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Abstract This work conducts a statistical study of the subauroral polarization stream (SAPS) feature in
the North American sector using Millstone Hill incoherent scatter radar measurements from 1979 to 2019,
which provides a comprehensive SAPS climatology using a significantly larger database of radar
observations than was used in seminal earlier works. Key features of SAPS and associated electron density
(Ne), ion temperature (T1i), and electron temperature (Te) are investigated using a superposed epoch
analysis method. The characteristics of these parameters are investigated with respect to magnetic local
time, season, geomagnetic activity, solar activity, and interplanetary magnetic field (IMF) orientation,
respectively. The main results are as follows: (1) Conditions for SAPS are more favorable for dusk than near
midnight, for winter compared to summer, for active geomagnetic periods compared to quiet time, for
solar minimum compared to solar maximum, and for IMF conditions with negative By and negative Bz.

(2) SAPS is usually associated with a midlatitude trough of 15-20% depletion in the background density.
The SAPS-related trough is more pronounced in the postmidnight sector and near the equinoxes.

(3) Subauroral ion and electron temperatures exhibit a 3-8% (50-120 K) enhancement in SAPS regions,
which tend to have higher percentage enhancement during geomagnetically active periods and at
midnight. Ion temperature enhancements are more favored during low solar activity periods, while the
electron temperature enhancement remains almost constant as a function of the solar cycle. (4) The
electron thermal content, Te X Ne, in the SAPS associated region is strongly dependent on 1/Ne, with Te
exhibiting a negative correlation with respect to Ne.

1. Introduction

The subauroral polarization stream (SAPS), which was first introduced by Foster and Burke (2002) as a syn-
thesis of previous observational and theoretical work, refers to persistent westward plasma flows driven by
enhanced poleward electric fields in the subauroral ionosphere equatorward of the electron auroral pre-
cipitation zone. SAPS is predominantly observed in the dusk-midnight magnetic local time (MLT) sector
during periods of geomagnetic storms and substorms with a typical width of 3-5°, velocity magnitudes of
several hundred m/s or larger, and collocated poleward electric field strengths exceeding 20 mV/m (Erickson
et al., 2011; Foster & Vo 2002). SAPS encompasses a number of occasionally embedded phenomena, includ-
ing a broader region of smaller drifts (Yeh et al., 1991), as well as latitudinally narrow channels (1-2°)
of intense localized westward flow (>1,000 m/s) with stronger electric fields (>50 mV/m), known as
polarization jets (Galperin et al., 1974), subauroral ion drifts (SAID) (Anderson et al., 1993, 2001; Spiro
et al., 1979), or subauroral electric fields (Karlsson et al., 1998). The presence of SAPS in the coupled
ionosphere-magnetosphere plays an important role in controlling the formation and evolution of some
large-scale features with significant space weather effects, such as enhanced ion vertical flows (Wang &
Liihr, 2013), main ionospheric trough (Muldrew, 1965; Rodger, 2008; Spiro et al., 1978), storm-enhanced
density plumes (Foster et al., 2007; Zou et al., 2013, 2014), and sunward-convecting plasmaspheric drainage
plumes (Goldstein et al., 2004). For these reasons, SAPS/SAID have been extensively studied for several
decades using both space-based and ground-based observations. For example, SAID/SAPS signatures can
be derived from in situ satellite measurements of ion drifts and electric fields in the ionosphere and/or
inner magnetosphere, such as those measured by the Defense Meteorological Satellite Program (DMSP)
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(e.g., Anderson, 2004; Goldstein et al., 2005; He et al., 2014, 2018; Huang & Foster, 2007; Landry & Anderson,
2018; Wangetal., 2008, 2011; Yeh et al., 1991), Van Allen Probes (Califf et al., 2016; Foster et al., 2014; Lejosne
& Mozer, 2017), and Magnetospheric Multiscale (MMS) spacecraft (Erickson et al., 2016). Also, the Super
Dual Auroral Radar Network (SuperDARN) radars can observe large-scale plasma convection measure-
ments of SAPS continuously over extended periods (e.g., Clausen et al., 2012; Ebihara et al., 2009; Kunduri
et al., 2017, 2018; Makarevich et al., 2009; Nagano et al., 2015; Oksavik et al., 2006; Parkinson et al., 2005;
Wang et al., 2019; Zou, Lyons, Wang, et al. 2009). Moreover, the altitudinal and time-dependent characteris-
tics (plasma velocities, densities, and temperature) on SAPS can also be remotely studied by using powerful
incoherent scatter radar techniques (Foster & Burke 2002; Foster & Vo 2002; Erickson et al., 2011; Zou,
Lyons, Nicolls, et al. 2009).

Various mechanisms have been proposed to interpret SAPS generation, including (1) voltage source mech-
anism: During enhanced geomagnetic activity intervals, the inner boundary of the ion plasma sheet
penetrates closer to Earth compared to that of electron plasma sheet in the premidnight sector due to their
energy spectra difference. This misalignment of the ion and electron boundaries results in a radially out-
ward polarization electric field in the inner magnetosphere (Gussenhoven et al., 1987), which can map along
the equipotential magnetic field lines into the subauroral ionosphere in a poleward direction to cause SAPS
(De Keyser, 1999). (2) Field-aligned currents (FACs) source mechanism: The ion pressure gradients of the
ring current, which is caused by above-mentioned misalignment and/or the pitch angle scattering of pre-
cipitation (Yuan et al., 2016), will result in a fraction of downward Region 2 FACs to flow into the duskside
subauroral ionosphere, where the conductivity is low due to lacking of electron precipitation (Heinemann
etal., 1989). These FACs have to close through poleward Pederson currents with the Region 1 FACs, thus gen-
erating strong poleward electric fields (i.e., SAPS electric fields) in the low-conductivity subauroral region
(Anderson et al., 1993; Raeder et al., 2016). Other studies have also demonstrated that the location of SAPS
is conjugate to the peak energy density of the ring current and the Region 2 FACs and that the magnitude
of SAPS velocity is approximately inversely proportional to the flux tube-integrated Pedersen conductance
(He et al., 2014; Wang et al., 2008, 2019; Yu et al., 2015; Zheng et al., 2008). (3) Ionospheric feedback
mechanism: The enhanced ion-neutral frictional heating associated with SAPS will accelerate the ion recom-
bination rate, thus reduce the F region density and create a large upward flow due to thermal expansion
(Anderson et al., 1991; Schunk et al., 1976). This process will further reduce the already low subauro-
ral conductivity and provide a feedback effect to amplify the strong electric fields (Anderson et al., 2001).
(4) Substorm current wedge mechanism for SAPS and short-circuiting mechanism for SAID. Conventional
theories normally involve relatively slow physical processes. However, Mishin et al. (2017) proposed that
the broader SAPS and the narrower SAID channels could be separately generated by nontraditional mecha-
nisms, since SAPS/SAID observations show very quick development (~10 min) shortly after substorm onset.
Specifically, the prompt SAPS's response coincident with the westward traveling surge development in the
nearby auroral region, which is the inherent part of the two-loop circuit of the substorm current wedge
(Kepko et al., 2015; Mishin et al., 2002; Sergeev et al., 2014). This two-loop circuit builds up a large pole-
ward electric field and demands closure of the Region 1 and Region 2 FACs via meridional currents, thus
triggering fast ring current injections and SAPS on the duskside (Mishin, 2016; Mishin et al., 2017). On the
other hand, fast SAID response is suggested to be driven by the short circuiting of the penetration of earth-
bound substorm hot plasma jets into the plasmasphere (Mishin, 2013; Mishin et al., 2010). Wang et al. (2019)
reported a rapid SAPS response to a localized and deep energetic particle injection during nonsubstorm time
and suggested that the plasma pressure increase due to the injection is responsible for the localized SAPS
enhancement. Taken in aggregate, these varied theoretical results indicate that more than one mechanism
could be responsible for the formation and evolution of SAPS.

