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ABSTRACT

Quantile regression is a useful tool for testing the possible effect of covariates,

especially when the effect is heterogeneous. Classical methods designed to test the

effect at one quantile level can be sensitive to the quantile level choice. In this

dissertation, we propose a regional quantile regression rank test as a generalization

of the rank test at an individual quantile level. The proposed test statistic allows

us to detect the treatment effect for a prespecified quantile interval by integrating

the regression rank scores over the quantile region of interest. A new model-based

bootstrap method is constructed to estimate the null distribution of the test statistic.

A simulation study is conducted to demonstrate the validity and usefulness of the

proposed test. We also illustrate the power of the proposed test using sub-samples

from the 2016 US birth weight data.

We then generalize the regional quantile regression rank test to censored quantile

regression settings. We propose a censored version of the regression rank score using

the redistribution of the probability mass for each censored observation. The model-

based bootstrap algorithm is also generalized to implement the test. We illustrate

the advantage of the proposed method through simulation and apply our method

to study how the early environment condition influences the survival time of the

bighorn sheep.

viii



In a related study, we consider the genome-wide association study where the goal

is to select genes that are associated with an outcome of interest. One major challenge

for the genome-wide association study is how to handle the possible interactions

between the genes and the environment. We propose a two-stage model, including

one that relies on the conditional quantile levels of the outcome variables, to allow

the genes to have comprehensive interactions with the environment. We use the two-

stage model to study a lung cancer data set to identify new genes that can potentially

influence lung cancer patients’ survival time.
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CHAPTER I

Introduction

It has been a classical question in statistics to study the relationship between the

predictor X and the outcome Y . The least squares regression, which assumes the

conditional mean of Y can be expressed as a function of X, is probably the most

common tool to answer this question. Besides focusing on the conditional mean of

Y , it is also useful to study how X affects the conditional quantile of Y because of

two reasons. Firstly, the conditional quantiles are less influenced by the outliers than

the conditional mean; secondly, when the errors are heterogeneous, the effects of X

at various conditional quantiles of Y vary and are also different from its effect on the

conditional mean.

Quantile regression, which was first studied in Koenker and Bassett (1978), can

be used to study the effect of X on the conditional quantiles of Y . A linear quantile

regression model can be represented as

yi = xTi β(τ) + ei,τ , i = 1, 2, ...n, (1.1)
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where xi = (xi1, xi2, ...xip) ∈ Rp with xi1 = 1, β(τ) = (β1(τ), ..., βp(τ)) ∈ Rp and

ei,τ are independent errors. For identifiability, we require that at any quantile level

τ ∈ (0, 1), the conditional τth quantile of ei,τ given xi is 0. One can assume that

Model (1.1) holds locally at a specific τ or globally at any τ ∈ (0, 1). To ensure

model validity, we require xTi β(τ) to be a monotone increasing function of τ given

any xi if Model (1.1) is assumed to hold globally.

The quantile regression estimates of β(τ) are obtained by

β̂(τ) = argmin
t∈Rp

n∑
i=1

ρτ (yi − xTi t), (1.2)

where ρτ (u) = u(τ − I(u < 0)) is the check loss function proposed in Koenker and

Bassett (1978). This linear optimization problem can be easily solved for all τ in

(0,1) as discussed in Koenker (2005). Koenker and Machado (1999) introduced the

likelihood ratio test, the Wald test and the rank test for inference in the quantile

regression settings. Interested readers may refer to Koenker (2005) for a comprehen-

sive introduction to quantile regression. A review of the more recent developments

in quantile regression can be found in Koenker et al. (2017).

In this thesis, we develop new methods based on the global quantile regression

model. Traditionally, to use a quantile regression, we first choose a quantile level τ

and then carry out the estimation and inference at the specified τ . However, it can

be challenging to choose a proper quantile level in practice. Moreover, tests may have

reduced power since information at a single τ is limited. Therefore in Chapter 2, we

propose a regional quantile regression rank test that allows us to detect the effect for
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the covariates over a pre-specified quantile region. It can be shown that the proposed

test statistic converges to a mixed chi-square distribution, and we construct a new

model-based bootstrap method to estimate this distribution. The main idea for the

bootstrap algorithm is to sample from the conditional quantile functions estimated

under the null hypothesis but over a slightly wider region then the target quantile

region. Our model-based bootstrap approximates the data generative procedure

consistently and uniformly over a given region of τ , and it can also be used to

approximate the null distribution for other test statistics.

In biomedical studies, it happens quite often that the responses are not fully

observed for some individuals due to censoring. Censored quantile regression can be

used instead of quantile regression to study this type of data. Multiples estimation

procedures have been proposed in the literature for censored quantile regression, but

inference methods are relatively limited. In Chapter 3, we generalize the regional

quantile regression rank test to the censored setting. One major challenge in the

generalization is that the regression rank score, which is used to construct the test

statistics, is undefined for the censored quantile regression. To conquer this difficulty,

we utilize the redistribution of mass idea and define the regression rank score for

the censored version. We also generalize the model-based bootstrap method to the

censored quantile regression setting to implement the test.

In Chapter 4, we consider an applied problem that is different from the previous

chapters. In genome-wide association studies, the genes may have comprehensive

interactions with the environment. Classical methods usually model the interactions

as the product between genes and the environment, which only represents a special
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form of interaction. To model the interactions more flexibly, we propose a two-stage

model. In the first stage, we calculate the conditional percentile for each individual

using quantile regression with all the environmental covariates. In the second stage,

we select important genes by regressing the conditional quantile levels on the gene

factors. The two-stage model can select genes that only have the marginal effects as

well as genes that have comprehensive interactions with the environment.
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CHAPTER II

Model-based Bootstrap for Detection of Regional

Quantile Treatment Effects

2.1 Introduction

The detection of treatment effects is an important problem in a wide variety of

applications and has been studied by many researchers under different settings. In

this chapter, we focus on testing the hypothesis of no treatment effect against the

alternative that the effect is significant for the upper or lower tail of the outcome

distribution. There are at least two reasons why this particular class of alternatives is

worth considering. Firstly, in some applications the evaluation of the treatment effect

at one tail is of direct concern. For example, when financial institutions compare

the risks among different portfolios, they need to focus on the lower tail of the

return distribution so that they can be better prepared for the worst case scenarios.

Secondly, there are cases where the treatment effect is minimal except at low or

high quantile levels. In those cases any tests designed to detect mean or median
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differences may have poor power. For example, it is shown later in the paper as we

analyze the 2016 US birth data that maternal hypertension is a risk factor for low

birth weight, and the hypertension effect on birth weight is much more obvious at

the lower tail of the birth weight distribution. In such cases, a statistical test aimed

at detecting the effect in the lower tail is more useful than the conventional tests on

the mean treatment effects.

Quantile regression is the basis of a natural solution for the above-stated prob-

lems. A common approach is to choose a quantile level (say 0.9 quantile) and test

whether the quantile regression coefficient for the treatment is significant. However,

the test results may be sensitive to the choice of the individual quantile level and the

test may lose power when the data are sparse around that quantile level of choice.

An improvement to individual quantile regression analysis is to consider the treat-

ment effect over a quantile region. He et al. (2010) proposed a covariate-adjusted

expected shortfall test (COVES), which uses quantile regression to select the obser-

vations that lie in the upper or lower quantiles and compare the covariate-adjusted

means of the selected observations. COVES has been shown to be quite powerful

but the test is designed for randomized trials. Koenker (2010) suggested an alter-

native test using regression rank scores over a quantile region, following the quantile

rank scores proposed in Gutenbrunner and Jurečková (1992) and Gutenbrunner et al.

(1993). The distribution of the test statistic under the null hypothesis is approxi-

mated by a chi-square distribution, but the chi-square approximation is only valid

for i.i.d errors.

In this chapter, we consider the regional quantile regression rank test in the more
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realistic case with the heterogeneous models. In this case the proposed test converges

to a mixed chi-square distribution under the null hypothesis, but the mixture coef-

ficients depend on the unknown conditional densities of the regression errors over a

quantile region, whose estimates tend to be numerically unstable. An alternative way

to carry out the inference is to use the bootstrap. However, commonly used bootstrap

methods in regression are not directly applicable to this setting. We propose a new

model-based bootstrap algorithm which aims to mimic the data generative proce-

dure. This bootstrap algorithm enables us to generate the quantile regression model

under the null hypothesis globally and to consistently estimate the null distribution

of the proposed test statistic.

Applicable beyond the proposed test, our model-based bootstrap is a general

bootstrap algorithm for global quantile regression analysis and is useful for a variety

of settings. For example, the proposed bootstrap can be used to build the confidence

band of the quantile coefficients over certain region. It can also be used in other

hypothesis testing problems because the model-based structure in our bootstrap

provides the flexibility to generate the desired model under the null hypothesis.

2.2 Review of quantile regression rank score

In this section we provide a brief review of the regression rank score.

Recall the linear quantile regression Model (1.1)

yi = xTi β(τ) + ei,τ , i = 1, 2, ...n.
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Letting Qy(τ |x) be the τth quantile of y given x, we can write (1.1) equivalently as

Qyi(τ |xi) = xTi β(τ). Therefore at the population level, for given xi, we can express

yi as

yi = xTi β(ui), ui ∼ Uniform(0, 1). (2.1)

In other words, we can view yi as being generated from the quantile process xTi β(ui).

This is an important observation for the development of our bootstrap method later

in the chapter.

The quantile regression estimates of β(τ) are obtained by

β̂(τ) = argmin
t∈Rp

n∑
i=1

ρτ (yi − xTi t), (2.2)

which can be transformed into a dual problem

â(τ) = argmax
a∈[0,1]n

{aTy |XTa = (1− τ)XT1n}, (2.3)

where â(τ) = (â1(τ), ..., ân(τ)) is an n-dimensional vector. By the duality between

(2.2) and (2.3), we have

âi(τ) =


1 yi > xTi β̂(τ)

∈ (0, 1) yi = xTi β̂(τ)

0 yi < xTi β̂(τ),

(2.4)

Thus âi(τ) is essentially an indicator whether the ith observation is above the fitted

τ -quantile. Let τ̂i = inf{τ : âi(τ) < 1}, the ith observations should lie roughly at the

8



τ̂i-quantile. Namely knowing âi(τ) for any τ ∈ (0, 1) is equivalent to knowing the

relative position of the ith observation after the covariate is adjusted for. Gutenbrun-

ner and Jurečková (1992) named âi(τ) as the regression rank score, because âi(τ)

can be interpreted as a generalization of ranks in the regression setting. Notice that

âi(τ)− (1− τ) is also an approximation of the score function of quantile regression

Ψτ (u) = τ − I(u < 0) evaluated at xTi β̂(τ). The regression rank scores âi(τ) have

been used to construct rank-based test in Koenker and Machado (1999) and Wang

(2009) among others for the local quantile models.

In this section we are interested in detecting the treatment effect over a quantile

region, and we integrate the regression rank score âi(τ) against an non-decreasing

score function ϕ(·). Namely, define b̂ = (b̂1, ..., b̂n)T where

b̂i =

τb∫
τa

âi(τ)dϕ(τ). (2.5)

on an interval [τa, τb] that is specified by users. If a observation is above most

quantiles over [τa, τb] after the covariate adjustment, it is expected to have a relatively

large b̂i.

The score function ϕ(·) provides flexibility in assigning different weights at dif-

ferent quantile levels. Two typical choices of ϕ(·) are:

• Wilcoxon score: ϕ(t) = t, which assigns weights evenly.

• Normal score: ϕ(t) = Φ−1(t), which assigns more weights at upper and lower

tails.

9



We use b̂i to construct the regional quantile regression rank test statistic in the

next section.

2.3 Proposed method and main results

2.3.1 Test statistic

In this section, we consider the following model

yi = xTi1β1(τ) + xTi2β2(τ) + ei,τ , i = 1, 2, ...n, (2.6)

where xi1 is a p-dimensional vector, xi2 is a q-dimensional vector. The error ei,τ

are assumed to be independent but not necessarily identically distributed with the

natural constraint that Qei,τ (τ |xi1,, xi2) = 0. We assume the model holds globally at

any τ ∈ (0, 1) since our goal is to detect the treatment effect over a region of τ .

We are interested in testing the hypothesis

H0: β2(τ) = 0 ∀τ ∈ (0, 1) vs H1: β2(τ) 6= 0 for τ ∈ [τa, τb],

where [τa, τb] is the user-specified subset of (0,1) and should be chosen to target the

region of interest.

For convenience, write the design matrix of (2.6) as X = [X1, X2]. Let X̂2 =

X1(XT
1 X1)−1XT

1 X2, which is the projection of X2 into the space spanned by the

columns of X1. If we fit the quantile regression with only X1 as the explanatory

variable, b̂ calculated under this null model represents the ranks after adjusting

for X1. If the null hypothesis is true, X2 − X̂2 is expected to be orthogonal to b̂
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asymptotically, since no variations in b̂ can be further explained by X2 − X̂2. To

help understand this orthogonality, we recall that the residuals are orthogonal to the

design matrix in the least squares regression. For the quantile regression âi(·) plays

similar roles as the residuals and can be shown to be orthogonal to design variables

used in the quantile regression. A rigorous argument follows from Lemma 2 and

Equation (2.15) of in Section 2.6.

Our test statistic will be constructed based on the above observation. But instead

of using the integral version of b̂ defined in (2.5), we will employ a grid of points in τ

and replace b̂ with a weighted sum. More precisely, consider a set of M + 1 ordered

and evenly spaced grid points

S = (τ0, τ1, ..., τM), (2.7)

where [τa, τb] is a proper subset of [τ0, τM ]. With S and a differentiable score function

ϕ(·) specified, we define

b̃i =
∑

τm∈S∩[τa,τb]

âi(τm)ϕ′(τm)(τm − τm−1), (2.8)

where âi is given in (2.3) and calculated under the null model.

The employment of these grid points in calculating b̃ is mainly to facilitate the

bootstrap used later. Since âi(τ) is a piecewise linear function with O(n log n) break

points (Portnoy (1991)), b̂i defined in (2.5) can be written as a sum of O(n log n)

terms, and b̃i is an approximation of b̂i with a sum of roughly M + 1 terms.

It is worth pointing out that only âi evaluated at grid points within [τa, τb] are
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used in calculating (2.8) to focus on our region of interest [τa, τb]. But the grid points

need to be defined on [τ0, τM ], which is strictly larger than [τa, τb]. To get reliable

estimation of â(·) at the end points using the bootstrap, β(·) should be estimated

accurately over a slightly larger quantile region.

Now we define our proposed test statistic as

Tn = STnQ
−1
n Sn, (2.9)

where

Sn = n−1/2(X2 − X̂2)T b̃,

Qn = n−1(X2 − X̂2)T (X2 − X̂2).

A larger value of Tn will be in favor of the alternative hypothesis. We shall show

in Section 2.6 that under some regularity assumptions, Sn converges to a zero mean

normal distribution with variance Σ taking the form

Σ = lim
n→∞

1

n

n∑
i=1

∑
τm∈S

cτm(x2i − x̂2i −Kτm
n x1i)(x2i − x̂2i −Kτm

n x1i)
T , (2.10)

where cτm is a constant depending on ϕ(·) and Kτm
n is a matrix involves the condi-

tional densities of yi given xi evaluated at τm-quantile. In principle, we could estimate

the densities using kernel or spline methods. However, the results are often numeri-

cally unstable. Thus instead of estimating this covariance matrix to standardize the

test statistic, we will use the bootstrap as our preferred approach.

The matrix Qn can be viewed as an approximate standardization because it can
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be shown that Σ is equal to Qn times a constant when the model is homogeneous.

With the usage of Qn, Tn will behave closer to a standard chi-square distribution

asymptotically and the resulting test may have better power when the model is close

to homogeneous. In theory, many choices of Qn would work, but the specific choice

used here is consistent with the common choice for the quantile regression rank tests.

In the proposed test statistics Tn, the quantities M , ϕ(·) and [τa, τb] need to be

specified by the users. Therefore a discussion of how to choose them are in order.

1. Choice of M : The number of grid points M should be between the order of

n1/4 and of n1/2 for our theory to work. But in practice, the choice of M does

not have notable influence on the result as long as M is not too extreme. For

example, we find that 50 or 100 can be a suitable choice for M for a wide range

of problems.

2. Choice of ϕ(·): The score function ϕ(·) may influence the power of the test.

Koenker (2010) showed how the optimal score function can be selected under

the simpler model with i.i.d errors, if the error density is known. Since the

density is unknown in practise and moreover we allow heterogeneity, it is unre-

alistic to aim for an optimal score function. We compared the power of our test

with the most commonly used Wilcoxon score and Normal score under a vari-

ety of settings by simulation and the differences are not major. We therefore

recommend using the Wilcoxon score for simplicity.

