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ABSTRACT

Significant public demand arises for rapid data-driven scientific investigations us-

ing observational data, especially in personalized healthcare. This dissertation ad-

dresses three complementary challenges of analyzing complex observational data in

biomedical research.

The ethical challenge reflects regulatory policies and social norms regarding data

privacy, which tend to emphasize data security at the expense of effective data shar-

ing. This results in fragmentation and scarcity of available research data. In Chapter

II, we propose the DataSifter approach that mediates this challenge by facilitating

the generation of realistic synthetic data from sensitive datasets containing static and

time-varying variables. The DataSifter method relies on robust imputation methods,

including missForest and an iterative imputation technique for time-varying vari-

ables using the Generalized Linear Mixed Model (GLMM) and the Random Effects-

Expectation Maximization tree (RE-EM tree). Applications demonstrate that under

a moderate level of obfuscation, the DataSifter guarantees sufficient per subject per-

turbations of time-invariant data and preserves the joint distribution and the energy

of the entire data archive, which ensures high utility and analytical value of the time-

varying information. This promotes accelerated innovation by enabling secure sharing

among data governors and researchers.

Once sensitive data can be securely shared, effective analytical tools are needed

to provide viable individualized data-driven solutions. Observational data is an im-

portant data source for estimating dynamic treatment regimes (DTR) that guide

personalized treatment decisions. The second natural challenge regards the viabil-
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ity of optimal DTR estimations, which may be affected by the observed treatment

combinations that are not applicable for future patients due to clinical or economic

reasons. In Chapter III, we develop restricted Tree-based Reinforcement Learning to

accommodate restrictions on feasible treatment combinations in observational studies

by truncating possible treatment options based on patient history in a multi-stage

multi-treatment setting. The proposed new method provides optimal treatment rec-

ommendations for patients only regarding viable treatment options and utilizes all

valid observations in the dataset to avoid selection bias and improve efficiency.

In addition to the structured data, unstructured data, such as free-text, or voice-

note, have become an essential component in many biomedical studies based on clin-

ical and health data rapidly, including electronic health records (EHR), providing

extra patient information. The last two chapters in my dissertation (Chapter IV and

Chapter V) expands the methods developed in the previous two projects by utilizing

novel natural language processing (NLP) techniques to address the third challenge

of handling unstructured data elements. In Chapter IV, we construct a text data

anonymization tool, DataSifterText, which generates synthetic free-text data to pro-

tect sensitive unstructured data, such as personal health information. In Chapter

V, we propose to enhance the precision of optimal DTR estimation by acquiring

additional information contained in clinical notes with information extraction (IE)

techniques. Simulation studies and application on blood pressure management in

intensive care units demonstrated that the IE techniques can provide extra patient

information and more accurate counterfactual outcome modeling, because of the po-

tentially enhanced sample size and a wider pool of candidate tailoring variables for

optimal DTR estimation.

The statistical methods presented in this thesis provides theoretical and practical

solutions for privacy-aware utility-preserving large-scale data sharing and clinically

meaningful optimal DTR estimation. The general theoretical formulation of the meth-

xii



ods leads to the design tools and direct applications that are expected to go beyond

the biomedical and health analytics domains.
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CHAPTER I

Introduction

There is a significant public demand for rapid data-driven scientific investigations

using observational data, especially in personalized healthcare that accounts for in-

dividual variability. Despite the fact that there are 3.3× 1013 Gigabytes of available

digital content in 2018, less than 5% of the data has been analyzed according to

the International Data Corporation [87, 56]. While translating data into practical

solutions, ethical and practical challenges arise. Specifically, in this dissertation, our

work is motivated by three challenges of analyzing complex observational data in

biomedical research.

The ethical challenge reflects regulatory policies and social norms regarding data

privacy, which hinder efficient data sharing and result in the scarcity of available

data in research. Existing strategies, including differentially private algorithms using

graphical models [99, 12], are not scalable for high dimensional data and are incapable

of handling time-varying data with correlation across time for each subject.

Once sensitive data can be securely shared, analysis tools are needed to provide

viable individualized data-driven solutions. Personalized medicine tailors medical

treatment to the individual characteristics of each patient. Rapid data growth in re-

cent years has made observational data a major data source for personalized medicine.

Dynamic treatment regime (DTR) is a pre-specified sequence of decision-rules that

1



guide personalized treatment decisions for patients. A common objective is to use

data to estimate the “optimal DTR,” which optimizes a desired clinical outcome.

A natural challenge arises when some observed treatment combinations are not ap-

plicable for future patients due to clinical or economic reasons, which may lead to

uninterpretable optimal DTR estimations. For example, the DTR may contain re-

called drugs in a particular stage or has a weaker treatment following an aggressive

treatment for nonresponders. In addition, methods do not exist to estimate the best

DTR among predefined feasible treatment combinations. Finally, the traditional ap-

proach of deleting patient records involving inapplicable treatment combinations may

lead to selection bias.

In addition to the structured data, unstructured data such as free-text, or voice

note provides extra information and has become an essential component in many

biomedical data sources, including electronic health records (EHR). The recent suc-

cess in natural language processing techniques has generated much interest in apply-

ing unstructured data analysis methods to biomedical research. However, on the one

hand, there is no existing method to enable safe and rapid sharing of the unstructured

information. Although suppressing names, addresses, dates, and phone numbers is a

common practice in anonymized clinical notes, personal identity information in EHR

can be easily obtained from detailed descriptions in narrative reports. On the other

hand, we notice a lack of research in estimating dynamic treatment regimes using

additional free-text information extracted from clinical notes. Since EHR datasets

are constructed for billing and patient care management, many clinically relevant co-

variates are evident in its narrative contents but are not available in the structured

data.

To address these challenges, in Chapter II, we propose the DataSifter algorithm to

create synthetic data from sensitive datasets containing static and time-varying vari-

ables, which accelerates innovation by enabling secure synthetic data sharing among

2



data governors, researchers, and trainees. The DataSifter method relies on robust

imputation methods, including missForest and an iterative imputation technique for

time-varying variables using the Generalized Linear Mixed Model (GLMM) and the

Random Effects-Expectation Maximization tree (RE-EM tree). Applications based

on simulated and real clinical data demonstrate the balance between the preserva-

tion of the data utility (analytical value) and the reduction of re-identification risk

(privacy) associated with sharing obfuscated data. Our extensive simulation shows

that under a moderate level of obfuscation, in addition to guaranteeing per subject

obfuscation of time-invariant data, DataSifter also protects sensitive information in

the time-varying records without a substantial impact on the analytical value of the

sifted dataset.

To solve one of the technical challenges and provide viable treatment regimes,

in Chapter III, we develop the Restricted Tree-based Reinforcement Learning to ac-

commodate restrictions on feasible treatment combinations in observational studies

by truncating possible treatment options based on patient history in a multi-stage

multi-treatment setting. Such constrained optimization procedure is conducted back-

ward from the last treatment stage so that patients in the restricted arms can still

contribute to some of the stage-wise optimal regime estimations when their history

up to that stage is considered feasible. Our algorithm provides optimal treatment rec-

ommendations for patients regarding viable treatment options and utilizes all valid

observations in the dataset to avoid selection bias and improve efficiency.

With extra information in unstructured EHR data, we can refine the previous

solutions. Chapter IV and Chapter V elevate the previous two chapters by utilizing

novel techniques in natural language processing. In Chapter IV, we construct a free-

text data anonymization tool – DataSifterText, which offers synthetic free-text data

that protects patients’ Protected Health Information (PHI). According to our clinical

data applications, the proposed technique protects the distribution of the original

3



text corpus, offers individual level data obfuscation, and enables collaborative data

analytics without compromising personally identifiable information. The DataSifter-

Text algorithm provides sufficient privacy protection by disguising the location of true

and obfuscated tokens. In Chapter V, we enhance the precision of optimal DTR es-

timation with extra information in clinical notes. Simulation studies and application

on blood pressure management in intensive care units demonstrated that utilizing

information extraction (IE) techniques in DTR estimations enables clinical decision

support for larger study populations, provides more accurate counterfactual outcome

modeling, and supports a wider pool of candidate tailoring variables.

The main contributions of this dissertation include (1) the creation and implemen-

tation of the partially synthetic data publishing tool DataSifter, which handles static

and time-varying data (Chapter II). (2) The development of the Restricted Tree-based

Reinforcement Learning for accommodating restrictions on feasible treatment com-

binations in observational studies when estimating optimal DTRs (Chapter III). (3)

The extension of the DataSifter algorithm to unstructured data obfuscation (Chapter

IV), and (4) the application of IE techniques in optimal DTR estimations (Chapter

V). The proposed methods enable collaborations to expedite bench-to-bedside trans-

lational research and improve the precision of healthcare management. The overall

structure of the dissertation is illustrated in Figure 1.1.
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Figure 1.1: Dissertation Flowchart
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CHAPTER II

DataSifter: Statistical Obfuscation of Sensitive

Datasets

2.1 Introduction

Open science advocates the sharing of data, methods, source-code, end-to-end

protocols, computational services, and peer-reviews. The benefits of open science on

many aspects of common human experiences are well documented [54, 86, 48, 8, 14].

Along with the well-known exponential increase of the amount of newly acquired data,

there is also an equally sticking exponential decay of the value of data that is stored

but not processed, shared, or augmented [19, 79]. However, sharing data without

loss of privacy is difficult, especially in the medical and healthcare settings. In fact,

66% of the participants in the 2017 Health Information National Trends Survey were

concerned about data privacy when health information is electronically exchanged

[52].

For data sharing involving Protected Health Information (PHI), organizations’

Institutional Review Boards (IRBs) need to review the research before the required

information can be retrieved from existing medical records and processed to extract

valuable information. IRB’s initial review process may take up to 4 months, however

this process has significant variability depending on the type of review, e.g., expedited,

6



exempt, or full board reviews may take additional time, from 16 to 631 days [30]. In

the United States, healthcare systems own the property rights for Electronic Health

Records (EHR), and researchers have to bear the costs of data extraction and transfer

under data use agreements [7].

Such regulation guarantees the protection of individual privacy rights, but de-

lays researchers’ abilities to gain access to appropriate information, build models and

rapidly validate scientific discovery, which slows the knowledge transfer and basic

science translation into clinical practice. The resulting slow and restricted data ac-

cess may limit data utility for answering specific scientific questions. For example, in

2015, Keegan et al. [37] examined the relationship between ethnicity and short-term

breast cancer survival using 2010 Kaiser Permanente Northern California EHR data.

However, to obtain both the demographics and the cancer treatments for patients

across facilities, they had to reduce the study cohort time frame from 8 years to 3

years in order to have both datasets available and link them together, which signifi-

cantly impacted the statistical power of this scientific investigation. Thus, there are

enormous benefits in developing new statistical methods to facilitate secure and quick

information exchange between data stewards and data science experts.

Three existing strategies provide secure mechanisms for modeling, processing, and

interrogating sensitive cross-sectional data. These include secure enclave access, data

encryption (e.g., fully homomorphic encryption), and synthetic data publishing. Se-

cure data enclave environments [1, 32] offer a platform for researchers to analyze

sensitive data without compromising risks for misuse, fraud, and other violations.

Many health information storage solutions, e.g., EHRs, rely on technology that pro-

vides managed data access for research in safe and controlled environments [68]. A

number of possible unmodified database management systems (DBMS) can be utilized

to provide secure data enclaves [2, 5]. Second, data encryption methods, including

Fully Homomorphic Encryption (FHE), encode the data to allow computations di-

7



rectly on the resulting ciphertext [35, 26, 96]. FHE relies on homomorphic computing

(result-preserving property) on the ciphertext without exposing the sensitive raw data

to independent researchers, analysts, or data scientists. The above two mechanisms

provide secure channels for data transfer and storage, but do not shorten the data

sharing process.

In response, the third strategy, synthetic data generation emerged, which was first

proposed by Rubin 1993 [70] with two classes of generating methods, as summarized

by Reiter and Raghunathan [59]. The fully synthetic data sets are created by condi-

tional distributions estimated from sensitive datasets. Popular methods for construct-

ing these conditional distributions include Bayesian network [99], graphical models

[12] and multiple imputation (MI) [70, 55]. However, these solutions are not scalable

for sensitive datasets with higher dimensions (larger number of records and variables),

especially given that variable selection can be burdensome for parametric models and

greedy searches for causal nodes in graphical models are computationally expensive

with too many candidates. Partially synthetic data refers to a set of multiple-imputed

data replacing sensitive data value cells with imputations [42, 57, 58]. This class of

methods treats data obfuscation as a missing data handling problem, where they

generate artificial missingness for sensitive values in the dataset and impute the value

with the remaining untouched data. As a result, partially synthetic data provides

valid statistical inference. However, combined information from a set of multiple im-

puted datasets indicates the locations of true and obfuscated cells resulting no privacy

protection for the true cells. In practice, covering all possible sensitive values is barely

achievable and selecting the obfuscation location is a subjective and critical step for

data privacy protection.

To promote effective data sharing, we propose the DataSifter frame work, which

is designed to help data governors safely publish synthetic subsets of their sensitive

dataset or share deidentified data (with certain level of obfuscation) that enable spe-
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cific types of data analysts. Under the proposed framework, the trade-off between

data privacy and information utility determines the level of obfuscation associated

with partially synthetic data generation. We define data privacy as the disclosure risk

of specific data values given an intruder’s prior knowledge and published synthetic

data. Given a predefined inferential model and some specific clinical or research

questions, data utility is the analytical value of the data measured by the deviation

of the model inference based on the original and the partially synthetic datasets.

Multiple imputation (MI) methods are designed to minimize the loss of data utility

while the DataSifter framework focuses on maximizing the data privacy protection

under acceptable data utility. In this chapter, we will evaluate the quality of partially

synthetic datasets based on the above two criteria.

We developed the first generation of the DataSifter technique (DataSifter I) [45]

that handles high dimensional cross-sectional data. Perturbing individual level records,

it allows researchers to securely acquire population level information that closely ap-

proximates the true signal. The core DataSifter technique relies on two processes

supporting the critical statistical obfuscation of the data. First, it randomly and arti-

ficially generates missingness in the data, following the Missing Completely At Ran-

dom (MCAR) mechanism [69], and uses robust iterative imputation methods, e.g.,

missForest [80], to approximate the original information. Second, DataSifter I classi-

fies neighboring cases (similar observations) using Euclidean and Gower distances for

continuous and categorical variables, respectively. Within each neighborhood clus-

ter, DataSifter I randomly swaps a subset of feature values between similar records.

This second operation guarantees partial change for each record while preserving the

geometrical information on the data in feature space.

However, time-varying correlated data cannot be processed by DataSifter I, while

such data, including longitudinal data, are ubiquitous and provide important informa-

tion for many biomedical and health conditions. For example, in EHR databases, pa-
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tient characteristics and disease progression variables are collected repeatedly across

visits. Maintaining or preserving the within-subject covariance structure among time-

varying measurements presents another layer of challenges. Currently, there are no

automated procedures that enable secure sharing of time-varying correlated data

with sensitive information. The proposed new algorithm, DataSifter with Time-

varying Correlated Data (DataSifter II), extends the DataSifter functionality in the

case of dealing with large, cross-sectional, time-varying, and self-correlated data ele-

ments. DataSifter II introduces artificial missingness and embed robust longitudinal

imputation methods to handle high dimensional sensitive data with time-varying

measures. As illustrated in Figure 2.1, our proposed procedure operates on the

time-varying data separately from the time-invariant (cross-sectional) data elements

and then integrates the two parts to compile the obfuscated sifted dataset (output).

DataSifter II preserves the data utility while introducing a proper level of privacy

protection. The newly developed DataSifter II R package is available on GitHub

https://github.com/SOCR/DataSifterII. With the proposed algorithm, data gov-

ernors can create and validate sifted data objects with time-varying components prior

to their release or sharing, allowing user-defined secure level and protecting the orig-

inal within-subject covariance structure.

The rest of the manuscript is organized as follows: in Section 2.2, we introduce the

DataSifter I procedure, evaluate its performance under different simulation settings

using simple metrics and apply the algorithm to ABIDE dataset. In Section 2.3.1

we formally define the data privacy and utility measurement for partially synthetic

data evaluation. Specifically, in section 2.3.1.2, we define the disclosure risk and

show that partially synthetic datasets generated by the DataSifter framework provide

better privacy protection than that of the MI method. Section 2.3.2 describes the

DataSifter II protocol. Section 2.3.3 validates the data utility preservation and privacy

protection of the proposed algorithm under different simulation settings and compares

10
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Figure 2.1: Graphical workflow depicting the organization of the DataSifter technique.
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the performance against the MI method. In Section 2.3.4, we apply DataSifter II to

the MIMIC-III clinical data and demonstrate its performance in maintaining a careful

balance between protecting sensitive information and preservation of the data utility.

We summarize the findings and discuss the expected impact and future developments

in Section 2.4.

2.2 DataSifter I: Partially Synthetic Time-invariant Data Gen-

eration

2.2.1 DataSifter I Overview

The core of the DataSifter I is an iterative statistical computing approach that

provides the data-governors controlled manipulation of the trade-off between sensitive

information obfuscation and preservation of the joint distribution. The DataSifter I

is designed to satisfy data requests from pilot study investigators focused on specific

target populations. The DataSifter I handles high dimensional data with various of

data elements including multiple numerical or categorical features and one unstruc-

tured variable. However, the obfuscation of the unstructured variable is simply done

by reallocating the free-text documents in the swapping step. The content of the text

is not being altered to protect privacy. A more sophisticated method dealing with

unstructured data can be found in Chapter IV.

At each step, the algorithm generates instances of complete datasets that in ag-

gregate closely resemble the intrinsic characteristics of the original cohort; however,

at an individual level, the rows of data are substantially obfuscated. This procedure

drastically reduces the risk for subject re-identification by stratification, as meta-data

for all subjects is randomly and repeatedly encoded. Probabilistic (re)sampling, dis-

tance metrics and imputation methods play essential roles in the proposed DataSifter

I obfuscation approach. In regard to the designed data requests, the main assump-
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tions of the DataSifter I technique include: (A1) Incomplete observations are driven

by missing at random (MAR) or missing completely at random (MCAR) mechanisms

[41]; (A2) The utility of each feature is equally important; (A3) Large random sam-

ples of the original data preserves the overall joint distribution. These assumptions

are standard and allow us to manage the data or quantify data utility. (A1) allows

accurate imputations (A2) is essential in calculating subject-pair distances, and (A3)

promotes subject-wise parallelization. We use the following framework to form the

DataSifter I algorithm. Three sources of obfuscation have been applied to the data

during the DataSifter I technique: (1) initial data imputation (in the preprocessing

step), (2) artificially create and impute missingness (in the imputation step), and (3)

swapping data values in the neighborhood (in the obfuscation step). Here we define

all the mappings that has been employed for obfuscation.

2.2.2 Notation

Define X as the counterfactual complete sensitive dataset for sifting consisting m

features and n cases. Let’s use 1 ≤ j ≤ m to denote features and 1 ≤ i ≤ n to denote

cases:

Xj = (X1, ..., Xj, ..., Xm) ∈ Rn×m, Xj = (X1,j, ..., Xn,j)
T , 1 ≤ j ≤ m.

In the above expression, Xi,j denotes the ith subject’s jth feature value. We define the

utility information embedded in a dataset as the knowledge about the joint distribu-

tion of the holistic data including all variables. By preservation of utility, we mean

the relative conservation of the signal energy that suggests small deviation of the

sifted-data joint distribution from the original (raw) data joint distribution. Clearly,

this does not hold true for large obfuscation levels.

Missing data is pervasive in almost all real-world datasets. We define the hypo-
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thetical complete j-th feature as:

Xj = (Xobs,j, Xmis,j),

where Xmis,j denotes a vector containing the actual values of the missing data portion.

What we observe is denoted as X̃j = (X̃obs,j, Nj),here Nj represents the missing cells.

The length of X̃obs,j is nj and the length of Nj is n− nj.

2.2.3 User-controlled Parameters

Sifting different data archives requires customized data management. Five specific

parameters mediate this management:

k0: A binary parameter indicating whether or not to obfuscate the unstructured

feature, if any.

k1: The percent of artificial missing data values that should be artificially in-

troduced prior to imputation. Missingness is stochastically introduced to all data

elements except the unstructured variable. The range of this parameter can be be-

tween 0 and 0.4. We set an upper bound of 40% missingness in order to keep the

remaining dataset informative.

k2: The number of times to repeat the introduction-of-missing-and-imputation

step. Five options are available from 0 to 4.

k3: The fraction of structured features to be obfuscated in all the cases. Available

options can vary between 0 and 1.

k4: The fraction of closest subjects to be considered as neighbours of a given

subject. This implies that the top k4×100% of the closest-distance subjects of a

given subject can be considered as candidates for its neighbours. Then, the final

neighbouring status of any subject is determined by an additional hard cut off.

Table 2.1 illustrates the combinations of ki parameters implemented in the al-
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gorithm to accommodate the user defined balance between privacy protection and

obfuscation. The level of obfuscation spans the range from raw data (no obfuscation)

to synthetically simulated data (complete obfuscation). Our highest level of obfusca-

tion, i.e. ‘indep’, refers to the synthetic dataset sample from the marginal empirical

distributions of all the features.

Table 2.1: DataSifter I k parameter vector mapping determining the level of obfus-
cation.

Obfuscation level k0 k1 k2 k3 k4
None 0 0 0 0 0
Small 0 0.05 1 0.1 0.01
Medium 1 0.25 2 0.6 0.05
Large 1 0.4 5 0.8 0.2
Indep Output synthetic data with independent features

2.2.4 Preprocessing

The preprocessing steps of the original data might vary for different datasets.

Figure 2.2 illustrates the procedures included in the DataSifter I preprocessing step.

The overall goal is to delete uninformative features with a constant value or have

too much missingness and impute missing values in the original data. To impute the

missing values, we use a non-parametric imputation method missForest [80], albeit

many alternative strategies are also possible. As an iterative non-parametric impu-

tation method of mixed data types, missForest fits a random forest model for each

feature separately during one iteration using the observed data as training data and

provide predictions for the missing cells. Hence, the random forest model for imput-

ing a specific column uses all other variables in the dataset as predictors. In each

iteration, the imputation of the entire dataset starts in the column with least missing

values and ends in the column with most missing values. It stops to iterate when the

difference between the latest and prior imputed data matrix is at least as great as the

previous difference measured or the maximal iteration limit achieves. The difference
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between matrices in sets of continuous (N) and categorical (F) variables are defined

as

∆N =

∑
k∈N‖X̂

(r)
k − X̂

(r−1)
k ‖2∑

k∈N‖X̂
(r)
k ‖2

and

∆F =

∑
k∈F
∑n

i=1 I(X̂
(r)
ik 6= X̂

(r−1)
ik )

Number of missing cells in categorical variables
,

where X̂
(r)
k is the imputed vector and X̂

(r)
ik is the imputed value for subject i of the

kth variable in the rth iteration. We choose missForest algorithm, rather than other

model-based multiple imputation methods, for the following reasons: (1) missForest

employs random forest imputation that can cope with complex EHR data, which

typically involves mixed-type data, complex interactions, and non-linear relations;

(2) it relies on limited modeling assumptions; and (3) it is relatively efficient for

large-scale and high-dimensional data.

DataSifter I produces a complete dataset after the preprocessing step. For sim-

plicity, we denote n as the number of subjects in the dataset, k as the number of

informative features filtered by the preprocessing step, and M as the number of sub-

jects per batch during the parallel process. Alternative preprocessing methods are

possible as long as the aims are met.

2.2.5 Imputation Step

Following the data preprocessing, the DataSifter I continues with the imputa-

tion and the obfuscation steps. During the imputation step, the DataSifter I algo-

rithm first introduces random artificial missing values to the complete dataset, which

synthetically provides privacy protection. The artificial missingness obeys missing

completely at random (MCAR) mechanism as the missingness is introduces stochas-

tically for case and feature indices [41]. Assume we have n entries of data and denote

Y = (Yobs,Ymis) as the full data, where Yobs represents the observed part and Ymis
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Figure 2.2: Flow Chart for Preprocessing Step.

the missing part. Let R denote the missing indicator with Ri = I(Yi ∈ Ymis) for

i = 1, 2, .., n. Because the MCAR assumption is satisfied, we have the following

relationship: P (R|Y) = P (R).

