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Abstract
Research Summary: Strategic management has seen

numerous studies analyzing interaction terms in

nonlinear models since Hoetker's (Strat Mgmt J., 2007,

28(4), 331–343) best-practice recommendations and

Zelner's (Strat Mgmt J., 2009, 30(12), 1335–1348)
simulation-based approach. We suggest an alternative

recentering approach to assess the statistical and eco-

nomic importance of interaction terms in nonlinear

models. Our approach does not rely on making assump-

tions about the values of the control variables; it takes the

existing model and data as is and requires fewer compu-

tational steps. The recentering approach not only provides

a consistent answer about statistical meaningfulness of

the interaction term at a given point of interest, but also

helps to assess the effect size using the template that we

offer in this study. We demonstrate how to implement

our approach and discuss the implications for strategy

researchers.
Managerial Summary: In industry settings, the rela-

tionship between multiple corporate strategy-related

inputs and corporate performance is often nonlinear in

nature. Furthermore, such relationships tend to vary for

different types of firms represented within the broader

population of firms in a given industry. It is thus impera-

tive for managers to know how to take nonlinear rela-

tionships between related business factors into account
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when they make strategic decisions. We suggest a simple

and easily implementable way of assessing and inter-

preting interactions in a nonlinear setting, which we term

a recentering approach. We demonstrate how to apply

our approach to a strategic management setting.
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1 | INTRODUCTION

Interaction terms are frequently modeled in strategic management research in order to evaluate
the effect of one explanatory variable on the response variable given the magnitude of another
explanatory variable (e.g., the relationship between corporate strategy-related inputs and man-
agement performance outcomes varies depending on the internal and external business envi-
ronments). Assessing and interpreting interaction terms becomes more complicated when
models are nonlinear. Unlike linear models where the effect of a one-unit change in a covariate
on the outcome variable (i.e., marginal or partial effect) is constant over the whole range of the
covariate given the level of the other covariates in the model, the same effect in nonlinear
models relies on the values of all other covariates in the model (Ai & Norton, 2003; Norton,
Wang, & Ai, 2004). Given the frequency with which strategic management researchers have
encountered interaction terms in nonlinear models (see, e.g., Hoetker, 2007; Shook, Ketchen,
Cycyota, & Crockett, 2003), we will argue and show by way of mathematical proof and empiri-
cal analysis that there is room for another methodological option for achieving simplicity and
consistency of interpretation of those interaction terms.

In strategic management research, Hoetker (2007) recommended a set of best practices for
the use of logit and probit models, including interpreting interaction terms. To further improve
the assessment of statistical meaningfulness and interpretation of logit and probit results,
Zelner (2009, p. 1336) suggested “a simulation-based technique developed by King, Tomz, and
Wittenberg (2000)”1 and argued for the benefits of this technique over the conventional
calculus-based method known as the delta method (Zelner, 2009, pp. 1341–1,342)2 proposed by
Dorfman (1938). In particular, Zelner proposed (a) calculating and interpreting a difference in
predicted probabilities associated with discrete changes in key predictor values (known as the
cross-partial derivative or cross-difference, which measures how the marginal effect of one
variable changes when the other variable in the interaction term changes) and (b) testing
whether the difference in predicted probabilities is different from zero by constructing a
confidence interval (CI) around the estimated quantity and finding out if the interval

1For an introduction to the simulation method, see Krinsky and Robb (1986, 1990, 1991). See Greene (2018,
pp. 647–648, 752) for an instructive discussion on the simulation-based method and the specific method of Krinsky
and Robb.
2For an analysis comparing the delta method and the simulation method, see Krinsky and Robb (1990). For an
additional description of the delta method, see Rothenberg (1984) and Horowitz (2001). For a separate way to
implement the simulation method, see the NLOGIT software package and its WALD command.
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contains zero.3 This simulation-based technique argued for by Zelner (2009) requires user-written
Stata commands “CLARIFY” and “intgph” (Tomz, Wittenberg, & King, 2003; Zelner, 2009).

This simulation approach, however, must by inherent definition include the researcher
picking assumed values for all the control variables in the model in order to generate output
about whether an interaction effect is statistically meaningful. To address this concern, we pro-
pose and recommend a recentering approach, which focuses on the main independent variable
at a point of theory-motivated interest. The recentering approach does not require assumed
values for any of the control variables, takes the data and model as is, is computationally sim-
pler and is easier to implement with one simple mathematical transformation as seen below.
Last but not least, our approach enables one to assess, with the help of the template we provide
in this study, the effect size of the interaction term in a nonlinear model. Overall, the rec-
entering approach we propose gives researchers an additional option to consider when
assessing the interaction effect in nonlinear models.