Besides observational case analyses, many statistical studies and modeling efforts have been made to charac-
terize SAPS climatology, and its average spatial/temporal variation and activity dependence has been widely
studied. Organizing principles of such studies include (1) local time variation: The average geomagnetic lati-
tude (MLAT) of SAPS tends to locate at the equatorward boundary of auroral precipitation around 60-65° in
the dusk and decreases linearly with respect to increasing MLT, reaching 50-55° in the morning (Erickson
etal., 2011; Foster & Vo 2002). Also, SAPS tends to have largest occurrence rate and peak flow velocity around
20 MLT that decreases toward dawn (Erickson et al., 2011; Foster & Vo 2002; Karlsson et al., 1998; Kunduri
et al., 2017). (2) Geomagnetic dependence: SAPS can be observed both during intense storms with flows
exceeding 1,500 m/s and time lags of 0-1.5 hr after southward turning of the interplanetary magnetic field
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(IMF), as well as during substorms with flows dropping to 100 m/s and time lags of 0-2.5 hr after IMF south-
ward turning (He et al., 2017; Kunduri et al., 2018). Typically, SAPS tends to move equatorward and has a
larger peak velocity with respect to increasing geomagnetic activities (Kp, Dst, AE, and SYM/ASY -H indices)
(e.g., Erickson et al., 2011; Foster & Vo 2002; Karlsson et al., 1998; Kunduri et al., 2017; Wang et al., 2008).
(3) Seasonal and hemispheric variation: Some studies found that SAPS can be observed more frequently
and have larger poleward electric fields during the equinoxes in comparison to solstices (He et al., 2014;
Karlsson et al., 1998). However, some other studies indicated that SAPS peak velocities are larger in local
winter as compared to summer for both hemispheres (Koustov et al., 2006; Wang, Liihr, et al. 2012; Wang &
Liihr, 2013), and the Pederson currents and the electric fields are generally larger in the winter hemisphere
(Kunduri et al., 2012). Furthermore, Zhang, He, et al. (2015) indicated that the drift velocities of SAID are
generally larger in the Northern Hemisphere than the Southern Hemisphere in all MLT sectors.

Although significant progress has been obtained through these studies, current climatological knowledge of
the occurrence and variability of SAPS is still incomplete, and there are some critical issues remaining to be
addressed. These include the following: (1) What is the statistical behavior of electron density and plasma
temperature associated with SAPS? Certain features of SAPS (e.g., zonal velocity, electric field, location,
and conductance) investigated in many prior studies have generally consistent results. Still, some counter
examples exist in particular for ion temperature. For example, some storm time case studies and numerical
simulations have indicated that ion temperature around SAPS region will be greatly enhanced due to fric-
tional heating (e.g., Anderson et al., 1991; Erickson et al., 2010; Moffett et al., 1998; Pintér et al., 2006; Wang,
Talaat, et al. 2012; Yeh & Foster, 1990; Zhang et al., 2017). However, some statistical studies using DMSP
measurements indicated that the ion temperature around SAPS peak region shows no apparent enhance-
ment or could even be depressed (Wang & Liihr, 2013; Zhang et al., 2020). Thus, how to interpret these
conflicting results and reevaluate the variability of the plasma temperatures around SAPS region is of con-
siderable interest. (2) What is the solar activity dependence of SAPS? The diurnal variation and geomagnetic
dependence of SAPS have been widely analyzed as mentioned above. Yet very few studies have focused on
the solar cycle variation of SAPS due to limited coverage of observational databases. He et al. (2014) ana-
lyzed DMSP 1987-2012 measurements and found that the narrow SAID channel moves equatorward with
larger widths during periods of high solar activities. However, it remains unknown whether the broader
SAPS feature has a similar solar cycle dependence and what the solar activity dependence is of other piv-
otal parameters (i.e., electron density, ion temperature, and electron temperature). These are essential open
questions and need to be further addressed. (3) What is the possible influence of the IMF orientation on
SAPS? It is known that the auroral convection pattern is strongly controlled by the magnitude and direction
of the IMF (e.g., Heppner & Maynard, 1987; Rich & Hairston, 1994; Ruohoniemi & Greenwald, 1996, 2005;
Weimer, 1995). However, there are few results in the literature concerning IMF effects on SAPS morphology
and dynamics. For example, He et al. (2017) found that the lifetime of SAPS is linearly correlated with the
duration of the southward IMF. Lin et al. (2019) modeled the 2013 St. Patrick's Day storm event and found
that SAPS will move equatorward with enhanced velocity and broader width when IMF Bz was becoming
more southward. Thus, it is still necessary to conduct a systematic statistical study to verify this possible link
further and to specify the relationship between IMF orientation and SAPS evolution.

Previously, Foster and Vo (2002) and Erickson et al. (2011) conducted two significant studies on SAPS by
using Millstone Hill incoherent scatter radar data collected in the subauroral ionosphere between May 1979
and July 2000. They analyzed the average characteristics of SAPS and summarized the variation pattern of
SAPS with respect to MLT and Kp (Dst). In this study, we extended these important early works to investigate
in depth the statistical behavior of SAPS by using Millstone Hill incoherent scatter radar measurements
between 1979 and 2019. The current work provides three major updates over these prior studies: (1) We
considerably extended the data coverage to four solar cycles and provided auroral equatorward boundary
measurements alongside the Millstone Hill observations to better distinguish auroral or subauroral flows
in constructing reliable SAPS data set. (2) Besides SAPS itself, we also examined key features of electron
density (Ne), ion temperature (Ti), and electron temperature (Te) in ionospheric regions located around
SAPS. (3) Besides local time and geomagnetic variations, we further investigated the seasonal, solar cycle, as
well as IMF dependencies of SAPS and associated plasma parameters. Results of our study provide partial
information on the key questions described above and provide further information for clarifying the spatial
and temporal variation of SAPS. The rest of the paper is organized as follows. Section 2 describes the data
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and methodology procedure. The statistical results and discussion are given in section 3. The conclusions
are presented in section 4.