This relationship between observed and missing values guarantees that the fully

observed data represents a random sample of the complete data. Accurate imputa-

tions of the missing values based on the observed values can be obtained with robust

imputation methods. Thus, as described above, the introduction of missing data

has limited effect in altering the joint distribution of the data during the imputation

process. Similar to the preprocessing step, we use the missForest [80] to impute the

artificial missingness with modified stopping criteria. Since the true missing value is

known in this step, we define the stopping criterion for variable k under tolerance

level ε as

‖X∗mis,k − X̂
(r)
mis,k‖1

‖X∗mis,k‖1
< ε,

where X∗mis,k denotes the true values of the artificially missing cells in variable k and
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X̂
(r)
mis,k denotes the imputed values at rth iteration.

Following the imputation step, the outputted “sifted” dataset, Xwork, has the

following properties: (1) individual cases are manipulated, yet complete, protecting

individual privacy, since hackers cannot distinguish “true” values from imputed values

that are in the same format; (2) subjects with introduced missingness can still play

an important role in the analysis after the imputation.

2.2.6 Obfuscation Step

During the obfuscation step, the DataSifter I repeatedly swaps the unstructured

feature value and randomly selected structured feature values based on the closest

neighbours to ensure a balance between data privacy and preservation of the feature

distributions. The algorithm relies on distance metrics to determine neighbourhoods

for all cases [24,25] and swaps feature values between closely adjacent neighbouring

pairs. We compute pair-wise distances between all cases using a weighted distance

measure: (1) Euclidean distances for normalized numerical features, and (2) Gower’s

distance for categorical features [28]. To obtain the distance matrix, we divide the

current dataset outputted by the imputation step into three subsets and re-index the

elements as numerical subset Xnum = (~x1, ~x2, ..., ~xl) = (x̂1, x̂2, ..., x̂n)T , categorical

dataset Xcat = (~y1, ~y2, ..., ~yp−1−l) = (ŷ1, ŷ2, ..., ŷn)T , and the unstructured feature

Xunstr, where we have l numerical features, p − 1 − l categorical features and one

unstructured feature. For Xnum, we apply a map algorithm f , which calculates the

Euclidean distance for every pair of cases and maps the input data metric to the target

distance metric. f : Rn×l → Rn×n is defined below. For X = (x1, x2, ..., xn)T , f(X) =

DE = (eij), where

eij =


‖xi−xj‖2−mini,j{‖xi−xj‖2}

maxi,j{‖xi−xj‖2}−mini,j{‖xi−xj‖2} , i < j

0 , otherwise
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∀i, j. We utilize f to obtain f(Xnum) = DE = (eij)n×n. For the categorical subset, we

define the mapping algorithm g which calculates the distance for categorical features

via Gower’s rule. For X = (x1, x2, ..., xn)T , X ∈ Rn×p, g(X) = DG = (gij). ∀i, j,

gi,j =

p∑
s=1

gijs
m

Here, gijs is an indicator function related to the sth feature, which is defined as,

gijs =

 0 , xis = xjs

1 , xis 6= xjs

.

Similarly, for Xcat = (~y1, ~y2, ..., ~yn), we attain DG = (gij)n×n = g(Xcat). Under

assumption (A2), we weigh the distance and obtain the complete paired-distances

metric,

D = (dij)n×n, ∀i, j, dij = eij ×
l

p
+ gij ×

p− 1− l
p

,

where l/p and (p − 1 − l)/p represents the weights for the Euclidean and Gower

distances, respectively. Two criteria are used to determine the neighboring status

for subject pairs: (1) Closest k4 × n neighbors regarding the pair distances; and

(2) a hard cut off. In distance matrix D, for each i, we rank the paired distances

dij as {di1, di2, ..., din}. Then, we find the maximum distance of the top k4 ∗ 100%

di,floor(k4×n), where floor(k4 × n) rounds the number of cases to select to the lower

integer. We use the cutoff to identify the potential neighbors of the ith individual:

neighbor(i) = {(i, j) : dij < di,floor(k4×n)},∀i = 1, ..., n.

In addition, we set up a criterion to narrow the neighborhood. Let

c = inf{dij}+ sd{dij}.
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Figure 2.3: Flow Chart for Imputation and Obfuscation Steps.

Here, sd{dij} refers to standard deviation of all the dij’s in D. We only preserve the

neighbors that satisfy dij ≤ c. The final set of neighbors, i.e. neighborfinal, is defined

as follows:

neighborfinal(i) = {(i, j)|(i, j) ∈ neighbor(i), dij ≤ c},∀i = 1, ..., n.

For extreme subjects that have no neighbors selected by the above process, we

do not apply the obfuscation step. One subject could have multiple neighbors. For

every subject, a neighboring subject is randomly selected as its swapping partner.

We randomly swap a subset of randomly chosen features among each swapping pair.

A detailed flow chart illustrating the imputation and obfuscation steps can be found

in Figure 2.3.
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2.2.7 Pseudo Code

In this section, we define Xstr as the structured feature subset of current data,

which consists of Xnum and Xcat. Also, Rand(X, r) is a function that randomly picks

r elements without replacement in set X.

Input:

(1) The dataset after preprocessing Xwork = (~x1, ~x2, ..., ~xp) ∈ Rn×p with n cases

and p features. There are one unstructured and p−1 structured features in the dataset.

After the preprocessing step, p is less than or equal to the number of features in the

original dataset. Each ~xi is a column vector, ~xi = (x1i, x2i, ..., xni)
T , i = 1, ..., p

(2) The categorical level of obfuscation L=“none”, “small”, “medium”, “large”,

“indep”, or alternatively a specific parameter vector (k0, k1, k2, k3, k4).

Special cases:

If L =’none’, the output is Xwork and if L =’indep’, the output is dented by Xnew.

Each feature in Xnew is a synthetic sample from the empirical distribution of the

corresponding feature in Xwork.

Algorithm 1 DataSifter I

1: for i in 1 : k2 do
2: Introduce k1 × n× (p− 1) missing values to Xstr.
3: Impute missingness (e.g., via missForest) and update Xwork.
4: end for
5: if k0 = 1 then
6: for i = 1 : n do
7: (i, j) = Rand(neighbor∗(i), 1)
8: Swap the unstructured value for the pair (i, j) in Xwork

9: end for
10: end if
11: for i = 1 : n do
12: j = Rand(neighbor∗(i), 1)
13: Zi = Rand({1, ..., p− 1}, k3 × (p− 1)) = zi,1, ..., zi,k3%×(p−1)
14: for t ∈ Zi do
15: Swap Xstr[i, t] with Xstr[j, t]
16: end for
17: end for
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2.2.8 Simulation

2.2.8.1 Simulation Setup

We present three different simulation studies to demonstrate the performance of

the DataSifter I algorithm and assess its capability to (1) obfuscate and guard against

stratification attempts for re-identification and (2) manage the overall data structure

and preserve useful information in the resulting “sifted” data. In all experiments,

we use n = 1, 000 as number of subjects. In the first simulation, a binary outcome

(Y ) and five covariates (Xi, i = 1, ..., 5) were simulated; X1 to X4 were independently

generated by normal distributions with the following distribution specifications:

X1, X2 ∼ N(0, 1), X3 ∼ N(−1, 1), and X4 ∼ N(0, 2).

The binary variable X5 was directly dependent on X1 and X2: logit(X5i) = 0.5−

4X1i −X2i. The binary outcome variable was generated as follows:

logit[P (Yi = 1|X)] = 10 + 10×X1i + 10×X2i − 5×X3i − 20×X4i − 15×X5i + εi,

where the residuals were independent and identically distributed (iid) namely εi ∼

N(0, 1), i = 1, .., n. Missingness for X1 and X2 was then introduced based on X5 to

meet the MAR criteria, which mimicked the real data situation. Denote Xi,1mis =

I(Xi1 = NA) and Xi,2mis = I(Xi2 = NA), where i is the subject indicator. Missing-

ness was introduced using the following probabilities:

P (Xi,1mis = 1) = P (Xi,2mis = 1) =


0.193, if X5 = Y = 0

0.060, if X5 + Y = 1

0.003, if X5 + Y = 2

As mentioned earlier, in the Imputation section, we can impute the original missing
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values in the dataset prior to applying the subsequent DataSifter I algorithmic steps.

The second simulation demonstrates an example of count outcomes. A Poisson model

was used to generate the data.

P (Yi = n) = (λni )/n!× e−λi ,

where

log(λi) = 0.2 + 0.5 ∗X1 + 1 ∗X2 − 0.5 ∗X3 − 1 ∗X4 − 1.5 ∗X5 + εi,

with iid residuals εi ∼ N(0, 1). The covariates Xi, i = 1, ..., 4 were generated using

uniform distributions. We constructed X5 based on X1 and X2 and used a similar

strategy as in the first binary simulation to introduce missingness. The third simu-

lation involves continuous outcomes, where the response Y is generated by a similar

linear model as in the first experiment; however, it uses an identity link yielding a

continuous outcome:

Y = 10 + 10 ∗X1 + 10 ∗X2 − 5 ∗X3 − 20 ∗X4 − 15 ∗X5 + εi.

Again, the residuals were iid εi ∼ N(0, 1). All covariates were generated from uniform

distributions and the missing patterns were stochastically determined as in the first

binary experiment. For all simulation studies, we focused on verifying whether the

“sifted” datasets preserve a certain level of the energy that was present in the original

true signals, relative to null signals. In addition, we examined the trade-offs between

the level of obfuscation and the residual value (utility) of the resulting “sifted” data

as a measure of the algorithm’s performance. To make all three simulations more

realistic, we augmented the original outcome and the (real) five covariates, with 20

additional null features that acted as decoy or “noisy” control features. All 20 null
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features were uniformly distributed with various ranges and were independent of the

outcome.

For each simulation, we derived 30 “sifted” datasets under a range of privacy levels,

from “none” to “indep” level of obfuscation. To assess the privacy protection ability,

we measured the Percent of Identical Feature Values (PIFV) between the “sifted”

outcome and the original data for all the cases under each obfuscation level, i.e., we

compared each subject’s original and “sifted” records and measured the ratio between

the number of identical values over the total number of features. For determine utility

preservation, we used regularized linear models, with an elastic net regularization

term, to identify the salient variables. Internal 10-fold statistical cross-validation

was used to validate the results of the elastic net feature selection. Let X denote

the covariate matrix (subjects × features =1,000 × 25), y denote the outcome, and

β denote the elastic net parameter estimates obtained by optimizing the following

objective function. We have

β̂enet = argminβ(y −X)T (y −X) + λα‖β‖2+(1− α)‖β‖2,

where α is the parameter to determining the blend of the LASSO and Ridge con-

tributions to the penalty, and λ is the regularization penalty parameter [100]. In

our experiments, we used α = 0.8 giving a slight dominance to the LASSO penalty.

A regularization parameter tuning procedure was also performed, using misclassifica-

tion error rate for binary simulation, deviance for count simulation, and mean squared

error for continuous simulation. The largest λ value, which is within one standard

error of the minimum cross-validated error, was selected as the optimal parameter

[24]. When the estimated coefficient was different from zero, we considered this ev-

idence that the corresponding feature represented a “true” predictor. On the other

hand, zero coefficient estimates corresponded to “false” predictors. Recall that in all
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simulations, there were five true predictors and 20 null variables. The true positives

(number of true features identified) and the false positives (number of null features

identifies as true predictors) were recorded for all experiments and each privacy level.

2.2.8.2 Simulation Results - Protection of sensitive information (privacy)

The privacy protection power relies heavily on the user-defined privacy level and

the intrinsic information structure. Our results showed that for high privacy levels,

PIFVs were close to 0% for all numerical features. For datasets including categorical

features, the algorithm provided PIFVs similar to the lowest PIFV between any pair of

different subjects in the original dataset. The overall privacy protection performance

of the DataSifter I was excellent. Based on the overall simulation performance, a

default recommended privacy level may be set at “medium.” However, this is also

subject to the sensitivity of the data, the specific characteristics of the data, and the

trustworthiness of the data requestor. Figure 2.4 illustrates the relationship between

PIFVs for the synthetic datasets and user-defined privacy levels. The outcome labels

“binary”, “count”, and “continuous” refer to the first experiment, second experiment,

and third experiments, respectively. As expected, the graph shows that preservation

of sensitive information is better protected when the privacy level is higher. For all

three simulations, the DataSifter I had similar performance in terms of PIFV. The

outliers in the “none” level resulted from imputation of originally missing values.

When the obfuscation was set at “medium”level, the variance of the PIFV was the

largest as the levels of obfuscation might differ among individuals when using random

sampling. “Small” level of obfuscation manipulated less of the data, with limited

range around the neighborhood of each case. Hence, it generated smaller PIFV

variances among individuals. On the other hand, “large” obfuscation level had small

variance for PIVF as it changed most of the features for all cases. Under the “large”

obfuscation setting, PIFV was around 25% for all three experiments, which provided
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Figure 2.4: Boxplots of Percent of Identical Feature Values (PIFV) under Different
Privacy Levels. Binary outcome refers to the first experiment; Count refers to the
second experiment; Continuous refers to the third experiment. Each box represents
30 different “sifted” data or 30,000 “sifted” cases.

reliable protection for patient privacy. Under the “medium” level, around 75% of the

cases had more than 50% of their data elements different from their original (true)

counterparts. The synthetic data under “indep” changed almost all the feature values

for every subject. Remember that these five original obfuscation levels represent

simple examples of specifying the 5D Data-Sifter-control parameter vector k.

2.2.8.3 Simulation Results - Preserving utility information of the original

dataset.

Next, we assessed the DataSifter I algorithm’s integrity, in terms of its ability

to maintain utility information, i.e., preserve the energy or information content of

the original data. A detailed explanation can be found in section 2.2.2. Our re-

sults suggest that up to moderate obfuscation levels, the algorithm maintains a fair

amount of information (data energy). However, as expected, this ability fades away

for larger obfuscation levels. Also, different k parameter vectors have varying effects

on the overall utility preservation. The results illustrating the DataSifter I ability to
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conserve the data energy are illustrated in Figure 2.5. We report the true positive

(TP) and false positive (FP) number of feature selections for the three simulation

experiments. These results showed that the DataSifter I is able to preserve the signal

energy in the original data. As expected, and in contrast to the privacy preservation

ability, the performance of the technique to maintain data utility is better under low

obfuscation levels. Different outcome types also affect the utility preservation. The

simulations show that information energy preservation in the continuous outcome

case is slightly better, compared to binary and count outcomes. In the continuous

outcome simulation, for obfuscation levels below “large”, regularization and variable

selection via elastic net successfully identified all five important predictors in almost

all “sifted” datasets, and the number of false positives was mostly zero. In addition,

the variations of TPs and FPs among different privacy levels was the smallest among

the three simulation experiments. The count outcome simulation performed similarly

well; under “medium” obfuscation, elastic net was able to select 3 out of 5 features

over 75% of the times. Count outcome simulation was not always stable. For instance,

some datasets undergoing extreme “sifting” had zero true features selected; however,

the algorithm also kept low the false negative rate. The binary outcome simulation

demonstrated the least utility preservation as it had the highest false positive rates

and the largest variability among all settings. Based on Figure 2.5, there is almost

no true signal, or false signal, captured in the synthetic “indep” setting, which re-

sults from the elimination of the correlations among features. The extreme “indep”

case aims to achieve maximum protection for patient privacy. As a consequence, the

resulting “sifted” data provides little utility.
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Figure 2.5: Logistic Model with Elastic Net Signal Capturing Ability. TP is the
number of true signals (total true predictors = 5) captured by the model. FP is the
number of null signals that the model has falsely selected (total null signals=20).

2.2.9 Clinical Data Application: Using DataSifter I to Obfuscate the

ABIDE Data

We demonstrate the functionality of the DataSifter I on the Autism Brain Imag-

ing Data Exchange (ABIDE) dataset [18]. The ABIDE dataset represents a multi-

institutional effort for aggregating and sharing the imaging, clinical and phenotypic

data of 1,112 volunteers [18]. The data includes resting-state functional magnetic

resonance imaging (rs-fMRI) structural MRI, and phenotypic information of 539 pa-

tients (autism spectrum disorder) and 573 age-matched asymptomatic controls. In our

study, we selected a subsample of 1,098 patients including 528 ASD and 570 controls.

The dataset has 500 structural MRI biomarkers and phenotypical information such

as age, sex and IQ. It is a very challenging case-study due to the heterogeneity of the

data, format of the data elements, and the complexity of mental health phenotypes.

We use the ABIDE data to showcase the performance of the DataSifter I technique on

a convoluted multiplex study. The ABIDE dataset comprises 1,098 patients and 506

features. We included one unstructured feature-“image data file name” (“Data”) in

the dataset to show the DataSifter I ability to obfuscate unstructured text elements.

Resembling the simulation experiments, we built a dataSifter() function that has
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five different levels of obfuscation to demonstrate the obfuscation utility trade-off.

Obfuscation was assessed using PIFV as the simulation studies. We applied random

forest [40] to predict the target binary outcome autism spectrum disorder (ASD) sta-

tus (ASD vs. control) as a proxy of the algorithm’s utility to maintain the energy

of the original dataset into the “sifted” output. Predictions of the ASD status was

conducted with the randomForest package. When specifying the parameters in the

dataSifter() function, level of obfuscation can be set by level. Here we used five

different obfuscation levels. The level of obfuscation can be alternatively specified us-

ing a set of k combinations as function arguments. For example, to perform “small”

obfuscation level, we can specify k0 = 0, k1 = 0.05, k2 = 1, k3 = 0.1, k4 = 0.01 in the

dataSifter() function, which creates a flexible way to manage obfuscation levels. In

this study, as mentioned above, the unstructured variable was named as “Data”. If

there are no rich text variables, the set of unstructured.names can be left to default

(i.e., NULL). Explicit sensitive information like the subject ID, i.e., subjID column,

needs to be removed from the original dataset in advance. The batch size for the algo-

rithm is defined by the parameter batchsubj. As mentioned in the Methods section,

the DataSifter I algorithm operated on batches to provide scalability and alleviate

the computational complexity. We recommend using a relatively small batchsubj and

large number of cores for datasets with a huge number of cases (e.g., hundreds of

thousands). The maximum number of iterations for the missForest imputation al-

gorithm is set to one to minimize the computational cost determined by imputing a

large number of features. We obtained five “sifted” output datasets corresponding

to different obfuscation levels: no (“none” obfuscation), s (“small” obfucation), m

(“medium” obfuscation), l (“large” obfuscation), and i (“indep” synthetic data from

empirical distributions of each feature). We then inspected the obfuscations made

to the original dataset. Boxplots for PIFV was then plotted in Figure 2.6 A to

illustrate the overall obfuscation effect. As expected, PIFV decreases with level of
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Figure 2.6: Boxplots of PIFVs for ABIDE under different levels of DataSifter I ob-
fuscations. Each box represents 1,098 subjects among the ABIDE sub-cohort.

obfuscation. Comparing the application with the simulation experiments, the algo-

rithm works better with a larger number of features. Under “medium” obfuscation

level, the algorithm achieved 50% and 25% PIVF for the binary simulation data and

ABIDE data, respectively.

To assess the utility information, we use the “sifted” datasets as training sets to fit

random forest. These trained models provided predicted values for 632 complete cases

in the original ABIDE data. The random forest built using no dataset predicted all

outcomes correctly. s, m, l and i datasets were able to provide predictions with 98%,

70%, 52% and 54% accuracy, respectively. The prediction accuracy of all the datasets

are illustrated in Figure 2.6 (B). Again, this result shows the trade-off between utility

and the user-controlled privacy levels.
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2.3 DataSifter II: Partially Synthetic Time-varying Data Gen-

eration

2.3.1 Privacy and Utility Measurement for Partially Synthetic Data

2.3.1.1 Data Structure and Notations

Time-varying correlated data are common in most biomedical and epidemiology

studies. For example, in multi-center studies, we typically measure the target vari-

ables across all subjects at a single time point, but the subjects may be correlated

within each center. In longitudinal data, the target variables are measured repeatedly

at baseline and during follow-up, and thus we have intrinsic within-subject correla-

tions. In this case, to reduce measurement errors, researchers take repeated mea-

surements on the same subjects, which may also involve within-subject correlations.

The DataSifter II framework can be applied to any correlated data. For illustration

purposes in this study, we investigate the use of DataSifter II on longitudinal data.

Consider a longitudinal EHR dataset with n patients, each recorded until J thi visit,

where the time intervals between visits are similar across patients. We collect ml

longitudinal variables at each visit and ms static variables for patient characteristics.

For simplicity, we denote time-varying variables as Y ’s and time-invariant variables

as X’s. In the following sections, we use i = 1, ..., n to denote patients; j = 1, ..., Ji to

denote the visit time, which allow different visit times among patients; and k to index

the variables (columns) in the dataset such that for static variable k = 1, ...,ms, and

for longitudinal variable k = 1, ...,ml. Dummy variables are created for all categorical
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longitudinal variables. Then the longitudinal measurements for subject i are

Yi =



Yi,1,1 ... Yi,1,ml

Yi,2,1 ... Yi,2,ml

... ... ...

Yi,Ji,1 ... Yi,Ji,ml


with patient i’s, time j’s record of longitudinal variable k denoted as Yi,j,k. The

time-invariant variables of subject i are denoted as Xi = (Xi1, ..., Xims), which can

also be represented as Xi = (Xi1, ...,Xims) to match the dimension of Yi where

Xik = (Xi,1,k, ..., Xi,Ji,k)
T , and k = 1, ...,ms repeats the static variable for Ji times.

Missing data occurs often in longitudinal observations. Missingness can come from

a completely missing record or partially missing record, where patient i does not have

all data available for some visits. In this case, we denote the missing indices for kth

outcome as misk = {(i, j)|Yi,j,k = NA }, and observed indices as obsk = {(i, j)|Yi,j,k 6=

NA}. Fully observed long format data Y(
∑
i Ji)×(ml) = (Y1, ...,Yn)T has

∑
i Ji rows

andml columns. Similarly, the static variables are denoted as X(
∑
i Ji)×ms = (X1, ...,Xn)T .

We use D = [X,Y] to denote the observed dataset.

While generating partially synthetic data, we view data obfuscation as an artificial

missing creation and imputation procedure. Here we focus on obfuscating time-

varying data and further denote each row in partially synthetic time-varying data

as (Yi,j,nrepij , Ŷi,j,repij), where nrepi,j is a set of indexes for unreplaced variables,

repi,j is a set of indexes for replaced variables compared with the original row such

that nrepi,j ∪ repi,j = {1, ...,ml}, and Ŷi,j,repij is a vector of the synthetic values

created for patient i’s record at time j. Similarly we denote one row in the synthetic

static data as (Xi,nrepi , X̂i,repi), where nrepi and repi are indexes for unreplaced and

replaced variables, and X̂i,repi denotes a vector of synthetic values for patient i’s static

characteristics. Finally, we use Z to denote a synthetic dataset that is composed of
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the time-varying and static synthetic data components.

2.3.1.2 Data Privacy Measurement

In this section, we formally define data privacy in the form of disclosure risk and

compare the disclosure risk between MI and DataSifter methods. Assume we have a

ml-dimensional partially synthetic time-varying data vector yi,j = (yi,j,nrepi,j ,yi,j,repi,j)

corresponding to each individual i at time j in the original dataset D and the static

portion of data is complete. We have a partially synthetic dataset Z that follows a sim-

ilar joint distribution as the original data with unchanged static variables (unobfus-

cated). Specifically, we denote the partially synthetic dataset generated by DataSifter

as Zsift and U (U ≥ 2) multiply imputed (MI) datasets as ZMI = (Z
(1)
MI , ...,Z

(U)
MI).

To compare the disclosure risk between the sifted and multiply imputed partially

synthetic datasets, we closely follow the Bayesian risk approach described in [60].

Suppose an intruder is interested in learning some the true values in the yi,j vector.

Let A represent the intruder’s prior knowledge about the original dataset D, which

is often referred to a subset of records in D−(i,j) = D \ {yi,j}. Let S denote any

information known by the intruder about the synthetic data generation procedure.

