Resilience Against Sensor Deception Attacks at the Supervisory Control Layer of
Cyber-Physical Systems: A Discrete Event Systems Approach

by

Romulo Meira Gées

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical and Computer Engineering)
in the University of Michigan
2020

Doctoral Committee:

Professor Stéphane Lafortune, Chair
Assistant Professor Jean-Baptiste Jeannin
Professor Mingyan Liu

Associate Professor Necmiye Ozay
Professor Atul Prakash

ROmulo Meira Goes
romulo@umich.edu

ORCID iD: 0000-0003-3567-9685

© Romulo Meira Goes 2020

ACKNOWLEDGMENTS

I'recall in 2015 a “young me” writing about my PhD expectations... As expected by many of you, I
was completely wrong about most of what I had written down. I could write an essay about all the
conflicting emotions that I had during my PhD, but I will spare you from that. Instead, I sincerely
express my gratitude to everyone that supported, encouraged, and inspired me; I could not thank
you enough.

Almost like a motto for PhD applicants is: “Carefully choose your PhD advisor.” I could not
be luckier for having Stéphane Lafortune in this advisor role. His patience for my long-winded
progress in the field astonishes me. He is a great mentor that taught me how to persevere in the
pursuit of knowledge.

I thank Professor Necmiye Ozay for being an important mentor and teacher. She provided me
insightful comments that help me throughout my graduate studies. I also would like to acknowl-
edge my other committee members: Professor Mingyan Liu, Professor Jean-Baptiste Jeannin, and
Professor Atul Prakash. In addition, I appreciate all the faculty at UM from whom I have learned
a lot as well as the UM staff, specially EECS staff, that provide essential support to students.

My research collaborators are intrinsically part of this dissertation. Many thanks to Professor
Raymond Kwong, Professor Karen Rudie, Professor Eunsuk Kang, Doctor Hervé Marchand, Doc-
tor Christoforos Keroglou, Doctor Sahar Mohajerani, and Doctor Blake Rawlings for sharing their
knowledge and criticisms with me. I specially appreciate Professor Karen Rudie and Doctor Hervé
Marchand for their receptiveness during my stay at Queen’s University and INRIA-Rennes. On
that note, I would like to express my gratitude to the people involved in the Control of Discrete
Event Systems group at Queen’s University and the Sumo group at the INRIA-Rennes.

My time at UM would not be as joyful as it was without my friends and colleagues. Special

i

thanks to my colleagues at the UMDES group Xiang Yin, Yiding Ji, Andrew Wintenberg, and
Shoma Matsui for insightful discussions about research. My friends Shurjo and Madan who always
had their lab door open for the must needed research breaks. My running and adventure friends
Ted and Jonas who were always down for long overnight drives so that we would arrive at the parks
at dawn. I also have to mention Bernardo, Raquel, and Eurico, this Brazilian troupe brought sheer
happiness that helped me cope with my homesickness. Of course, I express my great gratitude to
my friends in Brazil. I thank my friend and roommate Wesley and our BTB cantina lunch group
for our goofy and/or intellectual discussions.

Continuing on this personal note, I would like to thank my parents, Reinaldo and Solange, and
my sisters, Suelen and Liz. My parents always valued education even though they had not had a
chance to pursue it. Many times they sacrificed themselves so that my sisters and I would continue
receiving our education. My sisters paved my path in the academic world since both were part of
it way before I decided to step in it. I also want to thank my partner Rachel for being there to share
my achievements and support my struggles.

Finally, I wish to acknowledge the financial support from NSF.

