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Abstract: Stochastic computing (SC) computes with probabilities using randomised bit-streams and standard logic circuits. Its
major advantages include ultra-low area and power, coupled with high error tolerance. However, due to its randomness
features, SC's accuracy is often low and hard to control, thus severely limiting its practical applications. Random fluctuation
errors (RFEs) in SC data are a major factor affecting accuracy, and are usually addressed by increasing the bit-stream length N.
However, increasing N can result in excessive computation time and energy consumption, counteracting the main advantages
of SC. In this work, the authors first observe that many SC designs heavily rely on constant inputs, which contribute significantly
to RFEs. They then investigate the role of constant inputs in SC and propose a systematic algorithm constant elimination
algorithm for suppression of errors to eliminate the constant-induced RFEs by introducing memory elements into the target
circuits. The resulting optimal modulo-counting (OMC) circuits remove all constant inputs and, at the same time, minimise RFEs.
Analytical and experimental results are presented demonstrating other aspects of OMC circuits, including their initialisation and
autocorrelation properties, as well as their optimality in terms of minimising RFEs.

1 Introduction
Stochastic computing (SC) is an unconventional digital design
technique that interprets signals as probability values embedded in
randomised 0–1 bit-streams called stochastic numbers (SNs). The
value of an SN is usually estimated by the fraction of 1s in the bit-
stream. For example, the bit-stream X = 010011 is a six-bit SN with
(unipolar) value 0.5, since three of its six bits are 1, i.e. the
probability of a 1 appearing anywhere in X is 0.5. We denote the
value of X by pX(t)(1) = X = 0.5. X(t) denotes the tth bit of X. Note
that when clear from the context, we drop the superscript t for

brevity, and simply write pX(t)(1) = pX(1). SC performs arithmetic
on probabilities by transforming a set of SNs.

The scaled adder CMA in Fig. 1a illustrates SC's basic
mechanism. The multiplexer (MUX) takes two variable SNs X and
Y, and an independent constant SN R of value R = 0.5 as inputs and
outputs the SN Z. In any clock cycle t, the probability of Z(t) = 1 is
the probability of (X(t), R(t)) = (1, 0), plus the probability of (Y(t),
R(t)) = (1, 1). With R = 0.5, it is easily seen that Z = 0.5(X + Y), a
scaled sum of X and Y. The scaling here ensures that Z lies in the
probability range or unit interval [0, 1]. 

SC's advantages of low power, low area cost and tolerance for
soft errors show considerable promise in applications such as
image processing [1], error-correcting code decoding [2], and
machine learning [3]. However, SC suffers from various error
sources including undesired correlations and random fluctuations.
Correlation is due to inadequate independence among the SNs
being processed. It may be tackled via decorrelation circuitry,
which can add significantly to area cost [4]. Random fluctuation
errors (RFEs) occur when the SN length N is too small or when the
quality of the randomness sources is poor [5]. Fig. 2 shows how
three SNs generated by the circuits in Fig. 1 can fluctuate around
their exact value 0.5 as N changes. As we will see later, while these
circuits implement the same scaled addition function, they have
quite different RFE levels. RFEs can be reduced by increasing N,
but this can lead to very long run times and hence high-energy
consumption. To avoid such problems, SC usually compromises
accuracy, thereby narrowing the range of applications to which it
can be successfully applied. 

Several prior works reduce or eliminate correlation errors and
RFEs by introducing some degree of determinism into the design
of stochastic-type circuits [5–8]. For example, low-discrepancy
quasi-random sources such as Halton sequences can be used to
generate accurate but deterministic bit-streams [9]. While
deterministic bit-streams can improve accuracy, there are many
situations where conventional SC is preferable. For example, the
input pixels of the retina-implant chip described in [1] are
continuously sensed from the environment and are thus already
stochastic and dynamically changing over time. More generally,
when connecting SC components, it is far easier to maintain the
bit-stream randomness required by conventional SC than to enforce

Fig. 1  Three stochastic implementations of scaled addition
(a) Conventional MUX-based design CMA with a constant input R = 0.5, (b) Ad hoc
sequential design CAA with no constant input, (c) Sequential design CCA produced
by CEASE, (d) Error comparison of the three designs
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rigid deterministic patterns. Furthermore, converting stochastic bit-
streams to deterministic ones and vice versa can significantly
increase hardware cost and system latency. For these reasons, we
only consider SC with random number representations.

The main contribution of this study is a new design
methodology to reduce RFEs in conventional SC, and improve
accuracy without compromising computation time or energy
consumption, while maintaining desirable SC features such as error
tolerance. It is based on the observation that most SC designs, from
the simple scaled adder in Fig. 1a to complex stochastic circuits
generated by major synthesis methods such as Spectral Transform
Use in Stochastic circuit Synthesis (STRAUSS) [10] and
reconfigurable architecture based on stochastic logic (ReSC) [11],
heavily rely on the use of constant SNs to achieve good function
approximations. These SNs not only increase hardware overhead
due to their need for random sources but, as we show here, also
turn out to be a significant source of RFEs.

A common way to quantify SC errors is mean-squared error
(MSE), which is the accuracy metric used in this work. The MSE
of an N-bit SN Z is defined as

MSE Z, N = E Z^ − Z
2, (1)

where E(·) denotes the expectation function and Ẑ = Ẑ(N) denotes
the estimated value of the N-bit SN Z generated by a stochastic
circuit. Equation (1) computes the average squared deviation of an
SN's estimated value from its exact or desired value.

We show that it is possible to remove all RFE-inducing input
constants by resorting to a new class of sequential SC designs. We
devise a systematic method, which we call constant elimination
algorithm for suppression of errors (CEASE) [12] for constant
removal. While a function may have various circuit
implementations with no constant inputs, CEASE-generated
circuits provide a guarantee of optimality on RFE reduction.
Figs. 1b and c depict two sequential scaled adder designs CAA and
CCA after eliminating constant SNs; the former was designed in ad
hoc fashion, while the latter is based on CEASE. (It happens to
include a sub-circuit that implements the majority function MAJ.)
Fig. 1d plots the (sampled) MSEs of all three scaled adders in
Fig. 1 against bit-stream length N = 2k. It can be seen that the
CEASE-based design CCA is the most accurate. Furthermore, as we
will demonstrate, CCA meets the theoretical lower bound on MSE
for RFEs indicated by the small circles. Note here that this MSE
bound is the lower bound for ‘conventional’ SC that deals with
Bernoulli bit-streams. The CEASE design CCA achieves this bound
by removing all the inherent RFEs induced by constants that
control the circuit's function. The remaining RFEs are from user-
supplied inputs which are not controllable. Notice too that if the
user applies accurate inputs (such as low-discrepancy bit-streams)
that have no RFEs, the CEASE circuit will correspondingly

generate exact outputs up to rounding errors. In other words,
CEASE is compatible with non-stochastic bit-streams and can
provide further accuracy improvements.

The main contributions of this study are as follows:

• Clarifying the role of constants in SC design and showing that
they are a major contributor to RFEs.

• The CEASE algorithm to systematically remove constant SNs
by transferring their function to memory.

