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Abstract 

 

The evolution of tissue on a chip systems holds promise for mimicking the response of biological 

functionality of physiological systems. One important direction for tissue on a chip approaches are 

neuron based systems that could mimic neurological responses and lessen the need for in vivo 

experimentation. For neural research, more attention has been devoted recently to understanding 
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mechanics due to issues in areas such as traumatic brain injury and pain, among others. To begin to 

address these areas, we developed a 3D Nerve Integrated Tissue on a Chip approach combined with 

a Mechanical Excitation Testbed System to impose external mechanical stimulation toward more 

realistic physiological environments. We used PC12 cells differentiated with nerve growth factor, 

which were cultured in our controlled 3D scaffolds. We labelled the cells with Fluo-4-AM to examine 

their calcium response under mechanical stimulation. We imposed mechanical stimulation 

synchronized with image capturing to examine the cellular response in our 3D nerve integrated 

tissue on a chip system. Understanding the neural responses to mechanical stimulation beyond 2D 

systems is very important for neurological studies and future personalized strategies. We feel that 

this work will have implications in a diversity of areas including tissue on a chip systems, 

biomaterials, and neuromechanics. 

1. Introduction 

3D tissue on a chip systems are considered promising candidates for a variety of fields including 

tissue engineering, organ regeneration, and in vitro disease models.[1-4] These multi-dimensional 

systems at a miniaturized scale seek to mimic physiology without using animals or humans. In these 

systems, 3D cell-to-cell interactions form potentially providing new in vitro approaches to study and 

mimic the response of biological and cellular processes. One particularly interesting area to study is 

mechanical stimulation due to its importance in a wide range of physiological systems from cardiac 

to neural areas. In the neural domain, previous approaches for examining the effects of in vitro 

mechanical loading on cells have focused mostly on local stimulation of single or multiple neurons 

cultured on planar substrates. These approaches have proven to be useful for understanding how 

mechanical stimuli are transduced to biochemical signals including being integrated with micro-

fabricated environments.[5-8] While much of the knowledge of cellular biomechanics focuses on our 

understanding from planar substrates, these 2D systems unfortunately lack physiological aspects 
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such as three dimensionality as well as the complexity of tissue and neuronal function. 3D culture 

systems can enhance the analysis of integrated interactions between tissue and neural response to 

recapitulate the natural microenvironment with spatiotemporal details, which may be relevant in 

understanding many issues including Alzheimer’s disease and traumatic brain injury (TBI).[9-11] 

 

This type of understanding of biomechanics is particularly important as TBI can result from a 

diversity of situations such as a car crash, an innocuous fall, sports injury, and sudden jolts or blows 

to the head.  Annually these types of issues affect approximately 1.5 million people in the United 

States and 69 million individuals worldwide as well as accounting for ⅓ of all injury-related deaths in 

the United States affecting every stage of life from adolescents to the elderly.[12,13] Precisely 

identifying the importance of dysfunction and pathomorphological expressions after external 

mechanical insult is very important. These responses include a variety of factors such as compressive 

strains and subcellular responses. The approaches with tissue on a chip systems could help in these 

areas as representative building blocks for assessing in vitro, multi-dimensional organ architectures 

toward physiological understanding and treatment.  

 

Understanding cell responses under mechanical stimulation can be probed through many 

techniques. One approach involves an important molecular signature related to mechanostimulation 

of calcium (Ca2+) signaling. Ca2+ is an ubiquitous second messenger participating in signal 

transduction in cells throughout the body and is known to have roles in vital processes such as 

fertilization, muscle contraction, growth and development, neural transmission, and gene 

expression.[14-16] Ca2+ also plays a key role in the release of synaptic vesicles when a neuron fires, but 

this could lead to damage and cell death under an overload of the mitochondria and intense 

activation of Ca2+ dependent enzymes. Altered Ca2+ ion homeostasis is also linked to several 



  

This article is protected by copyright. All rights reserved. 

4 

neurodegenerative diseases: Parkinson’s, Huntington’s, Alzheimer’s, amyotrophic lateral sclerosis, 

and TBI.[17-21] Although previous 2D studies of Ca2+ conducted in vitro examined Ca2+ concentrations 

related to stretch[22], a complete understanding of neuronal functionality in a three-dimensional 

platform combined with spatiotemporal detail, would provide tremendous insight to 

neuromechanical responses and potential treatments in the future.  

