did not change significantly over the duration of 

the harvest periods (Fig. SI 4.5), data was pooled across harvest dates for which seedlings from 

all treatments were still alive (harvest 1 for A. saccharum and harvests 1 and 2 for Q. rubra). 

Non-structural glucose concentrations were analyzed using ANOVA that estimated the effects of 

treatment on values pooled by tissue type (leaf, stem, and root), or averaged across all pools 

(using averages weighted by the mass of each pool). Analyses were conducted separately for 

each pool x species combination. We only included data for seedlings that were recorded as alive 

at the time of harvest because most of the dead seedlings appeared to have died from hydraulic 

failure, and therefore could skew the results.  
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Xylem conductivity 

 For each species, we analyzed the differences in xylem conductivity between seedlings 

harvested before and after the initiation of drought and shade treatments. We limited our analysis 

to compare differences only using seedlings harvested in the second harvest period (three weeks 

after the initiation of treatments) because there were no surviving seedlings in either of the two 

drought treatments past this harvest. We used initially carried out an ANCOVA to estimate the 

effects of treatment (C, D, S, DS), maternal effects (initial height), and of seed source. The 

effects of initial height and seed source did not improve the model fits and were therefore 

excluded from the final analysis. 

 Seedling conductivity and [NSC] analyses were conducted in R (v3.5.3) using the aov 

and anova commands in the stats package to fit and compare models, respectively. Significant 

differences between treatments were estimated using Tukey’s HSD test, performed using the 

TukeyHSD command in stats. 

 

RESULTS 

 Average daytime light levels across the two light treatments (Fig. SI 4.6a) were 

consistent with light levels measured in related field experiments (Fig. SI 2.6). Light levels in the 

deep shade treatments were 30% (± 0.05% s.d.) of the light levels in the control light treatment. 

Average daily temperature (Fig SI 4.6b) was also consistent with field observations (Fig. SI 

2.13a), although maximum hourly temperatures were much higher in the greenhouse than what 

has been observed in the field (Fig. SI 4.7), and well above the temperature increases predicted 

under extreme climate change conditions for the Great Lakes region (Handler et al. 2014). 

Temperatures were consistent across all treatments. We found some significant differences in 
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height and mass between populations for each species (see Supporting Information 4.2), but they 

did not significantly affect any of our analyses and are not included in the following results. 

 

Predawn leaf water potential (ΨPD)  

Leaf water potential decreased under the drought treatments for both species (Fig. 4.1) with Q. 

rubra seedlings reaching more negative water potentials (-3.28 MPa) than A. saccharum 

seedlings (-1.76 MPa). However, we did not find any significant difference in ΨPD between the 

two species (Pr(>F) = 0.291). All A. saccharum seedlings in the D and DS treatments died before 

the second harvest (~21 days after treatments were initiated) and all Q, rubra seedlings died 

before the third harvest (~28 days after treatment initiation).  

 

Photosynthetic capacity 

Our model fit (r2 of predicted vs observed) was 0.289 for A. saccharum and 0.305 for Q. 

rubra. Posterior parameter estimates can be found in Table SI 4.2. There were no significant 

differences in posterior estimates of intercept parameter β1 between light treatments for either 

species (Fig. 4.2c), although values were higher in the shade treatment for Q. rubra. Decay 

parameters β2 were statistically significant, different from zero, for both shade treatments for Q. 

rubra but was only significant for the unshaded treatment in A. saccharum (Fig. 4.2d). These 

decay parameters did not significantly vary between light treatments for either of the species. 

Predicted Amax decreased from 3.375 μmol m-2 s-1 (± standard deviation of 0.692) at ΨPD = 0 

MPa to 1.309 ± 0.413 μmol m-2 s-1 at ΨPD = -1 MPa for unshaded A. saccharum seedlings, a 

decrease of 61.2% (Fig. 4.2a). This drop was proportionally smaller in the shade treatment, with 

Amax decreasing from 2.936 ± 0.568 to 2.577 ± 0.929 μmol m-2 s-1 (12.3% decrease). This trend 
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was the opposite for Q. rubra seedlings (Fig. 4.2b), where predicted Amax decreased in light 

conditions from 2.775 ± 0.383 to 1.893 ± 0.325 μmol m-2 s-1 (31.8% decrease) and in shade 

conditions from 4.934 ± 0.746 to 1.137 ± 0.411 μmol m-2 s-1 (77% decrease). 

 

Non-structural carbohydrates 

Non-structural glucose concentrations showed a general decrease over time across all treatments 

and pools for both species (Fig. 4.3), but there were no significant differences between 

treatments for any of the species x pool combinations (Table SI 4.3). Some carbon pools 

significantly decreased from the pre-treatment values (Fig. 4.3). There were no statistically 

significant drops in NSC between control and treatment seedlings in either of the two species, 

and in some cases mean NSC values were higher in the treatments than the control (particularly 

for Q. rubra, Fig. 4.3e-h).  

 

Xylem conductivity 

 There were no significant differences in conductivity between any of the treatments for 

either species (Table 4.1a; Fig. SI 4.8). Average A. saccharum conductivity was 0.075 ± 0.016 g 

s-1 MPa-1 mm-1 (mean ± s.d.) in the control treatment and 0.073 ± 0.027 g s-1 MPa-1 mm-1 in the 

shade treatment (n = 4 in each treatment). There were no A. saccharum seedlings that survived in 

the drought treatments that could be used in this analysis. Quercus rubra average conductance 

was 0.076 ± 0.024 g s-1 MPa-1 mm-1 in the control treatment, 0.041 g s-1 MPa-1 mm-1 in the 

drought treatment, 0.082 ± 0.011 g s-1 MPa-1 mm-1 in the shade treatment, and 0.043 ± 0.021 g s-1 

MPa-1 mm-1 in the combined drought and shade treatment (n = 3, 1, 4, and 3, respectively). We 

found a significant by drought treatment for Q. rubra seedlings when the different shade 
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treatments were grouped together (Table 4.1b, Fig. SI 4.9.b), with seedlings of this species 

exposed to drought having significantly lower hydraulic conductivity (0.043 ± 0.017 g s-1 MPa-1 

mm-1) compared to those in the well-watered treatments (0.079 ± 0.021 g s-1 MPa-1 mm-1). Acer 

saccharum seedling conductivity in the combined well-watered treatments was 0.074 ± 0.021 g 

s-1 MPa-1 mm-1. 

 

DISCUSSION/CONCLUSION 

There is wide variation in the hydraulic strategies that plants use to avoid, tolerate, and 

recover from drought, and these strategies can be more nuanced than what is represented by 

broad categorization such as iso/anisohydry (Hochberg et al. 2018). Previous research has 

demonstrated that common drought response indicators such as stomatal conductance regulation 

are often dependent on environmental context (Hochberg et al. 2018) and other trait axes 

(Martínez-Vilalta and Garcia-Forner 2016, Kannenberg and Phillips 2020), suggesting that 

adequate representation of drought tolerance requires the simultaneous quantification of multiple 

indicators. Furthermore, there is evidence that hydraulic strategy in tree species can vary 

substantially along ontogeny (Cavender-Bares and Bazzaz 2000), and there is a sizeable 

knowledge gap in the scientific literature for how seedling drought response differs from that of 

adults. Whether seedling hydraulic strategies differ from adult hydraulic strategies will affect our 

predictions of forest demography under climate change (McDowell et al. 2011). 

