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tor Christoforos Keroglou, Doctor Sahar Mohajerani, and Doctor Blake Rawlings for sharing their

knowledge and criticisms with me. I specially appreciate Professor Karen Rudie and Doctor Hervé
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ABSTRACT

Cyber-Physical Systems (CPS) are already ubiquitous in our society and include medical devices,

(semi-)autonomous vehicles, and smart grids. However, their security aspects were only recently

incorporated into their design process, mainly in response to catastrophic incidents caused by

cyber-attacks on CPS. The Stuxnet attack that successfully damaged a nuclear facility, the Ma-

roochy water breach that released millions of gallons of untreated water, the assault on power

plants in Brazil that disrupted the distribution of energy in many cities, and the intrusion demon-

stration that stopped the engine of a 2014 Jeep Cherokee in the middle of a highway are examples

of well-publicized cyber-attacks on CPS. There is now a critical need to provide techniques for

analyzing the behavior of CPS while under attack and to synthesize attack-resilient CPS. In this

dissertation, we address CPS under the influence of an important class of attacks called sensor

deception attacks, in which an attacker hijacks sensor readings to inflict damage to CPS.

The formalism of regular languages and their finite-state automata representations is used to

capture the dynamics of CPS and their attackers, thereby allowing us to leverage the theory of

supervisory control of discrete event systems to pose our investigations. First, we focus on devel-

oping a supervisory control framework under sensor deception attacks. We focus on two questions:

(1) Can we automatically find sensor deception attacks that damage a given CPS? and (2) Can we

design a secure-by-construction CPS against sensor deception attacks? Answering these two ques-

tions is the main contribution of this dissertation.

In the first part of the dissertation, using techniques from the fields of graph games and Markov

decision processes, we develop algorithms for synthesizing sensor deception attacks in both quali-

tative and quantitative settings. Graph games provide the means of synthesizing sensor deception

attacks that might damage the given CPS. In a second step, equipped with stochastic information

xii



about the CPS, we can leverage Markov decision processes to synthesize attacks with the highest

likelihood of damage.

In the second part of the dissertation, we tackle the problem of designing secure-by-

construction CPS. We provide two different methodologies to design such CPS, in which there

exists a trade-off between flexibility on selecting different designs and computational complexity

of the methods. The first method is developed based on supervisory control theory, and it provides

a computationally efficient way of designing secure CPS. Alternatively, a graph-game method

is presented as a second solution for this investigated problem. The graph-game method grants

flexible selection of the CPS at the cost of computational complexity. The first method finds one

robust supervisor, whereas the second method provides a structure in which all robust supervisors

are included.

Overall, this dissertation provides a comprehensive set of algorithmic techniques to analyze

and mitigate sensor deception attacks at the supervisory layer of cyber-physical control systems.
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CHAPTER I

Introduction

1.1 Motivation

The growth of successful cyber-attacks on key elements of our society’s infrastructure has recently

become a concern, especially to engineers. The Stuxnet attack that successfully caused damage to a

nuclear facility [1], the Maroochy water breach that released millions of gallons of untreated water

[2], the assault on power plants in Brazil that disrupted the distribution of energy in many Brazilian

cities [3], and the intrusion demonstration that stopped the engine of the 2014 Jeep Cherokee in the

middle of a highway [4] are examples of well-publicized cyber-attacks on physical infrastructure.

All of these examples share a similar feature: they are modern engineering systems composed of

the interaction of physical elements - such as power plants, vehicles, or medical devices - with a

computational infrastructure that controls them. These systems are called cyber-physical systems

(CPS).

CPS are found across diverse areas of society, from power plants to transportation systems,

from smart homes to medical devices. These systems must be reliable, robust and secure against

both benign malfunction as well as malicious planned attacks. However, the security aspects of

their design have often been treated as an afterthought; and this approach has revealed its flaws

considering the number of successful attacks our society has experienced. According to the Coun-

cil of Economic Advisers, cyber-attacks were estimated to have cost between $57 billion and $109

billion to the U.S. economy in 2016 [5]. There is now an urgency to develop techniques for un-

derstanding and designing attack-resilient CPS. These techniques will need to take into account

diverse areas of application and ad hoc approaches to their development should be avoided.
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This dissertation proposes to tackle these problems by developing a novel methodology for

understanding a large class of CPS attacks and then designing attack-resilient CPS. This method-

ology has the following features: (i) it considers and handles systems with imperfect information

(due to sensor limitations) and limited control of actuators (due to system disturbances) (ii) it mod-

els sensor deception attacks, an important class of attacks for CPS, one in which an attacker hijacks

the information sent to the computational infrastructure; (iii) it considers the attacker’s perspective

by providing methods to synthesize successful attacks for fixed controllers; (iv) it provides a for-

mal model-based approach for designing attack-resilient controllers; (v) the methods are general

and applicable to a large class of CPS, specifically systems with safety-critical requirements whose

behavior is suitably model as event-driven systems (e.g., power plants, autonomous vehicles, and

transportation systems).

1.2 Overview of attacks in cyber-physical systems

In control engineering, the area of discrete event systems (DES) is known for its ability in modeling

the high-level behavior of complex systems. The operation of these systems is modeled in an

event-based manner and only important details are considered in analyzing the system’s operation.

This dissertation uses supervisory control theory (SCT) from the field of discrete event systems

to analyze CPS. We assume that CPS has been abstracted into an even-driven model, where we

employ our methodology.

Supervisory control provides a formal model-based framework for designing correct-by-

construction controllers for complex event-driven systems. Despite these benefits, this framework

does not encompass security aspects. We do a brief literature review to show some of the exist-

ing related works on cyber-security of CPS in the field of DES. A more comprehensive, although

incomplete, literature review is described in [6].
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1.2.1 Modeling attacks

Previously, some efforts were made in classification and modeling of cyber-attacks assuming cer-

tain intelligence on the part of the attacker [7, 8]. Our focus is on a special type of attacks called

deception attacks. These attacks are characterized by some type of manipulation of the sensor

measurements received by the supervisor and/or of the actuator commands sent by the supervisor.

Figure 1.1 pictorially defines the concept of deception attacks, where an attacker compromises the

communication channels between the supervisor and the plant.

Physical Process

Network

System

Figure 1.1: Concept of deception attacks on CPS

Deception attacks were first introduced in the DES field by Carvalho et al. [9], where they

define and study actuator enablement deception attacks. This class of attacks is literally defined as

its name; the attacker enables actuator commands that were previously disabled by the supervisor.

Their attack model is intertwined with the physical dynamics, which prevents a clear analysis of

the attacker’s strategies. In this manner, the attacker is not pictured as a “smart” agent by this work.

Later on, the authors extended their work to encompass full deception attacks [10, 11, 12], i.e., both

sensor and actuator deception attacks. However, they followed similar modeling techniques.

The works of Su and Wakaiki et al. in [13, 14] introduced a more sophisticated model for

sensor deception attacks. An attacker is seen as an agent that reacts to sensor readings, differently

than the model presented in [11], where the attacker is a passive entity.

In [13], an attacker is modeled by an input-output automaton that has input and output lan-

guages. Namely, the input language is the language generated by the sensor readings while the
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output language is the language generated by the attacker to confuse the supervisor. In this model,

three key assumptions are made: the attacker can only modify a subset of the sensor readings;

modifications are bounded; and the attacker finishes its modifications before the physical process

executes a new event.

On the other hand, Wakaiki et al. models sensor deception attacks as a function instead of input-

output automaton [14]. This function has languages as domain and co-domain in a similar manner

as the input and output languages in [13]. However, Wakaiki et al. impose different constraints to

their attack model compared to the ones in [13], which leads to a different closed-loop behavior.

Recently, the work in [15] modeled sensor and actuator deception attacks as input-output au-

tomaton similar as [13]. Differently than [13], they do not impose any bound constraint over the

attacker. However, their supervisory control framework differs from the standard framework. They

assume that the supervisor can actively change the state of the physical process. In the standard

supervisory control framework, the supervisor cannot change the state of the plant.

Actuator deception attacks were introduced by [16, 17, 18]. The models of actuator attacks in

these works are similar to the previously mentioned methodologies for sensor deceptions attacks.

1.2.2 Intrusion detection of deception attacks

Detecting and mitigating deception attacks become an essential part of CPS. For this reason,

CPS are enhanced with intrusion detection modules that are constructed to detect specific types of

attacks. These modules provide additional information for supervisors in order to mitigate attacks

[12, 19].

Intrusion detection of deception attacks has been studied in DES since the work in [20]. In

[20], the authors focus on deciding when it is possible to detect actuator deception attacks such

that a supervisor can satisfy a specification both in normal operation and after an attack.

Similarly, the work in [9] focuses on actuator deception attacks. It provides conditions for the

detection and mitigation of these attacks. The work of [9] is closest to the work in [21], where

after detecting an attack the system reconfigures the control law in order to mitigate it. Extension
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of their work is found in [10, 11, 12], where it fully encompasses deception attacks. Recently, a

stochastic notion of intrusion detection is considered in [22].

1.2.3 Synthesis of deception attacks

Intrusion detection modules are not always capable of detecting deception attacks. Therefore,

considering the attacker’s perspective provides a way of characterizing vulnerabilities in feedback

control systems. In other words, studying systematic methods to synthesize deception attacks that

are undetectable by intrusion detection modules is of great importance.

The work in [13] studied synthesis of bounded sensor deception stealthy attack strategies. They

are considered stealthy since they are not detected by a given detection mechanism. However, [13]

only focuses on bounded sensor deception attacks.

The work of [23] also investigated the synthesis of sensor deception stealthy attacks. Neverthe-

less, they studied this problem in an open-loop context instead of the closed-loop context shown in

Fig. 1.1.

Similarly, the work in [16] investigated the synthesis of actuator enablement attack strategies.

In that work, the authors assume that actuator events are observable, which simplifies the problem.

1.2.4 Synthesis of supervisors resilient against deception attacks

Both of the previous topics assumed that a feedback control system already exists and it is fixed.

However, if the feedback control system is being designed, i.e., it was not implemented, then could

we design a feedback control system robust against deception attacks? Namely, we wish to design

a feedback control system that does not necessarily need an intrusion detection module since it is

provably robust by design.

In [14, 13], authors studied the synthesis of robust supervisors against sensor deception at-

tacks. Wakaiki et al. provide necessary and sufficient conditions for the existence of a supervisor

that exactly achieves a specification under sensor deception attacks [14]. On the other hand, Su

describes a synthesis procedure that obtains the supremal normal sublanguage robust against sen-
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sor deception attacks [13]. However, the solution provided by [13] only calculates the supremal

normal sublanguage and it has triple exponential complexity.

The works of [18, 17] analyze the synthesis of supervisors robust against actuator attacks.

In [17], the robustness property is enforced using obfuscation methods to enforce robustness. The

system output is obfuscated so as to deceive the attacker. Other cybersecurity problems, such as the

opacity enforcement problem [24], successfully employed this obfuscation technique. The work

of [18] enforces robustness against bounded actuator attacks using supervisory control techniques.

1.3 Organization and main contributions

The main contributions and the organization of this dissertation are summarized as follows.

Chapter II: Supervisory control theory

This chapter reviews basic notions and operations in DES such as: deterministic finite au-

tomata, parallel composition and observer automaton. We also describe the standard supervisory

control framework.

Chapter III: Supervisory control theory under sensor deception attacks [25, 26, 27, 28]

In this chapter, we first provide a general model for sensor deception attacks in the supervisory

control framework. Sensor readings in DES are modeled by possible sequences of events over an

“alphabet”, i.e., a language. Thus, a sensor deception attack is defined as the manipulation of these

sequences of events. This attack model is general and applicable to different attack goals, such as

“reach an unsafe state” or “denial of service”.

Plant - G

Attack function

Figure 1.2: Sensor deception attacks in the supervisory control framework
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The second task of this chapter is to include this attack model into the supervisory control

framework, as depicted in Fig. 1.2. Namely, we provide a way to analyze the closed-loop behavior

of the controlled system under sensor deception attack. In other words, we precisely capture the

language generated by the controlled system under attack. The subsequent chapters are developed

based on this newly described supervisory control framework.

Chapter IV: Synthesis of stealthy sensor deception attacks for supervisory control [25, 26]

Many complex systems already have existing supervisors in place; however, these supervisors

were designed without taking into account sensor deception attacks. Our main goal in this chapter

is to answer three questions: When does a sensor deception attack cause damage to the system?

How does this attack cause damage? Could this attack hide its actions? These questions enlighten

the vulnerabilities of the closed-loop system.

To answer these questions, we put ourselves into the attacker’s shoes. The attacker searches for

ways to cause damage to the plant while concealing its actions. Namely, the behavior generated

by the controlled system under attack can reach the critical region (damage) of the uncontrolled

system, as shown in Figure 1.3. The controlled behavior without attacks provides the baseline for

the stealthiness of the attacker. As long as the system observed behavior is within this baseline,

the attacker conceals its presence, i.e., the controlled system seems to be operating in normal

conditions.

Figure 1.3: Controlled system under attack

We study three specific types of attacks that are based on the interaction between the attacker

and the controlled system. The methodology developed to synthesize these attacks is inspired

by the work in [24, 29, 30]. As in these works, we employ a discrete structure to model the
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game-like interaction between the supervisor and the environment. This game-theoretical approach

provides a structure for each attack class that incorporates all successful stealthy attacks. Different

stealthy attack strategies can be extracted from these structure. By providing a general synthesis

framework, our goal is to allow CPS engineers to detect and address potential vulnerabilities in

their control systems.

Chapter V: Synthesis of optimal sensor deception attacks for stochastic supervisory con-

trol [31, 32]

Chapter IV provides qualitative results about synthesizing attack strategies, i.e., an attack strat-

egy is either successful or not. In this chapter, we investigate synthesizing sensor deception attacks

in a quantitative manner, assuming a stochastic controlled system. The stochasticity of the con-

trolled system allows a quantitative analysis of the attack strategies. This gives rise to a broader

class of attack strategies, as compared with our previous results.

As a consequence of the stochastic control system model that we adopt, it is possible to quantify

each attack strategy by the likelihood of reaching an unsafe state of the uncontrolled plant. First, we

investigate the synthesis of an attack function that generates the maximum likelihood of reaching

an unsafe state. The second problem investigated is the synthesis of attack functions that satisfy

multiple objectives (multi-objective). Namely, the attack function must reach an unsafe state with

maximum probability while minimizing a cost function based on the attacker sensor modifications.

Our solution methodology employs results from the area of stochastic control systems, more

specifically Markov Decision Processes (MDPs). First, we show how to build the “right” MDP

that captures the interaction of the attacker and the control system. Next, we show that the solution

of the two investigated problems is reducible to known problems in the MDP literature.

Chapter VI: Synthesis of supervisors robust against sensor deception attacks [27, 28]

The previous two chapters focus on the synthesis of sensor deception attacks. They consider

the attacker’s perspective given a fixed and known supervisor. Although the results in the previous

chapters show the possible vulnerabilities of closed-loop systems, they do not provide means of

“fixing” them. To “fix” any vulnerability, we must redirect our attention from the attacker to the
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supervisor. In Chapter VI, we consider the “dual” problem of synthesizing a supervisor that will be

robust against sensor deception attacks; thus, this work focuses on defense strategies. Pictorially,

the behavior generated by the feedback control system under attack should never intersect the

critical region, as shown in Figure 1.4.

Figure 1.4: Robust controlled system under attack

We present two different methodologies to solve this problem: one uses graph-game meth-

ods together with supervisory control methods whereas the other uses only supervisory control

methods. There exists a trade-off between these two methodologies. While the method relying on

supervisory control techniques is computationally more efficient than the graph-game technique,

it does not provide flexibility on the selection of the robust supervisor. This flexibility on choos-

ing a robust supervisor is feasible with the graph-game technique but the price for it is a more

computationally “expensive” method.

Chapter VII: Conclusion

In this chapter, we summarize the contributions of this dissertation. Moreover, we present

promising directions for future work.
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CHAPTER II

Supervisory control theory

2.1 Automata models and relevant operations

2.1.1 Automata models

To study the behavior of the DES, we consider the theories of languages and automata. We consider

that the system under examination is described by a language over a set of events. Each event

define a specific “change” of this system and the concatenation of events, a string, specifies how

the system evolves. For example, consider a simple road intersection where we define the events

as Cint to denote that a car entered the intersection and Cout the exiting of the car. A possible string

is CintCout, where a car entered and exited the intersection.

Formally, let Σ be a finite set of events. A language is defined as a finite set of strings over Σ.

The symbol ε expresses the empty string, i.e., a string with no event. We denote by Σ∗ the set of

all finite strings over Σ. Therefore, a language L over Σ is a subset of Σ∗, i.e., L ⊆ Σ∗.

For any string s ∈ Σ∗, we use the following notation. The prefix closure of s is the set pre(s) :=

{t ∈ Σ∗ : ∃u ∈ Σ∗.tu = s}. With an abuse of notation, we use pre(L) to denote the prefix closure

of language L ⊆ Σ∗. We denote by s[i] the ith event of s such that s := s[1]s[2] . . . s[|s|], where |s|

denotes the length of s. We denote by si the ith prefix of s, namely si := s[1] . . . s[i] and s0 := ε.

Finally, we use N to be the set of natural numbers, [n] and [n]+ to be, respectively, the set of natural

numbers and the set of positive natural numbers both bounded by n ∈ N.

Although languages, as defined, can describe systems of interest, it is cumbersome to easily

define and manipulate them. For this reason, we use the modeling formalism of automata to rep-
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resent and manipulate languages. This assumption is not without loss of generality since there

exists languages that cannot be represented as automata [33, 34]. Languages that can be repre-

sented as automata are denoted as regular languages [33]. Hereafter, the system of interest, e.g.,

cyber-physical systems, is modeled as a deterministic finite-state automaton.

Definition 2.1. A deterministic finite-state automaton (DFA) G is defined as a tuple

G := (XG,ΣG, δG, x0,G)

where XG is the finite set of states; ΣG is the finite set of events; δG : XG × ΣG → XG is the

partial transition function; x0,G ∈ XG is the initial state.

Remark 2.1. Definition 2.1 differs from the standard definition of DFA [33]. We do not define the

set of final states as in the standard DFA definition. Every state in G is final, which limits our DFA

definition to only describe prefix-closed regular languages. In DES, the set of final states describes

liveness properties, which are not used in this dissertation. Furthermore, we allow the transition

function δG to be partially defined (incomplete).

The function δG is extended in the usual manner to domain XG×Σ∗G. The language generated

by G is defined as L(G) = {s ∈ Σ∗G|δG(x0,G, s)!}, where ! means “is defined”. The enabled

function EnG : XG → ΣG is defined as the set of events enabled at a given state in XG.

EnG(x) := {e ∈ ΣG | δG(x, e)!} (2.1)

This function is extended to a set of state X ⊆ XG, i.e., EnG(x) := ∪x∈XEnG(x).

By an abuse of notation, the function δG is also extended to domain 2XG × ΣG.

δG(X, e) :=


⋃
x∈X δG(x, e) if e ∈ EnG(X)

∅ otherwise
(2.2)

Example 2.1. Figure 2.1 depicts an automaton with 9 states and 4 events. The set of events is ΣG =
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{Bint, Bout, Rint, Rout}. We also provide examples for the operators EnG and δG: EnG(1) =

{Bint, Rint} and δG({1, 2}, Rint) = {4, 5}.

Figure 2.1: Automaton G

2.1.2 Accessible part

The accessible procedure removes states from G that are unreachable from x0,G. Namely, it pro-

duces an automaton where every state in it is accessible/reachable from x0,G, i.e., there is a directed

path from x0,G to every state. Namely, it removes states from x ∈ XG such that there does not exist

s ∈ Σ∗G such that δG(x0,G, s) = x. This operation does not alter the language of the automaton of

interest as we can note from the definition of L(G).

We generalize the accessible procedure to remove states from a given set X ⊆ XG. Namely,

the generalized accessible procedure removes states X and computes the accessible part of the

remaining states in G.

Definition 2.2. GivenG andX ⊆ XG, we denote byAc(G,X) to be automaton with the accessible

part of G after deleting X . Formally, Ac(G,X) := (Xac,ΣG, δac, x0,G) where

Xac = {x ∈ XG \X | ∃s ∈ Σ∗G. δG(x0,G, s) = x ∧ ∀i ∈ [|s|]. δG(x0,G, s
i) /∈ X}

δac = δG |Xac×ΣG→Xac
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The notation Ac(G) is used when X = ∅.

Example 2.2. Based on Fig. 2.1, Figure 2.2 depicts automaton Ac(G, {2, 5}).

Figure 2.2: Ac(G, {2, 5})

2.1.3 Parallel composition

Parallel composition describes the interconnectivity of a set of automata. It describes the joint

behavior of automata that operate concurrently. The coupling is performed based on the set of

events of each automaton. Events that only belong to one automaton are ignored by the other au-

tomata, i.e., they executed asynchronously. On the other hand, events that belong to more than one

automaton must be executed simultaneously. In summary, “shared” events occur synchronously

while “private” events act asynchronously.

Definition 2.3. Given automata G1, G2, the parallel composition of G1 and G2 is the automaton

G1||G2 := Ac((XG1 ×XG2 ,ΣG1 ∪ ΣG2 , δG1||G2 , (x0,G1 , x0,G2))) where

δG1||G2((x1, x2), e) :=



(δG1(x1, e), δG2(x2, e)) if e ∈ EnG1(x1) ∩ EnG2(x2)

(δG1(x1, e), x2) if e ∈ EnG1(x1) \ ΣG2

(x1, δG2(x2, e)) if e ∈ EnG2(x2) \ ΣG1

undefined otherwise
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2.1.4 Projection map

There might be events in the system of interest that cannot be “sensed/observed” due to limited

sensing capabilities. For example, the event Cout could be unobservable if there is no sensor to

observe a car exiting the intersection. For this reason, we define a projection map for strings that

projects strings from a larger set of events, Σl, to a smaller set of events, Σs. Intuitively, the

projection map erases the events not in Σs from a given string.

Definition 2.4. Given the set of events Σl and Σs ⊆ Σl, the projection function PΣlΣs : Σ∗l → Σ∗s

is defined as:

PΣlΣs(ε) := ε

PΣlΣs(e) :=

 e if e ∈ Σs

ε if e ∈ Σl \ Σs

PΣlΣs(se) := PΣlΣs(s)PΣlΣs(e)

The inverse projection P−1
ΣlΣs

: Σ∗s → 2Σ∗l is defined as P−1
ΣlΣs

(t) := {s ∈ Σ∗l |PΣlΣs(s) = t}.

Moreover, PΣlΣs and P−1
ΣlΣs

are extended to languages by simply applying the projection map for

each string in the language.

2.1.5 Observer

As we mentioned, events in the system of interest might not be observed due to limited sensing

capabilities. We characterize this limited sensing by partitioning the event set into the set of ob-

servable events, denoted by Σobs, and the set of unobservable events, denoted by Σuobs. In other

words, our system of interest is modeled by automaton G whose set of events ΣG = Σobs ∪ Σuobs

and Σobs ∩ Σuobs = ∅.

The observer automaton of G characterizes the projected language of G with respect to ΣG and

Σobs, i.e., L(Obs(G)) = PΣGΣobs(L(G)). To define the observer automaton, we need to define the
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unobservable reach function (UR). The unobservable reach of a set of state X ⊆ XG is the set of

all states that can be reached from X via unobservable strings. In words, if we start from any state

in X , then we could be in any state of UR(X) via unobservable strings.

UR(X) := {x ∈ XG | (∃y ∈ X)(∃s ∈ Σuobs).δG(y, s) = x}

Definition 2.5. Given automaton G with observable events Σobs ⊆ ΣG, the observer automaton of

G is Obs(G) := Ac((2XG ,Σobs, δObs(G), UR({x0,G})) where

δObs(G)(X, e) :=

 UR(δG(X, e)) if e ∈ EnG(X) ∩ Σobs

undefined otherwise
(2.3)

Note that if we start from any state in X , then δObs(G)(X, e) defines the set of states that G

could be, after it observes event e. In words, the set of state where G could be, given what we have

observed, i.e., observable event.

Example 2.3. Let us provide an example of the Observer automaton using the automaton shown

in Fig. 2.1. We assume that Σobs = {Rint, Rout}. The observer automaton is shown in Fig. 2.3.

Figure 2.3: Observer automaton
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2.2 Supervisory control theory

We consider the supervisory layer of a feedback control system, as depicted in Fig. 2.4, where

the uncontrolled system (plant) is modeled as a DFA in the discrete-event modeling formalism.

Namely, the plant is modeled by automatonG = (XG,Σ, δG, x0,G)1. Language L(G) is considered

as the uncontrolled system behavior since it includes all possible executions of G.

Plant - G

P��obs

Figure 2.4: Supervisory control framework

In the context of the supervisory control theory (SCT) of DES [35], system G is considered as

the plant that needs to be controlled in order to satisfy given specifications. In this framework, the

plant G is controlled by a supervisor that dynamically enables/disables events to satisfy the given

specification. Intuitively, it is assumed that the supervisor observes the events generated by the

plant and decides which events are allowed to be executed next.

In the intersection example, the supervisor receives strings such as CintCout. Assume that it

is unsafe to allow two cars in the intersection at the same time, i.e., string CintCint is unsafe.

Therefore, a supervisor would disable event Cint to occur until it knows the current car in the

intersection has left (Cout). The controlled language for this system resembles a intersection with

a stop sign where Cint events are immediately followed by Cout events, e.g., CintCoutCintCout.

Due to lack of actuation over G, it might not be possible to disable some events in Σ. This

problem is addressed by partitioning Σ into the set of controllable events and the set of uncon-

trollable events, Σctr and Σuctr, respectively. Therefore, the set of admissible control decisions is

1We have dropped the subscript G from the set of events of G. Hereafter, Σ is the set of events of plant G unless
we state differently.
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defined as:

Γ = {γ ⊆ Σ | Σuctr ⊆ γ}

Admissibility guarantees that a control decision will never disable an uncontrollable event.

In addition, when the system is partially observed due to limited sensing capabilities of G, the

event set is also partitioned into Σ = Σobs∪Σuobs as discussed in the previous section. In this case,

the supervisor only takes its actions after receiving an observable event. For this reason, Fig. 2.4

depicts the projection map PΣΣobs .

Formally, a partially observation supervisor is a (partial) function

S : Σ∗obs → Γ

The resulting controlled behavior is a new DES denoted by S/G, resulting in the closed-loop

language L(S/G). Basically, S/G defines feasible strings of G allowed by the supervisor S. This

closed-loop language is defined recursively as follows:

ε ∈ L(S/G)

s ∈ L(S/G) and se ∈ L(G) and e ∈ S(PΣΣobs(s))⇔ se ∈ L(S/G)

Normally, a supervisor S is encoded by an automaton R known as the supervisor realization,

where every state encodes a control decision, see, e.g., [34]. Throughout our work, we use inter-

changeably supervisor S and its realization R. Based on the supervisor realization R, the closed-

loop language can be easily obtained by parallel composing R and G, i.e., L(R/G) = L(R||G).

Example 2.4. We use the collision avoidance problem of vehicles at an intersection as running

example throughout this thesis. We have two roads with one car in each road approaching an

intersection as in Figure 2.5(a). The cars must cross the intersection without colliding with each

other, or equivalently, both cannot be at the intersection at the same time. This system is modeled

by the automaton G shown in Fig. 2.5(b).
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(a) Intersection (b) Intersection model

Figure 2.5: Intersection model

First, let us assume that every event is observable but the supervisor can only control when

a car enters the intersection, i.e., Σ = Σobs and Σctr = {Bint, Rint}. The supervisor realization

R1, depicted in Fig. 2.6(a), guarantees that the specification is met. Next, we consider that Σctr =

{Rint, Bint} and Σobs = {Rint, Rout}. A supervisor realizationR2 that guarantees the specification

is depicted in Fig. 2.6(b).

(a) Supervisor R1 (b) Supervisor R2

Figure 2.6: Supervisors

The closed-loop language L(R1/G) is easily defined by inspection since R1 is a copy of G

without state 5. Therefore, L(R1/G) is all strings inG that do no reach state 5. On the other hand,

the closed-loop language L(R2/G) is more restrictive than L(R1/G). This less permissiveness is

the price paid by the partial observation scenario we have assumed. L(R2/G) is described by the
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automaton in Fig. 2.7.

We also recall the notions of controllability, observability, and normality for a prefix-closed lan-

guage K ⊆ L(G). These are properties that the closed-loop behavior must satisfy. For example,

controllability ensures that the supervisor does not disable uncontrollable events while observabil-

ity guarantees that the supervisor takes consistent control decision with respect to its observation.

Normality is a stronger property that ensures observability. We say the language K is

• controllable w.r.t. to Σctr, if KΣuctr ∩ L(G) ⊆ K;

• observable w.r.t. to Σobs and Σctr, if (∀s ∈ K, ∀e ∈ Σctr : se ∈ K)[P−1
ΣΣobs

(PΣΣobs(s))e ∩

L(G) ⊆ K];

• normal w.r.t. to Σobs and Σctr, if K = P−1
ΣΣobs

(PΣΣobs(K)) ∩ L(G).

Figure 2.7: R2||G

We complete this section by defining two useful functions. The unobservable reach of a set of

states X ⊆ XG under the subset of events γ ⊆ Γ is given by:

URγ(X) :=
⋃

s∈(Σuobs∩γ)∗

δG(X, s) (2.4)

Given L ⊆ L(G), the set of all possible states in G reachable from its initial state via a string with

19



the same projection as s ∈ L is given by:

ReG(s, L) :=
⋃
t∈L:

PΣΣobs
(s)=PΣΣobs

(t)

δG({x0,G}, t) (2.5)
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CHAPTER III

Supervisory control under sensor deception attacks

3.1 Introduction

In our intersection example, the supervisor R guarantees that the two cars do not collide by func-

tioning similarly as a stop sign. If the red car enters the intersection (Rint) before the blue car,

then the blue car must wait until the intersection is empty. However, if for an unknown reason

the supervisor does not receive the event Rint, then it believes that the intersection is empty and

allows the blue car to enter as well. It suffices for one incorrectly transmitted event to cause a

car collision when this supervisor R is deployed. The framework described in Chapter II does not

allow analysis of the closed-loop system under unreliable conditions since it was not defined as

such.

Although these unreliable conditions can be originated by different aspects, e.g., unreliable

communication, unreliable models, our work focuses specifically on adversarial sensor communi-

cation between the plant and the supervisor as depicted in Fig. 3.1. An attacker tampers the event

communication between the plant and the supervisor. This type of attacks is known as sensor de-

ception attacks. In this chapter, we enhance the supervisory control framework to include sensor

deception attacks.

