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Abstract 
 

Tuberculosis (TB) is one of the world’s deadliest infectious diseases. Caused by the 

pathogen Mycobacterium tuberculosis (Mtb), the standard regimen for treating TB 

consists of treatment with multiple antibiotics for at least six months. There are a 

number of complicating factors that contribute to the need for this long treatment 

duration and increase the risk of treatment failure. Person-to-person variability in 

antibiotic absorption and metabolism leads to varying levels of antibiotic plasma 

concentrations, and consequently lower concentrations at the site of infection. The 

structure of granulomas, lesions forming in lungs in response to Mtb infection, creates 

heterogeneous antibiotic distributions that limit antibiotic exposure to Mtb. 

Microenvironments in the granuloma can shift Mtb to phenotypic states that have higher 

tolerances to antibiotics. We can use computational modeling to represent and predict 

how each of these factors impacts antibiotic regimen efficacy and granuloma 

sterilization.  

 

In this thesis, we utilize an agent-based, computational model called GranSim that 

simulates granuloma formation, function and treatment. We present a method of 

incorporating sources of heterogeneity and variability in antibiotic pharmacokinetics to 

simulate treatment. Using GranSim to simulate treatment while accounting for these 

sources of heterogeneity and variability, we discover that individuals that naturally have 

low plasma antibiotic concentrations and granulomas with high bacterial burden are at 

greater risk of failing to sterilize granulomas during antibiotic treatment. Importantly, we 

find that changes to regimens provide greater improvements in granuloma sterilization 

times for these individuals. We also present a new pharmacodynamic model that 

incorporates the synergistic and antagonistic interactions associated with combinations 

of antibiotics. Using this model, we show that in vivo antibiotic concentrations impact the 

strength of these interactions, and that accounting for the actual concentrations within 



 xii 

granulomas provides greater predictive power to determine the efficacy of a given 

antibiotic combination.  

 

A goal in improving antibiotic treatment for TB is to find regimens that can shorten the 

time it takes to sterilize granulomas while minimizing the amount of antibiotic required. 

With the number of potential combinations of antibiotics and dosages, it is prohibitively 

expensive to exhaustively simulate all combinations to achieve these goals. We present 

a method of utilizing a surrogate-assisted optimization framework to search for optimal 

regimens using GranSim and show that this framework is accurate and efficient. 

Comparing optimal regimens at the granuloma scale shows that there are alternative 

regimens using the antibiotic combination of isoniazid, rifampin, ethambutol and 

pyrazinamide that could improve sterilization times for some granulomas in TB 

treatment. In virtual clinical trials, these alternative regimens do not outperform the 

regimen of standard doses but could be acceptable alternatives. Focusing on identifying 

alternative regimens that can improve treatment for high risk patients could help to 

significantly decrease the global burden for TB. Overall, this thesis presents a 

computational tool to evaluate antibiotic regimen efficacy while accounting for the 

complicating factors in TB treatment and improves our ability to predict new regimens 

that can improve clinical treatment of TB. 
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Chapter 1 Introduction 
 Motivation 

Tuberculosis is one of the world’s deadliest infectious diseases and has plagued 

humanity for thousands of years. Caused by the pathogen Mycobacterium tuberculosis 

(Mtb), it has waged a war of attrition against humanity, evading immune responses and 

drug therapies, while simultaneously surviving in human lungs for years. The current 

treatment for TB involves months of antibiotics, and while it is >95% effective against 

drug-susceptible Mtb when the regimen is properly adhered to, there is still a need to 

find ways to lessen the global disease burden [1]. TB treatment is further complicated 

by drug-resistant strains of Mtb, which require the use of alternative antibiotics and are 

becoming increasingly difficult to treat. Individuals have varying pharmacokinetics (PK) 

and complex lung lesions in TB disease that both generate variability and heterogeneity 

in antibiotic exposure at the site of infection. Combinations of antibiotics can lead to 

synergistic or antagonistic effects on the pharmacodynamic (PD) effect. Investigating all 

possible drug regimens to find an optimal therapy is difficult considering the number of 

drug candidates available for TB. Given the variability of disease, it is also difficult to 

know whether that optimal therapy will be optimal for all patients. In this thesis, I will 

present a multi-scale computational model that serves as a tool to integrate the PK and 

disease variability, PD drug interactions, and optimization algorithms to predict optimal 

antibiotic regimens. Using this model, I demonstrate how sources of heterogeneity in TB 

disease and treatment impact granuloma sterilization during antibiotic therapy, and how 

spatial gradients within the granuloma can impact antibiotic interactions and PD effect. 

Using surrogate-assisted optimization algorithms, I predict potential optimal antibiotic 

regimens and compare those regimens in a virtual clinical trial setting. 
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 Global tuberculosis disease burden 
TB is one of the world’s most common infectious diseases and is the leading cause of 

death from a single infectious pathogen. According to the 2019 WHO Global 

Tuberculosis Report, an estimated 10 million new TB cases were reported in 2018, and 

approximately 1.5 million TB-related deaths [2]. The ‘End TB’ strategy is an initiative 

launched by the WHO that aims to reduce the number of TB-related deaths by 90% and 

the TB incidence rate by 80% by 2030 when compared to the 2015 statistics. Co-

infection with TB and HIV is common, and approximately 250,000 of the 2018 TB-

related deaths were HIV-positive people [2]. Risk factors associated with developing 

active TB disease include HIV, undernutrition, immunosuppressive therapies, as well as 

socioeconomic factors including overcrowding and poverty [3]. The majority of TB cases 

occurred in South-East Asia, Africa, and Western Pacific regions, with 86% of 2018 

cases in those three regions [2].  

 

 Tuberculosis treatment 
As a bacterial infection, the standard of care for TB treatment involves a regimen of 

antibiotics. The current recommended regimen for treating active TB disease involves 

treatment with four first-line antibiotics for up to six months: isoniazid (INH, H), rifampin 

(RIF, R), ethambutol (EMB, E) and pyrazinamide (PZA, Z) [4]. Multi-drug resistant TB 

(MDR-TB) has been an emerging problem, and there were a total of approximately 

186,000 MDR-TB and rifampin-resistant TB in 2018 [2]. MDR-TB is classified as 

resistant to both INH and RIF. The introduction of fluoroquinolones, including 

moxifloxacin (MXF, M), levofloxacin (LVX, L) and gatifloxacin (GFX, G), have led to new 

regimens used to treat MDR-TB. While a fluoroquinolone is strongly recommended for 

use in MDR-TB treatment, extensively drug-resistant TB (XDR-TB) is additionally 

resistant to a fluoroquinolone and an injectable antibiotic and presents an even greater 

challenge to treatment. Depending on the specific antibiotics a strain of Mtb is resistant 

to, guidelines recommend building a regimen containing five or more drugs that contain 

either moxifloxacin or levofloxacin, bedaquiline, linezolid, clofazimine and cycloserine, 

with an extensive list of secondary antibiotics consisting of oral and injectable antibiotics 

if a regimen is unable to be built from those prioritized drugs [5]. Recently, the Nix-TB 
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regimen, consisting of bedaquiline, linezolid, and pretomanid, has shown success in 

leading to high percentages of favorable outcomes after 6 months of therapy in patients 

with XDR-TB or nonresponsive MDR-TB [6]. 

 

 Tuberculosis disease pathology 

1.4.1 Clinical description of tuberculosis 

Individuals are infected with Mtb when they inhale aerosolized droplets that contain the 

pathogen, expelled from contagious individuals when they cough or breathe [7]. When 

someone is infected with the pathogen, they may not progress to active disease and 

instead harbor a latent infection [8]. Developing active disease is associated with 

symptoms such as fever, cough, night sweats and chest pains. While pulmonary TB is 

most common, extrapulmonary TB can occur, involving infection of other organs [9]. 

Extrapulmonary TB in also more common in children, who are more susceptible to 

progressive disease[10]. Individuals with latent infection are at risk of progressing to 

active disease, as latent infection can persist for years. Circumstances that lead to 

immune suppression, such as age, co-infection with HIV, or immune suppressive 

medication, can result in reactivation of latent disease [3]. While the clinical definition of 

latent versus active disease is traditionally binary, it is widely thought that individuals 

infected with Mtb lie on a spectrum from latent to active disease [11].  

 

1.4.2 Immune response to infection and granuloma formation 

The immune response in TB occurs over multiple organs and involves numerous cell 

types (Figure 1.1). Initially, Mtb in the lung are phagocytized by macrophages, initiating 

the immune response leading to granuloma formation. Antigen presenting cells, such as 

dendritic cells, will bring antigen to lymph nodes, and present to naïve T cells. 

Meanwhile, at the site of infection, cytokine secretion and signaling pathways recruit 

macrophages and neutrophils to fight the infection. The adaptive immune response 

recruits T cells from the lymph node to the granuloma site. T cells are then transported 

to the granuloma to aid in immune activation and cytotoxic function.  
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Figure 1.1 Multiscale immune response in TB.  
The immune response in TB is complex and occurs over multiple length and time scales and involves multiple 
organs. The response is initiated when Mtb is inhaled into the lungs. Mtb infect macrophages in the lung, initiating the 
innate immune response and recruitment of other macrophages, neutrophils and dendritic cells to the cite of infection. 
Meanwhile, dendritic cells traffic antigen to the lymph nodes, where they prime a T cell response. T cells eventually 
travel to the lung, initiating the adaptive immune response at the infection site, and completing the formation of a 
granuloma. Figure adapted from reference [12]. 
 
One aspect of TB disease that allows for the latent infection is the granuloma. The 

granuloma is a collection of immune cells, bacteria, and necrotic tissue. It forms in 

response to the infection, in an attempt to both kill the pathogen and prevent the spread 

of infection [13]. In TB disease, multiple granulomas can form in the lungs, arising from 

multiple infection sites or developing due to the dissemination of existing infection [14]. 

The arrangement of a granuloma is classically viewed as containing macrophages and 

other leukocytic cells, surrounded by a lymphocyte cuff containing T cells [15,16]. As 

cells die in the granuloma, caseum, consisting of dead cell debris, can develop in the 

center of the granuloma [12]. These caseous regions are typically hypoxic, slowing the 

metabolism and increasing antibiotic tolerance of Mtb in these areas [17,18]. Fibrosis 

can also occur in granulomas, often associated with healing granulomas [16,19]. 

Pulmonary cavitation is another common pathological feature of TB that arises due to 

the liquification and degradation of the granuloma structure, and is associated with 

treatment failure [20,21]. 

 

 Pharmacokinetics of TB antibiotics 
The purpose of pharmacokinetic (PK) studies on TB drugs is to determine how the drug 

is absorbed and metabolized in the body, and how well the drug is able to reach the 
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granulomas where Mtb reside. These studies provide evidence to determine appropriate 

dosing, and other factors that influence plasma exposure for different antibiotics. 

Population PK studies seek to identify covariates that exist in populations to determine 

what doses are both safe and effective for individuals in a population [22]. These 

studies can help to identify conditions or patients that may be at risk for sub-therapeutic 

levels of antibiotic and thus at increased risk for resistance or treatment failure. The PK 

of the first-line antibiotics (INH, RIF, EMB and PZA) have been extensively studied [23–

27]. Population PK studies have also been used to determine effective doses in 

populations for newer anti-TB drugs, such as fluoroquinolones [28], linezolid [29], 

bedaquiline [30] and pretomanid [31].  

 

Sources of population variability come from numerous factors, such as genetic 

differences in the population, co-administration with other drugs (especially HIV 

medication), and even nutrition [25,32–34]. Understanding the population-level 

variability and the factors that influence drug concentrations in plasma has important 

implications on treatment outcome [35]. Techniques such as the hollow-fiber model 

have provided a way to study how varying levels of drug concentration in vitro impact 

the pharmacodynamic effect and emergence of resistance for numerous antibiotics [36–

40].  

 

Understanding the sources and impact of variability in plasma concentrations is 

important because it is a potential cause of sub-therapeutic antibiotic concentrations in 

granulomas [41]. As Mtb reside inside granulomas in TB disease, the ultimate target for 

antibiotics are these lesions, and antibiotics must travel from blood into the lung 

environment, and ultimately distribute throughout the granuloma in sufficient 

concentrations to be effective [42]. The granuloma itself, and in particular caseous and 

necrotic portions of the granuloma, can present a physiological barrier to antibiotic 

diffusion, which can impact an antibiotic’s ability to sterilize a granuloma [43]. While in 

vitro and physiochemical properties can influence distribution in tissue, attempts to find 

strong correlations between these measurements and effective in vivo concentrations 

have failed [44]. Studies looking at distribution of INH, RIF, EMB and fluroquinolones in 
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rabbit granulomas have uncovered important trends and patterns in how these 

antibiotics distribute in lesions, and potential relationships to sterilizing ability [45–47]. 

Another important aspect in determining drug distribution in granulomas is binding to 

macromolecules, in particular those present in caseum. Advances in assays that can 

measure binding to this material have greatly increased our understanding and ability to 

predict drug distribution in a granuloma [48]. 

 

 Pharmacodynamics of TB antibiotics 
Pharmacodynamics (PD) describes the relationship between drug concentration and its 

therapeutic effect. With regards to antibacterial effect on Mtb, this refers to either the 

growth inhibition or bactericidal effect of anti-TB drugs. PD parameters, such as the 

minimum inhibitory concentration and minimum bactericidal concentration, measure the 

concentration at which a certain level of inhibition or killing is achieved [44]. Other types 

of assays also measure effective concentrations in hypoxic or nutrient starved 

conditions, such as the Wayne cidal concentration [49] and Loebel cidal concentration 

[50,51]. These measures are of particular importance to determine the PD effect a given 

antibiotic has on Mtb, as Mtb harvested from caseum have been shown to exhibit 

tolerance to high concentration to certain antibiotics [18]. Given the complex nature of 

the granuloma, and the hypoxic and nutrient starved environments it can present to Mtb, 

translating in vitro measurements directly to in vivo efficacy is difficult, as the necessary 

concentration for killing Mtb can vary greatly depending on the specific environment 

[43]. 

 

Another important aspect of determining PD effect is that antibiotic therapy for TB 

consists of multiple antibiotics. The presence of multiple drugs to achieve some 

therapeutic activity can lead to non-linear effects in their action, resulting in synergistic 

or antagonistic effects [52,53]. With regards to TB antibiotics, there is growing evidence 

that these drug-drug interactions could be predictive of clinical efficacy for TB regimens 

[54]. These drug-drug interactions can be measured in checkerboard assays that 

combine varying concentrations of antibiotics together and measure the resulting PD 

effect. The combinatorics involved with screening high-order (3 or more drugs) 
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interactions requires a prohibitively large number of experiments, even with recent 

advancements that limit the number of concentration combinations needed to measure 

the drug interactions [55,56]. To more efficiently predict drug interactions for any drug 

combination, machine-learning algorithms have been used to identify drug-gene 

expression patterns from transcriptomics data to predict synergy or antagonism for 

novel combinations of antibiotics [54,57–59]. 

 

 Animal Models of TB 
Numerous animal models have been used to contribute to the understanding of 

tuberculosis pathology, immunological response and treatment, using species such as 

mice, guinea pigs, rabbits, non-human primates and zebrafish [60].These models have 

varying utility depending on the specific scientific study in question, as they can vary 

greatly in terms of similarity to human immune response, granuloma formation, and 

cost.  

 

1.7.1 Mice 
Mice are useful models in studying immune responses in infectious diseases. With 

regards to TB research, they typically fail to develop necrotic lesions and fail to develop 

the same latent infection present in humans [61]. More recently, the C3HeB/FeJ mouse 

model for TB was developed that can form necrotic lesions and potentially be used to 

study antibiotic treatment [62]. The C3HeB/FeJ mouse was used to show that 

clofazimine as a single-drug treatment lacked efficacy if granulomas progressed to 

hypoxic and necrotic granulomas [63]. The mouse model has also shown that PZA can 

contribute to a sterilizing effect in combination with first-line TB antibiotics, but is likely 

inactive in neutral pH caseum [64,65]. The ability of the C3HeB/FeJ mouse to develop 

necrotic lesions allows for the ability to study the dependence of drug distribution in 

granulomas on efficacy. 

 

1.7.2 Rabbits 
Rabbits are relatively resistant to infection with Mtb, but they do produce granuloma 

heterogeneity and structure that is very similar to human lesions in TB [66–68]. 
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Although rabbits are resistant to chronic infection and therefore fail to provide a model 

to study disease progression and reactivation, rabbits are frequently used to study 

tissue specific distribution. PK models built and calibrated to concentration data for 

isoniazid, rifampin, pyrazinamide and moxifloxacin helped to describe the differences in 

lesion concentrations for those different agents, and identified lesion-specific indices to 

apply PK studies [45]. Studies with rabbits analyzed ethambutol cellular accumulation in 

granulomas, and partially explained the disconnect between observed ethambutol 

clinical efficacy and lack of in vitro efficacy [46]. Using matrix-assisted laser 

desorption/ionization mass spectrometric (MALDI-MS) imaging in rabbit studies has 

provided a powerful tool to visualize the qualitative distribution of antibiotics, and identify 

the critical PK properties of antibiotics and physiological granuloma characteristics that 

influence antibiotic distribution [43,69]. MALDI-MS imaging, together with computational 

modeling of antibiotic distribution, characterized the differences in distribution between 

the fluoroquinolones moxifloxacin, levofloxacin, and gatifloxacin and their relative 

efficacies [47]. 

 

1.7.3 Non-human primates 
Non-human primate models have provided an excellent model in studying the spectrum 

of disease and immune response in TB. Macaques, which are outbred, are a popular 

primate used in the study of TB disease, and studies show that there are variable 

outcomes in disease trajectory similar to humans [70]. Cynomolgus macaques infected 

with a low-dose of Mtb have been extensively characterized and shown to produce of 

spectrum of TB disease and granuloma types, providing a valuable model to study 

disease progression, reactivation and treatment [71], and mechanisms or markers that 

could predict disease progression or sterilization [72–74]. Macaque models have been 

used PET-CT imaging to monitor treatment progression and the efficacy of antibiotic 

regimens to protect against TB reactivation [75,76]. Recently, they have been useful to 

study new antibiotics, including linezolid [77,78].  
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 Multi-scale modeling in TB 
The entire immune response in TB disease relies on the integration of events occurring 

at the molecular, cellular and organ scales. As immune cells encounter Mtb, molecular 

signals recruit more immune cells to the site of infection, and T cells travel from lymph 

nodes through the blood and into the lung. As a way to address complexities of 

biological systems, and better understand the role different aspects of the immune 

response have on granuloma formation, maintenance, and function, systems biology 

and multi-scale modeling approaches have helped to connect these multiple 

phenomena. Multi-scale modeling is modeling that involves more than one level of 

resolution in the time, space or function [79]. Multi-scale modeling is used widely in the 

computational biology field, with applications in cancer [80,81], inflammatory responses 

[82], muscle regeneration [83], cellular and signaling trafficking [84,85] and more [79]. 

 

1.8.1 Granuloma simulation: GranSim 
Multi-scale computational modeling in TB has been used to study many aspects of 

granuloma formation and disease progression [86]. GranSim is an agent-based model 

that captures the emergent behavior of granuloma formation and function to study the 

heterogeneity of TB lesions and the importance of various immune responses [87–91]. 

Briefly, GranSim simulates the immunology-inspired rules of interaction between 

immune cells and bacteria on a computational grid. Immune cells, including 

macrophages and T cells, can move, secrete cytokines and chemokines, and change 

states through interactions with their environment and other immune cells. Mtb exist as 

agents in the model and exist in subpopulations of intracellular (inside macrophages), 

replicating extracellular, or non-replicating extracellular. Cytokines, chemokines, and 

antibiotics can diffuse through the computational grid. Studies uncovered critical 

cytokines and signaling pathways that can lead to different TB outcomes, and how the 

balance between pro- and anti-inflammatory signals can control the disease response 

[89,92–94]. Inclusion of lymph node recruitment also helped to inform how and when 

immune cells are recruited to the site of infection, including recruitment to multiple 

granulomas, and provides a way to track potential biomarkers for infection outcome 

[73,95]. ODE models representing multiple granuloma formation in a single lung 
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environment, connected by blood and lymph node recruitment, have predicted how 

granuloma progression is linked to disease dissemination [96].  

 

While TB computational modeling is used to study many of the aspects of the immune 

response, ranging from signaling pathways to cellular recruitment through the blood, 

multi-scale modeling has also been critical in studying aspects of Mtb and its role in the 

granuloma. Simulating Mtb as individual agents in an agent-based model gave the 

ability to show how mutations at the bacterial level leading to antibiotic resistance 

influence in treatment outcome and granuloma sterilization [97]. Additionally, metabolic 

pathways in Mtb influence growth rate, and the availability of nutrients and oxygen 

inside a granuloma influence the phenotypic state of Mtb [17]. 

 

1.8.2 Simulating antibiotic treatment in GranSim 

Antibiotic distribution and concentration in granulomas involve events that occur over 

multiple organ, length and time scales, similar to the immune response in TB. Oral 

antibiotics are absorbed into the blood, where they can partition into peripheral tissues 

and are eliminated through hepatic or renal function. In the lung, antibiotics permeate 

through blood vessels into the lung tissue, where they can diffuse, bind to extracellular 

material, and partition into cells such as macrophages. Modeling PK at multi-scale 

resolutions is also beneficial and is required to capture the observed heterogeneity in 

antibiotic distribution in granulomas [41,42], and provides a tool to design new 

therapeutic approaches, including oral and inhaled regimens [12,98]. Using agent-

based models to simulate the cellular-level interactions and organizational structure of 

the granuloma provides an environment to simulate antibiotic distribution, and has led to 

uncovering immune system mechanisms that impact sterilization during antibiotic 

treatment [91]. Linking the PK occurring in the blood with tissue-level PK/PD models 

provides a tool to explore how different regimens influence sterilization in vivo at a 

granuloma scale [99]. Adding another layer of complexity by simulating the dynamic 

binding of fluoroquinolones to extracellular material and partitioning into macrophages in 

granulomas has provided a model that accurately describes the unique distribution 
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characteristics of fluoroquinolones in granulomas and a tool to compare their efficacies 

[47]. 

 

1.8.3 Optimization in TB treatment 

Research involving efforts to optimize TB treatment to find the appropriate combination 

of antibiotics and doses is an important step in improving TB treatment [55,100,101]. 

Based on the number of antibiotics available to treat TB, and the numerous possible 

combinations of antibiotics, is too large to test experimentally. Formalizing locating 

better antibiotic treatment regimens as an optimization problem and using 

computational modeling to compare regimen efficacies can provide a method to 

efficiently predict optimal regimens through a rational design approach. A variety of 

optimization algorithms are applied in science, math and engineering [102,103]. Of 

these algorithms, population-based algorithms, such as genetic algorithms, and 

surrogate-assisted optimization algorithms have been widely used across many fields of 

science and technology [104–106]. Because options for optimization algorithms are as 

variable as the types of problems they can solve, selecting the appropriate algorithm is 

essential. For the purpose of optimizing antibiotic regimens for TB, we must use an 

algorithm that can efficiently and accurately predict relevant regimens with good 

efficacy.  

1.8.4 Virtual clinical trials 

Previous studies using GranSim to simulate antibiotic treatment focus on treatment at 

the granuloma scale. However, treatment of a patient with TB requires treating and 

sterilizing multiple granulomas. Choosing the best regimen for TB treatment should 

ensure that it can sterilize all granulomas in an individual and perform well in a diverse 

population. When using computational models to predict regimen efficacies, simulating 

a virtual clinical trial can provide a way to compare different regimens or interventions in 

a way that mimics actual clinical trials [107–109]. Virtual clinical trials can be used to 

generate a virtual population of individuals that have the same characteristics and 

variability in disease and responses that exist in the real population. For the purpose of 
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TB treatment, individuals have variable PK and heterogeneous granulomas that both 

can impact treatment [110].  

 

 Thesis summary 
In this thesis, I utilize a multi-scale computational model to simulate antibiotic treatment 

in TB granulomas. Using this model, I address how PK variability and granuloma 

heterogeneity impact granuloma sterilization with antibiotic treatment in Chapter 2. In 

Chapter 3, I present a PD model that adjusts antibiotic killing rates based on drug-drug 

interactions and discuss how these interactions are dependent on concentration 

distributions and how they impact regimen efficacy. In Chapter 4, I present a way of 

optimizing antibiotic regimens using computational simulations and compare the 

efficiency and accuracy of different optimization algorithms. In Chapter 5, I utilize a 

surrogate-assisted optimization algorithm to optimize the doses of isoniazid, rifampin, 

ethambutol, and pyrazinamide for treatment of primary TB, and compare optimal 

regimens at the granuloma and virtual population scale using virtual clinical trials. This 

thesis shows that incorporating multi-scale phenomena and appropriately representing 

the heterogeneity and variability in TB disease and treatment is critical in evaluating 

regimen efficacy at both the individual and population level. 
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 Abstract 
Tuberculosis (TB) remains as one of the world’s deadliest infectious diseases despite 

the use of standardized antibiotic therapies. Recommended therapy for drug-

susceptible TB is up to six months of antibiotics. Factors that contribute to lengthy 

regimens include antibiotic underexposure in lesions due to poor pharmacokinetics (PK) 

and complex granuloma compositions, but it is difficult to quantify how individual 

antibiotics are affected by these factors and to what extent these impact treatments. We 

use our next-generation multi-scale computational model to simulate granuloma 

formation and function together with antibiotic pharmacokinetics and 

pharmacodynamics, allowing us to predict conditions leading to granuloma sterilization. 

In this work, we focus on how PK variability, determined from human PK data, and 

granuloma heterogeneity each quantitatively impact granuloma sterilization. We focus 

on treatment with the standard regimen for TB of four first-line antibiotics: isoniazid, 

rifampin, ethambutol and pyrazinamide. We find that low levels of antibiotic 

concentration due to naturally occurring PK variability and complex granulomas leads to 

longer granuloma sterilization times. Additionally, the ability of antibiotics to distribute in 

granulomas and kill different subpopulations of bacteria contributes to their 
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specialization in the more efficacious combination therapy. These results can inform 

strategies to improve antibiotic therapy for TB. 

 

 Introduction 
Tuberculosis (TB) continues to be one of the world’s deadliest infectious diseases, 

leading to the death of 1.3 million people in 2017, about 2-3 people per minute [1]. 

Caused by infection with the pathogen Mycobacterium tuberculosis (Mtb), TB most 

commonly presents as a pulmonary disease in adults when individuals inhale 

aerosolized Mtb transmitted by other infected individuals. The immune response in the 

lungs leads to the formation of multiple lesions called granulomas, collections of 

immune cells that act to contain the infection both immunologically and physically but 

also present a barrier to antibiotic diffusion and delivery [2–4]. Understanding 

penetration and distribution of antibiotics in granulomas is critical to understanding how 

best to treat TB. 

The current recommended regimen to treat active, drug-susceptible TB disease 

requires up to six months of multiple antibiotics [5]. For the first two months, patients 

take daily doses of isoniazid (INH, H), rifampin (RIF, R), ethambutol (EMB, E), and 

pyrazinamide (PZA, Z), referred to as HRZE. Each of these antibiotics has side effects 

associated with their use that, together with the lengthy treatment duration, make it 

difficult for patients to properly adhere to the regimen [6,7]. Efforts such as directly 

observed therapy (DOT) attempt to increase patient adherence but are not tractable on 

a global scale [8,9]. Emergence of multidrug-resistant (defined as resistant to INH and 

RIF) and extensively drug-resistant TB (resistant to INH, RIF and a second-line 

injectable) further complicates treatment [1]. There is a need for improved antibiotic 

therapy for TB and to understand what causes treatment failure. 

There are two key factors outside of drug resistance that have been identified as 

contributing to drug failure in TB: pharmacokinetic (PK) variability (acting at population 

scale) and granuloma heterogeneity (acting at the host scale). How these factors 

interact to affect both the rate and extent of sterilization during treatment is not well-

understood. PK variability is defined as differences in plasma antibiotic exposure, 
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typically measured as variability in plasma area under the curve (AUC) measurements. 

Population PK models can help determine appropriate dosing of TB antibiotics and 

represent this variability based on distributions of PK model parameters [10–13]. These 

distributions can be related to natural differences in populations through covariates such 

as weight, age or overall health. Additionally, PK variability can be due to differences at 

the genetic scale, such as in N-acetyltransferase 2 involved in the metabolism of INH 

[14,15]. This PK variability can lead to poor exposure in granuloma lesions, reducing the 

amount of time antibiotic concentrations are above therapeutic thresholds during 

therapy [16]. 

Host-scale heterogeneity encompasses host-level variations in granuloma number, size, 

and composition. Granuloma size and composition can lead to slower diffusion of 

antibiotics, spatial gradients of concentration and underexposure at the host tissue 

scale [3,4,17,18]. Granuloma composition can affect how antibiotics accumulate or fail 

to accumulate within lesions [3]. For example, EMB’s clinical efficacy may partially be 

explained by its ability to accumulate in cellular regions of the granuloma [19]. Structural 

differences in lesions affect the sterilizing ability of PZA, as shown in different strains of 

mice [20]. Caseous regions of the granuloma may also harbor bacteria that are 

phenotypically more tolerant, and may be less accessible, to many TB antibiotics [21]. 