In this experiment we measured the hydraulic strategies used by seedlings of two 

dominant tree species that commonly co-occur across a wide range of eastern North American 

forests, and that differ in their response to drought (as measured in adults). We quantified four 

commonly measured indicators of drought tolerance (leaf water potential, photosynthetic 
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capacity, non-structural carbohydrate concentrations, and hydraulic conductance) over the 

duration of a greenhouse dry-down experiment. We used two different light treatments to 

investigate the potential interaction effects between shade and drought on tree seedling 

performance, since shade can both exacerbate carbon starvation via low light levels and/or 

ameliorate drought stress via decreasing temperature. Our results indicate that, as predicted from 

adult characteristics, A. saccharum seedlings appear to be slightly more vulnerable to drought 

due to their relative inability to survive past relatively moderate levels of soil water potential 

(Fig. 4.1a), whereas Q. rubra were recorded to survive to considerably lower levels (Fig. 4.1b). 

Quercus rubra seedlings were also able to survive longer in the drought treatments by about a 

week. Still, we did not find statistically significant differences between species in any of the 

drought indicators, suggesting that seedlings of these two species are still similarly vulnerable to 

drought. However, due to the relatively small sample sizes used in this study, it is important to be 

cautious with these results and the conclusions drawn from them. Overall, our results suggest 

that the increased drought frequency predicted for the Great Lakes region (Handler et al. 2014) 

could negatively affect recruitment and demography of both species in approximately equal 

measure. 

 

1) Does seedling hydraulic strategy differ between species where adult hydraulic strategies 

are different? 

Tree performance during drought is strongly affected by stomatal regulation via two 

interacting processes (McDowell et al. 2008, Adams et al. 2017). Restricting stomatal 

conductance allows trees to avoid excessively low internal water pressures that can embolize 

xylem and lead to hydraulic failure (Sperry et al. 2002). However, reducing conductance comes 



 146 

at the cost of reducing photosynthetic capacity, which makes it necessary for trees to consume 

labile carbon pools and increase the risk of dying from carbon starvation (Sala et al. 2012). Trees 

exhibit variation in other traits such as rooting depth (Loewenstein and Pallardy 1998, Lopez et 

al. 2005) and xylem pit anatomy (Pittermann et al. 2006) that can help mitigate the negative 

effects associated with one process or the other (e.g., by giving trees access to more resources or 

by helping them resist cavitation), but there is strong evidence that tree performance in drought 

conditions is strongly determined by tradeoffs between these two processes (Adams et al. 2017). 

Furthermore, juvenile trees may not be able to make use of the same mitigating strategies used 

by adults due their size and relative lack of access to resources (i.e., deep water sources; 

Cavender-Bares and Bazzaz 2000). Hydraulic outcomes at the seedling level may therefore be 

more similar among species than they are at larger size classes. 

 Our results do not fully support the idea that seedling hydraulic strategies are similar to 

those of the adults; while leaf water potentials reached lower levels in Q. rubra seedlings, as we 

expected, the other responses to drought we measured did not show a different pattern between 

the two species. First, while adult Q. rubra (as well as other Quercus species in general) respond 

to drought stress by maintaining photosynthetic capacity at the cost of reduced leaf water 

potential (Cavender-Bares and Bazzaz 2000, Roman et al. 2015), we found that seedlings of this 

species exhibited declines in photosynthetic capacity that began at ΨPD < -1 MPa (Fig. 4.2b). 

This was not significantly different from the trend found in A. saccharum seedlings (Fig. 4.2a), 

which matched the photosynthetic response demonstrated in adults of this species (Roman et al. 

2015). This relatively isohydric response of Q. rubra seedlings agrees with previous work done 

by Cavender-Bares and Bazzaz (2000) and provides support for the idea that seedling hydraulic 

strategies will be more similar between species than they are in conspecific adults. 
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 Adults of these two species have also been shown to have different wood densities, with 

A. saccharum having dense wood and diffuse-porous xylem and Q. rubra having ring-porous 

xylem and wood that is less dense (Ellmore et al. 2006). Diffuse-porous xylem can help trees 

avoid embolism formation due to the narrower conduits, but they are also more difficult to refill 

after embolism occurs (Ogasa et al. 2013). Narrow xylem conduits and strong stomatal control 

help Acer species maintain hydraulic conductance during drought (Sperry et al. 1988, Hoffman 

et al. 2011). In contrast, Quercus species are more prone to gradual but significant declines in 

conductivity (Tyree et al. 1992, Lo Gullo et al. 2005, Hoffman et al. 2011). We hypothesized that 

A. saccharum seedlings would demonstrate stricter control of internal water potentials compared 

to Q. rubra, and thus show little variation in the conductivity of living seedlings, whereas Q. 

rubra seedlings would show a gradual decline in conductivity associated with anisohydric 

stomatal regulation.  

We found tentative support for this hypothesis with respect to Q. rubra seedlings, for 

which conductivity appeared to decrease gradually beginning at ΨPD < -1 (Fig. 4.4), which 

closely resembles the pattern seen in conspecific adults (Lo Gullo et al. 2005) and agrees with 

previous work done on seedlings of this species (Tyree et al. 1992). However, we were not able 

to fully quantify this trend in a more complex analysis because we did not measure percent loss 

in conductivity (sensu Kolb et al. 1996) and because we had limited survival in our seedlings. 

There was high mortality for this species past the -1 MPa threshold, suggesting these seedlings 

are still vulnerable to drought. Acer saccharum seedlings supported the hypothesis, with 

conductivity maintained at ΨPD > -1 and hydraulic failure past that point (Fig. 4.4), which agrees 

with the strategy used by adults. We observed seedlings of this species surviving to slightly more 

negative ΨPD in the NSC harvests (ΨPD =-1.76 MPa, Fig. 4.1), suggesting that reductions in 
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conductivity may follow a trend more similar to that of the Q. rubra seedlings, but conductivity 

was not quantified for these individuals and thus we lack the evidence needed to better support 

this conclusion. 

 Photosynthetic capacity and hydraulic conductivity are both strongly intertwined with 

changes to non-structural carbohydrate concentrations. Reductions in photosynthetic capacity 

limit the production of carbohydrates and make plants more dependent on labile carbon pools, 

reducing [NSC] to maintain metabolic rates (Sala et al. 2012). Conductivity directly affects a 

plant’s ability to transport carbohydrates from source tissue (leaves) to tissues where sugars are 

needed (stems and roots). However, [NSC] also affects conductivity since energy is often 

required to refill xylem following cavitation (Trifilò et al. 2019) and because soluble sugars are 

necessary for osmoregulation processes (Sevanto et al. 2013); thus, reduced sugar content can 

lead to faster hydraulic failure.  