2. Data and Method

The Millstone Hill incoherent scatter radar has been operated by the Massachusetts Institute of Technology
since 1960 and has provided valuable ionospheric measurements with full altitude profiles, including but
not limited to plasma convection, electron and ion density, and electron and ion temperature information.
The radar system is equipped with a 68 m diameter fixed zenith antenna and a 46 m diameter fully steer-
able antenna (MISA) with an extensive field of view. The MISA antenna was installed at Millstone Hill in
1979 and provides extensive spatial and temporal coverage extending more than 30° in latitude, covering
100-1,000 km in altitude and spanning over 4 hr of local time at F region heights (Erickson et al., 2011; Foster
& Vo 2002). Individual azimuth scans also produce fine-scale plasma measurements with a typical tempo-
ral resolution of ~30 s and an along-beam spatial resolution of ~100-150 km. Over four decades of MISA
availability, long-term observations through both regular yearly program and storm time alert experiments
have built up a large database for auroral, subauroral, and midlatitude ionospheric studies over the North
American sector (e.g., Buonsanto et al., 1992; Foster et al., 2005; Goncharenko et al., 2007; Yeh et al., 1991;
Zhang & Holt, 2007). Within these observations, SAPS flows readily appear as high-speed westward drifts
in the dusk-midnight midlatitude ionosphere equatorward of the auroral oval. In this study, we examined
the radar azimuth scan measurements of ion velocity and associated plasma parameters during the years
1979-2019 to construct a SAPS data set and to further analyze SAPS and other related statistical features.

The previous technique for identifying SAPS occurrence was introduced in Foster and Vo (2002) and
Erickson et al. (2011). In this study, we further improved this technique and extended the data coverage as
follows: (1) Specification of the equatorward auroral boundary: The ion and electron energy flux measure-
ments by precipitating particle spectrometer sensors (SSJ) onboard the DMSP satellites can provide high
precision and accurate auroral boundary determination. The DMSP SSJ-4 and SSJ-5 data during 1982-2016
were used by Air Force Research Laboratory to create the Auroral Boundary Index (ABI) data identify-
ing the location of equatorward boundary along the satellite path (Gussenhoven et al., 1981, 1983; Hardy
et al., 2008). In this study, for a given azimuth scan of the Millstone Hill incoherent scatter radar, a circular
fitting for all available boundary locations within +60 min was applied to determine an integral bound-
ary distribution under MLT-MLAT coordinates. This choice was guided by many previous studies which
report that the shape of nighttime equatorward boundary of the auroral oval can be approximately fitted by
a circle (Gussenhoven et al., 1983; Hardy et al., 1989; Kunduri et al., 2017). If there is a data shortage for
a given time or the fitting result is not good due to the lack of enough nighttime passes, then an alterna-
tive Kp-based auroral boundary model was used to implement the boundary determination (Carbary, 2005;
Hardy et al., 1987). On average, the Kp-based auroral boundary model is used in 20% of cases. Consider-
ing that the actual boundary at a given time instance could be different from the statistical average of the
model, the possibility cannot be excluded that a fraction of the high-latitude portion of our SAPS data sets
could be contaminated by westward auroral convection in the dusk sector. (2) Computation of the westward
component of the flow: The line-of-sight plasma EXB velocity at F region altitudes was measured in each
azimuth scan of the radar. Subsequently, the flow measurements were multiplied by a flow angle correction
factor using a cosine of the magnetic direction to calculate the true magnetically westward component. Such
a procedure introduces relatively small errors for the predominantly magnetic westward SAPS direction at
subauroral altitudes; compare with Erickson et al. (2002). To reduce the errors induced by range discrepan-
cies, we used measurements only in the F region between 300 and 550 km to extract the SAPS signature.
(3) SAPSidentification: SAPS was identified as a local peak westward flow that locates below the equatorward
auroral boundary or alternately identified as an inflection point enhancement on the equatorward slope of
the convection cell in the dusk sector. The magnitude of SAPS peak velocity was required to be >100 m/s. On
occasion, an associated main ionospheric trough of Ne depletion was used as auxiliary information to help
specify SAPS location if the first flow criterion was met. As an example, Figure 1 shows two identified SAPS
events in the dusk and midnight sectors, respectively. The left panels show the line-of-sight velocities for
a full azimuth scan and the fitted auroral equatorward boundary in the MLT-MLAT coordinates. The right
panels show the latitudinal variation of the F region plasma zonal velocities and Ne profiles. SAPS location
can be visually identified from the 2-D/1-D velocity enhancement or inflection point as well as Ne depletion.
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Figure 1. Observations of two SAPS events measured by the Millstone Hill incoherent scatter radar in 9-10 March 1989. (a) Line-of-sight plasma velocities for a
full azimuth scan in the dusk sector under a polar view of MLT-MLAT coordinate. The concentric dashed circles are plotted in 10° interval, with the outermost
ring representing 40°. The red circle represents the fitted equatorward boundary of the auroral oval with the DMSP satellite crossings marked by plus sign

(see text for details). (b) Westward velocities and (c) electron densities as a function of geomagnetic latitude, with measurements individually shown by
asterisks and collectively fitted by blue line. The red line represents the equatorward auroral boundary, and the dotted line marks the identified SAPS peak
location. The bottom panels (d-f) are the same as the upper ones but represent a different azimuth scan near the midnight sector.

Following these guidelines, we generated a final data set of more than 1,500 scans containing SAPS out of
~15,000 separate azimuth scans available from Millstone Hill during 1979-2019.

3. Results and Discussion

Figure 2a shows the temporal coverage and solar cycle variation of the constructed SAPS data set. In general,
there were more SAPS events around solar maximum and declining phases than solar minimum. This could
be partially due to the fact that geomagnetic activity is often increased during these periods. In particular,
coronal mass ejection events occur more frequently in high solar activity years and recurrent geomagnetic
activity associated with high speed streams occurs more frequently in the declining phase of solar cycle.
However, this yearly variation could also be largely impacted by the availability of original azimuth scan
database that is shown in Figure 2c. We note that Millstone Hill experiments are often triggered due to
prompt geomagnetic activity indications and thus are not randomly distributed in a synoptic manner with
respect to time. Moreover, the measurement composition of different scan modes within each experiment
is also highly variable. Only the fraction of Millstone Hill wide coverage azimuth scans with low elevation
is appropriate for deriving SAPS. These factors are partially responsible for the uneven distribution of SAPS
data set.