Then, define the disclosure risk for yi,j,k as the conditional distribution

p(Yi,j,k = yi,j,k|Z, A, S)︸ ︷︷ ︸
disclosure risk

,

where j ∈ nrepi,j∪repi,j. The intruder cannot infer the location (indices) of unchanged

(nrepi,j) and changed (repi,j) cells in Zsift, whereas the unchanged cells in a set of U

multiple-imputed datasets would imply the index locations for nrepi,j. Hence, for the

output sifted dataset, we have the disclosure risk:

p(Yi,j,k = yi,j,k|Zsift, A, S).
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For ZMI we have

p(Yi,j,k = yi,j,k|ZMI , A, S) ={1− I(k ∈ nrepi,j)}p(Yi,j,k = yi,j,k|ZMI ,Yi,j,nrepi,j = yi,j,nrepi,j , A, S)

+ I(k ∈ nrepi,j),

where I(k ∈ nrepi,j) is an indicator that takes the value of 1 when the data cell

(i, j, k) of the multiple imputed datasets are not replaced with obfuscated value.

When k ∈ nrepi,j, the intruder knows that ZMI contains true value at cell (i, j, k) so

that the discourse risk is 1. On the other hand, when k /∈ nrepi,j, it is appropriate

to assume that knowing which columns in the record for patient i’s jth visit contains

true values (knowing Yi,j,nrepi,j = yi,j,nrepi,j) yields similar or higher disclosure risk

compared to not knowing the locations as it provides more information about the

true covariates for Yi,j. When the information contained in Zsift and ZMI is similar

regarding to inferring the distribution of Yi,j,k, we have

p(Yi,j,k = yi,j,k|ZMI , A, S) ≥ p(Yi,j,k = yi,j,k|Zsift, A, S).

Therefore, when both synthetic datasets contain comparable information, the DataSifter

output has smaller, or rarely similar, disclosure risk compared to the multiple impu-

tation method.

Data governors can quantify the privacy protection level of the synthetic data

using our disclosure risk defined above. Specifically, when calculating the maximal

privacy loss for each record, we assume the intruder knows all other records in the

raw dataset, i.e. A = D−(i,j), and the imputation model for the synthetic data is

known. The proposed data privacy measurement (PM) for cell (i, j, k) is defined as

34



the difference between the expected and observed value:

PMi,j,k =E(Yi,j,k|Z,D−(i,j), S)− yi,j,k

=

{∫
y · p(Yi,j,k = y|Z,D−(i,j), S)dy

}
− yi,j,k.

In practice, the conditional model for Yi,j,k is constructed using D−(i,j) with the identi-

cal model specification as the missing imputation model. For Yi,j,k in Zsift or replaced

cells in ZMI , we calculate the expected difference between the model prediction given

other covariates in the synthetic data and the true value. For ZMI , the privacy

measurement of Yi,j,k for unchanged cells is 0. Assume we introduce a percent of

artificial missingness to the original data and D−(i,j) provides sufficient information

for accurate Yi,j,k predictions. For MI, there are (1 − a) of Yi,j,k with PM = 0 and

the remaining cells have equal or slightly smaller PM. Thus, DataSifter is expected

to improve PM by at least 1/a times compared to MI. We examine the average pri-

vacy measurement for every time-varying variable in the simulation and application

sections below.

2.3.1.3 Data Utility Measurement

Given a pre-specified model, we can obtain the desired utility of the partially

synthetic data by comparing the model fitted with the original and synthetic data in

terms of model inference and/or prediction accuracy. For model inference, the data

governor can consider a feasible parametric model regressing a summary variable on

other covariates. For example, in EHR data, we can predict patients’ comorbidity

score over time, which represents a summary score for the patient’s medical conditions.

To test the data utility based on a regression coefficient β, we first fit the desired

model with the original dataset and obtain its confidence interval. Then, we generate

L partially synthetic datasets under the same target parameter setting, where L is a
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large positive integer. By fitting the desired model on each synthetic data, we obtain

a set of β̂l, l = 1, ..., L and corresponding confidence intervals (LBβ̂l
,UBβ̂l

). In the

ideal case, where the true coefficient β∗ is known, we can directly use the confidence

interval coverage, i.e.
∑L
l=1 I{β∗∈(LBβ̂l ,UBβ̂l

)}
L

as our utility measurement. In practice,

we obtain the empirical confidence interval for β̂l from the synthetic datasets and

measure if it overlaps with the confidence interval provided by the original dataset.

In terms of prediction accuracy, we can set aside a randomly selected test set and

compare the prediction error between models constructed with the remaining original

and synthetic data records.

2.3.2 DataSifter II Technique

The proposed DataSifter II procedure operates on static variables X and time-

varying variables Y separately and merges the two components back together to form

the final partially synthetic data. The static variables are obfuscated with DataSifter I

algorithm. The DataSifter II requires complete static variables as candidate predictors

while obfuscating Y. We handle possible missingness for time-invariant variables

by missForest technique [80]. When obfuscating Y, we first impute the original

missingness in Y with inverse probability weighted imputation models. Then, we

randomly introduce missingness to the working time-varying data and impute back

with a proposed robust imputation method.

The main assumptions of the DataSifter II include: (A1) the possible missing-

ness in the original data follows missing at random (MAR) or missing completely

at random (MCAR) missing mechanism; (A2) The utility of each variable is equally

important. We consider above assumptions because (A1) guarantees the imputation

accuracy and (A2) allows indistinctive obfuscation for each variable.
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2.3.2.1 Sifting Static Variables with DataSifter I

We apply DataSifter I to obfuscate the static portion X. DataSifter I use miss-

Forest to impute potential missingness in the original data, introduce artificial miss-

ingness to the working data and impute the missing cells back, and swap partial

information for similar records. The resulting sifted data has complete records shar-

ing the same format with the original data.

The imputation procedures in DataSifter aim to create a single complete dataset

disguising the original or artificial missing positions. We use the missForest technique

that outputs a single imputed dataset and is proven to have smaller imputation errors

than common methods including multiple imputation [80, 89]. This non-parametric

imputation technique sequentially imputes and updates the data by variable. In the

first iteration, when imputing for the first target variable, it fills in the missing cells

among other predictor variables with mean imputation. Then, it constructs random

forest models (target variable versus all other variables) to provide imputations. In

subsequent iterations, while imputing and updating by variable, the imputation ac-

curacy for each target variable improves as the missing cells in all other variables are

replaced with better predictions.

When imputing the original missing data, we employ the original stopping cri-

terion in missForest. It stops to iterate when the difference between the latest and

prior imputed data matrix is at least as great as the previous difference measured or

the maximal iteration limit has achieved. The difference between matrices in sets of

continuous (N) and categorical (F) variables are defined as

∆N =

∑
k∈N(X̂

(r)
k − X̂

(r−1)
k )2∑

k∈N(X̂
(r)
k )2

and

∆F =

∑
k∈F
∑n

i=1 I(X̂
(r)
ik 6= X̂

(r−1)
ik )

Number of missing cells in categorical variables
,
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where X̂
(r)
k is the imputed vector and X̂

(r)
ik is the imputed value for subject i of the

kth variable in the rth iteration.

When imputing artificial missingness, the true missing value is known. We define

the stopping criterion under tolerance level ε as

‖X∗misk,k − X̂
(r)
misk,k

‖1
‖X∗misk,k‖1

< ε,

where X∗misk,k is the true values in the working data after imputing original missing

data and X̂
(r)
misk,k

is the imputed values.

2.3.2.2 Iterative Imputation Algorithm for Time-varying Data

Although DataSifter I applies robust nonparametric imputation methods like miss-

Forest to impute static missing variables, effective missing imputation for time-varying

data can be challenging. In this chapter, we propose an iterative imputation algorithm

for longitudinal data similar to the missForest algorithm. The proposed algorithm

considers two types of missing mechanisms (MAR and MCAR) and two modeling

options (linear mixed model and RE-EMtree). It handles missingness in time-varying

variables Y with complete static variables X as potential predictors.

Before the imputation, we initiate all missing cells with the closest value from the

same subject (last value carry forward or next value carry backward). If the subject

has no observations of certain variables, we initialize such missing cells with mean

imputations. Then, we sort the variables ascendingly based on missing percentage so

that Y·,·,1 has the smallest missing percentage and Y·,·,ml has the most missing. Next,

we start our iterative imputation procedure. Within an iteration, we impute from

the first to the last variable with missing. While imputing a target variable Y·,·,k, we

separate the working data into four groups: the observed values of the target variable

Yobsk,k, variables other than the target among the observed rows [Yobsk,−k,Xobsk,·],

the missing cells of the target variable with current imputation values Ymisk,k, and
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variables other than the target among the missing rows [Ymisk,−k,Xmisk,·], where

obsk and misk are the patient and visit index sets (i, j) with observed and missing

variable k, respectively. Imputation models for the target variable is constructed by

regressing Yobsk,k on [Yobsk,−k,Xobsk,·] and we update Ymisk,k based on the imputation

model. The imputation of a following missing variable k′ (k < k′ ≤ ml) will benefit

from this update because we have better estimates of the missing values in Y·,·,k for

constructing the imputation model or providing covariates when predicting Ymis′k,k′ .

The algorithm finalizes the imputation result of a target variable when the imputation

model predictions for the observed values are close to the true values after multiple

iterations. For artificial missing, we directly compare the true missing values with

its predictions. The algorithm stops when less than two variables are not finalized or

maximal iteration has achieved.

Imputation Model Under Missing at Random Under different missing pat-

terns, the algorithm utilizes different imputation models. When we have MAR, the

missingness depends on observed data and the complete observations might be bi-

ased. We utilize inverse probability weighting to obtain an unbiased pseudo sample

for imputation model fitting. By pseudo sample, we mean the weighted sample that

creates balance by up-weighting the underrepresented population and down-weighting

the over-represented population in the complete observations, where the weights can

be calculated at the subject level, or subject and time level, to allow better imputa-

tion under different situations. For subject level, the probability of missing for each

subject denoted as P{I(Yi contains NA)} is modeled with the corresponding logistic

regression using all working complete static variables and a LASSO penalty is applied

for variable selection. Weights are calculated by the estimated inverse probability of

being observed

wi =
1

1− P̂ (Yi contains NA)
.
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In observational data like EHR, missingness at the subject and time level happens

sporadically under usual circumstances; i.e., missingness can happen at any time point

for a patient. Similarly, subject i at time j will be weighted by wi,j = 1

1−P̂ (Yi,j is missing)
,

where P̂ (Yi,j is missing) is estimated by a Generalized Linear Mixed Model (GLMM)

and LASSO penalty is applied for variables selection. After estimating the weights for

the observed records, we construct the imputation model for each target longitudinal

variable with a weighted linear mixed model. The linear mixed model with random

intercept follows:

Y·,·,k = X∗Tβ + ZTb + ε,

where Y·,·,k, k ∈ {1, ...,ml} is the target longitudinal outcome, X∗ are the selected

significant predictors, Z is the design matrix for random effects, bi ∼ N(0, σ2
b ), and

εi ∼ N(0, σ2).

Accordingly, Var(Y·,·,k) = σ2(ZT ZT + I) = σ2H, with T =
σ2
b

σ2 In×n. We estimate

the imputation model by optimizing the weighted log likelihood for complete cases:

Lw = C − 1

2
log(|H|)− 1

2
nlog(σ2)− 1

2σ2
(Y·,·,k −X∗β)TW∗TH−1W∗(Y·,·,k −X∗β),

where C is a constant and

W ∗ =



√
w1,1 0 ... 0

0
√
w1,2 ... 0

... ... ... ...

0 ... 0
√
wn,Jn


is a (

∑n
i=1 Ji) × (

∑n
i=1 Ji) diagonal matrix. We obtain each stochastic imputation

with X∗i β̂ + b̂i, where b̂i is randomly sampled from N(0, σ̂b
2).
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Imputation Model under Missing Completely at Random Under MCAR, we

propose to employ two modeling options Generalized Linear Mixed Model (GLMM)

[47] or Random Effects-Expectation Maximization tree (RE-EM tree) [77] as impu-

tation models within the iterative procedure. The two procedures are referred to as

DataSifter II GLMM and DataSifter II RE-EM. Note that GLMM can handle var-

ious data types, including continuous, binary, and count data, whereas RE-EM tree

is an effective algorithm for continuous measurements. For the DataSifter II GLMM,

variable selection is conducted separately with GLMM LASSO. Here we perform a

grid search for the regularization parameter and use Bayesian Information Criterion

(BIC) to select the best model. Since an appropriate starting point is crucial for

model convergence, DataSifter II incorporates two methods to initiate the param-

eters when fitting GLMM LASSO. The first method estimates all the parameters

by glmmPQL, which is using pseudo-likelihood. GlmmPQL estimates the mean and

variance parameters iteratively with maximum likelihood assuming normality [95]. It

approximates the true likelihood with a strong normality assumption, but provides a

computationally efficient way of estimating initial regression parameters. When the

signal is sparse, and the GLMM algorithm does not converge with the glmmPQL

initial values, we may consider initialization using zeros or another user-specified

initialization.

Selected variables are denoted as X∗ = (X∗1, ..,X
∗
s), which may come from lon-

gitudinal variables other than the target and static variables. We fit the following

prediction model for every missing longitudinal variable,

ηi,j = g{E(Yi,j)} = X∗Ti,j β + ZT
i,jγi,

where g(·) is a known link function, Zi,j is the designed matrix for random effects

γi, γi ∼ N(0, D), i = 1, ..., n represents subjects, and j = 1, ..., Ji are different time

41



points.

After estimating β and D using observed data, we impute the missing values by

randomly sampling γ̂i ∼ N(0, D̂) and then obtain a Best Linear Unbiased Prediction

(BLUP) imputation prediction g−1(X∗Ti,j β̂ + ZT
i,j γ̂i) for Yi,j,k with missing values.

DataSifter II RE-EM provides an alternative robust obfuscation for continuous

time-varying measurements. RE-EM tree model combines the tree-based estimation

for fixed effects and parametric estimation for random effects [77]. RE-EM tree is a

semi-parametric generalization of the linear mixed effect model:

Yi,j = f(Xi,j,1, ..., Xi,j,ms) + Zi,j
Tγi + εi,j,

where (εi,1, ..., εi,Ji)
T ∼ N(0, Ri), γi ∼ N(0, D), f(·) function denotes a regression

tree in the previous model, and Ri records the variance-covariance structure for ith

error term. RE-EM tree enjoys the capability of modeling the non-linear trend for

fixed effects so that variable selection can be avoided. Parameter estimation for the

RE-EM tree follows a two-step procedure: First, when estimating f(·), RE-EM tree

adapts the CART tree algorithm. Assuming that γ′is are known and equal to the

current estimate γ
(r)
i , the outcome of f(·) is Yi,j − Zi,j

Tγ
(r)
i . Fitting the tree is a

binary recursive procedure that splits the whole population into similar subgroups.

The default minimum number of subjects in the terminal node is set to 20. Also, a

new split will be made when the reduction in sum of squares between the individual

outcome and group average is less than 1%. In other words, we set the complexity

parameter (cp) to be 0.01. To avoid overfitting, pruning is done by 10-fold cross-

validation after the initial fitting. The final tree is selected with the largest cp value

within one standard error above the minimized 10-fold cross-validated error. Second,

extract the random effect estimates γ̂i from a linear mixed model that regress Yij on

f̂(Xi,j,1, ..., Xi,j,ms).
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2.3.2.3 Create Partially Synthetic Time-varying Data

Using the proposed iterative imputation tool, we can create partially synthetic

time-varying data by handling potential missing in Y, generate artificial missingness

and impute back.

Similar to the preprocessing step for static variables, we intend to initiate the

process with a complete dataset containing both static and time-varying data. The

working complete static data X can be obtained from missForest imputation. If

missing values exist in the time-varying variables, we pre-process the data using the

proposed imputation algorithm under MAR assumption. In practice, we can choose

the subject level or subject and time level propensity model for missing based on

different missing patterns, i.e., we model P{I(Yi contains NA)} if missingness usually

happens at subject level and P{I(Yij = NA)} if missingness happens sporadically.

Since the true missing values are unknown, we finalize the imputation result for a

target variable k when
‖Yobsk,k

−Ŷ(r)
obsk,k

‖1
‖Yobsk,k

‖1 < ε at current iteration r for a pre-specificed

tolerance level ε, where k ∈ {1, ...,ml}.

Following the initial imputation, we start Sifting by introducing artificial random

missing values to the longitudinal variables in the working complete dataset. Such

randomly generated missingness follows a MCAR missing mechanism, which guar-

antees that the unweighted complete-case analysis is bias-free. We then impute the

missing variables one by one with the proposed imputation procedure under MCAR

with a data driven choice of either the parametric or semi-parametric imputation

model.

2.3.2.4 Implementation of DataSifter II

We use Algorithm 2 to summarize the proposed imputation method for time-

varying variables. The algorithm finalize the imputation for variable Y·,·,k at rth
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iteration when
‖Yobsk,k − Ŷ

(r)
obsk,k
‖1

‖Yobsk,k‖1
< ε

at tolerance level ε. When imputing artificial missing data, the original missing values

are given. Hence, we have an alternative criteria for determining if imputation can

be finalized
‖Ymisk,k − Ŷ

(r)
misk,k

‖1
‖Ymisk,k‖1

< ε.
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Algorithm 2 Time-varying data missing imputation algorithm

1: Input: complete static variables X ∈ R(
∑
i Ji)×ms , time-varying variables Y ∈

R(
∑
i Ji)×(ml), missing mechanism (MAR or MCAR), imputation model (GLMM

or RE-EMtree), and tolerance level ε.
2: Initially impute the missing cells in Y with a combination of last value carry

forward and next value carry backward.
3: Sort the ml variables in Y based on missing rate so that the first variable in Y

has the least missing and the last variable in Y has the most missing.
4: Create a list of missing variable indexes vlist = {km, ...,ml} where missingness

appear from the kthm variable.
5: Sort the ml variables in Y based on missing rate so that the first variable in Y

has the least missing and the last variable in Y has the most missing.
6: Create a list of missing variable indexes vlist = {km, ...,ml} where missingness

appear from the kthm variable.
7: repeat
8: for k ∈ vlist do
9: Separate data in four groups with
10: [

Yobsk,k Yobsk,−k Xobsk,·
Ymisk,k Ymisk,−k Xmisk,·

]
11: if missing mechanism = MAR then
12: Construct propensity score model for missingness and calculate the in-

verse probability of missing for records with row indexes obsk.
13: Perform variable selection with LMM with LASSO using Yobsk,k as out-

come and [Yobsk,−k,Xobsk,·] as potential predictors.
14: Fit inverse probability weighted LMM with Yobsk,k as outcome and se-

lected predictors as covariates.
15: Impute missing values Ymisk,k using the weighted LMM.
16: else
17: if imputation model = GLMM then
18: Fit GLMM with LASSO regularization regressing Yobsk,k on

[Yobsk,−k,Xobsk,·].
19: else
20: Fit RE-EMtree regressing Yobsk,k on [Yobsk,−k,Xobsk,·].
21: end if
22: Impute missing values Ymisk,k using the fitted imputation model.
23: end if
24: end for
25: iteration = iteration +1
26: if Imputation finalizing criteria at tolerance level ε has met then
27: Exclude k from vlist.
28: end if
29: until iteration > maxit or the length of vlist ≤ 1.
30: Output sifted time-varying variables Ys.
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We summarize the implementation of DataSifter II with Algorithm 3.

Algorithm 3 DataSifter II

1: Input: static variables X ∈ Rn×ms , time-varying variables Y ∈ R(
∑
i Ji)×(ml),

imputation model I, DataSifter I obfuscation level L, percent of artificial missing
to introduce a, and tolerance level ε.

2: Operate DataSifter I on the static variables under obfuscation level L and obtain
complete static variables. For patient i create Ji replicates of the working complete
static record to create Xs ∈ R

∑
i Ji×ms .

3: Operate Algorithm 1(Xs,Y,MAR,GLMM,ε) to impute possible original miss-
ingness in Y.

4: Introduce random missingness to a% of data values for data obfuscation purpose
among the ml time-varying variables in the working data and obtain data with
artificial missingness denoted as Y∗. Record real values of the missing cells.

5: Operate Algorithm 1(Xs,Y∗,MCAR,I,ε) to obtain sifted time-varying variables
Ys.

6: Output: A single complete and sifted dataset [Xs,Ys] ∈ R
∑
i Ji×(ms+ml).

2.3.2.5 Residual Diagnostics

The residuals or errors introduced by DataSifter II obfuscated values follow a

mixture distribution. When the final imputation model for variable Y·,·,k at its last

iteration rk satisfies
‖Ymisk,k−Ŷ

(rk)

misk,k
‖1

‖Ymisk,k‖1
< ε, the summation of absolute residuals is

controlled by ε and the original observed values. On the other hand, the residual is

Ymisk,k − Ŷ
(maxit)
misk,k

. Thus, the model fitting can be assessed with the observed versus

predicted values diagnostic plot. First, we subset the obfuscated cells. Then, we plot

the observed values in the vertical axis and the predicted values on the horizontal

axis. When the two values are only different by a small error term, the diagnostic

plot shapes like a diagonal line. If the presence of significant outliers is detected,

we may consider alternative strategies to remedy these atypical cases, e.g., removing

outliers from the final shareable dataset to better protect the data utility.
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2.3.3 Simulation Studies

2.3.3.1 Simulation Setup

In this section, we conduct controlled simulation studies to evaluate the data

privacy and utility protection of DataSifter and multiple imputation methods. The

original simulation data is generated with n = 500, or n = 1, 000 subjects, each with

Ji time points, where Ji varies from 1 to 10 with equal probability, two longitudinal

variables (Y1 and Y2), five static independent true predictors (X1, X2..., X5), and

w = 5 or w = 20 white noise variables. The static true predictors are generated

by normal distributions with different means and unit variance. The white noise

variables are also generated by normal distributions, but with a different set of means

and larger variances. The longitudinal variable Y1 is associated with static variables

only (X1, X2, X3) and Y2 is associated with both static (X4, X5) and longitudinal (Y1)

variables. We consider linear and non-linear associations when generating Y1 and Y2.

Under linear association, Y1 is generated by the following Linear Mixed Model:

Yi,j,1 = 1−X1,i − 0.5X2,i − 0.3X3,i + 0.8V isiti,j + b0i + εi,j,

where i = 1, ..., n is the indicator for patients, and j = 1, .., Ji is the indicator for

time. Here Ji is the total visit number for patient i and Ji ∈ {1, 2, ..., 10}, b0i is

a subject specific random intercept that follows a N(0, 1) distribution, and εi,j are

independent for different time points and follows N(0, 4). Variable Y2 depends on two

static variables and Y1.

Yi,j,2 = −15 + 0.2Yi,j,1 −X4,i + 0.2X5,i + 2V isiti,j + b1i + εi,j.

Similarly b1i ∼ N(0, 1) and εi,j ∼ N(0, 4). We know that under random intercept

V (Yi,·,1) = ZiDZ
T
i + σ2IJi where Zi = 1Ji×1, D = V ar(b0i) and σ2 = V ar(εi.j).
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Thus, Cov(Yi,j,1, Yi,j′,1) = V ar(b0i) and Corr(Yi,j,1, Yi,j′,1) =
Cov(Yi,j,1,Yi,j′,1)√
V ar(Yi,j,1)V ar(Yi,j′,1)

=

V ar(b0i)
V ar(εi,j)+V ar(b0i)

. After some calculations, Corr(Yi,j,1, Yi,j′,1) = 0.2 for all i and j 6= j′.

Similarly, Corr(Yi,j,2, Yi,j′,2) = 0.2.

We also consider cases with non-linear relationships. Similar to the linear set-

ting, we construct models with compound symmetry correlation structure. Our two

longitudinal variables are derived by:

Yi,j,1 = 10 + 3 sin(X1,i)− 0.2X2
2,i − 0.1X1,i · |X3,i|+ V isiti,j + b′0i + ε′i,j,

and

Yi,j,2 = 2 + 0.05 sin(Yi,j,1) + 0.4 exp{cos(X4,i)}− 0.02Yi,j,1 · |X5,i|+ 2V isiti,j + b′1,i + ε′i,j,

where b′0i ∼ N(0, 9), b′1i ∼ N(0, 16), and ε′i,j ∼ N(0, 64). We have V ar(Yi,j,1) =

73, Corr(Yi,j,1, Yi,j′,1) = 0.12, V ar(Yi,j,2) = 80, and Corr(Yi,j,2, Yi,j′,2) = 0.2, where

j 6= j′.