1l

TABLE OF CONTENTS

ACKNOWLEDGMENTS o ii

LIST OF FIGURES et vii

LIST OF ACRONYMS s e 1) ¢

LIST OF SYMBOLS e e X

ABSTRACT e xii
CHAPTER

I. Imtroduction 1

L.1. Motivation oL e e e e 1

1.2. Overview of attacks in cyber-physical systems 2

1.2.1. Modeling attacks 3

1.2.2. Intrusion detection of deception attacks 4

1.2.3. Synthesis of deception attacks 5

1.2.4. Synthesis of supervisors resilient against deception attacks 5

1.3. Organization and main contributions 6

II. Supervisory control theory 10

2.1. Automata models and relevant operations 10

2.1.1. Automatamodels L 10

2.1.2. Accessiblepart 12

2.1.3. Parallel composition e 13

2.1.4. Projectionmap i e e e e 14

2.1.5. Observer e 14

2.2. Supervisory control theory Lo L L 16

III. Supervisory control under sensor deception attacks 21

v

3.1. Introduction e e e e 21
3.2. A general sensor deception attack model 23
3.2.1. Attack function 23
3.2.2. Attack function as an automaton L. L 26

3.3. The controlled behavior under sensor deception attack 28
3.3.1. Attackedplant L 29
3.3.2. Attacked supervisorol 31
3.3.3. Controlled language under sensor deception attack 33

3.4. Different classes of attack functions 0oL 33
34.1. All-outattacker L 33
3.4.2. Interruptible attackero 34
3.4.3. Unbounded deterministic attacker 35
3.4.4. Bounded deterministic attacker 35
3.4.5. Otherattackers 36

3.5. Controlled behavior under sensor deception attack - language definition 36
3.6. Conclusion e e e e e e e 38
IV. Synthesis of stealthy sensor deception attacks for supervisory control 39
4.1. Introduction e e e e 39
4.2. Problem formulation 42
4.3. Insertion deletion attack structureo 46
43.1. Definition 46
4.3.2. Properties e e 49

4.4. All insertion deletion attack structure 54
44.1. Definition e e e 54
442, Constructiono e e 55

4.5. Pruning the all insertion deletion attack structure 58
4.5.1. Synthesis of interruptible attack strategies 59
4.5.2. Synthesis of unbounded deterministic attack strategies 65
4.5.3. Synthesis of bounded deterministic attack strategies 67

4.6. Conclusion L e 68

V. Synthesis of optimal sensor deception attacks for stochastic supervisory control 69

5.1.
5.2.

5.3.

54.
5.5.

Introduction L 69
Stochastic supervisory control theory 71
5.2.1. Probabilistic finite-state automaton L. 71
5.2.2. Stochastic supervisory control L L. 72
Problem formulationo L 74
5.3.1. Stochastic supervisory control under sensor deception attacks 74
5.3.2. The maximal reachability problem 76
5.3.3. The multi-objective problem 76
Markov decision processeso i e u e e e e e e 79
Solution of the probabilistic reachability attack function problem 81
5.5.1. Constructionofthe MDP L. 81

5.5.2. Maximal reachability attack function 84

5.5.3. Proofof theoremS.1 85

5.6. Solution of the multi-objective problem 92
5.6.1. Constructionofthe MDP oL 92

5.6.2. Solutionprocedureo 95

5.6.3. Proofoftheorem 5.2o 96

57 Exampleso Lo e 98
5.7.1. Temperature control 99

5.7.2. Robotmotionplanning 101

5.8. Conclusion L 103
VI. Synthesis of supervisors robust against sensor deception attacks 104
6.1. Introduction L 104
6.2. Problem formulationo oL 107
6.3. Synthesis of robust supervisor via supervisory control theory 109
6.3.1. Supervisory control with control patterns 110

6.3.2. Reducing the robust supervisor problem 110

6.3.3. Computing a maximal robust supervisor 115

6.3.4. Condition for the existence of the supremal K/ 118

6.3.5. Summary 119

6.4. Synthesis of robust supervisor via graph-games 120
6.4.1. Meta-Supervisor problem L. 120

6.4.2. Selecting supervisors in the robustarena 136

6.4.3. Robot motion planning example, 138

6.4.4. Summary 139

6.5. Conclusion L 140
VIL. Conclusion e 141
7.1. Contribution e 141
7.2. Future worko L 143
BIBLIOGRAPHY e 145

vi

I1.1.
1.2.
1.3.
1.4.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

3.1.
3.2.
3.3.
3.4.
3.5.

