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ABSTRACT

Function type parameters relax many model assumptions because of the flexibil-

ity and the size of the parameter space. However, the curse of dimensionality has

been the biggest challenge in the nonparametric regression area. An advantageous

approach to dimension reduction is using basis expansion to approximate infinite pa-

rameter space. An even more challenging problem is estimating functions with unique

structures, such as functions with zero-effect regions. The main part of this disserta-

tion is working on varying coefficients with zero-effect regions. We propose a novel

model that can detect zero-effect regions and estimate the non-zero effects simulta-

neously. We provide theoretical support for the inference of our proposed estimators.

Simulation studies and real data analyses demonstrate the advantage of our models.

This dissertation also introduces a new model that considers the additive effects from

a novel aspect: estimating the dynamic effect changes. Simulations and real data

applications provide comparisons between our model and the existing model.

xii



CHAPTER I

Introduction

Varying coefficient models have been used to explore dynamic effect patterns in

many scientific areas, such as in biomedicine, finance, and epidemiology. When the

effect is changing from positive to negative (or vice versa), detection of transition

regions (zero regions) is of practical importance for proper intervention. As the most

existing models ignore the existence of zero regions, the first chapter proposes a new

soft-thresholded varying coefficient model, where the varying coefficient functions are

piecewise smooth with zero regions. Our new modeling approach enables us to per-

form variable selection and detect the zero regions of selected variables simultaneously,

obtain point estimates of the varying coefficients with zero regions and construct a

new type of sparse confidence intervals that accommodate zero regions. We prove

the asymptotic properties of the estimator, and our simulation study reveals that

the confidence intervals achieve the desired coverage probability. We apply the pro-

posed method to analyze a large scale preoperative opioid use study and obtain some

interesting results on opioid use.

The second chapter is considering the generalized additive models (GAMs). GAMs

have been widely used for modeling nonlinear effects of predictors on a variety of out-

comes. However, the explanation of covariates’ effects in GAMs is intriguing and sta-

tistical inference on effects is challenging. Extending GAMs, we propose a new class
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of models that can directly characterize the dynamic effect change of each predictor.

Our model, which incorporates derivatives of nonlinear effects as functional parame-

ters of interest, is termed the generalized additive dynamic effect change model. We

develop an efficient statistical procedure for inferring functional parameters embedded

in the reproducing Hilbert kernel space. As opposed to GAMs, our derivative-based

model renders a straightforward interpretation of model parameters. We establish the

large sample properties for the proposed method and show its superior performance

compared to GAM in various simulation scenarios. We apply our method to con-

struct an individualized risk prediction model for opioid use, which provides a better

understanding of dynamic effect changes of potential risk factors.

In the third chapter, we consider the high-dimensional Cox models with time-

varying effects that contain zero regions. As opposed to the commonly used reg-

ularization methods, we apply the idea of the soft-thresholding operator from our

first chapter in the space of smooth functions. This leads to a more interpretable

model with a straightforward inference procedure. We develop an efficient algorithm

for inference in the target functional space. We show that the proposed method en-

joys good theoretical properties. The method is further illustrated and evaluated via

extensive simulation studies and a data analysis of Boston Lung Cancer Study.
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CHAPTER II

A New Soft-Thresholded Varying Coefficient

Model to Predict Opioid Use with Risk Factors

that Have Zero-effect Regions

2.1 Introduction

According to the World Drug Report [84], opioid use for pain treatment has risen

sharply, but without much improvement in reducing the severity of chronic pain.

The rapid rise in opioid use was strongly associated with the incidence of emergency

department visits and deaths [12]. Patients with preoperative opioid use have worse

surgical outcomes, greater postoperative pain, more pronounced morbidity, higher

rates of use of health care services [14, 63, 102], and are less likely to stop opioid-

based therapy after surgery [22, 35]. To avoid unnecessary opioid use and prevent

possible opioid addiction, effective strategies for opioid prescription management are

needed for both patients and physicians. For obese patients, effective prescription

management is especially important because of complex co-comorbidities and high

prevalence of obstructive sleep apnea [70]. It is critical to understand whether and

how the association between preoperative opioid use and pain is modified by the level

of body mass index (BMI) [70].

This work was motivated by a preoperative opioid use study, which assessed the

3



association of preoperative opioid use and the characteristics of patients in a broadly

representative surgical cohort [43]. We did a preliminary analysis that considers a

varying coefficient model using B-spline approximation. The preliminary analysis

shows that the dose-relationship between opioid use and pain level is changing from

negative to positive when BMI is increasing from 15.5 to 20.0, and the non-significant

and significant regions are not well separated. A practical explanation is that there

may exist zero-effect regions in terms of BMI for pain on opioid use. The zero-

effect regions of BMI may hint at possible opioid addiction among those with BMI

less than 20.0. However, most existing methods ignore the existence of zero-effect

regions. There is a need to develop a varying coefficient model that enables us to

estimate zero-effect regions and quantify the associated uncertainty.

Varying coefficient models [39] are commonly used to characterize the dynamic

changes of regression effects. Framing the model in the context of opioid use, we

denote by Y the total amount of preoperative opioids, and by X1, . . . , Xp the p co-

variates, consisting of demographic information and clinical symptoms, such as pre-

operative pain. The following model detects how the covariate effects on opioid use

are modified by BMI (denoted by W ):

Y =

p∑
j=1

Xjβj(W ) + ε, (2.1)

where βj(W ) is the varying coefficient function representing the effect of Xj, and ε is

a random variable with mean zero and variance σ2. We set X1 to be 1, corresponding

to the intercept function. The challenge lies in how to detect zero-effect regions and

draw inference on varying coefficient functions simultaneously, and is aggravated when

p is large.

Local log-likelihood approaches have been proposed to estimate βj(W ). For exam-

ple, Hoover et al. (1998) [45] used the smoothing spline and local polynomial methods;

4



Fan and Zhang (1999) [33] and Fan et al. (2000) [32] proposed a two-step procedure

to allow more flexibility of coefficient functions; Wu et al. (2000) [94] and Chiang

et al. (2001) [17] proposed component-based kernel and smoothing spline estimators

for varying coefficient models with repeated measurements. In high-dimensional set-

tings, variable selection and screening with varying coefficient models were studied

[52, 55, 57]. The local polynomial estimators may not provide adequate smoothing for

all the coefficients simultaneously and the computational burden of smoothing splines

can be heavy. Other alternative methods were proposed. They included global esti-

mation and variable selection for varying coefficient models based on basis approxima-

tions [49, 50] and penalized spline-based models [15, 16, 28, 31, 41, 47, 74, 88, 89, 97].

However, none of these methods is able to detect zero-effect regions.

Model (2.1) differs from functional linear models [64, 65, 100] and scalar-on-image

regression models [51], of which both coefficients and covariates are functional. The

roles and interpretations of functional coefficients deviate from those in model (2.1), as

the latter is designed to characterize the varying effects of scalar covariates. Moreover,

the methods of drawing statistical inference on zero-effect regions for functional linear

models [51, 100] are not applicable to model (2.1), which addresses the particular

question on opioid use.

We propose a soft-thresholded varying coefficient model, where coefficients in

model (2.1) are constructed by applying soft-thresholding operators to smooth func-

tions. The soft-thresholded varying coefficients are continuous, piecewise smooth, and

with zero-effect regions. The smooth functions before soft-thresholding can be approx-

imated using B-splines [27, 73, 76], or some other basis functions, such as smoothing

splines or reproducing kernel Hilbert space splines [8, 86]. The soft-thresholded func-

tion, originally introduced to construct estimators for the wavelet coefficients [24, 25],

has been widely used for effect shrinkage: Chiang et al. (2001) [17] proposed an

adaptive, data-driven threshold for image denoising in a Bayesian framework with

5



the generalized Gaussian distribution prior based on wavelet soft-thresholding; Tib-

shirani (1996) [81] also pointed out that the lasso estimator is a soft-thresholded

estimator when the covariate matrix has an orthonormal design. As all of these esti-

mators were designed for parameters with finite dimensions, their usage for functional

coefficients, including varying coefficients, remains elusive.

Our approach is new in the following aspects. First, our method involves a novel

application of a soft-thresholding operator in a functional space, which enables us to

uncover zero-effect regions of varying coefficients. The soft-thresholded estimates are

continuous, piecewise smooth and with zero-effect regions, and possess an easy inter-

pretation for a range of applications. Second, our new modeling framework enables

us to estimate varying coefficients and draw the statistical inference. We particu-

larly develop a new type of confidence interval, termed sparse confidence intervals,

which can be degenerated to a singleton with a non-zero probability. Finally, we

have established theoretical properties, which inform valid statistical inference for

high-dimensional varying coefficient models.

2.2 Method

2.2.1 Varying coefficient models with zero-effect regions

In model (2.1), we write β(w) = {β1(w), . . . , βp(w)}T as a vector of varying co-

efficients, where p may grow with the sample size. Without loss of generality, we

assume W ∈ D = [0, 1]. To detect zero-effect regions of β(w) , we assume that

βj, j = 1, . . . , p, is continuous everywhere, with zero-effect regions consisting of at

least one interval, and is smooth over regions where its effect is non-zero. Specif-

ically, let R0(β) = {w : β(w) = 0, w ∈ D}, R−(β) = {w : β(w) < 0, w ∈ D},

R+(β) = {w : β(w) > 0, w ∈ D}, and R be the closure of any set R ⊆ D. The

functional space H containing βj is defined as follows.

6



Definition 2.2.1 H contains β(w) with: (continuity) limw→w0 β(w) = β(w0), for

any w0 ∈ D; (zero-effect regions) R0(β) contains at least one interval with a non-zero

Lebesgue measure; (piecewise smoothness) R+(β)
⋃
R−(β) can be partitioned as a

union of disjoint intervals, each with a non-zero Lebesgue measure. The dth derivative

of β(w) exists and satisfies the Lipschitz condition on each interval:

|β(d)(s)− β(d)(w)| ≤ C|s− w|t,

where d is a non-negative integer, and t ∈ (0, 1] such that m ≡ d+ t > 0·5.

The smoothness requirement for β in our definition is weaker than that in Kang

et al. (2018) [51]. The full-zero coefficients are those with R0 = D, and partial-zero

coefficients are those with R0 ( D. Definition 2.2.1 implies a “buffer zone” when an

effect switches signs, reflecting gradual degradation in real life. We assume that the

true parameter is β0 and β0j ∈ H for all j. Let p0 =
∑p

j=1 I{β0j(w) ≡ 0} be the

number of full-zero coefficients, and p̃ = p − p0 be the number of partial-zero and

non-zero coefficients. Here, I{·} is the indicator function. Without loss of generality,

we assume the first p̃ coefficients are either partial-zero or non-zero. Certain sparsity

conditions will be imposed on p̃ later.

2.2.2 Soft-thresholding operator

Representing zero-effect regions for varying coefficients, we propose a soft-thresholding

operator ζ:

ζ{θ,α}(w) = {θ(w)− α} I{θ(w) > α}+ {θ(w) + α} I{θ(w) < −α},

where α > 0 is the thresholding parameter and θ(w) is a real-valued function. Our

proposal resembles Donoho and Johnstone (1994) [25], which was designed for de-

noising wavelet coefficients. However, our proposal is a functional operator which

7



transforms a function to a function (Figure 2.1).
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Figure 2.1: Demonstration of the soft-thresholding operator, which maps different
smooth functions (in dash) with different thresholding values (α1,α2,α3) to the same
curve with a zero-effect region (in solid).

Let F0 be a class of functions θ defined on D, with the dth derivative θ(d) satisfying

the Lipschitz condition in Definition 2.2.1. According to Lemma 1 in the Supplemen-

tary Material, we have that for any function β(w) ∈ H and any α > 0, there exists

at least one θ(w) ∈ F0 such that β(w) = ζ{θ,α}(w).

As illustrated by Figure 2.1, the soft-thresholding operator maps different smooth

θ(w)’s with different thresholding parameter α’s to the same β(w). Even for a fixed

α, θ(w) may not be uniquely defined and, hence, is not estimable without further

constraints. Our strategy is to consider a sieve space that approximates F0 and shows

that, within the sieve space, a penalized loss function can uniquely determine a θ(w),

which after soft thresholding will approximate the desired β(w). In theory, we may

set α to be any positive number, but our numerical experience suggests that choosing

an appropriate α, which is comparable to the scale of β(w), lead to more stable and

efficient estimates. Thus, in a regression setting, we specify covariate-specific α’s.

2.2.3 Spline approximation and differentiable approximation

We specify a B-spline function sieve space, denoted by F, to approximate F0. Let

K = O(nν) be an integer with 0 < ν < 0·5. Following Schumaker (2007) [71], we

8



let Bk(w)(1 ≤ k ≤ q) with q = K + d be the B-spline basis functions of degree

d + 1 associated with the knots 0 = w0 < w1 < · · · < wK−1 < wK = 1, satisfying

max1≤k≤K(wk − wk−1) = O(n−ν).

Definition 2.2.2 Let B(w) = {B1(w), . . . , Bq(w)}T be a functional vector of the

B-spline bases. We define

F =

{
q∑

k=1

γkBk(w), w ∈ D, γk ∈ R, k = 1, . . . , q

}
.

Let X = (X1, . . . , Xp)
T . With the observed data {(Yi,Wi,Xi)}ni=1 being indepen-

dent samples of {(Y,W,X)}, we specify

Yi =

p∑
j=1

Xijζ{∑q
k=1 γjkBk,αj}(Wi) + εi. (2.2)

Compared to model (2.1), model (2.2) should be viewed as a “working” model,

wherein γjk may not be unique or estimable. But with a penalized loss function spec-

ified below, we show that γjk can be uniquely estimated. Thus, the soft thresholded

estimate based on a working sieve model can approximate the true β0.

We define a penalized least-squares loss function:

l(γ;X, Y,W ) =

[
Y −

p∑
j=1

Xjζ{BTγj ,αj}(W )

]2

+ ρ

p∑
j=1

{
B(W )Tγj

}2
,

where ρ > 0 and γ = (γT1 , . . . ,γ
T
p )T are the coefficients of bases. The penalty term

aims to select zero-effect regions and identify the unique inner functions in F. Al-

though we use the same q for all coefficient functions, different q can be chosen for

different covariates.

Let f be a non-random function, and ξ1, . . . , ξn be i.i.d. copies of random vector

ξ. We denote by Ef(ξ) the theoretical mean of f(ξ) and by Enf(ξ) = n−1
∑n

i=1 f(ξi)

9



the empirical mean of f(ξ). Define

γ̃ = arg minγ El(γ;X, Y,W )

as the true sieve parameters to estimate. Let θ̃j = BT γ̃j and β̃(w) = (β̃1, . . . , β̃p)
T

with β̃j = ζ{θ̃j ,αj}(w).

For given α and q, we define the thresholded sieve space

Sq,α =

{
β(w) = ζ{θ,α}(w) : θ(w) =

q∑
k=1

γkBk(w), w ∈ D, γk ∈ R, k = 1, . . . , q

}
.

By Lemma 2 in the Supplementary Material, if β0j ∈ Sq,αj for j = 1, . . . , p̃ with q and

αj the same as in the penalized likelihood, ||β̃− β0||∞ = O((p̃ρ)1/2); if β0j /∈ Sq,αj for

j = 1, . . . , p̃, we have ||β̃ − β0||∞ = O((p̃ρ + p̃q−2m)1/2), where m is the smoothness

parameter as in Definition 2.2.1.

As ζ is not differentiable everywhere, we consider a smooth approximation of it.

Definition 2.2.3 A smooth approximation of ζ(θ,α), denoted by Hη(θ, α) (η > 0), is

continuous and twice differentiable with respect to θ everywhere and supw∈D |Hη(θ, α)−

ζ(θ,α)| = ∇(η), where ∇(η) ≥ 0 and limη→0+∇(η) = 0.

For example, a smooth approximation of ζ(θ,α) is defined as

Hη{θ(w), α} =
1

2

([
1 +

2

π
arctan{θ−(w)/η}

]
θ−(w)+

[
1− 2

π
arctan{θ+(w)/η}

]
θ+(w)

)
,

where α > 0, η > 0 and θ±(w) = θ(w) ± α. The approximation error between

Hη{θ(w), α} and ζ(θ,α) is bounded by η+O(η3) and H is continuous and differentiable.

The proof can be found in the Supplementary Material.

For simplicity, we drop α and η and write h(w, γ) = {h1(w, γ1), . . . , hp(w, γp)}T
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with hj(w,γj) = Hη{B(w)Tγj, αj}. Then, we define a smoothed loss function:

ls(γ;X, Y,W ) = {Y −XTh(W, γ)}2 + ρ

p∑
j=1

{B(W )Tγj}2. (2.3)

2.2.4 Estimation

We minimize the empirical mean of (2.3) to obtain an estimate of γ̃:

γ̂ = arg min
γ

Enl
s(γ;X, Y,W ).

Then the estimate for β is β̂ = (β̂1, . . . , β̂p)
T , where β̂j = ζ(BT γ̂j ,αj)(w).

Computation of γ̂ can be implemented by gradient-based methods and a coor-

dinate descent algorithm. With appropriate initial values, global optimizers can

be reached. Specifically, for each j = 1, . . . , p, we set the initial γ
(0)
j to be the

sample correlation between Y and XjB(W ), i.e. 1
n

∑n
i=1(Yi − Ȳ )XijB(Wi), where

Ȳ =
∑n

i=1 Yi/n. We choose the pre-specified parameters as follows. As a value of α

comparable to the scale of true coefficients works well, we set αj to be the absolute

value of the corresponding coefficient estimate from a parametric model. The choices

of η and ρ can be specified in accordance with Condition (Ch2.C6) in Section 2.3.1.

The knots of B-spline are equally spaced over D. The number of basis functions, q,

can be determined through R-fold cross-validation. That is, partition the full data

D into R equal-sized groups, denoted by Dr, for r = 1 . . . , R, and let β̂
(q)
−r(W ) be

the estimate obtained with q bases using all the data except for Dr. We obtain the

optimal q by minimizing the cross-validation error

CV(q) =
R∑
r=1

∑
i∈Dr

{
Yi −XT

i β̂
(q)
−r(Wi)

}2

. (2.4)
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2.3 Inference

2.3.1 Asymptotic properties

Let ln = Enl
s(γ;X, Y,W ), and denote by l′n(γ) and l′′n(γ) the first and second

derivatives of ln with respect to γ respectively. It follows that l′n(γ) = 2En{−(Y −

XTh)U ⊗B(W ) + ρθ ⊗B(W )} and l′′n(γ) = 2En

[{
UUT + ρIp − (Y −XTh)Λ

}
⊗

(BBT )
]
, where U = U(γ;X,W ) = {X1h

′
1(γ;W ), . . . , Xph

′
p(γ;W )}T , and Λ =

diag(X1h
′′
1, . . . , Xph

′′
p) is a diagonal matrix. Let Vn = Vn(γ) be the n by pq ma-

trix {v1(γ), . . . ,vn(γ)}T with vi(γ) = U (γ;Xi,Wi) ⊗ B(Wi). Let θ̂j = B(w)T γ̂j

and θ̃j = B(w)T γ̃j. Technical conditions (Ch2.C1)–(Ch2.C7) are listed in the

Supplementary Material.

Theorem 2.3.1 (Convergence Rate) Under Conditions (Ch2.C1), (Ch2.C4),

(Ch2.C6) and (Ch2.C7), given αj (j = 1, . . . , p), if β0j(w) ∈ Sq,αj for j = 1, . . . , p̃

with q and αj be the same as in l(γ;X, Y,W ) , then

||β̂ − β0||2 = Op

(
(p̃q/n)1/2

)
;

if β0j(w) /∈ Sq,αj for j = 1, . . . , p̃,

||β̂ − β0||2 = Op

(
(p̃q/n)1/2 + p̃1/2q−m

)
.

By Condition (Ch2.C6) and m > 0·5, Theorem 2.3.1 implies convergence of β̂. If

p̃ is O(1), Theorem 2.3.1 coincides with theories in nonparametric regression. If the

true curves are in the thresholded sieve space, then there is no approximation error;

and if q is O(1), Theorem 2.3.1 suggests root-n consistency.

Let σ2
nj(w) = σ2/n2{ej⊗B(w)}T{l′′n(γ̃)}−1

{
V T
n (γ̃)Vn(γ̃)

}
{l′′n(γ̃)}−1{ej⊗B(w)},

where ej is p-dimensional vector with j-th entry being one and others being zero. We

have the following theorem.
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Theorem 2.3.2 Under Conditions (Ch2.C1)–(Ch2.C7), then for any w ∈ D, the

limiting distribution of β̂j(w) = ζ{θ̂j ,αj}(w) ( j = 1, . . . , p) satisfies

lim
n→∞

∣∣∣∣∣Pr(β̂j(w) ≤ x)−Gnj(w, x)

∣∣∣∣∣ = 0,

where Gnj(w, x) = Φ
{
x+αj−θ̃j(w)

σnj(w)

}
I(x ≥ 0) + Φ

{
x−αj−θ̃j(w)

σnj(w)

}
I(x < 0), and Φ(·) is

the cumulative distribution function for N(0, 1).

The limiting distribution in Theorem 2.3.2 reveals that the probability of β̂j(w) =

0 is greater than 0, which enables us to detect zero-effect regions even with finite

sample size.

2.3.2 Sparse confidence intervals

We need to gauge the uncertainty of the point estimates and draw valid statistical

inference on the selection and zero-effect region detection in high-dimensional varying

coefficient models. Classical confidence intervals are non-applicable as the limiting

distribution of the estimates involves zero point-mass. This motivates us to develop

a new type of confidence interval for the varying coefficients with zero-effect regions.

Definition 2.3.1 (Sparse confidence interval) For any w ∈ D, let un(w) and

vn(w) be the lower and upper bound estimates of β(w), and let ξ ∈ (0, 1).

i) when β(w) 6= 0, [un(w), vn(w)] is a (1 − ξ) level sparse confidence interval if,

for any w ∈ D, limn→∞ Pr {un(w) ≤ β(w) ≤ vn(w)} = 1− ξ;

ii) when β(w) = 0, [un(w), vn(w)] is a (1 − ξ) level sparse confidence interval if

there exists an integer N > 0, such that Pr{un(w) = 0 or vn(w) = 0} > 0 for any

n > N , and limn→∞ Pr {un(w) ≤ β(w) ≤ vn(w)} ≥ 1− ξ.

When β(w) = 0, a sparse confidence interval allows the upper bound or the lower

bound or both to be zero with a non-zero probability; see Figure 2.2. This unique
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property distinguishes the sparse confidence interval from its classical counterpart

and provides a useful means to draw inference on estimated zero-effect regions, which

also differs from the post-selection inference [53, 79, 82].

The derivation of sparse confidence intervals utilizes Lemma 5 and can be found

in the Supplementary Material. Under Conditions (Ch2.C1)-(Ch2.C7) and given

αj, for any w ∈ D we construct a pointwise (1− ξ) level asymptotic sparse confidence

interval for β0j(w), denoted by [unj(w), vnj(w)]. Let zξ/2 and Φ be the (1 − ξ/2)

quantile and the cumulative distribution function of N(0, 1), respectively, and σ̂nj be

σnj with γ̃ replaced by γ̂. Let P+ = Pr{β̂j(w) > 0} and P− = Pr{β̂j(w) < 0}, which

can be estimated by P̂+ = 1− Φ{(αj − θ̂j)/σ̂nj} and P̂− = Φ{−(αj + θ̂j)/σ̂nj} using

Theorem 2.3.2. We construct [unj(w), vnj(w)] as follows:

• if P̂+ + P̂− ≤ ξ, unj(w) = vnj(w) = 0;

• else if P̂+ < ξ/2 and P̂− < 1 − ξ/2, [unj(w), vnj(w)] =
[
β̂j(w) − σ̂njB̂, 0

]
with

B̂ = Φ−1
{

1− ξ + Φ(−σ̂−1
nj αj + σ̂−1

nj θ̂j)
}

and σ̂nj(w) as defined in Lemma 5;

• else if P̂− < ξ/2 and P̂+ < 1 − ξ/2, [unj(w), vnj(w)] =
[
0, β̂j(w) + σ̂njÂ

]
with

Â = −Φ−1
{
ξ − 1 + Φ(σ̂−1

nj αj + σ̂−1
nj θ̂j)

}
;

• else [unj(w), vnj(w)] =
[
β̂j(w)− σ̂njzξ/2, β̂j(w) + σ̂njzξ/2

]
.