Capturing both PK variability at the population scale and granuloma heterogeneity at the 

host scale in a computational model can help predict granuloma sterilization and design 

antibiotic regimens. Our group previously developed a computational model that 

incorporates the host formation of granulomas and antibiotic PK to predict the 

sterilization of granulomas using different regimens with INH and RIF [4,22]. Using this 

multi-scale, systems pharmacology model, we have also highlighted major differences 

between members of the fluoroquinolone drug class and simulated TB therapy with 

development of antibiotic resistance [23,24]. Using this computational framework 

provides a way to include both PK variability and granuloma heterogeneity to predict 

whether a treatment can achieve granuloma sterilization in primary, pulmonary TB in 

adults.  
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Here we use our hybrid, multi-scale agent-based model to capture PK variability and 

granuloma heterogeneity and to simulate antibiotic treatment of primary, lung 

granulomas. For the first time with this model, we simulate treatment based on human 

PK and with the combination of the four first-line antibiotics used to treat TB: INH, RIF, 

EMB and PZA. We also present a sequential calibration scheme that captures spatial 

distributions of antibiotics within granulomas and known PK variability that exists across 

the population scale and at the host scale within granulomas. Using this highly detailed 

model, we discuss the role of first-line antibiotics (HRZE) in sterilizing granulomas and 

how PK variability and granuloma heterogeneity impact distributions of sterilization 

times. 

 

 Methods 

2.3.1 Computational model of granuloma formation and function 
GranSim is a well-established hybrid, multi-scale computational model that produces 

the emergent behavior of granuloma formation in Mtb infection [25–28]. Briefly, this 

agent-based model simulates immune cell movement and interactions, and bacterial 

growth on a spatial grid representing an area of lung tissue. The immune cell agents, 

such as different classes of macrophages and T cells, move in response to chemokine 

gradients and interact with each other according to immunology-derived rules to activate 

or deactivate immune cells/responses. Bacteria in the model are simulated as individual 

agents, and they exist in three distinct subpopulations: extracellular replicating, 

extracellular non-replicating, or intracellular (inside macrophages). The effective growth 

rate of bacteria in these three subpopulations is influenced by extracellular or 

intracellular location and availability of nutrients and oxygen [29]. Non-replicating Mtb 

represent bacteria trapped within caseum, which presents hypoxic conditions with 

limited nutrient resources [21,30]. A more detailed explanation of GranSim and the 

simulation rules and assumptions can be found online 

(http://malthus.micro.med.umich.edu/GranSim/). GranSim simulates lung granulomas 

that form due to primary, pulmonary infection in adults and captures a wide diversity of 

granulomas through variations in host immune system parameters and stochastic 

events in the agent-based model. The boundary of the granuloma is defined by regions 
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of high cell density, and outlines of the granuloma are drawn to enclose these regions. 

Parameters that were varied to generate our library of heterogeneous granulomas are 

listed in Table 2.1. 

2.3.2 In silico granuloma library  
We generate two distinct libraries of granulomas that are heterogeneous in bacterial 

load and cellular composition: one categorized as low-CFU (colony-forming unit, equal 

to the number of bacteria in the simulation) granulomas and the other as high-CFU 

granulomas. The low-CFU granulomas are smaller in size and have CFU/granuloma 

that are more stable over time, whereas the high-CFU granulomas are larger in size, 

have increasing CFU over time, and have higher levels of caseum. To generate the low-

CFU granulomas, we sampled 500 parameter sets based on ranges for host immune 

system parameters listed in Table 2.1 using Latin Hypercube Sampling (LHS) [4]. Using 

the simulation outputs at day 300 for granuloma size and CFU, we performed sensitivity 

analysis using partial rank correlation coefficients to determine parameters that have the 

most significant impact on those two outcomes [31]. A total of 400 high-CFU 

granulomas were generated by increasing or decreasing the upper and lower bounds of 

the parameter ranges that have the strongest correlation with granuloma size and CFU, 

as well as initializing simulations with multiple infection locations to generate larger 

granulomas. Parameter ranges for all granulomas are shown in Table 2.1. Low-CFU 

granulomas are simulated on a 200 by 200 compartment square grid representing a 4 

by 4 mm section of lung tissue (each grid compartment has a side-length of 20 

microns), whereas the high-CFU are run on 300 by 300 compartment grid representing 

6 by 6 mm. Note that we simulate the small granulomas on a smaller grid for 

computational efficiency, as the larger is not required. At day 300, a total of 354 low-

CFU granulomas and 352 high-CFU granulomas still had bacteria and were selected for 

treatment simulations. Figure 2.1 shows CFU per granuloma of these two groups. 
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Figure 2.1 Heterogeneous granulomas generated using the computational model GranSim.  
There are two groups of in silico granulomas at day 300 post infection: low CFU granulomas (black/gray, n=354) and 
high CFU granulomas (red, n=352). High CFU granulomas have increasing CFU over time relative to the more stable 
lower CFU granulomas (A). (C) shows the distribution of CFU per granuloma in the low CFU group (black) and the 
high CFU group (red) at day 300. (B) shows an example of a low CFU in silico granuloma and (D) shows an example 
of a high CFU granuloma. In both simulations the colors represent: macrophages green; resting; blue, active; orange, 
infected; red, chronically infected), T cells (IFN-gamma producing; pink, cytotoxic, purple; regulatory, light blue), and 
caseated regions (tan). 

 

2.3.3 Plasma pharmacokinetic model 
The plasma PK model is comprised of a two-compartmental model with one or two 

transit compartments that simulate oral absorption. INH and RIF follow a two-absorption 

compartment model based on previously developed PK models, whereas EMB and PZA 

are simulated with one absorption compartment based on best fits and other PK models 

[4,11,12,19,32]. The two-compartment model simulates distribution between plasma 

and peripheral tissue, and antibiotics are eliminated with a first-order clearance rate 

constant (Figure 2.2). Pharmacokinetic variability can be introduced by varying the 

parameters of the plasma PK model based on reported variability in the parameters 

(Table 2.2). 
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Figure 2.2 Pharmacokinetic/pharmacodynamic dynamics in GranSim.  
Plasma concentration is simulated with a two-compartment PK model with one (EMB and PZA) or two (INH and RIF) 
transit compartments to capture oral absorption. The amount of drug added or subtracted through the vascular 
sources in the agent-based spatial grid depends on local gradients of antibiotics. Antibiotics on the grid can diffuse, 
degrade, bind to extracellular material (such as caseum) and partition into macrophages. Based on intra- or 
extracellular concentrations in each grid compartment, a killing rate constant based on a Hill curve determines the 
probability per time step that a given bacterium will die due to exposure to antibiotics. 

 

2.3.4 Tissue pharmacokinetic model 
The plasma PK model is linked to the agent-based environment through blood vessels 

placed on the simulation grid (Figure 2.2). Based on the difference between the plasma 

concentration and local tissue concentration in the compartments surrounding a blood 

vessel and the permeability of the antibiotic through blood vessel walls, a flux of 

antibiotic through the vessel wall is calculated as in previous work [4]. Antibiotics in the 

tissue (on the simulation grid) undergo a series of distribution events: diffusion, binding 

to extracellular material such as caseum, partitioning into macrophages, and 

degradation. Implementation of vascular permeation, diffusion, binding and degradation 

is as previously published [4,33]. Antibiotics on the simulation grid can be tracked as 

free molecules, bound to extracellular material, or partitioned into macrophages. When 

calibrating and fitting to data, we use total drug concentration in a grid compartment, but 



 29 

only free or intracellular antibiotic is used to determine antimicrobial activity, depending 

on the location of bacteria. Calibrated tissue PK parameters are given in Table 2.3 (see 

below for calibration datasets). 

2.3.5 Sequential pharmacokinetic model calibration scheme  
Gradients between plasma and tissue concentrations drive the amount of antibiotic 

delivered into the agent-based model simulation through blood vessels, so fitting tissue 

PK parameters to match the experimentally observed spatial distribution and average 

antibiotic concentrations in granuloma lesions requires incorporating both plasma PK 

variability and granuloma heterogeneity. We have devised a pipeline for incorporating 

these factors into GranSim (Figure 2.3). Using our in silico granuloma library, each 

granuloma is assigned a different plasma PK set sampled using LHS from parameter 

ranges that capture biological variability (Table 2.2). Next, changes in antibiotic tissue 

concentrations over time are simulated for each granuloma with 200 tissue PK 

parameter sets sampled using LHS. For each tissue PK parameter set, the results from 

each granuloma are averaged at each time point, and then compared to experimental 

data. The tissue PK parameter set that both minimizes the sum of the squared error 

between average granuloma concentration and the experimental lesion concentrations, 

as well as provides a good visual fit to the data is chosen as the calibrated tissue PK 

parameter set. Tissue PK parameter ranges for calibration sampling are listed in Table 

2.3. 
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Figure 2.3 Capturing pharmacokinetic variability and granuloma heterogeneity in PK calibration and 
treatment simulations.  
(A) shows our strategy. Based on population variability and ranges in plasma PK parameters, sets of plasma PK 
parameters are sampled and assigned to a set of in silico granulomas. Based on experimentally guided ranges for 
tissue PK parameters, a set of tissue PK parameters is obtained using LHS.  Simulations then predict antibiotic 
concentrations in the tissue. The average concentration over all granulomas for a given tissue PK parameter set is 
calculated and compared to experimental lesion concentrations. (B) shows the four types of treatment simulations 
that capture biologically relevant PK variability and granuloma heterogeneity: average PK exposure with low or high 
CFU granulomas and low PK exposure with low or high CFU granulomas.  
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2.3.6 Pharmacokinetic Data 
Plasma and tissue PK parameters for INH, RIF and PZA are calibrated using plasma 

and lesion antibiotic concentrations measured in resected lung samples from patients 

with drug-refractory TB [18]. EMB concentrations in rabbit TB granulomas are used to 

calibrate tissue PK parameters, based on rabbit plasma PK parameters [19]. Since 

tissue PK parameters are based on physical properties and interactions between drug 

molecules and tissue, we assume that tissue PK parameters in rabbits and humans are 

similar. To simulate human treatment with EMB, we replace the rabbit plasma PK 

parameters with human parameters fit to population PK measurements [12]. 

2.3.7 Pharmacodynamic model 
The pharmacodynamic model involves evaluating a concentration-dependent killing rate 

constant derived from a Hill curve: 
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The killing rate constant k (units of 1/timestep or 1/10 min) is dependent on the variable 

concentration (C), the maximum killing rate constant (Emax), the concentration at half 

maximal killing (C50) and the Hill curve constant (h). The concentration used to 

determine the antibiotic killing rate constant is based only on free drug concentration. 

Parameters Emax, C50, and h need to be determined for each antibiotic and for each 

bacterial subpopulation (replicating extracellular, non-replicating extracellular, and 

intracellular). To fit these parameters, we use in vitro dose-response assays from 

individual experiments from the literature of Mtb growth/death under varying antibiotic 

concentrations (see Table 2.4 for parameters and references for data and refer to 

Figure A.1 (Appendix A) for calibrated fits to dose-response curves). In the present 

model, we do not include drug-drug interactions, so the highest single antibiotic killing 

rate constant for each antibiotic within a specific grid compartment in the simulation is 

used as the effective antibiotic killing rate constant for that location [22,34]. This 

assumption isolates the impact of PK variability and granuloma heterogeneity on 

granuloma sterilization within this study. 
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2.3.8 In silico antibiotic treatment of granulomas 
Treatment simulations are executed by choosing the non-sterile set of low and high 

CFU in silico granulomas that have formed 300 days post infection (in the absence of 

antibiotics). The doses for the standard regimen are based on CDC recommended adult 

doses for each of the four antibiotics: INH, 5 mg/kg; RIF, 10 mg/kg; EMB, 17 mg/kg; 

PZA 21 mg/kg [5]. Simulated treatments use daily doses of each antibiotic. Treatment 

simulations are administered for a maximum of 180 days, which are based on standard 

regimen length [5]; simulations are stopped once granulomas sterilize to reduce 

computational resource use. After treatment, we calculate a simulated early bactericidal 

activity (EBA), which is defined as the rate of decrease of log10(CFU) per day. For 

example, the EBA for 0-2 days is calculated as (log10(CFU	day	0)- log10 (CFU	day	2))/2. 

We simulate four groups of granulomas to incorporate PK variability and granuloma 

heterogeneity (Figure 2.3). Group 1 has population average plasma PK exposure (AUC) 

with low-CFU granulomas and Group 2 has average PK exposure with high-CFU 

granulomas. Groups 3 and 4 both have low plasma PK exposure, with low and high-

CFU granulomas respectively. Plasma PK parameter values for the low and average PK 

exposure are listed in Table 2.2.  

 

 Results 

2.4.1 Pharmacokinetic model captures plasma and lesion variability in antibiotic 
concentrations 

Heterogeneity in antibiotic exposure within granulomas is the result of two factors. 

Differences in plasma drug concentrations among individuals can be due to differences 

in drug absorption and elimination rates, and these are reflected in distributions of 

plasma PK parameters across a population. Additionally, granuloma structural 

heterogeneity (including differences in size and composition) can lead to differences in 

antibiotic exposure at the lesion level. To capture both sources of heterogeneity, which 

occur at different length scales, we devised a sequential calibration scheme to calibrate 

the PK model from data (Figure 2.3; parameters in Table 2.2 and Table 2.3).  

Figure 2.4 shows antibiotic total concentrations (sum of free and bound) within both 

plasma and granulomas for all four first-line antibiotics (INH, RIF, EMB and PZA). 
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Results are shown for 24 hours following an oral dose and compared to experimental 

data. Using our sequential calibration scheme, we capture a large proportion of the 

experimentally observed antibiotic concentration data in both plasma and granulomas. 

The C50 values for each bacterial subpopulation, obtained by fitting the data referenced 

in Table 2.3, indicate the free-drug concentration when a given antibiotic is at half its 

maximum bacterial killing rate. INH, RIF and EMB achieve sufficient concentrations to 

kill extracellular replicating Mtb for a majority of the dosing period. Both INH and EMB 

can achieve concentrations above the C50 for intracellular Mtb. Only RIF approaches 

concentrations necessary to achieve bactericidal activity against non-replicating Mtb. 

Based on average granuloma concentrations, PZA appears to have little sterilizing 

activity in granulomas. 

Figure 2.4 also shows antibiotic total concentrations as a function of position throughout 

the grid, at the time of maximal average granuloma drug concentration following a 

single oral dose of each antibiotic in the same in silico granuloma, shown in grayscale to 

allow for the illustration of gradual concentration changes. INH shows a relatively 

homogenous distribution in the lesion that rapidly clears as INH is eliminated in the 

plasma. RIF accumulates poorly in granulomas at early time points but can slowly 

accumulate in the caseum following multiple doses (Figure A.2, Appendix A). EMB 

tends to accumulate in regions with a high density of macrophages but fails to diffuse 

into caseum significantly. PZA shows a slight accumulation in caseum relative to the 

macrophage-rich regions of the granuloma. To further validate our model, Figure 2.5 

shows PZA distribution identified experimentally using matrix-assisted laser 

desorption/ionization mass spectrometry imaging (MALDI-MSI) as we have done 

previously [18] and compares the PZA signal intensity distribution to two simulated 

granulomas. Overall, our simulated distributions for other antibiotics agree with 

observations made through MALDI-MSI in TB granulomas [18,19]. These qualitative 

features observed in the simulations for each antibiotic were not used in calibrating the 

tissue PK parameters, but rather resulted from estimating and fitting the tissue PK 

parameters to average granulomas concentrations (Table 2.1). 
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Figure 2.4 Simulations capture both the experimentally observed temporal and spatial antibiotic 
concentrations.  
Simulations and data for each antibiotic (INH, RIF, EMB and PZA), dosed singly, are shown in different columns, 
respectively. The top row shows plasma concentrations and the middle row shows average lesion concentrations with 
varying plasma PK parameters (median, solid blue line; range between minimum and maximum of simulations, blue 
shade) and experimentally measured antibiotic concentrations (black points). Concentrations in granulomas are in 
mg/kg (assuming tissue density is approximately 1 kg/L), and reflect the sum of concentrations of free, bound and 
intracellular drug.  Horizontal lines represent the C50 values for intracellular (green), extracellular replicating 
(magenta) and non-replicating (red) subpopulations of Mtb (C50 values not shown are above the range of lesion 
concentrations displayed on the plot). Data in the middle row are measurements from human granulomas (INH, RIF 
and PZA (Prideaux et al. 2015) [18]) and rabbit granulomas (EMB (Zimmerman et al. 2017) [19]). The bottom row 
shows spatial distribution of antibiotics in GranSim at the time of the maximal average lesion concentration. Red 
outlines indicate edge of granuloma (outer line) and caseated locations (inner lines). 

 
Figure 2.5 Comparison of spatial distribution of PZA in GranSim  
(A) and in experimental images of granulomas using MALDI-MSI (B). The simulation images show heat maps of the 
spatial distribution of PZA at 5 hours after a single-PZA dose. In the simulated concentration heat maps, shown in 
color to mimic the images from MALDI-MSI (A), the red area corresponds to lung tissue outside of the granuloma, the 
darker blue regions indicates regions inside the granuloma with higher densities of macrophages, and the lighter blue 
to green sections show correspond to caseated regions. Both simulation images are on a 200 by 200 grid, 
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representing a 4 mm by 4 mm section of lung tissue. Experimental images (B) show PZA distribution in granulomas 
imaged with MALDI-MSI, with granuloma boundary outlined in black, and caseated regions outlined in white. Both 
simulation and experiments show some accumulation of PZA inside caseous regions, relative to the cellular portions 
of the granuloma. 
 

2.4.2 Single-drug treatments sterilize granulomas at different rates and to different 
extents 

We next tested the abilities of each first-line antibiotic, when dosed alone, to sterilize 

granulomas with average plasma PK exposure and low or high-CFU (Groups 1 and 2 of 

Figure 2.3). The rates and extents of sterilization differ for each antibiotic in low-CFU 

granulomas, as shown in Figure 2.6, due to differences in sterilizing activity against 

various subpopulations of bacteria as well as the antibiotic distribution within 

granulomas. After 180 days of treatment, single-drug therapy with RIF sterilizes all low-

CFU granulomas. INH sterilized 93% low-CFU granulomas. EMB and PZA each 

sterilize just 32% and 1.7% of low-CFU granulomas, respectively. INH and EMB all 

have early sterilizing ability and were able to sterilize 29% and 31% of granulomas after 

two weeks, respectively. RIF alone only sterilized 5% by two weeks, and PZA failed to 

sterilize any granulomas by two weeks.  

Our simulations show that INH can quickly distribute within granulomas, and in sufficient 

concentrations to kill both intracellular and extracellular replicating bacteria, and 

therefore provides rapid sterilization for some granulomas, as shown in Figure 2.4 and 

Figure 2.5. However, with poor sterilizing ability against non-replicating Mtb found in 

caseum [21], INH usually requires many months to sterilize granulomas that have a high 

number of non-replicating Mtb and leads to the drawn-out sterilization of non-replicating 

Mtb in INH-treated granulomas. EMB, similar to INH, has poor ability to kill non-

replicating Mtb, so our simulations show it is only able to sterilize a subset of 

granulomas, even though it distributes throughout cellular regions of the granuloma. 

However, it does rapidly kill both extracellular replicating and intracellular Mtb, indicated 

by the percentage of granulomas sterilized by two weeks, which is consistent with 

favorable early bactericidal activity (EBA) for EMB [35]. Because INH and EMB are 

bacteriostatic and have low ability to kill non-replicating Mtb, sterilization time (for INH) 

and total Mtb remaining in the granuloma (for EMB) are highly correlated with the initial 

number of non-replicating bacteria present in the granuloma (Figure A.3, Appendix A). 
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RIF shows more complete sterilization of low-CFU granulomas than any other individual 

antibiotic as it has some sterilizing ability against each subpopulation of bacteria. 

We observe similar trends with single-drug treatments in high-CFU granulomas (Figure 

2.6). Overall, the sterilization times are longer when compared to low-CFU granulomas. 

INH and RIF both sterilize lower percentages of the high-CFU granulomas than they do 

low-CFU granulomas. High-CFU granulomas are also more likely to have higher total 

numbers of non-replicating Mtb, decreasing the ability of INH to completely sterilize 

these granulomas. RIF, with weakened ability to kill intracellular Mtb due to low 

granuloma concentrations, fails to kill all intracellular Mtb in some granulomas. This 

weakness is amplified in larger granulomas, slowing diffusion of antibiotics into the 

granulomas. 

 

Figure 2.6 Single-antibiotic treatments and combination therapy of low-CFU  
(A, C) and high-CFU (B, D) granulomas show different sterilizing rates and extents for each of the first-line antibiotics 
and all four antibiotics together (HRZE). (A) and (B) show the percentage of granulomas sterilized over the course of 
treatment for both groups of granulomas. (C) and (D) show the distribution of sterilization times for only the 
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granulomas that sterilized for each treatment, with the time when 90% of granulomas were sterilized indicated by a 
red line. Percentage below each treatment indicates the total percentage of granulomas that sterilized. For example, 
EMB sterilized 32% of low-CFU granulomas (C), and of those sterilized granulomas, a majority of them sterilized in 
the first few days (indicated by the box plot collapsing to a line). 
 
2.4.3 Specialization of individual antibiotics contributes to success of combination 

therapy 
Combination therapy – all four first-line antibiotics – sterilizes low-CFU granulomas at 

nearly the same rate as the best single-antibiotic treatment (RIF) (Figure 2.6). All 

granulomas are sterilized after 147 days of combination therapy, with 33% sterilized 

after 2 weeks. The difference in early versus late sterilizing ability for the single-drug 

treatments is one reason why the combination therapy shows faster and more complete 

sterilization than any one drug on its own. Early in treatment, INH and EMB do much of 

the killing, and the presence of RIF completes the sterilization.  

The benefit of combination therapy is more dramatic for high-CFU granulomas (Group 2 

of Figure 2.3). Here, treatment with INH or RIF show only 33% and 39% sterilization 

after 180 days of therapy, respectively, compared to 97% of granulomas sterilized with 

HRZE (Figure 2.6). Although RIF is able to sterilize granulomas as well as HRZE in low-

CFU granulomas, the same behavior is not observed in high-CFU granulomas. RIF is 

relatively slow at killing intracellular bacteria. In the low-CFU granulomas, the number of 

intracellular Mtb is low enough where RIF can kill these bacteria eventually. In high-CFU 

granulomas, RIF is not always able to kill intracellular Mtb fast enough to keep up with 

its replication, and therefore fails to sterilize all high-CFU granulomas. The presence of 

INH and EMB provide assistance in killing the intracellular Mtb, so the combination of 

antibiotics allows for more complete sterilization. Our model predicts that the different 

abilities to kill each of the subpopulations of bacteria and the different distributions 

within granulomas complement each other in combination therapy. 

During combination therapy (HRZE), a majority of bacterial death is due to antibiotics; 

antibiotics are responsible for roughly an order of magnitude more bacterial death than 

the immune response, and two orders more than bacterial death in caseum 

representing a lack of oxygen and nutrients (Figure A.4, Appendix A). This trend is 

consistent across the single-drug treatments with the exception of PZA, which shows 

the poorest efficacy and thus allows for continued bacteria growth and continued slow 

killing via the immune response.  
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2.4.4 High-CFU and low PK exposure lengthen sterilization times during combination 
therapy 

We next tested how sterilization time and thus the necessary length of treatment is 

affected by plasma PK variability between individuals and granuloma heterogeneity. We 

compared the sterilization times of all four granuloma groups (Figure 2.3) when treated 

with daily doses of HRZE. Figure 2.7 shows the distribution of sterilization times for 

each of these treatment scenarios. Simulating the low-CFU granulomas with low PK 

exposure (Group 2) results in a shift in the distribution towards longer sterilization times 

relative to average PK exposure (Group 1), with the 90% sterilization time increasing 

from 97 to 133 days. In contrast, 165 days of HRZE are required to sterilize 90% of the 

high-CFU granulomas with average PK exposure, and 90% sterilization cannot be 

reached within 6 months of treatment when those same granulomas have low PK 

exposure.  

With some granulomas failing to sterilize after 180 days of treatment, we sought to 

analyze the characteristics of those granulomas. We grouped our granulomas into four 

different ‘risk’ categories: low (sterilize in under 90 days of HRZE), medium (sterilize 

between 90 and 150 days), high (sterilize after 150 days), and unsterilized. For each of 

these groups, we compared characteristics of the granulomas before treatment to see 

what types of granulomas have different levels of risk. Unsterilized and high-risk 

granulomas tend to be higher in CFU, size, and amount of caseation (Figure A.5, 

Appendix A), with median CFU/granuloma levels before treatment of 1.1x105, 6.0x104, 

2.1x104, and 1x103 for the unsterilized, high, medium and low risk categories. However, 

these pretreatment characteristics are not sufficient in predicting whether a specific 

granuloma will fail to sterilize during treatment, as there are some granulomas with high 

CFU, diameter and caseation that sterilize within 90 days. Although these low risk 

granulomas look like high risk or unsterilized granulomas, they have higher percentages 

of intracellular Mtb. At the beginning of treatment with HRZE, these intracellular bacteria 

can be quickly killed, making the granulomas easier to sterilize. 

Variation in plasma PK exposure may impact treatment with some antibiotics more 

profoundly than others. To test this, we sampled a set of 200 plasma PK parameters 

from the ranges used in calibrating the PK model (Table 2.2). With each of these 
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plasma PK parameter sets that generate different levels of exposure in plasma, we 

treated the same granuloma with each single-drug treatment (Figure 2.8). Overall, RIF 

is most impacted by natural variability in plasma exposure, and varying plasma PK 

parameters for RIF results in a wider spread of treatment outcomes than other 

antibiotics, ranging from a minimum sterilization time of 38 days to unsterilized 

granulomas by the end of treatment (Figure 2.8). This indicates that optimizing dose for 

RIF and other antibiotics that are particularly sensitive to variations in PK existing in 

human populations may be critical in designing better regimens. 

 

Figure 2.7 Distributions of sterilization times for different granuloma treatment groups, 
Distributions of sterilization times for different granuloma treatment groups referenced in Figure 2.3, treated with 
HRZE indicate factors that negatively impact sterilization. (A) shows simulations of the standard regimen (HRZE). (B) 
shows the simulations of high RIF dose treatments (20 mg/kg). Each dot is the sterilization time of a specific 
granuloma simulation, with the red line indicating the time of 99% sterilization. Low CFU granulomas with average PK 
exposure sterilize the fastest. Low CFU granulomas with low PK exposure show a shift to longer sterilization times 
compared with average exposure. Similarly, high CFU granulomas with average exposure sterilize faster than high 
CFU granulomas with low exposure. Results for low CFU and high CFU with average PK are shown in Figure 2.6 and 
are plotted again here for comparison. 
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Figure 2.8 Simulation treatment outcomes of single-drug treatments of the same in silico granuloma vary 
with different plasma PK parameter sets.  
A single granuloma was treated with each of the single-drug treatments with 200 different plasma PK parameter sets. 
Above shows the CFU for each granuloma simulation over time during treatment for INH (A), RIF (B), EMB (C) and 
PZA (D). The standard deviation of sterilization times for different plasma PK parameter sets for RIF normalized to 
mean sterilization time is 0.40. This indicates greater variability in sterilization times due to changes in plasma PK for 
RIF compared to INH, for which the value is 0.19. EMB and PZA have standard deviations of log-transformed CFU 
normalized to the mean at the end of treatment standard deviations of 0.033 and 0.034, respectively. 
 

2.4.5 Treatment time can be shortened for some granulomas by increasing the dose of 
RIF 

There have been numerous efforts to shorten TB treatment regimens and clinical trials 

that involve replacing one or more antibiotics in the standard regimen or increasing 

doses of the first-line antibiotics [36,37]. Increasing RIF dosage to 20 mg/kg is a 

strategy applied in several clinical trials [38–40], and is rational because it could lessen 

the impact PK variability has on RIF given our results (Figure 2.7). We investigated how 

increasing the RIF dose impacts granuloma sterilization time while accounting for 

granuloma heterogeneity and PK variability. To simulate high RIF dose treatments, we 

simulated each treatment group of granulomas with the same combination regimen as 

before but increased the RIF dose to 20 mg/kg. 

Increasing the RIF dose in combination therapy results in shorter average sterilization 

times as compared to the standard combination therapy (Figure 2.7). The 90% 
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sterilization times for low-CFU granulomas decrease by 25 days for average PK and 41 

days for low PK exposure. High-CFU granulomas with average PK exposure showed a 

decrease in 90% sterilization times by 33 days when treated with a high RIF dose, and 

the low PK exposure simulations increased the percent of sterilized granulomas from 

62% to 91% (the latter giving a 90% sterilization time of 179 days). Overall, the 

improvement observed is greater in the low PK exposure simulations than in average 

PK simulations.  