The complete data generated by the above procedure will be used to examine

different data obfuscation methods. To mimic real-world data, we also consider a

scenario where some observations in Y1 and Y2 contains missing values, which follow

the MAR missing data mechanism. First we define the missing indicator for variable

Y1 to be M(Yi,j,1) = I(Yi,j,1 = NA), ∀i ∈ {1, ..., n} and j ∈ {1, ..., Ji} and similarly

for Y2. The original missingness M(Yi,j,1) and M(Yi,j,2) is generated from the two sets

of logistic regressions. The first set considers different probabilities of missingness at

individual and time level. Under this model, we allow partially missing subjects.

logit[P{M(Yi,j,1) = 1}] = −2 + 10X1,i − 10V isiti,j + bi.

logit[P{M(Yi,j,2) = 1}] = 3− 4X5,i − 12V isiti,j + b′i.

48



Here bi, b
′
i ∼ N(0, 1). The two models will provide around 20-30% missingness for

each longitudinal variable.

We compare the performance of four types of synthetic datasets: DataSifter with

GLMM generated on complete original data, DataSifter with RE-EM tree gener-

ated on complete original data, multiple imputed synthetic data generated on com-

plete original data, and DataSifter with RE-EM tree generated on original data that

contains missing. All the sifted data are generated without static data obfuscation

(L =no obfuscation). We applied the multiple imputation method using two-level

normal models with homogeneous within group variances as the imputation model to

create multiply imputed partially synthetic datasets, which is implemented in mice

R package [74, 6]. We compare the first three types of synthetic data to assess the

obfuscation performance. To demonstrate that DataSifter can successfully handle

missingness in the original data, we further show that the decrease in data utility

preservation is small after bring in original missingness under the RE-EM tree im-

putation method. All synthetic data are generated by randomly introducing 20%

artificial missingness in Y1 and Y2 and impute the missing cells back. Static variables

including the white noise variables are not obfuscated. One hundred replications are

constructed for each type of synthetic datasets under every simulation setting.

2.3.3.2 Simulation Results

Using the proposed data utility and data privacy measurement, we evaluate syn-

thetic datasets generated by DataSifter and MI. Data utility is measured in terms of

prediction accuracy and inference based on models trained on synthetic datasets. For

prediction accuracy, we construct test sets with identical sample size as the training

dataset (n = 500 or n = 1, 000 and Ji ∈ {1, ..., 10}). We then use the predictive

models constructed on the synthetic datasets to predict the target longitudinal vari-

ables in the test set. Absolute deviance in predicted and observed values of Y1 and
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Y2 are calculated as the prediction error. Model inference is measured by the 95%

confidence interval coverage of the true parameter value among the 100 replications

under linear association scenario. Data utility is examined using the average privacy

measurement (PM) for the first 100 records of Y1 and Y2. As defined in section

2.3.1.2, for an obfuscated (replaced) target cell Yi,j,k, we use the conditional model

fitted by D−(i,j) to represent intruder’s prior knowledge and PMi,j,k is the difference

between the conditional mean and the observed yi,j,k.

The average prediction errors on test data are summarized in Table 2.2. Based

on 100 replications, under most simulation settings, the average test error on Y1 and

Y2 are similar across different synthetic data generation methods and these results

are indistinguishable from the original data. For Y2 under linear association, the MI

method provides a slightly better prediction results of less than 15% improvement.

This indicates the parameter estimations with synthetic data generated by DataSifter

are relatively accurate. Note that whether or not we have missingness in the original

datasets, the DataSifter RE-EM tree provides similarly accurate coefficient estimates.

Moreover, stable results are observed under both linear and nonlinear associations,

training sample sizes and noise levels, which suggests that our proposed imputation

method is robust.

Since the proposed imputation method is aimed at minimizing imputation error

rather than accounting for uncertainty of the missing values, the 95% confidence

interval constructed on sifted datasets are narrower than the original data. As shown

in Table 2.3, for variable Y1, the MI method achieves desired 95% coverage while the

DataSifter GLMM achieves 89-98% accuracy. Due to the slower convergence rate of

non-parametric estimations and non-linear model specification, the synthetic datasets

generated by DataSifter RE-EM have smaller CI coverage ranging from 76-94%. For

Y2 , the CI coverage for X4 (one of the static predictors) is relatively small under the

DataSifter methods (43- 68%). Nevertheless, we observe that the DataSifter GLMM
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Training sample n = 500

Variable Y1 Y2

Association,

Noise level

Linear,

w = 5

Linear,

w = 20

Nonlinear,

w = 5

Nonlinear,

w = 20

Linear,

w = 5

Linear,

w = 20

Nonlinear,

w = 5

Nonlinear,

w = 20

Original 1.858 1.858 20.471 20.471 1.903 1.903 7.649 7.649

Multiple Imputation 1.851 1.867 20.295 20.289 1.903 1.922 7.693 7.818

DataSifter GLMM 1.903 1.901 20.538 20.525 2.151 2.144 7.949 7.949

DataSifter RE-EM 1.896 1.896 20.503 20.516 2.153 2.149 7.705 7.710

DataSifter RE-EM

with original missing
1.871 1.873 20.121 20.101 2.184 2.205 7.728 7.730

Training sample n = 1,000

Variable Y1 Y2

Association,

Noise level

Linear,

w = 5

Linear,

w = 20

Nonlinear,

w = 5

Nonlinear,

w = 20

Linear,

w = 5

Linear,

w = 20

Nonlinear,

w = 5

Nonlinear,

w = 20

Original 1.870 1.870 20.746 20.746 1.861 1.861 7.410 7.410

Multiple Imputation 1.863 1.883 20.563 20.596 1.863 1.891 7.420 7.520

DataSifter GLMM 1.911 1.911 20.817 20.801 2.100 2.111 7.738 7.741

DataSifter RE-EM 1.911 1.914 20.806 20.797 2.109 2.122 7.456 7.459

DataSifter RE-EM

with original missing
1.864 1.864 19.985 19.998 2.245 2.248 7.729 7.732

Table 2.2: Mean absolute deviation (prediction error) for test dataset based on model
fitted on original and synthetic datasets. The test datasets are generated separately
with the same sample size as the training sets.

method (87% and 84%) provide a much better CI coverage for predictor Y1 compared

to the MI method (39% and 21%). This is because the proposed iterative imputation

method updates the missing predictor information during each iteration while MI is

solely based on complete data. The CI coverage based on the DataSifter RE-EM

tree method is smaller when the original data contains missing values. However, the

reduction in CI coverage is alleviated for a larger sample size.

The average privacy measurement for different synthetic datasets is illustrated in

Figure 2.7. Each boxplot records the distribution of average privacy measurement

for Y1 and Y2 over 100 replications among the first 100 records. Under all scenarios,

the two DataSifter methods have similar privacy measurement values and distribu-

51



Training sample n = 500

Variable Y1 Y2

Association,

Noise level

Linear,

w = 5

Linear,

w = 20

Linear,

w = 5

Linear,

w = 20

Covariate X1 X2 X3 X1 X2 X3 X4 X5 Y1 X4 X5 Y1

Original 0.940 0.950 0.960 0.940 0.950 0.960 0.970 1.000 0.960 0.970 1.000 0.960

Multiple Imputation 0.940 0.970 0.950 1.000 1.000 1.000 0.960 1.000 0.860 0.980 1.000 0.390

DataSifter GLMM 0.900 0.920 0.930 0.940 0.950 0.930 0.680 0.930 0.890 0.590 0.940 0.870

DataSifter RE-EM 0.870 0.860 0.870 0.900 0.940 0.860 0.670 0.850 0.740 0.600 0.850 0.720

DataSifter RE-EM

with original missing
0.690 0.850 0.690 0.660 0.840 0.700 0.490 0.840 0.760 0.440 0.880 0.730

Training sample n = 1,000

Variable Y1 Y2

Association,

Noise level

Linear,

w = 5

Linear,

w = 20

Linear,

w = 5

Linear,

w = 20

Covariate X1 X2 X3 X1 X2 X3 X4 X5 Y1 X4 X5 Y1

Original 0.950 0.960 0.960 0.950 0.960 0.960 0.960 0.970 0.880 0.960 0.970 0.880

Multiple Imputation 0.960 0.980 0.960 0.990 1.000 1.000 0.960 0.940 0.660 0.990 0.990 0.210

DataSifter GLMM 0.930 0.960 0.960 0.890 0.980 0.960 0.430 0.860 0.790 0.440 0.910 0.840

DataSifter RE-EM 0.930 0.890 0.760 0.880 0.940 0.770 0.440 0.730 0.510 0.430 0.740 0.550

DataSifter RE-EM

with original missing
0.730 0.850 0.760 0.730 0.840 0.770 0.260 0.870 0.520 0.270 0.840 0.530

Table 2.3: Confidence interval (95%) coverage based on 100 replicates under different
models. The coverage records the percent of times that CIs from models trained on
original and synthetic datasets cover the true parameter estimate.

tions. The MI method offers significantly lower privacy measurement, see Figure 2.7.

In fact, when introducing 20% artificial missingness to the longitudinal variables, the

average mean privacy measurement is around 5.25 times higher in sifted datasets com-

pared to multiply imputed datasets. This result provides empirical evidence for the

privacy measurement (PM) improvement derivation, see Section 2.3.1.2. Compared

to multiple imputed datasets, sifted datasets have at least 1/a times higher average

PM, where a is the percent of the introduced artificial missing values in the data.
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Figure 2.7: Average privacy measurement among first 100 rows in the synthetic
datasets. The scenario with small noise level contains w = 5 and large noise level
contains w = 20 white noise variables.

2.3.4 Clinical Data Application using MIMIC-III

The Medical Information Mart for Intensive Care III (MIMIC-III) represents a

sizable single-center database that provides patients’ medical records in a large ter-

tiary care hospital between 2001 and 2012. MIMIC-III data stores information related

to patients’ admission, including vital signs, medications, laboratory measurements,

length of stay, survival data, and more [34]. We consider a subset of 7,080 patients

who had at least two visits to the hospital who contributed 17,594 hospital admission

records with demographic variables, including insurance type, gender, race, age, mar-

ital status, and death after admission. Admission information such as insurance type,

admission type, and month of admission is also available. MIMIC-III contains de-

identified or coded data that is considered not involving protected health information.

However, the data request process including taking an online course and submitting

an application with specific research topics and requested information can still take

more than three weeks. Using the data for any rigorous scientific investigation re-

quires the researcher to go through a time consuming data request procedure, while
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at the end the investigation may find no significant results. DataSifter II allows a

quicker turnaround for checking the potentials of research hypotheses. For example,

we want to investigate the association between length of stay in tertiary care hospitals

and Medicaid insurance type controlling other patient demographic variables using

the MIMIC-III data. We illustrate how to use the sifted data to answer our initial

research question, and evaluate both utility and privacy protection performance in

the sifted MIMIC-III data. We also compare the synthetic MIMIC-III datasets gen-

erated by DataSifter II with that of the multiple imputation method. A linear mixed

effect model is used to regress the length of hospital stay on patient characteristics.

The privacy protection effort is measured by the privacy measurement (PM) for age

and length of hospital stay among the first 100 records.

First, we obfuscate the following longitudinal variables: (1) length of stay, (2)

month of admission, (3) death after visit, (4) age at visit. We consider generating

two types of Siftered data: with (L =medium) or without (L =no obfuscation) static

data obfuscation using DataSifter I. By using the DataSifter II protocol, we introduce

20% missingness in the longitudinal variables specified above to obtain the first type

of sifted data without static obfuscation. The RE-EM tree model is used as the

imputation model because of its more flexible mean structure. Then, we generate

the second type of sifted data with further obfuscation on the static variables using

DataSifter I under the medium level of obfuscation, which entails two rounds of

artificial missing introduction and imputation, each one randomly obfuscating 25%

of the cells. The other setting for the medium obfuscation level defines neighbors

as the cases with the closest top 5% distance and swap 60% of the features with

a neighboring case. As a comparison, we also create partially synthetic data with

multiple imputation (MI) based on 20% random artificial missingness on the four

longitudinal variables. In each replication, the MI dataset and the Siftered dataset

without static obfuscation have the same amount of data cells being replaced. The
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Sifterd dataset with static obfuscation has the highest level of privacy protection

among the three by altering an extra 25% of the cells in the static data. Fifty

replications are generated for each type of partially synthetic data.

Next we compare the model parameter estimates between models fitted on the

original data and on the three different types of synthetic data, assuming the following

linear mixed effect model:

Length of stayi,j =β0 + β1Age + β2Medicaid + β3Private insurance + β4White + β5Black

+ β6Male + β7Emergency admission + β8Urgent admission

+ β9Single + β10English language

+ β11Visiti,j + b1iVisiti,j + εi,j,

where b1i ∼ N(0, σ2
b1), and εi,j ∼ N(0, σ2).

Results in Figure 2.8 show that the DataSifter II provides much better privacy

protection than the MI method with a small loss in data utility. Medicaid is not

associated with the length of stay in any synthetic and original data fitted models.

According to Figure 2.8 A, most of the mean PM by row (record) are below five

among the 50 multiply imputed synthetic datasets. The average PM is 0.33 for age

at admission and 1.53 for length of hospital stay. The DataSifter method provides a

significant improvement in terms of PM with 14.87 and 8.17 as the average PMs for

age and hospital stay, respectively. We can also infer from Figure 2.8 A that the

mean PMs can vary considerably from row to row in sifted datasets without static

obfuscation.

Figure 2.8 (B) illustrates the deviance of parameter estimates between the model

fitted with three types of synthetic dataset and the original linear mixed model. Only

significant parameter estimates are shown in the plot. The box plots represent the

empirical confidence intervals (CIs) or the distribution of β̂’s among 50 replicates.

The black dots and purple intervals illustrate the coefficient estimates and CIs from
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the original model. According to Figure 2.8 B, all the empirical CIs from MI and

DataSifter without static obfuscation overlap with the CIs acquired from original

data. The MI created synthetic datasets provide the most accurate β̂’s that align

closely with the original estimates and a small estimation bias is observed for the

sifted data without static obfuscation. Five out of seven empirical CIs from the

model constructed from the sifted data with static obfuscation have overlapped with

the original CIs. The results suggest that the data utility is well preserved in sifted

datasets after intensive obfuscation.
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Figure 2.8: MIMIC III synthetic data privacy (A) and utility (B) evaluation. Plot
A summaries the distribution of mean privacy measurement for age and length of
hospital stay for first 100 rows across 50 synthetic datasets generated by DataSifter
(without static obfuscation using DataSifter I) and multiple imputation. Plot B
compares the significant coefficient estimates (p-value < 0.05) among the models
fitted with original data, and synthetic datasets generated by DataSifter II (with
or without static obfuscation) and multiple imputation. The boxes illustrate the
distribution of coefficients estimated on 50 synthetic datasets. The black dots and
purple intervals are the parameter estimates and confidence intervals from the linear
mixed model fitted by the original dataset.

Since none of the fitted models obtained from the sifted datasets shows significance

of the effect β2, researchers who are interested in the relationship between Medicaid
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and length of hospital stay may conclude ”no statistical association” from any one of

the sifted datasets presented in the simulation study.

2.4 Discussion

The results shown above illustrate that the DataSifter technique balances be-

tween maintaining the energy of the original data (preserves information utility)

while simultaneously introducing a level of privacy protection safeguarding against

re-identification of sensitive information contained in the archive.

According to the reported simulation studies, under a careful set-up for user-

defined privacy levels, DataSifter I can successfully provide privacy protection while

maintaining data utility. The clear negative relationship between the level of obfus-

cation and the proportion of PIFVs indicates that a high user-specified privacy level

does provide increased privacy protection for sensitive information. Using DataSifter

under “large” or “indep” settings, patient privacy was highly protected. Data re-

identification was almost impossible by stratification filtering of the targeted patients

via known feature values. This is due to the method’s inability to distinguish be-

tween real, imputed, or obfuscated values within each real feature, and the relatively

small proportion of untouched data elements. Of course, caution needs to be exer-

cised, as multiple queries resulting in repeated “sifted” data instances may expose the

overlapping “true” values especially for low levels of obfuscation. However, the large

proportion of “sifted” elements protects sensitive information and may allow data

users to request a small number of data queries. The application of DataSifter I on

ABIDE provided a realistic demonstration of how to employ the proposed algorithm

on EHR. Also, the application confirmed DataSifter I’s ability to handle high di-

mensional data. The excellent prediction performances on the “medium” obfuscation

level suggested similar data utility between original and “sifted” data.

For DataSifter II, The simulation results based on introducing 20% artificial
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missingeness suggest that data utility is better preserved for longitudinal variables

that depend only on static variables (Y1) compared to variables that depend on both

static and longitudinal variables (Y2). The two imputation method options, GLMM

and RE-EM tree, provide accurate and computationally efficient imputations for Y1

and Y2 under the both linear and nonlinear generative models. The RE-EM tree

method is efficient computationally when the number of longitudinal variables is

large, and the number of subjects is small compared to the number of variables in

the data.

Compared to the multiple imputation method, DataSifter II provides extended

privacy protection with moderate utility loss in terms of CI coverage. We showed

that the synthetic datasets generated by DataSifter are more powerful for predictive

model constructions rather than inferential tasks by design to seek for the smallest

imputation error in each obfuscated cell.

We examined the privacy protections of the longitudinal synthetic data propor-

tion using a proposed privacy measurement. The original DataSifter I method can

further ensure that partial information in the time-invariant cross-sectional data is

obfuscated for any non-isolated subject and our application shows that this extra level

of protection only introduces a small bias in model-based statistical inference. When

complete obfuscation for all data elements is required, we recommend the generation

of fully synthetic longitudinally sifted datasets. This new option is implemented in

the DataSifter II R package. It is specified by the setting of level-of-obfuscation pa-

rameter, which is also available in the DataSifter I technique. We define a local value

range (ai,j, bi,j) for each longitudinal variable, individual i, time j, and as the closest-

neighborhood N of nearby observations. Then, we randomly sample with a uniform

distribution bounded by ai,j and bi,j to generate each data point. The fully synthetic

version of DataSifter II introduces errors that are locally bounded. However, it does

not guarantee preservation of within-subject correlations.
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The experimental results show that the sifted datasets preserve the information

content of the original data (utility preservation) at the same time they provide pow-

erful data privacy protections. Depending on the specific data characteristics, the

DataSifter II performance may be impacted in terms of its efficiency and balance be-

tween privacy-protection and utility-reservation. We employed linear (GLMM) model

and tree (RE-EM tree) structure to approximate the distribution for each longitudi-

nal variable conditional on other variables in the data. The utility preservation for

each longitudinal variable may be affected by (1) the complexity of the relationship,

(2) empirical variance of the target time-varying variable, (3) the data type of the

predictors, and (4) alternative within-subject covariance structures.

The DataSifter algorithm provides data governors and researchers with a semi-

automated and reliable framework for sensible information exchange. Despite per-

turbing individual level records, the overall sifted time-varying data shares similar

population level information with the original process. DataSifting allows owners of

data, business managers, biomedical scientists, and clinical researchers to create and

study pseudo populations by sharing obfuscated data objects, instead of the original

sensitive information, and conducting studies on these sifted datasets. This infor-

mation exchange process promotes rapid and effective testing of a priori research

hypotheses (confirmatory analytics), as well as, data-driven discovery science and

formulation of novel translational science questions (exploratory analytics). Many

biomedical areas, clinical settings, and research and development partnerships may

benefit from the DataSifter technology to conduct advanced trans-disciplinary re-

search and translate basic science advances into clinical practice.
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CHAPTER III

Robust Estimation for Viable Optimal DTRs with

Restricted Arms Using Observational Data

3.1 Introduction

Personalized medicine (PM) or precision medicine is an increasingly popular area

of study including a broad range of approaches, which provide individualized solutions

for drug therapy or preventive care. PM is an important research topic since signifi-

cantly different treatment effects of certain medical procedures can be observed from

patient to patient. To make single-stage treatment recommendations, traditional PM

approaches cluster patients into groups based on their cross-sectional demographics

or genetic information. Dynamic treatment regime (DTR) is an effective vehicle for

personalized medicine under the time-varying treatment settings of chronic condi-

tions like drug abuse, cancer, and diabetes, where adaptive treatments are necessary

for patients at multiple stages [10]. To make effective treatment decisions at each

stage, DTR uses patients’ past medical history and current disease status to offer the

most informed individualized treatment recommendation for chronic diseases. Nev-

ertheless, making sequential decisions can be challenging due to the intricate causal

relationships between a sequence of treatments and the final clinical outcome.

Various methods have been developed for estimating optimal DTRs. Marginal
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structural models with inverse probability weighting (IPW) [51, 90], Q- and A-

learning methods [93, 82, 50, 76], and dynamical system models [61] stand out as

the most commonly used parametric methods for estimating optimal DTR. These

methods are highly interpretable but rely heavily on parametric assumptions, which

however could be violated in some scenarios. For example, we may have too many

covariates or limited information to specify reasonable parametric models. Over the

past few years, nonparametric approaches have been proposed to allow more flexi-

bilities and relax assumption restrictions. Among such non-parametric approaches,

tree-based methods not only relax the linear model assumption but also facilitate

the easy interpretability for physicians to understand and use in practice. Laber and

Zhao (2015) [39] employed an inverse probability weighted purity measure to build

decision trees for optimizing the potential health outcomes for a single stage, where

the patient individual medical history are used to tailor the treatment as potential

tree nodes. Tao and Wang (2018) [85] generalized the method to a doubly robust ap-

proach, which provides more robustness using observational data and can also handle

multi-stage treatment situations. Cut-off based verdicts in the tree structure can

provide clear guidance to future clinical practices.

When answering the inferential questions in DTR researches, pre-designed Se-

quential Multiple Assignment Randomized Trials (SMART) are ideal to meet the

desirable casual assumptions. Although SMART were a growing data source for com-

paring or constructing DTR, it is still not easy to perform and implement SMART

in practice since such trials can be expensive and time-consuming. As we enter the

big data era, massive amounts of health records are available for scientific discoveries

and observational studies have their own merits and values for evaluating the optimal

DTRs. There has been a large literature to develop statistical methods for DTR

in observational studies [39, 84, 85]. However, a natural challenge arises since some

observed treatment routes with good-targeted outcomes can be inapplicable or not
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recommended for future patients. Possible sources of the inapplicable routes include

drug recalls and inconsistent treatment applications from different physicians. For

example, it is not meaningful to construct a DTR that contains recalled drugs in a

certain stage or has a weaker medicine following a more aggressive treatment. Al-

though there is a vast literature for estimating optimal DTR, directly applying the

existing DTR methods to data with inapplicable treatment routes can lead to unre-

alistic recommendations for some patients. On the other hand, simply deleting the

patient records with restricted arms is not a solution either since that may induce

selection bias and interpretable DTR is not guaranteed. Therefore, a growing number

of researchers and clinicians are calling for new methods that solve such constrained

optimization problem in observational studies.

In this chapter, we develop the Restricted Tree-based Reinforcement Learning

(RT-RL) method to accommodate restrictions in observational studies by truncating

possible treatment options based on patient history in a multi-stage multi-treatment

setting. The proposed method provides robust and interpretable estimations by em-

ploying doubly robust augmented inverse probability weighted estimators in a tree-

based algorithm. Our algorithm provides optimal treatment recommendations for

patients regarding only applicable treatment options and utilizes all valid observa-

tions in the dataset to avoid selection bias and improve efficiency.

The rest of the paper is organized as follows: In section 3.2 we formulize the re-

stricted optimization problem and our proposed solution by specifying the truncation

process for the patient history and treatment options and describing the Restricted

T-RL estimating procedure. In section 3.3, using simulation studies, we demonstrate

the interpretability, effectiveness, and robust performances of our method by compar-

ing RT-RL with the naive method that deletes all the information in the restricted

arms. In section 3.4, we apply the algorithm to Global Appraisal for Individual Needs

(GAIN) to estimate interpretable two-stage DTR to guide the level of care placement
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for adolescents with substance use disorder. The performance of our proposed method

is compared with the native T-RL and non-dynamic regimes. Finally, in section 3.5

we summarize and discuss the findings.

