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ABSTRACT

In the design of ocean wave energy converters, proper control design is essential for

the maximization of power generation performance. However, in practical applica-

tions, this control must be undertaken in the presence of stroke saturation and model

uncertainty. In this dissertation, we address these challenges separately.

To address stroke saturation, a nonlinear control design procedure is proposed,

which guarantees to keep the stroke within its limits. The technique exploits the pas-

sivity of the wave energy converter to guarantee closed-loop stability. The proposed

technique consists of three steps: 1) design of a linear feedback controller using multi-

objective optimization techniques; 2) augmentation of this design with an extra input

channel that adheres to a closed-loop passivity condition; and 3) design of an outer,

nonlinear passive feedback loop that controls this augmented input in such a way as

to ensure stroke limits are maintained. The discrete-time version of this technique is

also presented.

To address model uncertainty, in particular we consider the nonlinear viscosity

drag effect as the model uncertainty. This robust control design problem can be

regarded as a multi-objective optimization problem, whose primary objective is to

optimize the nominal performance, while the second objective is to robustly stabilize

the closed-loop system. The robust stability constraint can be posed using the concept

of circle criterion. Because this optimization is non-convex, Loop Transfer Recovery

methods are used to solve for sub-optimal solutions to the problem.

These techniques are demonstrated in simulation, for arrays of buoy-type wave

xvi



energy converters.
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CHAPTER 1

Introduction

1.1 History of Harvesting Ocean Wave Energy

The history of harvesting ocean wave energy has unfolded over more than a cen-

tury, during which many different devices for utilizing wave power have been proposed.

The earliest idea related to the Ocean Wave Energy Converter (WEC), to the au-

thor’s knowledge, is due to Stahl [1]. The operating principle was to use the motion

of a cylindrical float, which is attached to a fixed structure to generate power. How-

ever, people at that time were doubtful about the feasibility of this idea, and no real

energy converter model was constructed. As petroleum became the most important

energy resource after the First World War, the interest of wave energy faded [2]. In

the late 1940s, a Japanese wave energy pioneer Yoshio Masuda started to investi-

gate several different types of WECs, and surmised that buoy-type converters have

relatively high reliability. The converters had a very long lifetime, some of which

operated more than 20 year at sea [3]. A European wave energy pioneer, Stephen

Salter from the University of Edinburgh initiated wave energy research in 1973. His

group built the “Edinburgh Duck” models and came up with several techniques to

improve the performance by controlling the device movement [3]. At the same time,

two Norwegian scientists Kjell Budal and Johannes Falnes focused on the point ab-

sorber type converters, which can achieve the maximal power extraction by tuning

1



the resonant frequency to the characteristic frequency of the incoming waves [4]. In

the US, Michael E. McCormick was one of the early wave-energy researchers and

his book Ocean Engineering Mechanics provided useful insight into the interaction

between waves and converters [5].

In the years following the oil crisis in 1973, many institutions and researchers

turned their attention to wave energy and focused on the possibility of increasing the

amount of power extracted from waves. During the late 1970s, larger government-

funded research programs were started at UK, Norway and many other countries.

During this time, Dr. David Evans at Bristol University proposed a submerged cylin-

der device constrained by the springs and dampers to make small oscillations both

vertically and horizontally, which can be very efficient in absorbing the energy from

the waves. This type of device was also tested experimentally and the result was

promising [6]. In Japan, Masuda led the sea test of the Kaimei ship, which consisted

of 22 oscillating water column chambers open at the bottom [7]. The oscillation of the

water level inside each chamber can provide airflow to the turbines. The Kaimei was

connected to the grid and was able to supply power for household use to the coastal

community of Yura in Yamagata prefecture in Japan. In the early 1980s, when the

petroleum price declined, the funding for wave energy research drastically reduced.

The situation in Europe dramatically changed by the decision made in 1991 by

the European Commission of including wave energy in their R&D program in re-

newable energies. During the 90s, around thirty wave energy projects are funded by

the European Commission. In 2001, the International Energy Agency established

an Implementing Agreement on Ocean Energy Systems (IEA-OES), whose goal is to

advance the wave energy research, development and demonstration through interna-

tional cooperation. The IEA-OES provides annual reports which are generally the

surveys of ongoing activities on wave energy worldwide [8]. More recently, a growing

interest in wave energy is taking place in North America (the U.S. and Canada), with
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the funding support from the national and regional departments [9].

1.2 Potential of Ocean Waves

A large amount of waves are generated when a strong wind blows along the surface

of the ocean. In the deep water, the dissipation rate of energy stored in the waves

is low, enabling the waves to travel much farther than the wind that creates them.

Furthermore, since the density of sea water is three orders of magnitude higher than

air, energy delivered by waves is more concentrated than wind energy [10].

The total available wave energy is just a small portion of the wind energy, which in

turn is just a small portion of solar energy. Nevertheless, the wave energy does have

its own advantages. As solar energy is converted to wind energy, the energy density

changes from 0.1-0.3kW/m2 horizontal surface to 0.5kW/m2 area perpendicular to

wind direction. As wind energy is converted to wave energy, even more energy con-

centrated spatially. The average power flow below the ocean surface is at 2-3kW/m2

area perpendicular to wave direction [2]. The wave power is more persistent than the

wind and solar energy. The energy from waves can supply power up to 90% of the

time, compared to 20∼30% of the time for wind and solar energy [11].

It is estimated that between 2000 and 4000 TWh/year of energy can be extracted

worldwide from waves. The greatest potential for wave energy exists where the

strongest winds are found at the latitudes between 40◦ and 60◦ north and south,

on the eastern boundaries of the oceans [12]. One of the richest nations in terms of

the potential of wave energy is U.K., along with the north of Scotland having par-

ticularly high potential. The global distribution of wave power resources is in Figure

1.1. To get a sense of the available energy levels (the unit is the same as the one in

Figure1.1), about 37kW/m can be seen in the U.S. Northern Pacific coast, compared

with about 33 kW/m in the U.S. Northern Atlantic coast. Over 70 kW/m can be

found in the west coast of Scotland, about 50 kW/m in Norway, about 40 kW/m in
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Figure 1.1: Global Distribution of Deep Water Wave Power Resources [13]

Portugal, and about 12-15 kW/m in the Pacific coast of Japan, while further south

approaches or exceeds 70 kW/m, especially in the southern part of Australia and

Chile.

In general, more wave power can be found in the high northern and southern

latitudes, especially during the winter months. As the energy demand is always

higher in the winter due to the heating, locally generated power from waves is a

natural fit in these regions. Compared with other renewable energy types, wave

energy is considered to have the lowest environmental impact [13]. If the wave energy

capture technology is fully developed, the market potential is enormous.

1.3 Challenges

To achieve the potential of wave energy and make it economically competitive,

several technical difficulties need to be overcome.

A significant challenge is to convert the slow and random oscillatory motion into

the driving force of a generator that can output reliable electricity for commercial

use. Although the average power generation can be calculated in advance, converting
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this random input into smooth electrical output requires energy storage systems.

Additionally, the wave direction can be highly unpredictable, so the wave devices

have to align themselves on compliant moorings, or need to be symmetrical to extract

the power [14].

Another big challenge is that a WEC needs to survive under extreme events such as

hurricanes and storms. To operate efficiently, WECs are designed to achieve optimal

performance under most frequent wave conditions. Moreover, WECs also need to

survive the infrequent, or extreme wave conditions.

Since WECs are mainly offshore devices, the maintenance cost is correspondingly

higher compared with other renewable energy industries [15]. The structure of the

WEC needs to be designed reliable to minimize the maintenance cost.

1.4 Wave Energy Converters

There are over 1000 wave energy conversion technologies have been patented

around the world. Most of them include an oscillating body(sometimes water level in a

chamber), whose oscillation in response to waves drives subsequent energy conversion

stages. Based on the relative direction between the principal axis of the oscillating

body and the wave propagation direction, the WECs can be categorized into three

dominant types: Point Absorber, Attenuator and Terminator. This is shown in Fig-

ure1.2. For attenuator and terminator, they are mainly floating devices. However,

for point absorber, it can be a floating or submerged device.

Incident wave direction Terminator Attenuator Point
Absorper

Figure 1.2: Orientation and scale of a Terminator, Attenuator and Point Absorber [10]
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1.4.1 Point Absorber

A point absorber is a device that is usually axisymmetric and possesses small

dimensions relative to the incident wavelength. They can be submerged below the

sea surface or floating structures that heave up and down on the surface of the water.

Since they are axisymmetric, wave direction is not important for these devices.

Figure 1.3: PowerBuoy Prototype from Ocean Power Technology [16]

There are numerous examples of the point absorbers. One of them is the Power-

buoy from Ocean Power Technology. The Powderbuoy is a floating oscillating body,

the structure of which is shown in Figure1.3. A mooring keeps the Powerbuoy on

station in the ocean. At the surface, the float oscillates along the spar with a reduced

response to ocean waves due to the heave plate below. The relative motion between

the float and the spar drives a rod into the spar. A mechanical actuator converts this

linear motion into a rotary motion that drives an electric generator, which in turn

outputs three-phase unregulated AC power. A power management and conditioning

system converts and conditions AC power into DC power. Ultracapacitor technology

is used to remove the transient nature of wave power. The first prototype PB3 was

used by US Navy project to provide power to coastal security networks and survived

rigorous sea trials [16]. In order to supply a certain amount of steady power, a wave
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farm needs to be constructed, which contains an array of Powerbuoys. This concept

is illustrated in Figure1.4.

Figure 1.4: Wave farm from Ocean Wave Technology [14]

Another interesting example is the WaveStar device, currently being tested on the

coast of Denmark [17]. The Wavestar WEC in Figure1.5 utilizes the idea of multiple

point absorbers. This test device has two rows of floaters attached to a pier structure,

secured to the sea bed by steel piles. These floaters are directed towards dominant

wave direction, and oscillate as waves pass, pumping hydraulic fluid into a hydraulic

system through which an electric generator will be driven.

Figure 1.5: WaveStar WEC device [17]
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1.4.2 Attenuator

An attenuator lies parallel to the predominant wave direction with its beam much

smaller than its length and oscillates laterally in response to waves. Attenuators are

mainly connected lightweight bodies, for example, contouring rafts. The motion of

the attenuator is asymmetric about the device’s mid-point , so that the fore and aft

portion of the device works equally hard. Power absorption is through the relative

motion between the adjacent portions.

Figure 1.6: Sketch of Pelamis components [18]

The Pelamis WEC belongs to the WEC of attenuator type, as it extracts energy

by the relative motion between separated sections of the tube. It is a semi-submerged

”snake-like” offshore device, and developed by Pelamis Wave Power Ltd. It was the

first WEC to be installed at a commercial scale, with the P1 model successfully

launched at Aguçadoura, Portugal, in 2008.

The Figure1.6 illustrates that the Pelamis WEC has four steel cylinder sections

linked by three power conversion modules at the hinge points. The moorings allow

the WEC to face ocean waves’ direction and the joints flex vertically and horizontally

as the wave passes. This motion is resisted by hydraulic rams, and it turns out

that this resistance can be tuned to provide a resonant response to maximize power
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generation [18].

1.4.3 Terminator

Terminator devices have their principal axis perpendicular to the predominant

wave direction can be rigid or compliant. Rigid terminators generate energy by phys-

ically intercepting waves. Compliant terminators have almost the same hydrodynamic

behavior as attenuators. The only difference is that the incident wave directions differ

by a right angle.

A famous example is the “Edinburgh Duck” model. The duck is one of the earliest

“terminator” type device that can absorb most energy when waves approach from

a predominant direction. Multiple sections were laid end to end along the wave

predominant crest lines. Each section consisted of the duck that performed pitch

oscillations around a central cylindrical unit. Neighboring units were jointed together

to allow relative oscillation. The central sections formed a long spine, and the phase

lag between the different incoming waves reaching different parts of the spine caused

it to remain approximately in place to reduce mooring loads. For full-scale operation,

high-pressure hydraulic systems were used to power conversion. The relative heave

and surge oscillation of the duck and the spine segments were used to generate the

power [10].

1.5 Power Take-off System

In order to convert the irregular mechanical movement of the oscillators to another

form of energy that can drive an electric generator, a Power Take-Off (PTO) system

is needed. The PTO is sometimes called as the device of secondary energy conversion.

The primary energy converters are usually comprised of an oscillator and a reference.

An oscillator may be a floating buoy and the corresponding reference is the sea floor,

the relative motion of which can be used by PTO for secondary energy conversion.
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Figure 1.7: Edinburgh duck was tested in a narrow tank [14]

Because the wave input is irregular, an intermediate energy storage system such as

a battery is generally required, the supply of electric energy to the location of use is

smooth. The PTO plays an essential role in converting the mechanical form of energy

to electrical power. There are different types of PTO used in the wave energy area,

and we introduce several well studied types of WEC here.

1.5.1 Direct Drive - Linear Generators

It is advantageous to use linear systems for applications that involve linear or

reciprocating motion, as the mechanical interface can be reduced compared with

systems on rotating machines. The use of linear generators is called the direct drive

approach, and its working principle is shown in Figure1.8. The direct drive WEC has

relatively fewer moving parts and offers potential for cost-saving [19].

One of the first concepts where the linear generator can be used as PTO in the

WEC, was filed for a patent in US at 1985 by Neuenschwander [20]. However, it

was changed to a rotary generator later. The main problem at that time is that the

linear generator would reciprocate in the slow speed of the actual device and at such

speed, the force reacted by the generator needs to be large, which in turns requires

the generator to be a large machine. However, thanks to the improvement in the
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Figure 1.8: Comparison between linear generator and rotary generator in wave energy
conversion [19]

magnetic material and power electronics, the linear generator has become one of the

most commonly used PTO methods in the WEC design [21,22].

The basic principles are illustrated in Figure1.9. The translator is a moving part

on which magnets are mounted with alternating polarity. The stationary part is a

stator with the windings of conductor. Between the translator and the stator, there

is an air gap . As the translator oscillates, a voltage is generated in the windings

following Faraday’s law.

Translator

Air gap

Stator

Armature winding

Figure 1.9: Basic principles of a linear generator [19]
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1.5.2 Hydraulics

Hydraulics are well-suited for wave energy conversion, since the waves apply large

force at slow speeds and the hydraulic machines can absorb energy efficiently at this

scenario. Moreover, hydraulics can achieve short-term energy storage with the use

of high-pressure gas accumulators, which can contribute to the smooth electricity

production of the WEC [18].

Hydraulic PTO was firstly introduced in WEC applications in the Edinburgh

Duck [23], the idea of which is to employ a hydraulic system into the WEC interface.

Typically, a hydraulic PTO uses high-pressure oil hydraulic pumps or rams to convert

the reciprocating mechanical oscillation to an oil hydraulic pressure head, which can

drive hydraulic motors at the constant and high speed. The electric generator driven

by the hydraulic motors may be a high-speed induction or synchronous generator [10].

A typical hydraulic circuit diagram is in Figure1.10. The rod of the hydraulic

cylinder is forced up and down by the oscillation of a floating buoy, which put the

fluid through check valves to hydraulic motors. The hydraulic motor can drive the

generator to generate electric power at a certain speed. High pressure and low pres-

sure accumulator are included in the circuit to provide energy storage and maintain

constant flow to the hydraulic motor [14].

The Pelamis WEC is one of the full-size WEC examples that employs such hy-

draulic circuit. The PTO in Pelamis is separated by the high-pressure accumulator.

The first part called the primary transmission, consisting of the hydraulic cylinders

and their controls, converts the irregular wave motion to stored energy in the hy-

draulic accumulators. The second part called secondary transmission has hydraulic

motors coupled to electric generators and transfers the stored energy into electricity

transmitted to the shore. It is noted that through careful design, the energy loss in

Pelamis PTO can be well under 20% over a wide range of operation conditions [18].
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Buoy
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Valve
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accumulator

HP
accumulator

Motor

Figure 1.10: A typical hydraulic circuit [14]

1.5.3 Air Turbine

Air turbines are mostly used in Oscillating Water Column (OWC) wave energy

converter systems. The working principle of a typical air turbine is that wave motion

causes a reciprocating airflow under pressure. To produce unidirectional airflow, the

reciprocating airflow needs to be rectified by a series of non-return valves [24]. The

unidirectional airflow will drive the turbine which is coupled with the generator.

Such device shares a lot similarity as the wind turbine, which has been thoroughly

researched [25,26]. A practical example of OWC is the navigation buoy in Figure1.11

[27], which is proposed by the Japanese wave energy pioneer Yoshio Masuda. More

than 3000 navigation buoys were produced after 1965, some of which have served

more than 30 years.

However, the air turbine with non-return valves is complicated and hard to main-

tain, which is not ideal in the large scale wave energy converters [24]. Many kinds

of the self-rectifying air turbine have been proposed. One of them is called Wells

turbine with symmetric blades profiles, invented by Professor Alan Wells of Queen’s

University [28]. Impulse turbine patented by Ivan A. Babintsev in 1975 is more effi-

cient than Wells turbine, which has the asymmetric blades profiles and guide vanes
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Figure 1.11: A navigation buoy using the air turbine. On the right hand side, details
through the turbine and rectifying valves [27]

to rectify the air flow direction.

1.5.4 Energy Storage

Some form of energy storage is usually incorporated in a PTO system, as the

fluctuations in absorbed wave power will result in a very variable electrical power

output, which is unsuitable for the grid [29]. The energy storage system supports

the bi-directional power flow between the buoys and the system, but only single

directional power flow to the grid onshore, which smoothes out the power sent to

the grid. Accumulators can function as short-term energy storage as part of the

hydraulic system. By storing energy, accumulators would help the system deal with

the high level of variance, reducing the capital cost and power losses of all subsequent

powertrain elements [30].

1.6 Control

Over the last four decades, a great deal of progress has been made in the area of

wave energy conversion. However, large scale wave energy conversion is still more ex-
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pensive than wind or solar energy. The use of control techniques can bring about

a three to five-fold improvement in cost-effectiveness as measured in dollars per

kilowatt-hour of electric power to the consumers. Such gains could make wave energy

commercially attractive even in weaker wave climates and parts of the world where

other renewable energy options already exist [10].

Excitation 
force

Control 
force

WEC device

Controller/
Actuator

Measurements

Figure 1.12: System diagram illustrates the role of the controller/actuator in WEC

buoy

controller

power
electronicsPTO

u

u*

z
v zd

dt=

Figure 1.13: A simple point absorber type WEC with the controller

The controller or actuator in Figure 1.12 [10] mainly focuses on controlling the

oscillation body’s behavior to achieve the optimal performance of power generation.

Here, we use a simple point absorber type WEC to illustrate how the controller works

in real operation. Figure 1.13 is a floating buoy model, connected with the seafloor

mounted PTO and generator by a pretension tether cable. The PTO used here is the

direct drive. We assume the PTO applies the controller force u in the cable. The

controller determines u? based on the measurements of the floating buoy (i.e., velocity
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v and displacement z). The cable force u is regulated by the power electronics to track

the controller output u?. The dynamics of the closed-loop system is dependent on

the controller, which can be carefully tuned to achieve maximum power extraction.

In regular waves (i.e., a sinusoidal wave), the optimal power absorption can be

achieved when the natural frequency of the WEC is the same as the wave frequency.

While off-resonance, the conversion rate can decrease significantly. For narrow band-

width devices like point absorbers, it is essential to use control techniques to achieve

resonance. However, for larger WEC devices such as attenuators and terminators,

with broad bandwidth, the benefit of applying optimal control can be marginal [31].
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Figure 1.14: JONSWAP spectrum of a developed sea

Real waves, however, are stochastic and exhibit significant power over a continuous

spectrum of frequencies. For example, a commonly used ocean wave spectrum named

JONSWAP spectrum [32] in Figure 1.14 gives the distribution of the energy among

different frequencies. This requires that a WEC device should behave as if resonant

over the wide range of frequencies.

Many control techniques on harvesting real waves have been proposed in the last

few decades and we will review a few of them.
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1.6.1 Reactive Control

Reactive control is first proposed by Salter [33] and Budal [34] in the mid 1970s.

For practical implementation, it was proposed to use a controllable PTO, the goal

of which is to achieve the optimal phase and amplitude of the oscillation. In other

words, optimal control means to control the behavior of the oscillation to maximize

power generation. It was found that the WEC device can be “tuned” to resonate at

a chosen frequency using the feedback of the device displacement or velocity [3]. In

addition, using velocity feedback, the damping coefficient of the PTO can be adjusted

to balance the radiation damping of the device at each frequency to maximize wave

energy absorption.

Since the control force in this method is in phase with the velocity, this method is

called “reactive control”. We can use a simple single-degree point absorber to explain

this method. Assuming the wave amplitude is small, the dynamic equation of this

device can be expressed as:

mz̈ + kz = ff + fr + fc (1.1)

Where m is the mass of the point absorber(primary converter), and k as the hydro-

static stiffness for the device. We also assume that the applied damping of the point

absorber is so small that it can be negligible. In the right side of the equation (1.1),

there are three terms: the first term is the excitation(diffraction) force ff , the second

term is the radiation damping force fr, and the third term is the force fc applied on

the device by the actuator. The equation (1.1) can also be applied to multiple WEC

devices (e.g., an array of floating buoys).

We can also express the radiation damping force fr in frequency domain:

f̂r(iω) = − [iω(m̂r(ω) +m∞) + ĉr(ω)] v̂(iω) (1.2)
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Where m∞ is the infinite added mass, m̂r(ω) is the frequency dependent added mass,

and ĉr(ω) is the frequency dependent radiation damping. v̂(iω) is the frequency re-

sponse of the device’s velocity. Using the equation (1.2), the system dynamic equation

in frequency domain can be represented as:

Gvf (iω)v̂(iω) = f̂f (iω) + f̂c(iω) (1.3)

Where

Gvf (iω) = Gvfr(ω) + iGvfi(ω)

Gvfr(ω) = Re{Gvf (iω)} = ĉr(ω)

Gvfi(ω) = Im{Gvf (iω)} = ω[m+m∞ + m̂r(ω)]− 1

ω
k

In reactive control, the feedback measurements can be displacement or velocity,

which are provided by the sensors, the general form of the control force in frequency

domain can be

f̂c(iω) = −Y (iω)v̂(iω) (1.4)

The equation (1.3) becomes:

(Gvf (iω) + Y (iω))v̂(iω) = f̂f (iω) (1.5)

The power generation can be maximized by setting

Y (iω) = G?
vf (iω) (1.6)

This is also called the complex conjugate control, which is optimal in regular

waves [35]. This method is simple and easy to be implemented. However, in irregular

waves, the implementation of reactive control suffers both theoretical and practical
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limitations. The theoretical limitation is that the reactive control technique is non-

causal, which means that it needs the future information of the wave motion. The

practical limitation is that it requires large amount of power flowing up and down the

energy conversion chain.

1.6.2 Latching Control

Latching control is another popular control technique in point absorbers, firstly

introduced by Budal and Falnes [36]. Consider a simple heaving buoy shown in

figure1.13, with the horizontal dimensions sufficiently small to be considered as a point

absorber and tuned optimally for maximum power in a regular sea. Respectively, for

a small device, the excitation force ff (t) can be obtained by integrating the pressure

due to incident waves over the device. This means that FD(t) is in phase with the

incident waves, with its magnitude proportional to the magnitude of the incident

wave motion. The tuning equation (1.6) requires that the velocity is in phase with

the excitation force, which means the displacement lags the surface wave elevation by

π
2
. As the wave elevation approaches its equilibrium point, the displacement of the

WEC will increase to a value that exceeds its physical constraint.
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Figure 1.15: Wave elevation, optimal displacement and actual displacement under
latching control [19]
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However, the use of latching control can address this concern while maintaining

the small displacement assumption of the point absorber. The concept of this con-

trol technique is explained in figure 1.15. The three curves in figure 1.15 show the

wave elevation, displacement under optimal control, and displacement under latch-

ing control. This figure shows that once the WEC displacement arrives at a certain

value, the latching control strategy immediately halts the motion of the device. As

the power output is fc(t)v(t), the WEC cannot generate power until it is released.

This approach can be an effective way to avoid large displacement in heaving point

absorber devices [37]. Moreover, the latching control strategy allows the existence of

the device whose natural frequency is higher than the exciting wave force frequency.

Latching control is a suboptimal approach and can be extended to irregular waves

with the future information of the wave motion at some distance [36]. Falcao proposed

an alternative on-off control technology, which requires no future wave information,

with the application on the point absorbers equipped with a hydraulic PTO [38].

Despite of the widespread popularity in WEC design, however, the latching control

technique has several limitations. In particular, its suitability on the point absorber

with the electric PTO has not been fully assessed; moreover, it may fail to work well

on arrays of point absorbers since the optimum phase condition doesn’t hold where

there is more than one oscillator.

New control approaches are required. The development of better PTO systems,

such as linear electric generators and novel variable-displacement hydraulics, has

opened the possibility of applying real-time control techniques. Model Predictive

Control (MPC) is one of these advanced control techniques that are suitable in the

wave energy area.
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1.6.3 Model Predictive Control

The idea of applying MPC techniques in the wave energy area was proposed by

Gieske [39], and this novel idea was revisited by many researchers [40–43]. It is

possible to develop a real-time controller that maximizes the power generation within

the constrained set [44]. In [44], MPC was applied to a heaving, semi-submerged

sphere constrained to oscillate over a finite stroke. The model developed by Hals [44]

stems from the linearized wave-structure interaction, which includes a low-order linear

state space model of the radiation damping effect. The dynamic trajectory of the

future incident wave force is forecast in real-time, based on past and present measured

values. Then, each time the forecast is updated, the objective function (i.e., the

amount of energy generated), is optimized over the receding prediction horizon. The

initial portion of the optimizing trajectory for the PTO force is then implemented in

real-time, until it is superseded by a subsequently-optimized trajectory.

MPC techniques are advantageous, because they can accommodate the nonlinear-

ities (such as viscous drag forces and nonlinear buoyant force) in system dynamics

and mechanical constraints (such as PTO force constraints). And an MPC controller

can be regarded as optimal on a wave-to-wave time scale. One main drawback of the

MPC techniques is that the optimal performance of the controller depends on how

precise the wave forecast algorithm is [44].

1.7 Causal Control

All of the aforementioned control strategies need the future wave excitation fore-

cast, which is not ideal since it is difficult to provide a precise wave forecast model.

A number of causal controller have been proposed over the years [45, 46], most of

which are the approximation of the anti-causal controller and only sub-optimal. New

research work of optimal causal control design in WEC are needed.
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In some situations where nonlinearities and hard constraints are not overly restric-

tive, it is advantageous to use a causal feedback controller that can be implemented

based on some easy-to-measure signals such as the displacement and the velocity of

the primary energy converter. The idea of this new causal control design was proposed

by Scruggs and has been shown to result in a very good optimal performance that is

almost as high as that of the anticausal controller [47]. The causal control design is

a constrained control problem, where the constraint is that the linear feedback law

should be causal and the objective function is the expectation of the power absorption

over a certain time interval. In this problem, we assume the stationary wave spec-

trum Sa(ω) is known, together with a vector of output measurements y(t). Denoting

u(t) as the control input to the PTO, the control problem becomes a constrained

optimization problem that is shown below.