Our recentering approach is based on a recentered regression where one or both variables
involved in the interaction term are centered at a value of interest―whether it be at the sample
mean, sample median, sample 75th percentile value, sample 25th percentile value, or any other
theory-driven value. That is, every value of the variable being interacted in the data set is deducted
by the same value of the researcher's interest. For ease of explication and comparison, we begin our
discussion below by showing our simulation results from three logit model examples used in prior
research. We then illustrate our recentering approach where we first show the link to generalized
linear models and discuss the benefits of using the log of odds ratio in assessing and interpreting
interaction effects in nonlinear models. Next, we present our mathematical proof that concisely
illustrates why the recentering method provides a simple and consistent identification process. We
then show how the recentering approach can help researchers assess the effect size of the interac-
tion term in a nonlinear setting beyond its statistical meaningfulness. There, we provide a table that
researchers can easily consult to evaluate the relationship between the odds ratio and Cohen's
d (Cohen, 1988), a widely accepted measure for assessing the effect size in the field of statistics and
in the behavioral and health sciences. Lastly, we demonstrate the steps to implement the rec-
entering approach. We conclude by discussing the benefits of using the recentering approach in
comparison to the simulation-based approach.

2 | THE SIMULATION-BASED APPROACH

For ease of explication and comparison across studies, we utilize three well-specified logit
models (Models IV A, VI and V) and the data (N = 469) used in Leiblein and Miller (2003) as
our examples. The three logit models specified in Equation (2) below take the form of the fol-
lowing population logistic model of the binary outcome variable Y with the vector of indepen-
dent variables X ≡ (X1, …, Xi):

Pr Y =1jXð Þ=F β0+β1X1+β2X2+β3X1X2+ � � �+βiXið Þ
=

1
1+e− β0+β1X1+β2X2+β3X1X2+ ���+βiXið Þ

ð1Þ

3Greene (2010) notably raised issues with this common practice of computing the cross-partial derivative and testing the
interaction effect in nonlinear models. He pointed out the difficulty of interpreting the interaction effect measured by
the cross-partial derivative in nonlinear models given the relationships among the variables.
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where F is the cumulative standard logistic distribution function, X1 denotes a continuous vari-
able, X2 denotes a dummy variable, and X1X2 denotes an interaction term whose effect is the
change in the predicted probability that Y = 1 for a change in both X1 and X2.

4 Given Equa-
tion (1), Leiblein and Miller's (2003) two logit models specify, for a given firm in a given year:

Vertical integration=Pr make=1ð Þ

=F
β0+β1Demand uncertainty+β2Asset specificity

+β3 Demand uncertainty�Asset specificityð Þ+PβiControlsi

 !
ð2Þ

where the outcome variable, vertical integration takes a value of one for a “make” decision
and zero for a “buy” decision, and the explanatory variables include the two interacted vari-
ables (a continuous measure of “demand uncertainty” and a binary measure of “asset speci-
ficity” that takes a value of one when asset specificity is present and zero otherwise) and the
interaction term that is the product of the two variables. A set of control variables that are
theoretically believed to influence firms' vertical integration are controlled for in each of
the three models. In particular, Model IV A adjusts for Fabrication Experience, Sourcing
Experience, Ex ante Small Numbers, Small Numbers Squared, Firm Size, Firm Tenure, US
Firm, Japanese Firm, and Other Asian Firm. Model V replaces Fabrication Experience and
Sourcing Experience with Fabrication Experience Hat and Sourcing Experience Hat in
Model VI A and adds Diversification Strategy and Diversification Squared to Model IV
A. Model VI adds Diversification Strategy, Diversification Squared, and year fixed effects to
Model IV A.

In order to assess interaction effects in nonlinear models, Zelner (2009) proposed looking at
the difference in predicted probabilities associated with a discrete change in key predictor
values and testing whether such difference is statistically different from zero by constructing a
CI around the estimated quantity. If the CI includes zero, then it is concluded that there is no
statistically meaningful interaction effect. For this hypothesis testing, Zelner (2009) proposed
computing the CIs using King et al.'s (2000) simulation-based approach that implements
“CLARIFY”. This Stata user-written program uses Monte Carlo simulation which relies on
asymptotic theory (Cameron & Trivedi, 2005; Wooldridge, 2010).5

4For the logit model from Equation (1), the interaction effect where a continuous covariate (X1) and a dummy covariate
(X2) are interacted is the discrete difference (with respect to X2) of the single derivative (with respect to X1), which is:

Δ∂F �ð Þ
∂X1

ΔX2
= β1+β3ð Þ F β1+β3ð ÞX1+β2+Xβf g

× 1−F β1+β3ð ÞX1+β2+Xβf gð Þ

� �
−β1 F β1X1+Xβð Þ 1−F β1X1+Xβð Þf g½ �

where F(�) denotes F(β0 + β1X1 + β2X2 + β3X1X2 + Xβ) and Xβ denotes the vectors of covariates and the associated
parameters. For further technical computation of the interaction effects in logit and probit models when the two
interacted variables are both continuous or both binary, see Norton et al. (2004, pp. 155–159).
5As Wooldridge (2010, pp. 437–438) points out, “it is important not to rely too much on Monte Carlo simulations. Many
estimation methods have asymptotic properties which do not rely on underlying distributions. In the nonlinear
regression model, the nonlinear least squares estimator is asymptotically normal, and the usual asymptotic variance
matrix is valid under a set of assumptions. However, in a typical Monte Carlo simulation, the implied error (u) is
assumed to be independent of x, and the distribution of u must be specified. The Monte Carlo results then pertain to
this distribution, and it can be misleading to extrapolate to different settings. Furthermore, one can never try more than
just a small part of the parameter space. Because one never knows the true population value, one can never be sure how
well one’s Monte Carlo study describes the underlying population.”
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To illustrate this approach, Zelner (2009) generated 10 sets of simulated coefficients from
Model V of Leiblein and Miller (2003) using “CLARIFY” (by default the program draws
M = 1,000 sets of simulated parameters) and showed the results with the 80% (two-tailed) CI for
each simulated coefficient in the logit model to assess its statistical meaningfulness. Following
this approach, we also run our three logit model examples and simulate the coefficients using
“CLARIFY.” Although the overall simulation process is the same, ours differs from
Zelner (2009) in three ways. First, we analyze Leiblein and Miller (2003)'s three logit models
(Models IV A, V, and VI) whereas Zelner (2009) did one (Model V).6 Second, in consideration
of Cameron and Trivedi (2010) who imposed a caveat on running only 1,000 simulations for
reported results given “considerable simulation noise, especially for estimates of test size (and
power)” (Cameron & Trivedi, 2010, p. 140), we run both 1,000 and 10,000 simulations. Third,
we report the 95% (two-tailed) CIs using the percentiles of the simulated results as Zelner (2009)
did (e.g., the 95% two-tailed CI for each coefficient in the case of 1,000 simulated results is
bounded by the 25th-lowest and 975th-highest simulated values for the coefficient).7

We report the results from Leiblein and Miller (2003)'s three logit models in Tables 1–3,
respectively. In Table 1 (Model IV A), note that the original coefficients of asset specificity
(−1.158) and firm size (0.214) variables are moderately meaningful in a statistical sense with
the p values equal to .053 and .056 respectively. In contrast, the simulation-based approach tells
that neither is statistically meaningful, regardless of the number of simulations.

3 | THE RECENTERING APPROACH

The recentering approach we propose is in the branch of statistics called Generalized Linear
Models (GLM). GLM, first invented in 1972 (Nelder & Wedderburn, 1972) and widely consid-
ered to be one of the pioneering achievements in the last 50 years of the field of statistics, exists
to unify linear and nonlinear models in the spirit of greater analyzability. In GLM, the
nonlinear representation of the dependent variable appears on the left-hand side and the linear
representation of the independent variables including any interaction term(s) appears on the
right-hand side. The left-hand side can be nonlinear while the right-hand side is linear because
of an invertible linearizing “link function” on the left-hand side, which transforms the expecta-
tion of the dependent variable such that it can be equal to a linear function of the independent
variables. To express this point in proper notation in the classic linear model, the equation can
be written in the following form:

Y =Xβ+ε ð3Þ

6We were able to analyze the data that were generously shared with us. The first data shared with us enabled us to
analyze Models IV A and VI. Later we were sent separate data to run Model V. Using those separate Model V data sent
to us in a second batch, we get substantively identical findings (but with somewhat different coefficients) from the
original article. We have shown our log file to the original authors, and they have confirmed via email communication
on October 3, 2019 that we have run the same model that they did.
7Note that constructing CIs using the percentiles of the simulated results can work if the sample of, for example, 1,000
replicates generates a sample from the sampling distribution of some estimator. If this is a maximum simulated
likelihood (MSL) estimation of a random parameter, the method does not work. We are grateful to William H. Greene
for his clarifying advice on when this percentile method can work.
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where Y is a response variable, X is a set of explanatory variables, β is a set of estimated coeffi-
cients, and ε is a column vector of disturbances. The linear model follows a set of Gaussian
assumptions, including but not limited to the facts that the relationship between each explana-
tory variable and the response variable is approximately linear, and that the residuals are inde-
pendent and identically distributed (i.i.d.) normal with mean zero and constant variance. These
last two restrictions are eliminated in a GLM, which in turn provides a way to learn the effect
of the explanatory variables that closely resembles the process of analyzing independent vari-
ables in the classic linear model.