3. Choice of [τa, τb]: The quantile region [τa, τb] should be used to target the region

of interest, such as the lower tail of birth-weight or the upper tail of the loss
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from an investment portfolio. In the typical quantile regression settings, we

usually choose a value τ , whether a specific value of τ is better than another

nearby value of τ is difficult to answer. The choice of one interval over another

has the same question around it. But from the numerical results in Section 2.4

and 2.5, we note that the power of our test is shown to be stable over a range

of reasonable choices of [τa, τb]. In other words, choosing a specific value of τ

in the analysis is associated with less robust analysis results than choosing an

interval [τa, τb].

2.3.2 Model-based bootstrap

In this subsection, we propose a model-based bootstrap method to approximate

the distribution of Tn under the null hypothesis.

There are quite a few established bootstrap methods under the quantile regres-

sion setting. The paired bootstrap, the generalized bootstrap (Chatterjee and Bose

(2005)) and the wild bootstrap (Feng et al. (2011)) are examples of those methods

that have been implemented in the R package quantreg. However these methods

cannot be directly applied here.

The paired bootstrap does not generate bootstrap samples under H0 when the

data are not from the null model. The same goes with the generalized bootstrap. One

possible solution is to keep xi2 unchanged and sample (y∗i , x
∗
i1) with replacement from

(yi, xi1). The resulting bootstrap data set would be (y∗i , x
∗
i1, xi2). But the correlation

between xi1 and xi2 can not be preserved under such a subsampling scheme.

The wild bootstrap uses the coefficients β̂1(τ) and residuals êi,τ obtained from the
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τth quantile regression fitted under H0. The bootstrap data set will be (y∗i , xi1, xi2)

where y∗i = xTi1β̂(τ) + wi|êi,τ |, and wi is generated independently from a specially

designed distribution to make sure the bootstrap is consistent at the τ -quantile. The

wild bootstrap is useful for inference at a single quantile level. Since our test statistic

consists of estimation from multiple quantiles, no weight distribution would work in

this framework.

We propose a new bootstrap scheme that generates data globally under H0. The

key idea is that as shown in (2.1), we can write our linear quantile regression model

equivalently as yi = xTi β(ui), where ui ∼ Uniform(0, 1). We keep xi1 and xi2 fixed

and generate bootstrap samples y∗i from xTi1β̂1(ui). Namely, we view xTi1β̂1(·) as a

quantile process for the bootstrap, where β̂1(·) is estimated under the null model.

Although the quantile function xTi β(·) is monotonously increasing at any xi, the

estimate xT β̂(·) is only guaranteed to be monotone at x = x̄. Thus xTi1β̂1(·) may

not be a valid quantile process. This is the reason why we introduce the set of grid

points S defined in (2.7). Let β̃1(τ) be the linear interpolation of {β̂1(τm),m ∈ S}.

Neocleous and Portnoy (2008) showed that when M increases in the order between

n1/4 and n1/2, the probability that xTi1β̃1(·) is monotonously increasing will converge

to 1. At the same time, β̃1(·) is a good enough approximation to β̂1(·). Thus we

propose to generate y∗i from an asymptotically valid quantile process xTi1β̃1(ui). The

detailed algorithm of this model-based bootstrap method is given as follows:

Step 1: Fit the linear quantile regression under H0 and obtain the estimator β̂1(τ)

for τ ∈ S ∩ [τ0, τM ]. Calculate Tn using (2.9).

Step 2: Let β̃1(τ) be the linear interpolation of {β̂1(τm),m ∈ S}.
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Namely β̃1(τ) = τm+1−τ
τm+1−τm β̂1(τm) + τ−τm

τm+1−τm β̂1(τm+1) when τm < τ < τm+1,

m = 0, ...,M − 1. Let β̃1(τ) = β̂1(τ0) for τ < τ0, and β̃1(τ) = β̂1(τM) for

τ > τM .

Step 3: For i = 1, ..., n, generate ui ∼ Uniform(0, 1) independently, and then con-

struct a bootstrap sample (y∗i , xi1, xi2), where y∗i = xTi1β̃1(ui).

Step 4: Calculate T ∗n from (2.9) with the bootstrap sample.

Step 5: Repeat Steps 3 and 4 for B times to get {T ∗n1, T
∗
n2, ..., T

∗
nB}, where B is a pre-

specified integer. The resulting p-value is calculated by B−1
∑

b I(Tn > T ∗nb).

The model-based bootstrap can be used for other forms of test statistics. For

example, the same bootstrap method can be used to approximate the distribution of

supτ∈S∩[τa,τb]
|β̃2(τ)| under H0, which may also be used as a test statistic for regional

treatment effect detection. We will discuss this supremum-based test in more detail

in Section 2.4.

2.3.3 Asymptotic properties

Let fi be the density of yi given xi. To study the asymptotic properties of the

proposed test, we impose the following regularity conditions:

(A1) maxi ‖ xi ‖≤ L, where L is a positive constant and ‖ · ‖ denotes the L2 norm.

(A2) The densities fi are bounded away from 0 and infinity at xTi β(τ) uniformly

for i and τ ∈ [τ0, τM ], where 0 < τ0 < τa and τb < τM < 1. Furthermore,

|fi(c1)− fi(c2)| = O(|c1 − c2|) uniformly in i as |c1 − c2| → 0.
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(A3) The limits Q := limn→∞
1
n

∑
xix

T
i and Dτ

x := limn→∞
1
n

∑
fi(x

T
i β(τ))xix

T
i ex-

ist, and are positive definite at any τ ∈ [τ0, τM ].

(A4) ϕ(·) is a nondecreasing differentiable function with bounded variation.

(A5) S = (τ0, τ1, ..., τM) is a set of ordered and evenly spaced grid points where

n1/4 �M � n1/2.

The regularity conditions are stated under fixed designs. When xi is a random

variable, all the calculations can be carried out conditioning on xi. Replacing (A1)

and (A3) with corresponding moment conditions, our results still hold for random

designs as well.

Condition (A1) assumes that the covariate space lies within a compact set. This

assumption is necessitated by heterogeneity because if the quantile regression model

is linear over an unbounded set of x at multiple τ values, the quantile functions

xTβ(τ1) and xTβ(τ2) may cross unless they are vertical shifts. (A2) and (A3) are

common sufficient conditions used to establish the uniform Bahadur representation

for the quantile regression estimates. We restrict our attention to [τ0, τM ] instead of

the whole interval (0, 1). To study the asymptotic behavior of β̂(τ) as τ approaches

0 or 1 requires much stronger assumptions on fi. And for our study, we need to work

on a set slightly larger than our region of interest [τa, τb], which can be chosen to be

a compact subset of (0, 1).

Theorem 2.1: With regularity conditions (A1)-(A4), we have under H0,

(i) Tn ⇒ χ̄2, a mixed chi-square distribution as a weighted sum of q chi-square

variables of one degree of freedom.
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Further assume (A5) holds, then

(ii) The bootstrap estimator β̂∗1(τ) is a consistent estimator of β1(τ) uniformly

for τ ∈ S ∩ [τa, τb].

(iii) Given the data, the conditional distribution of T ∗n will converge to the same

mixed chi-square distribution χ̄2.

Theorem 2.1(i) shows that our test statistic will converge to a mixed chi-square

distribution under H0 while Theorem 2.1(ii) and 2.1(iii) show that the conditional

bootstrap distribution approximates to the same mixed chi-square distribution. Hence

our model-based bootstrap is consistent for inference. The proof of these results relies

on the empirical process theory and is given in Section 2.6.

2.4 Simulation

In this section, we present some empirical results of our proposed test by Monte

Carlo simulations.

2.4.1 Settings

The number of replications in each simulation and the bootstrap replication size

are both set to 1000 throughout this section. We first generated our data from the

following model that was considered in He et al. (2010),

yi = 5 + xi1 + xi2 +
(
1 + γI(ei > 0)I(di = 0)

)
ei, i = 1, ...,m+ n, (2.11)
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where the treatment indicator di = 1 for i = 1, ...,m and di = 0 for i = m+1, ...,m+n.

Let γ = 0 under H0 and γ = 1.35 under H1. We consider testing whether the

coefficient of the treatment indicator γ is zero. By design, the treatment effect only

exists in the upper tail under the alternative. We considered the following three

different settings based on model (2.11):

(i) xi1 ∼ Uniform(5, 12), xi2 ∼ N(8, 8) and ei ∼ N(0, 5), and they are mutually

independent. This represents a randomized trial with i.i.d errors.

(ii) xi1 ∼ Uniform(5, 12) when di = 1, but xi1 ∼ Uniform(5, 20) when di = 0. In

addition, xi2 ∼ N(8, 8) and ei ∼ N(0, xi1) are independently generated. This

represents a non-randomized trial with heterogeneous errors.

(iii) xi1 ∼ Uniform(5, 12) when di = 1; otherwise xi1 is generated from the t dis-

tribution truncated to [0, 250] with 2 degrees of freedom and non-centrality

parameter equal to 15. The variables {xi2} and {ei} are generated from the

same distributions as (ii). Compared to (ii), xi1 is generated from a distribution

with heavier tails.

Under these settings, {xi2} is generated from a normal distribution, which violates

(A1) that {xi} should lie in a compact set. However, since the coefficient of xi2 is a

constant of τ in these settings, we still have valid quantile functions even when the

range of xi2 extends to the whole line, so our theory applies to the model with trivial

modifications.

In addition, we also evaluated the performance of the proposed method when the

effect of multiple covariates are simultaneously tested in the following model:
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Figure 2.1: Curves of quantile coefficients of model (iv) in simulation under the al-
ternative.

(iv)

yi = β0(ui) + xi1β1(ui) + xi2β2(ui) + xi3β3(ui), i = 1, ..., n, (2.12)

where ui ∼ Uniform(0, 1), xi2 ∼ Uniform(0, 2), xi3 ∼ Uniform(0, 2), and xi1 ∼

Uniform(1, 3) when xi2 < 1 but xi1 ∼ Uniform(0, 2) when xi2 ≥ 1. Furthermore,

let β0(τ) = Φ−1(τ), β1(τ) = τ 2. Under H0, we use β2(τ) = β3(τ) = 0. Under H1,

we use β2(τ) = exp(15(τ−0.5))
1+exp(15(τ−0.5))

and β3(τ) = exp(10(τ−0.5))
1+exp(10(τ−0.5))

. As shown in Figure

2.1, the effect of xi1 and xi2 are larger at the upper tail under the alternative

by design.

We consider the problem of testing the null hypothesis H0: β2(τ) = β3(τ) =

0,∀τ ∈ (0, 1), but the test will focus on upper quantiles.

We first compared the proposed regional quantile regression rank (RQRR) test
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with the quantile regression rank (QRR) test that focuses on one fixed quantile

proposed by Koenker and Machado (1999) to see if we can benefit from considering

a quantile region. To show the necessity of the proposed bootstrap method, we also

considered the proposed QRRQ test statistic with the critical value approximated

by the chi-square distribution based on the working assumption of i.i.d errors.

When q = 1, we further compared the performance of our test to other three

methods that focus on the overall treatment effect: the COVES test proposed by He

et al. (2010); the test based on simultaneous confidence band; the supremum-based

test. The latter two methods are described as follows.

To build simultaneous confidence bands, we use a method similar to what is

considered in Chernozhukov and Fernández-Val (2004). A level 1 − α confidence

band of β2(·) over [τa, τb] can be built based on the statistic

T supn = sup
τ∈[τa,τb]

|
√
nβ̃2(τ)|,

where β̃2(τ) is the linear interpolation of the coefficient estimate β̂2(τ). The distri-

bution of β̃2(τ) is approximated by the m out of n bootstrap, where m = 20 + n1/2.

The null hypothesis is rejected if 0 is contained nowhere in the confidence band.

To carry out the supremum-based test, we use the model-based bootstrap scheme

introduced in Section 2.3.2 to generate the bootstrap sample (y∗i , x1i, x2i) where

y∗i = xTi1β̃1(ui), with β̃1(·) estimated under the restricted model. The bootstrap

test statistics T sup,∗n = supτ∈[τa,τb]
|
√
nβ̃∗2(τ)| can then be obtained from the bootstrap

sample. The null distribution of T supn is approximated by the empirical distribution
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of T sup,∗n .

Both the test based on simultaneous confidence bands and the supremum-based

test utilize the test statistics T supn . The difference is that the bootstrap is con-

ducted under the full model to build the confidence band while the bootstrap is

conducted under the null hypothesis for the supremum-based test. Also notice that

the difference between the supremum-based test and the RQRR test lies in the test

statistics. Thus comparing these two tests is basically comparing the performance

of a supremum-based statistic versus a rank-based statistic under our settings.

2.4.2 Results

We first set the quantile region to be [0.7, 0.99] and [0.85, 0.99] to compare the

performance of the proposed RQRR test with the QRR test at one quantile level, the

RQRR test with the chi-square approximation, and the COVES test. The results

are summarized in Table 2.1.

For the randomized trail we considered in model (i), all the tests have reasonable

type I error rates. For model (ii), both the COVES and the RQRR with chi-square ap-

proximations are not valid theoretically. According to our simulation results, COVES

fails to control the type I errors, and the RQRR test with chi-square approximations

is acceptable. This is actually consistent with our knowledge that the RQRR with

chi-square approximations is reasonably robust under heterogeneity (Kocherginsky

et al. (2005)). For the more extreme example where xi1 has a heavy right tail in

model (iii), however, it is obvious that both COVES and the RQRR with chi-square

approximations are not valid anymore, while our proposed RQRR has empirical
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Model (i) Model (ii)

m = n = 50 m = n = 100 m = n = 50 m = n = 100

α level power α level power α level power α level power

QRR(0.70) 0.050 0.327 0.047 0.586 0.041 0.273 0.052 0.524

QRR(0.80) 0.050 0.567 0.046 0.889 0.047 0.493 0.037 0.797

QRR(0.85) 0.041 0.682 0.046 0.953 0.041 0.576 0.049 0.889

QRR(0.90) 0.035 0.723 0.042 0.983 0.038 0.622 0.043 0.926

QRR(0.95) 0.036 0.431 0.025 0.974 0.024 0.488 0.034 0.891

COVES 0.066 0.909 0.052 0.998 0.070 0.917 0.088 0.999

RQRR(0.70,0.99) 0.043 0.712 0.048 0.960 0.045 0.628 0.046 0.917

RQRRb(0.70,0.99) 0.047 0.707 0.049 0.956 0.047 0.627 0.046 0.908

RQRR(0.85,0.99) 0.041 0.816 0.044 0.995 0.041 0.702 0.046 0.970

RQRRb(0.85,0.99) 0.045 0.834 0.046 0.994 0.048 0.725 0.051 0.972

Model (iii) Model (iv)

m = n = 100 m = n = 300 n = 100 n = 200

α level power α level power α level power α level power

QRR(0.70) 0.064 0.162 0.048 0.338 0.045 0.356 0.048 0.657

QRR(0.80) 0.058 0.290 0.065 0.571 0.042 0.494 0.040 0.844

QRR(0.85) 0.062 0.358 0.064 0.675 0.042 0.532 0.043 0.892

QRR(0.90) 0.053 0.428 0.074 0.752 0.041 0.537 0.040 0.897

QRR(0.95) 0.046 0.438 0.057 0.789 0.034 0.384 0.037 0.784

COVES 0.522 0.943 0.915 1.000 NA NA NA NA

RQRR(0.70,0.99) 0.115 0.557 0.148 0.868 0.042 0.619 0.047 0.930

RQRRb(0.70,0.99) 0.056 0.381 0.058 0.724 0.048 0.629 0.047 0.930

RQRR(0.85,0.99) 0.102 0.678 0.128 0.930 0.049 0.625 0.040 0.944

RQRRb(0.85,0.99) 0.061 0.551 0.063 0.853 0.052 0.657 0.040 0.947

Table 2.1: Comparison of the empirical type I error rate and the power out of 1000
simulation samples. In the table, QRR(τ) stands for the quantile regres-
sion rank test conducted at the τth quantile proposed in Koenker and
Machado (1999); RQRR(τa,τb) stands for the regional quantile regression
rank test with chi-square approximations at the quantile region [τa,τb],
while RQRRb(τa,τb) stands for the proposed regional quantile regression
rank test with the model-based bootstrap. For COVES, the cutoff quan-
tile level is set to be 0.75 as in He et al. (2010).
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type I errors close to the nominal level. The results from model (iv) show that our

proposed test also has satisfactory performance when testing the effect of multiple

continuous covariates simultaneously. Overall our proposed test works more broadly

than the COVES and the RQRR with the chi-square approximation. In particular,

the proposed test remains valid under heterogeneous cases where the other two tests

may fail.