3.2 Method

3.2.1 Notations and Setup

We consider an observational study with n patients and T treatment stages where

there are Kj (Kj ≥ 2) potential treatment options at the jth treatment stage, j =

1, ..., T . Patients are observed to follow one of the treatments available at each stage.

For brevity, we suppress the patient index i (i = 1, .., n) when no confusion exists.

Let Aj denote the treatment at the jth treatment stage, where Aj may take a value

aj, a specific value for the jth treatment assignment that belongs to the stage specific

treatment space Aj = {1, ..., Kj}. Let AT ≡ (A1, . . . , AT ) with a bar “-” denote the

T-stage sequence of treatment indicators. Similarly, we denote the observed treatment

routes with aT ≡ (a1, . . . , aT ). As a general notation in the following, we use a bar

“-” and a subscript j on a variable to denote the history of this variable up to the

jth stage. For example, Aj−1 ≡ (A1, . . . , Aj−1) to denote the past treatments prior

to stage j. Let Rj denote the clinical outcome observed following Aj, also known

as rewards, which depends on the precedent patient characteristics Xj and previous

treatments Aj−1. We consider the overall outcome of interest as some functional

of the reward history such that Y ≡ f(R1, ..., RT ), where f(.) is a pre-specified

function (e.g., sum), assuming Y is bounded and preferable with larger values. To

recommend personalized optimal treatment for future patients at stage j, we infer

from the observed Y, the current candidate treatments aj ∈ Aj and the patient

history Hj = (Aj−1,X
T
j )T ∈ Hj.

However, some of the observed treatment sequences are not applicable for future
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patients due to clinical or practical reasons. We define such treatment routes as

restricted treatment arms, which should be excluded from the domain of the DTRs

of interest during estimation. Suppose there are Mj restricted arms at stage j, and

denote them as bm,j = (b1,m,j, ..., bj,m,j) where m = 1, ...,Mj and bj′,m,j ∈ Aj′ for

j′ = 1, ..., j. Excluding restricted treatment arms from the observed treatment stages,

we obtain a set of viable treatment sequences from stage 1 to stage j denoted as

Aresj ≡ Aj/{bm,j,m = 1, ...,Mj}. Correspondingly, the domain of viable patient

history is Hres
j = {hj : aj−1 ∈ A

res

j−1}. In the rest of the paper, we denote the random

variable of viable treatment history as Hres
j , and the value of Hres

j is in Hres
j .

We use gres = (gres1 , ..., gresT ) to denote a sequence of restricted viable rules for

personalized treatment decisions across the different treatment stages (total T stages),

i.e., a viable restricted dynamic treatment regime (DTR), where gresj is a meaningful

mapping function from the domain of restricted patient history Hres
j to the range of

viable treatment options at j given the past (Aresj ). Denote the collection of such

restricted meaningful mappings as Gres = (Gres1 , ...,GresT ). Specifically, gresj ∈ Gresj

maps from viable treatment histories to applicable stage j treatments conditional on

Aj−1 such that (Aj−1, g
res
j (Hres

j )) ∈ Aresj .

To identify the optimal restricted DTR among Gres, we consider the counter-

factual framework for causal inference defined in Robins, 1986. At stage T, let

Y ∗(A1, ..., AT−1, a
T ) or Y ∗(aT ) denote the counterfactual outcome for patients re-

ceived treatment aT conditional on previous treatments. Our goal is to find the

optimal one among the restricted DTRs in GresT that maximizes the expected coun-

terfactual outcome, i.e.,

gres,optT = argmax
gresT (Hres

T )∈GresT

E

[
KT∑
aT=1

Y ∗(aT )I{gresT (Hres
T ) = aT}

]
.

For any stage j before T , we seek the best regime by maximizing the expected coun-
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terfactual outcome with all future treatments optimized to avoid confounding. We

denote the counterfactual outcome at stage j given Aj−1 and future optimal treat-

ments gres, optj+1 , . . . , gres, optT as Y ∗
(
Aj−1, aj, g

res, opt
j+1 , . . . , gres, optT

)
. Since such counter-

factual outcomes cannot be observed, we estimate the stage-wise pseudo-outcome

with observed data considering viable constricted treatment space by

POres
j = Êres

{
Y ∗
(
A1, . . . , Aj, g

res, opt
j+1 , . . . , gres, optT

)}
,

at stage j for j = 1, ..., T −1, where Eres denotes the expectation considering only the

viable patient history and treatment routes space, gres,optj ∈ Gresj and (A1, ..., Aj) ∈

Aresj , which is equivalent to the recursive form

POres
j = ÊHres

{
POres

j+1

∣∣Aj+1 = gres,optj+1

(
Hres
j+1

)
,Hres

j+1

}
.

At the final stage, POres
T = Y . Let POres,∗

j (Aj−1, aj), or POres,∗
j (aj) for brevity, denote

the counterfactual pseudo-outcome for a patient treated with aj ∈ Aj and viable past

treatments (A1, ..., Aj−1) ∈ A
res

j−1. We have

POres,∗
j (gresj ) =

Kj∑
aj=1

POres,∗
j (aj)I{gresj (Hres

j ) = aj}.

Our optimization problem at stage j (j < T ) among the meaningful mappings be-

comes:

gres,optj = argmax
gj(Hres

j )∈Gresj

E[POres,∗
j (gresj )].

3.2.2 Constrained Optimization Procedure

To connect the counterfactual outcomes and counterfactual pseudo-outcomes with

observed data, we make the following three assumptions considering only the appli-

cable treatment routes [51, 66, 53]:
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(1) Consistency. If the patient were given the treatments accordingly, the ob-

served outcome would be the same as the counterfactual outcome, which indicates

Y =
∑KT

aT=1 Y
∗(aT )I(AT = aT ) for stage T , where AT ∈ AresT . Similarly, the es-

timated pseudo outcome agrees with the counterfactual pseudo-outcome POres
j =∑Kj

aj=1 POres,∗
j (aj)I{Aj = aj} for stage j < T and Aj ∈ Aresj .

(2) No unmeasured confounding. For any treatment sequence aT = (a1, .., aT ),

treatment Aj is independent of future outcomes (rewards), given Hres
j a random

variable that takes value in Hres
j , i.e.,

Aj⊥(Rj(aj), ..., RT (aT ))|Hres
j , ∀j = 1, ..., T.

(3) Positivity. There exists constants 0 < c0 < c1 < 1 such that with probability 1

the propensity score

πaj(H
res
j ) = Pr(Aj = aj|Hres

j ) ∈ (c0, c1).

With the three assumptions, we can bridge the pseudo outcome estimated from the

observational data with the expected counterfactual pseudo outcome for a specific

regime gresj ∈ Gresj at any stage j < T . Conditional on Hres
j , we have

E{POres,∗
j (gresj )} = EHres

j

 Kj∑
aj=1

E{POres,∗
j (aj)|Hres

j }I{gresj (Hres
j ) = aj}

 .
With no unmeasured confounder assumption, it is easy to show that

E{POres,∗
j (gresj )} = EHres

j

 Kj∑
aj=1

E{POres,∗
j (aj)|Aj = aj,H

res
j }I{gresj (Hres

j ) = aj}

 .
Then, using consistency assumption and positivity assumption, we can link the coun-
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terfactual with the estimated pseudo outcome

E{POres,∗
j (gresj )} = EHres

j

 Kj∑
aj=1

E{POres
j |Aj = aj,H

res
j }I{gresj (Hres

j ) = aj}

 .
Let µresj,aj(H

res
j ) = E(POres

j |Aj = aj,H
res
j ), then our goal is to find

gres,optj = argmax
gresj ∈Gresj

EHres
j

 Kj∑
aj=1

µresj,aj(H
res
j )I{gresj (Hres

j ) = aj}

 ,
at stage j in the space of applicable treatment options. Likewise, we have

gres,optT = argmax
gresT ∈G

res
T

EHres
T

 Kj∑
aT=1

µresT,aT (Hres
T )I{gresT (Hres

T ) = aT}

 ,
with µresT,aT (Hres

T ) = E(Y |AT = aT ,H
res
T ).

The proposed method RT-RL utilizes the backward induction technique [4] to

estimate the restricted DTR. The counterfactual mean outcome is estimated by AIPW

estimator similar to [84]. We have modified the estimation of E{Y ∗(aT )} under the

viable patient history spaceHres
T at final stage T . Assume we have observed n patients

with nres,T patients received applicable treatment combinations until stage T . We

propose to estimate E{Y ∗(aT )} with Pnres,T {µ̂res,AIPW
T,aT

(Hres
T )}, where

µ̂res,AIPW
T,aT

(Hres
T ) =

I(AT = aT )

π̂T,aT (Hres
T )

Y +
{

1− I(AT = aT )

π̂T,aT (Hres
T )

}
µ̂resT,aT (Hres

T ).

Proposition 1 (Double Robustness). Assume patient observations {Xi,Ai,(T−1), Ai,T , Yi}ni=1

are independent and identically distributed that follows certain multivariate distribu-

tion p. A subset of nres,T patients has viable past treatment routes until stage T . We

define viable patient observations as {Hres
iT , AiT , Yi}n

res,T

i=1 ≡ {Xi,Ai,(T−1), AiT , Yi}n
res,T

i=1

such that Ai,(T−1) ∈ A
res

T−1. Pnres,T {µ̂res,AIPW
T,aT

(Hres
T )} is a consistent estimator of
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E{Y ∗(aT )} if either the propensity score model π̂T,aT (Hres
T ) or the conditional mean

model µ̂resT,aT (Hres
T ) is correctly specified.

For the final stage T , we propose to estimate the optimal regime with

ĝres,optT = argmax
gresT ∈G

res
T

Pnres,T

[
KT∑
aT=1

µres,AIPWT,aT
(Hres

T )I{gresT (Hres
T ) = aT}

]

= argmax
gresT ∈G

res
T

1

nres,T

nres,T∑
i=1

[
I(AiT = gresT (Hres

iT ))

π̂T,AT (Hres
iT )

Yi +
{

1− I(AiT = gresT (Hres
iT ))

π̂T,AT (Hres
iT )

}
µ̂resT,AT (Hres

iT )

]
,

where π̂T,AT (Hres
T ) is the estimated propensity score model and µ̂resT,AT (Hres

T ) denotes

the conditional mean model. Similarly, for stage j (1 ≤ j < T ), our proposed estima-

tor for gres,optj is

ĝres,optj =

argmax
gresj ∈Gresj

1

nres,j

nres,j∑
i=1

[
I(Aij = gresj (Hres

ij ))

π̂j,Aj(H
res
ij )

POres
i +

{
1−

I(Aij = gresj (Hres
ij ))

π̂j,Aj(H
res
ij )

}
µ̂resj,Aj(H

res
ij )

]
,

given the propensity score model π̂j,Aj(H
res
j ) and the conditional mean model µ̂resj,Aj(H

res
j ).

We utilize tree-based reinforcement learning (T-RL) to search for optimal treat-

ment regime that closely follows the procedure proposed by [85], but only con-

sidering the viable restricted space. We propose to utilize the AIPW estimator

Pnres,j{µ̂res,AIPW
j,aj

(Hres
j )} to estimate E{Y ∗(aT )} or E{POres,∗

j (aj)} that serves as the

purity measure for tree model construction at stage T or j < T , respectively. The tree

model divides patients into subgroups with alike histories and recommend the cor-

responding optimal treatment to each subgroup that maximizes the estimated group

average stage-wise pseudo outcome. The proposed procedure provides viable indi-

vidualized treatment solutions tailored by patient characteristics recorded in Hres
j .

While considering a partition over node Ω that split patients into two groups ω and
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ωc, we define the purity measure before the partition as:

Pj(Ω, φ) = max
aj∈Aresj

Pnres,j

[
Kj∑
aj=1

{
I(Aj = aj)

π̂j,aj(H
res
j )

POres
j + {1− I(Aj = aj)

π̂j,aj(H
res
j )
}µ̂resj,aj(H

res
j )}

}

× I(Hres
j ∈ Ω)

]
,

for j = 1, ..., T , where POres
T = Y for final stage. We compare Pj(Ω, φ) with the

purity measure after the partition

Pj(Ω, ω) = max
a1,a2∈Aresj

Pnres,j

[
Kj∑
aj=1

{
I(Aj = aj)

π̂j,aj(H
res
j )

POres
j + {1− I(Aj = aj)

π̂j,aj(H
res
j )
}µ̂resj,aj(H

res
j )}

}

× I{gresj,ω,a1,a2
(Hres

j ) = aj}I(Hres
j ∈ Ω)

]
,

where gresj,ω,a1,a2
is the treatment rule that assigns a1 to patient subgroup ω and assigns

a2 to patient subgroup ωc . We chose the best split ω based on largest improvement

in purity measure Pj(Ω, ω)− Pj(Ω, φ).

3.2.3 Implementing Restricted T-RL

We implement the Restricted T-RL by restricting and allocating patients based

on past treatment sequences during the optimization procedure. This implies that

only patients with viable treatment combination up to stage j, i.e. Aj ∈ A
res

j , can

contribute to the treatment regime estimation at current stage j for j = 1, ..., T .

Among patients with viable treatment sequences up to stage j, we fit separate T-RL

models based on past treatment sequence for patients with (Aj−1, aj) /∈ A
res

j ,∃aj ∈

Aresj who are at risk of receiving inapplicable arms. In each model, we search the best

treatment among {aj ∈ Aresj : (Aj, aj) ∈ A
res

j }. An additional T-RL is fitted using

the remaining patient records with Aj−1 ∈ A
res

j−1, and (Aj−1, aj) ∈ A
res

j ,∀aj ∈ Aresj

without restrictions on candidate optimal treatments.
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Moreover, when the observed treatments of a patient satisfy Aj ∈ A
res

j and Aj∗ /∈

Aresj∗ ,∀j∗ > j with j < T , this patient can only contribute to the optimal regime

estimation for the first j stages. For this patient, since the observed outcome Y is

not informative, POres
j is estimated using data from similar patients with applicable

treatments until the j + 1 stage. Prior to stage j, we can use backward induction to

estimate the stage-wise pseudo outcomes.

When fitting tree models, we adapt the stopping criteria proposed by [85] that

considers classic tree-based method pruning parameters to avoid overfitting. Node

size (n0) controls the minimal number of subjects in each final node, and the depth

of the tree (d) avoids complicated regimes. Moreover, a positive constant λ for

minimal purity improvement is used for examining if the current best split ω̂opt =

argmaxω[Pj (Ω, ω)] satisfies Pj (Ω, ω)-Pj (Ω, φ) > λ, which guarantees user-specified

meaningful splits. We set values for n0 , d and λ for pruning based on specific appli-

cations.

For demonstration purposes, from now on, we consider a two stage problem (T =

2) where we have M inapplicable treatment routes bm = (b1,m, b2,m),m = 1, ...,M .

Under this setting, we assume all observed first stage treatments are viable and a2 =

b2,m given a1 = b1,m are not viable for m = 1, ...,M .

In stage 2, we estimate the restricted treatment rule by allocating patients based

on if A1 agrees with any restricted arms. First, we construct the overall conditional

mean model µ̂res2,a2
with patients who have received viable treatment routes. Then,

we separate the observations into M + 1 groups so that patients with A1 = b1,m are

allocated to the mth group and the rest of the patients are in the 0th group. We define

the truncated patient history, treatment set and treatment rules as follows. For the
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0th group:

Hres
02 = H2 r {(b1,m,XT

2 ) : m = 1, ...,M};

Ares
02 = A2;

Gres02 = {gres2 : Hres
02 7→ Ares

02 }.

For the mth group:

Hres
m2 = {(b1,m, XT

2 )};

Ares
m2 = A2 r {b2,m};

Gresm2 = {gres2 : Hres
m2 7→ Ares

m2},

m = 1, ...,M .

Group specific propensity scores are estimated using data from patients who re-

ceived applicable treatment routes

π̂2,A2 (Hres
2 ) =

 π̂0
2,A2

(Hres
2 ) , Hres

2 ∈ Hres
02

π̂m2,A2
(Hres

2 ) , A2 ∈ Aresm2 and Hres
2 ∈ Hres

m2, m = 1, . . . ,M
.

Then, separate T-RL models are fitted given corresponding estimated conditional

mean model and propensity score model using patient observations in each restricted

groups (from 1st to M th group) that have a2 = (b1,m, c2,m), where c2,m 6= b2,m, to

maximize the pseudo outcome at stage 2. We use all patients in the 0th group to fit

the remaining T-RL model, since all observed treatment sequences in this group are

compatible to those of our interest.
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We provide the following restricted estimation for the treatment rule for stage 2:

ĝres,opt2 =
argmax
gres2 ∈Gresm,2

Pnres,m,2
[∑K2

a2=1 µ
res,AIPW
2,a2

(Hres
2 )I{gres2 (Hres

2 ) = a2}
]

Hres
2 ∈ Hres

m2 and a2 ∈ Aresm2

argmax
gres2 ∈Gres0,2

Pnres,0,2
[∑K2

a2=1 µ
res,AIPW
2,a2

(Hres
2 )I{gres2 (Hres

2 ) = a2}
]

Hres
2 ∈ Hres

0,2

,

where m = 1, ...,M , nres,m,2 is the number of patients in the mth group with A2 6= b2,m

while nres,0,2 is the number of patients in the 0th group. We define Hres
2 = Hres

0,2∪Hres
1,2∪

... ∪ Hres
M,2. Since the recommendations are given conditional on A1, all patients are

guaranteed to receive applicable guidance from ĝres,opt2 .

At stage 1, we perform backward induction to estimate the optimal decision rule.

More specifically, we derive the pseudo-outcome for stage 1 with

POres
1 = Ê

{
Y
∣∣A2 = ĝres,opt2 (Hres

2 ) ,Hres
2

}
= µ̂2,ĝres,opt2

(Hres
2 ) ,

which is the estimated potential outcome one would have observed if the future treat-

ments at stage 2 are already optimized by ĝres,opt2 . ĝres,opt2 consider only applicable

treatment routes and Hres
2 covers all patients because there is no restriction on A1.

Moving backward, at stage 1, we don’t have any constrains on H1 and G1. Hence,

we have Hres
1 = H1. Let µ̂res,AIPW

1,a1
(H1) denote Ê(POres

1 |A1 = a1,H1). The estimated

optimal treatment rule for a given patient at stage 1 is:

ĝres,opt1 = argmax
gres1 ∈G1

Pn

[
K1∑
a1=1

µ̂res,AIPW1,a1
(H1)I{gres1 (H1) = a1}

]
.

In practice, we use a modified version of the pseudo outcome [33] to reduce the bias

due to possible model misspecification from the conditional model. P̃O
res

j is calculated

with the pseudo outcome for previous stage minus the expected outcome gain from
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receiving the optimal treatment:

P̃O
res

j = P̃O
res

j+1 + µ̂res
j,gres,optj

(
Hres
j

)
− µ̂resj,Aj(Hj)

for j < T . With backward induction and defining P̃OT = Y , it is easy to show that:

P̃O
res

j = Y +
T−1∑
t=j+1

{
µ̂res
t,gres,optt

(Hres
t )− µ̂res

t,At (Ht)
}

+ µ̂res
T,gres,optT

(
Hres
j

)
− µ̂resT,AT (Hj)

for j < T . Thus, for stage 1, since Hres
1 = H1 we have:

µ̂res,AIPW
1,a1

(H1) =
I(A1 = a1)

π̂1,A1(H1)
P̃O

res

1 + {1− I(A1 = a1)

π̂1,A1(H1)
}µ̂1,a1(H1),

where π̂1,A1(H1) and µ̂1,g1(H1) are estimated conditionally using all records.

3.2.3.1 Example to Illustrate the RT-RL Process

Figure 3.1 illustrates a 2 stage 3 treatments per stage RT-RL patient allocation

procedure with a restricted arm A1 = 1, A2 = 2. At the second stage, patients with

A1 = 1 are allocated to the 1st group for at risk of receiving the restricted arm. We

use patient records with A1 = 1, A2 6= 2 to fit the T-RL that seeks personalized

optimal treatment among A2 = 0 or A2 = 1 for patients in group 1. Then, we correct

the pseudo outcomes for patients in the restricted arm with P̃O
res

1 so that they can

contribute to the first stage optimal treatment estimation. The rest of patients are

allocated to the 0th group where a normal T-RL is fitted with no restrictions. The

treatment regimes estimated by RT-RL provides viable treatment recommendations

to future patients based on past treatment sequences.

Through this process, we utilized the observed data of the patients in the restricted

route before their last stage to provide better estimates of gres,opt1 and avoid selection

bias in the study population. In the meanwhile, the above process accommodates the
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Figure 3.1: Patient allocation for a 2 stage 3 treatments per stage RT-RL estimation
with inapplicable route A1 = 1, A2 = 2.

restrictions during the optimization procedure and guarantees the estimated optimal

regime is interpretable and viable in practice.

3.2.3.2 RT-RL Alogorithm

We summarize the RT-TL process for T ≥ 2 stages considering restricted routes

bm,j = (b1,m,j, ..., bj,m,j), j = 1, .., T and m = 1, ...,M with the following Algorithm.

[1]. Input: Outcome Yi, patient character Xij and treatment received ai1, ..., aiT , where i =

1, ..., n and j = 1, ..., T ; restricted routes bm,j = (b1,m,j, ..., bj,m,j), j = 1, .., T and m =

1, ...,M ; n0, d and λ for tree pruning.

[2]. Restrict the patient records considering ai,(T−1) and obtain Hres
T . Estimate

µ̂resT,aT (Hres
T ) for and aT = 1, . . . , KT using all records.

[3]. Group subjects into the 0th group when AT−1 6= bm,T−1∀m. Classify subjects
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into the mth group when AT−1 = bm,T−1. Then we estimate group specific

propensity models

π̂0
T,AT

(Hres
T ) , ..., π̂MT,AT (Hres

T ). In the mth group, the propensity model is fitted

with subjects with aT 6= bm,T considering viable candidate treatments.

[4]. Fit separate T-RL models given (n0 , d and λ) for each group with group specific

propensity models and µ̂resT,aT (Hres
T ). Obtain gres,optT by combining the rules of all

M + 1 groups conditional on aT−1.

[5]. For j = T − 1, T − 2, ..., 1 do

(a). With obtained ĝres,optj+1 , we calculate P̃Oj with P̃Oj+1 among patients with

aj+1 ∈ Aresj+1. The calculation is done by estimating E
{

P̃Oj+1

∣∣∣Aj+1 = aj+1,Hj+1

}
with random forest under default setting and obtain µ̂res

j+1,gres,optj+1

(
Hres
j+1

)
and

µ̂resj+1,Aj+1
(Hres

j+1) with random forest model predictions. Then, for patients

with aj+1 /∈ Aresj+1 and aj ∈ Aresj , we estimate the modified pseudo outcome

at stage j with Ê(P̃Oj|Hres
j ) using the P̃Oj we just calculated.

(b). Restrict the patient records considering ai,(j−1) and obtain Hres
j . Estimate

µ̂resj,aj(H
res
j ) for and aj = 1, . . . , Kj using all records.

(c). Group subjects into the 0th group when Aj−1 6= bm,j−1∀m. Classify sub-

jects into the mth group when Aj−1 = bm,j−1. Then we estimate group

specific propensity models π̂0
j,Aj

(
Hres
j

)
, ..., π̂Mj,Aj

(
Hres
j

)
considering viable

candidate treatments.

(d). Fit separate T-RL models given (n0 , d and λ) for each group with group

specific propensity models and µ̂resj,aj(H
res
j ). Obtain gres,optj by combining

the rules of all M + 1 groups conditional on aj−1.

[6]. End For

[7]. Output gres,opt = (gres,opt1 , . . . , gres,optT ).
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3.3 Simulation Studies

We conduct simulate a studies to evaluate the performances of the proposed RT-

RL compared to a näıve method with regular Reinforcement learning method that

deletes all patients in the restricted arm. We consider 2 treatment stages (T = 2), and

3 treatments (K = 3) per stage (Aj ∈ {0, 1, 2} for j = 1, 2) and one restricted treat-

ment route (A1 = 1 and A2 = 2) Specifically, the simulation study is designed so that

patients in the restricted treatment route have better outcomes and healthier baseline

conditions. The results are examined by the agreement between DTR recommended

treatments and optimal treatment routes excluding A1 = 1 and A2 = 2.