3.6.
3.7.
3.8.

4.1.
4.2.
4.3.

4.4.

4.5.

LIST OF FIGURES

Concept of deception attackson CPSo oL 3
Sensor deception attacks in the supervisory control framework 6
Controlled system under attack 7
Robust controlled system under attack 9
Automaton Go 12
Ac(G,{2,5}) - o o 13
Observer automaton oL e e 15
Supervisory control framework Lo L L 16
Intersection model L L L 18
SUPEIVISOIS o o e e e e 18
RollG o o 19
Sensor deception attacks in the supervisory control framework 22
Attack functions L. 27
Augmented supervisory control framework under sensor deception attack 28

Plant of the intersection example (left) and its attacked plant (right) for X, = {R;n:} 30
Supervisor of the intersection example (left) and its attacked supervisor (right) for

Yeen = {Rint} o o o 32
Closed-loop attacked systems 34
Interruptible attacker strategy Lo 35
Demonstration of Condition (2) e 37
Controlled system under attack 40
Sensor deception attacks in the supervisory control framework 42
Supervisor R based on Supervisor R from Example 2.4. New transitions are in black

and we omit self-loops instate dead. 46

IDA, intersection example with .., = {R;,}. States with S are supervisor states
(most in light green) while states with E are environment (most in light blue). States
in red are states where the attacker is discovered. Uncontrollable events are omitted
from the control decisions, i.e., {} := {Rout, Bout}+ + « - « « « o e v v v v vt 50
AIDA, intersection example with ., = {R;,;}. States with S are supervisor states
(most in light green) while states with E are environment (most in light blue). States in
red are states where the attacker is discovered while states where the attacker reaches
the dead state areindark green. o 58

vil

4.6.
4.7.
4.8.
4.9.

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.

ISDA, intersection example with .., = {Rine}. - - - o o o o o oo oo
ISDA, intersection example with X, = ¥ and X0, = {Rine} - - -« o o o o o o L.
Attack extraction e e e e

Gbound ...

Stochastic intersection example L Lo
MDP for controlled system Ry /H and YXgep, = {Rine} - - - - o v o o v v oo i
Trimmed MDP M,, e e e
Four-mode thermostat system e
Four-mode thermostat simulation
Max. reach. attack function encoded as automaton
Robotmodel e
Robot workspace and attack simulation

Robust controlled system under attack
Augmented supervisory control framework under sensor deception attack
Sensor Deception Attack Framework
Plant G for intersection example (left) and its attacked plant model GG, (right)
Robust supervisor 1,,,: output of Algorithm6
Relation of the system and the meta-system
Transition function hs from player 2toplayer 1
Transition function hs from player 2 toplayer2
Part of A. States in green are (), states while states in blue are (). Uncontrollable

events are omitted from the control decisions, i.e., {} := { Rout, Bout }- For simplicity,

transitions from (); states are not labeled since the label is retrievable from the ()

state. States in red are critical states. oL Lo
ASP
Robust supervisors with respect to all-out attack strategy
Robot workspace and attack simulation L 0oL
Robust supervisor for robot in a hostile environment

viii

LIST OF ACRONYMS

AIDA All Insertion Deletion Attack

BSCP Basic Supervisory Control Problem
BAIDA Bounded All Insertion Deletion Attack
CPS Cyber-Physical Systems

DES Discrete Event Systems

DFA Deterministic Finite State Automaton
E-state Environment-state

IDA Insertion Deletion Attack

ISDA Interruptible Stealthy Deceptive Attack
MDP Markov Decision Processes

PFA Probabilistic Finite State Automaton

PTF Probabilistic Transition Function

SCT Supervisory Control Theory

SCP-AP Supervisory Control Problem with Arbitrary control Patterns
S-state Supervisor-state