 We found no significant differences between non-structural glucose treatment conditions 

for A. saccharum in any of the tissue pools, and limited differences between treatment [NSC] 

and pre-treatment [NSC] (Fig. 4.3a-d). This suggests that seedlings were generally able to 

maintain their labile carbon pools throughout the experiment. This is consistent with a previous 

study that worked with Acer rubrum seedlings (which are closely related to A. saccharum and 

typically exhibit a similar hydraulic strategy; Davies and Kozlowski 1977), which found 

reductions in soluble sugar concentrations over time in similar treatments (Maguire and Kobe 

2015). We also found no significant differences between treatments in any of the Q. rubra NSC 

pools (Fig. 4.3e-h), but there were more instances of [NSC] reductions relative to pre-treatment 

controls. This contradicts previous research by Maguire and Kobe (2015), which found general 

increases in soluble sugar concentrations for this species under similar drought and shade 
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treatments and suggests that seedlings of this species also experienced similar stress across all 

treatments. 

 The lack of a significant difference between our control treatments and the three stress 

treatments prevents us from being able to make strong conclusions about how drought will affect 

[NSC] for seedlings of either species. The difference between our results the results from other 

studies that have found significant effects in similar experiments (e.g., Maguire and Kobe 2015) 

could be due to the extremely high temperatures experienced by seedlings in the greenhouse 

environment (Fig. SI 4.7), which would have affected all seedlings equally and could have 

caused reductions in [NSC] associated with high respiration rates (Tjoelker et al. 2002). It is also 

possible that the trends we report do not tell the full story as we did not measure starch 

concentrations, nor did we measure the concentrations of other soluble sugars besides glucose. 

Recent evidence suggests that soluble sugar concentrations can be maintained through the 

conversion (and therefore reduction) of starch (Kannenberg and Phillips 2020), suggesting that 

measurement of total non-structural carbohydrate concentrations may tell a more complete story. 

 

2) How is seedling hydraulic strategy affected by light availability?  

 There is experimental evidence for both the mitigating (e.g., Quero et al. 2006, Piper and 

Fajardo 2016) and exacerbating effects (e.g., Holmgren 2003, Sevanto et al. 2013, Maguire and 

Kobe 2015) that shade can have on tree performance during drought. In temperate North 

American forests, understory light availability under full canopies can be 2-3 orders of 

magnitude lower than light availability in open canopy conditions (Fig. SI 2.6), and access to 

light plays a significant role in tree seedling demographic performance in these systems (Canham 
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1988, Beckage et al. 2000). It is therefore important that projections of tree recruitment under 

climate change account for any interactions between drought and shade. 

 Contrary to other tree seedling studies (e.g. Piper and Fajardo 2016), we did not find any 

significant effects associated with light availability in any of our drought response indicators. 

Although including light treatments improved our photosynthetic capacity model’s performance, 

there were no significant differences between light condition effects for either β1 (photosynthetic 

capacity at saturating water availability) or β2 (the decay rate parameter) (Fig. 4.2c-d). There 

were no significant shade effects in any of the glucose pools (Fig. 4.3) and hydraulic 

conductance was better predicted in an analysis that explicitly omitted light treatment and 

focused solely on differences in drought treatment (Fig. SI 4.9). The lack of a shade effect on 

glucose concentrations is consistent with previous research that found no significant change in 

soluble sugar concentrations over time in seedlings (Maguire and Kobe 2015) and saplings 

(Kannenberg and Phillips 2020) of temperate tree species common in our study region. However, 

both studies found significant reductions in starch concentrations that suggest that plants 

prioritize the mobilization of starch for use in metabolism over the consumption of soluble 

sugars, potentially due to the importance of soluble sugars in osmoregulation (Sevanto et al. 

2013).We did not measure starch concentrations, so we can only speculate that this mechanism 

may have affected our results. The extreme temperatures experienced in the greenhouse could 

have also created respiration demands across all treatments that overwhelmed any signal that we 

might have otherwise observed with differences in light availability (Tjoelker et al. 2002). Still, 

our results do not support the existence of either mitigating or exacerbating effects of shade on 

hydraulic performance of temperate tree seedlings. 
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3) What are the implications for seedling demographic performance under climate change? 

 Altogether the results from our experiment suggest a convergence in the vulnerability of 

temperate tree seedlings to drought that is inconsistent with drought responses expected from 

previous evidence collected in adult trees of the same species. There were no drought treatment 

A. saccharum seedlings that survived longer than two weeks past the initiation of experimental 

treatments and no water-limited Q. rubra seedlings that survived past three weeks. Although our 

stress treatments were harsh (and also likely exacerbated by high temperatures) the lack of a 

significant difference between seedling responses is consistent with results from previous 

research (Maguire and Kobe 2015). Still, the relatively small sample size of seedlings surviving 

in this experiment could have affected our ability to pick up on differences between the two 

species at finer scales of time, temperature, and soil moisture, and it therefore prevents us from 

making stronger conclusions about seedling drought dynamics. 

Even so, with no clear distinction in seedling vulnerability to drought, potential 

differences in seedling demography and recruitment between species within the context of 

climate change are more likely to be driven by other factors. For example, we have previously 

shown that access to spring light (Chapter 3) and the capacity to track climate change with spring 

leaf out phenology (Chapter 2) differs between species and that this mechanism can help account 

for carbon starvation dynamics expected under hotter and drier summers. The lack of a 

difference between species further indicates that seedling drought vulnerability is decoupled 

from adult vulnerability and suggests that future community assembly in temperate forests will 

not be strongly limited by the vulnerability of tree seedlings to drought. This puts a stronger 

importance on traits and behaviors that do differ between species and that could lead to 

differential outcome during climate change. 



 152 

 

REFERENCES 

Adams, H. A., M. J. B. Zeppel, W. R. Anderegg, and 59 other authors. 2017. A multi-species 

synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & 

Evolution, 1: 1285-1291. https://doi.org/10.1038/s41559-017-0248-x 

Allen, C. D., D. D. Breshears, and N. G. McDowell. 2015. On underestimation of global 

vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. 

Ecosphere, 6: 1-55. https://doi.org/10.1890/ES15-00203.1 

Anderegg, W. R. L., T. Klein, M. Bartlett, L. Sack, A. F. A. Pellegrini, B. Choat, and S. Jansen. 

2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-

induced tree mortality across the globe. Proceedings in the National Academy of Science, 

113: 5024-5029. https://doi.org/10.1073/pnas.1525678113 

Anderegg, W. R. L., A. Wolf, A. Arango-Velez, B. Choat, D. J. Chmura, S. Jansen, T. Kolb, S. 

Li, F. Meinzer, P. Pita, V. Resco de Dios, J. S. Sperry, B. R. Wolfe, and S. Pacala. 2017. 

Plant water potential improves prediction of empirical stomatal models. PLoS ONE, 12: 

e0185481. https://doi.org/10.1371/journal.pone.0185481 

Bartlett, M. K., Y. Zhang, J. Yang, N. Kreidler, S.-W. Sun, L. Lin, Y.-H. Hu, K.-F. Cao, and L. 