We generate 3 continuous covariates (X1, X2, X3) independently fromN(0, 1). The

clinical outcomes are generated from the sum of rewards at each stage (Y = Y1 + Y2)

preferable with higher values. The treatment A1 is generated from a multinomial

distribution P (A1 = k) = πk1, k = 0, 1, 2 with

π01 =
p11

p11 + p21 + 1
, π11 =

p21
p11 + p21 + 1

, and π21 = 1− π01 − π11,

where p11 = exp{−0.2X1 + 0.3X2 − 0.2I(X3 > −0.5) + 0.5},p21 = exp{0.3X2 +

1.5I(X3 > −0.5) + 0.5}. The underlying optimal treatments for stage 1 follow a rule:

gopt1 (H) =


0 X1 < 0, X2 < 0

1 X2 ≥ 0

2 X1 ≥ 0, X2 < 0

The rewards at stage 1 are defined generated as follows:

Y1 = exp(1 + 0.05 ∗X2 − 2 ∗ |A1 − Aopt|) + ε, ε ∼ N(0, 0.5).

To mimic a typical setting where some treatments with worse side effects may per-
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form better on the targeted clinical outcome, we allow, a large portion of patients

to receive the restricted treatment sequence in this simulation, so that we observe

a better clinical outcome for them. We allocate the treatment at stage 2 condi-

tional on A1 such that patient who has a greater possibility of receiving the re-

stricted arm when A1 = 1. A2 follows a 3-level multinomial distribution with corre-

sponding probabilities (π02, π12, π22) =
(

p12
p12+p22+1

, p22
p12+p22+1

, 1
p12+p22+1

)
, where p12 =

exp {0.05Y1 − 0.05X1 − 0.2I (X3 > −0.5)− 1} and p22 = exp{0.08Y1−0.2X1−0.1I(X3 >

−0.5)−1.6}.On the other hand, whenA1 6= 1, (π′02, π
′
12, π

′
22) =

(
p′12

p′12+p
′
22+10

,
p′22

p′12+p
′
22+10

, 10
p′12+p

′
22+10

)
,

where p′12 = exp(−0.2Y1− 0.05X1 + 4), p′22 = exp(−0.08Y1 + 0.6X1 + 3). The optimal

treatment regime for stage 2 permits higher rewards in the restricted route:

gopt2 (H|A1 = 1) =


0 Y1 ≤ 0.5

1 0.5 < Y1 ≤ 1.5

2 Y1 > 1.5

gopt2 (H|A1 6= 1) =

0 X2 > −0.5

1 X2 ≤ −0.5

The rewards are then defined as:

Y2 = exp{1 + I(X3 > −0.5) ∗ I(A1 = 1)− 6 ∗ exp(|A2 − gopt2 (H)|)}+ ε,

where ε ∼ N(0, 0.5). When observed with a higher Y1, at stage 2, the optimal

rewards for patients in the restricted route are E[Y2|A1 = 1, A2 = gopt2 (H) = 2] = e2,

which is higher than that of the patients in the applicable routes E[Y2|A1 6= 1, A2 =

gopt2 (H)] = e1.

We compare our method with a naive method where all patients on the restricted

arm are deleted from the estimation and a regular reinforcement learning method

is directly applied (naive T-RL). In both the näıve and Restricted T-RL, we utilize
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AIPW version of the purity measure to allow robust estimation for pseudo outcomes.

We set the minimum size of terminal nodes as 20, specify λ as 5% in the splitting

criteria, and the maximal depth as three. One hundred replications are generated

under each scenario considering different training sample size (n = 3,000, 5,000), and

different propensity score model specifications (correct or incorrect). All estimated

DTRs are evaluated on the agreement of the estimated and the true constrained

optimal treatments of a randomly generated external test dataset with n = 1,000.

The optimal regime for each patient is calculated empirically using the underlying

rewards functions.

Table 3.1 summarizes the simulation results. Opt % shows the empirical mean of

the percentage of subjects correctly classified to their constrained optimal treatments.

Both methods perform well in the first stage, correctly specifying the true optimal

treatment over 99% of patients. However, for the second stage and overall, the Re-

stricted T-RL has significantly higher opt % than the näıve method. Both regimes

improve patient outcomes, and the proposed algorithm has slightly lower improve-

ments without recommending the restricted arm to future patients. Although deleting

the patients in the restricted arms, the näıve method recommends the inappropriate

treatment combination to 39-42% of patients in the test set. As demonstrated in the

simulation results, both methods are doubly robust as similar results are observed

under the correctly or incorrectly specified π model.

3.4 Application Adolescents Substance Use

We use a longitudinal observational dataset (n = 10,131), known as the Global

Appraisal for Individual Needs (GAIN) [15], to estimate an optimal two-stage DTR

to guide the level of care (LOC) placement for adolescent substance users. The

DTR guides LOC placement over 0-3 months (stage 1) and 3-6 months (stage 2) to

optimize substance use at month 12 after initial treatment. The observed possible
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Table 3.1: Comparing simulation results between Restricted T-RL and the naive
method. Standard errors are recorded in parenthesis. Opt % records the average
percent of subjects in the test set that has being recommended the true optimal
treatment route. Ê (Y |ĝopt)− Ê

(
Y
∣∣gobs) is the improvement of the estimated pseudo

outcomes when following the estimated DTR versus the observed DTR. % of Recom-
mendation with Restricted Arm shows the percent of subjects in the test set that has
been recommended the restricted treatment arm.

Correct π Incorrect π

Method Restricted T-RL Näıve T-RL Restricted T-RL Näıve T-RL

Training Sample n = 3000

Opt % Stage 1 99.3 (0.43) 99.3 (0.49) 99.1 (0.64) 98.6 (5.17)
Opt % Stage 2 81.2 (15.7) 29 (10.6) 78.9 (17.0) 29.2 (11.1)
Opt % Overall 80.9 (15.6) 28.6(10.7) 78.5 (16.9) 28.4 (11.4)

Ê(Y |ĝopt)− Ê(Y |gobs) 1.2 (1.6) 1.3 (1.6) 1.2 (1.6) 1.2 (1.6)
% of Recommendation
with Restricted Arm

0 38.9 0 38.8

Training Sample n = 5000

Opt % Stage 1 99.4 (0.30) 99.4 (0.37) 99.3 (0.39) 99.1 (0.64)
Opt % Stage 2 88.1(13.4) 32.0 (9.2) 85.4 (15.3) 31.8 (9.6)
Opt % Overall 87.8 (13.3) 31.6 (9.2) 85.0 (15.3) 31.4 (9.7)

Ê(Y |ĝopt)− Ê(Y |gobs) 1.2 (1.6) 1.3 (1.5) 1.3 (1.6) 1.3 (1.5)
% of Recommendation
with Restricted Arm

0 41.6 0 40.8

LOC treatment options at stage t (t = 1, 2) are inpatient (At = 1) and outpatient

(At = 2); stage 2 also includes no treatment (At = 3). These treatment options

report whether patients have received corresponding levels of care during each three-

month period. Inpatient or residential is the most intensive treatment, where youth

are admitted for at least one night to a residential, inpatient or hospital program

for substance use problems. Outpatient records youth who have been admitted to a

regular (1-8 hours per week) or intensive outpatient (more than 8 hours per week)

program. The outcome of interest for this study is Substance Frequency Scale (SFS)

at 12 months after intake, which is coded as Y = −1×SFS to ensure that the higher

value is preferable.

We constrain the optimization over A2 ≤ 2 given A1 = 1 by not allowing “treat-
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ment discontinuation” for adolescents starting with inpatient treatment. According

to NIH, since relapse often occurs for adolescents with substance abuse, more than

one episode of treatment may be necessary [27]. Also, inpatient treatment is recom-

mended for a severe level of addiction. Staying in treatment for an adequate period

of time is especially important for patients with A1 = 1.

We randomly split the data 3:1 for training and evaluation. The training data

contain randomly selected 7,599 records, and the remaining 2,532 records form the

evaluation data. This facilitates inference in the comparison of the Restricted T-RL

with näıve T-RL and non-dynamic regimes such as A1 = A2 = 1 and A1 = A2 = 2.

The näıve T-RL excludes 404 patients who received the inapplicable treatment route

A1 = 1, A2 = 3. Better interpretability of ĝopt provided by the T-RL methods can

be assessed with lower probability of recommending the restricted route to patients

in the evaluation set. Moreover, we compare Ê (Y |ĝopt)− Ê
(
Y
∣∣gobs) and the percent

of patients who have Ê (Y |ĝopt) > Ê
(
Y
∣∣gobs) among estimated ĝopt to examine the

ability to provide optimal treatments of each method.

Figure 3.2: Estimated DTR from Restricted T-RL and Näıve T-RL. sfs8p t: -1*
SFS at t months post intake, higher value preferred; lri : living risk index, lower value
preferred; dss: depressive symptom scale, lower value preferred.

According to Figure 3.2, the Restricted T-RL provides interpretable DTR based

on SFS at intake (sfs8p 0), living risk index at (lri7 0) intake and first stage treatment
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(A1). It recommends A1 = A2 = 1 to 947 (37.4%) patients and A1 = A2 = 2 to 1,585

(62.6%) patients in the evaluation data. Although deleting all patient records in the

restricted arm, the näıve T-RL allows “treatment discontinuation” for patients who

greatly improved their SFS at month 6, which leads to 674 (26.6%) patients being

recommended with the inapplicable arm in the evaluation set.

Table 3.2 shows that the Restricted T-RL provides a regime in the desired class

with the greatest improvement (0.7 points) in estimated substance use score at 12

months post intake. It is expected to help 56% of patients improve their substance

use outcomes compared to the observed treatment. The näıve T-RL is unable to

provide an interpretable and well-performing regime due to the bias introduced by

the deletion of patients.

Table 3.2: Treatment regime performance on evaluation data. % improved refers
to the percent of patients who are expected to benefit from the estimated regime
compared to the observed treatment.

Restricted T-RL Naive T-RL A1=1, A2=1 A1=2, A2=2

Ê (Y |ĝopt)− Ê
(
Y
∣∣gobs)

(SD)
0.70 (1.4) -0.08 (1.9) -0.03 (1.9) 0.14 (1.1)

% improved 56.0 38.6 39.8 42.3

3.5 Discussion

The proposed method Restricted T-RL searches for interpretable DTR within clin-

ically meaningful treatment trajectories. It allows user specified restrictions for ob-

served treatment routes. According to simulation and GAIN data application results,

Restricted T-RL avoids selection bias by using partial information from patients in

the restricted arm to estimate optimal treatment decisions for stages before their first

problematic treatment. We achieve this by “correcting” the counterfactual rewards

of the patients in the restricted arms using information from similar patients who

received applicable treatments. The idea of stratifying based on patient history and
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truncating treatment options is not limited to tree-based methods. Such sub-optimal

DTR estimation framework can be applied to other methods when appropriate.

The näıve T-RL method suffers from information loss and possible selection bias,

yet still recommends inapplicable treatment routes to new patients. This happens

because the rules are estimated stagewise and the naive method considers all observed

treatments in the current stage as possible treatments. Without conditioning on

previous treatment sequences and without restricting the final stage treatment space,

it is not guaranteed that the recommended treatment is different from bj,m,j when the

previous recommendations are aj−1 = (b1,m,j, .., bj−1,m,j).

In this study, we focused on constraints with inapplicable treatment sequences.

This provides a solution for many observational studies with a relatively large sample

size. However, when we have little observational data in any of the 0th to M th
j group,

the Restricted DTR is hard to estimate. We might consider parametric models for

these subgroups or bootstrap techniques to handle insufficient data. Moreover, the

treatment sequence constrains can also come from patient characteristics or stagewise

rewards (Rj). For example, if future treatments must consider whether a patient is a

responder to current treatment at stage j, all DTR ignoring the responder status at

stage j should be restricted. Further studies are necessary to solve this issue.
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CHAPTER IV

DataSifterText: Partially Synthetic Text

Generation for Sensitive Clinical Notes

4.1 Introduction

The broad adoption of electronic health records (EHRs) responds to a significant

public demand for rapid data-driven scientific investigations using the wealth of newly

available data and the spectrum of innovative data science methods [13, 20, 21].

However, regulatory policies and social norms regarding concerns for data privacy

hinder efficient data sharing, which results in a scarcity of available data for research

purposes.

EHR data broadly falls into two categories: structured and unstructured data,

structured data being numerical or categorical information, while unstructured data

include physician notes, such as free-text or voice notes. Clinical narratives provide

valuable information and have become an essential component in many biomedical

data sources. The recent success in natural language processing (NLP) techniques

has generated much interest in processing and analyzing unstructured clinical data.

Safe and rapid sharing of unstructured medical information is difficult to achieve.

Generalizing and suppressing names, addresses, and other protected health informa-

tion (PHI) is a common practice in creating anonymized clinical notes [25, 38, 9].
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Recent studies have automated the procedure of searching for PHI and suppressing

information by applying deep learning techniques [16, 98]. However, on the one hand,

sensitive personal identity information in EHRs may still be obtained from detailed

descriptions in narrative reports. On the other hand, when completely suppressing

all sensitive PHI, de-identified medical records contain little analytical value.

In 2018, Jiaqi Guan et al. developed medGAN [29], a synthetic EHR text gen-

eration tool based on Generative Adversarial Network that utilizes long short-term

memory (LSTM) as the text generator and fastText, convolutional neural network,

and bidirectional recurrent neural networks as candidate discriminators. MedGAN

can create fully synthetic EHR text from pre-specified disease features extracted from

original text data. Yet despite little concern in disclosure risk, the data governor may

face multiple challenges when generating fully synthetic text data to meet analytic

goals. First, since text generation from medGAN is based on disease features, the

generated fully synthetic data of “fake” patients might not represent the target pop-

ulation. Second, the LSTM model might suffer from insufficient data so that it fails

to capture the conditional distribution of the real-world EHR text. In this scenario,

fully synthetic text documents have limited data utility.

The first limitation is also applicable to fully synthetic structured datasets. In

1993, Rubin first proposed partially synthetic data generation for structured data

[70], which provides a set of multiple-imputed data replacing sensitive data values

with imputations. This method retains the distribution of the target population but

provides data privacy by replacing sensitive values with a group of similar alternatives

[57, 58]. In a recent report, the DataSifter technique (DataSifter I) [45] provides a

semi-automated procedure to create a single partially synthetic dataset that disguises

the replaced value locations and provides better privacy protection than the multi-

ple imputation methods. The DataSifter I technique depends on two major steps:

(1) introducing random artificial missingness to the original data and imputing the
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missingness back using a robust iterative imputation method; (2) classifying neighbor

cases for each record and randomly swapping a subset of feature values between sim-

ilar records. The first operation masks true information sporadically and the second

operation guarantees partial obfuscation for each record while preserving the data’s

geometrical information in feature space.

The second challenge of limited EHR text data can be handled by Bidirectional

Encoder Representation from Transformers (BERT). The BERT model is the state-

of-the-art language representation trained on 3,300M words that depends on multiple

attention layers to provide a deep bidirectional language representation that suits

multiple downstream tasks[17]. It has excellent performance on small datasets un-

der different NLP tasks with its transformers model architecture stacking multiple

attention layers.

However, there are no existing methods for generating partial synthetic unstruc-

tured data. In this chapter, we propose a free-text data anonymization tool, DataSifter-

Text, which generates partial synthetic free-text data that protects patients’ PHIs.

Analogous to DataSifter I, the proposed method depends on two major steps: ar-

tificially masking/predicting sensitive tokens and replacing content with neighbor-

ing documents. To fill in the masked tokens (words, phrases or punctuation), the

DataSifterText technique utilizes the BERT model. We applied the DataSifterText

protocol to work injury records and clinical notes from EHR data to demonstrate the

use of DataSifterText on sensitive free-text data.

4.2 Free-text Data Structure

Let us assume we have a corpus of text data consisting of n documents. The corpus

can be one-hot encoded by representing each token (word or punctuation) as a vector

of binary indices. We denote the ith document by Wi = (w1, w2, w3, . . . , wTi) ∈ W ,

where w1 is the “start of sentence” one-hot vector, wTi is the “end of sentence” one-
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hot vector, Ti is the length of the document, and wt,∀ t ∈ {2, . . . , (Ti − 1)}, is the

one-hot vector for the matching word token at location t.

One common goal of a text mining algorithm is to derive corresponding classifica-

tion labels (L = (L1, . . . , Ln)) associated with each text document in the corpus. For

example, in EHRs, each patient’s clinical notes are linked with International Classi-

fication of Diseases (ICD) diagnostics, from which we can calculate the comorbidity

score level as labels to represent the patient’s health condition at the hospital visit

[11].

Our goal is to utilize the joint distribution of tokens for documents in the corpus

to create the partially synthetic (sifted) data. For instance, the distribution of the ith

document denoted by Wi = (w1, w2, w3, . . . , wTi) may be modeled as:

P (w1, w2, w3, . . . , wTi) = P (w1)

Ti∏
k=2

P (wk|w1, . . . , wk−1)

= P (w1)P (w1)P (w1, w2) . . . P (wTi |w1, . . . , wTi−1) .

Similarly, we denote the resulting sifted data (DataSifterText output) by

W ∗
i =

(
w∗1, w

∗
2, w

∗
3, . . . , w

∗
Ti

)
,

which shares a similar distribution with Wi. When the perturbation is significant, the

sifted text will move away from the original document to protect subject information

disclosure.

4.3 Privacy and Utility Definitions for Partially Synthetic

Text Data

Data privacy for each document is quantified using the cosine similarity between

the Document-term Matrix (DTM) [72, 97] entry of the original and the sifted doc-
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uments. If we define D1︸︷︷︸
n×m

as the DTM for original data considering most frequent m

terms and D2︸︷︷︸
n×m

for the sifted data, data privacy for the ith document, Pi, is derived

using

Pi =
D1iD2i

‖ D1i ‖‖ D2i ‖
,

where D1i, D2i are the ith row in the original and sifted DTM.

Data utility is measured by the label prediction results from a BERT model [17]

denoted by f : W → L, where W is the set of possible documents and L denotes

the set of labels. Using the original free-text data, we fine-tune the BERT model

(multilingual cased BERT-Base, which is pre-trained by text in 104 languages, using

12 layers, 768 hidden layers, 12 heads, and 110M parameters) using label prediction

as the downstream task. We denote the original prediction results as f (Wi) ∈ L and

the sifted data prediction results as f (W ∗
i ) ∈ L for document i = 1, . . . , n. Data

utility is calculated by the mean label prediction accuracy 1
n

∑n
i=1 I [f (W ∗

i ) = Li]

and the mean label prediction agreements 1
n

∑n
i=1 I [f (Wi) = f (W ∗

i )], where both

measurements are preferable with higher values. When we have informative data and,

as a result, an accurate BERT model, the utility of the partially synthetic dataset can

be directly assessed by label prediction accuracy. We can rely more on the mean label

prediction agreements when the original BERT model cannot successfully capture

the map between documents and labels. Note that if Wi and W ∗
i share the same

class label, the subsequent prediction results under the same BERT model should be

similar. For f (Wi), the training and prediction data may be shared, but overfitting

is not a concern since the goal is to compare label prediction results before and after

the DataSifterText procedure.
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4.4 DataSifterText Technique

4.4.1 Masking and Prediction

Analogous to DataSifter I imputation step, we create artificial missingness in each

document and impute the missingness back with a trained language model. The goal

of this step is to substitute sensitive tokens with similar phrases to protect personal

information. The artificial missingness was created by replacing original text with the

“[mask]” tokens. Then, the “[mask]” tokens will be imputed by BERT trained from

the original data. We have chosen BERT as our language model for mask prediction

because one of its embedded tasks for parameter training is predicting words in a

blank. Moreover, the pre-trained BERT model provides a sufficient language model

for relatively small data.

Generally, personal information in free-text documents is stored only in specific

terms. Masking words in a random manner might be inefficient to protect privacy.

Thus, we embed a blacklist and a whitelist for masking. The algorithm avoids masking

word tokens in the blacklist (usually includes standard punctuation or stop words),

while the word tokens in the white list are masked with higher probabilities. For

EHRs, it is suitable to include medical-related terms in the whitelist. Deep learning

techniques can also be applied for constructing a data specific whitelist that covers

more PHI. The proposed algorithm caps the number of “[mask]” tokens to be as-

signed in a document by (number of words)×0.5 and avoids consecutively masking

by dynamically adjusting masking probabilities. Both settings provide context for

the language model to make accurate predictions for masked locations.

4.4.2 Document Obfuscation

In the obfuscation step, we replace part of each document with text in similar

documents. To find the contents in each document that needs to be replaced, we apply
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Rapid Automatic Keyword Extraction (RAKE) algorithm [67] or TextRank [49] to

identify the most important key phrase or key sentence. The RAKE approach parses

each document with stop words and punctuation to search for candidate key phrases.

To quantify the importance of each key phrase, RAKE derives a summarized score

using the word frequency and degree or co-occurrence score. TextRank is a graph-

based ranking model for text summary. It uses content overlap between sentences to

rank the importance of each sentence.

With shorter documents, we provide two possible methods to find the contents

for replacement. The first method only considers replacing the top q important key

phrases in the document with that of a similar document. In the second method, we

replace the contents starting from the first index of the most important key phrase

recognized by RAKE to the end of the sentence, which offers a higher level of ob-

fuscation. When longer documents are observed, TextRank is utilized to identify the

most important sentences in the documents for replacement.

The similarity of two documents is measured by the cosine distance of their entries

in the Document-term Matrix (DTM) [72] using the term frequency-inverse document

frequency (TF-IDF) scheme [97]. For data with a larger number of documents, we

apply Mini Batch K-means on DTM to group documents into smaller clusters and

search for neighboring documents within each cluster.

4.5 Implementation of DataSifter Unstructured

The input text and corresponding labels are denoted by W = (W1, . . . ,Wn) and

L = (L1, . . . , Ln), respectively. In the masking and prediction step, we use parame-

ters pw and pn to control for the masking probability in whitelist and blacklist. We

denote D (W,m) as the function to create a DTM using the TF-IDF scheme and most

frequent m terms with documents in W. D (W,m)i denotes the ith row of the DTM.

We denote RAKE (W ) and TR (W ) as the RAKE algorithm and the TextRank algo-
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rithm applied to text corpus W, correspondingly. We further denote RAKE (Wi)q as

the top q important key phrases and TR (Wi)q as the top q important sentences forWi.

The input replacement method is a tuple with four options (RAKE keyphrase, q),

(RAKE index, 1), (TextRank, q) and (No obfuscation, 0) that specifies the content

extraction method for the obfuscation step. Our DataSifterText protocol is imple-

mented in Python 3.6.

Algorithm 4 DataSifterText - Masking and Prediction

1: Input: W, L, blacklist, whitelist, pw, pn, and replacement method.
2: Construct BERT on documents with downstream task as blank words prediction.
3: for i = 1, .., n do
4: Set nmask = 0, coef = 1.2.
5: while nmask ≤ 0.5 ∗ Ti do
6: for t = 1, ..., Ti do
7: if wt ∈ whitelist then
8: Set p = 1− pw ∗ coef.
9: else if wt ∈ blacklist then
10: Set p = 0.
11: else
12: Set p = 1− pn ∗ coef.
13: end if
14: Mask wt with probability p.
15: if wt is masked then
16: nmask = nmask+1
17: coef = 1.2
18: else if coef > 0.05 then
19: coef = coef-0.05
20: end if
21: end for
22: end while
23: end for
24: for i = 1, .., n do
25: for t = 1, ..., Ti do
26: if wt = [MASK] then
27: Use trained BERT model to generate P (wt|Wi).
28: Sample one token with the obtained distribution P (wt|Wi) and replace

the [MASK] token at location t.
29: end if
30: end for
31: end for
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Algorithm 4 DataSifterText (continued) - Document Obfuscation

32: if Replacement method 6= (No obfuscation,0) then
33: Construct D(W,m).
34: Use Mini Batch K-means to classify documents into K clusters.
35: Obtain RAKE(W) or TR(W) based on replacement method specification.
36: for i = 1, ..., n do
37: Sample min(1, 000, nWi

) documents in the same cluster as Wi, where nWi

is the number of documents in the same cluster as Wi, such that the document
index j 6= i.

