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Abstract 

 

G0 associated with terminal differentiation represents the most common cellular state in 

adult multicellular organisms, yet it is poorly understood. In past years, various tissues of the 

fruit fly Drosophila melanogaster have served as a great model system to understand how cells 

establish and maintain their non-dividing state. While the Drosophila brain has been extensively 

studied in the context of neurodevelopment, relatively little is known about how the flexibility of 

cell cycle exit in terminally differentiated neurons and glia. In Chapter 2 of my dissertation, I 

show that postmitotic neurons and glia in the developing Drosophila pupa brain can be forced to 

re-enter the cell cycle and undergo mitosis after they have exited the cell cycle. Neurons can re-

enter the cell cycle up to 24 hours after they have exited the cell cycle whereas glia exhibit 

greater flexibility and can undergo cell division up to over 48h after they exit the cell cycle. 

Forcing re-entry in neurons results in cell death, while glial cell division can result in tumor-like 

growths.  

Neurons and glia are some of the longest lived cells in metazoans. How these cells deal 

with ageing-related damage is poorly understood. My work summarised in Chapter 3 shows that 

polyploid cells accumulate in the adult fly brain and that polyploidy protects against DNA 

damage-induced cell death. Multiple types of neurons and glia that are diploid at eclosion, 

become polyploid in the adult Drosophila brain. The optic lobes exhibit the highest levels of 

polyploidy, associated with an elevated DNA damage response in this brain region. Inducing 

oxidative stress or exogenous DNA damage leads to an earlier onset of polyploidy, and polyploid 
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cells in the adult brain are more resistant to DNA damage-induced cell death than diploid cells. 

Our results suggest polyploidy may serve a protective role for neurons and glia in adult 

Drosophila melanogaster brains. 
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Chapter 1. Introduction and Review of Literature 

 

The proper development of all multicellular organisms requires coordinated cell 

proliferation, growth, tissue patterning at critical times and places. Equally critical for an 

organism’s proper development is that cells stop proliferating at the times and places when they 

should. Not only is stopping proliferation development important for the function of cells, 

organs, and organ systems, it’s compromise can lead to deleterious consequences such as 

uncontrolled proliferation, cell death, tumour formation etc.  

Organisms have evolved conserved, intricate, and elegant systems to control and 

modulate proliferation and growth spatially and temporally. The process by which cells grow or 

proliferate is called the cell cycle. Various factors regulating the cell cycle, and its function have 

been very well studied over the last several decades. However, the mechanisms controlling exit 

from the cell cycle are less well understood (Buttitta and Edgar, 2007).  Moreover, the prolonged 

maintenance of a non-dividing state is critical for the proper functioning of long lived cells in 

various tissues throughout the lifespan of an organism. The cells of the nervous system; neurons 

and glia, are some of the longest lived in many animal. It is known that maintaining a non-

dividing state in these cells is critical for brain function (Aranda-Anzaldo and Dent, 2017; Frade 

and Ovejero-Benito, 2015; Ruggiero, 2012), yet how it is established and maintained in them is 

poorly understood. The work summarized in this dissertation seeks to obtain a better 

understanding of this.  
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My studies use the fruit fly, Drosophila melanogaster to study cell cycle exit in the brain. 

In the course of studying the adult fly brain, we discovered that some cells in adult and ageing 

fly brains re-enter the cell cycle and become polyploid. Before I introduce the cell cycle, cell 

cycle exit and re-entry, I will describe why the humble fly is a great model system in which to 

study this. 

1.1. The Merits Of Using Drosophila 

The reasons to use Drosophila to study basic cellular biology and physiology are 

manifold. Flies have been well studied as a genetic model organism for over one century, and as 

a result, their development has been catalogued in great detail (Ashburner,1976). Their entire 

genome is sequenced (Adams et al., 2000), and several tools for facile genetic manipulation have 

been developed over the years. Genes and proteins involved in important processes such as (but 

certainly not limited to) the cell cycle are well conserved between flies and humans, and what 

makes our studies of the cell cycle in flies even more appealing is the relative lack of 

redundancy. Where humans and mice have several proteins performing overlapping and similar 

functions, flies generally have only one or two. This makes genetic experiments easier.  

Furthermore, sophisticated genetic tools in Drosophila developed over several decades 

allow us to manipulate gene expression in specific cells or tissues to understand their functions at 

in vivo. Flies are also inexpensive and easy to maintain in the laboratory. Of specific interest to 

my studies is the short lifespan of flies (compared to humans). This makes experiments that 

require ageing animals last a few weeks, rather than several months it may take to age rats or 

mice. Flies develop from egg to adult in a matter of approximately ten days and can live up to 

around two months as adults (Ashburner, 1976). All the above reasons make the fly a very 

attractive model organism.  
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The following section of this chapter will introduce the cell cycle, the main factors 

governing cell cycle control, and the basic cell cycle machinery. While the general structure of 

the cell cycle is well conserved across eukaryotes from yeast to plants, flies and mammals, this 

dissertation will focus mostly on the Drosophila cell cycle, and where applicable and/or 

necessary, specify the mammalian orthologues. 

1.2. The Cell Cycle 

The series of events governing cellular growth, duplication of the genome and cell 

division are termed the cell cycle, a process well conserved across eukaryotes. Progress through 

the cell cycle is intricately governed by various regulatory factors, and is orchestrated by 

phosphorylation events.  

The cell cycle has four main phases: A first growth phase termed ‘G1’ , Replication or 

synthesis of DNA or ‘S’ phase, a second growth phase termed ‘G2’ and mitosis or ‘M’ phase 

which marks the division of the nucleus followed by cytokinesis which leads to complete cell 

division. The cell cycle is termed a ‘cycle’ because in actively dividing tissues or populations of 

cells, mitosis and cytokinesis is followed by the subsequent G1, S and so on. The core machinery 

of the cell cycle are protein complexes comprising cyclins and cyclin-dependent kinases (CDKs) 

which oscillate in expression as well as activity to ensure progression through the cell cycle. 

Progression through the cell cycle is robust and is tightly controlled at various regulatory levels. 

 Transcriptional Control Of The Cell Cycle 

The synthesis of cell cycle genes at the proper levels and times during the cell cycle is 

controlled by the E2F family of transcription factor complexes (Duronio and O’Farrell, 1995; 

Dynlacht et al., 1994; Hiebert et al., 1992; Zheng et al., 1999). E2F factors can be either 
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transcriptional activators or repressors and are complexed in heterodimers with DP 

(Dimerization Partner) proteins(van den Heuvel and Dyson, 2008). Drosophila have one 

activating E2F (encoded by the gene dE2f1) (Ohtani and Nevins, 1994) and one repressive E2F 

(encoded by the gene dE2f2) as well as one DP (encoded by dDp) in contrast to nine mammalian 

homologues of E2F (encoded by eight genes) and three of DP (encoded by two genes) 

(Cayirlioglu et al., 2001; Dynlacht et al., 1994; Lammens et al., 2009; Ohtani and Nevins, 1994; 

van den Heuvel and Dyson, 2008) . 

The E2F1/DP (simply referred to as E2F) complex is particularly important for the 

transcription of cyclins that regulate progression through G1, the transition from G1 to S phase, 

as well as key proteins necessary for the initiation of DNA replication (Duronio and O’Farrell, 

1995; Dynlacht et al., 1994). The transcriptional activity of E2F complexes is negatively 

regulated by the retinoblastoma (RB) family of proteins (Rbf1 and Rbf2 in flies, pRb, p130 and 

p107 in mammals) (Bosco et al., 2001; Cayirlioglu et al., 2003; Dimova et al., 2003; Du and 

Dyson, 1999; Du et al., 1996; Hiebert et al., 1992). Unphosphorylated RB can bind to E2F1/DP 

dimers, repressing their transcriptional activity. The phosphorylation of RB in G1 and the G1 to 

S phase transition allows E2F dependent transcription cell cycle genes (Harbour et al., 1999; 

Narasimha et al., 2014). The phosphorylation mediated control of cell cycle phase transitions 

will be further introduced in later sections.  

Some critical products of genes transcribed by E2F during G1 and S are Cyclin E, Cyclin 

A and CDK2, DNA polymerase alpha, the DNA clamp and processivity factor PCNA 

(Proliferating Cell Nuclear Antigen) (Duronio and O’Farrell, 1995; Herr et al., 2012). Later in 

the cell cycle, E2F dependent transcription is important for the expression of the kinases Cyclin 

B, CDK1 and Aurora A, Aurora B, polo and mad2 which are critical for mitosis(Lukas et al., 
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1999; Ren et al., 2002). E2F complexes are responsible for the transcription of several hundred 

cell cycle-related genes at the right times during the cell cycle. The next layer of regulation, thus, 

is the activity of the proteins encoded by the cell cycle genes, which is controlled at the level of 

phosphorylation 

 Kinases, Phosphatases And The Cell Cycle 

As discussed earlier, the core machinery of the cell cycle is governed by phosphorylation 

events driven by Cyclin and cyclin dependent kinase activity(Evans et al., 1983). Most cyclins 

and kinases act in obligate dimers (Morgan and Morgan, 2007). In Drosophila, progression 

through G1 is marked by accumulation of Cyclin D and its partner CDK4, which are activated by 

phosphorylation upon external mitogenic cues (Datar et al., 2000). The complex of Cyclin 

D/CDK4 is responsible for initially phosphorylating RB, partially inactivating it, allowing the 

release of E2F which in turn transcribes Cyclin E and CDK2 (Harbour et al., 1999; Narasimha et 

al., 2014). Cyclin E complexes with CDK2 in late G1 phase to further phosphorylate RB, which 

in turn promotes more E2F dependent transcription of cell cycle genes that are necessary for 

DNA synthesis (S phase) (Narasimha et al., 2014). Thus, Cyclin E/CDK2 and E2F form a robust 

positive feedback loop which promotes the transition to S phase. During S phase, Cyclin 

D/CDK4 and Cyclin E/CDK2 are necessary for the phosphorylation of several target proteins 

which are necessary for the progression through the cell cycle (Datar et al., 2000; Duronio and 

O’Farrell, 1995; Knoblich et al., 1994). Cyclin E/CDK2 phosphorylates and activates various 

components of the DNA replication machinery as well as proteins responsible for the cell cycle-

coupled transcription of histones.  

DNA replication begins at genomic regions called origins which are bound by complexed 

called Origin Recognition complexes (ORCs)  These complexes are required for initiation of 
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DNA replication. The initiation signal is provided by the recruitment of CDC6 (a target of 

CyclinE/CDK2), which activates Cdt1 to recruit MCM (mini chromosome maintenance) 

complex proteins, to allow DNA replication. Re-replication of DNA during the cell cycle is 

prevented by the protein Geminin, which binds to and prevents Cdt1 from reactivating origins 

(Ayad, 2005; Ballabeni et al., 2013; Lygerou and Nurse, 2000).  

In late S and G2 phases, the levels of Cyclin A/CDK1 and Cyclin B/CDK1 complexes 

increase in preparation for mitosis (Lukas et al., 1999; Sprenger et al., 1997). Cdk1 is 

phosphorylated by the kinases Wee and Myt1 and kept inactive (Jin et al., 2005; Liu et al., 2000). 

The phosphatase string (cdc25c in mammals) counteracts these inhibitory kinases (Edgar et al., 

1994). As the levels of Cyclin B increase, the Cyclin B/CDK1 complexes phosphorylate and 

inactivate Wee and Myt, promoting mitotic entry. During early M phase, Cyclin/CDKs also 

activate the APC/C complex, activating a feedback loop which will result in their own 

degradation (Peters, 2002; Vodermaier, 2004; Zachariae and Nasmyth, 1999). The activity of 

mitotic kinases such as polo, Aurora A and Aurora B promote the progression through the 

various stages of mitosis and cytokinesi s(Archambault and Carmena, 2012; Barr et al., 2004). At 

the end of mitosis, the phosphatase complex PP2A-B55 rapidly dephosphorylates the substrates 

of mitotic kinases prior to the next cell cycle (Pereira and Schiebel, 2016). 

 Proteolytic Control of the Cell Cycle 

Timely degradation of cell cycle proteins is another feature of the cell cycle which ensure 

the robust and switch-like transitions between phases of the cell cycle. Two main classes of 

ubiquitin-ligase proteolytic complexes play critical roles in the degradation of cell cycle proteins. 



 

7 

 

 SCF Ubiquitin Ligases 

The SCF (Skp1/Cullin/F-box) family of E2-ubiquitin ligase complexes is responsible for 

degradation of key proteins to promote the G1 to S transition. The F-box subunit of this complex 

renders the substrate specificity (Vodermaier, 2004). The substrates of the SCF complexes will 

be marked for degradation only when phosphorylates, which is another factor which contributes 

to the specificity of these ligases (Cardozo and Pagano, 2004; Hershko and Ciechanover, 1998; 

Pickart, 2001). Important targets of SCF complexes include Cyclin E, E2F1 and the cell cycle 

inhibitor Dacapo (dap) which will be discussed in the following section (Davidson and Duronio, 

2012; de Nooij et al., 1996; Dui et al., 2013; Lane et al., 1996; Moberg et al., 2001; Zielke et al., 

2011). 

 APC/CFzy 

The APC/C (Anaphase Promoting Complex/Cyclosome) is a family of E3-ubiquitin 

ligases that promote the destruction of substrates during various phases of the cell cycle. The 

degradation activity of this family of complexes is not dependent on the phosphorylation state of 

the substrate. Rather, the activity is regulated by the binding of activator subunits, which bind to 

the complex differentially depending on the phase of the cell cycle, as well as confer specificity 

(Harper et al., 2002; Peters, 2002).  

The APC/CFzy (APC/Ccdc20 in mammals) is critical for the metaphase to anaphase 

transition during mitosis. The activating factor Fizzy (cdc20 in mammals) is responsible for the 

specificity in this complex (Dawson et al., 1995). The APC/CFzy complex which is activated by 

phosphorylation of Fzy by mitotic cyclin/CDK complexes, in turn, mark Cyclin B and other 

important mitotic kinases for degradation at anaphase. By the end of mitosis, Cyclin A, B and 

CDK1 are rapidly degraded (Dawson et al., 1995).  
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 APC/CFzr 

After mitosis, the reactivation of mitotic cyclins is prevented by the APC/CFzr (APC/Ccdh1 

in mammals) complex which is complexed with the activator subunit Fizzy Related (Fzr). 

Fzr/Cdh1 specifically targets mitotic cyclins and not the cyclin involved in G1-S transition 

(Meghini et al., 2016; Raff et al., 2002), allowing the progression of the cell cycle. Cdh1 is 

inactivated later in the cell cycle by phosphorylation by G1-S cyclin/CDK complexes when their 

levels increase(Peters, 2002; Raff et al., 2002).  

Thus, the interplay of degradation complexes acts as a negative feedback loop, promoting 

the oscillation of cell cycle proteins (Pomerening et al., 2005).  

 Cell Cycle Inhibitors 

The action of cyclins and CDKs can also be inhibited by Cyclin-dependent Kinase 

Inhibitors (CKIs). These can be classified into two groups: the INK (Inhibitor of CDK4) family 

(Cánepa et al., 2007; Roussel, 1999) of CKIs and the Cip/Kip family which inhibit the activity of 

CDK2 complexes (Cerqueira et al., 2014; Harper and Elledge, 1996; Xiong et al., 1993). These 

are referred to as ‘families’ of proteins only because they are found in quite some diversity in 

mammals. Mammals possess four INKs (p16INK4a, p15INK4b, p18INK4c and p19INK4d), and three 

Cip/Kip CKIs (p21Cip1, p27Kip1, and p57Kip2). In Drosophila, Dacapo (dap) is the predominant 

CKI, and its function is to antagonize Cyclin E/CDK2 activity (Lane et al., 1996). Flies also have 

another CKI roughex (rux) which functions as a CyclinA/CDK1 inhibitor during mitosis (Foley 

and Sprenger, 2001). 
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 DNA Damage And Cell Cycle Checkpoints 

To ensure fidelity of DNA replication and appropriate segregation of chromosomes, the 

progression of the cell cycle can be halted by regulatory checkpoints when a cell senses DNA 

damage. Various checkpoint cascades can be activated depending on when in the cell cycle the 

damage occurs. These checkpoints serve to halt or slow the progression of the cell cycle, 

allowing the cell to repair the DNA damage before proceeding further through the cell cycle. 

Usually, checkpoint proteins are kinases which act rapidly to effect the inhibition of 

Cyclin/CDKs to slow down the cell cycle. If the damage is too severe, checkpoints can also 

initiate apoptosis.  DNA damage is sensed at two main stages: during replication and during 

chromosome segregation. A cell actively undergoing DNA synthesis is very susceptible to DNA 

damage. When DNA damage occurs during S phase, the intra-S checkpoint is activated by the 

kinase ATM which is recruited to double strand breaks (DSBs) on DNA. ATM can 

phosphorylate and activate downstream kinases that will ultimately result in the inactivation of 

Cyclin E/CDK2, slowing down S-phase to allow for DNA repair (Blackford and Jackson, 2017).  

One critical target of ATM is the conserved tumor suppressor p53 (Agarwal et al., 

1998)which plays important roles in regulating genome stability, progression through the cell 

cycle and apoptosis at various stages in the cell cycle. In mammals, p53 is known to directly 

induce the transcription of the CKI p21Cip1 which in turn slows down the cell cycle by inhibiting 

CDK2 activity (Agarwal et al., 1995). In flies, p53 does not play a direct role in slowing down 

the progression of the cell cycle. However, Drosophila p53 functions as a tumor suppressor 

primarily by inducing the expression of pro-apoptotic genes (Fan et al., 2010; Ollmann et al., 

2000; Vousden and Prives, 2009). 
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During mitosis, DNA damage or improper attachment of chromosomes to microtubules 

in the mitotic spindle can trigger the spindle checkpoint. The spindle checkpoint cascade results 

in the inactivation of APC/CFry/cdc20, preventing metaphase to anaphase transition the until 

chromosome attachments are restored, allowing chromosome segregation to proceed (May and 

Hardwick, 2006).  

Another critical  

1.3. G0: Exit From The Cell Cycle 

Most studies of the cell cycle have been performed in actively dividing or cycling cells. 

Decades of research have dissected the specifics and details of processes underlying cell 

division. However, most cells in adult organisms are non dividing or ‘post-mitotic’. Relatively 

little is known about how cells acquire this non dividing state, and even less about how they 

maintain it (Buttitta and Edgar, 2007).  

 The Types Of G0 

The term ‘G0’ has been coined as a blanket term to refer to the state or ‘phase’ in 

which non-dividing cells reside. Several differing non dividing states are all refereed to as 

G0. To better understand G0, it important to distinguish the different ‘types’ of G0 as they vary 

in regulation, context, and more importantly: the how permanent they are.  

 Quiescence  

Quiescence is a temporary and reversible state of G0, exemplified in vivo by stem 

cells and in vitro by cells in culture which are starved of serum or nutrients. Cells in culture 

that are deprived of nutrients enter a quiescent state which is easily reversible upon re-

addition of nutrients (Coller, 2007; Coller et al., 2006).  Stem cells can stay dormant (i.e., 
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non-dividing) for extended period of time, and be induced to re-enter the cell cycle to divide 

and produce daughter cells and regenerate in response to damage such as wounding or cell 

loss (Cho et al., 2019). The maintenance of G0 in stem cells is important, as compromised G0 

can lead to uncontrolled proliferation and the formation of tumours (Wikenheiser-Brokamp, 

2006). Several developmental cancers such as glioblastomas and retinoblastomas are caused 

by mutations in key cell cycle inhibitor genes (tumor suppressors) that result in uncontrolled 

proliferation of stem cells resulting in tumor formation (Wikenheiser-Brokamp, 2006). 

Quiescent cells almost always thought to exit the cell cycle after a mitosis, and their DNA 

content is diploid  (2C) (Coller, 2007). Some stem cells such as those in the developing fly 

ventral nerve cord (VNC) are also known to “pause” the cell cycle in G2 – these cells have a 

(4C) DNA content (Contreras et al., 2018; Otsuki and Brand, 2018, 2019). Stem cells can 

rapidly reenter the cell cycle upon receiving cues, and this feature distinguishes this state of 

G0 from the others.  

 Cellular Senescence 

Cellular Senescence associated G0 is a permanent arrest from the cell cycle, 

associated with high levels of DNA damage and cellular ageing (Campisi, 2013; López-Otín et 

al., 2013). First identified in vitro, cells subjected to repeated passages lose their ability to keep 

dividing in culture as their telomeres shorten. Senescent cells have since been identified in vivo 

as well and display similar cellular features (Di Micco et al., 2006; Sapieha and Mallette, 

2018). Senescent cells are inert to mitogens and do not respond to growth factors. This state of 

G0 is considered irreversible and senescent cells can exit the cell cycle with 2C or 4C DNA 

content (Gire and Dulic, 2015).  
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 Terminal Differentiation   

Terminal differentiation is the process by which cells acquire their final fate. The most 

prevalent form of G0 in vivo is associated with terminal differentiation. Cells in developing 

organisms exhibit an exit from the cell cycle which is coordinated and coincident with terminal 

differentiation (Buttitta and Edgar, 2007). In a majority of cells, the G0 associated with terminal 

differentiation is permanent, examples include muscle cells, neurons and most epithelial 

cells(Buttitta et al., 2007, 2010; Cunningham et al., 2002; Huh et al., 2004; Zacksenhaus et al., 

1996). These cells exit the cell cycle with a diploid (2C) DNA content. A vast majority of cells 

composing adult organisms reside in this state of G0.  