OP :

 Maximize: p̄

Domain: Causal feedback law K : y 7→ u

Where p̄ is the average power generation, the detailed description of which will be

introduced in Chapter 3. It was recently shown in [47] that, under the assumption

of linear dynamics and stationary stochastic sea state, the optimal causal control of

WEC system is a non-standard Linear Quadratic Gaussian (LQG) control problem.

The closed-form solution can therefore be found, assuming an accurate models are

available for the WEC dynamics and the wave spectrum.

In the context of causal control, it is possible to extend this idealized LQG frame-

work to a more realistic model. In the case in which nonlinearities in the WEC dy-

namics are significant, Gaussian Closure techniques to approximate system dynamic

behavior with the synthesis of optimal feedback law is applied. The optimal con-

troller can be computed by the simple and efficient gradient-based algorithm through

a gaussian approximation of the stationary stochastic system response. Additionally,
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this technique can also accommodate complex transmission loss models [48]

The LQG theory for optimal energy harvesting can be naturally extended to an

adaptive control framework, for problems in which a priori model is unavailable for

the characterization of the stochastic behavior of the incident waves . This has been

examined in [49], for the situation in which uncertainty is presumed to exist for the

wave spectrum Sa(ω) and for the resultant incident wave forces. The method proposed

in [49] accomplishes the adaptation indirectly. By identifying the stochastic system

for the disturbance, re-optimizing the feedback law using the principle of certainty

equivalence.

Another common problem in the control design of WEC, whether the controller is

causal or not, is that the dynamic response of the WEC can be too large to satisfy the

small oscillation assumption. In such cases, it is necessary to put constraints on the

displacement of the WEC. In [50], multi-objective control techniques is applied with

the main objective is to maximize power absorption under causal control domain and

the competing objective is to restrain the displacement of the WEC (i.e., E{z2} < µ,

where z(t) is the displacement response of the WEC). Such control problem can be

formulated in the form of Linear Matrix Inequality (LMI) techniques, which are the

convex optimization problems and can be solved efficiently using numerical software

[51].

1.8 Research Objectives

The objective of this research is to modify the above causal control technique such

that it can achieve a relatively high performance in the presence of model uncertainty

and stroke saturation.
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1.8.1 Model Uncertainty

In the previous literature, Gaussian Closure technique have been applied to the

model uncertainty [48]. However, this method is approximate and the controller

generated from it might not be optimal under different characterizations of the model

uncertainties. An actual WEC system is very complex, while the model we used in

design is a highly simplified version of it. The discrepancy between the actual WEC

system and the linearized model can be regarded as uncertainty in the design process.

It is important that the control system designed using simplified model, be insensitive

to this uncertainty.

In this proposed research, we assume the nonlinearity of the system comes from

the viscosity drag effect. The nonlinear viscosity effect can be described by an ex-

perience law proposed by Morison [52]. We use the concept of absolute stability to

impose a constraint on the controller such that it stabilizes the system when the vis-

cosity damping force is introduced. Combining with the objective to maximize the

power generation, a robust controller can be designed using multi-objective control

techniques.

1.8.2 Stroke Saturation

Another essential issue that needs to be addressed is the fact that the PTO has

a finite feasible stroke [44]. In [50], the constraint is imposed on the variance of the

displacement but the stroke violation can still happen. Finite stroke requires that

at any time, the stroke can not exceed its maximum allowable displacement (i.e.,

|z(t)| ≤ zm, ∀t ≥ 0 where zm is the maximum stroke). For example, if the PTO is

a hydraulic ram, placed between two rectilinear degrees of freedom, this stroke limit

is obvious. The same can be said that it is a direct-drive linear permanent magnet

synchronous machine, or a rotational machine interfaced with linear motion through

a rack-and-pinion or ball-screw mechanism. For flap-type converters that extract
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energy from surge, the PTO is often a rotational pump that impose torque on the flap

hinge. In this case, there is clearly an angular stroke limit. Observance of these stroke

limits are challenging because they are often in conflict with the primary objective of

maximizing power generation. In strong waves, it may be the case that theoretical

performance maximization algorithm requires the WEC to respond so vigorously that

the PTO exceeds its maximum allowable stroke value at some time. In such situation,

stroke limits should be explicitly accommodated in control design [53].

The stroke constraint can be achieved by a “two-stage” control system design

method. First stage is to design a linear controller whose primary objective is to

maximize the power generation and associate objective is to lower the variance of

the stroke. Second stage is to impose an outer nonlinear controller which enforce

the stroke constraint at any time interval. We will provide more details for this

method in later Chapters. Moreover, we presented versions of this method in both

continuous-time and discrete-time WEC control designs.

1.9 Outline

The rest of this document is outlined as follows: In Chapter 2, we overview the fun-

damental concepts which will be used in this thesis. In particular, we review Passivity,

Optimization, and Linear System Theory. Chapter 3 will introduce the dynamic be-

havior of the WEC system and surrounding fluids. It will discuss how we generate

state-space models for WEC system and surrounding fluids using subspace-based sys-

tem identification techniques. In chapter 4, a new modified subspace-based spectral

factorization algorithm is proposed. Using the same amount of data, it can provide

a more accurate state-space model than the standard algorithm. Chapter 5 focuses

on the comparison between causal control and anticausal control techniques in the

unconstrained WEC control problem. It shows that for a point absorber type WEC,

causal control can be a good substitute for anticausal control techniques. Chapter
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6 proposes a “two-stage” control strategy of WEC system with finite stroke in the

continuous time domain. It demonstrates that such control strategy can satisfy the

stroke constraint while still results in high power generation. The proof of global sta-

bility of the closed-loop system is provided. In Chapter 7, the control strategy from

Chapter 6 is implemented in the discrete time WEC system. The main difference is

the design of the nonlinear controller, which requires a one-step-ahead predictor in

discrete time. In Chapter 8, we propose the robust control design methodology for

WECs considering nonlinear dynamic behavior. The circle criterion and Loop Trans-

fer Recovery (LTR) method are used to tackle this robust control design problem.

Chapter 9 gives some conclusions and discusses future work.
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CHAPTER 2

Preliminary Knowledge

The work of this thesis relies heavily on the passivity, optimization and linear

system theory. This chapter will give a brief summary of the basic concepts used in

each area. In particular, Section 2.1 is concerned with the passivity theory. Section

2.2 covers convex optimization and LMIs. Section 2.3 focuses on linear system theory.

2.1 Signals and Passivity

The system’s input and output are signals, so we introduce the basic definition of

vector space, norm function (in particular, Euclidean Norm) and inner product space.

We also introduce the concept of matrix norm, which is heavily used in Chapter 4,

Chapter 6 and Chapter 7. The behavior of system input and output determines

system properties, e.g., passivity.

2.1.1 Vector Spaces and Norms

Definition 2.1.1. (Vector Space [54]) Suppose V is a nonempty set and F is a field,

the operation of vector addition and scalar multiplication are defined here:

1. for every pair u, v ∈ V , a unique element u+ v ∈ V are assigned as their sum;

2. for each α ∈ F, there is a unique element αv ∈ V called their product.
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Then V is a Vector Space if the following properties hold for all u, v, w ∈ V and all

α, β ∈ F, for addition:

1. there exists a zero element in V , denote by 0, such that v + 0 = v;

2. there exists a vector −v ∈ V , such that v + (−v) = 0;

3. the association u+ (v + w) = (u+ v) + w is satisfied;

4. the commutativity relationship u+ v = v + u holds.

For multiplication:

1. scalar distributivity α(v + u) = αv + αu holds;

2. vector distributivity (α + β)v = αv + βv holds;

3. the associative rule (αβ)v = α(βv) for scalar multiplication holds;

4. for the unit scalar 1 ∈ F the equality 1v = v holds.

Definition 2.1.2. (Vector Norm [54]) A norm ‖ · ‖ on a vector space V is a function

that maps V 7→ R>0, for all u ∈ V such that

1. ‖u‖ = 0 if and only if u = 0;

2. ‖au‖ = a‖u‖ for all a ∈ F;

3. triangle inequality ‖u+ v‖ 6 ‖u‖+ ‖v‖ holds, for all u and v ∈ V

Definition 2.1.3. (Vector p-norm [55]) For all u ∈ V , the vector p-norm of u is

defined as:

‖u‖p =

(
n∑
i=1

|ui|p
) 1

p

, for 1 6 p 6∞ (2.1)

28



Remark 2.1. In this document, we will mainly focus on Euclidean norm (when p = 2)

and Infinity norm (when p =∞).

Euclidean norm:

‖u‖2 =

√√√√ n∑
i=1

|ui|2 (2.2)

Infinity norm:

‖u‖∞ = max
16i6n

|ui| (2.3)

Definition 2.1.4. (Induced matrix p-norm [55]) Suppose a p-norm for vectors (1 6

p 6 ∞) is used both for Rm and Rn, the norm of matrix A ∈ Rm×n induced by a

vector p-norm is defined as:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

(2.4)

Remark 2.2. In fact, A can be viewed as a mapping from a vector space Rn with a

vector norm ‖ · ‖p to another vector space Rm equipped with a vector norm ‖ · ‖p. In

particular, the induced matrix 2-norm can be computed as

‖A‖2 =
√
λmax(ATA) (2.5)

Definition 2.1.5. (Frobenius norm [55]) The Frobenius norm of matrix A ∈ Rm×n

is defined as:

‖A‖F =
√

Tr(ATA) =

√√√√ m∑
i=1

n∑
j=1

|aij|2 (2.6)

2.1.2 Inner Product Space

Definition 2.1.6. (Inner Product [54]) A inner product 〈·, ·〉 on a vector space V is

a function mapping V × V 7→ F such that

1. for all u, v ∈ V , 〈u, v〉 = 〈v, u〉 (where overbar means complex conjugate)

2. for all u ∈ V , 〈u, u〉 > 0, 〈u, u〉 = 0 if and only if u = 0;
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3. for all u, v, w ∈ V and a, b ∈ F, 〈u, av + bw〉 = a〈u, v〉+ b〈u,w〉. This condition

implies that the mapping u, v → 〈u, v〉 is linear in V .

Definition 2.1.7. (Inner Product Space [56]) Give an inner product 〈·, ·〉 : Rn×Rn 7→

R, an inner product space, L, is defined as:

L =

{
x : R→ Rn | ‖x‖2 =

∫ ∞
0

〈x(t), x(t)〉dt <∞
}

(2.7)

The extended inner product space, Le, is defined as:

Le =

{
x : R→ Rn | ‖x‖2 =

∫ T

0

〈x(t), x(t)〉dt <∞,∀T ∈ R>0

}
(2.8)

Definition 2.1.8. (Lebesgue Space [56]) The Lebesgue space, L2, is an inner product

space, and is given by all square integrable functions defined by:

L2 =

{
x : R>0 → Rn | ‖x‖2

2 =

∫ ∞
0

xT (t)x(t)dt <∞
}

(2.9)

The extended Lebesque space, L2e, is defined by

L2e =

{
x : R>0 → Rn | ‖x‖2

2,T =

∫ T

0

xT (t)x(t)dt <∞, ∀T ∈ R>0

}
(2.10)

Definition 2.1.9. (Discrete-time Lebesgue Space [56]) The Discrete-time Lebesgue

space, `2, is given by all square summation functions defined by:

`2 =

{
x : Z>0 → Rn | ‖x‖2

2 =
∞∑
k=0

xTk xkdt <∞

}
(2.11)

The extended Discrete-time Lebesque space, `2e, is defined by

`2e =

{
x : Z>0 → Rn | ‖x‖2

2,T =
T∑
k=0

xTk xkdt <∞,∀T ∈ Z>0

}
(2.12)

30



2.1.3 Passivity

Definition 2.1.10. (Passivity [54]) A system H : Le 7→ Le, whose input and output

are denoted as u and y, is said to be passive if

∫ T1

0

uTydt > 0 ∀u ∈ Le,∀T1 ∈ R>0 (2.13)

Definition 2.1.11. (Output Strictly Passive (OSP) [54]) A system H : Le 7→ Le,

whose input and output are denoted as u and y, is said to be Output Strictly Passive

if there exist β ∈ R>0, such that

∫ T1

0

uTydt > β

∫ T1

0

yTydt ∀u ∈ Le,∀T1 ∈ R>0 (2.14)

2.2 Optimization and LMIs

Optimization plays an essential role is this thesis work, particularly convex opti-

mization with LMI constraints. Convex optimization is heavily used in Chapter 4,

Chapter 6 and Chapter 7.

2.2.1 Convex Sets

Definition 2.2.1. (Convexity [57]) A set, S, in a real inner product space is convex

if for all x, y ∈ S and α ∈ [0, 1], αx + (1 − α)y ∈ S. A function , f , is said to be

convex if for all x, y ∈ S, α ∈ [0, 1], f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y).

2.2.2 Linear Matrix Inequality

Definition 2.2.2. (Matrix Definiteness) Let A ∈ Rn×n and A is a symmetric matrix.

The matrix A is said to be postive definite if

xTAx > 0, for all nonzero x ∈ Rn (2.15)
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it is positive semidefinite if

xTAx > 0, for all nonzero x ∈ Rn (2.16)

Conversely, the matrix A is negative definite if

xTAx < 0, for all nonzero x ∈ Rn (2.17)

It is negative semidefinite if

xTAx 6 0, for all nonzerox ∈ Rn (2.18)

Definition 2.2.3. (Linear Matrix Inequality [58]) A Linear Matrix Inequality has

the form

F (x) , F0 +
m∑
i=1

xiFi > 0 (2.19)

where x ∈ Rm is the vector variable and the symmetric matrices Fi = F T
i ∈ Rn×n, i =

0, . . . ,m are given.

Proposition 2.2.4. (Convexity of LMI [58]) A LMI, F : Rm 7→ Rn×n, is convex.

Proof. Consider x, y ∈ Rm and α ∈ [0, 1], the LMI F is convex since

F (αx+ (1− α)y) = F0 +
m∑
i=1

(αxi + (1− α)yi)Fi

= α

(
F0 +

m∑
i=1

xiFi

)
+ (1− α)

(
F0 +

m∑
i=1

yiFi

)

= αF (x) + (1− α)F (y) (2.20)

Although the LMI (2.19) may seem to have a specialized form, it can represent
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a wide variety of convex constraints on x. In particular, linear inequalities, (convex)

quadratic inequalities , matrix norm inequalities and constraints that arise in control

theory, such as Lyapunov and convex quadratic matrix inequalities, can all be cast

in the form of an LMI [58].

Lemma 2.3. (Schur Complement Lemma [58]) Consider the matrix A = AT ∈ Rn×n,

C = CT ∈ Rm×n, and B ∈ Rn×m. The following conditions are equal.

1.

 A B

BT C

 < 0

2. A−BC−1BT < 0, C < 0

3. C −BTA−1B < 0, A < 0

2.3 Linear System Theory

The majority of the controller synthesis methodology developed in this dissertation

requires the knowledge of the state-space form of the Linear Time-Invariant (LTI)

system. A review of linear system theory is provided in this section, in particular

the stability of LTI system, passivity of the system, and the zeros of LTI transfer

matrices.

Definition 2.3.1. (Continuous-time LTI System) A Continuous-time linear time-

invariant system can be represented by the following set of equations:

Sc,LTI :

 ẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = Cx(t) +Du(t)
(2.21)

Where x(t) ∈ Rn is the state vector, x(t0) is the initial condition of the system,

u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output vector, A ∈ Rn×n, B ∈ Rn×m,

C ∈ Rp×n, D ∈ Rp×m.
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Definition 2.3.2. (Discrete-time LTI System) The Discrete-time linear time-invariant

system can be represented by the following set of equations:

Sd,LTI :

 xk+1 = Axk +Buk

yk = Cxk +Duk

(2.22)

Where xk ∈ Rn is the state vector, x0 is the initial condition of the system, uk ∈ Rm

is the input vector, yk ∈ Rp is the output vector, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m for all k ∈ Z.

Definition 2.3.3. (Markov Parameter) Consider the discrete-time, LTI system in

(2.22), the matrix impulse response with initial condition x0 = 0 is:

Hk =

 D, k = 0

CAk−1B k > 0
(2.23)

2.3.1 Stability of Linear System

Definition 2.3.4. (Lyapunov stability and asymptotical stability [56]) Assume that

in (2.21), there is no input. The equilibrium point x = 0 of (2.21) is

• Lyapunov Stable (LS) if, for each ε > 0, there exists δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t > 0 (2.24)

• Asymptotically Stable (AS) if it is LS and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0 (2.25)

Theorem 2.4. (Lyapunov Stability for LTI System in Continuous-time Domain [56])
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Let A ∈ Rn×n and assume there exists P ∈ Rn×n, where P = P T > 0, satisfying

ATP + PA 6 0 (2.26)

Then Re{λi(A)} 6 0, i = 1, . . . , n, and the equilibrium point x = 0 of the system

ẋ = Ax is LS.

Theorem 2.5. (Lyapunov Stability for LTI System in Discrete-time Domain [56])

Let A ∈ Rn×n and assume there exists P ∈ Rn×n, where P = P T > 0, satisfying

ATPA− P 6 0 (2.27)

Then |λi(A)| 6 1, i = 1, . . . , n, and the equilibrium point x = 0 of the system xk+1 =

Axk is LS.

Theorem 2.6. (Asymptotical Stability for LTI System in Continuous-time Domain

[56]) Let A ∈ Rn×n and assume there exists P ∈ Rn×n, where P = P T > 0, satisfying

ATP + PA < 0 (2.28)

Then Reλi(A) < 0, i = 1, . . . , n, the matrix A is Hurwitz and the equilibrium point

x = 0 of the system ẋ = Ax is AS.

Theorem 2.7. (Asymptotical Stability for LTI System in Discrete-time Domain [56])

Let A ∈ Rn×n and assume there exists P ∈ Rn×n, where P = P T > 0, satisfying

ATPA− P < 0 (2.29)

Then |λi(A)| < 1, i = 1, . . . , n and the equilibrium point x = 0 of the system xk+1 =

Axk is AS.
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2.3.2 Passivity and Output Strictly Passivity

Theorem 2.8. (Positive Real (PR) Lemma [59]) Let the LTI system be defined by

the equation (2.21) where (A,B)is controllable and (A,C) is observable. The system

is passive if and only if there exist a P ∈ Rn×n and P = P T > 0, such that

ATP + PA PB − CT

BTP − C −DT −D

 6 0 (2.30)

Theorem 2.9. (Positive Real Lemma in Discrete-time [60]) Let the discrete-time

LTI system defined by the equation (2.22) where (A,B) is controllable and (A,C)

is observable. The system is passive if and only if there exist a P ∈ Rn×n and

P = P T > 0, such that

ATPA− P ATPB − CT

BTPA− C −DT −D +BTPB

 6 0 (2.31)

Theorem 2.10. (Output Strict Passivity [61]) Assume that the LTI system is defined

by (2.21), we denote H as the transfer function of the system. We also assume that

(A,B) is stabilizable and (A,C) is detectable. Let Eo be a full-row-rank matrix with

a null space equal to the unobservable subspace of (A,C). The statements below are

equal:

1. The LTI system is OSP;

2. H(s) is Output Strict Positive Real (OSPR). i.e., it is analytic for Re(s) > 0

and ∃β ∈ R>0, s.t. H(s) +HH(s) > βHH(s)H(s), ∀s ∈ C>0.
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3. ∃P = P T > 0 and β ∈ R>0 s.t. EoPE
T
o > 0 and


ATP + PA PB − CT CT

BTP − C −DT −D DT

C D − 1
β
I

 6 0 (2.32)

Proof. The detailed proof of Theorem 2.10 can be found at the appendix in [61].

Theorem 2.11. (Output Strict Passivity in Discrete-time [61]) Assume that the

Discrete-time LTI system is defined by (2.22), we denote Z as the transfer function

of the system. We also assume that (A,B) is stabilizable and (A,C) is detectable.

Let Eo be a full-row-rank matrix with a null space equal to the unobservable subspace

of (A,C). The statements below are equal:

1. The LTI system is OSP;

2. Z(z) is OSPR. i.e., it is analytic for |z| > 1 and ∃β ∈ R>0, s.t. Z(αejθ) +

ZT (αe−jθ) > βZT (αe−jθ)Z(αejθ), ∀θ ∈ [0, 2π) and all |α| > 1.

3. ∃P = P T > 0 and β ∈ R>0 s.t. E0PE
T
0 > 0 and


ATPA− P ATPB − CT CT

BTPA− C −DT −D +BTPB DT

C D − 1
β
I

 6 0 (2.33)

2.3.3 Zeros of Linear Systems

Definition 2.3.5. (Blocking Zero [62]) A causal LTI system represented by the trans-

fer function H(s) ∈ Cn×n has a blocking zero at s0 ∈ C if H(s0) = 0.

Definition 2.3.6. (Output Blocking Zero) A causal LTI system represented by the

transfer function H(s) ∈ Cn×n has an output blocking zero at s = s0 if ∃ nonzero

vector η ∈ Cn, s.t. ηHH(s0) = 0.
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Definition 2.3.7. (Blocking Space) A causal LTI system whose transfer function is

H(s) ∈ Cn×n has a output blocking zero s0, the set {η ∈ Cn : ηHH(s0) = 0} is the

blocking space associated with s0, and is denoted as BH(s0)

Definition 2.3.8. (Simple Zero) A finite output blocking zero is said to be simple if

lims 7→s0 η
HH(s)(s− s0)−1 6= 0,∀η ∈ BH(s0). While for an infinite zero,

lims 7→∞ η
HH(s)s 6= 0,∀η ∈ BH(∞).

Lemma 2.12. For LTI system in (2.21) :

1. Suppose s0 ∈ C, s.t. A− s0I is nonsingular. Then the system has a finite zero

at s = s0 with nonzero blocking vector η ∈ Cn if and only if ∃ a vector ε s.t.

ε
η


T A− s0I B

C D

 = 0 (2.34)

2. the system has a zero at s =∞ with nonzero blocking vector η ∈ Cn if and only

if ηHD = 0

Definition 2.3.9. The LTI system in (2.21) is minimum phase if its poles and finite

zeros are in C60

Theorem 2.13. Let the LTI system in (2.21) be OSP, and its transfer function H(s)

be nonsingular for almost all s ∈ C. Then all imaginary zeros of the LTI system is

simple and H is minimum-phase

Proof. The detailed proof can be found at [61].

Theorem 2.14. Let H and G denotes two LTI systems which have finite gain in

open loop, i.e. H,G ∈ H∞. Let H be as in Theorem 2.13. Let ΩH and ΩG be the sets

of all imaginary zeros for H and G, respectively. If ΩH ⊆ ΩG and for each s0 ∈ ΩH ,

BH(s0) ⊆ BG(s0), then H−1G ∈ H∞.

Proof. The detailed proof can also be found at [61].
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CHAPTER 3

Mathematical Modeling

3.1 An Oscillating Body in Waves

First, we assume the propagating waves have the small amplitudes to simplify the

oscillation behavior of a buoy in waves. Specifically, the wave height-to-length ratio

is less than an order of magnitude smaller than one. This assumption enables us

to do the analysis based on linear differential equations, allowing for the use of the

linear superposition. In general, an oscillation body in waves has six modes (three

translation modes surge, sway and heave, and three rotational modes roll, pitch and

yaw). To help with the basic concept understanding, we only consider single-degree-

of-freedom device for this chapter. Extensions to multi-degree-of-freedom devices can

be straightforward using matrix methods.

An oscillating body that is submerged in deep water may lose some energy due

to the viscous friction in the boundary layer of the fluid surrounding the body, and

therefore generates the opposite damping force. In addition, when the body oscillates

up and down, so does the surrounding fluid. To simplify this oscillation motion,

we can assume the body only moves in the heave mode in an unbounded fluid, the

equation of motion can be expressed as:

mz̈ + cż + kz = ff (t) + fr(t) (3.1)
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Here m is the body mass, c is the applied damping and k is the hydrostatic stiffness

constant. On the right side of the equation, ff is the incident wave force and fr is

the radiation wave force. For such a submerged oscillation body, the maximum power

generation can be achieved by applying complex conjugate control.

However, in most WEC devices, the WEC is oscillating close to the water surface

(or ”free surface”). The reason is that waves are the free-surface perturbation and

the effect of such a perturbation on the body decreases exponentially with the depth

of the submergence of the body. As long as the oscillation body is close enough to

the free surface to respond to waves, it will create waves because of its own oscillation

and thus generate the radiation force fr.

WEC devices utilizing mechanical oscillation of a body must generate the waves

from surrounding fluid in response to the incoming waves. The force on the water by

the body is oscillatory and exhibits an exchange of energy that contains a reactive

and a nonreactive or resistive part. The reactive part is the oscillatory acceleration of

the water of the free surface and did not involve any energy loss, while the nonreactive

part is the propagation of energy along the free surface away from the body. The

former can be interpreted as an added mass or inertia for the body oscillating near

the free surface and the latter as radiation damping, which can be much larger than

the effect of viscous damping.

3.1.1 Regular Waves

We first consider the harmonic wave input, which is a single frequency and am-

plitude. For convenience, we choose a cylindrical body that is moored tightly enough

and only has the heave motion. The dynamic equation of such an oscillating body can

be written as the equation (3.1). The applied damping constant c can be negligible

since it is very small compared to the radiation damping. We also assume that the

viscosity damping can also be negligible. f(t) is the total force on the body in the
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presence of waves. Other forces are ignored, and we assume the body is in equilibrium

in the absence of waves. The solution of z(t) can be found by setting z(t) = ẑ(iω)eiωt,

where the complex amplitude ẑ(iω) can be determined using the following equation:

[−ω2m+ k]ẑ(iω) = f̂(iω) (3.2)

For the case where waves and oscillatory motion are small enough, linear superposition

holds. The force term on the right side of the equation (3.2) is the linear combination

of the incident wave force (also called the diffraction force or excitation force) as

f̂f (iω), and the radiation force as f̂r(iω). In general, both forces are six-component

vectors, although here we consider them as complex scalars in heave motion.

f̂(iω) = f̂f (iω) + f̂r(iω) (3.3)

The incident wave force f̂f (iω) depends on the geometry of the body and its submer-

gence depth. For the bodies with a characteristic diameter sufficiently small compared

to wavelength, f̂f (iω) can be obtained by an integration of the incident wave velocity

potential over the submerged surface. This is called the Froude-Krylov force. When

the characteristic diameter is comparable or larger than wavelength, the excitation

force is the solution to some partial differential equations through numerical com-

putation. f̂r(iω) also depends on body geometry and submergence, and needs to be

solved by numerical computation. We can write the radiation force f̂r(iω) as:

f̂r(iω) = −[ĉr(ω) + iωm̄r(ω)]v̂(iω) (3.4)

Both ĉr(ω) and m̄r(ω) are the frequency dependent terms. We note that ĉr(ω) is

real-valued and multiplies velocity v̂(iω). ĉr(ω) is called the radiation damping, or

added damping in wave energy area. m̄r(ω) is also real-valued and attached to the
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acceleration iωv̂(iω). We call m̄r(ω) the added mass. As ω → ∞, ĉr(ω) → 0 and

m̄r(ω)→ m∞, where m∞ is a positive constant. We can also treat m̄r(ω) as the sum

of two terms.

m̄r(ω) = m̂r(ω) +m∞ (3.5)

If we express equation (3.1) in terms of the velocity v̂(iω) and insert equation (3.3),

(3.4) and (3.5) into it, we have:

[
i

(
ω(m+m∞ + m̂r(ω))− 1

ω
k

)
+ ĉr(ω)

]
v̂(iω) = f̂f (iω) (3.6)

In time domain, the equation (3.6) is a second-order differential equation. Since the

regular wave is harmonic and only propagated at the single frequency ω, the equation

(3.6) can be solved. However, in this subsection, we are not interested in solving this

equation but analyzing the dynamic behavior of the WEC device.