First, we provide a general model for sensor deception attacks in the SCT. Sensor readings

in DES are modeled as strings of events; and thus a sensor deception attack is modeled by string

editions. Intuitively, an edit function performs these editions based on its memory and the events

executed by the plant. This attack model is general and applicable to different attack goals, such

as “reach an unsafe state” or “denial of service”.
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Plant - G

Attack function

Figure 3.1: Sensor deception attacks in the supervisory control framework

The second task of this chapter is to incorporate this attack model to the supervisory control

framework. Namely, we provide a way to analyze the closed-loop behavior of the controlled system

under sensor deception attack. In other words, we precisely capture the language generated by the

controlled system under attack.

The remainder of this chapter is organized as follows. A general sensor deception attack model

is provided in Section 3.2. In Section 3.3, the closed-loop behavior of the controlled system under

sensor deception attack is defined. We discuss different classes of attack functions in Section 3.4.

For completeness purposes, Section 3.5 defines the closed-loop behavior using languages instead

of automata. Finally, we conclude this chapter in Section 3.6.

Related work

Several recent works leveraged the concepts and techniques of SCT of DES to study cyber-security

issues in CPS. The works in [20, 11] on intrusion detection and prevention of cyber-attacks using

discrete event models focused on modeling the attacker as faulty behavior. Even though both

works described deception attacks in the SCT framework, their attack model is intertwined with

the plant and the supervisor models which makes it inflexible. Nevertheless, their attack definition

is intuitive and easy to manipulate using automata operations. Our approach differs from theirs by

first introducing a sensor deception attack model that is independent of the plant and the supervisor

which introduces flexibility to the supervisory control framework under attack. Second, we provide

a method to introduce this flexibility into their attack model so that we also leverage automata

operations.
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The bounded sensor deception attack model introduced in [13] is similar to the one adopted

in our work. The attack model is independent of the plant and the supervisor. This model differs

from our approach since it only covers bounded attacks, i.e., the attacker has a fixed bound on

the number of modifications it can perform between plant executions. Our attack model covers

bounded and unbounded attacks. An additional difference between our approach and the approach

in [13] is the way the dynamical interaction between the attacker and the supervisor is captured.

In [14], the authors presented a study of supervisory control of DES under sensor deception

attacks. Their attack model generalizes the one introduced in [13] since it does not impose a bound

on the attacker. Our attack model differs from theirs in one aspect: the attacker memory. While in

[14] the attacker has access to all previous events executed by the plant, it does not “remember”

its own modifications. This difference allows us to precisely define the behavior generated by the

interaction between the plant, the supervisor and the attack model.

Since the focus of our work is sensor deception attacks, our model differs from the attack

models of actuator deception attacks described in [16]. Several prior works considered robust

supervisory control under different notions of robustness [36, 37, 38, 39, 40], but they did not

study robustness against attacks. In the cyber-security literature, some works have been carried

out in the context of discrete event models, especially regarding opacity and privacy or secrecy

properties [41, 42, 43, 24, 44]. These works are concerned with studying information release

properties of the system, and they do not address the impact of an intruder over the physical parts

of the system.

3.2 A general sensor deception attack model

3.2.1 Attack function

As illustrated in Fig. 3.1, the attacker intervenes in the communication channel between the plant’s

sensors and the supervisor. It has the ability to edit some of the sensor readings in this communica-

tion channel, by inserting fictitious events or deleting the legitimate events. Moreover, we denote
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as the compromised event set the events that the attacker can manipulate. The attacker performs

event editions based on its memory and the events executed by the plant. Informally, we have that

the attack function fA can be defined as fA : memory × event observation → edit string. The

attacker replaces the newly observed event by the edit string based on its memory and the observed

event.

Let us formalize our intuitive attack function description by giving formal definitions for the

compromised event set, memory, event observation and edit string. First, we assume that

the attacker observes all events in Σobs that are executed by G, i.e., the attacker has the same

observable capabilities as the supervisor. Therefore, the event observation domain is Σobs. For

generality purposes, we assume that the compromised event set, denoted as Σsen, is a subset of the

observable events, i.e., Σsen ⊆ Σobs. The attacker has the ability of inserting Σsen events in the

communication channel or deleting Σsen events from this channel.

To formally introduce the domains for memory and edit string, we first define two new sets

of events. The sets Σins = {ins(e) | e ∈ Σsen} and Σdel = {del(e) | e ∈ Σsen} are defined as the

sets of inserted and deleted events, respectively. We assume that ins(e) and del(e) are not defined

in Σ for any e ∈ Σsen. These sets represent the actions of the attacker, i.e., ins(e) (del(e)) denotes

inserting fictitious (deleting legitimate) event e ∈ Σsen in (from) the communication channel. For

convenience, we define Σatt = Σins ∪ Σdel as the set of attacker events and Σall = Σ ∪ Σatt as the

set of all events in this control system.

Based on these new sets, we define the two remaining missing variable domains. In the case

of memory, we assume that we have an attacker that remembers everything it has seen, including

its own edits. For this reason, memory is defined to be strings in (Σobs ∪ Σatt)
∗. In respect to

the edit string, we assume that the attacker might have more than one option in its hand, i.e.,

a nondeterministic edition. Moreover, the attacker outputs, in general, strings from the domain

(Σobs ∪ Σatt)
∗. Therefore, the domain for edit string is 2(Σobs∪Σatt)∗ , the set of sets of edit strings.

Each element in 2(Σobs∪Σatt)∗ is a set of edit strings.

Intuitively, the attacker is triggered by a new observation unless the plant has been just ini-
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tialized. The initialization of the plant can trigger the attacker to insert fictitious events without

observing an event. Other than this initialization case, the attacker is always triggered by a new

event observation. Whenever the attacker receives a new event, there are two cases: the event is

not compromised, not in Σsen; the event is compromised, in Σsen. If the event is not compromised,

then the attacker must not delete the event from the channel, i.e., the event must reach the supervi-

sor. Nonetheless, observing this event might trigger the attacker to insert fictitious events after the

observation. On the other hand, if the event is compromised, then the attacker can choose to delete

or not the event from the channel. Again, the observation of this event might trigger the attacker to

insert fictitious events. Formally, we model an attacker as a nondeterministic string edit function.

Definition 3.1. Given a system G and the compromised event set Σsen ⊆ Σobs, an attacker is

defined as a (potentially partial) function fA : (Σobs ∪ Σatt)
∗ × (Σobs ∪ {ε}) → (2(Σobs∪Σatt)∗ \ ∅)

such that fA satisfies the following constraints:

1. fA(ε, ε) ⊆ Σins
∗ and ∀s ∈ ((Σobs ∪ Σatt)

∗\{ε}) : fA(s, ε) = {ε};

2. ∀s ∈ (Σobs ∪ Σatt)
∗, e ∈ Σobs\Σsen : fA(s, e) ⊆ {e}Σins

∗;

3. ∀s ∈ (Σobs ∪ Σatt)
∗, e ∈ Σsen: fA(s, e) ⊆ {e, del(e)}Σins

∗.

The function fA captures a general model of sensor deception attack. Given the past edited

string s ∈ (Σobs ∪ Σatt)
∗ and observing a new event e ∈ Σobs executed by G, the attacker may

choose to edit e based on Σsen and replace e by selecting an edited suffix from the set fA(s, e). The

first case in the above definition gives an initial condition for an attack. The second case constrains

the attacker from erasing e when e is outside of Σsen. Since the event e is not compromised, it

cannot be deleted by the attacker. However, observing event e might trigger the attacker to insert

event after the supervisor observes e. Lastly, the third case in Definition 3.1 is for e ∈ Σsen; the

attacker can edit the event to any string in the set {e, del(e)}Σins
∗. In this case, the attacker can

choose to delete or not event e since it is a compromised event. Again, after observing this event

might trigger the attacker to insert fictitious events.

25



As mentioned before, fA only defines the possible edited suffixes based on the last observed

event and the edit history. It is interesting to define a function that defines the possible edited

strings based on the executed string. Formally, the string-based edit (potentially partial) function

f̂A : Σ∗obs → 2(Σobs∪Σatt)∗ is defined as

f̂A(se) := {ut ∈ (Σobs ∪ Σatt)
∗ | u ∈ f̂A(s) ∧ t ∈ fA(u, e)}

for any s ∈ Σ∗obs and e ∈ Σobs, and

f̂A(ε) := fA(ε, ε).

The function f̂A(s) returns the set of possible edited strings for a given string s ∈ Σ∗obs. Note that,

in general, f̂A is a partial function, and f̂A(s) may only be defined for selected s ∈ Σ∗obs.

Lemma 3.1. For any s ∈ Σ∗obs, then f̂A(s) 6= ∅.

Proof. We prove this result by induction on the length of s ∈ Σ∗obs.

Basis: by the definition of fA, we have that fA(ε, ε) 6= ∅. Therefore, f̂A(ε) 6= ∅.

Induction hypothesis: assume that f̂A(s) 6= ∅ for |s| = n.

Induction step: let s ∈ Σ∗obs such that all s such that |s| = n and e ∈ Σobs. The induction

hypothesis provides that f̂A(s) 6= ∅, which implies that there exists u ∈ f̂A(s). By the definition

of fA, fA(t, e) 6= ∅ for any t ∈ (Σobs ∪ Σatt)
∗. Therefore, f̂A(se) 6= ∅.

3.2.2 Attack function as an automaton

In order to have effective ways of manipulating the attack function, we assume that fA has been

encoded into a DFA A = (XA,Σobs ∪ Σatt, δA, x0,A). This assumption allows us to define the

closed-loop behavior using automata operations with A. However, we lose generality since the

attacker’s memory must be a regular language over (Σobs ∪ Σatt)
∗. This assumption is similar to

the assumption of a supervisor realization.

Given the automatonA that encodes an fA, then the function fA is extracted fromA as follows:
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∀s ∈ L(A) and e ∈ Σobs, fA(s, e) = {t ∈ {e, del(e)}Σins
∗ | δA(x0,A, st)!}, fA(ε, ε) = {t ∈ Σins

∗ |

δA(x0,A, t)!}, and fA(s, e) = {e} for all s ∈ (Σobs ∪ Σatt)
∗ \ L(A) and e ∈ Σobs.

This formulation provides a simple way to handle attack functions and it characterizes the

behavior of the attacker. It also provides a way to define specific attackers that are more constrained

than the usual constraints of Definition 3.1, i.e., when some prior knowledge about the attacker is

available. In other words, the automaton A can encode different attack strategies, e.g., replacement

attack [14], bounded attack [13], etc. One important attack strategy for this problem is the all-

out attack strategy introduced in [11, 12]. In this model, the attacker could attack whenever it is

possible. We return to this discussion about attack constraints after we describe the closed-loop

behavior under attack.

Example 3.1. Let Σ = Σobs = {a, b} be the set of events in the system G and let Σsen = {a} be

the compromised event set. We define fA1 as: fA1(ε, ε) = Σ∗ins, fA1(s, a) = {a, del(a)}Σ∗ins and

fA1(s, b) = {b}Σ∗ins for any s ∈ Σ∗all. Namely, the attacker can perform all possible actions that

satisfy the constraints in Def. 3.1. This attacker is the “all-out” attacker and the automaton A1

depicted in Fig. 3.2(a) encodes fA1 . Although the all-out strategy is a nondeterministic strategy

since the attacker can try all possible combinations of attacks, its automaton representation is a

deterministic automaton. Automaton A2 shown in Fig. 3.2(b) encodes a one sensor deletion attack

strategy.

0

a, ins(a),

del(a), b

(a) A1

0

b a, b

del(a)

(b) A2

Figure 3.2: Attack functions
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3.3 The controlled behavior under sensor deception attack

The output of the attack function fA as defined in Def. 3.1 is inconsistent with the supervisor input.

We have defined it in this manner on purpose so that we can define the attack function as general

as possible. There are two problems that we have to fix in order to define the closed-loop behavior:

the attacker’s nondeterministic choice and matching both the input and the output of fA to the

output domain of G and input domain of R, respectively.

First, we deal with the attacker’s nondeterministic choice in fA. This is dealt similarly as in the

plant’s case. At any given state of G, there might be more than one event that the G can execute,

e.g., either the red or the blue car enter the intersection from the initial state of G in Fig. 2.5. The

plant selects one of the possible decisions in order to evolve. Similarly, we assume that the attacker

selects one of the possible decisions from the possible choices that fA gives. In Example 3.1, the

attacker chooses one of the strings in fA1(ε, ε) = Σ∗ins at its initial state, e.g., it might choose ε (no

insertion). After this decision, the attacker updates its memory based on its selection and awaits

for a new observation.

For the second issue instead of projecting the events in Σatt to Σobs, we decide to augment both

the plant G and the supervisor R such that they include the attacker actions. Namely, we lift the

closed-loop language space from Σ to Σall. This new framework gives us leverage in the analysis

of the closed-loop system since it is defined over events in Σall. The behavior added in the lifting

process only reflects the attacker action and it does not add infeasible behavior with respect to G.

Attacked

Attack function

Plant - Ga

Figure 3.3: Augmented supervisory control framework under sensor deception attack

The supervisory control framework depicted in Fig. 3.1 is substituted by the one depicted in

Fig. 3.3, whereGa andRa are the augmented versions ofG andR. We will define these augmented
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versions of G and R shortly. Before their definition, we define three projection operator that help

us analyze the lifted behavior in Σall. Intuitively, these operators project the attack actions, Σatt, to

how they are executed by the plant, observed by the supervisor, or projected to Σsen.

Definition 3.2. P S : Σall → Σ, PG : Σall → Σ andM : Σall → Σ are natural projections that

treat events in the following manner:

P S(ins(e)) := e, e ∈ Σsen; P S(del(e)) := ε, e ∈ Σsen; P S(e) := e, e ∈ Σ (3.1)

PG(ins(e)) := ε, e ∈ Σsen; PG(del(e)) := e, e ∈ Σsen; P S(e) := e, e ∈ Σ (3.2)

M(ins(e)) =M(del(e)) := e, e ∈ Σsen; M(e) := e, e ∈ Σ (3.3)

The superscript S determines that P S describes how the supervisor observes the modified

events. The supervisor observes inserted events as if they are legitimate observation, while it does

not observe deleted events since they were deleted from the channel. Namely, given an event, P S

outputs the legitimate event if the event was inserted by the attacker, it outputs the empty string if

the event was deleted by the attacker, and it outputs the legitimate event otherwise. Similarly, the

superscript G is used because PG describes how the plant executed the modified events. Insertions

are fictitious events that do not occur in G, therefore they are project to the empty string by PG.

On the other hand, deletion events are events executed by G, but deleted by the attacker. For this

reason, PG projects deleted events to legitimate events. Lastly, the maskM removes the operators

ins or del.

3.3.1 Attacked plant

The attacked plant is obtained by augmenting the plant G with the possible actions of the attacker,

i.e., to augment G with events in Σatt. In order words, Ga is a copy of G with additional transitions

with respect to Σatt. In fact, Ga contains all possible attacker actions with respect to Σatt and G.

We start by introducing insertion events to the attacked plant. In the attacked plant, the events

ins(e) simulate the insertion ability of the attacker. Since these events are fictitious events that
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might be introduced in the communication channel, they cannot alter the state of the plant G. For

this reason, the insertion events ins(e) are defined to be self-loops in Ga. Every state of Ga has

self-loops with all insertion events.

On the other hand, the events del(e) simulate the deletion ability of the attacker. An event can

only be deleted by the attacker, if this event actually occurred in the plant. For this reason, these

events are defined in parallel to transitions with events in Σsen. Formally, we define the attack plant

as following:

Definition 3.3. Given G and Σsen, we define the attacked plant Ga as:

Ga := (XGa := XG,Σall, δGa , x0,Ga := x0,G) where

δGa(x, e) :=



δG(x, e) if e ∈ Σ and e ∈ EnG(x)

x if e ∈ Σins

δG(x, e′) if e = del(e′) and e′ ∈ EnG(x)

undefined otherwise

(3.4)

Example 3.2. Let us construct the attacked plant Ga for the plant of our intersection example

(Example 2.4) when Σsen = {Rint}. Ga is depicted in the right figure in Fig. 3.4 where events in

Σatt are in red. For convenience, the model of G is shown in the left of Fig. 3.4. Note that the states

in Ga are a copy of the ones in G.

Figure 3.4: Plant of the intersection example (left) and its attacked plant (right) for Σsen = {Rint}
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We can show that we can extract the language ofG fromGa by simply using the projection PG.

This result follows from the definition of Ga and PG. Although this is a straightforward result, it

shows that Ga is exactly a copy of G augmented with attacker actions.

Proposition 3.1. L(G) = PG(L(Ga))

3.3.2 Attacked supervisor

The construction of Ra is similar to the construction of Ga. However, insertion and deletion events

affect the supervisor in the opposite manner as they affect the plant as we saw in the definition of

P S . Namely, insertion events are seen as legitimate events where deletion events are not observed

by the supervisor.

The attacked supervisor Ra is a copy of R with additional transition with events in Σatt. Dele-

tion events del(e) are defined to be self-loops in the states of Ra where the legitimate events

e ∈ Σsen are defined. If the event is deleted by the attacker, then it must have been enabled by the

supervisor first. Moreover, they are self-loops since the supervisor does not receive any informa-

tion, i.e., it remains in the same state.

On the other hand, insertion events ins(e) are defined in parallel to their legitimate events

e ∈ Σsen. In other words, insertion events are seen by the supervisor as legitimate events.

Since we have not yet constrained the attack function, it is possible that the attacker inserts an

event that is not enabled by the supervisor. For simplicity, we assume that the supervisor simply

“ignores” insertions of events that are not enabled by the current control decision. We revisit this

assumption later in this chapter as well as in Chapter IV.

Definition 3.4. Given R and Σsen, we define the attacked supervisor as:

Ra := (XRa := XR,Σall, δRa , x0,Ra := x0,R) where
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δRa(x, e) :=



δR(x, e) if e ∈ Σ and e ∈ EnR(x)

x if e ∈ Σdel andM(e) ∈ EnR(x)

δR(x, P S(e)) if e ∈ Σins andM(e) ∈ EnR(x)

x if e ∈ Σins andM(e) 6∈ EnR(x)

undefined otherwise

(3.5)

Remark 3.1. Although Ra is a modification of R, this modification does not alter the control

decisions taken by R. In other words, the plant G is still supervised by the supervisor R. Ra is

defined such that it takes into account the modifications made by the attacker.

Example 3.3. Let us construct the attacked supervisorRa for the supervisorR1 of our intersection

example (Example 2.4) when Σsen = {Rint}. Ra is depicted in the right figure in Fig. 3.5, where

events in Σatt are in red. Supervisor R1 is shown in the left of Fig. 3.5. Note that states in Ra are

a copy of the ones in G.

Figure 3.5: Supervisor of the intersection example (left) and its attacked supervisor (right) for
Σsen = {Rint}

Since we added the assumption that the attacked supervisorRa ignores insertion events that are

disabled in R, we cannot provide a result as Prop. 3.1.
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3.3.3 Controlled language under sensor deception attack

All the ingredients to define the closed-loop language of the supervisory control framework under

sensor deception attacks (Fig 3.3) are formally defined. We now need to compose them in order to

formally define the closed-loop language. We use the parallel composition operator (Def. 2.3) to

compose Ga, Ra, and A.

Definition 3.5. GivenRa, Ga andA, the closed-loop language of the attacked system under sensor

deception attacks is defined by L(Ga||A||Ra). The closed-loop language executed by G is defined

by L(SA/G) := PG(L(Ga||A||Ra)).

Example 3.4. Let us obtain the closed-loop language of the attacked system our intersection ex-

ample (Example 3.2) where Σsen = {Rint}. We use the attacked supervisor constructed in Ex-

ample 3.3. First, we assume that A1 is the all-out attacker with respect to Σsen = {Rint}. Fig-

ure 3.6(a) depicts the automaton Ga||A1||Ra. In this case, we can see that the attacker can suc-

cessfully reach the critical state 5 via the string s = del(Rint)Bint. Note that, δG(x0,G, P
G(s)) = 5

which in fact reaches the critical state inG. However, this attack strategy might lead to non-critical

deadlock states, states 10 and 11.

Figure 3.6(b) depicts the automaton Ga||A2||Ra where A2 is the one-deletion attacker con-

structed as in Example 3.1. This attack strategy can also successfully reach the critical state 5 via

string del(Rint)Bint.

3.4 Different classes of attack functions

3.4.1 All-out attacker

As we already mentioned, the all-out attacker is an important attack strategy even though it is a

simple one. The word “strategy” is misleading since the all-out attack strategy just means all possi-

ble attacker actions. In this strategy, we enumerate all possible actions that the attacker can perform

at any given time. Nevertheless, it does not mean that the attacker will indeed perform them. This
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(a) Ga||A1||Ra (we omitted the self-loops with
ins(Rint))

(b) Ga||A2||Ra

Figure 3.6: Closed-loop attacked systems

describes an attacker that is only constrained by the constraints defined in Def. 3.1. Note that, the

construction of Ga and Ra depicts the “all-out” strategy, i.e., L(Ga||Ra) = L(Ga||Aall-out||Ra).

This attack strategy becomes useful when there is not much information about the attacker

constraints. When we investigate defense techniques in Chapter VI, the all-out attack strategy

becomes essential to show general robutness properties. This strategy was first introduced in [11]

to investigate attack detection properties in attacked systems. We refrain ourselves to continue this

discussion and return to it later in Chapter VI.

3.4.2 Interruptible attacker

Until this point, we have not constrained the attacker’s behavior with the supervised system. We

have assume that any attack modification the attacker decides to perform is successfully applied.

However, the supervised system is a dynamic entity and this “unconstrained” attacker is too pow-

erful. For this reason, we introduce the subclass of sensor deception attacks called interruptible

attacks. We assume that the plant can interrupt the attacker’s modification at any point. This con-

straint is intuitively depicted in Fig. 3.7 where the attacker must have a contingency strategy when

interrupted by the plant.

Formally, we define interruptible attack strategies as:

Definition 3.6. An attack function fA is an interruptible attack function if (∀s ∈ (Σobs ∪
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I want to insert 5 events
before the plant reacts

Plan

Execution

Plant executed
an event

Oops! The plant executed

an event before I was done.

What should I do?

I need a contingency plan

Figure 3.7: Interruptible attacker strategy

Σatt)
∗)(∀e ∈ Σobs) [t ∈ fA(s, e)⇒ pre(t)\{ε} ⊆ fA(s, e)].

3.4.3 Unbounded deterministic attacker

Contrary to the interruptible attack strategies, we now assume that the attacker has “time” to per-

form any unbounded modification. In other words, the system does not execute any event until the

attacker finishes its modification. Such an attack function is defined as an unbounded deterministic

attack function.

Definition 3.7. An unbounded deterministic attack function is an attack function fA s.t.
(
∀s ∈

(Σobs ∪ Σatt)
∗)(∀e ∈ Σobs)[fA(s, e)!⇒ |fA(s, e)| = 1].

3.4.4 Bounded deterministic attacker

The previous scenario considers a powerful attacker, and it might be unrealistic in many real ap-

plications. In this case, the second scenario limits the first one by considering only bounded deter-

ministic attack functions. In other words, we assume that the system does not react up to a bounded

number of modifications made by the attacker. Bounded deterministic attack functions are defined

next.
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Definition 3.8. Given NA ∈ N+, a bounded deterministic attack function is an attack function fA

s.t.
(
∀s ∈ (Σobs∪Σatt)

∗)(∀e ∈ Σobs) [(fA(s, e)!⇒ |fA(s, e)| = 1)∧(t ∈ fA(s, e)⇒ |sA| ≤ NA)].

3.4.5 Other attackers

Although there are other attacker constraints that we can introduce, we limit ourselves to these four

subclasses of sensor deception attack strategies. Definition 3.1 models in a general manner sensor

deception attacks in the framework of supervisory control theory.

3.5 Controlled behavior under sensor deception attack - lan-

guage definition

In Section 3.3, we defined the closed-loop behavior of the controlled system under sensor deception

attack with the assumption that the attacker is encoded via automaton A. For completeness of this

chapter, we provide this closed-loop behavior without this assumption. This section is mainly

for completeness purposes and it will not be used in the following chapters. The reader can skip

this section without any consequences since we only use the more intuitive definition described in

Section 3.3.

The presence of the attacker induces a new controlled language that needs to be investigated.

More specifically, S, f̂A, and P S together effectively generate a new supervisor SA for system G.

Formally, we define SA : Σ∗obs → 2Γ as SA(s) = [SP ◦ P S ◦ f̂A(s)]. Note that f̂A(s) returns

the set of modified strings and S assigns a control decision to each projected modified string; S

returns the set containing all these control decisions. An equivalent definition is SA(s) = {γ |

∃sA ∈ f̂A(s) s.t. γ = S(P S(sA))}. Defining the supervised language based on nondeterministic

control decisions is cumbersome and complicated [37]. Nonetheless, we can avoid this difficulty

by analyzing the language generated by the events in Σ ∪ Σatt. For this reason, we define the

function SdA = SP ◦ P S to be the deterministic part of SA. The function SdA is used when the

attacker has decided which modified string to send to the supervisor. Based on fA and SdA the
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language generated by SA/G is defined recursively as follows:

1. ε ∈ L(SA/G)

2.
(
t1 ∈ L(G) ∩ Σ∗uobs(Σobs ∪ {ε})

)
∧
(
∃t2 ∈ fA(ε, ε) and i1 ≤ i2 ≤ . . . ≤ i|t1| ∈ N|t2| s.t.

∀j ∈ N|t1| : t1[j] ∈ SdA(t
ij
2 )
)
∧
(
PΣΣobs(t1) 6= ε⇒ i|t1| = |t2|

)
⇔ t1 ∈ L(SA/G)

3.
(
s ∈ L(SA/G)

)
∧
(
s[|s|] ∈ Σobs

)
∧
(
st1 ∈ L(G) where t1 ∈ Σ∗uobs(Σobs ∪ {ε})

)
∧
(
∃t3 ∈

f̂A(PΣΣobs(s
|s|−1)), ∃t2 ∈ fA(t3, s[|s|]) and i1 ≤ i2 ≤ . . . ≤ i|t1| ∈ N|t2| s.t. ∀j ∈ N|t1| :

t1[j] ∈ SdA(t3t
ij
2 )
)
∧
(
PΣΣobs(t1) 6= ε⇒ i|t1| = |t2|

)
⇔ st1 ∈ L(SA/G)

The above definition captures the intricate interaction between plant, supervisor and attacker. Two

important concepts are applied in this definition. First, the supervisor issues a control decision

whenever it receives an observable event. An observable event can be either a legitimate event or

a fictitious event inserted by an attacker. Second, the plant can execute any unobservable event

enabled by the current control decision. To demonstrate how to compute L(SA/G), we illustrate

condition (2) in Figure 3.8.

(a) Only unobservable events (b) Last event is observable

Figure 3.8: Demonstration of Condition (2)

Assume that uo1, uo2 ∈ Σuobs, ob ∈ Σobs and uo1uo2, uo1uo2ob ∈ L(G). Figure 3.8(a) describes

how t1 = uo1uo2 ∈ L(SA/G). The string uo1uo2 belongs to L(SA/G) whenever there exists

a string t2 ∈ fA(ε, ε) and indices i1 ≤ i2 ∈ N such that uo1 ∈ SdA(ti12 ) and uo2 ∈ SdA(ti22 ).

Similarly, Fig. 3.8(b) describes how uo1uo2ob ∈ L(SA/G). If we use the same indices i1, i2 as

before, then we just need to test if ob ∈ SdA(ti32 ) = SdA(t2). In the case of the last event being

observable, we assume that the attacker has finished its entire modification t2. On the other hand,

we assume that unobservable events can be executed based on control decisions of string prefixes
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of t2. Condition (3) applies the same mechanism of Condition (2), however it has nuances related

to previous modifications made by the attacker.

3.6 Conclusion

In this chapter, we defined a general model for sensor deception attacks. This attacker intervenes in

the communication channels between the system’s sensors and the supervisor and it has the ability

to edit some of the sensor readings in these communication channels, by inserting fictitious events

or deleting the legitimate events.

Following the attacker definition, we integrate this attacker model into the supervisory control

framework. In other words, we define the supervisory control framework under sensor deception

attacks. Based on this definition, we are able to analyze the closed-loop behavior of the controlled

system under sensor deception attacks.

Four specific sensor deception attack models are formally introduced. These attack models are

defined by constraining our general sensor deception attack model based on different assumptions

on the attacker’s capability.
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CHAPTER IV

Synthesis of stealthy sensor deception attacks for supervisory

control

4.1 Introduction

Many complex systems already have existing supervisors in place; however, these supervisors

were designed without taking into account sensor deception attacks. In Chapter III, we provide a

supervisory control framework for analyzing closed-loop systems under sensor deception attacks.

Nevertheless, we did not explore when and how a sensor deception attack could cause damage to

the plant. Our main goal in this chapter is to answer these two questions: When does a sensor

deception attack cause damage? How does this sensor deception attack cause damage?

Answering these questions discloses possible unknown vulnerabilities of the closed-loop sys-

tem. To answer them, we put ourselves into the attacker’s shoes. We search for ways, if possible, to

cause damage to the plant. Namely, the behavior generated by the controlled system under attack

can reach a critical region of the uncontrolled system, as shown in Figure 4.1

Back to the definition of the closed-loop attacked system, the described attacker did not care if

its identity was revealed, i.e., when inserting unfeasible behavior. At this point, we (as the attacker)

think that it is important to conceal our attacks. In other words, the damage must be caused without

raising any alarm in the control system, i.e., in a stealthy manner. By raising alarms, we assume that

the closed-loop system has an embedded intrusion detection module, which determines whether the

system is under attack. A key issue is determining whether an attacker can exploit the supervisor

and cause damage to the system without setting off the intrusion module.
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Figure 4.1: Controlled system under attack

In our research, we first note that the supervisor is passive since its actions have already been

designed; and second, the attacker does not want to set off the intrusion detection module. Because

the attacker wants to remain stealthy during the entire attack, each sensor modification it makes

must be deliberately planned. Therefore, a game between attacker and supervisor is designed.

Leveraging graph-games theory techniques [45], an algorithm that synthesizes stealthy sensor

deception attacks that successfully causes damage to the system. In words, this attack can reach

a critical region of the uncontrolled system and it does not trigger the intrusion detector. At this

point, it becomes possible to know the vulnerabilities of the controlled system under attack.

We study three specific types of attacks that are based on the interaction between the attacker

and the controlled system. The methodology developed to synthesize these attacks is inspired by

the work in [24, 29, 30]. As in these works, we employ a discrete structure to model the game-

like interaction between the supervisor and the environment. We call this structure an Insertion-

Deletion Attack structure (or IDA). By construction, an IDA embeds all desired scenarios where the

attacker modifies some subset of the sensor events without being noticed by the supervisor. Once

constructed according to the classes of attacks under consideration, an IDA serves as the basis for

solving the synthesis problem. In fact, this game-theoretical approach provides a structure for each

attack class that incorporates all successful stealthy attacks. Different stealthy attack strategies

can be extracted from this structure. This is a distinguishing feature of our work as compared to

previous works mentioned above. By providing a general synthesis framework, our goal is to allow

CPS engineers to detect and address potential vulnerabilities in their control systems.