How exactly do cell-intrinsic and cell-extrinsic developmental signals, terminal 

differentiation signals and the cell cycle machinery coordinate to make functional cells and 

tissues? Studies over the past few years has suggested that there are several overlapping and 

redundant biological pathways that influence this (Flegel et al., 2016; Ma et al., 2015, 2019; Sun 

and Buttitta, 2015). The sheer ubiquity of this type of G0, coupled with just how little is known 

about this state pave an inevitable path of inquiry. For the rest of this chapter, ‘G0’ will be used 

to refer to this third type of cell cycle exit. 

 How Is G0 Established And Maintained? 

G0 is often termed ‘arrest’ from the cell cycle and the inherent implication of the noun 

‘arrest’ is that an active process ceases to occur. This presents a somewhat incomplete notion: 

while it is surely true that the active progression through the cell cycle stops, it does not account 

for the high metabolic activity of postmitotic cells, nor the factors necessary to ensure that 

another cell cycle does not occur.  
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Just as the control of processes within the cell cycle controlled at various levels, exit from 

the cell cycle is also tightly controlled. I will very briefly attempt to summarise in the following 

few paragraphs what is known about the factors controlling G0 establishment and maintenance.  

 CKI Mediated Inhibition Of Cyclins 

In mammals, the INK family of CKIs play important, tissue-specific roles in ensuring that 

exit from the cell cycle is maintained by inhibiting CDK4 activity. The expression of  the 

Cip/Kip family of CKIs are also upregulated, sometimes in a manner induced by factors 

influencing terminal differentiation to initiate cell cycle exit (Cerqueira et al., 2014; Cunningham 

et al., 2002; Guo et al., 1995; Parker et al., 1995; Thomas et al., 2004). In Drosophila, Dacapo 

plays a similar role, and is upregulated in postmitotic cells undergoing their final cell cycle and 

newly differentiated cells (Colonques et al., 2011; de Nooij et al., 1996; Lane et al., 1996; 

Sukhanova et al., 2007). In neurons, the expression of dap is transcriptionally induced by specific 

transcription factors upon differentiation. Cells in the eye mutant for dap fail to exit the cell cycle 

in a timely fashion, and undergo a few extra rounds of cell division prior to exit. However, dap is 

not necessary to induce cell cycle exit in the wing, suggesting that multiple redundant and tissue 

specific factors are needed to ensure proper cell cycle exit (Buttitta et al., 2007).  

 Increased Cyclosome Activity 

Increased activity of the activator of APC/C, Fzr is observed in postmitotic tissues upon cell 

cycle exit, suggesting a role for the APC/CFzr complex in marking mitotic cyclins for degradation 

(Buttitta et al., 2010). Increased levels of various components of the APC/C complex could also 

play a role in raising the threshold for re-entry into the cell cycle by increasing the amount of G1-

S cyclin/CDKs needed to inactivate the cyclosome.  Studies in the fly eye and wing where the 
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APC/CFzr is inhibited upon cell cycle exit show that cell cycle exit can be delayed by inhibition 

of this complex alone (Buttitta et al., 2010).  

 Transcriptional Repression 

Exit from the cell cycle is often coincident with the silencing of cell cycle gene expression. 

This is in part effected after by a transcriptional repressor complex comprising Rbf, the 

repressive E2F, E2F2, Myb and MuvB termed the dREAM/MMB complex (Georlette et al., 

2007; Lewis et al., 2004, 2012; Wen et al., 2008). 

 Changes In Chromatin Accessibility 

In addition to transcriptional repression, the silencing of cell cycle genes can be further 

reinforced by the DREAM complex by its ability to recruit co-repressors as well as chromatin 

modifiers (DeBruhl et al., 2013; Fischer and DeCaprio, 2015; Georlette et al., 2007; Lee et al., 

2012; Sadasivam and DeCaprio, 2013; Uxa et al., 2019; Wen et al., 2008). Considerable work on 

this has been performed by my colleagues to investigate how changes at the level of nucleosome 

remodelling and chromatin accessibility can affect cell cycle exit in the fly eye and wing (Flegel 

et al., 2016; Ma et al., 2015, 2019; Schreader et al., 2010). 

-- 

It is common wisdom in the cell proliferation field that the longer a cell has been in a non-

dividing state, the more encouragement it needs to be forced to re-enter the cell cycle. This has 

been well studied in the fly wing and eye imaginal tissues during metamorphosis (Buttitta and 

Edgar, 2007; Buttitta et al., 2007; Flegel et al., 2016; Ma et al., 2015, 2019; Sun and Buttitta, 

2015). In both these tissues, cell cycle exit is fairly synchronous and occurs 24 hours after the 

onset of metamorphosis. After the 24h into metamorphosis, cells in the wing and eye display a 

‘flexible’ cell cycle exit for a short duration, during which ectopic expression of certain positive 
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regulators of the cell cycle can induce prolonged cycling or delayed cell cycle exit (Buttitta and 

Edgar, 2007). After this flexible period, cells in the wing and the eye become ‘robustly’ 

postmitotic and increasingly refractory to such signals (Buttitta et al., 2010). This sets up many 

interesting questions:  

Is the duration of flexibility the same in all fly tissues? Do various types of cells in the same 

tissue display the same properties? If so, can we identify a principle for cell cycle exit 

maintenance? If not, what underlies the differences? Is it determined by cell fate, structure, 

morphology, function? Is the underlying chromatin state different between these cells?  The 

work described in Chapter 2 begins to address some of  these questions by manipulating cell 

cycle exit in different cell types of the developing Drosophila pupal brain during metamorphosis. 

How is G0 maintained in long-lived cells? Using the ageing adult fly brain, we sought to 

address this question. Our initial experiments led to a surprising finding which is described in 

detail in Chapter 3. We discovered that in the adult fly brain, a proportion of postmitotic neurons 

and glia re-enter the cell cycle to become polyploid. The remainder of this chapter will introduce 

the concepts of variant cell cycles, polyploidy, its functions and how it plays a role in response to 

damage and repair. 

1.4. Variant Cell Cycles 

The canonical cell cycle starts with a diploid cell containing two copies of each 

chromosome, and at the end of one cycle, results in two daughter cells, each diploid with two 

copies of each chromosome. Exceptions to this can be seen in several cell types and organisms 

across the animal and plant kingdoms (Edgar and Orr-Weaver, 2001a; Orr-Weaver, 2015). 

Variant cell cycles which give rise to a cell that contains more than two copies of the genome are 

classified as endoreduplication or endoreplication cycles. The resulting cell is polyploid in DNA 
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content. There are different types of endoreplication cycles, and different contexts in which cells 

employ them to become polyploid.  

Endoreplication cycles utilise parts of the cell cycle machinery to replicate DNA, but 

these cycles are curtailed and result in one cell with increased DNA content instead of two cells. 

Endoreplication cycles can involve only cycles of DNA replication and growth (termed 

endocycles) resulting in one nucleus with increased DNA content, or a cycle of with replication 

mitosis without an ensuing cytokinesis (termed endomitosis), resulting in two or more nuclei in 

one cell. 

 Endocycles 

Endocycles are variant cell cycles characterised by alternating Gap and DNA synthesis 

phases (Edgar and Orr-Weaver, 2001a).  In flies, endocycling is thought to be driven 

predominantly by an oscillation of Cyclin E/CDK2 and controlled by the transcriptional activity 

of E2F (Duronio and O’Farrell, 1995; Edgar and Orr-Weaver, 2001a; Moon and Kim, 2019; 

Zielke et al., 2011).Another important factor that plays a role in endocycle progression is the 

APC/CFrz/cdh1 which ensures not only the degradation of mitotic CDKs, but also the timely 

degradation of geminin at the at S phase to prevent re-replication(Edgar et al., 2014). In 

mammals, variant or non-canonical E2Fs are employed specifically during endocycles implying 

a specialised role for these regulatory factors (Matondo et al., 2018; Pandit et al., 2012). 

Several types of cells in various organisms employ endocycles during development or in 

contexts of cellular damage. Developmentally regulated endocycles occurs in some cells during 

development to aid the growth of the organism – cells generated by these endocycles usually 

possess several to several hundred copies of the genome, and often grow very large in size It is 

interesting to note that developmentally regulated endocycles can generate cells of vastly varying 
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ploidies depending on the tissue and context. While the enterocytes of the fly intestinal 

epithelium show an average ploidy of 8C, nurse cells of the ovaries and cells of the salivary 

gland can be up to 1024C!(Orr-Weaver, 2015).  

Some examples of developmentally regulated endocycles in flies include the larval 

epidermis, salivary gland, fat body and some Sub-perineurial glia of the blood brain barrier 

(Britton and Edgar, 1998; Hammond and Laird, 1985; Lee et al., 2009, 2020; Von Stetina et al., 

2018; Unhavaithaya and Orr-Weaver, 2012). In the adult fly, the enterocytes in the gut, the nurse 

and follicle cells of the ovary in adult females (Fox and Duronio, 2013; Royzman et al., 2002). 

These are all very large cells which either serve a biosynthetic demand or crucial barrier 

function. The cells resulting from these endocycles are usually constitutively polyploid.  

While developmental endocycles have been well studied in Drosophila, they are also 

present and in other organisms. Several tissues in plants such as leaves, roots and trichomes have 

cells that endocycle after terminal differentiation to support growth(Lang and Schnittger, 2020; 

Orr-Weaver, 2015; De Veylder et al., 2011). In mammals, the most studied example of 

endocycling is hepatocytes in the liver, and the trophoblast giant cells of the placenta. Just like in 

the fly, the different polyploid cells in mammals can exhibit varied levels of polyploidy. 

Polyploid hepatocytes contain 4C to 8C DNA content, however trophoblast giant cells can have 

over 1000 copies of the genome (Celton-Morizur and Desdouets, 2010; Jensen et al., 1989; 

Klisch et al., 1999; Melchiorri et al., 1993; Roszell et al., 1978; Severin et al., 1984; Zuckermann 

and Head, 1986; Zybina and Zybina, 1996). It is interesting to note here that highly polyploid 

cells such as nurse cells and trophoblast giant cells which provide critical trophic support are 

short lived. 
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In addition to cells that undergo developmentally regulated endocycles to become 

polyploid, some cells show a capacity to enter an endocycle in contexts of wounding and 

damage. These will be discussed in the following sections.  

 Endomitosis 

Endomitosis is another variant cell cycle which differs from endocycles in that it 

produces a cell with two or more nuclei. Endomitoses comprise a G1, S, G2 and a mitosis but no 

cytokinesis (Edgar and Orr-Weaver, 2001a; Orr-Weaver, 2015). Thus, the regulation of 

endomitoses is different from that of an endocycle. Endomitotic cell cycles are characterized by 

a failure to undergo cytokinesis which results in binucleate or multinucleate cells.  Endomitotic 

cells are less common than endocycling cells.  

Endomitoses are best studied in the platelet-producing megakaryocyte cells in mammals 

(Bluteau et al., 2009; Ravid et al., 2002; Zhang et al., 1996; Zimmet and Ravid, 2000). Some 

SPGs in the fly blood brain barrier are known to become multinucleate by endomitosis (Eliades 

et al., 2010; Von Stetina et al., 2018; Unhavaithaya and Orr-Weaver, 2012). Examples of 

endomitosis giving rise to binucleate cells are cardiomyocytes in mouse and human hearts, 

lactating mammary epithelial cells and the binucleate cells of the Drosophila accessory gland 

(Box et al., 2019; Pandit et al., 2013; Paradis et al., 2014; Rios et al., 2016; Stephen et al., 2009; 

Taniguchi et al., 2014, 2018). 

 Why Become Polyploid? 

Why do some cells become polyploid? What are the benefits of entering a variant cell 

cycle rather than undergoing cell division? Constitutively polyploid cells, as mentioned before, 

mainly perform two important functions: they usually have increased biosynthetic capacity, and 
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they maintain barrier function (Edgar and Orr-Weaver, 2001a; Lee et al., 2009; Øvrebø and 

Edgar, 2018). Polyploid cells with more copies of the genome can increase cell size and 

metabolic functions efficiently. Undergoing cell division involves cell rounding, cytoskeletal 

rearrangements and potential loss of cell-cell contacts (Erenpreisa and Cragg, 2001; Lancaster et 

al., 2013; Orr-Weaver, 2015; Sauer, 1935). This can be problematic in cells performing 

important barrier functions. Endocycling can therefore be a way for these cells to grow in size 

and genome copy number without increasing in cell number (Edgar and Orr-Weaver, 2001a).  

One additional benefit of polyploidy is resistance to DNA damage conferred by the 

number of copies of the genome – somatic mutations in one copy of an gene will not greatly 

impact the capacity of the cell to function since will have many other copies of the genome. In 

endomitotic cells: the prevalence of binucleation in contractile tissues could mean that binucleate 

cells are more resistant to stretch and pull stresses (Edgar and Orr-Weaver, 2001a; Taniguchi et 

al., 2018; Windmueller et al., 2020). 

Thus, given the several benefits of polyploidisation, it is no surprise that these benefits 

have been adopted by otherwise diploid cells under conditions of stress or damage. Considerable 

work has been done in Drosophila  and some mammalian systems to understand the role of 

polyploidisation in response to wounding and induced cell loss as well as how polyploidy 

protects cells from DNA damage. This body of work has furthered our understanding of how 

polyploidy plays a role in acute damage. The next section will first describe how some cells cope 

with various kinds of damage to become facultatively polyploid. I will then revisit older 

literature in other (mostly vertebrate) model organisms which has recorded differing levels of 

polyploidy in tissues which show facultative polyploidy or changes in levels of ploidy in 

contexts of ageing, as well as with chronic disease. The goal is to appreciate these early 
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observations with a modern perspective which may help us develop a better understanding of the 

phenomenon described in Chapter 3. 

 DNA Damage Resistance 

For over 80 years, scientists have observed that polyploid cells are able to endure and 

survive DNA damage better than diploid cells (Muntzing and Prakken, 1941). The resistance to 

DNA damage is attributed, in most part, to the number of copies of a gene that a polyploid cell 

has. If a cell has several ‘spares’, DNA damage caused by random somatic mutation to one copy 

of a crucial gene will not impede the cell’s ability to function or survive, as it will have more 

copies of the gene (Edgar and Orr-Weaver, 2001b; Edgar et al., 2014; Øvrebø and Edgar, 2018). 

The earliest studies on the resistance polyploid cells show to DNA damage were performed in 

the 1940s. (Muntzing and Prakken, 1941). These studies compared the response of  whole 

organism tetraploids to diploid rye plants and linked the resistance to radiation damage to ploidy 

variations.  

Functional studies in genetic model organisms have since furthered our understanding of  

how some polyploid cells may resist DNA damage. The most prominent model used to 

understand the relationship between polyploidy and DNA damage resistance has been the 

various polyploid tissues in Drosophila. Studies in the follicle cells, fat body as well as salivary 

glands in the fly have shown that endocycling cells do not undergo apoptosis as a result of 

induced genome instability(Mehrotra et al., 2008). These polyploid cells can tolerate high levels 

of DNA damage, and harbour double strand breaks to their DNA, but do not undergo apoptosis. 

Further studies have shown that low levels of the tumour suppressor protein p53 in these 

endocycling cells is responsible for conferring their resistance to cell death(Mehrotra et al., 2008; 

Zhang et al., 2014).  The tumour suppressor p53 is responsible for activating the expression of 
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proapoptotic genes hid, reaper and grim in Drosophila, and these proteins are in turn upstream of 

the caspase cascade. Low levels of p53 in Drosophila polyploid cells, combined with chromatin-

level silencing of the pro-apoptotic genes confer high levels of resistance to DNA damage-

induced cell death in these polyploid cells (Mehrotra et al., 2008; Park et al., 2019; Zhang et al., 

2014).   

Cells of the Arabidopsis thaliana root will increase the proportion of cells that become 

polyploid as well as increase the degree of polyploidy in these cells in response to various kinds 

of radiation and chemically induced DNA damage.(Adachi et al., 2011). 

Studies of cancer cells show that polyploidy can be induced by DNA damage. This is 

frequently observed in cancer cells which lack cell cycle checkpoints. Failure of cytokinesis or 

premature exit from the cell cycle without undergoing mitosis often results in tetraploid cancer 

cells. Several types of carcinomas with inactivated p53 or Rb have cells with hyperploid DNA 

content. Severe telomere attrition has been implicated in these cases as the source of DNA 

damage. Chemotherapy has been shown to give rise to polyploid giant cancer cells (PCGCs) 

(Davoli and de Lange, 2011; Lazzerini Denchi et al., 2006). 

Polyploid cells are protected from DNA damage, and polyploidy can be induced by DNA 

damage. This suggests that polyploidy has been employed in several types of tissues and 

organisms as a robust adaptation to DNA damage. In addition to DNA damage, polyploidy has 

also been employed in other contexts of acute damage, particularly in tissues where very few or 

no stem cells exist. 

 Wound Healing And Compensatory Growth  

Cells in the Drosophila adult abdominal epithelium respond to wounding by re-entering 

the cell cycle as well as undergoing cell fusion to become polyploid close the wound. Induction 
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of the endocycle in these cells is dependent on the upregulation of E2F by the Hippo/Yorkie 

pathway as well as the degradation of mitotic cyclins by APC/CFzr. Polyploidisation is also 

known to play a role in wound healing in the mammalian corneal endothelium, heart and 

keratinocytes (Gandarillas et al., 2019; Grendler et al., 2019; Losick, 2016; Losick et al., 2013; 

Trakala and Malumbres, 2014; Werner et al., 2007). 

Endoreplication has also been implicated in alternate modes of regeneration and response 

to cell loss. The liver remains best studied in this context as well in mammals, but recent studies 

have shown that polyploidisation occurs in renal tubular epithelial cells in response to ischemic 

damage (Lazzeri et al., 2018; Matsumoto et al., 2020; Melchiorri et al., 1993). Other examples of 

endocycling in response to cell loss include the epicardium of the zebrafish heart (Uroz et al., 

2019). In Drosophila, the enterocytes of the intestinal epithelium, the follicle cells of the ovary 

and the main cells of the accessory gland can cope with induced cell death by engaging a 

compensatory cellular hypertrophy  or endocycle program to maintain tissue size and 

homeostasis (Box et al., 2019; Edgar et al., 2014; Øvrebø and Edgar, 2018; Shu et al., 2018; 

Tamori and Deng, 2013).  

Given the benefits of polyploidisation in non-dividing tissues, and relative prevalence of 

facultative polyploidisation occurring in response to myriad acute sources of damage, one is 

tempted to ask the following: does polyploidy also play a role in chronic damage? Several long-

lived tissues endure constant assaults as well as deteriorating cellular functions such as 

accumulation of DNA damage, loss of proteostasis, changes in metabolism and increased 

oxidative stress (Hunt et al., 2019; López-Otín et al., 2013; Rodriguez-Fernandez et al., 2020).  

Could polyploidisation serve as an adaptation to cells in ageing tissues with very few or no 

stem cells?  Cytological observations in various murine and other invertebrate and vertebrate 
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tissues suggest that accumulation of polyploidy in ageing tissues may be more common than is 

appreciated.  

 Age-Dependent Accumulation Of Polyploidy? 

The murine liver and the heart have been extensively studied in the context of polyploidy. 

In these tissues, most cells are diploid at birth, and the onset of polyploidy occurs at the onset of 

weaning and acquisition of sexual maturity. A similar pattern of onset of polyploidisation is also 

observed in the pancreas of mice and rats, and the lacrimal glands of male rats . In addition, an 

increase in the proportion of polyploid cells with age has been observed and reported in the 

adrenal and thyroid glands (Bohman et al., 1985; Carriere and Patterson, 1962; Gahan, 1977; 

Geschwind et al., 1958; Gilbert and Pfitzer; Nguyen and Ravid, 2010; Paulini and Mohr, 1975; 

Roszell et al., 1978; Teir, 1949). In all of these cases, the proportion of polyploid cells increases 

rapidly at first (upon weaning), and then gradually over age.  

The liver and lacrimal glands exhibit endocrine dependent onset of polyploidy, with the 

liver being dependent on thyroid and thymus function, and the lacrimal glands, on male gonads. 