Sack. 2016. Drought tolerance as a driver of tropical forest assembly: Resolving spatial 

signatures for multiple processes. Ecology, 97: 503-514. https://doi.org/10.1890/15-0468.1 

Beckage, B., J. S. Clark, B. D. Clinton, and B. L. Haines. 2000. A long-term study of tree 

seedling recruitment in southern Appalachian forests: The effects of canopy gaps and shrub 

understories. Canadian Journal of Forest Research, 30: 1617-1631. 

https://doi.org/10.1139/x00-075 

Boardman, N. K. 1977. Comparative photosynthesis of sun and shade plants. Annual Review of 

Plant Physiology, 28: 355-377. https://doi.org/10.1146/annurev.pp.28.060177.002035 

Bréda, N., A. Granier, F. Barataud, and C. Moyne. 1995. Soil water dynamics in an oak stand: I. 

Soil moisture, water potentials and water uptake by roots. Plant and Soil, 172: 17-27. 

https://doi.org/10.1007/BF00020856 

Bréda, N., R. Huc, A. Granier, and E. Dreyer. 2006. Temperate forest trees and stands under 

severe drought: A review of ecophysiological response, adaptation processes and long-term 

consequences. Annals of Forest Science, 63: 625-644. https://doi.org/10.1051/forest:2006042 

Breshears, D. D., O. B. Myers, C. W. Meyer, F. J. Barnes, C. B. Zou, C. D. Allen, N. G. 

McDowell, and W. T. Pockman. 2008. Tree die-off in response to global change-type 

drought: Mortality insights from a decade of plant water potential measurements. Frontiers 

in Ecology and the Environment, 7: 185-189. https://doi.org/10.1890/080016 

Canham, C. D. 1988. Growth and canopy architecture of shade-tolerant trees: Response to 

canopy gaps. Ecology, 69: 786-795. https://doi.org/10.2307/1941027 

Cavender-Bares, J. and F. A. Bazzaz. 2000. Changes in drought response strategies with 

ontogeny in Quercus rubra: Implications for scaling from seedlings to mature trees. 

Oecologia, 124: 8-18. https://www.jstor.org/stable/4222661 



 153 

Coates, K. D. 2002. Tree recruitment in gaps of various size, clearcuts and undisturbed mixed 

forest of interior British Columbia, Canada. Forest Ecology and Management, 155: 387-398. 

https://doi.org/10.1016/S0378-1127(01)00574-6 

Coble, A. P., M. A. Vadeboncoeur, Z. C. Berry, K. A. Jennings, C. D. McIntire, J. L. Campbell, 

L. E. Rustad, P. H. Templer, and H. Asbjornsen. 2017. Are northeastern U.S. forests 

vulnerable to extreme drought? Ecological Processes, 6. https://doi.org/10.1186/s13717-017-

0100-x 

Cowan, I. R. and G. D. Farquhar. 1977. Stomatal function in relation to leaf metabolism and 

environment. Symposia of the Society for Experimental Biology, 31: 475-505. 

Crow, T. R. 1988. Reproductive mode and mechanisms for self-replacement of Northern Red 

Oak (Quercus rubra) – A review. Forest Science, 34: 19-40. 

https://doi.org/10.1093/forestscience/34.1.19 

Davies, W. J. and T. T. Kozlowski. 1977. Variations among woody plants in stomatal 

conductance and photosynthesis during and after drought. Plant and Soil, 46: 435-444. 

https://doi.org/10.1007/BF00010099 

Dobrowski, S. Z., A. K. Swanson, J. T. Abatzoglou, Z. A. Holden, H. D. Safford, M. K. 

Schwartz, and D. G. Gavin. 2015. Forest structure and species traits mediate projected 

recruitment declines in western US tree species. Global Ecology and Biogeography, 24: 917-

927. https://doi.org/10.1111/geb.12302 

DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method 

for determination of sugars and related substances. Analytical Chemistry 28: 350-356. 

Ellmore, G. S., A. E. Zanne, and C. M. Orians. 2006. Comparative sectoriality in temperate 

hardwoods: Hydraulics and xylem anatomy. Botanical Journal of the Linnean Society, 150: 

61-71. https://doi.org/10.1111/j.1095-8339.2006.00510.x 

Farquhar, G. D., S. von Caemmerer, & J. A. Barry. 1980. A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149: 78-90. 

https://doi.org/10.1007/BF00386231 

Fisher, R., N. McDowell, D. Purves, P. Moorcroft, S. Sitch, P. Cox, C. Huntingford, P. Meir, and 

F. I. Woodward. 2010. Assessing uncertainties in a second-generation dynamic vegetation 

model caused by ecological scale limitations. New Phytologist, 187: 666-681. 

https://doi.org/10.1111/j.1469-8137.2010.03340.x 

Gelman, A. and D. B. Rubin. 1992. Inference from iterative simulation. Statistical Science, 7: 

457-511. https://doi.org/10.1214/ss/1177011136 

Green, P. T., K. E. Harms, and J. H. Connell. 2014. Nonrandom, diversifying processes are 

disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the 

National Academy of Sciences, 111: 18649-18654. https://doi.org/10.1073/pnas.1321892112 

Grubb, P. J. 1977. The maintenance of species-richness in plant communities: The importance of 

the regeneration niche. Biological Reviews, 52: 107-145. https://doi.org/10.1111/j.1469-

185X.1977.tb01347.x 



 154 

Guo, J. S. and K. Ogle. 2019. Antecedent soil water content and vapor pressure deficit 

interactively control water potential in Larrea tridentata. New Phytologist, 221: 218-232. 

https://doi.org/10.1111/nph.15374 

Handler, S., M. J. Duveneck, L. Iverson, and 42 other authors. 2014. Michigan forest ecosystem 

vulnerability assessment and synthesis: A report from the Northwoods Climate Change 

Response Framework. US Department of Agriculture, Forest Service, Northern Research 

Station, General Technical Report NRS-129, Newtown Square, PA. 

https://doi.org/10.2737/NRS-GTR-129 

Harper, J. L. 1977. Population Biology of Plants. Academic Press. London, UK. ISBN 13: 

9780123258502 

Hochberg, U., F. E. Rockwell, N. M. Holbrook, and H. Cochard. 2018. Iso/Ansiohydry: A plant-

environment interaction rather than a simple hydraulic trait. Trends in Plant Science, 23: 

112-120. https://doi.org/10.1016/j.tplants.2017.11.002 

Hoffman, W. A., R. M. Marchin, P. Abit, and O. L. Lau. 2011. Hydraulic failure and tree 

dieback are associated with high wood density in a temperate forest under extreme drought. 

Global Change Biology, 17: 2731-2742. https://doi.org/10.1111/j.1365-2486.2011.02401.x 

Holmgren, M. 2003. Combined effects of shade and drought on tulip poplar seedlings: Trade-off 

in tolerance or facilitation? Oikos, 90: 67-78. https://doi.org/10.1034/j.1600-

0706.2000.900107.x 

Holmgren, M., L. Gómez-Aparicio, J. L. Quero, and F. Valladares. 2012. Non-linear effects of 

drought under shade: Reconciling physiological and ecological models in plant communities. 