Table 2.1 also illustrates the advantages of the proposed RQRR over the QRR

test at one quantile level in terms of power stability. Firstly, we observe that the

empirical power of the QRR test heavily depends on the choice of τ . Its power

tends to increase as τ increases to some value because the magnitude of treatment

effect also increases. But the power will decrease if we further increase τ due to the

inflation in variance. On the other hand, it is quite obvious from our results that the

proposed RQRR test is less sensitive to the choice of the quantile region. Secondly,

the proposed RQRR test with a reasonably-chosen quantile interval is more powerful

than the QRR test at many individual quantile levels. For example, the power for

the proposed RQRR test with quantile region [0.85, 0.99] is higher than the QRR

test with τ = 0.90 for all the settings we considered. Therefore we can benefit from

utilizing the extra information provided over a quantile region to achieve more stable

statistical power.

We then set the quantile region to be [0.7, 0.95], [0.85, 0.95], [0.7, 0.99] and [0.85, 0.99]

to compare the performance of the proposed RQRR test with the methods based on

simultaneous confidence bands and the supreme-based test. For this comparison, we

only present the results under model (ii) in Table 2.2. The results under model (i)
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Model (ii)

m = n = 50 m = n = 100

α power α power

RQRRb(0.70,0.95) 0.047 0.571 0.042 0.895

RQRRb(0.85,0.95) 0.043 0.701 0.051 0.955

RQRRb(0.70,0.99) 0.047 0.627 0.046 0.908

RQRRb(0.85,0.99) 0.048 0.725 0.051 0.972

CF(0.70,0.95) 0.015 0.399 0.018 0.767

CF(0.85,0.95) 0.021 0.448 0.021 0.785

CF(0.70,0.99) 0.071 0.516 0.083 0.810

CF(0.85,0.99) 0.074 0.530 0.084 0.811

Max(0.70,0.95) 0.052 0.605 0.045 0.924

Max(0.85,0.95) 0.057 0.607 0.049 0.923

Max(0.70,0.99) 0.090 0.546 0.147 0.871

Max(0.85,0.99) 0.092 0.547 0.150 0.871

Table 2.2: Comparison of the empirical type I error rate and power out of 1000
simulation samples for the tests based on simultaneous confidence bands
(CF), the supremum-based test (Max), and the RQRR test over [τa, τb].

and (iii) tell a similar story.

From Table 2.2, we notice that the methods based on simultaneous confidence

bands and the supremum-based test do not control the type I error well when we set

the upper quantile level to be 0.99. This is because the estimation of the coefficients

are unreliable when τ is close to one for data with moderate sample sizes. The RQRR

test can be roughly seen as analyzing the average treatment effect over the quantile

region, so it is able to handle relatively extreme tails better.
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2.5 Data analysis

2.5.1 The birth weight data

In this subsection, we illustrate the power of the proposed RQRR test with the

2016 US birth weight data. Because the size of the full data is large, we were able

to conduct the proposed RQRR test and the QRR test at one quantile level with

sub-samples of the full data set and compare their number of rejections.

The 2016 US birth weight data set is produced by the National Center for Health

Statistics and is available to the public online1. The data set contains the infant

and maternal health characteristics along with paternal demographic information of

the births occurred in the US during 2016. In particular, we restricted our focus

to 32,169 white mothers whose ages are between 36 and 40 and we aimed to study

the relationship between birth weight and the maternal history of hypertension.

Besides the indicator for maternal hypertension, mothers’ education level, mothers’

weight before delivery and indicator for smoking during pregnancy were included

as confounding variables. Notice that these variables were also considered in the

birthweight data collected at Baystate Medical Center, Springfield, Mass during 1986

(Hosmer and Lemeshow (2010)).

We first fitted linear quantile regressions with the full data set at different τ .

From Figure 2.2, we can see that the coefficient of hypertension is significantly less

than zero at all the quantile levels and the hypertension effect decreases in magnitude

as the quantile level increases. Namely hypertension has a negative effect on birth

weight and its effect is more severe at the lower tail. Given the size of the data, we

1The data set is available for download at www.cdc.gov/nchs/data access/vitalstatsonline.htm
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Figure 2.2: 95% pointwise confidence band of the hypertension effect.

view the full data estimates as good proxies to the true parameters.

In the next step, we subtracted the median hypertension effect estimated with the

full data from the birth weight to check whether the quantile coefficient varies with

τ . To compare the performance of the proposed RQRR test with the QRR test at

on quantile level when we have limited sample sizes, we sub-sampled (n = 200−800)

from the full data and compared the number of rejections out of 500 sub-sampled

data sets.

The results are summarized in Table 2.3, which is consistent to what we observed

in the simulations. The power of both the proposed RQRR test and the QRR test

depends on the choice of quantile interval/level. Though the treatment of hyperten-

sion becomes more significant at lower tails, the QRR test will suffer from low power

if we choose τ to be as small as 0.01 due to higher variances in those quantile esti-
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test counts of rejection at 0.05 level

n = 200 n = 400 n = 800

RQRRb(0.01,0.10) 103 150 223

RQRRb(0.01,0.15) 94 141 216

RQRRb(0.05,0.25) 72 92 171

QRR(0.01) 44 54 76

QRR(0.05) 81 120 194

QRR(0.10) 69 108 185

QRR(0.20) 40 65 104

Least squares 50 63 69

Table 2.3: Number of rejections out of 500 sub-sampled birthweight data sets.

mates. For the RQRR test, the intervals [0.01, 0.1] and [0.01, 0.15] are better choices

compared to the interval [0.05, 0.25]. Comparing the RQRR test with the QRR test,

the former is less sensitive to the choice of the quantile interval/level. Even when

the quantile interval is chosen to be [0.05,0.25], the power of the RQRR test is not

much worse. When both the quantile interval and the quantile level are reasonably

chosen, the RQRR test tends to perform better than the QRR test in general. The

least squares regression is included in the comparison, and its power is clearly lower

than the RQRR test, because it aims to detect the difference in the mean, which is

less obvious than in the lower tail of the birthweight distribution.

2.5.2 S&P 500 index

In this subsection, we looked at the S&P 500 index data to test if there exist

any differences in the risk of investing in different sectors. We collected the S&P 500

index of the financial, energy and information technology sectors from January 2,

2015 to January 26, 2018, which has a total of 773 data points; see Figures 2.3 for
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the time series plots. Let xt be the index at time t, the return rt is calculated by

100 log xt
xt−1

.

We first compared the financial sector with the energy sector using the following

AR-like model

rt = β0(τ) + β1(τ)rt−1 + β2(τ)Ienergy + β3(τ)rt−1Ienergy + g(rt−1)et,τ ,

where Ienergy is the indicator for the energy sector. We assume that {et,τ} is indepen-

dent over t so that the proposed RQRR is still valid for this time series data. Writing

the error term in the form of g(rt−1)et,τ allows heterogeneity. We are interested in

testing

H0: β2(τ) = β3(τ) = 0 ∀τ ∈ (0, 1) vs

H1: β2(τ) 6= 0 or β3(τ) 6= 0 for some τ.

We focused on the lower tail under the alternative since the occurrences of large

negative returns are the risk we are concerned with. The proposed RQRR and the

QRR at multiple quantile intervals/levels are conducted.

29



test statistics p-value

RQRRb(0.01,0.05) 0.0006 0.001

RQRRb(0.01,0.10) 0.0035 0.005

RQRRb(0.05,0.25) 0.0578 0.000

QRR(0.01) 3.332 0.036

QRR(0.05) 4.445 0.012

QRR(0.10) 3.014 0.049

QRR(0.20) 7.111 0.001

Table 2.4: Comparing risks (low returns) between the financial and the energy sec-

tors.

According to the results summarized in Table 2.4, we are able to reject the null

hypothesis and claim that the risk level of the financial and the energy sectors are

different with all the tests at 0.05 level, but not always at the 0.01 level. Also notice

that the p-values of the RQRR are consistently smaller than the QRR, which may

indicate that the RQRR is more powerful.

We also compared the financial sector with the information technology sector

using a similar model

rt = β0(τ) + β1(τ)rt−1 + β2(τ)Iinfo + β3(τ)rt−1Iinfo + g(rt−1)et,τ .

From the results in Table 2.5, the tests fail to reject the null hypothesis at 0.05 level.

Thus the risk between the financial and the information technology sectors can be
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quite similar.

Note that in this analysis, the risk refers to the potential losses in the daily returns

of each sector given the previous day’s return, in the spirit of Engle and Manganelli

(2004). The quantification of risk conditional on the recent past supplements the

common risk measures on the marginal return distributions such as the Value-at-

Risk measures. In fact, the one day 5% Value-at-Risk for the financial, information

and energy sectors are 1.62, 1.61 and 2.04, respectively.

test statistics p-value

RQRRb(0.01,0.05) 10−7 0.999

RQRRb(0.01,0.10) 0.0004 0.586

RQRRb(0.05,0.25) 0.0143 0.194

QRR(0.01) 0.4576 0.633

QRR(0.05) 0.0333 0.967

QRR(0.10) 2.3979 0.091

QRR(0.20) 1.9106 0.148

Table 2.5: Testing risk between finance and information technology sectors.
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Figure 2.3: Time series plot of the financial,info and the energy sectors.

2.6 Proof

In this section, we present the proof of Theorem 2.1.

We first study the limiting distribution of the test statistic Tn as shown in The-

orem 1(i). Let Zn =
√
n(β̂(τ) − β(τ)). Let di be a d-dimensional vector that is

uniformly bounded and write Dτ
nd = 1

n

∑
fi(x

T
i β(τ))dix

T
i . We assume that the limit

of Dτ
nd exists and is positive definite. We plug in di = xi and di = x̂i2 − xi2 in latter

part of the proof. Notice that by conditions (A1) and (A3), the assumptions we

made on di will be satisfied when di = xi and di = x̂i2 − xi2.
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Let Ĝd
n(t) = n−1/2

∑
diI(yi ≤ xTi t) and Gd

n(t) = n−1/2
∑
diFi(x

T
i t). Lemma 1

shows that Gd
n(t) is a good approximation of Ĝd

n(t) using results from empirical

process theory. Furthermore define Ŵ d
n = n−1/2

∑
di(âi(τ) − (1 − τ)) and W d

n =

n−1/2
∑
di(ãi(τ) − (1 − τ)) where ãi(τ) = I(yi ≥ xTi β(τ)). Recall âi(τ) ≈ I(yi ≥

xTi β̂(τ)) is the main component of our test statistics and ãi(τ) follows i.i.d binomial

distributions which is easy to analysis. Lemma 2 establishes the relationship between

Ŵ d
n and W d

n . Theorem 1(i) then follows combining the results of Lemma 1 and

Lemma 2. With out loss of generality, we write τ0 = ε and τM = 1 − ε though out

the proof.

Lemma 1: supε≤τ≤1−ε ‖Ĝd
n(β̂(τ))− Ĝd

n(β(τ))−Gd
n(β̂(τ)) +Gd

n(β(τ))‖ = op(1).

Proof. For any d-dimensional vector v, define the class of function G over a compact

set T ∈ Rp+q as

G =
{
vTdiI(yi ≤ xTi t), t ∈ T

}
.

It is obvious that G is a V C subgraph class and E(g2) is bounded for any g ∈ G.

Thus vT (Ĝd
n(t)−Gd

n(t)) is stochastically equicontinuous over T with semi-metric

ρ(t1, t2) =
{
E
(
vTdiI(yi ≤ xTi t1)− vTdiI(yi ≤ xTi t2)

)2}1/2
.

Since

ρ(t1, t2)2 ≤ (vTdi)
2E
(
I(xTi t2 ≤ yi ≤ xTi t1) + I(xTi t1 ≤ yi ≤ xTi t2)

)
= 2(vTdi)

2O(‖t1 − t2‖)

= O(‖t1 − t2‖),
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and β̂(τ) is a consistent estimator of β(τ) uniformly for τ ∈ [ε, 1− ε] (This result can

be proved using similar and easier argument as the proof of theorem 1(ii).), we have

sup
ε≤τ≤1−ε

|vT (Ĝd
n(β̂(τ))−Gd

n(β̂(τ)))− vT (Ĝd
n(β(τ)) +Gd

n(β(τ)))| = op(1)

by the definition of equicontinuity. The lemma is hence proved since v is arbitrary.

Lemma 2: ‖Ŵ d
n −W d

n +Dτ
ndZn‖ = O(

√
n‖β̂(τ)−β(τ)‖2) + op(1) uniformly over

τ ∈ [ε, 1− ε].

Proof. By simple manipulation, we can write

Ŵ d
n = W d

n −Dτ
ndZn +R1 −R2 −R3,

where

R1 = n−1/2
∑

diI(yi = xTi β̂(τ))âi(τ),

R2 = Ĝd
n(β̂(τ))− Ĝd

n(β(τ))−Gd
n(β̂(τ)) +Gd

n(β(τ)),

R3 = Gd
n(β̂(τ))−Gd

n(β(τ))−Dτ
ndZn.

When yi is continuous,
∑

I(yi = xTi β̂(τ)) = p + q almost surely for any τ . Since

|âi(τ)| ≤ 1 and di bounded, R1 = O(n−1/2) uniformly.

By Lemma 1, R2 is uniformly op(1).
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Now consider R3. By Taylor expansion,

‖ Gd
n(β(τ) + n−1/2∆)−Gd

n(β(τ))−Dτ
nd∆ ‖

= ‖ 1√
n

∑
din
−1/2(xTi ∆)

1∫
0

(
fi
(
xTi β(τ) + n−1/2(xTi ∆)s

)
− fi(xTi β(τ))

)
ds ‖

= ‖ 1√
n

∑
din
−1/2(xTi ∆)

1∫
0

O
(
n−1/2(xTi ∆)s

)
ds‖

=‖ 1√
n

∑
diO
(
n−1(xTi ∆)2

)
‖

=O(n−1/2‖∆‖2).

Let ∆ =
√
n(β̂(τ)− β(τ)),

R3 = O(
√
n‖β̂(τ)− β(τ)‖2).

Proof of Theorem 1(i): Set di = xi. By the constraints in (2.3), Ŵ x
n = n−1/2

∑
xi(âi(τ)−

(1− τ)) = 0. Thus from Lemma 2, we have

Dτ
nxZn = W x

n +O(
√
n‖β̂(τ)− β(τ)‖2) + op(1).

Namely,

Zn(1 + op(1)) = (Dτ
nx)
−1W x

n + op(1).

By similar argument as in Lemma 1, W =
{
xi(ãi(τ)− (1− τ)), τ ∈ [ε, 1− ε]

}
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is a VC subgraph class with bounded envelope. Thus W is Donsker. Then we have

Zn = Op(1) since the limit of Dτ
nx is positive definite by (A3). Therefore we have the

uniform Bahadur representation for quantile regression

Zn = (Dτ
nx)
−1W x

n + op(1). (2.13)

By Lemma 2 and (2.13),

Ŵ d
n = W d

n −Dτ
nd(D

τ
nx)
−1W x

n + op(1). (2.14)

Notice that the above derivation holds for linear quantile regression model generally.

Now we consider the model under H0 where only xi1 is included. Set di = xi2 − x̂i2,

from (2.14) we get

n−1/2

n∑
i=1

(x2i−x̂2i)(âi(τ)−(1−τ)) = n−1/2

n∑
i=1

(x2i−x̂2i−Kτ
nx1i)(ãi(τ)−(1−τ))+op(1),

(2.15)

where Kτ
n = (X2 − X̂2)TΓτnX1(XT

1 ΓτnX1)−1 and Γτn=diag(fi(x
T
i1β1(τ)).

Since (2.15) holds uniformly for τ ∈ [ε, 1− ε],

n−1/2

n∑
i=1

(x2i − x̂2i)b̃i =

n−1/2

n∑
i=1

∑
τm∈S

(x2i − x̂2i −Kτm
n x1i)(ãi(τm)− (1− τm))ϕ′(τm)(τm − τm−1) + op(1).

(2.16)

By Lindeberg-Feller CLT, (2.16) converge to a Normal distribution of mean 0 and
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variance

lim
n→∞

1

n

n∑
i=1

∑
τm∈S

ϕ′2(τm)(τm−τm−1)2(1−τm)τm(x2i−x̂2i−Kτm
n x1i)(x2i−x̂2i−Kτm

n x1i)
T .

(2.17)

Thus Tn = STnQ
−1
n Sn converges to a mixed chi-square distribution.

We now want to study the consistency of our model-based bootstrap. Parallel to

the notations in the original space, we have the following notations in the bootstrap

space:

Ŵ d∗
n = n−1/2

∑
di(â

∗
i (τ)− (1− τ)) where â∗i (τ) is the regression rank score under

H0 for the bootstrap sample.

W d∗
n = n−1/2

∑
di(ã

∗
i (τ)− (1− τ)) where ã∗i (τ) = I(y∗i ≥ xTi1β̃1(τ)).

Ĝd∗
n (t) = n−1/2

∑
diI(y∗i ≤ xTi t).

Gd∗
n (t) = n−1/2

∑
diE

∗I(y∗i ≤ xTi t).

Z∗n =
√
n(β̂∗1(τ)− β̂1(τ)).