The liver shows diet-dependent increase in polyploidy levels: rats on a restricted diet showed 

lower levels of accumulated polyploidy whereas rats feeding ad libitum showed higher levels of 

polyploidy accumulation with age, suggesting that the polyploidisation of the liver is dependent 

on metabolic need and adaptive in nature (Enesco et al., 1991; Paulini and Mohr, 1975).  

Similarly, observations of polyploidy and binucleation in cardiomyocytes have been made 

in several organisms (Brodsky VYa et al., 1994; Derks and Bergmann, 2020; Gan et al., 2019; 

Hirose et al., 2019). Recent work has linked the onset of polyploidy to endocrine cues and show 

that the polyploidy is also marked by a metabolic shift from glycolysis to oxidative 

phosphorylation upon polyploidisation.(Hirose et al., 2019). Induced polyploidy in zebrafish 
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hearts results in reduced regenerative capacity (González-Rosa et al., 2018). Further, binucleate 

cells and polyploidy increase with age as well as in diseased hearts (Brodsky VYa et al., 1994; 

Clubb et al., 1987; Derks and Bergmann, 2020; Dzau and Gibbons, 1988; Lombardi et al., 1989). 

This has led to the prevailing notion that polyploidisation in the heart is generally not beneficial. 

The current opinion in the cardioliology field that binucleation directly hampers cardiac 

regeneration potential linking the of lack of binucleation or polyploidisation with regenerative 

capacity may be incomplete. Adult mammals and birds(endotherms)  show cardiac polyploidy 

while amphibians and teleosts (ectotherms) do not (Derks and Bergmann, 2020). While most 

studies view polyploidisation in the heart simply as a loss of regenerative potential, the idea that 

perhaps the acquisition of polyploidy, instead, is an adaptation to endothermic conditions and 

oxidative stress warrants further inquiry. Cardiomyocytes are among the longest lived cells in a 

mammalian body, perhaps polyploidisation (in part) underlies their longevity? 

Other observations of polyploidy include the human urothelium, mesothelium, 

endometrium (during pregnancy), seminal vesicles and squamous epithelium of the mouth under 

non-cancer conditions in humans. (Biesterfeld et al., 1994). While the potential roles of 

polyploidy in these cells can be speculated (Gahan, 1977), we do not yet have an understanding 

of how these may change with age, nor whether it may be a beneficial adaptation.  

What about the nervous  system? While there have been few reports of polyploidisation in 

neurons in mammals and other vertebrates, the an understanding of its underlying causes and 

consequences, for the most part, remains elusive. So I ask, what is known about polyploidisation 

in the nervous system? 
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 Polyploidy In The Nervous System:From Mollusk To Man. 

 Slugs do it best. 

Sea slugs of the Aplysia species have long been used in studies of olfaction and memory 

formation (Coggeshall et al., 1970; Kukushkin et al., 2019; Moroz, 2011; Nagle et al., 1993; 

Sattelle and Buckingham, 2006; Yamagishi et al., 2012). These slugs possess giant neurons 

(roughly the size of one fly brain) which are perhaps the most extreme example of somatic 

polyploidy, possessing up to 600,000 copies of the genome(600,000C)! While we still do not 

know exactly why these neurons are so large, it is speculated that in ‘simpler’ animals, one large 

cell can perform the functions of several smaller cells, trading off ‘complexity’ for  capacity 

(López-Sánchez et al., 2011; Mandrioli et al., 2010). 

 Fly Peripheral Nervous System 

Endocycling has been observed in the Drosophila peripheral nervous system in the bristle 

cell lineage. Bristle cells are mechanoreceptive cells in the fly thorax. While it has been known 

for over thirty years that these cells become polyploid (up to 8C) during development 

(Hartenstein and Posakony, 1989), recent work has provided mechanistic insight into how these 

cells become polyploid. The bristle lineage consists of a neuron, a glial cell, a sheath cell, and 

one socket and one shaft cell. The shaft and socket cells become polyploid in a Cyclin A/CDK2 

dependent manner, unlike most other tissues in fly which employ CyclinE/CDK2 ocsillations to 

become polyploid.(Audibert et al., 2005; Furman and Bukharina, 2008; Sallé et al., 2012)  

However, the reason these cells become polyploid remains unclear.  
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 Teleost Supramedullary Neurons   

Several species of teleosts are also known to possess a small number of highly polyploid 

neurons called supramedullary neurons on the dorsal surface of the spinal cord or the rostral 

spinal cord.(Bennett and Nakajima, 1967; Bennett et al., 1959; Dampney et al., 2003; Nakajima 

and Pappas, 1965). Depending on the species of fish, these neurons can have anywhere between 

100  to over 5000 copies of the genome. These neurons are very small in number, and have been 

proposed as a good in vivo model for electrophysiology studies due to their prominent size and 

convenient location. These large cells are thought to have a neuro-endocrine function as some 

species of puffer fish produce noradrenalin (Mola and Cuoghi, 2004; Mola et al., 2002).The need 

for biosynthesis of large amounts of adrenalin may underlie the polyploidy in these cells, 

however this has not been functionally tested. 

 Other vertebrates 

Early observations of polyploidy in vertebrate brains involved the study of neurons and 

glia in the cerebellum by three groups  in the 1960’s and ‘70s (Herman and Lapham, 1969, 1973; 

Lapham, 1963, 1968; Lapham et al., 1971; Lentz and Lapham, 1969, 1970; Mann et al., 1976; 

Mann and Yates, 1973a, 1973b, 1979; Swartz and Bhatnagar, 1981; Yates and Mann, 1973). 

While these studies report differing numbers, they both conclude that the cerebellum does indeed 

possess polyploid cells based on imaging and cytochemical measurements of nuclear size and 

DNA content. One study measured the proportion of polyploid cells at different ages in the 

human cerebellum and found that there was no appreciation in the proportion of polyploidy of 

neurons or glia between ages 8 and 72, suggesting that unlike the liver and heart, the proportion 

of polyploidy remains constant in the human brain with age . These early studies speculated that 
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the polyploidisation may contribute to cerebellar memory and specialized function due to their 

increased transcriptional output.(Mann and Yates, 1973a).  

Following a long dormancy in the field that lasted nearly three decades, modern genetic 

approaches investigating potential cell cycle re-entry in vertebrate brains began taking shape in 

the early 2000’s. In recent years, observations of bona fide polyploidy in neurons of the retinal 

ganglion of the chicken and mouse, cerebral cortex of the rat and neocortex of the mouse have 

been made using modern flow cytometry and high resolution imaging techniques (Jungas et al., 

2020; López-Sánchez and Frade, 2013; Martin et al., 2017; Morillo et al., 2010; Ovejero-Benito 

and Frade, 2015). Work from the Frade lab has shown that the neurons of the retinal ganglia 

tetraploidise in an E2F dependent manner. However, this endoreplication program is 

differentially regulated in chick and mouse brain, as p27kip1 is necessary for tetraploidization in 

the chick, but not the mouse RGCs (López-Sánchez and Frade, 2013; Ovejero-Benito and Frade, 

2015). Further advances in imaging and flow cytometry techniques have identified polyploid 

pyramidal neurons in the cerebrum of the rat, and the neocortex of the mouse, but the function 

and underlying cause for their polyploidy remain elusive (Jungas et al., 2020; Sigl-Glöckner and 

Brecht, 2017). These studies show sufficient evidence that polyploidisation does indeed occur in 

‘higher’ vertebrates, suggesting that neuronal polyploidisation may been a well conserved 

phenomenon. However, while these studies have made detailed observations of polyploidy in 

neurons, but do not yet answer some important questions: 

What causes polyploidisation in neurons? 

How is neuronal function impacted by polyploidisation?  

How does this relate to neurodegeneration associated cell cycle re-entry ? 
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Chapter 2. Glia Establish A More Flexible G0 Than Neurons In The Drosophila Pupa 

Brain 

 

2.1. Abstract 

G0 associated with terminal differentiation represents the most common cellular state in 

adult multicellular organisms, yet it is poorly understood. In past years, various tissues of the 

fruit fly Drosophila melanogaster have served as a great model systems to understand how cells 

establish and maintain their non-dividing state. While the Drosophila brain has been extensively 

studied in the context of neurodevelopment, relatively little is known about how the flexibility of 

cell cycle exit in terminally differentiated neurons and glia. We sought to understand whether 

these cells show a capacity to undergo cell division after terminal differentiation. 

Here we show that postmitotic neurons and glia in the developing Drosophila pupa brain 

can be forced to re-enter the cell cycle after they have exited the cell cycle. Neurons can re-enter 

the cell cycle up to 24 hours after they have exited the cell cycle whereas glia exhibit greater 

flexibility and can undergo cell division up to over 48h after they exit the cell cycle. We show 

that forcing re-entry in neurons results in cell death, while glial cell division can result in tumor-

like growths. Further, we show that most of the glia that display flexibility in cell cycle exit are 

cortex glia.  
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2.2. Introduction 

The G0 state of the cell cycle has been extensively studied in various tissues in 

Drosophila melanogaster, such as the wing, eye, (Buttitta and Edgar, 2007; Buttitta et al., 2010; 

Flegel et al., 2016; Ma et al., 2019; Sun and Buttitta, 2015),testes and intestine (Hétié et al., 

2014; Petkau et al., 2014). The fly brain is much more complex, and comprises a heterogeneous 

population of neuronal and glial cells that perform distinct and highly specialised functions. 

While the Drosophila brain has been thoroughly studied as a model for neural development, very 

little is known about the regulation of G0 or cell cycle exit in neurons and glia associated with 

terminal differentiation. Exit from proliferation has been studied in the context of the neural stem 

cells which give rise to neurons and glia, but not the differentiated daughters themselves. Our 

goal is to achieve a better understanding of how post-mitotic cells in the developing brain 

establish and maintain their non-dividing state to stay postmitotic upon terminal differentiation 

as well as to understand the ‘flexible’ and ‘robust’ nature of their G0 

The adult central nervous system comprises ~150,000 cells, most of which are generated 

in the larval stages of development from various progenitor cell types (reviewed in (Homem et 

al., 2015). Type I neuroblasts, Type II neuroblasts (Bayraktar et al., 2010; Boone and Doe, 2008; 

Bowman et al., 2008; Izergina et al., 2009) and mushroom body neuroblasts (Kunz et al., 2012) 

generate structures in the central brain and ventral nerve cord while the neuroblasts of the inner 

and outer optic placode (IPC and OPCs) give rise to the cells of the optic lobes(Apitz and 

Salecker, 2014). Type II neuroblasts undergo self-renewal and give rise to NBs and transit-

amplifying cells known as intermediate progenitor cell which undergoes a limited number (3-5) 

of divisions to generate ganglion mother cells (GMCs) (Walsh and Doe, 2017). OPC, IPC (also 

known as type III) (Apitz and Salecker, 2014, 2015, 2016), Type I and Mushroom body 
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neuroblasts divide asymmetrically to generate one NB and one GMC. GMCs subsequently 

undergo one cell division each to generate terminally differentiated and postmitotic neurons and 

glia (Homem et al., 2015). T 

The type I neuroblasts in the thoracic VNC exit the cell cycle in a prospero-dependent 

manner in late larval stages (Maurange et al., 2008), while those in the abdominal VNC undergo 

apoptosis (Cenci and Gould, 2005; Maurange and Gould, 2005). In the central brain, the 

remaining type I and type II neuroblasts stop proliferation in early pupal stages by undergoing 

terminal symmetric divisions that lead to depletion of the NBs (Weng et al., 2010). OPC and IPC 

neuroblasts stop proliferation by undergoing symmetric terminal divisions in the early pupal 

stages (Apitz and Salecker, 2015, 2016). The mushroom body neuroblasts keep proliferating 

until late metamorphosis, when they undergo apoptosis (Pahl et al., 2019; Siegrist et al., 2010).  

Very little is known about the flexibility of the cell cycle exit in the differentiated 

progeny from these precursor cells. Do these cells retain a capacity to undergo further cell 

divisions after differentiation? We examine this question here. 

 

2.3. Results 

 Cell Cycle Exit In The Drosophila Brain Occurs During Early Metamorphosis 

Work from several groups has established that proliferation slows down at the larval to 

pupal transition, and nearly all proliferation of neuroblasts except the mushroom body 

neuroblasts ceases after 24h APF (Truman and Bate, 1988). The mushroom body NBs continue 

to divide slowly until late into metamorphosis (Ito and Hotta, 1992; Prokop and Technau, 1994; 

Stocker et al., 1995). We confirmed that cells do indeed stop proliferation and exit the cell cycle 
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with a 2C DNA content by performing a flow cytometry-based time course. We measured the 

DNA content in individual cells from 0hAPF to 96h APF at 24h intervals. We, like others, find 

that by 24h most of the proliferation has ceased, and by 48h APF, most (>99%) of the cells in the 

pupal brain have diploid DNA content(Figure 2.1 ) A small proportion (<3% measured by flow 

cytometry) of glia exhibit polyploid DNA, consistent with the small population of polyploid 

endocycling and endomitotic sub-perineurial glia (SPG) which form the Drosophila blood-brain-

barrier (Von Stetina et al., 2018; Unhavaithaya and Orr-Weaver, 2012).  

Previous work from our lab has shown that cells in the Drosophila wing and eye imaginal 

discs exit from the cell cycle during metamorphosis (Buttitta et al., 2007). Cell cycle exit occurs 

24 hours after puparium formation (APF) in a relatively synchronous fashion in the eye and the 

wing. It is known that in the wing and eye, re-activation of Cyclin/Cdks or ectopic expression of 

the transcription factor E2F and its dimerization partner DP can delay cell cycle exit for a short 

duration after when cells normally exit the cell cycle (Buttitta et al., 2007). This period has been 

termed ‘flexible’ cell cycle exit since the cells retain the capacity to undergo additional divisions. 

However in both tissues, 12-24 hours later cells become refractory to the activation of 

Cyclin/Cdks or E2F/DP alone, and require the combination of both simultaneously to continue 

dividing (Buttitta et al., 2007). This is termed ‘robust’ cell cycle exit, as cells in this state of G0 

require additional manipulation to force continued cycling or re-entry into the cell cycle (Buttitta 

et al., 2007, 2010).  

In the wing, the timing of cell cycle exit and terminal differentiation are temporally 

coordinated during metamorphosis by hormonal signals(Guo et al., 2016). In the central nervous 

system of Drosophila, neurons and glia are fated products of terminal cell divisions and are born 
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as postmitotic cells throughout larval and early pupal development. We sought to ask: how 

‘flexible’ or ‘robust’ are the states of G0 in neurons and glia?.  

Work comparing the eye and wing has revealed tissue-specific requirement of negative 

regulators of the cell cycle upon cell cycle exit (Buttitta et al., 2007). Moreover, it is widely 

believed that neurons are some of the most robustly postmitotic cells in an organism’s body. 

Understanding how a neuron establishes and maintains a non-dividing state can have important 

ramifications and therapeutic applications in controlling growth. Further, comparing how 

different cells may behave when establishing G0 or how the ‘flexibility’ of G0 can be modulated 

in a cell-type specific manner will inform our understanding of the various factors that may 

regulate it.  

 Strategy To Force Cell Cycle Re-Entry In Neurons And Glia 

We previously showed that reversing G0 in differentiated cells required simultaneous 

reactivation of Cyclin/Cdk and E2F/DP activities (Buttitta et al., 2007). This can be through 

direct overexpression of Cyclins and Cdks along with the E2F and DP subunits, or via inhibition 

of the APC/C complex, which degrades Cyclin/Cdk complexes, in combination with 

overexpression of E2F and DP subunits (Buttitta et al., 2010). We therefore co-overexpressed  

the E2F/DP transcription factor complex with the G1 Cyclin/Cdk, CycD/CDK4 or we co-

overexpressed E2F/DP with Rca1 (Regulator of CyclinA; Emi1 in mammals) (Reimann et al., 

2001), an inhibitor of the APC/C Figure 2.1. To ensure that our genetic manipulations of cell 

cycle regulators do not impair the development of the animal, we used a temperature sensitive 

GAL80TS  in combination with our cell type specific Gal4 drivers to repress transgene expression 

until metamorphosis (0h APF) (Suster et al., 2004). Animals were collected as white pre pupae 
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and shifted to higher temperatures which are non-permissive for the GAL80TS and therefore 

allow GAL4 mediated expression of transgenes under the control of a UAS promoter. We used 

the pan-glial driver Repo-GAL4 to in our experiments and the neuronal driver OK371-GAL4 for 

expression of transgenes in a subset of neurons. OK371 is known to express in vesicular 

glutamatergic neurons (vGlut neurons). We chose this driver instead of the pan-neuronal GAL4 

ELAV-GAL4 because ELAV-GAL4 is known to have leaky expression in neuroblasts and glia 

(Berger et al., 2007; Foo et al., 2017), and is therefore not strictly driving gene expression in 

postmitotic cells.   
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Figure 2.1 Cell Cycle Exit in the Drosophila brain occurs during early 

metamorphosis 

(A) DNA content flow cytometry indicates that most cell proliferation in 

the pupa brain is complete by 48h APF, most cells exit the cell cycle with a 

Diploid DNA content. (B) All neurons exit the cell cycle with 2C DNA content. 

DNA content in all neurons was measured at 24h APF using nSyb-GAL4, UAS 

nGFP. DNA content of 100% of GFP+ve cells is 2C. Similarly, all neurons 

expressing OK371 gal4 exit the cell cycle with 2C DNA content. Most glia (97%) 

show 2C DNA content. The remaining glia showing >2C DNA content are 

presumed Sub-perineurial glia which are known to be polyploid. 
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Figure 2.2 Strategy used to force re-entry in postmitotic neurons and glia 

(A,A’) Cartoon showing the oscillations of cell cycle regulators through 

the cell cycle (A’). (B) Cartoon showing how the TARGET system will be used to 

overexpress positive regulators of the cell cycle in transgenic flies to push 

postmitotic neurons and glia to re-enter the cell cycle. 
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 Neurons Exhibit A Short Window Of Flexible G0 Before Becoming Robustly 

Postmitotic 

After induction of transgene expression in vGlut neurons for 24, 48 or 72 APF, pupae 

were dissected, fixed, stained for mitoses (anti-phospho Histone H3) and nuclei (DAPI) and 

mounted on slides for immunofluorescence imaging. Consistent with flow cytometric 

measurements of DNA content (Figure 2.1) , very few cells in 24h APF brains are normally 

undergoing mitoses (Figure 2.3), and even fewer (0-4) are observed in control 48 and 72h APF 

brains. At 24h APF, overexpression of E2F/DP+CycD/CDK4 results in an increase in the 

number of mitoses in the central brain and optic lobe regions (Figure 2.3B-C’’’, J) , however the 

overexpression of E2F/DP+Rca1 only results in an increase in mitoses in the central brain, 

suggesting a different regulation of cell cycle exit at this time point in different brain regions. For 

comparisons, we quantified the mitotic index of different brain regions with these manipulations 

at different times (Figure 2.3) . To avoid potentially counting normal mitotic divisions of the MB 

neuroblasts, our mitotic counts excluded the mushroom body region Interestingly, at 48hAPF, 

both E2F/DP+CycD/CDK4 and E2F/DP+Rca1overexpression result in increased mitoses in the 

OL and CB while control brains show nearly no mitoses. This suggests that differentiated V-Glut 

neurons are capable of re-entering the cell cycle and undergoing mitosis during mid-pupal stages 

(Figure 2.3D-F’’’, K). This represents a ‘flexible’ G0 in neurons during development. 

By 72h APF, vGlut neurons appear completely refractory to cell cycle re-entry and 

neither the over expression of E2F/DP+CycD/CDK4 , nor E2F/DP+Rca1 is sufficient to force 

continued neuronal division  (Figure 2.3G-I’’’, L). Flow cytometry analysis of DNA content 

shows that  
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Figure 2.3 Postmitotic glutamatergic neurons can be forced to reenter the cell cycle up 

to 48h APF 

Brains from pupae expressing OK371-GAL4, UASnGFP, Tub-GAL80TS only (A-

A’’’, D-D’’’), (G-G’’’) or OK371-GAL4, UASnGFP, Tub-GAL80TS+ UASE2F, UAS-DP, 

UASCyClinD, UAS-CDK4 (B-B’’’) (E-E’’’) (H-H’’’) or OK371-GAL4, UASnGFP, Tub-

GAL80TS+ UASE2F, UAS-DP, UAS-Rca1 (C-C’’’) (D-D’’’)(H-H’’’) were shifted up to 

29ºC at 0h after puparium formation to induce expression of transgenes. Pupal brains were 

dissected at indicated timepoints, and stained for mitoses (anti-phospho histone H3) and 

DAPI. Number of mitoses per brain region were counted at 24, 48 and 72h APF (J, K, L). (G-

I’’’, L, M) vGlut neurons are robustly postmitotic at 72hAPF and exit the cell cycle with 2C 

DNA content even in the presence of cell cycle regulators. 
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control, E2F/DP+CycD/CDK4 and E2F/DP+Rca1 overexpressing neurons exit the cell cycle 

with a diploid (2C) DNA content. This suggests that at this stage, vGlut neurons are robustly 

postmitotic and become refractory cell cycle cues by 72h APF. 