 

Here, we developed a 3D collagen Nerve Integrated Tissue on Chip (NITC) system to mimic tissue 

engineering physiology. We then imposed mechanical stimulation on the NITC and examined Ca2+ 

responses under dynamic loading. Given the importance of compressive deformation to 

neurotrauma and impact injuries with understanding their long term effects, we believe that our 

approach will provide new knowledge in areas including neuromechanics, biomaterials, and 3D 

cellular response. 

 

2. Results and Discussion 

2.1. 3D Cellular Collagen Scaffolds Under Mechanical Stimulation 

To study Ca2+ response in NGF induced PC12 cells, Fluo-4-AM (stock: 50 μg, molecular weight: 1097 

g/mole), which is a cell permeant Ca2+ indicator, was introduced to the cells. Fluo-4-AM was pipetted 

onto the NGF induced PC12 cells, which were then incubated for 1 h.[23-24] Ca2+ stained cells were 

added to 10X phosphate buffered saline (PBS), sodium hydroxide (NaOH), and type 1 collagen to 

form a cross-linked ECM. Collagen type I, which is the most abundant protein found in mammals as 

well as being naturally present in many 3D matrices in various tissues, was used as the ECM.[25,26] The 

collagen concentration with embedded PC12 cells was 5 mg/mL, which allowed us to maintain 

structural stability while applying external mechanical, compressive loading. This concentration is 



  

This article is protected by copyright. All rights reserved. 

5 

slightly higher than in vivo ECMs, however, this is in a physiologically relevant concentration range 

and also maintains its structural stability, which is essential in mechanical testing.[27] 

 

We developed a direct and reproducible method to cast the cross-linked PC12 collagen scaffolds. 

Molds were created to encapsulate the 3D NITC systems by mounting a circular acrylic ring (12mm 

ID/15 mm OD) to a 25 mm coverslip using Norland 85 biocompatible glue to enable a clear path for 

imaging and housing of the PC12 collagen scaffolds (Figure 1B). After loading the cells into collagen 

on acrylic ringed coverslips, spinning disk confocal microscopy imaging was done to examine the 

NGF induced PC12 cells. The cells displayed a distinct green fluorescence signal with a 3:1000 

dilution factor (2 mL F-12K Medium, 6 μL of diluted Fluo-4-AM dye) from the Fluo-4-AM loaded NGF 

induced PC12 cells (Figure 1C). Additional information on  cell-culture, live-cell fluorescent imaging, 

and techniques to analyze a multi-dimensional ECM are in the Experimental Section and 

Supplemental Materials (SI Tab. T1). 

2.2. 3D Cellular Collagen Scaffolds Under Mechanical Stimulation 

One promising approach for applying systematic mechanics is our Mechanical Excitation Testbed 

(MET) that implements a voice coil actuator to impose different modes of fast mechanical 

stimulation including single stimulation excitation (s-stim) and repetitive stimulation (r-stim) 

excitation onto 3D collagen scaffolds. We designed our approach so that we apply mechanical 

stimuli that would mimic different degrees of important neuromechanics occurring in more 

physiologically relevant areas. One of these areas that we mimic is head injuries, as the degree of 

injury severity is distinguished as mild, moderate, or severe, and  consists of primary and secondary 

phases.[28,29] The primary phase is the initial point of active mechanical stimulation while the 

secondary phase is the period post stimulation. During the primary phase, the force transduced is 

largely compressive from the initial impact-derived deformation.[30-33] With our approach using the 
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MET system, we can apply controllable and tunable compression to our cellularized 3D biomaterial, 

collagen gels, to mimic degrees of injury severity under mechanical stimulation on our 3D models.  

 

The MET system (Figure 2, SI Equation 1-4) applies systematic uniaxial rectilinear compressive 

motion to the cellularized collagen gels by modulating a linear voice coil (VCA) (HVCM-016-010-003-

01; Moticont, Van Nuys, CA 91406) housed inside a custom (Solidworks Corp., 2018) 3D printed 

(Object350) housing with a precision force applicator arm (named “end effector”). The custom 3D 

printed stand is connected to a linear stage (4053 Parker Daedal Ball Bearing Positioner) used for 

precise positioning of the force applicator arm. The incorporation of a VCA allows for controllable 

and tunable actuation through the position interval displacement as a function of time. The VCA is 

powered and controlled using a function generator and a custom printed electronic circuit board 

(PCB) (EAGLE, AutoDesk) (Figure 2C, SI Figure S1).  To account for the inherent noise from the VCA, 

an operational amplifier (OPA544T) was designed into the PCB. The PCB board combined component 

placement and routing layouts to control electrical connectivity. Current flows from the op-amp PCB 

board to the VCA in a feedback loop. 