We first show that β̂∗1(τ) is a consistent estimator of β1(τ). The relationship cor-

responding to Lemma 2 under the bootstrap space is given the Lemma 3. Combining

the above results, we can finally establish the consistency of our bootstrap algorithm

in Theorem 1(iii).

Proof of Theorem 1(ii): Write ỹi = xTi1β̄1(ui), where β̄1(·) is the linear interpolation
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of {β1(τm),m ∈ S}. By LLN,

‖ 1

n
E∗[

∑
ρτ (ỹi − xTi1β1)−

∑
ρτ (ỹi − xTi1β̄1(τ))]

− 1

n
[
∑

ρτ (ỹi − xTi1β1)−
∑

ρτ (ỹi − xTi1β̄1(τ))] ‖= op∗(1).

(2.18)

Note that the expectation above is taken with respect to ui. Since

‖ 1

n
[
∑

ρτ (ỹi − xTi1β1)−
∑

ρτ (ỹi − xTi1β̄1(τ))]

− 1

n
[
∑

ρτ ′(ỹi − xTi1β′1)−
∑

ρτ ′(ỹi − xTi1β̄1(τ ′))] ‖

≤c1|τ − τ ′|+ c2 ‖ β1 − β′1 ‖,

1
n
[
∑
ρτ (ỹi − xTi1β1)−

∑
ρτ (ỹi − xTi1β̄1(τ))] is stochastically equicontinuous. Thus the

convergence in (2.18) is uniform over τ ∈ [τa, τb] and β1 in a compact set B. We

know that

β̂∗1(τ) = argmin
β1

∑
ρτ (y

∗
i − xTi1β1)− ρτ (ỹi − xTi1β̄1(τ)),

and

β̄1(τ) = argmin
β1

E∗[
∑

ρτ (ỹi − xTi1β1)− ρτ (ỹi − xTi1β̄1(τ))].

The minimizer β̄1(τ) is also unique for τ ∈ [τa, τb]. Notice that

‖ 1

n

∑
ρτ (ỹi − xTi1β1)− 1

n

∑
ρτ (y

∗
i − xTi1β1) ‖

=O(
1

n

∑
|y∗i − ỹi|)

=O(‖ β̃1(τ)− β̄1(τ) ‖).

(2.19)
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Since supτa≤τ≤τb ‖ β̂1(τ)− β1(τ) ‖= op(1), supτa≤τ≤τb ‖ β̃1(τ)− β̄1(τ) ‖= op(1). Thus

by (2.18) and (2.19),

supτ∈[τa,τb],β1∈B ‖
1

n
E∗[
∑

ρτ (ỹi − xTi1β1)−
∑

ρτ (ỹi − xTi1β̄1(τ))]

− 1

n
[
∑

ρτ (y
∗
i − xTi1β1)−

∑
ρτ (ỹi − xTi1β̄1(τ))] ‖= o∗p(1) + op(1).

Let Bδ(β̄1(τ)) be a ball of radius δ centered at β̄1(τ) with L∞ norm. For any b(τ)

in the boundary of Bδ(β1(τ)),

1

n

∑
ρτ (y

∗
i − xTi1b(τ))− 1

n

∑
ρτ (y

∗
i − xTi1β̄1(τ))

≥ 1

n
E∗
∑

ρτ (y
∗
i − xTi1b(τ))− 1

n
E∗
∑

ρτ (y
∗
i − xTi1β̄1(τ))− o∗p(1)− op(1)

≥ε(τ)− o∗p(1)− op(1),

where ε(τ) ≥ 0 and the inequality is strict for some τ ∈ [ε, 1− ε]. Namely,

P ∗( inf
sup|β̄1(τ)−b(τ)|=δ

sup
τ∈[τa,τb]

∑
ρτ (y

∗
i − xTi1b(τ))−

∑
ρτ (y

∗
i − xTi1β̄1(τ)) ≤ 0])→ 0

in P . By the convexity of ρτ ,

P ∗( inf
sup|β̄1(τ)−b(τ)|≥δ

sup
τ∈[τa,τb]

∑
ρτ (y

∗
i − xTi1b(τ))−

∑
ρτ (y

∗
i − xTi1β̄1(τ)) ≤ 0])→ 0

in P . Also notice that β̄1(τ) = β1(τ) for τ ∈ S. Thus we have the desired result.

Lemma 3: Gd∗
n (β̂∗1(τ)) = Gd∗

n (β̂1(τ)) − Dτ
ndZ

∗
n + Op(

√
n ‖ β̂∗1(τ) − β̂1(τ) ‖2

) + op∗(1) + op(1) uniformly for τ ∈ S ∩ [τa, τb].
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Proof. Write Gd∗
n (β̂1(τ) + δ)−Gd∗

n (β̂1(τ)) = A1 + A2 where

A1 = n−1/2
∑

diE
∗[I(ui ≤ ε)

(
I
(
xTi1β̂1(ε) ≤ xTi1(β̂1(τ) + δ)

)
− I
(
xTi1β̂1(ε) ≤ xTi1β̂1(τ)

))
]

+ n−1/2
∑

diE
∗[I(ui ≥ 1− ε)

(
I
(
xTi1β̂1(1− ε) ≤ xTi1(β̂1(τ) + δ)

)
− I
(
xTi1β̂1(1− ε) ≤ xTi1β̂1(τ)

))
],

A2 = n−1/2
∑

diE
∗[I(ε < ui < 1− ε)

(
I
(
xTi1β̃1(ui) < xTi1(β̂1(τ) + δ)

)
− I
(
xTi1β̃1(ui) < xTi1β̂1(τ)

))
].

From Theorem 1 of Neocleous and Portnoy (2008), xTi1β̃1(τ) is strictly monotone

uniformly on [ε, 1 − ε] with probability tending to 1. Therefore A1 is op(1) for any

δ → 0.

Let ∆ = β̃1(ui)− β1(ui), write A2 as

n−1/2
∑

diE
∗[I(ε < ui < 1− ε)

(
I(xTi1β1(ui) + xTi1∆) < xTi1β̂1(τ) + xTi1δ

)
− I
(
xTi1β1(ui) + xTi1∆) < xTi1β̂1(τ)

)
]

=n−1/2
∑

diE
∗[I(ε < ui < 1− ε)I

(
xTi1β̂1(τ)− xTi1∆ < xTi1β1(ui)

< xTi1β̂1(τ)− xTi1∆− xTi1δ
)
I(xTi1δ < 0)]

+ n−1/2
∑

diE
∗[I(ε < ui < 1− ε)I

(
xTi1β̂1(τ)− xTi1∆− xTi1δ < xTi1β1(ui)

< xTi1β̂1(τ)− xTi1∆
)
I(xTi1δ ≥ 0)].

We only need to consider the case when xTi1δ < 0, since the situation when xTi1δ ≥ 0

is symmetric.
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When xTi1δ < 0,

n−1/2
∑

diE
∗[I(ε < ui < 1− ε)I

(
xTi1β̂1(τ)− xTi1∆ < xTi1β1(ui) < xTi1β̂1(τ)− xTi1∆− xTi1δ

)
]

=n−1/2
∑

di

min{xTi1β̂1(τ)−xTi1∆−xTi1δ, xTi1β1(1−ε)}∫
max{xTi1β̂1(τ)−xTi1∆, xTi1β1(ε)}

fi(c)dc

=n−1/2
∑

di

min{xTi1β̂1(τ)−xTi1∆−xTi1δ, xTi1β1(1−ε)}∫
max{xTi1β̂1(τ)−xTi1∆, xTi1β1(ε)}

fi(x
T
i1β1(τ)) +O(|c− xTi1β1(τ)|)dc

=n−1/2
∑(

difi(x
T
i1β1(τ))

(
−max{xTi1β̂1(τ)− xTi1∆, xTi1β1(ε)}

+min{xTi1β̂1(τ)− xTi1∆− xTi1δ, xTi1β1(1− ε)}
)

+O(‖ ∆ ‖‖ δ ‖) +O(‖ δ ‖2) +O(‖ β̂1(τ)− β1(τ) ‖‖ δ ‖)
)

=n−1/2
∑

difi(x
T
i1β1(τ))(−xTi1δ) +O(

√
n ‖ ∆ ‖‖ δ ‖) +O(

√
n ‖ δ ‖2)

+O(
√
n ‖ β̂1(τ)− β1(τ) ‖‖ δ ‖) +R1,

where

R1 =O

(
n−1/2

∑
difi(x

T
i1β1(τ))

(
I(xTi1β̂1(τ)− xTi1∆ < xTi1β1(ε))

+ I(xTi1β̂1(τ)− xTi1∆− xTi1δ > xTi1β1(1− ε))
))
.

For τ ∈ [τa, τb], R1 converges to zero in probability if ∆ and δ are o(1).

Recall ∆ = β̃1(ui) − β1(ui), which is Op(n
−1/2) uniformly over ui ∈ [ε, 1 − ε] by

Theorem 1 of Neocleous and Portnoy (2008). Let δ = β̂∗1(τ)− β̂1(τ) = op∗(1) + op(1)

for τ ∈ S ∩ [τa, τb]. Thus

A2 = Dτ
ndZ

∗
n +Op(

√
n ‖ β̂∗(τ)− β̂(τ) ‖2) + op∗(1) + op(1), (2.20)
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we have the desired result.

Proof of Theorem 1(iii): Similar to Lemma 1,

sup
τ∈S∩[τa,τb]

‖Ĝd∗
n (β̂∗1(τ))− Ĝd∗

n (β̂1(τ))−Gd∗
n (β̂∗1(τ)) +Gd∗

n (β̂1(τ))‖ = op∗(1) + op(1).

This is because

G∗ =
{
vTdiI(y∗i ≤ xTi t), t ∈ T

}
is a VC subgraph class and β̂∗1(τ) is consistent for β̂1(τ) uniformly over τ ∈ S∩[τa, τb].

Thus we have

Ŵ d∗
n = W d∗

n −Dτ
ndZ

∗
n +R∗1 −R∗2 −R∗3,

where

R∗1 = n−1/2
∑

diI(y∗i = xTi1β̂
∗
1(τ))â∗i (τ),

R∗2 = Ĝd∗
n (β̂∗1(τ))− Ĝd∗

n (β̂1(τ))−Gd∗
n (β̂∗1(τ)) +Gd∗

n (β̂1(τ)),

R∗3 = Gd∗
n (β̂∗1(τ))−Gd

n(β̂1(τ))−Dτ
ndZ

∗
n.

Since R∗1 and R∗2 are op∗(1) + op(1), by Lemma 4, we have

Ŵ d∗
n = W d∗

n −Dτ
ndZ

∗
n +Op(

√
n ‖ β̂∗1(τ)− β̂1(τ) ‖2) + op∗(1) + op(1).

Set di = xi1,

Dτ
nxZ

∗
n = W x∗

n +Op(
√
n ‖ β̂∗(τ)− β̂(τ) ‖2)) + op∗(1) + op(1).
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Thus Z∗n = (Dτ
nx)
−1W x∗

n + op∗(1) + op(1) and

Ŵ d∗
n = W d∗

n −Dτ
nd(D

τ
nx)
−1W x∗

n + op∗(1) + op(1).

Set di = x̂i2 − xi2,

n−1/2
∑
i

(xi2 − x̂i2)(â∗i (τ)− (1− τ)) =

n−1/2
∑
i

(xi2 − x̂i2 −Kτ
nx1i)(ã

∗
i (τ)− (1− τ)) + op∗(1) + op(1).

Therefore

S∗n = n−1/2

n∑
i=1

∑
τm∈S

(xi2−x̂i2−Kτm
n xi1)(ã∗i (τm)−(1−τm))ϕ′(τm)(τm−τm−1)+op∗(1)+op(1).

(2.21)

Comparing equation (2.15) with (2.21), their right hand sides are exactly the

same except that we have ã∗i instead of ãi for the bootstrapped test statistics. Recall

ãi(τ) = I(yi ≥ xTi1β(τ)) and ã∗i (τ) = I(y∗i ≥ xTi1β̃1(τ)). Consider a set D where

xTi1β̃1(τ) is strictly monotone for τ ∈ [ε, 1− ε]. On D, ã∗i (τ) given data independently

follows the same binary distribution as ãi(τ). Therefore the conditional distribution

of T ∗n given data will convergence to the same limiting distribution as Tn on D. We

then have the desired results since P (D)→ 1 as n→∞ by Theorem 1 of Neocleous

and Portnoy (2008).
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CHAPTER III

Rank-based Inference for Censored Quantile

Regression

3.1 Introduction

In the previous chapter, we have already seen that the quantile regression is

particularly useful when the effect of the covariates to the response varies in τ . This

phenomenon can often be observed in biomedical studies, where the effect of certain

treatment is expected to depend on certain unobserved aspects of the patients.

In biomedical studies, the responses are usually censored from the right because

patients may drop out of the study and a clinical trial will terminate after certain

period of time. The accelerated failure time model and the Cox proportional hazard

model are popular regression models to study censored outcomes. However, these

two models do not capture the heterogeneity of the treatment effect. Therefore it

is useful to develop estimation and inference schemes for quantile regression with

censored outcomes.
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Censored quantile regression was first studied in Powell (1984, 1986), where the

censored time is assumed to be fixed. Wang and Fygenson (2009) developed methods

for longitudinal data with fixed censoring. Ying et al. (1995), Zhou (2006) and Bang

and Tsiatis (2002) among others proposed different estimating equations assuming

the censored time is independent of the survival time;

A less stringent and more common assumption, which is called standard right

censoring, assumes the censored time is conditionally independent of the survival

time given the covariates. Multiple methodologies have been proposed under this

standard right censoring assumptions, and they can be classified into two groups by

whether the linear quantile regression model is assumed to held locally at one τ or

globally at any τ .

Under the local linear quantile regression model, Wang and Wang (2009) pro-

posed a method using redistribution of mass idea; Leng and Tong (2013) proposed

an alternative method by inversing censoring probability; Backer et al. (2019) con-

structed an adapted loss function for censored quantile regression. Though these

methods are different, they share the same feature that the conditional distribu-

tion of either the survival time or the censored time needs to be estimated non-

parametrically to carry out the estimation.

Under the global linear quantile regression model, two popular methods were

proposed by Portnoy (2003) and Peng and Huang (2008). Portnoy proposed an it-

erative self-consistency algorithm based on the idea of redistribution of mass. Peng

and Huang’s method constructed their estimation equation by clever usage of the

martingale feature of censored data. No estimation of conditional distributions is re-
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quired for Portnoy’s method or Peng and Huang’s method. Because when the global

quantile model is assumed, the conditional distribution of the survival is defined by

the coefficients function of τ . But the global linear assumption is stronger than the

local one.

Asymptotic normality has been established for all the above-mentioned methods.

The covariance of the estimated coefficients takes complicated form involving the

conditional densities of the survival and censored times. Therefore inference for

censored quantile regression is usually carried out by building a confidence interval

of the interested coefficient using the bootstrap. Though building the confidence

interval is sufficient for some testing purposes, there are scenarios where a more

flexible testing procedure is preferred. For example, suppose the goal is to test

the significance of a coefficient over a quantile region. Shown by the simulation

results in Chapter 2, for quantile regression without censoring, the rank-based test

outperformed the method based on a confidence band of the coefficient over the

selected region. Another example is when comparing two nested models, one needs

to test whether several coefficients simultaneously equal to zero. In this case, building

a confidence interval individually for each coefficient will lead to the multiple testing

problem, which will need to be adjusted with a possible loss of power.

In this chapter, we propose a rank-based test under the global linear quantile

regression model with random right censoring. The rank-based test allows the users

to study the effect of one or more coefficients over any pre-specified quantile re-

gion. There are two major challenges to conduct the rank-based test. Firstly, for

quantile regression without censoring, the rank-based test is constructed with the
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regression rank score, which is the solution of the dual problem of optimizing the

quantile loss function. However, the regression rank score is not naturally defined

for censored settings. We propose a regression rank score for censored quantile re-

gression with a similar redistribution of mass idea in Portnoy (2003) and Wang and

Wang (2009). Secondly, the bootstrap is required to implement our test since the

exact analytic form of the limiting distribution of our test statistics is complicated.

In a hypothesis testing framework, the bootstrap sample should be generated from

the null hypothesis to ensure bootstrap consistency. Sampling schemes like paired

bootstrap or perturbing the minimand that generate the bootstrap samples from the

full model can not be used in our context. Therefore we propose a new bootstrap

algorithm that mimics the true data generating procedure under the null hypothesis.

This bootstrap algorithm is an extension of the model-based bootstrap proposed in

Chapter 2 to censored quantile regression.

In conclusion, recent research on censored quantile regression has focused more

on the estimation and inference methods are relatively limited. In this paper, we

focus on the inference part and propose a rank-based test that complements what

is available in the literature. We also propose a model-based bootstrap that can

be used for the general hypothesis testing framework for global censored quantile

regression.
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3.2 Main results

3.2.1 Test statistics

By convention, let Ti be the survival time which may not be fully observed. Let Ci

denotes the censoring time and Yi := min(Ti, Ci) is the observed outcome. Let ∆i =

I(Ti ≤ Ci) be the event indicator. Further, we assume that given covariates xi, the

survival time Ti and censoring time Ci are independent. This standard assumption

is commonly assumed in the survival analysis literature.