 Forcing Cell Cycle Re-Entry In Neurons Results In Abnormal Mitoses And Cell 

Death 

High magnification images of  vGlut neurons overexpressing E2F/DP+CycD/CDK4 at 

48h APF  reveals abnormal nuclear morphology Neurons forced to re-enter the cell cycle by 

overexpression of E2F/DP +CyCD/CDK4  show abnormal mitotic structures such as (Figure 

2.4A-A’’’’) micronucleus formation and (Figure 2.4B-B’’’’) lagging chromosomes and pyknotic 

nuclei (not shown). We wondered whether forcing re-entry in neurons may be resulting in cell 

lethality. We measured cell death by using a propidium iodide incorporation assay with flow 

cytometry. Brains overexpressing E2F/DP+CycD/CDK4 or E2F/DP+Rca1 in vGlut neurons 

exhibit greater levels of cell death than control brains at 48h APF, suggesting that forced cell 

cycle re-entry and mitosis is lethal in developing neurons. Scale bars = 6.8µm. 

 Glia Exhibit A More Flexible Cell Cycle Exit 

We next asked, how flexible is cell cycle exit in glial cells compared to neurons? To ask 

this, we forced re-entry in glia using Repo-GAL4 to drive the same combinations of transgenes 

to force re-entry as in neurons. Pupae were collected at the 0hWPP stage and were shifted up to 

29ºC  to induce expression of respective transgenes. At 24h APF, the overexpression of  

E2F/DP+CycD/CDK4 and E2F/DP+Rca1 increases the proportion of cells in mitosis in the OL 

and the CB regions of the brain (Figure 2.5A-C’’, J). Glial expression of E2F/DP+Rca1 shows a 
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greater number of glial mitoses in the CB and OL at 24h APF, and a more mitoses in the CB than 

overexpression of E2F/DP+CycD/CDK4 at 48h APF (Figure 2.5D-F’’’, K).  

 

Figure 2.4 Forcing cell cycle re-entry in neurons results in abnormal mitoses and cell 

death 

Neurons forced to re-enter the cell cycle by overexpression of E2F/DP +CyCD/CDK4 

exhibit  show abnormal mitoses such as (A-A’’’’) micronucleus formation and (B-B’’’’) 

lagging chromosomes. (C ) Overexpression of cell cycle regulators results in cell death 

measured by propidium iodide incorporation by flow cytometry. Brains overexpressing 

E2F/DP+CycD/CDK4 or E2F/DP+Rca1 in vGlut neurons exhibit greater levels of cell death 

than control brains at 48h APF. Scale bars = 6.8µm. 
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Figure 2.5 Glia exhibit a more flexible cell cycle exit 

Brains from pupae expressing Repo-GAL4, UASnGFP, Tub-GAL80TS only (A-A’’’, 

D-D’’’), (G-G’’’) or Repo-GAL4, UASnGFP, Tub-GAL80TS+ UAS-E2F, UAS-DP, 

UASCyClinD, UAS-CDK4 (B-B’’’) (E-E’’’) (H-H’’’) or Repo-GAL4, UASnGFP, Tub-

GAL80TS+ UASE2F, UAS-DP, UAS-Rca1 (C-C’’’) (D-D’’’)(H-H’’’) were shifted up to 

29ºC at 0h after puparium formation to induce expression of respective transgenes. Pupal 

brains were dissected at indicated timepoints, and stained for mitoses (anti-phospho histone 

H3) and DAPI. Number of mitoses per brain region were counted at 24, 48 and 72h APF (J, 

K, L). (G-I’’’, L, M) Glia show greater level of flexibility and continue to undergo mitosis at 

72hAPF in the presence of cell cycle regulators. Overexpression of  E2F/DP+CycD/CDK4 

and E2F/DP+Rca1 increases the proportion of cells with >2C DNA content from <3% in 

control animals to >6-7% (M). 
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Unlike neurons, glia continue to undergo mitosis at 72h APF when overexpressing 

E2F/DP+CycD/CDK4 or E2F/DP+Rca1, suggesting that the flexible period of G0 in glia lasts a 

longer duration than in neurons. Interestingly, at 72h APF, both E2F/DP+CycD/CDK4 and 

E2F/DP+Rca1 drive mitosis in glia at the same levels in both the OL and CB (Figure 2.5G-I’’’). 

Flow cytometry analysis of DNA content (M) in GFP expressing glial cells under different 

conditions at 72h APF shows that a greater proportion of cells Repo-GAL4 cells driving 

E2F/DP+CycD/CDK4 (6.5%) or E2F/DP+Rca1 (7.9%) have >4C DNA content than control 

(<3%). This suggests that forcing cell cycle re-entry can result in polyploid glia in the pupal 

brain. 

 Forcing Re-entry In Glia Can Result In Glial Tumor-like Growth. 

Consistent with the observation that forcing glial cell cycle re-entry results in prolonged  

cycling in these cells, we also observe tumor-like masses in pupa brains. In 72h APF brains with 

glial overexpression of  E2F/DP+CycD/CDK4 , we observe  clones of GFP expressing cells with 

multiple nuclei (Figure 2.6, yellow dashed outline) as well as cells with large nuclei (Figure 

2.6,yellow arrowhead) which are presumably polyploid glial cells. The depth of image section 

suggests that the large glial cells are not SPG (which are on the surface of the brain), and instead 

polyploid mitotic nuclei resulting from forced cell cycle re-entry.  

 Most Of The Glia Re-Entering The Cell Cycle To Undergo Mitosis Are Cortex Glia 

In previous experiments we observed maximum intensity projections of the brain to 

visualize mitoses in the whole brain. Closer examination of individual Z-sections reveals that 

most of the glia which re-enter the cell cycle to undergo mitosis are a specialized subtype of glia 

termed cortex glial cells. Representative single Z slice images showing mitotic cortex glia in the  
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Figure 2.6 Forcing re-entry in glia can result in glial tumors-like growth . 

(A-C’’’) Prolonged overexpression of cell cycle regulators in glia can result in glial tumors 

with multiple cells (yellow dashed outline) and large mononucleate, presumably polyploid glial 

cells (yellow arrowhead). Depth of image section suggests that the large glial cells are not SPG. 
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Figure 2.7 Most of the glia re-entering the cell cycle to undergo mitosis are cortex 

glia 

(A-E’’’) Representative single Z slice images showing mitotic cortex glia in the 

central brain (A, B,C) and in the optic lobe (A,D,E). Cartoons on the right of each 

image shows the depth of Z section. Most mitotic glia (yellow arrowheads) appear to 

be cortex glial cells based on position and morphology.   
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central brain (Most of the glia re-entering the cell cycle to undergo mitosis are cortex glia 

A, B,C) and in the optic lobe (Most of the glia re-entering the cell cycle to undergo mitosis are 

cortex glia A,D,E). Cartoons on the right of each image shows the depth of Z section. Most 

mitotic glia (yellow arrowheads) appear to be cortex glial cells based on position and 

morphology and location.   

2.4. Discussion 

This study shows that neurons and glia exhibit different levels of flexibility in their 

respective postmitotic states. We show that both neurons and glia can be forced to re-enter the 

cell cycle after they have exited the cell cycle, and that neurons have a shorter window of 

‘flexibility’ during which forced re-entry can drive neuronal mitoses. Glia can be forced to cycle 

for a longer duration, and glial cells undergoing mitoses can even form tumor like masses. 

 What Regulates The Difference In Flexibility Between Neurons And Glia? 

. This study shows that in the Drosophila brain, different types of cells as well as different 

brain regions show different levels of flexibility in G0. Glia in the CNS exhibit the most 

flexibility. They can be pushed to re-enter the cell cycle with either direct or indirect activation 

of Cyclin/Cdks and the E2F/DP complex for up to 48-72h past their normal terminal cell 

division. When they eventually exit from the prolonged proliferation they exhibit an increased 

rate of polyploidy, indicating a possible entry into variant cell cycles, and exhibit features of 

cellular hypertrophy and multinucleation.  

By contrast, neurons exhibit less flexibility in their G0 state. vGlut neurons of the optic 

lobes and VNC can only be pushed to divide with direct activation of Cyclin/Cdks and the 

E2F/DP complex, within about 24 hours of their normal terminal division. Interestingly, vGlut 
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neurons of the central brain can be pushed to re-enter the cell cycle for a limited window of 

division simply by inhibition of the APC/C together with overexpression of E2F/DP. This 

suggests that vGlut neurons in the pupal central brain retain higher levels of endogenous 

Cyclin/Cdk complexes than those of other regions, and that the higher Cyclin/Cdk levels of the 

central brain are normally kept in check by APC/C -dependent degradation. Whether these 

different levels of Cyclin/Cdk complexes are correlated with the function of these neurons and 

the normal timing of their terminal division is an important issue to address in future studies. 

Recent work has shown that changes at the level of chromatin could underlie the 

flexibility of the postmitotic state (Ma and Buttitta, 2017; Ma et al., 2015, 2019). Studies of 

chromatin accessibility at cell cycle genes during terminal differentiation with and without 

compromised cell cycle exit suggest that a subset of key cell cycle genes which play rate-limiting 

roles is selectively changed. These genes: Cyclin E which plays a rate limiting role at the G1-S 

transition and the cdc25c phosphatase String, which regulates the G2-M transition have complex 

enhancers, and their accessibility is selectively modified robust cell cycle exit by developmental 

signals. This study was performed in the fly wing. Does the same rubric apply to other cells 

and/or tissues? How do systemic developmental timers impinge upon the cell cycle machinery in 

a context specific manner? The difference in flexibility between neurons and glia suggests that 

other factors may mediate the way developmental signals affect chromatin at cell cycle genes. 

Could these be cell type-specific chromatin remodeling and/or cell fate factors driving changes 

in transcription of cell cycle genes? These are exciting open avenues for future studies.  

  What Underlies The Flexibility Of Cortex Glia? 

Most of the glia exhibiting additional divisions in response to cell cycle re-activation are 

cortex glia. The functions of cortex glia are well understood in the context of early larval 
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development (Hartenstein, 2011), however their functions during and after metamorphosis 

remain relatively unknown. The cortex glial cells are born during early larval stages and 

ensheath individual neuronal soma in the larval brain to provide trophic support (Ito et al., 1995). 

In later stages of development, they are known to interact closely with the sub-perineurial glia 

which form the blood-brain barrier (Kremer et al., 2017). Some cortex glia also ensheath the 

mushroom body neuroblasts and serve a niche function (Doyle et al., 2017). Recent evidence 

also suggests an important role for cortex glia in maintaining neuronal firing properties (Melom 

and Littleton, 2013). Adult mutant flies lacking cortex glia exhibited seizure-like phenotypes 

(Weiss et al., 2019). It would be interesting to explore how compromising cell cycle exit in these 

glia during development affects adult physiology. 

 Why Are Neuronal Mitoses Often Catastrophic? 

Forced cell cycle re-entry in neurons often leads to abnormal mitoses and cell death, 

suggesting that maintaining a non-dividing state is critical for neuronal survival. The mid-pupal 

stage is known to be critical for development of the adult fly brain and is marked by gross 

morphological changes as well as cellular-level changes such as axon pruning. This period of 

development may be critical for immature neurons to find their respective pre and post-synaptic 

partners and form networks of synaptic connections which are potentially critical for future brain 

function.  

It is thought that mitosis and the neuronal state is incompatible as mitosis involved 

cellular rounding and the potential loss of synaptic connections. But what exactly makes a 

neuron refractory to cell division cues remains unknown! Do structural changes that a neuron 

undergoes in the process of maturation underlie its robustness? Are key factors necessary for 

successful mitosis sequestered away in neurons, or are neurons somehow programmed to 
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undergo cell death if forced to divide after a certain developmental stage?  The implications of 

understanding exactly how neurons achieve a robust G0 extend beyond developmental biology to 

potential therapeutic applications. 

The next chapter will explore G0 in adult fly brains, and how it changes with age. 
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2.5. Materials and Methods 

Reagent Comment Source 

w;OK-371-GAL4, UAS-

nGFP/Cyo-GFP; Tub-

GAL80TS/TM6B 

vGlut Driver Buttitta Lab Stocks 

W;UAS-nGFP/Cyo-GFP;Repo-

GAL4,Tub-GAL80TS/TM6B 

Pan-glial driver Buttitta Lab Stocks 

y,w,hs-FLP;+;+ ‘Control’ Buttitta Lab Stocks 

y,w,hs-FLP;UAS-E2F,UAS-

DP/CyO-GFP;UAS-CycD,UAS-

CDK4/TM6B 

E2F/DP+CycD/CDK4 

overexpression 

Buttitta Lab Stocks 

y,w,hs-FLP;UAS-E2F,UAS-

DP/CyO-GFP;UAS-Rca1/TM6B 

E2F/DP+Rca1 overexpression Buttitta Lab Stocks 

w;;nSyb-GAL4 Pan-neuronal driver Dus Lab 

Anti-PH3 1:500 Millipore sigma 

Anti-ELAV 1:100 DHSB 

DAPI 1:1000 Sigma Aldrich 

DyeCycle Violet 1:500 ThermoFisher 

Propidium Iodide 2.25:1000 Sigma-Aldrich 

Alexa Fluor 633 goat anti-mouse 1:1000 ThermoFisher 

Alexa Fluor 568 goat anti-rabbit 1:1000 ThermoFisher 

Table 2.1 Key stocks and Reagents 
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 Fixation, Immunostaining and Imaging 

Drosophila brains were dissected in 1X Phosphate buffered saline (PBS) and fixed in 4% 

Paraformaldehyde (PFA) in 1X PBS for 25 minutes. Tissues were permeabilised in 1X 

PBS+0.1% Triton-X, blocked in 1X PBS, 1% BSA 0.1% Triton-X. (PAT) Antibody staining was 

performed at specified concentrations in PAT (Supplementary File 1) overnight at 4°C, washed, 

blocked in PBT-X (1X PBS, 2% Goat serum 0.1% Triton-X) prior to incubation with secondary 

antibody either for 4h at RT or overnight at 4°C. DAPI staining was performed after washes, 

brains were wet-mounted in vectashield H1000. All imaging was performed on either a Leica 

SP5 scanning confocal or DMI6000 microscopes.. 

 Fly Husbandry 

Crosses were set up at room temperature and flies were flipped onto fresh food once 

every day to ensure that vials were not overcrowded. Progeny were collected as WPP and 

screened for balancers, then shifted to 29ºC and dissected at the specified timepoints. Since pupal 

development occurs 1.2 times faster at 29ºC, therefore 24h APF corresponds to 20h, 48APF to 

40h and so on..  

 Image Quantification  

Number of mitoses were quantified manually from maximum intensity projections of 

whole brains imaged at 10 or 20x magnifications. Images obtained on DMI6000 fluoresecence 

microscopes were deconvolved prior to quantification to remove background. 
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 Flow Cytometry 

Fly brains were dissected in PBS and transferred to 1.5mL microcentrifuge tubes containing 

1000uL of a 9:1 Trypsin-EDTA :10XPBS with 1µL Dyecycle Violet and/or 1.12µL PI  solution.. 

Brains were incubated with shaking at 800rpm on a benchtop thermomixer at 25ºC for 45 

minutes and vortexed gently every 20 minutes, prior to analysis on the Attune Flow cytometer. 

The Attune had a laser configuration of a violet laser (VL,405nm) with 6 bandpass (BP) filters 

and a blue laser (BL,488nm) with 3 bandpass filters. Detection of DyeCycle Violet was 

performed using VL1 (Emission filter 450/40), GFP using BL1 (Emission filter 530/30), and PI 

using BL2 (Emission filter 574/24) . A flow rate of 100 to 500 µl/second was used for sample 

acquisition and a minimum of 20,0000 events gated as ‘non doublets’ (Figure 1-figure 

supplement 1) were acquired per sample. Gating Strategy is graphed in Figure 3.2Figure 3.2. 

Briefly, all cells were plotted on forward vs side scatter (FSC vs. SSC), gated to eliminate debris. 

Subsequently, ‘non-debris’ were plotted on VL1(DNA) vs FSC and gated to eliminate unstained 

events. A third gate was applied plotting VL1(DNA)-H vs VL1(DNA)-A (voltage pulse area 

vs.height) to eliminate doublets. All events in gate 3 were further subjected to GFP/DNA/PI 

content analysis.   
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Chapter 3. Polyploidy In The Adult Drosophila Brain 

 

 

Portions of this chapter have been published as:  

Nandakumar S, Grushko O & Buttitta LA (2020) Polyploidy in the adult Drosophila brain. elife 

9. 

3.1. Abstract  

Long-lived cells such as terminally differentiated postmitotic neurons and glia must cope 

with the accumulation of damage over the course of an animal’s lifespan. How long-lived cells 

deal with ageing-related damage is poorly understood. Here we show that polyploid cells 

accumulate in the adult fly brain and that polyploidy protects against DNA damage-induced cell 

death. Multiple types of neurons and glia that are diploid at eclosion, become polyploid in the 

adult Drosophila brain. The optic lobes exhibit the highest levels of polyploidy, associated with 

an elevated DNA damage response in this brain region. Inducing oxidative stress or exogenous 

DNA damage leads to an earlier onset of polyploidy, and polyploid cells in the adult brain are 

more resistant to DNA damage-induced cell death than diploid cells. Our results suggest 

polyploidy may serve a protective role for neurons and glia in adult Drosophila melanogaster 

brains. 
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3.2. Introduction 

Terminally differentiated postmitotic cells such as mature neurons and glia are long-lived 

and must cope with the accumulation of damage over the course of an animal’s lifespan. The 

mechanisms used by such long-lived cells to deal with aging-related damage are poorly 

understood. The brain of the fruit fly Drosophila melanogaster is an ideal context to examine 

this since the fly has a relatively short lifespan and the adult fly brain is nearly entirely 

postmitotic with well understood development and excellent tools for genetic manipulations. 

The adult central nervous system of Drosophila melanogaster comprises ~110,000 cells, 

most of which are generated in the larval and early pupal stages of development from various 

progenitor cell types (Truman and Bate, 1988; White and Kankel, 1978). By late metamorphosis, 

the Drosophila pupal brain is normally completely non-cycling and negative for markers of 

proliferation such as thymidine analog incorporation and mitotic markers (Awasaki et al., 2008; 

Pahl et al., 2019; Siegrist et al., 2010) 

In the adult, very little neurogenesis and gliogenesis are normally observed (Awasaki et 

al., 2008; Ito and Hotta, 1992; von Trotha et al., 2009). A population of about 40 adult neural 

progenitors has been reported in the optic lobe and a population of glial progenitors has been 

reported in the central brain (Fernández-Hernández et al., 2013; Foo et al., 2017). Upon damage 

or cell loss, hallmarks of cycling have been shown to be activated, although the overall level of 

proliferation in the adult brain remains very low (Crocker et al., 2020; Fernandez-Hernandez et 

al., 2019; Fernández-Hernández et al., 2013; Foo et al., 2017; Li et al., 2020). Thus, the brain of 

the adult fly is thought to be almost entirely postmitotic with most cells in G0 with a diploid (2C) 

DNA content. One known exception to this are the cells that constitute the “blood-brain barrier” 

of Drosophila. 
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 The “blood-brain barrier” in Drosophila is made up of specialised cells called the 

Sub-perineurial glia (SPGs). These cells are very few in number and achieve growth without cell 

division by employing variant cell cycles termed endocycles, that involve DNA replication 

without karyokinesis or cytokinesis, as well as endomitotic cycles that involve DNA replication 

and karyokinesis without cytokinesis (Von Stetina et al., 2018; Unhavaithaya and Orr-Weaver, 

2012). The SPGs undergo these variant cell cycles to increase their size rapidly to sustain the 

growth of the underlying brain during larval development. The polyploidisation of these cells 

plays an important role in maintaining their epithelial barrier function, although it remains 

unclear whether these cells continue to endocycle or endomitose in the adult.   

 Polyploidy can also confer an increased biosynthetic capacity to cells and 

resistance to DNA damage induced cell death (Edgar and Orr-Weaver, 2001; Lee et al., 2009; 

Mehrotra et al., 2008; Zhang et al., 2014). Several studies have noted neurons and glia in the 

adult fly brain with large nuclei (Robinow and White, 1991; Winberg et al., 1992) and in some 

cases neurons and glia of other insect species in the adult CNS are known to be polyploid 

(Nordlander and Edwards, 1969). Rare instances of neuronal polyploidy have been reported in 

vertebrates under normal conditions (Morillo et al., 2010) and even in the CNS of mammals 

(López-Sánchez and Frade, 2013; Shai et al., 2015).  