The remainder of this chapter is organized as follow. The problem statement is formalized in
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Section 4.2. Section 4.3 describes the IDA structure and its properties. Section 4.4 introduces

the AIDA (All Insertion-Deletion Attack structure) and provides a construction algorithm for it.

Sections 4.5 introduce for each attack type their stealthy IDA structure, together with a simple

synthesis algorithm to extract an attack function. Lastly, Section 4.6 presents concluding remarks.

Related work

Previous works such as [11, 21, 20] on intrusion detection and prevention of cyber-attacks using

discrete event models were focused on modeling the attacker as faulty behavior. Their correspond-

ing methodologies relied on fault diagnosis techniques.

Recently, [13] proposed a framework similar to the one adopted in our work, where they for-

mulated a model of bounded sensor deception attacks. Our approach is more general than the one

in [13], since we do not impose a normality condition to create an attack strategy; this condition

is imposed to obtain the so-called supremal controllable and normal language under the attack

model. In addition to bounded sensor deception attacks, we consider two other attack models.

In [14], the authors presented a study of supervisory control of DES under attacks. They

introduced a new notion of observability that captures the presence of an attacker. However, their

study is focused on the supervisor’s viewpoint and they do not develop a methodology to design

attack strategies. They assume that the attack model is given and they develop their results based

on that assumption. In that sense, the work in [14] is closer to robust supervisory control and it is

complementary to our work.

Several prior works considered robust supervisory control under different notions of robust-

ness [36, 37, 38, 39, 40], but they did not study robustness against attacks. In the cyber-security

literature, some works have been carried out in the context of discrete event models, especially

regarding opacity and privacy or secrecy properties [41, 42, 43, 24]. These works are concerned

with studying information release properties of the system, and they do not address the impact of

an intruder over the physical parts of the system.
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4.2 Problem formulation

In Chapter III, we provide means to analyze the supervisory control framework under sensor de-

ception attacks. To analyze this new framework, we assumed that the attacker function is given,

i.e., fA is well-defined. As we discussed in the introduction of this chapter, we now focus on

searching specific attack functions, i.e., we investigate a synthesis problem. Nonetheless, Chap-

ter III is crucial for the formalization of the problem investigated in this chapter. In other words, we

assume the general framework described in Chapter III as our starting point in the formalization of

this chapter. Namely, the standard supervisory control framework with plant G and supervisor R,

and an attacker that hijacks the sensor readings Σsen ⊆ Σobs as shown in Fig. 4.2.

Plant - G

Attack function

Figure 4.2: Sensor deception attacks in the supervisory control framework

Since we are searching for specific attack functions, we need to think as the attacker. We need

to answer questions such as “What is the attacker’s goals?”, “Which information about the system

does the attacker have?”, “Are there any constraints to follow?”, etc. In this way, we can portray

the attacker so that we can formalize the “searching” problem.

First, we informally portray the attacker we would like to formalize. Intuitively, the attacker de-

sires to damage the plant. For example, the attacker wants to cause the car collision in Example 3.4

where as the deadlock scenario is not appealing for this attacker.

This attacker also yearns stealthiness, i.e., it does not want its actions to be “discovered”. In

the definition of the attacked supervisor, we assumed that the supervisor does not react when it ob-

serves an unexpected event. This assumption was reasonable when we were defining the attacked

controlled language. However, this new attacker considers risky to have the same assumption. In

42



fact, it is likely that the controlled system has an intrusion detection mechanism which the attacker

does not want to trigger.

Finally, this attacker is knowledgeable, i.e., it has information about the controlled system.

We start our formalization by making an assumption to describe the attacker’s knowledge of the

controlled system.

Assumption 4.1. The attacker knows the models of G and R.

Therefore, the attacker has full knowledge of the controlled system. This assumption lets

the attacker understand its actions in the controlled system, i.e., it can effectively construct the

framework depicted in Fig 3.3 once it has decided its strategy.

With respect to the attacker’s desire of causing damage to the plant, this can be specified based

on the states of G.

Assumption 4.2. The plant G has a set of critical unsafe states defined as Xcrit ⊂ XG such that

∀x ∈ Xcrit, x is never reached when R controls G and no attacker is present.

In general, not all states reached by strings of G that are disabled by R (when no attacker is

present) are critically unsafe. In practice, there will be certain states among those that correspond

to physical damage to the system, such as “overflow” states or “collision” states, for instance.

Similar notions of critical unsafe states have been used in other works, e.g., [46, 21]. Therefore,

the objective of the attacker is to force the controlled behavior under attack L(SA/G) to reach any

state in Xcrit.

Lastly, we must address the attacker’s desire to remain stealthy. The attacker does not want its

actions to be “discovered”1. Therefore, all the actions taken by the attacker and their consequences

must “look” as if the controlled system is not under attack. Every string that the supervisor observes

must be defined in the controlled system without attacks (Fig. 4.1). In other words, the supervisor

cannot receive an unexpected event otherwise it will seem questionable.

1This implies that the attacker assumes an intrusion detection trying to “discover” its actions.
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Definition 4.1. An attacker fA is stealthy if ∀s ∈ L(SA/G)

P S
(
f̂A(PΣΣobs(s))

)
⊆ PΣΣobs(L(R/G))

If fA is given as an automaton A, then it is stealthy if

PΣΣobs(P
S(L(Ga||A||Ra))) ⊆ PΣΣobs(L(R/G))

Finally, we are able to formally state the synthesis of stealthy sensor deception attack problem.

Problem 4.1 (Synt. of Stealthy Sensor Deception Attacks). Given an attacker that has full knowl-

edge of the models G and R, and is capable of compromising events Σsen ⊆ Σobs, synthesize an

attack function fA such that it generates a controlled language L(SA/G) that satisfies:

1. ∀s ∈ PΣΣobs(L(SA/G)).f̂A(s) is defined (Admissibility);

2. ∀s ∈ L(SA/G).P S
(
f̂A(PΣΣobs(s))

)
⊆ PΣΣobs(L(R/G)) (Stealthiness);

3(a). ∃s ∈ L(SA/G), ∀t ∈ [P−1
ΣΣobs

(PΣΣobs(s)) ∩ L(SA/G)].δG(x0, t) ∈ Xcrit.

In this case, we say that fA is a strong attack. We additionally define the notion of a weak attack

as follows:

3(b). ∃s ∈ L(SA/G).δG(x0, s) ∈ Xcrit.

The Admissibility condition guarantees that fA is well defined for all projected strings in the

modified controlled language PΣΣobs(L(SA/G)). The Stealthiness condition guarantees that the

attacker stays undetected by the supervisor, meaning that any string in PΣΣobs(L(SA/G)) should

be modified to a string within the original controlled behavior. Lastly, the reachability of critical

states is stated in condition 3, where condition 3(a) is a strong version of the problem. In the

strong case, the attacker is sure that the system has reached a critical state if string s occurs in

the system. Condition 3(b) is a relaxed version, where the attacker might not be sure if a critical
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state was reached, although it could have been reached. Both variations of condition 3 guarantee

the existence of at least one successful attack, namely, when string s occurs in the new controlled

behavior.

Remark 4.1. Problem 4.1 assumes that the attacker has full knowledge of the plant and the su-

pervisor models. Although it might be difficult to achieve this assumption in practice, our work

studies the worst attack scenario case. Moreover, this assumption is common practice within the

cyber-security domain.

Problem 4.1 is posed based on the languages L(SA/G) and L(R/G). Conditions (1), (3a)

and (3b) are relatively easy to test using automata operations. On the other hand, condition (2) is

more intricate. We could replace condition (2) by Eq. (4.1), if we restrict ourselves to automata

versions of fA. However, we explore another solution for this problem so that we can easily test

all conditions of Problem 4.1 in a similar manner.

To capture the behavior that detects the attacker, we define an automaton that captures both the

control decisions of the supervisor and the normal/abnormal behavior. We start by defining the

automaton H = obs(R||G) and H = (XH ,Σobs, δH , x0,H), where XH ⊆ 2XR×XG . The automaton

H captures only the normal projected behavior of the controlled system. However, H cannot be

used as an supervisor since it might contain inadmissible control decisions and it does not have all

decisions of R.

Definition 4.2. Based on H , we define R̃ := (XR̃ := XH ∪ {dead},Σ, δR̃, x0,R̃ := x0,R), and δR̃:

For any x ∈ XH

δR̃(x, e) :=



δH(x, e) if e ∈ EnH(x)

dead if e ∈ Σuctr \ EnH(x)

x if e ∈ Σuctr ∩ Σuobs or e ∈ Σctr ∩ Σuobs ∩ EnR||H(x)

undefined otherwise

(4.1)

And δR̃(dead, e) := dead for any e ∈ Σuctr, and undefined otherwise.
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Automaton R̃ embeds the same admissible control decisions as automaton R and it differen-

tiates normal/abnormal behavior. The state dead in R̃ captures the abnormal behavior of the con-

trolled system. The attacker remains stealthy as long as R̃ does not reach the state dead. Figure 4.3

illustrates the supervisor R̃ computed for supervisor R1 in Example 2.4.

Figure 4.3: Supervisor R̃ based on Supervisor R from Example 2.4. New transitions are in black
and we omit self-loops in state dead.

Remark 4.2. No new transition to the dead state with controllable events are included in the

definition of R̃. For simplicity, we assume that the supervisor does not enable controllable events

unnecessarily. In this manner, only uncontrollable events can reach the dead state.

4.3 Insertion deletion attack structure

4.3.1 Definition

An Insertion-Deletion Attack structure (IDA) is an extension of the notion of bipartite transition

structure presented in [30]. An IDA captures the game between the environment and the supervisor

considering the possibility that a subset of the sensor network channels may be compromised by

a malicious attacker, whose moves will be constrained according to various rules. In this game

we fix the supervisor’s decisions as those defined in the given R̃. The environment’s decisions

are those of the attacker and the system. Therefore, in this game, environment states have both

attacker’s and system’s decisions. In this section, we define the generic notion of an IDA. In the
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next sections, we will construct specific instances of it, according to the permitted moves of the

attacker.

Intuitively, the IDA represents the framework of supervisory control under sensor deception at-

tack presented in Chapter III. However, the supervisor and the environment decisions are explicitly

separated in the IDA. This allows a better understanding of the attacker actions in the controlled

system.

In order to build the game, we define an information state as a pair IS ∈ 2XG × XR̃, and the

set of all information states as I = 2XG × XR̃. The first element in an IS represents the correct

state estimate of the system, as seen by the attacker for the actual system outputs. The second

element represents the supervisor’s state, which is the current state of its realization based on the

edited string of events that it receives. As defined, an IS embeds the necessary information for

either player to make a decision.

Definition 4.3. An Insertion-Deletion Attack structure (IDA) T w.r.t. G, Σsen, and R̃, is a 7-tuple

T := (QS, QE, hSE, hES,Σobs,Σatt, y0) (4.2)

where:

• QS ⊆ I is the set of S-states, where S stands for Supervisor and where each S-state is of

the form y = (IG(y), IS(y)), where IG(y) and IS(y) denote the correct system state estimate

and the supervisor’s state, respectively;

• QE ⊆ I is the set of E-states, where E stands for Environment; each E-state is of the form

z = (IG(z), IS(z)) defined in the same way as in the S-states case;

• hSE : QS ×Γ→ QE is the partial transition function from S-states to E-states that satisfies:

hSE(y, γ)!⇒ hSE(y, γ) := (URγ(IG(y)), IS(y)) (4.3)
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• hES : QE × (Σobs ∪ Σatt) → QS is the partial transition function from E-states to S-states,

satisfying:

For any e ∈ Σobs

hES(z, e)!⇒
e ∈ EnG(IG(z)) ∩ EnR̃(IS(z)) ∧

hES(z, e) :=
(
δG(IG(z), e), δR̃(IS(z), e)

) (4.4)

For any e ∈ Σsen

hES(z, ins(e))!⇒
e ∈ EnR̃(IS(z)) ∧

hES(z, ins(e)) :=
(
IG(z), δR̃(IS(z), e)

) (4.5)

hES(z, del(e))!⇒
e ∈ EnG(IG(z)) ∩ EnR̃(IS(z)) ∧

hES(z, e) :=
(
δG(IG(z), e), IS(z)

) (4.6)

• Σobs is the set of observable events of G;

• Σatt is the set of attacked events;

• y0 ∈ QS is the initial S-state: y0 := ({x0,G}, x0,R̃).

Since the purpose of an IDA is to capture the game between the supervisor and the environment,

we use a bipartite structure to represent each entity. An S-state is an IS containing the state

estimate of the system G and the supervisor’s state; it is where the supervisor issues its control

decision. An E-state is an IS at which the environment (system or attacker) selects one among the

observable events to occur.

A transition from an S-state to an E-state represents the updated unobservable reach in G’s

state estimate together with the current supervisor state. Note that hSE is only defined for y and

γ such that γ = EnR̃(IS(y)). On the other hand, a transition from an E-state to an S-state repre-

sents the “observable reach” immediately following the execution of the observable event by the

environment. In this case, both the system’s state estimate and the supervisor’s state are updated.
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However, these updates depend on the type of event generated by the environment: (i) true system

event unaltered by the attacker; (ii) (fictitious) event insertion by the attacker; or (iii) deletion by

the attacker of an event just executed by the system. Thus, the transition rules are split into three

cases, described below.

The partial transition function hES is characterized by three cases: Eqs. (4.4-4.6). Each case

is coupled to the set of events Σobs,Σins or Σdel. The case of events in Σobs is related to plant’s

actions, while the cases of events in Σins or Σdel are related to attacker’s actions. Equation (4.4)

simulates the plant generating a feasible (enabled) event and the attacker letting the event reach the

supervisor intact, either because it cannot compromise that event, or because it chooses not to make

a move. In the case of insertion events, Eq. (4.5), the attacker only inserts events consistent with

the control decision of the current supervisor state. On the other hand, the attacker only deletes

actual observable events generated by the plant (Eq. (4.6)).

Remark 4.3. A given IDA contains some attack moves (since it is a generic structure), all of

which have to satisfy the constraints in the definition of hES and hSE . A generic IDA represents a

controlled system under sensor deception attack given a specific attack function.

We assume that all states included in an IDA are reachable from its initial state.

Example 4.1. Let us consider the intersection example (Example 2.4) with supervisor R̃ as in

Fig. 4.3. Considering the compromised event set Σsen = {Rint} and Xcrit = {5}, Fig. 4.4 gives

one IDA example. As we mentioned, this IDA represents an attacked controlled system given a

specific attack function. We can observe from Fig. 4.4 that the attack function in this example has

fA(ε, ε) = {ε, ins(Rint)} as its initial condition. This attack function is not stealthy since the dead

state is reachable. We will address this problem in the next section.

4.3.2 Properties

Given two IDAs T1 and T2, we say that T1 is a subsystem of T2, denoted by T1 v T2, ifQT1
E ⊆ QT2

E ,

QT1
S ⊆ QT2

S , and for any y ∈ QT1
S , z ∈ QT1

E , γ ∈ Γ, and e ∈ Σobs ∪ Σatt, we have that:
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('{1}', '1', S)

('{1}', '1', E)

('{2}', '2', S)

('{4}', '4', S) ('{1}', '4', S)

('{2}', '2', E)

('{4}', '4', E)

('{1}', '4', E)

('{3}', '3', S)

('{7}', '7', S)

('{3}', '3', E)

('{7}', '7', E)

('{6}', '6', S)('{6}', '3', S)

('{8}', '8', S)

('{6}', '6', E)('{6}', '3', E)

('{8}', '8', E)

('{9}', '9', S)

('{9}', 'dead', S)

('{9}', '9', E)

Figure 4.4: IDA, intersection example with Σsen = {Rint}. States with S are supervisor states
(most in light green) while states with E are environment (most in light blue). States in red are states
where the attacker is discovered. Uncontrollable events are omitted from the control decisions, i.e.,
{} := {Rout, Bout}.

1. hT1
SE(y, γ) = z⇒ hT2

SE(y, γ) = z and

2. hT1
ES(z, e) = y⇒ hT2

ES(z, e) = y.

Before, we discuss relevant properties of the IDA structure, we define a property about E-states.

(P1) An E-state z ∈ QE is called a race-free state, if the following condition holds:

(e ∈ EnR̃(IS(z)) ∩ EnG(IG(z)) ∩ Σobs)⇒ [hES(z, e)! ∨ hES(z, del(e))!]

Property (P1) ensures the non-existence of a race condition between the attacker and the system in

a given E-state. Specifically, when (P1) holds in any E-state, the attacker has the option of either

letting the event reach the supervisor intact or preventing the event from reaching the supervisor

(or allowing both). It means that the attacker can wait for the system’s response to the most recent

control action and react accordingly. Note that if the event in question is a compromised event,

then the attacker has the option of allowing both actions since we defined nondeterministic attack

functions. In the case of deterministic attack functions, we force the attacker to select one of the
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actions. If (P1) does not hold at a particular E-state, then the attacker must insert an event, and

this insertion must take place before the system reacts to the most recent control action sent by the

supervisor. (In some sense, the attacker is “racing” with the system.) An IDA that satisfies (P1)

for all E-states is called a race-free IDA.

Definition 4.4 (Induced E-state). Given an IDA A, IE(z, s) is defined to be the E-state induced by

string s ∈ (Σobs ∪ Σatt)
∗, when starting in the E-state z. IE(z, s) is computed recursively as:

IE(z, ε) := z

IE(z, se) :=

 hSE
(
y, EnR̃

(
IS(y)

))
if hES(IE(z, s), e)!

undefined otherwise

(4.7)

where y = hES(IE(z, s), e)

We also define IE(s) := IE(z0, s), where z0 = hSE(y0, EnR̃(IS(y0))).

We conclude this section by defining the notion of embedded attack function in an IDA and

presenting a lemma about reachability in IDAs. First, we show that after observing an edited string

t, the attacker correctly keeps track of the supervisor state R̃. Then we show that an IDA correctly

estimates the set of possible states of the system after the occurrence of edited string t.

Definition 4.5. An attack function fA is said to be embedded in an IDA T if
(
∀s ∈

PΣΣobs(L(SA/G))
)(
∀t ∈ f̂A(s)

)(
∀i ∈ N|t|−1

)
, then IE(ti) is defined.

Intuitively, an attack function is embedded in an IDA if for every modified string that is con-

sistent with the behavior of G, we can find a path in the IDA for that string. Note that we limit this

constraint on fA to strings in PΣΣobs(L(SA/G)), since these are the ones consistent with G under

a given fA. We are not interested in the definition of any fA for strings outside of the controlled

behavior fA defines.

Next, we provide a lemma that ties the definition of IDA with the attacked controlled system

defined in Chapter III. Previously, we informally stated this connection between the IDA and a
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specific attack function. Actually, we can generalize this statement based on the definition of

embedded attack functions. Intuitively, the IDA captures the attacked controlled system for a

family of attack functions, i.e., the attack functions embedded in this IDA. This statement is

formalized in the following lemma. This lemma states that the information states in the IDA carry

the same information as the attacked controlled system.

Lemma 4.1. Given a system G, supervisor R̃, and an IDA structure T with an embedded attack

function fA with automaton representation A, for any string s ∈ L(SA/G) and any string t ∈

f̂A(PΣΣobs(s)), we have

IS
(
IE(t)

)
= δR̃

(
x0,R̃, P

S(t)
)

(4.8)

IG
(
IE(t)

)
= REGa

(
t,L(Ga||A||Ra)

)
(4.9)

Proof. We prove the result by induction on the length of t. First, we show Eq. (4.8). Let |t| = n.

Let y0 be defined as usual, qi = δR̃(x0,R̃, P
S(ti)), zi = hSE(yi, EnR̃(qi)) for i ∈ Nn, and yi+1 =

hES(zi, t[i+ 1]) for i ∈ Nn−1.

Induction Basis: t = ε

IE(ε) = hSE(y0, EnR̃(IS(y0)))

We recall that the supervisor state does not change in the IDA from S-states to E-states since it did

not receive any observable event, thus yk → zk ⇒ IS(yk) = IS(zk), then

IS(IE(ε)) = x0,R̃ = δR̃(x0,R̃, ε)

Induction hypothesis: Assume that IS(IE(ti)) = qi holds for i ∈ Nk, k < n.

Induction step: At k + 1 we have

yk+1 = hES(zk, t[k + 1])
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And we know that

IS(zk) = qk

IS(yk+1) = δR̃(IS(zk), P
S(t[k + 1])) = δR̃(x0,R̃, P

S(tk+1))

Given that IS(yk+1) = IS(zk+1), then IS(zk+1) = δR̃(x0,R̃, P
S(tk+1)). Consequently,

IS(IE(tk+1)) = δR̃(x0,R̃, P
S(tk+1)).

Next, we also show Eq. (4.9) by induction on t. We use the same notation as in the previous

induction proof. Moreover, we use L := L(Ga||A||Ra) and Σm,o := Σobs ∪ Σatt.

Induction Basis: t = ε By the definition of the IDA, we have

IG(IE(ε)) = UREnR̃(x0,R̃)({x0,G})

and by the definition of REGa , we have

REGa(ε, L) =
⋃
s∈L:

PΣallΣm,o
(s)=ε

δGa({x0,Ga}, s)

=
⋃

s∈(EnR̃(x0,R̃)∩Σuobs)∗

δGa({x0,Ga}, s) by def. of Ra, A and Ga||A||Ra

=
⋃

s∈(EnR̃(x0,R̃)∩Σuobs)∗

δG({x0,G}, s) by def. of Ga

= UREnR̃(x0,R̃)({x0,R̃})

Induction hypothesis: Assume that IG(IE(ti)) = REGa(t
i, L) holds for i ∈ Nk, k < n.

Induction step: At k + 1 we have

yk+1 = hES(zk, t[k + 1]) = (δG(IG(zk), P
G(t[k + 1])), δR̃(IS(zk), P

S(t[k + 1])))
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Therefore, IG(zk+1) = UREnR̃(qk+1)(δG(IG(zk), t[k + 1])). It can be shown that

REGa(t
k+1, L) = UREnR̃(qk+1)(δG(REGa(t

k, L), t[k + 1]))

This concludes our proof.

4.4 All insertion deletion attack structure

In this section, we define the All Insertion-Deletion Attack Structure, a specific type of IDA abbre-

viated as AIDA hereafter. The AIDA embeds all insertion-deletion actions the attacker is able to

execute. In order words, the AIDA embeds the “all-out” strategy. We discuss its construction and

properties.

4.4.1 Definition

As consequence of Lemma 4.1, if we construct an IDA structure based on R̃ and Σsen that is “as

large as possible”, then it will include all valid insertion and deletion actions for the attacker. We

formally define such a structure as the All Insertion-Deletion Attack structure.

Definition 4.6 (AIDA(G, R̃,Σsen)). Given a system G, a supervisor R̃, and a set of compromised

events Σsen, the All Insertion-Deletion Attack structure (AIDA), denoted by AIDA(G, R̃,Σsen) =

(QS, QE, hSE, hES,Σ,Σatt, y0), is defined as the largest IDA w.r.t to G, R̃ and Σsen s.t.

1. For any y ∈ QS , we have |ΓAIDA(y)| = 0⇔ IS(y) = dead

2. For any z ∈ QE , we have

(a) ∀e ∈ EnR̃(IS(z)) ∩ EnG(IG(z)) ∩ Σobs : (hES(z, e)! ∨ hES(z, del(e))!) or

(b) IG(z) ⊆ Xcrit ⇒ |ΓAIDA(z)| = 0
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Condition 2(a) alone satisfies the non-existence of a race condition in the AIDA. Conditions

1 guarantees that the AIDA stops its search once the attack is detected. Similarly, Condition 2(b)

stops the search given that the attacker knows it has reached its goal.

By “largest” structure, we mean that for any IDA T satisfying the above conditions: T v

AIDA(G, R̃,Σsen). This notion of “largest” IDA is well defined. If T1 and T2 are two IDA structures

satisfying the above conditions, then their union still satisfies the conditions, where the union

T1 ∪ T2 is defined as: QT1∪T2
E = QT1

E ∪ Q
T2
E , QT1∪T2

S = QT1
S ∪ Q

T2
S , and for any y ∈ QT1∪T2

E , z ∈

QT1∪T2
S , γ ∈ Γ and e ∈ Σobs ∪ Σatt, we have that hT1∪T2

SE (y, γ) = z ⇔ ∃i ∈ {1, 2} : hTiSE(y, γ) = z

and hT1∪T2
ES (z, e) = y ⇔ ∃i ∈ {1, 2} : hTiES(z, e) = y.

4.4.2 Construction

The construction of the AIDA follows directly from its definition. It enumerates all possibles

transitions for each state by a breadth-first search. Each S-state has at most one control decision,

which is related to the supervisor state R̃. On the other hand, each E-state enumerates both system’s

and attacker’s actions, according to its system and supervisor estimate, respectively. In practice,

we do not need to search the entire state space; we stop the branch search when an S-state reaches

a state with the supervisor at the “dead” state or when the system estimate of an E-state is a subset

of Xcrit.

The procedure mentioned above is described in Algorithm 1 (Construct-AIDA). It has the

following parameters: AIDA is the graph structure of the AIDA we want to construct; AIDA.E

and AIDA.S are the E- and the S-state sets of the structure, respectively; AIDA.h is its transition

function; Q is a queue. We begin the procedure by initializing AIDA.S with a single element

y0 = ({x0,G}, x0,R̃). The breath-first search is then performed by the procedure DoBFS. The

transitions between S-states and E-states are dealt within lines 7 to 11. The transitions between

E-states and S-states are defined in lines 12 to 25, where each attack possibility is analyzed. These

transitions are defined exactly as in Definition 4.3, Eqs. (4.4-4.6). (For the sake of readability,

we employ the usual triple notation (origin, event, destination) for the transition function.) The
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procedure converges when all uncovered states (states in the queue) are covered, meaning we have

traversed the whole reachable space of E- and S-states. Note that lines 29 and 33 impose the stop

conditions of Definition 4.6.

Theorem 4.1. Algorithm Construct-AIDA correctly constructs the AIDA.

Proof. Conditions 1 and 2 of Definition 4.6 follow directly by the construction of the Algorithm 1

(lines 14, 29, 30). Thus, we only need to prove that the IDA returned by the algorithm is the largest

one. We show it by contradiction.

Assume that A is the IDA returned by the algorithm; however assume that ∃A∗ that satisfies

conditions 1 and 2, where A @ A∗. It means that QA
S ⊆ QA∗

S or QA
E ⊆ QA∗

E . If A and A∗ have the

same states, then either A = A∗ or A∗ has more transitions than A. The first case is a contradiction

of our arguments. The second case implies that some transitions were not included in A, which

is also a contradiction. Algorithm 1 applies an exhaustive BFS therefore it cannot leave it out any

transition if all states where covered. Thus, it is the case that A∗ has more states than A. Let us

start with A∗ having one additional E-state namely z, then QA
S = QA∗

S . Therefore, ∃y ∈ QA
S such

that y → z, which means that IS(y) 6= dead. Therefore, Algorithm 1 will not converge to A,

contradicting our assumption. The same reasoning can be used for the case of one more S-state or

when both sets are larger.

Example 4.2. We return our intersection example using the same parameters as in Example 4.1.

The IDA shown in Fig. 4.4 is not the AIDA for this example since it clearly misses some attacker

transitions. The AIDA for this example is depicted in Fig. 4.5. Note that there exists an S-state

where R̃ reaches the state dead. Moreover, there exists an E-state where G reaches a critical state.

Remark 4.4. The AIDA has at most 2|XG|+1|XR̃| states since Q1, Q2 ⊆ I . If Σuobs = ∅, then it has

at most 2|XG||XR̃| states.
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Algorithm 1 Construct-AIDA

Require: G, R̃ and Σsen

Ensure: AIDA
1: AIDA← DoBFS

(
G, R̃, ({x0,G}, x0,R̃)

)
2: procedure DOBFS(G,R, y)
3: AIDA.S ← {y}, AIDA.E ← ∅, AIDA.h← ∅
4: Queue Q← {y}
5: while Q is not empty do
6: c← Q.dequeue( )
7: if c ∈ AIDA.S then
8: γ ← EnR̃(IS(c))
9: z ←

(
URγ

(
IG(c)

)
, IS(c)

)
10: AIDA.h← AIDA.h ∪ {(c, γ, z)}
11: Add-State-to-AIDA(z,AIDA,Q)
12: else if c ∈ AIDA.E then
13: for all e ∈ Σobs ∩ EnR̃

(
IS(c)

)
do

14: if e ∈ EnG
(
IG(c)

)
then

15: y ←
(
δG(IG(c), e), δR̃(IS(c), e)

)
16: AIDA.h← AIDA.h ∪ {(c, e, y)}
17: Add-State-to-AIDA(y,AIDA,Q)

18: if e ∈ EnG
(
IG(c)

)
∧ e ∈ Σsen then

19: y ←
(
δG
(
IG(c), e

)
, IS(c)

)
20: AIDA.h← AIDA.h ∪ {(c, del(e), y)}
21: Add-State-to-AIDA(y,AIDA,Q)

22: if e ∈ Σsen then
23: y ←

(
IG(c), δR̃

(
IS(c), e

))
24: AIDA.h← AIDA.h ∪ {(c, ins(e), y)}
25: Add-State-to-AIDA(y,AIDA,Q)

26: procedure ADD-STATE-TO-AIDA(c, AIDA,Q)
27: if c /∈ AIDA.E ∧ c is an E-state then
28: AIDA.E ← AIDA.E ∪ {c}
29: if IG(c) * Xcrit then
30: Q.enqueue(c)

31: else if c /∈ AIDA.S ∧ c is an S-state then
32: AIDA.S ← AIDA.S ∪ {c}
33: if IS(c) 6= dead then
34: Q.enqueue(c)
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Figure 4.5: AIDA, intersection example with Σsen = {Rint}. States with S are supervisor states
(most in light green) while states with E are environment (most in light blue). States in red are
states where the attacker is discovered while states where the attacker reaches the dead state are in
dark green.

4.5 Pruning the all insertion deletion attack structure

The AIDA embeds all attack functions, including non-stealthy strategies, i.e., those that lead to

state dead of the supervisor. Since our goal is to obtain stealthy attack functions, we “eliminate”

non-stealthy strategies from the AIDA. Here, eliminating means pruning the AIDA such that only

stealthy strategies are embedded (Def. 4.5). Lastly, we are left with the task of extracting an attack

function from the pruned structured, if they exists. Namely, we are able to answer Problem 4.1

based on the pruned structure.

Although our goal of removing non-stealthy strategies and our pruning the AIDA idea method

are clear, this pruning procedure must be defined carefully. The pruning procedure depends on

the attacker capabilities and interaction with the controlled system. For example, if the attacker is

unsure about the plant responsiveness, then synthesizing an interruptiple attack function (Def. 3.6)

seems ideal for this scenario. For this reason, the pruning procedure can be tailored for different

attacker assumptions.

58



In Chapter III, we have provided three different attack functions based on different attacker

constraints: interruptible attack functions (Def. 3.6), deterministic unbounded attack function

(Def. 3.7), and deterministic bounded attack function (Def. 3.8). In this section, we provide prun-

ing procedures for these three attack scenarios as well as how to extract attack functions, if they

exist, that are a solution of Problem 4.1.