3.1.2 Irregular Waves

For simplicity, we still use the same cylindrical body in single-mode motion as

an example. Like the case in regular waves, the basic dynamic behavior of the body

can be expressed as the time domain equation (3.1), where the applied damping c

can be negligible. Since the irregular wave exhibits energy over the broad range of

frequencies, we can not treat it in the way like the regular wave. However, at each

time t, we can regard the irregular wave input as the impulse input, and the forces

acting on the body are generated through the impulse input. The irregular waves

input is a succession of such impulse inputs, and the forces can be expressed in the

form of convolution integrals based on linear superposition:

fr(t) = −
∫ ∞
−∞

gr(τ)v(t− τ)dτ (3.7)
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ff (t) =

∫ ∞
−∞

hf (τ)a(t− τ)dτ (3.8)

where gr(t) is the radiation impulse response function, and v(t) is the velocity vector of

the body. hf (t) is the excitation force impluse response function and a(t) is the wave

elevation. We recall from Section 3.1.1 one term m∞ called infinity mass contributes

to the radiation force, and this term is also included in the radiation impulse response

function. We can express gr(t) as:

gr(t) = hr(t) +m∞
dδ(t)

dt
(3.9)

Then, by doing the integration by parts,

fr(t) =

∫ ∞
−∞

hr(τ)v(t− τ)dτ +m∞z̈(t) (3.10)

where the second term is the infinite-frequency added mass times the acceleration,

and hr is the radiation kernel.

Considering the radiation force, there is no force fr occurs before the first motion

and the force present depends only on the motion up to present. It can be concluded

that hr is equal to 0 until t = 0, and this results in:

fr(t) =

∫ ∞
0

hr(τ)v(t− τ)dτ +m∞z̈(t) (3.11)

And by using the equation (3.10) and (3.11), we can rewrite the equation (3.1) in the

following form:

[m+m∞]z̈(t) +

∫ ∞
0

hr(τ)v(t− τ)dτ + kz(t) = ff (t) (3.12)

Equation (3.12) is called Cummins’ equation [63], where there is no restrctive con-

straint.
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Applying a fourier transform on both sides gives the frequency domain equation.

− ω2[m+m∞]ẑ(iω) + iωĥr(iω)ẑ(iω) + kẑ(iω) = f̂f (iω) (3.13)

where

ĥr(iω) =

∫ ∞
−∞

hr(t)e
−iωtdt (3.14)

f̂f (iω) =

∫ ∞
−∞

ff (t)e
−iωtdt (3.15)

The frequency-dependent function ĥr(iω) can be written as:

ĥr(iω) = iωm̂r(ω) + ĉr(ω) (3.16)

Substitute equation (3.14) and (3.16) into the equation (3.13), we can have the fre-

quency domain dynamic equation.

[−ω2[m+m∞ + m̂r(ω)] + iωĉr(ω) + k]ẑ(iω) = f̂f (iω) (3.17)

The excitation force ff is the net result of the pressure distribution acting over

the entire submerged surface. In the ith degrees of freedom, the excitation force ffi

can be written as:

ffi =

∫∫
SB

pnidS (3.18)

where p denotes the pressure at a given point on the submerged surface SB, and

ni is the outward-point unit vector along the direction of ith degree of freedom. In

frequency domain, the excitation force can be expressed as:

f̂f (iω) = ĥf (iω)â(iω) (3.19)

The complex frequency impulse response function ĥf (iω) can be regarded as the
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Figure 3.1: Impulse response function of the excitation force ff in the simple buoy
example

excitation force coefficients. In general, f̂f and ĥf are 6-dimensional column vectors.

Here, since we assume the oscillation is only in heave, f̂f and ĥf are scalars. And the

corresponding relationship between ĥf (iω) and the impulse response function hf (t)

can be expressed as:

hf (t) =
1

2π

∫ ∞
−∞

ĥf (iω)eiωtdω (3.20)

The impulse response function hf (t) is not, in general, causal. This noncausality

is partly attributed to the fact that the excitation force might be already applied

at the oscillation body before the waves actually arrive at the body [64]. Hence, to

determine the value of the present wave excitation force needs not only the past and

present values but also the future values of the wave elevation a. Thus, although hf (t)

is a real-valued function, hf (t) 6= 0, t ≤ 0 due to its noncausality. This has added to

the difficulty of the control system design of the WEC device since this noncausality

prohibits us from using the rational finite dimensional function to approximate the

behavior of the excitation force. But It turns out in [64] that if we put the incident

wave elevation a at a certain distance from the WEC device, the excitation force is

actually causal in the dispersion-free wave. Later in [65], the author pointed out that

in real waves, it is possible to fit the frequency response of the excitation force well

using appropriate causal state-space models.
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3.2 WEC Arrays

Using a large number of WEC devices to maximize the overall power capture

from an approaching wavefront is the idea of a wave farm. Point-absorber arrays

have been consider particularly attractive since they are insensitive to the direction

of the incoming waves. We consider the point-absorber arrays here. Unlike the single

WEC control problem, in order to maximize the power output of the whole WEC

arrays, we need to use the interaction between each device to increase the power

conversion.

Incident wave direction WEC arrays

Figure 3.2: Multi arrays of point-absorber type WECs [10]

The dynamic behavior of the whole WEC arrays can still be described by Cum-

mins’ equation (3.12).

[M +M∞]z̈(t) +

∫ ∞
0

Hr(τ)v(t− τ)dτ +Kz(t) = ff (t) (3.21)

Where M and M∞ is the mass matrix and added mass matrix. Both of them are

positive diagonal matrices. K is the hydrostatic stiffness matrix, which is also a

positive diagonal matrix. We denote z as the WEC arrays displacement vector and

v is the velocity vector. ff (t) is the WEC arrays incident wave force vector. The

radiation kernel Hr is not diagonal because each WEC device experiences a force due

to the wave radiated by any of the other devices.
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The dynamic of WEC arrays in the frequency domain is:

− ω2[M +M∞]ẑ(iω) + iωĤr(iω)ẑ(iω) +Kẑ(iω) = f̂f (iω) (3.22)

In the frequency domain, the incident wave force vector f̂f (iω) is the product of

the excitation force coefficients Ĥf (iω) and wave amplitude â(iω). The relationship

between them is the same as equation (3.19).

Similarly, the frequency-dependent function Ĥr(iω) can be written as:

Ĥr(iω) = iωM̂r(ω) + Ĉr(ω) (3.23)

Where M̂r(ω) and Ĉr(ω) are the matrix form of m̂r(ω) and ĉr(ω). We define M̄r(ω) =

M̂r(ω) + M∞. Substitute (3.23) into (3.22), we can have the frequency domain dy-

namic equation:

[−ω2[M +M∞ + M̂r(ω)] + iωĈr(ω) +K]ẑ(iω) = f̂f (iω) (3.24)

3.3 Sea State

Sea state is the general condition on the free surface of the ocean, and it can be

characterized by a certain wave spectrum density function Sa(ω). Here, we assume the

wave elevation a is a stationary stochastic process with the known spectrum density

function Sa(ω). The mean of the wave elevation a is 0, and the variance of a is σ2
a,

which can be calculated based on the following equation:

σ2
a =

1

π

∫ ∞
0

Sa(ω)dω (3.25)
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We choose the common JONSWAP spectrum [66] as our wave spectrum Sa(ω):

Sa(ω) = 155 ∗
H2

1/3

T 4
1ω

5
exp

(
−944

T 4
1ω

4

)
γY (3.26)

where

Y = exp

(
−
(

0.191ωT1 − 1

2
1
2σ

)2
)

(3.27)

and

σ =


0.07 for w ≤ 5.24

T1

0.09 for w > 5.24
T1

(3.28)

The value of sharpness factor γ is usually between 1 and 10 depends on the length of

fetch. When γ is 1, it represents a fully developed sea state.
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Figure 3.3: Comparison between different mean wave periods while γ = 1 and H1/3 =
1m invariant

As we can see in equation (3.26), the wave spectrum Sa(ω) is determined by three

parameters: significant wave height H1/3, mean wave period T1 and sharpness factor

γ. The significant wave height H1/3 commonly used as a measure of the height of the

ocean waves is the mean wave height of the highest third of the waves. The higher
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H1/3 is, the more power can be extracted in the ocean waves. The mean wave period

T1 is the mean of all wave periods in a time-series representing a certain sea state.

There is another terminology called peak wave period Tp, describing the wave period

with highest energy. In JONSWAP spectrum, there is a certain relationship between

T1 and Tp:

T1 = 0.834Tp (3.29)

The sharpness factor γ depends on the fetch. The longer the fetch is, the larger γ

will be, resulting in a higher energy sea state.

3.4 Power Generation Model

The power generation model differs in different PTO mechanisms. In this docu-

ment, we assume our PTO system in each WEC device to be the same direct-drive

permanent-magnet machine. We also assume that the generator has linear behav-

ior and minimal core loss, which results in the linear relationship between the WEC
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velocity v and the voltage in the generator V :

V = kev (3.30)

where ke is an electric constant, inherent to the generator. And an equal linear rela-

tionship holds between the generator current i and the tether cable force (controller

force) u:

i = − 1

ke
u (3.31)

The instantaneous power absorption of the whole WEC array at time t can be calcu-

late using the equation (3.30) and equation (3.31):

pi(t) = V T i = −uTv (3.32)

The electrical loss in the power generation model is assumed to be dominated by

conductive dissipation. In reality, this dissipation is related to the current i through a

very complex relationship involving many parameters of the electronic hardware [47].

However, we can upper bound this dissipation term by a quadratic function of the

current i:

ploss = iTRi (3.33)

where R = RT is positive definite. The resistance R includes the stator coil resistance

of the generation, and the transmission resistance for the drive. By using equation

(3.31), we can express the dissipation energy in terms of the controller force u:

ploss = uTRdu (3.34)

where Rd = RT
d > 0 can be regarded as the static impedance matrix associated with

the power loss.
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Combining the instantaneous power absorption and the dissipation energy, the

total power generation at time t can be written as:

p(t) = −uTv − uTRdu (3.35)

In the control system design, our goal is to maximize the power generation per-

formance over a certain time duration. In other words, the control objective is to

maximize the average power generation performance.

p̄ = E{−uTv − uTRdu} (3.36)

3.5 State-Space Model

In the WEC device, the external force of the oscillation body includes the wave

excitation force and the actuator force, which is applied by the tether cable in the

simple buoy example. The WEC arrays dynamic equation (3.22) considering the

actuator force can be written in the frequency domain as

[−ω2(M +M∞)) + iωHr(iω) +K]ẑ(iω) = f̂f (iω) + û(iω) (3.37)

Where u(t) is the vector of the actuator force,

û(iω) =

∫ ∞
−∞

u(t)e−iωtdt (3.38)

Here, the transfer function Hr(iω) is infinite-dimensional since it can be solved by

partial differential equations. We can approximate this infinite-dimensional trans-

fer function by the finite state-space model. The method we applied here is called

subspace-based system identification techniques which is originally introduced in [67].

There are several advantages of this subspace-based method that does not involve any

51



iterative procedure and provide balanced truncations of infinite-dimensional systems

in discrete-time from frequency domain data. However, the original subspace-based

system identification techniques do have several drawbacks: the identified finite state-

space model may not be positive real and for a limited number of the frequency-

domain data, it may fail to provide an accurate state-space model. We proposed a

new version of this technique in [68] that tackles these drawbacks and will present it

in the next chapter. For convenience, we will put the updated subspace-based system

identification techniques of infinite dimensional transfer functions in Appendix A.

Hr(iω) ≈ Dr + Cr[jωI − Ar]−1Br (3.39)

Based on the state space model for Hr(iω), we can propose an augmented state space

model that fully characterized the frequency domain dynamic equation (3.22).



dxc
dt

= Acxc +Bc(ff + u)

v = Ccvxc

z = Cczxc

y = Ccyxc

(3.40)

where

xc =

[
xr z ż

]T
, Ac =


Ar 0 Br

0 0 I

−M−1
T Cr −M−1

T K −M−1
T Dr


Bc =

[
0 0 (M−1

T )T
]T
,MT = M +M∞

Ccv =

[
0 0 I

]
, Ccz =

[
0 I 0

]
, Ccy =

0 0 I

0 I 0


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y is the sensor measurements of the WECs. Here we assume that y =

[
vT zT

]T
.

As for the diffraction force ff , we can apply the same system identification method

to find an approximate finite-dimensional state-space model. With the wave elevation

a treated as a stationary stochastic process, the wave excitation force ff can also be

regarded as a stationary stochastic process and its spectrum function has the following

relationship with wave spectrum Sa:

Sf (ω) = Ĥf (iω)Sa(ω)ĤT
f (−iω) (3.41)

We can find a a finite-dimensional noise filter W (s) such that when excited by the

white noise, its power spectrum is close to the wave force spectrum. i.e.,

W (iω) = Dw + Cw[iωI − Aw]−1Bw (3.42)

Sf (ω) ≈ W (iω)W T (−iω) (3.43)

Although Dw may be nonzero in the finite-dimensional approximation, it is usually

very small and can be discarded. Without loss of generality, we can always make

Dw = 0. Correspondingly, we can have the finite-dimensional state space model of

W (s):  dxw = Awxwdt+Bwdw

ff = Cwxw

(3.44)

where w(t) is a Wiener process with zero mean and unit rate; i.e., E w(t) = 0 and

E w(t)wT (τ) = I min{t, τ}. (Note that this is equivalent to stating that d
dt
w(t) is

white noise with spectral density Sẇ = I.)

Put the equation (3.44) into the equation (3.40), we can have the following aug-
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mented state space model:



dx = (Ax+Buu)dt+ Edw

v = Cvx

z = Czx

y = Cyx

(3.45)

where

x =

[
xc xw

]T
, A =

Ac BcCw

0 Aw


Bu =

[
Bc 0

]T
, E =

[
0 Bw

]T
, Cv =

[
Ccv 0

]

Cz =

[
Ccz 0

]
, Cy =

[
Ccy 0

]

3.6 Assumptions

Definition 3.6.1. The transfer function Guv : u 7→ v is called the driving-point

impedance of the WEC.

Due to thermodynamic constraints on the physical behavior of the WEC, it is

known that its driving point impedance u 7→ v is passive. (Indeed, otherwise the

WEC would be able to generate more energy than it absorbs from the ocean.) This

implies that the transfer function

Guv(s) , Cv(sI − A)−1Bu (3.46)

is positive real.
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Assumption 3.6.1. Driving point impedance u 7→ v is passive, e.g.,

∫ T

0

vTudt > 0, ∀T ∈ R>0 (3.47)

This is equivalent to stating that Guv(s) is is analytic in the open right half plane,

real for s ∈ R>0 ,and such that it has positive-semidefinite Hermitian component on

the imaginary axis; i.e.,

Guv(jω) +GH
uv(jω) > 0, ∀ω ∈ R (3.48)

Assumption 3.6.2. The mapping {u,w} 7→ {v, y, z} has bounded L2 gain.

The Assumption 3.6.2 require the state space model in Equation 3.45 are in H∞.

Without loss of generality, we also presume a minimal model. e.g.,

Assumption 3.6.3. System (3.45) is a minimal realization of mapping {u,w} 7→

{v, y, z}.

Combining the assumption 3.6.2 and 3.6.3 implies that the matrix A is Hurwitz.

3.7 Numerical Example

3.7.1 One Buoy Case

As a simple example, here we consider a single-degree-of-freedom WEC shown in

Figure 5.1. The floating cylinder buoy is connected to the linear generator mounted

on the sea floor. We assume the buoy only moves in heave. For the model parameters

chosen, the natural period is approximately 5.5s. The PTO applies the controller

force u through the sensor measurement v. For the sea state, we choose the JOSWAP

spectrum with significant wave height H1/3 = 1m, mean wave period T1 = 7s and

sharpness factor γ = 1.
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Figure 3.5: A simple floating buoy with the floor-mounted generator. The buoy mass
is around 170000 kg. The generator damping is 200N*s/m

Figure 3.6 shows the plot of the frequency dependent added mass m̄r(ω), added

damping ĉr(ω) and excitation force coefficients ĥf (iω). As ω increases, m̄r(ω) 7→ m∞,

added damping and excitation force coefficients approach 0. Figure 3.7 compares the

frequency response between the true ĥr(iω) and the approximate state-space model.

The state-space model, whose dimensional is equal to 12, approximates ĥr(iω) very

well. Based on it, we can construct the state-space model (3.40). In figure 3.8, the

frequency response of Sf (ω) and W (iω)WH(iω) are shown. The state-space model of

W (s) also has 12 states, the expression of which can be found as in (3.44).

Using the above results, we can have the augmented state-space model (3.45) that

fully characterizes the dynamic behavior of the WEC system and surrounding fluid.

3.7.2 Two Buoy Case

In this subsection, we consider the two buoys case. For each buoy, we choose the

specification as the same as the one buoy case. The position of two buoys is shown

in Figure 3.9. For the sea state, we choose the JONSWAP spectrum with the same

parameters from one buoy case.
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Figure 3.6: Figure of hydrodynamic parameters
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Figure 3.7: System identification of ĥr(jω)
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Figure 3.8: System identification of Sf (ω)
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Figure 3.9: 2 buoy position diagram
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Figure 3.10: Hydrodynamic parameters of two buoys case

Figure 3.10 shows the plot of the frequency dependent added mass M̄r(ω), added

damping Ĉr(ω) and excitation force coefficients Ĥf (iω). As ω increases, added mass

M̄r(ω) → M∞, added damping Ĉr(ω) and excitation force coefficients Ĥf (iω) ap-

proach 0. Figure 3.11 compares the frequency response between the true Ĥr(iω) and

the approximate state-space model. Since at each frequency Ĥr(iω) is symmetric and

the diagonal terms of it are the same, we can only plot the frequency response of

one diagonal term and one off-diagonal term in Figure 3.11. The state-space model,

whose dimensional is equal to 18, has a relatively high accuracy of approximating

Ĥr(iω). Based on it, we can construct the state-space model (3.40). In Figure 3.12

and Figure 3.13, the frequency response of Sf (ω) and W (iω)WH(iω) are shown. Like

Figure 3.11, only one diagonal term and one off-diagonal term need to be plotted.

The state-space model of W (s) also has 18 states, the expression of which can be

found as in (3.44).
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Figure 3.11: System identification of Ĥr(iω)

Same as the one buoy case, the state-space model that fully characterizes the

dynamic behavior of the WEC arrays and surrounding fluid is (3.45).
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Figure 3.12: System identification of the diagonal term in wave force spectrum Sf (ω)
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Figure 3.13: System identification of the off-diagonal term in wave force spectrum
Sf (ω)
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CHAPTER 4

Subspace-based Spectral Factorization of Wave

Force Spectrum

4.1 Introduction

In WEC modeling, it is of central importance to characterize the stochastic dy-

namics of floating rigid bodies subjected to random waves [66]. In Chapter 3, the

wave excitation force ff can be regarded as a stationary stochastic process and its

spectrum has the following relationship with wave spectrum Sa:

Sf (ω) = Ĥf (iω)Sa(ω)ĤT
f (−iω) (4.1)

whereHf (iω) is the impulse response function of the wave excitation force ff . In many

circumstances (such as in response control design) it is useful to approximately decom-

pose this spectrum into rational spectral factors. The problem is made challenging

due to the infinite-dimensionality of the system. In particular, infinite-dimensionality

arises in two distinct ways. Firstly, Hf (iω) constitutes an irrational transfer function.

This transfer function must in general be found numerically at each frequency, as the

solution to a system of partial differential equations characterizing the interaction

between the floating body and the surrounding fluid [69–71]. Secondly, the power

spectral density of the wave elevation is, itself, typically an irrational spectrum [72].
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Since the transfer function Hf (iω) can only be solved numerically at each fre-

quency, we can sample the discrete-time transfer function Hfd(e
iΩ`) using bilinear

transformation.

Hfd(e
iΩ`) = Hf

(
i

2

T
tan(Ω`/2)

)
(4.2)

Where evenly-spaced discrete-time frequencies Ω` = 2π`/2N , with ` = {0, .., 2N−1},

and T is the sampling time. The discrete-time wave spectrum can be generated using

bilinear transformation:

Sad(Ω`) = Sa

(
2

T
tan(Ω`/2)

)
(4.3)

Correspondingly, the discrete-time wave force spectrum can be found as:

S(Ω`) = Hfd(e
iΩ`)Sad(Ω`)H

T
fd(e

−iΩ`) (4.4)

Our goal in this Chapter is to find a rational, minimum-phase filter G(z) of desired

order n, such that

S(Ω`) ≈ G(eiΩ`)GH(eiΩ`) (4.5)

Many researchers have investigated spectral factorization algorithms that perform an

optimization of G(z) over an assumed parametric domain [73, 74]. The objective of

such techniques is to minimize a certain error function, such as a weighted norm of the

error between the two expressions in (4.5). This type of technique often involves in

an associated non-convex optimization problem, which can only be solved iteratively

and with no guarantee on the rate of convergence or the global optimality of the

attained solution.

The first subspace technique of spectral factorization was proposed by Van Over-
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schee [75]. It assumed that the spectrum data can be decompoised as

S(Ω`) = G0(eiΩ`)GH
0 (eiΩ`) + Ŝ` (4.6)

where G0(z) constitutes the finite-order rational discrete-time transfer function, and

Ŝ` is a sequence of uncorrelated noise terms. This non-iterative subspace technique

is shown to be interpolative, i.e., when Ŝ` = 0,∀`, the techniques factors S(Ω) with

zero error, give a sufficient amount (N) of data. This technique also appeared to be

consistent, i.e., even with the existence of Ŝ`, the asymptotic limit ‖G0G
H
0 −S‖∞ → 0

as N → ∞, which was later shown by Akçay and Türkay that this was not the

case [76]. In [77], Akçay improve the algorithm such that it is consistent as well as

interpolative, by changing the way the Hankel matrix is constructed. The algorithm

works well in most circumstances, but has a number of failure modes, especially for

the spectrum data from some lightly damped systems.

In the problem of identifying the power spectrum for the stationary response

of the heaving buoys excited by stochastic ocean waves, the use of such techniques

without modifications can be challenging. In this case, the power spectrum of the

buoys response is irrational and infinite-dimensional, which require the Hankel matrix

in Akçay’s algorithm to be fairly large. As such, we propose several modifications,

one of which is a new way to assemble Hankel matrix without using the consecutive

Markov coefficients. Additionally, we do not consider noise term Ŝ` here since the

inclusion of such noise is secondary to the analysis presently here.

4.2 Standard Algorithm

4.2.1 Assumptions

Because S(Ω) is assumed to be a valid power spectral density, it is the case that

S(Ω) = SH(Ω) > 0, ∀Ω ∈ [0, 2π). We further assume the stochastic process to have

64



finite variance, resulting in the assumption
∫ 2π

0
‖S(Ω)‖dΩ < ∞. We further assume

that there is no deterministic subspace of y; i.e., no vector η 6= 0 such that the signal

ηTy has zero variance. It is straight-forward to show that this is true if and only

if
∫ 2π

0
S(Ω)dΩ > 0. For convenience, let S` , S(Ω`). For the present analysis we

strengthen the above conditions, such that they hold over the discrete S` data. This

may be stated concisely by the following:

Assumption 4.2.1. For each ` ∈ {0, ..2N − 1}, we assume S` = SH` > 0. Fur-

thermore, we assume there exist {κ1, κ2} ⊂ R with 0 < κ1 < κ2 < ∞, such that

κ1I <
∑2N−1

0 S` < κ2I.

We seek to estimate S(Ω) by

Ŝ(Ω) = G(ejΩ)GH(ejΩ) (4.7)

where G(z) is a linear, time-invariant, finite-dimensional filter of order (i.e., MacMil-

lian degree) equal to n. This implies a state space realization parametrized by matrices

A ∈ Cn×n, B ∈ Cn×p, C ∈ Cm×n, and D ∈ Cm×p, such that

G(z) = D + C(zI − A)−1B (4.8)

Equivalently, we assume Ŝ(Ω) is the power spectral density associated with the Gauss-

Markov process

xk+1 =Axk +Bwk (4.9)

yk =Cxk +Dwk (4.10)

where wk is an Independent, Identically-Distributed (IID) Gaussian sequence with

E wkwH` = δk`I. The existence of a power spectral density implies stationarity, thus

requiring that the eigenvalues of A must have moduli strictly less than unity. Beyond
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these requirements, we will place further restrictions on G(z):

1. We restrict our attention to the case in which G(z) is square; i.e,. p = m.

Situations where p > m can be reduced to the square case, by finding the

equivalent innovations model. The case with p < m corresponds to the case in

which Ŝ(Ω) is singular for each Ω, with a frequency-dependent null space equal

to that of GH(ejΩ). This problem has been investigated by other authors [78],

but is not considered here.

2. For the assumption of p = m, we place the additional requirements that D be

invertible, and that G(z) be minimum-phase. Together these requirements are

ensured by requiring that the eigenvalues of A−BD−1C have moduli less than

or equal to unity. We note that this requirement does not preclude singularity

of Ŝ(Ω) at isolated frequencies, but does preclude singularity over any open

interval.

3. Our development will require that A be invertible.

4.2.2 Interpolative Stochastic Realization Theory for Rational Spectra

We first consider the related problem in which a rational spectrum S(Ω`) is given

at Ω` = e2πj`/2N , ` ∈ {0, ..2N − 1}, and it is desired to extract the spectral factor

G(z) from this data. Although it is assumed that S(Ω) = G0(ejΩ)GH
0 (ejΩ) for some

G0(z) = D + C(zI − A)−1B, no specific model order n is assumed a priori. It is

assumed that there is sufficient data (i.e., sufficiently large N) to determine all the

system parameters {A,B,C,D}.

It is a classical result that S(Ω) can be factored into its spectral summands [74],

as

S(Ω) = C(ejΩ) + CH(ejΩ) (4.11)

where C(z) = E + C(zI − A)−1F is the so-called covariance model, with E and F
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found as

E =1
2

(
DDH + CPCH

)
(4.12)

F =APCH +BDH (4.13)

and where P > 0 is the solution to Lyapunov equation

P = APAH +BBH (4.14)

Let S` , S(Ω`). Its inverse Discrete Fourier Transform (DFT) is

sk =
1

2N

M−1∑
`=0

S`e
2πjk`/2N (4.15)

This evaluates to

sk =



2E + CA2N−1(I − A2N)−1F

+FH(I − A2N)−H(AH)2N−1CH : k = 0

CAk−1(I − A2N)−1F

+FH(I − A2N)−H(AH)2N−k−1CH : k > 0

(4.16)

Next, we construct a Hankel matrix from the sk sequence, which is parametrized

by two positive integers {p, q}. First, for r = p + q − 1, define the sequence hk for

k ∈ {1..r} as

hk = sk + s2N−1−r+k (4.17)

It is straight-forward to verify that

hk = CAk−1F̃ + F̃H(AH)r−kCH (4.18)
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where

F̃ = (I + A2N−1−r)(I − A2N)−1F. (4.19)

Now, define the p× q block-Hankel matrix Hpq as

Hpq =



h1 h2 · · · hq

h2 . .
.