Polyploidisation is employed in response to tissue damage and helps maintain organ size 

(Cohen et al., 2018; Tamori and Deng, 2013) (Losick et al., 2013, 2016). Therefore, polyploidy 

may be a strategy to deal with damage accumulated with age in the brain, a tissue with very 

limited cell division potential. Here we show that polyploid cells accumulate in the adult fly 

brain and that this proportion of polyploidy increases as the animals approach middle-age. We 

show that multiple types of neurons and glia which are diploid at eclosion which become 
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polyploid specifically in the adult brain. We have found that the optic lobes of the brain 

contribute to most of the observed polyploidy. We also observe increased DNA damage with 

age, and show that inducing oxidative stress and exogenous DNA damage can lead to increased 

levels of polyploidy. We find that polyploid cells in the adult brain are resistant to DNA damage-

induced cell death and propose a potentially protective role for polyploidy in neurons and glia in 

adult brains. 

3.3. Results 

Cell ploidy often scales with cell size and biosynthetic capacity (Edgar and Orr-Weaver, 

2001; Orr-Weaver, 2015). The brain is thought to be a notable exception to this rule, where the 

size of postmitotic diploid neurons and glia can be highly variable. We wondered whether 

alterations in ploidy during late development or early adulthood may contribute to the variability 

in neuronal and glial cell size in the mature Drosophila brain. We therefore developed a sensitive 

flow cytometry assay to measure DNA content in Drosophila pupal and adult brains. Briefly, this 

assay involves dissociating brains with a trypsin or collagenase based solution followed by 

quenching the dissociation and labeling DNA with DyeCycle Violet (Grushko and Buttitta, 

2015) in the same tube, to avoid cell loss from washes. Samples are then immediately run live on 

a flow cytometer for analysis. We employed strict gating parameters to eliminate doublets 

(Figure 3.2) (López-Sánchez et al., 2017a). This assay is sensitive enough to measure DNA 

content from small subsets of cells (e.g. Mz19-GFP expressing neurons) from individual pupal or 

adult brains (Figure 3.2D). Using this approach we confirmed that under normal culturing 

conditions, cell proliferation and DNA replication ceases in the pupal brain after 24h into 

metamorphosis (24h APF) (Figure 3.2E), and that only the previously described mushroom body 

neuroblasts continue to replicate their DNA and divide in late pupa (Siegrist et al., 2010). The 
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brains of newly eclosed adult flies are 98-99% diploid and we, like others, only rarely observe 

EdU incorporation during the first week of adulthood in wild-type flies under normal conditions 

but not later in adulthood (Figure 3.2F.) (Fernández-Hernández et al., 2013; Foo et al., 2017; 

Kato et al., 2009; Siegrist et al., 2010; von Trotha et al., 2009). We were therefore surprised to 

find a distinct population of cells with DNA content of 4C and up to >16C appearing in brains of 

aged animals of various genotypes under normal culture conditions (Figure 3.2G).  
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Figure 3.1 Polyploid cells accumulate in the adult Drosophila brain 

(A,B) Percentage of cells in individual brains exhibiting polyploidy in w1118 (A) and 

Canton-S (B) male and female whole brains. Age in days indicates days post-eclosion. Box plots 

showing range, dot indicates mean (n=10).(Two-way ANOVA with greenhouse-geisser 

correction for unequal SDs followed by Holm-Sidak's multiple comparisons test. P values: ns > 

0.1234; <0.0332 *; <0.0021 **; <0.0002 ***; **** <0.0001  ) (C) Accumulation of polyploidy 

is also observed in other Drosophila species. D.mauritiana and D.americana shown respectively 

in green and black compared to Oregon-R (D.melanogaster) shown in teal at different time 

points post-eclosion. Shapes indicate mean polyploidy observed, bars show range. 3 brains each 

per sample, n=2 per time point. (D) Stacked bar plot showing proportion of polyploid cells with 

tetraploid or 4C DNA content (black) and greater than tetraploid or >4C DNA content (grey) in 

Canton-S males at different ages. (E). Percentage of polyploidy in Optic lobes (OL shown in 

purple), central brain (CB, shown in orange) and ventral nerve cord (VNC shown in blue) at 

different ages, w1118 (Error bars show mean±SEM n=3).  
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Figure 3.2 Gating Strategy 

(A-C) Flow Cytometry gating strategy to ensure doublet discrimination. (D) 

The small population of mz19-GAL4, UAS nGFP labelled neurons are detectable by 

flow cytometry assay. (E) Dot plots showing DNA content during metamorphosis in 

Drosophila melanogaster w1118 brains. APF = after puparium formation. Cell cycle 

exit in most cells occurs by 24h APF. (F) Sparse EdU labelling observed in OL 

(outlined with yellow dotted line) before 10d but not after 2 weeks in the adult brain. 

(G) Increased DNA content observed in 60d old brains compared to 4d. Dot plots 

showing all cells in Elav-GAL4, UAS-nGFP brains at each time point Polyploid cells 

indicated as 4C and >4C. Elav-GAL4 driver shows weak expression in older brains.  
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 Polyploid Cells Accumulate In The Adult Drosophila Brain 

We performed a systematic time-course to measure accumulation of polyploid cells in the 

adult brain in isogenic w1118 male and female flies cultured under standard conditions (Linford et 

al., 2013). We measured the percentage of polyploid cells in individual brains from the day of 

eclosion until 56 days (8 weeks) at weekly intervals. Polyploid cells appear as early as 7 days 

into adulthood, and the proportion of polyploidy continues to rise until animals are 21 days old 

(Figure 3.1A). This increase in polyploidy is only observed until week 3, after which the 

proportion of polyploid cells observed remains variable from animal to animal, but on average, 

does not increase. We observe similar patterns of polyploidy accumulation in males and females 

(Figure 3.1A). To ensure that the polyploidy we observe is not an artefact of one particular 

strain, we performed similar measurements across the lifespan in other commonly used lab 

‘wild-type’ strains Canton-S (Figure 3.1B) and Oregon-R (Figure 3.1Figure 3.2C). Interestingly, 

Oregon-R flies show lower levels of polyploidy in the first two weeks than w1118 and Canton-S 

suggesting that different genetic backgrounds may influence polyploidy in the brain. We also 

performed DNA content measurements of brains from the distantly related D.americana which 

diverged ~50 million years ago and a more closely related species, D.mauritiana, which diverged 

~2 million years ago (Figure 3.1C). While both species show accumulation of polyploidy, it is 

interesting to note that they show differences in levels of polyploidy. 

We next measured changes in ploidy in the D.melanogaster adult brain over time. We 

pooled data from multiple animals and binned polyploid cells from w1118 brains into two 

categories: cells with 4C (tetraploid) DNA content measured by flow cytometry and cells with 

>4C DNA content - this includes 8C, 16C and even some 32C cells (D). The majority of the 
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polyploid cells appear to be tetraploid, and the fraction of cells exhibiting >4C DNA content 

increases during the first week of adulthood, but remains relatively consistent with age.  

We next asked whether polyploid cells are located in a specific region of the brain. We 

dissected the Drosophila central nervous system (CNS) into the central brain, optic lobes, and 

ventral nerve cord (VNC) and measured levels of polyploidy in each region from day of eclosion 

to 2 weeks into adulthood (Fig 1E). We found that while there is a low level of polyploidy in the 

central brain and VNC that increases with age, most of the polyploidy comes from the optic 

lobes. Strikingly, by 3 weeks, over 20% of the cells in the optic lobes can exhibit polyploidy.  

Since the optic lobes contribute to most of the polyploidy observed, we wondered if this 

phenomenon may be dependent on light. Canton-S animals reared in complete darkness did not 

show difference in polyploidy compared to age-matched controls raised in regular 12-hour light / 

12-hour dark cycles (Figure 3.3A). Next, we hypothesized that polyploidy accumulation may 

depend on proper photoreceptor function. However, glass60j flies devoid of photoreceptors and 

pigment cells in compound eyes (Helfrich-Förster et al., 2001) still show polyploidy Figure 

3.3B). 
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Figure 3.3 Polyploidy in the optic lobes is not light or photoreceptor-dependent 

(A) 14d Canton-S (CS) males reared in 12h L/D cycles do not show significantly 

different polyploidy compared to age-matched CS males reared in 24h darkness from eclosion. 

Error bars = mean±SEM; unpaired t-test with Welch’s correction. (B) Percentage of polyploidy 

observed in glass60j mutants lacking photoreceptors and age-matched w1118 controls at 1 and 14 

days. Bars show mean % polyploidy in samples containing 3 pooled brains.  
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 Multiple Cell Types Exhibit Adult-Onset Polyploidy In The Brain 

To identify which cell types in the brain are becoming polyploid, we used the binary 

GAL4/UAS system to drive the expression of a nuclear-localised green or red fluorescent protein 

(nGRP or nRFP) with cell type-specific drivers. We then measured DNA content using Dye-

Cycle Violet in the GFP or RFP-positive populations. 

 We first examined the SPGs, as previous work from the Orr-Weaver lab identified these 

to be highly polyploid (Von Stetina et al., 2018; Unhavaithaya and Orr-Weaver, 2012). When we 

used the SPG driver moody-GAL4, we found that the SPGs are highly polyploid (Unhavaithaya 

and Orr-Weaver, 2012), but contributed to less than 5% the polyploid cells observed in mature 

adult brains (Figure 3.4A,C). Another class of cells previously shown to be polyploid in some 

contexts are tracheal cells that carry oxygen to tissues (Zhou et al., 2016). Using the tracheal 

driver breathless-GAL4, we found that in 10 day old adult brains, tracheal cells comprise less 

than 3% of all polyploid cells (Figure 3.4B,C). Thus, 90% of the polyploid cells we observe in 

the brain arise from cell types not previously known to become polyploid. 
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Figure 3.4 Trachea and Sub-perineurial glia comprise less than 5% of all polyploid 

cells 

(A,B) Micrographs showing expression pattern of moody-GAL4 (A) and 

(Breathless) btl-GAL4 (B) in the adult brain to label SPGs and tracheal cells respectively. 

(C) Flow cytometry based quantification showing the contribution of Btl-GAL4 (yellow) 

and moody-GAL4 (green) driving cells to total polyploidy observed in 10d adult brains. 
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Figure 3.5 Identification of various neuronal and glial cell types that become polyploid in 

the adult brain 

Representative flow cytometry dot plots showing polyploid neuronal (A) and glial (B) 

cells in 2 week old male brain (A) Neuronal nuclei are labelled using nsyb-GAL4, UAS-nGFP, 

neuronal cells are shown in the dot plot as green dots and ‘other’ cells unlabelled by nsyb-GAL4 

are shown in black. Blue rectangle highlights cells with polyploid or >2C DNA content (B) Glial 

nuclei are labelled using Repo-GAL4, UAS-nGFP, glial cells are shown in the dot plot as green 

dots and ‘other’ cells unlabelled by Repo-GAL4 are shown in black. Blue rectangle highlights 

cells with polyploid or >2C DNA content. (C) Plot showing proportion of polyploid neurons 

(bold green) and polyploid glia (checked green) at 2 weeks compared to total polyploidy in the 

brain in w1118 control (grey) (error bars show mean ± SEM, n=3). (D) Proportion of polyploidy 

observed at 7 days in the optic lobes in various classes of neurons (D) and glia (E). Stacked bar 

plot showing mean ± SEM; percentage of polyploidy (purple) and diploidy (grey) per sample, 
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each sample contains pooled OLs from 3 or more brains; n=3. Proportions of cells also 

represented as tables in Table 3.1 and Table 3.2. 

Table 3.1 Proportions of cell types polyploid in the whole brain 

 

 

  

Cell Type % of total cells % polyploid % of total 

polyploidy 

All Neurons 91% 5.8% 84.7% 

All Glia 8% 6.3% 13.2% 

Tracheal cells 0.3% 100% 2.8% 

Sub Perineurial Glia 1% 100% 4.5% 
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Table 3.2 Types of neurons and glia polyploid in the OL 

Cell Type % of total cells % polyploid % of total polyploidy 

All neurons 86% 15%% 85% 

GABAergic neurons 58%  23% 54% 

Glutamatergic 

neurons 

35% 22.6% 33% 

Cholinergic neurons 25% 11.7% 15% 

TM3a 3.2% 22.3% 3.7% 

DM9 1.3% 23.6% 2.2% 

DM4 1.3% 33.33% 0.7% 

DM10 5% 33.1% 2.8% 

DM2 1.9% 27% 1.6% 

All glia 7% 7.5% 13% 

Astrocyte-like glia 2% 17% 1.1% 

Cortex Glia 5.6% 28% 7% 

Wrapping glia 3% 35% 5% 
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The adult fly brain is thought to be composed almost entirely of neurons (90% of total 

population) and glia (10% of total population). First, we asked if neurons become polyploid by 

using a pan-neuronal driver, nSyb-GAL4 to drive UAS-nGFP (Figure 3.5Figure 3.5 Identification 

of various neuronal and glial cell types that become polyploid in the adult brainA). We found 

that indeed, by two weeks ~5-6% of cells expressing nSyb-GAL4 show >2C DNA content. 

Similarly, we used the pan-glial driver Repo-GAL4 and found that by 2 weeks ~6-7% of glia also 

become polyploid in the adult brain (Figure 3.5B). Neurons outnumber glial cells in the fly brain, 

and we find that the relative proportions of polyploid cells reflect the total ratio of neurons vs. 

glia in the adult brain (Figure 3.5C). We next asked whether specific types of neurons or glia 

show higher levels of polyploidy. We measured the proportion of polyploid vs diploid cells in 

various classes of neurons (Figure 3.5D) and glia (Figure 3.5E) in 7 day old optic lobes. 

Interestingly, we found that most differentiated cell types we assayed in the optic lobes show 

some level of polyploidy by one week of age. We conclude that polyploidy arises in multiple 

neuronal and glial types that are initially diploid upon eclosion and become polyploid after 

terminal differentiation and specifically during adulthood. 

 

 Most Of The Polyploidy Is Not A Result Of Cell Fusion 

We reasoned that cells in the brain could become polyploid either by re-entering the cell 

cycle or by undergoing cell fusion (Alvarez-Dolado and Martínez-Losa, 2011; Giordano-Santini 

et al., 2016; Grendler et al., 2019; Losick et al., 2013; Schoenfelder et al., 2014; Shu et al., 2018; 

Starnes et al., 2016). To examine whether cell fusion occurs, we used a genetic labelling tool 

called CoinFLP (Bosch et al., 2015). The CoinFLP genetic cassette contains two overlapping but 
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exclusive Flippase Recombination Target (FRT) sites flanking a stop cassette that can be ‘flipped 

-out’ using FRT mediated recombination to give rise to cells expressing either a LexGAD driver 

or a GAL4 driver, which can be used to drive expression of lexAop-GFP (green) and UAS-RFP 

(red). In animals heterozygous for CoinFLP, a diploid cell has only one copy of the transgenic 

cassette which can only be ‘flipped’ to give rise to a cell permanently labelled with either red or 

green fluorescent proteins, hence the name CoinFLP. If labeling is induced in the brain early 

during development before eclosion, cells become stochastically and permanently labeled with 

either red or green fluorescent proteins. If cells fuse in the ageing brain, up to ⅓ of cells 

undergoing fusion could fuse a red-labeled cell with a green cell and appear yellow. We used a 

FLP recombinase (flippase) under the control of the eyeless promoter (ey-FLP) to label most of 

the cells red or green in the optic lobes early in development (Figure 3.6A-B’) and did not 

observe any double labelled (yellow) cells in young adult brains or older brains. We also 

expressed flippase enzyme more broadly under the control of a heat-shock promoter (hs-FLP) 

and labelled cells using a nuclear GFP or RFP at larval L2-L3 stages (Figure 3.6C) and measured 

the number of double-labelled cells in the optic lobes at on the day of eclosion or after aging at 

14 days post-eclosion. We never observed more than 10-12 cells per optic lobes exhibiting 

double-labelling under these ‘early-FLP’ conditions. These double-labelled cells under the larval 

hs-FLP conditions likely include the SPG cells which become polyploid early in larval 

development and do not express ey-FLP. We conclude that very little cell fusion occurs in the 

adult OL, even with age. 
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Figure 3.6 Very few polyploid cells arise from cell fusion in the adult brain 

(A) Schematic of ‘early labeling’ using CoinFLP to identify potential cell fusion events. 

Early CoinFLP labeling will label diploid cells either with GFP or RFP. Any double-labelled 

cells in an older, polyploid brain will be a result of cell fusion. Representative images of 0 day 

(B) and 30 day polyploid optic lobes showing no double-labelled cells under ‘Early-FLP’ 

conditions when labelled using ey-FLP and membrane GFP and RFP. (C) Quantification of 

double labelled cells using nuclear GFP and RFP observed per brain lobe in early ‘FLP’ 

condition at 14 days. p value=0.0428 significance calculated using unpaired t-test with Welch’s 

correction. Early ‘FLP’ in (C) was induced at L2-early L3 stages using hs-FLP. Scale bars = 

8.3µm. 
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 ‘Late-Flp’ Can Label Polyploid Cells That Arise From Cell Cycle Re-Entry 

By using a modified labelling paradigm, we can also use CoinFLP to label polyploid cells 

in situ (Figure 3.7A). Previous work with CoinFLP has shown that inducing ‘flipping’ in cells 

that are already polyploid results in a fraction of double labelled yellow cells (Bosch et al., 

2015).  We therefore reasoned that heterozygous CoinFLP brain cells that become polyploid by 

replicating their genome during adulthood will contain 2 or more copies of the CoinFLP 

transgene cassette. If we label cells by activating hs-FLP late in adulthood after polyploidy 

appears, some polyploid cells may ‘flip’ one copy green and one copy red, appearing yellow. 

When we induce an adult FLP at one day, before polyploidy occurs, we do not observe any 

double-labeled cells in the optic lobe (Figure 3.7B) but when we induce an adult FLP at 30 days 

post-eclosion, we observe several double labeled cells (Figure 3.7B’) indicating that these cells 

have undergone genome replication and contain at least two heterozygous copies of the CoinFLP 

transgenic cassette. To quantify this, we used an adult ‘late-FLP’ to drive nuclear GFP and RFP, 

and we observe around 300 double-labelled cells per optic lobes in 14 day old brains (Figure 

3.7C). The presence of double-labelled nuclei in aged optic lobes suggest cells become polyploid 

by cell cycle re-entry and endoreduplicating DNA.  

 We further confirmed that the double-labelled cells visualised by microscopy are 

polyploid by performing DAPI intensity quantification in high-magnification images (Figure 3.8) 

and flow cytometry. (Figure 3.9). All CoinFLP double-labelled cells were confirmed to be 

polyploid by DAPI integrated intensity measurements and 97% of all double-labelled cells show 

>2C DNA content by FACS (Figure 3.9) CoinFLP double-labelling confirmed several types of 

glia identifiable by location and shape  
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Figure 3.7 Cells in the OL undergo cell cycle re-entry to become polyploid 

(A) Schematic showing labelling protocol for inducing a ‘late-FLP’ in brains where 

polyploidy is expected to identify polyploid cells in situ. A proportion of cells with multiple 

copies of the genome will be double-labelled. Representative images of 1 day optic lobe heat 

shocked soon after eclosion and a 30 day old optic lobe heat shocked at 29 days to induce 

labelling (B). Older optic lobes have double-labelled cells marked with membrane GFP and RFP. 