The key to a GLM is the specification of a so-called link function, which links the systematic
component of the linear model Xβ with a wider class of nonlinear representations of the
response variable. The link function “g” can be written in the following form:

E Yð Þ=μ=g−1 Xβð Þ ð4Þ

where E(Y) is the expected value of the response variable Y, μ is the mean of Y, Xβ is the linear
predictor, a linear combination of the unknown parameters β, and g is the link function. The
link function can be a logit, probit, poisson, negative binomial, or any other nonlinear transfor-
mation of the response variable Y such that the right-hand side can be a linear representation
of the independent variables. To emphasize, the recentering method that we will show below
will work not just for logit, but also for poisson, negative binominal, or any other nonlinear
transformation through a known link function. Going from logit link to probit link, for exam-
ple, only changes the left-hand side of the equation, while recentering happens on the right-
hand side of the equation. So the changing of the link function will not impact the math result
on the right-hand side of the equation. In the following example, we will take the logit link
function:

log
p

1−p
=β0+β1X1+β2X2+β3X1X2+β4X3+… ð5Þ

where p denotes probability and log (p/1 – p) is the logit function, which is the logarithm of the
odds ratio8 of the “make-or-buy” decision in Equation (2). One of the reasons for transforming
probability (ranging from 0 to 1) to log odds (ranging from negative infinity to positive infinity)
is because it is hard to statistically model a variable which has a restricted range like probabil-
ity. One way to circumvent such a restricted range issue is this transformation. Also, the log of
odds is one of the easiest to understand and interpret, among all of the limitless options for
transformation.9 There is a one-step conversion for that: (a given odds ratio)/(1 + that same
given odds ratio) = probability. Also when one is looking at the incremental effect on baseline
probability, one needs to start the research project in any case (whether one is utilizing the

8An odds ratio, a measure of association between an event and an outcome, was originally proposed to decide whether
the probability of an event is the same or differs between two groups, usually one with the event and the other without
the event. The range of odds ratios is from 0 to infinity where a value of one indicates that the event is equally likely in
the two groups with and without the event, suggesting no effect of the event on the odds of outcome. As the value of
odds ratio rises or drops from a value of one, the association between the event and the odds of outcome becomes much
stronger positively or negatively (Chen, Cohen, & Chen, 2010, p. 861).
9UCLA: Statistical Consulting Group. “FAQ: How Do I Interpret Odds Ratios in Logistic Regression?” from https://stats.
idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/ (accessed
December 2019).
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simulation method or the recentering approach) with knowledge of what is the baseline proba-
bility of an event occurring in one's sample.

Second, in a nonlinear world, the conversion between odds ratio and probability is mono-
tonic but not intended to be symmetric. It is the case that at a starting odds ratio of 1:1 (equal
to a starting probability of 0.5), the relationship between odds ratio and probability is sym-
metric. Starting at the original odds ratio of 1:1, that is the same as a probability of (1/1)/
(2/1) = 1/2 = 0.5. When that original odds ratio of 1:1 goes up by 5, that is the same as a
probability of (5/1)/(6/1) = 5/6 = 0.833. When that original odds ratio of 1:1 gets divided by
5, that is the same as a probability of (1/5)/(6/5) = 1/6 = 0.167. Thus, at a baseline odds ratio
of 1:1, the absolute value of the positive impact of multiplying the odds ratio by 5 is the same
as (thus is “symmetric to”) the absolute value of the negative impact of dividing the odds
ratio by 5.

It is also true that the same coefficient expressed in log odds can have a smaller nominal
effect in changing the probability for a group with small baseline odds than a group with larger
baseline odds (Hoetker, 2007, p. 334). It is thus important for the researcher to explicitly depict
whether and how a given change in log odds ratio means a different change in probability for
various groups in the population.

Having the regression run efficiently in GLM and getting the log odds ratio out of it means
that one does not have to test out all combinations of the control variables in a simulation. Let's
say that one has 10 control variables, each of which takes on 10 different possible values in
one's data set. At most, one runs 10 different recentered regressions. The reason for why the rec-
entering method is efficient and provides consistent results in nonlinear models is because,
through a simple mathematical transformation that we will see next, we are able to subtract out
the effects of the control variables. We are thus able to arrive at the answer that is unbiased and
consistent regardless of the number of and all combinations of the control variables in the
data set.

In summary, the log of odds ratio is particularly helpful for studying interaction effects in
nonlinear models for several reasons. First, the log of odds ratio lends itself to broadly applica-
ble statistical analysis (because it can be used through the recentering method to tell us the sta-
tistical and economic meaningfulness of an interaction term that is true and consistent no
matter what the values of the control variables are). Second, the log of odds ratio, while not pre-
viously held to be intuitive, can be readily converted into a probability that is more easily
understood using any odds-probability online converter tool or a simple calculation.10 Third,
the log of odds ratio provides a clear benchmark for assessing the economic meaningfulness/
effect size of an interaction term.