Figures 2b and 2d display the seasonal variation of the constructed SAPS data set and original azimuth
scan numbers, respectively. The percentage distribution of SAPS occurrence was also given. In order to
evaluate the possible biases due to uneven data coverage, the results of our experiments can be approxi-
mately considered as a Binomial distribution, which describes the discrete probability distribution of the
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Figure 2. (a, b) Solar cycle and seasonal variation of the constructed SAPS data set. The temporal variation of F10.7 index is also plotted. (c, d) Solar cycle and
seasonal distribution of the total database of wide coverage azimuth scan for detecting SAPS. The seasonal variation of SAPS occurrence rate is also shown in
panel d. (e, f) Distribution of the constructed SAPS data set in the coordinates of magnetic local time and geomagnetic latitude under quiet (Kp < 3) and active
(Kp > 3) geomagnetic conditions. The concentric circles are plotted in 10° interval with outermost one representing 50° MLAT.

number of successes in a sequence of independent experiments. Thus, the uncertainty can be estimated as

follows:
_ I fx@a-=5
G_V—N—l , (€Y

where ¢ is the uncertainty, f is the occurrence rate, and N is the total number of azimuth scans for
each given month. The seasonal variation of SAPS occurrence rate is between 5% and 15% with two
peaks occurring around the equinoxes that are barely affected by the uncertainties. This could possibly
relate to the Russell-McPherron effect that equinoctial periods have increased geomagnetic activity with a
higher-than-average IMF southward component (Russell & McPherron, 1973). This seasonal pattern is con-
sistent with previous results (e.g., He et al., 2014; Karlsson et al., 1998), and we will further investigate the
seasonal and solar cycle dependence of SAPS in the following subsections.

Figures 2e and 2f show the polar distribution of the SAPS data set in the MLT-MLAT coordinates with a
resolution of 0.5 hr X1° under quiet and active geomagnetic conditions, respectively. Some typical character-
istics of latitude, local time, and geomagnetic preferences of SAPS can be summarized as follows: (1) SAPS
peak tends to locate at the equatorward auroral boundary around 60-65° MLAT in the dusk and gradually
decreases with increasing MLT; (2) SAPS has higher occurrence around dusk time than night time; (3) SAPS
peak location is mainly confined within 14-05 MLT during quiet time, with elongation into both earlier and
later MLTs as well as equatorward motion with enhanced geomagnetic activity.

To proceed with statistical studies, we performed a superposed epoch analysis (SEA) that is similar to those
described in Wang et al. (2011) and Wang and Liihr (2013). The MLAT of SAPS peak velocity was taken as the
central point, around which the latitudinal profiles of different plasma parameters (velocity, Ne, Ti, Te) were
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Figure 3. Local time variation of the superposed epoch analysis of SAPS-related plasma parameters: zonal plasma
velocity (a, b), electron density (c-e), ion temperature (f-h), and electron temperature (i-k), respectively. The key
MLAT of “0” represents the location of SAPS peak velocity. The top and middle panels of each group are the 2-D and
1-D distribution. The bottom panels of each group show the percentile deviation of Ne, Ti, and Te with respect to
background values, respectively. The blue lines represent the variation patterns around the dusk (17-21 MLT), and the
red lines represent those around the midnight (22-02 MLT). The exact amplitudes are recorded in Table 1.

stacked. The average profiles were subsequently calculated, ranging from —10° to 10° off the SAPS peak with
a resolution of 0.5°. This method has the goal of investigating the relationship between these parameters as
well as their variation patterns with respect to MLT, season, geomagnetic activity, solar activity, and IMF
orientation, respectively. Results are described in following subsections.

3.1. MLT Variation

Figures 3a and 3b show the averaged AMLAT distribution of zonal plasma velocity derived from the SEA for
different MLTs in 2-D and 1-D formats, respectively. The specific values of SAPS-related plasma parameters
are listed in Table 1. In general, SAPS peak flows during different MLTs occur around central MLAT of 0 as
expected. However, there is a large difference between SAPS features in the dusk (17-21 MLT) and midnight
(22-02 MLT) sectors: the dusk time SAPS channel has a higher peak velocity (—728.3 m/s) and a broader

AA ET AL.

7 of 21



I ¥l . .
NI Journal of Geophysical Research: Space Physics 10.1029/2020JA028584

ADVANCING EARTH
AND SPACE SCIENCE

Table 1
SAPS Peak Amplitude and Associated Plasma Parameters for Different MLTs, Seasons, Geomagnetic Activity, Solar
Activity, and IMF Configurations

Velocity (m/s) Ne (10'1/m3) Ti (K) Te (K) EAB
Peak Peak ANe Peak ATi Peak ATe AMLAT

Dusk —728.3 3.28 —-16.4% 1,595 4.9% (75) 2,143 1.9% (42) 3.1°
Midnight _3735 282 —207% 1478  80%(110) 1,780  5.2%(85) 2.8°
Dec sol. ~549.1 1.79 —91% 1,490  51%(72) 1976  6.1%(114) 3.3°
Equinox ~576.4 165  —209% 1,603  61%(92) 2020  3.3%(65) 3.0°
Jun sol. _5125 173 —132% 1,518  42%(62) 2322  2.7%(61) 3.9°
kp<3 —444.9 184  —141% 1472 37%(53) 1875  1.6%(30) 3.5°
kp>3 —672.4 1.56 —18.9% 1,649 7.1% (109) 2,220 3.4% (73) 2.9°
Fl0.7<150 -630.1 120 -165% 1,541  8.5%(120) 2038  2.4%(48) 3.2°
F197>150 —-513.1 2.04 15.7% 1,564 4.1% ( 62) 2,014 2.7% ( 53) 3.4°
+By, +Bz —554.6 170 —13.0% 1462  33%(47) 2057  2.3%(46) 3.1°
+By, —Bz —618.8 1.72 —14.9% 1,501 5.5% ( 78) 2,116 4.0% ( 81) 3.0°
—By, +Bz —575.7 2.03 —-15.2% 1,488 2.9% (42) 1,797 2.3% (40) 3.2°
—By, —Bz —-716.1 2.12 —-15.8% 1,545 2.0% ( 30) 2,041 2.0% (40) 3.0°