 Discussion 
Treatment of drug-susceptible TB requires multiple months of antibiotics, after which 

treatment may still fail due to unsterilized granulomas. A better understanding of the 

first-line combination therapy, HRZE, will help to develop rational approaches to reduce 

treatment duration and improve cure rates. To analyze the use of first-line antibiotics 

and the factors that impact granuloma sterilization and conditions of treatment failure, 

we developed a computational framework that captures both granuloma heterogeneity 

and PK variability observed in human studies to determine the rate and extent of 

sterilization during treatment with first-line TB antibiotics at the granuloma scale.  

To place the findings of our work into better context with clinical evidence that has been 

gathered on first-line TB antibiotics, we compared our simulations for single-drug 

treatments and combination treatments to early bactericidal activities (EBA) measured 

in multiple studies (Table 2.5). The EBA estimates based on the simulations are shown 

as the decrease in log10(CFU)/day for each treatment. Many of our simulated estimates 

are near the clinically measured EBA values (given as reported ranges or confidence 

intervals). For simulated EBA estimates that do not match clinical results, our 

simulations tend to predict lower EBA values than those observed clinically. Our EBA 

estimates account for the entire granuloma’s CFU count, and it is possible that we 

predict lower EBAs as our simulations detect more remaining bacteria than those that 

would be detected clinically in sputum due to limitations of detection in assays used. 

We found that typical PK variability and granuloma heterogeneity can create scenarios 

that profoundly impact sterilization rates and treatment success. The level of antibiotic 

concentration in plasma leads to commensurate concentrations within granulomas, 
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creating differences in sterilization rates. Individuals with lower plasma PK exposure are 

at higher risk of antibiotic underexposure in selected granulomas. When coupled with 

complex and caseous granuloma structure with impaired vascular supply, this can lead 

to longer sterilization times using standard HRZE TB therapy (Figure 2.7). Other models 

using various experimental data, including hollow fiber experiments, show that low drug 

exposure can lead to decreased rates in bacterial killing [41], and have used variability 

in PK to predict variability in required treatment durations [42].  The model we present 

builds on these findings by providing the ability to simulate sterilization in a granuloma, 

while accounting for human-based PK variability and granuloma structure. The benefit 

of simulating treatment in the context of the whole granuloma is that it includes the 

spatial microenvironments that can influence both antibiotic distribution and bacterial 

susceptibility or tolerance to antibiotics. Treating each Mtb as an individual agent also 

provides the ability to simulate treatment while accounting specifically for antibiotic 

resistance [24]. Our model is a tool that can provide quantitative predictions and 

sterilization times for a given regimen at a granuloma level, the possibility to predict 

entire host treatment through linking of plasma pharmacokinetics, and the potential to 

search for optimal treatment regimens [43].  

We show that treatment with any of the current first-line TB antibiotics alone is not 

sufficient to sterilize all granulomas, and that combinations of antibiotics result in more 

rapid and complete sterilization. Although RIF shows the best sterilizing ability on its 

own and is about as effective as HRZE in low-CFU granulomas, RIF alone fails to 

sterilize many of the high-CFU granulomas, where it only sterilizes 39% of granulomas 

compared to 97% with HRZE. Although our simulations predict that PZA sterilizes very 

few granulomas on its own, evidence suggests that PZA does show sterilizing ability 

when administered on its own, and suggests that our simulations underestimate its 

activity and that there is discrepancy between the in vitro activity of PZA and in vivo 

efficacy that our model does not capture [20,44,45].  

Granulomas with increased CFU and lower antibiotic exposure can dramatically 

increase sterilization time and increase the risk of granulomas that do not completely 

sterilize. Granulomas with high risk of not sterilizing tend to be larger and have more 

CFU; however, the type of bacteria present in those granulomas may affect the risk of 
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treatment failure as well. Granulomas with high CFU may still have a low risk of 

treatment failure if they have high percentages of intracellular Mtb. Because some of the 

antibiotics in HRZE are good at quickly killing this subpopulation, these granulomas that 

look like high risk granulomas pretreatment, quickly become low risk granulomas as 

treatment begins. 

RIF is the antibiotic that provides the best sterilizing ability on its own, but also is the 

antibiotic that shows the highest inter-individual PK variability [46] and is most impacted 

by PK variability. To reduce the impact the sensitivity RIF has to PK variability, we 

simulated HRZE treatment while doubling the RIF dose. Indeed, we did observe faster 

granuloma sterilization and more complete sterilization in high-CFU, low PK 

granulomas, yet some granulomas in that group still failed to sterilize. Additionally, there 

was only a slight improvement in sterilization times for granulomas that were already 

easy to treat, indicating there might only be a modest improvement in treatment for a 

subset of those granulomas. Understanding an individual’s PK profile for different drugs 

would be an important step in developing a personalized medicine approach to 

treatment. 

While our model can recapitulate key experimental observations and also predict TB 

treatment outcomes, there are several limitations to our findings. Clinical results 

measure outcomes at the host level, and GranSim fundamentally simulates treatment 

and sterilization at the granuloma scale. The relevance of our results relies on the 

assumption that treatment at the granuloma scale is indicative of treatment at a host 

scale. Our model simulates primary granulomas and does not fully capture the full 

complexity of multiple pulmonary lesions as is observed during TB disease. It is 

appreciated that non-replicating and persisting Mtb are critical targets to achieve full 

sterilization of lesions, and while we observe this in our model, their importance could 

be amplified in cavitary disease or fibrotic lesions that are not captured in our model. 

Further, directly relating in vitro antimicrobial activity to in vivo efficacy does not 

necessarily capture the full range of antimicrobial activity that occurs within granulomas 

and may partially account for any discrepancies between our simulation results and 

clinical observations. An additional limitation of our model is that it currently assumes 

there are no interactions occurring between antibiotics, and synergistic or antagonistic 
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combinations may be relevant in determining regimen efficacy [47,48]. Going forward, 

we are currently introducing synergistic and antagonistic antibiotic interactions to 

improve the PD model and further refine our estimates and predictions of granuloma 

sterilization [49–51]. The current model also does not include the development of 

antibacterial resistance, which may profoundly impact granuloma sterilization; see [24] 

for a previously published model examining development of resistance and a discussion 

of modeling resistance development. Finally, this work drew on data sets from a variety 

of human and animal studies, and predictions of treatment efficacy for other and newer 

drugs is dependent on the acquisition of similar data sets. 

The significant impact that population PK variability and granuloma heterogeneity have 

on granuloma sterilization highlights the continued need for new approaches and drugs 

for treatment, and optimization of new regimens. Close collaboration between wet lab 

and computational scientists will help facilitate the evaluation of these new approaches 

and provide a more efficient and comprehensive development of new ways to treat TB. 
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Table 2.1. Host immune parameters for in silico granulomas.  
Timestep units represent 10-minute time steps in the agent-based simulation. Parameter values based on previously 
published work [4]. 
  Low CFU Granulomas High CFU Granulomas 

Parameter definition Units Min Max Min Max 
# immune cell deaths causing 
compartment caseation 

 6 10 6 10 

Time to heal caseated 
compartment 

Timesteps 909 1365 901 1398 

TNF threshold for causing 
immune cell apoptosis 

Molecules 690 1035 690 1200 

Rate constant for TNF-induced 
apoptosis 

1/s 1.36e-6 2.04e-6 1.00e-6 2.00e-6 

Minimum chemokine 
concentration to induce 
chemotaxis 

Molecules 0.27 0.41 0.27 0.41 

Maximum chemokine 
concentration to induce 
chemotaxis 

Molecules 392 588 392 588 

Initial density of macrophages Fraction of grid 
compartments 

0.019 0.029 0.019 0.029 

Time between resting 
macrophage movements 

Timesteps 4 6 4 6 

Time between active 
macrophage movements 

Timesteps 15 23 15 23 

 
Time between infected 
macrophage movements 

Timesteps 169 255 169 255 

TNF threshold to induce NFkB 
activation 

Molecules 42.8 64.1 35.1 65.0 

Rate constant for NFkB 
activation 

1/s 6.77e-6 1.01e-5 6.00e-6 1.00e-5 

Probability resting 
macrophage kills extracellular 
Mtb 

 0.0738 0.111 0.0738 0.111 

Killing probability adjustment 
for resting macrophages with 
NFkB activation 

 0.129 0.194 0.129 0.194 

# bacteria to cause NFkB 
activation 

 236 354 236 354 

# bacteria for macrophage to 
become chronically infected 

 12 18 12 18 

# bacteria to cause 
macrophage to burst 

 19 29 19 29 
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# bacteria activated 
macrophage can phagocytose 

 3 5 3 5 

Probability activated 
macrophage will will heal a 
caseated compartment 

 0.00459 0.00687 0.00459 0.00687 

Probability a T-cell will move 
to same compartment as a 
macrophage 

 0.0367 0.0550 0.0251 0.0550 

Probability IFNγ producing T-
cell induces Fas/FasL 
apoptosis 

 0.0293 0.0439 0.0290 0.0440 

Probability IFNγ producing T-
cell also produces TNF 

 0.0514 0.0770 0.0510 0.0779 

Probability cytotoxic T-cell kills 
macrophage 

 0.00505 0.0121 0.00806 0.0121 

Probability cytotoxic T-cell kills 
a macrophage and all its 
intracellular bacteria 

 0.619 0.928 0.611 0.920 

Probability regulatory T-cell 
deactivates macrophage 

 0.00584 0.00876 0.00580 0.00880 

Time when T-cell recruitment 
begins 

Timesteps 3225 4722 3225 4397 

Time delay after T-cell 
recruitment begins until 
maximal recruitment rate 

Timesteps 650 976 650 849 

Macrophage maximal 
recruitment probability 

 0.0241 0.0361 0.0240 0.0500 

Macrophage threshold for 
recruitment by chemokines 

Molecules 0.641 0.960 0.640 0.960 

Macrophage threshold for 
recruitment by TNF 

Molecules 0.00859 0.0129 0.00851 0.0130 

Macrophage half sat for 
recruitment by TNF 

Molecules 1.22 1.82 1.21 1.83 

Macrophage half sat for 
recruitment by chemokine 

Molecules 1.68 2.52 1.68 2.52 

IFNγ producing T-cell maximal 
recruitment probability 

 0.0484 0.0726 0.0300 0.0620 

IFNγ producing T-cell 
threshold for recruitment by 
chemokine 

Molecules 0.0535 0.0802 0.0530 0.0800 

IFNγ producing T-cell 
threshold for recruitment by 
TNF 

Molecules 1.01 1.51 1.00 1.51 

IFNγ producing T-cell half sat 
for recruitment by TNF 

Molecules 1.22 1.82 1.21 1.82 
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IFNγ producing T-cell half sat 
for recruitment by chemokine 

Molecules 1.64 2.46 1.63 2.45 

Probability a IFNγ producing 
T-cell is cognate 

 0.0437 0.0655 0.0201 0.0650 

Cytotoxic T-cell maximal 
recruitment probability 

 0.0370 0.0554 0.0370 0.0550 

Cytotoxic T-cell threshold for 
recruitment by chemokine 

Molecules 3.55 5.32 3.54 5.32 

Cytotoxic T-cell threshold for 
recruitment by TNF 

Molecules 0.920 1.38 0.922 1.38 

Cytotoxic T-cell half sat for 
recruitment by TNF 

Molecules 0.715 1.07 0.711 1.07 

Cytotoxic T-cell half sat for 
recruitment by chemokine 

Molecules 5.24 7.86 5.25 7.85 

Probability a cytotoxic T-cell is 
cognate 

 0.0414 0.0620 0.0410 0.0619 

Regulatory T-cell maximal 
recruitment probability 

 0.0246 0.0369 0.0242 0.0618 

Regulatory T-cell threshold for 
recruitment by chemokine 

Molecules 2.03 3.04 2.02 3.04 

Regulatory T-cell threshold for 
recruitment by TNF 

Molecules 1.65 2.47 1.65 2.47 

Regulatory T-cell half sat for 
recruitment by TNF 

Molecules 2.00 3.00 2.00 3.00 

Regulatory T-cell half sat for 
recruitment by chemokine 

Molecules 1.23 1.84 1.22 1.84 

Probability a regulatory T-cell 
is cognate 

 0.0400 0.0600 0.0401 0.0600 

 
 
 
Table 2.2 Plasma pharmacokinetic parameters  
Plasma pharmacokinetic parameters listed with the ranges used to calibrate the tissue pharmacokinetic parameters, 
as well as the parameter values for the average and low PK exposure treatment groups. 

Parameter Units Min Max Average 
PK 

Low 

PK 

Source 

INH Absorption rate 
constant 

1/h 0.50 6.0 3.25 0.57 Fit to data from 
[18] 

INH Intercompartmental 
clearance rate constant 

L/(h*kg) 0.20 0.70 0.45 0.67 Fit to data from 
[18] 

INH Central 
compartment volume of 
distribution 

L/kg 0.50 3.0 1.75 2.5 Fit to data from 
[18] 



 48 

INH Peripheral 
compartment volume of 
distribution 

L/kg 25 40 32.5 37 Fit to data from 
[18] 

INH Plasma clearance 
rate constant 

L/(h*kg) 0.0080 0.070 0.039 0.061 Fit to data from 
[18] 

RIF Absorption rate 
constant 

1/h 0.40 2.5 1.5 0.41 Fit to data from 
[18] 

RIF Intercompartmental 
clearance rate constant 

L/(h*kg) 2.0 5.9 3.9 3.95 Fit to data from 
[18] 

RIF Central 
compartment volume of 
distribution 

L/kg 0.18 0.57 0.38 0.48 Fit to data from 
[18] 

RIF Peripheral 
compartment volume of 
distribution 

L/kg 0.32 0.97 0.64 0.9 Fit to data from 
[18] 

RIF Plasma clearance 
rate constant 

L/(h*kg) 0.050 0.30 0.175 0.3 Fit to data from 
[18] 

EMB Absorption rate 
constant 

1/h 0.10 0.80 0.45 0.1 Fit to data from 
[12] 

EMB 
Intercompartmental 
clearance rate constant 

L/(h*kg) 0.45 0.70 0.57 0.56 Fit to data from 
[12] 

EMB Central 
compartment volume of 
distribution 

L/kg 0.80 1.95 1.37 1.7 Fit to data from 
[12] 

EMB Peripheral 
compartment volume of 
distribution 

L/kg 8.1 12.7 10.4 12.6 Fit to data from 
[12] 

EMB Plasma clearance 
rate constant 

L/(h*kg) 0.3 1.0 0.65 0.99 Fit to data from 
[12] 

PZA Absorption rate 
constant 

1/h 0.55 0.75 0.65 0.60 Fit to data from 
[18] 

PZA 
Intercompartmental 
clearance rate constant 

L/(h*kg) 0.10 0.70 0.40 0.35 Fit to data from 
[18] 

PZA Central 
compartment volume of 
distribution 

L/kg 0.25 0.75 0.50 0.74 Fit to data from 
[18] 

PZA Peripheral 
compartment volume of 
distribution 

L/kg 0.010 0.050 0.030 0.050 Fit to data from 
[18] 

PZA Plasma clearance 
rate constant 

L/(h*kg) 0.010 0.050 0.030 0.050 Fit to data from 
[18] 
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Table 2.3 Calibrated tissue PK parameters for each antibiotic. 

Parameter INH RIF EMB PZA Source 

degRateConst 

Extracellular degradation 
rate constant (1/s) 

6.94e-8 3.90e-8 1.73e-8 1.34e-8 Fit to data from [18,19] 

degRateConstInt 

Intraceullar degradation rate 
constant (1/s) 

2.84e-6 2.59e-4 8.75e-6 2.26e-3 Fit to data from [18,19] 

Diffusivity 

Effective diffusivity* (cm2/s) 

6.58e-7 5.08e-8 5.20e-7 3.24e-6 Fit to data from [18,19] 

cellUptake 

Cellular accumulation ratio 

1.13 24 5.95 0.593 Fit to data from [18,19] 

vascularPermeability 

Vascular permeability (cm/s) 

1.34e-6 2.65e-7 1.33e-7 8.62e-6 Fit to data from [18,19] 

permCoeff 

Permeability coefficient 

0.25 3.3 7.4 1 Fit to data from [18,19] 

caseumUnboudFraction 

Fraction unbound to caseum 

1 0.052 0.35 1 Fit to data from [17–
19] 

* Guided by estimates from [52] 
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Table 2.4 Pharmacodynamic parameters  
Pharmacodynamic parameters and sources for data used for parameter fitting/estimation. Units of 1/timestep 
represent per model timestep of 10 minutes. 

Parameter INH RIF EMB PZA Sources 

Intracellular C50 (mg/L) 0.070 20 5.22 70 [21,53–55] 

Extracellular, replicating C50 
(mg/L) 

0.015 1.23 0.05 370 [21,53–55] 

Extracellular, 

Non-replicating C50 (mg/L) 

17.7 81 1000 370 [21,56] 

Intracellular Emax 
(1/timestep) 

0.0056 0.014 0.026 0.0006 [21,53–55] 

Extracellular Emax 
(1/timestep) 

0.0056 0.019 0.025 0.007 [21,53–55] 

Intracellular hill constant, h 1 0.5 2.5 3.2 [21,53–55] 

Extracellular hill constant, h 1 0.5 1.5 1 [21,53–55] 
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Table 2.5 Comparison of antibiotic treatment simulations to clinical early bactericidal activity (EBA) data.  
Table shows the simulation EBA, calculated as the decrease in log10(CFU) per day over the day intervals indicted. Values reported are the mean daily decrease in 
CFU over all granulomas simulated with the standard regimen doses and average PK. Standard deviation is indicated in parenthesis. The clinical EBA values 
reported are taken from a number of studies and reviews. The simulation EBA for (0-!) days is calculated as (log10(CFU day 0)- log10 (CFU day x))/x. 

 Simulation, Mean (SD) Clinical 
Antibiotic EBA  

0-2 
Days 

EBA 
0-5 
Days 

EBA  
0-14 
Days 

EBA 0-2 Days EBA 0-5 Days EBA 0-14 Days 

INH 0.16 
(0.062) 

0.13 
(0.066) 

0.079 
(0.051) 

Ranges from 0.37-0.77 
involving 13 studies 
summarized in [35] 

0.25 (range of 0.19-0.40) as 
summarized in [35] 

Ranges from 0.189-0.192 involving 2 
studies summarized in [35] 

RIF 0.15 
(0.044) 

0.12 
(0.037) 

0.086 
(0.027) 

Ranges 0.174-0.631 involving 
8 studies summarized in [35] 

0.226 (SD 0.144) reported in 
[57] 

b0.11 (SD 0.096) reported in [35] from 
(Jindani et al., 1980) 

EMB 0.45 
(0.36) 

0.20 
(0.16) 

0.082 
(0.061) 

0.25 (95% CI: 0.06-0.45) 
pooled in [58] 

NA b0.16 (SD 0.090) reported in [59] 

PZA 0.014 
(0.009) 

0.014 
(0.007) 

0.012 
(0.006) 

0.01 (95% CI: -0.07-0.09) 
pooled in [58] 

NA b0.11 (SD 0.038) reported in [59] 

HRZE 0.49 
(0.34) 

0.24 
(0.15) 

0.11 
(0.052) 

0.3 (95% CI: 0.09 – 0.50) 
pooled in [58] 

a0.16 (95% CI: 0.09 – 0.24) 
pooled in [58] 

0.16 (95% CI: 0.11-0.21) pooled in 
[58] 

aEBA 0-7 Days 
bEBA 2-14 Days
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 Abstract 
Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new 

treatments for TB is hindered by the large number of candidate drugs, drug 

combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here 

we study the interplay of these factors in designing combination therapies by linking a 

machine-learning model, INDIGO-MTB, which predicts in vitro drug interactions using 

drug transcriptomics, with a multi-scale model of drug PK/PD and pathogen-immune 

interactions called GranSim. We calculate an in vivo drug interaction score (iDIS) from 

dynamics of drug diffusion, spatial distribution, and activity within lesions against various 

pathogen sub-populations. The iDIS of drug regimens evaluated against non-replicating 

bacteria significantly correlates with efficacy metrics from clinical trials. Our approach 

identifies mechanisms that can amplify synergistic or mitigate antagonistic drug 

interactions in vivo by modulating the relative distribution of drugs. Our mechanistic 

framework enables efficient evaluation of in vivo drug interactions and optimization of 

combination therapies. 

 
 Introduction  

Tuberculosis (TB), caused by inhalation of Mycobacterium tuberculosis (Mtb), remains 

the world’s deadliest infectious disease, infecting 30% of all people world-wide and 

leading to ~1.3 million deaths annually [1,2]. The emergence of multidrug resistance 
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coupled with slow progress in developing new drugs has created a pressing need to 

identify new approaches to treat TB. The current standard TB treatment regimen is a 

combination of 4 first-line anti-TB drugs – the antibiotics isoniazid (H), rifampicin (R), 

pyrazinamide (Z), and ethambutol (E). This treatment has remained unchanged over 50 

years [3–5]. Typical combination therapy for TB is administered for at least six months, 

while treating drug-resistant strains may take up to two years. New drugs, such as 

bedaquiline, linezolid, and pretomanid, are being tested in new regimens to potentially 

shorten TB treatment [6,7] The WHO has called for entirely new strategies to meet the 

goals for ‘End TB’, which aims to reduce TB deaths by 95% by 2035.   

 

The large number of potential drug combinations greatly complicates TB treatment 

design [8]. Therapy involving drug combinations can lead to surprising non-linear 

effects; some drugs can enhance each other’s action leading to higher potency 

(synergy), or drugs can interfere with their action leading to reduced potency 

(antagonism) [9,10]. These drug interactions can impact treatment efficacy and 

emergence of drug resistance [11]. Such synergistic or antagonistic drug interactions 

can be determined using checkerboard assays by screening a panel of drug 

combinations in multiple doses against Mtb [12]. However, such experimental screening 

of drug interactions has limited throughput despite recent developments in reducing the 

number of doses required for measurement [13–15]. Designing an optimal 4-drug 

combination from a set of just 50 candidate drugs at a single dose requires ~200,000 

drug interaction experiments. The dosage and dosing frequency further increase the 

space of possible regimens exponentially [16].  

 

Measuring in vivo drug interactions is even more challenging as it requires mice, 

primates, or other model organisms infected with Mtb [17]. Consequently, the number of 

drug candidates that can be screened through these model organisms is very limited. 

Further, current drug screening strategies for TB do not consider a patient’s immune 

system. Once Mtb is inhaled, it triggers a cascade of immune responses that result in 

the accumulation of an immune cell-rich mass around infected cells and bacteria known 

as a granuloma. Mtb can persist for decades within granulomas, and there are multiple 
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granulomas within lungs of infected patients [18]. Granulomas also create a physical 

barrier altering the penetration of drugs, which can greatly impact relative drug 

concentrations at the site of infection and lead to effective mono-therapies in 

granulomas [19–22]. Granulomas also produce nutrient-starved and hypoxic 

environments that contain Mtb that are phenotypically tolerant to antibiotics, further 

complicating treatment [23,24]. 

 

This study addresses these challenges by creating a multi-scale pipeline combining two 

cutting-edge computational approaches, operating at different biological scales, to 

evaluate combination therapies using drug transcriptomics and pharmacokinetics 

/pharmacodynamics (PK/PD) (Figure 3.1). First, to rapidly predict drug-drug interactions 

(synergy/antagonism) among combinations of two or more drugs, we utilize the existing 

in silico tool —inferring drug interactions using chemogenomics and orthology (INDIGO) 

optimized for Mtb (INDIGO-MTB) [8,12]. INDIGO-MTB uses a training data of known 

drug interactions along with drug transcriptomics data as inputs. INDIGO-MTB then 

utilizes a machine-learning algorithm to identify gene expression patterns that are 

predictive of specific drug-drug interactions. Once trained, INDIGO-MTB can determine 

if new drugs in combination have synergistic or antagonistic interactions using 

transcriptomics data. We previously used INDIGO-MTB to identify synergistic drug 

regimens for treating TB from over a million possible drug combinations using the 

pathogen response transcriptome elicited by individual drugs. The INDIGO-MTB model 

contains 164 drugs with anti-TB activity and it accurately predicted novel interactions of 

two-drug and three-drug combinations in vitro [8]. 
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Figure 3.1 Overview of our multiscale pipeline to predict in vivo drug interactions.  
a) INDIGO-MTB uses Mtb transcriptomic responses to drugs and experimentally measured drug-drug interactions as 
inputs for training a machine-learning model, inferring synergistic and antagonistic interactions between new drug 
combinations as output [8,25]. b) Components of the model integrating GranSim and INDIGO-MTB. From right to left, 
the plasma PK model determines the time-dependent concentration of all antibiotics following oral doses, which in 
turn determines the amount of antibiotic delivered onto the agent-based model grid. The computational grid is 
200x200 square grid spaces, representing 4mm by 4mm of lung. Within the agent-based model, the tissue PK model 
describes antibiotic diffusion and binding as well as immune cell accumulation. Based on the local concentration of 
antibiotics, the PD model evaluates an antibiotic killing rate constant based on an effective concentration that is 
calculated from each individual antibiotic concentration. The corresponding FIC predicted from INDIGO-MTB either 
increases or decreases this effective concentration, depending on whether the combination is synergistic or 
antagonistic. c) Different predictions and outcomes, with the gradient above corresponding to the relevant length 
scale for the model/prediction. From left to right, predictions made by integration of GranSim and INDIGO-MTB are 
shown, including FIC predictions from INDIGO-MTB, Mtb-specific killing rate and interactions, number of cells/Mtb 
overtime used to evaluate simulated EBA, spatial analysis of antibiotic concentration and interactions, and 
sterilization time distributions from a collection of granulomas. 
 

Next, to predict in vivo interactions and efficacy, here we integrate INDIGO-MTB 

predicted drug interactions within an existing multi-scale model of pathogen-immune 

dynamics leading to granuloma formation, known as GranSim [22,26–29]. GranSim 

integrates spatio-temporal host immunity, pathogen growth and drug PK/PD into a 
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single computational framework. GranSim uses a hybrid agent-based model to describe 

interactions between immune cells and cytokines with bacteria and antibiotic delivery to 

granulomas, and provides a dynamic picture of pathogen clearance leading to 

granuloma sterilization [22]. Previously, we modeled PK/PD in GranSim and explored 

regimens with isoniazid and rifampin, three fluoroquinolones, and more recently HRZE 

[30–32]. However, in these studies we assumed no interaction between antibiotics. 

Hence, we now integrate INDIGO-MTB predictions of drug interactions within the 

GranSim framework, allowing the full characterization of drug interaction dynamics at 

the molecular and cellular scales, and verify our results against patient-level data. This 

allows us to evaluate how drug interactions and PK/PD at the molecular scale influence 

in vivo efficacy at the granuloma scale.   

 

Our study herein represents the first pipeline that incorporates both in vitro drug 

interactions and in vivo PK/PD to simulate treatment dynamics of numerous drug 

regimens. Our study overcomes the limitation of prior studies that have focused on 

variation in PK/PD parameters alone to predict treatment outcome [33–35]. Combining 

INDIGO-MTB with GranSim allows us to compare different regimens based on the 

impact of their interactions on various simulated metrics such as rate of pathogen load 

decline in granulomas and granuloma sterilization rates. Our approach provides a 

measurement of drug interactions within lung granulomas based on concentrations that 

different bacterial populations are experiencing in their individual granuloma 

environment. 

 

 Methods 
3.3.1 INDIGO-MTB model for predicting drug interactions 
INDIGO-MTB identifies interactions between drugs in a combination regimen by utilizing 

pathogen transcriptomics in response to individual drugs. INDIGO-MTB was built using 

drug response transcriptome data for 164 drugs, including well known drugs rifampicin, 

isoniazid, streptomycin, and several fluoroquinolones [8]. The model first generates a 

drug-gene association network using the transcriptomics data, and the machine-

learning algorithm, Random Forest. The algorithm identifies genes that are predictive of 
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drug interaction outcomes using a training data set of known interactions [25]. This 

trained network model is used to predict interactions for novel drug combinations and 

provides the Fractional Inhibitory Concentration (FIC) as an output (Figure 3.1). The 

model can identify all possible 2-way, 3-way, 4-way and 5-way synergistic, additive and 

antagonistic drug interactions after in silico screening of more than 1 million potential 

drug combinations. INDIGO-MTB predicted FIC scores to be integrated within GranSim 

were generated for all possible combinations of the first line drugs and two 

fluoroquinolones (H, R, Z, E, Levofloxacin (L) and Moxifloxacin (M)), as listed in Table 

B.1 (Appendix B). 