Scale bar =8.3µm. (C)  Quantification of double labelled cells using nuclear GFP and RFP 

observed per brain lobe in ‘late-FLP’ condition. Labelling was induced 24h prior to dissection 

for both 1d and 14d using hs-FLP. P value <0.0001 significance calculated using unpaired t-test 

with Welch’s correction.(D-F) Representative images showing cortex glia of the outer (D) and 

inner (E) optic chiasm as well as astrocyte-like (F) glial nuclei that can be identified as polyploid 

based on position and morphology using CoinFLP ‘late-FLP’ labelling method. Polyploid, 

double-labelled glia of each type are indicated with white arrows  (G) Inhibition of DNA 

replication licensing factor cdc6 by RNAi in neurons using  the driver nsyb-GAL4 results in 

lower levels of polyploidy  (measured by flow cytometry) in male optic lobes compared to 

control (GAL4 driver alone). Knockdown of replication inhibitor geminin increases levels of 

polyploidy in 14 day old male optic lobes. Error bars show mean ± SEM, n=3. (Two way anova 

with greenhouse geisser correction for unequal SDs followed by Holm-Sidak's multiple 

comparisons test p values: 0.1234=ns; <0.0332 *; <0.0021 **; <0.0002 ***; **** <0.0001) 

Scale bars for D-F = 20µm. 
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Figure 3.8 CoinFLP douoble positive cells are polyploid 

Heat-shock induced CoinFLP was used to stochastically label cells in the adult brain with 

UAS-GFPNLS (magenta), LexAop-RFPNLS (green), or both 24h prior to dissection. Optic lobes at 14 

days (A-G) or 7days (H) are shown. Projections of three one micron z-sections (A,B) or single z-

sections (C-H) with anti-lamin and DAPI staining were used to delineate nuclear boundaries and 

quantify DNA content (Figure 4-figure supplement 2A). (A) Very large polyploid cells likely to be 

sub-perineurial glia, are easily discernible on the surface of optic lobes. (B) Visibly larger 

polyploid cells scattered throughout optic lobes are double-labeled with CoinFLP (yellow 

arrowheads) but can also be single-labeled (e.g. expressing UAS-RFPNLS/ UAS-RFPNLS, magenta 

arrowhead) due to the stochastic nature of CoinFLP labeling. (C-G) Arrowheads indicate examples 

of double-labeled CoinFLP cells. All were confirmed to be polyploid by Dapi quantifications 

(Figure 4- figure supplement 2A). Polyploid nuclei can exhibit a visibly dispersed chromocenter 

(C), intact chromocenters with decondensed peripheral chromatin (D,E) multiple chromocenters 

(F) or a normal nuclear appearance (G). (H) An example of a double-labeled CoinFLP, ELAV 

positive cell, confirmed to be tetraploid by Dapi quantification (yellow arrowhead) with a 

neighboring double-labeled CoinFLP, ELAV negative polyploid cell (white arrowhead). Scale bar 

=10µm. 
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Figure 3.9 CoinFLP double positive cells have polyploid DNA content 

(A) DAPI integrated intensity was quantified for 132 nuclei from CoinFLP- labeled 14 

day optic lobes using FIJI. Nuclear boundaries were guided by lamin staining for Dapi 

quantifications from at least 10 randomly chosen cells from 11 different representative images, 

from 8 different brains. (B,C) Single colour controls used for gating.(B) shows RFP only and 

(C) shows GFP only controls. (D) CoinFLP animals were heat shocked at day of eclosion to 

induce labelling and brains were harvested at 14 days post eclosion. Inducing labelling at day 1 

shows very few (0.82%) of cells in the OL that are double labelled. (E) CoinFLP labelling was 

performed 24h before harvesting. 4.413% of the OL are double labelled. (F) DNA content dot 

plot showing all cells in the brain in grey and the double labelled cells from (E) in purple. 97% 

of  double labelled (GFP+/RFP+) cells from ‘late-FLP’ OL show polyploid DNA content. 

Single colour controls in (B) and (C) are siblings from the cross  y,w,hsflp;lexAop-

nlsRFP/Cyo;UAS-nlsGFP/TM6B x y,w; CoinFLP. ‘RFP only’ and ‘GFP only’ are progeny that 

respectively, did not inherit the UAS-GFPnls and LexAop-RFPnls. cassettes and therefore contain 

balancer chromosomes. These controls were only used for gating purposes and not to estimate 

the efficiency of labelling.  
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to become polyploid, such as a subset of cortex glia of the outer (Figure 3.74D) and inner 

(Figure 3.7E) optic chiasm and astrocyte-like glia (Figure 3.7F) in the medulla of the OL.  

To test whether polyploidy in the adult optic lobes is driven by cell cycle re-entry, we 

used cell-type specific RNA-interference (RNAi) to modulate the DNA replication licensing 

factors cdc6 and Geminin in postmitotic neurons. Cdc6 is an essential factor for DNA replication 

licensing that promotes the recruitment of the MCM complex to load the DNA replication 

complex (Kang et al., 2014), while Geminin is a replication licensing inhibitor that sequesters 

DNA replication licensing factors to inhibit DNA re-replication (Lutzmann et al., 2006). Using 

nSyb-GAL4, we expressed UAS-cdc6RNAi in differentiated neurons which significantly reduced 

levels of polyploidy by 14d (Figure 3.7G) from ~25% in control optic lobes to ~14% on optic 

lobes expressing the RNAi. We next knocked down geminin and found that we increase levels of 

polyploidy in the optic lobes (Figure 3.7G). This suggests that a fraction of post-mitotic neurons 

reactivate DNA replication to become polyploid in the adult fly brain. 

 DNA Damage Accumulates In The Adult Optic Lobes 

To investigate whether transcriptional changes that occur with age may be associated 

with cell cycle reactivation and polyploidy in the brain, we performed RNA sequencing on three 

parts of the CNS: optic lobes, central brain and VNC from male and female Canton-S animals at 

different time points: 1 day, 2 days, 7 days and 21 days post-eclosion. To infer biological 

processes that are affected with age, gene ontology analysis was performed using GOrilla and 

redundant terms were filtered using reviGO. The most significant changes observed in the optic 

lobes at 21d compared to 2d are shown in Figure 3.10 A and B. Among the most significantly 

upregulated groups of genes are those associated with the cell cycle, DNA damage response and 

DNA damage repair. The enrichment of up-regulated genes associated with the DNA damage 
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response was also observed in the optic lobes at 7 days (Figure 3.11A), but the enrichment and 

fold-induction of specific genes is stronger at day 21 (Figure 3.10A). A gene expression 

signature associated with DNA damage is specific to the optic lobes. However, the most 

significantly downregulated GO terms in the optic lobes at 21d are shared with the central brain 

and VNC and include metabolism, transmembrane transport and cellular respiration-associated 

processes (Figure 3.11).  

To examine whether DNA damage is higher in the OL, we performed immunostaining 

against the phosphorylated histone 2A variant (pH2AV) in 1d optic lobes and central brain and 

21d optic lobes and central brain (Figure 3.10C-E) from Canton-S male brains. Young brains 

show very low levels of pH2AV in both the optic lobes and central brain (Figure 3.10C,C’,E) but 

older brains show higher levels of pH2AV in the optic lobes compared to the central brain 

(Figure 3.10D,D’,E).  

To further understand the DNA damage and cell cycle signatures observed with age, we 

looked at the change in expression of specific genes involved in the DNA damage response and 

the cell cycle (Figure 3.10F). Recent work has identified a specific transcriptional response to 

induced DNA damage in the head that involved a non-canonical role for tumor suppressor 

protein p53 (Kurtz et al., 2019). This signature was termed head Radiation Induced p53-

Dependent or hRIPD. In addition to genes such as FANCI, loki, rad50 and xrp1 which are 

involved in a canonical, ionising radiation-induced DNA damage response, we also find robust 

upregulation of hRIPD genes Ku80, Irbp, Cht8, CG3344 and CG4734 in our RNAseq data set at 

7d and 21d in optic lobes. However, these genes are not as strongly upregulated in the aged 

central brain or VNC and p53 itself shows only a small increase in the optic lobes at 21d (Figure 

3.10F).   
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Figure 3.10 DNA Damage accumulates in the Optic Lobes 

Changes in gene expression in 21d OL compared to 2d OL shown by GO term analysis. 

Padj= adjusted P value. Upregulated GO terms shown in solid purple (A), downregulated GO 

terms shown in grey bars outlined with purple (B’). Representative images showing pH2AV foci 

in 1 (C,C’) and 21 day (D,D’) Central Brain (CB) and Optic Lobes (OL) Neurons are labelled in 

green (ELAV), phosphorylated histone 2A variant (pH2AV) in red nuclei are labelled in blue 

(DAPI). (E) Accumulation of DNA damage is quantified by measuring pH2AV intensity/DAPI 

intensity per frame in 5 brains per sample. Significance determined by performing unpaired t-test 

with Welch’s correction for unequal SD. Scale bars = 20µm. (F) Genes involved in canonical 

Ionising Radiation (IR) response, head radiation induced p53 dependent (hRIPD) and cell cycle 

genes showing changes in expression compared to 2day. Dotted line indicates threshold for 

significance. Genes showing changes in 7d OL are shown in light purple, 21d OL are shown in 

dark purple, 21D CB in yellow and 21d VNC in blue.  
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Figure 3.11 Supplemental RNAseq GO analysis 

(A) Most significantly upregulated GO terms in 7d OL compared to 2d OL. Most 

significantly upregulated (B) and downregulated (C) GO terms in 21d CB compared to 2d CB. 

Most significantly upregulated (D) and downregulated (E) GO terms in 21d VNC compared to 

2d VNC. 
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Figure 3.12 Validation of RNAseq data 

Validation of our RNA sequencing dataset was performed by comparing our dataset to 

other published datasets. Aggregated data based on (A) age (2d vs 21d, n=6 replicates), sex (B, 

n=9 replicates) or brain region (C n=9 replicates) was compared to previously published datasets. 

Bar graphs show Mean log 2 fold change +/- SEM of select genes. Further details on references 

used are provided as a table in Supplemental File 3.  
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Table 3.3 - The list of comparisons and references for validation of RNAseq dataset 

Gene(s) Comparison Reference(s) 

ubx , abd-a, abd-b Enriched in VNC vs CB (Estacio-Gómez et al., 2013) 

antp  Enriched in VNC vs CB (Kuert et al., 2014) 

dilp7  Enriched in VNC vs CB (Nässel et al., 2008) 

Ilp2, ilp3, ilp5 Enriched in CB vs VNC (Cao et al., 2014) 

dh44 Enriched in CB vs VNC (Dus et al., 2015) 

NPF Enriched in CB vs VNC (Shao et al., 2017) 

crz Enriched in CB vs VNC (Lee et al., 2008) 

NPF, poxn, pros, imp Enriched in CB vs OL (Davie et al., 2018) 

ilp2, ilp3  Enriched in CB vs OL (Cao et al., 2014) 

ort Enriched in OL vs CB (Hong et al., 2006) 

scro Enriched in OL vs CB (Davie et al., 2018) 

vsx2 Enriched in OL vs CB (Erclik et al., 2008) 

fusl Enriched in OL vs CB (Long et al., 2008) 

erm Enriched in OL vs CB (Peng et al., 2018) 

rh7 Enriched in OL vs CB (Kistenpfennig et al., 2017) 

soxN Enriched in OL vs CB (Schilling et al., 2019) 

vsx1 Enriched in OL vs CB (Davie et al., 2018) 

rad50,CG6465,swim, ND-

ACP,ND-B18, nrv2 

Differential expression in 21d 

vs 2d 

(McCarroll et al., 2004) 

mt:lrRNA, TM4SF, sta Differential expression in 21d 

vs 2d 

(Davie et al., 2018) 

http://sciwheel.com/work/citation?ids=7099684&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=656000&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=186524&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6859492&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1383608&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=9128925&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7246913&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5473689&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6859492&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=463885&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5473689&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=483532&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=53624&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5003002&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=9128934&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7657940&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5473689&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1368897&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5473689&pre=&suf=&sa=0
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Firl, Mpc1, Mpcp2, NP15.6, 

CG11876, CG11752, 

ATPsyngamma, blw, 

mt:ND4, mt:ATPase8, kdn, 

ATPsynC, ATPsynB, 

ATPsynD 

Genes involved in oxidative 

phosphorylation that decline 

with age (Downregulated at 

21d compared to 2d) 

(Davie et al., 2018) 

Mmp1, p38a, p38c, Traf4 Injury/Stress response 

(Enriched in 21d vs 2d) 

(Purice et al., 2017) 

roX1, roX2, sxe2, fs(1)Yb, 

Ndc80, FucTC,  

Enriched in male vs female (Catalán et al., 2012; Chang 

et al., 2011) 

Sxl, fru, Yp2, Yp1, Yp3, fit Enriched in female vs male (Chang et al., 2011) 

 

  

http://sciwheel.com/work/citation?ids=5473689&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=4121001&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2107303,965333&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=2107303,965333&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=965333&pre=&suf=&sa=0
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Consistent with cell cycle re-entry in a fraction of cells in the OL, upregulation of cell 

cycle genes such as myc, cyclin D, orc1 is observed specifically in the optic lobes and increases 

with age. 

 

 Polyploidy accumulation in neurons is p53-independent 

Work in other polyploid tissues in Drosophila has shown that polyploid cells in the 

salivary gland can tolerate high levels of DNA double-strand breaks and resist apoptosis caused 

by DNA damage (Hassel et al., 2014; Mehrotra et al., 2008; Qi and Calvi, 2016; Zhang et al., 

2014). This is possible because polyploid cells in tissues such as the salivary gland have 

intrinsically low levels of p53 protein and also suppress the expression of pro-apoptotic genes 

(Zhang et al., 2014). It has also been shown in various tissues and organisms that DNA damage 

can induce polyploidisation (Bretscher and Fox, 2016; Donovan and Corbo, 2012; Grendler et 

al., 2019). Since we observe a modest upregulation of p53 as well as a p53-dependent gene 

expression signature in older optic lobes, we asked if the induction of polyploidy in neurons is 

p53 dependent. To address this, we overexpressed wildtype (p53WT) or a dominant-negative 

allele of p53 (p53DN) that is unable to bind to DNA and evoke a transcriptional response in 

neurons using the nSyb-GAL4 driver (Figure 3.13A). We did not see a significant difference in 

levels of polyploidy in 7day old brains with overexpression of either WT or mutant p53, 

suggesting that accumulation of polyploidy in neurons is p53-independent. We also performed 

cell death measurement in the brain using flow cytometry. We calculated cell death by 

measuring proportions of cells incorporating either Propidium Iodide (PI) or Sytox-Green 

(Figure 3.14A). We did not see a significant difference in the proportion of dead cells in 
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overexpression of p53WT or p53DN conditions compared to control (Figure 3.14B) consistent 

with recent work suggesting a non-canonical, non-apoptotic role for p53 in the adult Drosophila 

brain (Kurtz et al., 2019). 

 Exogeneous DNA damage leads to increased polyploidy 

We next asked if exogenous stress can impact levels of polyploidy in the brain. Increased 

oxidative stress is commonly associated with ageing (Haddadi et al., 2014; Hussain et al., 2018; 

Pinto and Moraes, 2015).  We first treated flies with a low dose of paraquat (PQ) to mimic 

oxidative stress (Bonilla et al., 2006; Dudas and Arking, 1995; Hosamani and Muralidhara, 

2013; Zou et al., 2000). w1118 flies treated with low dose of 2mM PQ from eclosion show 

increased DNA damage as well as increased polyploidy at 7d -14d (Figure 3.13B,D) but not 

increased cell death (Figure 3.14).  

We next tested whether inducing DNA damage directly affects polyploidy. We treated 

flies with 900mJ of UV radiation by placing flies in a UV Stratalinker at 2 days post-eclosion 

(Grendler et al., 2019; Kang and Bashirullah, 2014) and observed significantly increased levels 

of polyploidy at day 7 in UV-treated flies compared to mock-treated controls (Figure 3.13C). We 

measured cell death using propidium-iodide (PI) incorporation (Grushko and Buttitta, 2015) and 

observed an acute increase in cell death 16h post-exposure to UV (Figure 3.13E), but no 

difference in cell death 5 days post-exposure. This suggests that cell death precedes 

accumulation of polyploidy upon induction of exogenous DNA damage.  

 Polyploid cells are protected from cell death 

Polyploid cells in other tissues are known to sustain high levels of DNA damage as well 

as resist cell death (Zhang et al., 2014). We and others do not observe reproducible caspase- 



 

117 

 
 



 

118 

 

Figure 3.13 Oxidative stress and DNA damage results in increased polyploidy during early 

adulthood and polyploid cells are protected from cell death 

(A) Polyploidy in neurons is not p53 dependent. Percentage of polyploidy under each 

condition was measured in individual 7d male brains (n=5). (B) w1118 males treated with 2mM 

paraquat (PQ) from day of eclosion exhibit higher levels of polyploidy at 7 days compared to 

control w1118 males (n=5). (C) UV treated (960mJ exposure 5 days prior to dissection and flow 

cytometry) Canton-S flies show greater levels of polyploidy at  7 days compared to control 

(n=3). Error bars are mean±SEM, significance was calculated by performing unpaired t-test with 

Welch’s correction for unequal SD. (D) Accumulation of polyploidy over a time course in w1118 

males on 2mM PQ (dark green) compared to control w1118 males (light green). Shapes show 

mean, bars show SEM. Significance was calculated using 2 way ANOVA with Greenhouse-

geisser correction for unequal SDs, multiple comparisons with Holm-Sidak’s test; 0.1234=ns; 

<0.0332 *; <0.0021 **; <0.0002 ***. (E) Cell death measured by Propidium Iodide 

incorporation in animals treated with 960mJ UV at 16h post-exposure and 5 days post-exposure. 

Cell death precedes accumulation of polyploidy upon induced DNA damage. Significance was 

calculated using 2 way ANOVA with Greenhouse-geisser correction for unequal SDs, multiple 

comparisons with Holm-Sidak’s test; 0.1234=ns; <0.0332 *; <0.0021 **; <0.0002 ***; **** 

<0.0001. (F) PI incorporation shows percentage of dead/dying cells in individual brains, male 

and female, w1118 at different ages post-eclosion. Significance was calculated using 2 way 

ANOVA with Greenhouse-geisser correction for unequal SDs, multiple comparisons with Holm-

Sidak’s test; 0.1234=ns; <0.0332 *; <0.0021 **; <0.0002 ***; **** <0.0001 (G). Proportion of 

PI+ cells that are diploid (2C) and polyploid (>2C) in pooled 14 day old Canton-S male brains. 

(H-J) Animals were exposed to 480 mJ UV at 21days and dissected 24h, 48h or 5d post exposure 

and cell death (H,I) and polyploidy (J) was measured by flow cytometry. (H) Proportion of PI+ 

cells that are diploid (2C) and polyploid (>2C) in pooled 21d w1118 male OL 24h post-exposure 

to 480mJ UV. (K) Proposed Model. For (G-I) n=3, Error bars are mean±SEM, significance was 

calculated by performing Two way ANOVA, multiple comparisons with Holm-Sidak’s test; 

0.1234=ns; <0.0332 *; <0.0021 **; <0.0002 ***; **** <0.0001.  
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Figure 3.14 Supplemental Cell death and DNA damage data 

(A) One day and 7d Canton-S brains stained with both Sytox-Green (green) and Propidium 

Iodide (red) show similar labelling with both cell death markers. (B) Percentage of cells incorporating 

Sytox-green under each condition was measured in individual 7d male brains (n=5) Error bars are 

mean±SEM, significance was calculated by performing unpaired t-test with Welch’s correction for 

unequal SD. (C)  Total cell counts from individual brains measured by flow cytometry in w1118 males. 

(black box = mean, bars = SEM) Red circles indicate the expected cell number, estimated by plotting 

5% cell loss every week to model the death rate we observe inFigure 3.13. (D) PI incorporation with 

2mM pQ treatment measured over a time course in w1118 males. 2mM PQ (dark green) compared to 

control w1118 males (light green). Error bars show SEM. Significance was calculated using 2 way 

ANOVA with Greenhouse-geisser correction for unequal SDs, multiple comparisons with Holm-

Sidak’s test. (E) 30d w1118 Control vs PQ-Treated brains stained with anti-pH2AV showing increased 

pH2AV immunofluorescence in PQ treated brains. Scale bar=20µm. (F) 21d w1118 Control vs UV-

treated (480mJ) OL stained with anti-pH2AV showing increased pH2AV immunofluorescence in UV 

treated OL. Scale bar = 8µm. 
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dependent cell death in the adult brain beyond the first 5 days after eclosion (Foo et al., 

2017). We measured cell death and necrosis in individual w1118 adult brains over a time-course 

using PI incorporation from day 1 post-eclosion until day 56 (Grushko and Buttitta, 2015). We 

found that newly eclosed flies exhibit a low level of dead or dying cells but from day 7 to day 56, 

the brain shows a relatively steady level (~5%) of dead or dying cells (Figure 3.13F) although 

there is variability from animal to animal. Since dead cells are cleared in the brain (Kurant, 

2011), we expect this steady rate of cell death to result in a predictable rate of cell loss in the 

brain with age, which closely agrees with our total cell counts performed using flow cytometry 

(Figure 3.14). 

We next examined whether the polyploid cells in aged brains are protected from cell 

death. Since the numbers of dead or dying cells measured in individual brains was very small, we 

pooled brains from 2 week old Canton-S males to obtain a measurement of ploidy in the PI 

positive cells by co-staining with the DNA content dye DyeCycle Violet. We found that while 

~7% of the diploid cells incorporate PI, less than ~2.5% of polyploid cells incorporate PI (Figure 

3.13G), suggesting that polyploid cells are more resistant to cell death.  

To examine whether polyploid cells are resistant to cell death upon external DNA 

damage, we aged animals to 21 days, a time point where the OL exhibits high levels of 

polyploidy. We then exposed these flies to 480mJ UV to induce DNA damage and measured the 

levels of cell death and polyploidy from 24 hours – 5 days post exposure to UV. We observe 

high levels of PI incorporation (Figure 3.13H,I) at 24h post exposure, but normal levels by 48h, 

indicating an acute response of DNA damage induced cell death in the brain. Many diploid cells 

die in response to this dose of UV (~24.5%). In contrast, the polyploid cells show very low levels 

of PI incorporation (~3.1%, Figure 3.13H), suggesting that the polyploid cells in older adult 
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brains are also resistant to DNA damage induced cell death. We next examined whether the 

exposure to DNA damage also altered polyploidy, as we had observed in younger animals ( 

Figure 3.13C). At 48h we observed, on average, a 4% increase in polyploidy for UV exposed 

animals. This early increase can be almost entirely attributed to the loss of the diploid cells that 

are PI positive at 24 hours post exposure (a loss of 24.5% of diploid cells increases the 

proportion of polyploid cells from 18.9% to 23%). When comparing 48h to 5 days post exposure, 

we see no significant increase in polyploidy, suggesting that after 3 weeks of age, animals lose 

the ability to further increase polyploidy in response to damage. This is in contrast to our 

experiment in young animals, using a low dose of paraquat to cause oxidative damage (Figure 

3.13B, D) where we see an earlier accumulation of polyploid cells without any obvious increase 

in cell death (Figure 3.14).    