38: for j = 1, ..., 1, 000 do
39: dist(i, j) =

D(W,m)iD(W,m)j
‖D(W,m)i‖‖D(W,m)j‖

40: end for
41: Sample one document from {Wj : dist(i, j) within the smallest top 10% ∀j}

as the replacement partner for document i and denote as Wj∗.
42: if Replacement method = (RAKE keyphrase, q) then
43: Replace RAKE(Wi)q with RAKE(Wj∗)q
44: else if Replacement method = (RAKE index, 1) then
45: Replace all tokens from RAKE(Wi)1 toWTi with RAKE(Wj∗)1 toWTj∗

46: else
47: Replace TR(Wi)q with TR(Wj∗)q.
48: end if
49: end for
50: end if
51: Output: W∗ = W, and L∗ = L

4.6 Application

4.6.1 CDC Data

Work-related injury records are generated every day. In 2019, the Centers for

Disease Control and Prevention (CDC) National Institute for Occupational Safety

and Health (NIOSH) launched a text classification challenge to automatically classify

injury records according to the Occupational Injury and Illness Classification Sys-

tem (OIICS) [23]. There are 153,956 injury records in the CDC data with injury

descriptions in text, gender, age, and OIICS labels. We applied DataSifterText to

a subset of records (n=86,666) with the five most frequent OIICS labels, including

overexertion involving outside sources (71), struck by object or equipment (62), falls
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on same level (42), exposure to other harmful substances (55), and struck against

object or equipment (63). The average length of the injury description is 18 words

with a minimum of 3 words and a maximum of 37 words. The entire corpus contains

24,004 distinct terms.

We used the DataSifterText technique to construct partially synthetic datasets

and examined their privacy and utility performances. In the application, we con-

sidered three obfuscation levels of the DataSifterText using the following parameter

settings: low obfuscation (pw = 0.5, pn = 0.75, and replacement method = (No ob-

fuscation, 0)); medium obfuscation (pw = 0.5, pn = 0.75, and replacement method =

(RAKE keyphrase, 1)); and high obfuscation (pw = 0.5, pn = 0.75, and replacement

method = (RAKEindex, q)). As a result, during the masking and prediction step,

the tokens in the whitelist were masked with probability 1 − 0.5 × coef , whereas

the normal tokens excluded from the whitelist and blacklist were masked with prob-

ability 1 − 0.75 × coef . We did not consider using TextRank as the replacement

method in the obfuscation step, since the CDC data contains only one sentence per

document. We compared the DataSifterText method with a naive method that sup-

presses the masked information such that the artificially masked or obfuscated tokens

are not replaced. To measure data utility, we first constructed a BERT language

model (f(·)) with the downstream task as label prediction based on the original

CDC data and obtain OIICS label predictions f(Wi) for i = 1, ..., n. After gen-

erated the sifted data, we assessed the utility of the synthetic data by calculating

label prediction accuracy ( 1
n

∑n
i=1 I [f (W ∗

i ) = Li]) and label prediction agreement

( 1
n

∑n
i=1 I [f (Wi) = f (W ∗

i )]), using the constructed BERT model. The data privacy

protection for each sifted document was measured by the cosine distance between the

original and sifted DTM entries. We chose m= 5,000 most frequent terms to limit

the size of DTM for original and sifted text corpus.

The application results imply that the text in the sifted data was significantly
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altered, yet it maintained a high level of data utility. The BERT model for label

prediction (f(·)) constructed with the original data predicts OIICS labels with 95.7%

accuracy on a n = 1,000 test data, which indicates the language model has a good un-

derstanding of the injury description. The distribution of OIICS labels and prediction

accuracies are shown in Table 4.1. For most labels, BERT had excellent prediction

accuracy (around 95%) on the test sample. As an exception, for label 63 (struck

against object or equipment), the BERT prediction had 86.1% accuracy, probably

due to the lack of data.

Table 4.1: Distribution and BERT prediction accuracy for OIICS labels.

Label 42 55 62 63 71

Count (%) 15,624 (18.0) 11,672 (13.5) 24,402 (28.2) 9,058 (10.5) 25,910 (29.9)
Prediction Accuracy % 97.8 98.2 94.0 86.1 98.6

Examples of the original, sifted, and naively suppressed texts under different ob-

fuscation levels are demonstrated in Table 4.2. The masking and prediction step

with the specified parameter settings masked 3 tokens on average or 18.57% of the

tokens in each document. In addition to the masking and prediction step, the medium

and high obfuscation applied document obfuscation step with RAKE keyphrase and

RAKE index methods, respectively. It is noticeable that higher obfuscation levels are

associated with more replacements among words in the sifted text.

Table 4.2: Examples of original and sifted partially synthetic data. The bolded words
were obfuscated by the masking and prediction step. The italic words in square
brackets were created by the obfuscation step. Abbreviations: FX is short for bone
fracture, and DX is short for diagnostics.

Data Type Injury Description Naive suppressing description

Original Slipped and fell onto shoulder at work FX shoulder NA

Sifted low obfuscation Slipped and fell onto something at work today
Slipped and [mask] onto

[mask] at work [mask]

Sifted medium obfuscation Slipped and [break leg ] at work today
Slipped and [mask] [mask]

[mask] at work [mask] [mask]

Sifted high obfuscation Slipped and [DX ankle foot pain at work fell ]
Slipped and [mask] [mask]

[mask] [mask] [mask] [mask] [mask]
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The data utility of the partially synthetic CDC datasets is summarized in Table

4.3. Label prediction accuracy was calculated by comparing the predicted label for

each document from the BERT model with the ground truth. The original data had

a 98.5% accuracy suggesting nearly perfect training accuracy. The partially synthetic

data achieved 86.6%, 74.5%, and 60.9% of label prediction accuracy from low to

high obfuscation level. We observed a clear separation of utility preservation among

the three levels, and the sifted datasets maintained the high prediction accuracy in

a five-class classification problem. Compared to the naive suppressing method, the

DataSifterText method provided consistently better accuracy across different scenar-

ios and the differences between label accuracies are larger under higher obfuscation

levels. This implies that our replaced tokens in the mask and prediction step pro-

vide informative content that improves prediction accuracy. The label prediction

agreement was similar to the accuracy of all synthetic datasets.

Table 4.3: Data utility for original, sifted and naive suppressing CDC text (n=86,666)
according to the constructed BERT model (f(·)) that maps the CDC injury records
to 5-class OIICS labels. The label prediction accuracy records 1

n

∑n
i=1 I [f (W ∗

i ) = Li]
and the label prediction agreement records 1

n

∑n
i=1 I [f (Wi) = f (W ∗

i )].

Data Type
DataSifterText label
prediction accuracy

Naive suppressing
label prediction
accuracy

Label prediction
agreement

Original 98.5% NA NA
Sifted low
obfuscation

86.5% 85.7% 87.3%

Sifted medium
obfuscation

74.5% 71.1% 75.0%

Sifted high
obfuscation

60.9% 48.8% 61.1%

The data privacy assessment for CDC synthetic datasets was performed using the

cosine similarity between the original text and sifted text DTM entries. As illustrated

in Figure 4.1, the mean cosine similarity for low, medium and high obfuscation

levels were 0.73, 0.54, and 0.35, respectively. Under low and medium obfuscation,

the distributions of the cosine similarities were approximately normal. The high
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obfuscation level provided significant alteration in text such that a great proportion

of documents were completely altered from the original text (cosine similarity =

0). The naive suppressing method was expected to provide similar cosine similarity

as the sifted dataset. However, the unmasked tokens in the näıve synthetic data

revealed actual information about the corresponding patients, which yielded higher

reidentification risk than the low-obfuscation DataSifterText method.
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Figure 4.1: Data privacy for partially synthetic CDC datasets generated by
DataSifterText. The cosine similarities were calculated by comparing the DTM en-
tries of the original and sifted text documents. The DTM was constructed using the
original text corpus with 5,000 most frequent terms. The vertical lines indicate the
means of the cosine similarities among different obfuscation levels.
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4.6.2 Clinical narratives in MIMIC III

The Medical Information Mart for Intensive Care III (MIMIC III) provides elec-

tronic health records from a large tertiary care hospital between 2001 and 2012 [34].

MIMIC III data stores information related to patients’ hospital visits, including care-

giver notes, vital signs, medications, laboratory measurements, imaging reports, mor-

tality, and more. In this study, we focused on patient discharge summaries that

describe the reason for the hospital visit, medical procedures performed, medication,

and other clinical narratives related to the hospital stays. The discharge summaries

are on average 220 words long (SD = 238) with minimal 4 words and maximum 3,135

words. To control model complexity and time complexity, we specified the maximum

token length for BERT as 512 tokens per document. Around 9% of the documents

had exceeded the handling limit. Thus, we provided two versions of preprocessing

for the MIMIC III data. In the first version, “original text,” our free-text documents

were capped at 512 tokens deleting exceeding contents. For the second version, “sum-

marized text,” we first used TextRank to rank the sentences and then truncated them

to 512 tokens. The first version retains the normal order of the sentences in the docu-

ments, while the second version keeps the most informative sentences within the word

limit.

We considered a subset of 44,423 hospital visits that covers a variety of disease

categories. Each discharge summary was paired with a Charlson Comorbidity In-

dex (CCI) calculated from the corresponding International Classification of Diseases

Version 9 (ICD-9) codes for diagnosis12. The ICD-9 codes were assigned after each

hospital stay for billing purposes. In the study cohort, patients can be classified into

3 classes of CCIs: 0, 1-2, and ≥3. In the full dataset, 29% of patients belonged to the

0 class, 22% belonged to the 1-2 class, and the remaining patients belonged to the

≥3 CCI class. The MIMIC III clinical narratives contained de-identified data that

masks name, address, dates and other protected health information with generalized
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tags. However, detailed clinical procedures and information including the reason for

the hospital visit, treatment history and allergies may lead to high reidentification

risk.

We aimed to generate partially synthetic datasets using DataSifterText and ex-

amine the corresponding data privacy and utility. For the MIMIC III data, since

multiple sentences are contained per document, we used two obfuscation levels: low

obfuscation (pw = 0.5, pn = 0.75, and replacement method = (No obfuscation, 0)) and

high obfuscation (pw = 0.5, pn = 0.75, and replacement method = (TextRank, 1)).

We applied DataSifterText to both versions of preprocessed clinical text. Like the

CDC application, we calculated the label accuracy and agreement to compare the

data utility and obtained the cosine similarity of DTM entries to compare the data

privacy.

The application data utility results are summarized in Table 4.4. The BERT

model for label prediction constructed using “original text” and “summarized text”

had a training accuracy of 62%, which indicates a fair understanding of the connection

between the free-text and their labels. The two preprocessing methods yielded similar

results under the low (58%) and high obfuscation levels (52%) in terms of label

prediction accuracy. We observed that the reduction in accuracy in the MIMIC III

application was not as significant as the CDC application when the original BERT

model was less accurate. Moreover, we observed high label agreement in all settings

compared to label accuracy, which showed the effectiveness of our obfuscation method.

Specifically, the “summarized text” provided a significant higher label agreement.

We examined the data privacy of partially synthetic data with the cosine similar-

ities of the original and sifted data DTM entries considering the 5,000 most frequent

terms. Figure 4.2 illustrates the distribution of the cosine similarities across different

preprocessing methods and levels of obfuscation. The results were similar for the two

preprocessing methods that low obfuscation provided relatively similar documents
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Table 4.4: Data utility for original and sifted MIMIC III text (n=44,423) accord-
ing to the constructed BERT model (f(·)) that maps patient discharge summary
to 3-class CCIs. Original text was preprocessed by truncating long documents to
512 tokens. Summarized text was preprocessed with the TextRank algorithm and
truncating the ranked summaries to 512 tokens per document. The label prediction
accuracy records 1

n

∑n
i=1 I [f (W ∗

i ) = Li] and the label prediction agreement records
1
n

∑n
i=1 I [f (Wi) = f (W ∗

i )].

Data Type Original text Summarized text

Obfuscation level None Low High None Low High

Label prediction accuracy 63.1% 57.9% 50.5% 62.4% 58.8% 53.3%

Label prediction agreement NA 75.6% 61.9% NA 80.9% 71.6%

with the raw text yielding an average cosine similarity of 0.87 while high obfuscation

altered more information offering an average cosine similarity of 0.63.

4.7 Discussion

In this chapter, we proposed the DataSifterText technique to generate partially

synthetic free-text that enables data-sharing by providing data privacy protection

while maintaining data utility. We also derived measures to quantify data privacy

and data utility for free-text data using the BERT model and DTM. According to

our clinical data applications, the proposed technique protects the distribution of the

original text corpus, offers individual level data obfuscation, and enables collabora-

tive data analytics without compromising personally identifiable information. The

DataSifterText algorithm provides sufficient privacy protection by disguising the lo-

cation of true and obfuscated tokens. The proposed method can be implemented on

multicore parallel programming environments to address scalability issues.

After controlling the maximum document length in BERT models, we prepro-

cessed the original clinical text that exceeds this limit by truncation or summariza-

tion. In the MIMIC III data application, we recommend using the second version of
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Figure 4.2: Data privacy for partially synthetic MIMIC III datasets generated by
DataSifterText. The cosine similarities were calculated by comparing the DTM entries
of the original and sifted text documents. The DTM was constructed using the
original text corpus with 5,000 most frequent terms. The vertical lines indicate the
means of the cosine similarities among different obfuscation levels.

preprocessing for long text, since it contains less noise when modeling the association

between text and labels. However, for some datasets, the original order of the sen-

tences might contain more information than the rank of the sentences. Under such

settings, the data governor could consider using the “original text” preprocessing for-

mat. Future studies might also consider splitting the original text into subtexts and

combining the results back to one document to avoid the truncation of long docu-
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ments. This approach may require extra steps during the synthetic data evaluation

phase, since the BERT model cannot handle long text.

We chose BERT as a language modeling tool because it represents a state-of-

the-art technique with significantly broad applications and good scalability. The

DataSifterText protocol can also be reimplemented using other language models to

decrease model complexity or handle longer text objects.
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CHAPTER V

Clinical Free-text Information Extraction in

Dynamic Treatment Regime Estimation

5.1 Introduction

Personalized medicine (PM) provides individualized patient treatment recommen-

dations tailoring heterogeneous patient characteristics with specific treatments, unlike

the one-size-fits-all model of care. The dynamic treatment regime (DTR) is an ef-

fective vehicle under PM’s umbrella that offers adaptive treatment strategies [10].

Especially for chronic conditions, a course of medical intervention containing mul-

tiple treatment stages is often needed for patients. In this paper, we demonstrate

the proposed method using a motivating example, where the treatment strategy is

adjusted and adapted over time to control patients’ blood pressure during the first

two days in intensive care units (ICU). We consider four potential classes of antihy-

pertensive agents – angiotensin-converting enzyme inhibitors (ACEI), beta-blockers,

calcium channel blockers (CCB), and diuretics. After a patient is admitted to ICU,

one treatment will be assigned to the patient immediately to control the elevated

blood pressure based on his/her own medical history and clinical evidences. If it

controls the blood pressure, no treatment is needed on day two. Otherwise, we rec-

ommend a subsequent treatment to non-responders. In this example, we have two
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sequential treatment decision stages, and one possible DTR can be: Treat patients

younger than 55 years of age with ACEI and treat the rest of patients with CCB on

day one; then provide CCB for non-responders on day two.

To guide evidence-based effective treatment decisions at each stage, researchers

are developing statistical methods to evaluate and identify the optimal DTR, which

tailor the optimal treatment choice to each individual that maximizes the expected

clinical outcome given the individual’s current disease status and medical history.

Abundant patient information is needed to obtain accurate estimations for the desired

clinical outcomes and provide various candidate tailoring variables while constructing

treatment rules.

Electronic Health Records (EHRs) are major data sources for observational studies

in the biomedical field, including detailed information about patients’ medical histo-

ries (e.g., diagnoses, medications, and test results). As EHRs are adopted widely

across different healthcare institutions, massive amounts of health information are

available to develop, assess and fine-tune the optimal DTRs. Various statistical meth-

ods have been developed for identifying optimal DTRs using observational data in

EHR. Commonly used parametric and semi-parametric methods include marginal

structural models with inverse probability weighting (IPW) [51, 31, 90], G-estimation

of structural nested mean models [63, 64, 65], and targeted maximum likelihood esti-

mations [88]. These methods provide high interpretability but require correct model-

ing assumptions for a sequence of conditional models, which is practically unattainable

for a large number of covariates. To alleviate modeling assumptions and maintain in-

terpretability, Laber and Zhao proposed a tree-based method for estimating optimal

treatment regimens [39]. Tao and Wang generalized the method using the doubly

robust approach and developed Tree-based Reinforcement Learning (T-RL) that sup-

ports multi-stage treatment decision making [84, 85]. However, all existing methods

only consider using information from structured EHR data, which is designed for the
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management of care or billing purposes. When studying a specific disease, critical

patient characteristics might not be available in the structured data, or partial miss-

ingness can occur in such variables. For example, tobacco use is a risk factor for many

chronic diseases, including vascular diseases and lung cancer [3, 22], but structured

EHR data does not include smoking status as a regular entry. Moreover, manual

transcription errors occur in 1-10% of the structured EHR data [46]. For these two

reasons, it is essential to collect various and accurate patient characteristics to select

the correct tailoring variables when constructing DTR. Thus, we consider additional

information from resources other than structured EHR data.

Narrative content in EHR, like clinical notes, represents a reliable supplementary

data resource for critical patient characterization. Information extraction (IE) tech-

niques are well studied in many disease-specific investigations for identifying unique

disease conditions [92]. Most of the IE techniques are rule-based, depending on regu-

lar expression matching. cTAKES is among the most popular IE method facilitating

biomedical studies based on clinical free-text data [73]. It consists of many individ-

ual tools, including sentence boundary detector, tokenizer, named entity recognizer,

and negation recognizer. These individual components can be grouped to handle the

extraction of patient-specific characteristics.

Nevertheless, no existing work has evaluated the benefit of performing clinical

IE using narrative contents in EHR to enhance the accuracy of the estimated DTR

systematically. For this study, we developed a protocol for extracting patient charac-

teristics from the EHR narrative contents to improve DTR estimation accuracy. The

protocol adopts T-RL as a robust and scalable DTR estimation approach. Our ex-

tended simulations demonstrate the benefits of utilizing IE in estimating DTR under

different circumstances. Applying the protocol to the MIMIC-III database, we exhibit

the effective use of IE on estimating an optimal two-stage DTR guiding hypertensive

drug use among critically ill patients with severe acute hypertension.
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5.2 Methods

5.2.1 Information Extraction from EHRs

In this chapter, IE is used to derive structured data from clinical free-text. We

consider using rule-based IE tools that rely on Regular Expressions (REs) [36], which

provide a standard mechanism to select specific strings using a bit pattern from a set

of character strings. With REs, we can successfully search for patient information

with bit patterns consisting of specific keywords and punctuation. Specifically, the

proposed protocol closely follows the cTAKES system [73] and employs the following

individual components: (1) Named entity recognition, which is the core component

to identify and locate the target pieces of information; (2) Boundary detector, which

detects the start and end location of the desired informative substring; and (3) Nega-

tion annotator, which can help determine the yes or no status, when referring to an

identified named entity. The extraction procedure is different for different variable

types. Numeric variables can be extracted using named entity recognition and bound-

ary detector; named entity recognition and negation annotator extracts binary and

categorical variables.

We take four steps to extract patient characteristics from EHR clinical notes using

cTAKES components and REs.

(1) Find sections or headings in the clinical note that might contain the target

information. For example, hospital visit-related information might be located in the

“discharge summary” or “physician notes,” and medication use information may be

found in the “pharmacy” sections.

(2) Detect boundaries of the target information with the boundary detector. Pa-

tient information is usually contained in one sentence or a number surrounded by

word tokens. Identifying the boundaries of the target information helps to further

fine prune the target string. Punctuation including periods and colons and units like
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“lb,” “cm,” and “kg” can indicate the beginning of or the end of the target string.

(3) Search for named entities or target keywords. After obtaining the candidate

strings in specific sections of the clinical notes, we search for relevant keywords in

those strings. For example, if we are extracting patient height, we can search for

“height|ht|hgt,” where “|” is the “or” notation in RE.

(4) Convert target strings into structured data. For numerical information, we

use an ad hoc process by analyzing the possible structures of the target strings and

use REs to extract the numerical values and corresponding units. For binary or

categorical information, we employ the negation annotator to search for negative

tags around (within five tokens) the target keyword. The default status is truth.

Once a negative tag is identified, we determine that the status of the corresponding

condition is false.

5.2.2 Notations and Data Representation

We consider an EHR dataset containing n patients, T treatment stages, and

Kj (Kj ≥ 2) potential treatment options at the jth treatment stage, j = 1, . . . , T .

Patients are observed to follow one of the treatments available at each stage. For

the ICU blood pressure management example, we have T = 2, K1 = K2 = 4. Let

Aj denote the treatment at the jth treatment stage that may take a value aj, where

aj ∈ Aj = 1, . . . , Kj. Let ĀT ≡ (A1, . . . , AT ) denote the sequence of treatment

indicators until stage T . Similarly, we denote the observed treatment routes with

āT ≡ (a1, . . . , aT ). We use Rj to denote the clinical outcome observed following Aj,

which varies under different patient characteristics Xj and prior treatments received

Āj−1. The overall clinical outcome at stage T is considered a functional of the re-

ward history such that Y ≡ f (R1, . . . , RT ), where f (·) is a pre-specified function

(e.g., sum). We assume Y is bounded and preferable with larger values. Stage-

wise individualized treatment recommendations are inferred from the observed final

105



outcome Y , the current candidate treatments aj ∈ Aj and the patient medical his-

tory Hj =
(
Āj−1,X

T
j

)T ∈ Hj. Using EHR data and our IE procedure, patient

characteristics can be observed from two data components: structured and free-text

data. We denote the patient characteristics at stage j observed in structured EHR

data as Sj = XS
j ∈ Rns×qs , where Sj might contain sporadic missing values. Let

Tj = Xt
j ∈ Rnt×qt denote the patient characteristics at stage j extracted from the

free-text data. After combining the two components we obtain Xj ∈ Rn×q such that

n ≥ max (ns, nt) and q ≥ max (qs, qt) with potentially more patients and covariates

than XS
j . The addition of Tj can help handle missingness and adding extra variables

that are not observed from Sj. With the observed data, we aim to find a sequence

of personalized treatment rules g = (g1, . . . , gT ) that maximizes the expected coun-

terfactual clinical outcome if the g is followed to make treatment decisions, where gj

maps from patient history Hj to potential treatments aj ∈ Aj.

5.2.3 The Estimation of DTR using Tree-based Reinforcement Learning

(T-RL)

We utilize T-RL [85] to estimate the optimal DTR using structured and free-

text EHR data. T-RL is a non-parametric optimization procedure that outputs an

unsupervised decision tree for treatment guidance at each stage, where each fork is

a split in a tailoring variable and each end node contains a recommended treatment

for the corresponding patient subgroup.

When estimating the optimal DTR, we adopt the counterfactual framework for

causal inference defined in Robins, 1986 [62]. Under the three standard assumptions:

consistency, no unmeasured confounding and positivity, we link the counterfactual

outcomes with observed information. At stage T , we denote Y ∗(A1, ..., AT−1, aT )

or Y ∗(aT ) as the counterfactual outcome for patients receiving treatment aT given

previous treatments. We aim to search for optimized treatment regime goptT that maxi-
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mizes expected counterfactual outcome. Using backward induction, at stage j(j < T ),

we maximize the counterfactual outcome when all future treatments are optimized,

which is denoted by Y ∗(A, aj, g
opt
j+1, ..., g

opt
T ). However, such counterfactual outcome

is not observable for all patients. We estimate stage-wise pseudo-outcome denoted as

POj = Ê[Y (A1, ..., Aj, g
opt
j+1, ..., g

opt
T )] to approximate the target outcome and obtain

goptj . T-RL uses doubly robust AIPW estimates for patients’ counterfactual outcome

and pseudo outcome under all possible treatments.

The T-RL algorithm seeks the optimal regime with a sequence of treatment de-

cision at each stage by constructing a binary tree. At any stage, we use Ê[Yi(a)] to

denote the estimated pseudo outcome for patient i = 1, .., n given treatment a ∈ A.