Note. The A MLAT locations of equatorial auroral boundary (EAB) are shown in the rightmost column.

latitudinal width (>5°), with the averaged MLAT offsets of the equatorward auroral boundary being 3.1°. On
the other hand, the midnight SAPS channel is more tightly clustered with considerable reduction in width by
afactor of 2, and the averaged MLAT offset of the equatorward auroral boundary, determined separately from
DMSP observations, is 2.8°. The midnight SAPS peak velocity (—373.5 m/s) is barely half of the dusk ampli-
tude and is approximately equal to the average eastward corotation velocity at subauroral latitudes. These
results suggest that dusk time SAPS flow could overwhelm the corotation effect and transport ionospheric
plasma both sunward and poleward to earlier MLTs, contributing to the formation of storm-enhanced den-
sity plumes (Foster, 1993; Kelley et al., 2004), also known as the dusk effect (Mendillo, 2006). On the other
hand, nighttime SAPS tends to counteract the corotation flow and keeps plasma at a constant location in the
inertial Sun-Earth reference frame (constant MLT). This dusk-midnight difference of SAPS magnitude and
width is consistent with previous studies (Anderson, 2004; Erickson et al., 2011; Foster & Vo 2002; Kunduri
etal., 2017).

Figures 3c and 3d show the AMLAT-MLT distribution of electron density associated with SAPS in 2-D
and 1-D formats, respectively. Figure 3e shows the relative deviation of electron density with respect to its
background values, obtained through a 11-point (~5°) smoothing average. It is known that the enhanced
ion-neutral frictional heating associated with SAPS will accelerate nonlinear ion loss processes and thus
facilitate formation of the midlatitude trough (Rodger, 2008; Schunk et al., 1976). However, we note in par-
ticular that the deepest trough occurs in the postmidnight sector around 00-02 MLT as can be seen from
Figure 3c. The line plots in Figure 3e and Table 1 also show that the midnight trough has more severe deple-
tion (—20.7%) compared with that of the dusk time trough (—16.4%). Previous results in the literature are
contradictory about the local time when the deepest trough is observed. For example, Tulunay and Sayers
(1971) reported that the deepest trough at the height of 550 km occurs near midnight by using Ariel 3 satel-
lite data. Prolss (2007) reported that the largest electron density drops at the height of 350 km were observed
around 18 MLT by using Dynamics Explorer 2 data, though this study only analyzed the trough events dur-
ing 15-21 MLT. In addition, Karpachev (2003) found that the Northern Hemisphere trough during winter
nonstorm time (Kp < 3) in the 30-60°W longitudinal sector is slightly deeper in 18-19 LT than 23-01 LT by
using Cosmos satellite data at 500 km. These conflicting results may be due to different spatial/temporal cov-
erage and different criteria in identifying troughs, and more future work is needed to address this problem
further.

In results here, we report that the SAPS-related midlatitude trough at 300-550 km altitude has more pro-
nounced depletion in the postmidnight sector. Although based on a specific subset of midlatitude trough
events, this phenomenon is in agreement with that indicated in Aa et al. (2020) in that the midlatitude
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trough in the Northern Hemisphere usually exhibits a higher occurrence rate in the postmidnight sector
than that of the evening sector. One possible explanation for this result is that the midnight plasma flow
around SAPS region is significantly lower than that of dusk time, providing sufficient time for recombina-
tion to produce a deeper depletion (Voiculescu & Nygrén, 2007). Around this local time, a convection flow
configuration, referred to as the Harang reversal, is often observed, which is a result of the overlap between
the Region 2 upward and downward FACs (e.g., Gkioulidou et al., 2009; Zou, Lyons, Nicolls, et al. 2009;
Zou, Lyons, Wang, et al. 2009). The high-latitude return flows bifurcate at 01-02 MLT, and thus, the flow
stagnation point between the high-latitude convection and corotation extends to this local time as well.

Figures 3f-3h and 3i-3k show the MLT variation of ion temperature and electron temperature associated
with SAPS, respectively. Both the ion and electron temperatures exhibit moderate enhancement around
SAPS region compared to the background trend. This is consistent with observations from the Dynam-
ics Explorer 2 satellite which show that ion and electron temperature within SAPS-related troughs will
be strongly elevated (Moffett et al., 1998). The temperature increment is larger in the midnight sector (Ti:
8.0% [~110 K] and Te: 5.2% [~85 K]) than that in the dusk sector (Ti: 4.9% [~75 K] and Te: 1.9% [~42 K]).
The temperature enhancement is inversely proportional to the electron density decrease within the trough.
However, there might be a large altitudinal gradient of the ion temperature since Wang and Liihr (2013)
reported that the ion temperature around SAPS region at 800 km was reduced ~30%. Heelis et al. (1993)
found that frictional heating can quickly increase the ion temperature to a constant level over a broad altitu-
dinal region between 300 and 500 km, which is approximately consistent with the current range of Millstone
Hill radar measurements. This result also indicates that a new thermal equilibrium between ions and neu-
trals can be effectively attained. At higher altitudes above 600 km, however, it takes much longer time to
increase the ion temperature to a new equilibrium since ion-neutral collisions are much smaller and not
as effective at thermal transfer as at lower altitudes. Furthermore, enhanced ion temperature and frictional
heating at lower altitudes will result in a large vertical pressure gradient and cause thermal expansion and
plasma upward flow. Thus, compared with lower altitudes, frictional heating is less efficient in the topside
ionosphere. For these reasons, Wang and Liihr (2013) proposed a mechanism in which ion temperature at
800 km is more likely to initially respond to adiabatic cooling associated with plasma expansion from lower
altitudes. However, as time progresses, it is expected that thermal conduction and local frictional heating
would eventually increase the topside ion temperature in this scenario. Future work is still needed to further
study SAPS-related ion temperature variation in the topside ionosphere.

In general, electron temperature in the ionosphere is also determined by the thermal balance between heat-
ing and cooling processes. Besides daytime photoelectron heating by solar extreme ultraviolet radiation, it
is known that the downward energy and heat transfer from the ring current along magnetic field lines dur-
ing geomagnetically disturbed periods will cause a subauroral electron temperature enhancement, which
usually occurs in association with the midlatitude trough in the nighttime topside ionosphere (e.g., Afonin
etal., 1997; Evans, 1970; Fok, Kozyra, Kozyra et al., 1986; Prolss, 2006; Wang et al., 2006; Warren, et al. 1991;
Watanabe et al., 1989). Furthermore, Coulomb collisions with ions provide an important energy loss mecha-
nism for topside ionospheric electrons (Schunk & Nagy, 2000). In the SAPS region, characterized by intense
heating and ion upwelling during storm time, energy exchange between the electrons and ions forms the
primary cooling processes for thermal electrons in the F2 layer. Lower electron density will therefore tend to
result in higher electron temperatures because of the greater thermal energy available per particle, and the
cooling process will be less efficient due to reduced Coulomb coupling with ions (Moffett & Quegan, 1983;
Schunk & Nagy, 1978). Taken in aggregate, the relative enhancement of electron temperature in the SAPS
region will therefore be more pronounced around midnight due to more profound trough depletion than
that occurring in dusk sectors. This Te-Ne correlation associated with SAPS will be further addressed later.