Oecologia, 169: 293-305. https://doi.org/10.1007/s00442-011-2196-5 

Ibáñez, I. and S. McCarthy-Neumann. 2014. Integrated assessment of the direct and indirect 

effects of resource gradients on tree species recruitment. Ecology, 95: 364-375. 

https://doi.org/10.1890/13-0685.1 

Jacques, M.-H., L. Lapointe, K. Rice, R. A. Montgomery, A. Stefanski, & P. B. Reich. 2015. 

Responses of two understory herbs, Maianthemum canadense and Eurybia macrophylla, to 

experimental forest warming: Early emergence is the key to enhanced reproductive output. 

American Journal of Botany, 102: 1610-1624. https://doi.org/10.3732/ajb.1500046 

Kannenberg, S. A., K. A. Novick, and R. P. Phillips. 2019. Anisohydric behavior linked to 

persistent hydraulic damage and delayed drought recovery across seven North American tree 

species. New Phytologist, 222: 1862-1872. https://doi.org/10.1111/nph.15699 

Kannenberg, S. A. and R. P. Phillips. 2017. Soil microbial communities buffer physiological 

responses to drought stress in three hardwood species. Oecologia, 183: 631-641. 

https://doi.org/10.1007/s00442-016-3783-2 

Kannenberg, S. A. and R. P. Phillips. 2020. Non-structural carbohydrate pools not linked to 

hydraulic strategies or carbon supply in tree saplings during severe drought and subsequent 

recovery. Tree Physiology 40: 259-271. https://doi.org/10.1093/treephys/tpz132 

Kolb, K. J., J. S. Sperry, and B. B. Lamont. 1996. A method for measuring xylem hydraulic 

conductance and embolism in entire root and shoot systems. Journal of Experimental Botany, 

47: 1805-1810. https://doi.org/10.1093/jxb/47.11.1805 



 155 

Lebrija-Trejos, E., E. A. Pérez-García, J. A. Meave, F. Bongers, and L. Poorter. 2010. Functional 

traits and environmental filtering drive community assembly in a species-rich tropical 

system. Ecology, 91: 386-398. https://doi.org/10.1890/08-1449.1 

Lei, T. T., & M. J. Lechowicz. 1990. Shade adaptation and shade tolerance in saplings of three 

Acer species from eastern North America. Oecologia, 84: 224-228. 

https://doi.org/10.1007/BF00318275 

Lo Gullo, M. A., A. Nardini, P. Trifilò, and S. Salleo. 2005. Diurnal and seasonal variations in 

leaf hydraulic conductance in evergreen and deciduous trees. Tree Physiology, 25: 505-512. 

https://doi.org/10.1093/treephys/25.4.505 

Loewenstein, N. J. and S. G. Pallardy. 1998. Drought tolerance, xylem sap abscisic acid and 

stomatal conductance during soil drying: A comparison of canopy trees of three temperate 

deciduous angiosperms. Tree Physiology, 18: 431-439. 

https://doi.org/10.1093/treephys/18.7.431 

Lopez, O. R., T. A. Kursar, H. Cochard, and M. T. Tyree. 2005. Interspecific variation in xylem 

vulnerability to cavitation among tropical tree and shrub species. Tree Physiology, 25: 1553-

1562. https://doi.org/10.1093/treephys/25.12.1553 

Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. 2009. The BUGS project: Evolution, 

critique and future directions. Statistics in Medicine, 28: 3049-3067. 

https://doi.org/10.1002/sim.3680 

Maguire, A. J. and R. K. Kobe. 2015. Drought and shade deplete nonstructural carbohydrate 

reserves in seedlings of five temperate tree species. Ecology and Evolution, 5: 5711-5721. 

https://doi.org/10.1002/ece3.1819 

Markesteijn, L. and L. Poorter. 2009. Seedling root morphology and biomass allocation of 62 

tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology, 97: 311-

325. https://doi.org/10.1111/j.1365-2745.2008.01466.x 

Marshall, B. and P. V. Biscoe. 1980. A model for C3 leaves describing the dependence of net 

photosynthesis on irradiance. Journal of Experimental Botany, 31: 29-39. 

https://doi.org/10.1093/jxb/31.1.29 

Martínez-Vilalta, J. and N. Garcia-Forner. 2016. Water potential regulation, stomatal behaviour 

and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant, 

Cell & Environment, 40: 962-976. https://doi.org/10.1111/pce.12846 

Martínez-Vilalta, J., A. Sala, D. Asensio, L. Galiano, G. Hoch, S. Palacio, F. I. Piper, and F. 

Lloret. 2016. Dynamics of non-structural carbohydrates in terrestrial plants: A global 

synthesis. Ecological Monographs, 86: 495-516. https://doi.org/10.1002/ecm.1231 

McDowell, N., W. T. Pockman, C. D. Allen, D. D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. 

Sperry, A. West, D. G. Williams, and E. A. Yepez. 2008. Mechanisms of plant survival and 

mortality during drought: Why do some plants survive while others succumb to drought? 

New Phytologist, 178: 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x 

McDowell, N. G., D. J. Beerling, D. D. Breshears, R. A. Fisher, K. F. Raffa, and M. Stitt. 2011. 

The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends 

in Ecology & Evolution, 26: 523-532. https://doi.org/10.1016/j.tree.2011.06.003 



 156 

Meehl, G. A. and C. Tebaldi. 2004. More intense, more frequent, and longer lasting heat waves 

in the 21st century. Science, 305: 994-997. http://doi.org/10.1126/science.1098704 

Múnne-Bosch, S. and L. Alegre. 2004. Die and let live: Leaf senescence contributes to plant 

survival under drought stress. Functional Plant Biology, 31: 203-216. 

https://doi.org/10.1071/FP03236 

O’Brien, M. J., S. Leuzinger, C. D. Philipson, J. Tay, and A. Hector. 2014. Drought survival of 

tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate 

Change, 4: 710–714. https://doi.org/10.1038/nclimate2281 

Ogasa, M., N. H. Miki, Y. Murakami, and K. Yoshikawa. 2013. Recovery performance in xylem 

hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree 

species. Tree Physiology, 33: 335-344. https://doi.org/10.1093/treephys/tpt010 

Piper, F. I., and A. Fajardo. 2016. Carbon dynamics of Acer pseudoplatanus seedlings under 

drought and complete darkness. Tree Physiology, 36: 1400-1408. 

https://doi.org/10.1093/treephys/tpw063 

Pittermann, J., J. S. Sperry, U. G. Hacke, J. K. Wheeler, and E. H. Sikkema. 2006. Inter-tracheid 

pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and 

cavitation protection. American Journal of Botany, 93: 1265-1273. 

https://doi.org/10.3732/ajb.93.9.1265 

Quentin, A. G., E. A. Pinkard, M. G. Ryan, D. T. Tissue, L. S. Baggett, and 55 other authors. 

2015. Non-structural carbohydrates in woody plants compared among laboratories. Tree 

Physiology, 35: 1146-1165. https://doi.org/10.1093/treephys/tpv073 

Quero, J. L., R. Villar, T. Marañón, and R. Zamora. 2006. Interactions of drought and shade 

effects on seedlings of four Quercus species: Physiological and structural leaf responses. 