• A new class of optimal modulo-counting (OMC) circuits which
implement CEASE and minimise RFEs.

• An analysis of the properties of OMC circuits.

The paper is organised as follows. Section 2 briefly introduces
SC and examines the role played by constant SNs in stochastic
circuits. Section 3 introduces the CEASE method and OMC
circuits, and analyses their performance. Section 4 examines
additional properties of OMC circuits. Section 5 discusses
applications of these circuits, while Section 6 draws some
conclusions.

2 Stochastic computing
We first review relevant concepts of stochastic circuits and the
functions they implement. We then investigate the role of constant
input SNs in SC.

A combinational stochastic circuit C implements a class of
arithmetic functions that depend on the Boolean function f realised
by C, as well as the SN values applied to C and their joint
probability distribution.
 

Example 1: Combinational SC adder. The adder CMA in Fig. 1a
has three SNs X, Y, R applied to its inputs x, y, r, respectively. It
implements the Boolean function fmux(x, y, r), which outputs a 0 bit
except when fmux(1, 0, 0) = fmux(0, 1, 1) = fmux(1, 1,0) = fmux(1, 1,
1) = 1. The probability that the circuit's output is 1 is thus the
probability that one of the input patterns 100, 011, 110 or 111
occurs. This enables us to write

Z = pX 1, 0, 0 + pX 0, 1, 1 + pX 1, 1, 0 + pX 1, 1, 1
= ∑

b
f mux b pX b , (2)

where b denotes a three-bit input binary vector. □
In general, suppose a combinational circuit C implements the

Boolean function z = f(x1, x2,…, xn). Let X = {X1, X2, …, Xn} with
values {X1, X2,…, Xn} be the set of SNs applied to the inputs x1,
x2,…, xn. The stochastic function realised by C has the following
form [13]:

Z = F f , pX = ∑
b

f b pX b , (3)

where pX(b) is the joint probability distribution of the input SNs,
and the summation is over all combinations of the n-bit input
vector b. Equation (3) indicates that a stochastic function is a linear
combination of the probability terms pX(b) with coefficients f(b)
that take 0–1 values. Equation (3) generalises (2) from the special
case of a scaled adder to an arbitrary combinationally
implementable stochastic function.

Many stochastic circuits, including those synthesised by
STRAUSS and ReSC, heavily use constant input SNs to define
both the target function's value and its precision. For example, in
Fig. 1a, the input SN R with a fixed value 0.5 is generated by a
random source not controllable by the user of the circuit, hence it is
a constant SN. The user can only control the values of the variable
SNs X and Y. In such cases, we can separate the input SNs X into
two disjoint subsets X = {XV,XC}, where XV and XC denote
variables and constants, respectively [14]. A stochastic function of
pXV can then be derived from (3) by replacing XC with appropriate
constant values, as the following example illustrates.

Fig. 2  Typical random fluctuations in three SNs with the same exact value
0.5 as bit-stream length N increases
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Example 1: (cont.): Returning to the MUX-based adder CMA in

Fig. 1a, let X = {XV,XC}, where XV = {X, Y} and XC = {R} with
R = 0.5. If R is independent of XV, then on substituting pR(1) = R 
= 0.5 into (2), we get

Z = 0.5 pXV 1, 0 + pXV 0, 1 + pXV 1, 1 + pXV 1, 1
= 0.5 pX 1 + pY 1 = 0.5 X + Y .

(4)

which is the expected scaled addition function of X and Y.
Looking more closely at (4), we can see that it is a linear

combination of probability terms with non-binary coefficients, in
contrast to (2) and the more general (3) which allow only the
binary coefficients 0 and 1 for their probability terms. This
suggests that constant inputs enable a stochastic function to have
coefficients that are any rational numbers in the range [0, 1], which
denotes the unit interval. The following theorem generalises this
observation.
 

Theorem 1: The stochastic function realised by a combinational
circuit with input SNs X = {XV, XC} is

Z = F pXV = ∑
bV

g bV ⋅ pXV bV , (5)

where the g(bV)s are rational constants in the range [0, 1] that
depend implicitly on f and pXC.

A proof of this theorem can be found in the Appendix. Theorem
1 reveals some interesting facts about the impact of constant inputs
on stochastic functions. It implies that at the expense of extra
constant inputs, the class of implementable functions can be greatly
broadened. For example, a combinational circuit cannot implement
the stochastic function Z = 0.5(X + Y) with just two inputs X and Y,
since this function also requires the non-binary coefficient 0.5. This
scaled add function is combinationally implementable, however, as
demonstrated in Example 1, by supplying an extra constant input
SN R of value 0.5. In general, when a target function is not already
in the form of (5), it has to be converted to that form by introducing
suitable constants. The accuracy with which the resulting function
approximates the target function F highly depends on the number
of constants used, as can be seen in both the STRAUSS and ReSC
synthesis algorithms. A circuit with good approximation accuracy
typically comes with many RFE-inducing constant inputs. For
instance, the STRAUSS implementation of Z = (7/16) – (1/4)X – 
(9/16)X2 derived in [10] employs four constant inputs R1, R2, R3,
and R4, each of value 0.5. These constants require costly
randomness sources to generate them, and are, as we will
demonstrate, a significant source of RFEs.

To eliminate constant inputs and their associated errors, we
propose CEASE, a systematic algorithm for removing constants
while keeping their functional benefits. Specifically, CEASE
transforms a target combinational function into an equivalent
stochastic finite-state machine (FSM) with no constant inputs and
with reduced RFEs. CEASE also offers a guarantee of optimality
on RFE reduction, thereby providing a big improvement in
accuracy.

3 Constant elimination
This section details CEASE [12], the proposed constant SN
elimination algorithm, along with an analysis of its basic accuracy.
 

Example 1: (cont.): We re-examine the MUX-based adder
CMAof Fig. 1a, shown again in Fig. 3. To implement the scaled
addition

Z = 0.5 X + Y (6)

accurately, the expected number of 1s in Z should be half the
number of 1s in the input SNs X and Y. For a given cycle t, when
both X(t) and Y(t) are 1, the corresponding output bit Z(t) will be 1;

this is exact since a single 1 should be produced in Z whenever the
circuit receives two 1s. Similarly, when both X(t) and Y(t) are 0, Z(t)

will have the exact value 0. When only one of the two inputs is 1,
i.e. X(t)Y(t) = 10 or 01, (6) implies that ideally, Z(t) should be 0.5.
However, Z(t) obviously cannot directly output ‘0.5’ from a logic
circuit that computes with 0–1 values. This representational
dilemma is effectively solved by the extra constant SN R whose
stochastic value 0.5 ensures that on average a single 1 is generated
in Z whenever two copies of 10 or 01 are received. In other words,
a 1 and a 0 are expected to be produced in response to every two
applications of 10 or 01. This single 1 spread over two cycles thus
contributes 1/2 to Z.