3.2. Seasonal Variation

Figures 4a-4b and 4c-4e display the averaged AMLAT distribution of SAPS-related plasma velocity and
electron density for different seasons in 2-D and 1-D formats, respectively. There is a slight winter-summer
asymmetry in that the SAPS peak velocity has larger values in winter than summer, with the exact values
being recorded in Table 1. Many studies have found that the SAPS velocity is inversely proportional to the
flux tube-integrated Pedersen conductivity in the subauroral region, which is primarily controlled by solar
illumination (e.g., He et al., 2014; Yu et al., 2015; Zheng et al., 2008). Thus, the smaller conductivity in winter
due to insufficient illumination will lead to an enhanced SAPS electric field and flow velocity to maintain the
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Figure 4. The same as Figure 3 but for seasonal variation. The blue, green, and red lines represent the variation pattern
around December solstice (November, December, January, and February), equinoxes (March, April, September, and
October), and June solstices (May, June, July, and August), respectively.
subaurural current continuity. This seasonal asymmetry is also reported in previous studies (e.g., Koustov
et al., 2006; Wang & Liihr, 2013; Wang, Liihr, et al. 2012). However, it is worth noting that this seasonal
difference is within uncertainty levels (~100-200 m/s) for this study, and it could also be affected by uneven
data distribution and variation of solar flux. Future simulation work is still needed to further specify this
issue.
The SAPS peak velocity is slightly larger around equinoctial months than local winter, though the differ-
ence is quite small (~30 m/s). The SAPS-related midlatitude trough also exhibits relatively larger depletion
around equinoxes (—20.9%) than December solstice (—9.1%). Karlsson et al. (1998) found that the strength
of the subauroral electric field has maximum values close to the equinoxes and minimum values around
the summer solstice. He et al. (2014) also found that SAID events can be more frequently observed
during equinoxes than solstices. This feature may be related to enhanced geomagnetic activity and iono-
spheric convection flow around equinoxes. In particular, equinoctial periods have increased solar wind
driving conditions with a higher-than-average IMF southward component (Russell & McPherron, 1973),
and field-aligned ionospheric conductivity is relatively low when the nightside auroral zones of both hemi-
spheres are simultaneously in the darkness around equinoxes (Lyatsky et al., 2001). Both effects will result in
AAET AL. 10 of 21
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Figure 5. The same as Figure 3 but for different geomagnetic activities. The blue lines represent the variation pattern
for Kp < 3, while the red lines represent those for Kp > 3.

an enhanced SAPS velocity with more substantial frictional heating and deeper trough structure. This phe-
nomenon is also consistent with that indicated in Aa et al. (2020), in that the nighttime midlatitude trough
has a higher occurrence rate around equinoxes than local winter.

Figures 4f-4h and 4i-4k show the averaged AMLAT distribution of SAPS-related ion and electron tem-
perature for different seasons, respectively. For ion temperature, the relative deviation (~4-6%) is almost
seasonally independent. For electron temperature, on the other hand, the SAPS-related enhancement in
the December solstice is 6.1% (114 K), while the temperature enhancement during equinoxes is 3.3% (65 K)
and is almost negligible in the June solstice. As the background temperature during June solstice is higher
than other seasons, relative increase in temperature for the same amount of energy input will likely to be
lower. Our results are contextually consistent with previous studies. Evans (1973) found that the seasonal
variation of the heat flux flow into the ionosphere from the plasmasphere can reach an order of magnitude,
and the lowest heat fluxes occur in summer and highest fluxes in winter. Similarly, Fok, Kozyra, Warren,
et al. (1991) quantitatively confirmed that the downward electron heat flux from the plasmasphere in winter
is comparable to magnetospheric heat flux and is larger than during other seasons. Besides heating sources
from the magnetosphere, Richards and Torr (1986) indicated that there is a strong interhemispheric ther-
mal coupling between conjugate ionospheres at midlatitude, and solar illumination in the sunlit summer
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Figure 6. The same as Figure 3 but for different solar activities. The blue lines represent the variation pattern for
F10.7<150, while the red lines represent those for F10.7>150.

hemisphere can make a considerable contribution to heat the conjugate winter hemisphere immediately.
All of the mechanisms above can result in a larger increase of electron temperature in winter than in the
absence of a sunlit conjugate region.

3.3. Geomagnetic Activity Dependence

Figures 5a-5b and 5c-5e display the averaged AMLAT variation of SAPS-related plasma velocity and elec-
tron density for different geomagnetic activity levels, respectively. Many previous studies have indicated that
both SAPS velocity and associated ion vertical flow velocity will increase with respect to increasing geomag-
netic activity (e.g., Erickson et al., 2011; Foster & Vo 2002; Kunduri et al., 2017; Wang & Liihr, 2013), and
the midlatitude trough becomes deeper with increasing geomagnetic activity (e.g., Aa et al., 2020; Collis &
Haggstrom, 1988; Karpachev et al., 1996; Prolss, 2007; Werner & Prolss, 1997). In the current study, the blue
lines represent the quiet time variation pattern with Kp < 3, while the red lines represent disturbed geomag-
netic conditions with Kp > 3. It can be seen from both Figure 4 and Table 1 that the disturbed conditions are
associated with higher SAPS peak velocity (—672.4 m/s) and deeper trough depletion (—18.9%) than quiet
time conditions (—444.9 m/s and —14.1%), respectively. This again confirmed that the increased frictional
heating and expansion within the storm time SAPS region would accelerate the recombination rate and the
trough formation.

AA ET AL.

12 of 21



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Space Physics 10.1029/2020JA028584

Figures 5f-5h and 5i-5k show the averaged AMLAT distribution of SAPS-related ion and electron temper-
atures for different geomagnetic activity levels, respectively. Both the ion and electron temperatures exhibit
larger enhancement around SAPS region during disturbed geomagnetic conditions that are almost two
times of temperature enhancements during quiet conditions. This feature is consistent with that indicated
in previous studies (Fok, Kozyra, Warren, et al. 1991; Kozyra et al., 1986; Moffett et al., 1998; Prolss, 2006).