New Phytologist, 170: 819-834. https://doi.org/10.1111/j.1469-8137.2006.01713.x 

Reich, P. B. and T. M. Hinckley. 1989. Influence of pre-dawn water potential and soil-to-leaf 

hydraulic conductance on maximum daily leaf diffusive conductance in two oak species. 

Functional Ecology, 3: 719-726. https://www.jstor.org/stable/2389504 

Roman, D. T., K. A. Novick, E. R. Brzostek, D. Dragoni, F. Rahman, and R. P. Phillips. 2015. 

The role of isohydric and anisohydric species in determining ecosystem-scale response to 

severe drought. Oecologia, 179: 641-654. https://doi.org/10.1007/s00442-015-3380-9 

Rüger, N., A. Huth, S. P. Hubbell, and R. Condit. 2009. Response of recruitment to light 

availability across a tropical lowland rain forest community. Journal of Ecology, 97: 1360-

1368. https://doi.org/10.1111/j.1365-2745.2009.01552.x 

Sala, A., F. Piper, & G. Hoch. 2010. Physiological mechanisms of drought-induced tree 

mortality are far from being resolved. New Phytologist, 186: 274-281. 

https://jstor.org/stable/27797547 

Sala, A., D. R. Woodruff, and F. C. Meinzer. 2012. Carbon dynamics in trees: Feast or famine? 

Tree Physiology, 32: 764-775. https://doi.org/10.1093/treephys/tpr143 

Sevanto, S., N. G. McDowell, L. T. Dickman, R. Pangle, and W. T. Pockman. 2013. How do 

trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & 

Environment, 37: 153:161. https://doi.org/10.1111/pce.12141 



 157 

Sperry, J. S., J. R. Donnelly, and M. T. Tyree. 1988. Seasonal occurrence of xylem embolism in 

sugar maple (Acer saccharum). American Journal of Botany, 75: 1212-1218. 

https://doi.org/10.1002/j.1537-2197.1988.tb08834.x 

Sperry, J. S., and M. T. Tyree. 1990. Water-stress-induced xylem embolism in three species of 

conifers. Plant, Cell & Environment, 13: 427-436. https://doi.org/10.1111/j.1365-

3040.1990.tb01319.x 

Sperry, J. S., U. G. Hacke, R. Oren, and J. P. Comstock. 2002. Water deficits and hydraulic 

limits to leaf water supply. Plant, Cell & Environment 25, 251-263. 

https://doi.org/10.1046/j.0016-8025.2001.00799.x 

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, And A. Van Der Linde. 2002. Bayesian measures of 

model complexity and fit. Journal of the Royal Statistical Society: B, 64: 583-639. 

https://doi.org/10.1111/1467-9868.00353 

Thomas, D. S. and D. Eamus. 1999. The influence of predawn leaf water potential on stomatal 

responses to atmospheric water content at constant Ci and on stem hydraulic conductance and 

foliar ABA concentrations. Journal of Experimental Botany, 50: 243-251. 

https://doi.org/10.1093/jxb/50.331.243 

Thomsen, J. E., G. Bohrer, A. M. Matheny, V. Y. Ivanov, L. He, H. J. Renninger, and K. V. R. 

Schäfer. 2013. Contrasting hydraulic strategies during dry soil conditions in Quercus rubra 

and Acer rubrum in a sandy site in Michigan. Forests, 4: 1106-1120. 

https://doi.org/10.3390/f4041106 

Tjoelker, M. G., P. B. Reich, and J. Oleksyn. 2002. Changes in leaf nitrogen and carbohydrates 

underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. 

Plant, Cell & Environment, 22: 767-778. https://doi.org/10.1046/j.1365-3040.1999.00435.x 

Trifilò, P., N. Kiorapostolou, F. Petruzzellis, S. Vitti, G. Petit, M. A. Lo Gullo, A. Nardini, and 

V. Casolo. 2019. Hydraulic recovery from xylem embolism in excised branches of twelve 

woody species: Relationships with parenchyma cells and non-structural carbohydrates. Plant 

Physiology and Biochemistry, 139: 513-520. https://doi.org/10.1016/j.plaphy.2019.04.013 

Tyree, M. T., J. Alexander, and J.-L. Machado. 1992. Loss of hydraulic conductivity due to 

water stress in intact juveniles of Quercus rubra and Populus deltoides. Tree Physiology, 10: 

411-415. https://doi.org/10.1093/treephys/10.4.411 

Urli, M., A. J. Porté, H. Cochard, Y. Guengant, R. Burlett, and S. Delzon. 2013. Xylem 

embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 

33: 672-683. https://doi.org/10.1093/treephys/tpt030 

Williams, L. E. and F. J. Araujo. 2002. Correlations among predawn leaf, midday leaf, and 

midday stem water potential and their correlations with other measures of soil and plant 

water status in Vitis vinifera. Journal of the American Society for Horticultural Science, 127: 

448-454. https://doi.org/10.1093/jxb/50.331.243 

Wilson, K. B., D. D. Baldocchi, and P. J. Hanson. 2000. Quantifying stomatal and non-stomatal 

limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous 

tree species. Tree Physiology, 20: 787-797. https://doi.org/10.1093/treephys/20.12.787 



 158 

Wright, S. J., H. C. Muller-Landau, R. Condit, and S. P. Hubbell. 2003. Gap-dependent 

recruitment, realized vital rates, and size distributions of tropical trees. Ecology, 84: 3174-

3185. https://doi.org/10.1890/02-0038 

  



 159 

TABLES AND FIGURES 

Table 4.1 – Xylem conductivity ANOVA statistics 

ANOVA statistics describing the differences in xylem conductivity between all four factorial 

treatments (a) and the differences between drought treatments (b) for seedlings of both species. 

Drought treatment A. saccharum seedlings were not available to be used in this analysis and are 

thus excluded. 

(a) Df Sum Sq. Mean Sq. F value Pr(>F) 

A. saccharum 1 7.5*10-6 7.5*10-6 0.015 0.906 

Q. rubra 3 3.45*10-3 1.15*10-3 3.307 0.087 

      

(b) Df Sum Sq. Mean Sq. F value Pr(>F) 

A. saccharum - - - - - 

Q. rubra 1 3.37 *10-3 3.37 *10-3 12.1 0.007 
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Figure 4.1 – Leaf water potential over course of experiment 

Predawn plant water potential (ΨPD) plotted over the duration of the experiment for A. 

saccharum (a) and Q. rubra seedlings (b). 
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Figure 4.2 – Changes in Amax over gradient of leaf water potential 

a-b) Observed (points) and modeled (lines) relationship between ΨPD and maximum 

photosynthetic capacity (Amax) for A. saccharum (a) and Q. rubra seedlings (b). Dashed lines 

represent 95% predictive intervals. c-d) Posterior estimated means (± 95% credible intervals) for 

the intercept parameter β1 (c) and the decay parameter β2 (d) relating ΨPD to Amax. Parameters β2 

are considered significantly positive if the 95% credible intervals (CI) do not overlap with zero. 