4.5.1 Synthesis of interruptible attack strategies

The AIDA could reach state dead of supervisor R̃. Each time this occurs, it means that the last step

of the attack is no longer stealthy. Hence, we must prune the AIDA in order to embed only stealthy

attacks. We pose this pruning process as a meta-supervisory-control problem, where the “plant” is

the entire AIDA, the specification for that plant is to prevent reaching state dead of the supervisor,

and the controllable events are the actions of the attacker. We assume that the reader is familiar

with the standard “Basic Supervisory Control Problem” of [35]; we adopt the presentation of that

problem as BSCP in [34]. First, we show necessary modifications to the standard BSCP algorithm

in order to construct the Stealthy-AIDA.

Algorithm 2 Modified BSCP for Interruptible Attacker
Require: B := (XB, E := Σobs ∪ Σatt ∪ Γ, δB, x0,B), Euctr and Bt = (XBt , E, δBt , x0,Bt), where

XBt ⊆ XB

1: Step 1 Set H0 := (XH0 , E, δH0 , x0,H0) = Bt, and i = 0
2: Step 2 Calculate
3: Step 2.1 X ′Hi = {x ∈ XHi |EnB(x) ∩ Euctr ⊆ EnHi(x)}
4: Step 2.2 X∗Hi = {x ∈ X ′Hi |e ∈ EnB(x)⇒ (e ∈ EnHi(x) ∨ del(e) ∈ EnHi(x)}

δ′Hi = δHi |X∗Hi [transition function update]
5: Step 2.3 Hi+1 = Ac(X∗Hi , E, δ

′
Hi
, x0,Hi)

6: Step 3 If Hi+1 = Hi, Stop; otherwise i← i+ 1, back to Step 2

The difference between the original BSCP algorithm (see, e.g., [34]) and its modified version

in Algorithm 2 is the addition of Step 2.2. Since the BSCP algorithm has quadratic worst-time

complexity in the number of states of the automaton Bt, it follows that Algorithm 2 also has

quadratic worst-time complexity. In order to ensure the desired interruptibility condition of an

attack function, each visited state in the AIDA must be race free. Therefore, at Step 2.2 we enforce
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the race-free condition at every E-state of the IDA. In order to enforce such condition, the algorithm

deletes E-states where both the “let through” transition and the “erasure” transition are absent for

a feasible system event. Therefore, the resulting IDA from Algorithm 2 is a race-free IDA.

To compute the stealthy AIDA structure, we define as system the AIDA constructed according

to Algorithm 1. Moreover, any event e ∈ Σsen ∪ Σall is treated as controllable while any control

decision γ ∈ Γ and any event e ∈ Σobs\Σsen is treated as uncontrollable. The specification

language, realized by Bt, is obtained by deleting the states where the supervisor reaches the dead

state, i.e., by deleting in the AIDA all states of the form y = (S, dead) for any S ⊆ XG.

We formalize the pruning process for obtaining all stealthy insertion-deletion attacks as fol-

lows.

Definition 4.7. Given the AIDA constructed according to Algorithm 1, define the automaton B :=

(QAIDA
E ∪ QAIDA

S , E := Σobs ∪ Σatt ∪ Γ, hAIDAES ∪ hAIDASE , yAIDA0 ) with Ectr = Σsen ∪ Σatt as the

set of controllable events and Euctr = (Σobs\Σsen) ∪ Γ as the set of uncontrollable events. The

specification automaton is defined by Bt, which is obtained by trimming from B all its states of

the form (S, dead), for any S ⊆ XG. The Stealthy AIDA structure, called the ISDA (Interruptible

Stealthy Deceptive Attack), is defined to be the automaton obtained after running Algorithm 2 on

Bt with respect to B and Euctr.

Example 4.3. We return to the AIDA in Fig 4.5, where we would like to obtain the ISDA as in

Def. 4.7. Let us go over the Def. 4.7 and the Algorithm 2 in a step by step manner. The automaton

B is just a copy of the AIDA while Bt is defined by deleting states ({7}, dead, S), ({9}, dead, S)

from B. Next, we feed B and Bt to Algorithm 2. In the first iteration, Step 2.1 deletes states

(({4}, 1, E), ({6}, 3, E)) since they are reached by event Rout ∈ Euc. Next, Step 2.3 deletes states

(({5}, 2, S), ({5}, 2, E)) since they have just become unreachable.

The second iteration starts and Step 2.1 deletes states (({4}, 1, S), ({6}, 3, S)) since they are

reached by events Euc. No more states are deleted in the rest of the second iteration and the third

iteration since states (({4}, 1, S), ({6}, 3, S)) were reached by event del(Rint). Therefore, the

algorithm converges to a fixed point that is depicted in Fig. 4.6.
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Figure 4.6: ISDA, intersection example with Σsen = {Rint}.

Unfortunately, state ({5}, 2, E) that reaches the critical state 5 got deleted in the pruning pro-

cess. Next, we show that the lack of these states in ISDA guarantees the non-existence of inter-

ruptible attack functions that are a solution of Problem 4.1. On the other hand, if at least one of

these state is spared in the pruning process, then there exists an interruptible attack function that

solves Problem 4.1. We also show conditions for when the solution gives a strong attack function

or a weak attack function.

Lemma 4.2. If an interruptible attack function fA satisfies the admissibility and the stealthy con-

ditions from Problem 4.1, then it is embedded in the ISDA.

Proof. By contradiction, assume that we have an interruptible fA that is admissible and stealthy,

but is not embedded in the ISDA. There exists a string s ∈ L(SA/G), sa ∈ f̂A(PΣΣobs(s)) where

IE(sa) is not defined in the ISDA. For simplicity and without loss of generality, assume that

sa = tae where e ∈ Σobs ∪ Σatt, and IE(ta) is defined but IE(sa) is not defined. There are two

reasons why IE(sa) is not defined.

1. IE(sa) is not defined in the AIDA. We have that z = IE(ta) in the AIDA, however IE(z, e)

is not defined. Based on the construction of the AIDA, at state z the transition function

is exhaustively constructed given EnR̃(IS(z)). Therefore, if IE(z, e) is not defined, then
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M(e) /∈ EnR̃(IS(z)). Since R̃ is admissible,M(e) ∈ Σctr ∩ Σobs and e ∈ Σins. As con-

sequence of Lemma 4.1, P S(sa) 6∈ PΣΣobs(L(SP/G)), which trivially violates stealthiness.

This contradicts our assumption of stealthy fA. Note that, this case is different than reaching

the dead state. In this case, the attacker inserts an event that is not allowed by the supervisor.

2. IE(sa) is defined in the AIDA but it was pruned by Algorithm 2. Algorithm 2 returns the

“supremal controllable sublanguage” of the AIDA, i.e., it is maximally permissive, under

the race-free and controllability conditions. It removes all sequences that are non-stealthy or

that uncontrollably lead to non-stealthiness. Similarly for the race-free condition. Moreover,

one cannot define an interruptible attack decision at a state that is not race free. Finally, the

definition of the set of controllable events guarantees admissibility. Thus, overall, sa must

lead to a non-stealthy, non-interruptible, or inadmissible strategy, which makes the function

fA also either non-stealthy, non-interruptible, or inadmissible, a contradiction.

This completes the proof.

Lemma 4.3. If an interruptible attack function fA is constructed from the ISDA, then the stealthy

condition of Problem 4.1 is satisfied.

Proof. The proof follows directly by the construction of the ISDA.

Constructing an fA from the ISDA means selecting decisions at E-states and properly defining

fA from the selected decisions.

Remark 4.5. Lemma 4.3 does not guarantee the admissibility condition. An inadmissible inter-

ruptible fA could be synthesized from the ISDA. However an admissible interruptible fA can

always be synthesized from the ISDA. Since the ISDA is race-free, an inadmissible fA synthesized

from the ISDA can always be extended to make it admissible.

Theorem 4.2. The ISDA embeds all possible interruptible stealthy insertion-deletion attack strate-

gies with respect to Σsen, R̃ and G.

Proof. The proof follows from Lemmas 4.2 and 4.3.
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Based on the ISDA, we can synthesize interruptible attack functions that satisfy the admissi-

bility and the stealthy conditions. In order to fully satisfy Problem 4.1, we need to address its last

condition about the existence of strong or weak attacks.

Theorem 4.3. Given the ISDA, there exists an interruptible fA that strongly satisfies Problem 4.1

if and only if there exists an E-state z in the ISDA s.t. IG(z) ⊆ Xcrit. On the other hand, it weakly

satisfies Problem 4.1 if and only if there exists an E-state z in the ISDA s.t. ∃x ∈ IG(z), x ∈ Xcrit.

Proof. The proof follows from Theorem 4.3.

Theorem 4.3 gives necessary and sufficient conditions for synthesis of interruptible attack func-

tions. The following algorithm (Algorithm 3) synthesizes a simple interruptible attack function

that satisfies Problem 4.1. Specifically, Algorithm 3 encodes an interruptible attack function in

automaton A. The encoded function simply includes one attempt to reach a given critical state.

First, it computes the shortest path from the initial state to a critical state via the function Shortest-

Path(ISDA, z ∈ QISDA
E ) such that IG(z) ⊆ Xcrit (strong attack) or IG(z) ∩ Xcrit 6= ∅ (weak

attack). The second step is to expand the function, based on the shortest path, in order to satisfy

the admissibility condition.

Remark 4.6. We presented a simple synthesis algorithm. Clearly, one could choose another strat-

egy to extract an interruptible function from the ISDA. The important point here is that the ISDA

provides a representation of the desired “solution space” for the synthesis problem. We are not

focused on the synthesis of minimally invasive attack strategies as studied in [13], where minimally

invasive means an attack strategy with the least number of edits to reach a critical state.

Example 4.4. Unfortunately2, we saw that the ISDA in Example 4.3 prunes the critical state since

the attacker could be discovered. Algorithm 3 cannot be used since there is not a single stealthy

attack in this example.

To demonstrate the attacker extraction, we slightly modify our Example by assuming that

Σctr = Σ. The supervisor for this scenario is obtained by simply deleting state 5 from G, i.e.,
2Remember, we are placing ourselves in the attacker’s shoes.
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Algorithm 3 Synthesis-fA
Require: ISDA, z ∈ QISDAE s.t. IG(z) ⊆ Xcrit or IG(z) ∩Xcrit 6= ∅
Ensure: Encoded fA in automaton A

1: path← Shortest-Path(ISDA, z)
2: A←Expand-Path(path, ISDA)
3: procedure EXPAND-PATH(path, ISDA)
4: Queue Q← ∅; A← ∅
5: A.X ← {yISDA0 }; A.x0 = yISDA0

6: A.δ ← ∅; A.Σ = Σall

7: for all (q, e, f) ∈ path ∧ q is an E-State do
8: t := IE(q, e)
9: Add(q, e, f,Q,A)

10: while Q is not empty do
11: q ← Q.dequeue()
12: for all (q, e, f) ∈ ISDA.h ∧ (q, e, f) /∈ A.h do
13: if e ∈ Σobs ∧ @f∗ s.t. (q, del(e), f∗) ∈ A.h then
14: t := IE(q, e)
15: Add(q, e, t, Q,A)
16: else if e ∈ Σdel ∧ (q,M(e), f∗) /∈ ISDA.h then
17: t := IE(q, e)
18: Add(q, e, t, Q,A)

19: procedure ADD(q, e, t, Q,A)
20: A.δ ← A.δ ∪ {(q, e, t)}
21: if f /∈ Q then
22: Q.enqueue(t)
23: A.X ← A.X ∪ {t}

('{1}', '1', S)

('{1}', '1', E)

('{2}', '2', S)

('{4}', '4', S) ('{4}', '1', S)

('{1}', '4', S)

('{2}', '2', E)

('{4}', '4', E)

('{4}', '1', E)

('{1}', '4', E)

('{3}', '3', S)

('{7}', '7', S)

('{5}', '2', S)

('{3}', '3', E)

('{7}', '7', E)

('{5}', '2', E)

('{6}', '6', S)('{6}', '3', S)

('{3}', '6', S)

('{8}', '8', S)

('{6}', '6', E)('{6}', '3', E)

('{3}', '6', E)

('{8}', '8', E)

('{9}', '9', S)

('{9}', '9', E)

Figure 4.7: ISDA, intersection example with Σctr = Σ and Σsen = {Rint}.
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R = Ac(G, {5}).

The ISDA for this scenario is depicted in Fig. 4.7. Note that the critical state is part of this

ISDA, which implies that we can find a stealthy interruptible attack function that reaches this

state. In other words, the attack can covertly cause a car collision. Next, we show how this attack

function is extracted via Algorithm 3.

First, Algorithm 3 finds a path to the critical state. This path is depicted by the dashed transi-

tions. Next, each environment state in this path is added to automaton A. This partially defined A

is shown in Fig. 4.8(a)

('{1}', '1', E)

('{4}', '1', E)

('{5}', '2', E)

(a) Unadmissible
attack function

('{1}', '1', E) ('{2}', '2', E)

('{4}', '1', E)

('{3}', '3', E)

('{5}', '2', E)

('{6}', '6', E)

('{9}', '9', E)

(b) Admissible attack function

Figure 4.8: Attack extraction

At this point, the attack strategy A in Fig. 4.8(a) is not admissible since fA(ε, Bint). Admissi-

bility is taken care by the while loop starting in line 9 in Algorithm 3. The output of Algorithm 3 is

depicted in Fig. 4.8(b)

4.5.2 Synthesis of unbounded deterministic attack strategies

Different from the interruptible attack, in the deterministic unbounded (det-unb) attack case, we

do not need to consider that the system may interrupt during an attack insertion. The attacker can

insert events, possibly an arbitrarily long string in fact, before the system reacts. As consequence,

the pruned IDA for the det-unb attack is not necessarily race free.

Algorithm 2 prunes the AIDA enforcing it to be race free (Step 2.2); however this condition
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needs to be relaxed for the det-unb case, resulting in Algorithm 4. Step 2.1 is also modified since

we also need to relax the controllability condition. Specifically, Step 2.1 relaxes the controlla-

bility condition because the attacker “races” with the system at states that violate this condition.3

Algorithm 4 flags states that violate the controllability condition to later analyze if they need to

be pruned or not. Note that once a state is flagged, it remains flagged throughout the algorithm.

Step 2.2 is divided into three steps. First, deadlocks created by the pruning process are deleted.

Second, we flag all states violating the race-free condition. Then, the transition function is updated

based on the flagged states. This update is such that only insertions transitions are possible from

flagged states, since the attack will not wait for a reaction of the system. We can adapt Definition

Algorithm 4 Det-Unb Modification
1: Step 2.1 Flag all x ∈ XHi s.t. EnB(a) ∩ Euctr 6⊆ EnHi(x)
2: Step 2.2
3: Step 2.2.1 X∗Hi = {x ∈ XHi | EnHi

(
x
)

= ∅ ⇒ EnB(x) = ∅}
4: Step 2.2.2 Flag all x ∈ X∗Hi s.t.

(
e ∈ Σobs ∧ e ∈ EnB(x)

)
⇒
(
{e, del(e)} ∩ EnHi(x) = ∅

)
5: Step 2.2.3 For x ∈ X∗Hi and e ∈ E

δ′Hi(x, e) =


δHi(x, e) if e ∈ (Σins ∪ Γ) ∧ δHi(x, e)!
δHi(x, e) if e ∈ (Σdel ∪ Σobs) ∧ δHi(x, e)! ∧ x not flagged
undefined otherwise

4.7 to prune the AIDA for the case of det-unb attacks by considering the modification of Step 2.1

and Step 2.2, as presented in Algorithm 4. We name the resulting stealthy IDA as the USDA, for

Unbounded Stealthy Deceptive Attack structure. Versions of Lemmas (4.2-4.3), and Theorem 4.3

are created for this specific attacker.

Lemma 4.4. A deterministic unbounded attack function fA is embedded in the USDA if it satisfies

conditions (1) and (2) from Problem 4.1.

Lemma 4.5. If a det-unb attack function fA is synthesized from USDA, then the stealthy condition

of Problem 4.1 is satisfied.

Theorem 4.4. The USDA embeds all possible det-unb stealthy insertion-deletion attack strategies

with respect to Σsen, R̃ and G.
3It is interesting to mention the similarity of “racing” in our work with the work on supervisory control with forced

events [47].
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4.5.3 Synthesis of bounded deterministic attack strategies

The AIDA structure is general enough for the interruptible and the unbounded attack scenarios;

however, as constructed, it does not capture the bound in the case of deterministic bounded attacks

(or det-bounded case). We now present a simple mechanism in order to compute a bounded version

of the AIDA, that we term BAIDA. (The || operation is the standard parallel composition of

automata.)

Definition 4.8. Given the AIDA constructed by Algorithm 1 and the automaton shown in Figure

4.9, the BAIDA is defined asBAIDA = AIDA||Gbound. (For the purpose of ||, the AIDA is treated

as an automaton.)

Figure 4.9: Gbound

The det-bounded attack case has similar conditions as the previously-discussed det-unb case,

however, it can only perform bounded modifications. We need to take into account how many mod-

ifications the attacker has already performed at a given E-state. Therefore, synthesis algorithms for

det-bounded attacks must use the BAIDA, as in Definition 4.8.

The BAIDA, as the AIDA previously, has to be pruned. We only show the modification of

Step 2 for Algorithm 2, resulting in Algorithm 5. Bounded attacks include features from both un-

bounded and interruptible attacks. E-states that have reached the maximum allowed modification

behave as E-states in the interruptible case, in other words, they must satisfy the race-free condi-

tion. On the contrary, E-states that have not reached the maximum allowed editions are similar

to E-states in the unbounded scenario. Consequently, Step 2.1 and Step 2.2 are a combination of

the corresponding steps in the previous cases. A similar structure as the ISDA and the USDA can

be introduced, however we omit such definition given that it would follow the same steps as in
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Algorithm 5 Det-Bounded Modification
1: Step 2.1
2: Step 2.1.1 Flag all (x, n) ∈ XHi s.t. EnB(x) ∩ Euctr 6⊆ EnHi((x, n)) ∧ n < NA

3: Step 2.1.2 X ′Hi = {(x, n) ∈ XHi | n = NA ⇒ EnB(x) ∩ Euctr ⊆ EnHi((x, n))}
4: Step 2.2
5: Step 2.2.1 X ′′Hi = {(x, n) ∈ X ′Hi | EnHi

(
(x, n)

)
= ∅ ⇒ EnB(x) = ∅}

6: Step 2.2.2X∗Hi = {(x, n) ∈ X ′′Hi | n = Na∧ e ∈ Σsen∧e ∈ EnB(x)⇒
(
e ∈ EnHi((x, n))∨del(e) ∈

EnHi((x, n))
)
}

7: Step 2.2.3 Flag all (x, n) ∈ X∗Hi s.t. n < Na, (e ∈ Σobs ∧ e ∈ EnB(x)) ⇒
(
{e, del(e)} ∩

EnHi((x, n)) = ∅
)

8: Step 2.2.4 For (x, n) ∈ X∗Hi and e ∈ E

δ′Hi((x, n), e) =


δHi((x, n), e) if e ∈ (Σins ∪ Γ) ∧ δHi((x, n), e)!
δHi((x, n), e) if e ∈ (Σdel ∪ Σobs)

∧δHi((x, n), e)! ∧ (x, n) is not flagged
undefined otherwise

the previous cases. The same comment holds for the lemmas and the theorems introduced in the

previous cases. The details are left for the readers to work out.

4.6 Conclusion

We have considered the supervisory layer of feedback control systems, where sensor readings may

be compromised by an attacker in the form of insertions and deletions. In this context, we have

formulated the problem of synthesizing stealthy sensor deception attacks, that can cause damage

to the system without detection by an existing supervisor.

Our solution procedure is game-based and relies on the construction of a discrete structure

called the AIDA, which is used to solve the synthesis problem for three different attack scenarios.

The AIDA captures the game between the environment (i.e., system and attacker) and the given

supervisor. It embeds all valid actions of the attacker. Based on the AIDA, we specified a pruning

procedure for each attack type, thereby constructing stealthy structures denoted as the ISDA and

the USDA. Based on each type of stealthy structure, we can synthesize, if it exists, an attack

function that leads the system to unsafe critical states without detection, for the corresponding

attack scenario.
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CHAPTER V

Synthesis of optimal sensor deception attacks for stochastic

supervisory control

5.1 Introduction

In the previous chapter, we have considered synthesis of sensor deception attacks for systems

modeled by logical models. Therefore, the attack strategies are analyzed qualitatively, meaning an

attack strategy either succeeds or fails.

In this chapter, we study the same synthesis problem but for stochastic systems. Therefore, we

augment the system with a quantitative measure that allows a quantitative analysis of the attack

strategies. This gives rise to a broader class of attack strategies, as compared with our previous

results.

As a consequence of the stochastic control system model that we adopt, it is possible to quantify

each attack strategy by the likelihood of reaching an unsafe state of the uncontrolled plant. In this

manner, a quantitative measure is introduced in the synthesis problem of attack strategies. First, we

investigate the synthesis of an attack function that generates the maximum likelihood of reaching

an unsafe state. This problem is denoted as the probabilistic reachability attack function problem.

In the probabilistic reachability attack function problem, only a set of compromised sensor readings

constrains the attacker on how to alter the communication channel between the system sensor and

the supervisor. For this reason, we investigate a second problem where the attacker is penalized

for each sensor modification. The second problem investigated is the synthesis of attack functions

that satisfy multiple objectives (multi-objective). Namely, the attack function must reach an unsafe
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state with maximum probability while minimizing a cost function based on the attacker sensor

modifications.

Our solution methodology employs results from the area of stochastic controlled systems, more

specifically Markov Decision Processes (MDPs). First, we show how to build the “right” MDP that

captures the interaction of the attacker and the control system. Next, we show that the solution of

the probabilistic reachability attack function problem is reducible to the probabilistic reachability

problem in MDPs [48, 49]. Based on the solution of the first problem, we trim the previously con-

structed MDP to obtain a solution space for the multi-objective attack function problem. Lastly, we

show that the solution of the multi-objective attack function problem is reducible to the stochastic

shortest path problem in MDPs [48, 49].

Related work

Several works have addressed in recent years problems of cyber-security in the field of DES. We

give a very brief overview of the existing work and compare it to our work in this chapter. We use

herein a similar framework for how attacks take place on the communications from the sensors to

the supervisor as in Chapters III and IV. In Chapter III, an attacker has compromised a subset of the

sensors and is able to delete sensor readings or insert fictitious ones in the communication channel.

Then, in Chapter IV, we investigate the problem of synthesizing stealthy sensor deception attacks

for a known logical control system [25, 26].

In [20, 11, 12, 19, 22], the authors develop diagnostic tools to detect when controlled systems

are being attacked. Their work is closely related to the work on fault diagnosis in DES, and it

applies to both sensor and/or actuator attacks. Moreover, only [20, 19, 22] consider stochastic

models, while the others consider logical DES models. Our problem differs from the problem

considered in these works since we aim to compute an attack function that successfully reaches

the critical state. Nonetheless, these diagnostic tools could be incorporated into our framework

in order to add additional constraints to the attack function synthesis problems, i.e., synthesis of
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stealthy attack functions.

5.2 Stochastic supervisory control theory

5.2.1 Probabilistic finite-state automaton

We consider a stochastic DES modeled as a Probabilistic Finite-State Automaton (PFA). A PFA

is denoted by H := (XH ,Σ, P rH , x0,H), where XH , Σ, x0,H are defined as in a DFA, PrH :

XH × Σ × XH → [0, 1] is the probabilistic transition function (PTF). The PTF PrH(x, e, y)

specifies the probability of moving from state x ∈ XH to state y ∈ XH with event e ∈ Σ. We

only consider PFAs that satisfy for any x ∈ XH :
∑

e∈Σ

∑
y∈XH PrH(x, e, y) ∈ {0, 1} but our

methodology can be easily extended for the general case [50].

The function δH is defined to bridge the gap between a PFA and a DFA, where δH(x, e) = y if

PrH(x, e, y) > 0. In this work, we assume that δH is deterministic, i.e., there does not exist y, y∗ ∈

XH , y∗ 6= y, such that PrH(x, σ, y) > 0 and PrH(x, σ, y∗) > 0. Using this definition, every PFA

H is associated with a corresponding DFA G where δG(x, e) = δH(x, e) and L(H) := L(G).

Finally, the notion of probabilistic languages (p-languages) of a PFA was introduced in [51].

Definition 5.1. Formally, Lp(H) : Σ∗ → [0, 1] is defined recursively for s ∈ Σ∗ and e ∈ Σ:

Lp(H)(ε) := 1 (5.1)

Lp(H)(se) :=

 Lp(H)(s)PrH(x, e, y) if x = δH(x0,H , s) and y = δH(x0,H , se)

0 otherwise
(5.2)

In fact, Lp(H) defines a probability measure on the σ-algebra F as defined in [51]. Given

s ∈ L(H), its measurable set in F is defined as the set of all strings having s as a prefix. Two

strings s, s′ ∈ L(H) define disjoint measurable sets in F if and only if one is not a prefix of the

other.

Following similar steps as in [51], we also define the expectation of a function f : Σ∗ →

71



[0,∞). Let L ⊆ L(H) be such that all strings in L define disjoint measurable sets in F and∑
s∈L Lp(H)(s) = 11. In this manner, we can define a probability mass function on L based on

Lp(H). The expectation of f is defined with respect to this probability mass function as:

EL,H [f(s)] :=
∑
s∈L

f(s)Lp(H)(s) (5.3)

To simplify the notation in this section, we denote by eis the ith event of s ∈ Σ∗ such that

s := e1
se

2
s . . . e

|s|
s . Moreover, we denote by s̄ the set of all prefixes of s.

5.2.2 Stochastic supervisory control

In stochastic supervisory control theory, the system H is considered as the plant but there are dif-

ferent ways of studying its closed-loop behavior [52, 50, 53]. In our work, we use the results of

supervisory control of stochastic DES introduced by [50], where only the plant behaves stochas-

tically. Namely, both the specification and the supervisor are deterministic and defined as in the

previously-described supervisory control framework. However, the supervisor alters the proba-

bilistic behavior of the plant via the control actions it takes (disabling events). Conditions for the

existence of a supervisor for the above control problem are provided in [50].

Formalizing the previous discussion, the disablement of events by R increases the probability

of the enabled ones. In other words, R/H generates another p-language, in general, different than

the p-language of H . Given a state x ∈ XH , a state y ∈ XR, and an event e ∈ EnH(x) ∩EnR(y),

the probability of e being executed is given by the standard normalization:

Prx,ye :=
PrH(x, e, δH(x, e))∑

e′∈EnH(x)∩EnR(y)

PrH(x, e′, δH(x, e′))
(5.4)

Similarly to the logical case, the closed-loop behavior can be described as the parallel com-

position R||H . However, the probabilistic information is lost in R||H . For this reason, we define

1This language matches the definition of terminating p-languages in [51].
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a probabilistic parallel composition ||p based on Eq. 5.4 and the standard parallel composition ||

(Def. 2.3). This composition performs the standard || and updates the PTF for the composed sys-

tem. Formally, R||pH := Ac((XR||pH ,Σ, P rR||pH , x0,R||pH)) is defined by XR||pH ⊆ XH × XR,

x0,R||pH := (x0,H , x0,R), and for x = (x1, x2), y = (y1, y2) ∈ XH ×XR and e ∈ Σ the transition

probability is:

PrR||pH(x, e, y) :=


Prex1,x2

if δH(x1, e) = y1∧

δR(x2, e) = y2

0 otherwise

(5.5)

In this manner, the closed-loop system R/H is described by R||pH .

For simplicity and without loss of generality, we assume that the plant H has one deadlock

critical state, denoted by xcrit ∈ XH and supervisor R ensures that this state is not reachable in

R/H . Namely, we assume that ∀s ∈ L(H) \ L(R/H), then δH(x0,H , s) = xcrit. We define the set

of unsafe strings as Uuns := {s ∈ Σ∗ | δH(x0,H , s) = xcrit} and the set of unsafe state pairs for the

controlled system R/H by

Xuns :={(x1, x2) ∈ XH ×XR | @s ∈ L(R/H). x1 = δH(x0,H , s) ∧ x2 = δR(x0,R, s)} (5.6)

Example 5.1. We return to the intersection example where we assume to have probabilistic knowl-

edge about the model. Namely, we assume that the intersection is modeled by the PFA depicted in

Fig. 5.1(a) with Σctr = {Bint, Rint}. As in Example 2.4, state 5 is the critical state2.

The same supervisor shown in Fig. 2.6(a) guarantees that the controlled system does not reach

state 5. Figure 5.1(b) depicts the closed-loop system R1/H . Based on R1 and H , we can compute

the set Xuns as the pair of states that are not in XR1||H .
2Here, state 5 is transformed to be a deadlock state such that H matches our assumption of a single deadlock state.
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(a) PFA H for the intersection example. Tran-
sitions are labelled as event, probability of tran-
sition.

(b) H||pR1

Figure 5.1: Stochastic intersection example

5.3 Problem formulation

In this section, we pose the two problems that are solved in this chapter: the probabilistic reacha-

bility attack function problem and the multi-objective optimal attack function.

5.3.1 Stochastic supervisory control under sensor deception attacks

We start by recalling some of the definitions in Chapter III as well as specializing them for this

specific chapter.

In this chapter, we assume that the attacker is modeled by a deterministic unbounded attack

function (Def. 3.7). We restate the attack function definition specifically for this scenario. Recall

that we also assume that every event is observable, i.e., Σobs = Σ.

Definition 5.2. An attacker that hijacks the events in Σsen ⊆ Σ in the communication channel

between the plant and the supervisor is defined as a map A : Σ∗all × Σ ∪ {ε} → Σ∗all, that satisfies

for any t ∈ Σ∗all and e ∈ Σ ∪ {ε}:

1. A(ε, ε) ∈ Σins
∗ and A(t, ε) is undefined for t 6= ε

2. If e ∈ Σsen, then A(t, e) ∈ {e, del(e)}Σins
∗

3. If e ∈ Σ\Σsen, then A(t, e) ∈ {e}Σins
∗
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The attack functionA defines a deterministic strategy for event e based on the previous of mod-

ification t. Namely, A(t, e) is a substitution rule where e is substituted byA(t, e). For convenience,

we define the function Â that recursively concatenates these modifications for any string s ∈ Σ∗.

Let s ∈ Σ∗, then we define Â(s) = Â(s|s|−1)A(Â(s|s|−1), e
|s|
s ) and Â(ε) = A(ε, ε). Note that the

inverse function of Â(s) is the projection PH , i.e., s = PH(Â(s)), where PH := PG.