 

3.3.2 GranSim model of granuloma formation and function 
GranSim is a well-established agent-based model of granuloma formation and function 

[22,26–29]. It simulates the spatial heterogeneity and bacterial burden of primary TB 

lesions by simulating the immune response to infection with Mtb in a computational grid 

representing a small section of lung tissue, with formation of a granuloma as an 

emergent behavior (Figure 3.1). The simulation begins with a single infected 

macrophage at the center of the grid, and macrophages and T cells are recruited to the 

site of infection and interact with each other according to immunology-based rules that 

describe cell movement, activation, cytokine secretion, and killing of bacteria (for a full 

list of rules see referenced webpage [36]). Bacteria are tracked individually and 

modeled as individual agents in the simulation, existing in three distinct subpopulations: 

intracellular (inside macrophages), extracellular replicating and extracellular non-

replicating. The effective growth rates of extracellular bacteria are modulated by the 

number of bacteria in a given grid compartment. The growth rate becomes zero when 

the carrying capacity for that compartment is reached to reflect the relative availability of 

nutrients and physical space limitations [28]. Growth rates of extracellular Mtb are also 

slowed by the presence of caseum (dead cell debris), as a way to estimate the effect of 

lack of oxygen [37]. The parameter values describing rules and interactions are based 

on previous GranSim studies and evidence from experimental literature and datasets on 

non-human primates [22,32,38]. 
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3.3.3 Simulation of antibiotic delivery and concentrations within granuloma 
We simulate antibiotic delivery within the GranSim computational framework as 

previously described [22,30,32]. Briefly, a plasma PK model simulates absorption into 

plasma following an oral dose, exchange with peripheral tissue, and first-order 

elimination from plasma. Flux of antibiotics into the simulation grid is based on the local 

gradient between the average drug concentration surrounding vascular sources on the 

agent-based grid and the plasma concentration. Here we use a 200x200 grid 

representing a 4 mm x 4 mm lung section. The flux is calculated over time as plasma 

concentrations change within and around each vascular source and allows for delivery 

or subtraction from the computational lung environment, depending on the direction of 

the concentration gradient. Once on the grid, antibiotics diffuse, bind to extracellular 

material (epithelial tissue and caseum), partition within macrophages and degrade 

(Figure 3.1). Based on relative binding and partitioning rates into macrophages, 

concentrations of intracellular and bound antibiotic are modeled at pseudo-steady state 

for isoniazid, rifampin, ethambutol and pyrazinamide. The drugs moxifloxacin and 

levofloxacin exhibit slower rates of binding and partitioning relative to diffusion. Hence 

the dynamic binding and partitioning of these drugs are modeled using ordinary 

differential equations [30]. We determined plasma PK parameters by calibration to 

human data as previously described [20,32,39]. We calibrated tissue PK parameters 

based on concentrations in rabbit or human lesions [20,30,32,40]. 

 

3.3.4 Calculation of antibiotic killing rate and in vivo drug interaction 
We calculate the antibiotic killing rate constant using an Emax model (Hill equation) as 

we have done previously [22]. This antibiotic killing rate constant is evaluated at each 

time step for every Mtb in the simulation based on the local grid concentrations as they 

change over time. The antibiotic killing rate constant (") is evaluated as 

 
 

 "($) = '!"#
($%%($)&

($%%($)& + ('(&
 Eq. 3.1 
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where '!"# is the maximal killing rate constant, ('( is the concentration at which half 

maximal killing is achieved, h is the Hill coefficient, and ($%% is the effective 

concentration of the antibiotic (or combination of antibiotics). To reflect each antibiotic’s 

unique levels of activity against different sub-populations of bacteria, the PD parameters 

('(, '!"# and h vary depending on the location of the bacteria  within the granuloma 

(intracellular, extracellular replicating, or extracellular non-replicating).The relationship 

between a combination of drug concentrations and pharmacodynamic effect (such as 

killing and inhibition) is described using the Loewe Additivity model [14,41]. In the 

Loewe additivity model, a simply additive interaction between two antibiotics is 

described by  

 

 ()
+(#,)

+ (+
+(#,+

= 1 Eq. 3.2 

 

where +(#,) and +(#,+ are the inhibitory concentrations of drugs 1 and 2 that achieve x% 

inhibition on their own, and () and (+ are the concentrations that achieve the same level 

of inhibition in combination. We can convert the concentration of drug 2 to an equipotent 

concentration of drug 1, shown in Figure 3.2 and denoted (+,",-. This gives the 

concentration of drug 1 that results in the same antibiotic killing rate constant as the 

given concentration of drug 2 ((+), which we define as the adjusted concentration for 

drug 2 ((+,",-). 
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Eq. 3.3 

  

 

 

The corresponding inhibitory concentrations for a given x% inhibition for drugs 1 and 2 

are now both equivalent to +(#,), because both () and (+,",- are expressed in terms of 
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concentration of drug 1. Substituting (+,",- for (+ and +(#,+ for +(#,), Eq. 3.2 can be 

rewritten as 
 

 () + (+,",- =	 +(#,) Eq. 3.4 

 

If there are 3 or more drugs under consideration, we define this sum of concentrations 

as the effective concentration (($%%) of a combination of n antibiotics: 
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Eq. 3.5 

 

We define synergy or antagonism between two or more drugs based on deviations from 

simple additivity, as assumed above. This deviation is represented using the Fractional 

Inhibitory Concentration (FIC) [42]: 

 
 

 4+( = (2
($

 

 
Eq. 3.6 

 

where (2 represents the observed combined drug concentration to yield a given level of 

inhibition, and ($ is the expected combined drug concentration to yield the same level of 

inhibition if the two drugs or more drugs were simply additive [14]. The FIC measures 

changes in potency, i.e. how much drug is needed to produce a certain 

pharmacodynamic effect. Based on the value of FIC, synergistic or antagonistic 

combinations result in a lower or higher effective drug concentration to achieve the 

same level of killing. To incorporate drug interactions into our model, we assume the 

effective concentration for a combination of 5 drugs is adjusted from Eq.3.5 based on 

the FIC value: 
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Eq. 3.7 
 

 

Eq. 3.7 adjusts effective concentration so that synergistic combinations (FIC < 1) result 

in a higher effective concentration, and antagonistic combinations (FIC > 1) result in a 

lower effective concentration. Using our defined effective concentration, we substitute 

Eq. 3.7 into Eq. 3.1 to evaluate the antibiotic killing rate constant for combinations of 

antibiotics while also accounting for drug interactions. Our drug interaction model and 

effective concentration formulae accurately recreate in vitro drug interaction behavior 

observed in checkerboard assays (Figure 3.2) [14]. 

 

To evaluate the impact that each drug interaction has on the calculated killing rate 

constant (Eq. 3.1) for a given combination of antibiotics in our in vivo simulation, we 

define an in vivo Drug Interaction Score (iDIS). The iDIS is the ratio of the bacterial 

killing rate constant with a predicted FIC to the killing rate constant if FIC was equal to 

1, i.e. no or additive drug interactions. This allows us to quantify the impact that drug 

interactions have on bacterial killing for each individual Mtb at each time step during 

simulated treatment.  

 
Figure 3.2 Graphical representation of computing the adjusted concentration and killing rate constant (Eq. 
3.1 and 3.3).  
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The adjusted concentration of a drug is found by computing the equipotent concentration for another drug. The plot of 
two Hill curves for three different drugs (drug 1, orange; drug 2, blue) shows the relationship between concentrations 
of the two antibiotics and their adjusted concentration (A). The effective concentration, evaluated as the sum of the 
adjusted concentrations, determines the antibiotic killing rate constant. Antibiotic killing rate constant contours show 
the behavior of the drug interaction model for a combination of two theoretical drugs. Drug 1 has a c50 of 1 mg/L, 
Emax of 0.02 1/s, and a hill coefficient of 1. Drug 2 has a c50 of 2 mg/L, Emax of 0.01 1/s, and a hill coefficient of 1. 
When the two drugs have an FIC of 1.0 (B), 1.5 (C), or 0.6 (D), the contours show the characteristic straight line or 
curved contours characteristic of checkerboard assays for additive, antagonistic, or synergistic combinations. A sham 
combination of Drug 1 (E) results in a simply additive case. 
 

3.3.5 Antibiotic treatment simulations and calculation of regimen efficacy  
To simulate treatment with different antibiotic combinations, we first created an in silico 

granuloma library to generate a set of granulomas. Each library consists of 500 

granulomas simulations, generated from 100 parameter sets sampled with Latin 

Hypercube Sampling (LHS), and each parameter set was replicated five times [43,44]. 

Table B.2 (Appendix B) lists the parameters varied and their ranges, which have been 

established in previous work [22,32]. Parameter ranges capture natural variability in the 

immune response and lung environment, such as differences in cellular recruitment and 

immune cell activation. In addition, replicating simulations with the same parameter set 

incorporates variability due to stochasticity in the simulations. Granulomas are 

simulated for 300 days in the absence of antibiotics. At day 300, a random sample of 

100 unsterilized granulomas is selected from the relevant library for treatment. The 

prescribed regimens are simulated for 180 days or until the granuloma is sterilized. See 

Table B.1 (Appendix B) for the full list of regimens tested.  

 

We evaluate three metrics from our simulations to assess the efficacy of each regimen 

tested: log decrease in CFU per day, percent of simulated granulomas that are sterilized 

after eight weeks of treatment (sterilization percent), and average time at which those 

granulomas become sterile (sterilization time). For each regimen, 100 granulomas are 

simulated and results from those simulations are used to calculate 3 outcomes 

measures: simulated log decrease in CFU per day, sterilization percent, and sterilization 

time.  

 

3.3.6 Comparison to clinical trials 
To validate our model results, we compared our treatment simulation outcomes to 

Phase IIb clinical trial data [45]. We compared the clinical datasets outcomes for each 
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regimen with our simulated granuloma sterilizations after 8 weeks of treatment. We 

used the percent of granulomas that are completely sterilized at 8 weeks as a lower 

bound estimate. Our upper bound estimate is the percentage of granulomas with fewer 

than 10 CFU after 8 weeks. We chose this value as these granulomas with low bacterial 

load would not be detectable in sputum. Additionally, we compared the rank of clinically 

tested regimens, ranked by sputum conversion, to the rank of regimens based on 

simulation results. Simulated regimen rankings were ranked by average sterilization 

time, FIC, and average iDIS for non-replicating Mtb. Further, we compared our 

predicted treatment sterilization times for fluoroquinolone-containing regimens with 

clinical endpoints (up to 6 months) from recent phase III clinical trials that include 

fluoroquinolones for treating drug-susceptible TB [46–48]. 
 

3.3.7 Plasma PK sensitivity analysis on interaction strength 
We performed a sensitivity analysis to evaluate how PK parameters impact the 

predicted iDIS for regimens with different levels of synergy. For four regimens (HRZE, 

RE, HE, RM), we selected a single granuloma to simulate treatment for one day to 

measure an iDIS. For each regimen, we simulated the granuloma 500 times with 

different plasma PK parameters sampled using LHS. For each plasma PK parameter 

set, we calculated the average iDIS over the first day of dosing over all non-replicating 

Mtb. Finally, we evaluated the partial ranked correlation coefficient (PRCC) between 

each plasma PK parameter and the predicted iDIS to determine the impact each 

parameter has on the drug interactions [44,49].  

 

 Results 

3.4.1 Drug interactions significantly impact in vivo treatment dynamics in GranSim 
We focus on combinations of 2, 3 or 4 drugs involving the first-line antibiotics and two 

fluoroquinolones (Table B.1, Appendix B). These drugs include isoniazid (H), rifampin 

(R), ethambutol (E), pyrazinamide (Z), moxifloxacin (M), and levofloxacin (L). We chose 

these drugs as they are part of the current standard-of-care for treating TB. Further, 

transcriptomics and PK/PD parameters are available for these drugs for simulation 

using both INDIGO-MTB and GranSim. 
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Using INDIGO-MTB, we first predicted all possible in vitro interaction outcomes for 

these combinations. The combinations are predicted to have FIC values that range from 

synergistic (e.g. HRZ – FIC of 0.74) to antagonistic (e.g. RM – FIC of 2.31). The 

standard regimen (HRZE) is predicted to be synergistic (FIC – 0.82) while moxifloxacin-

containing regimens were mostly antagonistic (Table B.2, Appendix B).  

 

Given the various factors that can impact antibiotic efficacy in vivo that are captured in 

GranSim, the relative impact of drug interactions on treatment outcomes is unclear. We 

hypothesized that analysis of various drug regimens with different drug interaction 

scores (FIC) can help tease out the impact on treatment outcome. Our previous studies 

of antibiotic treatment using GranSim did not consider drug interactions. Here we 

explore how either antagonistic or synergistic affects overall efficacy. We tested the 

impact of incorporating drug interactions on treatment dynamics using GranSim.  

 

We input FIC values into GranSim and simulated the immune response and antibiotic 

delivery to granulomas (Methods). The plasma and tissue PK parameters for these 

drugs within the GranSim computational framework were derived from previous studies 

calibrating PK parameters to experimental plasma and lesion drug concentrations 

(Methods). For each regimen tested, 100 simulated granulomas were treated for up to 

180 days with daily doses of each antibiotic in the specified regimen. To compare the 

efficacy of each of these regimens, we evaluate three measures: the log decrease in 

CFU per day, percent sterilization of granulomas, and average sterilization time. 

 

The in vitro FIC value of each combination is correlated with each of the three simulated 

efficacy outcomes that we calculated (Figure 3.3). For our simulated log decrease in 

CFU per day from 0-14 days and the sterilization percent, we observe that both 

outcomes tend to decrease as FIC values go from synergistic to antagonistic 

(correlation R = -0.52 and -0.59 respectively, Figure 3.3). The average sterilization time 

is positively correlated with FIC value (correlation R = 0.59, Figure 3.3). Overall, this 
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indicates that synergistic regimens are more likely to sterilize a greater percentage of 

granulomas in a shorter time at both early and later time points.  

 

Although these relationships show moderate levels of correlation, there are a few 

notable deviations. Interestingly, the regimen RM (FIC = 2.31) performs better than the 

less antagonistic regimen HE (FIC = 1.46). The best regimen in terms of average 

sterilization time is HRZE (FIC = 0.82); however, the regimen RE (FIC = 0.74) has a 

lower FIC but does not perform as well as HRZE. These results suggest that FIC values 

are not the only factor impacting granuloma sterilization. Because these results are 

based on sterilization in granulomas, the concentrations of each antibiotic in the 

granuloma compartment (based on dosage and PK) also impact the ability of each 

regimen to sterilize. 

 
Figure 3.3 Regimen efficacy is correlated with FIC for 64 simulated drug regimens.  
Mean decrease in log CFU (0-14 days) averaged over 100 granulomas simulated for each drug regimen (A) and 
percentage of sterilized (negative) granulomas after eight weeks of treatment (B) are negatively correlated with FIC 
values, with correlation coefficients of -0.52 and -0.59, respectively. Mean sterilization time for each regimen over 100 
granulomas (C) is positively correlated with FIC with a correlation coefficient of 0.59. Each point represents the 
regimen outcome measurement for a given regimen and error bars indicate +/- standard deviation from the sample of 
100 granulomas simulated. The 64 drug regimens simulated are listed in Table B.1 (Appendix B). The colored points 
correspond to the regimens HRZE (light blue), RE (dark blue), RM (red) and HE (orange) for emphasis. 
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3.4.2 The in vivo drug interaction score is predictive of treatment dynamics 
The antibiotic killing rate is dependent not only on the FIC value, but also on local drug 

concentrations within a granuloma, the subpopulation of bacteria (intracellular, 

extracellular replicating, extracellular non-replicating), and the specific PD parameters of 

antibiotics involved. Based on the definition of the FIC, synergistic or antagonistic drug 

combinations result in a lower or higher effective concentration to achieve the same 

level of bacterial killing. To evaluate the overall impact of drug interactions on the 

calculated killing rate constant, we evaluate an in vivo Drug Interaction Score (iDIS) for 

the three subpopulations of bacteria. The iDIS measures the relative increase or 

decrease of the antibiotic killing rate constant due to the specific drug interaction. We 

calculate iDIS as the ratio of the antibiotic killing rate constant evaluated in the 

simulation to the rate constant if the interaction is simply additive (FIC equal to 1.0). 

This ratio provides a measure of how much the drug interaction impacts the killing rate 

constant and is unique for each individual mycobacterium within GranSim as drug 

concentrations change over time. At each time step during treatment, the average iDIS 

over all Mtb by subpopulation is evaluated as a model output.  

 

Figure 3.4 shows the average iDIS for non-replicating Mtb over the first dose interval for 

each regimen, and its relationship to regimen outcomes. A value of 1 indicates the 

interaction has no impact on the killing rate constant; values greater than 1 or less than 

1 indicate synergistic or antagonistic combinations, respectively. 

 

The iDIS for each regimen is strongly correlated with the outcomes from our GranSim 

simulations: log decrease in CFU per day (R = 0.86), percentage of negative 

granulomas at eight weeks (R = 0.73), and the average sterilization time (R = -0.73) 

(Figure 3.4). The correlations are much stronger than those observed for FIC (Figure 

3.3), indicating that measuring the iDIS, which is calculated for specific granuloma 

environments, provides more information on regimen efficacy than examining FIC 

values, which are calculated based on in vitro environments.  
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Figure 3.4 Regimen efficacy is correlated with the in vivo Drug Interaction Score (iDIS). 
iDIS associated with non-replicating Mtb killing is evaluated for 3 measures over 64 simulated drug combination 
regimens. The decrease in log CFU (0-14) averaged over 100 granulomas simulated for each regimen (A) and 
percentage of sterilized (negative) granulomas after eight weeks of treatment (B) are positively correlated with iDIS of 
non-replicating Mtb during the first 24 hours of treatment (correlation coefficients of 0.86 and 0.73, respectively). 
Mean sterilization time for each regimen over 100 granulomas (C) is negatively correlated with iDIS of non-replicating 
Mtb (correlation coefficient of -0.73). Each point represents the regimen outcome measurement for a given regimen 
and error bars indicate +/- standard deviation from the sample of 100 granulomas simulated. The 64 drug regimens 
simulated are listed in Table B.1 (Appendix B). The colored points correspond to the regimens HRZE (light blue), RE 
(dark blue), RM (red) and HE (orange) for emphasis. 
 

Each combination of antibiotics has a different absolute killing rate constant based on 

the specific combination of PD parameters associated with that combination together 

with the distribution of antibiotics within a granuloma. These results suggest that iDIS 

provides a more accurate representation of how well a given combination of antibiotics 

achieves sterilization as it accounts for the unique killing rate constant that each 

individual Mtb experiences and measures the impact that an FIC value has on that 

killing rate constant. 

 

Antibiotics work stronger on replicating Mtb than against non-replicating Mtb. Antibiotic 

killing rate constants that are higher and closer to their overall Emax value are less 

impacted by drug interactions. We found that correlations between regimen outcomes 
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and the average iDIS associated with replicating extracellular and intracellular Mtb are 

weaker than when comparing regimen outcomes to the iDIS from non-replicating Mtb 

(Figures B.1 and B.2, Appendix B). The average iDIS measurements for replicating Mtb 

are closer to 1.0 and weaken the correlation with regimen outcomes. Hence, the strong 

correlation between drug interactions and clinical outcomes are primarily driven by drug 

action against non-replicating bacteria. 

 
Figure 3.5 shows a heat map of the mean sterilization time, iDIS and FIC for each 

regimen, ordered by decreasing iDIS. In general, the regimens with the fastest 

sterilization times also have high iDIS. The top 17 regimens, as measured by shortest 

average sterilization time, all contain RIF, indicating that RIF is a very important addition 

to regimens. Another general trend is that two-drug combinations typically perform 

worse than 3- or 4-drug combinations. Fluoroquinolones tend to participate in more 

antagonistic combinations, as measured by the iDIS. For example, 22 of the 31 MXF or 

LVX containing regimens are above the median iDIS of all 64 regimens. Two regimens 

(R23.5E45dpw2 and R23.5E90dpw1) with synergistic iDIS measurements showed slow 

sterilization times, as they were dosed less frequently than a day. 

 
Figure 3.5 Heat map capturing three metrics for 64 different regimens. 
The list of regimens is ordered by decreasing predicted iDIS (middle row). For each regimen, the log2(FIC) value 
(bottom row) and the average predicted granuloma sterilization time (top row) are also represented. For predicted 
iDIS and FIC, blue represents synergy, white represents additivity, and red represents antagonism. For sterilization 
time, blue represents shorter sterilization times and red represents longer. 
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3.4.3 INDIGO-MTB - GranSim regimen rankings are correlated with clinical rankings 
To explore how our predictions of regimen efficacy compare to clinical results, we 

compare our INDIGO-MTB - GranSim treatment simulations to results from TB drug 

clinical trials. Drawing from the meta-analysis of phase II trials presented in Bonnet et al 

(2017), we selected all regimens that reported sputum culture conversion in solid media 

[45]. The efficacy metric presented for Phase IIb trials is the percent of patients with 

negative sputum culture after 8 weeks of therapy. Since our simulations predict 

treatment outcomes at the granuloma scale, we estimated how sterilization at the 

granuloma level relates to host-level culture conversion. Figure B.3 (Appendix B) shows 

the comparison of the upper and lower bound estimates for percent sputum conversion 

from our simulation to clinical trial results for 26 regimens (Methods). For most 

regimens, estimates of sterilization percentage compare closely to clinically measured 

culture conversion. In general, INDIGO-MTB - GranSim simulations appear to 

overpredict the rates of sterilization and most incorrect predictions fall into this category 

(Figure B.3, Appendix B). This observed overprediction is likely due to the simplification 

of predicting sterilization at the granuloma scale that does not include the full spectrum 

of complex granuloma lesions, failed adherence to regimens, and other factors that 

complicate TB treatment.  

 

We next validate our simulation results by comparing the ranking of the efficacy of each 

of the regimens with the corresponding ranking of the efficacy from clinical trials (Figure 

3.6). The clinical rank is determined by ranking each regimen by the pooled culture 

conversion after 8 weeks, so that a ranking of 1 is the regimen with the lowest culture 

conversion. The simulation rank is determined by percentage of granulomas sterilized 

after 8 weeks. We used the Spearman ranked correlation coefficient, weighted by the 

number of patients in each pooled regimen result, and found a significantly strong 

correlation between simulations and clinical trials (R = 0.72).  
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Figure 3.6 INDIGO-MTB-GranSim compared with clinical data.  
Comparison and validation of treatment simulations with clinical trial results for 26 different regimens compiled in 
Bonnet et al. (2017) [45]. Predictions from GranSim simulations for 26 drug regimens correlate with clinical outcomes. 
The simulation rank, ranked by percentage of sterilized granulomas after 8 weeks, and clinical rank, ranked by 
clinically reported culture conversion, have a weighted correlation of 0.72, weighted by the number of patients treated 
with each regimen. 
 

Recent phase III clinical trials have investigated the impact of introducing 

fluoroquinolones into treatment regimens to treat drug-susceptible TB, some with the 

additional intent of shortening treatment time from six months to four. Many of these 

trials have failed to show improvement in TB treatment, and often led to higher rates of 

unfavorable outcomes at the trial’s endpoints [46–48]. These trends are reflected in our 

analysis of the drug interactions for various drug combinations. The control regimen, 

HRZE, is strongly synergistic as measured by iDIS, and we predict short average 

sterilization times (14 days, Figure 3.4). In contrast, fluoroquinolone containing 

regimens, such as HRMZ and RMZE, are closer to additive, and are predicted to have 

longer sterilization times of 41 and 21 days respectively. These trends indicate that our 

simulation predictions are consistent with phase III clinical trial observations. Thus 

INDIGO-MTB - GranSim simulations provide strong predictive measures of clinical 

outcome for different regimens. 
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Both iDIS and INDIGO-MTB FIC predictions for these regimens are also significantly 

correlated with their clinical ranking (Figure B.3, Appendix B). These simulated results 

are consistent with the correlation observed in a prior study between INDIGO-MTB FIC 

scores and percentage of patients with negative culture after treatment from 57 

randomized clinical trials [8]. Based on these results, both interaction measurements 

have the potential to help predict the clinical efficacy of drug combination regimens.  

 

The FIC value is one measure of drug interactions in vitro; however, there are many 

factors that impact regimen efficacy in vivo that FIC alone does not capture. Measuring 

the iDIS can incorporate changes in concentration due to PK variability, changes to 

dosing regimens, and heterogeneous antibiotic concentrations due to granuloma 

structure and the varying environments where bacteria reside impact the degree to 

which the drug interactions impact killing rates. It also includes effects of the immune 

responses occurring with granulomas. 

 

3.4.4 Spatial variation in drug concentration influences iDIS in granulomas 
Nonuniform drug distributions within granulomas arise due to barriers to diffusion that 

the cellular structure of granulomas creates [20–22,30]. The spatial variation in antibiotic 

concentrations within a granuloma leads to variations in local effective concentrations, 

and ultimately antibiotic killing rates and iDIS. The free drug concentrations available to 

induce bactericidal activity against Mtb are also influenced by binding to extracellular 

matrix as well as partitioning into macrophages [40]. Hence, we next focused on the 

contribution of the drug spatial variation to iDIS. 

 

Figure 3.7 shows the spatial variation for effective drug concentrations normalized to the 

regimen’s non-replicating Mtb ('( parameter and iDIS for four of the regimens 

simulated: HRZE, RE, HE and RM. These regimens demonstrate a mix of synergistic 

and antagonistic combinations that also exhibit both strong and weak iDIS values. For 

the two synergistic combinations, HRZE and RE, effective concentrations are lower 

within a granuloma than just outside it, lowering the killing rate constants. Because most 
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non-replicating Mtb are found within the hypoxic caseum which is typically located 

toward the center of the granuloma, the effective concentrations in those caseated 

regions and inside the granuloma are the concentrations that are relevant to predicting 

sterilization rates. However, lower effective concentrations inside granulomas and 

caseated regions can also result in higher iDIS (Figure 3.7). Because iDIS tends to be 

higher within granulomas where Mtb reside, this may contribute to synergistic 

combinations performing better than antagonistic combinations of similar effective 

concentrations. 

 
Figure 3.7 Contribution of individual antibiotics to the in vivo drug interaction score (iDIS).  
Values of iDIS are associated with proportion of each antibiotic's contribution to the effective concentration. Four 
different regimens are shown: HRZE (first row), RE (second row), HE (third row), and RM (fourth row). Heat maps 
show the effective concentration normalized to the C50 for non-replicating Mtb of the combination (first column) and 
the fraction of each antibiotic’s contribution to the effective concentration (second and third columns). The calculated 
iDIS value for non-replicating Mtb is shown in the fourth column, with the color bar representing the iDIS value with 
blue representing a synergy, white representing additivity, and red representing antagonism. All heat maps reflect 
conditions 6 hours after dosage with each antibiotic in the relevant regimen.  
 

An additional aspect that influences the iDIS is the relative contribution of each antibiotic 

in the combinations (Figure 3.7, columns 2 and 3). Antibiotic combinations that 

contribute more equally to the effective concentration deviate more from additivity than 

combinations of antibiotic concentrations in which contributions are uneven (i.e. when 
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one antibiotic has a much higher adjusted concentration than the other antibiotics). 

Although RE has a more synergistic FIC than HRZE, the iDIS against non-replicating 

Mtb for HRZE is higher than RE, and HRZE has better efficacy than RE. This is partially 

due to R and Z contributing to the effective concentration in the granuloma evenly (R 

~50% contribution, Z ~40% contribution). The contributions from R and E in RE, 

however, are more disproportionate, with >90% of the effective concentration due to R 

and <10% of the effective concentration from E.  

 

A similar situation occurs with the two antagonistic combinations HE and RM. Although 

RM is predicted to be strongly antagonistic, its efficacy is still average compared across 

all regimens tested. HE, on the other hand, has a less antagonistic FIC, but performs 

more poorly than RM. When looking at both antibiotic contributions for these two 

regimens and the iDIS against non-replicating Mtb, we see that H accounts for ~75% of 

the effective concentration and E accounts for ~25%. Although not equal contributions, 

this still allows for an antagonistic interaction to occur. With the RM combination, R 

accounts for almost all of the contribution to the effective concentration because its 

levels are higher relative to its own ('(, resulting in almost no antagonistic interaction to 

occur with M, despite the high FIC. For antagonistic combinations, uneven contributions 

from the different antibiotics in the combination can mitigate the effect of the 

antagonistic interaction. 

 

Due to this dependence on drug concentrations, the predicted iDIS varies for different 

doses and regimens of the same drug combination (Figure B.4, Appendix B). In 

contrast, the FIC interaction score is fixed for a combination irrespective of the dosage. 

As doses vary in vivo, the strength of the synergistic or antagonistic interactions can 

either increase or decrease, depending on the specific combination of antibiotics. One 

common trend is less frequent dosing tends to decrease the interaction strength, which 

we observe for both the HRZE and RE combinations. 
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3.4.5 Plasma clearance rates correlate with in vivo drug interaction score 
Even for a given simulated granuloma and drug regimen, antibiotic concentrations can 

vary due to host-to-host PK variability [32]. This can also result in changes in iDIS. We 

picked four different regimens, ranging from synergistic to antagonistic (HRZE, RE, HE, 

RM) to exhaustively explore the impact of various PK parameters. The plasma 

clearance rate constant for many of the antibiotics in these regimens is significantly 

correlated with predicted iDIS, particularly the clearance rate constants for R, E and M 

(Table 3.1). A more detailed analysis of correlations between plasma PK parameters 

and iDIS is shown in Table B.3 (Appendix B). The R clearance rate constant is strongly 

correlated with iDIS, with coefficients between 0.8 and 0.9, depending on the regimen. 