Light treatments are considered different from each other (c-d) if their 95% CI do not overlap. 
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Figure 4.3 – Differences in NSC glucose concentrations between treatments 

NSC (Non-structural carbohydrate) glucose concentrations (means + 2 s.d.) for A. saccharum (a-

d) and Q. rubra seedlings (e-h) across the four experimental treatments. Rows show 

concentrations of NSCGlu in leaf (a, e), stem (b, f), and root (c, g) pools as well as concentration 

of NSCGlu averaged across all pools and weighted by dry mass of each pool (d, h). Horizontal 

lines indicate means (solid) ± 2 s.d. (dashed) of NSCGlu in seedlings harvested prior to the 

initiation of treatments.  
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Figure 4.4 – Xylem conductivity over gradient of leaf water potential 

Xylem conductivity (k) for A. saccharum (a) and Q. rubra seedlings (b) plotted by pre-dawn 

plant water potential (ΨPD). These plots show data from across all three harvests for seedlings 

that were recorded as alive at time of harvest. 
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SUPPORTING INFORMATION 

Supporting Information 4.1 – Seed source information 

 Initial seedling height of seedlings from the northern seed sources was significantly 

greater than initial height of seedlings from southern seed source for both species (Fig. SI 4.10; 

Pr(>F) < 0.05 for one-way ANOVAs ran separately for each species). However, there were no 

significant maternal effects in any of our analyses, suggesting that these differences in initial 

height do not play a large role in hydraulic strategies. Seedling dry mass at time of harvest was 

significantly greater for A. saccharum from northern seed sources, but there was no significant 

difference between Q. rubra seed sources (Fig. SI 4.11). Quercus seedling mass was more 

heavily concentrated in the roots whereas A. saccharum seedling mass was evenly distributed 

between leaves and roots (Fig. SI 4.11). Stem mass made up the least amount of the total mass 

for both species. 
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Supporting Information 4.2 - Supplemental Tables and Figures 

Table SI 4.2 – Amax model parameter estimates 

Posterior parameter estimates of means and 95% credible intervals in the exponential Amax 

models. 

  A. saccharum Q. rubra 

  mean 95% CI mean 95% CI 

β1 Light 3.38 2.24, 4.95 2.77 2.09, 3.57 

Shade 2.95 1.96, 4.23 4.92 3.56, 6.58 

β2 Light 0.987 0.184, 2.20 0.387 0.0298, 0.949 

Shade 0.190 -0.802, 1.36 1.52 0.609, 2.64 

τ = 1/σ2 (total 

model) 

0.952 0.656, 1.30    
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Table SI 4.3 – ANOVA summary statistics for differences in NSC 

ANOVA statistics for treatment effects on NSC pools for A. saccharum (a) and Q. rubra 

seedlings (b). 

(a) Df Sum Sq. Mean Sq. F value Pr(>F) 

Leaf 3 3844 1281 0.677 0.576 

Stem 3 21009 7003 0.661 0.586 

Root 3 5342 1780 0.831 0.492 

Combined 3 1521 507.1 0.342 0.795 

      

(b) Df Sum Sq. Mean Sq. F value Pr(>F) 

Leaf 3 4413 1471 0.74 0.54 

Stem 3 2029 676.4 0.246 0.863 

Root 3 3764 1255 0.243 0.865 

Combined 3 2068 689.2 0.223 0.879 

 

  



 168 

Figure SI 4.5 – NSC concentration plotted over time 

Non-structural glucose concentrations averaged across all tissue pools for A. saccharum (a) and 

Q. rubra seedlings (b), plotted by days since the initiation of treatment. 
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Figure SI 4.6 – Greenhouse environmental conditions 

Average daytime light levels (a) and average daily temperature (b) experienced by tree seedlings. 

The vertical line represents the day the treatments were initiated, with line colors representing 

control (C), drought (D), shade (S), and drought + shade (DS) treatments. 
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Figure SI 4.7 – Greenhouse temperature variability 

Average daily temperature (solid lines) measured over the course of the experiment with dashed 

lines showing the minimum and maximum daily temperatures. Colors represent different drought 

and shade treatments and the vertical line shows the day of treatment initiation. 
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Figure SI 4.8 – Differences in xylem conductivity by treatment 

Boxplots showing the xylem conductivity for A. saccharum (a) and Q. rubra seedlings (b) that 

were recorded as alive at the time of the second harvest (n = 4, 0, 4, 0 for A. saccharum seedlings 

and n = 3, 1, 4, 3 for Q. rubra seedlings in treatments C, D, S, and DS, respectively). Colors 

indicate experimental treatment: control (C; grey), drought (D, red), shade (S, blue), and 

combined drought and shade (DS, purple). 
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Figure SI 4.9 – Differences in xylem conductivity by drought 

Boxplots showing the xylem conductivity for A. saccharum (a) and Q. rubra seedlings (b) that 

were recorded as alive at the time of the second harvest (n = 8 and 0 for A. saccharum seedlings 

and n = 7 and 4 for Q. rubra seedlings in combined C and S or D and DS treatments, 

respectively). 
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Figure SI 4.10 – Seedling initial height by seed source 

Initial height of A. saccharum and Q. rubra seedlings at time of harvest, separated by mass of 

leaves, stem, and roots. Dry mass is shown for seedlings of both species that were grown from 

either northern (N) or southern (S) seed sources. 
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Figure SI 4.11 – Dry mass at time of harvest by seed source 

Dry mass of A. saccharum and Q. rubra seedlings at time of harvest, separated by mass of 

leaves, stem, and roots. Dry mass is shown for seedlings of both species that were grown from 

either northern (N) or southern (S) seed sources. 
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Chapter 5 Conclusions 

 

In this dissertation, I used a combination of field and greenhouse experiments to 

investigate and predict the effects that climate change may have on temperate tree recruitment 

for two species that commonly co-occur across a wide range of eastern North America. In 

Chapter 2, I investigated the relationship between climate drivers and leaf-out phenology of 

seedlings and of the surrounding canopy and found that seedlings may track climate better than 

adult trees and are therefore likely to gain access to spring light availability under climate change 

scenarios. I found that, despite the increase in spring carbon assimilation associated with this 

increase in access to light, seedlings of both species are projected to assimilate less carbon in the 

future due to high respiration costs caused by predicted hotter and drier summers. This chapter 

emphasizes the importance of phenological escape in maintaining positive carbon status for these 

seedlings. In Chapter 3, I combined phenology and leaf area measurements collected for 

individual seedlings with the photosynthetic model parameters calculated in Chapter 2 and 

detailed microclimate data to estimate annual carbon assimilation at the individual level and use 

it to predict seedling demographic performance (growth and survival). I found that carbon 

assimilation was significantly associated with both processes, suggesting that the reduced 

assimilation predicted in Chapter 2 will cause reductions in seedling recruitment performance 

under climate change. Importantly, the results from this chapter showed that predicted changes in 

performance may be less dire when phenology shifts are accounted for, highlighting the potential 

importance of this mechanism in mitigating some of the negative effects of climate change. 