The fact that constants produce extra RFEs can be seen from
Fig. 3, where the constant R(t) is used to select inputs whenever
X(t)Y(t) = 10 or 01. Notice here that all of these cycles, four 1s
should appear in every eight output bits. However, since this is
only true on average, there may be variations due to the
probabilistic nature of R. In this example, there are only three 1s
instead of four in the eight output bits selected by R, producing a
1/16 error in the output value. The key to eliminating R (and the
RFEs it introduces) is to enable the circuit to remember every two
applications of 10 or 01, which implies changing it from
combinational to sequential. This makes it possible for the circuit
to output exactly one 1 and one 0 for every two applications of
input patterns 01 or 10.

3.1 Functions implemented by CEASE circuits

The fact that it is impossible for combinational logic to output a
non-binary value without the use of constant inputs is reflected in
(3) where only binary coefficients are allowed. CEASE
circumvents this issue and at the same time reduces RFEs by
constructing an equivalent FSM. The idea behind CEASE is to
introduce memory elements to count and remember non-binary
values; the resulting FSM accumulates such values to be output
later. When an accumulated value exceeds one, a 1 is sent to the
output.
 

Example 2: Sequential SC adder. The state-transition graph
(STG) of the CEASE-generated scaled adder CCA (Fig. 1c) is
shown in Fig. 4b. Like the combinational adder in Fig. 3, CCA
outputs a 1 when 11 is received, and a 0 when 00 is received. The
difference is that when a 10 or 01 is received, CCA remembers this
information by going from state s0 to state s1, and outputting a 0.
When another 10 or 01 is received, the circuit's implicit counter
will, in effect, overflow by returning to state s0 and outputting a 1.
In this way, it is guaranteed that exactly one 1 is generated
whenever exactly two copies of 10 or 01 are received. Hence, the
RFEs introduced by constant SNs are completely removed. 

Fig. 5 gives a pseudo-code summary of CEASE. In general,
CEASE takes as its input a target arithmetic function F in the form
of (5) and generates an FSM MC realising F without constant
inputs. If F is not already in the form of (5), it must be
approximated by using an SC synthesiser such as STRAUSS. MC
can be realised in various ways. We refer to any circuit that
implements MC as an optimal modulo counting (OMC) circuit
COMC. An OMC circuit implements MC by keeping a running sum
of each non-binary input value of interest. Whenever the
accumulated sum exceeds one, the circuit outputs a 1 and stores the
overflow amount. 

Fig. 3  MUX-based stochastic scaled adder CMA. On receiving 11 or 00,
the output is 1 or 0, respectively. On receiving 01 or 10, the output is 1 with
probability 0.5
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Example 2: Sequential SC adder (cont.) Consider again the

scaled addition function Z = 0.5(X + Y). Equation (4) implies that Z 
= 0.5pXV 1, 0  + 0.5pXV 0, 1  + pXV 1, 1 . Therefore, the
coefficient set g is {g(0,0), g(0,1), g(1,0), g(1,1)} = {0/2, 1/2, 1/2,
2/2}. The least common multiple q of the denominators in g is the
number of count states needed. Since q = 2 here, we need a two-
state counter. Furthermore, a = q·g = {0, 1, 1, 2}. Therefore, the
counter is designed such that every time the pattern X(t)Y(t) = 10 or
01 is applied, the counter adds 1 to its state. The pattern X(t)Y(t) = 
11 adds 2 to the counter's state. When the counter overflows, a 1 is
sent to the output; otherwise, the output is set to 0. This confirms
that Fig. 4b is indeed the STG for the FSM of an exactly scaled
adder, with the circuit CCA in Fig. 1c being one of its many
possible OMC implementations.

The three SC synthesisers mentioned in this paper, STRAUSS,
ReSC and CEASE, all have similar algorithmic complexity. Each
requires a functional approximation if the target function is not
directly implementable by its methods. In the CEASE case, the
function must be in the form of (5). Then, an SC design that
implements the approximating function will be generated. This step
converts (5) to a specific modulo counter, and can usually be done
extremely fast compared to the function approximation step.

Another viewpoint on the validity of the scaled adder in Fig. 4b
is its behaviour under steady-state probability distribution. It is
easy to see that the long-term probabilities of staying in states s0
and s1 are equal, i.e. pS(s0) = pS(s1) = 1/2, since the state transition
behaviour of this circuit is symmetric. The probability of
outputting a 1 when S = s0 is pXV 1, 1  and that probability is
pXV 1, 1  + pXV 0, 1  + pXV 1, 0  when S = s1. Hence, the overall
probability of outputting a 1 is

Z = pS s0 pXV 1, 1 + pS s1

pXV 1, 1 + pXV 0, 1 + pXV 1, 0
= 0.5 pX 1 + pY 1 = 0.5 X + Y ,

which is indeed the scaled addition function.

Not surprisingly, a CEASE-generated FSM MC implements a
stochastic function in the form of (5) accurately (up to an
unavoidable rounding error). Depending on the rounding policy,
rounding may produce a 1-bit error when the SN length is unable
to represent certain values exactly. For example, an SN of odd
length N cannot represent 1/2 exactly, but one of length N ± 1 can.
The following theorem, whose proof is given in the Appendix,
formalises this assertion.
 

Theorem 2: For an n-input, q-state CEASE-generated FSM MC
with N-bit SNs, the number of 1s in its output SN Z is

NZ, 1 = ∑
i = 1

m ai
q Ni + ϵ~, (7)

where Ni is the number of bit-pattern bi received by MC, while ai is
the number of states MC advances when a bi pattern is received and
i ∈ {1, 2, …, m = 2n}. The residual (non-outputted) error due to

rounding is ϵ~ = a0

q − ϵ, where a0 is such that sa0 is the initial state

of MC and ε ∈ [0, 1). Furthermore, Z’s value is

Z = ∑
i = 1

m ai
q pXV bi + 1

N E ϵ~ , (8)

where pXV bi  is the probability of MC receiving the input pattern
bi.

Next, we give an intuitive explanation of (7) and (8). In (7), the
number of 1s in the output NZ,1 reflects the number of times that
the modulo counter goes beyond 1 and overflows. The modulo
counter accumulates the value (ai/q) for each pattern bi it receives,
and there are Ni occurrences of the pattern bi. Therefore, (a0/q) + 
∑i = 1

m (ai/q)Ni is the total value accumulated in the modulo counter
at the end, where (a0/q) accounts for the value initially stored in the
counter and can be adjusted by configuring the counter's initial
state. Since the number of 1s in Z must be an integer, NZ,1 must be
∑i = 1

m (ai/q)Ni + (a0/q). In (7), this floor operation is captured by the
term ϵ~, which depends on the initial state of the counter and must
be less than one, because the residual (non-overflow) value stored
in the counter must be less than one. To go from (7) to (8), first
note that the value of Z is the expected number of 1s in Z divided
by N. Consequently, Z =  E ∑i = 1

m (ai/q)(Ni/N) + (ϵ~/N)  = 
∑i = 1

m (ai/q)E Ni/N + (E ϵ~ /N) =  ∑i = 1
m (ai/q)pXV bi + (1/N)E ϵ~ ,

since E Ni/N , the expected fraction of the pattern bi in the input
lines is the probability that bi occurs.