A new controlled behavior is generated when the attack function A is placed in the communi-

cation channel between the plant and the supervisor. Namely, a new supervisor denoted by SA is

defined, where SA(s) = S◦P S ◦Â(s) is the resulting control action, under attack, after string s has

been executed by the system. The language L(SA/H) ⊆ L(H) is defined as usual (see Chapter II)

and SA/H is denoted as the attacked system. This language is defined over Σ, and not Σall, due

to the projection P S of the attacker editions. Note that, SA/H generates a p-language in the same

manner as S/H .

Remark 5.1. In the definition of the language of SA/H , the attacker completes its string modifi-

cation without any interruption of the plant H (Def. 3.7). In other words, the plant H does not

execute any event in the middle of the attacker editions following each event executed by the plant.

We introduce the notion of complete and consistent attack functions. Intuitively, an attack

function is complete if it is defined for every string in the new controlled behavior L(SA/H). This

means that the attacker always “knows” what to do next. Moreover, an attack function is consistent

if its insertions are consistent with the current supervisor’s control decision. This means that the

attacker does not insert an event that is not allowed by the current supervisor’s control decision.

Definition 5.3. An attack function A is complete with respect to H and S if for any s in L(SA/H),

we have that Â(s) is defined. Moreover, A is consistent if for any e ∈ Σ, s ∈ L(SA/H) s.t.

se ∈ L(SA/H) with A(se) = t, then ei+1
t ∈ S(Â(s)ti) for all i ∈ |t| − 1. We define ΠA as the set

of all complete and consistent attack functions w.r.t. H and S.

Remark 5.2. Although we did not consider a detection module in this framework, a detection

module can be incorporated into the supervisor if we slightly modify supervisor R. Namely, we

75



can introduce a supervisor that embeds an intrusion detection module (Def. 4.2).

5.3.2 The maximal reachability problem

Since the controlled behavior under the influence of attack functionA is well defined by L(SA/H),

we can define the objective of the attacker based on this language. The attack function is successful

if Uuns ∩ L(SA/H) 6= ∅. Moreover, an attack function A is quantified by the probability of

generating strings s ∈ Uuns ∩ L(SA/H), since Lp(SA/H) is well defined. We define the winning

level of A to be the probability that SA/H generates unsafe strings. Formally,

winA :=
∑
s∈Uuns

Lp(SA/H)(s) (5.7)

It follows from Uuns that winA ≤ 1 for any A ∈ ΠA. Namely, winA captures the probability

that SA/H generates unsafe strings.

The definition of the value winA makes it possible to compare attack functions. For example,

given two attack functions A and A′, if winA ≥ winA′ , then it means that strategy A is equally

or more likely to reach the unsafe region of H than A′. A natural question to ask is if there exists

an attack function that is more likely to reach the unsafe region than any other attack function.

Formally, the problem is posed as follows.

Problem 5.1. [The probabilistic reachability attack function problem] Given a plant modeled as

PFA H , a supervisor modeled as DFA R, and the set of compromised events Σsen ⊆ Σ, synthesize

Amax ∈ ΠA such that:

winAmax := sup
A∈ΠA

winA (5.8)

5.3.3 The multi-objective problem

In Problem 5.1, the attacker is “eager” to reach the critical state and it is not constrained, except

by Σsen, in how to do so. Finding a cost-optimal attack function would be a natural extension
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for the investigated problem [54, 55]. Nonetheless, the reachable-optimal and the cost-optimal

problems are conflicting. In this manner, a multiple-objective problem is investigated, i.e., maximal

reachability and minimal expected cumulative cost.

We follow a similar approach as in [56, 57] where objectives have priorities. Namely, the at-

tacker has multiple objectives to satisfy: (i) maximize the probability of reaching the critical state;

(ii) minimize the expected cost while performing (i). First, the attacker prioritizes the probability

of reaching the critical state and finds all attack functions that maximize this probability. Sec-

ond, within these maximal attack functions, it searches for an attack function with the minimum

expected cost.

In order to formally pose this problem, we need to introduce a cost function over the strings in

L(SA/H) for a given A ∈ ΠA. Recall that in Eq. (5.7), the winning level only considers unsafe

strings. In addition to the set of unsafe strings, we consider the set of strings in L(SA/H) from

where the critical state is unreachable. Intuitively, cost is incurred for strings that reach the critical

state and for strings from where the critical state is unreachable. These two sets are “stopping

points” for the attacker, i.e., we assume that the attacker stops its attack once it reaches the critical

state or once the critical state is unreachable. Note that, the union of these two sets is related to

language L in the definition of Eq. (5.3). Formally, let Lr = L(SA/H) ∩ Uuns be all prefixes from

where the system can still reach the critical state. Then, the set of strings from where the critical

state is unreachable is defined as:

Uunr,A := {s ∈ L(SA/H) | s ∈ L(SA/H) \ Lr ∧ s|s|−1 ∈ Lr} (5.9)

It follows that
∑

s∈(Uuns∪Uunr,A) Lp(SA/H)(s) = 1 for any A ∈ ΠA. Lastly, we assume a

weight function w : Σall → [0,∞) that captures the weight of each event in this set. Since we

are interested in penalizing the attacker for its editions, w is defined to be zero for events in Σ and

non-negative for events in Σatt. Based on Uuns and Uunr,A, and w let the cumulative cost function

cost : Σ∗ → [0,∞) be defined as follows:
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cost(s) :=


∑|Â(s)|

i=1 w(ei
Â(s)

) if s ∈ Uuns ∪ Uunr,A

0 otherwise
(5.10)

Remark 5.3. The function cost is defined for each string s ∈ L(SA/H) ⊆ Σ∗, but its value is

calculated based on Â(s) ∈ Σ∗all. The attacker modifications are only identified in strings in Σ∗all.

Since we penalize the attacker modifications of s, the value of the function cost must be calculated

based on Â(s) ∈ Σ∗all. The function cost is well define since the attack function is an injective

function.

Posing a minimization problem only based on this cumulative cost function is an ill-posed

problem since an attacker that does not attack is a solution. Thus, this cumulative cost function

only works since the minimization problem is preceded by a maximization problem.

Problem 5.2. [Multi-Objective Optimal Attack Function Synthesis Problem] Given a plant H , a

supervisor R, the set of compromised events Σsen ⊆ Σ, a solution of Problem 5.1 Amax, and the

cumulative cost function cost, find

Amulti ∈ arg inf
A∈ΠA s.t. winA=winAmax

EA[cost(s)] (5.11)

where EA is an abbreviation for E(Uuns∪Uunr,A),SA/H , the expected value defined with respect to the

p-language generated by SA/H and the set Uuns ∪ Uunr,A as defined in Eq. (5.3).

We search for an attack function in ΠA that satisfies Problem 5.1 and produces the minimal

expected cumulative cost. This problem is well-posed since we search for an attack function that

generates the minimum expected cost within the policies that reach the critical state with the max-

imum winning level. Therefore, the two problems we pose (Problems 5.1 and 5.2) can be solved

in sequence.
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5.4 Markov decision processes

We briefly review concepts and notations of Markov Decision Processes (MDPs). An MDP is a

tuple M = (Q, q0,M , Act, δM), where Q is a finite set of states, q0,M ∈ Q is an initial state, Act is

a finite set of actions, and δM : Q× Act×Q → [0, 1] is a PTF (Probability Transition Function),

where
∑

q′∈Q δM(q, a, q′) ∈ {0, 1} for all q ∈ Q and a ∈ Act.

An infinite run is a sequence ρ = q0
ρa

0
ρq

1
ρa

1
ρ . . . , where δM(qiρ, a

i
ρ, q

i+1
ρ ) > 0 for all i ∈ N. Given

ρ, we denote by qiρ and aiρ to be the ith state and action in the run, respectively3. The set of all runs

in M initialized at state q is defined as Runsq(M), and Runs(M) = Runsq0,M (M). Similarly,

Prefq(M) (Pref(M)) is the set of all finite-length prefixes of runs in Runsq(M) (Runs(M)).

For a finite run ρ ∈ Prefq(M), the length of ρ is denoted by |ρ|, i.e., ρ = q0
ρa

0
ρ . . . a

|ρ|−1
ρ q

|ρ|
ρ .

A deterministic strategy π : ∪q∈QPrefq(M) → Act is a function that maps finite prefixes of

runs into feasible actions. The set of all (deterministic) policies of M is defined as ΠM . Under a

fixed strategy π ∈ ΠM , the behavior of M is fully probabilistic and it can be represented by an

induced discrete-time Markov chain [55, 48]. This fixed strategy leads us to the standard definition

of a probability measure PrπM,q overRunsq(M) [55]. We use the notationRunsπq (M), P refπq (M)

to denote the set of runs generated by the MDP instantiated by π ∈ ΠM . In this probability measure

PrπM,q, the probability of generating a finite run ρ ∈ Prefπq (M) is defined as

PrπM,q(< ρ >) :=
∏

i∈[|ρ|−1]

δM(qi, ai, qi+1) (5.12)

where < ρ >:= {ρ∗ ∈ Runsπq (M) | qiρ = qiρ∗ , i ∈ [|ρ|]} [55].

We are interested in two MDP problems, the probabilistic reachability problem [54, 49] and the

stochastic shortest path problem [48, 49]. The probability of reaching an absorbing set Qabs ⊆ Q

from state q ∈ Q is defined as:

pπM,q(Qabs) := PrπM,q({ρ ∈ Runsπq (M)|∃j ∈ N, qjρ ∈ Qabs}) (5.13)

3If ρ is clear, the subscripts are omitted.
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Similarly to the definition of runs, we define pπM(Qabs) = pπM,q0,M
(Qabs). Policies π ∈ ΠM that

reach Qabs with probability 1 are denoted as proper policies [48]. The probabilistic reachability

problem is defined as follows:

Problem 5.3. Given an MDP M and a target absorbing set Qabs ⊆ Q, find

p∗M(Qabs) := sup
π∈ΠM

pπM(Qabs) (5.14)

Let EπM,q(f) denote the expected value of a measurable function f : Runsq(M)→ [0,∞] with

respect to PrπM,q, see, e.g., [54, 55] for details. Moreover, the state q is omitted when q = q0,M .

Then, the stochastic shortest path problem is defined as follows:

Problem 5.4. [48] Given an MDP M , and a cost function c : Q× Act→ [0,∞], find

c∗M(Qabs) := inf
π∈ΠM

EπM [cumul(Qabs, ρ)] (5.15)

where ρ ∈ Runs(M) and

cumul(Qabs, ρ) :=



jρ∑
i=0

c(qiρ, a
i
ρ) if ∃j ∈ N s.t.

qjρ ∈ Qabs

∞ otherwise

and jρ = min{j : qjρ ∈ Qabs}.

Both problems can be solved using standard MDP algorithms, e.g., value iteration, policy iter-

ation, or linear programming, see [55, 48, 49]. Problem 5.4 has a solution, c∗M <∞, if and only if

supπ∈ΠM
pπM(Qabs) = 1. Moreover, both problems accept memoryless and deterministic strategies

as solutions [55, 48].
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5.5 Solution of the probabilistic reachability attack function

problem

5.5.1 Construction of the MDP

In Problem 5.1, we assume that H and R are given as a PFA and a DFA, respectively. For this

reason, an MDP is constructed based on these two models and its state space is defined based on

the states of H and R. Moreover, actions in the MDP represent the attacker actions on the attacked

controlled system. Formally, the MDP M is defined as follows.

Definition 5.4. Given plant H , supervisor R, and compromised event set Σsen, the MDP M :=

(Q,Act, δM , q0,M) is constructed in the following manner.

• Q ⊆ XH ×XR × ((Σ \ Σsen) ∪ Σdel ∪ {ε}). For a state q, we denote by qH , qR and qe the

plant state, the supervisor state, and the executed event, i.e., q = (qH , qR, qe).

• The set Act := {τ, nd} ∪ Σatt.

• The initial state q0,M := (xH,0, xR,0, ε).

• The PTF δM is defined for x, y ∈ Q and action τ :

δM(x, τ, y) :=


PrxH ,xR

PH(ye)
if ye ∈ (Σ \ Σsen) ∪ Σdel, yH = δH(xH , P

H(ye)),

yR = δR(xR, P
S(ye))

0 otherwise

(5.16)

For x, y ∈ Q and action nd:

δM(x, nd, y) :=

 1 if xe ∈ Σdel, yH = xH , yR = δR(xR, P
H(xe)), ye = ε

0 otherwise
(5.17)
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While for any x, y ∈ Q and action a ∈ Σatt:

δM(x, a, y) :=



1 if a ∈ Σins, (xH , xR) 6∈ Xuns,

y = (xH , δR(xR, P
S(a)), ε)

1 if a = xe ∈ Σdel, (xH , xR) 6∈ Xuns,

y = (xH , xR, ε)

0 otherwise

(5.18)

• Post-Processing: for any x ∈ Q such that
∑

y∈Q δM(x, a, y) = 0 for all a ∈ Act, δM is

augmented for x by defining:

δM(x, τ, (xH , xR, ε)) := 1

and

δM((xH , xR, ε), τ, (xH , xR, ε)) := 1

The encoding of the attacked system to an MDP is not unique. Namely, there are different

ways that an MDP can be constructed such that it encodes the dynamics of all possible attacked

systems. We fixed a specific encoding where the action set of M is mapped to attacker actions in

the attacked system.

Action τ represents the attacker waiting for the controlled system to execute an event, i.e., H

executes an event. If in state x ∈ Q there exists an event e ∈ En(xH)∩En(xR), then δM(x, τ, y) =

PrxH ,xRe . Finally, the last function for action τ is to maintain the MDP live; this function is defined

in the post-processing.

The nd (not deleting) action represents the attacker action of not deleting a compromised event

from the channel, Eq. (5.17). If xe ∈ Σdel at state x ∈ Q, it means that event PH(xe) was just

executed. At this point the attacker has two choices: report PH(xe) to the supervisor, or decide to

not report this event (deletion). Equation (5.17) represents the former choice, i.e., the supervisor

receives the execution of event PH(xe) and updates accordingly δR(xR, P
H(xe)).
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Lastly, actions in Σatt represent the attacker inserting events in the channel or deleting events

from the channel. The attacker can insert event e ∈ Σsen at state x ∈ Q if e ∈ En(xR); and it can

delete event e ∈ Σsen at state x ∈ Q if xe = del(e), i.e., the event e was just executed.

Example 5.2. In order to illustrate the construction ofM , recall the plantH and the supervisorR1

shown in Example 5.1. The compromised event set for this example is Σsen = {Rint}. Figure 5.2

represents M for the controlled system R1/H . In Figure 5.2, the transition function is represented

by the directed edges with a respective action and probability value.

1,1,�

4,1,del(Rint)

1,4,�

4,1,�

2,2,Bint

4,4,�

7,7,Rout 8,8,Bint 9,9,Bout

3,3,Bout

6,3,del(Rint)

3,6,�

6,6,�

6,3,�

5,2,Bint

5,2,�

9,9,Rout

9,9,�

9,3,� 9,3,Rout7,1,Rout 8,2,Bint 9,3,Bout

Figure 5.2: MDP for controlled system R1/H and Σsen = {Rint}

To connect the MDP M to our original problem, we extract two strings from a given finite run

in M . First, let sρ = PH(q0
ρ,e)P

H(q1
ρ,e) . . . P

H(q
|ρ|
ρ,e) for ρ ∈ Pref(M). Second, for ρ ∈ Pref(M)

such that q|ρ|ρ,e 6∈ Σdel, we define tρ = e0e1 . . . e|ρ|−1 where

ei :=



aiρ if aiρ ∈ Σatt

M(qi+1
ρ,e ) if (qi+1

ρ,e ∈ Σ \ Σsen) or

(qi+1
ρ,e ∈ Σdel and ai+1

ρ = nd)

ε otherwise

(5.19)
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Note that in the construction of tρ, to confirm that an event in H is executed between states i and

i+ 1 we look at qi+1
ρ,e . In Example 5.2, given

ρ = (1, 1, ε)τ(4, 1, del(Rint))del(Rint)(4, 1, ε)ins(Rint)(4, 4, ε)τ(7, 7, Rout)

then

sρ = PH(ε)PH(del(Rint))P
H(ε)PH(ε)PH(Rout) = RintRout

tρ = εdel(Rint)ins(Rint)Rout = del(Rint)ins(Rint)Rout

The string tρ ∈ Σ∗all represents the modified behavior while sρ ∈ L(H) represents the executed

behavior. We also define the objective set Obj as the set of absorbing states where the attacker has

reached its goal.

Obj := {(qH , qR, ε) ∈ Q | (qH , qR) ∈ Xuns} (5.20)

5.5.2 Maximal reachability attack function

The definition of winning level is directly related to an attack function A. In other words, once an

attack function A is fixed, we obtain the language L(SA/H) and consequently the value of winA.

The same idea applies to the MDP M ; once a strategy π is fixed, we can calculate the probability

of reaching the states in Obj. The construction of MDP M and the set Obj ties these two problems

together. The following theorem connects the solution of Problem 5.3 for MDP M and set Obj

with the solution of Problem 5.1.

Theorem 5.1. Consider the MDP M and the set Obj, then

winAmax = p∗M(Obj) (5.21)

Although Problem 5.3 and Problem 5.1 have similarities, to formally prove Theorem 5.1 a

sequence of intermediate results is needed. These intermediate results are intuitively stated in the
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following subsection with their formal proofs. Moreover, the solution procedure of Problem 5.3 not

only outputs the maximum probability p∗M(Qabs) but also outputs p∗M,q(Qabs) for all q ∈ Q. In this

manner, one can use standard methods to extract an optimal strategy π∗ that achieves pπ∗M (Obj) =

p∗M(Obj). In Section 5.5.3, we show how to construct an attack function Amax based on π∗ such

that Amax is a solution of Problem 5.1.

Example 5.3. We return to our intersection example, where we solve Problem 5.3 for the MDP

depicted in Fig. 5.2. The solution procedure of Problem 5.3 outputs p∗q(Obj) for each q ∈ Q; these

values are shown in blue in Fig. 5.2. The probability of reaching the set Obj = {5, 2, ε} (in dark

green) is p∗M(Obj) = 0.4. Therefore, winAmax = 0.4 and Amax is defined as: Amax(ε, Rint) =

del(Rint) and Amax(s, e) = e for all s ∈ Σ∗all and e ∈ Σ ∪ {ε}. This is of course the expected

solution for Problem 5.1 since deleting event Rint after its execution leads the supervisor to allow

a move to the illegal state 5.

5.5.3 Proof of theorem 5.1

In order to prove Theorem 5.1, we present a sequence of equivalences between an attacked system,

and the MDP M instantiated by a strategy π ∈ ΠM . As the MDP M is constructed, it allows

strategies that are mapped to attack functions with infinite insertions. Since we only allow attack

functions with finite insertion (arbitrarily long), we must address this problem first. We show that

the set of strategies that are mapped to attack functions with finite insertions is sufficient to solve

Problem 5.3.

Next, we show that there is a one-to-one map between these strategies in M and complete and

consistent attack functions. We also show that the probability space generated by the probabilistic

language of an attacked system is equivalent to the probability space generated byM and a strategy

π. Finally, the winning level of an attack function is equivalent to the probability of reaching the

set Obj using a strategy π in M .

We start by stating a lemma about any strategy in the MDP M and runs that represent infinite

insertion. This lemma states that the probability of reaching the objective set is zero for states with
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infinite insertion future.

Lemma 5.1. Let π ∈ ΠM . For all ρ ∈ Runsπ(M) such that

(∃j ∈ N)(∀k ≥ j)[π(q0
ρ . . . q

k
ρ) ∈ Σins]

then pπ
M,qjρ

(Obj) = 0.

Proof. Let ρ ∈ Runsπ(M) such that (∃j ∈ N)(∀k ≥ j)[π(q0
ρ . . . q

k
ρ) ∈ Σins]. Then pπ

M,qjρ
(Obj) <

1 otherwise ∃k ≥ j such that π(q0
ρ . . . q

k
ρ) = τ . It implies that qjρ 6∈ Obj and qjρ,H 6= xcrit. Moreover,

π(q0
ρ . . . q

k
ρ) ∈ Σins for all k ≥ j, then by construction of M we have δM(qkρ , π(q0

ρ . . . q
k
ρ), qk+1

ρ ) =

1. Again by construction of M , qkρ,H 6= xcrit for all k ≥ j. It follows that pπ
M,qkρ

(Obj) = 0.

Let Πf
M be the set of all strategies of M that do not generate infinite insertions, i.e., Πf

M =

{π ∈ ΠM | ρ ∈ Runsπ(M) ⇒ (∀j ∈ N)(∃k ≥ j)[π(q0
ρ . . . q

k
ρ) 6∈ Σins]}. Based on Lemma 5.1,

the following proposition states that Πf
M is sufficient to solve Problem 5.3 for MDP M .

Proposition 5.1. p∗M(Obj) = maxπ∈ΠfM
pπM(Obj).

Proof. We show that if π ∈ ΠM is optimal and it has infinite insertions, then we can construct a

πf ∈ Πf
M based on π that is also optimal. Assume π ∈ ΠM \ Πf

M and pπM(Obj) = p∗M(Obj).

Let I be the set of runs ρ ∈ Runsπ(M) that satisfies (∃j ∈ N)(∀k ≥ j)[π(q0
ρ . . . q

k
ρ) ∈ Σins]. By

Lemma 5.1, for any ρ ∈ I then there exists j ∈ N such that pπ
M,qjρ

(Obj) = 0. This implies that we

can modify π for prefixes of runs in I without altering the probabibility of reaching Obj. Without

loss of generality, we can assume that π is a memoryless strategy [55, 48]. Let πf be defined in the

following manner for any q ∈ Q: πf (q) = τ , if π(q) ∈ Σins and (∀ρ ∈ Prefπq (M))[ajρ ∈ Σins];

πf (q) = π(q), otherwise. It follows that πf ∈ Πf
M and pπfM (Obj) = pπM(Obj) = p∗M(Obj).

Proposition 5.1 allows us to focus only on strategies in Πf
M . The proof of Proposition 5.1

also provides the result that a memoryless strategy in Πf
M achieves p∗M(Obj) since a memoryless

strategy in ΠM achieves p∗M(Obj) [55, 48]. In the proof of Proposition 5.1, a memoryless strategy
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in ΠM remains a memoryless strategy in Πf
M . As consequence, an optimal strategy can be found in

the space of memoryless policies in Πf
M . First, we state a proposition that ties the relation between

the language L(SA/H) for any complete and consistent attack function A with finite runs in M .

Proposition 5.2. Given A ∈ ΠA, for any s ∈ L(SA/H) and t = Â(s), there exists a unique

ρ ∈ Pref(M) such that s = sρ, t = tρ and (a|ρ|−1 = τ ∧ q|ρ|e = ε)⇒ q|ρ| 6= q|ρ|−1.

Proof. We use induction on the length of s to prove the result the existence of ρ ∈ Pref(M).

Induction basis: s = ε ∈ L(SA/H) and t = Â(ε) = A(ε, ε).

By the definition of A, the string t is finite. Let ai−1 = eit for i ∈ [|t|]+, by Definition 5.2

each eit ∈ Σins. Also, let qi = (x0,H , δR(x0,R, t
i), ε) for i ∈ [|t|]. Each qi ∈ Q since A is

consistent, δR(x0,R, t
i)!, and by construction of M . Thus, δM(qi, ai, qi+1) = 1 by construction of

M . Therefore, ρ = q0a0 . . . q|t| ∈ Pref(M), q|t|e 6∈ Σdel, sρ = s and tρ = t.

Induction hypothesis: The proposition holds for all s ∈ L(SA/H) with |s| ≤ n.

Induction step: Let |s| = n+ 1.

From the induction hypothesis, ∃ρ ∈ Pref(M) such that the proposition holds for sn. Re-

call that Â(s) = Â(s|s|−1)A(s|s|−1, en+1
s ). Let t′ = A(sn, en+1

s ), then it is enough to show that

∃ρ′ ∈ Pref
q
|ρ|
ρ

(M) such that en+1
s = PH(q1

ρ′,e) = PH(q1
ρ′,e) . . . P

H(q
|ρ′|
ρ′,e) and t′ = tρ′ . Based on

Definition 5.2, e1
t′ ∈ Σ ∪ Σdel andM(e1

t′) = en+1
s .

Assume that e1
t′ ∈ Σ \ Σsen and let a0 = τ and q0 = q

|ρ|
ρ . Since s ∈ L(SA/H) and

by the induction hypothesis, δH(x0,H , s) = δH(δH(x0,H , s
n), en+1

s ) = δH(q0
H , e

1
t′) = qH and

δR(x0,R, Â(sn)e1
t′) = δR(δR(x0,R, Â(sn)), e1

t′) = δR(q0
R, e

1
t′) = qR are well defined. Thus,

δM(q0, τ, q1) > 0 by construction of M , where q1 = (qH , qR, e
n+1
s ). Since ei+1

t′ ∈ Σins for

i ∈ [|t′| − 1]+ by Definition 5.2, we can apply the same strategy as in the induction basis.

Namely, ai+1 = ei+2
t′ and qi+2 = (qH , δR(qR, t

′i+2), ε) ∈ Q for i ∈ [|t′| − 2]. Again since

A is consistent, it follows that δM(qi+1, ai+1, qi+2) = 1 for i ∈ [|t′| − 2]. In this manner

ρ′ = q0a0 . . . q|t| ∈ Pref
q
|ρ|
ρ

(M) and ρa0 . . . q|t
′| ∈ Pref(M) such that sρa0...q|t| = s and

tρa0...q|t| = Â(sn)t′ = Â(s). Similar arguments can be made when e1
t′ ∈ Σdel ∪ Σsen. In this
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case, e1
t′ defines q0, q1, q2, a0 and a1 while qi+3 and ai+2 are defined based on ei+2

t′ for i ∈ [|t′| − 2].

This concludes the first assertion of the proof.

The condition (a|ρ|−1 = τ ∧ q|ρ|e = ε)⇒ q|ρ| 6= q|ρ|−1 is satisfied by the construction of ρ in the

induction proof. Finally, uniqueness follows from the fact that Â, H and R are deterministic.

In the post-processing of δM in Definition 5.4, we have to extend finite strings in the attacked

system to infinite runs in the MDP. If we disregard this “superfluous” behavior introduced in the

post-processing, then Proposition 5.2 relates any pair of strings (s, Â(s)), given an attack function

A, to a unique finite run in M .

Thus, the condition (a|ρ|−1 = τ ∧ q|ρ|e = ε) ⇒ q|ρ| 6= q|ρ|−1 eliminates the “superfluous”

behavior introduced by the post-processing. Thus, there exists a one-to-one map between pairs

of strings and finite runs. Consequently, attack functions can be related to strategies for the MDP

M (Πf
M ) by a one-to-one map. Let us provide this one-to-one map by first constructing a relation

between attack functions and MDP strategies.

Definition 5.5. GivenA ∈ ΠA, we define πA ∈ Πf
M using the result of Prop. 5.2. Let s ∈ L(SA/H)

and Â(s) ∈ Σ∗all, then define πA for ρ ∈ Pref(M) such that sρ = s, and tρ = Â(s) as:

πA(q0
ρa

0
ρq

1
ρ . . . q

j
ρ) := ajρ, j ∈ [|ρ| − 1] (5.22)

The strategy πA for a given A ∈ ΠA is well-defined even though it re-assigns strategies for a

run ρ ∈ Pref(M). Namely if two strings s, s′ ∈ L(SA/H) share a prefix, then the respective

finite runs ρ, ρ′ ∈ Pref(M) also share a prefix and πA is defined for each prefix of ρ, ρ′. Since A

is deterministic these re-assignments of πA are identical.

For example, we partially define an attack function for Example 5.1 as A(ε, ε) = ε and

A(ε, Rint) = del(Rint). For this case, s = ε has

(1, 1, ε)

88



as its respective finite run in the MDPM shown in Figure 5.2. It follows from s = ε andA(ε, ε) = ε

that πA((1, 1, ε)) = τ . Similarly, s = Rint has

(1, 1, ε)τ(4, 1, del(Rint))del(Rint)(4, 1, ε)

as its respective finite run. In this case, it follows from s = Rint and A(ε, Rint) = del(Rint) that

πA((1, 1, ε)) = τ

and

πA((1, 1, ε)τ(4, 1, del(Rint))) = del(Rint)

Although πA((1, 1, ε)) is defined by both of these finite runs, each of them defines

πA((1, 1, ε)) = τ

Definition 5.6. Let π ∈ Πf
M , then we define Aπ ∈ ΠA by defining Âπ(s) for s ∈ Σ∗. Let ρ ∈

Prefπ(M) such that π(ρ) = τ , then we define Âπ for ρ′ = q0
ρa

0
ρ . . . q

|ρ|−1
ρ as:

Âπ(sρ′) := tρ′ (5.23)

Note that in Definition 5.6, Âπ is defined for strings constructed based on finite traces ρ ∈

Prefπ(M) such that π(ρ) = τ . This definition matches the definition of attack function where

the end of an attacker modification is marked by an observable event executed by H . We give an

example of Definition 5.6 based on Figure 5.2. Let π((1, A, ε)) = ins(Rint) and π(q) = τ for

q ∈ Q \ {(1, 1, ε)}, then

Prefπ(M) = {(1, 1, ε), (1, 1, ε)ins(Rint)(1, 4, ε)τ, . . . }
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In this manner, selecting ρ = (1, 1, ε)ins(Rint)(1, 4, ε)τ defines Âπ(ε) = ins(Rint), which is a

complete and consistent attack function. The attacked language is L(SAπ/H) = {ε} since the

controlled system deadlocks after the insertion of Rint at the initial state of H and R1.

Based on Definitions 5.5 and 5.6, the following proposition relates the probability spaces of an

attacked system and the MDP instantiated by a strategy π ∈ Πf
M .

Proposition 5.3. Given A ∈ ΠA, then for any s ∈ L(SA/H):

Lp(SA/H)(s) = PrπAM (< ρs >) (5.24)

where ρs ∈ PrefπA(M) such that s = sρs , and Â(s) = tρs .

Conversely, given π ∈ Πf
M , then for any ρ ∈ Prefπ(M):

PrπM(< ρ >) = Lp(SAπ/H)(sρ) (5.25)

Proof. We start with Eq. (5.24). The equality trivially holds when s = ε. Let s ∈ L(SA/H) such

that |s| > 0, then

Lp(SA/H)(s) =
∏

i∈[|s|]+
Pr

δH(x0,H ,s
i−1),δR(x0,R,Â(si−1))

eis
(5.26)

Using Def. 5.5, let ρ ∈ PrefπA(M) such that s = sρ and tρ = Â(s). Such ρ always exists since

we can construct as in Def. 5.5. Then for i ∈ [|s|] there exists j ≥ i such that δH(x0,H , s
i) = qjH ,

δR(x0,R, Â(si)) = qjR, si = sq0a0...qj , and Â(si) = tq0a0...qj . It follows that:

Lp(SA/H)(s)
Def. 5.4

=
∏

i∈[|ρ|−1] s.t. qi+1
e 6=ε

Pr
qiH ,q

i
R

PH(qi+1
e )

(5.27)

Def. 5.4
=

∏
i∈[|ρ|−1]

δM(qi, ai, qi+1) (5.28)

Eq. (5.12)
= PrπAM (< ρ >) (5.29)
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This concludes the first part of the proof.