. .
.
hq+1

... . .
.

. .
. ...

hp hp+1 · · · hr


(4.20)

Substituting (4.18) and factoring, we have that

Hpq = OpCq (4.21)

where

Op =



C F̃H(AH)p−1

CA F̃H(AH)p−2

...
...

CAp−1 F̃H


(4.22)

Cq =

 F̃ AF̃ · · · Aq−1F̃

(AH)q−1CH (AH)q−2CH · · · CH

 (4.23)

It is straight-forward to show that if (A,B) is controllable and (A,C) observable, and

if p, q > 2n, then the ranks of Op and Cq are both 2n.

Define

Op2 = {Op}rows m+1:mp (4.24)

Op1 = {Op}rows 1:(m−1)p (4.25)
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and we note that

Op2 = Op1A, (4.26)

where

A =

A 0

0 A−H

 (4.27)

The singular value decomposition (SVD) of block-Hankel matrix is Hpq = UΣV H

where U and V have orthonormal columns and Σ is diagonal and contains the

(nonzero) singular values. Then Σ has dimension 2n, from which the order of G0(z)

can be inferred. It must be the case that U = OpM for some invertible M ∈ C2n×2n,

because U and Op share the same range space. It therefore follows that for A′ =

MAM−1,

U2 = U1A′, (4.28)

with definitions for U2 and U1 analogous to those for Op2 and. Op1. The matrix A′

can thus be found from the above overdetermined system as A′ = (UH
1 U1)−1UH

1 U2.

Factor A′ into is Jordan form, or alternatively, any factorization that separates the

stable and unstable eigenspaces, gives

A′ = M

Λs 0

0 Λa

M−1 (4.29)

where Λs ∈ Cn×n and Λ−1
a ∈ Cn×n are both asymptotically stable. Recovering the

stable eigenspace, we infer a realization for G0(z) in which A = Λs. For this same

realization, C and F̃ can also be inferred from U , i.e.,

C =
{
UM−1

}
row 1:m, col 1:n

(4.30)

F̃H =
{
UM−1

}
row m(p−1)+1:mp, col n+1:2n

(4.31)
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From F̃ and A, F can be found via (4.19). With A, C, and F known, E can be

recovered from s0 via (4.16).

In terms of the covariance model parameters and (yet to be determined) P , B

and D are

D =
(
2E − CPCH

)1/2
(4.32)

B =
(
F − APCH

)
D−1/2 (4.33)

Substituting into (4.14) gives the Discrete-time Algebraic Riccati Equation (DARE)

P = APAH +
(
F − APCH

) (
2E − CPCH

)−1 (
F − APCH

)H
(4.34)

Due to (4.11), it is known that C(z) is positive-real. It is a classical result that if C(z)

is positive real then (4.34) has multiple solutions Pi, one of which is minimal in the

sense that Pi < Pj for i 6= j. This minimal solution, when used to construct D and

B via (4.32) and (4.33), results in G(z) with the desired minimum-phase property.

4.2.3 Subspace Identification Algorithm

The idea is to use principles from the stochastic realization theory above, to iden-

tify an approximate spectral factor G(z) from spectrum data S`, assumed only to

adhere to Assumption 4.2.1. The fact that S` does not necessarily correspond to a

rational spectrum implies that the resultant algorithm will no longer be interpola-

tive, and requires the above technique to be adjusted to be reliable. As with the

interpolative theory above, the algorithm requires a priori specification of {p, q}, in

addition to the data S`. Our description below delineates the four steps described in

the introduction, which can now be stated precisely.

1. For the data S`, find the inverse DFT sk via (4.15), and find hk from sk via
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(4.18). Construct Hpq from hk, as in (4.20)

2. Perform a Singular Value Decomposition (SVD), to give

Hpq =

[
U Ur

]Σ 0

0 Σr


V H

V H
r

 (4.35)

where Σ contains the 2n largest singular values of Hpq and Σr contains the

rest. Truncate the residual singular values to give the the approximation Hpq ≈

UΣV H , which has a 2n-dimensional range space.

3. From U , extract matrices U1 and U2. Find A′ such that U2 ≈ U1A′ by finding

minA′ ‖U2 − U1A′‖F . This is the pseudoinverse solution, i.e.,

A′ =
(
UH

1 U1

)−1
UH

1 U2 (4.36)

Next, factor A′ into stable and unstable eigenspaces, as in (4.29), where Λs ∈

Cns×ns and Λ−1
a ∈ C(2n−ns)×(2n−ns) are both asymptotically stable. (Note that

because the identified solution is not necessarily interpolative, it may be the case

that the stable and unstable eigenspaces do not split evenly, and the resultant

order of the stable eigenspace will be ns 6= n. In this circumstance, the identified

G(z) will be of order ns, not n.) Recovering the stable part, we take A = Λs.

The corresponding estimate of C is

C =
{
UM−1

}
row 1:m, col 1:ns

(4.37)

4. With A and C found, the solution to E and F can be found to minimize the
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least-squares spectral estimation error, i.e.,

{E,F} = arg min
M−1∑
`=0

‖2E + C(ejΩ`I − A)−1F

+ FH(ejΩ`I − A)−HCH − S`‖2
F (4.38)

which is a quadratic minimization with a closed-form solution. (Note that

although F̃ , and therefore F , could also be estimated from U analogously to

(4.31) for the interpolative case, this is less robust than the above technique.)

If the resultant C(z) is not positive-real, then one of several methods must be

used to enforce the positive-real constraint in the above minimization, such as

those proposed by van Overschee et al [75], Hinnen et al [79], or Akçay and

Türkay [80]. Alternatively, a simple approach to ensure C(z) is positive-real

(and the method used in the example for this paper) is to perform optimization

(4.38) over the augmented domain {E,F, P}, where P = PH is an auxiliary

variable, subject to the constraint

 P − APAH F − APCH

FH − CPAH E − CPCH

 > 0 (4.39)

With a positive-real C(z) found, equation (4.14) is solved for the minimal so-

lution P > 0, and then (4.32) and (4.33) are solved for B and D.

4.3 Modifications to Standard Algorithm

In the standard algorithm, the size of Hankel matrix Hpq (i.e., m2× p× q) should

be made as large as possible, up to the computational constraints of the application.

This is to ensure that the subset of consecutive Markov coefficients used, i.e., the

first r = p+ q − 1 parameters, are sufficient to characterize the salient aspects of the

72



full set. However, in practice, inaccurate inference of A and C can occur even if Hpq

is quite large, especially for problems with large m. The reason for this is that for

infinite-dimensional systems, the behavior of the Markov coefficients sk for k large

cannot be inferred from those for smaller k, but may nontheless be of significance.

To remedy this, this section illustrates that another technique can be used to as-

semble a different matrix from which the parameters A and C can be inferred. Unlike

the Hankel matrix in the standard algorithm, this matrix involves non-consecutive

Markov coefficients.

4.3.1 Revised Interpolative Realization Theory

We first return to the interpolative realization theory discussed in Section 4.2.2,

and re-frame this theory in a very particular way. Again starting from the definition

of sk in (4.15), we have that each of these Markov coefficients can be expressed in

terms of the parameters {A,F,C,E} as in (4.16). Let

F̄ , (1− A2N)−1F. (4.40)

Then for k ∈ {1...2N − 1} this equation can be stated compactly as

sk = CAk−1F̄ + F̄H
(
CA2N−k−1

)
(4.41)

Define the full block-Hankel matrix H as

H =



s1 s2 · · · sN

s2 . .
.

. .
.

sN+1

... . .
.

. .
. ...

sN sN+1 · · · s2N−1


(4.42)
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Then it is a straight-forward algebra exercise to verify that

H =ΘJΘHTN (4.43)

where

J =

0 I

I 0

 (4.44)

Θ =



C F̄H(AH)N−1

CA F̄H(AH)N−2

...
...

CAN−1 F̄H


(4.45)

TN =



I

I

. . .

I


(4.46)

Note that H can be converted to a Hermitian matrix by reordering its columns:

K = HTN = ΘJΘH (4.47)

Let index set K be a subset of {1, 2, ...N}, which has the following properties:

1. min(K) = 1

2. max(K) = N

3. For each k ∈ K, N − k + 1 ∈ K.

4. For each k ∈ K, min {|k − `| : ` ∈ {K \ k}} = 1.
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For the remainder of this paper we will refer to the above as Rules 1-4. Let N ′ be

the size of K. We use the notation K = {k1, k2, ...kN ′} to imply that the components

ki < kj for i < j. (Thus, note that by our rules above, k1 = 1 and kN ′ = N .) Now,

construct the matrix K ′ as only the block rows and columns of K which are included

in K. It follows that

K ′ =



sN sN+1−k2 sN+1−k3 · · · sk3 sk2 s1

sN−1+k2 sN sN−k3+k2 · · · sk2+k3−1 s2k2−1 sk2

sN−1+k3 sN−k2+k3 sN · · · s2k3−1 sk2+k3−1 sk3
...

...
...

. . .
...

...
...

s2N−k3 s2N+1−k3−k2 s2N+1−2k3 · · · sN sN−k3+k2 sN+1−k3

s2N−k2 s2N+1−2k2 s2N+1−k2−k3 · · · sN−k2+k3 sN sN+1−k2

s2N−1 s2N−k2 s2N−k3 · · · sN−1+k3 sN−1+k2 sN


(4.48)

Because s2N−k = sHk , and sN = sHN , it follows that K ′ inherits the Hermitian property

from K. In terms of the covariance model parameters {A,F,C,E}, K ′ is

K ′ = Θ′J(Θ′)H (4.49)
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where

Θ′ =



C F̄H(AH)N−1

CAk2−1 F̄H(AH)kN′−1−1

CAk3−1 F̄H(AH)kN′−2−1

...
...

CAkN′−1−1 F̄H(AH)k2−1

CAN−1 F̄H


(4.50)

=



C F̄H(AH)N−1

CAk2−1 F̄H(AH)N−k2

CAk3−1 F̄H(AH)N−k3

...
...

CAkN′−1−1 F̄H(AH)N−kN′−1

CAN−1 F̄H


(4.51)

where we have used Rule 3 to get the second line.

Due to the imposition of Rule 4 on the construction of set K, it follows that there

exist subsets K1 and K2 such that

K =K1 ∪ K2 (4.52)

K2 =K1 + 1 (4.53)

Let Θ′1 and Θ′2 be the corresponding sub-matrices of Θ′ which contain the block rows

corresponding to these indices. Then it follows that

Θ′1A = Θ′2 (4.54)

Let the SVD of K ′ be K ′ = UΣV H . Then it follows that there exists a nonsingular
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matrix M such that U = Θ′M , because U and Θ′ share the same range space.

Consequently, if we define U1 and U2 to be the sub-matrices of U which contain the

block rows for indices K1 and K2 respectively, then

U1A′ = U2 (4.55)

where A′ is

A′ = M

Λs 0

0 Λa

M−1 (4.56)

where Λs ∈ Cn×n and Λ−1
a ∈ Cn×n are both asymptotically stable. Recovering the

stable eigenspace, we infer a realization for G(z) in which A = Λs. For this same

realization, C and F̄ can also be inferred from U , i.e.,

C =
{
UM−1

}
row 1:m, col 1:n

(4.57)

F̄H =
{
UM−1

}
row m(p−1)+1:mp, col n+1:2n

(4.58)

From F̄ and A, F can be found via (4.40). With A, C, and F known, E can be

recovered from s0 via (4.16).

4.3.2 Modification to the Subspace Identification Algorithm

Based on the above observations regarding realization theory, we now reconsider

the problem of identifying an approximate rational spectrum from non-parametric,

infinite-dimensional spectrum S(Ω). To begin, we again calculate the inverse DFT of

data S` as in the original algorithm, to get sk, k ∈ {0, ...2N − 1}. However, from this

data, instead of assembling a Hankel matrix as in the original algorithm, we wish to

assemble a matrix K ′, as in (4.48). To do this, it is necessary to first determine the

indices K from which this matrix is assembled from {s1, ...s2N−1}.

Suppose that it is desired to generate a matrix K ′ that contains a total of σ
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entries. Then it follows that K should be chosen with length N ′ =
√
σ/m. Recalling

the primary motivation for modifying the standard algorithm, we wish to choose the

indices in K so as to be spread over the full range of k values for which ‖sk‖ is

significant. We now propose a way to make this precise.

Let the coefficient ξk be defined as

ξk =
k∑
`=1

‖s`‖2
F (4.59)

and the associated normalized coefficient ξ̄k be

ξ̄k =
ξk
ξN

(4.60)

Then the sequence {ξ̄k, k ∈ {1...N}} constitutes nondecreasing sequence with ξ̄1 > 0

and ξ̄N = 1. Suppose we wish to extract an N0-component subsequence K0 of indices

k for which their associated ξ̄k values are approximately evenly-spaced. Then this

can be done by defining the subsequence

K0 , {κ1, ...κN0} (4.61)

where

κ` = min

{
k ∈ {1, ...N} : ξ̄k >

`− 1

N0

}
(4.62)

Then, we construct K as a sequence that contains the values in K0, as well as addi-

tional values so that it adheres to Rules 1-4. It is straight-forward to verify that this

may always be done by constructing K as

K = K0 ∪ {N −K0} ∪ {K0 + 1} ∪ {N + 1−K0} (4.63)

Note that, so assembled, the maximum possible number of components of K is N ′ =
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4N0.

With this methodology for assemblingK, we can now state the modified algorithm.

To state the algorithm, we first state that the target matrix size for K ′ is σ2, where

σ is some integer. Then the algorithm proceeds as follows.

1. From coefficients sk find coefficients
{
ξ̄k, k ∈ {1...N}

}
via (4.59) and (4.60).

From these, generate an index set K0 of size N0 =
√
σ/4m, using (4.61) and

(4.62). From K0, generate the index set K from (4.63). Using these indices,

construct K ′ by assembling the coefficients sk as in (4.48).

2. Perform a SVD on K ′ to obtain

K ′ =

[
U Ur

]Σ 0

0 Σr


V H

V H
r

 (4.64)

where Σ contains the 2n largest singular values of K ′ and Σr contains the

rest. Truncate the smallest singular values to give the the approximation K ′ ≈

UΣV H , which has a 2n-dimensional range space.

3. Extract block rows from U corresponding to indices K1 and K2 respectively,

where

K1 =K0 ∪ {N −K0} (4.65)

K2 = {K0 + 1} ∪ {N + 1−K0} (4.66)

and call these two sub-matrices U1 and U2. Then findA′ such solving minA′ ‖U2−

U1A′‖F via the pseudoinverse; i.e.,

A′ =
(
UH

1 U1

)−1
UH

1 U2 (4.67)

Next, factor A′ into stable and unstable eigenspaces, as in (4.29), where Λs ∈
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Cns×ns and Λ−1
a ∈ C(2n−ns)×(2n−ns) are both asymptotically stable. Recovering

the stable part, we take A = Λs. The corresponding estimate of C is

C =
{
UM−1

}
row 1:m, col 1:ns

(4.68)

4. With A and C solved, the final step is identical to in the standard algorithm.

4.4 Numerical Example

In this section we consider the problem of factoring the wave force spectrum for an

array of floating cylindrical buoys. The buoys have identical geometries as the one in

Chapter 3, with radius 3m and draft 6m, and the depth of the water is 50m. The sea

state is presumed to be a JONSWAP spectrum with T1 = 7s and H1/3 = 1m. Figure

4.1 shows an m-buoy array, oriented at an angle of 45◦ relative to the propagatory

direction of the waves. For this array, we consider the discrete-time velocity spectrum;

i.e., S(Ω`), where the sample time is assumed to be 1s. This spectrum is evaluated

at N = 8192 evenly-spaced points over the domain [0, π], to find the discrete values

S0, ...SN . To assess the accuracy of the approximate spectral factorization, we will

make use of the normalized error under the Frobenius norm; i.e.,

E
(
S, Ŝ

)
=

2N−1∑
k=0

‖Sk − Ŝk‖2
F

2N−1∑
k=0

‖Sk‖2
F

(4.69)

where Sk and Ŝk are the original (infinite-dimensional) spectrum, and the approximate

rational spectrum, respectively.

First, we consider a five buoys case and examine the manner how the size the

Hankel matrix affect the accuracy of the algorithms. For the modified algorithm, we

first find K0 and corresponding construct the Hankel matrix K ′. For the standard
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20m

20m

20m

20m

Figure 4.1: m-buoy array example

algorithm, we choose the Hankel matrix Hpq which has the same size as K ′ following

step 1 of Section 4.2.3. Then for two matrices, the respective system identification

methods were applied, assuming the model order n is equal to 30.

Figure 4.2 shows the resultant estimation error for this case. As shown, when

the matrix size is sufficiently large, the two algorithms perform nearly identically.

This is the circumstance in which the matrix size σ is sufficiently large such that

both K ′ and Hpq include all Markov coefficients of significance. However, as the

matrix size decreases, we see markedly more rapid degradation in the performance of

the standard algorithm. If the Hankel matrix is small enough, there exists the case

where the standard subspace algorithm fails to identify a state space model while the

modified algorithm succeeds.

Constrained to a given matrix size, the modified algorithm allows for the more

accurate spectral factorization of much larger buoy arrays, which is shown in Figure

4.3. To generate this data, the following procedure is following. For a give buoy array

(the number of the buoys is m), we constrainted the Hankel matrix size σ to be 230
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Figure 4.2: Estimation errors for 5 buoys example, as a function of matrix size, for
the standard and modified algorithms
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Figure 4.3: Estimation errors as a function of the number of buoys, for the standard
and modified algorithms
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and the moder order is 5m. Given this, the index set K0 can be generated from the

data, with the length N0 =
√

230/4m ≈ 8190/m. Following the step 1 of the modified

algorithm, the Hankel matrix K ′ can be assembled. For the standard algorithm, the

Hankel matrix Hpq can be generated with the same size as K ′.

When the number of buoys is low (i.e., 6 5) the performance of the standard

and modified algorithms are the same, because for these low values of m, and for the

matrix size of 230, it is possible to include all Markov coefficients of significance in Hpq

and K ′. However, clearly as the number of buoys grows larger the standard algorithm

fails to accurately identify the spectrum. The modified algorithm, while giving less

accuracy than in the case with m small, is orders of magnitude more accurate.
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CHAPTER 5

Unconstrained Optimal Control

5.1 Optimal Anticausal Power Generation

From the discussion in Chapter 3, the dynamic of the WEC buoy in the stochastic

ocean wave environment can be written in frequency domain.

v̂(ω) = Guv(iω)û(iω) +Gwv(iω)ŵ(ω) (5.1)

where the transfer functions Guv and Gwv are defined as follows:

Guv(iω) =

(
−iω(M +M∞) + Ĥr(iω) +

1

iω
K

)−1

(5.2)

Gwv(iω) = −
(
−iω(M +M∞) + Ĥr(iω) +

1

iω
K

)−1

W (iω) (5.3)

With the system model defined for the WEC buoy and a characterization for the

stochastic ocean wave environment, the optimum power generation can be determined

by the classical impedance matching. We assume that the power electronics are

controlled by a linear controller, which establishes an effective admittance between u

and v; e.g.,

û(s) = −Y (s)v̂(s) (5.4)
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The velocity v and the controller force u can be related to w in the frequency domain

by:

v̂(ω) = [I +Guv(iω)Y (iω)]−1Gwv(iω)ŵ(ω) (5.5)

û(ω) = −Y (iω)[I +Guv(iω)Y (iω)]−1Gwv(iω)ŵ(ω) (5.6)

The objective is to maximize the average power generation, equal to the extracted

power minus power loss; e.g.,

p̄ = E{−uTv − uTRdu} (5.7)

=
1

2π

∫ ∞
−∞

Sp(ω)dω (5.8)

where Sp(ω) is the spectral density function of generated power in the frequency

domain, found as:

Sp(ω) = Tr{GH
wv(iω)[I +Guv(iω)Y (iω)]−H [Re{Y (iω)} − Y H(iω)RdY (iω)]

[I +Guv(iω)Y (iω)]−1Gwv(iω)} (5.9)

where (·)H is the matrix conjugate transpose, and Re{·} is the real component. We

can find the optimal anticausal control law Y by maximizing the generated power

spectral density function Sp(ω) in each frequency [81]. i.e.,

Y (iω) = [GT
uv(−iω) + 2Rd]

−1 (5.10)

The resultant optimal anticausal power generation is:

p̄ =
1

2π

∫ ∞
−∞

Tr{GH
wv(iω)GH

uv(iω)[Guv(iω) +GH
uv(iω) + 2Rd]

−1Guv(iω)Gwv(iω)}dω

(5.11)

It has been shown in [82] that when Gwv and Guv are finite-dimensional, and Guv is
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PR, the poles of Y (s) are all in the right half plane and thus its dynamic is anticausal.

As such, the controller makes decisions based on the future information of the wave.

The infinite case is also discussed and the controller in this case is also noncausal [83].

5.2 Optimal Causal Power Generation

5.2.1 Causal Limit on Power Generation

The objective is to find a full state feedback law x 7→ u to maximize the power

generation p̄, or equivalently, minimizes −p̄, where:

−p̄ = E{uTv + uTRdu} (5.12)

=
1

2
E


x
u


T  0 CT

v

Cv 2Rd


x
u


 (5.13)

This is can be regarded as a LQG problem, but it is non standard, since the

performance function is sign-indefinite. We have the following theorem that gives an

upper bound on the power generation.

Theorem 5.1. For any causal feedback law x 7→ u, the following equality holds:

p̄ = −Tr{ETPE} − E ‖u−Kx‖2
Rd

(5.14)

where:

K = −R−1
d (BT

u P +
1

2
Cv) (5.15)

and P can be solved in the following Continuous-time Algebraic Riccati Equation

(CARE)

ATP + PA− (BT
u P +

1

2
Cv)

TR−1
d (BT

u P +
1

2
Cv) = 0 (5.16)

Proof. It is a standard result from optimal control theory [84, 85] that the optimal
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control feedback law, if exists, is:

K = −R−1
d (BT

u P +
1

2
Cv) (5.17)

And P is the stabilizing solution to the CARE:

ATP + PA− (BT
u P +

1

2
Cv)

TR−1
d (BT

u P +
1

2
Cv) = 0 (5.18)

It is also a standard result that the performance of any causal feedback law can be

related to the optimal performance in equation (5.15) [86].

Since the p̄ is sign-indefinite and the associated Riccati equation is non-standard,

in [82] it is proven that equation (5.18) always has a solution and the resultant

feedback law is stabilizing.

With the full state feedback law (5.15) implemented, the expression for the optimal

causal power spectrum with full-state feedback is

Sp(ω) = −2 Re{GH
i (iω)Gv(iω)} − 2GH

i (iω)RdGi(iω) (5.19)

where

Gi(iω) = K[iωI − A−BuK]−1E (5.20)

Gv(iω) = Cv[iωI − A−BuK]−1E (5.21)

5.2.2 Optimal Power Generation with Velocity feedback

In practice, the state vector x(t) needs to be estimated from sensor measurements,

with the optimal estimates determined via kalman-bucy filter. Here, we only discuss

the case where we can measure the WEC velocity v(t). The dynamic of the estimate
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states x̂(t) can be expressed as:

˙̂x = Ax̂+Buu+ L(Cvx̂− v) (5.22)

where L is the observer gain. The controller force u can be found through the

certainty-equivalence principle, as:

u = Kx̂ (5.23)

where K is computed in the Theorem 5.1. Here, we also assume that the measurement

noise is also white noise, with spectral intensity matrix Λ. The optimal estimator can

be obtained via the standard Kalman filter design:

L = −SCT
v Λ−1 (5.24)

where S is the solution to the algebraic Riccati equation

AS + SAT − SCT
v Λ−1CvS + EET = 0 (5.25)

The resultant optimal control law Y : v 7→ u can be formulated as:

Y (s) = K(sI − A− LCv −BuK)−1L (5.26)

The augmented close-loop system can be described by the augmented state ξ(t) =[
x(t) x̂(t)

]T
, in which its dynamics governed by:


dξ = Āξdt+ Ē

dw
dn


v = C̄vξ

(5.27)
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where

Ā =

 A BuK

−LCv A+ LCv +BuK

 , Ē =

E 0

0 −L

 (5.28)

C̄v =

[
Cv 0

]
(5.29)

the measurement noise with spectral intensity Λ is denoted as ṅ.

The causal optimal power generation spectrum is then

Sp(ω) = −2 Tr{Re{GH
i (iω)Gv(iω)}+GH

i (iω)RdGi(iω)} (5.30)

where in this case the transfer function Gi and Gv are

Gi(iω) = K̄[iωI − Ā]−1Ē (5.31)

Gv(iω) = C̄v[iωI − Ā]−1Ē (5.32)

and

K̄ =

[
0 K

]
(5.33)

The corresponding power generation performance is

p̄ = −TrETPE − Tr{KSKTRd} (5.34)

From the equation (5.34), we can see that the inabilitiy to accurately measure the

velocity output can make the WEC generate less power. In [82], the asymptotic case

as Λ→ 0 is investigated. Under certain condition, the asymptotic case can converge

to the full state feedback. However, it can be proved that irrespective of the value of

the Λ, or the particular parameters of the problem, (5.34) is always positive.
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5.3 Numerical Examples

5.3.1 One Buoy Case

generator

buoy

6m

6m

50m

z

Figure 5.1: The same floating buoy as in the Chapter 3

We use the same floating buoy as the Chapter 3. We plan to compare the causal

limit power generation with the anticausal limit in different loss models, in other

words, different values of Rd. And we will also make a comparison among causal limit

power generation, anticausal limit power generation and optimal power performance

with velocity feedback in a certain range of mean wave periods and different sharpness

factors. At last, the effect of different values of measurement noise on optimal power

generation with velocity feedback will be examined.

Figure 5.2(a) and Figure 5.2(b) shows the comparison between anticausal limit

power generation and causal limit power generation. As we can see in both case,

the causal limit is very close to the anticausal limit, and as Rd becomes smaller, the

difference between causal limit and anticausal limit becomes larger.

In Figure 5.3(a) and Figure 5.3(b), we plot the anticausal limit, causal limit and

optimal performance with velocity feedback over different values of the sharpness fac-

tor γ. In all cases, these three performance are very close, which indicates that LQG
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(a) Mean wave period T1 = 7s
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(b) Mean wave period T1 = 12s

Figure 5.2: Anticausal limit power generation (blue line) and causal limit power
generation(red line) over different values of Rd. Here, we choose the sharpness factor
γ = 1
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(a) Sharpness factor γ = 1.0
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(b) Sharpness factor γ = 3.3

Figure 5.3: Anticausal power generation limit, casual power generation limit and
optimal power generation with velocity feedback in a certain range of mean wave
periods T1.
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(a) Sharpness factor γ = 1.0
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(b) Sharpness factor γ = 3.3

Figure 5.4: Ratio of optimal causal power generation (blue line) and optimal power
generation with velocity feedback (red line) over optimal anticausal power generation
in a certain range of mean wave periods T1. We choose the loss model Rd = 10−8s/kg
and the measurement noise Λ = 10−4.

framework is a very good approximation of the actual model and optimal controller

with velocity feedback achieves a very high power extraction from waves. And we can

also see that the influence the sharpness factor γ and the mean wave period T1 have

on the available power. Energy in sea states with higher sharpness factor and longer

mean wave period is more concentrated near a single frequency, and consequently the

WEC can generate more energy from them through exploitation of resonance. The

Figure 5.4(a) and Figure 5.4(b) show the same result.