The correlation coefficients for the clearance rate constant for R are positive for 

synergistic combinations (HRZE, RE), and negative for antagonistic combinations (RM). 

Because iDIS values that deviate further from 1 imply a stronger interaction, this means 

that faster clearance rates for R tend to increase the interaction strength. The opposite 

is true for the clearance rate constant of E. The correlation coefficient between the 

clearance rate constant for E and predicted iDIS is negative in synergistic combinations 

(HRZE, RE), and positive in the antagonistic combination (HE). While this may seem 

counterintuitive, it supports the idea that the iDIS value is dependent on relative in vivo 

drug concentrations. Faster clearance rates generally result in lower concentrations in 

plasma, and consequently lower concentrations in the granuloma. Because R tends to 

contribute more to effective concentrations than other antibiotics, increasing the 

clearance rates for R will strengthen the interaction by decreasing R concentration and 

allow for more even contributions. For E, whose contribution to effective concentration 

tends to be lower, increasing clearance rates result in lower E concentrations and 

contributions, and scenarios of even more lopsided contributions and less interaction. 

Relative drug concentrations inside the granuloma affect the strength of drug 

interactions, and these strong correlations indicate that interactions may be stronger or 

weaker for certain combinations depending on an individual’s PK [32]. 

 
Table 3.1 Significant antibiotic clearance rate constants in determining iDIS 
The relationship between clearance rate constants for different antibiotics is correlated with iDIS with non-replicating 
Mtb during the first dose of therapy. Table shows PRCC values relating the clearance rate constants to the predicted 
iDIS for the regimens HRZE, RE, HE and RM. The values shown represent PRCC values that are significant with p < 
0.01. 
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Regimen 
  

PRCC Values for predicted iDIS 

R clearance E clearance M clearance 

HRZE 0.89 -0.56  N/A 

RE 0.90 -0.92  N/A 

HE  N/A 0.88 N/A  

RM -0.83 N/A  0.99 

 

 Discussion 
The need for multiple drug regimens to treat TB raises a number of issues that can be 

capitalized on to advance treatment for the world’s worst killer by disease. In particular, 

understanding the role of interactions occurring in either a synergistic or antagonistic 

fashion between anti-TB antibiotics in vivo may provide a more rational approach to 

choosing novel combinations that have greater clinical efficacy. However, measuring 

drug interactions in vivo is challenging due to the limited throughput, cost, and time 

involved in testing drugs in model organisms. In this study, we introduce a 

computational pipeline that can simulate in vivo interactions by using datasets derived 

from individual drug-response transcriptomes and PK/PD, thereby greatly reducing cost 

and time. Our approach integrates interaction scores of combinations of antibiotics into 

a computational model that simulates drug delivery into the lung, spatial concentrations 

of drugs and pharmacodynamic effects within TB granulomas.   

 

To evaluate drug regimens, we introduce a new metric called the in vivo drug interaction 

score (iDIS) that is dynamic and unique for each mycobacterium based on its location 

and metabolic state (i.e. replicating/non-replicating) within a granuloma. Unlike the in 

vitro drug interaction scores derived from checkerboard assays and INDIGO-MTB, 

which are fixed for given drug combinations, the in vivo score can provide a more 

nuanced impact of drug interactions on pathogen clearance. This allowed us to 

compare various drug regimens and rank them based on their in vivo interactions. We 
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found that our ranking of regimens is highly concordant with clinically observed efficacy 

of various drug combinations [45].  

 

When simulating all regimens considered in this study, the FIC alone does correlate 

with the simulated and predicted outcomes from our model. However, there are a 

handful of regimens that do not fit the trend. Measuring the iDIS, which evaluates the 

relative increase or decrease in killing rate due to the interaction within the complex 

granuloma environment, provides a complementary measure of regimen outcome. This 

is because the effect that drug interactions have on killing rate constants is dependent 

on the balance of contributions from each single antibiotic. Combinations with highly 

synergistic or antagonistic FIC values may be closer to additive if only one antibiotic is 

present in sufficient quantities within a granuloma. 

 

Our analysis of various drug regimens revealed ways of amplifying synergy as well 

mechanisms to mitigate antagonism in vivo. We found that some combinations with in 

vitro antagonism perform well clinically due to the distinct spatial distribution of the 

underlying drugs. Antagonistic interactions can be mitigated if the drugs have uneven 

distributions and effective concentrations or through less frequent dosing. Overall, we 

find that combinations with strong in vitro synergy remain synergistic or additive in vivo. 

Hence screening for synergy in vitro can be a useful strategy for identifying regimens 

with strong in vivo activity. In a minority of cases, this synergy may not be achieved in 

vivo; nevertheless, synergistic combinations generally outperform antagonistic 

regimens.   

 

As part of this study, we wanted to determine which combinations of antibiotics are 

predicted to have strong synergy and antagonism, as well as which combinations are 

predicted to have high efficacy. We screened 64 combinations and regimens of front-

line regimens (HRZE) along with M and L. The clinically used HRZE regimen does 

outperform other screened combinations, which highlights the need for new drugs to 

achieve the aim of improving TB treatment. Based on the INDIGO-MTB model, we 

previously identified drug combinations involving new TB drugs such as bedaquiline that 
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have better synergy than HRZE. Given the concordance between INDIGO-MTB FIC 

and various clinical metrics observed in this study, the synergistic combinations 

identified by INDIGO-MTB may be promising leads for further optimization using 

GranSim for reducing treatment time [16]. 

 

A limitation to our computational model is that the same FIC value is applied to all Mtb 

within a simulation, regardless of its environment or metabolic state. It is likely that the 

strength of a given interaction, or even whether it is synergistic or antagonistic, is 

dependent on the bacterium’s microenvironment in the granuloma [50,51]. Additionally, 

these simulations represent treatment of primary granulomas in TB disease, and do not 

necessarily reflect the true and enormous complexity of granuloma lesions that occur 

during TB disease. Further, as the simulations are at the granuloma scale, relating the 

outcomes measured by the simulation to clinical outcomes is difficult. The final limitation 

is that we only considered combinations of six different antibiotics. There are many 

other antibiotics in use or in development for use to treat TB. Expanding our ability to 

accurately simulate the PK/PD of additional antibiotics will greatly increase our ability to 

answer how important drug interactions are in determining regimen efficacy.  

 

In sum, our study addresses an important gap in current methods for identifying 

promising drug combinations for TB treatment by presenting a new pipeline for 

evaluating interactions between drugs in vivo. This pipeline provides an additional 

metric with which to evaluate novel combinations of antibiotics, explain mechanisms of 

failed regimens, and assist in optimization regimens as we expand our list of potential 

antibiotics.  
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Chapter 4 Applying Optimization Algorithms to Tuberculosis 
Antibiotic Treatment Regimens 

 
This chapter is a published work: 

 

Cicchese JM, Pienaar E, Kirschner DE, Linderman JJ. Applying Optimization Algorithms 

to Tuberculosis Antibiotic Treatment Regimens. Cell Mol Bioeng. 2017;10: 523–535. 

 
 Abstract 

Introduction: Tuberculosis (TB), one of the most common infectious diseases, requires 

treatment with multiple antibiotics taken over at least 6 months. This long treatment 

often results in poor patient-adherence, which can lead to the emergence of multi-drug 

resistant TB. New antibiotic treatment strategies are sorely needed. New antibiotics are 

being developed or repurposed to treat TB, but as there are numerous potential 

antibiotics, dosing sizes and potential schedules, the regimen design space for new 

treatments is too large to search exhaustively. Here we propose a method that 

combines an agent-based multi-scale model capturing TB granuloma formation with 

algorithms for mathematical optimization to identify optimal TB treatment regimens.  

Methods: We define two different single-antibiotic treatments to compare the efficiency 

and accuracy in predicting optimal treatment regimens of two optimization algorithms: 

genetic algorithms (GA) and surrogate-assisted optimization through radial basis 

function (RBF) networks. We also illustrate the use of RBF networks to optimize double-

antibiotic treatments. 

Results: We found that while GAs can locate optimal treatment regimens more 

accurately, RBF networks provide a more practical strategy to TB treatment optimization 

with fewer simulations, and successfully estimated optimal double-antibiotic treatment 

regimens.  
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Conclusions: Our results indicate surrogate-assisted optimization can locate optimal TB 

treatment regimens from a larger set of antibiotics, doses and schedules, and could be 

applied to solve optimization problems in other areas of research using systems biology 

approaches. Our findings have important implications for the treatment of diseases like 

TB that have lengthy protocols or for any disease that requires multiple drugs. 

 
 Introduction 

Tuberculosis (TB) is a disease caused by infection with Mycobacterium tuberculosis, 

and an estimated one fourth of the world’s population has a latent M. tuberculosis 

infection [1]. In 2015, TB was responsible for 1.4 million deaths [2]. The typical 

treatment of drug-susceptible TB is a lengthy antibiotic regimen of at least six months 

beginning with four antibiotics for two months, namely isoniazid (INH), rifampin (RIF), 

ethambutol, and pyrazinamide. This regimen is followed by a continuation phase of two 

antibiotics (INH and RIF) for an additional four months [3]. Although largely considered 

a successful treatment for drug-susceptible TB, poor patient-adherence and the 

emergence of multi-drug-resistant TB indicate a need for better antibiotic treatments 

[3,4]. Programs such as DOT (directly observed treatment) have been put into place to 

track drug compliance, but this is costly and untenable for many TB patients world-wide 

[5,6]. Additional antibiotics are currently being developed or repurposed to treat TB 

[7,8]. Comparing treatments can involve large meta-analysis studies, and head-to-head 

comparisons of alternative protocols are often lacking [9,10]. Overall, the regimen 

design space for new antibiotic treatments, including combination treatments, is 

enormous and impossible to thoroughly examine in either an animal model or clinical 

setting (Figure 4.1). Identifying better antibiotic treatments (e.g. shorter, less toxic, 

cheaper, and/or more efficacious treatments) presents a challenging optimization 

problem of finding the best combination and regimen of antibiotics. 
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Figure 4.1 Estimating the size of the TB antibiotic regimen design space (RDS).  
The number of potential antibiotic treatment regimens can be estimated by assuming values for the following 
variables: the number of treatment segments (M), such as an initial, intensive and continuation phase; number of 
antibiotics available for use (c); maximum number of antibiotics in each treatment segment (n); and available dose 
levels (D).  Frequency (F) refers to the different possible dosing frequencies to be tested, e.g. once weekly, daily, etc.   
 
There has been some effort to optimize TB treatment and clinical pharmacology of TB 

regimens [11–13]. In this work, we seek to formalize locating better antibiotic treatment 

regimens as an optimization problem. The goal of our treatment optimization problem is 

to identify the region of the regimen design space (combinations of antibiotics and 

treatment variable ranges) that contain optimal treatment protocols, rather than identify 

a single, optimal treatment with high precision. Optimal treatment variables (such as 

dose size or dosing frequency) identified with high precision would not necessarily 

translate to a clinical treatment, because clinical doses and dosing frequencies must be 

realistic to implement (e.g. using available dosages).  

Systems biology has been used to study a wide array of topics [14] including systems 

pharmacology [15–17], vascular and muscle growth [18], or cancer development and 

therapy [19–21]. Computational modeling and systems biology approaches can help 

integrate large sets of data and provide additional biological insights, e.g. by using 

models to predict optimal conditions or to control model behavior [22–24]. As models 

that describe biological phenomena grow more complicated, there is a need for the 

proper tools to obtain the most out of these models.  

c
n

(D × F) n
M
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In this work, we ask whether computational modeling of M. tuberculosis infection and 

antibiotic treatment can be used as an efficient strategy to identify better antibiotic 

treatment regimens. We have developed a hybrid, multi-scale model of granuloma 

formation to predict antibiotic efficacy [25,26]. Granulomas, regions of infected and 

inflamed lung tissue, form in response to M. tuberculosis lung infection. We simulate the 

dynamics of granuloma formation and function in the framework of a hybrid, multi-scale 

agent-based model [27–29]. These dynamics are crucial to understanding TB antibiotic 

efficacy, as the structure of granulomas influences antibiotic exposure to bacterial 

populations [26,30,31]. Although our model can assist in screening new antibiotic 

treatments, the computational complexity and number of granuloma simulations 

required to test all potential treatment regimens (Figure 4.1) prevents us from testing 

every possibility in the regimen design space. However, combining our granuloma 

model with optimization algorithms could provide a viable way to narrow the design 

space and guide animal and clinical trials.  

A diverse set of optimization algorithms are applied in science, math and engineering 

[32,33]. Population-based algorithms, including the genetic algorithm (GA), can be used 

to solve optimization problems with objective functions that are functions of a 

computational model or simulation output [34]. GAs have been used to solve 

optimization problems in fields as varied as robotics, engineering design and pattern 

recognition, and cancer vaccination schedules in mice [32,35–38]. The GA utilizes ideas 

from natural selection to partially search a variable design space, and its framework 

allows for different ways to represent solutions as chromosomes, define objective 

functions, select parents and generate offspring [32]. The algorithm begins by 

generating a population of solutions and evaluating their objective function values. The 

best individuals from the population are selected to be parents, and a new population of 

solutions is generated through crossover operations between the parents and random 

mutations. New generations of solutions are generated until the algorithm converges on 

an optimum. 

Optimization problems can also be solved through surrogate-assisted optimization, 

which generates a model to predict the value of an objective function throughout the 
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design space based on known objective function values. The surrogate model is then 

used to search for the optimal solution, which can be useful in situations where 

evaluating the objective function through experiments or running computational models 

is expensive or inefficient [39,40]. The surrogate model can be built through 

mathematical approximation or interpolation strategies, such as radial basis function 

(RBF) networks [41,42]. With this method, RBFs are used as interpolants between 

sample data points, so that a prediction of an unknown objective function can be 

expressed as a sum of all of the basis functions in the network. These RBF networks 

can be applied to efficiently predict the function response throughout the entire variable 

design space [41–43]. 

Here, we compare the application of GAs and RBF network surrogate models to 

optimize antibiotic treatment of TB. We rely on our published computational granuloma 

model to simulate the infection and immune response and a linked 

pharmacokinetic/pharmacodynamics (PK/PD) model to simulate drug treatment [25,26]. 

We first examine treatment with a single antibiotic to determine whether GAs or RBF 

network methods are better suited for treatment optimization. We then test the method 

of choice on the more complicated antibiotic optimization problem of two antibiotics 

administered simultaneously. Finally, we discuss barriers and approaches for solving 

higher dimensional problems (e.g. greater than two antibiotics) with these methods. 

 Model and Methods 

4.3.1 Computational Granuloma Model 
When M. tuberculosis infects lung tissue, an immune response occurs that leads to the 

formation of multiple granulomas, pockets of infected and inflamed tissue that are 

composed of various immune cells, dead cell debris and bacteria. These granulomas 

help prevent bacteria from spreading both by immunologically restraining and physically 

containing bacteria, but also present a physiological barrier to antibiotic diffusion 

[26,30,31]. We previously developed a computational model (GranSim) to study the 

formation of a granuloma by tracking immune cell and bacteria populations. Briefly, this 

multi-scale, hybrid model incorporates an agent-based model, ordinary differential 

equations (ODEs) and partial differential equations (PDEs) to describe and simulate 



 92 

granuloma formation and function, and has been developed based on experimental 

data from in vitro, mouse and non-human primate models [27–29]. The agent-based 

model operates on the molecular and cellular levels and reads out at a tissue scale; 

individual immune cells (such as T cells and macrophages) are modeled as agents that 

are recruited and interact with each other according to a set of rules (see 

http://malthus.micro.med.umich.edu/GranSim/). ODEs and PDEs are used to describe 

molecular scale events, such as receptor-ligand binding or cytokine and antibiotic 

diffusion, which are solved through the implementation of efficient numerical solvers 

[44]. 

Previously, we incorporated antibiotics into GranSim to study how treatment with two 

first-line antibiotics, isoniazid (INH) and rifampin (RIF), affects sterilization of bacteria 

from a granuloma [25,26]. In the treatment model, concentrations of antibiotics in the 

plasma are described by a compartmental pharmacokinetic (PK) model that captures 

their distribution following oral administration [30]. A tissue PK model was used to 

determine intracellular and extracellular antibiotic concentrations in both uninfected 

lungs and granulomas, and antibiotic pharmacodynamic (PD) parameters determine 

killing of M. tuberculosis within granulomas. The PK and PD models are calibrated to 

experimental data from M. tuberculosis infected rabbits and nonhuman primates. 

Through both agent-based and PK model components, GranSim captures physiological 

organization and antibiotic distributions observed in granulomas, as shown in Figure 

4.2. 

To simulate antibiotic treatment, two variables per antibiotic are defined: the dose size 

and the dosing frequency. The dose size determines the amount of drug given at each 

dose, and the dosing frequency determines the number of doses per week. Each 

GranSim simulation provides time courses for all cellular and bacterial populations at 

the single granuloma scale. There are multiple additional model outputs from GranSim 

treatment simulations, but we will focus here on tracking the number of days of 

treatment required to kill all bacteria within a simulated granuloma, also termed “time to 

sterilization.” 
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Figure 4.2 Visual representation of simulated granuloma.  
The left side shows a snapshot of a granuloma simulation with each cell or compartment type: resting macrophages 
(green), activated macrophages (blue), infected macrophages (orange), chronically infected macrophages (red), 
caseation (white), and T-cells (purple, pink and light blue). The right shows unbound INH concentration on the 
simulation grid, with values ranging from about 0 to 1.5 mg/L (low concentration in blue, high concentration in red), 
illustrating the lack of antibiotic diffusion into granulomas. The entire snapshot represents an area of 16 mm2 of lung 
tissue. 
 
4.3.2 Defining the optimization problem 
For optimizing TB antibiotic treatment regimens, the treatment variables and objective 

function must be defined. Figure 4.3 shows how the treatment variables can be 

expressed as a vector, with each element defined as one of the variables. In this 

definition, each antibiotic could be given at a different dose size and dosing frequency 

throughout the treatment. This vector could be lengthened to include different doses 

and frequencies over time to represent different treatment phases, such as the intensive 

and continuation phases of current TB treatments [3].  
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Figure 4.3 Regimens as vectors and optimization algorithms  
(a) The antibiotic treatment regimen can be expressed as a vector of individual variables. (b) Strategy to define and 
solve the TB antibiotic optimization problem. The process begins by defining the treatment variables and their 
bounds, and an objective function to evaluate treatment efficacy. Two optimization algorithms are considered: GA 
and surrogate-assisted optimization with an RBF network. Both optimization algorithms ultimately converge to an 
optimal treatment regimen prediction. 
 
The goal of the objective function is to compare the efficacies of different antibiotic 

treatments. For a shorter treatment time, a goal could be to minimize the time to 

sterilization. However, only minimizing the time to sterilization would likely result in a 

regimen with the highest allowable dosage of antibiotic, and more adverse side effects 

in patients. With this in mind, our objective function should be one that balances finding 

a treatment with a fast time to sterilization while keeping dosages low.  The objective 

function we define here takes as input the regimen of n potential antibiotics defined by 
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the input variable vector of length 2n. This objective function defines a surface in 2n-

dimensional space where the global minimum of the surface corresponds to the “best” 

treatment regimen. The objective function value for a given antibiotic treatment is 

evaluated by simulating treatment of multiple granulomas with GranSim. The general 

form of the objective function we use is 

 8(9) = $(9)
$6

+ : ∑ </4/0
/1)

∑ </,!"#4/,!"#0
/1)

 Eq. 4.1 
 

where $(9) is the average time to sterilize a granuloma for a given antibiotic treatment 9. 

Each treatment is simulated with multiple granulomas to account for host variability and 

model stochasticity. If a granuloma doesn’t sterilize for a given treatment, the time to 

sterilization for that granuloma is set as the total simulated treatment length when 

calculating $(9), as a way to inflate the average time to sterilization and increase the 

value objective function for a treatment that fails to sterilize multiple granulomas. </ and 

4/ are the components of the input vector that correspond to the dose size and dose 

frequency, respectively, of antibiotic i (where i is the index for INH, RIF, or any other 

antibiotic). Both objective function terms are scaled to be of similar magnitude. The first 

term is divided by a characteristic time to sterilization, $6, which is defined based on a 

typical average time to sterilization for a given treatment optimization problem. The 

second term is divided by the maximum amount of antibiotic based on the upper bounds 

of the treatment variables, </,!"# and 4/,!"#. We seek to locate an antibiotic regimen 

that minimizes this objective function, implying that an optimal regimen is one that 

simulates a fast average time to sterilization, but also gives a relatively low dose of 

antibiotic. The dose-weight parameter, :, can be adjusted to place varying emphasis on 

the amount of antibiotic given. To our knowledge, this is the first time an objective 

function has been defined for optimizing TB antibiotic regimens. In the future, there may 

be other important terms to consider including in the objective function. For example, it 

may be important to consider the percent of granulomas sterilized, whether there is 

excessive recruitment of immune cells, emergence of drug-resistance, and/or drug cost.  
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4.3.3 Genetic algorithm implementation 
We used MATLAB’s genetic algorithm (ga) function, and varied the settings for 

population size, generation stall limit, and a tolerance condition to test accuracy and 

convergence speed (MathWorks®, MATLAB 2015a). Figure 4.3 shows how GA can be 

implemented to solve treatment regimen optimization. Population size defines the 

number of individuals that are evaluated in each generation. The tolerance and 

generation stall limit are both stopping criteria. The generation stall limit defines the 

number of generations over which the average relative change in the best individual’s 

fitness is calculated. If this average relative change is less than the tolerance, the 

algorithm stops searching. Two different settings are discussed here: default and 

relaxed settings. Default settings are MATLAB’s built-in settings based on the type of 

problem and here define a population size and generation stall limit of 50, and a 

tolerance of 10-6. The relaxed settings we determined through trial and error to increase 

convergence efficiency, resulting in a decrease in the accuracy of the solution. The 

relaxed settings have a population size of 12 individuals, generation stall limit of 5 

individuals and a tolerance of 10-5. 

4.3.4 Surrogate-assisted optimization using radial basis function networks 
For simplicity, we used an RBF network trained from a set of data points without 

resampling.  Resampling can further improve the predictive and optimization power of 

the surrogate model [33,40,45,46]. We use the RBF networks here to predict the 

average time to sterilization from GranSim for any treatment, expressed as  

 
!̂($) ='(#)$($)

%

$&'
 Eq. 4.2 

where x is the variable input vector (here x is the vector in Figure 4.3), and =- are the 

weights on the radial basis functions >-. We use Gaussian RBFs centered at one of the 

sample points, with k representing the number of basis functions in the network. To find 

the optimal weights, the sum of the squared error is minimized between the predicted 

values and true value at each of the known sample points. To predict the value of the 

objective function for a given treatment, we evaluate Eq. 4.1 with the RBF network 

prediction of the time to sterilization for that treatment. 
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With a basis function centered at each sample point, the largest set of basis functions 

that could be used in the RBF network is equal to the number of sample points. 

However, using the full set can lead to over fitting. To avoid this, the RBF networks used 

in this study are built through forward selection, following the work of Orr [41]. The 

network begins with an empty set of basis functions and introduces whichever basis 

function minimizes the standard error the most. Basis functions are added one at a time 

until the standard error is lowered by < 0.01% over the last three basis function 

additions. 

4.3.5 Single-antibiotic test problems 
We crafted two test problems based on our published simulations of treatment to find 

optimal dose size and dosing frequency for a single antibiotic [25]. Thus we can 

propose two-dimensional optimization problems with known solutions, and use the 

optimization algorithms to solve the problem and test their performance. The data were 

generated by simulating antibiotic treatment with INH or RIF at five different dose sizes 

and seven dose frequencies to give 35 different treatments for each antibiotic. To do 

this, granuloma formation following infection was simulated for 100 days (no antibiotic 

treatment), with host variability included by simulating 82 granulomas with parameter 

values chosen from a uniform distribution.  Antibiotic treatment for 180 days was then 

simulated, and the average time to sterilization all bacteria from all granulomas for each 

treatment regimen was calculated. Based on this average time to sterilization and the 

antibiotic regimen, the objective function value (Eq. 4.1) for each treatment can be 

evaluated, with $6 defined as the longest average time to sterilization from the set of 35 

treatments. With the 35 objective function values, we generated an objective function 

response surface through linear interpolation between the known points. From this 

surface, we know the global minimum for each test problem, indicated by the circles in 

Figure 4.4a and Figure 4.4b corresponding to the treatment variables in Figure 4.4c. 

Because the recommended regimens for TB treatment consist of a combination of 

antibiotics, these single-antibiotic optimal treatments do not correspond to a practical 

treatment. Rather, these objective function response surfaces constitute the test 

problems we will use to determine the performance of different optimization algorithms.  
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Figure 4.4 Contour plots for optimization test problems 
Contour plots for INH (a) and RIF (b) single antibiotic treatment optimization test problems used to evaluate the 
performance of the genetic algorithms and RBF networks. Different treatments (35 for each antibiotic) were simulated 
by varying the dose size at five different levels (5, 15, 25, 35, and 45 mg/kg for INH; 10, 20, 30, 40, and 60 mg/kg for 
RIF) and seven dosing frequencies (1, 3, 5, 7, 9, 11, 14 doses per week) of the antibiotic, encompassing a realistic 
range for TB treatment. This range was chosen to encompass human equivalent doses in non-human primates (note, 
however, that treatment of humans with a single antibiotic is not standard-of-care). The objective function value (Eqn. 
1) was determined for each treatment, and contour plots were generated to represent the objective function response 
surface defined by the 35 treatments and linear interpolation between them. The circle on each contour plot shows 
the location of the global minimum for that test problem, which corresponds to the antibiotic treatments given in the 
table (c). 
 
4.3.6 Double-antibiotic treatment optimization implementation 
Optimizing the dose size and dosing frequency when treating with two antibiotics (INH 

and RIF) is a four-dimensional optimization problem with variables INH dose size, INH 

dosing interval, RIF dose size and RIF dosing interval. We optimized double-antibiotic 

treatments using two RBF network surrogate models trained from two sets of data. The 

first, referred to as the training set, contains 45 treatments generated through Latin 

Hypercube Sampling (LHS) [47,48]. The second set of data is our edge-supplemented 

training set. Because RBF networks interpolate between the training points, we sampled 

81 treatments to define the edges of the regimen design space to improve the RBF 

network accuracy near the design space edges. We generated all possible 

combinations of the four treatment variables at three discrete values for each variable: 

the variable’s lower bound, an intermediate value, and its upper bound. The edge-

supplemented set consists of the same 45 treatments of the training set plus the 81 
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edge treatments (i.e., 126 different treatments). The number of treatments in the training 

set was chosen based on a general rule of using about 10 points for every dimension of 

the optimization problem [49,50]. In addition to the two training sets just defined, we 

simulated a test set of 45 treatments chosen using LHS to validate the RBF network. 

We set variable ranges so that INH dose size could range from 0 to 45 mg/kg, RIF dose 

size from 0 to 60 mg/kg, and INH and RIF dosing frequencies from 1 to 14 doses per 

week. Because the plasma PK model is calibrated to non-human primate data, we 

chose these treatment boundaries as a range of non-human primate doses that yield 

human-equivalent exposure similar to clinical doses [3,25,51]. 

We treated a set of 73 granulomas, each with a different granuloma parameter set, with 

each of the 126 treatments and calculated the average time to sterilization for each 

treatment. With both the training set and edge-supplemented training set, we generated 

RBF networks to predict the average time to sterilization for any possible treatment 

variable combination. We used these RBF networks to search for local optima at 

discretely evaluated predictions of the objective function given by Eq 4.1, with a 

characteristic time to sterilization $6 defined as 120 days. Unlike the single-antibiotic test 

problems where we defined the longest average time to sterilization as $6, we do not 

know the shape of the objective function with double-antibiotic treatments, so the 

maximum average time to sterilization in the regimen design space is unknown. We 

chose 120 days as the characteristic time to sterilization based on our experience that 

most granuloma treatment simulations would sterilize within this time frame. We varied 

the dose-weight parameter � to investigate how the balance between quickly sterilizing 

the granuloma and antibiotic dose effects the predicted optimal treatment. 

 Results and Discussion 

4.4.1 Using RBF networks is more efficient but GA is more accurate when solving 
single-antibiotic treatment optimization 

For antibiotic treatment optimization, it is our goal to locate the region of the regimen 

design space representing treatments that quickly kill all bacteria (a fast time to 

sterilization) while minimizing the amount of antibiotic given. To test whether GA or RBF 

networks are more appropriate for TB treatment optimization, we generated two test 
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problems to optimize single-antibiotic treatments. These two-dimensional test problems 

have known solutions, shown in Figure 4.4 and are based on our previous published 

simulations with GranSim [25]. We optimized dose size and dosing frequency for INH or 

RIF using either a GA or an RBF network prediction (Figure 4.3). To optimize using an 

RBF network prediction, we train the RBF networks using 21 treatments chosen using 

LHS and their associated objective function values sampled from the test-problem 

objective function response surface. We performed 30 independent optimizations on 

both test problems with both optimization algorithms to capture the variation in solutions 

of each algorithm. The optimal treatments obtained for each method are shown in 

Figure 4.5.  