 

The MET generates controlled displacement waveforms (Figure 2A) over a wide range of frequencies 

to simulate mild to severe external mechanical loading based on previous cellular TBI investigations, 

which applied strain rates that span 10-4 s-1 to 75 s-1.11,34 Tuning the frequency, amplitude, and 

waveform changes the dynamic movement of the VCA from lower strain rate quasistatic motion 

loading to high strain rate dynamic motion loading. The studies presented here are all conducted 

using a sine waveform and model repeated applied strains.  
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Gathering information in real time is important for understanding the response of cells during 

different phases of stimulation. One challenge with using tissue on a chip systems with 3D in vitro 

gels is viewing changes such as movement of the system, which occurs with mechanical stimulation, 

using standard epifluorescence microscopy. Even more complicated is that 3D gels have cells in 

different planes and not just in a singular plane as is found in most 2D cell culture systems. To 

accommodate this, the MET device contains a structural support which mounts to the manual two 

axis stage directly in line with a spinning disk confocal microscope for controlled imaging. Combining 

the MET system with a high powered objective yields a working distance that can facilitate imaging 

of cells in different planes (Figure 1C). Our setup is also able to examine cells through the different z 

planes after the cellularized collagen gel is displaced by the precision end effector. Through 

capturing images during the entire mechanical stimulation, our approach is able to examine cells 

during each cycle as the cells return to the plane where the microscope is focused. 

2.3. Analysis of Ca2+ labelled differentiated PC12 cells during mechanical excitation 

To study the in vitro Ca2+ response for differentiated PC12 cells in 3D collagen scaffolds when 

stimulated by MET, precise imaging of the response over time was essential (Figure 3). To capture 

images, a 1 Hz frequency for the VCA was used through the function generator while applying 

controlled systematic amplitudes of strains to the gels. This approach allowed the ability to select a 

focal plane with cells in focus and then to stimulate the cells while capturing images. The 

experimental testing included a 60 s no-contact control phase, 60 s r-stim sine wave primary phase, 

and a 60 s secondary phase while imaging the Ca2+ labelled differentiated PC12 cells in collagen 

scaffolds (Figure 4). 
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The fluorescence response of the differentiated PC12 cell gels changes over time for each strain rate 

as observed in the distinct changes beginning at the primary phase. The first change within the NITC 

system was the immediate increase in intensity of Ca2+ (Figure 3: Primary Phase, 4B,4C, SI Vid. 1, S2, 

S3).  Images during the no-contact control phase remained at steady state over the entire 60 s span 

for all 6 samples and pixel intensity was measured as an absolute maximum of Ca2+ (Figure 4A and 

4D). Through analyzing the effects over time on the spatiotemporal distributions of Ca2+, strain rate 

appears to have a distinct effect on Ca2+ in the neurons (Figure 4). For the two impact loading rates 

(4 x 10-2 s-1  and 8 x 10-2 s-1), the primary phase had a significant difference in both peak maximum 

intensity and peak mean expression levels experienced by the 3D embedded cells (Figure 4D, 4E, 4F, 

4G). We analyzed fluorescent cell response (Figure 4A-4C), which showed distinct changes after 

mechanical loading. An immediate increase with external mechanical excitation occurred in all of the 

samples regardless of the applied strain rate in the primary phase (Figure 4B, 4E, 4G,S2,S3). The red 

and blue data points of the primary phase (Figure 4E) are the recorded relative maximum Ca2+ 

intensity during each frame of time corresponding to cells going in and out of focus (Figure S3). For 

E=4 x 10-2 s-1, we observed a Ca2+ increase of 9.74% and 17.3% for E=8 x 10-2 s-1(Figure 4G) which can 

be visually shown in the images of each phase (Figure 4A-4C). The distribution of pixel intensity as a 

relation to strain rate is greater during the primary phase resulting in a higher mean Ca2+ intensity 

(Figure 4G). The mechanically induced elevation in Ca2+ was not sustained following the primary 

phase and immediately began to decline in all tests (Figure 4G). During the secondary phase, the 

maximum Ca2+ intensity signal fluctuated during the 60 s window. This finding might be particularly 

important as altered Ca2+ homeostasis is linked to several neurodegenerative diseases including 

TBI.[35-37] Our work has findings that align with others in the literature from a mechanics and Ca2+ 

perspective such as biomechanics and tissue deformations[11,34,38-40] along with cellular Ca2+ levels.[41-

48] These previous papers show that after stretch and shear, cellular Ca2+ level exhibits comparable 

dynamic shifts to our reported work from 3D compressive loading. Rzigalinsk, et al reported 
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following stretch injury, Ca2+ is rapidly elevated proportional to the degree of injury.[45] In the 

studies, Ca2+ elevation was not sustained after the stretch injury and returned to near-basal levels 

post injury. Maneshi, et al reported following shear stress increased Ca2+ depended on the 

magnitude, duration, and rise time of the stimulus[46], which is aligned with our findings. 