In Figure 5.5(a) and Figure 5.5(b), we compared the spectral density function

Sp(ω) among anticausal limit, causal limit and optimal controller with velocity feed-

back. They are very close and as mean wave period increases, the difference between

the first two cases and optimal controller with velocity feedback becomes larger, which

is in accordance with Figure 5.3(a) and Figure 5.3(b). In Figure 5.6(a) and Figure

5.6(b), we show the optimal performance of the controller with velocity feedback over
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Figure 5.5: Spectral density function for anticausal limit (blue line), causal limit (red
line) and optimal performance with velocity feedback (red dashed line). Here, we
choose the sharpness factor γ = 1, the loss modelRd = 10−8s/kg and the measurement
noise Λ = 10−4.

different value of measurement noises. The causal limit (or anticausal limit) is not

changed as measurement noise changes, so it is a straight line. As we can see in the

figure, as measurement noise increases, the optimal performance goes down but the

close-loop becomes more robust. We will talk about it in the later section.

5.3.2 Distance Optimization in Two Buoy Case

For the two buoys case, one interesting discussion is about the optimal distance

between each buoy. If we put two buoys far away from each other, the optimal causal

power generation would be two times the single buoy optimal performance. If they

are too close, the interaction of their movements would degrade the overall power

generation. There must exist a sweet spot when the maximum power extraction can

be larger than the two separated buoy case.

We fixed one buoy at the originial point (0, 0), and change the location of the other

buoy, while keeping the distance of two buoys larger than 6m. The Figure 5.7(a) shows

the ratio of the causal optimal power generation of two buoys in different positions

to the two independent buoys causal limits. As we can see in the Figure 5.7(a), if

the two buoys are too close, the optimal performance is really low. And when the
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Figure 5.6: Causal limit (red line) and the optimal performace with velocity feedback
(blue line) over different values of measurement noise Λ. Here, we choose the sharpness
factor γ = 1 and the loss model Rd = 10−8s/kg

(a) Optimal power generation in different positions

wave propagatory 
direction 

x

y

(b) General two buoys posi-
tion diagram

Figure 5.7: In Firgure 5.7(b), one buoy is fixed at (0, 0) and the other buoy’s coor-
dinate (x, y) can be changed. The Figure 5.7(a) represents the power generation in
different coordinate.
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two buoys are distant, the optimal performance can be approximately equal to the

independent case. The best performance can be achieved when placing the buoy at

(0, 14), and the corresponding power generation is 78.8 KW.
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CHAPTER 6

Nonlinear Causal Control of Wave Energy

Converters with Finite Stroke in Continuous Time

Domain

6.1 Introduction

In order to be practical, the causal control techniques discussed in the Chapter 5

must be extended to accommodate more realistic models. One of the problems that

is more challenging to address is that of enforcing PTO stroke constraints. This is

made especially challenging due to the fact that the transfer function from PTO force

to displacement is strictly proper, and consequently, non-anticipatory enforcement of

stroke constraints would require u(t) to be impulsive, which may result in hardware

damages.

In this chapter, we will tackle the stroke saturation in these procedures.

1. First, a linear feedback law is designed with optimizes power generation subject

to a competing objective that the mean-square stroke be maintained below

a threshold. It was shown that this multi-objective optimal control design

can be solved as a convex LMI optimization, without the introduction of any

conservatism.
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2. Next, the controller from the first step is augmented to include a second auxil-

iary input, un, which may be interpreted as a nonlinear restoring force used to

constrain the PTO displacement. Critically, this augmentation must be done in

such a way that the transfer function from un to the PTO velocity v is passive.

3. With this augmented controller in place, a nonlinear feedback law is designed

which determines un from the PTO position, z, and its velocity, v. The feedback

law is designed such that z is maintained below its maximum allowable stroke

with probability 1. It is shown that by constraining the feedback law such that

v 7→ un is passive, the closed-loop system is globally stable.

This methodolgy was first proposed by Scruggs [53], and later was improved in [87].

However, both papers did not provide the detailed proof about the global stability

of the close-loop system. We will demonstrate the close-loop stability in this chapter

and also discuss about how to design the variables in the augmented linear controller

channel such that the power generation can still be maximized.

This chapter is organized as follows. First, the model assumptions and problem

statement are given. Following this, the methodology for the linear multi-objective

control design from Step 1 is introduced. Then, the main result is given, which

describes the methodology for Step 2 and Step 3.

6.2 Problem Formulation

6.2.1 Addition Assumptions

We use the state-space model (3.45) to characterize the dynamic behavior of the

WEC system. The assumptions from Chapter 3 are valid. In order to prove the global

stability of the closed-loop system, we need to make two mild additional assumptions.

Assumption 6.2.1. Driving point impedance u 7→ v is OSP, i.e., there exist β ∈ R>0
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such that: ∫ ∞
0

(u(t)− βv(t))Tv(t)dt > 0 ∀u ∈ L2 (6.1)

Assumption 6.2.2. Let {Guv, Gẇv} be the open-loop transfer functions from {u, ẇ}

to v; i.e., [
Guv Gẇv

]
∼

 A Bu E

Cv 0 0

 (6.2)

Then there exists U ∈ H∞ such that GuvU = Gẇv.

The existence of U ∈ H∞ satisfying Assumption 6.2.2 is rather mild, and is ensured

in many cases by phyical constraints on the plant model. We will discuss more about

the assumption 6.2.2 in the second design stage.

6.2.2 Optimization problem

The mean power generation p̄ is defined in (3.36). We can formulate our control

problem as an optimization problem.

OP6.1 :


Maximize: p̄

Domain: causal K : y → u

Constraint: Pr[|zi| > zmi] = 0, i ∈ {1..np}

where Pr[·] denotes the probability of occurrence for the stationary distribution.

6.3 Stage I: Multi-Objective Linear Feedback Control Design

In “Step 1” of the design process discussed in the introduction, we replace the

constraint Pr[|zi| > zmi] = 0 in OP6.1, with a mean-square constraint which is more

amenable to linear control design. Specifically, we replace it with the constraint

E z2
i <

1
4
z2
mi , i ∈ {1..np} (6.3)
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The justification for the use of (6.3) to approximately constrain the peak values of

zi(t) can be made as follows. Let ψ be a randomly-selected peak of the stationary

response of zi(t), assuming a linear stochastic response. Then if zi(t) is sufficiently

narrowband, then the distribution on ψ is Rayleigh-distributed, with cumulative dis-

tribution function

Pr[ψ 6 ψ0] = 1− exp
{
−ψ2

0/2σ
2
i

}
(6.4)

where σ2
z = E z2

i [88]. It follows that enforcing (6.3) ensures that peaks violating

constraint ψ 6 zmi occur with a probability of at most e−2 ≈ 0.14. As such, designing

a linear controller to adhere to (6.3) ensures that the peak stroke is safely within limits

for the majority (e.g., 86%) of the peaks.

Enforcement of the equation 6.3 can be accommodated through multi-objective

control techniques. The procedure is shown in the Theorem 6.1.

Theorem 6.1. There exists an LTI feedback law K : y → u of order n, such that

p̄ > γ and (6.3) holds, if and only if there exist compatible matrices X = XT , Y =
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Y T ,W = W T , Â, B̂, Ĉ, and D̂ such that

He




AX +BuĈ A+BuD̂Cy E

Â Y A+ B̂Cy Y E

0 0 −1
2
I


 <0 (6.5)


W Ĉ − FX −F + D̂Cy

X I

(sym) Y

 >0 (6.6)

i ∈ {1...np},


1
4
z2
mi CziX Czi

X I

sym Y

 >0 (6.7)

−Tr{ETQE} − Tr{WRd} >γ (6.8)

where F = −R−1
d [BT

uQ+ 1
2
Cv], and Q is the solution to Riccati equation

0 = ATQ+QA−
[
QBu + 1

2
CT
v

]
R−1
d

[
BT
uQ+ 1

2
Cv
]

(6.9)

Furthermore, one such controller is K(s) = DK +CK [sI−AK ]−1BK, where DK = D̂,

CK =
(
Ĉ −DKCyX

)
M−T (6.10)

BK =N−1
(
B̂ − Y BuDK

)
(6.11)

AK =N−1
(
Â− Y AX − B̂CyX − Y BuĈ

+ Y BuD̂CyX
)
M−T (6.12)

and where M and N are any matrices satisfying NMT = I − Y X.

Proof. Assuming there exists such a LTI and stabilizing controller that satisfies p̄ > γ
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and (6.3). The controller can be represented by such state space model.

 ẋK = AKxK +BKy

u = CKxk +DKy
(6.13)

Combining the system (3.45) and (6.13), we can have the following augmented state

space model. 

dxt = Atxtdt+ Etdw

v = Cvtxt

z = Cztxt

u = Cutxt

(6.14)

where the augmented state vector xTt =

[
xT xTK

]
and

At =

A+BuDKCy BuCK

BKCy AK

 , Et =

E
0



Cvt =

[
Cv 0

]
, Czt =

[
Cz 0

]
, Cut =

[
DKCy CK

]
It has been shown in [89] that for some γ ∈ R, we have the p̄ > γ if and only if that

there exist P > 0 and W = W T such thatATt P + PAt PEt

ET
t P −I

 < 0 (6.15)

 W Cut − F1

CT
ut − F T

1 P

 > 0 (6.16)

i ∈ {1...np},

1
4
z2
mi Czti

CT
zti P

 > 0 (6.17)
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Tr{RdW} − p̄max + γ > 0 (6.18)

where p̄max = −Tr{ETQE} is the causal limit and

F1 =

[
F 0

]
(6.19)

F = −R−1
d (BuQ+

1

2
CT
v ) (6.20)

The positive definite matrix Q can be solved in the Riccati equation (6.9).

The matrix inequality (6.15) is not the LMI since P is unknown and At involves

the unknown term. However, through the matrix transformation techniques in [90],

we can shown that (6.15) is the LMI and the linear controller can be solved using

convex optimization.

Without loss of generality, we partition P and its inverse as:

P =

 Y N

NT •

 , P−1 =

 X M

MT •

 (6.21)

where • is the matrix block does not need to be known and Y = Y T , X = XT .

Next, define the transformation matrix

Π1 =

 X I

MT 0

 (6.22)

and note that the following transformation occurs

ΠT
1 PAtΠ1 =

AX +BuĈ A+BuD̂Cy

Â Y A+ B̂Cy

 (6.23)
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ΠT
1 PEt =

 E

Y E

 (6.24)

CutΠ1 =

[
Ĉ D̂Cy

]
(6.25)

i ∈ {1...np}, CztiΠ1 =

[
CziX Czi

]
(6.26)

F1Π1 =

[
FX F

]
(6.27)

ΠT
1 PΠ =

X I

I Y

 (6.28)

where the transformed control variables {Â, B̂, Ĉ, D̂} are defined as



D̂ = DK

Ĉ = DKCyX + CKM
T

B̂ = Y BuDK +NBK

Â = Y AX +NBKCyX + Y BuCKM
T + Y BuDKCyX +NAKM

T

(6.29)

The reason that we do the transformation here is that it make the matrix inequali-

ties (6.15), (6.16), (6.17) and (6.18) linear in the variables {Â, B̂, Ĉ, D̂,X, Y,W, γ}.

Respectively, they becomes the LMI (6.5), (6.6), (6.7) and (6.8).

To obtain the state space parameters {AK , BK , CK , DK} for the optimal controller,

we need to find the M and N . Obviously, there are infinite sets of M and N . and

also the (6.21) shows that the feasible set of M and N needs to satisfy

XY +MNT = I (6.30)

By solving the {X, Y }, we can have find a pair of {M,N} by performing the singular
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value decomposition.

UΣV T = I −XY (6.31)

N = UΣ
1
2 , M = V Σ

1
2 (6.32)

With these solved, we can find the set of the control variables {AK , BK , CK , DK} by

solving (6.10), (6.11) and (6.12).

This motivates the following convex optimization:

OP6.2:



maximize: J , p̄max − Tr{WRd}

Domain: X = XT , Y = Y T , Q = QT ,

Â, B̂, Ĉ, D̂

Constraints: (6.5), (6.6), (6.7)

Let the optimal variables be denoted by X?, Y ?, etc. Then the resultant controller

K?, synthesized via OP6.2, achieves power generation will be p̄ = J?.

Corollary 6.2. OP6.2 always has a solution

Proof. Since u 7→ v is OSP and in H∞, it follows from the linear passivity theorem

that any Strictly Positive Real (SPR) K will stabilize the close-loop system [91]. Let

K0 be one such SPR feedback law, then for K = βK0 with the multiplier β > 0, it

is straightforward to show that E{z2
i } → 0 in stationary as β →∞. Consequently, it

is known that there exists a close-loop stable feedback law K which achieves mean-

square stroke constraint. This guarantees a feasible solution to the equation (6.5),

(6.6) and (6.7).

Consider a modification of our original optimization problem, OP6.1, in which its

constraint is replaced with (6.3) . Then even though K? is the synthesized feedback

law for the optimum of OP6.2, it is in general a sub-optimal feasible design for this
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modified version of OP6.1. This is due to the fact that in OP6.2 K is constrained

to linearity, and to order n. It may be the case that better controllers can be found

with higher order, or through the introduction of nonlinearity.

6.4 Stage II: Passivity-Based Nonlinear Control Design

6.4.1 Passivity-Based Design Strategy

The control design procedure described in Section 6.3 results in a linear K? for

which typical peak stroke values will be on the same order as (or less than) the

maximum stroke limit. However, because only the mean-square stroke value was

constrained, stroke saturation is not prohibited. To enforce a hard constraint on

stroke saturation, we must introduce nonlinearity into the design. In this section

we propose a technique of passivity-based nonlinear control design, with a structure

illustrated in Figure 6.1. The technique is comprised of two design steps:

1. Extend the optimal linear feedback law K? from OP6.2, to accept a second

exogenous input un, resulting in an extended mapping K : {y, un} → u that

preserves K? with un = 0; i.e., K(·, 0) = K?, and design this extension such

that the mapping un 7→ v is output-strictly passive.

2. Design an outer nonlinear feedback law Q : {v, z} → un such that when z(t) =∫ t
0
v(τ)dτ , the reduced feedback mapping v 7→ un is passive and prohibits |z| >

zm with probability 1.

Because the mapping un 7→ v is OSP, it follows from the Passivity Theorem [56]

that any nonlinear feedback law Q preserves stability as long as it is passive. Because

there are many variations of this theorem, we give the following variant, below, in

which we use the notation Gunv(s) to refer to the transfer function for un 7→ v in

Fig. 6.1. Similarly, Gẇv(s) is the transfer function for ẇ 7→ v. By way of clarification,
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WEC system

Ka

w

u zvy

un

Q

+
+ ua

Figure 6.1: Stage-2 control system

we note that for the stochastic disturbances we consider here, w(t) is a Wiener process,

and therefore is not differentiable. Nonetheless, the above model reflects the mapping

that would exist if w(t) were differentiable and ẇ(t) therefore existed. Equivalently, it

may be viewed as the mapping for the case in which ẇ(t) is modeled as unit-intensity

white noise.

Theorem 6.3. Suppose that Gunv ∈ H∞ and is OSP that satisfies

Gunv(jω) +GT
unv(−jω) > βGT

unv(jω)Gunv(jω) , ∀ω ∈ R (6.33)

for some β > 0, and that there exists some transfer function U ∈ H∞ such that

Gẇv =GunvU (6.34)

Further suppose an outer feedback loop Q : {v, z} → un is imposed, which satisfies

∫ t

0

(un(τ))Tv(τ)dτ 6 0, ∀t ∈ R,∀v ∈ L2e (6.35)

Then with this feedback imposed, v ∈ L2e with probability 1.
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Proof. If (6.34) is true for some U ∈ H∞ then Gẇv may be equivalently represented

by eliminating the exogenous input channel w, and instead incorporating the effects of

wave force f through the un input channel, via the substitution un(t)← un(t)+unw(t),

where unw(t) is a stochastic process with spectrum U(jω)UT (−jω). Requiring U ∈

H∞ ensures that this spectrum has finite 2-norm and consequently that unw(t) has

finite stationary covariance. As such, it ensures that unw ∈ L2e with probability 1.

Meanwhile if (6.35) holds then the mapping v 7→ un is passive. If this is true and

un 7→ v is OSP, the L2 gain of the closed-loop mapping unw 7→ v is bounded from

above by 1
β

[91]. It follows that v ∈ L2e with probability 1, because unw is.

6.4.2 Parameterization of augmented linear controller Ka

Consider the augmentation

Ka ∼


A?K A12 B?

K B12

0 A22 0 B22

C?
K C2 D?

K I

 (6.36)

where {A12, B12, A22, B22, C2} are new design variables, and where we note that the

mapping y 7→ u remains the same K? found from OP5.2. With the above controller

imposed in closed-loop, the mapping G , {ẇ, un} 7→ {v, z} can be written as

G ∼



A?cl

BuC2

A12

 Bwcl

Bu

B12


0 A22 0 B22

C?
vcl 0 0 0

Czcl 0 0 0


(6.37)
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where

A?cl =

A+BuD
?
KCy BuC

?
K

B?
KCy A?K

 , Bwcl =

E
0

 (6.38)

C?
vcl =

[
Cv 0

]
(6.39)

Czcl =

[
Cz 0

]
(6.40)

To design {A12, A22, B12, B22, C2}, we first prove that there exists at least one param-

eter sert which renders Gunv output-strictly passive.

Theorem 6.4. Let assumptions 6.2.1, 3.6.2, and 3.6.3 hold. Let L2 is an arbitrary

matrix of compatible dimension, and L3 is a matrix of compatible dimension for which

 A+BuL3 Bu

Cv 0

 (6.41)

is OSP. Then the following parameters result in OSP Gunv:

A22 =A+BuL3 (6.42a)

A12 =L2A+ L2BuL3 − A?KL2 −B?
KCy (6.42b)

B12 =L2Bu (6.42c)

B22 =Bu (6.42d)

C2 =− C?
KL2 −D?

KC + L3 (6.42e)

Proof. We first change the basis for the state space of Gunv, to bring about a simpli-

fied structure. If coordinates x characterize the state of the system in the basis as
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originally expressed in (7.67), and x′ are the new coordinates, then let

x =


I 0 Z1

0 I Z2

0 0 I

x′ (6.43)

where {Z1, Z2} ⊂ Rn×n with Z1 invertible. Now, consider the Sylvester equation

A?cl

Z1

Z2

+

BuC2

A12

 =

Z1

Z2

A22 (6.44)

For a given Z1 and Z2, the set of solutions {A12, A22, C2} which satisfies this equation

is characterized by

A22 =Z−1
1 AZ1 + Z−1

1 BuZ3 (6.45)

C2 =− C?
KZ2 −D?

KCyZ1 + Z3 (6.46)

A12 =Z2A22 − A?KZ2 −B?
KCyZ1 (6.47)

for any Z3 ∈ Rn×n. Assuming the assignations (6.47), (6.45), and (6.46) to determine

{A12, A22, C2} from {Z1, Z2}, the change of basis (6.43) produces the new realization

Gunv ∼


A?cl 0

Bu − Z1B22

B12 − Z2B22


0 Z−1

1 AZ1 + Z−1
1 BuZ3 B22

C?
vcl CvZ1 0


(6.48)

Now, suppose one chooses B22 and B12 as

B22 =Z−1
1 Bu, B12 =Z2B22 (6.49)
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Then the first 2n states are uncontrollable, and Gunv has the minimal realization

Gunv ∼

 Z−1
1 AZ1 + Z−1

1 BuZ3 Z−1
1 Bu

CvZ1 0

 (6.50)

or, equivalently through a similarity transformation,

Gunv ∼

 A+BuL3 Bu

Cv 0

 (6.51)

where L3 , Z3Z
−1
1 . Now, we note that with L3 = 0 (i.e., with Z3 = 0), Gqv = Guv,

which is known to be output-strictly passive, thus proving that at least one feasible

L3 exists.

The above theorem proves that there always exists at least one Ka which renders

Gunv OSP. However, it does not ensure that, for this Gunv, there exists a U ∈ H∞

such that (6.34) holds. With the help of the assumption 6.2.2, the following theorem

shows the existence of U ∈ H∞ .

Theorem 6.5. Let Assumptions 6.2.1, 3.6.2, 3.6.3, and 6.2.2 hold. Let augmented

controller Ka be as in (6.36) with parameters {A12, A22, B12, B22, C2} determined by

(6.4). Then there exists a U ∈ H∞ satisfying (6.34).

Proof. Let Gunv have the form in (6.41). Since L3 can be chosen such that Gunv is

OSP and it is known that Gunv ∈ H∞. It can be shown that all its imaginary zeros are

simple, and it is minimum phase, requires it to be shown that Gunv(s) is nonsingular

for almost all s ∈ C. This can be established by noting that Gunv has the same zeros

as Guv as well be shown below. From Assumption 3.6.3, Guv(s) is nonsingular for

most s ∈ C and therefore so as Gunv(s).

Let uw , V ẇ. Then because V ∈ H∞, the existence of U ∈ H∞ satisfying

(6.34) is guaranteed if there exists a Ū ∈ H∞ satisfying Guwv = GunvŪ . This can be
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guaranteed if Guwv ∈ H∞, if each imaginary zeros iω0 of Gunv is shared by Guwv and

BGunv
(iω0) ⊆ BGuwv(iω0). In closed-loop, we have that uw 7→ v is

Guwv ∼


A+BuD

?
KCy BuC

?
K Bu

B?
KCy A?K 0

Cv +DuvD
?
KCy DuvC

?
K Duv

 (6.52)

That Guwv ∈ H∞ is guaranteed by the prior design K?.

Let iω0 be an imaginary zero of Gunv with associate nonzero blocking vector

η ∈ Cnp . There exists a vector ξ ∈ Cn s.t.

ξ
η


H A− iω0I Bu

Cv 0


I 0

L I

 = 0 (6.53)

It follows that η ∈ BGunv
(iω0) = BGuv(iω0) Now, consider that for this imaginary zero

iω0 and vectors {ξ, η} as in (6.53),


ξ

0

η


T 

(A+BuD
?
KCy)− iω0I BuC

?
K Bu

B?
KCy A?K 0

Cv 0 0


=

ξ
η


T (A+BuD

?
KCy)− iω0I BuC

?
K Bu

Cv 0 0

 (6.54)

=

ξ
η


T A− iω0I Bu

Cv 0


 I 0 0

D?
KCy C?

K I

 (6.55)

As such, we conclude that if Gunv has ann imaginery zero iω0 with blocking vector η,

then so must Guwv. We conclude that BGunv
(iω0) ⊆ BGuwv(iω0)
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6.4.3 Designing Augmented Linear Controller Ka

With the knowledge there there exists at least one feasible design for Ka (i.e., a

design that renders Gunv OSP), it remains to determine the best feasible design via op-

timization. There does not appear to be an obvious way to transform the output-strict

passivity constraint into a convex constraint on parameters {A12, A22, B12, B22, C2},

without the introduction of conservatism. As such, the theorem below characterizes

a convex subdomain which contains, in its closure, the known feasibility point found

in Theorem 6.4

Theorem 6.6. Let assumptions 6.2.1, 3.6.2, and 3.6.3 hold. Let S1 = ST1 ∈ R2n×2n,

S2 = ST2 ∈ Rn×n, B̃12,∈ Rn×np, B22 ∈ Rn×np, L̃3 ∈ Rnp×n, and β ∈ R>0 be such that

He {Ξ} 6 0 (6.56)

S1 >0, S2 > 0 (6.57)

where

Ξ ,



A?clS1 0

Bu −B22

B̃12

 0

0 AS2 +BuL̃3 B22 0

−C?
vclS1 −CvS2 −DuvL̃3 −Duv 0

−C?
vclS1 −CvS2 −DuvL̃3 −Duv − 1

2β
I


, (6.58)

Let the mapping q 7→ v be parametrized by {A12, A22, B12, B22, C2} as in (7.67), with

A12 =L2A22 − A?KL2 −B?
KCy (6.59)

A22 =A+BuL̃3S
−1
2 (6.60)

B12 =B̃12 + L2B22 (6.61)

C2 =− C?
KL2 −D?

KCy + L̃3S
−1
2 . (6.62)
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where L2 is an arbitrary matrix of compatible dimension. Then the mapping un 7→ v

is OSP.

Proof. From Theorem 6.4 we have that the with A22, A12, and C2 defined as in (6.45),

(6.47), (6.46) respectively, Gunv is

Gunv ∼


A?cl 0

 Bu −B22

B12 − L2B22


0 A+BuL3 B22

C?
vcl Cv +DuvL3 Duv


(6.63)

We then have that Gunv is OSPR if and only if there exists S = ST and a β > 0 such

that

He





A?cl 0

0 A+BuL3

S
 Bu −B22

B12 − L2B22


−
[
C?
vcl Cv +DuvL3

]
S −Duv




+ β

S
[
C?
vcl Cv +DuvL3

]T
DT
uv


S
[
C?
vcl Cv +DuvL3

]T
DT
uv


T

6 0 (6.64)

as well as

ET
c SEc > 0, (6.65)

where Ec is a full-column-rank matrix spanning the controllable subspace of the state

space realization for Hunv. Assuming Ec = I is therefore sufficient to guarantee this

condition.

Theorem 6.6 provides conditions guaranteeing that un 7→ v is OSP, but in order
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for Theorem 6.3 to hold, it must also be shown that there exists U ∈ H∞ satisfying

(6.34). To present the condition guaranteeing this, first let {ω1, ...ωp} be the set of

all solutions to the eigenvalue problem

A− iωI Bu

Cv 0


H

η = 0 , η 6= 0, ω ∈ R (6.66)

and I 0

0 0


H

η = 0 , η 6= 0, ω =∞ (6.67)

where p ∈ Z is the number of imaginary-axis zeros of Guv (counting multiplicity).

Define N ,

[
η1 · · · ηp

]
as the corresponding (linearly independent) set of eigen-

vectors. Define N⊥ as a full-column-rank matrix such that

[
N N⊥

]
is square and

NHN⊥ = 0. Then we have the following lemma, which will be useful in the theorem

to follow.

Lemma 6.7. Let {A,Bu, Cv, 0} be OSP, and {η1, . . . ηp} be defined above. There must

exist some S ≥ 0 and β > 0, such that

span{η1, . . . ηp} ⊆ null


AS + SAT Bu − SCT

v

BT
u − CvS 0


 (6.68)
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Proof. Consider that for each i ∈ {i, . . . p}, for ωi ∈ R

ηHi

AS + SAT Bu − SCT
v

BT
u − CvS 0

 ηi
=ηHi He


A− iω Bu

Cv 0


S 0

0 I


 ηi

=0 (6.69)

Similarly for ω =∞

ηHi

AS + SAT Bu − SCT
v

BT
u − CvS 0

 ηi = 0 (6.70)

implying that the first p diagonal terms of the matrix

NH

NH
⊥

 ηHi
AS + SAT Bu − SCT

v

BT
u − CvS 0


NH

NH
⊥


H

(6.71)

must be zero. Since the Gunv is OSP, so the above the matrix is negative semidefinite.