Optimization using an RBF network lacks the accuracy to precisely find the known 

solution to the test problems, although most of the solutions are found in the same 

region as the known solution (Figure 4.5a and Figure 4.5d). In contrast, using GA, with 

default stopping criteria (Figure 4.5b and Figure 4.5e), we accurately identified the 

global minimum of the test problem. All 30 runs yielded the known solution for the INH 

test problem, and almost all known solutions for the RIF test problem. Relaxing the 

stopping criteria for the GA can decrease the number of function evaluations, but at the 

expense of accuracy in finding the global minimum, as shown by the variation in 

solutions shown in Figure 4.5c and Figure 4.5f. 
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Figure 4.5 Comparing solutions using RBF network predictions and GA  
Each test problem was solved using RBF network predictions (a and d) and GA with the default (b and e) and relaxed 
settings (c and f) with 30 independent optimizations. The location of the global minimum found with each optimization 
is represented by an “x” on the contour plots. Larger “x’s” indicate that multiple runs found a global minimum at that 
location. 
 
Based on accuracy, the GA has an advantage over the RBF networks. However, one of 

the defining characteristics of our TB treatment optimization problem is that each 

simulation is computationally expensive. Evaluating the efficacy of a single antibiotic 

treatment regimen requires multiple granuloma simulations and based on the time per 

granuloma simulation, uses between 300 and 400 CPU-hours (based on run times on 

XSEDE Comet). Because of this, the number of function evaluations (number of 

different treatments simulated) associated with each method is important in determining 

performance of the optimization algorithms. The RBF networks generate their solution 

with far fewer function evaluations, especially when compared to the default GA 

stopping criteria (Table 4.1). Even with relaxed stopping criteria, the GA solutions 

require orders of magnitude more function evaluations on average than the RBF 

networks. 

If the overall goal is to identify the region of the design space that provides the best 

solutions rather than a unique location, which is the case with our treatment optimization 
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problem, then RBF network predictions can be effective. Although the RBF networks 

provide less accuracy, one benefit is that they provide a predicted response surface at 

any point in the regimen design space. With this information, the user can identify the 

region of the design space where the global minimum might occur, even if the predicted 

global minimum is not exactly accurate.  

The objective function for the single-antibiotic test problems was chosen with the goal to 

locate a treatment that can quickly sterilize a granuloma while keeping antibiotic doses 

relatively low. However, different optimal treatment regimens could be defined based on 

different goals with different objective functions. For example, if toxicity or drug cost is a 

higher concern, then higher weights could be placed on the amount of antibiotics given. 

Adding a penalty based on the percentage of granulomas that did not sterilize would 

emphasize searching for treatments that have higher probabilities of sterilizing every 

granuloma in a host. Using RBF networks to locate optimal treatments allows for easy 

comparison of additional objective functions. With a set of treatments simulated with 

GranSim, different outputs or statistics from the model can be combined in different 

ways to generate different objective function response surfaces, without having to 

repeat treatment simulations. 

4.4.2 RBF networks can be used to predict optimum double-antibiotic treatments  
We next predicted optimal treatment regions when administering both INH and RIF 

simultaneously to study whether utilizing optimization would extend to a higher 

dimensional problem (more antibiotics). Based on our single-antibiotic treatment 

optimization results, we chose RBF networks rather than GA for this problem. We 

generated two different RBF networks from our training set and edge-supplemented 

training set to predict the average time to sterilization for a treatment. Using these two 

RBF networks, we evaluated their accuracy by comparing the predicted average time to 

sterilization and the simulated average time to sterilization at the test set treatments. 

Varying the dose-weight parameter, we located multiple, local optimal treatments based 

on the objective function in Eq. 4.1 and the average time to sterilization predictions from 

both RBF networks. The training set RBF network identified 8 optimal treatments, and 

the edge-supplemented RBF network identified 7 optimal treatments.  
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The edge-supplemented training set RBF network is more accurate and has a higher 

correlation coefficient when predicting average time to sterilization than the training set 

RBF network (Figure 4.6). This is not surprising as the edge-supplemented training set 

has more training points. We next compared prediction accuracy by simulating each of 

the optimal treatments identified by the RBF networks. We found that the RBF network 

generated with the edge-supplemented training set provides a more accurate prediction 

of the 7 optimal treatments it identified when compared to the accuracy of the training 

set RBF network at predicting its 8 optimal treatments (Figure 4.6c). The presence of 

training points along the edge of the regimen design space reduces the amount of error 

and thus yields more accurate optimal treatment identification. 

 

Figure 4.6 Testing the accuracy of RBF network generated solutions 
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(a,b) The simulated average time to sterilization vs. the RBF-predicted average time to sterilization is shown for each 
of the 45 test set treatments using the training set RBF network (a) and the edge-supplemented training set RBF 
network (b). The edge-supplemented training set RBF network is a more accurate predictor of average time to 
sterilization, indicated by the higher coefficient of determination. (c) The average prediction error and standard 
deviation (mean ± SD) are shown for the test set treatments (as in parts a and b) and at the estimated optimal 
treatments for the training set RBF network (n=8) and the edge-supplemented RBF network (n=7, optimal treatments 
with predicted and simulated times to sterilization listed in Table 4.2). The edge-supplemented training set RBF 
network has a lower average error at its estimated optimal treatments than the training set RBF network. 
 
The optimal treatments from the edge-supplemented training set RBF network are listed 

in Table 4.2. Optimal treatments were located with dose-size weights of 0.75, 1, 2, and 

3. As the dose-weight parameter is varied from 0.75 to 3, there are two general regions 

where optimal treatments are located. The first optimal region is a dose of INH between 

~20-25 mg/kg given once a day with a low dose of RIF given about twice a week. The 

second optimum treatment is a similar dose size of INH given only once a week with an 

intermediate dose of RIF given every 1-2 days (Table 4.2), which shows similar dose 

sizes to non-human primate human-equivalent doses for recommended CDC regimens 

[3,51]. With this information, the two optimum treatments can be compared, and the 

best treatment can be chosen based on other criteria, such as the predicted time to 

sterilization or clinical practicality. For each toxicity weight, the daily INH doses with 

twice weekly RIF doses gives a faster time to sterilization than the other optimum 

treatment (Table 4.2). 

RBF networks interpolate between known data points, so training the network with only 

the 45 points chosen using LHS can lead to inaccurate predictions along the edge of the 

design space. Adding training points along the edges can fix this but presents a barrier 

when scaling to optimization problems in higher dimensions. With optimization of more 

than two antibiotics or greater than four dimensions, evaluating every possible point 

along the edge of the design space becomes inefficient. To solve higher dimensional 

problems, resampling the objective function after an initial surrogate model is built can 

provide an efficient way of minimizing the objective function with the fewest number of 

sample points [33,39,40,45,46]. We plan to use these more complex sampling and 

resampling methods to improve the predictive and optimization power of the surrogate 

model in future studies of optimization treatments adding in additional antibiotics. 
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The surrogate models we build here are based solely on simulated data, using a model 

we developed based on a variety of animal data.  However, surrogate modeling can be 

applied to data obtained through physical experiments as well. As with simulated data, 

the most frequent limiting factor to developing an accurate surrogate model is the 

density of data points within the design space. A low estimate for the number of data 

points required to build an accurate surrogate model is 10 for each design variable in 

the optimization problem, although 2 or 3 times as many points may be required 

depending on the specific problem and the desired accuracy of the surrogate model 

[49,50]. For many experimental studies, achieving this resolution of data may be 

infeasible. In these cases, there are a few possible solutions. One solution is to reduce 

the number of design variables to the most important and hold all others constant. 

Estimating optima of objective functions with one or two variables requires significantly 

fewer points than objective functions using three or more variables. Another solution is 

to use multi-fidelity surrogate modeling and combine the sparsely collected 

experimental data with larger sets of simulated data [52,53]. 

There are other antibiotics that are being considered for new TB therapy, including 

fluoroquinolones and oxazolidinones. We plan to investigate these as candidates for 

optimizing TB treatment with the optimization framework presented here. As we 

consider additional antibiotics, optimizing treatments with GranSim can provide 

predictions on whether antibiotic treatments will be successful in human clinical trials. 

While the simulations presented here represent treatment of a single granuloma, 

simulations with additional antibiotics will need to consider treatment of multiple 

granulomas in a single host. Providing this information could help prevent wasted 

resources arising from failed clinical trials and could help drugs reach the clinic more 

rapidly. Some antibiotics, such as moxifloxacin, showed promise in shortening TB 

treatment in animal trials, but failed to do so in human trials [54–56]. Using the 

optimization framework outlined here, we could identify treatments that have a higher 

probability of succeeding in human trials.  
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 Conclusions 
Current TB treatment is long and has many complications that indicate the need for 

better therapies. Based on the number of combination regimens of all potential 

antibiotics for TB, finding the best treatment regimen presents a challenging 

optimization problem. We presented a framework of combining our multi-scale, hybrid 

model of granuloma formation and treatment with optimization algorithms to predict 

optimal treatment regimens. Because each treatment simulation is computationally 

expensive, using an efficient algorithm is necessary for treatment optimization. We 

show that using a RBF network surrogate model is more suitable for predicting optimal 

treatments than GA. Using this framework we can guide experimental testing of new 

antibiotic regimens. 
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Table 4.1 Average number of function evaluations required to solve each of the test problems with each 
optimization method.  
The RBF network predictions were always generated with 21 sample points. For GA optimizations, the number of 
function evaluations was averaged over the 30 independent optimizations. The average number of granuloma 
simulations required to find the optimum treatment is equal to the average number of function evaluations times the 
number of granulomas (in this problem, 82) simulated per treatment. 

 Average Number of Function Evaluations Required 

Optimization Method INH Test Problem RIF Test Problem 

RBF Network 21 21 

Default Genetic Algorithm 3,855 4,085 

Relaxed Genetic Algorithm 347.2 263.6 
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Table 4.2 The local optima located for the objective function to evaluate INH/RIF antibiotic treatments for the 
different weight parameters.  
Because we identified local optimal treatments, multiple optima can be identified for a single dose-size weight. As the 
weight parameter increases, the local optima tend towards treatments that have lower total weekly doses and a 
higher predicted time to sterilization.  Predictions were tested by running simulations at those points, giving the 
simulated time to sterilization. 

Dose-
weight 
Parameter 
(ω) 

INH 
Dose 
(mg/kg) 

INH 
Dose 
Freq. 
(week-1) 

RIF 
Dose 
(mg/kg) 

RIF 
Dose 
Freq. 
(week-1) 

 Weekly 
INH Dose 
(mg/kg) 

 Weekly 
RIF 
Dose 
(mg/kg) 

Total 
Weekly 
Dose 
(mg/kg) 

Predicted 
Time to 
Sterilize 
(days) 

Simulated 
Time to 
Sterilize 
(days) 

0.75 28.9 7.3 8.6 1.9 210.7 16.1 226.8 10.2 16.3 

1 
22.5 1.1 25.7 4.9 25.9 125.8 151.8 17.3 21.9 

25.7 7.3 8.6 1.9 187.4 16.1 203.4 11.8 16.8 

2 
22.5 1.1 17.1 3.7 24.1 63.3 87.4 25.9 31.0 

22.5 7.3 4.3 1.9 171.2 8.0 179.2 15.5 21.9 

3 
19.3 1.1 12.9 3.7 20.7 47.8 68.4 30.2 42.4 

19.3 4.9 4.3 1.9 94.5 8.0 102.5 29.9 31.4 
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Chapter 5 Optimizing Doses of First-line Tuberculosis 
Antibiotics Identifies Alternative Regimens with High Efficacy 

in Virtual Clinical Trials 
 

 Introduction 
Even though tuberculosis (TB) has been around for thousands of years, we have 

treated TB disease with primarily the same drugs for close to 50 years [1]. Caused by 

the pathogen Mycobacterium tuberculosis (Mtb), the preferred, standard antibiotic 

regimen is estimated to have a success rate of ~95% [2,3]. With ~5% treatment failure 

rate, the standard regimen alone has not provided a significant decrease in the global 

TB burden. TB is one of the world’s deadliest infectious diseases, evaluated by number 

of annual deaths, and the World Health Organization aims to decrease the number of 

TB-related deaths by 90% by 2030 [4]. While vaccination efforts can also reduce the 

number of new TB cases, a highly efficacious drug regimen will continue to be needed 

to treat TB until its eradication, and changes to the existing regimen for drug-sensitive 

TB may help achieve this goal. 

 

When Mtb infects lung tissue, the immune response results in the formation of a 

granuloma. The granuloma is a collection of immune cells recruited to the site of 

infection to control the pathogen [5]. The granuloma contains Mtb and is therefore the 

target for antibiotic treatment. Different subpopulations of Mtb, such as extracellular or 

intracellular (inside macrophages or neutrophils) and replicating or non-replicating, exist 

in the granuloma depending on the microenvironment. The structure of the granuloma 

can act as a mechanism to control infection, but it also presents a physiological barrier 

to antibiotic diffusion [6–8].  

 

The current standard regimen for drug-susceptible TB involves up to 6 months or more 

of therapy with the antibiotics isoniazid (H), rifampin (R), ethambutol (E), and 
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pyrazinamide (Z). New regimens attempting to shorten TB treatment have been 

clinically tested, but with limited success. Efforts to introduce fluoroquinolones, such as 

gatifloxacin and moxifloxacin (M), into regimens for drug-susceptible TB to shorten 

treatment from 6 months to 4 months failed to show noninferiority to control regimens 

[2,3,9].  

 

Multiple factors limit the ability to shorten the standard regimen for drug-susceptible TB. 

First, the structure of the granuloma influences both antibiotic distribution and can result 

in lower concentrations inside the granuloma [7,8]. Second, microenvironments can 

promote Mtb to shift towards phenotypic states that are tolerant towards antibiotics [10] 

For example, Mtb collected from granuloma caseum, material consisting of dead cell 

debris, show high levels of tolerance to antibiotics [11]. Third, host-to-host variability in 

drug absorption and metabolism kinetics leads to PK variability that has been clinically 

linked to worse outcomes in TB treatment [12]. 

 

A goal for identifying better regimens for TB treatment involves finding a regimen that 

can manage and overcome all three of these complications: the heterogeneity in 

granulomas and antibiotic distribution, antibiotic-tolerant Mtb, and host-to-host PK 

variability. By addressing these complications, a better regimen is one that would 

successfully treat more individuals with a shorter treatment duration. Efforts to utilize 

experimental PK data to determine optimal doses can consider some factors that 

complicate treatment but rely on the existence of good experimental data and are 

resource-limited in the number of regimens that can be experimentally or clinically 

tested [13]. 

 

Using computational modeling to predict regimen efficacy provides a more efficient way 

of predicting regimen efficacy and determining optimal doses. We have previously 

shown how our computational simulation of granuloma formation, function and 

treatment can simulate efficacies of different TB regimens (Chapters 2 and 3) [7,14,15]. 

This computational simulation, called GranSim, can simulate granuloma heterogeneous 

environments that impact antibiotic distribution, and shows that different granuloma 
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types sterilize at varying rates even with the same drug regimen [7,14,15]. By 

accounting for the mechanisms that complicate TB treatment, we can accurately predict 

granuloma sterilization with different regimens. Formalizing the goal of optimizing 

antibiotic regimens as finding the optimal dosing schedule that minimizes both the time 

to sterilize a granuloma and total antibiotic dose, we have shown that we can utilize 

surrogate-assisted optimization algorithms to accurately and efficiently predict optimal 

regimens (Chapter 4) [16]. Using GranSim, we can predict granuloma-level sterilization 

when simulating TB treatment, but we are ultimately interested in predicting how a 

regimen treats an individual, and how the regimen performs in an entire population.  

 

I have two goals in this chapter. First, I examine the standard HRZE regimen and 

whether more optimal doses of these drugs can be identified.  To do this I optimize the 

doses for HRZE at the granuloma scale using a surrogate-assisted optimization 

algorithm (Chapter 4) and compare the efficacies of optimal regimens identified. I also 

present a process of generating a virtual population to simulate a virtual clinical trial 

(VCT) that captures the heterogeneity and variability in both granulomas and plasma PK 

and examine predicted optimal HRZE regimens in this population. 

 

Second, I ask whether improvements to the standard HRZE regimen could be obtained 

by substituting moxifloxacin for isoniazid or rifampin. Fluoroquinolones are frequently 

prescribed for treating multi-drug resistant TB [17]. A study comparing three 

fluoroquinolones predicted that moxifloxacin has better and more robust sterilizing 

activity compared to levofloxacin and gatifloxacin [8]. Substituting isoniazid or rifampin 

with moxifloxacin has been investigated as a way to potentially shorten treatment, or as 

an alternative for TB cases with resistance to isoniazid or rifampin. Clinical trials have 

been conducted to test whether the inclusion of moxifloxacin in place of isoniazid or 

rifampin could shorten treatment regimens [3,18]. However, many of these clinical trials 

failed to show an advantage over the HRZE regimen. To investigate the performance of 

these alternative regimens, here, I simulate the HRZE regimen and regimens where 

moxifloxacin (M) replaces H or R (HMZE and RMZE) in non-human primates (NHPs). 

Although these simulations are at the granuloma scale, they are useful for predicting 
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outcomes of NHP experiments currently being performed in the lab of our collaborator, 

Professor Joanne Flynn at the University of Pittsburgh. In addition to predicting 

outcomes for these regimens, we can predict which alternative regimens are interesting 

candidates for future experimental studies. 

 

 Methods 

5.2.1 GranSim and pharmacokinetic/pharmacodynamic modeling 
As a basis for the granuloma treatment optimization and hosts for the virtual clinical trial, 

I utilize our computational model of granuloma formation and function, GranSim. This 

model is described briefly below and in previous chapters (Chapters 2, 3 and 4). 

GranSim is an agent-based model that simulates the immune response in TB disease 

with granuloma formation as an emergent behavior [7,19–22]. Agents in this agent-

based model include immune cells, such as macrophages and T-cells, and individual 

Mtb that interact with each other according to a set of rules (for more complete 

description of rules, see http://malthus.micro.med.umich.edu/GranSim/). For the 

purpose of this work, GranSim provides a simulation that can recreate the heterogeneity 

and PK variability associated with TB treatment in a granuloma and can simulate the 

spatial distribution of antibiotics and sterilizing ability of different antibiotic regimens 

(Chapter 2) [7,8,14,15].  

 

The PK/PD model within GranSim simulates the plasma concentration over time 

following oral doses of antibiotics, the subsequent spatial concentration in the simulated 

granuloma, and the bactericidal activity based on the local concentration. The plasma 

PK model uses a compartmental, ordinary differential equation model to simulate 

absorption through transit compartments into the plasma, exchange with peripheral 

tissue, and first-order elimination from the plasma [7,23]. Plasma PK parameters for H, 

R, E and Z were calibrated based on human plasma measurements [14,24]. The tissue 

PK model references the concentration in the plasma to calculate flux through vascular 

sources in the computational grid, diffusion through tissue, binding to caseum, and 

partitioning into macrophages [7,15,25]. The PD model uses a Hill curve to determine 

the concentration dependent antibiotic killing rate constant [26], to determine the rate of 
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death per time step. The concentration used in the Hill curve is an effective 

concentration, calculated as the sum of all antibiotic concentrations converted to the 

equipotent concentration of the antibiotic of the highest maximal killing rate constant. 

Based on the predicted fractional inhibitory concentration, the effective concentration is 

adjusted to account for synergistic or antagonistic concentrations (Chapter 3) [27,28]. 

 

5.2.2 HRZE dose multi-objective optimization problem 
Defining an optimization requires defining the objective function (or multiple objective 

functions, see next section) whose values are to be minimized, and the design variables 

that define the domain of those objective functions. For the purpose of optimizing the 

doses for HRZE, the variables include the individual doses for each antibiotic. The 

sampling ranges for each dose variable were set to range from 0 mg/kg to double the 

standard CDC dose [1]. Maximum doses for each antibiotic were set to 10, 20, 40 and 

50 mg/kg for H, R, E, and Z, respectively. Because the ranges for these doses are 

different, the design variables used to define the objective function domains are 

normalized to range from 0 to 1. The objective functions include minimizing the total 

antibiotic dose and the sterilization time for that combination of doses. The total 

antibiotic dose is evaluated as the sum of the normalized antibiotic doses. The 

sterilization time is evaluated as the time to completely sterilize a granuloma, averaged 

over a set of granulomas. Granulomas that fail to sterilize are assigned a sterilization 

time of 180 days (length of treatment) to ensure they have the highest objective function 

value. 

 

5.2.3 Multi-objective Surrogate-assisted Optimization Algorithm 
The goal of multi-objective optimization is to find the optimal trade-off between two or 

more objectives by identifying the variable combinations that make up that optimal 

trade-off [29]. Using a surrogate-assisted framework involves predicting each objective 

based on the outcomes of the already sampled regimens. The surrogate predictions of 

each objective can then be used as a computationally-inexpensive alternative to predict 

the objective functions throughout the whole design space. Here, I use a kriging-based 

surrogate model to generate the objective function predictions. This kriging-based 

prediction and optimization algorithm is based on a set of open source MATLAB 
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functions developed by Forrester and Sóbester [30,31]. Using a surrogate-assisted 

framework provides an efficient and accurate way to thoroughly investigate the regimen 

design space and predict optimal doses (Chapter 4) [16]. 

 

First, the algorithm samples the antibiotic doses to generate a set of initial regimens for 

simulating treatment (Figure 5.1). A Latin hypercube sampling (LHS) design samples 

the doses to evenly distribute throughout the regimen design space [31,32]. Then, 

GranSim simulates treatment with each of these regimens on a set of 30 granulomas, 

and records the day when all Mtb are dead evaluate the sterilization time, reported as 

the average time when all Mtb are dead over the 30 granulomas (see section below for 

description of the 30 granulomas).  

 

Second, based on the sampled regimens and the calculated values of the 

corresponding objective functions, the algorithm builds a kriging-based surrogate model 

to predict the values of the objective functions at any point in the variable design space. 

The kriging model operates by assuming that the value of a function f of n variables at 

any n-dimensional vector x can be stated as the sum of some unknown mean (μ) and 

an error term that is a function of position (Eq. 5.1) [33].  

 

 8(9) = ? + @(9) Eq. 5.1 

 

To provide an estimate for the error at any given x, we assume the errors at two points 

are correlated based on the distance between those two points. The correlation in error 

between points i and j, equal to component Rij in the correlation matrix R, exponentially 

decays with respect to the weighted distance between them (Eq. 5.2). 
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Eq. 5.2 

 

Given k sample data points of f throughout the design space, the model maximizes the 

likelihood function (Eq. 5.3, Eq. 5.4, Eq. 5.5) by varying the weight parameters θh and ph to 
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obtain the best fit. The vector y of length k has entries with the values of the observed 

function at each of the sample points.	With the optimized parameters θh and ph, the 

value of f at any point x* is predicted with Eq. 5.6, where the vector r of length k is given 

such that its entry i is given as the correlation in error between sample point x(i) and x*. 
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Eq. 5.5 

 

 QR($∗) = K̂ + T′D1'(I − JK̂) Eq. 5.6 

 

Once the kriging model for each objective is tuned, the algorithm resamples the design 

space to select the regimen that maximizes the likelihood of expected improvement of 

the objective functions. The expected improvement criterion seeks the set of design 

variables that maximizes the expected distance from the points currently in the Pareto 

front [31,34]. At this point, GranSim simulates the sampled regimen that maximizes the 

likelihood of improving the values. An iterative process continues, where the algorithm 

adds new regimen results to the set of sampled regimens and objective functions and 

updates the kriging model until the algorithm samples the number of specified regimens. 

 

To visualize the results of the optimization algorithm, we can plot both objective function 

outcomes for each regimen against each other. If the regimen design space is well-

sampled, and the algorithm successfully identifies regimens that provide the trade-off 

between the two objectives, sterilization time and total dose, this plot provides a 

visualization of the Pareto front. The Pareto front is the set of regimens contained in the 

Pareto set, which is defined as regimens that have non-dominated objective function 

values [35]. In other words, the set of non-dominated solutions represent the 
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compromise between the two objective functions, where no regimen in the set has a 

higher value for both objectives when compared to the other solutions in the non-

dominated set. 

 

 
Figure 5.1 Surrogate-assisted optimization algorithm  
The surrogate-assisted optimization algorithm begins by sampling the variable domain defined by the dose range for 
each antibiotic using LHS. Based on the initial set of regimens, treatment is simulated on a set of granulomas using 
GranSim. The outputs of GranSim are then used to calculate the objective function values for each regimen. The 
multi-objective scheme here uses the average granuloma sterilization time and the total antibiotic dose as the two 
objectives to minimize. Based on the sampled regimens and their objective function values, the surrogate models are 
tuned. Until the specified number of regimens is sampled, an iterative process occurs where new regimens are 
sampled from the variable domain. New regimens are selected by maximizing the predicted improvement to the 
existing Pareto front. Once all regimens are sampled, the full Pareto front, and all objective function values for the 
sampled regimens can be plotted to evaluate the performance of each regimen and identify optimal trade-offs. 
 
5.2.4 Set of granulomas for dose optimization 
To evaluate the average sterilization time objective function, we need a set of 

granulomas to simulate each regimen. Because the optimization algorithm involves an 

iterative process, and samples numerous regimens, computational expense and 

efficiency is a concern. We simulate a set of 500 granulomas, with immune parameter 

ranges listed for granulomas with low colony forming unit (CFU, number of bacteria) 

measures in Table 2.1. Because we simulate these granulomas on a 200x200 grid 

instead of the 300x300 grid required of the high-CFU granulomas, the low-CFU 

granulomas are much less computationally expensive. To find an optimal regimen, we 

want to find a regimen that is able to sterilize the worst granulomas. To do this, we 

selected the 30 granulomas with the highest CFU from the set of 500 simulated 

granulomas to represent the hardest to treat granulomas that are still able to be run on 
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the 200x200 grid. We treated these granulomas with the sampled set of regimens, 

varying doses of the four first-line antibiotics. For optimization with the four-first line 

antibiotics, we simulate these 30 granulomas with both low plasma PK exposure (low 

PK) and average PK exposure by setting the plasma PK parameters according to the 

low and average levels listed in Table 2.2. 

 

5.2.5 Host formation and virtual clinical trial population 
To explore how these regimens perform in a whole infected host, we need to create a 

simulation that represents a group of granulomas as a whole infected lung. TB disease 

in primates results in the formation of multiple granulomas, and successful treatments 

must sterilize the entire lung [36]. Here, we define a host as a collection of granulomas 

with the same plasma PK parameters. This definition assumes a granuloma develops 

independently of the status of the other granulomas in the host but captures the primary 

host-level characteristic by allowing for the same PK within a host and variable PK 

throughout the population. To build the population of hosts, we first created an in silico 

repository of granulomas, ranging from low to high CFU, using two sets of immune 

parameter ranges to generate the low and high CFU granulomas, based on the 

parameter ranges for these two groups in Table 2.1. These granulomas are a different 

set than the set of 30 granulomas used for optimization and include a greater diversity 

of granulomas. Because the number of overall granuloma simulations in the host 

simulations is smaller than the number required for dose optimization, we can afford to 

include the higher CFU granulomas on the 300x300 which provides a greater diversity 

of granuloma types into the hosts. We simulate the low-CFU granulomas on a 200x200 

grid with 500 different parameter sets for 500 different granulomas. We simulate the 

high-CFU granulomas on a 300x300 grid, due to their tendency to have larger 

diameters, with 200 different parameter sets [14]. A total of 514 granulomas were 

unsterilized after simulating 300 days (354 low-CFU and 160 high-CFU). 

 

To generate the list of granulomas that comprise a host, we use measurements of CFU 

per granuloma from 623 granulomas from 38 non-human primates (NHP) to determine 

the relative probability a granuloma has a certain level of bacteria burden. These 
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granulomas are compiled from numerous studies [37–41], and the complete set has 

been used for model calibration in a previous study [42]. Animals were infected with a 

low dose Mtb and necropsy was performed according to previously described protocols 

[36, 38]. The age of the granulomas excised during necropsy for bacterial burden 

measurement varies, depending on the study, but ranges from 4-17 weeks after initial 

Mtb infection. Figure 5.2 shows the CFU/granuloma distributions for both simulated 

granulomas and NHP granulomas.  

 

We next binned the NHP granulomas into 4 different levels: less than 103 CFU (36% of 

granulomas), between 103 and 104 CFU (33% of granulomas), between 104 and 105 

CFU (26% of granulomas), and greater than 105 CFU (5% of granulomas). We similarly 

binned the in silico granulomas sampled from those bins with the relative probabilities 

based on the NHP granulomas to generate a collection of 10 granulomas for each host. 

We generated a total of 400 hosts and randomly placed them into four treatment groups 

(Figure 5.3). To introduce plasma PK variability, we sampled 400 parameter sets using 

LHS from the plasma PK ranges that capture the range of human plasma concentration 

(Table 2.2), and assigned each parameter set to a host. We simulate the hosts in each 

treatment group with one of four regimens. The four regimens include one control group 

that is the regimen with the standard, recommended doses, and the other three are 

regimens identified as potential optimal regimens using the surrogate-assisted 

optimization algorithm. We statistically compare the differences in host sterilization 

times between each treatment group and the control group using a t-test with a 

significance level of A < 0.01. 