3.4. Solar Activity Dependence

Figures 6a-6b and 6¢c-6e show the averaged AMLAT variation of SAPS-related plasma velocity and electron
density for different solar activity levels, respectively. The blue lines represent the variation pattern during
low solar activity periods (F10.7 <150), while the red lines represent those during high solar activity peri-
ods (F10.7 > 150). It can be seen that SAPS has a larger peak value (—630.1 m/s) around low solar activity
periods than that around high solar activity periods (—513.1 m/s). This negative correlation between SAPS
flow and solar activity is reasonable, as Robinson and Vondrak (1984) and Hardy et al. (1987) indicated that
the contribution to the height-integrated ionospheric Pedersen conductivity from solar radiation approxi-
mately equals to 0.88+/F,, ;cosr, where y is the solar zenith angle. Thus, the weaker Pedersen conductivity
around solar minimum will naturally lead to an increased SAPS electric field and flow velocity, as well as
an enhanced ion vertical flow. In addition, the corotating interaction region during the declining phase of a
solar cycle could induce persistent geomagnetic perturbations. This makes the low solar activity years con-
stitute a large number of SAPS events with medium to high level Kp values, which also helps to maintain
the SAPS magnitude at a high level statistically.

Moreover, He et al. (2014) indicated that the narrow SAID channel moves equatorward during high solar
activity periods. This is in agreement with that mentioned in Le et al. (2017) and Karpachev (2019) that the
position of midlatitude trough will move slightly equatorward from low solar activity to high solar activity
periods. In our results, the SAPS-related midlatitude trough exhibits almost identical percentile depletion
among low and high solar activity periods. Figure 6e shows that the background electron density in high
solar activity periods is nearly 2 times of that in low solar activity, because the enhanced solar extreme ultra-
violet radiation associated with higher F10.7 will increase the ionization production rate. Thus, it can be
deduced that the trough depth, which equals to the product of background density times percentile devia-
tion, should be more significant in high solar activity periods. This is consistent with that mentioned in Aa
et al. (2020).

Figures 6f-6h and 6i-6k show the averaged AMLAT variation of SAPS-related ion and electron temperature
for different solar activity levels, respectively. For ion temperature, low solar activity results exhibit larger
enhancement associated with SAPS compared with those during high solar activity periods, which is sim-
ilar to the plasma flow results. It is important to note that frictional heating depends on both ion-neutral
velocity difference and ion density, and therefore, the detailed solar cycle variation of SAPS-related Ti and its
interrelationship with frictional heating and electron density might be complicated and involve both iono-
spheric and thermospheric conditions. Specific simulations are needed to further address this issue in the
future. For electron temperature, the absolute values and the relative enhancements between low and high
solar activity periods in our results are approximately the same. This is consistent with observation results
from Fok, Kozyra, and Brace (1991) and simulation results from Kozyra et al. (1990), both of which indi-
cated that magnetospheric heat flux and electron densities both vary by an order of magnitude between
solar maximum and minimum. For a given level of magnetic activity, the net result is to maintain similar
electron temperature enhancements within the solar cycle.

3.5. IMF Dependence

Figures 7a-7b show the averaged AMLAT variation of SAPS-related zonal plasma velocity in 2-D and 1-D
formats for different IMF clock angles in the solar wind. We note that the IMF data used for clock angle
derivation were from OMNI data sets at 1 AU with time shifting to the nose of the Earth's bow shock. The
clock angle was estimated based on 1 hr interval IMF data. It can be seen that both SAPS flow and ion vertical
flow are much stronger when the IMF clock angle is between —180° and —90° (i.e., negative By and negative
Bg). For IMF Bz dependence, other studies indicate that SAPS will move equatorward with a larger magni-
tude when IMF Bz becomes stronger southward, a condition often associated with enhanced geomagnetic
activity and extended convection pattern (Horvath & Lovell, 2016; Lin et al., 2019). For IMF By dependence,
it is known that the main effect of By is to change the shape and orientation of the two-cell convection
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Figure 7. The same as Figure 3 but for different interplanetary magnetic field (IMF) clock angles. In the 1-D plot, four
different orientation of IMF By and Bz components are shown by different combinations of colors and line styles.

pattern, in particular when Bz is negative (Heelis, 1984; Heppner & Maynard, 1987; Weimer, 1995). In the
Northern Hemisphere, the dusk cell is more crescent-shaped for negative By and more round for positive
By, while the dependence of the dawn cell is the reverse (Ruohoniemi & Greenwald, 1996, 2005). Therefore,
under the condition of negative By and negative Bz, the sunward returning flow in the vicinity of the whole
evening-midnight sector is predominantly westward since it is dominated by the more crescent-shaped dusk
cell. This background trend will facilitate SAPS formation and identification through higher westward speed
over wider MLT regions, similar to a “downstream acceleration” process. On the contrary, if By is positive, the
background convection flow around midnight is predominantly eastward, and the neutral wind flow pattern
will also be influenced with a strong eastward zonal wind at subauroral latitudes (McCormac et al., 1985;
Thayer et al., 1987). This neutral wind friction tends to prevent sunward plasma flow from gaining high
velocity, similar to an “upstream acceleration” process. Thus, our results of the SAPS dependence on IMF
are understandable. Moreover, there is a hemispheric asymmetry of By effects on the convection pattern in
the Southern Hemisphere (Leonard et al., 1995; Papitashvili et al., 1994), which means that the condition
for strong SAPS flow should be more favored with positive By and negative Bz. This point is partially sup-
ported by the results given by Karlsson et al. (1998) that the strongest poleward electric fields associated
with SAPS are seen exclusively for negative By in the Northern Hemisphere and positive By in the Southern
Hemisphere.
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increase with increasing geomagnetic activity due to enhanced dissocia-
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to the SAPS distribution reported here. Another point worth noting is that

, the overall level of electron density is generally lower with positive By and
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Figure 8. A scatter plot showing the comparison between 1/Ne and NexTe ~ circulation pattern at middle-to-high latitudes also has an IMF depen-

around SAPS.

dence similar to ions: Specifically, for positive (negative) By, the size of

the dusk (dawn) circulation cell and its neutral wind speed will increase
(e.g.,Hernandezetal., 1991; McCormac et al., 1985; Richmond et al., 2003; Thayer et al., 1987). Furthermore,
around the midnight sector in the Northern Hemisphere, a strong and positive By will cause stronger east-
ward zonal wind at high latitudes as well as stronger equatorward winds at lower latitudes due to clockwise
diversion driven by Coriolis force, which will amplify the storm time equatorward surge of thermospheric
meridional wind and lead to an equatorward progression of neutral disturbances with reduction of O/N,
ratio, causing the background electron density to decrease (Forster et al., 2008; Goncharenko et al., 2006;
Immel et al., 1997; Rees et al., 1986). On the other hand, ion drag is a significant force for modifying neu-
tral winds in the low-density region around SAPS (Ferdousi et al., 2019), and enhanced westward neutral
wind was found to peak around the same latitude as SAPS flow (Wang et al., 2011; Wang, Liihr, et al. 2012).
The Coriolis force on the westward wind drives a poleward wind disturbance and can sometimes establish a
poleward wind to prevent the storm time equatorward surge (Zhang, Erickson, et al. 2015), thus raising the
O/N, ratio and background electron density. This condition will be more favored with larger SAPS under
negative By as mentioned before.