In order for this to be true, the first p rows and p columns must be identically zero.

This is equivalent to the statement (6.68)

Furthermore, partition N⊥ as

N⊥ =

N⊥1

N⊥2

 , N⊥1 ∈ Cn×p (6.72)

Then in terms of {N⊥1, N⊥2}, we have the following theorem:

Theorem 6.8. In Theorem 6.6, let Assumption 6.2.2 hold. Let parameters
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{S1, S2, B̃12, B22, L̃3, β} satisfy (6.56), (6.57), and let Ka be as in in (6.36). Let

Υ⊥ ,



I 0 N⊥1

0 I 0

0 0 N⊥

0 0 0


(6.73)

Then if (6.56) is strengthened to require that

He
{

ΥH
⊥ΞΥ⊥

}
< 0 (6.74)

then there exists U ∈ H∞ satisfying (6.34).

Proof. From Lemma 6.7 it is known that if (6.56) holds with S2 nonsingular, then

the space of all η =

[
ηH1 ηH2

]
satisfying

η1

η2


H

He


AS2 Bu

CvS2 0


 = 0 (6.75)

has a basis {η1, ...ηp} where each ηi has associated with it an ωi such that

ηi1
ηi2


H A− jωi Bu

Cv 0

 = 0 (6.76)

or else ωi =∞ and

ηi1 = 0 (6.77)
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For ωi ∈ R, let Ξ̃(ωi) be defined as

Ξ̃(ωi) =


A?clS1 − jωiS1 0

Bu −B22

B̃12


0 AS2 +BuL̃3 − jωiS2 B22

C?
vclS1 CvS2 0


(6.78)

Then we note that for each ηi,

[
ηHi1 0 ηHi1 ηHi2

]
Ξ̃(ωi)

= ηHi1

[
(A?cl − jωiI)S1 (A− jωiI +BuL3)S2 Bu

]
+ ηHi2

[
C?
vclS1 (Cv +DuvL3)S2 Duv

]
(6.79)

=

ηi1
ηi2


H A− jωiI Bu

Cv Duv



 I 0

D?
KCy C?

K

S1

S2 0

L̃3 I


 (6.80)

= 0 (6.81)

Meanwhile if ωi =∞ then

[
ηHi1 0 ηHi1 ηHi2

]
He{Ξ̃(ωi)}

[
ηHi1 0 ηHi1 ηHi2

]H
= 0 (6.82)

for any ω ∈ R, which together with (6.56) implies that

[
ηHi1 0 ηHi1 ηHi2

]
∈ null

{
He{Ξ̃}

}
(6.83)
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Consequently, the null space of He{Ξ̃(ω)} contains the subspace

Ñ , span





η11

0

η11

η12


, ...



ηp1

0

ηp1

ηp2




(6.84)

As such, any Gunv adhering to (6.56) and (6.57) with S2 nonsingular, will be such

that it inherits the zeros {jω1, ...jωp} of plant Guv. Moreover, if ηHi2Guv(jωi) = 0 then

ηHi2Gunv(jωi) = 0. If it is the case that He{Ξ̃(ω)} is negative definite in the subspace

orthogonal to Ñ then by Lemma 6.7 it follows that these zeros are the only zeros of

Gunv. This negative definiteness condition is equivalent to requiring (6.74).

Analogously to the proof for Theorem 6.5, it is known that the finite imaginary-

axis zeros and corresponding adjoint blocking spaces of Guwv includes all those of

Guv. Satisfaction of (6.74) implies that the same is true of Gunv and that these are

its only imaginary-axis zeros. We can conclude that G−1
unvGuwv ∈ H∞ and therefore

that there exists a U ∈ H∞ such that Gwv = GunvU .

Theorem 6.6 and Theorem 6.8 provides a parametric domain over which to opti-

mize K parameters {A12, A22, B12, B22, C2} which is convex, and the closure of which

is guaranteed to contain a feasible point. Given this, it remains to determine a suit-

able metric under which to optimize these parameters, which is also convex in the

{S1, S2, B̃12, B22, L̃3, β} domain.

To do this, consider that Gunv can be written as:

Gunv = G0 +G1 (6.85)
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where

G0 ∼


A?cl

Bu

0


C?
vcl 0

 (6.86)

G1 ∼


A?cl

BuC2

A12


 0

B12


0 A22 B22

C?
vcl 0 0


(6.87)

As such, G0 is the transfer function from q to v without the control augmentation,

while G1 is the adjustment to this transfer function that is necessary to make Gunv

OSP. We wish to choose {S1, S2, B̃12, B22, L̃3, β} to minimize the gain G1, subject

to constraints 6.6 and 6.8. To do this, a norm must be chosen for the gain to be

minimized, and here we choose the H2 norm. The following theorem establishes a

way of accomplishing this.

Theorem 6.9. ‖G1‖2
H2
< γ if there exists S3 = ST3 > 0 and α > 0 such that


He{A?clS3} 0 .

−B22

B̃12


He{AS2 +BuL̃3} B22

(sym) − 1
α
I


60 (6.88)


αγ C?

vclS3 CvS2 +DuvL̃3

S3 0

(sym) S2

 >0 (6.89)

where {S2, B̃12, B22, L̃3 β} are the same as in (6.56).
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Proof. From the proof to Theorem 6.6, it follows that

G1 ∼

 A0 B0

C0 0

 (6.90)

where

A0 =

 A?cl 0

A+BuL3

 B0 =


−B22

B̃12

B22

 (6.91)

C0 =

[
C?
vcl Cv +DuvL3

]
(6.92)

It is a standard result that ‖G1‖2
H2
< γ if and only if there exists a matrix S = ST > 0,

such that

A0S + SAT0 +B0B
T
0 < 0 (6.93)

Tr{C0SC
T
0 } < γ (6.94)

Conservatively choosing

S =
1

α

S3 0

0 S2

 , (6.95)

and performing Schur complements on both inequalities, gives (6.88) and (6.89).

We therefore arrive at an optimization problem to determine parameters

{S1, S2, S3, B̃12, B22, L̃3, α}:

OP3 :


Minimize: γ

Domain: S1, S2, S3, B̃12, B22, L̃3, α

Constraints: (6.56), (6.57), (6.88), (6.89).

(6.96)
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6.4.4 Designing Nonlinear Feedback Loop Q

We now consider the design of Q, the nonlinear component of the control law. We

propose a formulation of Q in which each PTO i ∈ {1...np} has a decentralized law

Qi, which is a static function of vi(t) and zi(t). Specifically, for a differentiable, scalar

function Vi, we assume

Qi(vi, zi) = −∂Vi
∂q

∣∣∣∣
q=zi+αvi

(6.97)

where α > 0 is a design parameter. With α = 0, we can think of Vi(·) as the

stored energy for a (potentially nonlinear) spring. The presence of α > 0 introduces

dissipation into this elastic model.

Lemma 6.10. Let Vi : R→ R>0 be a differentiable, semiconvex function with Vi(0) =

0. Let Qi : R2 → R be defined as in (6.97), for α > 0. Then for any vi(t) ∈ L2e with

zi(t) =
∫ t

0
vi(τ)dτ ,

∫ t

0

vi(τ)Qi(vi(τ), zi(τ))dτ 6 −Vi(zi(t)), ∀t ∈ R>0 (6.98)

Proof. For any α > 0, semiconvexity of Vi implies that

vi > 0 ⇒ ∂Vi
∂q

∣∣∣∣
q=zi+αvi

>
∂Vi
∂q

∣∣∣∣
q=zi

(6.99)

vi 6 0 ⇒ ∂Vi
∂q

∣∣∣∣
q=zi+αvi

6
∂Vi
∂q

∣∣∣∣
q=zi

(6.100)

Consequently, for any α > 0,

vi(τ)Qi (vi(τ), zi(τ)) = −vi(τ)
∂Vi
∂q

∣∣∣∣
q=zi(τ)+αvi(τ)

(6.101)

6 −vi(τ)
∂Vi
∂q

∣∣∣∣
q=zi(τ)

(6.102)
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Consequently

∫ t

0

vi(τ)Qi(vi(τ), zi(τ))dτ 6 −
∫ t

0

vi(τ)
∂Vi
∂q

∣∣∣∣
q=zi(τ)

dτ (6.103)

= −
∫ t

0

d

dτ
Vi(zi(τ))dτ (6.104)

= −Vi(zi(t))− Vi(zi(0)) (6.105)

which, together with the conditions that Vi(0) = 0 and zi(t) =
∫ t

0
vi(τ)dτ , completes

the proof.

Our approach will be to resort to this physical intuition to design Vi(·). Specifi-

cally, we formulate Vi(·) as the potential function

Vi(qi) = Γi max

{
0,− ln

(
zmi − |qi|

δi

)
+
zmi − |qi|

δi
− 1

}
(6.106)

where Γi > 0 and δi ∈ (0, zmi) are design parameters that, along with αi and zmi, fully

characterize Qi. This is illustrated in Figure 6.2. For the α = 0 case, it corresponds

to a hardening spring with asymptotic potential barriers at qi = ±zmi, and a dead

zone for all |qi| < zmi − δi. As such, the effect is to apply a nonlinear restoring force

when |qi| is close to zmi.

Theorem 6.11. Assume Bq has been designed such that (6.33) holds for some β > 0,

and that there exists U ∈ H∞ such that (6.34) holds. For each i ∈ {1..np}, let

nonlinear controllers Qi : {vi, zi} → qi be as in (6.97), and with Vi(qi) characterized

as in (6.106) for Γi > 0, αi > 0, and δi ∈ (0, zmi). Then for the stochastically-excited

closed-loop system,

• v ∈ L2e with probability 1.

• Over any finite interval t ∈ [t1, t2], max
t∈[t1,t2]

|zi(t)| < zmi, for all i ∈ {1...np}, with

probability 1.
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Proof. The first claim follows directly from the combination of Theorem 6.3 with

Lemma 6.10. To show the second claim, let Gunv have some minimal realization

Gunv ∼

 Aunv Bunv

Cunv Dunv

 (6.107)

Then because Gunv satisfies (6.33), from the PR Lemma there exists a matrix P =

P T > 0, and compatible matrices L and W such that

ATunvP + PAunv PBunv − CT
unv

BT
unvP − Cunv −Dunv −DT

unv

 = −

L
W


L
W


T

(6.108)

with the requirement that (6.33) holds with β > 0 implying that the above must be

satisfied for (Aunv, L
T ) observable. Because it is assumed (6.34) exists for U ∈ H2,

define unw as in the proof for Theorem 6.3, and it follows that for all unw ∈ L2e and all

t > 0, ∫ t

0

(unw(τ) + un(τ))Tv(τ)dτ >
1

2
xTunv(t)Pxunv(t) (6.109)

where xunv is the state coordinate vector for realization (6.107). Due to Lemma 6.10,

this implies that

∫ t

0

(unw(τ))Tv(τ)dτ >
1

2
xTunv(t)Pxunv(t) +

np∑
i=1

Vi(zi(t)) (6.110)

It follows that if unw and v are in L2e, then over any finite amount of time, t ∈ [t1, t2],

Vi(zi(t)) is bounded from above, and consequently |zi(t) < zmi. Because unw and v are

in L2e with probability 1, this bound also follows with probability 1.

It was found that potentials of the form (6.106) perform well for the purpose of

stroke saturation prevention. All three parameters {αi, δi,Γi} need to be tuned for a

given application. A positive value of αi is not strictly necessary (i.e., it can be set to
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Vi

-zmi zmi
q

δi δi

0

Figure 6.2: Potential function Vi

zero) although it was found to be advantageous to have a positive value. Meanwhile,

as Γi and δi are reduced in magnitude, u(t) will exhibit increasingly exaggerated

impulsive phenomena. On the other hand, increasing their magnitudes depreciates

the stationary value of p̄, relative to the optimized Stage 1 design.

6.5 Numerical Example

We use the same single-degree-of-freedom WEC shown in Figure 6.3 as the one

buoy case in Section 5. For more details on the modeling of the system in Fig.6.3,

and in particular of its finite-dimensional state space model formulation, we refer the

readers to the one buoy case in Section 5. For our purpose here, we assume the stroke

limit zm = 3m.

6.5.1 Design Stage I

Executing the linear feedback design in Section 6.3, the performance at the op-

timized solution is p̄ = 25.5kW, while the causal limit on power generation is p̄0 =

29.7kW. Figure 6.4 shows one hour of simulated transsient response data for the

closed-loop system implementing K?, the optimized linear controller. The root-mean-

square stroke in steady-state is equal 1.5m; i.e., the upper constraint specified by (6.3).

However, as is clear from the transient plot, the stroke regularly exceeds its maximum

allowable value of 3m.
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buoy

6m

6m

50m

z

Figure 6.3: Diagram of example WEC

We compare the performance reduction under different sea states and stroke con-

straints in Figure 6.5(a) and 6.5(b). As we can see in both figures, as we relax the

mean-square stroke constraint, the performance reduction will become smaller. For

a fixed stroke constraint, the performance reduction would increase if we choose the

higher mean wave period. This is because the dynamic response of the WEC sys-

tem increases in the low-frequency waves. In accordance with the results in Chapter

5, there exists a positive relationship with the dynamic response and the sharpness

factor γ.

6.5.2 Design Stage II

For the optimized K?, the design procedure outlined in Section 6.4 was followed,

to arrive at a design for Ka. With B12 = 0 and B22 = 0, the transfer function un 7→ v

is shown in Figure 6.6, illustrating that it is clearly not positive real. Meanwhile, with

the optimized Ka, the transfer function becomes that in Figure 6.7, which clearly is

positive real.

Regarding the nonlinear controller Q, the described technique was implemented,
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Figure 6.7: Mapping un 7→ v with K as in (6.36), with Ka optimized
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Figure 6.8: Transient response of optimized linear controller for Design Stage 2

with parameters {α, δ,Γ} tuned for favorable performance. Via a parameter search,

the values α = 0.1s, δ = 1m, and Γ = 1kN/m were found to perform well. For these

responses, the mean power generation (found through simulation) for the closed-loop

nonlinear system was p̄ = 23.8kW, which is a mere 6.7% drop from the linear Stage-

1 design. Figure 6.8 shows the transient response for this case. Comparison with

Figure 6.4 clearly illustrates the effect of the nonlinearity. The stroke is successfully

maintained below 3m at all times, but this clearly comes at a price, in the form of

the higher PTO forces needed for deceleration. These higher forces stand out in the

transient plot, but they are infrequent in the dynamic response. This can be seen
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by comparing the mean force magnitudes for the simulations of Stage-1 and Stage-2,

which are, respectively, 0.154MN and 0.171MN. As such, we see that although high

pulsating PTO forces are necessary to maintain the stroke limit, the mean-square

force is increased from Stage-1 by less than 15%.

Figure 6.9(a) and Figure 6.9(b) show the dependency of both the mean power

generation and mean square controller force on the nonlinear controller parameter α

and Γ, for δ = 1m. As we can see in the figure, there is a trade off in the figure,

because lower mean-square forces are favorable, as are high values of p̄. The plot

clearly demonstrate that α plays an important role in the performance of nonlinear

controller and it can be tuned to satisfy the certain requirements, as well as some

constraints.
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CHAPTER 7

Nonlinear Causal Control of Wave Energy

Converters with Finite Stroke in Discrete Time

Domain

7.1 Introduction

We present a technique for discrete-time control of WECs with finite stroke, which

is based on multi-objective optimal control, as well as passivity theory. The design

technique shares many similarities with the continuous time controller designed in

Chapter 6 and is comprised of three analogous design steps:

1. First, an optimal linear LQG controller is designed which accommodates a weak-

ened, time-averaged version of the stroke limit constraint. This first design

component makes use of multi-objective optimal control theory, and is cast in

the context of a semidefinite program.

2. Second, this linear controller is augmented to include an extra input channel

unk , k ∈ {0, 1, . . . }, which can be interpreted as a nonlinear force that constraint

the PTO displacement. In particular, the design of this augmentation should

follow such a way that the mapping: unk 7→ qk is OSPR.
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Figure 7.1: Block diagram of the WEC system under stroke constraint

3. Third, a nonlinear controller should contain two parts: one-step-ahead predictor

and nonlinear control law. One-step-ahead predictor forecasts the displacement

variable dk only considering the effect of linear controller. Nonlinear feedback

law Φ is designed to protect the stroke from saturation. It is shown that the

close-loop system is stable by constraining the mapping qk 7→ unk mean-square

passive.

In Chapter 6, we apply a variant of this general technique to continuous time systems.

In this Chapter, the first two design steps of this technique is similar to the continuous

case. The last step, which involves the design of nonlinear feedback law, is more

complex than Chapter 6.
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7.2 Problem Formulation

7.2.1 Discrete-Time Dynamic Model

We assume that u(t) is controlled in discrete-time, via a zero-order-hold conven-

tion; i.e.,

u(t) = uk, t ∈ [kT, (k + 1)T ) (7.1)

where T is the sample time and k is the discrete time index. We similarly refer to

other output signals sampled at time t = kT with a subscript k; i.e., vk = v(kT ),

dk = d(kT ), etc.

The dissipation in the power train of the WEC can be adequately modeled as a

quadratic function of the PTO force. Let pk be the average power generation over

interval t ∈ [kT, (k+ 1)T ). Then due to the zero-order-hold convention, we have that

pk = 1
T

∫ (k+1)T

kT

[
−uT (t)v(t)− pdiss(t)

]
dt (7.2)

=− 1
T
uTkRduk − uTk 1

T

∫ (k+1)T

kT

v(t)dt (7.3)

=− uTkRduk − uTk 1
T

(zk+1 − zk) (7.4)

Letting

qk , 1
T

(dk+1 − dk) , (7.5)

we have that

pk = −uTkRduk − uTk qk (7.6)

Let the z-transforms of the discrete-time sampled variables be denoted by overbar;

i.e., for discrete-time signal qk,

q̄(z) =
∞∑

k=−∞

z−kqk (7.7)
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Then following the methodology outlined in [49], the linear dynamics of the WEC as

described in Section 3 are equivalent to the discrete time system

q̄(z) = Zwq(z)w̄(z) + Zuq(z)ū(z) (7.8)

where {wk, k ∈ Z} is an independent, identically distributed Gaussian stochastic

sequence with E wk = 0 and E wkwTk = I. Transfer function Zuq(z) is solved in the

frequency domain (i.e., for z = ejΩ, Ω ∈ [−π, π]) via

Zuq(e
jΩ) = Guv

(
i

2

T
tan(Ω/2)

)
(7.9)

with the transfer function Zuq(z) obtained from the frequency-domain solution as the

analytic continuation for all |z| > 1. Meanwhile, transfer function Zwq(z) is found by

first finding the discrete-time power spectral density

Σwq(Ω) =
1

T
Gfv

(
i

2

T
tan(Ω/2)

)
Sa

(
2

T
tan(Ω/2)

)
GT
fv

(
−i 2

T
tan(Ω/2)

)
(7.10)

Then, from Σwq, transfer function Zwq(z) is its unique minimum-phase spectral fac-

torization, found as the solution to

Σwq(Ω) = Zwq(e
jΩ)Zwq(e

−jΩ)T (7.11)

7.2.2 Finite-Dimensional Discrete-Time Model

We assume that Zuq and Zwq have been approximated as finite-dimensional linear

discrete-time systems, using a system identification technique. For example, in [47]

subspace techniques are used to identify Zuq. In [49], Zwq is identified using the

subspace spectral factorization technique described in [77]. The same procedures are

used in the present paper, resulting in the discrete-time model we shall use for the
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remainder of the paper:

xk+1 =Axk +Bwwk +Buuk (7.12)

qk =Cqxk +Dwqwk +Duquk (7.13)

We assume that the identified realization is minimal; i.e., that all uncontrollable

or unobservable modes have been eliminated. We assume that in approximating the

system via a finite dimensional state space, the identification of the model parameters

has been constrained such that the properties inherited from Assumptions 3.6.1, 3.6.2

and 3.6.3 still hold for finite-dimensional approximations.

Zuq(z) ≈ Cq[zI − A]−1Bq +Duq (7.14)

Zwq(z) ≈ Cq[zI − A]−1Bw +Dwq (7.15)

The discrete time transfer function Zuq(z) and Zwq(z) have zeros at z = 1, imply-

ing that

Duq + Cq [I − A]−1Bu =0 (7.16)

Dwq + Cq [I − A]−1Bw =0 (7.17)

Note that for this model, it is the case that

dk+1 =d0 + T
k∑
i=0

qi (7.18)

=d0 + T

k∑
i=0

Cqxi +Dwwi +Dqui (7.19)
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which, using the consequence of assumption A3 above, implies

dk+1 =d0 + TCq[I − A]−1

k∑
i=0

(xi − Axi −Bwwi −Buui) (7.20)

=d0 + TCq[I − A]−1

k∑
i=0

(xi − xi+1) (7.21)

=d0 + TCq[I − A]−1x0 − TCq[I − A]−1xk+1 (7.22)

Assuming the system is initiated at a zero initial state at k = 0, then it follows that

dk = Cdxk (7.23)

where Cd , −TCq[I − A]−1.

7.2.3 Assumptions

We note that for the discrete-time system model, four assumptions will be made

here which are the discrete time version of the assumptions in continuous case:

Assumption 7.2.1. Zuq(z) is OSPR in discrete-time; i.e., it is analytic in the open

region of the complex plane exterior to the unit disk, and there exist a β ∈ R>0

Zuq(αe
jΩ) + ZH

uq(αe
−jΩ) > βZH

uq(αe
−jΩ)Z(αejΩ) (7.24)

for all Ω ∈ [0, 2π) and β ∈ R>0 with |α| > 1.

Assumption 7.2.2. {u,w} → {q, d} has `2 bounded gain;

Assumption 7.2.3. The discrete time system which mapping {u,w} → {q, d} is the

minimal realization.

This is the assumption we made when constructing state space model.
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Assumption 7.2.4. Let {Zuq, Zwq} be the discrete time open loop transfer function

from {u,w} to q; i.e.,

[Zuq Zwq] ∼

 A Bu Bw

Cq Duq Dwq


Then there exists U ∈ H∞ such that ZuqU = Zwq

7.3 Optimal Linear Control Design with Mean-Square Stroke

Constraints

We wish to design a feedback law K : d 7→ u which maximizes the mean power

generation p̄ , E p, with the expectation evaluated in stationary response. In this

section we begin with the design of a linear controller, which while not explicitly

enforcing the stroke constraints at every time, enforces them in a mean-square sense.

In the next section we will then design a nonlinear controller, based on this linear

design, which does enforce the stroke constraints at every time, explicitly.

To be more specific, suppose that the true stroke limit of the PTO is dm; i.e.,

the condition |di(t)| 6 dmi, i ∈ {1..np} must be enforced. In order to enforce this

explicitly, nonlinear control is required. In this section, we replace this condition

with a more relaxed one, which places a constraint on the mean-square value of the

stroke; i.e., on the quantity

sdi , E di2, i ∈ {1..np} (7.25)

with the expectation taken in stationarity.

Specifically, our constraint will be of the form

sdi 6 1
4
d2
mi, i ∈ {1..np} (7.26)
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The reason that we choose the 1
4
dm value here is the same as the one in Chapter 6.

As such, it ensures that the linear controller will render most peaks within the stroke

limit, with only the outliers needing to be dealt with via nonlinear control.

For the linear control design, we consider finite-dimensional time-invariant con-

trollers, which can be parametrized by matrices {AK , BK , CK} in the feedback form

ξk+1 =AKξk +BKdk (7.27)

uk =CKξk (7.28)

This results in an augmented closed-loop system

χk+1 =Aclχk +Bwclwk (7.29)

qk =Cqclχk +Dqclwk (7.30)

dk =Cdclχk (7.31)

uk =Cuclχk (7.32)

where

Acl =

 A BuCK

BKCd AK

 (7.33)

Bwcl =

Bw

0

 (7.34)

Cqcl =

[
Cq DuqCK

]
(7.35)

Dqcl =Dwq (7.36)

Cdcl =

[
Cd 0

]
(7.37)

Cucl =

[
0 CK

]
(7.38)
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We then consider the following optimization problem:

Given: A,Bw, Bu, Cq, Dwq, Duq, Cd

Maximize: p̄ , E p

Constraint: sdi <
1
4
d2
mi, i ∈ {1..np}

Over: AK , BK , CK

(7.39)

where in the above problem, the expectations are taken in stationarity.

To perform this optimization, we need the following theorem:

Theorem 7.1. For any linear feedback parameters {AK , BK , CK} which stabilize the

closed-loop system,

p̄ = p̄0 − E
{

(u− Fx)T ∆ (u− Fx)
}

(7.40)

where we define R̃ , Rd + 1
2
Duq + 1

2
DT
uq, and

F , −(R̃−BT
uWBu)

−1(
1

2
CT
q − ATWBu)

T (7.41)

with W is the solution to the DARE

W = ATWA+ (
1

2
CT
q − ATWBu)(R̃−BT

uWBu)
−1(

1

2
CT
q − ATWBu)

T (7.42)

The causal power generation limit p0 on discrete time system is defined as:

p̄0 , Tr{BT
wWBw} (7.43)

and ∆ , R̃−BT
uWBu.

Proof. The proof here can be found analogous to Theorem 5.1 in Chapter 5 with only

superficial differences.

Theorem 7.1 implies that the maximization of average generated power is equiv-
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alent to the minimization of the second term on the right-hand side of (7.40), which

is positive semidefinite. In particular, it leads to the following result:

Theorem 7.2. Control parameters {AK , BK , CK} result in the mean power gener-

ation bound p̄ > γ and mean-square stroke bound sdi <
1
4
d2
mi, i ∈ {1..np}, for some

γ ∈ R, if and only if there exists a matrix S = ST > 0 such that

S − AclSATcl −BwclB
T
wcl > 0 (7.44)

(Fcl − Cucl)S (Fcl − Cucl)T < p̄0 − γ (7.45)

i ∈ {1..np}, CdiclSC
T
dicl <

1
4
d2
mi (7.46)

Proof. Let Σ = E χχT . Then Σ is the solution to Lyapunov equation

AclΣA
T
cl − Σ +BwclB

T
wcl = 0 (7.47)

and the existence of closed-loop stationarity implies that Σ > 0 and that Acl is asymp-

totically stable in discrete-time. The corresponding power generation performance is

then as in (7.40), i.e.,

p̄ = p̄0 − (Fcl − Cucl) Σ (Fcl − Cucl)T (7.48)

Now, let S be the solution to

AclSA
T
cl − S +BwclB

T
wcl = −εI (7.49)

for some ε > 0. It follows that

Acl(S − Σ)ATcl − (S − Σ) = −εI (7.50)
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which, due to the asymptotic stability of Acl implies that S −Σ > 0. As a result, we

have that

γ ,p̄0 − (Fcl − Cucl)S (Fcl − Cucl)T (7.51)

=p̄− δ (7.52)

where

δ = (Fcl − Cucl) (S − Σ) (Fcl − Cucl)T (7.53)

By making ε arbitrarily small, δ can be made arbitrarily small and consequently γ

can be made to approach p̄ from below. A similar argument can be made for the

constraint on sdi, and noting that

sdi = CdiclΣC
T
dicl (7.54)

This proves necessity.