In Theorem 2, ai is the number of states MC advances on
receiving bi and q is the total number of states in MC. This clearly
implies that ai ≤ q for all i, so in (8) the coefficients (ai/q) ∈ [0,1]
are indeed rational numbers in the unit interval. Comparing (8)
with (5), we see that MC implements a stochastic function in the
form of (5), the class of functions combinationally implementable
with constant inputs. These functions are exact up to an
unavoidable rounding error (1/N)E ϵ~ , which, in the worst case,
can only cause a 1-bit difference in NZ,1.

3.2 Accuracy of CEASE

We now consider the role of CEASE in RFE reduction. The next
theorem says that among all possible FSMs implementing F,
CEASE produces a result with the smallest MSE, i.e. the output SN
produced by a CEASE-derived OMC circuit fluctuates least.
 

Theorem 3: Given a stochastic function F pXV  in the form of
(5), suppose the members of XV are Bernoulli bit-streams with
unknown correlations. Then for all positive integers N

MSE(ZC, N) ≲ MSE(Z, N), (9)

Fig. 4  STGs for the sequential scaled adders corresponding to
(a) Ad hoc design CAA of Fig. 1b, (b) CEASE-generated design CCA of Fig. 1c. The
differences between the two STGs are underlined in figure

 

Fig. 5  Algorithm CEASE for constant elimination
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where ZC is the SN produced by a CEASE-generated OMC circuit
that implements F, while Z is the SN produced by any other design
that implements F.

The notation ≲ in (9) indicates that inequality holds up to a
rounding error. A proof of Theorem 3, which requires some
advanced concepts from statistics, is outlined in the Appendix.

Theorem 3 can be understood intuitively from the fact that
CEASE's precise counting process guarantees exactness, and hence
minimises MSEs. For comparison, consider the ad hoc design CAA
in Fig. 1b, whose STG is given in Fig. 4a. One can easily see that
CAA also computes scaled addition like the OMC circuit CCA in
Fig. 1c whose STG is in Fig. 4b. Suppose the following artificially
constructed SNs are applied to both CAA and CCA:

Xart = 010101010101 X = 6/12 = 0.5 ,

Yart = 101010101010 Y = 6/12 = 0.5 .

The expected output value should be 0.5(Xart + Yart) = 0.5, which is
exactly what CCA will give. However, feeding these two input SNs
to CAA initialised to state s0 will produce the output Z = 
111111111111 (Z = 12/12 = 1) – a 100% error! The accuracy
difference between the two designs is due to the fact that the OMC
circuit guarantees to output a 1 whenever two copies of 10 or 01
are received, whereas the ad hoc design does not. Also, a closer
look at Xart and Yart reveals that these two bit-streams are highly
correlated (in a negative sense) since their 1s never overlap. It is
well known that the MUX-based adder is immune to the
correlation between its two variable inputs. This desirable property
is preserved in the CEASE design CCA and is confirmed by the fact
that it accurately computes the scaled sum given the highly
correlated inputs Xart and Yart.

CEASE-generated designs also retain the high tolerance of
stochastic circuits to transient errors (bit-flips) affecting the
variable inputs. An occasional transient or soft error causes a
relatively small miscount of the applied input patterns, which can
then result in a similarly small output error. For instance, if Xart is
changed to 010101010000 due to two 1-to-0 bit-flips, the output
value produced by CCA will become 5/12, which is a good estimate
of the exact output value 0.5 = 6/12.

It is also worth mentioning that as a side effect of removing
constant inputs, CEASE reduces potential correlation errors
induced by such inputs. However, undesired correlations among
variable inputs must be tackled separately using decorrelation
methods such as those in [4].

A scaled sequential adder constructed in ad hoc fashion around
a T flip-flop is given in [15] and shown by simulation to be more
accurate than the standard combinational design. The STG of that
adder is exactly the same as the CEASE-generated one shown in
Fig. 4b, implying that this T-flip-flop-based design is also an OMC
circuit. This confirms the high accuracy claimed for the T-flip-flop-
based adder, a key factor in the success of the neural network
implementation in [15].

4 Further analysis of CEASE
This section analyses some important characteristics of CEASE
FSMs, including the impact of their initial state, as well as their
interaction with autocorrelated bit-streams.

4.1 Impact of initialisation

Like any other FSMs that compute with finite precision, a CEASE
design can also have a rounding error due to the representational
limitation of finite-length SNs, as briefly described in Section 3.
For example, a 4-bit SN can only contain 0, 1, 2, 3 or 4 logical 1s.
It cannot contain, say, 2.5 logical 1s to represent the value 2.5/4 = 
0.625 exactly. If the exact value is 0.625, the number of 1s in the
SN must be rounded to an integer closest to 2.5, such as 2 or 3. In
the CEASE case, this rounding error is reflected by the term ϵ~ in
(7).

In [15], the authors show that the final value their ad-hoc OMC
adder rounds to depend on the adder's initial state and the rounding
direction: truncation (rounding down) or rounding up. Next, we
generalise their observation to OMC circuits beyond stochastic
adders and demonstrate analytically that for an arbitrary OMC
circuit, different and desirable rounding policies can be achieved
by carefully adjusting the circuit's initial state.

Consider a CEASE FSM MC with q states. Initialising MC to
state s0, the first state of the associated modulo counter, is
equivalent to truncating the fraction part of the expected number of
1s in the output bit-stream Z. This is because MC only produces a 1
in the output line whenever its modulo counter overflows.
Therefore, when MC finishes a computation in a state s ≠ s0, the
residual value stored in the modulo counter is discarded. Consider
again the CEASE-generated OMC adder CCA whose STG is given
in Fig. 4b. Here we initialise CCA to its first state s0, and apply the
following two inputs; X = 00011010 and Y = 01100110. Since X = 
3/8, and Y = 4/8 = 1/2, the expected value for the output Z is 0.5(X 
+ Y) = 0.5 × (7/8) = 3.5/8, implying that ideally, the number of 1s in
Z should be NZ,1 = 3.5, which is obviously not achievable with
digital logic circuits. If we work out the stochastic computation, it
is not hard to see that in this case, Z = 00101010, which contains
three 1s, and the machine terminates at state s1. The residual value
0.5 stored in the modulo counter state s1 is consequently discarded,
and the actual output value is thus truncated to 3/8.

Suppose we now change the adder CCA’s initial state to s1, and
leave the other conditions unchanged. In this case, Z = 01010110,
which contains four 1s, and CCA terminates at state s0. Clearly,
CCA now rounds the expected value 3.5/8 to 4/8. This is because
initialising CCA to state s1 implicitly introduces an extra value of
0.5 into the circuit. This circuit will then produce a 1 whenever the
residual value is 0.5.

In general, initialising MC to the state S(0) = sa0 implements the
following rounding policy with respect to NZ,1: ‘discard a residual
value if it is < 1 − (a0/q), and add a carry of 1 otherwise’. This
follows from the fact that NZ,1 =  ∑i = 1

m (ai/q)Ni + (a0/q) (see
Section 3.1). If the residual value of ∑i = 1

m (ai/q)Ni is < 1 −  (a0/q),
then even after adding the contribution from the initial state (a0/q),
the overall residual value will still be discarded by the floor
operation.