We consider a random sample of size n that follows the linear quantile model

Ti = xTi1β1(τ) + xTi2β2(τ) + ei,τ , ∀τ ∈ (0, τU ], i = 1, 2, ...n, (3.1)

where xi1 ∈ Rp, xi2 ∈ Rq and the conditional τth quantile of ei,τ given xi1 and xi2

is 0. Notice that we assume the above linear relationship holds up to quantile level

τU , which denotes the largest quantile level where the coefficient is identifiable. Two

popular methods has been proposed for the estimation of Model (3.1) in Portnoy

(2003) and Peng and Huang (2008) respectively. Both methods estimate β(τ) se-

quentially at a set of M + 1 grid points S = (t0, t1, ..., tM), where tM ≤ τU . In this

chapter, we utilize these available methods for the estimation of β(τ).

We are interested in testing

H0: β2(τ) = 0, ∀τ ∈ (0, τU ]

vs

H1: β2(τ) 6= 0 for τ ∈ [τa, τb],
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where [τa, τb] is a user-specific strict subset of [t1, tM ].

Similar to the previous chapter, we would like to use the regression rank score

âi(τ) to construct our test statistics. But we can not use âi(τ) directly in the current

censored setting because of two reasons. Firstly, unlike the uncensored case where

âi(τ) is the solution of the dual problem (2.3), âi(τ) is undefined for the censored case.

Secondly, the original âi(τ) does not take the effect of censoring into consideration.

Therefore, a regression rank score for the censored case needs to be developed.

To overcome the difficulties, observe that as shown in (2.4), âi(τ) = I(Ti >

xTi β̂(τ)) unless the outcomes are exactly on the fitted line. However for both censored

and uncensored cases, the number of points lying on fitted line is bounded by a

constant independent of n uniformly in τ . Therefore the difference between âi(τ)

and I(Ti > xTi β̂(τ)) is of smaller order and most asymptotic properties will not be

influenced if âi(τ) is replaced with I(Ti > xTi β̂(τ)).

We use the redistribution of mass idea motivated by Portnoy (2003) and Wang

and Wang (2009) to account for the censoring. Suppose we already obtained the

β̂(τ) on the set of grid points S = (t0, t1, ..., tM). Let β̃(τ) be the linear interpolation

between these grid points. For censored observations , define

τ̂i = inf
t0≤τ≤tM

{xTi β̃(τ) ≥ Ci}. (3.2)

Set τ̂i = tM if Ci > xTi β̃(τ).
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We then define for each observation a weight wi(τ) as

ŵi(τ) =


τ−τ̂i
1−τ̂i ∆i = 0, τ ≥ τ̂i

1 ∆i = 0, τ < τ̂i

1 ∆i = 1

(3.3)

and the regression rank score for censored version as

âci(τ) = 1− ŵi(τ)I(Yi − xTi β̃(τ) < 0). (3.4)

The intuition is that when defining âci(τ), what matters is the sign of Ti−xTi β̃(τ)

but not its exact value. When ∆i = 0 and τ < τ̂i, which means Ci lies above

xTi β̃(τ), Ti is also above xTi β̃(τ) since Ti is no smaller then Ci. Thus in this case,

we can assign ŵi(τ) to be 1, which is equivalent to replacing the unobserved Ti with

the observed Ci. When ∆i = 0 and τ ≥ τ̂i, Ci is below the fitted line and Ti can

either lie below or above xTi β̃(τ). We assign ŵi(τ) = (τ − τ̂i)/(1 − τ̂i), which is the

probability Ti is below xTi β̃(τ) given Ti > Ci. Notice that when there is no censoring,

âci(τ) = I(Ti > xTi β̂(τ)) is asymptotically equivalent to the regression rank score for

the uncensored cases.

Remark: Although xTi β(τ) is monotone in τ for any xi, x
T
i β̂(τ) may not be

monotone. So strictly speaking when ∆i = 0 and τ ≥ τ̂i, Ci may still lie above the

fitted line. By Portnoy and Lin (2010), xTi β̂(τ) is monotone with probability going

to 1. Therefore the above statement is true asymptotically.

Write the design matrix of (3.1) as X = [X1, X2], Let X̂2 = X1(XT
1 X1)−1XT

1 X2
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be the projection of X2 into the spaces spanned by columns of X1. Let Qn =

n−1(X2 − X̂2)T (X2 − X̂2). Define

S(τ) = n−1/2
∑
i

(xi2 − x̂i2)âci(τ). (3.5)

where âci(τ) is defined in (3.4) and calculated under the restricted model that only

includes X1. S(τ) is the main component of our test statistics. Intuitively, âci(τ)

represents the relative position of observation i at τth level after adjusting for X1.

If the null hypothesis is true, no more variation in âci(τ) can be further explained by

X2 − X̂2. Thus we expect the norm of S(τ) to be close the 0 if the null hypothesis

is true.

Based on S(τ), we construct the following two test statistics,

T1 =
( ∑
tm∈S∩[τa,τb]

S(tm)(tm − tm−1)
)T
Q−1
n

( ∑
tm∈S∩[τa,τb]

S(tm)(tm − tm−1)
)
, (3.6)

T2 =
∑

tm∈S∩[τa,τb]

(
S(tm)TQ−1

n S(tm)
)
(tm − tm−1). (3.7)

For T1, we first take a weighted sum of S(τ) over all the grid points in [τa, τb].

This way, our test statistics can detect the effect of X2 over the [τa, τb] region instead

of a single quantile level. T1 is probably more natural and is equivalent to the test

statistics proposed in the previous chapter for the uncensored case when a Wilcoxon

score function is used.

One possible defect of T1 is that if the quantile region of interest [τa, τb] is relatively
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large, it is possible that the effect is negative at the lower quantile level but positive

at the upper quantile level. In this case, the power of T1 may suffer because it can

be roughly seen as the average effect over this region. Therefore we propose another

test statistic T2 where the weighted sum is taken over the square of S(τ). Thus T2

is expected to have better power in the aforementioned scenario. The performance

of T1 and T2 is compared numerically in Section 3.3.

3.2.2 Bootstrap algorithm

The asymptotic properties of T1 and T2 will be studied in the next subsection,

where the limiting distributions of T1 and T2 are shown to take relative complicated

forms. Therefore we use the bootstrap to approximate the distribution of T1 and T2

under H0, which is common in the censored quantile regression literature.

However, common resampling schemes like the paired bootstrap or resampling

by perturbing the minimand can not be used for our purpose because these methods

generate the bootstrap samples under the full model instead of the restricted model.

In this subsection, we propose a new bootstrap algorithm which generalizes the

model-based bootstrap introduced in the previous chapter to the censored case.

Recall we assume that given xi, Ti and Ci are independent. This enables us to

generate T ∗i and C∗i independently while keeping xi fixed. To generate T ∗i , notice that

under H0, we have Qτ (Ti|xi1) = xTi1β1(τ). Therefore it is nature to set T ∗i = xTi1β̃1(ui)

where ui ∼ U(0, 1).

To resample C∗i , we estimate G(·|xi1, xi2) using a local Kaplan–Meier (KM) esti-
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mator. Specifically, let

Ĝ(y|x) = 1−
n∏
i=1

(
1−

Bni(x)∑
j I(yi < yj)Bnj(x)

)I(Yi<y,∆i=0)

, (3.8)

where Bnj(x) =
K((x−xj)/hn)∑
kK((x−xk)/hn)

, K is a selected kernel density function and hn is

a sequence of bandwidth that tends to 0. Then set C∗i = Ĝ−1(vi|xi1, xi2) where

vi ∼ U(0, 1) independent of ui.

Remark: It is difficult to get an accurate estimate of G(·|xi1, xi2) using the local

KM estimator unless p + q is small. Alternatively, since the role of Ti and Ci are

symmetric, we could fit a censored quantile regression QCi(τ |xi1, xi2) = xTi1γ1(τ) +

xTi2γ2(τ) and let C∗i = xTi1γ̂1(vi) + xTi2γ̂2(vi). Again, vi ∼ U(0, 1) is independent of ui.

This approach requires the additional assumption that a linear quantile model also

holds for Ci.

When the above algorithm is implemented, however, one may encounter non-

identifiability issues in multiple steps. Notice that we choose [τa, τb] to be inside

(0, τU ] to avoid the non-identifiability issue of β(τ) over our region of interest. But

the non-identifiability is unavoidable when generating bootstrap samples.

When generating T ∗i , ui ranges from 0 up to 1 but β̂1(τ) is only attainable until

τU . Fortunately, since our test only focus on [τa, τb], the exact value of β̂1(τ) when

τ > τU has no influence on the results. Therefore we can let β̃1(τ) = β̂1(τU) for

τ > τU .

A similar non-identifiability issue also occurs when generating C∗i . The problem

is slightly trickier in this case but we can assign a very large value for C∗i when
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Ĝ−1(·|xi1, xi2) is unidentifiable at the generated vi level. This is because if we look

locally at any xi in the domain, Ci is unidentifiable in the population when the largest

attainable value of Ti is smaller than the largest attainable value of Ci. Because Ci

will always be censored by Ti for Ci > supTi, we have no information about the

distribution of Ci when Ci > supTi. But since survival time Ti is what we are really

interested in, the exact value of Ci is not important, as long as we know Ti can be

observed in this case.

We are now ready to summarize the detailed algorithm of the proposed bootstrap.

The following algorithm uses T1 as the test statistics and the local KM to re-sample

C∗i ; the algorithm using T2 as the test statistics or censored quantile regression to

resample C∗i is similar.

Step 1: Fit the censored quantile regression under H0 using Portnoy’s or Peng and

Huang’s method. Calculate T1 using (3.6).

Step 2: For i = 1, ..., n, generate ui ∼ U(0, 1). Let T ∗i = xi1β̃(ui), where β̃(τ) is

the linear interpolation of {β̂1(τm),m ∈ S} calculated under the restricted

model. Set β̃1(τ) = β̂1(τU) for τ > τU .

Step 3: For i = 1, ..., n, generate vi ∼ U(0, 1) independent of ui. Let C∗i = Ĝ−1(vi|xi1, xi2),

where Ĝ(·|xi1, xi2) is estimated using the local KM estimator described in

(3.8). Set C∗i to be a very large number if Ĝ−1(·|xi1, xi2) is undefined at vi.

Step 4: Construct a bootstrap sample (Y ∗i ,∆
∗
i , xi1, xi2). Calculate T ∗1 at this boot-

strap sample.
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Step 5: Repeat steps 2 to 4 for B times to get {T ∗11, T ∗12, ..., T ∗1B}. The resulting

p-value is calculated by B−1
∑

b I(T1 > T ∗1b).

3.2.3 Asymptotic properties

In this subsection, we study the asymptotic properties of T1 and T2 and show

that the proposed bootstrap inference is consistent. For simplicity, the results of this

subsection will be proved assuming that the Portnoy’s method is used for the esti-

mation of β̂(τ). The β̂(τ) estimated using Portnoy’s method and Peng and Huang’s

method are similar numerically (Koenker (2008)) and the equivalence of these two

methods is discussed in Peng (2012).

The following regularity conditions are assumed:

(B1) Let ε = t0 < 2ε = t1 < ... < tM ≤ min(1− ε, τU) be a set of grid points where

n−1/2 � tj − tj−1 � n−1/4, j = 2, ...,M . Assume (3.1) is identifiable over

(0, τU ].

(B2) there is no censoring below 2ε. Namely for any τ < 2ε, xTi β(τ) < Ci.

(B3) ‖xi‖ is bounded uniformly in i.

(B4) Given x, the conditional density f(t|x) and g(t|x) have uniformly bounded and

strictly positive derivatives with respect to t, for any t ∈ xTβ(τ), τ ∈ [2ε, τU ].

(B5) F (t|x) and G(t|x) have bounded second partial derivatives (uniformly in t)

with respect to x.
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(B6) The matrix E(xxT ) and D(t) = E
(
xxTf(xTβ(t)|x)(1−G(xTβ(t)|x))

)
are pos-

itive definite for t ∈ [ε, τU ].

(B7) The kernel density function K is positive, with compact support, and Lipschitz-

continuous of order 1. Furthermore,
∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
K2(u)du <

∞ and
∫
|u|2K(u)du <∞.

(B8) The bandwidth satisfies hn = cnn
−1/2+γ0 , with cn → c, where c is a constant,

0 < γ0 < 1/4.

(B1) controls the distance of adjacent grid points to be of order between n−1/2

and n−1/4. The same order is required in Portnoy and Lin (2010) to establish the

asymptotic normality of β̂(τ) estimated with Portnoy’s method. This order is also

required in Chapter 2 to show the consistency of the model-based bootstrap without

censoring. (B2) is required by the Portnoy’s method to ensure that it is valid to use

quantile regression without censoring to estimate β(·) at t0th quantile level. In (B3)

we assume that the covariates are bounded, which is seemingly restrictive. However,

since we assume the linear quantile model globally, the quantile function xTβ(τ1)

and xTβ(τ1) will cross eventually if x is allowed to go to infinity, unless xTβ(τ1)

and xTβ(τ1) are parallel, which precludes heterogeneity. (B4) and (B6) are common

assumptions assumed when studying the asymptotic properties of censored quantile

regression. Notice that assuming D(t) to be positive definite until τUth level implies

(3.1) is identifiable up to τU . (B5), (B7) and (B8) are required in Theorem 2.1 of

Gonzalez-Manteiga and Cadarso-Suarez (1994) where the asymptotic behavior of

Ĝ(t|x) is studied.
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Theorem 3.1: Under regularity conditions (B1)-(B8), we have under H0,

(i) S(t) converges to a zero mean Gaussian process for t ∈ [τa, τb]. Therefore

T1 ⇒ χ̄2, where χ̄2 is a mixed chi-square distribution as a weighted sum of q chi-

square variables of one degree of freedom; The limiting distribution of T2 is a time

integral of a squared Gaussian process.

(ii) Given the data, the conditional distribution of T ∗1 will converge to the same

limiting distribution as T1; the same can be said for T ∗2 .

Theorem 3.1 shows the consistency of our bootstrap method. Theorem 3.1(i)

follows from the proof in Portnoy and Lin (2010). To establish 3.1(ii), the key

is to show that the conditional distribution of S∗(τ) = n−1/2
∑

i(xi2 − x̂i2)â∗i (τ)

given the original data has the same limiting distribution as S(τ), which follows if

the conditional distribution of
√
n(β̂∗(t) − β̂(t)) given data converges to the same

limit as
√
n(β̂(t)− β(t)). By using results from the product-integration theory (Gill

and Johansen (1990)), we could expand
√
n(β̂∗(t)− β̂(t)) and

√
n(β̂(t)− β(t)) as a

Bahadur representation for censored quantile regression. Then we would have the

desired results by studying the two expansions term by term. A detailed proof is

provided in Section 3.5.

3.3 Simulations

In this section, we evaluate the performance of our method in finite samples using

Monte Carlo simulations. More specifically we compare the performance of T1, T2
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and the following test statistic focuses on one quantile level τ ,

T3 = S(τ)TQ−1
n S(τ). (3.9)

Notice that T3 is a special case for T2 and T2 when we set τa = τb. We also show that

the results of our methods are similar whether we use local KM or censored quantile

regression as the model to bootstrap C∗i .

In the simulation we consider the following model

log(Ti) = β0(ui) + zi1β1(ui) + zi2β2(ui) + zi3β3(ui), i = 1, ..., n, (3.10)

where ui ∼ U(0, 1). Generate zi1 ∼ U(1, 3) when zi2 < 1 and zi1 ∼ U(0, 2) when

zi2 ≥ 1; zi2 and zi3 are generated from U(0, 2) independently. Let β0(τ) = Φ−1(τ),

where Φ(τ) is the cdf for the standard normal distribution; β1(τ) = τ 2. Under the

null model, set β2(τ) = β3(τ) = 0.

We consider 2 cases for β2(τ) and β3(τ) under the alternative.

In case (i), let β2(τ) = 2 exp(15(τ−0.5))
1+exp(15(τ−0.5))

and β3(τ) = 2 exp(10(τ−0.5))
1+exp(10(τ−0.5))

. Set log(Ci) ∼

U(−0.5zi1, 5− 0.5zi1) under H0 and log(Ci) ∼ U(2− 0.5zi1, 7− 0.5zi1) under H1. In

this case, the effect of zi1 and zi2 is always positive and is more significant at the

upper tail. Case (i) is designed to capture the scenarios when by previous knowledge

the effect of zi1 and zi2 is suspected to be minimal except at upper quantile level and

[τa, τb] is chosen to focus on the upper tail (see He et al. (2010) for a real example).