3. Conclusion 

This study presents a 3D tissue on a chip neural system which examined cell response under 

mechanical stimulation. We designed a mimetic in vitro ECM collagen scaffold embedded with NGF 

induced PC12 cells and applied our MET system to assess spatiotemporal molecular response to 

external compressive stimulation. The creation of the MET device allowed us the flexibility for 

stimulation of the 3D tissue on a chip system by enabling systematic mechanical stimulation with live 

confocal imaging. With the ability to image the micro-environment under mechanical stimulation, 

new spatiotemporal details of in vitro Ca2+ responses during the No-Contact Control phase, Primary 

phase, and Secondary phase were found relative to strain rate. Given the frequency and prevalence 

of compressive loading during external mechanical impacts in different systems including to the 

head, the 3D in vitro findings of this study provide insight into the cell response relative to 

mechanical loading in an important area of Ca2+ signaling. This work could be a foundational building 

block to merging 3D in vitro multi-dimensional ECMs with architecture, bioactive, and mechanical 

cues to advance neuropathomorphology assessment. Future studies could also address variation of 

strain rates used to elicit biosensor response, ECM complexity, as well as machine learning based 

approaches to examine injury through in vitro based approaches. 

 

4.  Experimental Section/Methods  

Cell Culture: PC12 cells (ATCC, CRL-1721TM) were cultured in F-12K Medium (Kaighn’s Modification of 

Ham’s F-12 Medium) (ATCC 30-2004TM) supplemented with 5% fetal bovine serum and 10% horse 
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serum. Cells were maintained in a humidified incubator held constant at 37 ℃ with ~5% CO2. The 

collagen IV solution was prepared by mixing 5 mg of collagen IV and 5 mL of 0.25% acetic acid for 2 

hours and coating the device overnight at 4℃. Cells were plated in the collagen IV coated devices and 

allowed to grow to confluency following standard subculture protocol.[49] 

Fluorescent Ca2+ labeling and imaging with live cell capture: Fluo-4-AM (stock: 50 μg, molecular 

weight: 1097 g/mole), which is a cell permeant Ca2+ indicator, was diluted with DMSO as described 

by the ThermoFisher Scientific protocols. For 3D in vitro cellularized collagen scaffolds, 3:1000 

dilution factor (2 mL F-12K Medium, 6 μL of diluted Fluo-4-AM dye) was used for Ca2+ labeling.[50] 

PC12 cells with 50 ng/mL of NGF were incubated for 1 hour with Fluo-4-AM. Prior to Ca2+ imaging, 

Ca2+ stained cells were added to 10X PBS, NaOH, and type 1 collagen to form the cellularized ECM. 

The ECM was then allowed to cross-link for 1 hour before imaging. During mechanical stimulation, a 

spinning disk confocal microscope captured images at controlled speeds. 

 

NITC device: To create an integrated 3D cellularized model tissue as an in vitro testing platform with 

mechanics, a biomaterials approach was combined with a mechanical testing approach (Figure 1). 

NITC devices were constructed with collagen 1 and 50 ng/mL Nerve Growth Factor (NGF) induced 

PC12 (ATCC, CRL-1721TM) cells to promote neurite outgrowth.  NGF induced PC12 cells were cultured 

in F-12K Medium (Kaighn’s Modification of Ham’s F-12 Medium) (ATCC 30-2004TM) supplemented 

with 5% fetal bovine serum and 10% horse serum on collagen IV coated flasks. Cells were maintained 

in an incubator held constant at 37℃ with ~5% CO2 with a medium change every 48 hours.  Cells were 

allowed to grow to 80-90% confluency to an observable change in sympathetic neuron phenotype. 
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NITC device imaging: 3D NITC devices were plated on 25 mm coverslips surrounded by an acrylic ring 

chamber. The NITC device assembly was mounted on the stage of an inverted, spinning disk confocal 

microscope (Axio Observer Z1 Microscope System, Zeiss) with both a function generator (Agilent 

33120A Function Generator) and a power supply (BK Precision 1760A Triple Output Power Supply). 