Summarising, due to the fact that the precision of a digital
system is finite, rounding errors are unavoidable. The rounding
policy of a CEASE-generated circuit can be adjusted by
configuring its initial state. For an OMC circuit with q states,
initialising it to state s0 is equivalent to the rounding policy of
truncating the fraction part of NZ,1. On the other hand, initialising
the circuit to a ‘middle state,’ i.e. to sq/2, is equivalent to rounding
NZ,1 to the closest integer.

4.2 Autocorrelation and CEASE

Autocorrelation quantifies the correlation between two elements in
a single data sequence. The autocorrelation coefficient, AC(t, s),
for an SN X describes the similarity between X(t) and X(s). For
example, applying the definition of Pearson correlation coefficient
[16] to the AC in the SC context, we obtain AC(t, s) = 

E X t − X X s − X /σ2 , where σ2 = E[(X(i) – X)2] is the
variance of X(i). Thus AC(t, s) measures the similarity between the
probabilities of the bits at two time steps t and s. If X is Bernoulli,
i.e. if each bit of X is independently generated, then X’s AC is two-
valued with AC(t, t) = 1, while AC(t, s) = 0 for all t ≠ s [17].

Most sequential stochastic circuits are designed to work with
input SNs that satisfy certain temporal independence constraints
such as Bernoulli properties. Undesired autocorrelations can
sometimes degrade the accuracy of such circuits dramatically. On
the other hand, sequential stochastic circuits themselves can
introduce autocorrelations into their output SNs, making them non-
Bernoulli [3, 18]. The preceding facts imply that if two
independently-designed sequential stochastic circuits are cascaded,
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the downstream circuit's accuracy may drastically degrade due to
autocorrelations introduced by the predecessor circuit. Since
CEASE produces sequential designs, we are interested in the
connections between CEASE designs and autocorrelation. It turns
out that CEASE has some desirable properties related to
autocorrelation, which we examine in this section.

First, we illustrate via an example how undesired
autocorrelation affects the accuracy of a sequential stochastic
circuit. Fig. 6 shows a stochastic squarer CS, which is the standard
sequential circuit for computing ZS = XS

2 [18]. To compute the
value of ZS at any cycle t, this squarer uses its D flip-flop to hold
XS

(t−1), which is then multiplied with XS
(t) using the AND gate.

The AND gate thus computes p(XS
(t − 1) = 1, XS

(t) = 1) = pXS
t 1  × 

pXS
t − 1 1  = XS

2, which implicitly assumes independence between
XS

(t) and XS
(t − 1). Since the output probability has to be correct for

all t, it is not hard to see that CS requires all the adjacent bits in its
input XS to be independent. In other words, it requires XS

(i) and
XS

(j) to be uncorrelated, for all i, j, where i = j + 1. Fig. 7 plots MSE
rate against bit-stream length for CS using 0.5-valued inputs with
different autocorrelation levels. Specifically, Line A shows the
error rate for a Bernoulli input, which converges towards zero
quickly as bit-stream length increases. Line D, on the other hand,
shows the error rate when the input is produced by the sequential
OMC adder in Fig. 1c. This input SN thus exhibits undesired
autocorrelation, resulting in CS having obvious errors. Each of the
two lines B and C shows an error rate for an autocorrelated input
that is de-autocorrelated using a shuffling de-autocorrelator, which
we will discuss shortly. 

Many existing sequential stochastic circuits, including the
preceding squarer example, can suffer from accuracy degradation if
inputs are autocorrelated [3, 18]. However, this is not true for a
CEASE FSM MC, which can, therefore, be called autocorrelation-
insensitive. This means that MC is immune to autocorrelation-
induced accuracy degradation. To see this, recall from (8) that MC

implements a stochastic function of the form ∑i = 1
m (ai/q)pXV bi  + 

(1/N)E ϵ~ , which depends only on the joint probability of all the
inputs at a given cycle, but not on the joint probability of any
individual inputs across different cycles. Theorem 4 summarises
the above discussion.
 

Theorem 4: For a CEASE FSM MC, autocorrelation in any of
its input SNs does not reduce MC’s accuracy.

Theorem 3 compares all possible implementations for a target
function F and asserts that when the inputs are Bernoulli, a CEASE
design achieves the optimal result. When the inputs are not
Bernoulli, a CEASE design's accuracy remains the same, as
Theorem 4 states. However, there are no guarantees that this
CEASE design remains optimal. In other words, there may be other

designs that achieve a lower error rate than CEASE, when the input
SNs are not Bernoulli.

Having discussed the behaviour of CEASE-generated OMC
circuits with autocorrelation in their inputs, we next investigate the
effect these circuits have on autocorrelation in their outputs. This
issue is worth looking into, especially when an SN Z generated by
an OMC circuit is to be processed by some downstream sequential
stochastic circuits that are sensitive to autocorrelation. Indeed,
directly feeding Z to any sequential circuit may degrade accuracy.
Line D in Fig. 7 shows the error rate plotted against bit-stream
length for the squarer of Fig. 6 using a bit-stream generated by the
OMC adder CCA in Fig. 1c as the squarer's input. Here the scaled
adder CCA adds the two input SNs of value 0.5 and produces its
output SN, also of value 0.5. We see that the MSE does not
converge to zero, regardless of the bit-stream length. This clearly
shows that the autocorrelation injected by CCA degrades the
accuracy of the downstream squarer.

It is very hard, in general, to analyse the impact of inputs with
undesired autocorrelations on an arbitrary sequential stochastic
circuit. In this work, we focus on analysing a well-defined class of
stochastic FSMs called shift-register-based (SRB) [18]. An SRB
circuit is a definite FSM, i.e. it has finite-input memory of length m
implying that its behaviour is completely determined by its m most
recent input bits. The squarer shown in Fig. 6 is a classic example
of an SRB circuit since its output value is determined by the two
most recent input bits. Many stochastic circuits turn out to be SRB,
including those generated by state-of-the-art SC synthesisers [10,
11]. A useful aspect of SRB designs is that they can be described
by a clocked Boolean function (CBF) [4] in which the parameters
are possibly delayed Boolean values of the inputs. For instance, the
squarer CS is described by the CBF zS

(t) = fS(xS
(t), xS

(t − 1)) = 
xS

(t)⋅xS
(t − 1).

To see how the autocorrelation introduced by an OMC circuit
affects a downstream SRB circuit, we describe the latter using the
CBF fS, from which its stochastic function FS can be constructed.
The joint probability terms in FS can then be analysed using the
law of total probability (LTP) [16], which allows a probability term
to be decomposed into several sub-terms, each with a distinct
event. For example, suppose A and B1, B2,…, Bk are events with
Bi's being disjoint and the union of Bi's being the entire sample
space. Then LTP says

p A = ∑
i = 1

k
p A, Bi = ∑

i = 1

k
p(A Bi)p Bi .

By applying LTP and conditioning on the states of the preceding
OMC circuit, FS can be analysed. We illustrate this via the squarer
example.
 