For case (ii), let β2(τ) = −2I(τ < 0.4)+20(τ−0.4)I(0.4 < τ < 0.6)+2I(τ > 0.6),

and β3(τ) = −3I(τ < 0.4) + 30(τ − 0.4)I(0.4 < τ < 0.6) + 3I(τ > 0.6). Set log(Ci) ∼
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U(−zi1, 5 − zi1) under H0 and log(ci) ∼ U(2 − zi1, 7 − zi1) under H1. In this case,

the effect of zi2 and zi3 changes from negative to positive as τ increases. Case (ii)

is designed to capture the scenarios when the goal is to detect a overall effect of zi2

and zi3 and [τa, τb] is chosen to cover a relatively large quantile region.

Figure 3.1: Curves of quantile coefficients of case (i) and (ii) under the alternative.

The simulation size is 1000 and the bootstrap sample size is 500 throughout this

simulation. The results of our simulation under case (i) and (ii) are summarized in

Table 3.1 and 3.2 respectively.

59



n = 100 n = 200 n = 500

Type I error Power Type I error Power Type I error Power

T km1 (0.50, 0.85) 0.046 0.365 0.047 0.651 0.057 0.979

T km1 (0.75, 0.85) 0.056 0.438 0.029 0.798 0.057 0.998

T km2 (0.50, 0.85) 0.049 0.352 0.048 0.647 0.054 0.979

T km2 (0.75, 0.85) 0.056 0.433 0.029 0.797 0.055 0.998

T qr1 (0.50, 0.85) 0.057 0.372 0.048 0.660 0.059 0.981

T qr1 (0.75, 0.85) 0.061 0.440 0.037 0.809 0.056 0.998

T qr2 (0.50, 0.85) 0.061 0.361 0.047 0.653 0.056 0.982

T qr2 (0.75, 0.85) 0.062 0.435 0.036 0.805 0.057 0.998

T qr3 (0.50) 0.044 0.165 0.055 0.280 0.054 0.549

T qr3 (0.75) 0.059 0.431 0.041 0.772 0.057 0.998

T qr3 (0.85) 0.064 0.390 0.046 0.784 0.058 0.998

Table 3.1: Comparison of the empirical type I error rate and power under case (i)
out of 1000 simulation samples. T km1 (τa, τb) stands for the test statistic
T1 over τ in [τa, τb] with C∗i sampled from the the local KM estimator.
Similarly, T qr2 [τa, τb] stands for the test statistic T2 over τ in [τa, τb] with
C∗i sampled from the censored quantile regression model. T qr3 [τ ] stands
for the test statistic T3 at τ .

When the nominal type I error is 0.05, the standard derivation of the empirical

type I error is 0.007. From Table 3.1, all the tests we considered seem to be reasonable

because the empirical type I errors fall into two standard derivation of 0.05 except two

entries. To compare the power, for reference, the largest possible standard derivation

for empirical power is 0.016, which is achieved when the true power is 0.5. Whether

we use the local KM or the censored quantile regression to sample C∗i provides similar
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results. The performance of T1 and T2 are also similar in this setting. Comparing

T1/T2 to T3, we notice that the power of T3 heavily relies on the chosen quantile level

τ and it can be difficult to choose a good quantile level in practice. Though the

power of T1/T2 also depends on [τa, τb], it is less sensitive. And the power of T1/T2

targeting the region [0.75, 0.85] is higher than T3 at 0.75 or 0.85 level. This illustrates

the advantage of considering a quantile region instead of a single τ in global quantile

regression.

From Table 3.2, the major distinction from case (ii) to case (i) is that in case

(ii), T2 has higher power than T1 under the same [τa, τb]. It is because by design,

the signs of β2(τ) and β3(τ) changes from negative to positive as τ increases. Thus

the negative effect near τa and the positive effect near τb is averaged out to some

degree when T1 is used. This problem is avoided when T2 is used instead. Therefore

according to our simulation results, T2 is preferable to the more natural T1 overall.
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n = 100 n = 200 n = 500

Type I error Power Type I error Power Type I error Power

T km1 (0.40, 0.60) 0.043 0.079 0.058 0.097 0.042 0.098

T km1 (0.10, 0.70) 0.046 0.350 0.057 0.621 0.049 0.935

T km2 (0.40, 0.60) 0.042 0.104 0.057 0.164 0.057 0.340

T km2 (0.10, 0.70) 0.044 0.763 0.063 1.000 0.051 1.000

T qr1 (0.40, 0.60) 0.044 0.076 0.059 0.096 0.046 0.097

T qr1 (0.10, 0.70) 0.045 0.351 0.063 0.625 0.051 0.936

T qr2 (0.40, 0.60) 0.047 0.102 0.061 0.160 0.044 0.343

T qr2 (0.10, 0.70) 0.046 0.766 0.064 1.000 0.053 1.000

T qr3 (0.30) 0.040 0.770 0.060 0.969 0.056 0.999

T qr3 (0.50) 0.043 0.077 0.054 0.076 0.049 0.060

T qr3 (0.70) 0.039 0.116 0.045 0.240 0.064 0.623

Table 3.2: Comparison of the empirical type I error rate under case (ii) out of 1000
simulation samples.

3.4 Natural mortality in bighorn sheep

In this section, we apply our method to study the effect of early environment

conditions on the natural mortality of adult bighorn sheep using the data analyzed in

Douhard et al. (2019)1. The data set contains the survival time of 351 bighorn sheep

born at Ram Mountain in Alberta, Canada, from 1973 to 2010. Other covariates

1The data set is available for download from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.6bm4228
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included in the data set are sex, adult environment condition and the indicator of

whether cougar predation exists. The environment condition is measured as the

3-year average of the average mass of the 15-month-old yearlings. Because we are

interested in the natural mortality rate, the lifetimes of sheep that were shot by

hunters are considered as censored. In the data set, 19 out of 191 female sheep are

censored and 53 out of 160 male sheep are censored.

We use the log of survival time as the response and sex, cougar, early environment

condition, adult environment condition and the interaction between sex and the early

environment condition as predictors. Results from the Cox proportional hazard

model used in Douhard et al. (2019) show that female sheep with a better early

environment tend to live longer (p-value = 0.0042). But this phenomenon is not

observed for male (p-value = 0.1747), though the interaction between sex and early

environment is also not significant (p-value = 0.4341). This seemingly contradicting

result may imply that the test does not have enough power to detect the early

environment effect on male or the interaction between sex and early environment.

The Cox proportional hazard model assumes that the effect of a covariate on the

hazard ratio is a constant, which precludes many forms of heterogeneity. Alterna-

tively, we fit the model with censored quantile regression with the same covariates

and the results are shown in Figure 3.2. We first notice that the estimated coef-

ficients for adult environment condition and cougar are non-constant over τ . This

implies that heterogeneity exists and the Cox proportional hazard model may not

be adequate. According to the figure, the effect of early environment condition for

female is significant for a large range of τ . But the effect of early environment con-
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dition for male is only significant at τ around 0.2. It is very difficult to detect the

early environment effect on male if one only looks at single τ because it is hard to

know which τ to look at beforehand and multiplicity adjustment would be needed if

one conduct test at several quantile levels individually.

Figure 3.2: Pointwise confidence band for the censored quantile regression model
coefficients.

In the next step, we conduct the proposed rank-based test. Because we aim to

test the overall effect of early environment conditions on male/female, we should

choose [τa, τb] to cover a large quantile region. With T2 and [τa, τb] = [0.01, 0.8], we

detect that the interaction between early environment and sex is significant (p-value

= 0.016). Furthermore, with T2 and [τa, τb] = [0.01, 0.8], we detect that male with
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better early environment tends to live longer (p-value = 0.020), and the same holds

for female with p-value = 0.000. According to our analysis, good early environment

condition has a positive effect on the survival time for both male and female sheep,

and the effect on female sheep is greater than the male sheep. We are able to arrive

at the same conclusion if T1 is used or we set [τa, τb] to be other quantile regions

like [0.1,0.8], [0.1,0.7], etc., indicating the robustness of the proposed test over the

choices of the quantile regions.

3.5 Proof

In this section we present the proof of Theorem 3.1. when Portnoy’s method is

used for the estimation.

Notice that the weight ŵi defined in (3.3) for our test is slightly differently from

the weight defined in Portnoy and Lin (2010) for the estimation. Suppose Ci is first

crossed between xTi β̂(tj) and xTi β̂(tj+1), this observation is actually considered as

uncensored at tj+1th quantile (namely ŵi(tj+1) = 1) by Portnoy and Lin (2010).

Because by their estimation algorithm only β̂(t1),...,β̂(tj) have been obtained at this

point and Ci has not been crossed by tjth quantile. For our inference β̂(·) has already

been estimated at all the grid points and τ̂i and ŵi are calculated by (3.2) and (3.3).

Throughout the proof, ŵi will present the weight describe in Portnoy and Lin

(2010) unless otherwise distinguished as ŵPLi (weight defined in Portnoy and Lin

(2010)) or ŵSHi (weight defined in (3.3)).

The proof is established in four steps.
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3.5.1 Step 1: establish the distribution of the test statistics T1 and T2

We fit the censored quantile regression model model with only xi1 as the covariate

and assume H0 is true.

For censored observation i, define τi such that xTi1β(τi) = Ci. Let wi be the true

weight where r̂i in (3.3) is replaced with τi. Let di be a random vector with bounded

support. Write

Ψk+1(w(β
k
, tk+1), b) =

∑
i

di

(
I(∆i = 1)ψ(Yi − xTi1b, tk)

+ I(∆i = 0)
(
w(β

k
, tk+1)ψ(Ci − xTi1b, tk)− (1− w(β

k
, tk+1))ψ(Y ∗i − xTi1b, tk)

))
,

(3.11)

where β
k

denotes β(·) evaluated at grid points t0, ..., tk and ψ(u, t) = t − I(u < 0).

By equation (13) of Portnoy and Lin (2010), for ‖θ − β(tl+1)‖ = O(n−1/2) and any

l < M ,

Ψl+1(w(β
l
, tl+1), θ))−Ψl+1(w(β

l
, tl+1), β(tl+1))−DTV X(θ−β(tl+1)) = Op(n

1/4 log n),

(3.12)

where V is a diagonal matrix with Vii = fi(x
T
i1β(tl+1))[1−Gi(x

T
i1β(tl+1)] and D is a

n× p matrix with dTi as the ith row.

By same argument as equation (14) of Portnoy and Lin (2010), we have

Ψl+1(w(β̂
l
, tl+1), θ)) =

∑
i∈CIl

di(ŵi − wi)I(Ci < xTi1θ̂) + Ψl+1(w(β
l
, tl+1), β(tl+1))

−DTV X(θ − β(tl+1)) +Op(n
1/4 log n).

(3.13)
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Set θ = β̂tl+1
. If the weight w is defined as our paper, we have Ψl+1(wSH(β̂

l
, tl+1), θ)) =∑

i(â
c
i(tl+1)+1−t). For a censored observation i, ŵPLi (tl+1) is different from ŵSHi (tl+1)

if the observation is first crossed between tl and tl+1 level, which is of order δn. And

in this case, 1−ŵPLi (β̂
l
, tl+1)I(Yi−xTi1β̂(tl+1) < 0) = 0 and âci(tl+1) = O(tl+1− τ̂SHi ) =

O(δn). Therefore Ψl+1(wPL(β̂
l
, tl+1), θ)) =

∑
i(â

c
i(tl+1) + 1− t) +O(nδn).

Let aci(t) := 1 − wi(t)I(Yi − xTi β(t) < 0), by direct calculation we have at each

t = tk,

1√
n

∑
i

di(1− t− âci(t)) =
1√
n

∑
i

di(1− t− aci(t))

+
( 1

n

∑
i

dix
T
i1fi(x

T
i1β(t))[1−Gi(x

T
i1β(t)]

)√
n(β̂(t)− β(t)

)
+

1

n

∑
i

di

√
n(τ̂i − τi)
(1− τi)2

I(Yi > Ci)I(xTi1β̂(t) ≥ Ci) + op(1).

(3.14)

Notice that terms similar to the first two terms also appears in the derivation of quan-

tile regression without censoring while the third term appears because the true weight

wi is estimated by ŵi. It is easy to see that the first term Wn,d(t) := 1√
n

∑
i di(1− t−

aci(t)) converges to a zero mean Gaussian process W (t). It is shown in Portnoy and

Lin (2010) that the third term DTn,d(t) := 1
n

∑
i di
√
n(τ̂i−τi)
(1−τi)2 I(Yi > Ci)I(xTi1β̂(t) ≥ Ci)

converges to

DTd(t) =

t∫
0

Bn(u)Γd(u)du+ op(1), (3.15)

where

Γd(t) =
gi(x

T
i1β(t))

(1− t)(1−Gi(xTi1β(t)))
E(dix

T
i ), (3.16)
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and

Bn(t) =
√
n(β̂(t)− β(t)). (3.17)

Let di = xi1 in (3.14), we have

D(t)Bn(t) =

t∫
0

Bn(u)Γx1(u)du+Wn,x1(t) + op(1), (3.18)

where D(t) = lim 1
n

∑
i xi1x

T
i1fi(x

T
i1β(t))[1−Gi(x

T
i1β(t)].

Since Wn,xi1(t) converges to a zero mean Gaussian process Wxi1(t), we have under

the null hypothesis Bn(t) converges weakly to a Gaussian process B(t) satisfying

D(t)B(t) =

t∫
0

B(u)Γx1(u)du+Wx1(t). (3.19)

Let di = xi2 − x̂i2, equation (3.14) becomes

1√
n

∑
i

(xi2 − x̂i2)âci(t) = Wn,xi2−x̂i2(t) +Dxi2−x̂i2(t)Bn(t) +DTn,xi2−x̂i2(t) + op(1).

(3.20)

Thus under the null hypothesis, 1√
n

∑
i(xi2 − x̂i2)âci(t) converges to a zero mean

Gaussian process. Therefore T1 will converge to a mixed chi-square distribution as a

weighted sum of q chi-square variables of df = 1. The limiting distribution of T2 is

more complicated, which the time intergral of a squared Gaussian process. For our

concern, we do not need to know the exact distribution of T1 and T2 since we will

approximate their distribution under the null hypothesis using the bootstrap.
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3.5.2 Step 2: establish the consistency of β̂∗ and the bootstrap version

of equation (3.14).

Let τ̂ ∗i and τ ∗i satisfy xTi1β̃
∗(τ̂i) = C∗i and xTi1β̃(τi) = C∗i respectively.

For the subsequent derivations, we restrict our analysis on the set where xTi β̃(τ)

is monotone in τ , which is true with probability tending to 1 as shown in Portnoy

and Lin (2010). Within this set, T ∗i is generated from a valid quantile process xTi β̃(τ)

and many arguments in Portnoy and Lin (2010) still hold in the bootstrap space.

Following Portnoy and Lin (2010), We shall show by induction that for k = 1, ...,M

∑
i∈CIk

|τ̂ ∗i − τ ∗i | ≤ dk,n (3.21)

‖β̂∗(tk)− β̂(tk)‖ ≤ 2r1n
−1dk,n (3.22)

where dk,n = Rn

√
n(1 + 2r1r2E

∗
nδn)k−1, Rn = n−1/2‖Ψ∗l+1(w(β̂

l
, tl+1), β̂(tl+1))‖, E∗n =

Op∗(1) is a random bound, r1 and r2 are constant given in the derivation below.

First consider k = 1, by our bootstrap design where is no censoring for τ ≤ t1,

thus
∑

i∈CI1 |τ̂
∗
i − τ ∗i | = 0. Since there is no censoring at t1 level, ‖β̂∗(t1)− β̂(t1)‖ ≤

2r1n
−1d1,n is given by Theorem 2.1 where the root-n consistency of β̂∗ for the model-

based bootstrap without censoring is proved. Assume (3.21) and (3.22) are satisfied

when k = l. At tl+1 level, let CIl be the set of censored observations that have been
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crossed at tlth level,

n∑
i=1

|w∗i (β̂
∗
l
, tl+1)− w∗i (β̂l, tl+1)| =

∑
i∈CIl

|w∗i (β̂
∗
l
, tl+1)− w∗i (β̂l, tl+1)|

+
∑

xTi1β̂
∗(tl)<C

∗
i <x

T
i1β̂(tl)

|w∗i (β̂
∗
l
, tl+1)− w∗i (β̂l, tl+1)|

=
∑
i∈CIl

(1− tl+1|τ̂ ∗i − τ ∗i |)
(1− τ̂ ∗i )

+
√
nEnδn

≤
∑
i∈CIl

1− ε
ε2
|τ̂ ∗i − τ ∗i |+

√
nEnδn

≤1− ε
ε2

dl,n(1 + Ẽnδn),

(3.23)

where En and Ẽn are two random bounds. By Lemma 4.1 of He and Shao (1996),

we have on {θ : ‖θ − β̂(tl+1)‖ ≤ Kn−1/2},

Ψ∗l+1

(
w(β̂

l
, tl+1), θ)−Ψ∗l+1(w(β̂

l
, tl+1), β̂(tl+1)

)
− E

(
Ψ∗l+1

(
w(β̂

l
, tl+1), θ)−Ψ∗l+1(w(β̂

l
, tl+1), β̂(tl+1)

))
= O∗p(n

1/4 log n).