We now show Eq. (5.25). The equality trivially holds for ρ ∈ Prefπ(M) such that π(ρ) = τ

and (∀j ∈ [|ρ|])[qjρ,e = ε]. Let ρ ∈ Prefπ(M) such that π(ρ) = τ and (∃j ∈ [|ρ|])[qjρ,e 6= ε], then

PrπM(< ρ >)
Eq. (5.12)

=
∏

i∈[|ρ|−1]

δM(qi, ai, qi+1) (5.30)

Def. 5.4
=

∏
i∈[|ρ|−1] s.t. qi+1

e 6=ε

Pr
qiH ,q

i
R

PH(qi+1
e )

(5.31)

Using Def. 5.4 and Def. 5.6, we have that for i ≤ |ρ| such that qie 6= ε, qi−1
H = δH(x0,H , sq0a0...qi−1)

and qi−1
R = δR(x0,R, tq0a0...qi−1) = δR(x0,R, Âπ(sq0a0...qi−1)) and sρ ∈ L(SAπ/H). Hence

=
∏

i∈[|ρ|−1] s.t. qi+1
e 6=ε

Pr
δH(x0,H ,sq0a0...qi ),δR(x0,R,Âπ(sq0a0...qi ))

PH(qi+1
e )

(5.32)

=
∏

k∈[|sρ|−1]

Pr
δH(x0,H ,s

k
ρ),δR(x0,R,Â(skρ))

ek+1
sρ

= Lp(SAπ/H)(sρ) (5.33)

This concludes our proof.

Finally, we state a proposition which is a direct consequence of Proposition 5.3. This proposi-

tion relates the winning level with the probability of reaching the set Obj in the MDP.

Proposition 5.4. Given a strategy π ∈ Πf
M , then pπM(Obj) = winAπ . Conversely, let A ∈ ΠA,

then winA = pπAM (Obj).

Proof. First, we show that pπM(Obj) = winAπ for any strategy π ∈ Πf
M . Define the set Winπ =

{ρ ∈ Prefπ(M) | q|ρ| ∈ Obj ∧ q|ρ|−1 6∈ Obj}. Let 1A(x) for any given set A denote the indicator

function, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. Then, the value pπM(Obj) can be

obtained by:

pπM(Obj) = EπM [1Winπ(ρ)] (5.34)

Recall that ρ is related to a unique pair of strings sρ and Âπ(sρ), as shown by Proposition 5.2 and

used in Definition 5.6. The set Winπ excludes cases of infinite runs and Winπ relates to the set
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Uuns,Aπ = Uuns ∩ L(SAπ/H) by a one-to-one map. Since Winπ is countable, it follows:

pπM(Obj)
Eq.(5.34)

=
∑

ρ∈Winπ

PrπM(< ρ >) (5.35)

Def.5.6
=

∑
s∈Uuns,Aπ

Lp(SAπ/H)(s) (5.36)

=
∑
s∈Uuns

Lp(SAπ/H)(s)
Eq.(5.7)

= winAπ (5.37)

In the same manner, we can show that for a given attack function A and its derived strategy πA,

the equality winA = pπAM (Obj) holds. The steps are the same as in the first part of the proof.

Finally, the proof of Theorem 5.1 follows directly from Proposition 5.4. Let π∗ ∈ Πf
M be a

strategy such that p∗M(Obj) = pπ
∗
M (Obj), then winAπ∗ = pπ

∗
M (Obj). For any A ∈ ΠA, we have that

winA = pπAM (Obj) ≤ p∗M(Obj) = pπ
∗
M (Obj) = winAπ∗ . Consequently, winAmax = winAπ∗ and

Aπ∗ is a solution of Problem 5.1.

5.6 Solution of the multi-objective problem

5.6.1 Construction of the MDP

As was mentioned before, Problems 5.1 and 5.2 can be solved in sequence. In this manner, MDP

M is trimmed such that only policies that are a solution of Problem 5.3 remain. Based on this

trimmed MDP, we are going to relate Problem 5.4 to Problem 5.2 similarly as in Section 5.5.

In Problem 5.3, we obtain the maximum probability of reaching an absorbing state set Qabs

from the initial state of an MDP. In fact, the solution procedure not only outputs the maximum

probability p∗M(Qabs) but also outputs p∗M,q(Qabs) for all q ∈ Q.

Back to our specific MDPM as in Definition 5.4, we obtain p∗M,q(Obj) for all q ∈ Q by solving

Problem 5.3 for the absorbing state set Obj. The trimmed MDP is defined based on actions that

guarantee the optimal value p∗M,q(Obj) in state q ∈ Q. Namely, we use the principle of optimality

to identify optimal actions at any given state q ∈ Q. We also create a fictitious state called qabs that
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aggregates states ofQ such that p∗M,q(Obj) = 0, i.e., states that cannot reach the setObj. Formally,

the trimmed MDP is defined as follows:

Definition 5.7. Given the MDP M as in Definition 5.4, the set Obj, and the values p∗M,q(Obj)

obtained by solving Problem 5.3, we construct the trimmed MDP Mtr = (Qtr, Act, δtr, q0,tr) as

follows:

• Qtr ⊆ Q is defined as Qtr = ∪i≥1Qi ∪ {qabs} for Qi defined recursively as:

Q1 ={q0,M}

Qi+1 ={q ∈ Q | δM(q′, a∗, q) > 0 for q′ ∈ Qi,

a∗ ∈ arg max
a∈Act

N(q′, a)}

where N(q′, a) =
∑

q∈Q p
∗
M,q(Obj)δM(q′, a, q).

By the principle of optimality maxa∈ActN(q′, a) = p∗M,q′(Obj).

• The set Act = {τ, nd} ∪ Σatt.

• The initial state q0,tr = q0,M .

• The PTF δtr is defined for x, y ∈ Qtr \ {qabs} and action a ∈ Act:

δtr(x, a, y) = δM(x, a, y) (5.38)

δtr(x, τ, qabs) = 1−
∑

q∈Qtr\{qabs}

δtr(x, τ, q) (5.39)

δtr(qabs, τ, qabs) = 1 (5.40)

Remark 5.4. Equation (5.39) is only defined for τ actions since all other actions occur with

probability 1 as defined in Equations (5.17-5.18).

Example 5.4. Let M be the MDP depicted in Figure 5.2, where p∗M,q for q ∈ Q is given as in Ex-

ample 5.3. In this manner, we constructMtr as specified in Def. 5.7. The trimmed MDP is depicted
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in Figure 5.3. States (1, 4, ε), (3, 6, ε), (4, 4, ε), (6, 3, ε), (7, 7, Rout), (8, 8, Bint),(9, 3, Rout), and

(9, 9, Bout) are not part of Qtr since they are reached by nonoptimal actions. On the other hand,

states (2, 2, Bint), (3, 3, Bout), (6, 3, del(Rint)), (6, 6, ε), (7, 1, Rout), (8, 2, Bint), (9, 3, Bout),

(9, 3, ε), (9, 9, Rout), and (9, 9, ε) are replaced by state qabs since they can be reached by an optimal

action but both cannot reach the set Obj.

1,1,�

4,1,�

5,2,Bint5,2,�

4,1,del(Rint)

qabs

Figure 5.3: Trimmed MDP Mtr

In order to have a complete instance of Problem 5.4 for Mtr, a cost function must be defined.

Let c be defined as follows:

c(q, a) =

 w(a) if a ∈ Σatt

0 otherwise
(5.41)

We finalize this section by providing an important property of MDP Mtr.

Proposition 5.5. Given Mtr, then:

(1) maxπ∈ΠMtr
pπMtr

(Obj ∪ {qabs}) = 1;

(2) pπMtr
(Obj) = p∗M(Obj) for any π ∈ ΠMtr such that pπMtr

(Obj ∪ {qabs}) = 1.

Proof. We first prove (1). Let π ∈ Πf
M such that pπM,q(Obj) = p∗q(Obj) for all q ∈ Q. Similar

to the proof of Lemma 5.1, we can show that for any ρ ∈ Runsπ(M) either ∃j ∈ N such that

qjρ ∈ Obj or pπ
M,qjρ

(Obj) = 0, or the set of runs that do not satisfy the first condition has probability

zero of being generated. By construction of Mtr and since π is optimal, we can convert π to be in

ΠMtr and pπMtr
(Obj ∪{qabs}) = 1. It follows that maxπ∈ΠMtr

pπMtr
(Obj ∪{qabs}) = 1. The second

property follows from (1) and the construction of Mtr.
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Recall that in Problem 5.4 has a solution if and only if it has at least one proper strategy with

respect to Qabs, i.e., ∃π ∈ ΠM such that pπM(Qabs) = 1. Thus, there exists at least one proper

strategy in Mtr with respect to the set Obj ∪ {qabs}. This implies that Problem 5.4 for Mtr,

Obj ∪ {qabs}, and c as Eq. (5.41) has a solution. Second, the probability of reaching the set Obj in

Mtr is equal to p∗M(Obj) if a proper strategy is selected.

5.6.2 Solution procedure

We follow a similar methodology as in Section 5.5 but we connect Problem 5.2 with Prob-

lem 5.4. Once an attack function A that is a solution of Problem 5.1 is fixed, we obtain the

language L(SA/H) and consequently the value of EA[cost(s)]. The same idea applies to the

MDP Mtr; once a proper strategy is fixed, we can calculate the expected cumulative cost value

EπMtr
[cumul(Obj ∪ {qabs}, ρ)]. The construction of MDP Mtr and the set Obj ties these two

problems together. The following theorem connects the solution of Problem 5.4 for Mtr, the set

Qabs = Obj ∪ {qabs}, and the cost function c with the solution of Problem 5.2.

Theorem 5.2. Consider the MDP Mtr, the set Qabs = Obj ∪ {qabs}, and the cost function c, then

inf
A∈ΠA s.t. winA=winAmax

EA[cost(s)] = c∗Mtr
(Qabs) (5.42)

Again, the proof of the above theorem needs to be written with care even though it appears

plausible that the solution of Problem 5.4 provides a solution for Problem 5.2. We provide in-

termediate results intuitively and with their formal proofs in the following subsection. Similar to

Problem 5.3, the solution procedure of Problem 5.4 not only outputs the maximum probability

c∗Mtr
(Qabs) but also outputs c∗Mtr,q

(Qabs) for all q ∈ Q. In this manner, one can use standard meth-

ods to extract an optimal strategy π∗ that achieves cπ∗Mtr
(Qabs) = c∗Mtr

(Qabs). Therefore, an attack

function Amulti based on π∗ such that Amulti is a solution of Problem 5.2 can be constructed based

on Definition 5.6.
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Example 5.5. We return to our running example, where we solve Problem 5.4 for the MDP de-

picted in Fig. 5.3. For simplicity, we assume that c(q, a) = 2 if a ∈ Σatt. In this case, only one

strategy remains in MDP Mtr, i.e., only one strategy reaches Obj with probability 0.4. It follows

that c∗Mtr
(Qabs) = 2 × 0.4 = 0.8, which implies that EAmulti [cost(s)] = 0.8. The attack function

Amulti is the same as Amax defined in Example 5.3. This expected cost is the attacker’s average

cost to reach the critical state (set Obj) or to reach a state where the critical state is unreachable

(state qabs).

5.6.3 Proof of theorem 5.2

Since Mtr is constructed directly from M , it is clear that any strategy in Mtr can be extended

to a strategy in M . In order to fully use the results provided in Section 5.5 for Mtr, a technical

assumption related to complete and consistent attack functions must be addressed.

For simplicity, we assume that an attacker stops its attack once a string in Uunr,A (Eq. (5.9)) is

executed, i.e., the attacker cannot reach the critical state at this point. We assume attack functions

A ∈ ΠA such that for any s1s2 ∈ L(SA/H), s1 ∈ Uunr,A, and s2 ∈ Σ∗, then Â(s1s2) = Â(s1)s2.

Namely, the attacker does not insert or delete events after a string in Uunr,A is executed. Using this

assumption, all results from Section 5.5 naturally extend to Mtr.

In order to prove Theorem 5.2, we first show that there is a one-to-one map between the strings

in Uunr,A ∪ Uuns,A to finite runs in Mtr that reach the absorbing set Qabs, where

Uuns,A = Uuns ∩ L(SA/H) (5.43)

Next, we show that the expected cost of the attack function is equivalent to the expected cost of

reaching Qabs.

First, we define the set Rπ
abs to be the set of all finite runs that reach Qabs. Formally, this set is

defined as:

Rπ
abs = {ρ ∈ Prefπ(Mtr) | q|ρ|ρ ∈ Qabs ∧ q|ρ|−1

ρ 6∈ Qabs} (5.44)
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Proposition 5.6. Given a proper strategy π ∈ ΠMtr with respect to Qabs, then there exists a

bijection between Rπ
abs and Uunr,A ∪ Uuns,A. Conversely, given an attack function A ∈ ΠA such

that winA = winAmax , then there exists a bijection between RπA
abs and Uunr,A ∪ Uuns,A.

Proof. Let us define the set Lπabs = {s ∈ L(H) | s = sρ for ρ ∈ Rπ
abs}. It is enough to show

Lπabs = Uunr,Aπ ∪ Uuns,Aπ since each ρ ∈ Rπ
abs generate a unique string in Lπabs. The last statement

follows since π is deterministic.

First, we show that Lπabs ⊆ Uunr,Aπ ∪ Uuns,Aπ . Assume that s ∈ Lπabs is generated by ρ ∈ Rπ
abs

such that q|ρ|ρ = qabs. Since pπM,qabs
(Obj) = 0 and pπ

M,q
|ρ|−1
ρ

(Obj) > 0, it follows that s ∈ Uunr,Aπ .

Now, assume that s ∈ Lπabs is generated by ρ ∈ Rπ
abs such that q|ρ|ρ ∈ Obj. Then q|ρ|ρ,H = xcrit, and,

by Def. 5.6, s ∈ Uuns,Aπ .

Showing that Uunr,Aπ ∪ Uuns,Aπ ⊆ Lπabs follows the same steps. Let s ∈ Uunr,Aπ ∪ Uuns,Aπ ,

then Âπ(s) is bounded since π is proper. Using Proposition 5.2 and Def. 5.6, ∃ρ ∈ Prefπ(Mtr)

such that sρ = s and tρ = Âπ(s). If s ∈ Uunr,Aπ , then q|ρ|ρ = qabs which implies that s ∈ LπAabs. If

s ∈ Uuns,Aπ , then ρ′ = ρτ(q
|ρ|
ρ,H , q

|ρ|
ρ,R, ε) ∈ Rπ

abs and sρ′ = sρε = s ∈ Lπabs.

The second equality Uunr,A ∪ Uuns,A ∩ L(SA/H) = LπAabs follows in the same manner.

Let cπMtr
(Qabs) = EπMtr

[cumul(Qabs, ρ)] be the expected cost given strategy π ∈ ΠMtr . Finally,

we state a proposition which is a consequence of Propositions 5.3 and 5.6.

Proposition 5.7. Given a strategy π ∈ ΠMtr such that π is proper with respect to Qabs = Obj ∪

{qabs}, then cπMtr
(Qabs) = EAπ [cost(s)]. Conversely, given a solution of Problem 5.1 A ∈ ΠA,

then EA[cost(s)] = cπAMtr
(Qabs).

Proof. Given π ∈ ΠMtr , π being a proper strategy, then since Rπ
abs is countable:
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cπMtr
(Qabs) = EπMtr

[cumul(Qabs, ρ)] (5.45)

pπMtr
(Qabs)=1

= EπMtr
[

min{j:qjρ∈Qabs}∑
i=0

c(qiρ, a
i
ρ)] (5.46)

Eq.(5.44)
=

∑
ρ∈Rπabs

|ρ|−1∑
i=0

c(qiρ, a
i
ρ)Pr

π
Mtr

(< ρ >) (5.47)

Prop.5.3
=

∑
ρ∈Rπabs

|ρ|−1∑
i=0

c(qiρ, a
i
ρ)Lp(SAπ/H)(sρ) (5.48)

Prop.5.6
Eq.(5.41)

=
∑
s∈Lπabs

|Â(s)|∑
i=1

w(ei
Â(s)

)Lp(SAπ/H)(s) (5.49)

Eq.(5.10)
=

∑
s∈Lπabs

cost(s)Lp(SAπ/H)(s) (5.50)

= EAπ [cost(s)] (5.51)

The equality EA[cost(s)] = cπAMtr
(Qabs) follows by reversing the previous steps, i.e., starting

from Eq. (5.51) to Eq. (5.45). Reversing the previous steps, we can show that for a given attack

function A and its derived strategy πA, then EA[cost(s)] = cπAMtr
(Qabs).

Finally, the proof of Theorem 5.2 follows directly from Proposition 5.7 and Proposition 5.5.

Let π∗ ∈ ΠMtr be a strategy such that cπ∗Mtr
(Qabs) = c∗Mtr

(Qabs), then cπ∗Mtr
(Qabs) = EAπ∗ [cost(s)]

and pπ
∗
M (Obj) = winAmax . It follows that for any A ∈ ΠA such that winA = winAmax ,

then EA[cost(s)] = cπAMtr
(Qabs) ≥ c∗Mtr

(Qabs) = cπ
∗
Mtr

(Qabs) = EAπ∗ [cost(s)]. Consequently,

EAmulti [cost(s)] = EAπ∗ [cost(s)] and Amulti = Aπ∗ is a solution of Problem 5.2.

5.7 Examples

We developed a tool to automatically construct the MDP M , as in Definition 5.4, as input to the

PRISM model checker [58] and to construct an attack function based on the optimal strategy out-

98



putted by PRISM. PRISM has support for solving both MDP Problems 5.3 and 5.4. In fact, PRISM

supports multi-objective strategy generation [59]. The tool includes efficient model checking en-

gines, e.g., binary decision diagrams, and supports different MDP solution methods, e.g., linear

programming, value iteration, etc. Our evaluation was done on a Linux machine with 2.2GHz CPU

and 16GB memory. Our software tool and the complete models of the examples described in this

section are available at: https://gitlab.eecs.umich.edu/M-DES-tools/desops.

5.7.1 Temperature control

We consider the thermostat system described in [60]. The system has four modes with dynamics

described by differential equations as depicted in Fig. 5.4((a)), where x denotes the room temper-

ature and y denotes the temperature of the heater. Moreover, it transitions among the different

modes in the order shown in 5.4((a)). This system is abstracted to a discrete model based on the

partition plane with 7 regions as shown in Fig. 5.4((b)). The discrete model has 7 uncontrollable

events (R1-R7) and 4 controllable events (OFF, Heating, ON, Cooling). The transition relation

among the regions in each mode is obtained based on its dynamics.

Different from [60], we consider a probabilistic transition relation among these regions, where

the probability captures the likelihood of transitioning between regions. In [60], a supervisor

guarantees that the controlled system never reaches region 7 (R7). A simulation result illustrating

a continuous implementation of this supervisor is shown in Fig. 5.5((a)). The system starts in the

ON mode in region 6 (R6). Table 5.1 summarizes the number of states forH andR in this example.

Example |XH | |XR| |Q| |Qtr| time1(s) time2(s)

Temp. 62 20 427 22 3.50 7.93
Robot 90 63 5193 63 167.1 716.58

Table 5.1: Summary of results for the examples
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Figure 5.4: Four-mode thermostat system

First, we synthesize a maximal reachability attack function assuming that the attacker can ma-

nipulate both the room temperature and the heater temperature. As expected, there exists an attack

function that reaches region 7 with probability one. One attack function is depicted in Fig. 5.6.

The attacker waits for the system to reach region 4 to then delete the reading R4 and replace it by

R5 until the system reaches R7. A simulation result illustrating a continuous implementation of

this attacked system is shown in Fig. 5.5((b)). The attack starts at time 1375 and by time 1460 the

controlled system has reached region 7.
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Figure 5.5: Four-mode thermostat simulation

Next we consider the synthesis of an attack function based on multiple-objectives (Section 5.6).

We consider that each attack modification has weight one, i.e., w(e) = 1 if e ∈ Σatt. In this
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manner, we can synthesize an attack function that reaches region 7 with probability one and with

an expected cost of 8.5, i.e., it takes on average 8.5 edits until the system reaches region 7. As a

comparison, if we switch infimum by supremum in Problem 5.2, then we can synthesize an attack

function with maximum expected cost. In this example, it takes on average 266.5 edits for this

attack function reaches to region 7 with probability one.

Table 5.1 summarizes the results of this example. The MDP M has 427 states while Mtr has

22 states. Moreover, it takes 3.50 seconds to obtain a solution of Problem 5.1 while it takes 7.93

seconds to obtain a solution of Problem 5.2.
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6

542
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R5

R7

cooling

del(R4)

ins(R5)
R5

del(R4)

cooling

coolingcooling

Figure 5.6: Max. reach. attack function encoded as automaton

5.7.2 Robot motion planning

We consider a robot is navigating an area that has been partitioned as a grid. The robot is assumed

to have four different movement modes that are modeled as controllable events. Figure 5.7((a))

shows these four possible modes. Each mode represents the possible movements of the robot, e.g.,

go north captures the action of commanding the robot to go north. After a mode is selected the

robot moves to a new position and outputs its relative movement as a sensor reading. To capture

possible disturbances, the relative movement is probabilistic and possibly different than the action

selected. For example, Fig. 5.7((b)) depicts the possible sensor reading after mode go north is

selected. All other modes capture similar disturbances as shown in Fig. 5.7((b)). Therefore, the

system has 8 uncontrollable events, i.e., Σuctr = {n, s, w, e, nw, ne, sw, se}.
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Figure 5.7: Robot model

The robot moves freely in the workspace shown in Fig. 5.8((a)). Its initial state is the blue cell

denoted as q0. Moreover, the red cells are considered to be obstacles. A supervisor is designed

to enforce the following properties: (1) the robot can always access states q0 and q1; (2) avoid the

obstacle.

(a) Robot workspace (b) Robot simulation with max.
reach. attack

Figure 5.8: Robot workspace and attack simulation

First, we synthesize a maximal reachability attack function assuming that the attacker can

manipulate only events that represent disturbances, i.e., Σsen = {ne, nw, se, sw} and its goal is to

crash the robot into the obstacle. There exists a maximal reachability attack function that crashes

the robot into the obstacle with probability one. Next, consider the multi-objective problem with

weight function defined as: w(e) = 1 if e ∈ Σatt, w(e) = 0 otherwise. We can synthesize an attack
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function that reaches the obstacle state with probability one and with an expected cost of 10.25,

i.e., it takes on average 10.25 edits until the robot crashes into the obstacle.

Based on the multi-objective attack function, we show a specific attack scenario of the attack

function in Fig. 5.8((b)). The robot reaches the position marked by the black dot and it selects

action go south, but it moves to sw. At this point, the attacker replaces event sw by event se

and waits for events e and ne. The trajectory in dark blue represents the exact trajectory that the

robot executes, while the trajectory in light blue represents the fictitious trajectory received by the

supervisor. This is one successful scenario for this multi-objective attack function.

Table 5.1 summarizes the results of this example. The MDP M has 5193 states while Mtr

has 63 states. Moreover, it takes 167.1 seconds to obtain a solution of Problem 5.1 while it takes

716.58 seconds to obtain a solution of Problem 5.2.

5.8 Conclusion

We have considered the problem of synthesis of attack functions for sensor deception attacks at

the supervisory layer of feedback control systems, where the system is modeled as a probabilistic

finite-state automaton controlled by a given deterministic supervisor. Given the stochastic nature

of the system model, attack functions are quantified by the likelihood of reaching the critical state.

We investigated the problem of synthesizing attack functions with the maximum likelihood of

reaching the critical state. In order to constrain the attacker behavior, we posed a second problem

where each attack edit is costly. In the second problem, the attacker has two objectives: (i) reach

the critical state with the maximum likelihood; (ii) minimize the expected cost while performing

(i).

In order to solve these problems, we leveraged techniques from MDPs. Namely, we reduced

these problem to two well known problems in MDPs: the probabilistic reachability problem and the

stochastic shortest path problem. Finally, we presented two illustrative examples to demonstrate

the results of our work.
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CHAPTER VI

Synthesis of supervisors robust against sensor deception attacks

6.1 Introduction

The previous two chapters focus on the synthesis of attack strategies. They consider the attacker’s

perspective given a fixed and known supervisor. Although the results in the previous chapters

show the possible vulnerabilities of closed-loop systems, they do not provide means of “fixing”

these possible vulnerabilities. In order to address these vulnerabilities, we must change our atten-

tion from the attacker to the supervisor. In other words, we search for supervisors that are robust

against sensor deception attacks. Herein, we consider the “dual” problem of synthesizing a su-

pervisor that will be robust against sensor deception attacks; thus, this work focuses on defense

strategies. Pictorially, the behavior generated by the feedback control system under attack should

never intersect the critical region, as shown in Figure 6.1.

Figure 6.1: Robust controlled system under attack

We study two different methodologies to solve this problem: one uses graph-games methods

together with supervisory control methods where the other uses only supervisory control methods.
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There exists a trade-off between these two methodologies. While the method relying on supervi-

sory control techniques is computationally more efficient than the graph-game technique, it does

not provide flexibility on the selection of the robust supervisor. This flexibility on choosing a robust

supervisor is feasible with the graph-game technique but the price for it is a more computationally

“expensive” method.

The supervisory control methodology comprises of two steps. In the first step, we build an aug-

mented plant, called attacked plant, to capture the interaction of the attacker under the constraints

of the plant model. The attacked plant can be built in a manner that accounts for all possible attacks

or can be based on a known attack model. The attacked plant captures at the same time the execu-

tion of events in the original plant and the information received by the supervisor. The second step

poses a supervisory control problem for the attacked plant under the specification that states that

cause damage to the plant should never be reached. Specifically, this supervisory control problem

becomes an instance of supervisory control with arbitrary control patterns under partial observa-

tion, for which the existing theory of supervisory control of discrete event systems is leveraged

[47, 61, 62]. We show that the solution of the supervisory control problem for the attacked plant

provides a solution for the problem addressed.

The second solution methodology leverages techniques from games on automata under im-

perfect information and from supervisory control of partially-observed discrete event systems. It

also comprises of two steps. We build a game arena to capture the interaction of the attacker

and the supervisor, under the constraints of the plant model. The arena defines the solution space

over which the problem of synthesizing supervisors with the desired robustness properties can be

formulated. In this solution space, called meta-system, we use supervisory control techniques to

enforce such robustness properties. We leverage the existing theory of supervisory control under

partial observation [35, 63, 64, 65] to solve this meta-supervisory control problem. As formu-

lated, the meta-supervisory control problem has a unique solution. This solution embeds all robust

supervisors for the original plant, thereby providing a complete characterization of the problem

addressed.
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The remainder of this chapter is organized as follows. Section 6.2 formalizes the problem

statement for this chapter. The supervisory control solution method is presented in Section 6.3.

The second solution method is described in Section 6.4. Finally, we conclude this chapter in

Section 6.5.

Related work

There is a vast literature on robust control in discrete event systems [66, 67, 39, 68, 38, 36, 37].

However, robustness in the previous literature is related to communication delays [38, 36], loss of

information [37], or model uncertainty [66, 67, 68, 39]. Exceptions to that are [14, 13, 18, 28],

where the problem of synthesizing supervisors robust against attacks was investigated. The results

of [18] are related to actuator deception attacks.

Our work differs from [14, 13, 28] as we provide a general game-theoretical framework that

solves the problem of synthesizing supervisors robust against general classes of sensor deception

attacks. The solution methodology in [14, 13, 28] follows the standard supervisory control solution

methodology, where only results about one robust supervisor against a specific class of sensor de-

ception attacks is provided. Conditions on the existence of robust supervisors against a possible set

of sensor deception attacks with a normality condition on the plant are provided in [14]. A method-

ology to synthesize the supremal controllable and normal robust supervisor against bounded sensor

deception attacks is given in [13]. Finally, [28] provides a methodology to synthesize a maximal

controllable and observable supervisor against unbounded sensor deception attacks.

The game-theoretical framework adopted in this work provides necessary and sufficient con-

ditions for the problems of existence and synthesis of robust supervisors against general classes

of sensor deception attacks. This game-theoretical approach provides a structure that incorporates

all robust supervisors against sensor deception attacks. Different robust supervisors can be ex-

tracted from this structure, e.g., maximal controllable and observable, supremal controllable and

normal, etc. In fact, the robust supervisors from [14, 28] are embedded in this structure. Moreover,
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there is a natural extension of our solution methodology such that robust supervisors from [13] are

embedded in this structure.

In summary, our work does not impose any normality condition as imposed in [14, 13] and

studies synthesis and existence of robust supervisors against any sensor deception attack. Our

approach considers both bounded and unbounded sensor deception attacks. Moreover, necessary

and sufficient conditions are provided for the existence and synthesis of robust supervisors, whereas

in [14] only existence conditions are provided and in [13] only a sufficient condition is provided.

Finally, our synthesis solution methodology has double exponential worst-case complexity while

the one in [13] has triple exponential worst-case complexity.

Note that our work also differs from the work of cyber-security on continuous/discrete-time

control systems. There exists a vast literature on cyber-security problems for continuous-variable

systems, e.g., see [69, 70] for recent results. Our work focuses on systems that have discrete-event

models, i.e., systems that by nature are driven by events or time-driven systems that have been

abstracted to a discrete-event model.

Our problem formulation is based on the following considerations. The attacker attacks when-

ever possible, by deleting plant events upon their occurrence or by inserting fictitious ones allowed

by the supervisor. In this context, we wish to synthesize a supervisor that provably prevents the

plant from reaching a critical state despite the fact that the information it receives from the com-

promised sensors may be inaccurate.

6.2 Problem formulation

In this chapter, we return to the standard supervisory control framework presented in Chapter III.

The attacker hijacks the communication channel between the plant and the supervisor and it can

modify the readings of events in Σsen. The attacker is modeled by an automaton A as described

in Section 3.2.2. Based on Σsen, both the plant G and the supervisor R are augmented to included

attacker actions. The augmented versions of the plant and the supervisor are denoted the attacked
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plantGa and the attacked supervisorRa, Defs. 3.3 and 3.4. In this manner, the attacked closed-loop

system is defined as the parallel composition of A, Ga, and Ra. This framework is summarized in

Fig. 6.2.

Attacked

Attack function

Plant - Ga

Figure 6.2: Augmented supervisory control framework under sensor deception attack

We investigate the problem of synthesizing a supervisor R robust against the attack strategy A.

We assume that the plant G contains a set of critical states defined as Xcrit ⊂ XG; these states are

unsafe in the sense that they are states where physical damage to the plant might occur. Although

damage is defined in relation to the set Xcrit, it could be generalized in relation to any regular

language by state space refinement.

Definition 6.1. Supervisor R is robust (against sensor deception attacks) with respect to G, Xcrit

and A, if for any s ∈ L(SA/G) then δG(x0,G, s) 6∈ Xcrit.