 

5.2.6 Non-human primate granulomas for moxifloxacin treatment simulation 
To predict regimen efficacy in non-human primates (NHPs), we simulate a set of 500 

granulomas, with immune parameter ranges for the low-CFU granulomas (Table 2.1). 

To match the timeline of infection and treatment based on NHP experiments, we 

simulate these granulomas for 100 days in the absence of antibiotics to allow for 

granuloma formation. After day 100, we treat granulomas with different regimens for an 

additional 100 days, or until granuloma sterilization. The simulated regimens include the 
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standard combination of antibiotics (HRZE), and regimens where moxifloxacin (M) is 

used to replace R in the regimen (HMZE) or H in the regimen (RMZE). We calibrate 

plasma PK parameters for M to NHP plasma concentrations following a dose of 50 

mg/kg (see Appendix D for parameters and calibration). Tissue PK parameters for M 

were calibrated and established in a previously published study [8]. We use doses for 

each antibiotic with daily administration at the NHP equivalent dose to the human 

recommended doses: H, 15 mg/kg; R, 20 mg/kg; M, 35 mg/kg; Z, 50 mg/kg; E 55 mg/kg 

[43]. 

 

5.2.7 Surrogate-model prediction behavior 
To check that the kriging-model produces realistic predictions of the objective functions, 

we evaluate the objective function predictions for both the average granuloma 

sterilization time and total daily dose. Holding the three other variable doses constant at 

their standard dose, the kriging-model predicts the average sterilization time and total 

daily dose for the full range of the fourth antibiotic dose. The surrogate models for 

average sterilization and total antibiotic dose were built based on a sample of 40 initial 

regimens, and 20 infill sampled regimens.  

 

Figure 5.4 shows the surrogate model predictions of average granuloma sterilization 

time and total daily antibiotic dose while varying each antibiotic. As expected, the 

relationship between antibiotic dose and total daily dose is linear, and the range of 

responses corresponds to the expected linear prediction for each antibiotic. The 

prediction for the average granuloma sterilization time also shows the expected trend. In 

general, as antibiotic dose increases the sterilization time decreases. However, some of 

the predictions show that as antibiotic dose is increased, there is no additional gain in 

sterilization time, and the sterilization time levels. This provides some indication that 

there may be an optimal trade-off between antibiotic dose and sterilization time, and 

that for some antibiotics, increasing the dose does not translate to a shorter sterilization 

time. 
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Figure 5.2 Granuloma CFU Distributions 
The CFU/granuloma distributions for experimentally measured non-human primate granulomas (red, NHP), and 
simulated granulomas (blue). The distributions represent CFU/granuloma measurements from 623 granulomas from 
38 NHP and 514 simulated granulomas. The NHP granulomas are compiled from numerous studies [37–41], and 
represent granulomas that came from NHPs at timepoints ranging from 4-17 weeks after infection. 
 

 
Figure 5.3 Virtual population from in silico granulomas  
In silico granulomas are generated by simulating GranSim by sampling 500 low-CFU granulomas and 200 high-CFU 
granulomas based on immune parameter ranges defined in Chapter 2. Granulomas are simulated for 300 days, and 
then any non-sterilized granulomas are included the granuloma repository. Then, 10 granulomas are sampled with 
relative probabilities to match CFU/granuloma distributions from non-human primate granulomas. These individual in 
silico granulomas are then grouped into virtual hosts. Each host is assigned plasma PK parameters to generate PK 
variability in the virtual population., Finally, hosts are sorted into treatment groups for a virtual clinical trial.   
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Figure 5.4 Surrogate model predictions 
The kriging-based surrogate model predicts the total antibiotic dose and average sterilization time for different 
regimens as doses vary. While holding every other antibiotic dose constant, the objective function prediction while 
varying a single antibiotic’s dose shows the general relationship between antibiotic dose and objective output. 
Surrogate model predictions were made based on 60 regimens simulated in 30 granulomas with average PK 
exposure (A) and low PK exposure (B). 
 

 Results 
5.3.1 Pareto-fronts predict potential optimal regimens for average and low plasma 

concentrations 
To identify optimal regimens to test in our virtual clinical trial, there are a number of 

goals in mind, and they correspond closely with the objective functions used for 

optimization. The first is to try and find a regimen that decreases the sterilization time, 

while simultaneously attempting to decrease total antibiotic dose. The other goal is to try 

and identify a regimen that will perform well with low plasma antibiotic concentrations 

individuals (referred to as low PK), while not significantly increasing sterilization time or 

antibiotic dose in average plasma concentrations (referred to as average PK). The 

A 

B 
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multi-objective optimization problem uses objectives of minimizing both the average 

granuloma sterilization time and total daily antibiotic dose. To find the optimal doses for 

the HRZE regimen, we trained the kriging-based surrogate model by initially sampling 

40 regimens and adding 20 regimens iteratively resampled. The variables used to 

define the regimens are the dosages for each antibiotic (total of 4 variables). The 

optimization algorithm resamples points by maximizing the expected improvement of 

both objectives and improving the Pareto front (Methods). We performed optimization 

on 30 granulomas and evaluate the average sterilization time for these 30 granulomas 

as the first objective function. The second objective function is the sum of the dosage 

parameters for each antibiotic. HRZE doses are optimized under two different sets of 

simulations. The first involved optimizing doses on the 30 granulomas with average 

plasma PK exposure and concentrations. The second was on the same 30 granulomas 

with plasma low PK concentrations. 

 

Based on the sampled regimens identified through the optimization algorithm, we 

identify a number of non-dominated solutions on the Pareto front. Figure 5.5 shows the 

simulated objective function outcome for each sampled regimen, with the non-

dominated solutions in red. Additionally, the standard dose simulation is shown for 

comparison.  

 

For the average PK optimization, the standard regimen is identified as near the 

predicted Pareto front. This implies that the standard doses are already near optimal for 

individuals with average PK exposure. At the same time, there are some regimens that 

appear to provide similar average sterilization times while simultaneously decreasing 

the overall antibiotic dose. For low PK optimization, the predicted Pareto front pushes 

further towards lower antibiotic doses and sterilization times than the current regimen 

with standard doses. This indicates that individuals with low PK exposure may have 

regimens available that provide shorter average sterilization times while simultaneously 

allowing for a lower total dose, and that the current regimen may not necessarily be 

optimal for all individuals.  
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Figure 5.5 Pareto fronts for HRZE dose optimization 
Each of the objective function outcomes for the 60 regimens simulated in 30 average PK (A) and low PK (B) 
granulomas plotted against each other represent the trade-off between the two objectives. Each point represents a 
given regimen with a unique combination of doses for the four antibiotics: H, R, E and Z. Points in red indicate non-
dominated regimens on the predicted Pareto front. The green point is the regimen based on the doses currently used, 
standardized doses. Potential alternative regimens listed in Table 5.1 are indicated by arrows in the plots. 
 
Based on the Pareto front predictions in Figure 5.5, there are a few regimens that 

satisfy some of the goals of regimen optimization. These regimens are indicated by 

arrows on the Pareto front plots, and their doses are listed in Table 5.1. Treatment 1 

appears as a regimen in both the average and low PK Pareto fronts. For average PK 

individuals, Treatment 1 is predicted to slightly decrease the total antibiotic dose while 

barely affecting the average time to sterilization. For low PK individuals, Treatment 1 is 

predicted to both decrease the total antibiotic dose and shorten the average time to 

sterilization.  In other words, although the current antibiotic regimen doses are predicted 

to be suboptimal for low PK individuals, it is possible there is a regimen that is optimal 

for both average and low PK individuals. 

 

Treatment 2 was selected as another potential regimen of interest. Although it is 

predicted to sterilize granulomas approximately 10 days slower than the control or 

Treatment 1, it has a much lower overall antibiotic dose. Treatment 3 was selected 

because it has low antibiotic doses for all four drugs and is predicted to have roughly 

equivalent sterilization times compared to Treatment 1 in low PK individuals. 
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Table 5.1 Doses for each regimen identified for the treatment groups, and pointed in the Pareto fronts in 
Figure 5.5.   

H dose 
(mg/kg) 

R dose 
(mg/kg) 

E dose 
(mg/kg) 

Z dose 
(mg/kg) 

Control 5 10 20 25 

Treatment 1 7 15 3 20 

Treatment 2 7 9 6 5 

Treatment 3 6 18 10 3 

 

5.3.2 Testing optimal regimens at the granuloma scale shows slightly faster sterilization 
times as compared to the standard HRZE regimen 

Using the optimal regimens selected from the Pareto fronts in Figure 5.5 and listed in 

Table 5.1, we tested the efficacy of each against the control at the granuloma scale. 

The set of granulomas consisted of the 160 high-CFU granulomas generated for the 

host library (Methods). To compare efficacy at the granuloma scale, we focused on 

simulating treatment in these granulomas that would be hardest to treat. We simulated 

this set of 160 granulomas under three different PK conditions. The first is simulating 

each granuloma with average PK exposure for every antibiotic. The second is repeating 

the simulations, but with every antibiotic set to have low PK exposure. The third 

scenario is simulating the granulomas with each granuloma assigned a variable PK 

exposure, sampled from the full ranges of plasma PK parameters (Appendix C, Table 

C.1) to determine whether differences in regimens only exist at certain levels of PK 

exposure, or if they are detectable within the whole range of PK exposure.  

 

Treatment outcomes, measured as the sterilization time for each granuloma, for each 

treatment group and PK pairing, are shown in Figure 5.6. We first examined granulomas 

when average PK parameters were used. None of the identified optimal regimens 

outperform the control treatment. Treatments 2 and 3 are predicted to have slower 

sterilization times on average when compared to the control. Treatment 1 and the 

control treatment generate statistically identical sterilization time distributions. When the 



 129 

same set of granulomas is simulated with low PK exposure parameters, Treatment 1 

shows statistically significant improvement in sterilization time when compared to the 

control treatment. However, when PK variability is introduced back into the simulations, 

the results converge on the same distributions as constant average PK, and there is no 

statistical difference between Treatment 1 and the control. This is unsurprising, since 

we saw little or no differences in the average and low PK scenarios, but also indicates 

that differences will likely be small in a virtual population.  

 

 
Figure 5.6 Granuloma level outcomes for the optimal treatment regimens 
The sterilization time distribution for the set of large, caseous granulomas treated when given average PK (A), low PK 
(B) and variable PK (C) exposures for all four antibiotics. The treatment groups and numbers refer the treatment 
regimens defined by the doses listed Table 5.1. Statistical significance between mean sterilization time in each 
treatment group and the control is determined with a t-test with significance levels labeled above each treatment 
group (NS p > 0.01; * p < 0.01; ** p < 0.001; *** p < 0.0001). 
 



 130 

5.3.3 Variability of virtual clinical trials weakens ability to differentiate between regimen 
efficacies 

We observe that the regimens compared at the granuloma scale may show small 

improvements when compared to the control regimen under low plasma antibiotic 

concentrations, but that difference is obscured when variability in PK exposure is 

introduced. Next, we seek to find if any differences in the regimens is detectable in a 

virtual population when evaluating host sterilization times. Comparing the regimens of 

Table 5.1 in a virtual clinical trial setting introduces additional sources of variability that 

exist in a real population, including the heterogeneity of granulomas that exist within and 

across hosts and the variability in PK exposure for different antibiotics. We generate the 

virtual hosts and sort them into treatment groups according to Figure 5.3. Because 

granulomas are grouped into hosts, we use the overall host sterilization time used as 

the primary outcome for the virtual clinical trial.  

 

Figure 5.7 shows the distribution of host sterilization times for each treatment group 

regimen. Like the average and variable PK granuloma outcomes in Figure 5.6, 

Treatment group 1 shows no statistically significant difference when comparing the 

average sterilization time to the control group. The regimens for VCT treatment groups 

2 and 3 show small but statistically significant increases of about 2 days in average host 

sterilization times as compared to control. Thus, unless hosts with low PK can be 

identified pre-treatment, the HRZE regimens identified in Table 5.1 do not offer a 

significant advantage over the standard HRZE regimen.  
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Figure 5.7 Host sterilization time in virtual clinical trial 
The host sterilization times in days following treatment start for the control group and each of the three treatment 
group regimens defined by the doses listed Table 5.1. Treatment groups are given different regimens with varying 
doses of HRZE, and each group represents the sterilization times from 100 hosts. Statistical significance between 
mean sterilization time in each treatment group and the control is determined with a t-test with significance levels 
labeled above each treatment group (NS p > 0.01; * p < 0.01; ** p < 0.001). 
 
5.3.4 Moxifloxacin-containing regimens present an additional alternative to successful 

treatment of drug-sensitive TB 
We next turned to designing better regimens for drug-susceptible TB by using different 

antibiotics. Fluoroquinolones are frequently prescribed for treating multi-drug resistant 

TB [17]. A study comparing three fluoroquinolones predicted that moxifloxacin has 

better and more robust sterilizing activity compared to levofloxacin and gatifloxacin [8]. 

Substituting isoniazid or rifampin with moxifloxacin has been investigated as a way to 

potentially shorten treatment, or as an alternative for TB cases with resistance to 

isoniazid or rifampin. Clinical trials have been conducted to test whether the inclusion of 

moxifloxacin in place of isoniazid or rifampin could shorten treatment regimens [3,18]. 

However, many of these clinical trials failed to show an advantage over the HRZE 

regimen.  

 

We can better understand the results from these clinical trials, and perhaps suggest 

more fruitful directions for treatment optimization, by simulating these same antibiotic 
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regimens, and predict outcomes to help inform non-human primate (NHP) experiments. 

To simulate the conditions of NHP treatment, we simulated a set of 334 granulomas for 

100 days following infection and treated with three different regimens: HMZE, RMZE, 

and HRZE. We use doses for each antibiotic with daily administration at the NHP 

equivalent dose to the human recommended doses: H, 15 mg/kg; R, 20 mg/kg; M, 35 

mg/kg; Z, 50 mg/kg; E 55 mg/kg [43]. We calibrated the plasma PK parameters for each 

antibiotic non-human primate plasma concentrations and doses (see Appendix C for 

parameters and calibration for M) [7,42]. Figure 5.8 shows the percentage of 

granulomas sterilized over the course of treatment for each regimen. During the first 

week, the number of granulomas sterilized is similar for each regimen. After a week of 

treatment, however, HMZE is only able to sterilize a few more granulomas, and only 

sterilizes 46% of granulomas after 100 days. In contrast, RMZE and HRZE sterilize all 

granulomas before 50 days of treatment. Comparing the percentage of granulomas 

sterilized over time, RMZE and HRZE perform similarly, and RMZE may be a useful 

alternative in patients with adverse reactions to H or with mono-H resistant TB. We 

predict HMZE is an inferior regimen on the basis of percentage of sterilized granulomas 

after 100 days. However, its ability to rapidly sterilize some granulomas early in 

treatment means that early measurements in clinical trials (such as early bactericidal 

activity), or short term in vitro measurements, could be misleading in predicting its 

overall efficacy in vivo. 
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Figure 5.8 NHP treatment moxifloxacin-containing regimens 
The percentage of granulomas (n = 334) sterilized over 100 days of treatment for NHP granulomas treated with 
HMZE, RMZE and HRZE regimens. Panel B shows the boxplot of sterilization times for granulomas that sterilized 
with 100 days (unsterilized granulomas are excluded) for each regimen. 
 

 Discussion 
New drug regimens are desperately needed for TB to combat the long length and side 

effects of current treatments and to improve efficacy. Successful clinical trials are a 

requirement for new regimens and treatments to be approved. Generally, the population 

of interest in clinical trials of new TB regimens is all individuals with TB. However, 

populations of individuals have varying disease severity, types of granulomas, and PK 

exposure through varying drug absorption and metabolism/elimination kinetics. The 

corresponding groups of individuals sampled to represent a population in clinical trials 

also includes this same heterogeneity. In general, this is useful, because it allows us to 

ensure the regimen tested is successful in a general population.  

 

In this chapter, we first sought to optimize the doses for HRZE to identify the optimal 

trade-off between sterilization time and total antibiotic dose. Because GranSim is a 

simulation at the scale of an individual TB granuloma, the optimization algorithm finds 

optimal doses for granuloma level treatment. But ultimately these regimens need to be 

successful at the host scale, and then in an entire population. The results presented 
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address how optimization at the granuloma scale compares to one measure of efficacy 

(sterilization time) of regimens tested in heterogenous and non-heterogenous 

populations of both granulomas and hosts. 

 

Looking at the Pareto front predictions, generated from sampled regimens simulated to 

treat granulomas with average and low PK antibiotic parameters, we see that the 

standard HRZE regimen is already near optimal and close to the predicted Pareto front 

for individuals with average PK concentrations (Figure 5.5). However, for individuals 

with low PK concentrations, the control regimen is further from the Pareto front, and 

there are a number of potential regimens that could simultaneously decrease overall 

antibiotic dose and decrease average sterilization time. Selecting three different 

regimens as potential alternatives to the control regimen and comparing efficacies at the 

granuloma level, we confirm the predictions from the Pareto front. The control regimen 

is not outperformed by any treatment, unless it is compared while treating granulomas 

that have both high CFU and parameters causing low PK exposure. Under average or 

variable PK conditions, the control regimen is as good or better than the potential 

alternatives. This trend observed for the average and variable PK granulomas extends 

to the virtual population. This is unsurprising, because the virtual population has the 

same amount of PK variability as the granuloma-level comparisons of Figure 5.6. 

 

Although these regimens fail to significantly outperform the standard (control) HRZE 

regimen regarding average sterilization time, we predicted they both have acceptable 

levels of efficacy. In particular, Treatment 1 is never statistically worse than the control 

treatment, whether comparing at the granuloma or host level. While these results do not 

suggest replacing the standard regimen, they do provide a way of identifying potential 

regimens that could be used as alternatives. For some of the treatment groups, doses 

for E and Z are low, and indicate that these could be useful regimens in situations 

where administration of either of those drugs to a given patient is not advised or not 

possible. This could be due to existing allergies to the antibiotic, the onset of adverse-

drug reactions, or unavailability of the antibiotic. 
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Another important observation from these results is that the current regimen is already 

near-optimal. This is not surprising, as although optimization schemes were not 

performed to determine the regimen, this regimen has undergone extensive research 

within patients over decades to ensure doses corresponding to appropriate levels of 

antibiotic to achieve their intended therapeutic effect. Using the Pareto front predictions, 

we see that the average individual does not have many alternative doses to improve the 

sterilization time without significantly increasing antibiotic doses. And when comparing 

efficacies in a heterogenous virtual clinical trial, the control does not get outperformed. If 

we are to shorten drug-susceptible TB treatment, it will likely require the use of novel 

antibiotics.  

 

As a potential alternative combination of antibiotics, replacing either isoniazid of rifampin 

with moxifloxacin has been tested clinically. When comparing the HMZE and RMZE 

regimens to the preferred HRZE into our simulated non-human primate granulomas, we 

also confirm that introducing moxifloxacin does not outperform the standard regimen. 

However, a third regimen, RMZE, sterilizes granulomas at a similar rate as HRZE, and 

could be a suitable alternative when isoniazid is ineffective, due to resistance or 

adverse drug reactions. 

 

Although these results do not necessarily identify a regimen that will outperform the 

currently used regimen, we were able to quickly identify promising alternatives, and 

potentially a new regimen (Treatment 1) that could improve treatment for individuals 

with whose own PK parameters lead to lower plasma concentrations. Importantly, using 

simulations to evaluate optimal doses and combinations of antibiotics provides a rapid 

and inexpensive way to identify regimens for further testing, and could reduce the 

resources and number of clinical trials required to develop and approve new antibiotic 

regimens for TB treatment. 

 

These results also highlight the idea that identifying differences in regimens in a clinical 

trial setting is difficult when looking at the full heterogeneity of a population. Yet, even if 

two regimens appear the same on average at the population level, that doesn’t mean 
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they are the same for an individual. That Treatment 1 outperforms the standard regimen 

in granulomas with low antibiotic exposure indicates that applying personalized 

medicine to TB treatment could be beneficial. While designing a regimen for every TB 

patient is not yet feasible, treating different groups of TB patients with different regimens 

could improve efficacy, reduce side effects, and decrease the TB global burden. In 

order to do this, we need to identify ways to measure which patients have more severe, 

complicated TB lesions, and whether they are at risk for low plasma antibiotic 

concentrations. PET/CT scans can provide a way towards this goal, but the equipment 

is expensive, so other routes should be tried [39]. Using measurements that evaluate 

disease severity and pharmacokinetics as requirements for inclusion into a given clinical 

trial could help to reduce the heterogeneity of the population, allowing a better chance 

to identify higher efficacy treatments for the subpopulation of interest. 
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Chapter 6 Conclusions 
 

 Summary of research findings 
Improving antibiotic treatment for tuberculosis (TB) could help to significantly decrease 

global TB deaths and disease burden. Caused by the pathogen Mycobacterium 

tuberculosis (Mtb), lesions in the lungs called granulomas form in response to infection 

with Mtb. Because variability in plasma pharmacokinetics (PK) and granuloma 

heterogeneity impact antibiotic distribution in granulomas and overall regimen efficacy, 

considering these aspects in new antibiotic regimen design is critical. This thesis 

presents methodologies for modeling antibiotic treatment and predicting regimen 

efficacy and optimal regimens. This work presents a method of incorporating and 

modeling the variability observed in antibiotic concentrations into PK models, the 

heterogeneity of granulomas, and drug-drug interactions to predict antibiotic regimen 

efficacy. Using GranSim, our computational model of granuloma formation and function, 

we can apply optimization algorithms to predict optimal antibiotic doses and compare 

different regimens from the granuloma to population scales. 

 

6.1.1 Integrating plasma pharmacokinetic variability into granuloma-level 

pharmacokinetics 

Natural variability in the population in how individuals absorb, distribute and eliminate 

antibiotics from the body impacts antibiotic concentrations in the granuloma. 

Incorporating this PK variability into computational models of TB treatment is necessary 

for accurate predictions of antibiotic distributions in granulomas and regimen efficacies. 

Because the source of PK variability occurs at the host scale, when calibrating tissue 

specific PK parameters to experimentally measured granuloma concentrations, this 

variability must be accounted for. In Chapter 2, we present a process of utilizing 

GranSim to calibrate antibiotic tissue PK parameters based on average granuloma 

concentrations. By appropriately accounting for this variability, and accurately 
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calibrating the tissue PK parameters, we can recreate the qualitative distributions of 

antibiotics in granulomas. 

 

6.1.2 Modeling the effect of drug-drug interactions on antibiotic killing rates 
Drug-drug interactions can play an important role in selecting the best combination of 

drugs for treatment. With TB antibiotics, the fractional inhibitory concentration (FIC), is a 

commonly used measurement to evaluate the strength of the synergistic or antagonistic 

interaction [1]. In Chapter 3, we develop a model for integrating the FIC for a 

combination of antibiotics into our PD model by defining an effective concentration that 

incorporates the contribution of each antibiotic and adjusts the effective concentration 

according to the strength of the interaction. This adjustment in the effective 

concentration results in a consequent increase or decrease in the antibiotic killing rate 

constant. Using this model, we can efficiently simulate a large number of antibiotic 

combinations and measure the effect that drug-drug interactions have on antibiotic 

killing rates and overall granuloma sterilization. This model has the important 

characteristic that the strength of the interaction weakens when antibiotic concentrations 

are uneven (e.g. when one antibiotic has a much higher concentration than the others). 

Because of this, we can predict the actual in vivo effect of the drug-drug interaction on 

the antibiotic killing rate. 

 

6.1.3 Defining improving antibiotic regimens as an optimization problem 
With the incorporation of PK variability, granuloma heterogeneity, and drug-drug 

interactions into a computational model, we can predict the efficacy of a given regimen 

at the granuloma scale. But with this model, how do we find optimal regimens, when 

defining a regimen by its antibiotic dose and dosing frequency, in the high dimensional 

regimen design space? Evolutionary algorithms are powerful in finding global optima in 

high dimensional spaces, even in multi-modal functions with numerous local optima. 

However, they sample the design space inefficiently, and require the iterative evolution 

of populations of samples that make their limit their use when optimizing 

computationally expensive functions. Surrogate-assisted optimization is a class of 

alternative algorithms that allows for efficient exploration of the design space and 

accurate prediction of objective function values and optima. Surrogate-assisted 
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optimization algorithms may not be as useful at predicting and optimizing over multi-

modal, rapidly changing surfaces, but they can be useful in predicting optimal regimens. 

The relationship between the variables describing regimens and their objective 

functions are frequently simple surfaces, often monotonically increasing or decreasing.  

 

In Chapter 4, we show that we can use surrogate-assisted optimization to predict 

regimens that still maintain clinical relevance [2]. We can improve the accuracy of 

predicting objective functions using surrogate models by adding resampling schemes 

and resampling the design space in regions that either have high levels of uncertainty, 

or by sampling areas with higher probabilities of containing global optima [3]. 

Additionally, by using a multi-objective optimization scheme, we can compare two 

competing objectives without imposing a weight on those objectives. In this way, we can 

identify the optimal trade-off between the objectives. In other words, we can identify the 

point when increasing antibiotic dose no longer results in a decrease in sterilization 

time. 

 

6.1.4 Variability in pharmacokinetics and granuloma heterogeneity impact granuloma 
sterilization 

With an antibiotic regimen such as the standard therapy for drug-susceptible TB that 

has a relatively high level of success when treating disease, understanding the 

mechanisms and conditions of failure is important to understanding how to improve 

efficacy. Based on the results presented in Chapter 2, it is clear that natural variability in 

the population regarding how antibiotics are absorbed, distributed, and eliminated from 

the body can create conditions of treatment failure. Currently used regimens are 

successful for the average individual, but still fail to cure TB in some individuals. When 

parameters causing low antibiotic concentrations in plasma are paired with high 

bacterial burden, and lesions that inhibit antibiotic diffusion and accumulation, we show 

that these create conditions where granulomas fail to sterilize. The results of Chapter 2 

reinforce another important concept in TB treatment. Antibiotics can distribute differently 

in a granuloma, and will complement each when given in combination, by accumulating 

in different regions of the granuloma and having different levels of bactericidal activity 

against different subpopulations of Mtb [4]. 
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6.1.5 Antibiotic concentrations in granulomas impact the strength of synergistic and 
antagonistic antibiotic combinations 

Specialization in the spatial distributions of antibiotics is not the only way that antibiotics 

given in combination can complement each other. Drug-drug interactions between 

antibiotics can also generate synergistic and antagonistic interactions that produce 

higher or lower levels of bactericidal activity, especially when observed in vitro. 

However, are these same interactions observed in a granuloma, and do they impact 

sterilizing ability? A relationship exists between the fractional inhibitory concentration of 

a combination of antibiotics and its observed clinical efficacy [5], but does not 

completely explain the efficacy of all antibiotic combinations. In Chapter 3, we show that 

by using computational modeling to measure the real impact these drug interactions 

have on the antibiotic killing rate constant, based on predicted in vivo concentrations of 

the antibiotics, we generate a much stronger predictor of in vivo efficacy. This is an 

important finding because some combinations that are strongly antagonistic interactions 

in vitro could still be efficacious regimens. And similarly, a strong synergistic interaction 

is not enough to result in highly efficacious regimen. 

 

6.1.6 Predicting optimal regimens in a virtual population 
In Chapter 5, we use a multi-objective, surrogate-assisted optimization scheme to 

optimize the doses for the four first-line TB antibiotics: isoniazid, rifampin, pyrazinamide 

and ethambutol. We optimize these doses for granulomas with different levels of 

antibiotic concentrations in plasma. We find that the currently used doses are near-

optimal for the four first-line antibiotics when they are able to achieve average levels of 

concentration in plasma and the granuloma. However, we predict that granulomas 

simulated with low plasma antibiotic concentrations have alternative regimens with 

higher levels of efficacy, while also allowing for lower overall doses of antibiotics. This 

indicates that there may be alternative regimens that improve treatment in individuals 

with pharmacokinetics that result in low plasma antibiotic concentrations. This result is 

connected to our findings in Chapter 2, where we observe that PK variability can create 

conditions that result in granulomas that fail to sterilize with antibiotic treatment. Using 

computational modeling, coupled with surrogate-assisted optimization algorithms, we 
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predict there may be alternative doses that can improve treatment under these 

conditions. However, performing clinical trials to detect the differences between 

alternative regimens in a diverse population may be difficult. We show that when these 

regimens are tested in a virtual clinical trial accounting for the range of PK variability 

and granuloma heterogeneity, alternative regimens only show equal sterilization rates 

when compared to the control regimen consisting of the currently recommended doses. 

 

 Future directions 
Computational modeling of in-host dynamics of Mtb infection and immune response in 

TB disease has made numerous contributions to the field from studying immunological 

mechanisms, analyzing disease progression, and simulating antibiotic treatment [6]. 