3.1 | Why the recentering method offers a useful option for
interpreting interaction effects

Through simple mathematical steps, we next illustrate why the recentering method provides a
simple and consistent identification process. Recalling Equation (5), consider we seek to

10For example, see https://www.calculatorsoup.com/calculators/games/odds.php. Or one can simply convert from log of
odds ratio to odds by exponentiating the log of odds ratio (i.e., odds ratio = exp(log of odds ratio)). To convert from an
odds ratio to a probability, one can divide the odds by one plus the odds (e.g., to convert odds of 1/9 to a probability,
divide 1/9 by 10/9 to obtain the probability of 0.10).
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determine the effect of X2 given X1 being equal to a defined point, a. X2 can be either a continuous
or a dummy variable. From Equation (5), note what happens when X2 shifts from the value b to
the value (b + 1). The following is the effect of X2 given X1 = a as X2 shifts from b to (b + 1):

X2=b ! log
p1

1−p1

� �
=β0+β1a+β2b+β3ab+β4X3+… ð6Þ

X2=b+1 ! log
p2

1−p2

� �
=β0+β1a+β2 b+1ð Þ+β3a b+1ð Þ+β4X3+… ð7Þ

To find the effect of X2 as it goes from b to (b + 1), one can examine the log of odds ratio by
subtracting Equation (6) from Equation (7). The outcome will then be:

log
p2

1−p2

� �
− log

p1
1−p1

� �
= log

p2=1−p2
p1=1−p1

� �
=β2+β3a ð8Þ

Note that as a result of this subtraction, all the terms for the control variables are removed.
In contrast, the methods for examining interaction terms in strategic management
(e.g., Wiersema & Bowen, 2009) are focused on the direct change in probabilities, where from
the odds (p/1 − p) one can derive the probability p as shown below:

p
1−p

� �
=eβ0+β1X1+β2X2+β3X1X2+β4X3+… ð9Þ

p=
eβ0+β1X1+β2X2+β3X1X2+β4X3+…

1+eβ0+β1X1+β2X2+β3X1X2+β4X3+… ð10Þ

Examining the effect of X2 given X1 = a in this approach entails a relatively more compli-
cated math problem in which the control variables do not disappear:

X2=b!P1=
eβ0+β1a+β2b+β3ab+β4X3

1+eβ0+β1a+β2b+β3ab+β4X3
ð11Þ

X2=b+1!P2=
eβ0+β1a+β2 b+1ð Þ+β3a b+1ð Þ+β4X3

1+eβ0+β1a+β2 b+1ð Þ+β3a b+1ð Þ+β4X3
ð12Þ

In other words, to examine the direct change in probability as the effect of the change in X2

from b to (b + 1), one can attempt to subtract Equation (11) from Equation (12), but the other
control variables will not be removed in this case. A notable takeaway from this demonstration
is that one can never assess the effect of a change in probability when looking at the world this
way unless one plugs in assumed values for each and every control variable. In contrast, the rec-
entering method enables one to subtract away all control variables through a simple mathemat-
ical transformation, and as a result of that simple mathematical transformation, easily and
consistently assess the statistical and economic meaningfulness of the interaction term at hand
in nonlinear models.

To achieve that goal, we present below what is learned when operating in the GLM
world using the link function in which the control variables are subtracted away, and
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where one gets the consistent answer no matter what the values of the control variables
are. Using the example of Leiblein and Miller (2003), we start with the logit link function
on the left-hand side and the matching linear representation of the independent variables
on the right-hand side. Here we know in advance that in a GLM framework, all of the con-
trol variables will be subtracted away; thus, we can focus fully on the main variables of
interest: Demand Uncertainty (DU), which is a continuous variable and Asset Specificity
(AS), which in the real world is ultimately a continuous variable but in Leiblein and
Miller (2003) is measured as a binary dummy variable. Recalling Equations (2) and (5), let
DU, AS, and (DU � AS) in Equation (2) be X1, X2, and X1X2 in Equation (5) respectively. We
will then get:

log
p

1−p

� �
=β0+β1DU+β2AS+β3 DU�ASð Þ+… ð13Þ

In Equation (13), we know in advance, as shown in Equation (8), the effect of AS on the
make-or-buy decision (the response variable) given DU = a as the value of AS goes from 0 to
1 is β2 + β3(a). Thus, one can see that the effect of AS critically depends on the value of DU
set at a. Therefore, the effect of AS on the dependent variable in this interaction context can
only be told by the value for β2 alone if DU = 0. Our interest here is in how to easily and con-
sistently assess the effect of AS on the dependent variable given a specific value of DU in this
nonlinear context. Based on theory from strategic management research, one does typically
have an interest in learning about the effect of the interaction for a chosen region of DU. The
efficient way to identify this interaction effect with consistency is to perform a simple mathe-
matical transformation that makes DU become zero so that the DU term is canceled out by
algebra. How does this work? In Equation (13), we simultaneously add and subtract the value
of DU that would make DU = 0 at the DU point of interest in the DU data distribution, which
we call DU below:

log
p

1−p

� �
=β0+β1 DU−DU+DU

� �
+β2AS+β3 DU−DU+DU

� ��AS� �
+… ð14Þ

By reorganizing the terms on the right-hand side in Equation (14), we get:

=β0+β1DU+β1 DU−DU
� �

+β2AS+β3DU�AS+β3 DU−DU
� ��AS+… ð15Þ

which is the same as:

= β0+β1DU
� �

+β1 DU−DU
� �

+ β2+β3DU
� ��AS+β3 DU−DU

� ��AS+… ð16Þ

The power of the above mathematical transformation is that all of the positive DU terms get

subtracted out and we are left with only the negative DU terms. For the sake of simplicity, we
then group together terms in Equation (16) using the alternative notation of δi:

=δ0+δ1 DU−DU
� �

+δ2AS+δ3 DU−DU
� ��AS+… ð17Þ

where δ0 = β0 + β1DU , δ1 = β1, δ2 = β2+ β3DU, and δ3 = β3.
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The key insight here is that, when we are interested in the effect of AS on the
dependent variable at any particular part of the actual DU data distribution, all we
need to do is to subtract from every value of DU the data point of interest (DU ). As a

result, δ1 and δ3 in Equation (17) disappear because (DU – DU ) becomes zero. The estimated
coefficient (δ2) of AS in terms of the log of odds ratio then tells us whether the interaction term
(DU � AS) is statistically meaningful, given the p value associated with that coefficient, at the
DU point of interest (DU) when the value of AS moves from one value to another (here, zero to
one in our example). In essence, after recentering, the coefficient (δ2) represents the log-odds
ratio effect of a one-unit change in AS holding DU constant at the point of interest and holding
all other control variables constant. Also note that in contrast to the simulation approach, this
recentering approach also helps us assess the effect size or the economic meaningfulness of the

interaction term (DU � AS) at the DU point of interest (DU ) with the template that we will dis-
cuss and provide below.

Up to now we used the coefficient of AS to learn the change in the log of odds ratio at a spe-
cific DU point of interest. Researchers, however, can also learn the covariate-invariant effect of
the other main variable among the two interacted variables in the same regression. In our
example above, this means that if we instead wanted to know the effect of DU at the AS point
of interest (e.g., 1), we just recenter the AS variable at 1 by subtracting 1 from all values of AS
(0, 1 in our prior example) which makes the AS at that point of interest equal to zero. Because
of this subtracting process of an interacted variable, which essentially makes that variable to be
equal to zero at a specific value of that variable, we call this technique a recentered regression.
This recentered regression makes it possible to assess the statistical and economic meaningful-
ness of the interaction effect in a nonlinear setting, that is consistent regardless of the values of
all other control variables.

It is noteworthy that the recentering approach can also help when there are two sets
of interaction terms in one nonlinear model. For example, consider four main variables,
A, B, C, and D and two interaction terms (A � B) and (C � D) in the same nonlinear
model. In this case, the recentering approach can diagnose more than just one interaction
term at a time or both at the same time (like if one were to recenter “B” at the B point
of interest and “D” at the D point of interest simultaneously). In the latter case, the rec-
entering approach can help identify the interaction term (A � B) at the B point of interest

(B) and D point of interest (D ) simultaneously. To understand how the recentering approach
works here, suppose a nonlinear model specified as log(p/[1− p]) = α0 + α1A + α2B + α3(A � B)
+ α4C + α5D + α6(C � D) + αi Σ(Other Covariates i). Then via centering B and D at B and D

respectively, the coefficient of A (α1) would tell us the effect of A when B is at B, no matter what
C, D or the other control variable values are (i.e., “covariate-invariant”). Likewise, the coeffi-

cient of C (α4) would tell us the covariate-invariant effect of C when D is at D. If the nonlinear
model were specified as log(p/[1− p]) = π0 + π1A + π2B + π3C + π4(A � B) + π5(A � C) +
πkΣ(Other Covariates k), then via centering B and C at B and C respectively, the coefficient of

A (π1) would tell us the effect of A when B is at B and C is at C, no matter what the other covar-

iate values are. Similarly via centering A at A , the coefficient of B (π2) would tell us the

covariate-invariant effect of B when A is at A and the coefficient of C (π3) would tell us the

covariate-invariant effect of C when A is at A. Here all the “effect” discussed above refers to the
log of odds ratio.
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3.2 | The recentering approach helps assess the effect size in a
nonlinear model.