Theorem 2.3.3 Under Conditions (Ch2.C1)-(Ch2.C7), [unj(w), vnj(w)] is a (1−

ξ) level sparse confidence interval of β0j(w) for j = 1, . . . , p and any w ∈ D.

2.4 Simulation Studies

2.4.1 Low dimensional covariates

With p = 3, we focus on the accuracy in estimation and inference. We compare

with two competing methods: the regular B-spline method [27] and the local poly-

nomial method [33]. We simulate data from (2.1), where Wi are generated from a

14



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

w

va
lu

e 
of

 v
ar

yi
ng

−
co

ef
fic

ie
nt

 fu
nc

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

co
ve

ra
ge

 p
ro

ba
bi

lit
y

b̂(w)
b(w)
SCI

CP

Figure 2.2: An illustrated example of sparse confidence intervals (SCI), with
the true varying coefficient β(w), estimation β̂(w) and coverage probability
(CP). For w ∈ [0, 0.23], Pr{β̂(w) = 0} > 0.95, then the 95% sparse con-
fidence interval degenerates to [0, 0], but with a coverage probability (CP)
between 0.95 and 1.0 at each w ∈ [0, 0.23]. The coverage probability is 0.95
at every w > 0.23.

uniform distribution on [0, 3], the covariates are generated from a multivariate nor-

mal distribution with mean zero and cov(Xij, Xij∗) = 2I(j = j∗) + 0·5I(j 6= j∗),

and εi are generated from a standard normal distribution such that the noise to

effect ratio is 0·1. The coefficient functions are β1(w) = (−w2 + 3)I(w ≤
√

3),

β2(w) = 2 log(w + 0·01)I(w ≥ 1), and β3(w) = {−6/(w + 1) + 2} I(w ≤ 2).

We choose n = 200, 500 and 1,000 and replicate 200 times for each setting. We set

η = 0·001, ρ = 1/n2, αj to be half of the absolute value of the least-squares estimate.

The number of knots, q, is selected through cross-validation. For evaluation crite-

ria, we use the integrated squared errors and the averaged integrated squared errors,

defined as ISE(βj) = n−1
g

∑ng
g=1{β̂j(wg) − βj(wg)}2 and AISE = p−1

∑p
j=1 ISE(βj),

respectively, where wg (g = 1, . . . , ng) are the grid points on D. Table 2.1 summarizes

the results, showing that the soft-thresholded varying coefficient model has smaller

integrated squared errors and averaged integrated squared errors than the other two

methods. Figure 2.3 compares the true coefficients and the median estimates ob-
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Table 2.1: Simulation results for three models with p = 3

n ISE(β1) ISE(β2) ISE(β3) AISE

STV 21 (16) 21 (16) 22 (17) 21 (12)
B-spline 200 30 (19) 28 (18) 24 (16) 28 (13)
local polynomial 31 (15) 23 (13) 29 (16) 28 (10)

STV 7 (5) 7 (6) 8 (5) 8 (4)
B-spline 500 13 (6) 11 (7) 10 (6) 11 (5)
local polynomial 15 (6) 11 (5) 15 (8) 14 (4)

STV 4 (2) 4 (3) 4 (3) 4 (2)
B-spline 1000 8 (2) 6 (3) 4 (3) 6 (2)
local polynomial 9 (3) 7 (3) 9 (4) 8 (2)

ISE: the integrated squared errors; AISE: the averaged integrated
squared errors. Values are means and standard deviations from 200
replications and multiplied by 103.

tained by the competing methods. Only the median estimates obtained by the

soft-thresholded varying coefficient model overlap with the truth, indicating the use-

fulness of our proposed method, particularly when estimating the zero-effect regions.

Let |A| denote the cardinality of set A. To compare zero-effect region detection, we

define two quantities, estimation-based true positive ratio and estimation-based true

negative ratio:

ETPR(β) =
|{w : β̂(w) 6= 0 and β(w) 6= 0}|

|{w : β(w) 6= 0}|
,

ETNR(β) =
|{w : β̂(w) = 0 and β(w) = 0}|

|{w : β(w) = 0}|
.

Since the B-spline and local polynomial methods do not yield exactly zero esti-

mates, the above definitions are not applicable. Instead, we introduce inference-based

true positive ratio and true negative ratio:

ITPR(β) =
|{w : 0 /∈ CI{β̂(w)} and β(w) 6= 0}|

|{w : β(w) 6= 0}|
,

ITNR(β) =
|{w : 0 ∈ CI{β̂(w)} and β(w) = 0}|

|{w : β(w) = 0}|
,
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(b) B-spline method
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Figure 2.3: Comparisons of three methods. The red solid line is the true β
curve, the gray solid lines are the estimated β curves, and the black solid line
is the median of the estimated curves.
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where CI{β̂(w)} is the 95% confidence interval of β(w).

We choose 100 grid points on [0, 3] and count the number of W in each set as its

cardinality. The Benjamini-Hochberg procedure [7] is adopted to control the false

discovery rate in the calculation of the inference-based true positive ratio and the

inference-based true negative ratio. Table 2.2 shows that the soft-thresholded varying

coefficient model has higher values of the inference-based true negative ratio than the

B-spline varying coefficient model and the local polynomial varying coefficient model.

The inference-based true negative ratio of our method is improving as n becomes

larger. Although the inference-based true positive and negative ratios are more reli-

able with controlled false discovery rates, their computational burden increases when

the sample size becomes larger. Therefore, the estimation-based true positive and

negative ratios are favorable for large datasets as their calculation merely depends on

the estimations. In particular, we compare the non-zero-effect region selection accu-

racy between our estimation-based method and our inference-based method in Table

2.3. The estimation-based true positive ratio is slightly higher than the inference-

based true positive ratio, but both of them closely approach to 1 as n increases. The

estimation-based method is computationally much faster than the inference-based

method.

Figure 2.4 shows the coverage probability of b1 at each grid point for all three

methods based on their 95% confidence intervals when n = 500. Among the three

methods, the soft-thresholded varying coefficient model makes more accurate infer-

ence on zero-effect regions and non-zero-effect regions, as the coverage probabilities

are closer to 95% on average compared to the others. At the transitions between

zero and non-zero-effect regions, all the three methods draw less accurate inference,

but our method still outperforms the competing methods. Specifically, the B-spline

varying coefficient model and the local polynomial varying coefficient model have

considerably small coverage probabilities around 50% to 60%, while our method can
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Table 2.2: Comparisons of true positive ratios and true negative ratios among three methods
for non-zero-effect region detection

n Method ITPR(β1) ITPR(β2) ITPR(β3) ITNR(β1) ITNR(β2) ITNR(β3)

200 STV 936 (44) 919 (54) 816 (83) 987 (44) 967 (104) 976 (76)
B-spline 977 (30) 930 (49) 833 (71) 928 (105) 952 (118) 969 (100)
local polynomial 992 (23) 974 (38) 891 (78) 854 (141) 870 (161) 930 (127)

500 STV 962 (26) 949 (37) 883 (62) 990 (37) 980 (75) 985 (53)
B-spline 993 (17) 970 (35) 897 (57) 876 (124) 954 (95) 967 (103)
local polynomial 996 (12) 984 (24) 933 (54) 858 (112) 863 (123) 926 (133)

1000 STV 974 (18) 963 (25) 911 (48) 992 (24) 985 (45) 981 (69)
B-spline 997 (9) 991 (15) 929 (43) 772 (152) 907 (129) 961 (90)
local polynomial 996 (11) 989 (19) 951 (45) 857 (122) 836 (139) 921 (102)

ITPR: the inference-based true positive ratio; ITNR: the inference-based true negative ratio. Values
are generated from 200 replications and multiplied by 103.

Table 2.3: Comparisons of true positive ratios and true negative ratios between
the estimation-based method and the inference-based method using the soft-
thresholded varying coefficient model for non-zero-effect region detection

200 500 1000 2000 5000 10000

ETPR 997 (7) 998 (5) 997 (7) 997 (7) 999 (4) 1000 (2)
b1 ITPR 977 (14) 980 (12) 977 (14) 977 (14) 985 (10) 989 (9)

ETNR 853 (125) 880 (104) 853 (125) 853 (125) 892 (100) 915 (84)
ITNR 992 (30) 996 (18) 992 (30) 992 (30) 992 (27) 992 (28)

ETPR 989 (15) 989 (16) 989 (15) 989 (15) 992 (11) 993 (10)
b2 ITPR 962 (20) 963 (23) 962 (20) 962 (21) 972 (14) 975 (11)

ETNR 900 (149) 872 (157) 900 (149) 900 (149) 955 (91) 981 (57)
ITNR 991 (41) 990 (29) 991 (41) 991 (41) 994 (29) 999 (12)

ETPR 981 (30) 978 (33) 981 (30) 981 (30) 989 (20) 991 (16)
b3 ITPR 933 (42) 920 (40) 933 (42) 933 (42) 958 (31) 970 (24)

ETNR 713 (282) 694 (267) 713 (282) 713 (282) 777 (266) 829 (265)
ITNR 984 (51) 980 (64) 984 (51) 984 (51) 980 (55) 980 (60)

ETPR: the estimation-based true positive ratio; ITPR: the inference-based true posi-
tive ratio; ETNR: the estimation-based true negative ratio; ETPR: the inference-based
true negative ratio. Values are multiplied by 103.
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still achieve a coverage probability of at least 80%.
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Figure 2.4: Empirical coverage probabilities (black curves) of the soft-
thresholding varying coefficient model (STV), the regular B-spline varying co-
efficient model (B-spline) and the local polynomial varying coefficient model
(local polynomial) in low dimensional covariates simulations. The grey curves
are the true values of varying coefficients. The horizontal lines indicate the
target coverage probability of 0·95.

2.4.2 High dimensional covariates

We focus on the variable selection and the prediction accuracy, and compare the

soft-thresholded varying coefficient model to the penalized spline procedures with

the group smoothly-clipped-absolute-deviation (SCAD) penalty and the group lasso

penalty presented in Wei et al. (2011) [89]. We simulate data from (2.1), where Wi

are generated from a uniform distribution on [0, 3], the covariates are generated from

a multivariate normal distribution with mean zero and covariance cov(Xij, Xij∗) =

I(j = j∗) (independent) or 0·5|j−j∗| (autoregressive) or I(j = j∗) + 0·5I(j 6= j∗)

(compound symmetry), and the random errors εi are generated from a standard

normal distribution such that the noise to effect ratio is 0·1. The coefficient functions

are β1(w) = −β4(w) = 1·2(−w2 + 3)I(w ≤
√

3), β2(w) = −β5(w) = 0·8(−w2 +

2)I(w ≥
√

2), and β3(w) = −β6(w) = 2·5 sin(w) and βj(w) = 0 for j = 7, . . . , p.

We consider various (n, p): (200, 250), (500, 750) and (1000, 1500). For each setting,

a testing dataset with the same n is also generated. A total of 100 repetitions are

made.
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We use the R package grpreg [10] to implement the group SCAD penalized B-

spline model, and the group lasso penalized B-spline model. The penalty tuning

parameters are chosen through 10-fold cross-validation with a default option in the

grpreg package. The number of knots q for B-spline is selected to be 12 and is

fixed across all the methods for computational convenience. As the results are not

sensitive to the choice of αj in the soft-thresholded varying coefficient model, we set

αj = 2 for all coefficients. Table 2.4 summarizes selection and estimation accuracy,

including the total integrated squared errors between β̂ and β0, which is defined as

TISE =
∑p

j=1 ISE(βj), the predictive mean squared errors between y and ŷ on the

testing data, the number of false positives and false negatives, and the percentages of

correct-fitting, over-fitting and under-fitting. Following Xue and Qu (2012) [97], we

label a model correct-fitting if the selected set equals the true signal set, over-fitting

if the selected set includes but is not equal to the true signal set, and under-fitting

otherwise.

For n = 200, the soft-thresholded varying coefficient model has smaller total

integrated squared errors and predictive mean squared errors; the percentages of

correct-fitting of the soft-thresholded varying coefficient model are higher than those

of the group lasso penalized model but lower than those of the group SCAD penalized

model; the standard deviations of the number of false positives for the group SCAD

penalized B-spline varying coefficient model and the group lasso penalized B-spline

varying coefficient model are higher than those of the soft-thresholded varying coeffi-

cient model, indicating the soft-thresholded varying coefficient model is more stable

than the other two methods for feature selection.

For n = 500, the soft-thresholded varying coefficient model outperforms the group

SCAD penalized B-spline model and the group lasso penalized B-spline model with

higher percentages of correct-fitting and fewer false positives; when comparing the

total integrated squared errors and the predictive mean squared errors, the soft-
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thresholded varying coefficient model is always better than the group lasso penalized

model, and outperforms the group SCAD penalized model for the independent case,

and has similar results as the group SCAD penalized method for the autoregressive

and compound symmetry cases.

For n = 1000, the soft-thresholded varying coefficient model has 100% correct-

fitting for all the three covariance matrices, indicating that with a large n, our method

performs well even with complex covariance matrices.

We compare the computing time of the competing methods using the R package

grpreg [10] on a laptop with a CPU of 2·7 GHz and a memory of 8 GB. Consider,

for example, the case of independent covariates. When n = 200, the soft-thresholded

varying coefficient model, the group SCAD penalized model and the group lasso

penalized model respectively take 4·56, 12·48, and 5·36 seconds on average; when

n = 500, they take 14·98, 25·03, and 23·24 seconds on average, respectively.

2.5 Analysis of the Preoperative Opioid Use Data

The motivating data on opioid use of preoperative patients were collected from

2010 to 2016, as part of the Michigan Genomics Initiative and Analgesic Outcome

Study [43]. The raw data include 34,186 patients. After removing subjects with miss-

ing values in pre-surgical pain and other covariates of interest, the final analyzable

data contain 13,787 patients, along with the records of preoperative opioid use and

other characteristics before surgery; see Table 2.5 for the summary characteristics of

the patients included in data analysis. Hilliard et al. (2018) [43] identified nine sig-

nificant risk factors for preoperative opioid use, including, for example, pain severity,

Fibromyalgia (FM) survey score (on a scale of 0 to 30 measuring centralized pain)

and American Society of Anesthesiology score (ASA; on a scale of 0 to 4 measur-

ing health conditions). Body mass index (BMI), which may reflect an individual’s

socioeconomic status [78] as well as overall fitness [2], is a major effect modifier for
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Table 2.4: Simulation results under the high dimensional settings

cov(X) Method C (%) O (%) U (%) FP FN TISE PMSE

n = 200, p = 250

STV 7 93 0 2·6 (1·7) 0·0 (0·0) 1·6 (0·6) 3·6 (0·6)
Ind grscad 58 42 0 1·8 (4·8) 0·0 (0·0) 3·5 (1·7) 6·4 (3·5)

grlasso 0 100 0 33·1 (11·7) 0·0 (0·0) 7·6 (1·6) 7·8 (1·4)

STV 1 99 0 5·9 (2·6) 0·0 (0·0) 3·6 (1·1) 3·7 (0·7)
AR(1) grscad 15 82 3 7·5 (7·6) 0·0 (0·2) 8·0 (5·3) 7·2 (4·6)

grlasso 0 100 0 36·5 (13·1) 0·0 (0·0) 11·9 (1·8) 7·4 (1·2)

STV 4 93 3 4·0 (2·8) 0·0 (0·2) 2·7 (1·6) 2·4 (0·8)
CS grscad 69 27 4 2·2 (5·3) 0·1 (0·3) 4·8 (3·6) 4·6 (4·2)

grlasso 0 100 0 40·1 (11·1) 0·0 (0·0) 9·2 (1·7) 4·8 (1·2)

n = 500, p = 750

STV 99 1 0 0·0 (0·1) 0·0 (0·0) 0·3 (0·1) 2·7 (0·3)
Ind grscad 66 34 0 6·0 (13·9) 0·0 (0·0) 0·7 (0·5) 2·9 (0·3)

grlasso 0 100 0 48·2 (20·3) 0·0 (0·0) 2·9 (0·8) 3·8 (0·4)

STV 88 12 0 0·1 (0·4) 0·0 (0·0) 0·9 (0·3) 2·4 (0·3)
AR(1) grscad 62 38 0 5·5 (11·0) 0·0 (0·0) 0·7 (0·3) 2·2 (0·2)

grlasso 0 100 0 67·9 (21·8) 0·0 (0·0) 5·2 (1·0) 3·5 (0·4)

STV 59 40 1 1·2 (2·1) 0·0 (0·1) 0·8 (0·6) 1·6 (0·3)
CS grscad 57 43 0 6·3 (10·9) 0·0 (0·0) 0·6 (0·3) 1·4 (0·2)

grlasso 0 100 0 56·0 (18·3) 0·0 (0·0) 3·2 (0·8) 2·0 (0·3)

n = 1000, p = 1500

STV 100 0 0 0·0 (0·0) 0·0 (0·0) 0·2 (0·0) 2·5 (0·2)
Ind grscad 61 39 0 7·3 (16·8) 0·0 (0·0) 0·3 (0·3) 2·6 (0·2)

grlasso 0 100 0 55·7 (24·7) 0·0 (0·0) 1·6 (0·6) 2·9 (0·2)

STV 100 0 0 0·0 (0·0) 0·0 (0·0) 0·6 (0·1) 2·2 (0·2)
AR(1) grscad 58 42 0 5·0 (11·3) 0·0 (0·0) 0·3 (0·2) 2·0 (0·1)

grlasso 0 100 0 89·3 (30·5) 0·0 (0·0) 2·9 (0·7) 2·5 (0·2)

STV 100 0 0 0·0 (0·0) 0·0 (0·0) 0·4 (0·1) 1·4 (0·1)
CS grscad 59 41 0 4·8 (13·1) 0·0 (0·0) 0·3 (0·3) 1·3 (0·1)

grlasso 0 100 0 64·3 (25·4) 0·0 (0·0) 1·7 (0·6) 1·5 (0·1)

STV: the soft-thresholded varying coefficient model; grscad: B-spline varying coefficient
model with group SCAD penalty; grlasso: B-spline varying coefficient model with group
lasso penalty; C: the percentage of correct-fitting; U: the percentage of under-fitting; O: the
percentage of over-fitting; FP: the number of false positives; FN: the number of false nega-
tives; TISE: the total integrated squared errors between β̂ and β0; PMSE: the predictive mean
squared errors between y and ŷ on testing data; Ind, AR(1), and CS represent independent,
autoregressive and compound symmetry correlation of covariates, respectively. Results are
from 100 replications.
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these risk factors. In our preliminary analysis, we fitted a varying coefficient model

on the preoperative data with BMI being the index variable. In the model, the coef-

ficient functions were expanded by a set of cubic B-spline basis functions, which were

commonly used because of its nice approximation property [26]. Our preliminary

analysis did show that the effects of these factors varied by BMI; see Figure 2.5, and

Figures A.1-A.5. We suspect that zero-effect regions might exist around transition

points and where the estimates were near 0. To properly characterize the possible

BMI-dependent effects and identify the corresponding zero-effect regions, we apply

the proposed soft-thresholded varying coefficient model.

Table 2.5: Patient Characteristics by Preoperative Opioid Use

Characteristics No Preoperative Opioid Use Preoperative Opioid Use
(n = 10, 804) (n = 2, 983)

Age 52.74 (16.59) 53.14 (15.29)
BMI 29.58 (6.52 ) 30.48 (7.00)
Worst pain 2.02 (3.14) 4.60 (3.88)
Average pain 1.41 (2.30) 3.40 (3.05)
Fibromyalgia survey score 4.50 (4.02) 8.23 (5.16)
Life satisfaction 7.30 (2.55) 5.94 (2.67)
Male 4,996(46.2%) 1,329 (44.6%)
Depression 1,902 (17.6%) 1,153 (38.7%)
Race

White 9,752 (90.3%) 2,658 (89.1%)
Black 457(4.2%) 191 (6.4%)
Asian 169 (1.6%) 17 (0.6%)
Other 426 (3.9%) 117 (3.9%)

Anxiety 3,746 (34.7%) 1,523 (51.1%)
Charlson Comorbidity Index

= 0 8,074 (74.7%) 2,176 (72.9%)
(0, 3) 801 (7.4%) 365 (12.2%)
≥3 1,929 (17.9%) 442 (14.8%)

Alcohol 4,906 (45.0%) 1,218 (40.8%)
Apnea 2,461 (23.0%) 857 (28.7%)
Illicit drug use 369 (3.4%) 227 (7.6%)
Tobacco use 4,074 (37.7%) 1,613 (54.1%)
ASA score
< 3 7,225 (66.9%) 1,535 (51.5%)
≥ 3 3,579 (33.1%) 1,448 (48.5%)

Continuous variables are presented in mean (standard deviation), and categorical vari-
ables are presented in count (percentage).
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We consider the daily dose level of preoperative opioid use, measured in morphine

milligram equivalents (MME), as the outcome Y in (2.1). The covariates X include

categorical variables: sex, race, depression status, anxiety status, alcohol use, apnea

status, illicit drug use, tobacco use, and ASA score; and continuous variables: age,

worst pain score, Charlson comorbidity index (a weighted combination of comorbidity

conditions), Fibromyalgia survey scores, average overall body pain score, and life

satisfaction score (higher values meaning more satisfied with life). BMI, ranging from

15·0 to 55·0, is used as W . We set the initial values required by STV to be the

estimates from a linear regression model and set the thresholding parameter αj

to be the half of the absolute value of the corresponding coefficient estimate from

this model. The knots of B-spline are equally spaced over the range of BMI, while

the number of basis functions, q = 8, is determined by minimizing the 10-fold cross-

validation error in equation (2.4) over a candidate set {6, 8, 12, 16, 20, 24} . We

set the penalty parameter ρ to be 1/n2. We also apply the local polynomial method

and the regular B-spline method for comparisons. When implementing the regular

B-spline method, we use the same spline bases as in STV. For the local polynomial

method, we choose the bandwidth parameter using the same cross validation method

and candidate set as in Fan and Zhang (2000) [32].

The STV method selects sex (female as the reference), race (white as the refer-

ence), worst pain score, Fibromyalgia survey score, depression, Charlson comorbidity

index, alcohol use, apnea, illicit drug use, tobacco use, and ASA score (ASA < 3

as the reference group) into the final model. For the competing methods, the local

polynomial method cannot detect zero-effect regions, and B-spline method has larger

variation in the boundary. In contrast, STV has zero-effect region detection and sta-

ble boundary estimation. For example, the effect of worst pain score estimated by

STV is statistically significant for the entire BMI range, while the B-spline method

detects the significant effect of worst pain score only when BMI is between 18 and 40.
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For FM survey score, STV is able to detect zero-effect region as BMI < 20 where the

local polynomial could have false positive. For tobacco use, the estimated effect by

the B-spline method switches signs without a transition region, which may not be bi-

ologically reasonable. In contrast, the effect estimated by STV contains a zero-effect

region at the tail of the BMI range, which means the effect of tobacco use gradually

disappears as BMI increases to extremity [5]. The details can be seen in Figure 2.5,

and the results for the other factors are relegated to the Supplementary Material.