Example 3: Squarer. Here we use the OMC adder CCA of
Fig. 1c with the STG given in Fig. 4b, followed by the squarer CS
of Fig. 6 to illustrate the impact of autocorrelation. Specifically, we
feed XV = {X, Y}, the two inputs of CCA, with independent
Bernoulli SNs, each of value 0.5. Thus Z, the output of CCA,
should have a value of 0.5. Since Z is produced by the sequential
circuit CCA, extra autocorrelation is injected into it. We then use Z
as the input SN XS to the squarer CS. Obviously, the exact value for
CS's output ZS should be 0.52 = 0.25. To compute the actual value
for ZS with XS as the input, we first construct the stochastic
function for CS using its CBF zS

(t) = xS
(t)⋅xS

(t − 1), which is

ZS = p ZS
t = 1 = ∑

b
f S b p XS

t , XS
t − 1 b

= p XS
t , XS

t − 1 1, 1 = p(XS
t = 1, XS

(t − 1) = 1) .

We then apply LTP by conditioning on the adder CCA's state at time
t – 1

Fig. 6  Conventional sequential stochastic squarer
 

Fig. 7  MSE versus bit-stream length for the squarer in Fig. 6 for inputs
with different autocorrelation levels
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ZS = p(XS
t = 1, XS

(t − 1) = 1 S(t − 1) = s0)p(S(t − 1) = s0)

+ p(XS
t = 1, XS

(t − 1) = 1 S(t − 1) = s1)p(S(t − 1) = s1) .

One very appealing feature of OMC is that when the inputs are
Bernoulli, the steady-state distribution of the states is uniform.

Thus p(S(t−1) = s0) = p(St− 1) = s1) = 0.5. Furthermore, p(XS
(t) = 1,

XS
(t − 1) = 1| S(t−1) = s0) =  p XV

t = 1, 1 , XV
t − 1 = 1, 1 . This

is because in state s0, CCA can only output two consecutive 1s
when it receives inputs 11 and 11. On the other hand, there are five
cases where CCA can add two consecutive 1s in state s1; see Fig. 8.
Each of these cases occurs with a probability of 1/16, so p(XS

(t) = 1,
XS

(t − 1) = 1| S(t−1) = s1) = 5/16. Summarising, ZS = 0.5 ×(1/16) + 
0.5 ×(5/16) = (3/16) ≠ 0.25, which is a 25% error! In terms of
MSE, this error is (3/16 – 0.25)2 = 0.004, which is clearly the value
to which Line D in Fig. 7 converges. 

Example 3 shows how to analyse the autocorrelation error
introduced by an OMC circuit for given input values. One can also
go one step further to compute the expected error by averaging all
possible input values. Fig. 9 provides a pseudo-code algorithm
summarising the preceding analysis. 

Finally, we consider how to mitigate autocorrelation in an OMC
circuit so that it can be coupled efficiently with other sequential
stochastic circuits. For this, we adopt a de-autocorrelation method
based on shuffling. This is similar to the edge memory [19] and the
shuffle buffer [20], which randomly permute or shuffle the
incoming SN by means of an extra random source. Fig. 10a shows
how a de-autocorrelator is inserted between the OMC circuit COMC
and the downstream circuit CS, while Fig. 10b depicts the
implementation of a two-bit de-autocorrelator that contains two D
flip-flops. At each clock cycle, the de-autocorrelator randomly
selects a D flip-flop and sends the bit value stored in that flip-flop
to the output. At the same time, the selected flip-flop is filled by
the value from the current incoming bit. Since the de-autocorrelator
only outputs what it has received, the values of its input and output
SNs are the same. However, the location of 1s can potentially be
very different, hence achieving the goal of de-autocorrelation. 

A k-bit de-autocorrelator can be built with k D flip-flops. In
each clock cycle, one of the k D flip-flops is selected to output its
stored value, and at the same time store the current input. Lines B
and C in Fig. 7 show the accuracy of the squarer with its OMC-
circuit-supplied inputs de-autocorrelated by two- and eight-bit de-
autocorrelators, respectively. Obviously, with an eight-bit de-
autocorrelator, the accuracy of the squarer can be improved to a
level similar to a squarer having a Bernoulli input. As a final note,
with more D flip-flops, a de-autocorrelator can regenerate a more
Bernoulli-like SN, but this comes with the drawback of higher
hardware cost and requiring more warmup time to initialise the de-
autocorrelator.

5 Applications of CEASE
This section applies CEASE to some representative circuits and
assesses the corresponding accuracy improvements. It also
examines the accuracy of CEASE using randomly generated
stochastic circuits.

5.1 Typical application

CEASE can be applied to SN formats other than unipolar since it
deals directly with probabilities rather than their interpretation or
format. Suppose, e.g. that CEASE is applied to the circuit CST
synthesised by STRAUSS [10] and outlined in Fig. 11a. CST uses
the inverted bipolar (IBP) SN format to handle negative values, and
realises the following stochastic function:

Z
~ = 7

16 − 1
8 X

~
1 + X

~
2 − 9

16 X
~

1X
~

2, (10)

where X̃1 and X̃2 are independent IBP SNs with the same value.
This STRAUSS design heavily relies on constant SNs, as it

employs four constants R1−R4, each of value 0.5. Another
implementation CRE of the same function Z̃ synthesised by ReSC
[11] is given in Fig. 11b; it relies on three constants C1−C3 to
provide the same level of accuracy. To implement (10) using
CEASE, we first derive the corresponding unipolar stochastic
function from the relation X̃ = 1 – 2X, where X = pX(1) is the
unipolar SN value corresponding to the IBP value X̃. On replacing
Z̃, X̃1 and X̃2 by their unipolar counterparts in (10) and re-
arranging, we obtain

Fig. 8  Five input cases in which the CEASE-generated adder of Fig. 4b
outputs two consecutive 1s when in state s0

 

Fig. 9  Algorithm to compute the stochastic function with OMC-supplied
(and therefore autocorrelated) inputs

 

Fig. 10  Shuffle-based reduction of autocorrelation in an SN
(a) De-autocorrelator to mitigate OMC-induced autocorrelation in a downstream
sequential circuit, (b) Two-bit shuffling de-autocorrelator
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Z = 11
16 − 11

16 X1 − 11
16 X2 + 18

16 X1X2 . (11)

Since X1 and X2 are independent, the term X1X2 can be written
as pX1(1) pX2(1) =  pXV(1,1), where XV  = {X1, X2}. Furthermore,
we can ‘de-marginalise’ the marginal probabilities by using X1 = 
pXV(1,0) + pXV(1,1) and X2 =  pXV(0,1) + pXV(1,1). Replacing X1,
X2 and X1X2 in (11) with these probabilities yields a unipolar
stochastic function to which we can apply CEASE

Z = F( f , pXV) = 11
16 pXV 0, 0 + 7

16 pXV 1, 1 . (12)

Equation (12) is the unipolar or probability interpretation of (10)
with coefficients in [0, 1]. This fact can also be directly seen from
the ReSC design CRE in Fig. 11b, which outputs 11/16 and 7/16
when the input pattern is 00 and 11, respectively.