The recentering approach also helps researchers assess the effect size of the interaction term in
a nonlinear model beyond its statistical meaningfulness. From prior literature in epidemiology
(Chen et al., 2010), there is a precisely defined template for interpreting the size of the effect
expressed in terms of the log of odds ratio, which we introduce in Table 4. Specifically, the table
evaluates the effect size in direct mathematical comparison to Cohen's d11 (Cohen, 1988), a
widely accepted measure for assessing effect size in the field of statistics and in the behavioral
and health sciences. Recall that the coefficient of the explanatory variable in a logistic regres-
sion corresponds to the log of odds ratio of the outcome variable per unit increase in the explan-
atory variable. The first two columns of Table 4 show odds ratio and log of odds ratio,
respectively. The rest of the columns show the equivalent Cohen's d given P0 in the second row,
which is the baseline rate of outcome of interest in the group of subjects. In our example above,
it is the rate of vertical integration in the group of firms where asset specificity = 0, holding
demand uncertainty and all other control variables constant. Because P0 could vary for different
values of demand uncertainty, it makes sense to interpret the effect size, or lack thereof, based
on the answer being true regardless of the exact value of P0 (in epidemiology it is the rate of
contracting a disease of interest in the non-exposed group, i.e., the group not exposed to a par-
ticular harm, for example, and is estimated from the general population, and in our present
empirical context, it would be the rate at which firms engage in vertical integration). Our main
interest in Table 4 is whether Cohen's d equivalent to log odds ratio is clearly indicating an eco-
nomically large or economically small effect. Values in bold with shading in Table 4 indicate
Cohen's d < 0.20 or > 0.80. Values of Cohen's d less than 0.20 suggest that the effect sizes are
small for all plausible values of P0, and values of Cohen's d greater than 0.80 suggest that the
effect sizes are large for all plausible values of P0 (Cohen, 1988).

As shown in Table 4, the log of odds ratio < 0.26 always corresponds to Cohen's d < 0.20 and
the log of odds ratio > 1.95 always corresponds to Cohen's d > 0.80. Cohen's d < 0.20 reflects the
fact that the effect size of the interaction effect is small. Cohen's d > 0.80 reflects the fact that the
effect size of the interaction effect is large. Thus, if we see a log of odds ratio less than or equal to
0.26, we know that the size of the interaction effect is economically small no matter what the P0
is. Similarly, if we see a log of odds ratio greater than or equal to 1.95, we know that the size of the
interaction effect is large no matter what the P0 is. Therefore, when the log of odds ratio identified
from the recentering method is less than or equal to 0.26, we can say that the size of the interaction
effect is small (clearly mapping onto Cohen's d < 0.20) regardless of the values of P0. Similarly,
when the log of odds ratio identified from the recentering method is greater than or equal to 1.95,
we can say that the size of the interaction effect is large (clearly mapping onto Cohen's d > 0.80) no
matter what the P0 is. Of course, one might know from prior studies that P0 is likely smaller than
say 0.20, for example. In our present context, P0 might be such that the rate of vertical integration
with asset specificity equal to zero and all other control variables held constant is 0.05. This is the
same thing as saying that vertical integration is occurring 5% of the time in the general population

11“A measure of effect size, the most familiar form being the difference between two means (M1 and M2) expressed in
units of standard deviations: the formula is d = (M1 − M2)/σ, where σ is the pooled standard deviation of the scores in
both groups. [Named after the US psychologist Jacob (Jack) Cohen (1923–98) who devised it and popularized it in his
book Statistical Power Analysis for the Behavioral Sciences (1969, 1988)]” (Cohen’s d—Oxford Reference at http://www.
oxfordreference.com/view/10.1093/oi/authority.20110803095622509).
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of interest where asset specificity equals zero, holding all other covariates constant. Under that case
(P0 = 0.05), the log of odds ratio less than 0.41 (equivalent Cohen's d = 0.19) would be considered
economically small, and the log of odds ratio greater than 1.61 (equivalent Cohen's d = 0.83) would
be considered economically large, according to Table 4. It is also straightforward to convert the
predicted log of odds ratio to a predicted probability. That is because there is a 1:1 monotonic rela-
tionship between log of odds ratio and probability.

Specific to our vertical integration example, the coefficient of demand uncertainty corre-
sponds to the log of odds ratio for a “make” decision when asset specificity is fixed at a specific
value (0 or 1). Given uncertainty over P0 in prior make-or-buy literature, a coefficient of
demand uncertainty less than 0.26, according to Table 4, indicates that the effect size of demand
uncertainty on vertical integration is clearly small, given fixed asset specificity equal to 1 no
matter what the P0 is. Similarly, a coefficient of demand uncertainty greater than 1.95,
according to Table 4, indicates that the effect size of demand uncertainty on vertical integration
is clearly large, given fixed asset specificity equal to 1 no matter what the P0 is.

3.3 | An example of the recentering approach

For illustrative purposes, we rewrite Equation (2) in the following basic form which represents
Leiblein and Miller's (2003) original logit models that include the interaction term of (DU � AS)
and recenter the DU variable at 0.015 as an example where one seeks to assess the statistical
and economic meaningfulness of the interaction term:

log
p

1−p

� �
where p=Pr Vertical integrationð Þ

=δ0+δ1 DU−0:015ð Þ+δ2AS+δ3 DU−0:015ð Þ�AS½ �+
X

δiControlsi+ε

ð18Þ

To implement this recentered regression, one can follow the steps below:

1 Before running any of the logit models that include the interaction term (DU � AS), set the
entire range of sample values of DU recentered at the specific point of DU of interest (here
0.015) by subtracting the value of interest (0.015) from each sample value of DU, so that the
DU value of interest becomes zero (0.015–0.015) in a newly recentered DU variable.