For ease of presentation, Table 2.6 summarizes the effects of risk factors based

on the BMI categories and identifies several patterns related to opioid use. We use

STV to identify the cut-offs for BMI and define four BMI categories, which largely

coincide with the underweight, normal/overweight and obese categories as defined by

WHO, except that our category includes a super obese group with BMI> 49.5 (see

Table 2.6 for details). When BMI is less than 18.0, ASA, alcohol, anxiety, and race

(non-white versus white) have significantly positive effects on opioid use, indicating

that underweight patients with severe systemic diseases, drinking history, and/or

anxiety may tend to take more opioids than those without. Among patients with

BMI between 30.0 and 49.5, FM, Tobacco use, illicit drug use, ASA, and race are all

significantly associated with opioid use. When BMI is greater than 49.5, ASA, illicit

drug use, and alcohol use are significantly associated with opioid use, suggesting that

the supper obese patients with severe systemic disease, illicit drug use history, and/or

drinking history likely take more opioids than others. Both pain and depression are

significantly associated with increased opioid use for all patients, regardless of BMI

levels. Some of our findings are consistent with the conclusions from the existing

literature, for example, previous studies [6] have reported that the ASA category is

significantly related to opioid use; and alcohol use may significantly increase the odds

of opioid use only for underweight and obese patients, but has minimum or no effects

among the normal weight or overweight patients.
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Table 2.6: Effects of risk factors based on BMI categories.
BMI

(<18) (18.0-30.0) (30.0- 49.5) ( > 49.5)
Worst Pain +∗ +∗ +∗ +∗
FM 0 +∗ +∗ +∗
Tobacco use +∗ +∗ +∗ 0
ASA > 3 +∗ +∗ +∗ +
Illicit drug use 0 +∗ +∗ +∗
Apnea 0 + 0 0
Alcohol +∗ 0 0 +∗
Anxiety +∗ 0 0 +∗
Depression +∗ +∗ +∗ +∗
Sex (male) +∗ 0 0 0
Age 0 0 0 0
Race (black) +∗ +∗ 0 +∗
Race (Asian) +∗ 0 0 0
Race (other) +∗ 0 +∗ 0
Average overall pain 0 0 0 0
Life satisfaction 0 0 0 0
Comorbidity (>3) +∗ 0 0 +∗
Comorbidity (1-3) +∗ + +∗ 0

0: no effects +: positive ∗: significant

To further confirm our findings, we conduct subgroup analyses by fitting linear

regression within each BMI category; see Table A.1 in the Supplementary Material.

Alcohol use is significantly associated with preoperative opioid use among the supper

obese patients (β̂ = 0.205, p = 0.046 ), consistent with the STV results, while the

other two methods fail to capture the association; FM score is not significant for

the underweight population (β̂ = 0.024, p = 0.079 ), confirmed by STV and the B-

spline method, while the local polynomial method gives a false positive estimation;

both sub-group regression analysis and STV conclude that the illicit drug use is

significantly associated with preoperative drug use among the overweight population

(β̂ = 0.084, p = 0.010 ), while the other two methods do not detect this association.

In summary, leveraging a large-scale dataset, we have examined the conjectures

proposed from the previous literature [20, 37, 44, 58, 77] and, in particular, elucidated

the effect changes over BMI on opioid use. The obtained results can potentially inform

pain management, aid in physicians’ prescription, and eventually relieve the persistent

use of opioids.
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Figure 2.5: Estimation results (I) for the preoperative opioid use data using
the B-spline method, the local polynomial method and the STV method:
the black solid lines are the estimated coefficient function curves for each
variable; the dotted lines are the pointwise (sparse) confidence intervals.
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2.6 Discussion

To address the challenge of modeling varying coefficients with zero-effect regions,

we proposed a new soft-thresholded varying coefficient model, where the varying co-

efficients are piecewise smooth with zero-effect regions. We have designed an efficient

estimation method and a novel sparse confidence interval, which extends classical con-

fidence intervals by accommodating the exact zero estimates. Our flexible framework

enables us to perform variable selection and detect the zero-effect regions of selected

variables simultaneously, and to obtain point estimates of the varying coefficients

with zero-effect regions and construct the associated sparse confidence intervals. The

future work lies in extending the model to accommodate more general settings and

more types of data, such as discrete data, censored data, and functional data.

29



CHAPTER III

Generalized Dynamic Effect Change Model: An

Interpretable Extension of GAM

3.1 Introduction

The varying coefficient model (VCM) [39] is commonly used to characterize the

dynamic changes of regression effects. It is more powerful and flexible than classical

linear regression models, as it considers the coefficient as a function instead of a con-

stant value. The varying coefficient functions either depend on one index variable or

multiple index variables [34, 48, 49, 50, 95]. Let Y be the outcome,X = (X1, . . . , Xp)
T

the covariates, and Z = (Z1. . . . , Zp)
T some other covariates that may or may not be

the same as X. With data (Y,X = x,Z = z), those models often have the form

g(m(x, z)) = x1f1(z1) + . . .+ xpfp(zp), (3.1)

where g is some link function, and m(x, z) = E(Y |X = x,Z = z). Some other works

consider partially varying coefficient models, where part of the coefficients are con-

stant and the remainders are varying functions [1, 30]. Xue and Qu (2012) [97] stud-

ied the marginal integration method for a slightly generalized version of model (3.1),

where each fj(zj) is replaced by a multivariate function fj(z) = fj1(z1)+ . . .+fj1(zk)

with an additive structure. Lee et al. (2012) [54] studied a fully extended version
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of model (3.1), where each fj(Zj) is replaced by a multivariate function fj(z) =∑
k∈Ij fjk(zk) with each index set Ij known and excluding j.

The aforementioned models are interaction models in the sense that each coeffi-

cient function depends on some other covariates. A more straightforward model is

the generalized additive model (GAM) [38, 40, 96]. The GAM has the form

g(m(x)) = α + f1(x1) + . . .+ fp(xp), (3.2)

where g is some link function, and m(x) = E(Y |X = x). Constraints E{fj(xj)} = 0

are commonly assumed for model identification. GAMs are widely used in practice

(see, e.g., [29, 67]) with their popularity resting in part on the availability of statis-

tically well founded smoothing parameter estimation methods that are numerically

efficient and robust [91, 93] and perform the important task of estimating how smooth

the component functions of a model should be. However, GAM often focuses on the

prediction and the explanation of the model is unclear due to the constraints. For

example, assume the true function is g(m(x)) = α0 + f1(x1) + f2(x2), where α0 = 1,

f1(x1) = 1 + sin(x1), and f2(x2) = 2 + cos(x2) with both x1 and x2 taking values on

[0, 2π]. The GAM is trying to estimate α̃0 = 4, f̃1 = sin(x1) and f̃2 = cos(x2). The

values of those parameters don’t represent the true contributions of each covariate.

In our motivating data, a survey study about the use of preoperative opioids, we

are interested in tangling the relationship between the opioid use and risk factors

and then propose the optimal pain management plan. It is reasonable to assume

some relationships are nonlinear. Although the above models have their advantages,

limitations also exist: VCM assumes a linear relationship between the predictor and

response, and the varying coefficient functions depend on other covariates; GAM has

a good prediction but lacks a good explanation of functional components since the

values of GAM estimations can not represent the actual relationships. Therefore,
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we propose a new model termed as the generalized dynamic effect change model

(GDECM), which directly estimates the derivative function of the nonlinear effect,

∂fj(xj)/∂xj. It can be viewed as an extension of GAM. The advantages of our

model are constraint-free and having a good model explanation. Our estimations can

provide a new way to understand the associations between the opioid use and the risk

factors. For example, if we assume the association between the opioid use and BMI

is nonlinear and the estimated ∂f(BMI)/∂BMI is positive when BMI is 35, then for

patients with BMI= 35, increase of BMI will increase the preoperative opioid use.

Conventional methods for estimating functions include B-splines, smoothing splines,

and P-splines [87]. Here in this study, we apply the reproducing kernel Hilbert space

(RKHS) basis to model the functions in our model. RKHS bases are widely used

in the functional data analysis [99]. Ravikumar et al. (2009) [66] considered sparse

additive model under a Hilbert space. In this paper, we examine the properties of

RKHS in our model and show the estimation performances by solid theorems and

simulation studies.

The remainder of the paper proceeds as follows. In Section 3.2, we propose a

new generalized dynamic effect change model and describe the estimation method.

Section 3.3 provides theoretical results. In Section 3.4, we conduct simulations to

demonstrate the advantages of our method by comparing it with GAM. Section 3.5

includes an analysis of the Preoperative Opioid Use data and Section 3.6 concludes

the paper with brief discussions. Theoretical proofs and technical derivations are in

the Appendix for Chapter III.
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3.2 Method

3.2.1 Generalized Dynamic Effect Change Model

Let i (i = 1, . . . , n) be the index of subjects, and Xij ∈ R(j = 1, . . . , p) the risk

factor j for subject i. The response Yi is assumed to follow a exponential family

distribution with density

fY (Yi;ψ, φ) = exp

{
Yiψ − b(ψ)

a(φ)
+ c(Yi, φ)

}
,

where ψ is the natural parameter and φ is the scale parameter. We propose the

following generalized dynamic effect change model (GDECM):

g(µi) = α0 +

p∑
j=1

∫ Xij

0

{αj + βj(x)} dx, (3.3)

where µi = E(Yi|Xi) = ḃ(ψ), g(·) is a monotonic differentiable link function, α0, . . . , αp

are scalar parameters, and β1, . . . , βp are function parameters. Comparing model (3.3)

with GAM, then

αj + βj(x) = ∂fj(x)/∂x

is the effect change, and the parameter βj is the dynamic part.

In practice, covariate Xj can be categorical or continuous. If Xj is categorical,

the representation of the varying coefficients is easy to be formed as combinations

of indicator functions. Then the estimation of the effects becomes the estimation of

coefficients associated with indicator functions. The model is more complicated when

Xj is continuous. Therefore, we will focus on the case when all Xj are continuous.

We shall assume all Xj are bounded on R. For the simplicity of notation, we assume

Xj ∈ T for all j, and T is a compact subset of R. Without loss of generality,

let T = [0, 1]. Let θ(x) = {α0, α1, . . . , αp, β1(x1), . . . , βp(xp)}T be the parameter of
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interest and θ0 the true parameter. Estimation of θ0 won’t involve the scale parameter

φ, so for simplicity φ will be assumed known and equal to 1. Let

h(X;θ) = g(µi) = α0 +

p∑
j=1

∫ Xij

0

{αj + βj(x)} dx. (3.4)

3.2.2 Estimation

We assume that βj (j = 1, . . . , p) belong to a reproducing kernel Hilbert space

(RKHS) H, a subspace of the collection of square integrable functions on T . More

specifically, H is the Gaussian RKHS. Let Kj(x, t) = exp(−σ2
j ||x − t||22) denote the

Gaussian kernel, where x, t ∈ T and σj > 0 is a free parameter whose inverse 1/σj

is called the width of Kj. Let {ujk}∞k=1 be the orthonormal eigenfunction set of Kj

with respect to the integral operator and {λjk}∞k=1 the corresponding eigenvalue set.

Without loss of generality, we assume λj1 ≥ λj2 ≥ . . . ≥ 0. Following Mercer’s

theorem, the set {ujk}∞k=1 forms an orthonormal basis for H. The Gaussian RKHS is

defined as

Hj =

{
βj : βj(xj) =

∞∑
k=1

γjkujk(xj), ||βj||2Kj =
∞∑
k=1

γ2
jk

λjk
<∞

}
,

where ||·||Kj is the norm induced by Kj. To simplify the notation, let Bjk =
√
λjkujk,

then

Hj =

{
βj : βj(xj) =

∞∑
k=1

γjkBk(xj), ||βj||2Kj = ||γj||22 =
∞∑
k=1

γ2
jk <∞

}
.

For the simplicity of notation, we shall assume that all Hj are the same. The

extension to different Hj is straightforward and not of interest in this study. Without

further clarification, we will drop j and denote Hj as H. Therefore, the parameter

space for our model is Θ = Rp+1 ×Hp.

Let q be an integer number that increases with n, B(x) = (B1(x), . . . , Bq(x))T the
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basis vector, and γj = (γ1, . . . , γq)
T the basis coefficients such that β̃j(x) = BT (x)γj.

Consider a truncated RKHS,

Hn =

{
β =

q∑
k=1

γkbk : ||β||2K = ||γ||22 =

q∑
k=1

γ2
k <∞

}
.

A common choice of q is O(n1/5), which results in a truncation bias ||βj − β̃j||2 =

O(n−4/5) for the Sobolev space of order 2.

The sieve space for our model can be expressed as Θn = Rp+1 ×Hp
n. Let

θ̂ = arg max
θ∈Θn

1

n

n∑
i=1

l(Yi,Xi;θ), (3.5)

where l(Yi,Xi;θ) = Yih(Xi;θ) − b{h(Xi;θ)}, and ḃ−1 = g. We denote Y =

(Y1, . . . , Yn)T , µ = (µ1, . . . , µn)T , and γ = (α0, α1, . . . , αp,γ
T
1 , . . . ,γ

T
p )T . Solving

(3.5) over the sieve space Θn is equivalent to iteratively solving the problem at k

iteration

min
γ

1

n
||W [k]1/2(Uγ − z[k])||22, (3.6)

whereU = (U(X1), . . . , U(Xn))T with U(Xi) = (1,XT
i ,
∫ Xi1

0
BT

1 (x)dx, . . . ,
∫ Xip

0
BT
p (x)dx)T ,

z[k] = Uγ [k] + Γ[k](Y − µ[k]), Γ[k] is a diagonal matrix with Γ
[k]
ii = g

′
(µ

[k]
i ), W [k] is a

diagonal matrix with W
[k]
ii =

{
(Γ

[k]
ii )2V (µ

[k]
i )
}−1

and V (µi) is the variance of Yi.

3.3 Inference

We begin with some notation. Let

θ0 = (α0, . . . , αp, β01, . . . , β0p) = arg min
θ∈Θ

El(Y,X;θ),

θ̃ = (α0, . . . , αp, β̃1, . . . , β̃p) = arg min
θ∈Θn

El(Y,X;θ),

and θ̂ = (α̂0, . . . , α̂p, β̂1, . . . , β̂p) = arg min
θ∈Θn

1

n

n∑
i=1

l(Yi,Xi;θ),
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where l(Y,X;θ) = Y h(X;θ)− b{h(θ)}. Let Λmin(M) and Λmax(M) be the smallest

and maximum eigenvalues of matrix M respectively.

Conditions:

Ch3.C1 The covariates X take values in a bounded subset of Rp.

Ch3.C2 The eigenvalues of E(XXT ) are bounded away from zero and infinity; that

is, there are positive constants C1 and C2 such that C1 ≤ Λmin(E(XXT )) ≤

. . . ≤ Λmax(E(XXT )) ≤ C2. Consequently, the eigenvalues of E(WiiUiU
T
i )

are bounded away from zero and infinity.

Ch3.C3 The eigenvalues λ2
k . k−2η with η > 1 for (k = 1, . . . ,∞).

Ch3.C4 The number of bases q = O(na) with (2η − 1)/(8η) ≤ a < 1.

Condition Ch3.C1 requires that the support of each Xj is bounded, which is

commonly assumed for asymptotic analysis in nonparametric regression [9]. Note

that Condition Ch3.C1 implies EXh(X;θ) < ∞. Condition Ch3.C2 is regularity

condition which was used in [33, 49]. Ravikumar (2009) [66] also requires Condition

Ch3.C3 for the convergence of the estimator. Condition Ch3.C4 is required to

control the size of parameter space.

Let el,m be the l-dimensional vector with the m-th element taken to be one and

zero elsewhere, 0p+1 the p + 1 dimension vector of 0s, cj(x) = (0p+1, ep,j ⊗B(x))T ,

and

C(x) = (epq+p+1,0, epq+p+1,1, . . . , epq+p+1,p, c1(x1), . . . , cp(xp))
T .

Then, the estimator of θ = (α0, . . . , αp, β1(x1), . . . , βp(xp))
T is θ̂ = Cγ̂.

Theorem 3.3.1 Suppose Conditions Ch3.C1-Ch3.C4 hold, then

||θ̂ − θ0||∞ = Op(n
−(2η−1)/(4η) + (q/n)1/2 + 1/q2).
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Theorem 3.3.1 suggests that the larger the decay rate, the faster the convergence.

The optimal number of bases is q = O(n−1/5), which results in an approximation

error O(n−2/5). The result is consistent with Ravikumar (2009) [66].

Recall thatU = (U1, . . . , Un)T with Ui = (1,XT
i ,
∫ Xi1

0
BT

1 (x)dx, . . . ,
∫ Xip

0
BT
p (x)dx)T .

Let Γ be the diagonal matrix with Γii = g
′
(µ̂i), W the diagonal matrix with Wii ={

(Γii)
2V̂ (µ̂i)

}−1

, and V̂ (µ̂i) the variance estimator of Yi.

Theorem 3.3.2 Under Conditions Ch3.C1-Ch3.C4, for any x = (x1, . . . , xp)
T ∈

T p, we have

Σ−1/2(θ̂(x)− θ0(x))→d N(0, I), as n→∞,

where Σ = CT (UTWU)−1C.

Proofs of Theorem 3.3.1 and 3.3.2 can be found in the Appendix of Chapter III.

With Theorem 3.3.2, the derivation of the pointwise confidence interval is straight-

forward. Here we omit the derivation, but provide the results below. Let zξ/2 be the

1− ξ/2 quantile of the standard normal distribution:

(i) For any j = 0, 1, . . . , p, the 1−ξ level confidence interval for αj is α̂j±zξ/2σ̂j(αj),

where σ̂j(αj) =
√
eTpq+p+1,j(U

TWU)−1epq+p+1,j.

(ii) For any j = 1, . . . , p and any xj ∈ T , the 1 − ξ level confidence interval for

βj(xj) is β̂j(xj)± zξ/2σ̂j(βj, xj), where σ̂j(βj, xj) =
√
cj(xj)T (UTWU)−1cj(xj).
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3.4 Simulations

In this section, we will show how GDECM performs under different settings and

compare the results with GAM. We will use common βs throughout the simulations.

The detailed functions are β1(x) = 1 + 12sin(24x), β2(x) = 1 − 12cos(24x), β3(x) =

1 + 12sin(24x), and β4(x) = 1 − 12cos(24x). We consider three types of covariance

matrices for covariates: independent, compound symmetry and autoregressive. In

independent case, X1 to X4 independently follow the uniform distribution U(0, 1). In

compound symmetry and autoregressive cases, we first letX ∼ N(0,Σ) with diagonal

entries being 1 and off-diagonal entries Σij being ρ and ρ|i−j|, respectively. Then we

transform X to correlated uniform variables using copula transformation. In our

simulations, ρ is set to be 0.3. The comparison metrics are the mean squared errors:

MSE(fj) =
∑G

g=1(fj(Xjg)− f̂(Xjg))
2/G and MSE(βj) =

∑G
g=1(βj(Xjg)− β̂j(Xjg))/G

on a set of grid points {Xj1, . . . , XjG} on T for (j = 1, . . . , p). Metric MSE(fj) stands

for prediction accuracy and MSE(βj) is a measure of estimation accuracy.

3.4.1 Gaussian outcomes

We first simulate outcomes Yi following Gaussian distribution using model

Yi =

∫ X1i

0

β1(x)dx+

∫ X2i

0

β2(x)dx+

∫ X3i

0

β4(x)dx+

∫ X4i

0

β4(x)dx+ ei,

where ei ∼ N(0, σ2) and σ is chosen such that the noise to signal ratio is 0.2. GAM

estimation is obtained using R package mgcv with default optimizing options. The

results are summarized in Table 3.1 and 3.2. In both tables, GDECM has smaller

mean squared errors than GAM. Therefore, GDECM has better better estimation and

prediction accuracy compared to GAM when the model outcome following normal

distributions.

Figure 3.1 plots the estimation results from GDECM and GAM, under the setting
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Table 3.1: Comparisons of mean squared errors of β from GAM and GDECM for
Gaussian Outcome.

Covariance n Model β1 β2 β3 β4

200 GDECM 4.55 (1.8) 6.62 (2.3) 4.6 (1.8) 6.60 (2.6)
GAM 10.48 (7.0) 13.13 (5.2) 10.54 (7.5) 12.87 (3.8)

Ind 500 GDECM 2.85 (0.6) 4.74 (1.0) 2.84 (0.5) 4.81 (1.0)
GAM 8.22 (1.7) 10.48 (2.1) 8.32 (1.8) 10.61 (2.0)

1000 GDECM 2.35 (0.3) 4.31 (0.7) 2.36 (0.3) 4.35 (0.8)
GAM 7.65 (1.3) 9.89 (1.4) 7.84 (1.3) 9.89 (1.4)

200 GDECM 5.70 (2.3) 8.02 (3.5) 5.76 (2.5) 7.79 (3.2)
GAM 12.65 (11.6) 14.66 (6.8) 13.04 (12.1) 14.95 (7.9)

CS 500 GDECM 3.16 (0.8) 5.25 (1.4) 3.26 (0.9) 5.26 (1.5)
GAM 8.55 (2.0) 10.82 (2.3) 8.56 (2.0) 10.91 (2.2)

1000 GDECM 2.54 (0.4) 4.46 (0.8) 2.52 (0.4) 4.49 (0.8)
GAM 7.8 (1.4) 10.05 (1.4) 7.8 (1.4) 10.07 (1.5)

200 GDECM 5.32 (2.1) 7.21 (2.5) 5.16 (2.1) 7.19 (2.7)
GAM 11.97 (9.9) 14.13 (6.1) 11.28 (7.5) 13.65 (5.4)

AR(1) 500 GDECM 3.05 (0.7) 5.08 (1.3) 3.04 (0.7) 5.05 (1.2)
GAM 8.35 (1.9) 10.74 (2.2) 8.37 (1.9) 10.67 (2.1)

1000 GDECM 2.49 (0.4) 4.47 (0.8) 2.47 (0.3) 4.42 (0.8)
GAM 7.83 (1.4) 9.99 (1.5) 7.83 (1.4) 9.9 (1.4)

Ind: independent covariance; CS: compound symmetry covariance; AR(1): autoregres-
sive covariance.

with Gaussian outcome, independent covariate covariance, and sample size of 500. It

shows that GDECM estimations are more stable and accurate than GAM estimations.

3.4.2 Poisson outcomes

We then simulate outcomes Yi following Poisson(λi), where

log(λi) =

∫ X1i

0

β1(x)dx+

∫ X2i

0

β2(x)dx+

∫ X3i

0

β4(x)dx+

∫ X4i

0

β4(x)dx.

The noise-to-signal ratio is approximately 0.2. GAM estimation is obtained through

R package mgcv with default optimizing options. Table 3.3 and 3.4 summarize the
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Figure 3.1: Comparisons of simulation estimations for one effect between GDECM
(left) and GAM (right) with Gaussian outcome and independent covariate covariance
(n = 500): gray lines are 200 estimations, black lines are their mean, and red lines
are the truth.
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Table 3.2: Comparisons of mean squared errors of f from GAM and GDECM for
Gaussian Outcome.

Covariance n Model f1 f2 f3 f4

200 GDECM 8.42 (3.2) 11.69 (3.6) 8.50 (3.3) 11.77 (3.9)
GAM 11.79 (11.9) 12.83 (8.8) 12.16 (12.7) 12.28 (4.6)

Ind 500 GDECM 4.24 (1.1) 7.36 (1.5) 4.23 (1.1) 7.41 (1.6)
GAM 5.65 (1.5) 6.47 (1.8) 5.76 (1.5) 6.56 (1.7)

1000 GDECM 3.07 (0.5) 6.19 (1.0) 3.05 (0.5) 6.24 (1.0)
GAM 4.23 (0.9) 4.97 (0.9) 4.27 (0.9) 4.95 (0.9)

200 GDECM 11.36 (4.7) 14.92 (5.8) 11.61 (4.8) 14.61 (5.3)
GAM 17.04 (20.3) 16.43 (11.8) 17.73 (21.1) 16.78 (14.7)

CS 500 GDECM 5.21 (1.6) 8.60 (2.1) 5.34 (1.7) 8.47 (2.2)
GAM 6.60 (1.9) 7.57 (2.1) 6.69 (1.9) 7.39 (2.1)

1000 GDECM 3.53 (0.7) 6.75 (1.2) 3.50 (0.7) 6.76 (1.3)
GAM 4.64 (1.0) 5.38 (1.1) 4.65 (1.0) 5.45 (1.2)

200 GDECM 10.32 (4.1) 13.44 (4.3) 10.06 (3.9) 13.27 (4.6)
GAM 15.01 (17.3) 15.01 (10.6) 13.72 (13) 14.30 (9.0)

AR(1) 500 GDECM 4.78 (1.3) 8.07 (1.9) 4.88 (1.4) 8.04 (1.8)
GAM 6.18 (1.7) 7.15 (2.1) 6.38 (1.8) 7.11 (1.8)

1000 GDECM 3.38 (0.7) 6.63 (1.2) 3.33 (0.7) 6.54 (1.1)
GAM 4.57 (1.0) 5.30 (1.0) 4.49 (1.0) 5.14 (1.0)

Ind: independent covariance; CS: compound symmetry covariance; AR(1): autoregressive
covariance. The mgcv R package is used to estimate GAM model. Values are multiplied
by 103.

mean squared errors from 200 simulations. Both Table 3.3 and 3.4 show that the mean

squared errors in GDCEM are smaller than that in GAM, showing that GDECM has

better estimation accuracy and prediction accuracy than GAM under Poisson setting.