(3.24)
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Studying the expectation term in the above equation,

E
(

Ψ∗l+1

(
w(β̂

l
, tl+1), θ)−Ψ∗l+1(w(β̂

l
, tl+1), β̂(tl+1)

))
=
∑
i

diE
(

(I(T ∗i ≤ xTi θ)− I(T ∗i ≤ xTi β̂(tl+1)))I(T ∗i ≤ C∗i )

+ w∗i (tl+1)(I(C∗i ≤ xTi θ)− I(C∗i ≤ xTi β̂(tl+1)))I(T ∗i > C∗i )

)
=
∑
i

diE
(

(I(T ∗i ≤ xTi θ)− I(T ∗i ≤ xTi β̂(tl+1)))I(xTi β̂(tl+1) ≤ C∗i )

+ w∗i (tl+1)(I(C∗i ≤ xTi θ)− I(C∗i ≤ xTi β̂(tl+1)))I(T ∗i > xTi β̂(tl+1)

)
+Op∗(1)

=
∑
i

diE
(
(I(T ∗i ≤ xTi θ)− I(T ∗i ≤ xTi β̂(tl+1)))I(xTi β̂(tl+1) ≤ C∗i )

)
+Op∗(1)

=
∑
i

di E
(
I(T ∗i ≤ xTi θ)− I(T ∗i ≤ xTi β̂(tl+1)

)︸ ︷︷ ︸
I

E(I(xTi β̂(tk) ≤ C∗i ))︸ ︷︷ ︸
II

+Op∗(1).

(3.25)

The second equality follows because the probability that both T ∗i and C∗i are between

xTi θ and xTi β̂ is of order n−1 for ‖θ− β̂(tl+1)‖ = O(n−1/2). The third equation follows

because the probability that C∗i is between xTi θ and xTi β̂ is of order n−1/2. And w∗i

is Op∗(n
−1/2) for such terms.

Now we want to calculate the expectation of I and II. By our bootstrap T ∗i =

xTi β̃(ui) for 2ε < ui < min(1 − ε, τU). When ui < 2ε or ui > 1 − ε, it is impossible

for T ∗i to lie between xTi θ and xTi β̂ with probability tending to 1 by the asymptotic

monotonicity of β̃(·).
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Let ∆ = β̃(ui)− β(ui), we have for 2ε < ui < min(1− ε, τU)

I = E
(
I(xTi θ − xTi ∆ < xTi β(ui) < xTi β̂(tl+1)− xTi ∆)

=

xTi β̂(tl+1)−xTi ∆∫
xTi θ−xTi ∆

fi(c)dc

=

xTi β̂(tl+1)−xTi ∆∫
xTi θ−xTi ∆

fi(x
T
i β(tl+1)) +O(c− xTi β(tl+1))dc

= fi(x
T
i β(tl+1))(xTi β̂(tl+1)− xTi θ) +O(n−1).

(3.26)

Now consider II. By our bootstrap design C∗i = Ĝ−1(vi|xi1, xi2) for vi < τV i, where

τV i is the largest value G−1
i (·) is identifiable. Notice that τV i > Gi(x

T
i β(tl+1)) because

both censored and uncensored outcome can be observed at tl+1 level. When vi > τV i,

xTi β̂(tl+1) ≤ C∗i since we impute a very large value for C∗i . Thus

P(C∗i < xTi β̂(tl+1)) = P(vi < Ĝi(x
T
i β̂(tl+1))) = Ĝi(x

T
i β̂(tl+1)). (3.27)

By Theorem 2.1 of Gonzalez-Manteiga and Cadarso-Suarez (1994),

sup
t

sup
x
|Ĝ(t|x)−G(t|x)| = Op((log n)1/2n−1/4−γ0/2), (3.28)

where 0 < γ0 < 1/4. Thus

II = 1− Ĝ(xTi β̂(tl+1)) = 1−G(xTi β(tl+1)) +Op(n
−1/4 log n), (3.29)
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and

E
(

Ψ∗l+1

(
w(β̂

l
, tl+1), θ)−Ψ∗l+1(w(β̂

l
, tl+1), β̂(tl+1)

))
=
∑
i

difi(x
T
i β(tl+1)(1−G(xTi β(tl+1)(xTi β̂(tl+1)− xTi θ) +Op(n

1/4 log n).
(3.30)

Then we have

Ψ∗l+1(w(β̂
∗
l
, tl+1), θ)) =

∑
i∈CI∗l

di(ŵ∗i − w∗i )I(C∗i < xTi θ) + Ψ∗l+1(w(β̂
l
, tl+1), β̂(tl+1))

−DTV X(θ − β̂(tl+1)) +Op(n
1/4 log n) + o∗p(1).

(3.31)

Set θ = β̂∗(tl+1) and di = xi. (This is possible because if ‖β̂∗(tl+1) − β̂(tl+1)‖ ≥

Cn−1/2 for C large enough, the gradient condition can not be satisfied by (3.31).)

‖β̂∗(tl+1)− β̂(tl+1)‖ = ‖(XTV X)−1

( ∑
i∈CI∗l

xi(ŵ∗i − w∗i )I(C∗i < xTi β̂
∗(tl+1))

−Ψ∗l+1(w(β̂
∗
l
, tl+1), β̂∗(tl+1)) + Ψ∗l+1(w(β̂

l
, tl+1), β̂(tl+1)) +Op(n

1/4 log n) + o∗p(1)

)
.

(3.32)

By (B4) and (B6), there exist a a > 0 such that the biggest eigen value of (XTV X)−1 ≤

an−1. Let

r1 = an−1 1− ε
ε2

, (3.33)
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we have

‖β̂∗(tl+1)− β̂(tl+1)‖ ≤an−1

( ∑
i∈CI∗l

(ŵ∗i − w∗i ) + ‖Ψ∗l+1(w(β̂
∗
l
, tl+1), β̂∗(tl+1))‖

+ ‖Ψ∗l+1(w(β̂
l
, tl+1), β̂(tl+1))‖+Op(n

1/4 log n)

)
≤an−1

(
1− ε
ε2

dl,n(1 + Ẽnδn) + n1/2Rn

)
≤r1n

−1dl,n(1 + Ẽδn) + r1n
−1dl,n

≤2r1n
−1dl+1,n.

(3.34)

for E∗n ≥ Ẽn/2r1r2. This shows that (3.22) holds. To show equation (3.21) is correct,

consider

∑
i∈CIl+1

|τ̂ ∗i − τ ∗i | ≤
∑
i∈CIl

|τ̂ ∗i − τ ∗i |+
∑
i

|τ̂ ∗i − τ ∗i |I(xTi β̂∗(tl) < C∗i < xTi β̂
∗(tl+1)).

(3.35)

We aim to bound the last term in the above equation.

Let j = j(i) such that tj ≤ τ̂ ∗i ≤ tj+1. Since both xTi β̃
∗(τ̂ ∗i ) and xTi β̃(τ ∗i ) equal to

C∗i , we have

0 = xTi
(
β̃∗(τ̂ ∗i )− β̃(τ̂ ∗i )

)
+ xTi

(
β̃(τ̂ ∗i )− β̃(τ ∗i )

)
. (3.36)

Define α̂∗i such that β̃∗(τ̂ ∗i ) = β̂∗(tj) + α̂∗i (β̂
∗(tj+1) − β̂∗(tj)). Expand the first term

in (3.36) as

xTi
(
β̃∗(τ̂ ∗i )− β̃(τ̂ ∗i )

)
= α̂∗ix

T
i (β̂∗(tj)− β̂(tj)) + (1− α̂∗i )xTi (β̂∗(tj+1)− β̂(tj+1)).

(3.37)
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Let hi(·) be the right derivative of xTi β̃(·), by Taylor expansion, with probability 1,

xTi
(
β̃(τ̂ ∗i )− β̃(τ ∗i )

)
= (τ̂ ∗i − τ̂i)hi(tj) +O(δ2

n). (3.38)

Thus, we have
√
n(τ̂ ∗i − τ ∗i ) = hi(tj)x

T
i B
∗
i.j +O(δ2), (3.39)

where

B∗i,j =
√
n

(
α̂∗i (β̂

∗(tj)− β̂(tj)) + (1− α̂∗i )(β̂∗(tj+1)− β̂(tj+1))

)
. (3.40)

Therefore

∑
i∈CIl+1

|τ̂ ∗i − τ ∗i | ≤dl,n +
∑
i

(
n−1/2hi(tj)x

T
i B
∗
i,jI(xTi β̂∗(tl) < C∗i < xTi β̂

∗(tl+1))
)

+Op∗(nδ
2
n)

≤dl,n +
∑
i

(
r2n

−1/2xTi B
∗
i,jδn

)
≤dl,n + 2r1r2dl,n(1 + Ẽnδn)δn

≤dl+1,n.

(3.41)

In the second line we replace I(xTi β̂∗(tl) < C∗i < xTi β̂
∗(tl+1)) with its expectation
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which is of order δn. The error incurred by this replacement is dominated by dl,n

E
(∑

i

(
I(xTi β̂∗(tl) < C∗i < xTi β̂

∗(tl+1))− E
(
I(xTi β̂∗(tl) < C∗i < xTi β̂

∗(tl+1))
)))2

=
∑
i

E
(
I(xTi β̂∗(tl) < C∗i < xTi β̂

∗(tl+1))− E
(
I(xTi β̂∗(tl) < C∗i < xTi β̂

∗(tl+1))
))2

= O(nδn).

(3.42)

3.5.3 Step 3: study the asymptotic behavior of DT ∗n,d

From (3.31), we have at each t = tk

1√
n

∑
i

di(1− t− âc∗i (t)) =
1√
n

∑
i

di(1− t− ac∗i (t))

+
( 1

n

∑
i

dix
T
i fi(x

T
i β(t))[1−Gi(x

T
i β(t)]

)√
n(β̂∗(t)− β̂(t)

)
+

1

n

∑
i

di

√
n(τ̂ ∗i − τ ∗i )

(1− τ ∗i )2
I(Y ∗i > C∗i )I(xTi β̂∗(t) ≥ C∗i ) + o∗p(1),

(3.43)

where a∗i (t) = 1 − w∗i (t)I(Y ∗i − xTi β̂(t) < 0). Write W ∗
n,di

(t) := 1√
n

∑
di(t − ac∗i (t))

and DT ∗n,d(t) := 1
n

∑
i di
√
n(τ̂∗i −τ∗i )

(1−τ∗i )2
I(Y ∗i > C∗i )I(xTi β̂∗(t) ≥ C∗i ), we will study the

asymptotic of DT ∗n,d. The arguments to study DTn,d in Portnoy and Lin (2010) can

also be adjusted to the bootstrap case.
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Let j = j(i) such that tj ≤ τ̂ ∗i ≤ tj+1.

DT ∗n,d(t) =
1

n

n∑
i=1

k∑
j=1

di

√
n(τ̂ ∗i − τ ∗i )

(1− τ ∗i )2
I
(
xTi β̂

∗(tj) ≤ C∗i ≤ xTi β̂
∗(tj+1)

)
I
(
T ∗i ≥ C∗i

)
+ o∗p(1)

=
1

n

n∑
i=1

k∑
j=1

dix
T
i B
∗
i,j

(1− tj)2hi(tj)
I
(
xTi β̂

∗(tj) ≤ C∗i ≤ xTi β̂
∗(tj+1)

)
I
(
T ∗i ≥ C∗i

)
+ o∗p(1)

=
1

n

n∑
i=1

k∑
j=1

dix
T
i B
∗
i,j

(1− tj)2hi(tj)
I
(
xTi β̂

∗(tj) ≤ C∗i ≤ xTi β̂
∗(tj+1)

)
I
(
T ∗i ≥ xTi β̂

∗(tj+1)
)

+ o∗p(1).

(3.44)

The second equality follows from (3.39) and notice that

1

1− τ ∗i
=

1

1− tj
(1 +

τ ∗i − τ̂ ∗i + τ̂ ∗i − tj
1− τ ∗i

) =
1

1− tj
(1 +O(δn)). (3.45)

In the third equality we replace I
(
T ∗i ≥ C∗i

)
with I

(
T ∗i ≥ xTi β̂

∗(tj+1). The second

line and the third line only differ if T ∗i is between xTi β̂
∗(tj) and xTi β̂

∗(tj+1), which is

of order δn.

Define the event

Dij = {β̂∗(tl)}j+1
l=1

⋂
I
(
xTi β̂

∗(tj) ≤ C∗i ≤ xTi β̂
∗(tj+1)

)⋂
I
(
T ∗i ≥ xTi β̂

∗(tj+1)
)
. (3.46)

Notice that C∗i is not used in calculating β̂∗(tj) and β̂∗(tj+1). Thus given Di,j, C
∗
i

are i.i.d with distribution

Ĝi(c)− Ĝi(x
T
i β̂
∗(tj))

Ĝi(xTi β̂
∗(tj+1))− Ĝi(xTi β̂

∗(tj))
=

Gi(c)−Gi(x
T
i β̂
∗(tj))

Gi(xTi β̂
∗(tj+1))−Gi(xTi β̂

∗(tj))
+ op(1)

=
c− xTi β̂∗(tj)

xTi β̂
∗(tj+1)− xTi β̂∗(tj)

+ op(1).

(3.47)

77



Since C∗i |Dij is approximately uniform on on [xTi β̂
∗(tj), x

T
i β̂
∗(tj+1)], α̂∗i in B∗i,j is also

approximately uniform. Therefore we want to replace B∗ij with

B̄∗j = E(B∗ij|Dij) =

√
n

2
((β̂∗(tj)− β̂(tj)) + (β̂∗(tj+1)− β̂(tj+1))). (3.48)

Let dij be in difference of the ij term of DT ∗n,d(t) when B∗ij is replaced with B̄∗j . We

have E(dij|Dij) = 0 and

E(
1

n

∑
i

∑
j

dij|Dij)
2 =≤ 1

n2

∑
i

∑
j1,j2

E|di,j1di,j2| = O(
M2

n
). (3.49)

Therefore we have

DT ∗n,d(t) =
1

n

n∑
i=1

k∑
j=1

dix
T
i B
∗
j

(1− tj)2hi(tj)
I
(
xTi β̂(tj) ≤ C∗i ≤ xTi β̂(tj+1)

)
I
(
T ∗i ≥ xTi β̂(tj+1)

)
+ o∗p(1)

=
1

n

n∑
i=1

k∑
j=1

dix
T
i B
∗
j

(1− tj)hi(tj)
Ĝ(xTi β̂

∗(tj+1))− Ĝ(xTi β̂
∗(tj))

1− Ĝi(xTi β̂
∗(tj))

+ o∗p(1)

=
1

n

n∑
i=1

k∑
j=1

dix
T
i B
∗
j

(1− tj)hi(tj)
G(xTi β(tj+1))−G(xTi β(tj))

1−Gi(xTi β(tj))
+ o∗p(1)

=
1

n

n∑
i=1

k∑
j=1

dix
T
i B
∗
j

(1− tj)hi(tj)
gi(x

T
i β(tj))hi(tj)δn

1−Gi(xTi β(tj))
+ o∗p(1)

=
k∑
j=1

B∗j δn
1

n

n∑
i=1

dix
T
i gi(x

T
i β(tj))

(1− tj)(1−G(xTi β(tj))
+ o∗p(1).

(3.50)

By LLN, the inner sum converges to Γd(tj) in probability and the outer sum is the

Riemann sum of integrating B∗n(t)Γd(t) from 2ε to t, which is equivalent to integrating

from 2ε to t because gi(x
T
i β(t)) = 0 for t < 2ε since there is no censoring below 2ε
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level. Therefore for fixed t ∈ [t1, tM ], DT ∗n,d(t) converges to

DT ∗d (t) :=

t∫
0

B∗n(u)Γd(u)du+ o∗p(1). (3.51)

The above convergence is uniform by tightness argument as Step 7 ofPortnoy and

Lin (2010).

3.5.4 Step 4: establish the conditional distribution of T ∗1 and T ∗2

In equation (3.43), set di = xi1, we have

D(t)B∗n(t) =

t∫
0

B∗n(u)Γxi1(u)du+W ∗
n,xi1

(t) + o∗p(1). (3.52)

Let di = xi2 − x̂i2, equation (3.43) becomes

1√
n

∑
i

(xi2 − x̂i2)âc∗i (t) = W ∗
n,xi2−x̂i2(t) +Dxi2−x̂i2(t)B

∗
n(t) +DT ∗n,xi2−x̂i2(t) + o∗p(1).