 The work described in this study supports a model (Figure 3.13) where cells in the 

early adult fly brain undergo endoreplication and polyploidisation in response to DNA damage 

and oxidative stress accumulated with age. Our data also suggests that polyploid cells are more 

resistant to cell death and may serve a beneficial or neuroprotective role in the ageing brain.  

3.4. Discussion 

 Adult -onset polyploidy in neurons and glia 

In this study we describe a surprising discovery, that diploid cells in the adult Drosophila 

brain can re-enter the cell cycle and become polyploid. We have identified several classes of 

neurons as well as glia that exhibit adult-onset polyploidy. We have also characterised which 

regions of the brain show increased polyploidy, and find that polyploidy is closely correlated 

with the expression of a DNA damage response signature. Other work has also shown that a 
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small population of about 40 stem cells in the optic lobes of Drosophila respond to acute injury 

by generating adult-born neurons (Fernández-Hernández et al., 2013). We considered the 

possibility that a fraction of cells with 4C DNA content may be in G2 and poised to undergo 

mitosis. We stained for G2 and mitotic cell cycle markers (phospho-histone H3 and Cyclin A) in 

over 100 adult brains at different ages and never observed a convincing G2 or mitotic event. 

However, we may have missed rare, transient cell cycle events that are captured by permanent 

lineage tracing approaches (Crocker et al., 2020; Fernandez-Hernandez et al., 2019). Both our 

cell number counts and cell death measurements indicate a steady decline in cell number in the 

adult brain with age (Figure 3.14), and suggest that under normal ageing conditions mitoses are 

likely rare. Moreover, we observe hundreds to thousands of tetraploid or polyploid cells by 

FACS or CoinFLP, suggesting that only a very small proportion of tetraploid cells would be 

expected to be in G2. We suggest that multiple mechanisms are employed in this brain region to 

ensure proper function and tissue integrity with age. 

Polyploidy in neurons has previously been reported in the mouse cerebral cortex (López-

Sánchez and Frade, 2013; López-Sánchez et al., 2017b) and chick retinal ganglion cells (Morillo 

et al., 2010). Whether purkinje cells in the mammalian cerebellum are polyploid has been a 

matter of considerable debate over the past several decades. (Brodskii et al., 1971; Kemp et al., 

2012; Lapham, 1968; Lapham et al., 1971; Mares et al., 1973; Del Monte, 2006; Swartz and 

Bhatnagar, 1981). Perhaps the most exaggerated examples of polyploidy are from the giant 

neurons in the terrestrial slug Limax (Yamagishi et al., 2011) and the sea slug Aplysia 

(Coggeshall et al., 1970) where giant neurons contain >100,000 copies of the diploid genome. 

However, in all these cases, polyploid neurons appear during development. Our study describes a 
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novel phenomenon of adult onset and accumulation of polyploidy in the Drosophila brain under 

normal physiological ageing conditions. 

 What is the function of polyploidisation in the brain? 

We have shown that many cell types become polyploid in the adult brain (Figure 3.5). 

These cell types have distinct physiology and functions. How polyploidisation affects the 

function of these various cell types is an exciting avenue for future research. Polyploidy can 

confer cell-type and context specific benefits in various tissues. In Drosophila, polyploid 

intestinal enterocytes (Miguel-Aliaga et al., 2018), SPGs (Von Stetina et al., 2018; Unhavaithaya 

and Orr-Weaver, 2012) and cells in the wounded epithelium (Losick, 2016; Losick et al., 2013) 

undergo endoreduplication and do not undergo cytokinesis to maintain the integrity of the blood 

brain barrier and the cell-cell junctions in the epithelium respectively. One possibility is that 

polyploidy in neurons or glia may allow cells to compensate for cell loss while maintaining 

established cell-cell contacts (Unhavaithaya and Orr-Weaver, 2012). The compound eye and 

optic lobes of Drosophila contain ~750-800 ommatidial ‘units’ that form a highly organised and 

crystalline structure (Bates et al., 2019; Nériec and Desplan, 2016; Pecot et al., 2014). 

Numerically and topographically matched cells in the medulla cortex of the optic lobes receive 

inputs from the lamina which in turn receives inputs from the retina (Bates et al., 2019; Pecot et 

al., 2014). We observe polyploidisation in multiple neuronal types found in the medulla, yet 

several cell types in the brain show a decline in number with age (Bates et al., 2019). In neurons, 

polyploidy could play a role in helping cells increase their soma size and dendritic arbors 

(Morillo et al., 2010; Szaro and Tompkins, 1987). It is possible that polyploidy allows neurons to 

form more presynaptic and postsynaptic connections to compensate for lost cells while 

maintaining the integrity of existing connections in the visual system.  
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Nurse cells in the egg chamber (Lilly and Spradling, 1996; Wattiaux and Tsien, 1971), 

cells in the accessory gland (Box et al., 2019; Sitnik et al., 2016), salivary gland (Edgar and Orr-

Weaver, 2001) and fat body (Guarner et al., 2017), on the other hand become polyploid to fulfill 

increased biosynthetic demands. In addition to an upregulation of DNA damage and cell cycle in 

the optic lobes, our RNAseq data suggests compromised metabolism with age in all parts of the 

brain. One of the main functions of glial cells is to provide metabolic support to neurons in the 

brain (Kremer et al., 2017; Schirmeier et al., 2016; Volkenhoff et al., 2015). Polyploidisation in 

astrocyte and cortex glial cells might also serve to increase their metabolic output and 

compensate for the reduced metabolic output in the ageing brain.   

 DNA damage accumulates in the optic lobes with age 

We observe higher levels of expression of DNA damage-associated genes in the optic 

lobes than in other parts of the brain (Figure 3.10A). We also see higher levels of DNA damage 

foci in the optic lobes than the central brain. We observe this signature even at 7 days in the OL, 

but it becomes stronger by 21 days (Figure 3.11Figure 3.10). This is consistent with other studies 

that report that signatures of ageing appear gradually over the course of an organism’s lifespan 

and not abruptly at later chronological ages (Ben-Zvi et al., 2009; Labbadia and Morimoto, 2014; 

Shavlakadze et al., 2019). We do not know whether the increased DNA damage signature we 

observe in the optic lobes is because the optic lobes intrinsically sustain higher levels of DNA 

damage or whether other parts of the brain are better equipped to resolve DNA lesions. We also 

see an upregulation of cell cycle-associated genes specifically in the optic lobes with age. The 

transcription of cell cycle genes and genes involved in the DNA damage response and repair are 

intimately coordinated and can be controlled by intersecting pathways. (Chen et al., 2010; 

Herrup et al., 2013; Uxa et al., 2019). Homology-directed repair of DNA lesions occurs in S and 
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G2 phases of the cell cycle in actively dividing cells (Herrup and Yang, 2007). In other phases of 

the cell cycle, and after cell cycle exit, cells have to rely on error-prone non-homologous end 

joining mediated repair. It is tempting to speculate that re-entering the cell cycle allows 

postmitotic cells to repair DNA damage better and survive.  

 Is polyploidy protective? 

We and others observe a steady decline in the number of cells in the adult Drosophila 

brain with age (Figure 3.14), (Bates et al., 2019; Foo et al., 2017). The continual loss of cells in 

the ageing brain may be analogous to wounding, which induces polyploidisation or 

compensatory cellular hypertrophy in other Drosophila tissues (Bretscher and Fox, 2016; Cohen 

et al., 2018; Losick et al., 2013), ((Box et al., 2019; Tamori and Deng, 2013). We suggest 

neurons and glia in the adult brain may employ a similar strategy, to compensate for cell loss in a 

non-autonomous fashion. When we induce damage that does not increase cell death in young 

brains (Figure 3.13B, D) we observe an earlier increase in polyploidy, suggesting that in younger 

animals polyploidy can be an adaptive response to damage. By contrast in older animals, we find 

that polyploidy can protect from acute cell loss. However, levels of subsequent polyploidy do not 

further increase in aged animals, suggesting there is a permissive window for damage-induced 

polyploidy during adulthood (Figure 3.13). This may explain why levels of polyploidy plateau 

after 3-4 weeks of age in various strains (Figure 3.1). It will be interesting to further test the 

nature of this compensation for cell loss in early adulthood by performing genetic experiments to 

ablate specific cell types or sub-populations of cells.  
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 How does polyploidy relate to neurodegeneration? 

Over the past two decades, several studies have reported an interesting correlation 

between neurodegeneration and cell cycle re-entry in neurons (Chen et al., 2010; Frade and 

Ovejero-Benito, 2015; Herrup, 2012; Moh et al., 2011; Rimkus et al., 2008; Yang and Herrup, 

2005). Most of these observations are from post-mortem brains containing neurons expressing 

cell cycle genes or exhibiting hyperploidy (>2N DNA content). More hyperploidy is observed in 

brains of patients with preclinical Alzheimer’s compared to age-matched controls, which has led 

to the hypothesis that cell cycle re-entry may precede cell death and neurodegeneration. Whether 

cell cycle re-entry is a cause or a consequence of neurodegeneration has been difficult to test, 

since both are associated with age and damage. Our data suggests that re-entry into the cell cycle 

may be a normal physiological response to the accumulation of damage in early adulthood and 

that it can serve a beneficial and protective function in neurons and glia. However, we do not 

know how polyploidy may impact neuronal and glial function and whether it may become 

detrimental over time. In geriatric animals (beyond 4 weeks) we observe increased variation in 

the levels of polyploidy and we note that a subset of animals also exhibit extreme levels of cell 

death (Figure 3.13C). It is possible that these animals represent a fraction of the aged population 

that exhibit neurodegeneration. Our single-animal assays will be essential to identify these 

outliers for further study.  
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3.5. Materials and Methods 

Table 3.4List of Key resources and Reagents 

Key Resources Table 

Reagent type 

(species) or 

resource Designation Source or reference Identifiers 

Additional 

information 

Genetic reagent 

(D. melanogaster) w1118 

Bloomington 

Drosophila Stock 

Center BDSC 5905 isogenic 

Genetic reagent 

(D. melanogaster) Canton-S O. Shafer lab n/a WT 

Genetic reagent 

(D. melanogaster) Oregon-R C. Collins lab n/a WT 

Genetic reagent 

(D. americana) Drosophila americana P. Wittkopp lab n/a 

Non 

melanogaster 

Drosophila 

Genetic reagent 

(D. mauritiana) Drosophila mauritiana P. Wittkopp lab n/a 

Non 

melanogaster 

Drosophila 

Genetic reagent 

(D. melanogaster) glass60J O. Shafer lab n/a 

Mutant for 

glass 
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Genetic reagent 

(D. melanogaster) w;nSyb-GAL4/Cyo M. Dus lab n/a pan-neuronal 

Genetic reagent 

(D. melanogaster) w;+;nSyb-GAL4 M. Dus lab n/a pan-neuronal 

Genetic reagent 

(D. melanogaster) 

w;UAS-nGFP;Repo-

GAL4, tubulin GAL80TS Buttitta lab stocks n/a pan-glial 

Genetic reagent 

(D. melanogaster) w;UAS-nGFP Buttitta lab stocks n/a 

UAS nuclear 

GFP 

Genetic reagent 

(D. melanogaster) w;+;UAS-nGFP Buttitta lab stocks n/a 

UAS nuclear 

GFP 

Genetic reagent 

(D. melanogaster) w;Moody-GAL4 

C. Collins lab via 

Klambt Lab n/a 

Sub-

perineurial 

glia 

Genetic reagent 

(D. melanogaster) y,w;mz19-mCD8::GFP 

Bloomington 

Drosophila Stock 

Center BDSC 23300 

Antennal lobe 

projection 

neuron 

Genetic reagent 

(D. melanogaster) 

w1118;ELAV-GAL4,UAS-

nGFP 

Bloomington 

Drosophila Stock 

Center BDSC 49226 pan-neuronal 

Genetic reagent 

(D. melanogaster) y,w;breathless-GAL4 DGRC Kyoto 105276 Trachea 
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Genetic reagent 

(D. melanogaster) w-;GAD1-GAL4/SM6 O. Shafer lab n/a GABAergic 

Genetic reagent 

(D. melanogaster) 

w-;OK371-GAL4,UASn-

GFP Buttitta lab stocks n/a Glutamatergic 

Genetic reagent 

(D. melanogaster) w;ChaT-GAL4 O. Shafer lab n/a Cholinergic 

Genetic reagent 

(D. melanogaster) 

w1118;+;GMR-12C11-

GAL4 

Bloomington 

Drosophila Stock 

Center BDSC 76324 Tm3a 

Genetic reagent 

(D. melanogaster) 

w1118;+;GMR-42H01-

GAL4 

Bloomington 

Drosophila Stock 

Center BDSC 48150 Dm9 

Genetic reagent 

(D. melanogaster) 

w1118;+;GMR-23G11-

GAL4 

Bloomington 

Drosophila Stock 

Center BDSC 49043 Dm4 

Genetic reagent 

(D. melanogaster) 

w1118;+;GMR-30B06-

GAL4 

Bloomington 

Drosophila Stock 

Center BDSC 47529 Dm10 

Genetic reagent 

(D. melanogaster) 

w1118;+;GMR-26H07-

GAL4 

Bloomington 

Drosophila Stock 

Center BDSC 49204 Dm2 



 

131 

 

Genetic reagent 

(D. melanogaster) y;w;NP3233-GAL4/Cyo DGRC Kyoto 113173 Astrocyte-like 

Genetic reagent 

(D. melanogaster) y;w;NP2222-GAL4/Cyo DGRC Kyoto 112830 Cortex glia 

Genetic reagent 

(D. melanogaster) w;mz97-GAL4 

C. Collins lab via 

Klambt Lab n/a Wrapping glia 

Genetic reagent 

(D. melanogaster) 

y,w,UAS-

mCD8::RFP,LexAop2-

mCD8::GFP; CoinFLP-

LexA::GAD.GAL4 

Bloomington 

Drosophila Stock 

Center 

BDSC 59270 

and 59271 CoinFLP 

Genetic reagent 

(D. melanogaster) 

y,w,hs-FLP;LexAop-

RFPnls; UAS-GFPnls Buttitta lab stocks n/a 

hs-FLP used 

with with 

CoinFLP 

nuclear GFP 

and RFP 

Genetic reagent 

(D. melanogaster) ey-FLP 

Bloomington 

Drosophila Stock 

Center BDSC 5576 ey-FLP 

Genetic reagent 

(D. melanogaster) y,sev,w;UAS-cdc6RNAi 

Bloomington 

Drosophila Stock 

Center BDSC 55734 cdc6KD 

https://kyotofly.kit.jp/cgi-bin/stocks/search_res_det.cgi?DB_NUM=1&DG_NUM=113173
https://kyotofly.kit.jp/cgi-bin/stocks/search_res_det.cgi?DB_NUM=1&DG_NUM=112830
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Genetic reagent 

(D. melanogaster) w; UAS-gemininRNAi 

Bloomington 

Drosophila Stock 

Center 

BDSC 30929 

and 50720 gemininKD 

Genetic reagent 

(D. melanogaster) w1118;GUS-p53 

Bloomington 

Drosophila Stock 

Center BDSC 6584 UAS-p53WT 

Genetic reagent 

(D. melanogaster) y,w1118; UAS-p53 259N 

Bloomington 

Drosophila Stock 

Center BDSC 6582 UAS-p53DN 

Antibody 

anti-ELAV  

(rat monoclonal) 

Developmental 

Studies Hybridoma 

Bank 

Rat-ELAV-

7E8A10 

1 : 100 

Antibody 

anti-pH2AV  

(mouse monoclonal) 

Developmental 

Studies Hybridoma 

Bank 

UNC93-

5.2.1 

1 : 100 

Antibody 

anti-Repo  

(mouse monoclonal) 

Developmental 

Studies Hybridoma 

Bank 

8D12 

1 : 100 

Antibody 

anti-Lamin  

(mouse monoclonal) 

Developmental 

Studies Hybridoma 

Bank 

ADL67.10 1 : 100 
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Antibody Alexa Fluor 568  

anti-mouse  

(goat polyclonal) ThermoFisher A11031 1 : 1000 

Antibody Alexa Fluor 568  

anti-rat (goat 

polyclonal) ThermoFisher A11077 1 : 1000 

Antibody Alexa Fluor 488  

anti-mouse  

(goat polyclonal) ThermoFisher A11029 1 : 1000 

Antibody Alexa Fluor 488  

anti-rat  

(donkey polyclonal) ThermoFisher A21208 1 : 1000 

Other DAPI Sigma-Aldrich D9542 1 : 1000 

Other Dye-cycle violet ThermoFisher V35003 2 : 1000 

Other Sytox Green ThermoFisher S7020 2 : 1000 

Other Propidium Iodide Sigma-Aldrich P4170 2.25 : 1000 
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 Fixation, Immunostaining and Imaging 

Drosophila brains were dissected in 1X Phosphate buffered saline (PBS) and fixed in 4% 

Paraformaldehyde (PFA) in 1X PBS for 25 minutes. Tissues were permeabilised in 1X 

PBS+0.5% Triton-X, blocked in 1X PBS, 1% BSA 0.1% Triton-X. (PAT) Antibody staining was 

performed at specified concentrations in PAT (Supplementary File 1) overnight at 4°C, washed, 

blocked in PBT-X (1X PBS, 2% Goat serum 0.3% Triton-X) prior to incubation with secondary 

antibody either for 4h at RT or overnight at 4°C. DAPI staining was performed after washes, 

brains were wet-mounted in vectashield H1000. All imaging was performed on either a Leica 

SP5 or SP8 laser scanning confocal microscopes. For EdU incorporation assays, flies were 

placed on 10mM EdU containing food with food colouring for 3 days prior to dissection. Only 

flies with visibly coloured abdomens were dissected. Click-iT PlusTM staining with picolyl Azide 

was done as per the protocol recommended by ThermoFisher. 

 Fly Husbandry 

Flies were reared and aged in a protocol modified from (Linford et al., 2013). Ageing 

flies were collected soon after eclosion as virgin males and females and segregated into vials 

containing no more than 20 flies/vial. Ageing flies were flipped onto fresh Bloomington 

Cornmeal food every 5-7 days. A list of all fly stocks used in this study is supplied in Table 3.4.  

 Image Quantification  

For pH2AV quantification, 5 non-overlapping Regions of Interest (ROIs) were chosen 

per brain region per brain. Average Intensity of pH2AV and DAPI per ROI were computed on 
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individual channels using ImageJ. All brains were imaged at the same laser intensity and gain 

settings at different ages.  

CoinFLP double-labelled cell counting was performed manually. Individual optic lobes 

were imaged at 100x magnification with 0.5 micron Z-sections. Quantification was performed by 

cropping 2-5 confocal Z-sections at a time, performing maximum intensity projections of each 

cropped image, and counting cells that showed DAPI, GFP and RFP signal overlap. Lamin 

staining was used to discern nuclear boundaries for DAPI Integrated Intensity measurements of 

132 cells using FIJI. DAPI intensity was normalized to diploid cells (2N) measured on the same 

slide. 

 Heat shock protocol 

CoinFLP labelling was induced with heat shock induction. Flies were placed in plastic 

vials and completely submerged in 37°C water bath for 15 minutes. For ‘early-FLP’, flies were 

moved back to 23°C and dissected at day 1 or day 10. For ‘late-FLP’, heat shock induction was 

performed 24 hours prior to dissection. All incubations and culturing except heat shock was 

performed at 23°C. We noted that the frequency of CoinFLP flipping resulted in a ratio of 

LexA:GAL4 expressing cells that is between 4:1 and 4.6:1 (Bosch et al 2015). We calculated the 

expected number of double labeled cells for ‘late-FLP’ in Fig 4 and Figure 4-figure supplement 2 

as follows: If flipping is complete (100% of cells flip), we would expect 80% of diploid cells to 

label red and ~20% to label green. Only 4% of all polyploid cells will label green/green 

(probability of green is 0.2 therefore 0.2* 0.2=0.04*100), 64% red/red (probability of red is 0.8 

thus, 0.8*0.8=0.64*100) and 32% will label green/red or red/green and appear yellow or 

‘double-labelled’. If we assume that about 20% of cells in the optic lobes are tetraploid (20% of 

~30,000 = 6,000 cells), we can expect 1,920 cells (32% of 6,000) to label yellow per optic lobe 
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under 100% flipping conditions. If we flip ~50% of cells, we expect about 900 yellow cells per 

optic lobe. In our measurements the amount of flipping was variable from animal to animal and 

we estimate that in our samples with the lowest flipping we flip about ⅓ of cells and with our 

strongest flipping we label about ¾ cells.  