Figure 3.2 plots the estimation results from GDECM and GAM with Poisson

outcome, independent covariate covariance, and sample size of 500. From the figure,

GDECM estimations has smaller empirical standard errors and smaller biases than

GAM estimations. Therefore, we can conclude that GDECM is more stable and more

accurate than GAM.
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Figure 3.2: Comparisons of simulation estimations for one effect between GDECM
(left) and GAM (right) with Poisson outcome and independent covariate covariance
(n = 500): gray lines are 200 estimations, black lines are their mean, and red lines
are the truth.
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Table 3.3: Comparisons of mean squared errors of β from GAM and GDECM
for Poisson Outcome

Covariance n Model β1 β2 β3 β4

200 GDECM 3.28 (0.9) 4.95 (1.2) 3.27 (1.0) 4.96 (1.1)
GAM 10.46 (3.6) 11.77 (3.1) 10.31 (3.6) 11.61 (3.0)

Ind 500 GDECM 2.41 (0.3) 3.92 (0.5) 2.39 (0.3) 3.93 (0.5)
GAM 9.34 (2.3) 9.77 (1.7) 9.24 (2.2) 9.68 (1.6)

1000 GDECM 2.17 (0.2) 3.68 (0.3) 2.17 (0.2) 3.65 (0.3)
GAM 9.00 (1.5) 9.21 (1.0) 8.90 (1.5) 9.09 (1.0)

200 GDECM 3.38 (1.0) 4.93 (1.1) 3.43 (1.1) 4.90 (1.3)
GAM 11.48 (4.4) 11.79 (3.5) 11.63 (4.4) 11.45 (2.8)

CS 500 GDECM 2.47 (0.4) 3.94 (0.5) 2.43 (0.3) 3.87 (0.4)
GAM 10.31 (2.7) 9.68 (1.8) 10.40 (2.8) 9.64 (1.7)

1000 GDECM 2.25 (0.2) 3.64 (0.2) 2.23 (0.2) 3.63 (0.2)
GAM 10.03 (2.0) 8.96 (1.0) 10.09 (2.0) 8.98 (1.0)

200 GDECM 3.26 (1.0) 4.95 (1.2) 3.35 (0.9) 4.86 (1.1)
GAM 10.71 (3.8) 11.81 (3.6) 11.04 (4.1) 11.69 (3.3)

AR(1) 500 GDECM 2.47 (0.4) 3.90 (0.4) 2.44 (0.3) 3.86 (0.4)
GAM 9.78 (2.5) 9.67 (1.6) 10.01 (2.6) 9.62 (1.6)

1000 GDECM 2.22 (0.2) 3.64 (0.2) 2.20 (0.2) 3.63 (0.2)
GAM 9.44 (1.8) 8.98 (1.1) 9.83 (1.8) 9.10 (1.0)

Ind: independent covariance; CS: compound symmetry covariance; AR(1): autore-
gressive covariance.

3.4.3 Coverage probability

Conventionally, the inference for GAM is often conducted by the Bayesian ap-

proach [92]. In this section, we compare our confidence interval with the classical

Bayesian approach. Figure 3.3 shows that the Bayesian approach always has larger

coverage probabilities compared to level 0.95, indicating an overestimate of the vari-

ance. In contrast, our method gives close to 0.95 coverage probabilities, showing the

validity of our inference approach.

43



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

β1

w

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

β2

w

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

β3

w

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

β4

w

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

Figure 3.3: Comparisons of coverage probability between the Bayesian approach (in
red) and GDECM (in black).
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Table 3.4: Comparisons of mean squared errors of f from GAM and GDECM
for Poisson Outcome

Covariance n Model f1 f2 f3 f4

200 GDECM 5.39 (1.8) 8.37 (2.5) 5.42 (1.9) 8.17 (2.4)
GAM 9.52 (4.6) 9.72 (3.7) 9.55 (4.8) 9.55 (3.8)

Ind 500 GDECM 3.26 (0.7) 5.93 (1.0) 3.22 (0.6) 5.99 (1.1)
GAM 5.76 (2.0) 5.80 (1.5) 5.63 (2.2) 5.64 (1.5)

1000 GDECM 2.69 (0.4) 5.36 (0.7) 2.70 (0.4) 5.36 (0.6)
GAM 4.65 (1.3) 4.58 (0.8) 4.62 (1.2) 4.52 (0.8)

200 GDECM 5.69 (1.9) 8.31 (2.9) 6.00 (2.5) 8.67 (3.4)
GAM 10.70 (5.3) 10.33 (4.4) 10.84 (5.9) 10.10 (4.0)

CS 500 GDECM 3.45 (0.8) 6.03 (1.2) 3.48 (0.9) 5.95 (1.2)
GAM 6.58 (2.7) 6.10 (1.7) 6.70 (2.8) 6.08 (1.7)

1000 GDECM 2.88 (0.5) 5.43 (0.8) 2.89 (0.5) 5.42 (0.8)
GAM 5.50 (1.9) 4.85 (0.9) 5.49 (1.8) 4.89 (0.9)

200 GDECM 5.40 (2.0) 8.55 (2.9) 5.85 (2.5) 8.11 (2.5)
GAM 9.77 (4.9) 10.25 (4.4) 10.06 (4.8) 9.75 (3.9)

AR(1) 500 GDECM 3.36 (0.8) 6.09 (1.4) 3.52 (0.8) 5.76 (1.0)
GAM 6.09 (2.3) 5.94 (1.6) 6.36 (2.7) 5.77 (1.7)

1000 GDECM 2.71 (0.4) 5.56 (0.8) 2.91 (0.5) 5.21 (0.7)
GAM 5.04 (1.6) 4.74 (0.9) 5.28 (1.6) 4.69 (0.8)

Ind: independent covariance; CS: compound symmetry covariance; AR(1): autore-
gressive covariance. Values are multiplied by 103.

3.5 Analysis of Preoperative Opioid data

We apply the generalized linear model (GLM) and GDECM to analyze the preop-

erative opioid use data collected from 2010 to 2016, as part of the Michigan Genomics

Initiative and Analgesic Outcome Study [43]. The data include 13, 787 patients,

along with the records of the preoperative opioid use and other characteristics be-

fore surgery. Table 2.5 in Chapter II summarizes the descriptive statistics of the

data. Hilliard et al. (2018) [43] identified nine significant risk factors for preoperative

opioid use, including pain severity, Fibromyalgia survey score, American Society of

Anesthesiology score, etc. However, they did not consider the case that part of the
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effects has nonlinear forms. Therefore, we consider GDECM with partially nonlinear

effects.

We consider the daily dose level of preoperative opioid use, measured in morphine

milligram equivalents (MME), as the Poisson outcome Y in (3.3). The covariates X

include categorical variables: male, race, depression status, anxiety status, alcohol

use, apnea status, illicit drug use, tobacco use, and American Society of Anesthesiol-

ogists category; continuous variables: age, BMI, worst pain score, Charlson Comor-

bidity Index, Fibromyalgia survey scores, average overall body pain score, and life

satisfaction score. We only consider the effects of age and BMI nonparametric and

others constants.
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Figure 3.4: Effect coefficients of BMI and age from GDECM for the preoperative
opioids data. Solid lines are estimation, and dashed lines are confidence intervals.

Figure 3.4 shows the dynamic effect changes of BMI and age from GDECM. The

effect of BMI is significantly negative when BMI < 22, indicating that an increase

in patients’ BMI results in a decrease in the preoperative opioid use when BMI is

smaller than 22. The effect change of age is not significant over the most age region.

Figure 3.5 includes all other non-varying coefficients from GDECM. After adjusting

for BMI and age in GDECM, variables with significantly positive coefficients include

ASA, smoke, illicit drug use, depression, FM score, pain, and male. Adjusting for
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Table 3.5: Comparisons of other regression estimates between GLM and GDECM for
the preoperative opioids data.

GDECM GLM
β sd(β) β sd(β)

Male 0.08 0.04 0.08 0.03
Black 0.01 0.07 0.02 0.07
Asian -0.50 0.24 -0.52 0.23

Other race -0.03 0.09 -0.03 0.08
Pain 0.13 0.01 0.13 0.01
FM 0.06 0.00 0.06 0.00

Satisfaction -0.04 0.01 -0.04 0.01
Depression 0.14 0.05 0.14 0.04

Anxiety -0.02 0.04 -0.01 0.04
Comorbidities > 3 0.04 0.05 0.03 0.05

Alcohol -0.08 0.04 -0.06 0.03
Apnea -0.02 0.04 -0.02 0.04

Drug 0.22 0.07 0.22 0.06
Smoke 0.25 0.04 0.26 0.03

ASA 0.33 0.04 0.33 0.04

Regression Estimates
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Figure 3.5: Other regression estimates from GDECM for the preoperative opioids data.

other variables, an increase in those variables lead to an increase in preoperative

opioid use. The coefficients for alcohol and life satisfaction are significantly negative.
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With all other variables constant, patients satisfied with life would take fewer opioids

than those not satisfied with life. Table 3.5 summarizes the actual values of those

coefficients and also provides the estimates from GLM as a comparison. Estimates

from the two models are consistent.

3.6 Discussion

In this study, we propose a new model called the generalized dynamic effect change

model (GDECM), which is an extension of GAM. Compared to GAM, our model is

easy to implement and interpret. Our simulation studies also showed that GDECM

has better estimation and prediction accuracy than GAM. As for application, by

using GDECM, we were able to find an extra significant variable in predicting the

preoperative opioid use, showing a promising usage in real data analyses. An R

package is under construction to further expand its application.

For our current settings, we assume that the reproducing kernel is known since

the selection of the kernel is not of interest in this study. However, the choice of

kernels in regression splines is an exciting topic, and future work in this direction is

considered.
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CHAPTER IV

Soft-Thresholding Operator for Modeling Sparse

Time-Varying Effects in Survival Analysis

4.1 Introduction

In analyses of survival, the Cox proportional hazards model by Cox (1992) [21] is

a popular and useful tool. The key assumption of the Cox model is that the effect of

a given covariate is constant over time. However, that assumption does not always

hold. In fact, non-proportionality is very common in survival analyses and has been

widely studied [23, 46, 59, 60, 61, 90]. The time-dependent coefficients Cox model is

a typical method to adjust for the non-proportionality [39].

In this study, we are particularly interested in time-varying effects with sparsity,

which means the covariate effects can be zero on specific time intervals and can be

time-varying on others. Many studies mentioned this special scenario. Anderson and

Gill (1982) [3] noticed the effects of some covariates disappeared in the later follow-up

in a vulvar cancer study. Gore et al. (1982) [36] found that the influence of signs

recorded at diagnosis waned with time in the Western General breast cancer study.

Tian et al. (2005) [80] noted sparsity in the edema effect during the early stage and

also showed the effect from log(prothrombin time) on survival diminished over time

in the Mayo Clinic primary biliary cirrhosis dataset.
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The challenge here is how to detect no-effects period and estimate effects in other

periods simultaneously. Existing methods to handle the time-dependent Cox model

cannot achieve the goal here. Spline based models with penalizations [42, 56, 98, 101]

focused on variable selection for different covariates. They may detect one covariate

as time-varying or time-constant. However, they are not able to detect the no-effects

period within each covariate. Kernel weighted likelihood approach [11, 80] do not

assume sparsity design for covariate effects. Ideally, this approach can handle the

detection of no-effects region and estimation simultaneously. However, this method

suffered a huge computational burden when the sample size is large, which makes it

not pleasant to use. Therefore, we aim to develop a new statistical method that can

efficiently model sparse time-varying effects in survival analysis.

Our method uses the idea of soft-thresholding to represent the time-varying effects

in the Cox model. The concept of soft thresholding was introduced in [24, 25]; they

applied this estimator to the coefficients of a wavelet transform of a function measured

with noise. The soft-thresholding function is widely used for effect shrinkage: Chang

et al. (2000) [13] proposed an adaptive, data-driven threshold for image denoising in a

Bayesian framework with the generalized Gaussian distribution prior based on wavelet

soft-thresholding; Tibshirani (1996) [81] also pointed out that the Lasso estimator is

a soft-thresholding estimator when the covariate matrix has an orthonormal design.

Kang et al. (2018) [51] first uses the soft-thresholding operator for modeling sparse,

continuous, and piecewise smooth functions in image data analysis. However, their

method is not developed for survival. Extending to survival needs more effort.

In this study, the soft-thresholding function is used to model the time-varying ef-

fects of covariates. The B splines approximate the kernel smoothing part. Estimation

is obtained by maximizing the partial likelihood. The asymptotic properties of our

proposed estimator will be provided. A novel inference approach will be introduced

to quantify the uncertainty of the proposed estimator.

50



This paper is organized as follows. In Section 4.2, we give the model definitions

and derivation of our algorithm. Section 4.3 provides the theoretical support for our

method. We present simulation results in Section 4.4 to demonstrate the advantage

of our methods. In Section 4.5, we analyze the Boston Lung Cancer Data using our

proposed model. Section 4.6 concludes this study.

4.2 Methods

4.2.1 Model

Let T ui and T ci represent the survival and censoring times, respectively, for the ith

patient. Observation times are denoted by Ti = T ui ∧ T ci , where a ∧ b = min{a, b}.

The observed death indicators are denoted by ∆i = I(T ui ≤ T ci ), where I(A) is an

indicator function taking the value 1 when condition A holds and 0 otherwise. Let

Zi = (Zi1, . . . , Zip)
T be a p-dimensional covariate vector for sample i. Let β(t) =

(β1(t), . . . , βp(t))
T be a p-dimensional vector of potentially time-varying coefficients.

The observed data consist of n independent vectors, (Ti,∆i,Zi), where Ti ∈ [0, τ ].

Let λ(t|Zi) be the hazard function given Zi and the time-varying effects survival

model is specified as

λ(t|Zi) = λ0(t) exp(ZT
i β(t)),

where λ0(t) is the baseline hazard.

The log partial likelihood with time-varying coefficients is

PL(β) =
n∑
i=1

∆i

{
p∑
j=1

Zijβj(Ti)− log

[∑
l∈Ri

exp

{
p∑
j=1

Zljβj(Ti)

}]}
, (4.1)

where Ri = {l : Tl > Ti} is the risk set for sample i.

Following Definition 2.2.1 in Chapter II, we assume that βj, j = 1, . . . , p, is con-

tinuous everywhere, with zero-effect regions (R0) consisting of at least one interval,
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and is smooth over regions (positive R+ and negative R−) where its effect is non-zero.

On the non-zero regions, the dth derivative of β(t) exists and satisfies the Lipschitz

condition on each interval:

|β(d)(s)− β(d)(t)| ≤ C|s− t|w, (4.2)

where d is a non-negative integer, and w ∈ (0, 1] such that m ≡ d + w > 0·5. Let H

be the set of all such β(t) and β0 = (β01, . . . , β0p)
T the true coefficient vector to be

estimated, where β0j ∈ H.

Following Chapter II, we use the soft-thresholding operator ζ to represent the

varying coefficient:

ζ{θ(t), α} = {θ(t)− α} I{θ(t) > α}+ {θ(t) + α} I{θ(t) < −α},

where α > 0 is the thresholding parameter and θ(t) is a real-valued function.

According to Lemma 1 in Appendix A, we have that for any function β(t) ∈ H

and any α > 0, there exists at least one θ(t) ∈ F0 such that β(t) = ζ{θ, α}(t), where

F0 is the class of functions θ defined on [0, τ ], with the dth derivative θ(d) satisfying

the Lipschitz condition (4.2).

Combining all above results, we introduce a new penalized likelihood for estima-

tion

PL(θ) =
n∑
i=1

∆i

{
p∑
j=1

Zijζ{θj(Ti), αj} − log

[∑
l∈Ri

exp

{
p∑
j=1

Zljζ{θj(Tl), αj}

}]}
−ρ||θ||22,

(4.3)

where θ = (θ1, . . . , θp)
T , and ρ > 0 is the predetermined penalization coefficient.

With the soft-thresholding representation, we can convert the problem from es-

timating non-smooth functions β to estimating smooth functions. Many approaches

can reduce the dimensions in estimating smooth functions. In this study, we will
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utilize the B spline basis to model the smooth functions.

Let F be the B-spline function sieve space. With the same notation as in the

Chapter II, we let K = O(nν) be an integer with 0 < ν < 0·5, and let Bk(t)(1 ≤ k ≤

q, and q = K + d) be the B-spline basis functions of degree d+ 1 associated with the

knots 0 = t0 < t1 < · · · < tK−1 < tK = 1, satisfying max1≤k≤K(tk − tk−1) = O(n−ν).

Let B(t) = {B1(t), . . . , Bq(t)}T be a functional vector of the B-spline bases. Then,

we have

F =

{
θ : θ =

q∑
k=1

γkBk(t), t ∈ [0, τ ], γk ∈ R, k = 1, . . . , q

}
.

For given α and q, we define the thresholded sieve space

Sq,α =

{
β(t) = ζ{θ(t), α} : θ(t) =

q∑
k=1

γkBk(t), t ∈ [0, τ ], γk ∈ R, k = 1, . . . , q

}
.

Let θj = B(t)Tγj, then the penalized log partial likelihood becomes

PL(γ) =
n∑
i=1

∆i

{
p∑
j=1

Zijζ{B(Ti)
Tγj, αj} − log

[∑
l∈Ri

exp

{
p∑
j=1

Zljζ{B(Ti)
Tγj, αj}

}]}

− ρ
p∑
j=1

n∑
i=1

{B(Ti)
Tγj}2.

(4.4)

4.2.2 Estimation

In order to estimate the coefficients, we consider the same smooth approximation

of the thresholding operator, h, as in Chapter II. The smooth approximation of

ζ(θ, α) is defined as

hη{θ(t), α} =
1

2

([
1 +

2

π
arctan{θ−(t)/η}

]
θ−(t)+

[
1− 2

π
arctan{θ+(t)/η}

]
θ+(t)

)
,
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where α > 0, η > 0 and θ±(t) = θ(t)± α. It has been verified in Appendix for Chap-

ter II that h is continuous and differentiable, and the approximation error between

hη{θ(t), α} and ζ(θ, α) is bounded by η + O(η3). We drop η hereafter for simplicity

of notation. Then, we obtain the smoothed log partial likelihood function:

PL(γ) =
n∑
i=1

∆i

{
p∑
j=1

Zijh{B(Ti)
Tγj, αj} − log

[∑
l∈Ri

exp

{
p∑
j=1

Zljh{B(Ti)
Tγj, αj}

}]}

− ρ
p∑
j=1

n∑
i=1

{B(Ti)
Tγj}2.

(4.5)

Let γ̃ = arg max
γ

ET,Z,∆PL(γ). An estimate of γ̃ is obtained by maximizing the

likelihood (4.5) to:

γ̂ = arg max
γ

PL(γ).

Then the estimate of β is β̂ = (β̂1, . . . , β̂p)
T , where β̂j(t) = ζ(B(t)T γ̂j, αj).

Computation of γ̂ can be implemented by gradient-based methods and a coor-

dinate descent algorithm. With appropriate initial values, global optimizers can be

reached. Specifically, for each j = 1, . . . , p, we obtain the non-varying coefficients

(a1, . . . , ap)
T from the Cox model, then we set the initial γ

(0)
j to be a vector of aj with

length q. We choose the pre-specified parameters as follows. As a value of α compa-

rable to the scale of true coefficients works well, we set αj to be |aj|. The choices of η

and ρ can be specified in accordance with Condition Ch4.C6. The knots of B-spline

are equally spaced over [0, τ ]. The number of basis functions, q, can be determined

through R-fold cross-validation. That is, partition the full data D into R equal-sized

groups, denoted by Dr, for r = 1 . . . , R, and let β̂
(q)
−r(t) be the estimate obtained with

q bases using all the data except for Dr. We obtain the optimal q by minimizing the

cross-validation error, which is a mean of the negative objective function over all Dr
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with β̂
(q)
−r(t).

4.3 Inference

We begin this section with some notation and key conditions. Let

g(β,Z, t) =

p∑
j=1

Zjβj(t),

gn(γ,Z, t) =

p∑
j=1

Zjhj(B(t)γj),

S0n(γ̃, t) =
1

n

n∑
i=1

Yi(t) exp(gn(γ̃,Zi, t)),

S0(t) = EY (t) exp(g(β,Z, t)),

S1n(γ̃, t) =
1

n

n∑
i=1

Yi(t) exp(gn(γ̃,Zi, t))Zi ⊗Bi,

S1(t) = EY (t) exp(g(β,Z, t))Z ⊗B,

S2n(γ̃, t) =
1

n

n∑
i=1

Yi(t) exp(gn(γ̃,Zi, t))(ZiZ
T
i )⊗ (BiB

T
i ),

and S2(t) = EY (t) exp(g(β,Z, t))(ZZT )⊗ (BBT ).

Conditions:

Ch4.C1 The failure time T u and the censoring time T c are conditionally independent

given the covariate Z.

Ch4.C2 Only the observations for which the event time Ti, 1 ≤ i ≤ n is in a finite

interval, say [0, τ ], are used in the partial likelihood. At this point τ , the

baseline cumulative hazard function λ0(τ) ≡
∫ τ

0
λ0(s)ds <∞.

Ch4.C3 The covariates Z takes value in a bounded subset of Rp and Pr(Zj = 0) < 1.

Also,
∑p

j=1 |Zj| = Op(1).
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Ch4.C4 There exists a small positive constant ε such that Pr(∆ = 1|Z) > ε and

Pr(T c > τ |Z) > ε almost surely with respect to the probability measure of

Z.

Ch4.C5 Let 0 < c1 < c2 < ∞ be two constants. The joint density f(t, z,∆ = 1) of

(T,Z,∆ = 1) satisfies c1 ≤ f(t, z,∆ = 1) < c2 for all (t, z) ∈ [0, τ ]× Rp.

Ch4.C6 η = o(q−m), ρ = O(na) with a ≤ −1, and q = o(n).

Ch4.C7 There exists a neighborhood Θ of γ̃ and scalar, vector and matrix functions

s0, s1 and s2 defined on γ × [0, τ ] such that for j = 0, 1, 2

sup
0≤t≤τ,γ∈Θ

||Sj(γ, t)− s(j)(γ, t)|| →p 0

Ch4.C8 Let Θ, s0, s1 and s2 be as in Condition Ch4.C7 and define e = s1/s0 and

v = s2/s0 − e⊗2. For all γ ∈ Θ, t ∈ [0, τ ]:

s1(γ, t) =
∂

∂γ
s0(γ, t), s2(γ, t) =

∂2

∂γ∂γT
s0(γ, t),

s0(·, t), s1(·, t), s2(·, t) are continuous functions of γ ∈ Θ, uniformly in t ∈

[0, τ ], s0, s1, and s2 are bounded on Θ× [0, τ ], and the matrix

Σ(γ̃, τ) =

∫ τ

0

v(γ̃, t)s0(γ̃, t)γ̃(t)dt

is positive definite.

Ch4.C9 There exists δ > 0 such that

n−1/2 sup
i,t
||Zi||∞|Yi(t)I{ZT

i β > −δ||Zi||∞}| →p 0.

Condition Ch4.C1 is a common assumption in analyzing right-censored data for the
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censoring mechanism to be non-informative. The finite interval Condition Ch4.C2 is

assumed in many studies [4]. Condition Ch4.C3 is often assumed in nonparametric

regression and makes sense in practical situations since we do not observe infinite

covariates. Condition Ch4.C4 controls the censoring rate to be not too large [69].

Condition Ch4.C5 is needed for model identifiability and used in Huang (1999) [46].