To prove sufficiency, we note that if S = ST > 0 satisfies (7.44) then Acl must be

asymptotically stable, implying the existence of a stationary solution to Σ = E χχT >

0 satisfying (7.47). We then have that S − Σ satisfies

Acl(S − Σ)ATcl − (S − Σ) < 0 (7.55)

which, due to the asymptotic stability of Acl implies that S−Σ > 0. This guarantees

that δ > 0 and thus that p̄ < γ. It similarly guarantees that Cdicl(S − Σ)CT
dicl > 0,

and consequently that 1
4
d2
mi > sdi.

Theorem 7.3. There exists a set of control parameters {AK , BK , CK} resulting in

mean power generation bound p̄ > γ and mean-square stroke bound sdi <
1
4
d2
mi, i ∈

{1..np}, for some γ ∈ R, if and only if there exist matrices X = XT > 0, Y = Y T > 0
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Â, B̂, and Ĉ such that



X I AX +BuĈ A Bw

I Y Â Y A+ B̂Cd Y Bw

XAT + ĈTBT
u ÂT X I 0

AT ATY + CT
d B̂

T I Y 0

BT
w BT

wY 0 0 I


>0 (7.56)


p0 − γ FX − Ĉ F

XF T − ĈT X I

F T I Y

 >0 (7.57)

i ∈ {1..np},


1
4
d2
mi CdiX Cdi

XCT
di X I

CT
di I Y

 >0 (7.58)

One such controller can be found as

AK =N−1
(
Â− B̂CdX − Y BuĈ − Y AX

)
M−T (7.59)

BK =N−1B̂ (7.60)

CK =ĈM−T (7.61)

where M and N are any matrices such that MNT = I −XY .

Proof. The proof follows in a manner entirely analogous to the Theorem 6.1 in Chap-

ter 6, with only superficial differences.

The above theorem provides a convex domain over which to optimize a linear con-
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Figure 7.2: Design of augmented linear feedback law Ka and nonlinear feedback law
Φ

troller. Specifically, the optimal control problem from (7.39) becomes, equivalently,

Given: A,Bw, Bu, Cq, Dwq, Duq, Cd, dm

Maximize: γ

Constraints: (7.56), (7.57), (7.58)

Over: X = XT , Y = Y T , Â, B̂, Ĉ, γ

(7.62)

7.4 Passivity-based Linear Control Redesgin

7.4.1 Passivity-Based Design Strategy

In section 7.3, we propose a linear K? to make sure mean-square stroke value below

safety limit. However, this is not enough to meet stroke saturation requirement. We

need to put a strict constraint on stroke value, i.e., dki 6 dmi, i ∈ {1..np}. By doing

this, nonlinearity was introduced into the controller design. In this paper, we apply

a new technique of passivity-based linear controller design. The technique can be

described as follows:

Extend the optimal linear controller K? from (7.62), add another exogenous input

un, making the new control law: Ka : {d, un} → ul that preserves K? when un = 0;

i.e K(·, 0) = K?, and also design mapping: un → q is OSP. And nonlinear feedback

law Φ : d → un will be designed in next section. Since it is in discrete time domain,
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it is not quite same as continuous time case. Moreover, feedback function Φ(·) need

to be mean-square passive with respect to q to satisfy close-loop system stability.

Since the mapping: un → q is OSP, and nonlinear feedback law Φ(·) is mean-

square passive, close-loop system is stable according to the following Theorem. Note,

notation Znq refer to the discrete time transfer function from un to q. Similarly, Zwq

is the discrete time transfer function for w → q

Theorem 7.4. Suppose that Znq ∈ H∞ is OSPR; i.e.,

∞∑
k=0

(unk − β1qk)
T qk ≥ 0 (7.63)

for some β1 > 0, and that there exists some transfer function U ∈ H∞ such that

Zwq =ZnqU (7.64)

Further suppose an outer feedback loop Q : {q, d} → un is imposed, which has the

property that it is mean-square passive with respect to q, i.e., for all N ≥ 0, and with

d0 = 0, there exists a constant β2 such that:

E{ 1

N

N∑
k=0

unkqk} ≤ β2 (7.65)

Then with this feedback law imposed, whole feedback system is mean-square stable.

Proof. If (7.64) is true for some U ∈ H∞ then Zwq may be equivalently represented

by eliminating the explicit input channel w, and instead incorporating the effects of

w through the q input channel, via the substitution un ← un + uw, where {uwk } is a

stochastic process with spectrum U(ejθ)UT (e−jθ). Requiring U ∈ H∞ ensures that

that {uwk } has finite stationary covariance. From Znq is OSPR, we know that

〈u, q〉N ≥ β1‖q‖2
N
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Since un is mwan-square passive with respect to q, we can write it in the form of inner

product:

〈un, q〉N ≤ β2

Based on the figure, we know that

〈uw, q〉N = 〈u, q〉N − 〈un, q〉N ≥ β1‖q‖2
N − β2

But by the Cauchy-Schwartz inequality, 〈uw, q〉N ≤ ‖uw‖N‖q‖N , so

‖uw‖N‖q‖N ≥ β1‖q‖2
N − β2

And consequently, we have that :

‖q‖N ≤
‖uw‖N

2β1

+

√
(
‖uw‖N

2β1

)2 +
β2

β1

It follows that if ‖uw‖N is bounded as N → ∞, ‖q‖N should also be bounded. The

mapping: uf → q is mean-square stable.

7.4.2 Finite-Dimensional Augmentation of Ka

Ka ∼


A?K A12 B?

K B12

0 A22 0 B22

C?
K C2 0 0

 (7.66)

where {A12, B12, A22, B22, C2} are new design variables, and where we note that the

mapping d 7→ u remains the same K? found from (7.62). With the above controller
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imposed in closed-loop, the mapping Z , {w, un} 7→ {q, d} can be written as

Z ∼



A?cl

BuC2

A12

 Bwcl

Bu

B12


0 A22 0 B22

C?
qcl DuqC2 Dwq Duq

Cdcl 0 0 0


(7.67)

where

A?cl =

 A BuC
?
K

B?
KCd A?K

 , Bwcl =

Bw

0

 (7.68)

C?
qcl =

[
Cq DuqC

?
K

]
, Cdcl =

[
Cd 0

]
(7.69)

To design {A12, A22, B12, B22, C2}, we first prove that there exists at least one param-

eter sert which renders Znq OSP.

Theorem 7.5. Let assumptions 7.2.1, 7.2.2 and 7.2.3 hold. Let L2 be an arbitrary

matrix of compatible dimension, and L3 be a matrix of compatible dimension for which

 A+BuL3 Bu

Cq +DuqL3 Duq



147



is OSP. Then the following parameters result in OSP Znq:

A22 =A+BuL3 (7.70a)

A12 =L2A+ L2BuL3 − AKL2 −BKCd (7.70b)

B12 =L2Bu (7.70c)

B22 =Bu (7.70d)

C2 =− CKL2 + L3 (7.70e)

Proof. The proof is completely parallel to the one in continuous time case. The

detailed proof can refer to the Theorem 6.4 in the Chapter 6.

The above theorem proves that there always exists at least one Ka which renders

Znq OSP. However, it does not ensure that, for this Znq, there exists a U ∈ H∞ such

that (7.64) holds. For this, we require an additional assumption 7.2.4.

Theorem 7.6. Let Assumptions 7.2.1, 7.2.2, 7.2.3, and 7.2.4 hold. Let augmented

controller Ka be as in (7.66) with parameters {A12, A22, B12, B22, C2} determined by

(7.70). Then there exists a U ∈ H∞ satisfying (7.64).

Proof. The proof is completely parallel to the one in continuous time case. The

detailed proof can refer to the Theorem 6.5 in the Chapter 6

7.4.3 Designing Ka Augmentation Parameters

Wth the knowledge there there exists at least one feasible design for Ka (i.e., a

design that renders Znq OSP), it remains to determine the best feasible design via op-

timization. There does not appear to be an obvious way to transform the output-strict

passivity constraint into a convex constraint on parameters {A12, A22, B12, B22, C2},

without the introduction of conservatism. As such, the theorem below characterizes
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a convex subdomain which contains, in its closure, the known feasibility point found

in Theorem 7.5.

Theorem 7.7. Let assumptions 7.2.1, 7.2.2, and 7.2.3 hold. Let S1 = ST1 ∈ R2n×2n,

S2 = ST2 ∈ Rn×n, B̃12,∈ Rn×np, B22 ∈ Rn×np, L̃3 ∈ Rnp×n, and β ∈ R>0 be such that

He {Ξ} 6 0 (7.71)

S1 >0, S2 > 0 (7.72)

where

Ξ ,



1
2
(A?clS1A

?
cl
T − S1) 0

0 1
2
{Γ1 − S2}

C?
qclS1A

?
cl
T Γ2[

BT
u −BT

22 BT
12 −BT

22L
T
2

]
BT

22

0 0

−

 Bu −B22

B12 − L2B22

 0 0

−B22 0 BuL̃3

−Duq + 1
2
{C?

qclS1C
?
qcl
T + Γ3} 0 DuqL̃3

DT
uq − 1

2β
I 0

0 0 −1
2
S2



(7.73)

Γ1 , AS2A
T + AL̃T3B

T
u +BuL̃3A

T (7.74)

Γ2 , CqS2A
T +DuqL̃3A

T + CqL̃3B
T
u (7.75)

Γ3 , CqS2C
T
q +DuqL̃3C

T
q + CqL̃

T
3D

T
uq (7.76)

Let the mapping un 7→ q be parametrized by {A12, A22, B12, B22, C2} as in (7.67),
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with

A12 =L2A22 − AKL2 −BkCd (7.77)

A22 =A+BuL̃3S
−1
2 (7.78)

B12 =B̃12 + L2B22 (7.79)

C2 =− CkL2 + L̃3S
−1
2 . (7.80)

where L2 is an arbitrary matrix of compatible dimension. Then the mapping un 7→ q

is OSP.

Proof. From Theorem 7.5 we have that the with A22, A12, and C2 defined as in (7.70a),

(7.70b), (7.70e) respectively, Znq is

Znq ∼


A?cl 0

 Bu −B22

B12 − L2B22


0 A+BuL3 B22

C?
qcl Cq +DuqL3 Duq


(7.81)

We then have that Znq is OSPR if and only if there exists S = ST and a β > 0 such
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that

He




1
2
(A?SA?T − S)

−

 Bu −B22

B12 − L2B22


−B22

−C?
qSA

?T −Duq + 1
2
C?
qSC

?
q
T





+ β



 Bu −B22

B12 − L2B22


B22

Duq





 Bu −B22

B12 − L2B22


B22

Duq



T

6 0 (7.82)

as well as

ET
c SEc > 0, (7.83)

where we denote that

A? ,

A?cl 0

0 A+BuL3

 (7.84)

C?
q ,

[
C?
qcl Cq +DuqL3

]
(7.85)

Ec is a full-column-rank matrix spanning the controllable subspace of the state space

realization for Znq. Assuming Ec = I is therefore sufficient to guarantee this condition.

Theorem 7.7 provides conditions guaranteeing that un 7→ q is OSP, but in order

for Theorem 7.4 to hold, it must also be shown that there exists U ∈ H∞ satisfying

(7.64). To present the condition guaranteeing this, first let {θ1, ...θp} be the set of all
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solutions to the eigenvalue problem

A− ejθI Bu

Cq Duq


H

η = 0 , η 6= 0, θ ∈ [0, 2π) (7.86)

where p ∈ Z is the number of imaginary-axis zeros of Zuv (counting multiplicity).

Define N ,

[
η1 · · · ηp

]
as the corresponding (linearly independent) set of eigen-

vectors. Define N⊥ as a full-column-rank matrix such that

[
N N⊥

]
is square and

NHN⊥ = 0.

Lemma 7.8. Let {A,Bu, Cq, Duq} satisfy positive real constraint for some S > 0 and

β > 0, and let N and N⊥ defined as above. Then

NH
⊥

 ASAT − S ASCT
q −Bu

CqSA
T −BT

u −Duq −DT
uq + CqSC

T
q

N⊥ 6 0 (7.87)

Proof. Consider that for each i ∈ {1...p}, for θi ∈ [0, 2π),

ηHi

 ASAT − S ASCT
q −Bu

CqSA
T −BT

u −Duq −DT
uq + CqSC

T
q

 ηi
= ηHi He


A− ejθI Bu

Cq Duq


S 0

0 I


AH + e−jθI CH

q

0 −I


 ηi

= 0 (7.88)

implying that the first p diagonal terms of the matrix

NH

NH
⊥


 ASAT − S ASCT −Bu

CSAT −BT
u −Duq −DT

uq + CSCT


NH

NH
⊥


H

(7.89)

must be zero. Now if passivity holds then implys that matrix above is negative
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semidefinite. In order for this to be truesimultaneously with the first p diagnoal

terms being zero, the first p rows and columns should also be zero. In order to keep

negative semidefinite of matrix, equation (7.87) should be valid.

Furthermore, partition N⊥ as

N⊥ =

N⊥1

N⊥2

 , N⊥1 ∈ Cn×p (7.90)

Then in terms of {N⊥1, N⊥2}, we have the following theorem:

Theorem 7.9. In Theorem 7.7, let Assumption 7.2.4 hold. Let parameters

{S1, S2, B̃12, B22, L̃3, β} satisfy (7.71), (7.72), and let Ka be as in in (7.66). Let

Υ⊥ ,



I 0 N⊥1 0

0 I 0 0

0 0 N⊥ 0

0 0 0 0

0 0 0 I


(7.91)

Then if (7.71) is strengthened to require that

ΥH
⊥ΞΥ⊥ < 0 (7.92)

then there exists U ∈ H∞ satisfying (7.64).

Proof. The proof is completely parallel to the one in continuous time case. The

detailed proof can refer to the Theorem 6.8 at the Chapter 6

Theorem 7.7 provides a parametric domain over which to optimize K parameters

{A12, A22, B12, B22, C2} which is convex, and the closure of which is guaranteed to con-

tain a feasible point. Given this, it remains to determine a suitable metric under which
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to optimize these parameters, which is also convex in the {S1, S2, B̃12, B22, L̃3, β} do-

main.

To do this,consider that Znq can be written as

Znq = Z0 + Z1 (7.93)

where

Z0 ∼


A?cl

Bu

0


C?
qcl Duq

 (7.94)

Z1 ∼


A?cl

BuC2

A12


 0

B12


0 A22 B22

C?
qcl DuqC2 0


(7.95)

As such, Z0 is the transfer function from un to q without control augmentation, while

Z1 is the adjustment to this transfer function to make Znq OSP. We wish to choose

{S1, S2, B̃12, B22, L̃3} to minimize the gain Z1, subject to constraints (7.71) and (7.72).

To do this, a norm must be chosen for the gain to be minimized, and here we choose

the H2 norm. The following theorem establishes a means of accomplishing this.
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Theorem 7.10. ‖T1‖2
H2
< λ if there exists S3 = ST3 > 0 and α > 0 such that



A?clS3(A?cl)
T − S3 0 .

−B22

B̃12

 0

Γ1 − S2 B22 BuL̃3

− 1
α
I 0

(sym) −S2


60 (7.96)


αλ C?

qclS3 CqS2 +DuqL̃3

S3 0

(sym) S2

 >0 (7.97)

where {S2,Γ1, B̃12, B22, L̃3 β} are the same as in (7.71).

Proof. From the proof to Theorem 7.7, it follows that

T1 ∼

 A? B?
u

C?
q 0

 (7.98)

where

B?
u =


−B22

B̃12

B22

 (7.99)

It is a standard result that ‖T1‖2
H2
< λ if and only if there exists a matrix S = ST > 0,

such that

A?SA?T − S +B?
uB

?
u
T < 0 (7.100)

Tr{C?
qSC

?
q } < λ (7.101)
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Conservatively choosing

S =
1

α

S3 0

0 S2

 , (7.102)

and performing Schur complements on both inequalities, gives (7.96) and (7.97).

We therefore arrive at an optimization problem to determine parameters

{S1, S2, S3, B̃12, B22, L̃3}:

OP3 :


Minimize: λ

Domain: S1, S2, S3, B̃12, B22, L̃3

Constraints: (7.71), (7.72), (7.92), (7.96), (7.97).

(7.103)

7.5 Nonlinear Stroke Protection Loop

Consider the strong stroke limitation, i.e., |di| ≤ dmi, i ∈ {1..np}, linear controller

Ka from previous section should be augmented with nonlinear feedback. The conse-

quence of this is a total PTO force at time k which is a summation of the linear and

nonlinear parts; i.e.,

uk = u`k + unk (7.104)

where the linear control force u`k is designed as in the section 5.4; i.e.,

u`k = CKξk (7.105)

We may therefore view the nonlinear control loop as introducing a supplemental

restoring force unk which modifies the optimized linear feedback, when necessary, to

prevent stroke saturation.

As shown in Figure 7.3, this nonlinear control loop consists of two components.

The first of these is a one-step-ahead predictor, which forecasts the displacement that

will result at discrete time k + 1 (i.e., dk+1) assuming only the linear control force is
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d u

uℓ

un

Ka

δ
Φ

nonlinear feedback loop

one-step-
ahead 
predictor

Figure 7.3: Design of linear and nonlinear feedback loops

applied; i.e., assuming uk = u`k. This forecast is made using the values of y and u up

to and including discrete-time k. We denote this forecast as δk.

The second part of the nonlinear control loop is the nonlinear function unk =

Φ(δk), which acts as a kind of discrete-time “hard spring,” producing a significant

decelerating force when necessary. To illustrate the qualitative manner in which this is

done, consider Figure 7.4, which shows a hypothetical time history for several discrete

time steps over which dk approaches its maximum allowable stroke dm. As shown, the

one-step-ahead predictor produces a forecast, at time k, of where dk+1 will be if unk is

made equal to 0. When this forecast has a magnitude well below dm, the PTO stroke

is deemed to be within its “safe zone” and unk = 0. However, when the forecast has

a magnitude above some threshold βdm, for β < 1 equal to some safety factor (say,

0.9), the PTO stroke is deemed to be exiting its safe zone, triggering the nonlinear

control loop to issue a corrective force to reverse its direction.

7.5.1 One-Step-Ahead Predictor Design

First note that

dk+1 =dk + Tqk (7.106)

=dk + T (Cqxk +Duquk +Dwqwk) (7.107)
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time t

T

d(t)

un(t)

dm
βdm

0

Figure 7.4: Upper plot: Trajectory for d (solid) with one-step-ahead prediction tra-
jectories (dashed). Lower plot: Corresponding trajectory for nonlinear force un

We assume that at time k, the information that is known to the controller is comprised

of

Ik = {dk, uk, dk−1, uk−1, dk−2, uk−2, ....} (7.108)

Let the conditional expectation for xk, given this information, be denoted x̂k; i.e.,

x̂k , E {xk|Ik} (7.109)

Then we have the theorem 7.11 shows how to find x̂k recursively.

Theorem 7.11. Assuming we have the information of Ik, x̂k can be found as:

x̂k+1 = [A+ LCq] x̂k − Lqk +Buuk (7.110)

where the Kalman gain L is

L = −ASCT
q

[
CqSC

T
q +DwqD

T
wq

]−1
(7.111)
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and where the matrix S = ST is the solution to DARE

S = ASAT +BwB
T
w − ASCT

q

[
CqSC

T
q +DwqD

T
wq

]−1
CqSA

T (7.112)

Proof. The above theorem is mainly about the use of discrete time Kalman filter, the

detailed derivation can be found in [92].

The forecasted displacement δk is the expected value of dk+1 for the specific case

where the control input uk is chosen as the linear control input only; i.e., uk = CKξk,

so

δk = dk + T (Cqx̂k +DuqCKξk) (7.113)

Consequently, the expectation of the true displacement and the forecast can be related

via

E {dk+1|Ik} = δk + TDuqu
n
k (7.114)

7.5.2 Nonlinearity Design

The nonlinear function Φ(·) is designed to bring about a direction reversal of the

one-step-ahead forecast δk, such that it remains inside the safe zone. To do this we

note that if Φ(δki) 6= 0 then this implies that |δki| > βdmi. We seek the nonlinear

control force unki which will result in

∣∣E {d(k+1)i|Ik
}∣∣ = βdmi, i ∈ {1..np} (7.115)

In other words, we require that

δki + TDuqu
n
ki = βdmi sgn(δki), i ∈ {1..np} (7.116)
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resulting in the nonlinear feedback law Φ(·) as

Φ(δki) =

 0 : |δki| < βdmi

Γ (βdmi − |δki|) sgn(δki) : |δki| > βdmi

i ∈ {1..np} (7.117)

where

Γ =
1

TDuq

(7.118)

7.5.3 Mean-Square Passivity

The nonlinear control loop shown in Figure 7.3 has the advantage of being heuris-

tic and therefore straight-forward to conceptualize, but in general it cannot be im-

plemented without modification. This is because in many situations (including the

example in this paper) the nonlinear feedback loop interacts with the linear controller

in such a way as to destabilize the closed-loop system. In order to implement the

technique, stability must be recovered.

To do this, we first note that the nature of the feedback function Φ(·), as formu-

lated here, has the special property of passivity, as illustrated in the lemma below.

The proof of this lemma is lengthy, and consequently is omitted here in the interest

of brevity.

Lemma 7.12. The feedback function Φ(δki) in (7.117) has the property that it is

mean-square passive with respect to the q; i.e., for all N > 0, and with d0 = 0, there

exists a constant β such that

E

{
1

N

N∑
k=0

Φ(δki)qki

}
6 β, i ∈ {1..np} (7.119)

for any Γ in the range

Γ ∈
[
0,

1

TDuq

]
(7.120)
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Proof. Let d̂k+1 , E {dk+1|Ik}. Then

d̂k+1 = δk + TDuqu
n
k (7.121)

and consequently unk can be expressed in terms of d̂k+1 as

unk =Γ
(
βdm −

∣∣∣d̂k+1 − TDuqu
n
k

∣∣∣) sgn
(
d̂k+1 − TDuqu

n
k

)
(7.122)

=Γβdm sgn
(
d̂k+1 − TDuqu

n
k

)
− Γ

(
d̂k+1 − TDuqu

n
k

)
(7.123)

=
Γ

1− ΓTDuq

(
βdm sgn

(
d̂k+1 − TDuqu

n
k

)
− d̂k+1

)
(7.124)

Next, we recognize that if TDuqΓ 6 1, then it follows that sgn
(
d̂k+1

)
= sgn (δk), and

consequently

unk =
Γ

1− ΓTDuq

(
βdm sgn

(
d̂k+1

)
− d̂k+1

)
(7.125)

=
Γ

1− ΓTDuq

(
βdm −

∣∣∣d̂k+1

∣∣∣) sgn
(
d̂k+1

)
(7.126)

=− Γ

1− ΓTDuq

∂V (d)

∂d

∣∣∣∣
d=d̂k+1

(7.127)

where

V (d) ,

 0 : |d| < βdm

1
2

Γ
1−ΓTDuq

(βdm − |d|)2 : |d| > βdm

(7.128)

But V is semiconvex so it follows that

V (dk) > V
(
d̂k+1

)
+
∂V

∂d

∣∣∣∣
d=d̂k+1

(
dk − d̂k+1

)
(7.129)
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and consequently

unk E {qk|Ik} =unk
1
T

(
d̂k+1 − dk

)
(7.130)

6
Γ

1− ΓTDuq

1
T

(
V (dk)− V (d̂k+1)

)
(7.131)

So

T
N∑
k=0

unk E {qk|Ik}

6
Γ

1− ΓTDuq

{
N∑
k=0

(
V (dk)− V (d̂k+1)

)}
(7.132)

=
Γ

1− ΓTDuq

{
V (d0)− V (d̂N+1) +

N∑
k=1

(
V (dk)− V (d̂k)

)}
(7.133)

But d0 = 0 and V (0) = 0 so

N∑
k=0

unk E {qk|Ik}

6
Γ

1− ΓTDuq

{
− 1
T
V (d̂N+1) + 1

T

N∑
k=1

(
V (dk)− V (d̂k)

)}
(7.134)
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Now, consider that

2V (dk) =

 0 : |dk| < βdm

(βdm − |dk|)2 : |dk| > βdm

(7.135)

=



(
βdm − d̂k − rk

)2

: rk > βdm − d̂k(
βdm + d̂k + rk

)2

: rk 6 −βdm − d̂k

0 : otherwise

(7.136)

=



(
βdm − d̂k

)2

− 2rk

(
βdm − d̂k

)
+ r2

k : rk > βdm − d̂k(
βdm + d̂k

)2

+ 2rk

(
βdm + d̂k

)
+ r2

k : rk 6 −βdm − d̂k

0 : otherwise

(7.137)

6r2
k +



(
βdm − d̂k

)2

− 2rk

(
βdm − d̂k

)
: rk > βdm − d̂k(

βdm + d̂k

)2

+ 2rk

(
βdm + d̂k

)
: rk 6 −βdm − d̂k

0 : otherwise

(7.138)

where rk is the zero-mean Gaussian innovations process dk − d̂k. Let the CDF of the

rk be Fk(rk), and the variance of rk be Sk. Because d̂k is estimated via a Kalman

filter, rk is independent of d̂k. Consequently

2 E
{
V (dk)|d̂k

}
6Sk +

(
βdm − d̂k

)2 [
1− Fk(βdm − d̂k)

]
+
(
βdm + d̂k

)2

Fk

(−βdm − d̂k)− 2

√
Sk
2π
e−(βdm−d̂k)2/2Sk

(
βdm − d̂k

)
+ 2

√
Sk
2π
e−(βdm+d̂k)2/2Sk

(
βdm + d̂k

)
(7.139)

Meanwhile, we may express

2V (d̂k) =
(
βdm − d̂k

)2

H(d̂k − βdm) +
(
βdm + d̂k

)2

H(−d̂k − βdm) (7.140)
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where H(·) is the Heaviside step function. So

2 E
{
V (dk)|d̂k

}
− V (d̂k) 6 Sk

+
(
βdm − d̂k

)2 [
H(βdm − d̂k)− Fk(βdm − d̂k)

]
− 2

√
Sk
2π
e−(βdm−d̂k)2/2Sk

(
βdm − d̂k

)
+
(
βdm + d̂k

)2 [
Fk(−βdm − d̂k)−H(−d̂k − βdm)

]
+2

√
Sk
2π
e−(βdm+d̂k)2/2Sk

(
βdm + d̂k

)
(7.141)

Now consider that because F (rk) is a Gaussian CDF with zero mean and finite co-

variance Sk, it follows that

Σk , sup
r∈R

r2 (H(r)− Fk(r)) <∞ (7.142)

Σ′k , sup
r∈R

r2 (Fk(r)−H(r)) <∞ (7.143)

Λk , 2

√
Sk
2π

sup
r∈R

re−r
2/2Sk <∞ (7.144)

Λ′k , 2

√
Sk
2π

sup
r∈R
−re−r2/2Sk <∞ (7.145)

Therefore we have that

2 E
{
V (dk)|d̂k

}
− V (d̂k) 6 Sk + Σk + Σ′k + Λk + Λ′k (7.146)

Returning to (7.134), and taking an unconditional expectation, we therefore have

164



that

E

{
N∑
k=0

unk E {qk|Ik}

}

= E

{
N∑
k=0

unkqk

}

6
Γ

1− ΓTDuq

1
T
E

{
N∑
k=1

(
V (dk)− V (d̂k)

)}

6
Γ

1− ΓTDuq

1
T
E

{
N∑
k=1

E
(
V (dk)− V (d̂k)|d̂k

)}

6
Γ

1− ΓTDuq

1
2T

(Sk + Σk + Σ′k + Λk + Λ′k) (7.147)

The above lemma is important because of the Theorem7.4, which is a standard

result from robust control.