Finally, in Chapter 4, I conducted a greenhouse dry-down experiment to quantify the hydraulic 
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response of seedlings to drought to estimate whether species will experience differential 

performance as a result of climate change predicted in my study region. I found little to 

differentiate between species responses, despite the differences observed for adults of these two 

species in the literature. This suggests that recruitment of these two species may not be as 

different as expected given their adults’ hydraulic performance under drought and implies that 

differences in performance of these two species under climate change will be driven by other 

mechanisms such as those covered in Chapters 2 and 3. 

The results of my dissertation demonstrate the importance of phenological escape in the 

recruitment of temperate deciduous tree species, a novel mechanism that has only recently been 

studied in spring ephemeral wildflowers (Heberling et al. 2019). Furthermore, my research 

contextualizes phenological escape with respect to climate change and provides the model 

parameterization needed to predict seedling recruitment under a wide range of possible climate 

change scenarios. 

The core contribution of my work is in demonstrating that climate change will likely 

affect species differently depending on their ability to maintain phenological escape in spring, 

but other findings of mine are of potential interest to other areas of plant ecology. In Chapter 2 I 

found that the performance of my photosynthesis model was improved by the inclusion of soil 

moisture and vapor pressure deficit as covariates, demonstrating the importance of water 

availability to seedling carbon assimilation. I then demonstrated in Chapter 3 that reductions in 

carbon assimilation associated with reduced water availability will likely have profound effects 

on seedling demography that are only partially ameliorated by projected increased access to 

spring light. 
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In Chapter 4, however, I found few differences between species with respect to the 

strategies they use to respond to drought, despite the hypothesized differences suggested by 

hydraulic strategies used by adults. Together, these results suggest that seedlings are equivalently 

susceptible to death from hydraulic failure and that, therefore, the most important drought effects 

with respect to differential seedling performance may involve reductions in carbon assimilation 

and depletion of non-structural carbohydrates that exacerbate the negative effects of mid-

seasonal shade. Specifically, my results suggest that access to light will be the primary driver of 

temperate seedling mortality for these two species (Chapter 3), but the effects of shading will 

likely be affected by drought controls on photosynthetic activity during the middle of the 

growing season (Chapter 2). This is an important finding that may explain some of the variability 

in the importance of non-structural carbohydrate reductions found in a recent meta-analysis that 

evaluated global patterns of tree mortality in response to drought (Adams et al. 2017). 

My results also suggest that the interactions between biological and environmental 

drivers of tree mortality will be important in predicting future tree recruitment. In Chapter 2 I 

found strong reductions in carbon assimilation for seedlings of both species when planted next to 

Quercus rubra canopy tree compared to when planted next to Acer saccharum adults. I speculate 

that this result is caused by differences in leaf nitrogen content arising from higher N 

mineralization rates (Finzi et al. 1998, Phillips and Fahey 2006) and higher organic N content 

(McCarthy-Neumann and Ibáñez 2012) that have been previously documented in soils collected 

from beneath Q. rubra trees. Soil nitrogen has recently been linked to leaf nitrogen content 

(Tang et al. 2019), and in turn leaf nitrogen concentration has been found to correlate with 

respiration rates (Reich et al. 1998, Cannell and Thornley 2000), so it is possible that increases in 

respiration costs observed in our study are evidence of this dynamic. However, I did not measure 
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soil or leaf nitrogen content and further research is therefore required to provide more substantial 

support to this speculation. 

Finally, and perhaps most importantly, my results showcase the negative consequences 

that climate change will have on temperate tree recruitment irrespective of phenological escape 

or hydraulic response to drought. In Chapters 2 and 3 I found strong projected reductions in 

carbon assimilation and seedling performance for both species under an extreme climate change 

scenario that represented predicted climate conditions in the year 2100 if there is no change to 

current global carbon emissions (the A1FI scenario used by the IPCC Global Assessment). Our 

conservative climate change scenario assumes the invention and utilization of green energy 

sources and a global reduction in carbon emissions by 2100 (IPCC B1 scenario). Although 

realized climate conditions are likely to fall somewhere in between these two scenarios 

(Hausfather and Peters 2020), the increasing frequency at which previous climate change 

forecasting has been recently proved correct (Hausfather et al. 2019) causes concern that these 

two species will have difficulty recruiting into temperate forests. Without immediate and 

dramatic reductions in global carbon emissions, temperate forests could look very different than 

they do today. 

 

REFERENCES 

Adams, H. A., M. J. B. Zeppel, W. R. Anderegg, and 59 other authors. 2017. A multi-species 

synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & 

Evolution, 1: 1285-1291. https://doi.org/10.1038/s41559-017-0248-x 

Cannell, M. G. R. and J. H. M. Thornley. 2000. Modelling the components of plant respiration: 

Some guiding principles. Annals of Botany, 85: 45-54. 

https://doi.org/10.1006/anbo.1999.0996 

Finzi, A. C., N. Van Breemen, and C. D. Canham. 1998. Canopy tree-soil interactions within 

temperate forests: Species effects on soil carbon and nitrogen. Ecological Applications, 8: 

440-446. https://doi.org/10.1890/1051-0761(1998)008[0440:CTSIWT]2.0.CO;2 



 179 

Hausfather, Z., H. F. Drake, T. Abbott, and G. A. Schmidt. 2019. Evaluating the performance of 

past climate model projections. Geophysical Research Letters, 47: e2019GL085378. 

https://doi.org/10.1029/2019GL085378 

Hausfather, Z. H. and G. P. Peters. 2020. Emissions – the ‘business as usual’ story is misleading. 

Nature, 577: 618-620. https://10.1038/d41586-020-00177-3 

Heberling, J. M., C. M. MacKenzie, J. D. Fridley, S. Kalisz, and R. B. Primack. 2019. 

Phenological mismatch with trees reduces wildflower carbon budgets. Ecology Letters, 22: 

616-623. https://doi.org/10.1111/ele.13224 

McCarthy-Neumann, S. and I. Ibáñez. 2012. Tree range expansion may be enhanced by escape 

from negative plant-soil feedbacks. Ecology, 93: 2637-2649. https://doi.org/10.1890/11-

2281.1 

Phillips, R. P. and T. J. Fahey. 2006. Tree species and mycorrhizal associations influence the 

magnitude of rhizosphere effects. Ecology, 87: 1302-1313. https://doi.org/10.1890/0012-

9658(2006)87[1302:TSAMAI]2.0.CO;2 

Reich, P. B., M. B. Walters, D. S. Ellsworth, J. M. Vose, J. C. Volin, C. Gresham, and W. D. 

Bowman. 1998. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and 

leaf life-span: A test across biomes and functional groups. Oecologia, 114: 471-482. 

https://doi.org/10.1007/s004420050471 

Tang, J., B. Sun, R. Cheng, Z. Shi, D. Luo, S. Liu, and M. Centritto. 2019. Effects of soil 

nitrogen (N) deficiency on photosynthetic N-use efficiency in N-fixing and non-N-fixing tree 

seedlings in subtropical China. Nature Scientific Reports, 9: 4604. 

https://doi.org/10.1038/s41598-019-41035-1 

 