Condition Ch4.C6 controls the estimation bias and ensures the convergence. Con-

ditions Ch4.C7, Ch4.C8, and Ch4.C9 are regularity conditions. Similar conditions

were present in Anderson and Gill (1982) [4].

4.3.1 Asymptotic theory

Theorem 4.3.1 Suppose Conditions Ch4.C1-Ch4.C6 hold, if β0j(t) ∈ Sq,αj for

j = 1, . . . , p with q and αj be the same as in PL(θ), then

||β̂ − β0||2 = Op

(
(q/n)1/2

)
;

if β0j(t) /∈ Sq,αj for j = 1, . . . , p,

||β̂ − β0||2 = Op

(
r1/2
n

)
,

where rn = q/n+ q−2m.

Theorem 4.3.1 implies convergence of β̂ by Condition Ch4.C6 and m > 0·5. If

the true curves are in the thresholded sieve space, then there is no approximation

error; and if q is O(1), Theorem 2.3.1 suggests root-n consistency.

Let ej be a vector of length p with jth entry as 1 and others 0. For any t ∈ [0, τ ],

let a(t) = ej ⊗B(t), then θ̂j(t) = a(t)T γ̂.

Theorem 4.3.2 Under Conditions Ch4.C1-Ch4.C9 , we have for any t ∈ [0, τ ]
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and j = 1, . . . , p,

θ̂j(t)− θj(t)
σnj(t)

→d N(0, 1), as n→∞,

where σ2
nj(t) = na(t)T

[
{PL}′′(γ̃)

]−1
Σ(γ̃, 1)

[
{PL}′′(γ̃)

]−1
a(t).

With Theorem 4.3.2, we can then obtain the asymptotic distribution of β̂j(t) based

on β̂j(t) = ζ{θ̂j(t), αj}.

Theorem 4.3.3 Under Conditions Ch4.C1–Ch4.C9, for any t ∈ [0, τ ], the limiting

distribution of β̂j(t) ( j = 1, . . . , p) satisfies

lim
n→∞

∣∣∣∣∣Pr(β̂j(t) ≤ x)−Gnj(x)

∣∣∣∣∣ = 0,

where Gnj(x) =
[
Φ
{
x+αj−θ̃j(t)

σnj

}
I(x ≥ 0) + Φ

{
x−αj−θ̃j(t)

σnj

}
I(x < 0)

]
and Φ(·) is the

cumulative distribution function for N(0, 1).

The limiting distribution in Theorem 4.3.3 guarantees the zero-effect detection

ability of our proposed estimator, since the probability of β̂j(t) = 0 is greater than 0

even with finite sample size.

4.3.2 Sparse confidence intervals

Following Chapter II, we introduce the sparse confidence intervals to gauge the

uncertainty of the point estimates and make valid statistical inferences on the selection

and the zero-effect region detection. Here we will only introduce the construction of

the sparse confidence intervals. For detailed derivation, see Section 2.3 in Chapter II.

Given αj, for any t ∈ [0, τ ] we construct a pointwise (1 − ξ) level asymptotic

sparse confidence interval for βj(t), denoted by [unj(t), vnj(t)]. Let zξ/2 and Φ be the

(1 − ξ/2) quantile and the cumulative distribution function of N(0, 1), respectively.

Let P+ = Pr{β̂j(t) > 0} and P− = Pr{β̂j(t) < 0}, which can be estimated by
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P̂+ = 1 − Φ{(αj − θ̂j)/σ̂nj} and P̂− = Φ{(−αj − θ̂j)/σ̂nj} using Theorem 4.3.3. We

construct [unj(t), vnj(t)] as follows:

• if P̂+ + P̂− ≤ ξ, unj(t) = vnj(t) = 0;

• else if P̂+ < ξ/2 and P̂− < 1 − ξ/2, [unj(t), vnj(t)] =
[
β̂j(t) − σ̂njB̂, 0

]
with

B̂ = Φ−1
{

1− ξ + Φ(−σ̂−1
nj αj + σ̂−1

nj θ̂j)
}

and σ̂nj(t) as defined in Theorem 4.3.2;

• else if P̂− < ξ/2 and P̂+ < 1 − ξ/2, [unj(t), vnj(t)] =
[
0, β̂j(t) + σ̂njÂ

]
with

Â = −Φ−1
{
ξ − 1 + Φ(σ̂−1

nj αj + σ̂−1
nj θ̂j)

}
;

• else [unj(t), vnj(t)] =
[
β̂j(t)− σ̂njzξ/2, β̂j(t) + σ̂njzξ/2

]
.

Theorem 4.3.4 Under Conditions Ch4.C1-Ch4.C9, [unj(t), vnj(t)] is a (1−ξ) level

sparse confidence interval of βj(t) for j = 1, . . . , p and any t ∈ [0, τ ].

The proof of Theorem 4.3.4 is very similar to the proof of Theorem 2.3.3. There-

fore, we omit the proof here.

4.4 Simulations

In this section, we will compare our method with the regular time-varying Cox

model. We design some special varying coefficient functions which contain zero-effect

regions. The detailed formulas are provided below:

β1(t) = (−t2 + 3)I(t ≤
√

3),

β2(t) = 2 log(t+ 0.01)I(t ≥ 1), (4.6)

and β3(t) = (
−6

t+ 1
+ 2)I(t ≤ 2).

We first simulate Zi = (Zi1, . . . , Zip) ∼ N(0,Σ), where Σ can be independent

with cov(Zij, Zij∗) = I(j = j∗), autoregressive with cov(Zij, Zij∗) = 0·5|j−j∗|, or
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compound symmetry with cov(Zij, Zij∗) = I(j = j∗)+0·5I(j 6= j∗). We then simulate

Ui ∼ U(0, 1), and solve T ui using Ui = 1 − exp
{
−
∫ Tui

0
λ0(u) exp(

∑p
j Zjβj(u))du

}
,

where λ0(u) is set to be some constant in (0, 1). The censoring times Ci are generated

from U(0, 10), then T ci = min(Ci, 3). Then Event indicator ∆i = I(Ti < Ci) and

observation time Ti = min{T ui , T ci }.

We choose sample size n = 500, 2, 000 and 5, 000. Each setting is replicated

200 times. We set η = 0·001, ρ = 1/n2, αj to be half of the absolute value of the

least-squares estimate. The number of knots, q, is selected through cross-validation.

For evaluation criteria, we use the integrated squared errors (ISE) and the averaged

integrated squared errors (AISE), defined as ISE(βj) = n−1
g

∑ng
g=1{β̂j(tg) − βj(tg)}2

and AISE = p−1
∑p

j=1 ISE(βj), respectively, where tg (g = 1, . . . , ng) are the grid

points on (0, 3). Table 4.1 summarizes the results. The results show that the soft-

thresholded time-varying Cox model has smaller integrated squared errors and aver-

aged integrated squared errors than the regular time-varying Cox model, indicating

the soft-thresholded time-varying Cox model has better estimation accuracy than the

regular time-varying Cox model.

Figure 4.1 plots the estimation curves and their median for the soft-thresholded

time-varying Cox model and the regular time-varying Cox model. From the figure, the

medium estimation curves from the soft-thresholded time-varying Cox model cover

the truth, while the regular time-varying Cox model fail to estimate the zero effect. It

shows that the soft-thresholded time-varying Cox model has the zero-effect detection

ability.

Figure 4.2 compares the estimation of coverage probability from the soft-thresholded

time-varying Cox model and the regular time-varying Cox model. The figure shows

that the soft-thresholded time-varying Cox model has reasonable coverage probabil-

ity in both zero-effect region and non-zero-effect region. In the region around the

transition point, the soft thresholded time-varying Cox model has a higher coverage
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Figure 4.1: Comparison of estimation result from the soft-thresholded time-varying
Cox model (right panel) and the regular time-varying Cox model (left panel). The
gray curves are estimation curves from 200 simulations, the black curves are the
medium estimation curves, and the red curves are the simulation truth. The data
sample size is N=5,000 and the average event rate is 0.88.
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Table 4.1: Comparisons of estimation accuracy for the soft-thresholded time-
varying Cox model and the regular time-varying Cox model.

Covariance n Model ISE(β1) ISE(β2) ISE(β3) AISE

500 STTV 62.6 (77.1) 53.1 (43.5) 58.7 (59.5) 58.1 (39.7)
RegTV 75.5 (94.6) 56.6 (44.3) 61.9 (60.6) 65.4 (46.2)

Ind 2000 STTV 12.4 ( 9.7) 12.0 ( 8.5) 13.1 (10.4) 12.5 ( 5.7)
RegTV 13.9 ( 8.2) 11.8 ( 8.6) 12.4 ( 8.8) 12.7 ( 5.1)

5000 STTV 4.2 (3.2) 4.1 (2.8) 4.0 (2.7) 4.1 (1.7)
RegTV 5.6 (3.0) 4.2 (2.8) 4.5 (2.7) 4.7 (1.6)

500 STTV 16.2 (16.0) 18.2 (47.1) 15.2 (11.1) 16.5 (18.7)
RegTV 16.3 (14.1) 20.9 (50.3) 13.4 ( 8.2) 16.9 (19.4)

AR(1) 2000 STTV 3.6 (2.2) 2.6 (2.0) 3.9 (2.3) 3.3 (1.5)
RegTV 3.7 (2.2) 2.8 (2.5) 3.1 (1.6) 3.2 (1.4)

5000 STTV 1.3 (1.0) 1.1 (0.9) 1.2 (0.8) 1.2 (0.6)
RegTV 1.9 (0.9) 1.3 (0.9) 1.3 (0.8) 1.5 (0.6)

500 STTV 18.9 (24.6) 19.1 (30.2) 16.5 (14.6) 18.2 (16.2)
RegTV 19.1 (15.5) 20.4 (30.3) 17.0 (12.2) 18.8 (13.2)

CS 2000 STTV 3.6 (2.6) 2.7 (2.5) 3.8 (2.7) 3.4 (1.8)
RegTV 4.0 (2.3) 2.8 (2.4) 3.2 (1.6) 3.4 (1.4)

5000 STTV 1.2 (0.8) 1.1 (0.9) 1.0 (0.6) 1.1 (0.5)
RegTV 1.8 (0.7) 1.1 (0.9) 1.2 (0.7) 1.4 (0.5)

STTV: the soft-thresholded time-varying Cox model; RegTV: the regular time-
varying Cox model; ISE: the integrated squared errors; AISE: the averaged inte-
grated squared errors. Values are multiplied by 100.

probability estimation than the regular time-varying Cox model. It further confirms

that the soft-thresholded time-varying Cox model has better estimation and inference

than the regular time-varying Cox model.

Let |A| denote the cardinality of set A. We use same comparison metrics defined
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Figure 4.2: Comparisons of coverage probability (cp) from the regular time-varying
Cox model (RegTV) and the soft-thresholded time-varying Cox model (STTV). The
data sample size is N = 5, 000 and the average event rate is 0.88.

in Chapter II to compare zero-effect region detection:

Estimation-based true positive ratio: ETPR(β) =
|{t : β̂(t) 6= 0 and β(t) 6= 0}|

|{t : β(t) 6= 0}|
,

Estimation-based true negative ratio: ETNR(β) =
|{t : β̂(t) = 0 and β(t) = 0}|

|{t : β(t) = 0}|
,

Inference-based true positive ratio: ITPR(β) =
|{t : 0 /∈ CI{β̂(t)} and β(t) 6= 0}|

|{t : β(t) 6= 0}|
,

and

Inference-based true negative ratio: ITNR(β) =
|{t : 0 ∈ CI{β̂(t)} and β(t) = 0}|

|{t : β(t) = 0}|
,

where CI{β̂(t)} is the 95% confidence interval of β(t).

We choose 100 grid points on [0, 3] and count the number of tg in each set as its

cardinality. Table 4.2 shows that the soft-thresholded time-varying Cox model has

higher values of the inference-based true negative ratio than the regular time-varying

Cox model. Although the inference-based true positive and negative ratios are more

reliable with controlled false discovery rates, their computational burden increases

when the sample size increases. Therefore, the estimation-based true positive and

negative ratios are favorable for large datasets as their calculation merely depends on

the estimations. The estimation-based true negative ratio in our method has stable
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Table 4.2: Comparisons of true positive ratios and true negative ratios for zero-effect
region detection

STTV RegTV
n β ETPR ETNR ITPR ITNR ITPR ITNR

β1 0.96 (0.08) 0.44 (0.25) 0.81 (0.10) 0.94 (0.11) 0.81 (0.09) 0.95 (0.11)
500 β2 0.96 (0.05) 0.22 (0.13) 0.57 (0.17) 0.94 (0.08) 0.57 (0.18) 0.94 (0.12)

β3 0.95 (0.12) 0.37 (0.28) 0.55 (0.12) 0.94 (0.12) 0.55 (0.12) 0.94 (0.12)

β1 0.95 (0.06) 0.61 (0.23) 0.89 (0.07) 0.95 (0.10) 0.91 (0.06) 0.94 (0.10)
Ind 2000 β2 0.97 (0.04) 0.34 (0.16) 0.85 (0.08) 0.94 (0.08) 0.86 (0.08) 0.95 (0.08)

β3 0.96 (0.12) 0.50 (0.24) 0.70 (0.10) 0.94 (0.11) 0.72 (0.10) 0.95 (0.13)

β1 0.98 (0.03) 0.64 (0.27) 0.95 (0.04) 0.94 (0.10) 0.96 (0.04) 0.93 (0.11)
5000 β2 0.98 (0.03) 0.46 (0.18) 0.92 (0.05) 0.94 (0.09) 0.93 (0.04) 0.94 (0.10)

β3 0.97 (0.09) 0.50 (0.31) 0.81 (0.09) 0.96 (0.10) 0.80 (0.08) 0.96 (0.10)

β1 0.96 (0.05) 0.60 (0.22) 0.90 (0.07) 0.95 (0.10) 0.93 (0.06) 0.93 (0.12)
500 β2 0.98 (0.04) 0.32 (0.18) 0.85 (0.08) 0.92 (0.13) 0.86 (0.08) 0.93 (0.12)

β3 0.97 (0.14) 0.51 (0.27) 0.69 (0.14) 0.95 (0.13) 0.73 (0.12) 0.95 (0.12)

β1 0.97 (0.04) 0.71 (0.19) 0.94 (0.04) 0.95 (0.08) 0.99 (0.02) 0.92 (0.11)
AR(1) 2000 β2 0.99 (0.02) 0.49 (0.19) 0.95 (0.04) 0.94 (0.10) 0.97 (0.03) 0.93 (0.11)

β3 0.96 (0.09) 0.62 (0.25) 0.77 (0.10) 0.92 (0.13) 0.86 (0.07) 0.94 (0.13)

β1 1.00 (0.01) 0.79 (0.17) 0.98 (0.02) 0.96 (0.08) 1.00 (0.00) 0.85 (0.11)
5000 β2 1.00 (0.01) 0.56 (0.17) 0.98 (0.02) 0.94 (0.09) 1.00 (0.01) 0.87 (0.11)

β3 0.97 (0.05) 0.63 (0.30) 0.90 (0.05) 0.97 (0.09) 0.91 (0.05) 0.96 (0.10)

β1 0.96 (0.06) 0.58 (0.23) 0.90 (0.07) 0.96 (0.10) 0.92 (0.07) 0.94 (0.12)
500 β2 0.98 (0.03) 0.32 (0.19) 0.85 (0.07) 0.93 (0.12) 0.86 (0.07) 0.94 (0.13)

β3 0.98 (0.13) 0.51 (0.29) 0.70 (0.13) 0.96 (0.11) 0.71 (0.12) 0.95 (0.11)

β1 0.97 (0.04) 0.68 (0.21) 0.94 (0.04) 0.96 (0.08) 0.98 (0.02) 0.92 (0.12)
CS 2000 β2 0.99 (0.02) 0.48 (0.18) 0.96 (0.04) 0.94 (0.09) 0.97 (0.03) 0.94 (0.09)

β3 0.97 (0.11) 0.65 (0.25) 0.78 (0.11) 0.95 (0.09) 0.86 (0.07) 0.94 (0.13)

β1 0.99 (0.01) 0.73 (0.18) 0.98 (0.02) 0.96 (0.08) 1.00 (0.01) 0.87 (0.11)
5000 β2 1.00 (0.01) 0.55 (0.16) 0.98 (0.02) 0.92 (0.10) 1.00 (0.01) 0.89 (0.10)

β3 0.96 (0.06) 0.66 (0.30) 0.89 (0.06) 0.97 (0.08) 0.90 (0.05) 0.96 (0.11)

STTV: the soft-thresholded time-varying Cox model; RegTV: the regular time-varying Cox model.

positive values indicating the zero-effect region detection probability ability of our

approach. We also compare the non-zero-effect region selection accuracy between

our estimation-based method and our inference-based method in Table 4.2. The

estimation-based true positive ratio is slightly higher than the inference-based true

positive ratio, but both of them closely approach to 1 as n increases. The estimation-

based method is computationally much faster than the inference-based method.
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4.5 Real data application

In this section, we will apply our method to a subset of the Boston Lung Cancer

Survivor Cohort (BLCSC) [18]. The data consists of n = 599 individuals, among

which 148 were alive, and 451 were dead before the end of the study. The endpoint of

the study is death, and the survival outcome is the survival time from the diagnosis

of lung cancer to death or the end of the study. Patients in the alive group were

younger than that of those in the dead group (average age in years: 55.4 vs. 61.2).

In both groups, most patients were Caucasian (89.9% and 95.8%). Early-stage lung

cancer is defined as lung cancer with stage lower than II, including 1A, 1B, IIA, and

IIB. Late-stage lung cancer is those with stage higher than III, including IIIA, IIIb,

and IV. In the alive group, 64.2% of the patients had early-stage lung cancer, higher

than the rate of early-stage patients in the dead group (62.3%). The rate of patients

who had surgery in the alive group was 83.8%, higher than that in the dead group

(63.0%). More information can be found in Table 4.3.

We include the variable age, race, education, sex, smoking status, cancer stage,

and treatments received (surgery, chemotherapy, and radiotherapy) into the time-

varying Cox model. The estimation results from the Cox model, the regular time-

varying Cox model (RegTV) and the soft-thresholded time-varying Cox model (STTV)

are shown in Figure 4.3, 4.4 and 4.5.

Compared with the regular time-varying Cox model, the soft-thresholded time-

varying Cox model is more consistent with the constant effect Cox model. For some

non-significant coefficients in the constant effect Cox model, STTV estimates those

to be all zero over the time, such as for chemotherapy, radiotherapy, and education

above high school. Holding all other factors constant, receiving surgery has a pro-

tective effect for lung cancer patients. There is no evidence that chemotherapy and

radiotherapy are protective factors in increasing lung cancer patients’ survival time.

Compared to female patients, the expected hazard is significantly higher in male pa-
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Table 4.3: Summary statistics table for the Boston Lung Cancer
Data

Variable Alive Dead
(n = 148) (n = 451)

Time (days) 2729.9 (1793.1) 1414.9 (1488.3)
Age 55.4 (10.1) 61.2 (10.8)
Pack years 34.4 (29.7) 51.6 (38.5)
Race

White (ref) 133 (89.9%) 432 (95.8%)
Others 15 (10.1%) 19 (4.2%)

Education
Under high school (ref) 10 (6.8%) 72 (16%)
High school graduate 30 (20.3%) 113 (25.1%)
Above high school 108 (73.0%) 266 (59.0%)

Sex
Female (ref) 113 (76.4%) 256 (56.8%)
Male 35 (23.6%) 195 (43.2%)

Smoking status
Ever or never (ref) 96 (64.9%) 281 (62.3%)
Current 52 (35.1%) 170 (37.7%)

Cancer stage
Early (ref) 95 (64.2%) 190 (42.1%)
Late 53 (35.8%) 261 (57.9%)

Surgery 124 (83.8%) 284 (63.0%)
Chemotherapy 48 (32.4%) 206 (45.7%)
Radiotherapy 35 (23.6%) 184 (40.8%)

Continuous variables are presented in mean (standard deviation),
and categorical variables are presented in count (percentage). Due
to rounding, some summations of percentages for one variable are
not one. Reference groups in the model are marked by (ref).

tients, adjusting for all other factors. Older patients have a significantly higher hazard

compared to younger patients when other factors are the same. Non-white patients

have a lower hazard than white patients adjusting for others. Smoking and the late

cancer stage are predictive factors for lung cancer death. There are no significant

associations between education levels and the lung cancer patient’s survival adjusting

for others. In conclusion, STTV is consistent with the Cox model and also accurately

capture the time-varying effects of each factor.
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To verify that our model, STTV, has better performance than RegTV, we calculate

the C statistics for both models. The C statistics for the survival model is definded

as

Cstat =

∑
i<j4iI{Di > Dj, Ti < Tj}∑

i<j4i

,

where Di =
∑p

j=1 Zijβj(Ti) for i = 1, . . . , n. The C statistics is 0.61 for RegTV, and

0.65 for STV. Since higher C statistics indicates a better model fitting, our model

outperforms RegTV for this dataset.

4.6 Discussion

To address the challenge of modeling time-varying coefficients with zero-effect re-

gions in survival analysis, we proposed a new soft-thresholded time-varying coefficient

model, where the varying coefficients are piecewise smooth with zero-effect regions.

We have designed an efficient estimation method and a novel sparse confidence in-

terval, which extends classical confidence intervals by accommodating the exact zero

estimates. Our flexible framework enables us to perform variable selection and detect

the zero-effect regions of selected variables simultaneously, and to obtain point esti-

mates of the varying coefficients with zero-effect regions and construct the associated

sparse confidence intervals.

67



0 1000 2000 3000 4000

−3

−2

−1

0

1

RegTV: surgery

w

β

0 1000 2000 3000 4000

−3

−2

−1

0

1

STTV: surgery

w

β

0 1000 2000 3000 4000

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

RegTV: chemotherapy

w

β

0 1000 2000 3000 4000

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

STTV: chemotherapy

w

β

0 1000 2000 3000 4000

−1.0

−0.5

0.0

0.5

1.0

RegTV: radiotherapy

w

β

0 1000 2000 3000 4000

−1.0

−0.5

0.0

0.5

1.0

STTV: radiotherapy

w

β

Figure 4.3: Estimation results (part I) for the BLCSC data using the regular
time-varying Cox model (RegTV) and the soft-thresholded time-varying Cox
model (STTV): the solid lines are the estimated coefficient function curves;
the dotted lines are the pointwise (sparse) confidence intervals; black lines
are from varying coefficient modesl; red lines are from the constant effect Cox
model.

68



0 1000 2000 3000 4000

0.0

0.5

1.0

RegTV: sex

w

β

0 1000 2000 3000 4000

0.0

0.5

1.0

STTV: sex

w

β

0 1000 2000 3000 4000

−0.02

0.00

0.02

0.04

0.06

0.08

RegTV: age

w

β

0 1000 2000 3000 4000

−0.02

0.00

0.02

0.04

0.06

0.08

STTV: age

w

β

0 1000 2000 3000 4000

0.0

0.5

1.0

1.5

RegTV: smoke

w

β

0 1000 2000 3000 4000

0.0

0.5

1.0

1.5

STTV: smoke

w

β

Figure 4.4: Estimation results (part II) for the BLCSC data using the regular
time-varying Cox model (RegTV) and the soft-thresholded time-varying Cox
model (STTV): the solid lines are the estimated coefficient function curves;
the dotted lines are the pointwise (sparse) confidence intervals; black lines
are from varying coefficient modesl; red lines are from the constant effect Cox
model.
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Figure 4.5: Estimation results (part III) for the BLCSC data using the regular
time-varying Cox model (RegTV) and the soft-thresholded time-varying Cox
model (STTV): the solid lines are the estimated coefficient function curves;
the dotted lines are the pointwise (sparse) confidence intervals; black lines
are from varying coefficient modesl; red lines are from the constant effect Cox
model.
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APPENDIX A

Appendices for Chapter II

A.1 Appendix for A New Soft-Thresholded Varying Coeffi-

cient Model to Predict Opioid Use with Risk Factors

that Have Zero-effect Regions

We first introduce some common notation that will be used throughout the Ap-

pendix. Let a1n and a2n be two sequences of real numbers indexed by positive integers

and a2n is positive for all n. For a real number a1, say a1n tends to a limit a1 in sym-

bols: a1n → a1 as n→∞. We say a1n = O(a2n) if there exist an M > 0 and a finite

N > 0 such that |a1n/a2n| < M when n > N . We say a1n = o(a2n) if |a1n/a2n| → 0

as n → ∞. For a sequence of random variables Zn, we say Zn = Op(a1n) if for any

δ > 0, there exist a finite M > 0 and a finite N > 0 such that Pr(|Zn/a1n| > M) < δ

when n > N ; and Zn = op(a1n) if for any δ > 0, Pr(|Zn/a1n| > δ) → 0 as n → ∞.