2 Replace the original DU variable with the newly recentered DU variable (DU − 0.015) in the
model. Do this for both the main effect variable and the interacted variable of the interaction
term as shown in Equation (18). Perform the recentered logit regression.

3 Look for the p value associated with the parameter estimate (δ2) for AS from the recentered
logit model as it indicates the statistical meaningfulness of the log of odds ratio for AS = 1
versus AS = 0 when DU = 0.015.

4 Run the logit model recentered at a different DU point of interest, if desired by theory, by
repeating steps 1–3 above.

5 For graphical illustrations, if desired, plot the predicted probabilities (make = 1) against the range
of sample values of DU using the Stata command “marginsplot” after logit, as shown in Figure 1.

6 In order to conduct a substantive analysis of the theory-driven effect size or the economic
meaningfulness which measures the strength of the association between the event (here
AS = 1) when DU = 0.015 and the outcome (here make =1), one can refer to Table 4 where
we provide a statistical framework for assessing the effect size of the log of odds ratio in
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terms of Cohen's d for its easier interpretation based on a widely accepted method in statis-
tics and health sciences (Chen et al., 2010).

In Table 5, we show the results of our logit model examples (Models IV A, V, and VI)
from the recentering approach using the steps above. The baseline log of odds ratio (baseline
ratio) in Table 5 denotes the estimated coefficient of AS from each logit model. Given the
nested data structure at the firm level in Leiblein and Miller (2003)'s data, we report the
results from the recentering approach using more appropriate cluster-robust standard errors
(SE) (Moulton, 1990) in addition to the original SEs that Leiblein and Miller (2003) used.
P > |z| denotes two-tailed p values for z statistics. As expected, the results with cluster-robust
SEs for each model in Table 5 are less statistically meaningful. For example, in Model IV A,
the baseline ratio (−1.158) without cluster-robust SEs is marginally meaningful in a statisti-
cal sense with the p value equal to .053, whereas the same ratio with cluster-robust SEs is no
longer statistically meaningful. Similarly, when demand uncertainty is recentered at 0.074,
the associated log of odds ratio for each model (1.127 for Model IV A and 1.443 for Model VI)
becomes no longer statistically meaningful with the p value equal to .106 and .129 respec-
tively when using cluster-robust SEs. The same holds true in Models V and VI: when demand
uncertainty is recentered at 0.106, the associated log of odds ratio (2.041 and 2.586 for Models

FIGURE 1 Statistical meaningfulness of interaction effects at specific demand uncertainty levels for the

“mean values” firm based on recentering approach using Leiblein and Miller (2003)'s three Models IV A, V and

VI with cluster-robust standard errors (S.E.s) and with all other non-binary variables in each model set to their

estimating sample means and all other binary variables set to their estimating sample modes [Color figure can

be viewed at wileyonlinelibrary.com]
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V and VI respectively) with cluster robust SEs becomes barely statistically meaningful
(p value = .093 and .073 respectively).

Lastly, as introduced above, one can assess the effect size of the interaction term using
Table 4 after running the recentered regression. For example, in Model IV A of Table 5, the size
of the ratio with demand uncertainty recentered at 0.194 is estimated as 4.833 which is statisti-
cally meaningful. Since the ratio of 4.833 is greater than 1.61 (which corresponds to Cohen's
d > 0.8), according to Table 4, one can say that there is a large interaction effect for a one-unit
change in asset specificity when demand uncertainty is equal to 0.194.

4 | CONCLUSION

Our recentering approach is intended to provide strategic management researchers with an addi-
tional option when it comes to assessing interaction effects in nonlinear models. Instead of requir-
ing the researcher to know how to make the assumptions about each control variable and to enter
in assumed values for implementation, the recentering approach, through a simple mathematical
transformation, takes the data and model as is and tells the researcher what the statistical and eco-
nomic meaningfulness of the interaction effect is at that chosen point in the data distribution. What
it takes to implement the recentering approach is to recenter the regression and implement it. If the
independent variable of interest has 10 different values, one might have to run the recentered
regression 10 times. Even that number of 10 regressions would be fewer if one's theory, as seen in
Jeong and Siegel (2018), were explicitly focused on the upper, middle, or lower part of the distribu-
tion of a variable of interest.

In conclusion, the recentering method provides researchers a consistent answer through an
efficient way. With the recentering approach, one can assess not just statistical meaningfulness
of the interaction effect at each and every point along the spectrum in a nonlinear model, but
also economic meaningfulness/effect size of the interaction term. The recentering method also
can be easily applied to a situation where a nonlinear model specifies more than one interaction
term. We recommend the recentering method to strategy researchers for its consistency in
results, its ability to assess both statistical and economic meaningfulness, its methodological
efficiency, and its relative simplicity in implementation.
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