Certainly, computational modeling is a long way from completely replacing these 

experimental alternatives, but computational modeling can provide a vital role in 

accelerating experimental research by predicting promising routes and helping to avoid 

investing in failed therapies. The continual advancement of these models to include 

additional features can improve their ability to recapitulate the behavior in the biological 

system. In terms of modeling work presented in this thesis, this could include simulating 

more complex lesion types, improving pharmacodynamic models, and modeling new 

antibiotics and therapies. Adding new objectives when optimizing antibiotic regimens 

can diversify the types of optimal regimens identified and improve treatment in a diverse 

population. 

 

6.2.1 Improvements to GranSim 
There are three improvements to GranSim that could further improve its ability to 

describe and predict antibiotic efficacy. First, the simulations we present in this work do 

not explicitly include fibrosis, the depositing of connective tissue such as collagen during 

pathological would healing, although GranSim has been used to simulate fibrosis [7]. 

Fibrotic granulomas are often associated with healing granulomas and fibrosis 

frequently arises with antibiotic treatment [8–10]. This could present an even more 

impermeable barrier to diffusion than the cells within a granuloma alone. Fibrosis is 

potentially an important part of why drug treatment takes so long and can fail to sterilize 
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granulomas. As the granuloma starts to heal, it may wall off remaining Mtb, limiting 

antibiotic diffusion to those regions. Second, cavitation is another pathological 

manifestation of TB disease that is related to more severe disease and higher rates of 

treatment failure and formation of resistance, and occurs when the granuloma structure 

begins to degrade and liquify, forming cavities in the lungs [11–14]. Modeling how Mtb 

persist in cavity walls, and the pharmacokinetics of cavities, would provide another 

potentially critical understanding of how treatments fail. Third, while we have addressed 

TB mostly as a pulmonary disease, existing in granulomas in the lungs, extrapulmonary 

involvement is not uncommon [15]. In particular, granuloma formation and involvement 

in lymph nodes in macaques is associated with more severe disease and dissemination 

events [16,17]. Extending plasma PK models to include a lymph node compartment that 

receives antibiotic from peripheral tissue and adds antibiotic back into a plasma 

compartment would provide an organ-level prediction of antibiotic concentration in 

lymph nodes. Within the lymph, the same tissue PK phenomena that govern antibiotic 

distribution in lungs and granulomas could be used to describe the distribution of 

antibiotics in lymph node granulomas. Because granulomas in lymph nodes tend to 

have limited ability to kill Mtb and often associated with higher Mtb burden in non-

human primate models [16,18], modeling lymph node treatment could increase our 

understanding of TB treatment failure and inform better regimen design. 

 

6.2.2 Improvements to the pharmacodynamic model 
The relationship between antibiotic concentration and pharmacodynamic effect is critical 

to determining antibiotic treatment efficacy. In this thesis, we utilize a Hill curve to 

describe this effect, which is a widely used model to describe the pharmacodynamics of 

therapeutic agents, and in this research describes the relationship between antibiotic 

concentration and the killing rate constant [19–21]. However, there are often distinct 

concentration levels that exhibit bacteriostatic and bactericidal effect of TB antibiotics 

[22]. Capturing the pharmacodynamic effect of both growth inhibition and bactericidal 

effects could enhance the ability to predict an antibiotic regimen’s efficacy. Because 

GranSim already includes the bactericidal effect with the Hill curve, a potential option for 

modeling growth inhibition would involve utilizing another Hill curve that evaluates the 
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reduction in Mtb growth rate. This bacteriostatic function could evaluate how much the 

growth rate decreases as a function of the concentration, with parameters influenced by 

minimum inhibitory concentration measurements [22]. Because non-replicating Mtb are 

typically more tolerant to a variety of antibiotics [23], a potential consequence of 

introducing this bacteriostatic effect would result in lower overall killing activity when one 

antibiotic is exhibiting a bacteriostatic effect. The ability to simulate the conditions when 

this phenomenon occurs could improve our ability to predict regimens that have higher 

risks of treatment failure. 

 

The drug-drug interactions modeled in Chapter 3 use fractional inhibitory concentrations 

that are constant for the given combination of antibiotics. However, the conditions within 

a granuloma, and the microenvironments that impact bacterial metabolism and 

phenotypic state can also impact the synergistic or antagonistic interactions [24]. 

GranSim is well suited to accommodate these changes in interactions due to 

microenvironments, through either course-grained representation based on variable 

growth rate of Mtb in the model, or fine-grained calculation of the metabolites and 

nutrients in a granuloma [25]. Introducing these environment dependent interactions 

would improve GranSim’s ability to predict how drug interactions impact sterilization rate 

and regimen efficacy. 

 

6.2.3 Host-directed therapies 
Many pathological characteristics of TB disease are caused by the body’s own immune 

response. Host-directed therapies that modulate immune responses could limit harmful 

inflammation or improve the efficacy of antibiotic therapy. The formation of the 

granuloma, and consequent tissue damage, are mostly dictated by the level and control 

of the inflammatory responses, and a proper balance between pro- and anti-

inflammatory responses is necessary for granuloma maintenance [26–28]. Modulating 

the immune response can alter the progression of TB disease. For example, anti-TNF 

therapies (such as those given for the treatment of rheumatoid arthritis) can result in 

reactivation of latent infections [29–31]. Studies in non-human primates suggest there 

may be some host-directed therapies that could be beneficial in improving responses to 
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drug treatment. Neutralization of IL-10 in non-human primates during Mtb infection does 

not change overall disease outcomes compared to untreated non-human primates, but 

results in immunologically different granulomas that could potentially impact antibiotic 

activity [32]. The use of IL-1 receptor antagonists together with linezolid treatment in 

non-human primates is a potential host-directed therapy to reduce linezolid toxicity and 

reduce TB-associated inflammation in the lungs [33]. If the granuloma is the product of 

an immune response, can we discover additional ways to modulate the immune 

response to adjust the structure of the granuloma, and improve antibiotic accumulation 

in granulomas? Or is it possible that relieving some of the immune pressure can shift 

Mtb out of a phenotypic state that is more tolerant to antibiotics to a state where that is 

more susceptible? Potential host-directed therapies could prove useful in conjunction 

with antibiotics, but the inflammatory balance that is required to maintain a granuloma 

and control Mtb infection is delicate, and there is potential for these therapies to do 

more harm than good. 

 

6.2.4 Additional antibiotics to simulate new regimens 
The antibiotics studied in this work included the four-first line antibiotics (isoniazid, 

rifampin, ethambutol, and pyrazinamide), and the fluoroquinolones moxifloxacin and 

levofloxacin. However, there are numerous other antibiotics in the TB drug pipeline that 

would be useful introductions into the model. Perhaps the most exciting antibiotics are 

included in the Nix-TB, or BPaL regimen, consisting of bedaquiline, pretomanid, and 

linezolid. Each of these are newer antibiotics that have shown success in clinical trials 

at reducing the treatment duration of extensively drug resistant TB (XDR-TB) from 24 

months to 6 months [34]. Bedaquiline is a diarylquinoline that is highly active against 

replicating and non-replicating bacterial population [35], and has promise in being a 

useful antibiotic in treating TB despite its high caseum binding fraction and limited 

transport into caseous lesions [36]. Linezolid is a potent antibiotic, but has many 

associated toxicities, particularly bone marrow suppression. A recent study showed that 

co-administration of IL-1 receptor antagonistic could reduce inflammation and linezolid 

associated toxicity [33]. While these are some of the most exciting drugs that have 

made it through the gauntlet of studies to clinical testing clinically, there are many other 
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candidates in the pipeline [37,38]. Modeling new antibiotics as they are being developed 

gives another tool in identifying the best regimens and identify the best experiments and 

trails to conduct when investigating new regimens. 

 

6.2.5 New objectives for optimization and regimen evaluation 
Using alternative objectives to evaluate and optimize antibiotic regimens would provide 

additional treatment options that can achieve different goals. Considering other events 

during TB treatment, such as antibiotic toxicity and the formation of resistant Mtb could 

be additional objectives to consider in regimen optimization. Evaluating regimens based 

on the time required to sterilize a granuloma or host, as implemented here, is a logical 

choice. Not only does faster sterilization mean that one is less likely to fail to completely 

sterilize and relapse, but it also means that treatment durations could potentially 

shorten. Balancing sterilization time with total antibiotic dose is necessary, because 

minimizing sterilization time would only result in an optimization algorithm finding the 

highest allowable dose of antibiotic. Minimizing toxicity is an important objective and 

related to antibiotic dose. As toxicity and adverse drug reactions occur in TB treatment, 

patient adherence and regimen efficacy decrease [39]. Designing a regimen that 

minimizes the frequency or probability of adverse-drug reactions could be beneficial at 

increasing overall treatment success rates. Measuring and modeling toxicity, either 

through the explicit modeling of toxic antibiotic metabolites, or by relating long-term drug 

exposure to risk of adverse-drug events, would be a useful objective [40,41].  

 

An additional objective could be minimizing the risk of resistance development. 

Antibiotic resistance is a very concerning aspect of TB treatment [42,43]. Although the 

simulations presented in this thesis did not involve any resistant Mtb, it is a functionality 

built into our model for isoniazid and rifampin, and has been used to study the 

emergence and treatment of resistant Mtb [44]. The ability to simulate the spatial 

distribution of antibiotics in granulomas is so important in evaluating resistance risk. 

Even if average granuloma concentrations are above concentrations that could reduce 

development of resistant Mtb [45], the distribution of certain antibiotics may create 

microenvironments that meet the criteria for resistance selection. Sub-therapeutic 
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concentrations have the potential to promote resistance [46]. Measuring the amount of 

time Mtb spend at concentrations that pose higher risks of resistance formation could be 

an additional objective to minimize. Minimizing the risk of resistance would allow for the 

selection of optimal regimens that are good at sterilizing granulomas, but also mitigate 

the growing threat of rising antibiotic resistance in TB disease.  

 

6.2.6 Improving therapy in a heterogeneous population 
Modern research in medicine and health sciences has promoted the idea of 

personalized medicine [47]. Understanding the specifics of an individual’s disease, 

whether it is a specific type of mutation in cancerous tissue or the severity of the 

disease, could allow physicians to design a treatment course specific to that individual. 

Many findings in this thesis would support the role of personalized medicine for TB 

treatment. If PK variability is important in determining treatment success and changing 

doses could create regimens that are more optimal for people with low levels of plasma 

antibiotic concentrations, tailoring a regimen to that individual has the potential for being 

the best option.  

 

However, applying personalized medicine in practice has a couple of major limitations. 

The first is that each individual requires attention from medical professionals, and those 

medical professionals need to spend the time and resources to evaluate the 

personalized regimen for that patient. Given the global scale, and prevalence in low-

resource regions of our world, this type of personalized attention is not feasible. The 

second limitation is that personalized medicine requires some type of biomarker that is 

easily measured, so we would need biomarkers predictive of disease progression, 

reactivation, and treatment success [48]. 

 

A more realistic approach to applying personalized medicine in TB treatment would be 

using a stratified approach. Stratified medicine involves treating subgroups of patients 

similarly, depending on some characteristic of their disease [49]. Based on the findings 

of this work, those groups could stratify based on average PK exposure versus low PK 

exposure, or complex TB lesions versus smaller granulomas. Again, a barrier to 
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implementing stratified medicine in the clinic is determining the metrics with which to 

stratify the patients. Advancing our ability to determine the prognosis of TB patients and 

monitor antibiotic concentrations through already used diagnostics and tests, such as 

chest X-rays, sputum cultures, time to positivity measurements, and drug sensitivity 

tests could all be pieces of information with which to stratify individuals [50]. The 

required research pipeline to realize the clinical application of stratified medicine 

techniques involves identifying easily measurable metrics through which to stratify 

patients, followed by clinical testing and monitoring of programs that utilize these 

methods.  

 

Designing better antibiotic regimens for TB treatment should involve ensuring that the 

antibiotic regimen is efficacious for all individuals. Whether its designing one regimen 

that works for an entire heterogenous population, or finding regimens that work best in 

stratified groups, using computational modeling can help to design these regimens. 

Representing the complexity in the immune response, disease progression, and 

treatment with a computational model can help us to understand the underlying 

mechanisms that determine regimen efficacy. Through the use of optimization 

algorithms to screen new antibiotic combinations and doses, we can identify the trade-

off between different objectives when designing antibiotic regimens and use this 

information to tailor new regimens to specific groups of TB patients.  
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Figure A.1 Calibrated dose response curves 
Calibrated dose-response curves (lines) to in vitro data (dots) of dose response assays from individual experiments 
from the literature for each antibiotic under various culture conditions. References for the data sets are listed in Table 
2.3. Calibrated curves for antibiotics are presented in rows in the order INH, RIF, EMB and PZA from top to bottom. 
Gray shaded regions indicate concentration values reached in granulomas. 
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Figure A.2 Simulated spatial RIF distribution 
The simulated spatial distribution of RIF in a granuloma with larger amounts of caseum. Concentrations shown are 
based on those observed after six hours following a fifth daily dose of 10 mg/kg RIF. The granuloma is simulated on a 
200x200 simulation grid representing 4 mm x 4 mm of lung tissue. Compared to the single-dose RIF concentration in 
a smaller granuloma, accumulation of RIF is observed in caseated regions of the granuloma (lighter pockets 
dispersed throughout the center of the granuloma). 
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Figure A.3 Non-replicating Mtb are correlated with treatment outcomes 
The number of non-replicating Mtb at the beginning of therapy (300 days post infection) is positively correlated with 
sterilization time or number of remaining Mtb at the end of treatment (180 days of treatment).  (INH, A; RIF, B; EMB, 
C; PZA, D). INH and EMB show strong positive relationships with correlation coefficients 0.78 and 0.95 respectively. 
The correlations are for RIF and PZA, with coefficients of 0.69 and 0.45 respectively. RIF has the best ability to kill 
non-replicating Mtb, so the sterilization time is less dependent on that subpopulation’s size. PZA shows little 
sterilizing activity in granulomas, so the number left at the end of treatment is more correlated with the initial number 
of Mtb.  
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Figure A.4 The type of bacterial death during each treatment with average PK for low-CFU  
The type of bacterial death during each treatment with average PK for low-CFU (A, B and C) and high-CFU (D, E, 
and F) granulomas. Figure shows the distribution of the percentrage of bacteria that die due to various causes over 
all granulomas. The types of death displayed are bacteria that died due to antibiotics (A and D), bacteria that died 
due to an immune response (B and E), and bacteria that died due to natural death through either starvation or death 
in caseum (C and F). 
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Figure A.5 Risk of granuloma treatment failure.  
Simulated granulomas were classified into four risk of treatment failure categories based on sterilization time when 
treated with HRZE with average (A, C, E, G) and low (B, D, F, H) PK exposure. The four categories were unsterile 
(failed to sterilize), high (sterilized after 150 days), medium (sterilized between 90 and 150 days), and low (sterilized 
before 90 days). The plots show the distribution of pretreatment CFU/granuloma, diameter, amount of caseation 
(measured in number of caseated compartments in the simulation), and percentage of intracellular Mtb, for each risk 
category, with the median value indicated by the red line. Each dot is a single granuloma. Red dots indicate 
granulomas that are low risk but have characteristics similar to unsterilized or high-risk granulomas. 
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Appendix B Supplementary Information for Chapter 3 
 
Table B.1 List of regimens simulated and their corresponding fractional inhibitory concentrations (FIC).  
The antibiotics included and their abbreviations and standard doses are isoniazid (H, 5 mg/kg), rifampin (R, 10 
mg/kg), ethambutol (E, 20 mg/kg), pyrazinamide (Z, 25 mg/kg), moxifloxacin (M, 7 mg/kg), and levofloxacin (L, 17 
mg/kg). The regimen names give the single letter abbreviation, followed by the dose in mg/kg for that antibiotic. If no 
number is listed, the standard dose was used. The doses per week (dpw) are listed at the end of the regimen. If no 
doses per week is listed, doses were simulated as administered daily. The regimens used for validation of the model 
are labeled with an asterisk, corresponding to the regimens listed in Figure 3.4 and referenced from Bonnet et al. 
(2017)[1] 
  
Regimen FIC 
HRZE 0.82 
HR 1.35 
HZ 0.97 
HE 1.46 
RZ 1.33 
ZE 1.12 
RE 0.74 
HRZ 0.74 
HRE 0.94 
HZE 0.91 
RZE 0.78 
HMZE 1.05 
RMZE 0.96 
HM 2.01 
RM 2.31 
MZ 1.99 
ME 1.8 
HRM 1.08 
HMZ 1.1 
HME 1.19 
RMZ 1.33 
RME 0.99 
MZE 1.19 
HRMZ 0.92 
HRME 0.93 
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HL 1.25 
RL 1.53 
LZ 1.47 
LE 1.28 
HRL 1.01 
HLZ 1.11 
HLE 1.15 
RLZ 1.22 
RLE 1.12 
LZE 1.28 
HRLZ 0.8 
HRLE 0.89 
HLZE 1.01 
RLZE 0.94 
H6E15* 1.46 
H6E25* 1.46 
R11E25* 0.74 
R23.5E25* 0.74 
H11R10* 1.35 
H6R10E16* 0.94 
H6R10E25* 0.94 
H10R10E25* 0.94 
R24Z64E90dpw1* 0.78 
H16R12Z49dpw2* 0.74 
H6R10Z27E16* 0.82 
H5R10M7Z25dpw5* 0.92 
R10M7Z25E15* 0.96 
H14R10M9Z34dpw3* 0.92 
H6E6* 1.46 
H10E25* 1.46 
R23.5E45dpw2* 0.74 
R23.5E90dpw1* 0.74 
H6R6E10* 0.94 
H15R10E40dpw2* 0.94 
H5R10Z25E17.5* 0.82 
H6R9Z24E16dpw3* 0.82 
H14R13Z47E29dpw3* 0.82 

*Used for validation 
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Table B.2 Host immune parameters used with GranSim to generate the granuloma bio-repository.  
Timestep units represent 10-minute time steps in the agent-based simulation. The minimum and maximum values for 
parameter ranges used in sampling are listed. Parameters are based on previous GranSim studies [2,3]. 

Parameter Definition Units Min Max 
# immune cell deaths 
causing compartment 
caseation 

 6 10 

Time to heal caseated 
compartment 

Timesteps 909 1365 

TNF threshold for 
causing immune cell 
apoptosis 

Molecules 690 1035 

Rate constant for TNF-
induced apoptosis 

1/s 1.36e-6 2.04e-6 

Minimum chemokine 
concentration to induce 
chemotaxis 

Molecules 0.27 0.41 

Maximum chemokine 
concentration to induce 
chemotaxis 

Molecules 392 588 

Initial density of 
macrophages 

Fraction of 
grid 
compartmen
ts 

0.019 0.029 

Time between resting 
macrophage movements 

Timesteps 4 6 

Time between active 
macrophage movements 

Timesteps 15 23 

 
Time between infected 
macrophage movements 

Timesteps 169 255 

TNF threshold to induce 
NFkB activation 

Molecules 42.8 64.1 

Rate constant for NFkB 
activation 

1/s 6.77e-6 1.01e-5 

Probability resting 
macrophage kills 
extracellular Mtb 

 0.0738 0.111 

Killing probability 
adjustment for resting 
macrophages with NFkB 
activation 

 0.129 0.194 

# bacteria to cause NFkB 
activation 

 236 354 
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# bacteria for 
macrophage to become 
chronically infected 

 12 18 

# bacteria to cause 
macrophage to burst 

 19 29 

# bacteria activated 
macrophage can 
phagocytose 

 3 5 

Probability activated 
macrophage will will heal 
a caseated compartment 

 0.00459 0.00687 

Probability a T-cell will 
move to same 
compartment as a 
macrophage 

 0.0367 0.0550 

Probability IFNγ 
producing T-cell induces 
Fas/FasL apoptosis 

 0.0293 0.0439 

Probability IFNγ 
producing T-cell also 
produces TNF 

 0.0514 0.0770 

Probability cytotoxic T-
cell kills macrophage 

 0.00505 0.0121 

Probability cytotoxic T-
cell kills a macrophage 
and all its intracellular 
bacteria 

 0.619 0.928 

Probability regulatory T-
cell deactivates 
macrophage 

 0.00584 0.00876 

Time when T-cell 
recruitment begins 

Timesteps 3225 4722 

Time delay after T-cell 
recruitment begins until 
maximal recruitment rate 

Timesteps 650 976 

Macrophage maximal 
recruitment probability 

 0.0241 0.0361 

Macrophage threshold for 
recruitment by 
chemokines 

Molecules 0.641 0.960 

Macrophage threshold for 
recruitment by TNF 

Molecules 0.00859 0.0129 

Macrophage half 
saturation for recruitment 
by TNF 

Molecules 1.22 1.82 



 167 

Macrophage half 
saturation for recruitment 
by chemokine 

Molecules 1.68 2.52 

IFNγ producing T-cell 
maximal recruitment 
probability 

 0.0484 0.0726 

IFNγ producing T-cell 
threshold for recruitment by 
chemokine 

Molecules 0.0535 0.0802 

IFNγ producing T-cell 
threshold for recruitment 
by TNF 

Molecules 1.01 1.51 

IFNγ producing T-cell half 
saturation for recruitment 
by TNF 

Molecules 1.22 1.82 

IFNγ producing T-cell half 
saturation for recruitment 
by chemokine 

Molecules 1.64 2.46 

Probability a IFNγ 
producing T-cell is 
cognate 

 0.0437 0.0655 

Cytotoxic T-cell maximal 
recruitment probability 

 0.0370 0.0554 

Cytotoxic T-cell threshold 
for recruitment by 
chemokine 

Molecules 3.55 5.32 

Cytotoxic T-cell threshold 
for recruitment by TNF 

Molecules 0.920 1.38 

Cytotoxic T-cell half 
saturation for recruitment 
by TNF 

Molecules 0.715 1.07 

Cytotoxic T-cell half 
saturation for recruitment 
by chemokine 

Molecules 5.24 7.86 

Probability a cytotoxic T-
cell is cognate 

 0.0414 0.0620 

Regulatory T-cell 
maximal recruitment 
probability 

 0.0246 0.0369 

Regulatory T-cell 
threshold for recruitment 
by chemokine 

Molecules 2.03 3.04 

Regulatory T-cell 
threshold for recruitment 
by TNF 

Molecules 1.65 2.47 
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Regulatory T-cell half 
saturation for recruitment 
by TNF 

Molecules 2.00 3.00 

Regulatory T-cell half 
saturation for recruitment 
by chemokine 

Molecules 1.23 1.84 

Probability a regulatory 
T-cell is cognate 

 0.0400 0.0600 
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Table B.3 Plasma PK PRCC Values 
For four regimens (HRZE, RE, HE and RM), the table shows the PRCC values relating the plasma PK parameters to the predicted iDIS for non-replicating Mtb 
during the first dose of treatment. All PRCC values reported are significant with p<0.01 and NS designates that the parameter was not significant. The parameters 
for each antibiotic listed include the absorption rate constant (kAbs), the intercompartmental clearance (Q), the volume of distribution for the plasma (central) 
compartment (Vol. Dist. Cent.), the volume of distribution for the peripheral compartment (Vol. Dist. Periph.), and the clearance rate constant (CL). 

  INH RIF EMB PZA MXF 

  kAbs Q 

Vol. 
Dist. 
Cent 

Vol. 
Dist. 

Periph CL kAbs Q 

Vol. 
Dist. 
Cent 

Vol. 
Dist. 

Periph CL kAbs Q 

Vol. 
Dist. 
Cent 

Vol. 
Dist. 

Periph CL kAbs Q 

Vol. 
Dist. 
Cent 

Vol. 
Dist. 

Periph CL kAbs Q 

Vol. 
Dist. 
Cent 

Vol. 
Dist. 

Periph CL 

HRZE NS -0.66 0.34 -0.18 -0.20 0.28 NS NS NS 0.89 0.43 NS 
-

0.26 NS -0.56 NS NS 0.54 NS 0.21       

RE      NS NS NS NS 0.90 0.74 -0.27 
-

0.23 -0.20 -0.92            

HE -0.31 -0.87 0.67 -0.33 -0.39      -0.68 0.26 0.30 0.20 0.88            

RM           NS NS NS -0.26 -0.83                     NS 
-

0.12 0.19 0.95 0.99 
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Figure B.1 Measures of regimen efficacy are correlated with interaction strength associated with intracellular 
replicating Mtb killing rate for 64 regimens.  
The mean decrease in log CFU (0-14) averaged over each 100 granulomas simulated for each regimen (A) and 

percentage of sterilized (negative) granulomas after eight weeks of treatment (B) are weakly positively correlated with 

the average interaction strength experienced by non-replicating Mtb during the first 24 hours of treatment with 

correlation coefficients of 0.28 and 0.35 respectively. Mean sterilization time for each regimen over 100 granulomas 

(C) is negatively correlated with the average interaction strength with a correlation coefficient of -0.38. Each point 

represents the regimen outcome measurement for a given regimen and error bars indicate +/- standard deviation 

from the sample of 100 granulomas simulated. The colored points correspond to the regimens HRZE (light blue), RE 

(dark blue), RM (red) and HE (orange).
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Figure B.2 Measures of regimen efficacy are correlated with interaction strength associated with extracellular 
replicating Mtb killing rate for 64 regimens.  
The mean decrease in log CFU (0-14) averaged over each 100 granulomas simulated for each regimen (A) and 

percentage of sterilized (negative) granulomas after eight weeks of treatment (B) are weakly positively correlated with 

the average interaction strength experienced by non-replicating Mtb during the first 24 hours of treatment with 

correlation coefficients of 0.28 and 0.35 respectively. Mean sterilization time for each regimen over 100 granulomas 

(C) is negatively correlated with the average interaction strength with a correlation coefficient of -0.38. Each point 

represents the regimen outcome measurement for a given regimen and error bars indicate +/- standard deviation 

from the sample of 100 granulomas simulated. The colored points correspond to the regimens HRZE (light blue), RE 

(dark blue), RM (red) and HE (orange). 
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Figure B.3 Comparison of treatment simulations with clinical trial results  
Comparison of treatment simulations with clinical trial results for 26 different regimens compiled in Bonnet et al. 
(2017)[1]. The clinical regimen efficacy metric used is solid culture conversion following 8 weeks of therapy. We 

compare the confidence intervals (black) to the percent of simulated granulomas that sterilized (lower red bar) or had 

fewer than 10 CFU after 8 weeks of therapy (upper red bar, red dot average of error bars) for all 26 regimens (A). 

Regimens are abbreviated by the single antibiotic abbreviation, followed by the dose in mg/kg for that antibiotic, with 

the doses per week (dpw) listed at the end of the regimen abbreviation. FIC is negatively correlated with clinical rank 

with a weighted correlation of -0.74 (B), and iDIS is positively correlated with clinical rank with a weighted correlation 

of 0.67 (C). Each dot represents an individual regimen, its size is linearly scaled by the number of patients treated (B 

and C) 
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Figure B.4 Heat map of predicted iDIS value for different regimens of the same antibiotic combination.  
The list of regimens is ordered by decreasing predicted in vivo DIS for regimens involving the antibiotic combination 

RE (A), HE (B), HR (C), HRE (D), HRZ (E) and HRZE (F). For predicated IDIS blue represents synergy, white 

represents additivity, and red represents antagonism. 
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Appendix C Supplementary Information for Chapter 5 
 
Table C.1 NHP plasma PK parameters. 
The ranges for the plasma PK parameters calibrated to NHP plasma data. Parameters calibrated in previously 

published studies [1,2], except for moxifloxacin, whose data and calibrated curves are shown in Figure C.1. 

Parameter Units INH RIF MXF EMB PZA 

Absorption rate 
constant 

1/h [0.3, 1.2] [0.50,0.74] 
 

[0.1,0.4] [0.1,0.6] 
 

[1.4,1.6] 
 

Intercompartmental 
clearance rate 
constant 

L/(h*kg) [0.05,0.3] 
 

[0.1,0.5] 
 

[0.2,1.0] 
 

[0.5,1.4] 
 

[3.5,4.5] 
 

Central 
compartment 
volume of 
distribution 

L/kg [1,3] 
 

[0.56,0.66] 
 

[4.5,10] 
 

[1,4] 
 

[0.3,0.7] 
 

Peripheral 
compartment 
volume of 
distribution 

L/kg [15,35] 
 

[0.05,0.15] 
 

[15,25] 
 

[2,10] 
 

[0.2,0.4] 
 

Plasma clearance 
rate constant 

L/(h*kg) [1.2,2.2] 
 

[0.70,0.092] 
 

[0.3,1.3] 
 

[2,3] 
 

[0.25,0.35] 
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Figure C.1 NHP plasma PK calibration for MXF 
The calibrated ranges for the plasma PK parameters calibrated to NHP plasma data (black dots) and the range of 

simulation outcomes (blue shaded area) with median concentration (blue line). Median plasma PK parameter 

calibrated to minimize the sum of the squared error between data and simulation outcome, and the ranges for 

parameters were set to capture full range of observed data. Data from NHP were obtained by administering a single 

oral dose of 50 mg/kg to three subjects, and serial blood draws at 0.5, 1, 2, 4, 8 and 24 hours (data unpublished). 
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