USDA Unbounded Stealthy Deceptive Attack

1X

LIST OF SYMBOLS

>) Set of Events

G Plant - DFA

L(G) Language of DFA G

Eng(x) Set of events enabled at state x in DFA G

Ac(G, X)) Accessible part of GG after deleting states X

P, s;, Natural projection from events >J; to events in X

Yar Set of Controllable Events

Yobs Set of Observable Events

[Set of feasible control decision - I' = {y € 2% | v C ¥, }

R Supervisor - DFA

Yisen Set of Events Compromised by the Attacker

Yins Set of Insertion Events - ;s = {ins(e) | e € Xgepn }

Yaer Set of Deletion Events - X4, = {ins(e) | e € Yo }

Y Set of Attacker Events - X1 = Yins U Xger

Yo Set of All Events in the Attacked Plant - X, = X U Y

P?% Projection operator that describes how the supervisor observes Y, events
P¢ Projection operator that describes how the plant executes X,; events
(G, Attacked Plant - DFA - Def. 3.3

R, Attacked Supervisor - DFA - Def. 3.4

A Automaton that encodes an attack function

M Markov Decision Process

IT5; The set of all deterministic MDP policies of M

A Graph-game arena

X1

ABSTRACT

Cyber-Physical Systems (CPS) are already ubiquitous in our society and include medical devices,
(semi-)autonomous vehicles, and smart grids. However, their security aspects were only recently
incorporated into their design process, mainly in response to catastrophic incidents caused by
cyber-attacks on CPS. The Stuxnet attack that successfully damaged a nuclear facility, the Ma-
roochy water breach that released millions of gallons of untreated water, the assault on power
plants in Brazil that disrupted the distribution of energy in many cities, and the intrusion demon-
stration that stopped the engine of a 2014 Jeep Cherokee in the middle of a highway are examples
of well-publicized cyber-attacks on CPS. There is now a critical need to provide techniques for
analyzing the behavior of CPS while under attack and to synthesize attack-resilient CPS. In this
dissertation, we address CPS under the influence of an important class of attacks called sensor
deception attacks, in which an attacker hijacks sensor readings to inflict damage to CPS.

The formalism of regular languages and their finite-state automata representations is used to
capture the dynamics of CPS and their attackers, thereby allowing us to leverage the theory of
supervisory control of discrete event systems to pose our investigations. First, we focus on devel-
oping a supervisory control framework under sensor deception attacks. We focus on two questions:
(1) Can we automatically find sensor deception attacks that damage a given CPS? and (2) Can we
design a secure-by-construction CPS against sensor deception attacks? Answering these two ques-
tions is the main contribution of this dissertation.

In the first part of the dissertation, using techniques from the fields of graph games and Markov
decision processes, we develop algorithms for synthesizing sensor deception attacks in both quali-
tative and quantitative settings. Graph games provide the means of synthesizing sensor deception

attacks that might damage the given CPS. In a second step, equipped with stochastic information

Xii

about the CPS, we can leverage Markov decision processes to synthesize attacks with the highest
likelihood of damage.

In the second part of the dissertation, we tackle the problem of designing secure-by-
construction CPS. We provide two different methodologies to design such CPS, in which there
exists a trade-off between flexibility on selecting different designs and computational complexity
of the methods. The first method is developed based on supervisory control theory, and it provides
a computationally efficient way of designing secure CPS. Alternatively, a graph-game method
is presented as a second solution for this investigated problem. The graph-game method grants
flexible selection of the CPS at the cost of computational complexity. The first method finds one
robust supervisor, whereas the second method provides a structure in which all robust supervisors
are included.

Overall, this dissertation provides a comprehensive set of algorithmic techniques to analyze

and mitigate sensor deception attacks at the supervisory layer of cyber-physical control systems.

Xiil

CHAPTER 1

Introduction

1.1 Motivation

The growth of successful cyber-attacks on key elements of our society’s infrastructure has recently
become a concern, especially to engineers. The Stuxnet attack that successfully caused damage to a
nuclear facility [1], the Maroochy water breach that released millions of gallons of untreated water
[2], the assault on power plants in Brazil that disrupted the distribution of energy in many Brazilian
cities [3], and the intrusion demonstration that stopped the engine of the 2014 Jeep Cherokee in the
middle of a highway [4] are examples of well-publicized cyber-attacks on physical infrastructure.
All of these examples share a similar feature: they are modern engineering systems composed of
the interaction of physical elements - such as power plants, vehicles, or medical devices - with a
computational infrastructure that controls them. These systems are called cyber-physical systems
(CPS).