Figures 7f-7h and 7i-7k show the averaged AMLAT variation of SAPS-related ion and electron temperature
for different IMF clock angles, respectively. Similar to the plasma velocity, both ion and electron temperature
have generally larger values when the IMF clock angle is between —180° and —90° though their relative
deviation fluctuates between 40 and 80 K exhibiting no clear IMF dependence. Zhang et al. (2016) analyzed
the long-term cooling trends of ionospheric ion temperature at Sondrestrom and found that more negative
Bz corresponds to Tireduction in the topside ionosphere during nighttime, possibly due to adiabatic cooling.
This may partially inhibit the Ti enhancement effect associated with stronger geomagnetic activity though
further study is still needed to quantify the relative contribution of this mechanism.

3.6. Joint Heat Flow Analysis of SAPS Region Ne and Te

A joint analysis of the combined quantity Ne x Te is important in understanding the characteristics of heat
flow around the SAPS region. It is known that in the F region and topside ionosphere, the thermal electron
heating rate is proportional to thermal electron densities, while the dominant electron cooling process is
Coulomb collisions with ambient ions, with a cooling rate proportional to Ne? (and the difference between
Te and Ti) (Schunk & Nagy, 1978). Thus, many studies have reported negatively correlated Ne and Te rela-
tionships under a quasi-steady state of thermal equilibrium (e.g., Zhang & Holt 2004; Zhang, Holt, Zalucha,
et al. 2004), with the heat content term of Ne x Te likely related to 1/Ne. Figure 8 shows a scatter plot com-
parison between Ne x Te and 1/Ne from our study with very good correlation (R = —0.93). Results indicate
that Ne x Te is essentially determined by Ne, and Te changes in response to the variation of Ne. This also
means that the above-mentioned thermally quasi-steady state is valid for our SAPS data with no large exter-
nal heating to ionospheric electrons from sources such as soft particle precipitation or field-aligned heat
conduction from higher altitudes. Under this assumption, a quantitative relationship between Ne and Te at
300-550 km heights can be approximately derived for SAPS regions from our results as follows:

Te = loaxlog(Ne)Jrﬂ’ (2)
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where a and f equal to —0.0085 and 3.39, respectively. The uncertainties for these two coefficients are 0.002
and 0.126, respectively. This result is new and should be further expanded by future coupled ionosphere,
plasmasphere, and magnetospheric modeling studies.

4. Conclusions

This paper presents a comprehensive statistical study of the SAPS as well as related electron density, ion tem-
perature, and electron temperature by using long-term measurements of Millstone Hill incoherent scatter
radar over North American sector during 1979-2019. A SEA technique was used to investigate the distribu-
tion patterns of these parameters with respect to MLT, season, geomagnetic activity, solar activity, and IMF
orientation, respectively. The statistical results in this study not only confirmed some previously established
characteristics but also proposed new insights on SAPS, such as its solar activity and IMF dependencies.

The main results that further confirmed previously published ones are as follows:

1. SAPS has MLT variation with larger magnitude and broader width around dusk than midnight, seasonal
asymmetry with higher peak velocity in winter than summer, and geomagnetic dependence with larger
velocity during active periods than quiet time.

2. SAPS is usually associated with a midlatitude trough of 15-20% Ne depletion, and the trough depth
exhibits an increasing trend with increasing Kp value.

3. The subauroral ion and electron temperature exhibit 3-8% (50-120 K) enhancement associated with
SAPS, and both have larger enhancement during geomagnetically active periods. The ion temperature is
determined by the altitude-dependent contribution from SAPS-related frictional heating and local heat
conduction/advection. The electron temperature is influenced by the thermal interaction between down-
ward heat transfer from ring current and local Coulomb cooling, and lower Ne tends to make the heating
(cooling) process more (less) efficient in generating more significant electron temperature enhancement.

The new findings on SAPS features are summarized as follows:

1. The average SAPS detection rate among our database is 5%-15% with two peaks occurring around
equinoxes, likely due to enhanced geomagnetic activities during equinoctial periods. SAPS tends to have
larger velocity in low solar activity than high solar activity periods, which could be partially attributed
to weaker height-integrated Pedersen conductivity around solar minimum.

2. SAPS has adependence on IMF orientation, which tend to have larger velocity when the IMF clock angle
is between —180° and —90° (i.e., negative By and negative Bz). This phenomenon might be collectively
interpreted by the Bz-related geomagnetic dependence of SAPS, as well as the By-related dependence of
plasma convection and neutral wind patterns.

3. The SAPS-related midlatitude trough has clear MLT and seasonal preference. It has the largest depletion
in the postmidnight sector around 00-02 MLT, probably results from extended subauroral plasma stag-
nation due to the reduced SAPS that is close to the counteracting corotation flow. The trough depth is
larger around equinoxes than other seasons, likely due to slightly increased SAPS number and magnitude
associated with enhanced geomagnetic activities around equinoxes.

4. Theion and electron temperature enhancement around SAPS peak is generally more pronounced during
midnight than dusk. Conditions for ion temperature enhancement are more favored during low solar
activity periods, while the electron temperature enhancement is almost constant within solar cycle.

5. SAPS thermal content Te X Ne is consistent with thermal equilibrium, is strongly dependent on 1/Ne, and
therefore Te exhibits negative correlation with respect to Ne. This result could indicate that external heat
input to the ionosphere in SAPS regions through thermal conduction from the plasmasphere is unlikely
to be substantial, but this needs to be further explored with future modeling studies.

Data Availability Statement

The F10.7 and IMF data are acquired from NASA/GSFC's Space Physics Data Facility's OMNIWeb service
(https://cdaweb.gsfc.nasa.gov/). Kp indices are downloaded from Kyoto world data center for Geomag-
netism (http://wdc.kugi.kyoto-u.ac.jp/). The DMSP SSJ/4 and SSJ/5 particle detectors were designed and
calibrated by Dave Hardy of the Air Force Research Laboratory, and the Auroral Boundary Index (ABI) was
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