It is also worth mentioning that (12) can be systematically
constructed from the Boolean function generated by STRAUSS to
approximate the desired function. This function is z = x1′x2′(r1 + 
r2(r3 + r4)) + x1x2r1(r2 + r3 + r4), as indicated in Fig. 11a. It is
obvious that if x1x2 = 10 or 01, then z = 0. Thus, the terms pXV(0,1)
and pXV(1,0) in (12) both have a coefficient of 0. When x1x2 = 00,
we get z = r1 + r2(r3 + r4). Here, out of the 16 equally-likely
combinations of r1r2r3r4, there are 11 cases that make z = 1, and
hence the coefficient for pXV(0,0) is 11/16. Similarly, when x1x2 = 
11, z = r1(r2 + r3 + r4). Seven of the 16 possible combinations of
r1r2r3r4 make z = 1, so the coefficient of pXV(1,1) is 7/16.

A CEASE-generated OMC design COMC implementing (10) in
the IBP domain and (12) in the unipolar domain is given in
Fig. 11c. This is a constant-free sequential circuit built around a
modulo-16 counter, which adds 11 or 7 to its count state on
receiving a 00 or 11, respectively; it remains in the same state on
receiving a 01 or 10. Whenever the counter overflows, a 1 is
produced at the output, and the counter is reset to the amount of the
overflow. COMC requires four flip-flops for its 16-state counter.
CST shown in Fig. 11a requires four constant SNs that are
generated by a 4-tap linear feedback shift register (LFSR), which
also needs four flip-flops. However, CST has the limitation that
each tap of the LFSR does not produce a constant with a value
exactly 0.5, because it does not loop through the all-0 state,
resulting in the constant 8/15 instead of 0.5. To eliminate this small
error, CST would require random sources that are more accurate
and probably costlier than a 4-bit LFSR. CRE, besides its expensive
SN generators, also needs two high-quality 4-bit random sources
(omitted in Fig. 11b) for BR1 and BR3.

An MSE comparison of the above three circuits appears in
Fig. 12. Here we use MATLAB's rand function to generate high-
quality random numbers for the ReSC design CRE. The STRAUSS
design CST does not converge to the correct value due to the error
introduced by the LFSR's missing all-0 state; this error may be
removed by replacing the LFSR with a better random number
source. The OMC circuit COMC, on the other hand, consistently
provides the best accuracy among all the designs, and its MSEs
match the theoretical lower bound predicted by Theorem 3. This
implies that COMC can compute in far less time, and hence with
better energy efficiency, than the other designs. For example,
COMC achieves an MSE of 0.002 with N = 32 bits, while the ReSC
design CRE needs ∼128 bits for the same accuracy. 

The OMC circuit COMC in Fig. 11c represents just one possible
way to realise the CEASE FSM. In fact, a CEASE design can
always be implemented by a circuit built around a MAJ function,
as in the adder example in Fig. 1c. Consider the circuit CMAJ
shown in Fig. 13 which is the MAJ incarnation of COMC. Besides
MAJ, CMAJ also has a modulo counter CNT like that discussed
previously. The difference is that CNT has 16 output lines designed
in a way such that the number of 1s on these lines indicates CNT's
state. i.e. the number of 1s n on the output lines of CNT is the state

sn that CNT is currently at. The subcircuit C produces 11 1s and
seven 1s in the output lines when X1X2 is 00 and 11, respectively.
It is obvious that CMAJ will output a 1 when the values of CNT and
the values outputted by C is >16. This is exactly what COMC in
Fig. 11c does. Finally, we stress the fact that while a CEASE
design based on a majority function is always realisable, its
hardware cost may not be optimal. 

5.2 Other applications

Next, we examine the performance of CEASE by applying it to
some other representative circuit types: a complex matrix
multiplier, random combinational circuits, and a sequential circuit
implemented by the linear FSM architecture [21].

Complex matrix multiplication: Fig. 14a shows a combinational
stochastic circuit with 12 constant inputs implementing complex
matrix multiplication [22]. It has four outputs, each of which
depends on three constant inputs, all of which can be eliminated by
CEASE. Here we examine the accuracy improvement after
applying CEASE to the sub-circuit spanned by Zi

1, one of the
circuit's four primary outputs. The resulting STG has four states,
which require two flip-flops to implement. The CEASE-generated
OMC circuit is similar in structure to that in Fig. 11c. An MSE
comparison between the circuit in Fig. 14a and the OMC circuit
appears in Fig. 14b, which again shows that CEASE improves
accuracy and, at the same time, matches the lower bound on MSE. 

Random circuits: In the absence of benchmark stochastic
circuits, we use randomly generated ones to further estimate the
performance of CEASE. Specifically, we first generate 100,000
random stochastic functions in the form of (5) that are
implementable using four-constant, two-variable stochastic
circuits, where the constants all have value 0.5 and the variable
inputs are fed with random values. We then apply CEASE and
synthesise OMC circuits implementing these random functions.

Fig. 11  Three implementations of (10)
(a) STRAUSS design CST, (b) ReSC design CRE, (c) CEASE design COMC

 

Fig. 12  MSE comparison for the circuits in Fig. 11
 

Fig. 13  MAJ-based implementation CMAJ of the OMC circuit COMC given
in Fig. 11c
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Fig. 15 plots the average MSEs of these circuits against bit-stream
length. We also allow CEASE to remove some or all the constants.
As can be seen in Fig. 15, the MSEs depend on the number of
constants removed, with the lowest MSEs achieved by removing
all the constants. The results match the theoretical lower bounds,
with slight deviations caused by rounding very short SNs. 

Sequential stochastic circuits: CEASE can be used to remove
some RFEs in sequential stochastic circuits as well. We illustrate
this via the circuit CSEQ in Fig. 16a, which is a sequential
realisation of the stochastic function Z = (X – 2X2 + 1.5X3) /(1 – 2X 
+ 2X2) using the linear FSM architecture, one of the most common
and best understood sequential SC designs [21]. CSEQ is built
around a four-state FSM M that realises a saturating up/down
counter (Fig. 16c), and a four-way MUX Q that uses S, the state of
M, to select one of its four input SNs to send to the output. Three of
these SNs are 0 or 1, whose bit-streams can be produced by static
sources that do not induce RFEs. The remaining constant SN R has
value 0.5 which is the usual RFE-inducing constant. R is fed to the
combinational MUX Q but not to the sequential part M. Hence, we
can incorporate CEASE into CSEQ to remove R and improve
accuracy. This is done by directly applying the CEASE algorithm
to Q to obtain the new FSM CSEQ−CEASE shown in Fig. 16b. CSEQ
−CEASE transfers the role of all constant inputs R, 0 and 1 to its
sequential OMC part, and eliminates RFEs due to R. Fig. 16d

compares the MSEs of CSEQ and CSEQ−CEASE. It shows clearly
that CSEQ−CEASE has less error than CSEQ for any given bit-stream
length. Note, however, that CSEQ−CEASE does not guarantee the
minimum possible error since CEASE does not consider RFEs
produced by the sequential component M whose behaviour on
random fluctuations is very different from that of a combinational
circuit. 