(3.53)

If we can show that given the data, 1√
n

∑
i(xi2 − x̂i2)âc∗i (t) converges to the same

process as 1√
n

∑
i(xi2 − x̂i2)âci(t), then it follows immediately that the conditional

distribution of T ∗1 /T ∗2 will converge to the same limiting distribution as T1/T2.

Solving Bn(t) in (3.18) by Theorem 10 in Gill and Johansen (1990), we have

Bn(t) = D−1(t)Wn,xi1(t) +

t∫
0

I(s, t)Wn,xi1(s)D
−1(s)Γxi1(s)ds+ op(1), (3.54)
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where I(s, t) = Πu∈(s,t](Ip +D−1(u))Γxi1(u)du. Solving B∗n(t) in (3.52),

B∗n(t) = D−1(t)W ∗
n,xi1

(t) +

t∫
0

I(s, t)W ∗
n,xi1

(s)D−1(s)Γxi1(s)ds+ o∗p(1). (3.55)

Thus we only need to look at the limiting distribution of Wn,xi1(t) and W ∗
n,xi1

(t),

which is relative easy to study since ai(t) and a∗i (t) take simpler forms.

By simple calculation, E(aci(t)) = 1 − P(Ti < xTi β(t)) = 1 − t. For probability

tending to 1, xTi β̃(t) is monotone and Ec∗(a∗i (t)) = 1− P(T ∗i < xTi β(t)) = 1− t.

Now consider E(1− aci(t))2,

E(1−aci(t))2 = τ−P(Ti > xTi β(t)|Ti > Ci)P(Ti < xTi β(t)|Ti > Ci)P(Ti > Ci). (3.56)

Let ui and vi be independent standard uniform distribution

P(Ti > Ci) = P(vi < Gi(x
T
i β(ui)) = (1− τU) + τU

τU∫
2ε

Gi(x
T
i β(u))du. (3.57)

Notice that Ti will always be smaller than Ci when ui < 2ε since we are assuming no

censoring below 2ε. And Ti will always be greater than Ci when ui > τU since τU is

the highest quantile level where Ti is identifiable.

Calculating P(Ti > xTi β(t)|Ti > Ci) and P(Ti < xTi β(t)|Ti > Ci), we have

E(1−aci(t))2 = τ−
(
(1− τU) + τU

∫ τU
t
Gi(x

T
i β(u))du

)(
τU
∫ t

2ε
Gi(x

T
i β(u))du

)
(1− τU) + τU

∫ τU
2ε
Gi(xTi β(u))du

. (3.58)
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Repeat the same calculation for the bootstrap space,

E∗(1− ac∗i (t))2 = τ −
(
(1− τU) + τU

∫ τU
t
Ĝi(x

T
i β̃(u))du

)(
τU
∫ t

2ε
Ĝi(x

T
i β̃(u))du

)
(1− τU) + τU

∫ τU
2ε
Ĝi(xTi β̃(u))du

= E(1− aci(t))2 + op(1).

(3.59)

Thus Wn,xi1(t) and W ∗
n,xi1

(t) converges to same Gaussion process. Therefore Bn(t)

and B∗n(t) converges to same Gaussion process by (3.54) and (3.55), 1√
n

∑
i(xi2 −

x̂i2)âc∗i (t) and 1√
n

∑
i(xi2 − x̂i2)âci(t) converges to same Gaussion process by (3.20)

and (3.53). Then we have the desired result.
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CHAPTER IV

A Two-Stage Model for Genome-Wide

Association Study

4.1 Introduction

A major goal of genome-wide association study (GWAS) is to identify the gene

markers that are related to a response variable through an exhaustive search among

all gene variants available. Besides the genetic covariates, clinical or environmental

covariates may also be present in the study. By convention, let G represent the

genetic covariates and E represents all the non-genetic covariates in this chapter. It

is well-known that many diseases are influenced by the marginal effect of G and E as

well as their interactions (Hunter (2005)). Therefore it is important to include the

G and E interactions into the modeling.

The most common way to deal with the interaction is to add the G × E terms

into the model. However, when the dimension of G is large, the inclusion of the G

× E terms makes the model more complicated to work with. Furthermore, G × E
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only captures one special type of interactions and the true interaction can be more

general.

In this chapter, we propose a two-stage model as a solution to the aforementioned

problems. In the first stage, we calculate the conditional percentile for each individual

adjusting for all the E factors with a global quantile regression model. In the second

stage, we select G factors that are associated with the conditional percentile with

the least squares regression. We believe that our method is simple to implement and

can identify important gene markers where the G and E interactions are taken into

account automatically.

In this chapter, we introduce the two-stage model and apply this method to detect

genes that are associated with the survival time of lung cancer patients. Future work

includes studying the theory and comparing the two-stage model with alternative

methods systematically.

4.2 Two-stage model

4.2.1 Model set-up

Imagine two individuals who are exposed to the same environment but differ a

lot in their observed outcomes. This difference may be due to chance, but it may

also be caused by other factors (e.g., genes) that can not be observed by bare eyes.

Notice that the genes are determined when people are born while the environments

are factors that people are exposed to later throughout their lifetime. This motivates

us to consider the impact of genes and the environment separately in two stages.
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To set up the model, consider n i.i.d observations (yi, xi, zi), where yi ∈ R is the

outcome of interest, xi = (1, xi1, ..., xip) is the E factors and zi = (1, zi1, ..., ziq) is the

G factors. For now, assume both p and q are finite and less than n. Imagine that for

each individual, there exists an unobserved intrinsic score ri ∼ U(0, 1) determined

by zi through the following model:

logit(ri) = zTi γ + εi, (4.1)

where γ = (γ0, γ1, ..., γq) and εi are i.i.d errors with mean 0. This ri measures one’s

susceptibility to a larger yi determined by the gene factors. We then assume the

observed outcome yi is determined by ri and xi combined through the model:

yi = xTi β(ri), (4.2)

where β(τ) = (β0(τ), β1(τ), ..., βp(τ)).

To understand this model better, consider an imaginary scenario where yi is the

yield of a specific type of corns, while xi is the assignment to a rich land or barren

land. In this case, ri can be interpreted as the yielding ability determined by genes

zi. If a corn has large ri but is planted in the barren land, its yield should be lower

than the yield if it was planted the rich land. But its yield might still be higher than

most corns that are also planted in the barren land.

According to our model, for certain j > 0, if γj = 0, zij has no effect on yi. if

γj 6= 0, zij is associated with yi, but whether zij has an interaction with xi requires

further investigation. More specifically, for γj 6= 0, if βk(τ) is a constant for any
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k = 1, ..., p, zij only has a mean effect on yi. In this context, the mean effect of

zij refers to the effect of zij on yi through β0(τ). On the other hand, if βk(τ) is

not a constant for certain k > 0, zij has an interaction effect with xik besides the

mean effect as long as β0(τ) is not a constant. If βk(τ) is not a constant but β0(τ)

is a constant, zij has an interaction effect with xik but no mean effect. Since βk(τ)

belongs to wide range of functions, the form of the interaction between xij and zik

is allowed to be quite flexible when an interaction exists.

In this chapter, we aim to identify genes associated with the outcome instead

of studying the interactions between the genes and the environment. Therefore

our goal is to select j such that γj 6= 0 for j = 1, ..., q. According to the above

discussion, when γj 6= 0, zij has either a mean effect, or an interaction effect with

xi, or both. Therefore compared to the more classical models that does not consider

the interaction or only includes xikzij-types of interactions, our model allows genes

that interact with the environments in more flexible ways to be identified.

4.2.2 Model fitting

In the first stage, we work with (4.2) and solve for ri. This can be achieved by

fitting the global quantile regression model

Qyi(τ |xi) = xTi β(τ) (4.3)

to get the estimate β̂(τ) for all τ . Then define

r̂i = inf{τ : xTi β̂(τ) ≥ yi}. (4.4)
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Truncate r̂i to [ε, 1− ε] for both computing and theoretical convenience.

In the second stage, we replace ri in (4.1) with its estimate r̂i and fit a least

squares regression with the model

logit(r̂i) = zTi γ + εi. (4.5)

Though ri are independent, r̂i are weakly correlated since they are all estimated with

the same data set. With logit(r̂i) as responses,
√
n(γ̂ − γ) still converge to a normal

distribution of mean 0. But the variance could be inflated due to the correlation

among r̂i and we estimate the variance by paired bootstrap. We can then conduct

the Wald test and claim that zj is associated with yi if γ̂j is significantly non-zero.

4.2.3 Extension

4.2.3.1 Model misspecification

In Model (4.1), we assume that logit(ri) is linear in zi. The choice of the logit

link function here is quite arbitrary and can possibly be misspecified. Li and Duan

(1989) studies the behaviours of the regressions when the link function might be

misspecified. Suppose the true model takes the general form

ri = g(zTi γ
∗, εi), (4.6)

where g(·) is an unknown link function. Li and Duan (1989) shows that under certain

assumptions, γj = cγ∗j for j = 1, ..., q, for some scalar c. Namely the slopes for the

misspecified model is proportional to the slopes of the true model. Thus although

86



the magnitude of γj is not interpretable, we can still conduct the hypothesis test

H0 : γj = 0, j = 1, ..., q. Li and Duan (1989) shows that the Wald test for the

above hypothesis has the correct asymptotic distribution under the null with proper

scaling, if ri is observed. Our scenario is more complicated since ri is replaced by r̂i.

We believe that inference is still valid with the paired bootstrap, but more work is

required to confirm our conjecture.

4.2.3.2 Censoring in the outcomes

In biomedical studies, it is quite often that the outcome of interest is censored.

It is useful to modify our two-stage model to accommodate this scenario.

Recall for the censoring case, Ti denotes the survival time which is censored from

the right by Ci, and Yi := min(Ti, Ci). In the first stage, we fit a global censored

quantile regression model as discussed in Chapter 3 to get the estimate β̂(τ) for any

τ . Similarly, we want to define

r̂i = inf{τ : xTi β̂(τ) ≥ Yi}. (4.7)

For censored quantile regression, β(τ) may be unidentifiable for τ > τU . Thus it is

possible that xTi β̂(τ) ≤ Yi for any τ ≤ τU where τU is the largest identifiable quantile

level. Set r̂i = τU in this case.

Notice that r̂i is censored if either Yi is censored or r̂i is set to be τU . In the

second stage, we fit the Cox proportional hazard model

λ(t) = λ0(t) exp(γ1zi1 + ...+ γqziq), (4.8)
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where λ(t) is the hazard ratio for r̂i. We then select γ̂j that is significantly non-zero.

4.2.3.3 High dimension in G

In GWAS studies, it is reasonable to assume that the dimension of the environ-

mental/clinical covariates are finite and small compared to the sample size. But the

dimensions of the genetic covariates are usually high. In this scenario, the first stage

of the model fitting is unaffected since zi is not involved.

In the second stage, when the dimension of zi is high, there are two options. The

first option is to fit the least squares regression (4.5) with one zij as covariates at a

time and control the family-wise type I error rate or the false discovery rate. The

second option is to use shrinkage methods by working with the loss function

∑(
logit(ri)− zTi γ

)2
+ Pλ(γ), (4.9)

where Pλ(·) is a penalty like LASSO, adaptive LASSO or SCAD.

4.3 Application to the lung cancer data

Lung cancer is the most common type of cancer worldwide and there has been

plenty of research studying the genetic factors associated with the development of

lung cancer (Bossé and Amos (2018)). In this section, we use the proposed two-

stage model to identify the genes that are associated with the survival time of cancer

patients with the data set studied in Shedden et al. (2008). This data set contains 442

lung cancer subjects with lung adenocarcinomas from 6 contribution hospitals in the
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US. The data set includes clinical information such as patients’ age, gender, smoking

history, the grade of cancer and whether adjuvant chemotherapy is used. The gene

expression of 12402 genes is measured at 22283 probes for each subject. For some

of the genes, the data set contains its expression level measured at multiple probes.

There exist multiple methods in literature to calculate the expression index for each

gene from the probe intensity matrix and the singular value decomposition (SVD) is

one of them (Hu et al. (2006)). Therefore, we use the first principle component of

the SVD to represent the gene expression. The outcome of interest is the survival

time, which has a 47% censoring rate.

In the first stage, we fit the following censored quantile regression model

log(Ti) ∼ Gender + Race + Chemotherapy + Smoke + Grade + bs(Age), (4.10)

where Chemotherapy is the indicator of whether adjuvant chemotherapy is used,

Smoke is a categorical variable recording the smoking history and Grade is a cate-

gorical variable recording the grade of cancer. The only continuous variable is Age

and we model it here with a B-spline basis with one knot located at the median.
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Figure 4.1: Pointwise confidence band for the coefficients of Race, Chemotherapy
and Smoke.

Figure 4.1 shows fitted coefficients of some of the variables. The effect of smoking

history and adjuvant chemotherapy vary among quantile levels. The effect of race

seems insignificant at all quantile levels. We do not have to remove the insignificant

covariates because our goal in the first stage is to estimate ri. Similar to prediction,

it is not necessary to find a parsimonious model to get an accurate estimate of ri as

long as we have enough sample size.

In the second stage, since zi is in high dimension, one can either work with

one zij at a time or use the shrinkage methods. Since gene expressions can be

highly correlated, the performance of the shrinkage methods is usually unsatisfactory.
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Therefore, for each j, we fit the Cox proportional hazard model with the jth gene

as the only covariate. We control the false discovery rate with Benjamini–Hochberg

procedure (Benjamini and Hochberg (1995)). Let p(1), ..., p(q) be the ordered p-value

of the q test. The Benjamini–Hochberg (BH) procedure finds the largest k such that

p(k) ≤ k
q
α and reject H(j) : j = 1, ..., k.

Setting α = 0.05, we are able to identify 175 significant genes. Here we list 10

genes with the smallest p-value: SCGB1D2, ARNTL2, ZNF185, ZC2HC1A, PLEK2,

KLK6, RPL39L, GOLT1B, VEGFC, CHEK1. Among them, there already exists

literature confirming that lung cancer progression can be influenced by ARNTL2

(Brady et al. (2016)), ZNF185 (Wang et al. (2016)), PLEK2 (Wu et al. (2020)),

KLK6 (Nathalie et al. (2009)), VEGFC (Jiang et al. (2013)) and CHEK1 (Sen et al.

(2017)). For other genes, we are unable to find results about their association with

lung cancer.

We also analyze the data using the classical model. We fit the Cox proportional

harzard model with covariates

∼ Gender + Race + Chemotherapy + Smoke + Grade + bs(Age) + Genej, (4.11)

and control the false discovery rate with the BH procedure. We are able to identify

228 significant genes, more than the 175 genes identified using the two-stage model.

But we notice that there exist 27 genes that are identified by the two-stage model but

not by the classical model. In Figure 4.2, we randomly select 100 genes whose p-value

either calculated with the two-stage model or the classical model is less than 0.001

and plot their p-values calculated with two methods. We observe that for some of
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the genes, the p-values calculated with the two methods are similar, but there exist

genes that the p-values differ greatly. The result is reasonable because if a gene

only has a mean effect on the survival time, the classical method is usually more

powerful than our two-stage model. But the two-stage model has complementary

power detecting genes that have interactions effect with the environment. From the

clinical perspective, it is certainly as important, if not more important, to identify

those genes.

Figure 4.2: Compare the p-value of the two-stage model and classical model.

In conclusion, we identity 175 genes that are possibly associated with the survival

of lung cancer patients. Some of the genes have already been studied and reported in

the literature, but some of our findings are new. It will be worthwhile for scientists

to conduct further research to study the mechanisms of how these new identified

genes impact the progression of lung cancer.
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4.4 Future work

In this chapter, we introduce the two-stage model and apply this model to find

genes that are associated with the progression of lung cancer. Our work in this

chapter is to provide a new approach that has the potential to accommodate general

forms of gene-environment interactions. Additional work is needed to fully investigate

the potential of the method. Our future work will focus on the following two aspects.

First, we want to study the asymptotic properties of the proposed method. Specif-

ically, as discussed in Section 4.2.3.1, we want to show that the paired bootstrap is

consistent when Model (4.5) is allowed to be misspecified and the responses logit(r̂i)

are weakly correlated.

Second, we want to compare the two-stage model to the varying index coefficient

model (VICM) proposed in Ma and Song (2015). Ma and Song (2015) considered

the model

yi =

p∑
l=1

ml(z
T
i βl)xil + εi, (4.12)

where βl = (βl1, ..., βlq) and ml(·) is some unknown smooth function. The two-stage

model and the VICM look somewhat similar and both models allow the interactions

between zi and xi to be non-linear. But the interpretation of these two models

and how the coefficients are estimated are quite different. The two-stage model we

proposed features a latent variable ri, affording model heterogeneity in a transparent

way. It would be interesting to study the possible connection between these two

methods and compare their performance under different settings.
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Gutenbrunner, C., and J. Jurečková (1992), Regression rank scores and regression
quantiles, The Annals of Statistics, 20 (1), 305–330.
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