An oscilloscope (Rigol 100 MHz Digital) was also incorporated to verify the waveform of the signal 

with one for the signal of the function generator and another for the signal from the VCA. A custom 

printed circuit board using a high current, high voltage operational amplifier (OPA544T, Texas 

Instruments) was used to decrease the noise; the operational amplifier smoothed the signal from 

the VCA. Image capture was synchronized with the MET at a frequency of 1 Hz resulting in 180 

images which were post-processed using python and NIH ImageJ software. 

 

Statistical Analysis: Continuous variables are expressed as mean ± SD. For all datasets, t-tests were 

conducted across all groups with significance defined as *p ≤ 0.05 and **p ≤ 0.01. Statistical analysis 

was through NIH ImageJ and Microsoft Excel. 

 

Supporting Information  

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. 3D in vitro neuron on a chip to probe mechanostimulation. (A) The Nerve Integrated 

Tissue on Chip approach in the Mechanical Excitation Testbed (MET) system (B) Cellular collagen 

with PC-12 embedded in it is placed inside a custom acrylic housing ring, which is attached to a 

coverslip for imaging. The MET system applies a controlled downward force using a voice coil 

actuator. (C) An image of the system for mechanically stimulating the NITC system with selected 

frames from a rotation of 3D reconstructed images (500 μm thickness: 0°, 45°, 90°, 1 0°) captured 

with confocal microscopy of NGF induced PC-12 cells dispersed through the collagen scaffold 

labelled with Fluo-4 AM and Deep Red Cell Tracker.  

 

 

Figure 2. Mechanical Excitation Testbed system for mechanical stimulation of PC-12 cells. (A) 

Image of the Mechanical Excitation Testbed (MET) system demonstrating the displacement over 

time functionality of the device. (B) CAD drawing of the MET system consists of a custom 3D printed 

housing with a voice coil actuator assembly aligned with a spinning disk confocal microscope for 

real-time imaging. Mounting a z-axis positioner to a 3D printed structural support which is 

connected to a 2-axis stage allows us to position the precision end effector component for 

mechanical stimulation of the collagen-cell NITC. A function generator generates a sine waveform is 

created with (C) a DC-coupled high gain custom electronic voltage amplifier circuit and a single-

ended output to smooth the signal for actuating the voice coil actuator with the same waveform and 

frequency. The end effector actuates to apply compression and enable imaging of cells under 

mechanical stimulation. 
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Figure 3. Ca2+ response during No-Contact Control phase, Primary phase, and Secondary phase 

mechanical stimulation in 3D NITC system. Representative schematics of displacement versus time 

for the mechanical stimulation. Images of the Fluo-4AM labelled differentiated PC-12 cells using 

spinning disk confocal fluorescent microscopy for (A) No-Contact Control phase, (B) Primary phase, 

and (C) Secondary phase. Red box indicates areas where cells in the focal plane with Ca2+ were 

analyzed at a strain rate of Ė = 4 x 10-2 s-1. Scale bars, 100 µm. 
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Figure 4. Analysis of Ca2+ under mechanical stimulation for the NITC system. (A) Frames from Ė = 4 

x 10-2 s-1 sample with A) No-contact control phase, B) Primary phase, C) Secondary phase. Scale bars, 

50 μm. (D) Quantification of the same strain rate, Ė = 4 x 10-2 s-1 at 1 Hz frequency, cell response 

denoting the No-contact control phase maximum Ca2+ intensity values. (T1 and T2 are different 

representative experiments) (E) Panel denotes maximum Ca2+ intensity during the Primary phase. (F) 

Panel denotes the Secondary phase of maximum Ca2+ intensity. (G) Bar graph plot comparing the 

mean Ca2+ ion intensity before, during, and after the Primary phase at strain rates of  Ė = 4 x 10-2 s-1 

(white bar) and 8 x 10-2 s-1  (gray bar). Data presented as mean ± SD, n=6, P-values are calculated 

using t-test, *P≤0.05, **P≤0.01. 
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Developing more physiologically relevant 3D neuron integrated systems with external mechanics 

with synchronized image capture enables understanding of cellular responses that are important for 

advancing future neural studies and personalized strategies. This works examines calcium response 

with respect to voice coil actuator controlled force profiles. 
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