For considering each split that separates patient group Ω into ω and ωc, the T-RL

compares

P(Ω, φ) = maxa∈A
1

n

n∑
i=1

Ê[Yi(a)]

with

P(Ω, ω) = maxa1,a2∈A
1

n
{

n∑
i=1

Ê[Yi(a
′)]I(i ∈ ω) +

n∑
i=1

Ê[Yi(a
′′)]I(i ∈ ωc)}

to decide if split is needed. When P(Ω, ω)− P(Ω, φ) is meaningfully large, the algo-

rithm will make the partition with the corresponding tailoring variable and optimal

treatments (a′ and a′′). To avoid overfitting by pruning the tree, we use stopping rules

which consider the minimal node size, minimal improvement for P(Ω, ω) − P(Ω, φ),

and maximum depth of the tree.

5.3 Simulation

We simulated a 2 stage (T = 2), 3 treatments per stage (K1 = K2 = 3) obser-

vational study and its corresponding EHR data to evaluate the benefit of using IE

in estimating optimal DTRs. The full data contains the stage-wise rewards (R1, R2),
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treatment received (A1, A2), 3 complete structured patient characteristics X1, X2, X3,

and 2 patient characteristics that can be extracted from the clinical narratives: weight

in pounds (X4) and current smoking status (X5), where X4 is in pounds and X5 is

binary. In the simulation, we considered cases where X4 contains missing values or

has entry errors and X5 is not observed in the structured data. Then, we compare

the DTR estimation performance with and without IE under above cases.

To create a scenario with simulated clinical text, we first sampled 27,707 discharge

summaries from the Medical Information Mart for Intensive Care III (MIMIC-III)

data [34] that contain information about weight but do not contain smoking status.

Then, we randomly inserted information in a random set of text documents to create

simulated clinical notes with patients’ smoking information. The inserted information

included smoker tags like “10 pack-year smoking”, “cigars daily”, “heavy smoking”

and non-smoker tags like “tobacco: denies” and “former smoker”. As a result, we

simulated 45% smokers in our study population.

For all simulation cases, X1, X2, X3 were sampled independently from N(0, 1).

When we observed weight information in the text, the true X4 value agreed with the

text information, otherwise it was sampled from N(195, 51), which approximates the

weight distribution observed in the clinical text. The true X5 is 1 when we assign a

smoker tag to a patient record and 0 otherwise. We set A1 = A2 = {0, 1, 2}. In the

first stage, the treatments A1 followed a Multinomial(π01, π11, π21) distribution where

π01 =
1

exp(0.005X4 + 0.5X5) + exp(0.5X3 − 0.5X5) + 1
,

π11 =
exp(0.005X4 + 0.5X5)

exp(0.005X4 + 0.5X5) + exp(0.5X3 − 0.5X5) + 1
,

π21 =
exp(0.5X3 − 0.5X5)

exp(0.005X4 + 0.5X5) + exp(0.5X3 − 0.5X5) + 1
.
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We considered a tree structured true optimal regime such that

gopt1 (H1) = I(X5 > 0)× I(X1 > −0.5) + I(X1 > 0.5).

Correspondingly, the stage-wise reward was generated by

R1 = exp{1.5 + 0.003X4 − |1.5X5 − 2| × [A1 − gopt1 (H1)]
2}+ ε1,

where ε1 ∼ N(0, 1). For stage 2, the treatments were distributed as Multinomial(π02, π12, π22),

where

π02 =
1

exp(0.2R1 − 0.5) + exp(0.5X1) + 1
,

π12 =
exp(0.2R1 − 0.5)

exp(0.2R1 − 0.5) + exp(0.5X1) + 1
,

π22 =
exp(0.5X1)

exp(0.2R1 − 0.5) + exp(0.5X1) + 1
.

The optimal decision rule for the second stage depends on the first treatment response

gopt2 (H2) = I(X2 > −1)× [I(R1 > 0) + I(R1 > 2)].

The second stage reward was generated by

R2 = exp{1.18 + 0.2X1 − |1.5X2 + 2| × [A2 − gopt2 (H2)]
2}.

The target clinical outcome is the sum of two stage rewards Y = R1 +R2.

We next considered two cases of observed data. For the first case, some of the X4

entries contained error that its observed values were 100 times larger than the true
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values. The errors were generated with the following probability

P (X4 contains entry error) = 0.1I(X5 = 0)× I(weight observed in text).

Under case one, X4 contained entry error and X5 is not observed in structured EHR.

When using IE, we combined the information and obtained the full complete data.

In the second case, our structured data contained missing values such that X4 was

missing at random (MAR). The probability of missing was assigned based on X5 and

if weight information was included in the clinical notes:

P (X4 = NA) = 0.1 + 0.5I(X5 = 0)× I(weight observed in text).

Under case two, X4 was MAR in the structured data, but missing completely at

random with 10% missing when combining information extracted the from clinical

text. Similarly, X5 was not observed in structured data.

We considered a training sample of size n = 500 or n = 1, 000 and a test sample

of size n = 1, 000 for each type of data (with or without IE) under both cases. We

had 1,000 replications for each scenario. The estimated DTRs (ĝopt) were evaluated

by percentage of optimal two-stage treatment recommendations (opt%) given to the

patients in the test set. We also compared the estimated expected counterfactual

outcome denoted by Ê{Y ∗(ĝopt)} in the test set using the true rewards model.

Table 5.1 summarizes the performance of our proposed method in the simulation

studies. The cTAKES IE method successfully extracted the true smoking status

from the text messages for all patients. Thus, all scenarios with IE contains the

true smoking status variable, whereas the scenarios without IE does not have X5.

Case 1 mimicked the scenario where entry error is present for some of the structured

variables. According to Table 5.1, when n = 500, the data with IE under case

1 had significantly higher opt% (91.5% vs 58.8%) and has improved the estimated
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mean counterfactual outcome by 13% comparing to the data containing entry error

without IE. When the sample size increased to 1,000, the performance of both ĝopt

has improved while the difference remained similar. For case 2, where missingness

is involved in the body weight variable, the data with IE provides slightly smaller

opt% and Ê{Y ∗(ĝopt)} compared to the full data due to 10% random missing in X4.

However, the data with IE still significantly outperforms the data without IE across

different sample sizes.

Scenario
n = 500 n = 1,000

opt % Ê{Y ∗(ĝopt)} opt % Ê{Y ∗(ĝopt)}

Case 1 with IE 91.5 (13.4) 11.10 (0.76) 97.2 (7.4) 11.35 (0.44)
Case 1 without IE 58.8 (8.3) 9.08 (0.39) 63.1 (7.1) 9.31 (0.30)
Case 2 with IE 90.1(13.9) 10.93 (0.93) 96.3 (8.8) 11.23 (0.62)
Case 2 without IE 57.4 (10.2) 8.75 (0.77) 64.5 (7.0) 9.25 (0.53)

Table 5.1: Simulation Results. The weight variable (X4) in structured EHR contains
entry errors in case 1 and has missing values in case 2. Under both cases, the current
smoking status (X5) is not observed in structured EHR data. opt% is the percentage
of optimal treatment combinations recommended to the test sample. Ê{Y ∗(ĝopt)}
denotes the estimated expected counterfactual outcome. Standard deviations are
recorded in parenthesis.

The empirical distribution of Ê{Y ∗(ĝopt)} is shown in Figure 5.1. We observe

that for the datasets including information extracted from clinical text, most of

Ê{Y ∗(ĝopt)} were close to their optimal values. With a larger sample size (n = 1, 000),

the values were more centralized towards the optimal counterfactual outcome. The

values of Ê{Y ∗(ĝopt)} for datasets without using IE spread out around 9 and failed

to approach the optimal counterfactual outcome under the larger sample size.
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Figure 5.1: Empirical distribution of Ê{Y ∗(ĝopt)} among different simulation scenar-
ios. The weight variable (X4) in structured EHR contains entry errors in case 1 and
has missing values in case 2. Under both cases, the current smoking status (X5) is
not observed in structured EHR data.

5.4 Personalized Antihypertensive Agents for Critically Ill

Patients with Severe Acute Arterial Hypertension

Severe acute arterial hypertension can have significant consequences on various or-

gans, including the heart, kidneys, brain, and lungs [81, 83], leading to life-threatening

complications. Acute arterial hypertension is commonly encountered in ICU and

acute care settings [78]. Patients with a marked increase in blood pressure and acute

severe target-organ injuries (hypertensive emergencies) often require hospitalization

in an ICU for immediate blood pressure reduction to safer levels [71]. In “hyper-

tensive emergencies”, the therapeutic strategy requires achieving careful and staged

blood pressure lowering goals within 24 hours in order to avoid sudden, excessive re-

ductions. “Hypertensive urgencies” describes the scenario when patients have severely

elevated blood pressure but are not in danger of immediate acute end-organ injury.

In this scenario, while blood pressure reduction is warranted, there are no specific

evidence-based guidelines on treatment goals. As such, clinical recommendations

typically suggest lowering blood pressure less aggressively and to aim for control over
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the ensuing few days. However, there are no absolute blood pressure thresholds that

define hypertensive emergencies or urgencies, as the actual levels differ among indi-

viduals depending on a number of characteristics including prior hypertension and

pre-existing cardiovascular health status. In general, a clinically ill patient with sys-

tolic blood pressure (SBP) levels greater than 180 mmHg or diastolic blood pressures

greater than 110 mmHg may require intervention [44].

Four classes of antihypertensive agents, including angiotensin-converting enzyme

inhibitors (ACEI), beta-blockers, calcium channel blockers (CCB), and diuretics, are

commonly used to treat hypertension. Studies suggest that antihypertensive drug

responses are heterogeneous across patients [43]. We estimated a two-stage dynamic

treatment regime to guide antihypertensive treatment for critically ill patients with

severe acute hypertension using IE and T-RL. The DTR was constructed using The

Medical Information Mart for Intensive Care III (MIMIC-III) data [34], a de-identified

EHR data with over 40,000 patients who stayed in critical care units at a large tertiary

care hospital between 2001 and 2012.

Patients with the following conditions were included in the study population: (1)

admitted to the ICU for at least 3 days; (2) had a first-day maximum SBP higher

than 180 mmHg; and (3) had been prescribed only one type of antihypertensive

agent during each stage. These inclusion criteria were selected to exclude patients

with shock, significant hypotension, and those who do not require or cannot tolerate

antihypertensive therapies. Also, we limited our population to single hypertensive

agent receivers to remove the interaction of background blood pressure medications.

Although patients were not specifically admitted with the diagnosis of a hypertensive

emergency, they had severely elevated blood pressure levels and received antihyper-

tensive treatments. Thus, we assumed that achieving tighter BP control following

the intervention is a more successful outcome.

We selected the decrease in SBP as our target clinical endpoint, which is preferable
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with a higher value. We also assumed excessive reductions of patients’ blood pres-

sure are not achievable by any single antihypertensive agent. We considered ACEI,

beta-blockers, CCB, and diuretics as possible treatments for each patient in both

stages, where ACEI, beta-blockers, and CCB were introduced orally and diuretics

were given intravenously (IV). The estimated two-stage DTR guides patients’ blood

pressure control during their first two days in ICU. Once a patient with severe acute

arterial hypertension is admitted to ICU, the DTR can recommend the most effective

antihypertensive class for the individual to use on day one (stage 1). If the maximum

SBP is still over 140 mmHg in day two, the DTR further adjusts the hypertension

treatment based on past history and further examines the patients’ SBP on day 3

(stage 2).

Studies have shown that many clinical factors, including age, family history, race,

smoking status and weight, are salient predictors of systolic blood pressure (SBP)

and significant risk factors for developing hypertension [91]. However, the MIMIC-

III structured data had no information regarding patients’ smoking status. In addi-

tion, many patients had missing values for their bodyweight upon hospital admission.

Without controlling for smoking and bodyweight, the drug effects towards SBP re-

duction might be biased in the counterfactual outcome model when estimating DTRs.

Thus, we utilized the proposed IE method to extract smoking and bodyweight infor-

mation from physician notes, discharge summaries, and general notes. We detected

common patterns in the notes for smoking status by using the named boundary de-

tector, named entity recognition, and negation annotator. For example, “X years

smoking history” and “encouraged smoking cessation” indicates current smokers,

“quit smoking X years ago” indicates former smokers, and “does not smoke” and

“denies any smoking” suggests non-smokers. We assumed patients to be non-smokers

when the smoking status was not mentioned in notes. For bodyweight, we extracted

numerical information from patterns like “weight (lb),” “wt,” and “(current): X kg.”
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After adding supplemental information from clinical notes, the study population

was summarized with 778 complete observations (see Table 5.2). The majority of

patients were in their 60s or 70s when admitted to the hospital. During the first day,

beta-blockers (42.4%) was the most commonly prescribed hypertension drug class,

followed by diuretics (31.0%), ACEI (17.6%), and CCB (9.0%). Four hundred and

forty-two patients had their blood pressure successfully controlled or stopped taking

antihypertensive drugs by the end of the first day. During the second day, a larger

proportion of the remaining patients had IV diuretics compared to the first day.

All patient characteristics listed in Table 5.2 were considered as potential tailoring

variables for the dynamic treatment regime and were included in the counterfactual

outcome model. With this study cohort, for stage 1 (day one in ICU), we found that

the optimal treatment was oral CCB for patients with maximum baseline SBP larger

than 190 mmHg and minimal creatinine larger than 2 Mg/dL. Otherwise, stage 1

optimal treatment strategy should be ACEI. If we failed to control patients’ blood

pressure during the first day in ICU, patients no older than 70 years of age should

receive oral ACEI during the second day while beta-blockers were the best hyper-

tensive agents for patients older than 70 years of age. The estimated personalized

treatment decision tree is illustrated in Figure 5.2. In fact, the DTR aligns with

the guidelines for the treatment of hypertension by the British Hypertension Society

that ACEIs are the most recommended step one antihypertensive agent for younger

patients [94]. Younger patients often respond better to ACEI therapy, potentially due

to several factors (e.g., high renin status). Additionally, high creatinine indicates pos-

sible acute or ongoing kidney function decline, and in this setting, it is not surprising

that ACEI therapy might be less effective or safe for acute blood pressure-lowering

given their potential to further drop glomerular filtration rate [75]. Thus, our results

show that patients with creatinine higher than normal levels and baseline SBP higher

than 190 mmHg might benefit more from CCB. These results can inform clinical
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Table 5.2: Descriptive Statistics of the variables among the study cohort. Note: *
mean (standard deviation) for continuous variables. Otherwise listed as n (%)

.

Stage 1 2

Total number of patients 778 336

Treatment

Oral ACEI 137 (17.6) 38 (11.3)

Oral beta-blockers 330 (42.4) 128 (38.1)

Oral CCB 70 (9.0) 23 (10.5)

IV diuretics 241 (31.0) 147 (43.8)

Age at Admission* 68.1 (14.8) 68.8 (13.9)

Female 380 (48.8) 175 (52.1)

Black 138 (17.7) 59 (17.6)

Current or Former Smoker 506 (65.1) 217 (64.6)

Weight (lb)* 176.5 (59.7) 173.2 (55.1)

Kidney disease 140 (18.0) 59 (17.6)

Diabetes 336 (43.2) 142 (42.3)

COPD 38 (4.9) 20 (6.0)

Chronic Hypertension 369 (47.4) 150 (44.6)

Daily Max Systolic BP* 196.6 (16.0) 181.6 (26.7)

Daily Max Diastolic BP* 100.6 (24.1) 91.9 (24.2)

Heart Rate* 80.8 (15.3) 81.3 (14.8)

Temperature (C)* 36.9 (0.6) 37.0 (0.6)

Oxygen Saturation* 97.1 (1.9) 97.0 (1.8)

Daily Maximum Hemoglobin* 11.7 (2.0) 11.6 (13.9)

Daily Minimum

creatinine (Mg/dL)*
1.8 (2.0) 1.6 (1.6)
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practice, pending the results of randomized clinical trials. We further compared the

decrease in SBP for the study population under the estimated dynamic treatment

regime versus the observed treatment experiences. If the estimated treatment regime

were followed, 67.8% of the patients in our study sample would have better control

of SBP during their first two days in ICU.

Figure 5.2: Estimated optimal dynamic treatment regime for blood pressure man-
agement among critically ill patients with severe acute hypertension. The optimal
DTR was estimated using T-RL with extra information extracted from IE. Stage 1
indicates time from the first day to the second in ICU and stage 2 indicates time from
the second day to the third day in ICU.

We further compared the counterfactual outcomes for our test set under the esti-

mated optimal treatment regime versus the observed treatment experiences. Overall,

the improvement in estimated mean counterfactual systolic blood pressure is 1.40

mmHg if the patient received the optimal treatment according to our estimated treat-

ment decision rule compared to the observed data. If the estimated treatment regime

were followed, 64.5% of patients in our test set would have their outcome improved .

5.5 Discussion

We have evaluated the benefit of using IE techniques to extract information from

free-text clinical observations when estimating optimal DTRs. Our approach can

117



effectively alleviate problems in the structured EHR data, including missing values,

erroneous entries, and unobserved risk factors. Our experiments show that the T-

RL method significantly benefits from the use of IE. This strategy enables clinical

decision support for larger study populations, provides more accurate counterfactual

outcome modeling, and supports a wider pool of candidate tailoring variables.

However, the improvement of DTR estimation largely depends on the quality

of clinical free-text and the IE technique. The benefit of IE may be limited when

there is little additional informative content embedded in the clinical free-text. We

employed a rule-based IE technique in this chapter. Since none of the IE techniques

offers perfect accuracy, some of the extracted information may introduce bias to the

final treatment regime. Moreover, for the rule-based IE techniques, scalability might

be a potential issue when the number of variables to extract is large. Future studies

might consider robust methods like deep learning techniques for extensive information

extraction in a large text corpus when estimating optimal DTRs.
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CHAPTER VI

Summary and Future Work

This dissertation has addressed three challenges in biomedical researches involving

complex observational data: secure data sharing, viable optimal DTR estimation, and

handling free-text data. The proposed techniques are designed to provide robust and

scalable solutions.

The DataSifter framework proposed in Chapter II (DataSifter I and II) and Chap-

ter IV (DataSifterText) is an essential addition to the literature of partially synthetic

data generation. It provides a single synthetic dataset with global data desensiti-

zation and enables user-specified obfuscation levels. For structured data, compared

to the state-of-the-art multiple imputation method, DataSfiter achieves better pro-

tection in data privacy disguising the location of obfuscated and untreated data el-

ements. For unstructured data, DataSifterText offers better data utility by filling

in similar contents in the “masked” locations compared to the conventional token

suppression method. The DataSifter and DataSifterText algorithms are implemented

in R, allowing flexible parallel computing setup. The corresponding R packages are

available on The Statistics Online Computational Resource (SOCR) GitHub directory

https://github.com/SOCR.

In Chapter III and Chapter V, we have explored practical methods for improv-

ing the quality of optimal DTR estimation using observational data. The RT-RL
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method proposed in Chapter III accommodates restrictions on feasible treatment

combinations in observational studies. It offers a constrained optimization procedure

for effectively seeking viable optimal DTR among a subset of possible DTRs, facili-

tating the interpretability of DTRs for physicians to understand and use in practice.

Chapter V advocates the utilization of unstructured information in optimal DTR es-

timation. We evaluated the benefit of IE on enlarging sample size, handling missing

data, and widening the pool of candidate tailoring variables.

Some extensions can further enhance the flexibility and performance of the pro-

posed methods. The current version of DataSifter II assumes that the time intervals

between visits are similar across patients. It is of interest to handle the scenario

when we have unequally spaced time-varying data across patients. Future studies

may also consider introducing different variable importance among variables during

the DataSifter obfuscation procedure. In this case, artificial missingness and obfusca-

tion can occur with a higher probability in user-defined important variables to adapt

various data de-identification tasks. Moreover, for free-text obfuscation, a valuable

extension is to improve the semantic similarities between the observed and sifted text

given a specific obfuscation level. This extension would involve training a complex

machine that understands both individual word tokens and grammar structures of

the original text. Finally, due to the global surge of COVID-19 cases and our limited

knowledge about the virus, patient data privacy protection could be an important

issue that affects both the treatment development and the patients’ right. Obfuscat-

ing patient records with the DataSifter algorithm could be a potentially impactful

application to alleviate the problem.

One important future research direction on RT-RL is to extend the restrictions

on observed patient characteristics in addition to treatment combinations. Thus, we

can impose corresponding restrictions on the viable treatment set for patients with

specific characteristics (e.g., lab test results). Furthermore, when applying IE tech-
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niques in optimal DTR estimation, we may consider automated information extrac-

tion methods, including deep learning, rather than rule-based algorithms, to alleviate

the scalability issue when the number of variables to extract is large. We used T-RL

to make interpretable treatment decisions in a clinical setting with extra information

provided by IE. Future studies can also consider combining deep reinforcement learn-

ing and IE to make adaptive decisions when interpretability is not a concern. For

example, in a mobile health setting where wearable devices collect vocal and physical

information from patients, a deep reinforcement learning machine can cooperate with

IE to understand vocal information and suggest proper interactions with the users.

The general theoretical formulation of the methods leads to the design of tools and

direct applications that are expected to go beyond the biomedical and health analytics

domains. For instance, the DataSifter framework can be generalized to handle sensi-

tive datasets in socioeconomic, environmental, and insurance domains. In addition,

viable optimal DTR estimating procedures have possible extensions on managing cli-

mate change, factory production and inventory, air traffic control, firefighting, and

autonomous vehicles that require dynamic decision-making.
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APPENDIX A

Proofs for Chapter III

Proposition 1 (Double Robustness). Assume patient observations

{Xi,Ai,(T−1), Ai,T , Yi}ni=1 are independent and identically distributed that follows cer-

tain multivariate distribution p. A subset of nres,T patients have viable past treatment

routes until stage T . We define viable patient observations as {Hres
iT , AiT , Yi}n

res,T

i=1 ≡

{Xi,Ai,(T−1), AiT , Yi}n
res,T

i=1 such that Ai,(T−1) ∈ A
res

T−1. Pnres,T {µ̂res,AIPW
T,aT

(Hres
T )} is a

consistent estimator of E{Y ∗(aT )} if either the propensity score model π̂T,aT (Hres
T )

or the conditional mean model µ̂resT,aT (Hres
T ) is correctly specified.

Proof According to week law of large numbers, when nres,T →∞, we have

Pnres,T {µ̂res,AIPW
T,aT

(Hres
T )} p→ E

[
I(AT = aT )

π̂T,aT (Hres
T )

Y +
{

1− I(AT = aT )

π̂T,aT (Hres
T )

}
µ̂resT,aT (Hres

T )

]
.

Given the 3 assumptions in Section 2, we further derive

E{µ̂res,AIPW
T,aT

(Hres
T )}

=
Pr(AT = aT )

E{π̂T,aT (Hres
T )}

Y ∗(aT ) +
{

1− Pr(AT = aT )

E{π̂T,aT (Hres
T )}

}
E{µ̂resT,aT (Hres

T )}

= EHres
T

[
Pr(AT = aT |Hres

T )

E{π̂T,aT (Hres
T )}

E{Y ∗(aT )|Hres
T }+

{
1− Pr(AT = aT |Hres

T )

E{π̂T,aT (Hres
T )}

}
E{µ̂resT,aT (Hres

T )}
]

(1) If π̂T,aT (Hres
T ) is correctly specified, we have E{π̂T,aT (Hres

T )} = Pr(AT = aT |Hres
T ).
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Therefore,

E{µ̂res,AIPW
T,aT

(Hres
T )} = EHres

T
{E{Y ∗(aT )|Hres

T }} = E{Y ∗T (aT )}.

(2) The expectation of the proposed estimator is equivalent to

E{µ̂res,AIPW
T,aT

(Hres
T )} =

EHres
T

[
Pr(AT = aT |Hres

T )

E{π̂T,aT (Hres
T )}

[
E{Y ∗(aT )|Hres

T } − E{µ̂resT,aT (Hres
T )}

]
+ E{µ̂resT,aT (Hres

T )}
]
.

If µ̂resT,aT (Hres
T ) is correctly specified, E{µ̂resT,aT (Hres

T )} = E{Y ∗(aT )|Hres
T }. Then,

E{µ̂res,AIPW
T,aT

(Hres
T )} = EHres

T

[
E{µ̂resT,aT (Hres

T )}
]

= E{Y ∗(aT )}.
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