The convergence of Zn in distribution to a random variable Z is denoted by Zn →d Z,

which implies that limFn(z) = F (z) as n→∞ for every z at which F is continuous,

where Fn and F are the cumulative distribution functions of random variables Zn and

Z, respectively. Let Enf(·) = n−1
∑n

i=1 f(·) be the empirical mean of f , and Ef the
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theoretical mean of f . Let ⊗ denote the Kronecker product. Let f ′ and f ′′ denote

the first and second derivatives of f function, respectively. Let N(µ, σ2) denote the

normal distribution with mean µ and variance σ2. Let I(A) be an event indicator

function, where I(A) = 1 if event A is true and I(A) = 0 otherwise. Let Id be a d×d

identity matrix. For a real valued function θ on D, ||θ||∞ = supw∈D |θ(w)| denotes its

supreme norm and ||θ||2 = {
∫
w∈D |θ(w)|2}1/2 denotes its L2 norm. For a vector valued

function θ = (θ1, . . . , θp)
T , let ||θ||2 =

{∑
j ||θj||22

}1/2
and ||θ||∞ = max1≤j≤p ||θj||∞.

A.1.1 TECHNICAL DERIVATIONS

A.1.2 Properties of Hη(θ, α)

For any η > 0, α > 0, and a real function θ, we have

∣∣∣∣ζ(θ,α) −Hη(θ, α)

∣∣∣∣
=

∣∣∣∣(θ − α)I(θ > α) + (θ + α)I(θ < −α)− 1

2

{
1 +

2

π
arctan

(
θ − α
η

)}
(θ − α)−

1

2

{
1− 2

π
arctan

(
θ + α

η

)}
(θ + α)

∣∣∣∣
=

∣∣∣∣(θ − α)

[
I(θ > α)− 1

2

{
1 +

2

π
arctan

(
θ − α
η

)}]
+

(θ + α)

[
I(θ < −α)− 1

2

{
1 +

2

π
arctan

(
θ + α

η

)}] ∣∣∣∣
≤
∣∣∣∣(θ − α)

[
I(θ > α)− 1

2

{
1 + sign(θ − α) +

η

θ − α
+O(η3)

}] ∣∣∣∣+∣∣∣∣(θ + α)

[
I(θ < −α)− 1

2

{
1 + sign(θ + α) +

η

θ + α
+O(η3)

}] ∣∣∣∣
=η +O(η3).

Therefore, the bias due to approximation is bounded by η +O(η3).

73



When α and η are fixed, the first derivative of h function in terms of θ is

H ′η(θ, α) =
1

π
· (θ − α)/η

1 + (θ − α)2/η2
+

1

2

{
1 +

2

π
arctan

(
θ − α
η

)}
− 1

π
· (θ − α)/η

1 + (θ − α)2/η2

+
1

2

{
1− 2

π
arctan

(
θ + α

η

)}
,

and the second derivative is

H ′′η (θ, α) =
2

π
· (η − θ + α)/η2

1 + (θ − α)2/η2
− 2

π
· (η − θ − α)/η2

1 + (θ + α)2/η2
.

To facilitate the ensuing proofs, we also provide the approximation of H ′ here.

For −α < θ < α, by the Taylor expansion of H ′ around η = 0, we have

H ′η(θ, α) =
1

π

{
2(θ − α)2 − 8

(θ − α)5
− 2(θ + α)2 − 8

(θ + α)5

}
η3 + o(η3).

A.1.3 TECHNICAL PROOFS

Some conditions are assumed for the proofs.

Conditions:

(Ch2.C1) The covariates X take values in a bounded subset of Rp. That is, there

exist finite real numbers C1 and C2 such that Pr(C1 < Xj < C2, for all j =

1, . . . , p) = 1.

(Ch2.C2) The eigenvalues λ1 ≤ . . . ≤ λp of E(XXT ) are bounded away from zero

and infinity; that is, there are positive constants M1 and M2 such that M1 ≤

λ1 ≤ . . . ≤ λp ≤M2. Consequently, the eigenvalues of E(VnV
T
n ) are bounded

away from zero and infinity.

(Ch2.C3) The error satisfies limλ→∞ E{ε2I(|ε| > λ)} = 0 and E{exp(tε)} ≤ exp(σ2t2/2)

for any t in R.

(Ch2.C4) l′′n(γ) is bounded and has a bounded inverse around γ̃; E(ŨXT ) is invert-

ible, where Ũ = U (γ̃;X,W ).
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(Ch2.C5) The distribution of W is absolutely continuous and its density is bounded

away from zero and infinity on D. Moreover, W is independent of X.

(Ch2.C6) p̃ = o(min{n/q, q2m}), ρ = o(p̃1/2q−m) and ∇(η) = o(q−m).

(Ch2.C7) The true varying coefficients β0j (j = 1, . . . , p) are bounded.

Conditions (Ch2.C1)–(Ch2.C4) are mild regularity conditions used in the ex-

isting literature [33, 49]. Condition (Ch2.C5) guarantees that observations are

randomly scattered [50]. Condition (Ch2.C6) is a technical assumption that con-

trols convergence rate, estimation bias, and model sparsity. Condition (Ch2.C7) is

reasonable for a wide range of applications.

Let Mn(θ) = −Enl
s(θ) and M0(θ) = −Els(θ) be the empirical and theoretical mean

of ls(θ). Let |v| denote the Euclidean norm of a real valued vector v. For a real

valued function θ on D, ||θ||∞ = supw∈D |θ(w)| denotes its supreme norm and ||θ||2 =

{
∫
w∈D |θ(w)|2}1/2 denotes its L2 norm. For a vector valued function θ = (θ1, . . . , θp)

T ,

let ||θ||2 =
{∑

j ||θj||22
}1/2

and ||θ||∞ = max1≤j≤p ||θj||∞. Let N[](δ, S,Lp) be the

δ-bracketing number for S under norm Lp and E∗(g) denote the outer expectation

of process g. For two sequences an and bn, we say an ' bn if an/bn = O(1). The

convergence of Zn in distribution to a random variable Z is denoted by Zn →d Z,

which implies that limFn(z) = F (z) as n→∞ for every z at which F is continuous,

where Fn and F are the cumulative distribution functions of random variables Zn

and Z, respectively. The convergence of Zn in probability to a random variable Z is

denoted by Zn →p Z, which implies that lim Pr(|Zn − Z| > ε) = 0 as n → ∞ for

all ε > 0. A sequence of random vectors or matrices converge to a random vector

or matrix if and only if each component of random vectors or matrices converges in

probability to each component of the vector or matrix.

Lemma 1 For any function β(w) ∈ H and any α > 0, there exists at least one

θ(w) ∈ F0 such that β(w) = ζ{θ,α}(w).

75



Proof of Lemma 1:

We show that Lemma 1 is valid when β(w) has only one zero region (w0, w1),

where w0, w1 ∈ (0, 1). The proof can be easily extended to more general settings.

Without loss of generality, we further assume β(w) < 0 on [0, w0) and β(w) > 0 on

(w1, 1]. The definition of β(w) implies that β(j) exists on [0, w0] and [w1, 1], and that

there exists a constant M > 0 such that |β(j)(wk)| < M for j = 1, . . . , d and k = 0, 1.

In the following, we construct a θ satisfying: (i) θ(w) = b(w) − α on [0, w0] and

θ(w) = b(w) + α on [w1, 1]; (ii) for j = 1, . . . , d, θ(j)(w0) = β(j)(w0), and θ(j)(w1) =

β(j)(w1); (iii) |θ(w)| < α on (w0, w1); and (iv) |θ(d)(s)− θ(d)(w)| ≤ C|s− w|t for s, w

in [0, 1] and some constant C, where 0 < t ≤ 1.

Let f(w) = e−1/wI(w > 0). It follows that f(w) ∈ [0, 1) and f (d)(0) = 0 for any

d ≥ 1. Define f0(w, a0) = f(−w + a0)/{f(−w + a0) + f(−w0 + w)} and f1(w, a1) =

f(w − a1)/{f(w − a1) + f(w1 − w)}, where a0 ∈ (w0, (w0 + w1)/2) and a1 ∈ ((w0 +

w1)/2, w1). As f(w) is infinitely differentiable over the real line, so is fk(w) for

k = 0, 1. It is easy to verify that fk(w, a1) satisfies that fk(wk, ak) = 1, fk(ak, ak) = 0,

f
(j)
k (w, ak) = 0 when w = ak or wk, and 0 ≤ fk(w, ak) ≤ 1 for k = 0, 1 and j ≥ 1.

Let θ∗0(w) = −α+
∑d

j=1
β(j)(w0)

j!
(w−w0)j and θ∗1(w) = α+

∑d
j=1

β(j)(w1)
j!

(w−w1)j.

We define

θ(w) =



b(w)− α, w ∈ [0, w0]

θ∗0(w) ∗ f0(w, a0), w ∈ (w0, a0]

0, w ∈ (a0, a1)

θ∗1(w) ∗ f1(w, a1), w ∈ [a1, w1)

b(w) + α, w ∈ [w1, 1]

,

and show that there exist a0 and a1 which ensure the above θ(w) satisfies conditions

(i)-(iv).

It is obvious that θ(w) satisfies (i) and θ(w) is continuous. Since fk(wk, ak) = 1
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and f
(j)
k (wk, ak) = 0 for j ≥ 1, we have that θ(j)(wk) = θ∗k

(j)(wk) = β(j)(wk) for

j = 1, . . . , d, where k = 0, 1. Therefore, condition (ii) is satisfied.

Since θ∗0(w) and f0(w, a0) are infinitely differentiable over (w0, a0), so is θ(w)

over (w0, a0). Similarly, θ(w) is also infinitely differentiable over (a1, w1). Because

f
(j)
k (ak, ak) = 0 for j ≥ 0 and k = 0, 1, we have that θ(j)(ak) = 0 for j ≥ 0 and

k = 0, 1. Therefore, θ(w) is infinitely differentiable over (w0, w1), which implies θ(w)

also satisfies condition (iv) over (w0, w1).

Apparently, condition (iv) is satisfied when w and s are in the same region (zero

or non-zero region) by taking t = 1. We only verify that condition (iv) is valid when

w ∈ [0, w0) and s ∈ [w0, w1]. The other situations can be verified similarly.

To proceed, we notice

|θ(d)(w)− θ(d)(s)| = |θ(d)(w)− θ(d)(w0) + θ(d)(w0)− θ(d)(s)|

≤ |θ(d)(w)− θ(d)(w0)|+ |θ(d)(w0)− θ(d)(s)|

≤ C1|w − w0|+ C2|w0 − s|

≤ max{C1, C2}|w − s|.

Hence, condition (iv) is valid for t = 1.

To prove condition (iii), we just need to find a0 and a1 such that θ
′
(w) ≥ 0

over [w0, w1]. By the construction of θ(w), we have θ
′
(w) = 0 over [a0, a1]. When
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w ∈ (a1, w1), we let r1 = w1 − a1 and show

|θ∗1
′
(w)| =

∣∣∣∣∣
d∑
j=1

b(j)(w1)

(j − 1)!
(w − w1)j−1

∣∣∣∣∣
≤

d∑
j=1

∣∣∣∣b(j)(w1)

(j − 1)!
(w − w1)j−1

∣∣∣∣ ≤M
d∑
j=1

rj−1
1 ≤ M

1− r1

,

θ∗1(w) ≥ α−

∣∣∣∣∣
d∑
j=1

β(j)(w1)

j!
(w − w1)j

∣∣∣∣∣
≥ α−

d∑
j=1

∣∣∣∣β(j)(w1)

j!
(w − w1)j

∣∣∣∣ ≥ α− Mr1

1− r1

,

and f
′

1(w, a1) =
e−1/(w−a1)−1/(w1−w) {1/(w − a1)2 + 1/(w1 − w)2}

{e−1/(w−a1) + e−1/(w1−w)}2

≥ 1/(w − a1)2 + 1/(w1 − w)2

22

≥ 1

2r2
1

.

Then

θ
′
(w) = θ∗1

′
(w)f1(w, a1) + θ∗1(w)f

′

1(w, a1)

≥ θ∗1(w)f
′

1(w, a1)− |θ∗1
′
(w)f1(w, a1)|

≥
(
α− Mr1

1− r1

)
1

2r2
1

− M

1− r1

.

Let

g(r) =

(
α− Mr

1− r

)
1

2r2
− M

1− r
,

then when 0 < r < 1,

g
′
(r) = − α

r3
− M

2r2(1− r)2
− M

(1− r)2
< 0.

Therefore, g(r) is strictly decreasing on (0, 1). As limr↓0 g(r) = ∞ and limr↑1 g(r) =

−∞, there exists a unique r∗ ∈ (0, 1) such that g(r∗) = 0. Therefore, g(r) > 0 over

78



(0, r∗). Let r1 = min{r∗, (w1 − w0)/2}, and we have θ
′
(w) > 0 over (w1 − r1, w1).

Thus, we find an a1 = w1 − r1 such that |θ(w)| ≤ α over (a1, w1). Similarly, we can

find an a0 such that |θ(w)| ≤ α over (w0, a0). Therefore, condition (iii) is satisfied.

Combining all the results, we have found a θ ∈ F0 such that ζ(θ,α)(w) = β(w),

which completes the proof. �

Lemma 2 Under Conditions (Ch2.C1), (Ch2.C5), and (Ch2.C7), if βj ∈ Sq,αj

for j = 1, . . . , p̃ with q and αj the same as in the penalized likelihood, then ||β̃−β0||∞ =

O((p̃ρ)1/2); if βj /∈ Sq,αj for j = 1, . . . , p̃, we have ||β̃ − β0||∞ = O((p̃ρ + p̃q−2m)1/2),

where m is the smoothness parameter as in Definition 2.2.1.

Proof of Lemma 2:

Let l0(β;X, Y,W ) =
[
Y −

∑p
j=1Xjbj(W )

]2

. By model assumption, we have

EY |X,WY =
∑p

j=1Xjb0j(W ), then the true parameter β0 = (β01, . . . , β0p)
T = arg minβ∈Hp El0(β;X, Y,W ).

By definition, we have l(θ;X, Y,W ) =
[
Y −

∑p
j=1Xjζ{θj ,αj}(W )

]2

+ρ
∑p

j=1 {θj(W )}2

and θ̃ = (BT γ̃1, . . . ,B
T γ̃p)

T = arg minθ∈Fp El(θ;X, Y,W ). Since β0j = 0 for j > p̃,

we can infer that θ̃j = 0 for j > p̃, and thus β̃j = 0 for j > p̃.

Then by calculation,

El0(β0;X, Y,W )− El(θ̃;X, Y,W )

=E

[
Y −

p∑
j=1

Xjb0j(W )

]2

− E

[
Y −

p∑
j=1

Xjβ̃j(W )

]2

− ρE

p∑
j=1

{
θ̃j(W )

}2

=E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}][
2Y −

p∑
j=1

Xjb0j(W )−
p∑
j=1

Xjβ̃j(W )

]
− ρE

p∑
j=1

{
θ̃j(W )

}2

=− E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}]2

− ρE

p∑
j=1

{
θ̃j(W )

}2

.

(A.1)

According to Lemma 1, for j = 1, . . . , p̃, there exists θj ∈ F0 such that ζ{θj ,αj} =
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β0j. If θj /∈ F, then we can find θ∗j ∈ F such that ||θj − θ∗j ||2 = O(q−m). When

j > p̃, let θ∗j = 0, then we have ζ{θ∗j ,αj} = 0 = β0j. Let β∗(w) = (β∗1 , . . . , β
∗
p)
T , where

β∗j = ζ{θ∗j ,αj}(w). Then by Condition (Ch2.C1) and (Ch2.C5), we have

El0(β∗;X, Y,W )− El0(β0;X, Y,W ) = E

[
p∑
j=1

Xj

{
β∗j (W )− b0j(W )

}]2

=E

[∑
j,k

XjXk

{
β∗j (W )− b0j(W )

}
{β∗k(W )− bk(W )}

]

=E
[{
β∗1(W )− b01(W ), . . . , β∗p(W )− b0p(W )

}
E(XXT )

{
β∗1(W )− b01(W ), . . . , β∗p(W )− b0p(W )

}T]
≤λpE

p∑
j=1

(β∗j (W )− b0j(W ))2 = λp

p̃∑
j=1

||β∗j (W )− b0j(W )||22

=O(p̃q−2m).

(A.2)

If for j = 1, . . . , p̃, θj ∈ F, let θ∗j = θj, then we have β∗ = β and El0(β∗;X, Y,W ) −

El0(β0;X, Y,W ) = 0. Here, we assume all β0j (j = 1, . . . , p̃) have the same smooth-

ness, either βj ∈ Sq,αj for j = 1, . . . , p̃, or βj /∈ Sq,αj for j = 1, . . . , p̃.

By definition of θ̃, we have El(θ̃) ≤ El(θ∗) = El0(β∗)+ρE
∑p

j=1

{
θ∗j (W )

}2
. There-

fore, El(θ̃)−El0(β∗) ≤ ρE
∑p

j=1

{
θ∗j (W )

}2
. If θj /∈ F for all j ≤ p̃, based on equation

(A.1), (A.2) and Condition (Ch2.C7), we have

E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}]2

= El(θ̃)− El0(β0)− ρE

p∑
j=1

{
θ̃j(W )

}2

≤ El(θ̃)− El0(β∗) + El0(β∗)− El0(β)− ρE

p∑
j=1

{
θ̃j(W )

}2

≤ ρE

p∑
j=1

{
θ∗j (W )

}2 − ρE

p∑
j=1

{
θ̃j(W )

}2

+ El0(β∗)− El0(β)

= O(p̃ρ+ p̃q−2m).
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If θj ∈ F for all j, then E
[∑p

j=1Xj

{
β̃j(W )− b0j(W )

}]2

= O(p̃ρ).

By Condition (Ch2.C1) and (Ch2.C5), we also have

E

[
p∑
j=1

Xj

{
β̃j(W )− b0j(W )

}]2

= E

[∑
j,k

XjXk

{
β̃j(W )− b0j(W )

}{
β̃k(W )− b0k(W )

}]

=E

[{
β̃1(W )− b01(W ), . . . , β̃p(W )− b0p(W )

}
E(XXT )

{
β̃1(W )− b01(W ), . . . , β̃p(W )− b0p(W )

}T]
≥λ1E

p∑
j=1

(β̃j(W )− b0j(W ))2 = λ1

p∑
j=1

||β̃j(W )− b0j(W )||22.

Therefore, max1≤j≤p ||β̃j − b0j||22 = O(E
[∑p

j=1Xj

{
β̃j(W )− b0j(W )

}]2

). In ad-

dition, ||β̃ − β0||∞ = max1≤j≤p ||β̃j − b0j||∞ ≤ max1≤j≤p ||β̃j − b0j||2. Combining all

above results, we conclude: if βj /∈ Sq,αj for j = 1, . . . , p̃, we have ||β̃ − β0||∞ =

O((p̃ρ+ p̃q−2m)1/2); if βj ∈ Sq,αj for j = 1, . . . , p̃, ||β̃ − β0||∞ = O((p̃ρ)1/2). �

We introduce two important lemmas in order to prove our main theorems. Lemma

3 is a variation of the Lyapunov central limit theorem and will be used in the proof

of Lemma 5, and Lemma 4 is used in the proof of Theorem 2.3.1.

Lemma 3 Suppose εi are independent with mean 0 and variance 1, and εi satisfy

Condition (Ch2.C3). If maxi a
2
i /(
∑

i a
2
i )→ 0, then

∑
i aiεi√

(
∑

i a
2
i )
→d N(0, 1).

Lemma 4 (Consistency) Under Conditions (Ch2.C1), (Ch2.C2), (Ch2.C4),

(Ch2.C6) and (Ch2.C7),

||θ̂ − θ̃||22 = op(p̃q
−1),

where θ̃ = Bγ̃.
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Proof of Lemma 4:

Let θ∗ = (θ∗1, . . . , θ
∗
p)
T . We choose θ∗j ∈ F such that ||θ∗j ||22 = O(q−1) for j =

1, . . . , p. Let Tn(a) = Mn(θ̃ + aθ∗). The derivative of Tn with respect to a is

T ′n(a) = −2En

[{
Y −

p∑
j=1

Xjhj(θ̃j + aθ∗j )
} p∑

j=1

Xjh
′
j(θ̃j + aθ∗j )θ

∗
j − ρ

p∑
j=1

(θ̃j + aθ∗j )θ
∗
j

]
.

(A.3)

When a is sufficiently small, Tn is convex. Thus, T ′n is non-decreasing. Therefore,

we only need to show that for any small a0 > 0, −T ′n(a0) < 0 and −T ′n(−a0) > 0.

Then, ||θ̂ − θ̃||2 ≤ a0||θ∗||2. Since γ̃ = arg min
γ

El(γ;X, Y,W ), then θ̃j = Bγ̃j ≡ 0

for l > p̃. By Condition (Ch2.C6), αj > ||θ∗j ||2 for l > p̃. Thus, hj(θ̃j + aθ∗j ) ≡ 0 for

l > p̃. Then, we have
∑p

j=1Xjhj(θ̃j + aθ∗j ) =
∑p̃

j=1Xjhj(θ̃j + aθ∗j ).

From (A.3), we have

−1

2
T ′n(a0) =En

[{
Y −

p∑
j=1

Xjhj(θ̃j + a0θ
∗
j )

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
− ρ

p∑
j=1

(θ̃j + a0θ
∗
j )θ
∗
j

]

=En

{
Y −

p∑
j=1

Xjβ̃j

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
+

En

{
p∑
j=1

Xjβ̃j −
p∑
j=1

Xjhj(θ̃j)

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
+

En

{
p∑
j=1

Xjhj(θ̃j)−
p∑
j=1

Xjhj(θ̃j + a0θ
∗
j )

}
·

{
p∑
j=1

Xjh
′
j(θ̃j + a0θ

∗
j )θ
∗
j

}
−

ρEn

p∑
j=1

(θ̃j + a0θ
∗
j )θ
∗
j

=A1 + A2 + A3 + A4,

where β̃j = ζ(θ̃j ,αj)
.

By the definition of hj, we have that |h′j(θ̃j + a0θ
∗
j )| ≤ 1 for j = 1, . . . , p̃ and

|h′j(θ̃j + a0θ
∗
j )| ≡ 0 for j = p̃ + 1, . . . , p. Let hn =

∑p
j=1Xjh

′
j(θ̃j + a0θ

∗
j )θ
∗
j . Then
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E(h2
n) = O(

∑p̃
j=1 ||θ∗j ||22) = O(p̃q−1) by Condition (Ch2.C2). Since Y −

∑p
j=1Xjβ̃j =

ε, by Chebyshev’s inequality, we have

Pr(|A1| > 1/
√
n) ≤ E(Enhnε)

2

1/n
≤ E{(Enhn)2(Enε)

2}
1/n

=
O(Eh2

n)Eε2/n

1/n
= O(p̃q−1)σ2.

Therefore, |A1| = op(n
−1/2) = op(p̃q

−1).