As we have demonstrated CEASE can achieve significantly
higher accuracy than conventional SC designs with very little
increase in hardware cost. In particular, a CEASE design never
uses more memory elements than the STRAUSS and ReSC
synthesisers. For example, all three designs in Fig. 11 require just
four D flip-flops. Thus, CEASE provides an attractive design
alternative with high accuracy that may enable a circuit to achieve
a satisfactory level of performance with shorter bit-streams. For
example, the deep neural network presented in [15] uses a set of
highly accurate stochastic adders that are functionally identical to
the OMC circuit in Fig. 1c to strike a balance between low
hardware cost and high accuracy requirements.

6 Conclusion
We have clarified the role of constant SNs as inputs in stochastic
circuits, and shown that, while such constant inputs are essential in
practical SC design, they are an unexpected source of significant
amounts of RFEs. We further demonstrated that constant inputs can
be completely eliminated by employing sequential stochastic
circuits. A systematic algorithm CEASE was devised for efficiently
removing constants in this way. The resulting FSMs can be
implemented as OMC circuits. We analysed in detail several
important issues including state initialisation and autocorrelation,
for OMC circuits. We further proved analytically that CEASE is
optimal in terms of its ability to eliminate RFEs. Experimental
results were presented which confirm that with fixed computation
time (and hence fixed energy consumption), constant-free
sequential designs of the kind generated by CEASE can greatly
improve the accuracy of SC.
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Fig. 14  Application of CEASE to a complex matrix multiplier
(a) Stochastic circuit implementing complex matrix multiplication [22], (b) MSE
comparison with an OMC design

 

Fig. 15  MSE comparison of random circuits with four constant- and two
variable-input SNs. The lower bounds treat the unremoved constants as
variables

 

Fig. 16  Application of CEASE to a sequential circuit synthesised by the
method of [21]
(a) Sequential circuit CSEQ implementing Z = (X – 2X2 + 1.5X3)/(1 – 2X + 2X2) [21],
(b) Sequential circuit CSEQ−CEASE obtained by applying CEASE to the
combinational part Q of CSEQ, (c) STG for the sequential part M of CSEQ, (d) MSE
comparison between CSEQ and CSEQ−CEASE
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9 Appendix
 
9.1 Proof of theorem 1

By classifying SN inputs into variable and constant parts as in
X = {XV, XC}, (3) can be re-written as

Z = F f , pXV, XC = ∑
bV, bC

f bV, bC pXV, XC bV, bC . (13)

Using the properties of conditional probability, we can rewrite
pXV, XC bV, bC as pXC XV bC bV ⋅ pXV bV , where the term
pXC XV bC bV  is a function of bC and bV. Equation (13) then
becomes

Z = ∑
bV, bC

f bV, bC pXC XV bC bV ⋅ pXV bV

∑
bV

pXV bV ⋅ ∑
bC

f bV, bC ⋅ pXC XV bC bV .
(14)

The summation ∑bC f bV, bC ⋅ pXC XV bC bV  is over all
combinations of bC, and hence
g bV = ∑bC f bV, bC ⋅ pXC XV bC bV  does not depend on bC,
so we can re-write (14) as Z = F pXV = ∑bV g bV ⋅ pXV bV
which is linear in pXV bV  with all coefficients g(bV) in the range
[0,1]. The dependency of F pXV  on f and pXC is implicit via g bV
only.

9.2 Proof of theorem 2

To get the number of 1s in the output Z, we first compute the total
number of states that MC will advance after receiving the N-bit
SNs, which is ∑i = 1

m aiNi + a0. The number of 1s in Z is therefore

1
q ∑

i = 1

m
aiNi + a0 = ∑

i = 1

m ai
q Ni + a0

q = ∑i = 1

m ai
q Ni + a0

q − ϵ,

where ε ∈ [0, 1] is an offset term that takes into account the floor
operation. Setting ϵ~ = (a0/q) − ϵ, we obtain the number of 1s in Z
as ∑i = 1

m (ai/q)Ni + ϵ~, which completes the first part of the proof.
The value of Z is thus the expectation of
(1/N)∑i = 1

m (ai/q)Ni + (ϵ~/N), which is

Z = E 1
N ∑

i = 1

m ai
q Ni + ϵ~

N = ∑
i = 1

m ai
q E Ni

N

+ E ϵ~
N = ∑

i = 1

m ai
q pXV bi + 1

N E ϵ~ ,

which completes the second part of the proof.
Here we provide another way of understanding the functions

realised by MC from the viewpoint of the FSM's steady-state
distribution. Let S(bV) denote all states of MC that produce the
output z = 1 in response to the input bit-pattern bV. MC's output
probability can then be written as

Z = ∑
bV

∑
s ∈ S bV

pS s pXV bV . (15)

Note that MC represents a modulo counter with no redundant
states. Its steady state distribution is equally distributed across all
its q states, i.e. pS(si) = 1/q, for i = 0, 1, …, q − 1, since the state
transition behaviour is exactly the same for all states. Then (15)
can be simplified to

Z = ∑
bV

S bV
q pXV bV , (16)

where |S(bV)| denotes the cardinality of S(bV). Since |S(bV)|/q is, in
general, a non-binary number in [0, 1] that does not depend on XV,
(16) is indeed in the form of (5) and (8). Finally, we note here that
using the analysis based on steady-state distribution does not take
into account MC’s initial state that determines the rounding policy
of MC. Indeed, when N→∞, the rounding error approaches 0, and
(8) becomes equivalent to (16).

9.3 Proof outline of theorem 3

For a CEASE-generated OMC circuit COMC, the value of its output
SN ZC estimated by the fraction of 1s is
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Z^
C = ∑i = 1

m (ai/q)(Ni/N) + ϵ~/N = Z^
u + ϵ~/N (Theorem 2), where

ϵ~/N ∈ −1/N + a0/qN, a0/qN  is a term accounting for the
rounding error which, in the worst case, can only cause a 1-bit
difference in ẐC. Furthermore, Z^

u = ∑i = 1
m (ai/q)(Ni/N) is an

unbiased estimator for ZC’s value which achieves the Cramér–Rao
bound, a lower bound on MSE for an unbiased estimator [23].
Specifically, let the random vector B = [B(1), B(2), B(3),…] with
B(i) being the bit-pattern received by COMC at clock cycle i, and let
p = [p1, p2,…, pm] with pi being the probability that COMC receives
pattern bi at any clock cycle. In other words, p(B(t) = bi) = pi, for all
t and i. Then Cramér–Rao bound for the unbiased estimator Ẑu
asserts that

(Z^
u − Z) 2 ≥ ∇F p TI−1 p ∇F p , (17)

where ∇ is the gradient operator and the superscripts T and −1
denote matrix transpose and inversion. I(p) is the Fisher
information matrix of B [23], whose (i, j)th entry is
E ∂log(p(B p))

∂pi

∂log(p(B p))
∂pj

. In other words, the minimal MSE

achievable is ∇F(p)TI−1(p)∇F(p), and Ẑu can be shown to attain
this minimal MSE. Summarising, we conclude that CC has the
minimum MSE among all designs up to a rounding error.
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