7.5.4 Generalizing Nonlinearity

The formulation of nonlinear feedback law Φ(·), as in (7.117), has the advantage

of being heuristic. It is reasonably straight-forward to understand how the feedback

law makes use of a one-step-ahead forecast in order to facilitate stroke protection.

However, there are certain advantages to generalizing the nonlinear feedback law

beyond that shown in (7.117).

Specifically, it is straight-forward to show that all the results on stability in Sec-

tion 7.5.3 still hold if Φ(·) is generalized by still implementing equation (7.117), but

redefining δk from (7.113), to

δk = dk + (T + τ) (Cqx̂k +DuqCKξk) (7.148)

where τ > 0 can be chosen as any nonnegative value. Indeed, this makes the stroke
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protection algorithm more cautious. More importantly, though, raising the value of

τ reduces the magnitude of the nonlinear forces unk . As we shall see in the example in

the next section, this comes at the expense of lower power generation with higher τ .

With δk redefined as in (7.148), the value of Γ in (7.117) must also be changed to

assure stability. In this case, (7.117) is guaranteed to be passive with respect to q,

for Γ in the range

Γ ∈
[
0,

1

Duq(T + τ)

]
(7.149)

Although the value in (7.118) at the upper end of this range works very effectively

in theory, in practice the implementation of this value may result in instability due

to uncertainty in Duq or T . As such, a value should be chosen which is the maximal

value such that (7.149) can be assured, even in the presence of uncertainty.

7.6 Numerical Example

To demonstrate the control methodology described in the previous sections, we

consider the cylindrical buoy-type WEC shown in Figure 7.5, which is the same device

as in the Chapter 5 and Chapter 6. For consistency, the parameters of the WEC

model and JONSWAP spectrum are the same as before. The maximum stroke of this

WEC is assumed to be 3m. To characterize the loss model, we choose the parameter

Rd in loss model (7.6) as 108kg/s. We assume the sampling time T is 0.1s. For this

case, Figure 7.6 shows the original infinite-dimensional discrete-time transfer function

Zuq(e
jΩ) (as derived in (7.9)), as well as its finite-dimensional approximation (as in

(7.14)). Figure 7.7 shows the original infinite-dimensional discrete-time spectrum for

Σwq(jΩ) (as in (7.10)), as well as its finite-dimensional approximation (as in (7.11)

and (7.15)). We note that the total dimension of the discrete-time state space used

to model these dynamics was 18.

For this case, the causal limit on the power that can be generated at this sample
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as the spectrum for its finite-dimensional approximation (dash)

rate can be found via (7.43) to be 59.1kW. However, this causal limit does not take the

stroke limit into consideration, and is therefore considerably higher than the power

that can be generated by the system under stroke constraints.

7.6.1 Performance of Optimized Linear Controller

First we consider the linear control design described in Section 7.3. In this case,

we have an optimal linear performance (i.e., the maximized value of γ in optimiza-

tion (7.62)) is 33.1kW. At this performance, the stroke covariance is equal to its

constrained upper limit of 1
4
d2
m. It is also interesting to note that the optimal linear

feedback controller in this case is open-loop unstable.

Figure 7.8 shows transient plots for the stroke, force, and power, for one hour

of data. Note that to achieve the optimal average power generation requires that

the PTO be capable of bidirectional power flow. Also note that the relaxed stroke

constraint has accomplished its desired goal, with the majority (but not all) of the

displacement peaks occurring at displacements less than 3m.
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7.6.2 Performance of Nonlinear Controller

To design the nonlinear controller, we take the parameter β (which determines

the size of the safe zone in Figure 7.4 to be 0.9. To begin with, we consider the case

in which the the nonlinear feedback law is chosen as in (7.117) with δk determined

as in (7.113); i.e., we set the generalized parameter τ = 0. We also presume Γ to be

chosen as in (7.118).

For this scenario, Figure 7.9 shows the PTO displacement, force, and power for one

hour of simulation time. As shown, the maximum stroke is maintained at dm = 3m.

Performance in this case is largely decreased, with a negative average power genera-

tion, which means that the WEC device can not generate energy in this scenario. In

Figure 7.9, stroke is protected but in the same time, the controller applies very high

PTO forces, which results in the high dissipative power loss and degrades the overall

power generation.

In order to increase the average power generation, we need to lower the controller

force u and thus increase the value of τ . In Figure 7.10, we can see that the optimal

performance that is 28.1kW about 15% reduction in performance is achieved when

τ = 5T . As τ increases, the controller becomes so conservative that restrict the

movement of the buoy and thus lower the performance. To illustrate this, consider

Figure 7.11, which shows transient responses for τ values of T , 5T , and 50T . We see

that clearly, with τ = 5T , the impulses are virtually eliminated, while still provid-

ing (even more cautious) protection of the stroke. For larger τ values, the tradeoff

here is that increasing τ will bring lower power generation. Specifically, the mean

power generation here in there cases in the figure are 17.0kW, 28.1kW and 11.2kW

respectively.
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CHAPTER 8

Robust Control of Wave Energy Converters with

Nonlinear Dynamics

8.1 Introduction

A common strategy to design the control system for a WEC is to use the lin-

earized WEC dynamic model around its equilibrium point. The linearized WEC

system has many advantages, such as the simple mathematical form and computa-

tional efficiency. However, the actual WEC system has a complex dynamic behavior,

e.g., the nonlinear viscous drag effect. The use of control techniques has the effect

on amplifying the WEC motion to maximize the power generation, which contradicts

the small displacement assumption. Some studies reveal that the control system de-

signed without considering the nonlinear WEC dynamics has a lower power capture

than expected due to some robustness issues. In this chapter, we considered to de-

sign a robust control that preserves the closed-loop system stability while giving a

high power generation in the presence of nonlinear effects, in particular the nonlinear

viscous damping force. This robust control problem can be formulated as a multi-

objective control problem, whose primary objective is to maximize the nominal power

generation and the associated objective is to robust stabilize the close-loop system.

Unfortunately, this optimization is nonconvex. Here, we use the circle criterion and
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Loop Transfer Recovery (LTR) method to give a robust controller design procedure.

Although this procedure is sub-optimal, it is easy to be implemented and achieves a

high power generation performance.

8.2 Problem Formulation

We will investigate the effect of nonlinear viscous damping in this chapter. An

experimental law proposed by Morison [52] describes the viscosity drag force in a

quadratic function of the WEC velocity.

fv(t) = ρπr2cd|v(t)|v(t) + ρπr2civ̇(t) (8.1)

where ρ is the water density, r is the cylinder radius, cd is the drag coefficient and ci is

the inertia coefficient. The experiments generating coefficients cd and ci are discussed

in [93]. Here, without loss of generality, we can assume that ci = 0 (nonzero value of

ci can be added to the mass term).

Considering the viscosity effect, the dynamic equation of WEC system becomes:

[M +M∞]z̈(t) +

∫ ∞
0

Hr(τ)v(t− τ)dτ +Kv|v(t)|v(t) +Kz(t) = ff (t) + u(t) (8.2)

where Kv , ρπr2cd is the viscous damping coefficient. The resulting system diagram

is in Figure 8.1.

The viscous damping force fv is a memoryless, time-varying and nonlinear func-

tion, which can be proven to satisfy a sector condition. Although the WEC motion is

irregular and the maximum WEC velocity can be infinity theoretically, from Section

6, we know that the peak stationary response of the WEC velocity can be approx-

imated as Rayleigh-distributed, if v(t) is sufficiently narrowband. The cumulative
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Figure 8.1: Block diagram of the WEC system considering viscosity effect

distribution function of the peak response φ is:

Pr[ϕ 6 ϕ0] = 1− exp
{
−ϕ2

0/2σ
2
}

(8.3)

where σ2 = E{v2}. The value of σ is chosen when the LQG controller with velocity

feedback is implemented, since the LQG controller amplifies the WEC motion and

thus delivers the maximum power generation performance. Here, we choose ϕ0 = 3σ

and then the probability that the velocity v exceeds ϕ0 is around 1.11%, which is low

enough for the robust controller design. Here we denote Kd , 3Kvσ,

Definition 8.2.1. A memoryless nonlinearity fv is said to satisfy a sector condition

[0, Kd] if

fTv [fv −Kdv] 6 0,∀v (8.4)

for a positive definite matrix Kd.

The power generation p̄ of the nominal WEC system is defined in (3.36). We can
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Figure 8.2: Block diagram of the transfer function Gfvv

formulate our control problem as an optimization problem.

OP8.1 :


Maximize: p̄

Domain: causal K : y 7→ u

Uncertainty: fv in sector [0, Kd]

This design problem is a multi-objective optimization problem, in which the pri-

mary objective is the maximization of the power generation in the nominal system,

and the competing objective is to stabilize the closed-loop system in the presence of

viscous damping force. The stability constraint can be posed using the circle criterion

for absolute stability.

We use the function Gfvv to denote the mapping: fv → v, which is shown in the

dotted line box in Figure 8.2.

Theorem 8.1. Let assumptions 3.6.1, 3.6.2, and 3.6.3 hold, the closed-loop system

is absolutely stable if and only if (1−KdGfvv(s)) is strictly positive real (SPR)

Proof. The proof can be found at a number of literatures, e.g., [56].

Based on the above theorem, the robust stability constraint becomes the SPR
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constraint of the transfer function (1 − KdGfvv(s)). Specifically, the optimization

problem OP8.1 becomes, equivalently,

OP8.2 :


Maximize: p̄

Domain: causal K : y 7→ u

Constraint: (1−KdGfvv(s)) is SPR

8.3 Methodology

Here, we use the LTR method, which increases the covariance of the process noise

to make system more robust and is first introduced in [94]. The LQG method in

Chapter 5 attains a good performance using the velocity feedback, but it suffers from

robustness issues. From Chapter 5, the state-space model of the optimal controller

considering the velocity feedback is:


˙̂x = (A+BuK + LCv)x̂− Lv

u = Kx̂
(8.5)

where K and L can be found in equation (5.15) and (5.24). We can improve the

robustness properties of the optimal controller (8.5) using LTR method.

We denote rI as the covariance of the additional process noise. The filter gain is

L = −Λ−1SCT
v , where S satisfies the filter algebraic Riccati equation:

AS + SAT − SCT
v Λ−1CvS + EET + rBuB

T
u = 0 (8.6)

It has been shown in [55] that as r approaches infinity, the LQG controller approaches

the LQR state-feedback controller. In this problem, there is no need to make r close

to infinity. Instead, we can increase the value of r until the transfer function (1 −

KdGfvv(s)) satisfies SPR. The LTR approach involves a tradeoff between robustness
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and nominal LQG performance, since increasing the system-noise density deteriorates

the nominal performance.

To begin with, we have the following theorem

Theorem 8.2. Let assumptions 3.6.1, 3.6.2, and 3.6.3 hold, Then

lim
r→∞

Gfvv(s) = −Cv[sI − (A+BuK)]−1Bu (8.7)

Proof. Define the transformation matrix T as

T ,

Cv
B⊥

 (8.8)

where B⊥ is chosen such that T is invertible, and B⊥Bu = 0. If Cv[sI − A]−1Bu is

passive then it follows that CvBu is invertible, and therefore

T−1 =

[
Bu(CvBu)

−1 C⊥(B⊥C⊥)−1

]
(8.9)

where C⊥ is such that CvC⊥ = 0. Multiply the Riccati equation from the left by T

and from the right by T T , and we have that

0 =

A11 A12

A21 A22


S11 S12

ST12 S22

+

S11 S12

ST12 S22


A11 A12

A21 A22


T

+

E1

E2


E1

E2


T

+ r

CvBu

0


CvBu

0


T

−

S11

ST12

Λ−1

[
S11 S12

]
(8.10)
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where A11 A12

A21 A22

 =TAT−1

S11 S12

ST12 S22

 =TST T

E1

E2

 =TE (8.11)

Let

S =
√
r

S̄11 0

0 0

+

 0 S̃12

S̃T12 S̃22

 (8.12)

and hypothesize that S̄11 is finite and S̃ij/
√
r is finite. Substitute into the Riccati

equation:

0 =

A11 A12

A21 A22


 0 S̃12

S̃T12 S̃22

+

 0 S̃12

S̃T12 S̃22


A11 A12

A21 A22


T

+

E1

E2


E1

E2


T

+
√
r


A11S̄11 + S̄11A

T
11 S̄11A

T
21

A21S̄11 0

−
S̄11

0

Λ−1

[
0 S̃12

]
−

 0

S̃T12

Λ−1

[
S̄11 0

]
−

 0

S̃T12

Λ−1

[
0 S̃12

]
+ r

CvBuB
T
uC

T
v − S̄11Λ−1S̄11 0

0 0

 (8.13)

As r →∞ we have that in order for the (1,1) term to be zero, the (1,1) term in the

term that multiplies by r must be zero, i.e.,

S̄11 = Λ1/2
[
Λ−1/2CvBuB

T
uC

T
v Λ−1/2

]1/2
Λ1/2 (8.14)

and in order for the (1,2) term to be zero as r →∞,

(
A11 −

√
rS̄11Λ−1

)
S̃12 + S̃12A

T
22 + A12S̃22 + E1E

T
2 +
√
rS̄11A

T
21 = 0 (8.15)
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As r →∞, the solution to S̃12 converges to that of the equation

√
rS̄11Λ−1S̃12 = A12S̃22 +

√
rS̄11A

T
21 (8.16)

But S̄11 is invertible, so

S̃12 =
1√
r

ΛS̄−1
11 A12S̃22 + ΛAT21 (8.17)

In order for the (2,2) term to be zero, the (2,2) term in the term that does not multiply

by r must be zero, requiring

0 = A21S̃12 + S̃T12A
T
21 + A22S̃22 + S̃22A

T
22 + E2E

T
2 − S̃T12Λ−1S̃12 (8.18)

Substituting the r →∞ solution for S̃12, we have a Riccati equation for S̃22.

0 = A22S̃22 + S̃22A
T
22 + A21ΛAT21 + E2E

T
2 −

1

r
S̃22A

T
12S̄
−1
11 Λ−1S̄−1

11 A12S̃22 (8.19)

where we desire the maximizing solution; i.e., the solution with S̃22 > 0. As r →∞,

suppose this solution stays finite. Then it is the solution to Lyapunov equation

0 = A22S̃22 + S̃22A
T
22 + A21ΛAT21 + E2E

T
2 (8.20)

The solution to this Lyapunov equation is positive-definite if and only if A22 is Hur-

witz. But A22 is Hurwitz if and only if the transfer function Cv [sI − A]−1Bu is

minimum-phase [95]. However, Cv[sI − A]−1Bu is passive, and all passive transfer

functions are minimum-phase. Therefore, S̃22 stays finite as r → ∞ and is the solu-

tion to Lyapunov equation (8.20).
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As r →∞ the associated partitioned Kalman gain is

L =

S11

ST12

Λ−1

=−

√rS̄11

A21Λ

Λ−1

=−

√rS̄11Λ−1

A21

 (8.21)

The dynamics of the observer are then governed by

 ˙̂v

˙̂x2

 =

A11 −
√
rS̄11Λ−1 A12

0 A22


 v̂
x̂2

+

CvBu

0

u+

√rS̄11Λ−1

A21

 v (8.22)

But for all finite s,

lim
r→∞

[
sI −

(
A11 −

√
rS̄11Λ−1

)]−1√
rS̄11Λ−1 = I (8.23)

so as r → ∞, v̂(t) → v(t) for all t. Consequently, we have that in the limiting case

as r →∞,

 v̇
˙̂x2

 =

A11 A12

A12 A22


 v̂
x̂2

+

CvBu

0

 (u− fv) +

E1

0

w
=

A11 + CvBuK1 A12 + CBuK2

A12 A22


 v̂
x̂2

−
CvBu

0

 fv +

E1

0

w (8.24)

where [
K1 K2

]
= KT−1 (8.25)
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We conclude that

v̂(s) =−
[
I 0

]sI −
A11 + CvBuK1 A12 + CBuK2

A12 A22



−1


CBu

0

 f̂v(s) +

E1

0

 ŵ(s)


=− Cv[sI − (A+BuK)]−1

Buf̂v(s) + T−1

E1

0

 ŵ(s)

 (8.26)

This proves the claim of the theorem.

Using this theorem, we have the following result, which forms the basis for the

design methodology.

Theorem 8.3. Let assumptions 3.6.1, 3.6.2, and 3.6.3 hold. Let K be found as in

(5.15), and assume that the transfer function

H(s) , Cv[sI − (A+BuK)]−1Bu (8.27)

is positive real. Let L = −Λ−1SCT
v where S is the solution to (8.6), parametrized by

r. Then there exists a finite value of r, above which 1−KdGfvv(s) is SPR.

Proof. From Theorem 8.2, it is immediate that Gfvv(s) → −H(s) as r → ∞.

Consequently, the assumption that T (s) is positive real implies that for all ω ∈

R ∪ {−∞,∞},

lim
r→∞

{
(1−KdGfvv(jω)) + (1−KdGfvv(jω))H

}
= 2+Kd

(
H(jω) +HH(jω)

)
> 2 > 0

(8.28)

This shows that the limit is strongly positive real. To show that it is strictly positive
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real, it must be the case that for some ε > 0,

lim
r→∞

{
(1−KdGfvv(jω − ε)) + (1−KdGfvv(jω − ε))

H
}
> 0 (8.29)

However, because the above limit is greater than or equal to 2 with ε = 0, it is

sufficient to show that Gfvv(s) is analytic for all imaginary s. But this is assured

because it is known that for K found as in (5.15), it is the case that A + BuK is

Hurwitz. This concludes the proof.

Theorem 8.3 requires the assumption to be made that H(s) is positive real. But

for a given energy harvesting control problem H(s) is uniquely determined, because

K is unique. It is therefore justifiable to ask what can be done if H(s) is found

not to be positive real, for a given application. In this case, the LTR method will

still yield a finite value of r above which 1 −KdGfvv(s) is SPR, if Kd is sufficiently

small. However, if Kd is above a critical value, then the LTR method cannot be used,

irrespective of how large r is made. In order to use LTR in such situations, K would

need to be redesigned to be the optimal state-feedback gain that also ensures that

H(s) is positive real. This introduces an extra layer of conservatism into the design of

the robust controller, and will lead to lower nominal power generation performance.

Interestingly, however, it was found that it is not uncommon forH(s) to be positive

real, in applications. Indeed, it appears to be the case (although a proof remains

elusive) that H(s) is always positive real for applications with only one generator.

This claim has been substantiated by randomly generating plant models adhering to

the assumption that Cv[sI − A]−1Bu is positive real with A Hurwitz, and searching

for a case that does not render H(s) positive real. Despite a rather exhaustive search

(millions of randomized models with various state space dimensions) no such case

has been found for the single-generator case. For systems with multiple generators,

however, it is rather easy to find such cases.
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Figure 8.3: Diagram of example WEC

8.4 Numerical Example

We use the same single-degree-of-freedom WEC shown in Figure 8.3 as the one

buoy case in the previous chapters. For more details on the modeling of the system in

Figure 8.3, and in particular of its finite-dimensional state space model formulation,

we refer the readers to the one buoy case in chapter 5. We choose the drag coefficient

cd = 1, based on the numerical study in [96]. In the Figure 8.4, we choose the state

condition with mean wave period of 9s, significant wave height of 1m and sharpness

factor of 1. As we increase ϕ0 value, the nominal power generation degrades. When

ϕ0 = 3σ, the power generation is around 70% of the causal limit, which is acceptable.

In the previous proof, we prove that using LTR method, as r →∞ , the transfer

function −Gfvv will become PR. It turns out that increasing r, the LTR controller will

make the nominal WEC system more robust, but with the lower nominal power gener-

ation performance. In Figure 8.5, we compare the nominal performance of Controller

1 and Controller 2, both of which are generated by LTR method. As we increase r,

Controller 1 is the controller which makes (1−KdGfvv) SPR. As r approaches infinity,
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Figure 8.5: Comparison of power generation performance between two controllers
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Figure 8.6: The performance of LTR controller under different sea state.

we have the Controller 2 in which the transfer function −Gfvv is PR. The nominal

performance of Controller 1 is much higher than Controller 2, which is expected.

We also compare the LTR controller performance with causal power limit on

different sea states. In Figure 8.6, we vary the sea state condition, such as changing

the sharpness factor γ and mean wave period T . The controller generated using LTR

method achieves very good performance, with the lowest power generation equal to

61% of the causal limit and the highest equal to 92%.
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CHAPTER 9

Conclusions and Future Work

9.1 Conclusions

This dissertation explores the topic of control system design for ocean wave en-

ergy converters with the presence of finite stroke and model uncertainty. The main

contributions are listed here:

• We propose a modified subspace-based spectral factorization technique whereby

the required size of Hankel matrix to be assembled can be significantly reduced,

while still attaining high accuracy. This technique can be applied to many other

areas besides offshore engineering.

• We develop a nonlinear control design strategy for WEC with stroke saturation.

This strategy has three steps: 1) design a linear controller by relaxing the

constraint on the displacement variance; 2) augment this linear controller with

an extra input channel un, in which the mapping un → v is passive; 3) design

an outer, passive nonlinear feedback law that ensures the displacement below

the stroke limits.

• We extend the above design strategy to the discrete-time WEC system. The

main difference is in designing the outer nonlinear feedback controller, which

requires a one-step-ahead predictor in the discrete-time domain.
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• We demonstrated that a control system designed using LTR method can max-

imize the nominal power generation performance, in the meantime robustly

stabilizing the WEC system in the presence of model uncertainty.

Although this dissertation is mainly about the WEC control system design, the tech-

niques mentioned above can also be applied to other vibration energy harvesting

problems.

9.2 Future Work

There are several interesting future extensions to the research presented here:

• The “optimal” subspace-based spectral factorization technique remains an open

question. In chapter 4, we choose the index set based on their relative signif-

icance to the Markov coefficients. However, this is just one possible way to

choose the index set. There may be other schemes that yield even more favor-

able results.

• One fact we did not consider here is that all the mechanical actuators exhibit

force limits. We have assumed these force limits were sufficiently high to be

disregarded. Simultaneous satisfaction of stroke saturation and actuator force

saturation can be a more realistic and more difficult topic to explore.

• Another future research area is the control system design simultaneously accom-

modating stroke saturation and model uncertainty. The technique we presented

requires precise knowledge of the WEC plant. It remains an open question as

to the ramifications when this assumed model differs from reality.

• The LTR method used in chapter 8 is not optimal in any sense. This robust

control problem can be formulated as an optimization problem, and unfortu-

nately, this optimization is nonconvex. The possibility of using certain convex
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overbounding techniques should be investigated and hopefully we can arrive at

a local optimal solution.

• The problem formulated in chapter 8 considers the optimization of nominal per-

formance, subject to the constraint that the feedback law is stability-robust in

the presence of model uncertainty. However, it would be preferable to formulate

the problem such that the feedback law is optimized to be performance-robust;

i.e., so that the worst-case power generation performance is optimized. This

problem, which is more challenging than the one considered here, remains an

item for future work.

189



APPENDIX

190



APPENDIX A

Subspace-based System Identification Techniques

Let Γ(s) be a generic transfer function whose dimension is p ∗m. And we denote

the appoximate transfer function as Γ′(s), the procedure of this system identification

techniques is below:

1. To begin with, we need to evaluate the transfer function G(iω) at the discrete

time values of ω. We can generate M + 1 frequency response data on a set of

uniformly spaced frequencies.

ωk =
πk

M
, k = 0, · · · ,M

Gk = G(eiωk), k = 0, · · · ,M (A.1)

And we want to extend the data to the full unit circle

GM+k = G∗M−k, k = 0, · · · ,M (A.2)

where (·)∗ denotes the complex conjugate.

2. Copmute the inverse dsicrete Fourier trasnform (IDFT) of frequency response
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data:

ĥl =
1

2M

2M−1∑
k=0

Gke
i2πlk/2M , l = 0, · · · , 2M − 1 (A.3)

The coefficients ĥl can be regarded as the approximate discrete time impulse

response of the transfer function Γ(iω).

3. Definite the block Hankel matrix Ĥ as:

Ĥ =


ĥ1 · · · ĥr
...

. . .
...

ĥq · · · ĥq+r

 (A.4)

where q > 0, r > 0, q+r ≤ 2M . There are different ways to assemble the Hankel

matrix. One way is to choose the points ĥl that has the most information about

the system dynamics and the size of Hankel matrix can be reduced without

lowering accuracy [68].

4. Calculate the singular value decomposition (SVD) of the Hankel matrix

Ĥ =

[
U1 U2

]Σ1 0

0 Σ2


V T

1

V T
2

 (A.5)

where both Σ1 and Σ2 are diagnol and have the singular values in decreasing

order. The partitioning of the matrix above is determined such that the singular

values in Σ2 are zero to numerical precision, while those in Σ1 are significant.

The number of the singular values in Σ1 is noted as nγ (chosen as 10 for Hr and

20 for W ).

5. Construct an approximate finite-dimensional discrete time system as:

Γ̂′(z) = D̂ + Ĉ[zI − Â]−1B̂ (A.6)
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where

Â = [first(q − 1)p rows of U1]+[last(q − 1)prows of U1] (A.7)

Ĉ = [first p rows of U1] (A.8)

B̂ =
[
I − Â2M

]
Σ1[first m rows of V1]T (A.9)

D̂ = ĥ0 − ĈÂ2M−1Σ1[first m rows of V1]T (A.10)

where (·)+ denotes the left pseudoinverse. This is the discrete time transfer

function Γ̂′(z) and then compute the matrix Â to see if it is stable (e.g., all

the poles are inside the unit disk). Any poles outside the unit disk are radially

reflected inside the disk, and then B̂, D̂ needs to be recalculated.

6. The matrix parameter {A,B,C,D} for the approximate continuous-time trans-

fer function

Γ̂(s) = D + C[sI − A]−1B (A.11)

is then found via the standard bilinear transformation using sampling time T

(we choose T = 0.1s in our example), which can be evaluated using the d2c

command in Matlab.

7. The approximate transfer function Γ′(s) needs to be postive real. We need to

check the passivity of Γ̂(s) and if it is passive, then Γ′(s) = Γ̂(s). If not, we

can find the new parameters Bnew and Dnew to approximate the behavior of the

transfer function Γ̂(s) while satisfying the passivity constraint: There exists two

matrice P, S > 0 and a scalar γ ≤ 0, such that

PAT + AP Bnew − PCT

BT
new − CP −DT

new −Dnew

 ≤ 0 (A.12)
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SAT + AS Bnew −B

BT
new −BT −I

 ≤ 0 (A.13)

CSCT − γ Dnew −D

DT
new −DT −I

 ≤ 0 (A.14)

Our objective is to minimize the value of γ. Since the above constraints are LMI,

this optimization is actually a convex optimization, which can solved efficient

in Matlab. The approximate continuous time transfer function Γ′(s) can be

expressed as:

Γ′(s) = Dnew + C[zI − A]−1Bnew (A.15)
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