By the definition of γ̃, it satisfies the score equation

0 = Els
′
= −2E

{
(Y −XT h̃) · Ũ ⊗B(W )− ρθ̃ ⊗B(W )

}
, (A.4)

where h̃, Ũ , θ̃ are h, U , θ with γ replaced by γ̃ respectively. Since B(W ) 6= 0 for

any W ∈ D, equation (A.4) becomes E
{

(Y −XT h̃) · Ũ − ρθ̃
}

= 0. We then have

E
[
ŨXT{β̃−h(γ̃)}−ρθ̃

]
= 0, because Y −XT β̃ = ε. Note that E(ŨXT ) is invertible

according to Condition (Ch2.C4), then we have (β̃ − h̃) = ρ{E(ŨXT )}−1θ̃. By the

Cauchy-Schwarz inequality and Condition (Ch2.C1), (Ch2.C2) and (Ch2.C6),

|A2|2 ≤

(
1

n

n∑
i=1

h2
n

) 1

n

n∑
i=1

[
p∑
j=1

Xj

{
β̃j − hj(θ̃j)

}]2
 = Op(q

−1)Op

(
E
{
XT (β̃ − h̃)

}2
)

= Op(q
−1)Op

(
E

[
ρXT

{
E(ŨXT )

}−1

θ̃

]2
)

= Op(ρ
2p̃q−1).

Hence, A2 = op(p̃q
−1).

Moreover, we have A3 = O
(
− En

{∑p̃
j=1Xjθ

∗
j

}2
)

= −a0Op(p̃q
−1) and A4 =

−Op(ρp̃+ ρa0pq
−1) = op(p̃q

−1) by Condition (Ch2.C6).

Therefore, we have

−1

2
T ′n(a0) = op(p̃q

−1) + op(p̃q
−1)− a0Op(p̃q

−1) + op(p̃q
−1) = −a0Op(p̃q

−1) < 0,

if a0 > 0 and H ′n(a0) > 0, if a0 < 0. Thus, ||θ̂ − θ̃||22 = op(p̃q
−1). The proof is
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completed. �

Proof of Theorem 2.3.1:

By the definitions of Mn and M0, we have

(Mn −M0)(θ)

=(En − E)

[
−
{
Y −

p∑
j=1

Xjhj(θj)
}2

− ρ
p∑
j=1

θ2
j

]

=(En − E)

[
−
(
Y −

p∑
j=1

Xjβ̃j

)2

−
{ p∑

j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}2

−

2(Y −
p∑
j=1

Xjβ̃j)
{ p∑

j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}
− ρ

p∑
j=1

θ2
j

]

=(En − E)

[
− ε2 −

{ p∑
j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}2

− 2
{ p∑

j=1

Xjβ̃j −
p∑
j=1

Xjhj(θj)
}
ε− ρ

p∑
j=1

θ2
j

]
.

Therefore, we have

(Mn −M0)(θ)− (Mn −M0)(θ̃)

=2En

[{ p∑
j=1

Xjhj(θj)−
p∑
j=1

Xjhj(θ̃j)
}
ε

]
− (En − E)

{[ p∑
j=1

Xj

{
hj(θj)− hj(θ̃j)

}]2
}

+

2(En − E)

[ p∑
j=1

Xj

{
hj(θj)− hj(θ̃j)

}][ p∑
j=1

Xj

{
β̃j − hj(θ̃j)

}]
−

ρ(En − E)

{
p∑
j=1

(θj − θ̃j)(θj + θ̃j)

}

=B1 +B2 +B3 +B4
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For j = 1, . . . , p, let

Gj =
{
θj : ||θj − θ̃j||2 ≤ δ, 0 < δ < 1, θj ∈ F

}
,

Hj =
{
hj(θj) : ||θj − θ̃j||2 ≤ δ, 0 < δ < 1, θj ∈ F

}
,

Sj =
{
Xjhj(θj) : ||θj − θ̃j||2 ≤ δ, 0 < δ < 1, θj ∈ F

}
,

and

S =

{
p∑
j=1

Xjhj(θj) : ||θj − θ̃j||2 ≤ δ, 0 < δ < 1, θj ∈ F, j = 1, . . . p

}
, (A.5)

where F =
{
θ = (θ1, . . . , θp)

T : θj ∈ F, j = 1, . . . , p
}

.

Since |hj(θj)−hj(θ̃j)| ≤ |θj− θ̃j|, we have N[]{δ1, Hj,L2(D)} ' N[]{δ1, Gj,L2(D)}.

By Condition (Ch2.C1), we further haveN[]{(C2−C1)δ1, Sj,L2(D)} ' N[]{δ1, Gj,L2(D)}.

By Condition (Ch2.C6), we have αj > δ for j = 1, . . . , p. Then by the definition

of θ̃j, we have

S =

{
p̃∑
j=1

Xjhj(θj) : ||θj − θ̃j||2 ≤ δ, 0 < δ < 1, θj ∈ F, j = 1, . . . p̃

}
.

According to the construction of S, we have that

N[]

(
p̃(C2−C1)δ1, S,L2(D)

)
'
{
N[]((C2 − C1)δ1, Sj,L2(D))

}p̃ ' {N[](δ1, Gj,L2(D))
}p̃
,

since the bracket numbers are the same over j for Sj as well as Gj.

From the calculation by Shen and Wong (1994) [72], logN[]{δ1, Gj,L2(D)} =

c1q log(δ/δ1), we have logN[] {p̃(C2 − C1)δ1, S,L2(D)} ' c1p̃q log(δ/δ1).

By Condition (Ch2.C3), the stochastic process
{√

nEn

[
{
∑p̃

j=1 Xjhj(θj)−
∑p̃

j=1 Xjhj(θ̃j)}ε
]
, θj ∈

F, j = 1, . . . , p̃
}

is sub-Gaussian for the L2(D)-semimetric on S. According to Corol-
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lary 2.2.8 of Van Der Vaart and Wellner (1996) [85], we have

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B1|

}
'
∫ δ

0

√
logN[] {p̃δ1, S,L2(D)} d(p̃δ1) ' (p̃q)1/2δ.

With the similar calculation of the bracketing number and Lemma 3.4.2 of Van

Der Vaart and Wellner (1996) [85], we have

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B2|

}
' (p̃q)1/2δ.

Since XT (β̃ − h̃) = ρXT{E(ŨXT )}−1θ̃ = Op(ρ||θ̃||) is bounded, we can also

have

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B3|

}
' E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B1|

}
' (p̃q)1/2δ.

By Condition (Ch2.C7), |θj + θ̃j| is bounded, then

E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B4|

}
' E∗

{
sup

||θ−θ̃||2<δ,θ∈FLnn

√
n|B1|

}
' (p̃q)1/2δ.

According to Theorem 3.4.1 of Van Der Vaart and Wellner (1996) [85], the key

function φ(δ) takes the form of φn(δ) = (p̃q)1/2δ. Therefore, ||θ̂−θ̃||2 = Op

(
(p̃q/n)1/2

)
.

By Lemma 2 and Condition (Ch2.C6), If βj /∈ Sq,αj for j = 1, . . . , p̃, then

||β̂ − β0||2 = ||ζ(θ̂,α) − β0||2

≤ ||ζ(θ̂,α) − h(θ̂)||2 + ||h(θ̂)− h(θ̃)||2 + ||h(θ̃)− β̃||2 + ||β̃ − β0||2

= Op(p̃
1/2∇(η)) +Op(||θ̂ − θ̃||2) +O(p̃1/2∇(η)) +O((p̃ρ+ p̃q−2m)1/2)

= Op

(
p̃1/2∇(η) + (p̃q/n)1/2 + p̃1/2∇(η) + (p̃ρ+ p̃q−2m)1/2

)
= Op

(
(p̃q/n)1/2 + p̃1/2q−m

)
;
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if βj ∈ Sq,αj for j = 1, . . . , p̃, ||β̂ − β0||2 = Op

(
p̃1/2∇(η) + (p̃q/n)1/2 + (p̃ρ)1/2

)
=

Op

(
p̃1/2r(η) + (p̃q/n)1/2

)
. The proof is completed. �

Lemma 5 (Normality) Under Conditions (Ch2.C1)–(Ch2.C7), for j = 1, . . . , p,

and any w ∈ D,

{σ2
nj(w)}−1/2

{
θ̂j(w)− θ̃j(w)

}
→d N(0, 1),

where σ2
nj(w) = σ2[n2{ej⊗B(w)}T{l′′n(γ̃)}−1

{
V T
n (γ̃)Vn(γ̃)

}
{l′′n(γ̃)}−1{ej⊗B(w)}]−1.

Proof of Lemma 5:

By the Mean Value Theorem, there exists a γ∗ between γ̃ and γ̂, such that

0 = l′n(γ̂) = l′n(γ̃) + l′′n(γ∗)(γ̂ − γ̃). (A.6)

According to the previous calculation,

l′n(γ) = −2En

{
(Y −XTh) ·U ⊗B(W )− ρθ ⊗B(W )

}
= −2En

{
U ⊗B(W )ε+U ⊗B(W ) ·XT (β − h)− ρθ ⊗B(W )

}
= −2En

{
vε+ v ·XT (β − h)− ρθ ⊗B(W )

}
.

(A.7)

Since l′′n(γ∗) is invertible, then we have γ̂ − γ̃ = −{l′′n(γ∗)}−1l′n(γ̃). To prove the

theorem, it suffices to show that for any cn ∈ Rq∗p whose components are not all zero

and cTncn = Op(q), c
T
n (γ̂ − γ̃)/SD

{
cTn (γ̂ − γ̃)

}
→d N(0, 1), where

SD
{
cTn (γ̂ − γ̃)

}
=

√
(1/n2)cTn

{
l′′n(γ̃)

}−1{
V T
n (γ̃)Vn(γ̃)

}{
l′′n(γ̃)

}−1
cnσ2.
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By some algebra, we have

cTn (γ̂ − γ̃) =− cTn
{
l′′n(γ∗)

}−1
l′n(γ̃)

=
n∑
i=1

aiε
∗
i + cTn

{
l′′n(γ∗)

}−1
En

{
v(γ̃) ·XT (β̃ − h̃)− ρθ̃ ⊗B(W )

}
=A1 + A2,

where ai = cTn
{
l′′n(γ∗)

}−1
vi(γ̃)σ/n and ε∗i are independent with mean zero and vari-

ance one conditioning on {θi,Wi, i = 1, . . . , n}.

Since En

{
Ũ ⊗B(W )XT (β̃− h̃)− ρθ̃⊗B(W )

}
= ρEn

{[
ŨXT

{
E(ŨXT )

}−1
θ̃−

θ̃
]
⊗B

}
, we have A2 = op(ρq

1/2). Moreover,

n∑
i=1

a2
i =

σ2

n2

n∑
i=1

cTn
{
l′′n(γ∗)

}−1
vi(γ̃)vTi (γ̃)

{
l′′n(γ∗)

}−1
cn

=
σ2

n
cTn
{
l′′n(γ∗)

}−1 1

n

n∑
i=1

vi(γ̃)vTi (γ̃) ·
{
l′′n(γ∗)

}−1
cn

= Op(c
T
ncn/n) = Op(q/n),

thus we have A2/
√

(
∑
a2
i ) = op(nρ/q) = op(1) by Condition (Ch2.C6).

By Slutsky’s Theorem, we then only need to prove A1/
√

(
∑
a2
i ) follows a Normal

distribution. By Condition (Ch2.C3) and Lemma 3, we only need to verify that

maxi a
2
i /
∑n

i=1 a
2
i →p 0. With some calculations, we have

max
1≤i≤n

a2
i =

σ2

n2
max
1≤i≤n

[
cTn {−l′′n(γ∗)}−1 {

V T
n (γ̃)Vn(γ̃)

}1/2 {
V T
n (γ̃)Vn(γ̃)

}−1/2
vi(γ̃)

]2

≤ σ2

n2
cTn {l′′n(γ∗)}−1 · V T

n (γ̃)Vn(γ̃) · {l′′n(γ∗)}−1
cn·

max
1≤i≤n

vTi (γ̃)
{
V T
n (γ̃)Vn(γ̃)

}−1
vi(γ̃).
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According to Condition (Ch2.C2), we have

maxi a
2
i∑n

i=1 a
2
i

= max
1≤i≤n

vTi (V T
n Vn)−1vi →p 0,

as n→∞.

Because γ̂ →p γ̃, we have γ∗ →p γ̃. Since for any w ∈ D, θ̂j(w) = (ej⊗B(w))T γ̂,

then let cn = ej ⊗B(w), we have

{σ2
nj(w)}−1/2

{
θ̂j(w)− θ̃j(w)

}
→d N(0, 1),

where σ2
nj(w) = σ2/n2

{
ej ⊗B(w)}T{l′′n(γ̃)

}−1 {
V T
n (γ̃)Vn(γ̃)

}
{l′′n(γ̃)}−1 {ej ⊗B(w)}.

The proof is completed. �

Proof of Theorem 2.3.2:

It is straightforward to show that if (Z − µ)/σ ∼ N(0, 1), then

Pr
{
ζ(Z,α) < x

}
= Φ

(
x+ α− µ

σ

)
I(x ≥ 0) + Φ

(
x− α− µ

σ

)
I(x < 0).

Under regularity conditions and by Lemma 5, for 1 ≤ j ≤ p and any w ∈ D, we

have limn→∞ Pr
(
σ−1
nj θ̂j(w) − σ−1

nj θ̃j(w) < x
)

= Φ(x). Note that σ−1
nj ζ{θ̂j ,αj}(w) =
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ζ{σ−1
nj θ̂j ,σ

−1
nj αj}(w), then we have

lim
n→∞

∣∣∣∣∣Pr
[
ζ{θ̂j ,αj}(w) ≤ x

]
− Φ

(
x+ αj − θ̃j(w)

σnj

)
I(x ≥ 0)−

Φ

(
x− αj − θ̃j(w)

σnj

)
I(x < 0)

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣Pr
[
ζ{σ−1

nj θ̂j ,σ
−1
nj αj}(w) ≤ σ−1

nj x
]
− Φ

{
x+ αj − θ̃j(w)

σnj

}
I(x ≥ 0)−

Φ

{
x− αj − θ̃j(w)

σnj

}
I(x < 0)

∣∣∣∣∣
= 0.

�

Proof of Theorem 2.3.3:

Let u∗nj = θ̂j − σ̂njzξ/2 and v∗nj = θ̂j + σ̂njzξ/2.

(a). When P+ > ξ/2 and P− > ξ/2, or P− < ξ/2 and P+ > 1 − ξ/2, or P+ < ξ/2

and P− > 1 − ξ/2, then ζ(u∗nj ,αj)
6= 0 and ζ(v∗nj ,αj)

6= 0. Therefore θ̂j − σ̂njzξ/2 ≤

θ̃j ≤ θ̂j + σ̂njzξ/2 is equivalent to ζ(θ̂j, αj) − σ̂njzξ/2 ≤ ζ(θ̃j ,αj)
≤ ζ(θ̂j, αj) + σ̂njzξ/2.

Therefore,

lim
n→∞

Pr
{
ζ(θ̂j ,αj)

− σ̂njzξ/2 ≤ ζ(θ̃j ,αj)
≤ ζ(θ̂j ,αj)

+ σ̂njzξ/2

}
= lim

n→∞
Pr
(
θ̂j − σ̂njzξ/2 ≤ θ̃j ≤ θ̂j + σ̂njzξ/2

)
= lim

n→∞
Pr
(
θ̃j − σ̂njzξ/2 ≤ σ̂−1

nj θ̂j ≤ θ̃j + σ̂njzξ/2

)
=1− ξ.

That is,
[
ζ(θ̂j ,αj)

− σ̂njzξ/2, ζ(θ̂j ,αj)
+ σ̂njzξ/2

]
is the 1−ξ confidence interval for ζ(θ̃j ,αj)

.

(b). When P+ < ξ/2 and ξ − P+ < P− < 1− ξ/2, then ζ(u∗nj ,αj)
6= 0 and ζ(v∗nj ,αj)

= 0.

Let A = σ̂−1
nj αj + δ0 − σ̂−1

nj θ̂j and B satisfy Pr(z < −A) + Pr(z > B) = ξ, where
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z ∼ N(0, 1) and δ0 > 0 is small enough such that σ̂−1
nj θ̂ − B < −σ̂−1

nj αj. Then,

limn→∞ Pr
{
−A ≤ σ̂−1

nj (θ̂ − θ̃j) ≤ B
}

= 1 − ξ, i.e. limn→∞ Pr(θ̂j − σ̂njB ≤ θ̃j ≤

θ̂j + σ̂njA) = 1 − ξ. By the definitions of A and B, we have ζ(θ̂j+σ̂njA,αj)
> 0 and

ζ(θ̂j−σ̂njB) < 0. Therefore, similar to part (a), we have,

lim
n→∞

Pr
{
ζ(θ̂,αj)

− σ̂njB ≤ ζ(θ̃j ,αj)
≤ σ̂njδ0

}
= lim

n→∞
Pr
(
θ̂j − σ̂njB ≤ θ̃j ≤ θ̂j + σ̂njA

)
=1− ξ.

Then,
[
ζ(θ̂,αj)

− σ̂njB, σ̂njδ0

]
is the 1 − ξ confidence interval for ζ(θ̃j ,αj)

, where B =

Φ−1
{

1− ξ + Φ(−σ̂−1
nj αj + σ̂−1

nj θ̂j + δ0)
}

.

(c). When P− < ξ/2 and ξ − P− < P+ < 1− ξ/2, then ζ(u∗nj ,αj)
= 0 and ζ(v∗nj ,αj)

6= 0.

Let B = σ̂−1
nj αj + δ0 + σ̂−1

nj θ̂j and A satisfy Pr(z < −A) + Pr(z > B) = ξ, where

z ∼ N(0, 1) and δ0(δ0 > 0) is small enough such that σ̂−1
nj θ̂ + A > σ̂−1

nj αj. Similar to

part (b), we have

lim
n→∞

Pr
{
−σ̂njδ0 ≤ ζ(θ̃j ,αj)

≤ ζ(θ̂,αj)
+ σ̂njA

}
= lim

n→∞
Pr
(
σ̂−1
nj θ̃ − A ≤ σ̂−1

nj θ̂j ≤ σ̂−1
nj θ̃ +B

)
=1− ξ.

Then,
[
−σ̂njδ0, ζ(θ̂,αj)

+ σ̂njA
]

is the 1− ξ confidence interval for ζ(θ̃j),αj
, where A =

−Φ−1
{
ξ − 1 + Φ(σ̂−1

nj αj + σ̂−1
nj θ̂j + δ0)

}
.

(d). When P+ + P− < ξ, then ζ(u∗nj ,αj)
= 0 and ζ(v∗nj ,αj)

= 0. Therefore, σ̂−1
nj θ̂j −

zξ/2 ≤ σ̂−1
nj θ̃j ≤ σ̂−1

nj θ̂j + zξ/2 implies that 0 = ζ(σ̂−1
nj θ̂j−zξ/2,σ̂

−1
nj αj)

≤ ζ(σ̂−1
nj θ̃j ,σ̂

−1
nj αj)

≤

ζ(σ̂−1
nj θ̂j+zξ/2,σ̂

−1
nj αj)

= 0. Therefore, Pr
{
ζ(θ̃j ,αj)

= 0
}
≥ limn→∞ Pr(σ̂−1

nj θ̃j − zξ/2 ≤

σ̂−1
nj θ̂j ≤ σ̂−1

nj θ̃j + zξ/2) = limn→∞ Pr(σ̂−1
nj θ̃j − zξ/2 ≤ σ̂−1

nj θ̂j ≤ σ̂−1
nj θ̃j + zξ/2) = 1 − ξ.

Then [0, 0] is a confidence interval for ζ(θ̃j ,αj)
with at least 1− ξ coverage probability.
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As δ0 in (b) and (c) can be arbitrarily small, the results remain valid when δ0 goes

to 0. Let δ0 → 0, then the confidence interval for ζ(θ̃j ,αj)
with at least 1− ξ coverage

probability is

[unj(w), vnj(w)]

=



[
β̂j(w)− σ̂njzξ/2, β̂j(w) + σ̂njzξ/2

]
, P+ > ξ/2 and P− > ξ/2,

or P− < ξ/2 and P+ > 1− ξ/2,

or P+ < ξ/2 and P− > 1− ξ/2[
β̂j(w)− σ̂njB̂, 0

]
, P+ < ξ/2 and ξ − P+ < P− < 1− ξ/2[

0, β̂j(w) + σ̂njÂ
]
, P− < ξ/2 and ξ − P− < P+ < 1− ξ/2

[0, 0], P+ + P− < ξ

,

(A.8)

where Â = −Φ−1
{
ξ−1+Φ(σ̂−1

nj αj+σ̂
−1
nj θ̂j)

}
and B̂ = Φ−1

{
1−ξ+Φ(−σ̂−1

nj αj+σ̂
−1
nj θ̂j)

}
.

Since the bias βj − ζ(θ̃j ,αj)
is asymptotically negligible relative to the variance of

θ̂j, and P̂+ → P+ and P̂− → P− as n→∞, the asymptotic 1− ξ confidence interval

(A.8) for ζ(θ̃j ,αj)
is also an asymptotic 1− ξ confidence interval for βj with P+ and P−

replaced by P̂+ and P̂−.

When βj(w) 6= 0, the boundary points will not be zero as we defined in (a) and

the limiting coverage probability is 1 − ε. When βj(w) = 0, since β̂j(w) → βj(w) as

n→∞. Therefore, there exists N > 0 such that when n > N , P+ < ε/2 or P− < ε/2

and P+ + P− < 1 − ε/2 by their definition. Then unj(w) = 0 and (or) vnj(w) = 0.
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We have

Pr(unj = 0 or vnj = 0) = Pr
{
ζ(u∗nj ,αj)

= ζ(v∗nj ,αj)
= 0
}

= Pr
{
|θ̂j − σ̂njzξ/2| ≤ αj or |θ̂j + σ̂njzξ/2| ≤ αj

}
= Pr

{
− αj + σ̂njzξ/2 ≤ θ̂j ≤ αj + σ̂njzξ/2 or

− αj − σ̂njzξ/2 ≤ θ̂j ≤ αj − σ̂njzξ/2
}

≥ Pr
{
− αj + σ̂njzξ/2 ≤ θ̂j ≤ αj + σ̂njzξ/2

}
> 0.

Therefore, [unj, vnj] is a sparse confidence interval for βj. �

A.1.4 Additional results for preoperative opioid study

In this section, we describe additional results for real data analysis. As opposed

to the literature on opioid use [19, 20, 37, 44, 58, 83], our results shed light on how

the effects of opioid risk factors are modified by the level of BMI [62]. For exam-

ple, both worst pain score shows significant impacts on the dose of preoperatively

used opioids across the whole range of BMI (Figure 2.5 in main text). The coefficient

function of ASA score is significantly positive except for patients with extremely large

BMIs; when BMI is 21 and other covariates remain unchanged, the daily dose level

of preoperative opioid use will significantly increase 0.13 units comparing patients

having severe systemic disease or worse with those having mild systemic disease or

healthy patients, indicating worse health condition increases the preoperative opioid

use (Figure A.1 below). Depression [44] is positively associated with opioid use re-

gardless of the level of BMI, but the effect is only significant when BMI is smaller

than 42; when BMI is 25 and adjusting for other covariates, patients with depression

take 0.1 more units of opioids before the surgery (Figure A.1). Illicit drug use [58]

has positive effects only for patients with BMI greater than 19·6 (Figure A.1 below).
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Both anxiety and alcohol use [37] have positive effects only when BMI is large or

small; apnea status [20] is positively associated with preoperative opioid use only for

patients whose BMI is within 24·0 to 27·0 (Figure A.2 below).

The results from sub-group analyses are summarized in Table A.1 below.