 

 Flow Cytometry 

Fly brains were dissected in PBS and transferred to 1.5mL microcentrifuge tube caps 

containing 100uL of solution containing 9:1 Trypsin-EDTA :10XPBS with 1µL Dyecycle Violet 

and/or 1.12µL PI or 1µL Sytox green. Brains were incubated for 20 minutes in the 

microcentrifuge tube caps, triturated using low retention p200 pipette tips for 60 seconds then 

transferred into the microcentrifuge tubes containing 400µL of the trypsin-EDTA solution with 

dyes and capped, and incubated further for 45 minutes at room temperature without agitation. 

After incubation, each sample was diluted with 500µL 1XPBS and gently vortexed at speed 8 

before being loaded onto Attune or Attune NxT flow cytometer for flow cytometry analysis. The 

Attune had a laser configuration of a violet laser (VL,405nm) with 6 bandpass (BP) filters and a 

blue laser (BL,488nm) with 3 bandpass filters. The Attune NxT is configured with VL (6 BP 

filters), BL with 2 BP filters, a yellow laser (YL, 561nm) with 3 BP filters and a red laser (RL, 

637nm) with 3 BP filters. The detection of DyeCycle Violet was performed using VL1 

(Emission filter 450/40), GFP and Sytox Green using BL1 (Emission filter 530/30), RFP and PI 

using BL2 (Emission filter 574/24) on the Attune and YL1 (585/16) on the Attune NxT. A flow 

rate of 100 to 500 µl/second was used for sample acquisition and a minimum of 20,0000 events 

gated as ‘non doublets’ (Figure 1-figure supplement 1) were acquired per sample. Gating 

Strategy is graphed in Figure 3.2Figure 3.2. Briefly, all cells were plotted on forward vs side 
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scatter (FSC vs. SSC), gated to eliminate debris. Subsequently, ‘non-debris’ were plotted on 

VL1(DNA) vs FSC and gated to eliminate unstained events. A third gate was applied plotting 

VL1(DNA)-H vs VL1(DNA)-A (voltage pulse area vs.height) to eliminate doublets. All events 

in gate 3 were further subjected to GFP/DNA/PI content analysis.   

 

 RNA sequencing 

10 CNSs from Canton-S females and males raised at 25°C on Cornmeal/Dextrose food 

under normal 12h L/D cycles at ZT = 2, were dissected into optic lobes, VNC and central brain 

at the indicated ages with 3 biological replicates for each sex, age and region (72 samples total). 

Tissues were directly dissolved into TRIZOL-LS. (Invitrogen) and RNA was prepared as 

directed by the manufacturer. Total RNA (2-5µg) was provided to the University of Michigan 

Sequencing Core for polyA selection and unstranded mRNA library preparation for the Illumina 

HiSeq4000 platform 

 RNAseq data analysis and GO term analysis 

RNAseq analysis was performed at the U.Michigan Bioinformatics Core using the 

following pipeline: 

1. Read files from the Sequencing Core were concatenated into single fastq files for each 

sample. 2. Quality of the raw reads data for each sample was checked using FastQC(version 

v0.11.7). 3. Adaptors and poor quality bases were trimmed from reads using bbduk from the 

BBTools suite (v37.90).4. Quality processed reads were aligned to the Ensembl Dm6 genome 

using STAR (v2.6.1a) with quantMode GeneCounts flag option set to produce gene level counts. 

MultiQC (v1.6a0) was run to summarize QC information for raw reads, QC processed reads, 



 

138 

 

alignment, and gene count information. Differential expression analyses were carried out using 

DESeq2 (v1.14.1). Data were pre-filtered to remove genes with 0 counts in all samples. 

Normalization and differential expression was performed with DESeq2, using a negative 

binomial generalized linear model. Plots were generated using variations or alternative 

representations of native DESeq2 plotting functions, ggplot2, plotly, and other packages within 

the R environment. 

Genes called as at least 2-fold differentially expressed between day 2 and day 21 were 

examined for enriched GO terms using target and background unranked lists in GOrilla and 

redundant GO terms were filtered using ReviGO. GO term Enrichment is presented as the -log10 

of the p-value with a cutoff at p-values higher than 10^-3. The full dataset has been uploaded to 

GEO and can be found using the accession number: GSE153165 
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Chapter 4. Concluding Remarks and Future Directions 

 

In Chapter 2, I show that postmitotic neurons and glia in the developing Drosophila brain 

can be forced to re-enter the cell cycle after they have terminally differentiated. My studies show 

that forced re-entry in both neurons and glia can result in mitosis, however, neurons that are 

forced to divide frequently undergo cell death potentially due to catastrophic mitoses, while glial 

cells can form tumour-like masses. I also show that the time window of flexible cell cycle exit in 

neurons is shorter, whereas glia exhibit an intrinsically greater flexibility in their G0 state. 

In Chapter 3, I describe the discovery of polyploid neurons and glia in the adult 

Drosophila brain. This is the first recognition of age-associated, adult specific increase in DNA 

content in neurons and glia in Drosophila. I found that the optic lobes show higher levels of 

polyploidy than the central brain and the ventral nerve cord. I also show that an increase in 

polyploidy occurs  within the first week after eclosion. In addition, exogenous DNA damage and 

oxidative stress can induce even higher levels of polyploidy, and the polyploid cells are protected 

from cell death.  

The studies described in chapters 2 and 3 show that the establishment and maintenance of 

G0 in non-dividing cells is a complex and dynamic process. Neurons are sensitive to cell cycle 

activation in early metamorphosis, and can even undergo mitosis. In late metamorphosis, they 

become completely refractory to the same cues which could drive them into mitosis at earlier 

stages. Later, in the adult, neurons readily re-enter the cell cycle to become polyploid as flies get 

older but do not undergo mitosis. Indeed, overexpression of the same factors which could drive 
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neuronal mitosis at 48h APF do not result in increased polyploidy in older brains suggesting that 

different factors may be involved in the regulation of adult-onset polyploidy in neurons.  

 

  

Figure 4.1Overexpression of E2F+CycD/CDK4 does not 

result in increased polyploidy in adult neurons 
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Figure 4.2 Schematic diagram summarising the difference in capacity for cell cycle re-

entry in Drosophila neurons and glia 

 

I concluded the first chapter with some questions. In this final chapter, I will attempt to 

address them with some of the perspective gained from the work described in Chapter 3, and 

then discuss some potential future avenues of research that can be explored.  

 

4.1. An Endocrine Polyploidy Trigger? 

What causes polyploidy in neurons and glia specifically in the adult? Is the onset of 

polyploidy in the fly brain ‘developmentally’ regulated in the first week of fly adulthood? Are 

the endocycling cells in early adulthood responding to endogenous DNA damage or are they 

endocycling in anticipation of DNA damage? Recent work in the fly prostate (accessory gland) 
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shows that this tissue also exhibits endocycle-associated growth in gland size after eclosion(Box 

et al., 2019). Just as cells in the brain are able to increase levels of polyploidy upon oxidative and 

DNA damage, the accessory gland also shows a capacity to regenerate in response to cell loss, 

suggesting that various tissues in the display a capacity to respond to and recuperate from 

damage in early adulthood by engaging an endocycle program. The increase in polyploidy in the 

brain within the first week of adulthood suggests that this may be developmentally regulated.  

The early work on facultative polyploidy in mammalian tissues I described in Chapter 1 

suggests that there may be endocrine factors upstream of the cell cycle machinery to modulate 

the competency of cells in several tissues to endocycle at weaning and acquisition of sexual 

maturity (Gilbert and Pfitzer). The onset of polyploidy in the murine heart, liver, pancreas, 

lacrimal glands and some other tissues are all under the control of various endocrine systems, 

namely the thymus, thyroid or sex hormones (Geschwind et al., 1958; Paulini and Mohr, 1975; 

Roszell et al., 1978). In mice and rats, weaning regulates and is coincident with sexual maturity 

and it is still unclear to me which may play a bigger role in regulating polyploidy in these tissues 

(Fortier et al., 2017). In vertebrates, thyroid hormones are essential for early development in 

various tissues, and specifically the brain (Bohman et al., 1985; Enesco et al., 1991; Gilbert and 

Pfitzer). Thyroid hormones are less critical but nevertheless important for sexual maturity. 

In the plant model Arabidopsis thaliana, the onset of flowering (sexual maturity) is 

marked by an uptick in endocycling in cells of the leaves and root, this switch to an endocycle is 

regulated by the developmental hormone auxin. This increase in endoreplication has also been 

observed in other flowering plants, and has been linked to an increased need for biosynthesis in 

preparation for generating fruits/seeds (Bhosale et al., 2018; Lammens et al., 2008; Pacey et al., 

2019; Del Prete et al., 2019).  
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What regulates sexual maturity in insects? The Juvenile Hormone (JH) is a good 

candidate (Ren et al., 2020; Wu et al., 2016, 2018). While JH has been extensively studied in 

early larval development, its role in the adult are only beginning to be understood. Recent work 

has shown that JH is important for mating associated behaviour in males and changes in 

physiology and metabolism in females (Bilen et al., 2013; Lee et al., 2017; Reiff et al., 2015; 

Wijesekera et al., 2016). Could JH regulate endocycling in adult fly tissues? Work in locusts has 

shown that the polyploidization of the adult fat body and cells in the ovary is regulated by the 

action of juvenile hormone (JH) (Guo et al., 2014; Irvine and Brasch, 1981; Nair et al., 1981; Wu 

et al., 2018). Indeed, studies have also shown that JH binding to its receptor Met and coreceptor 

Tai can directly activate the transcription of S phase genes. The peak of JH titre in young adults 

adult coincide with the onset of polyploidy in the brain (Bownes and Rembold, 1987; Yamamoto 

et al., 2013). (Figure 3.13 Oxidative stress and DNA damage results in increased polyploidy 

during early adulthood and polyploid cells are protected from cell death)in Chapter 3 shows that 

younger brains can respond to DNA damage by increasing levels of polyploidy. However older 

brains do not respond to DNA damage by increasing levels of polyploidy, even as the polyploid 

cells remain protected from cell death. This suggests a critical period in early adulthood when 

cells in the brain are able to compensate for cell loss by re-entering the cell cycle. Could JH 

regulate onset of polyploidy in the adult brain and mediate endocycle competency? If so, then the 

polyploidy we observe in the brain could be somehow related to sexual maturity. 

All of my initial experiments measuring ploidy changes in the brain were performed in 

unmated (virgin) male and female animals. My subsequent experiments have shown that mating 

status does not influence levels of polyploidy (not shown). If there is indeed a hormonal 
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regulation of endocycling in adult tissues, it is perhaps the onset of sexual aptitude and not 

mating status which plays a role.  

I posit that the transition to a reproduction-capable stage in sexually reproducing 

multicellular organisms could result in a widespread competence for endocycling in various 

postmitotic tissues. This could represent a late ‘developmental’ transition with potentially 

important consequences for health span in adult organisms.  

4.2. DNA Damage and Polyploidy 

We show in Chapter 3 that exogeneous DNA damage and oxidative stress can increase 

levels of polyploidy. These experiments were designed to test the hypothesis and demonstrate 

that exogeneous DNA damage leads to increased polyploidy, and that polyploid cells are 

protected from DNA damage induced cell death. Exposure to paraquat and UV both elicit a DNA 

damage response in the brain, and result in increased polyploidy. Work in other endocycling 

tissues in flies has shown that endocycling cells are protected from DNA damage induced cell 

death due to low levels of p53 (Mehrotra et al., 2008; Zhang et al., 2014). We show that, in adult 

neurons, neither the overexpression of wild type p53, nor a dominant negative p53 impact the 

levels of polyploidy. This suggests that the survival of polyploid neurons is not dependent on p53 

inhibition. Future studies should dissect the relationship between polyploidy and DNA damage 

pathways in the brain. 

 What is the source of endogenous DNA damage and how do DNA damage signals 

influence polyploidy? 

Our RNAseq experiments have generated a rich dataset. From our dataset, we know 

which genes pertaining to the DNA damage response and repair are upregulated in which parts 
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of the brain, and when. The optic lobes, which show the highest levels of polyploidy, also show 

an upregulation of DNA damage related genes as early as 7 days old, and an even higher DNA 

damage gene expression signature at 21 days. Our interpretation of this is that the OLs begin to 

cope with DNA damage quite early in adulthood, and one way that they do this is by increasing 

polyploidy. But what exactly is the source of endogenous DNA damage and what are the signals 

that induce? We can start systematically testing different DNA damage response pathways to ask 

which ones impact polyploidy by looking at candidate genes that are most upregulated. It is 

possible that multiple pathways are upstream of polyploidy induction. 

 Are Transposons The Source Of DNA Damage In The Adult Brain? 

Recent work in ageing Drosophila has shown that transposon silencing becomes 

compromised with age in the brain and has been linked with conditions of neurodegeneration and 

decline in brain function (Chang and Dubnau, 2019; Chang et al., 2019; Krug et al., 2017; Li et 

al., 2013). This has been termed the ‘transposon storm’ hypothesis of ageing and 

neurodegeneration. Transposon reactivation has also recently been observed in ageing fly guts, 

albeit at different levels (Riddiford et al., 2020). Could transposon reactivation represent a 

portion of the endogenous DNA damage that cells in the brain have to endure and overcome as 

they age? 

 Is Transcriptional Activity Causing DNA Damage In The Adult Brain? 

Another potential source of endogenous DNA damage is DNA damage associated with 

high transcriptional activity (D’Alessandro and d Adda di Fagagna, 2017). Highly transcribed 

loci in the genome are known to be susceptible to damage as a result of RNA:DNA hybrid 

formation. Recent work has shown that proteins implicated in neurodegenerative diseases such 

as TDP-43 are involved in preventing and contributing to repair at sites of transcription 
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associated DNA damage. Age associated decline in TDP43 (Hill et al., 2016; Langellotti et al., 

2016), coupled with high levels of transcription in neurons could contribute to unresolved DNA 

damage resulting from transcription-associated DNA lesions. 

 Does Increased Oxidative Stress As A Result Of Reduced Mitochondrial 

Integrity Lead To DNA Damage In The Adult Brain? 

Our RNAseq dataset suggests that older flies show reduced ATP metabolism, oxidative 

phosphorylation and cellular respiration. This may indicate compromised mitochondrial 

function, which is a known hallmark of ageing and a well known source of cellular oxidative 

stress (López-Otín et al., 2013). Compromised mitochondrial function can lead to increased 

levels of intracellular peroxide and superoxide radicals which can lead to oxidative DNA 

damage. Oxidised bases in DNA may evoke the need for base or nucleotide excision repair 

pathways to repair lesions. 

 Do Different Cells Respond To DNA Damage Differently? 

The brain is a glorious mixed bag of different cell types performing different functions. 

While we know that the neuronal polyploidy is not p53 dependent, it is possible that the same 

cannot be said of glia. Given the very different roles neurons and glia play in the brain, and their 

inherent differences in metabolism and transcription, future studies should use cell type specific 

drivers in different and less numerous populations of cells to start addressing this. 

4.3. How Do Cells In The Adult Brain Die?  

Work from the Calvi lab has shown that polyploid cells are protected from DNA damage 

induced cell death as a result of low levels of p53 and chromatin-level silencing of pro-apoptotic 

genes (hid, reaper and grim – collectively known as the H99 locus) which are upstream of the 
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caspase cascade that directs apoptosis (Zhang et al., 2014). However, in the brain, at least in 

neurons, the polyploidy does not appear to be dependent on p53. Our experiments 

overexpressing wild type and dominant negative versions of p53 in neurons show that the levels 

of cell death and polyploidy are not altered in the adult brain. This indicates that p53 is not 

required for neuronal survival or the survival of polyploid neurons. Our data also indicates that 

the establishment of polyploidy in neurons is p53 independent. 

Additionally, recent work from the Abrams lab shows that the drosophila adult head 

(brain) engages a non-canonical p53 dependent transcriptional program which drives the 

expression of genes involved in DNA repair, metabolism and proteolysis, but not apoptosis 

(Kurtz et al., 2019). 

Consistent with this, in our studies, we have not been able to successfully detect evidence 

of apoptotic cell death in the adult brain using antibodies commonly used to detect caspases. 

However, we do see steady rates of cell loss with age as well as increased cell death upon 

induced DNA damage by propidium iodide staining and SYTOX green staining. Our 

observations of cell loss are consistent with recent single cell work from the Aerts lab. This 

means that cell loss occurs via a yet-unknown mechanism in the brain  Work in the developing 

brain has shown that some neuroblasts are eliminated through necrosis in the absence of Fzy, 

suggesting that cells in the brain may adopt non apoptotic programs to eliminate cells. 

Excitotoxicity-mediated cell loss is yet another way cells in the brain may be lost. It is also likely 

that a completely unknown mechanism of cell death occurs in the adult fly brain. 

4.4. How Does Polyploidisation Affect Neuronal And Glial Function? 

I’ve described polyploidy in the fly brain (except for SPGs and some tracheal cells 

(Djabrayan et al., 2014; Von Stetina et al., 2018; Unhavaithaya and Orr-Weaver, 2012)) as an 
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adult specific phenomenon, and as a potential facultative adaptation to respond to age associated 

oxidative stress and DNA damage. We still don’t know how the polyploid state impacts cellular 

function. Just as neurons and glia may respond differently to DNA damage, their respective 

functions may also be affected differently upon polyploidisation.  

Speculation about the role that tetraploidy plays in neurons has varied from generation of 

neuronal diversity to increased capacity for dendritic arborization. One study performed over 

thirty years ago (Szaro and Tompkins, 1987) compared the dendritic arbors of two Xenopus 

species, one diploid species and another which displays whole organism tetraploidy (where the 

entire organism has a larger genome). This study showed that while the brains from these two 

organisms were the same size, but the neurons from the tetraploid species showed longer 

dendritic segments as well as larger dendritic arbors. This could mean that tetraploid neurons are 

able to make more synaptic connections and participate in larger neuronal networks, contributing 

to functional diversity. Polyploid neurons could also, as a virtue of increased biosynthetic 

capacity, increase production of neurotransmitters, resulting in robust signaling.  

Increased biosynthetic capacity in wrapping glia as a result of endocycling could ensure 

better sheathing of axon bundles and enhanced neuronal conductivity. Similarly, increased 

biosynthetic capacity could improve phagocytic glial function and aid in better clearance of 

cellular debris in the adult brain. Glial cells provide the bulk of the glycolytic support to the 

neurons in the brain, in fact glial glycolysis has been shown to be essential for neuronal survival 

(Volkenhoff et al., 2015) in the adult brain. Glia are also outnumbered by neurons approximately 

9:1. Our RNAseq data shows that oxidative phosphorylation becomes compromised with age in 

the brain. Could polyploidisation be one way that glial cells enhance their trophic capacity by 

increasing their biosynthetic ability? 
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4.5. How Can We Visualize And Manipulate Polyploid Cells? Progress Toward 

Developing A Polyploidy Sensor And Gene Expression Tool. 

Currently the best tool at our disposal to visualize polyploid cells in the brain in situ is the 

CoinFLP tool (Bosch et al., 2015). While it is great for marking and visualizing polyploid cells, 

it is not without limitations. CoinFLP uses two overlapping and exclusive FRT cassettes to ‘flip’ 

out a transgenic ‘STOP’ cassette to allow expression of either a LexGAD or a GAL4 driver. To 

label polyploid cells, the CoinFLP containing flies have to be crossed to animals that have three 

more transgenes, namely an inducible FLP recombinase, a UAS-fluorescent protein, and a 

LexAop-fluorescent protein. This makes combining the genotypes with additional genetic 

manipulations difficult, and does not allow for manipulation of polyploid cells. Moreover, 

CoinFLP ‘flipping’ is unequal – LexGAD expression is 4 times as likely as GAL4 expression.  

To overcome some of these problems, we propose the polyploidy sensor – transgenic fly 

which will reconstitute a split GAL4 only in polyploid cells. The idea is similar to that of 

CoinFLP, but the difference is that instead of expressing either LexGAD or GAL4 in diploid 

cells, and both in some of the polyploid cells, we will make a transgenic fly which will, upon 

induction of FLP recombinase, reconstitute a GAL4 driver whose expression can be used to 

perform genetic manipulations specifically in polyploid cells. Since this will be a random flip-

mediated labelling, just like CoinFLP, it will not label all the polyploid cells. This can be used to 

our advantage: we can ask interesting questions like, what happens when we only ablate some of 

the polyploid cells, or how do unmanipulated polyploid cells compensate for cell loss or damage 

in a non-autonomous way.  
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Figure 4.3 Cartoon illustrating the proposed 'polyploidy' sensor tool 
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