The definition of robustness is dependent on the attack strategy A. Recall that the all-out

strategy (Section 3.4.1) encompasses all other attack strategies [11]. Therefore, a supervisor that

is robust against the all-out strategy is robust against any other A [28].

Problem 6.1 (Synthesis of Robust Supervisor). GivenG,Xcrit and an attack strategyA, synthesize

a robust supervisor R, if one exists, with respect to G, Xcrit and A.

We are asking that the robust supervisor should prevent the plant from reaching a critical state

regardless of the fact that it might receive inaccurate information. In other words, the supervisor

reacts to every event that it receives, but since it was designed to be robust to A, the insertions

and deletions that A performs will never cause G to reach Xcrit. This will be guaranteed by the

solution procedures presented in the next section.
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6.3 Synthesis of robust supervisor via supervisory control the-

ory

The left diagram of Figure 6.3 pictorially describes sensor deception attacks in the supervisory con-

trol framework, where the attacker intervenes in the communication channel between the plant’s

sensors and the supervisor. The attacker has the ability to observe the same observable events as

the supervisor. Even more, it has the ability to alter some of the sensor readings in this commu-

nication channel, where “alter” means that it can insert or delete events. The subset of affected

sensor readings is defined as the compromised event set and denoted by Σsen ⊆ Σobs.

Attacked Plant
Ga

Attacked Supervisor

Ra

Plant G

Supervisor R

Conceptual SCT under

sensor deception attacks
Attacked controlled system

Figure 6.3: Sensor Deception Attack Framework

We recall the conceptual diagram of sensor deception attacks in the supervisory control frame-

work, shown in Figure 6.3, as we have discussed in Chapter III. We transform the original con-

trolled system with attacker assumptions, right diagram in Figure 6.3, into an attacked controlled

system, left diagram in Figure 6.3. In this attacked controlled system, we perform our analysis and

provide guarantees about robustness against sensor deception attacks.

Specifically, we pose a supervisory control problem for the attacked plant under the specifica-

tion that states that cause damage to the plant should never be reached. This supervisory control

problem becomes an instance of supervisory control with arbitrary control patterns under partial

observation, for which the existing theory of supervisory control of discrete event systems is lever-
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aged [47, 61, 62]. We show that the solution of the supervisory control problem for the attacked

plant provides a solution for the problem addressed in this work. We also provide results on the

existence of a supremal robust supervisor.

6.3.1 Supervisory control with control patterns

In this section, we need to leverage the partially observed supervisory control problem with arbi-

trary control patterns (SCP-AP) studied in [47, 61, 62]. In this problem, the supervisor S is defined

based on an arbitrary set C ⊆ Γ, i.e., S : PΣΣobs(L(G))→ C. Now, we recall a result from [62].

Proposition 6.1. [62] Let K ⊆ L(G) be a non-empty and prefix-closed language and let C ⊆ Γ

be the available control patterns set. There exists a supervisor S : PΣΣobs(L(G)) → C such

that L(S/G) = K if and only if K satisfies the following condition: for any s ∈ K and t ∈

P−1
ΣΣobs

[PΣΣobs(s)]∩K, there exists a control pattern γ ∈ C such that γ∩ΣL(G)(t) = ΣK(t), where

ΣK(s) = {e ∈ Σ | se ∈ K} is the one event continuation of string s ∈ K.

Proposition 6.1 reduces to the standard controllability and observability conditions when C =

Γ [62]. WhenK does not satisfy Proposition 6.1, the set CO(K) = {K ′ ⊆ L(G) | K ′ = pr(K ′) ⊆

K s.t. K ′ satisfies Proposition 6.1} is defined. Note that, CO(K) is non-empty since ∅ ∈ CO(K).

Similarly to the standard partially observed supervisory control problem, there does not exist in

general a supremal element in CO(K).

6.3.2 Reducing the robust supervisor problem

Inspired by the technique used in [11], the model Ga
1 defined in Chapter III becomes the system

at the center of our study. Since the attacked plant Ga captures the behavior of plant G under

a sensor deception attack over Σsen, our solution technique poses a supervisory control problem

1Definition 3.3 describes Ga under attack of the all-out attack strategy. If there exists prior knowledge of the
attacker, described by A, then Ga is redefined as Ga := Ga||A, where the Ga on the right is the one defined in
Def. 3.3.
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directly at the attacked plant Ga. Although it appears that we could directly apply standard super-

visory control techniques, the events in Σatt prevent us to do so because we cannot assign them

to the controllable/uncontrollable and the observable/unobservable partitions. Next, we provide a

solution to this problem starting with the controllability issue.

The controllability of the events in Ga must be defined carefully since the supervisor cannot

directly disable insertions nor deletion events. However, if the compromised event is controllable

then the supervisor can disable this event and indirectly disable its insertion and deletion events.

Recall that in the construction of Ra, deletion events are self-loops in the states of Ra where

the legitimate events are defined. They are self-loops since the supervisor does not receive any

information. On the other hand, insertion events are defined in parallel to their legitimate events

e ∈ Σsen
2. Therefore if a compromised event is enabled in R, then both its insertion and deletion

events are enabled in Ra. This control pattern is denoted as Ca based on events e ∈ Σsen and

defined as:

Ca = {γ ∈ 2Σall | γ ⊆ Σuctr ∧ (∀e ∈ γ ∩ Σsen, ins(e) ∈ γ ∧ del(e) ∈ γ)}. (6.1)

The control patterns created by Σatt solve the issue related to controllability of events in Σatt

but they do not solve the issue related to observability. P S projects attacked strings from Ga to

strings executed in G, but it does not capture how attacked strings are perceived by the supervisor.

Even though the system Ra/Ga captures exactly the closed-loop behavior of the attacked system,

we are interested in synthesizing a supervisor R that has Σ∗obs as input. In other words, we use

Ra/Ga to test if a supervisor R with Σ∗obs as input is safe.

Let us analyze Ga with the projection P S . Recall that Definition 3.3 adds self-loops of inser-

tions events at each state of G. It also adds transitions with deletion events parallel to transitions

with their legitimate event. Therefore, if we use the projection P S in Ga, then the insertion events

are mapped to their legitimate events and deletion events are mapped to the empty string. This

2For simplicity let us assume that the self-loops with insertion events are not defined. This is without loss of
generality since these insertion events do not change neither the state of the plant nor the state of the supervisor.
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operation generates a nondeterministic automaton, which we want to avoid. We prefer a partially

observed system to be consistent with standard supervisory control.

We consider the following procedure to eliminate the nondeterminism generated by P S and

analyze strings from Ga as they are seen by the supervisor.

Definition 6.2. Given Ga, we define Gm := (XGm ,Σall, δGm , x0,Gm) as:

XGm := XGa ∪ (XGa × {ins(e) | e ∈ Σsen})

δGm(x, e) :=



δGa(x, e) if x ∈ XGaand e /∈ Σins

(x, e) if x ∈ XGaand e ∈ Σins

x1 if x ∈ XGa × {ins(σ) | σ ∈ Σsen}, x = (x1, e1), e =M(e1)

undefined otherwise

x0,Gm := x0,Ga

Given the automaton Gm, we can know discuss the observable events of this system. After the

execution of an event ins(e), the legitimate counterpart e is executed in Gm. The execution of an

event del(e) is still considered unobservable in Gm. Therefore, we can now specify the events in

Σatt as unobservable. Moreover, the events that are unobservable in G continue to be unobservable

in Gm. Thus, the unobservable event set for Gm is Σm,uo := Σuobs ∪ Σatt and the observable set is

Σm,o := Σobs. We also define PΣallΣm,o as the projection operation of strings in Σall to Σm,o. The

following proposition shows that the language observed by a supervisor R through Ga is the same

as the one observed by Gm.

Proposition 6.2. PΣΣobs(P
S(L(Ga))) = PΣallΣm,o(L(Gm))

Proof. It follows from the definitions of Gm, P S and PΣallΣm,o .

The attacked system Gm has Σm,o = Σobs as the set of observable events in Gm and Ca as the

set of control patterns. Therefore, we search for a supervisor that only selects control decisions
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with respect to the control pattern Ca instead of the entire set Γ. Fortunately, the work in [62] pro-

vides the necessary results on obtaining maximal controllable and observable sublanguages with

constrained control patterns. To be able to use these results, we need the following proposition.

Proposition 6.3. The set Ca is closed under union.

Proof. Let γj ∈ Ca and cj = γj ∩ Σsen for j ∈ {1, 2}. Since γj ⊆ Σuctr for j ∈ {1, 2}, then

γ1 ∪ γ2 ⊆ Σuctr. Also ∀e ∈ cj , we have that ins(e) ∈ γj and del(e) ∈ γj , j ∈ {1, 2}. Thus,

∀e ∈ c1 ∪ c2, we have that ins(e) ∈ γ1 ∪ γ2 and del(e) ∈ γ1 ∪ γ2. In this manner, we conclude that

γ1 ∪ γ2 ∈ Ca.

Since Ca is closed under union, the results in [62] are applicable to Gm. Let K =

L(Ac(Gm, Xcrit)) be the language specification on L(Gm), where Ac(Gm, Xcrit) is the acces-

sible subautomaton of Gm after deleting states Xcrit ⊂ XGm . From [62], it follows that for

any K ′ ∈ CO(K), if K ′ 6= ∅, there exist a supervisor S : PΣΣobs(L(Gm)) → Ca such that

L(S/Gm) = K ′. Also, the supremal element of CO(K) does not exist in general. For this reason,

we search for a supervisor that generates a maximal K ′.

Problem 6.2 (SCP-AP-Supervisory Control with Arbitrary Control Patterns). Given the attacked

system Gm, and K = L(Ac(Gm, Xcrit)). Let K ′ ∈ CO(K) be a maximal sublanguage in CO(K).

Synthesize a supervisor S : PΣΣobs(L(Gm))→ Ca that satisfies L(S/Gm) = K ′.

Since the languages L(Gm) and K are regular languages, the supervisor S can be encoded by

a DFA Rm. Next, we define a supervisor R for the Problem 6.1 based on the supervisor Rm. Using

this supervisor, we prove that Problem 6.1 is reducible to the SCP-AP problem.

Definition 6.3. Assume that CO(K) 6= ∅ in the SCP-AP problem. Let the supervisor Rm be a

solution for the SCP-AP problem. Construct the supervisorR = (XR,Σ, δR, x0,R) in the following

manner.

XR := XRm
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δR(x, e) :=


δRm(x, e) if x ∈ XR and e ∈ Σ

undefined otherwise

x0,R := x0,Rm

Definition 6.3 constructs the supervisor R by simply removing the events in Σatt. The transi-

tions with events in Σatt onRm are self-loops since they are unobservable on the SCP-AP problem.

We now provide the connection between the Problem 6.1 and the SCP-AP problem.

Theorem 6.1. Problem 6.1 is reducible to the SCP-AP problem.

Proof. The reduction algorithm starts with the construction of the DFA Ga, Gm, and with the set

Ca. We first show that if the SCP-AP problem does not have a solution, then Problem 6.1 also

does not have a solution. The second part of the proof shows that the supervisor R defined in

Definition 6.3 is a solution for the SCP-AP problem.

The first part of the proof can be shown by contradiction.

For the second part, we assume that CO(K) 6= ∅ and that Rm encodes the solution for the

SCP-AP problem. Let R be the supervisor constructed as in Definition 6.3. We prove that R is a

solution for Problem 6.1, namely R is robust. We show this result by contradiction.

Assume that R is not robust, which means that ∃s ∈ L(Ra/Ga) such that

δG(x0,G, PΣΣobs(P
G(s))) ∈ Xcrit.

Let v = PΣΣobs(P
S(s)), then the sequence c = c0c1 . . . c|v|, where cj = EnR(δR(x0,R, v

j)), is the

sequence of control decisions made by R over the string s until it reaches some state in Xcrit. In

other words, these are the control decisions that allow the string PG(s) to be executed. Similarly,

we find the control decisions based on Ra that allows s in Ga. Namely, the sequence of control

decisions c′ = c′0c
′
1 . . . c

′
|v|, where c′j = ΓRa(δRa(x0,Ra , v

j)).

Next, we show that there exist a string t ∈ L(Gm) where PΣallΣm,o(t) = PΣΣobs(P
S(s)) = v.

To construct string t, we apply the same transformation we used in the construction of Gm based
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on Ga. String t is a copy of string s with the following modification: for each insertion event e in

s, we replace it by eM(e). In this manner, PΣallΣm,o(t) = PΣΣobs(P
S(s)) = v.

The sequence of control decisions made by Rm over t is c′ since the control decisions at each

state of Rm are the same at the corresponding state in Ra and PΣallΣm,o(t) = PΣΣobs(P
S(s)) = v.

Therefore, t ∈ L(Rm/Gm) since s ∈ L(Ra/Ga). Finally, string s leads the attacked system Ga

to the critical state. By construction of Gm and t, string t leads the Gm to the critical state. This

concludes our proof. Therefore, Problem 6.1 is reducible to the SCP-AP problem.

Since s ∈ L(Ra/Ga), we have that t ∈ L(Rm/Gm).

6.3.3 Computing a maximal robust supervisor

Although Theorem 6.1 provides the reduction of Problem 6.1 to the partially observed supervisory

control problem with arbitrary control patterns, an algorithm to synthesize such supervisor was

not provided in [62]. For this reason, we provide a modified version of the VLP-PO algorithm

presented in [71]3. We provide necessary modifications to compute maximal control policies given

a set of control patterns.

Algorithm 6 provides the modifications to compute the maximal control policies given a set of

control patternsC ⊆ Γ. The variables ACT and NS are global variables and store the current issued

control decision and the current state estimate. Given that the system executed an observable event

e, these two variables update accordingly.

We use four functions in Algorithm 6 that we have not yet defined, namely UR+γ , SmContPat,

V and Elist.pop(). We define them based on automaton G and specification K. The UR+γ finds

the set of states reached via a string of unobservable events or via a string of unobservable events

concatenated with one observable event.

UR+γ(X ⊆ XG) := URγ(X) ∪ {x ∈ XG | ∃y ∈ URγ(X) and e ∈ (Σobs ∩ γ), x = δG(y, t)}
3The VLP-PO algorithm computes online and offline maximal control policies. However, any algorithm in the

literature that solves the standard supervisory control problem with partial observation can be adapted as we do for
VLP-PO.
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The function SmContPat(γ ∈ Γ, C) returns a smallest control decision γ′ ∈ C such that γ ⊂ γ′.

The cost function V : XG → {0,∞} holds the information obtained by solving the fully observed

supervisory control problem, i.e., V (x) := ∞ if x has an uncontrollable trace starting at state x

that violates spec K. Lastly, the function EList.pop() output and removes the first element of the

EList.

Algorithm 6 VLP-PO with Control Patterns
1: function VLP-POCP(e ∈ Σobs ∪ {ε})
2: NS = δG(PS, e)
3: ACT = Control-Actions(NS,Event-Ordering, C)
4: PS = URACT(NS)

5: function CONTROL-ACTIONS(S ⊆ XG, EList: Ordered-Σctr, Control Pattern Set C)
6: ACT = SmContPat(Σuctr, C); Pt = 1;
7: while EList6= ∅ do
8: if Pt > |EList| then
9: ACT = ACT∪ EList; Return;

10: e = EList[Pt]
11: γ = SmContPat({e}, C)
12: if UR+ACT∪{γ}(S) = UR+ACT (S) then
13: Pt = Pt+ 1; GOTO 7
14: for all x ∈ UR+ACT∪{γ}(S) do
15: if V (x) =∞ then
16: EList = EList-γ; GOTO 7
17: ACT = ACT ∪ {γ}; EList = EList-γ; Pt = 1;
18: GOTO 7

Similarly as in the original VLP-PO algorithm, the following initialization of VLP-POCP is

necessary: PS = {xG,0} prior to the first call, Event-Ordering is a total ordering on Σctr, and VLP-

POCP(ε) must be used to determined the first control action.

Instead of online control decisions, we are interested in obtaining an offline representation of

a maximal supervisor. For that, we initialize VLP-POCP and use breadth first search to compute

the realization of a maximal supervisor. Since we are only interested in the offline solution, we

use R =VLP-POCP(G, Gspec, C) as the realization of a maximal supervisor computed offline by

VLP-POCP, where Gspec is an automaton such that L(Gspec) = K and C ⊆ Γ.

Proposition 6.4. Let Rm = VLP-POCP(Gm, K, Ca) be the supervisor realization generated by

the VLP-POCP algorithm, where K = L(Ac(Gm, Xcrit)). If R = ∅ then CO(K) = {∅}.
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Proof. It follows from the correctness of the VLP-PO algorithm.

Theorem 6.2. If CO(K) 6= {∅} where K = L(Ac(Gm, Xcrit)), then Rm =VLP-POCP(Gm, K,

Ca) is a supervisor realization that satisfies the SCP-AP problem.

Proof. It follows from the correctness of the VLP-PO algorithm.

The final result about VLP-POCP is related to its complexity. The original VLP-PO algorithm

computes control decisions in O(|Σctr|2|XG|). The modified version maintains the same runtime

since we only introduce the modification on line 6, which can be done in constant time. Let N

denote |XG|. The next proposition states the complexity of our method for Problem 6.1.

Proposition 6.5. Problem 6.1 is solved in O
(
(|Σctr|2(N +N |Σsen|))2N+N |Σsen|

)
time.

Proof. It follows from the complexity of the VLP-POCP algorithm and Gm.

Example 6.1. Let us get back to the intersection example to obtain a robust supervisor for it. The

models of G and Ga are shown in Fig. 6.4. We assume that Σobs := {Rint, Bint} and Σsen :=

{Rint}.

Figure 6.4: Plant G for intersection example (left) and its attacked plant model Ga (right)

Given Ga, we construct automaton Gm as defined in Def. 6.2. In this case, Gm will have 18

states since we add a newer state for each state of G while constructing Gm. The specification for

Gm is obtained by removing state 5. At this point, we use Gm, the specification and the control
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pattern Ca as inputs to the modified VLP-PO algorithm. Figure 6.5 depicts a supervisor output of

the modified VLP-PO algorithm. This supervisor is then transformed by removing transitions with

attack events as described in Def. 6.3. The robust supervisor obtained is the same as R2 described

in Example 2.4. There is one more maximal solution for this example, this second solution will be

evaluated in the next section.

Figure 6.5: Robust supervisor Rm: output of Algorithm 6

Remark 6.1. Even if G is fully observable, the robust supervisor problem is always transformed

to a partially observed supervisory control problem. This is the case since insertion and deletion

events are unobservable. In the next section, we provide conditions for the existence of the supremal

robust supervisor.

6.3.4 Condition for the existence of the supremal K ′

In the previous sections, we showed how to solve the general problem of synthesizing robust

supervisors. We showed that we can map this problem to the SCP-AP problem (Problem 6.2).

Since there does not exist in general a supremal supervisor for SCP-AP, then there does not exist

in general a supremal robust supervisor. In this section, we investigate sufficient conditions for the

existence of such a supremal robust supervisor.

The first condition, also known as normality condition, is well known in the partially observed

supervisory control problem, Σctr ⊆ Σobs. It is known that when Σctr ⊆ Σobs, then the observ-
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ability plus the controllability conditions are equivalent to the normality condition [34]. Since the

supremal controllable and normal sublanguage always exists, then, with this condition imposed,

the supremal controllable and observable also exists.

The condition Σctr ⊆ Σobs is not enough to guarantee the existence of the supremal robust

supervisor. Therefore, we must impose a second condition that together with the first condition

enforces the existence of the supremal robust supervisor.

In cyber-physical system models, we normally assign actuators signals to be controllable and

observable events while sensors signals are uncontrollable. It is based on this assumption that the

normality condition was first introduced. Since we study sensor deception attacks, we can assume

that the set of compromised events is a subset of the uncontrollable events, besides being a subset

of observable events. Thus, the second condition is Σsen ⊆ Σobs ∩ Σuctr.

Corollary 6.1. If Σctr ⊆ Σobs and Σsen ⊆ Σuctr, then there exists a supremal element K↑ ∈

CO(K) and Rm =VLP-POCP(Gm, R, Ca) is the supervisor realization such that L(Rm/Gm) =

K↑.

Proof. The proof follows from the fact that Ca = Γ in this case. Therefore, we are under the

standard partially observed supervisory control problem with Σctr ⊆ Σobs.

6.3.5 Summary

We leveraged techniques from supervisory control with arbitrary control patterns of partially-

observed discrete event systems to develop a solution methodology to prevent damage to the system

when some sensor readings may be edited by the attacker. We showed how this problem can be

reduced to a partially observed supervisory control problem with arbitrary control patterns. Our

solution methodology has single exponential complexity over the number of states of the plant and

events. It is more computationally efficient than the previous method in the literature [13].

Since the robust supervisor problem might not have a unique solution, we need to find a flexible

method to select robust supervisors. The solution approach shown in this section does not provide
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flexibility in the selection of a robust supervisor. It only selects maximal robust supervisors; and

Algorithm 6 does not provide flexibility for this selection. In Algorithm 6, the event-ordering deter-

mines which maximal solution the algorithm outputs, but this ordering does not provide intuition

and much flexibility on the supervisor output. For this reason, we investigate a second method to

solve Problem 6.1; one with more flexibility and intuition on the robust supervisor selection.

6.4 Synthesis of robust supervisor via graph-games

6.4.1 Meta-Supervisor problem

In this section, we present our second approach to solve Problem 6.1. We briefly explain the idea

of this new approach. Figure 6.6 shows the connection of the problem formulation space (left box)

and the solution space (right box). The connection between these two spaces is given by the arrows

that cross the two boxes. These arrows are labeled by results provided in this section.

In the left box of Fig. 6.6, we have the problem formulation space where the supervisor R is

unknown. Based on G, Σobs, Σctr and A, we construct a meta-system, called A, in a space where

all supervisors are defined. This construction is given in Definition 6.4. The meta-system is part of

the proposed solution space and it is represented in the right box of Fig. 6.6.

Although all supervisors are defined in A, which is shown by Proposition 6.6, we are only in-

terested in robust supervisors. In order to obtain robust supervisors, we use techniques of partially

observed supervisory control theory [64, 65] in the meta-system. The structure Asup is obtained

via Definition 6.6 and it contains all robust supervisors against sensor deception attacks on Σsen.

Finally, to return to our problem formulation space, we extract one supervisor, if one exists,

from Asup. Such extraction is given by Algorithm 7.

6.4.1.1 Definition

Inspired by the techniques of two-player reachability games, we construct an arena as it is con-

structed in these games. In the arena, player 1 represents the supervisor while player 2 represents

120



Figure 6.6: Relation of the system and the meta-system

the adversarial environment. The arena exhaustively captures the game between the supervisor and

the environment, where the supervisor selects control decisions (Γ) and the environment executes

events (Σobs ∪ Σatt). In the arena, player 1’s transitions record a control decision made by the

supervisor. On the other hand, player 2’s transitions represent actions of the plant G or actions of

the attacker A. Formally, the arena is defined as follows.

Definition 6.4. Given plant G and attack function A, we define the arena A as 4-tuple:

A := (Q1 ∪Q2, A1 ∪ A2, h1 ∪ h2, q0) (6.2)

where

• Q1 ⊆ 2XG × XA is the set of states where the supervisor issues a control decision. Its

states have the form of (S1, S2), where S1 is the estimate of the states (as it is executed by the

plant) ofG and S2 is the attacker’s state. For convenience we define the projection operators

Ii((S1, S2)) = Si for i ∈ {1, 2};

• Q2 ⊆ 2XG ×XA × Γ × ({ε} ∪ Σsen) is the set of states where the adversarial environment

issues a decision. Its states have the form (S1, S2, γ, σ), where S1 and S2 are defined as in

Q1 states, γ is the last control decision made by the supervisor, and σ is related to inserted

events. The event σ is equal to e ∈ Σsen if the last transition was ins(e) ∈ Σins, otherwise it

is equal to ε. We use the same projection operators Ii for states in Q2 for i ∈ {1, 2};
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• A1 := Γ and A2 := Σobs ∪Σatt are respectively the actions/decisions of player 1 and player

2;

• h1 : Q1 × A1 → Q2 is built as follows: for any q1 = (S1, S2) ∈ Q1 and γ ∈ A1

h1(q1, γ) :=
(
URγ(S1), S2, γ, ε

)
(6.3)

• h2 : Q2 × A2 → Q1 ∪Q2 is built as follows for any q2 = (S1, S2, γ, σ) ∈ Q2:

Let e ∈ Σobs:

h2(q2, e) :=



(
δG(S1, e), δA(S2, e)

)
if (e ∈ EnG(S1) ∩ γ)∧

(e ∈ EnA(S2)) ∧ (σ = ε)(
S1, S2

)
if (σ = e)

undefined otherwise

(6.4)

Let e ∈ Σsen:

h2(q2, ins(e)) :=


(
S1, δA(S2, ins(e)), γ, e

)
if (ins(e) ∈ EnA(S2)) ∧ (σ = ε)

undefined otherwise
(6.5)

h2(q2, del(e)) :=


(
URγ(δG(S1, e)), δA(S2, del(e)), γ, ε

)
if (e ∈ EnG(S1) ∩ γ)∧

(del(e) ∈ EnA(S2)) ∧ (σ = ε)

undefined otherwise

(6.6)

• q0 ∈ Q1 is the initial S-state: q0 := ({x0,G}, x0,A).

We explain the definition of the transition functions h1 and h2 in detail. The definition of h1 is

simple and it defines a transition from player 1 to player 2, which records a control decision made

by the supervisor, and it updates G’s state estimate according to this decision. On the other hand,
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h2 is more complex since player 2 has two types of transitions.

The first type is transitions from player 2 to player 1 which characterizes the visible decision

made by the environment and is related to events in Σobs. These transitions are defined in Eq. (6.4),

and they are illustrated in Fig. 6.7. In Fig. 6.7(a), an event e ∈ Σobs that is feasible in G from

some state in S1 is selected; thus, both the state estimate and the attacker’s state are updated. In

Fig 6.7(b), q2 = (S1, S2, γ, e) ∈ Q2 is reached after an insertion since e 6= ε; thus, G’s state

estimate and the attacker’s state remain unchanged. They remain unchanged because similarly as

in Def. 6.2, our insertion encoding is divided in two steps. The transition in Fig 6.7(b) just reports

the legitimate event to the supervisor. The first step, explained in the next paragraph, deals with

the state estimate updates.

(a) First transition of Eq. (6.4) (b) Second transition of
Eq. (6.4)

Figure 6.7: Transition function h2 from player 2 to player 1

Transitions from player 2 to itself characterize invisible, from the supervisor’s perspective,

decisions. They are only defined for events in Σatt . These transitions are defined by Eqs. (6.5-6.6).

An attacker can insert any event in e ∈ Σsen, as long as ins(e) is allowed in the current attacker’s

state. The inserted events e ∈ Σins are not going to be seen by the supervisor, as only the attacker

knows it decided to insert the event. Insertions will be seen by the supervisor are genuine events.

But ins(e) represents here (in the context of the game arena) the intention of the attacker to insert.

Equation (6.5) (depicted in Fig. 6.8(a)) is the unobservable part, where an insertion decision was

selected and the attacker’s state and the fourth component of q2 ∈ Q2 are updated. The observable

part is shown by Fig. 6.7(b). In the case of a deleted event, from the supervisor’s perspective, it

is seen as an ε event as well. That is, the supervisor cannot change its control decision when the
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attacker deletes an event, as shown in Fig. 6.8(b).

(a) Transition of
Eq. (6.5)

(b) Transition of Eq. (6.6)

Figure 6.8: Transition function h2 from player 2 to player 2

Remark 6.2. The elements of Q1 and Q2 are defined such that they incorporate the “sufficient in-

formation” (in the sense of information state in system theory) that each player needs to make its

respective decision. Equations (6.3-6.6) guarantee by construction that the updates of the informa-

tion states are consistent with the plant dynamics and the actions of the attacker. The unobservable

events, Σatt, are needed to capture what the supervisor player sees since we do not have an explicit

state for the supervisor in the information state. Basically, the supervisor sees the observable part

of the game arena. Overall, the arena constructed thereby captures the possible attacks and all

possible supervisors in a finite structure. We prove both results later on.

Example 6.2. We return to our illustrative intersection example to show results on the con-

struction of the arena. In this example, we assume that the system is partially observed with

Σobs = {Rint, Rout}. We construct A for system G, Xcrit = {5} and the all-out attack strategy

for Σsen = {Rint}. Since we construct A for the all-out attack strategy, we can omit the attacker

state. The arena has a total of 31 states; for this reason, we do not show the entire arena but just

part of it. Figure 6.9 illustrates a part of A constructed with respect to G and the all-out attack

strategy. We specify the missing transitions in gray. We can observe the encoding of insertion and

deletion in this arena. For example, at state {1}, {Rint}, ε) the transition ins(Rint) goes to state

{1}, {Rint}, Rint and then transition Rint goes to state {1}.

For convenience, we extend the definition of h2 based on a given control decision. Namely, we

124



{1}

{1,2,3},{Rint,Bint},�

{1},{Rint},Rint

ins(Rint)

{1},{Rint},�

{1,2,3},{Bint},�{1},{},�

{4}

{1,2,3},{Rint,Bint},Rint

ins(Rint)

Rint

Rint

{4},{Rint},�
del(Rint)

{4,5,6},{Rint,Bint},�
del(Rint)

{4,5,6}
Rint

{7}

Rout

{}

{Rint} {Rint,Bint}

{Bint} {}

{Rint} {Rint,Bint}

{Bint}

{1,2,3}

Rint

{}

{Rint} {Rint,Bint}

{Bint}

Figure 6.9: Part of A. States in green are Q1 states while states in blue are Q2. Uncontrollable
events are omitted from the control decisions, i.e., {} := {Rout, Bout}. For simplicity, transitions
from Q1 states are not labeled since the label is retrievable from the Q2 state. States in red are
critical states.

define a transition function H2 that always starts and ends in Q2 states. This notation simplifies

walks in A.

Definition 6.5. We define the function H2 : Q2 × Σobs ∪ Σatt × Γ→ Q2 as:

H2(q, e, γ) :=



h1(h2(q, e), γ), if e ∈ Σobs

h2(q, e) if e ∈ Σdel

h1(h2(h2(q, e),M(e)), γ), if e ∈ Σins

undefined, otherwise

(6.7)

Function H2 can be recursively extended for strings s ∈ (Σobs∪Σatt)
∗ given a sequence of control

decisions γ1 . . . γ|s|, i.e.,

H2(q, s, γ1 . . . γ|s|) = H2(H2(q, s|s|−1, γ1 . . . γ|s|−1), e|s|s , γ|s|).