Table A.1: Estimation results from sub-group analysis

BMI group < 18 [18, 30) [30, 49.5) ≥ 49.5
β p β p β p β p

(Intercept) -0.293 0.258 0.065 0.014 0.029 0.417 0.064 0.794
Sex 0.305 0.021 0.024 0.016 0.017 0.182 -0.138 0.197
Age 0.010 0.009 -0.001 0.000 -0.001 0.041 0.001 0.711
Race (black) -0.191 0.636 0.017 0.509 0.014 0.577 -0.431 0.015
Race (Asian) 0.376 0.379 -0.028 0.426 -0.098 0.244 -0.652 0.199
Race (other) 0.388 0.136 -0.012 0.615 -0.017 0.606 -0.013 0.945
Worst pain 0.008 0.757 0.024 0.000 0.020 0.000 0.047 0.034
FM 0.024 0.079 0.014 0.000 0.014 0.000 -0.002 0.825
Average overall pain 0.070 0.022 0.035 0.000 0.038 0.000 0.042 0.067
Life satisfaction -0.058 0.018 -0.008 0.000 -0.004 0.146 -0.011 0.571
Depression -0.106 0.428 0.054 0.000 0.066 0.000 -0.084 0.520
Anxiety 0.172 0.188 -0.016 0.181 -0.007 0.629 0.039 0.728
Comorbidity (>3) 0.075 0.704 0.032 0.017 0.021 0.218 0.143 0.267
Comorbidity (0-3) -0.051 0.784 -0.014 0.491 0.013 0.533 -0.026 0.834
Alcohol -0.056 0.632 -0.009 0.357 -0.020 0.099 0.205 0.046
Apnea -0.113 0.734 -0.007 0.617 -0.004 0.767 0.065 0.496
Drug 0.056 0.792 0.075 0.002 0.084 0.010 0.304 0.206
Tobacco use 0.132 0.312 0.066 0.000 0.053 0.000 -0.097 0.315
ASA > 3 -0.054 0.677 0.101 0.000 0.075 0.000 0.092 0.398
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Figure A.1: Estimation results (II) for the preoperative opioid use data using
the B-spline method, the local polynomial method and the STV method:
the black solid lines are the estimated coefficient function curves for each
variable; the dotted lines are the pointwise (sparse) confidence intervals.
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Figure A.2: Estimation results (III) for the preoperative opioid use data using
the B-spline method, the local polynomial method and the STV method: the
black solid lines are the estimated coefficient function curves for each variable;
the dotted lines are the pointwise (sparse) confidence intervals.
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Figure A.3: Estimation results (IV) for the preoperative opioid use data using
the B-spline method, the local polynomial method and the STV method: the
black solid lines are the estimated coefficient function curves for each variable;
the dotted lines are the pointwise (sparse) confidence intervals.
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Figure A.4: Estimation results (V) for the preoperative opioid use data using
the B-spline method, the local polynomial method and the STV method:
the black solid lines are the estimated coefficient function curves for each
variable; the dotted lines are the pointwise (sparse) confidence intervals.
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Figure A.5: Estimation results (VI) for the preoperative opioid use data using
the B-spline method, the local polynomial method and the STV method: the
black solid lines are the estimated coefficient function curves for each variable;
the dotted lines are the pointwise (sparse) confidence intervals.
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APPENDIX B

Appendices for Chapter III

B.1 Appendix for Generalized Dynamic Effect Change Model:

An Interpretable Extension of GAM

We begin with some notation. Let Lr(P ) denote the collection of functions g :

X 7→ R such that ||g||r,P =
[∫
X |g(x)|rdP (x)

]1/r
<∞. Let

S = {b{h(x;θ)} − b{h(x;θ0)} : ||θ − θ0|| ≤ δn,θ ∈ Θ}

with δn > 0. An ε-bracket in Lr(P ) is a pair of functions l, u ∈ Lrp with P{l(X) ≤

f(X) ≤ u(X)} and with ||l − r||r,P ≤ ε. The bracketing number N[ ](ε,F, Lr(P )) is

the minimum number of ε-brackets in Lr(P ) needed to ensure that every f ∈ F lies

in at least one bracket. In the following, di > 0 are constants. Let f(ξ) be a function

of random variable ξ, Ef(ξ) =
∫
f(ξ)d Pr(ξ), and Enf(ξ) =

∑n
i=1 f(ξi)/n.

Lemma 6 Under Conditions Ch3.C3 and Ch3.C4, the entropy of Hn is bounded

by (1/ε)2/(2η−1) + q log(1/ε).
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Proof of Lemma 6: Let Sk = {cbk : ||cbk|| ≤ B}, where B <∞ is a constant. The

bracketing number

N[ ](ε, Sk, || · ||∞) .
B

λkε
=
kηB

ε
.

Therefore, N[ ](ε,Hn, || · ||∞) . (1/ε)q
∏q

k=1Bk
η by Condition Ch3.C4. The en-

tropy logN[ ](ε,Hn, || · ||∞) . q log(1/ε). By Lemma 2 in [68], we have logN[ ](ε,Hn, || ·

||∞) . (1/ε)2/(2η−1) by Condition Ch3.C3. Combining above results, we have that

logN[ ](ε,Hn, || · ||∞) . min{q log(1/ε), (1/ε)2/(2η−1)} . q log(1/ε) + (1/ε)2/(2η−1).

�

Proof of Theorem 3.3.1:

We let Gn(θ) = Enl(θ;X, Y )− El(θ;X, Y ) = (En − E) [Y h(θ;X)− b{h(θ;X)}],

then

Gn(θ)−Gn(θn) = (En − E) {l(θ;X, Y )− l(θn;X, Y )}

= (En − E) {Y h(θ;X)− Y h(θn;X)} − (En − E) {b{h(θ;X)} − b{h(θn;X)}}

= A+B,

where θn is the projection of θ in Θn.

LetM =
{∫ x

0
β(t)dt : β ∈ Hn

}
. We claim that N[ ](ε,M, ||·||2) ≤ N[ ](ε,Hn, ||·||2).

For β1 ∈ Hn, we assume that l1 ≤ β1 ≤ r1 and ||l1−r1|| ≤ ε, then l1, r1 is an ε-bracket

for β1. By integration, we have
∫ x

0
l1(t)dt ≤

∫ x
0
β1(t)dt ≤

∫ x
0
r1(t)dt. Since

∣∣∣∣∫ x

0

l1(t)dt−
∫ x

0

r1(t)dt

∣∣∣∣ ≤ ∫ x

0

|l1(t)− r1(t)|dt

=

∫ 1

0

|l1(t)− r1(t)|I(t ≤ x)dt

≤

√∫ 1

0

|l1(t)− r1(t)|2dt

√∫ 1

0

[I(t ≤ x)]dt

= ε · x,
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we have ||
∫ x

0
l1(t)dt−

∫ x
0
r1(t)dt||2 =

√∫ 1

0
|
∫ x

0
l1(t)dt−

∫ x
0
r1(t)dt|2dx ≤

√∫ 1

0
ε2x2dx =

ε/
√

3. Therefore, N[ ](ε,M, || · ||2) ≤ N[ ](ε,Hn, || · ||2). By Lemma 6, logN[ ](ε,M, || ·

||∞) . (1/ε)2/(2η−1) + q log(1/ε).

Let M1 =
{
h(θ;X) = α0 +

∑p
j=1

∫ Xij
0
{αj + βj(x)} dx : βj ∈ Hn

}
. Since p =

O(1), we have logN[ ](ε,M1, || · ||∞) . (1/ε)2/(2η−1) + q log(1/ε). The bracketing inte-

gral of M1 is

J[ ](δ,M1, || · ||∞) =

∫ δ

0

√
1 + logN[ ](ε,M1, || · ||∞) . δ(2η−2)/(2η−1) + q1/2δ.

By Lemma 3.4.2 in Van Der Vaart and Wellner (1996) [85], we have

E∗ sup
||θ−θn||<δ2,θ∈Θn

|A| . J[ ](δ,M1, || · ||∞) . δ(2η−2)/(2η−1) + q1/2δ.

Since function b is monotone, we also have

E∗ sup
||θ−θn||<δ2,θ∈Θn

|B| . J[ ](δ,M1, || · ||∞) . δ(2η−2)/(2η−1) + q1/2δ.

According to Theorem 3.4.1 of Van Der Vaart and Wellner (1996) [85], we can

choose φn(δ) = δ(2η−2)/(2η−1), and then ||θ̂n − θn||∞ = n−(2η−1)/(4η) + (q/n)1/2.

Since ||βj − βnj||2 = O(1/q4) [66], we have ||θ0 − θn||2 = O(1/q4) with p fixed.

Therefore, ||θ̂−θ0||∞ ≤ ||θ̂n−θn||∞+ ||θn−θ0||∞ = O(n−(2η−1)/(4η) +(q/n)1/2 +1/q2).

�

Proof of Theorem 3.3.2:

The iterative least squares approach suggests working on the random vector z =

Uγ + Γ(Y − µ). Then

γ̂ =
1

n
(
1

n
UTWU)−1UTWz.
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To prove the theorem, we first prove that for any non-zero (pq+p+1) dimensional

constant vector c, we have

cT (γ̂ − γ̃)/SD(cT γ̂)→d N(0, 1)

as n→∞, where SD(cT γ̂) = {Var(cTγ)}1/2.

By calculations, we have

cT (γ̂ − γ̃) =
1

n
cT (

1

n
UTWU)−1UTWz − cT γ̃

=cT (UTWU)−1UTWΓ(Y − µ) + cT
{

(
1

n
UTWU)−1 1

n
UTWU − I

}
γ̃

=A1 + A2,

where I is the identity matrix of dimension pq + p+ 1.

We rewrite A1 = 1
n

∑n
i c

T ( 1
n
UTWU)−1UiWiiΓii(Yi − µi) =

∑n
i aiξi with ai =

1
n
cT ( 1

n
UTWU)−1W 1/2Ui and ξi = (Yi − µi)/

√
V (µi). Since ξi are independent with

mean zero and variance one, we only need to verify the Lindeberg condition

maxi a
2
i∑

i a
2
i

→p 0, as n→∞,

to prove A1/
√∑

i a
2
i is asymptotically N(0, 1).

By calculations, we have

n∑
i

a2
i =

1

n2

n∑
i

{
cT (

1

n
UTWU)−1W 1/2Ui

}2

=
1

n
cT (

1

n
UTWU)−1 1

n

n∑
i

WiiUiU
T
i (

1

n
UTWU)−1c

=
1

n
cT (

1

n
UTWU)−1(

1

n
UTWU)(

1

n
UTWU)−1c

= Op(
cT ( 1

n
UTWU)−1c

n
),
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and

max
i
a2
i =

1

n2
max
i

{
cT (

1

n
UTWU)−1W 1/2Ui

}2

≤ 1

n2
cT (

1

n
UTWU)−1c ·max

i
UT
i (

1

n
UTWU)−1Ui.

Since the eigenvalues of UTWU/n are bounded above by Condition Ch3.C2, we

have

maxi a
2
i∑n

i a
2
i

≤ o(
1

nmaxi UT
i ( 1

n
UTWU)−1Ui

)→ 0,

as n→∞.

Therefore, A1/
√∑

i a
2
i is asymptotically N(0, 1).

|A2| =
∣∣∣∣cT {(

1

n
UTWU)−1 1

n
UTWU − I

}
γ

∣∣∣∣
≤
√
cT (

1

n
UTWU)−1c

√
γT (

1

n
UTWU)−1γ

Therefore, |A2|/
√∑

i a
2
i = 1/n1/2 = o(1) by Condition Ch3.C2.

By Slusky’s Theorem, we have

cT (γ̂ − γ̃)/SD(cT γ̂)→d N(0, 1)

as n→∞, where

SD(cT γ̂) =

√∑
i

a2
i =

{
1

n
cT (

1

n
UTWU)−1c

}1/2

.

Since el,m is the l-dimensional vector with the m-th element taken to be one and

zero elsewhere, 0p+1 is the p+ 1 dimension vector of 0s, cj(x) = (0p+1, ep,j ⊗B(x))T ,

and

C = (epq+p+1,0, epq+p+1,1, . . . , epq+p+1,p, c1(x1), . . . , cp(xp))
T ,
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the estimator of θ = (α0, . . . , αp, β1(x1), . . . , βp(xp))
T is θ̂ = Cγ̂. Then by Cramer-

Wold device Theorem, we have

Σ−1/2(θ̂(x)− θ0(x))→d N(0, I),

where Σ = CT (UTWU)−1C. The proof is completed. �
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APPENDIX C

Appendices for Chapter IV

C.1 Appendix for Chapter Soft-Thresholding Operator for

Modeling Sparse Time-Varying Effects in Survival Anal-

ysis

We introduce some notation that are needed in the proofs. Let

mn(t, z, g) = [g(z)− logS0n(t, g)] I[0 ≤ t ≤ τ ],

m0(t, z, g) = [g(z)− logS0(t, g)] I[0 ≤ t ≤ τ ],

Mn(g) = P∆nmn(·, g),

M0(g) = P∆m0(·, g),

G = {g(z) : g(z, t) =

p∑
j=1

zjβj(t), βj ∈ H, 1 ≤ j ≤ p, ||g − gn|| ≤ δ},

and En,δ = {m0(·, g)−m0(·, gn), g ∈ G, ||g, gn|| ≤ δ}.

Hereafter, ci (i = 1, . . . , 4) are some constants.

Proof of Theorem 4.3.1:
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For every f ∈ F0, by Corollary 6.21 of Schumaker (2007) [71] , there exists an

fn ∈ F, ||fn − f ||∞ = O(q−m). For any δ1 > 0 and δ2 > 0, ∃ η constructing h, such

that ||h(fn)− ζ(fn)|| < δ1 and |h(f)− ζ(f)|| < δ2. Then we have,

||h(fn)− h(f)|| < ||h(fn)− ζ(fn)||+ ||ζ(fn)− ζ(f)||+ ||ζ(f)− h(f)||

= A1 + A2 + A3.

Let δ1 = O(q−m) and δ2 = O(q−m), then A1 < δ1 = O(q−m) and A2 < δ2 =

O(q−m). We have A3 ≤ ||fn−f || = O(q−m) because the Lipschitz continuous property

in Lemma 1 of Kang et al. (2018) [51]. Therefore, ||h(fn) − h(f)||∞ = O(q−m). For

simplicity of notation, let hnj denote h(fnj) and h0j denote h(f0j).

Let gn =
∑p

j=1 Zjhnj. Then, given Z, |gn − g0| = |
∑p

j=1 Zj(hnj − h0j)| ≤∑p
j=1 |Zj||(hnj − h0j)| = Op(q

−m). Thus, we have ||gn − g0|| = Op(q
−m).

By Lemma 5.1 of Huang (1999) [46], ||ĝn − gn||22 = op(1). We then only need to

prove

E sup
δ/2<||g−gn||≤δ

|Mn(g)−Mn(gn)− (M0(g)−M0(gn))| = Op(n
− 1

2 δ(q
1
2 + log

1
2 (1/δ))).

(C.1)

By derivation, we have

Mn(g)−Mn(gn)− {M0(g)−M0(gn)}

=P∆nmn(·, g)− P∆nmn(·, gn)− P∆m0(·, g) + P∆m0(·, gn)

=P∆nmn(·, g)− P∆m0(·, g)− P∆nmn(·, gn) + P∆m0(·, gn)

=P∆n{logS0n(·, g)− logS0(·, g)} − P∆n{logS0(·, gn)− logS0(·, gn)}

=J1n + J2n.

Since by Lemma 1 in Chapter II, for any β ∈ Hn and any α > 0, we can find

at least one f ∈ Fn such that β = ζ(f, α), then logN[](ε,Hn, δ) ≤ logN[](ε,Fn, δ) .
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c1q log(δ/ε) by calculation in Shen and Wong (1994) [72]. Therefore, we can also

obtain logN[](ε,Hn, δ) . c2q log(δ/ε) according to its construction. Because both

exp and log are monotone functions, we have logN[](ε, En,δ, δ) . c2q log(δ/ε) +

c3q log(δ/ε) . c4q log(δ/ε), where c4 = max(c2, c3).

Therefore, J[](δ, εn,δ, ρ) =
∫ δ

0

√
1 + logN[](ε, En,δ, ρ)dε . δq

1
2 . By Lemma 3.4.2 of

Van Der Vaart and Wellner (1996) [85], we have

E||J1n|| . n−
1
2 q

1
2 δ(1 +

q
1
2 δ

δ2
√
n
c5) = O(n−

1
2 q

1
2 δ). (C.2)

On the other hand, we have

sup
||g−gn||≤δ

|J2n| ≤ 2 sup
0≤t≤τ,||g−gn||≤δ

∣∣∣∣log S0n(·, g)

S0n(·, gn)
− log S0(·, g)

S0(·, gn)

∣∣∣∣
. sup

0≤t≤τ,||g−gn||≤δ

∣∣∣∣ S0n(·, g)

S0n(·, gn)
− S0(·, g)

S0(·, gn)

∣∣∣∣
. sup

0≤t≤τ,||g−gn||≤δ

∣∣∣∣S0n(·, g)S0(·, gn)− S0n(·, gn)S0(·, g)

S0n(·, gn)S0(·, gn)

∣∣∣∣ .
Since the denominator is bounded away from 0 with probability approaching to

1, we only need to consider the numerator. By calculation, we have

S0n(·, g)S0(·, gn)− S0n(·, gn)S0(·, g)

=S0(t, gn){S0n(t, g)− S0n(t, gn)− S0(t, g) + S0(t, gn)}−

{S0n(t, gn)− S0(t, gn)}{S0(t, g)− S0n(t, g)}

=I1n − I2n.

Since I1n = S0(t, gn)Y (t)[exp(g(z))− exp(gn(z))], we consider the class of function

Y (t) exp(g(z)). Since exp is monotone and the entropy of the class of indicator

function Y (t) = I[0 ≤ t ≤ τ ] is δ log
1
2 (1/δ), we have that the entropy of the class of

function Y (t)exp(g(z)) is δ(q
1
2 + log

1
2 (1/δ)). By Lemma 3.4.2 of Van Der Vaart and
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Wellner (1996) [85], I1n . n−
1
2 δ(q

1
2 + log

1
2 (1/δ)).

By Taylor’s expansion and Jensen’s inequality, we have

|S0(t, g)− S0(t, gn)| ≤ E(Y (t)[exp(g)− exp(gn)])

≤ E(exp(gn)|g − gn|)

. (E(g − gn)2)
1
2 = Op(δ).

Since Sn(t, gn)− S0(t, gn) = Op(n
− 1

2 q
1
2 ), we obtain I2n = Op(n

− 1
2 q

1
2 δ).

Therefore, sup||g−gn||≤δ |J2n| . n−
1
2 δ(q

1
2 + log

1
2 (1/δ)). Thus, we have Mn(g) −

Mn(gn)− {M0(g)−M0(gn)} = Op(n
− 1

2 δ(q
1
2 + log

1
2 (1/δ))).

According to Theorem 3.4.1 of Van Der Vaart and Wellner (1996) [85], the key

function φ(δ) takes the form φn(δ) = δ(q
1
2 + log

1
2 (1/δ)). Therefore, ||(ĝn − gn)||2 =

Op((q/n)
1
2 ).

Therefore, we have

||ĝn − g0||22 ≤ ||ĝn − gn||22 + ||gn − g0||22

≤ Op(q/n) +OP (q−2m)

≤ Op(rn),

(C.3)

where rn = q/n+ q−2m.

Then by Lemma 1 of Stone (1985) [75], we have

E(Zjĥj(t)− Zjhj(t))2 = Op(rn), 1 ≤ j ≤ p. (C.4)

By Condition Ch4.C3, there exists δ, ε > 0, Pr(|Zj| > δ) > ε. Then

E(Zjĥj(t)− Zjhj(t))2 > Pr(|Zj| > δ)δ2(ĥj(t)− hj(t))2

> εδ2(ĥj(t)− hj(t))2.

(C.5)
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Therefore for any t, we have (β̂j(t)−βj(t))2 = Op(rn), i.e. |β̂j(t)−βj(t)| = Op(r
1/2
n ).

Then we have ||β̂j − βj||∞ = Op(r
1/2
n ) for j = 1, . . . , p. �

Proof of Theorem 4.3.2:

We show Theorem 4.3.2 is true when τ = 1. The extension to any τ < ∞ is

straightforward so it is omitted here.

Following the counting process notation in Anderson and Gill (1982) [4], we let

C(γ, t) =
n∑
i=1

∫ t

0

p∑
j=1

Zijhj(γj, s)dNi(s)−
∫ t

0

log

{
n∑
i=1

Yi(s) exp{
p∑
j=1

Zij(s)hj(γj, s)}

}
dN̄(s),

then we have,

PL(γ) = C(γ, 1)− ρ||θ||22.

Then for any γ,

PL
′
(γ) = C

′
(γ, 1)− ρ

n∑
i=1

θ ⊗B(Ti).

By Taylor’s expansion, we have that

{PL}′(γ̂)− PL
′
(γ̃) = {PL}′′(γ∗)(γ − γ̃),

where γ∗ is on the line segment between γ̂ and γ̃. Since {PL}′(γ̂) = 0, we have

γ − γ̃ = −
[
{PL}′′(γ∗)

]−1

PL
′
(γ̃)

= −
[
{PL}′′(γ∗)

]−1
{
C
′
(γ̃, 1)− ρ

n∑
i=1

θ0 ⊗B(Ti)

}

= −
[
{PL}′′(γ∗)

]−1

C
′
(γ̃, 1) + ρ

[
{PL}′′(γ∗)

]−1
n∑
i=1

θ ⊗B(Ti).
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The goal is to prove that for any non-zero a,

aT (γ̂ − γ̃)

σ̂(a)
→d N(0, 1),

where σ̂(a) = naT
[
{PL}′′(γ̃)

]−1
Σ(γ̃, 1)

[
{PL}′′(γ̃)

]−1
a.

We claim that

aT
[
−{PL}′′(γ∗)

]−1
C
′
(γ̃, 1)

σ̂(a)
→d N(0, 1) (C.6)

and

ρaT
[
{PL}′′(γ∗)

]−1
n∑
i=1

θ ⊗B(Ti)/σ̂(a)→p 0. (C.7)

To show (C.6), we will utilize the martingale theories in Anderson and Gill (1982)

[4] to prove that aT
[
−{PL}′′(γ∗)

]−1
C
′
(γ̃, t)/σ̂(a) is converging to a Gaussian pro-

cess. By calculation, we have

C
′
(γ̃, t) =

n∑
i=1

∫ t

0

{Ai(γ̃, s)− E(γ̃, s)} dMi(s),

where Ai(γ̃, s) = Ui ⊗Bi and E(γ̃, s) = S1(γ̃, s)/S0(γ̃, s).

Then we have

aT
[
−{PL}′′(γ∗)

]−1

σ̂(a)
C
′
(γ̃, t) =

n∑
i=1

∫ t

0

aT
[
−{PL}′′(γ∗)

]−1

σ̂(a)
{Ai(γ̃, s)− E(γ̃, s)} dMi(s).

Let

Hi(s) =
aT
[
−{PL}′′(γ∗)

]−1

σ̂(a)
{Ai(γ̃, s)− E(γ̃, s)} ,

we then can show claim C.6 is true by applying Theorem I.2 in Anderson and Gill

(1982) [4]. Condition (I.3) of Theorem I.2 is valid because by Condition Ch4.C2,
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Ch4.C7 and Ch4.C8, we have

∫ t

0

n∑
i=1

H2
i (s)λi(s)ds =aT

[
−{PL}′′(γ∗)

]−1

·

∫ t

0

n∑
i=1

{Ai(γ̃, s)− E(γ̃, s)} {Ai(γ̃, s)− E(γ̃, s)}T λi(s)ds·[
−{PL}′′(γ∗)

]−1

a/σ̂2(a)

→p r(t),

where r(t) is some positive function of t and r(1) = 1.

By similar arguments in Anderson and Gill (1982), condition (I.4) of Theorem I.2

is true by Condition Ch4.C2, Ch4.C7, and Ch4.C9. Then claim (C.6) is valid.

Claim (C.7) is valid because

ρ

∣∣∣∣∣aT [{PL}′′(γ∗)
]−1

n∑
i=1

θ ⊗B(Ti)/σ̂(a)

∣∣∣∣∣ ≤ Op(nρ)→p 0. (C.8)

by Condition Ch4.C6

Therefore, for any non-zero a,

aT (γ̂ − γ̃)

σ̂(a)
→d N(0, 1),

where σ̂(a) = naT
[
{PL}′′(γ̃)

]−1
Σ(γ̃, 1)

[
{PL}′′(γ̃)

]−1
a.

Since for any t ∈ [0, τ ], θ̂j(t) = (ej ⊗B(t))T γ̂, then let a = ej ⊗B(t), we have

for any t ∈ [0, τ ],

θ̂j(t)− θj(t)
σnj(t)

→d N(0, 1),

where σ2
nj(t) = n{ej ⊗B(t)}T

[
−{PL}′′(γ∗)

]−1
Σ(γ̃, 1)

[
−{PL}′′(γ∗)

]−1 {ej ⊗B(t)}.

The proof is completed. �
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