Example 6.3. We return to our illustrative example to demonstrate function H2. Let q =

({1}, {Rint}, ε), then

H2(q, ins(Rint), {Rint}) = q

and

H2(q, ins(Rint)del(Rint), {Rint}{Rint}) = ({4}, {Rint}, ε).
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6.4.1.2 Properties

For a fixed supervisor R and attacker A, we obtain the language L(Ga||Ra||A) which contains the

possible string executions in the attacked system, e.g., strings of events in Σall. For convenience,

let Σobs,att := Σobs ∪ Σatt. Given a string s ∈ PΣallΣobs,att(L(Ga||Ra||A)), we can find the state

estimate ofGa after execution of s, i.e., the state estimate ofGa under supervision ofRa and attack

strategy A. Formally, this state estimate is

RE(s) ={x ∈ XGa | x = δGa(x0,Ga , t) for t ∈ P−1
ΣallΣobs,att

(s) ∩ L(Ga||Ra||A)} (6.8)

In the construction of A, we allow the attacker to insert events that are not allowed by the

current control decision (see Eq. (6.5)). Therefore, given a supervisor R, we need to define its

control decisions for all s ∈ Σ∗obs, differing from the usual definition only for s ∈ PΣΣobs(L(G)).

For this reason, we extend the function δR to be a complete function in Σobs.

∆R(x, e) =

 δR(x, e) if e ∈ EnR(x)

x otherwise
(6.9)

for x ∈ R and e ∈ Σobs. Intuitively, ∆R extends δR by simply ignoring the events that are not

defined in δR. The function ∆R is extended to s ∈ Σ∗obs as δR is extended. Lastly, we define the

control decision of R for any s ∈ Σ∗obs as:

CR(s) = EnR(∆R(x0,R, s)) (6.10)

Based on H2 and CR, we show that the arena A computes the same state estimates based on

the supervisor R and attacker A as the ones computed based on Ga||Ra||A. This result is shown in

Proposition 6.6.

Proposition 6.6. Given a system G, a supervisor R, an attack function A and arena A, then for
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any s ∈ PΣallΣobs,att(L(Ga||Ra||A)), we have that

H2(x0, s, γ1 . . . γ|s|)! (6.11)

I1(H2(x0, s, γ1 . . . γ|s|)) = RE(s) (6.12)

I2(H2(x0, s, γ1 . . . γ|s|)) = δA(x0,A, s) (6.13)

where x0 = h1(q0, CR(ε)) and γi = CR(P S(si)).

Proof. The result is proved by induction on the string s ∈ PΣallΣo,m(L(Ga||Ra||A)), where Σo,m =

Σobs ∪ Σatt.

Before we start the induction proof, we state two important results. First, we define CRa in

the same manner as CR, but the control decisions of Ra are defined over Σall. It can be shown by

induction that the following equality holds for any s ∈ L(Ga||Ra||A):

CR(P S(s)) = CRa(s) ∩ Σ (6.14)

Intuitively, Eq. (6.14) follows since Ra is a copy or R with insertion and deletions events added

based on P S .

Second, the function RE can be computed recursively for s ∈ PΣallΣo,m(L(Ga||Ra||A)) and

e ∈ Σo,m:

RE(se) ={x ∈ XGa | x = δGa(δGa(RE(s), e), t) for t ∈ (Σuobs ∩ CRa(se))∗} (6.15)

The set Σuobs defines the unobservable events of Ga. Then, only supervisor Ra disables events in

Σuobs to be executed in Ga since A is defined over Σo,m. For this reason, Eq. (6.15) is equivalent

to Eq. (6.8).

Induction basis: s = ε.

We have that H2(x0, ε, ε) = h1(q0, CR(ε)) is well defined since h1 is complete with respect to

Γ. It also follows that δA(x0,A, ε) = I2(x0) since ε ∈ L(Ga||Ra||A) and I2(x0) = x0,A. We have
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that I1(H2(x0, ε, ε)) = URCR(ε)(x0,G).

RE(ε)
Eq.(6.8)

= {x ∈ XGa | x = δGa(x0,Ga , t) for t ∈ P−1
ΣallΣo,m

(ε) ∩ L(Ga||Ra||A)} (6.16)
Def.3.3

PΣallΣo,m
= {x ∈ XG | x = δG(x0,G, t) for t ∈ Σ∗uobs ∩ L(Ga||Ra||A)} (6.17)

Def.3.4
= {x ∈ XG | x = δG(x0,G, t) for t ∈ (Σuobs ∩ CRa(ε))∗} (6.18)

Eq.(6.14)
= {x ∈ XG | x = δG(x0,G, t) for t ∈ (Σuobs ∩ CR(ε))∗} (6.19)

Eq.(2.4)
= URCR(ε)(x0,G) (6.20)

Induction hypothesis:

H2(x0, s, γ1 . . . γ|s|)!, I1(H2(x0, s, γ1 . . . γ|s|)) = RE(s) and I2(H2(x0, s, γ1 . . . γ|s|)) =

δA(x0,A, s) for all s ∈ L(Ga||Ra||A) and |s| = n.

Induction step:

Let e ∈ Σo,m, s ∈ L(Ga||Ra||A), |s| = n and se ∈ L(Ga||Ra||A).

The induction hypothesis gives us H2(x0, s, γ1 . . . γ|s|)!, I1(H2(x0, s, γ1 . . . γ|s|)) =

RE(s), and I2(H2(x0, s, γ1 . . . γ|s|)) = δA(x0,A, s). Let q = H2(x0, s, γ1 . . . γ|s|).

Since se ∈ L(Ga||Ra||A) then it follows that H2(q, e, γ|se|)!. Moreover, it follows that

I2(H2(x0, se, γ1 . . . γ|se|)) = δA(x0,A, se) by construction of A.

For equality of Eq. (6.12), we divide the event e into three cases.

First, e ∈ Σdel. Then, γ|se| = γ|s|. Based on the construction of A, we have that
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I1(H2(q, e, γ|se|)) = URγ|s|(NXPG(e)(I1(q))).

RE(se)
Eq.(6.15)

= {x ∈ XGa | x = δGa(δGa(RE(s), e), t) for t ∈ (Σuobs ∩ CRa(se))∗} (6.21)
Def.3.3

Eq.(6.14)
= {x ∈ XG | x = δG(δG(RE(s), PG(e)), t) for t ∈ (Σuobs ∩ CR(P S(se)))∗}

(6.22)

γ|s|=γ|se|
= {x ∈ XG | x = δG(δG(RE(s), PG(e)), t) for t ∈ (Σuobs ∩ γ|s|)∗} (6.23)

Eq.(2.4)
= URγ|s|(δG(RE(s), PG(e))) (6.24)

= URγ|s|(δG(I1(q), PG(e))) (6.25)

Let e ∈ Σins. Based on the construction ofA, we have that I1(H2(q, e, γ|se|)) = URγ|se|(I1(q)).

RE(se)
Eq.(6.15)

= {x ∈ XGa | x = δGa(δGa(RE(s), e), t) for t ∈ (Σuobs ∩ CRa(se))∗} (6.26)
Def.3.3

Eq.(6.14)
= {x ∈ XG | x = δG(δG(RE(s), PG(e)), t) for t ∈ (Σuobs ∩ CR(P S(se)))∗}

(6.27)

PG(e)=ε
= {x ∈ XG | x = δG(RE(s), t) for t ∈ (Σuobs ∩ γ|se|)∗} (6.28)

Eq.(2.4)
= URγ|se|(RE(s)) (6.29)

= URγ|se|(I1(q)) (6.30)

Lastly, e ∈ Σobs. Based on the construction of A, we have that I1(H2(q, e, γ|se|)) =
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URγ|se|(δG(I1(q), e)).

RE(se)
Eq.(6.15)

= {x ∈ XGa | x = δGa(δGa(RE(s), e), t) for t ∈ (Σuobs ∩ CRa(se))∗} (6.31)
Def.3.3

Eq.(6.14)
= {x ∈ XG | x = δG(δG(RE(s), PG(e)), t) for t ∈ (Σuobs ∩ CR(P S(se)))∗}

(6.32)

PG(e)=e
= {x ∈ XG | x = δG(δG(RE(s), e), t) for t ∈ (Σuobs ∩ γ|se|)∗} (6.33)

Eq.(2.4)
= URγ|se|(δG(RE(s), e)) (6.34)

= URγ|se|(δG(I1(q), e)) (6.35)

This concludes our proof.

Recall that in the left box of Fig. 6.6 the supervisor is unknown. Equation (6.11) tells us that

the arena captures all possible interactions between any supervisor R and attack function A with

the plant G. It captures all possible interactions since Proposition 6.6 is true regardless of the

supervisor R and of the attack function A. This is one of the main benefits of constructing the

arena A. It defines a space where all supervisors and attacker actions based on A for the plant G

exist.

Moreover, Eqs. (6.12-6.13) says that the arena correctly captures the interaction between the

attacker, supervisor and plant. Equation (6.12) computes the state estimate of G based on the

modified string s ∈ PΣallΣobs,att(L(Ga||Ra||A)) and the control decisions taken by R along the

observed string. These estimates capture an agent that has full knowledge of the modification on

the string s and the decisions taken by R. On the other hand, Eq. (6.13) establishes the correct

state of the attacker A in the construction of A.

6.4.1.3 Solution of the meta-control problem

Our approach to solve Problem 6.1 is to consider the above-constructed arenaA as the uncontrolled

system in a meta-control problem, which is posed as a supervisory control problem for a partially-
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observed discrete event system, as originally considered in [63]. For that reason, we will refer to

A as the meta-system. As will become clear in the following discussion, this supervisory control

approach naturally captures our synthesis objectives, and moreover supervisory control theory

provides a complete characterization of the solution. Such a methodology was previously used

in [30, 72] for instance; however, in these works the meta-control problem is a control problem

under full observation. The same situation does not apply in our case, where events in Σatt are

unobservable (from the supervisor’s perspective).

To formally pose the meta-control problem, we need a specification for the meta-system. In

fact, the specification emerges from the corresponding specification in Problem 6.1, which states

that the controlled system should never reach any state in Xcrit. The same specification is to

be enforced in A, where the state estimate of G represents the reachable states of G. Thus, the

specification for the meta-control problem is that the meta-controlled system should never reach

any state q ∈ Q1 ∪Q2 such that I1(q) ∩Xcrit 6= ∅.

The next step in the meta-control problem formulation is to specify the controllable and ob-

servable events in the meta-system A. We already mentioned that all e ∈ Σatt are unobservable

events. In fact, they are the only unobservable events in A since they are moves of the attacker

that the supervisor does not directly observe. In regard to the controllable events, the supervisor

makes decisions in order to react to the decisions made by the environment. Therefore, the events

in A1 \ {Σuctr} are controllable, while those in A2 ∪ {Σuctr} are uncontrollable. Note that, we ex-

plicitly exclude the control decision composed only of uncontrollable events as a meta-controllable

event; the supervisor should always be able to at least enable the uncontrollable events, otherwise it

would not be admissible. In this way, the supervisor can always issue at least one control decision,

i.e., enable all uncontrollable plant events. We are now able to formulate the meta-control problem.

Definition 6.6. Given A constructed with respect to G and A, with events E := A1 ∪ A2, Ec :=

A1 \ {Σuctr} as the set of controllable events and Euobs := Σatt as the set of unobservable events.

Let Atrim := Ac(A,M) be the specification automaton, where M := {q ∈ QA1 ∪ QA2 | I1(q) ∩
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Xcrit 6= ∅}4. Calculate the supremal controllable and normal sublanguage of the language of

Atrim with respect to the language of A, and let this supremal sublanguage be generated by the

solution-arena denoted by Asup.

Note that all controllable events in the meta-control problem are also observable, i.e., Ec ⊆ Eo.

Therefore, the controllability and observability conditions are equivalent to the controllability and

normality conditions. Hence, in this case, the supremal controllable and observable sublanguage

exists and is equal to the supremal controllable and normal sublanguage; see, e.g., §3.7.5 in [34].

As consequence a supremal and unique solution of the meta-control problem exists. This solution

is the language generated by the solution-arena Asup.

The state structure ofAsup will depend on the algorithm used to compute the supremal control-

lable and normal sublanguage of Atrim. One example of the structure of Asup is provided.

Example 6.4. We return to our running example. Based onA, we obtainAsup using an integrated

(for controllability and normality) iterative algorithm to compute the supremal controllable and

normal sublanguage that is based on preprocessing the input automata to satisfy simultaneously

a strict sub-automaton [34] condition and a State Partition Automaton [73] condition. As part of

the algorithm, one needs to refine A so that its observer is a state partition automaton (using the

algorithm in [73]), i.e., to compute A||Obs(A), where Obs is the observer operation with respect

to Euo (Def. 2.5). The resulting Asup is depicted in Fig. 6.10. Each state in Asup is a tuple, where

the first component is a state in A and the second component is a state in Obs(A), where

obs1 := {({1}, {Rint}, ε), ({1}, {Rint}, Rint), ({4}, {Rint}, ε), ({4}, {Rint}, Rint)}

obs2 := {({7, 8, 9}, {Bint, Rint}, ε), ({7, 8, 9}, {Bint, Rint}, Rint)}

obs3 := {({7, 8, 9}, {Bint, Rint}, ε), ({7, 8, 9}, {Rint}, Rint)}.

Regardless of the algorithm to obtain Asup, it has a structure with Q1-like states and Q2-like
4We use superscripts to differentiate the different arena structures, e.g., A, Atrim, etc.
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Figure 6.10: Asup

states, since it accepts a sublanguage of Atrim. Namely, it has states where only control decisions

are allowed (Q1 states) and states where only transitions with events in Σobs,att are defined (Q2

states). Thus, we can use the functions previously defined for A in Asup.

The way A is constructed is such that it embeds the set of all supervisors for the original plant

G. Therefore, the uniqueness of the language generated byAsup and the fact that it is the supremal

solution of the meta-control problem means that the structureAsup embeds a family of supervisors

S, where the controlled behavior generated by each member of that family does not reach any state

in Xcrit. Moreover, sinceA is constructed taking into account the attack function A, this family of

supervisors is robust with respect to A. This leads us to the following result.

Theorem 6.3. A supervisor R is a robust supervisor with respect to A if and only if (∀s ∈

PΣallΣobs,att(L(Ga||Ra||A)))[HA
sup

2 (x0, s, γ1 . . . γ|s|)!], where x0 = h1(qA
sup

0 , CR(ε)) and γi =

CR(P S(si)).

Proof. We start with the only if part. Let R be a robust supervisor. Proposition 6.6 guarantees that

HA2 (x0, s, γ1 . . . γ|s|) is defined for any s ∈ L(Ga||Ra||A) and for any attack function representa-

tion A. To analyze the meta-system A, we have to define some notation for it.

We are analyzing A as a meta-system, namely as an automaton. The function h is a the com-

bination of the functions h1 and h2. Let E = A1 ∪ A2 be the event set of A, Eo = E \ Σatt

the observable event set, Ec = A1 \ {Σuctr} the controllable event set. Moreover, the function
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η : E∗ → Σ∗obs projects strings in E∗ to strings in Σ∗obs. Intuitively, for any s ∈ L(A) the function

η(s) returns the string that is observed by the supervisor.

We construct the language L ⊂ L(A) recursively as:

1. ε ∈ L

2. s ∈ L ∧ h(q0, s) ∈ QA2 ⇒ se ∈ L, ∀e ∈ ΓA(h(q0, s))

3. s ∈ L ∧ h(q0, s) ∈ QA1 ∧
(
e = {Σuctr} ∨ e = CR(η(s))

)
⇒ se ∈ L

The language L is by construction controllable w.r.t. Ec and L(A); we show that L is normal w.r.t.

Eo and L(A). The result is shown by contradiction. Assume that L is not normal, then there exists

a shortest s ∈ L and t ∈ L(A) \ L s.t. PEEo(s) = PEEo(t). In the construction of L, player 2

is not constrained, meaning that the shortest strings that belong to L(A) \ L end with an event

in A1 (control decisions). For this reason, e|s|s = e
|t|
t and PEEo(s|s|−1) = PEEo(t

|t|−1). It implies

that η(s|s|−1) = η(t|t|−1) and CR(η(s|s|−1)) = CR(η(t|t|−1)). By the definition of L, t ∈ L. This

contradicts our assumption.

It is also true that L ⊆ L(Atrim), otherwise R would not be a robust supervisor. Intuitively,

the actions made by player 2 are not constrained in the construction of L. This guarantees that L

embeds all actions of attackerA. The actions of player 1 are constrained based onR and {Σuctr}. R

is robust and changing any of its control actions for any string by {Σuctr} will preserve robustness

since {Σuctr} ⊆ γ for any γ ∈ Γ.

Definition 6.6 defines L(Asup) to be the supremal controllable and normal sublanguage of

L(Atrim) w.r.t. Ec, Eo and L(A). Since L ⊆ L(Atrim) and it is controllable and normal, then

L ⊆ L(Asup). Therefore, HAsup

2 (x0, s, γ1 . . . γ|s|)! holds for all s ∈ PΣmΣo,e(L(Ga||Ra||A)).

For the if part, the result follows from the construction of A, Atrim and the properties of

Asup.

Corollary 6.2. Asup = ∅ if and only if there does not exist any robust supervisor R with respect to

attacker A.
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Corollary 6.2 gives a necessary and sufficient condition for the existence of a solution for

Problem 6.1. Given that there exists a robust supervisor, we provide an algorithm5 to extract a

supervisor that solves Problem 6.1. First, we define function H1 as we defined H2.

Definition 6.7. Let the function H1 : Q1 × Σobs,att × Γ→ Q1 be defined as:

H1(q, e, γ) :=



h2(h1(q, γ), e), if e ∈ Σobs

q if e ∈ Σdel

h2(h2(h1(q, γ), e),M(e)), if e ∈ Σins

undefined, otherwise

(6.36)

Algorithm 7 Robust Supervisor Extraction

Require: Asup

Ensure: Rr = (XRr ,Σ, δRr , x0,Rr)
1: x0,Rr = qA

sup

0

2: XRr ← {x0,Rr}, δRr ← ∅
3: Expand(x0,Rr )
4: procedure EXPAND(x)
5: select γ ∈ ΓAsup(x) s.t. ∀γ′ ∈ ΓAsup(x) : γ 6⊂ γ′
6: for all e ∈ Σ ∩ γ do
7: if e ∈ Σobs then
8: y = HA

sup

1 (x, e, γ), δRr ← δRr ∪ (x, e, y)
9: XRr ← XRr ∪ {y}

10: if y /∈ XRr then
11: Expand(y)

12: else
13: δRr ← δRr ∪ (x, e, x)

Algorithm 7 starts at the initial state of Asup and performs a Depth First Search by selecting

only the largest control decisions at each state that it visits. By largest, we mean that it selects a

control decision that is not a subset of any other control decision defined at state x, as described

by line 5. Note that, it is possible to have more than two decisions that satisfy this condition. In

this case, the algorithm selects one of the possible decisions in a nondeterministic manner. The

5There are different manners for a designer to extract a robust supervisor.
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algorithm terminates since Asup is finite. Moreover, the algorithm only traverses player 1 states,

where the control decisions are defined.

Corollary 6.3. A supervisor Rr constructed by Algorithm 7 is a solution for Problem 6.1.

Example 6.5. To conclude this section, we provide two supervisors extracted via Algorithm 7.

These two supervisors are depicted in Fig. 6.11.

(a) Robust supervisor 1 (b) Robust supervisor 2

Figure 6.11: Robust supervisors with respect to all-out attack strategy

6.4.2 Selecting supervisors in the robust arena

Algorithm 7 provides one way of extracting robust supervisors from Asup. As we explained be-

fore, it selects maximal control decisions in the Q1 states that the algorithm visits. Example 6.5

shows that this extraction does not provide specific information about the language generated by

supervised system once a supervisor is selected, other than the fact that we are choosing a locally

maximal control decision. While supervisor R1 in Fig. 6.11(a) generates a live language, super-

visor R2 in Fig. 6.11(b) is blocking. Nonetheless, the space defined in Asup provides maximum

flexibility in extracting different supervisors since all robust supervisors are embedded in Asup.

The methods in [14, 13, 28] do not provide the flexibility of Asup since they exploit algorithms

of supervisory control theory where only one supervisor can be obtained at a time. In fact, when
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explicit comparisons can be made, the supervisors obtained by their methods are embedded in the

corresponding Asup.

Another benefit of the construction of Asup is the ability to exploit results in the area of turn-

based two-player graph-games. Results from these areas can be leveraged to study different man-

ners of extracting robust supervisors, for example, to study quantitative versions of the robust

supervisor problem under some cost model [41, 74, 31].

We provide an example of a supervisor extraction algorithm based on a quantitative measure.

First, we define a measure over the supervised system R/G, i.e., over the states of the automaton

G||R. Let the set Xdead = {x ∈ XG||R | ΓG||R(δG||R(x, s)) = ∅ for s ∈ Σ∗uobs} be the set of

states in G||R that can reach a deadlock state via an unobservable string. We define r : XG||R →

[0,+∞) ∪ {−∞} to be a reward function for any (x, y) ∈ XG||R as:

r((x, y)) =


−∞ if x ∈ Xcrit

0 if (x, y) ∈ Xdead

c otherwise

(6.37)

where c ∈ [0,∞).

The reward function r punishes states from where the system G||R might deadlock. Based on

the reward function r, we define the following total reward for the supervised system G||R.

Reward(R,G) =
∑

x∈XG||R

r(x) (6.38)

We can generalize Algorithm 7 to incorporate this quantitative measure such that it extracts a

supervisor from Asup that maximizes the measure Reward(R,G). In our running example, this

new method would extract robust supervisor 1. We can even go further in this extraction method

by assuming that the attacker tries to minimize Reward(R,G). In this scenario, we would pose a

min max problem in order to select a supervisor from Asup. We leave these extensions for future

work.
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6.4.3 Robot motion planning example

We developed a tool6 to automatically construct A, as in Definition 6.4, and to compute Asup.

Moreover, Algorithm 7 is also implemented in our tool. Our evaluation was done on a Linux

machine with 2.2GHz CPU and 16GB memory.

We consider a robot moving in a possibly hostile environment. The robot is assumed to have

four different movement modes: North, South, East, West.The robot moves freely in the workspace

shown in Fig. 6.12(a). Its initial state is the blue cell denoted as q0 and the red cells are considered

to be obstacles. Moreover, the shaded region is assumed to be hostile and the sensor readings of

the robot could be under attack. We differentiate the sensor reading in the shaded area by marking

them with an *, i.e., Σ = Σctr = Σobs = {N,S,E,W,N∗, S∗, E∗,W ∗}. This uncontrolled system

is modeled by the automaton depicted in Fig. 6.12(b). We want to design a robust supervisor that

enforces the following properties: (1) the robot must avoid the obstacles; (2) the robot can always

access states q0 and q1.

(a) Robot workspace: the robot starts
in the blue cell denoted by q0; the
shaded area is considered hostile and
the sensor readings in that area are
compromised.
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Figure 6.12: Robot workspace and attack simulation

The set of compromised events is Σsen = {E∗,W ∗, N∗, S∗} since we consider that the sensor

readings in the shaded area might be under attack. First, we construct the arena A considering the
6https://gitlab.eecs.umich.edu/M-DES-tools/desops
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all-out attack strategy. The number of states in A is 18649 states. The state space explosion is due

to the number of control decisions: there are 256 possible control decisions.

After constructing A, we obtain Asup as described in Definition 6.6. To compute the supremal

controllable and normal sublanguage, we use the algorithm described in Example 6.4; it follows

that Asup has 65358 states. Note that Asup has more states than A due to necessary preprocess-

ing done by the iterative algorithm for the computation of the supremal controllable and normal

sublaguage.

Finally, any supervisor selected from Asup is robust against the all-out attack strategy, i.e., it

satisfies property (1). Therefore, we must select a supervisor that satisfies property (2). For this

reason, we modify Algorithm 7 to extract a supervisor fromAsup such that property (2) is satisfied.

This supervisor is depicted in Fig. 6.13.
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Figure 6.13: Robust supervisor for robot in a hostile environment

6.4.4 Summary

By formulating the problem at the supervisory control layer of a cyber-physical system, we have

been able to leverage techniques from games on automata under partial information and from

supervisory control of partially-observed discrete event systems to develop a solution methodology

to prevent damage to the system when some sensor readings may be edited by the attacker. The
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space defined in Asup provides maximum flexibility in extracting different supervisors since all

robust supervisors are embedded in Asup. As discussed in section 6.4.2, it would be interesting

to investigate methods to extract supervisors from Asup in order to satisfy additional constraints,

such as optimality with respect to some quantitative criterion [74, 41]. Finally, identifying ways to

reduce the state space of the arena by exploiting a suitable notion of state equivalence is another

important research direction.

6.5 Conclusion

We considered a class of problems in cyber-security where sensor readings in a feedback control

system may be manipulated by a malicious attacker. By formulating the problem at the super-

visory control layer of a cyber-physical system, we have been able to leverage techniques from

games on automata under partial information and from supervisory control of partially-observed

discrete event systems to develop a solution methodology to prevent damage to the system when

some sensor readings may be edited by the attacker. Our problem formulation is parameterized

by an attack strategy over a set of compromised events. In this manner, synthesis of robust su-

pervisors against sensor deception attack strategies is considered, e.g., bounded attack strategies,

replacement attack strategies, etc. Moreover, if there is no prior information about the attacker

strategy, then we consider the general all-out attack strategy over the set of compromised events.

A supervisor robust against the all-out attack strategy is robust against any other sensor deception

attack strategy over the same set of compromised events.

We presented two sound and complete solutions to the investigated problem, where one is more

scalable than the other. The space defined in Asup provides maximum flexibility in extracting

different supervisors since all robust supervisors are embedded in Asup. On the other hand, the

output of Algorithm 6 provides us with one maximal robust supervisor solution.
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CHAPTER VII

Conclusion

7.1 Contribution

In this dissertation, we studied how disruptive and dangerous sensor deception attacks at the su-

pervisory control layer of cyber-physical systems can be. Moreover, we investigated how to shield

these systems against sensor deception attacks. Given that we studied these problems at the super-

visory control layer of cyber-physical systems, our work leveraged the field of supervisory control

theory of partially observed discrete event systems. In fact, we enhanced the supervisory control

framework such that it takes into account sensor deception attacks.

Sensor deception attacks in the supervisory control framework were modeled as attack func-

tions, i.e., the attacker can modify/edit events generated by the plant (physical process) before they

reach the supervisor. In this manner, the supervisor might take control decisions based on incorrect

information. We formally defined this enhanced supervisory control framework and completely

characterized the closed-loop behavior of the controlled system under sensor deception attacks.

Once we characterized the supervisory control framework under sensor deception attacks, we

focused on two important components of this framework: the attacker and the supervisor. Intu-

itively, we concentrated on two questions: “Can we find attack strategies that cause damage to the

controlled system without raising any suspicion?”; “Can we find a supervisor that does not allow

any attacker to cause damage to the controlled system?”.

First, we focused on the attacker by putting ourselves into the attacker’s shoes. In this context,

we formulated the problem of synthesizing stealthy sensor deception attacks, i.e., an attack that it

causes damage to the system without detection by an existing supervisor. Our solution procedure
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is game-based and relies on the construction of a discrete structure called the AIDA, which is used

to solve the synthesis problem for different attack scenarios.

The problem of synthesizing stealthy sensor deception attacks was posed in a qualitative man-

ner, i.e., it is either possible to synthesize a stealthy attack or it is not. Next, we considered the

problem of synthesis of attack functions for sensor deception attacks at the supervisory layer of

feedback control systems, where the system is modeled as a probabilistic finite-state automaton

controlled by a given deterministic supervisor. We investigated two problems: the problem of syn-

thesizing attack functions with the maximum likelihood of reaching the critical state and a second

problem where each attack edit is costly. In the second problem, the attacker has two objectives:

(i) reach the critical state with the maximum likelihood; (ii) minimize the expected cost while

performing (i). In order to solve these problems, we leveraged techniques from MDPs. Namely,

we reduced these problem to two well known problems in MDPs: the probabilistic reachability

problem and the stochastic shortest path problem.

Finally, we moved on to address the second question: “Can we find a supervisor that does not

allow any attacker to cause damage to the controlled system?”. We investigated the problem of syn-

thesizing robust supervisors against sensor deception attack strategies. Our problem formulation is

parameterized by an attacker strategy over a set of compromised events. Based on this given attack

strategy, we synthesize a robust supervisor against it. Therefore, our robustness criterion is defined

based on the type of attack strategy, e.g., bounded attack strategy, replacement attack strategy, etc.

Nonetheless, we provide the all-out attack strategy that includes any other attack strategy over the

same set of compromised events. Robustness against the all-out attack strategy implies robustness

against any other attack strategy. Finally, we presented two sound and complete solutions to the

investigated problem, where one is more scalable than the other.

In summary, this dissertation introduced a novel supervisory control theory framework that

addressed the problem of sensor deception attacks in controlled systems. Moreover, it investigated

problems from the attacker’s perspective as well as the supervisor’s perspective. On the attacker’s

perspective, we provided both qualitative and quantitative methods to synthesize attack strategies.
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On the other hand, only qualitative results were obtained for the synthesis of robust supervisors.

7.2 Future work

There are several potential research directions for future work. Here we mention a few of these

potential research directions.

This dissertation only investigates sensor deception attacks. Actuator deception attacks are also

an important class of attacks that must be investigated. Recently, actuator deception attacks were

investigated in isolation, similarly as our work [16, 18]. A potential area of research is to study the

supervisory control framework under both sensor and actuator deception attacks.

In Chapters IV and V, we assume that the attacker has full knowledge of the controlled system

(Assumption 4.1). Relaxing this assumption is a possible extension of our work. For example,

assuming that the attacker has partial information about the controlled system. The attacker has to

resolve two issues in order to synthesize a successful attack strategy. It needs to learn the controlled

system while it tries to synthesize an attack strategy. Therefore, this potential area would require

both synthesis and learning techniques. This combination of learning and synthesis techniques

would fit nicely in the framework developed in Chapter V. Reinforcement learning methods could

provide the means to investigate this problem.

With respect to the defense techniques explored in Chapter VI, we provide one way of robus-

tifying the controlled system. The synthesized controlled system is robust by limiting its uncon-

trolled behavior considering sensor deception attacks. Is it possible to obtain a robust controlled

system that is more permissive than the one obtained by our methods in Chapter VI? One possible

solution is to assume an active defense mechanism, i.e., a controlled system that actively prevents

sensor deception attacks. This notion of active defense mechanism is exploited in problems of

opacity enforcement [75, 24]. Enhancing the system of interest with a mechanism that actively

modifies its observational behavior provides leverage enforcing opacity with permissiveness. An-

other possible technique is the Moving Target Defense paradigm [76], where the supervisor ac-
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tively changes its actions in order to create uncertainty for attackers [77]. Using such defense

mechanisms would allow a more permissive controlled system.

Lastly, this dissertation focused on the important class of cyber-physical systems. However, in-

vestigating these techniques and problems in cyber systems is also of critical importance. Network

protocols are the essence of cyber systems since these systems are a collection of computerized

networks. These protocols must be resilient against both malicious planned attacks and benign

malfunction [78]. A model-based approach to study the security aspects of these protocols is the

first step in understanding their vulnerabilities against attacks. This model-based approach would

integrate modeling techniques from this dissertation to investigate security problems in cyber sys-

tems.
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