CPS are found across diverse areas of society, from power plants to transportation systems,
from smart homes to medical devices. These systems must be reliable, robust and secure against
both benign malfunction as well as malicious planned attacks. However, the security aspects of
their design have often been treated as an afterthought; and this approach has revealed its flaws
considering the number of successful attacks our society has experienced. According to the Coun-
cil of Economic Advisers, cyber-attacks were estimated to have cost between $57 billion and $109
billion to the U.S. economy in 2016 [5]. There is now an urgency to develop techniques for un-
derstanding and designing attack-resilient CPS. These techniques will need to take into account

diverse areas of application and ad hoc approaches to their development should be avoided.

1

This dissertation proposes to tackle these problems by developing a novel methodology for
understanding a large class of CPS attacks and then designing attack-resilient CPS. This method-
ology has the following features: (i) it considers and handles systems with imperfect information
(due to sensor limitations) and limited control of actuators (due to system disturbances) (i1) it mod-
els sensor deception attacks, an important class of attacks for CPS, one in which an attacker hijacks
the information sent to the computational infrastructure; (iii) it considers the attacker’s perspective
by providing methods to synthesize successful attacks for fixed controllers; (iv) it provides a for-
mal model-based approach for designing attack-resilient controllers; (v) the methods are general
and applicable to a large class of CPS, specifically systems with safety-critical requirements whose
behavior is suitably model as event-driven systems (e.g., power plants, autonomous vehicles, and

transportation systems).

1.2 Overview of attacks in cyber-physical systems

In control engineering, the area of discrete event systems (DES) is known for its ability in modeling
the high-level behavior of complex systems. The operation of these systems is modeled in an
event-based manner and only important details are considered in analyzing the system’s operation.
This dissertation uses supervisory control theory (SCT) from the field of discrete event systems
to analyze CPS. We assume that CPS has been abstracted into an even-driven model, where we
employ our methodology.

Supervisory control provides a formal model-based framework for designing correct-by-
construction controllers for complex event-driven systems. Despite these benefits, this framework
does not encompass security aspects. We do a brief literature review to show some of the exist-
ing related works on cyber-security of CPS in the field of DES. A more comprehensive, although

incomplete, literature review is described in [6].

1.2.1 Modeling attacks

Previously, some efforts were made in classification and modeling of cyber-attacks assuming cer-
tain intelligence on the part of the attacker [7, 8]. Our focus is on a special type of attacks called
deception attacks. These attacks are characterized by some type of manipulation of the sensor
measurements received by the supervisor and/or of the actuator commands sent by the supervisor.
Figure 1.1 pictorially defines the concept of deception attacks, where an attacker compromises the

communication channels between the supervisor and the plant.

Network
System

Sensors Actuators

Physical Process

Figure 1.1: Concept of deception attacks on CPS

Deception attacks were first introduced in the DES field by Carvalho et al. [9], where they
define and study actuator enablement deception attacks. This class of attacks is literally defined as
its name; the attacker enables actuator commands that were previously disabled by the supervisor.
Their attack model is intertwined with the physical dynamics, which prevents a clear analysis of
the attacker’s strategies. In this manner, the attacker is not pictured as a “smart” agent by this work.
Later on, the authors extended their work to encompass full deception attacks [10, 11, 12], i.e., both
sensor and actuator deception attacks. However, they followed similar modeling techniques.

The works of Su and Wakaiki et al. in [13, 14] introduced a more sophisticated model for
sensor deception attacks. An attacker is seen as an agent that reacts to sensor readings, differently
than the model presented in [11], where the attacker is a passive entity.

In [13], an attacker is modeled by an input-output automaton that has input and output lan-

guages. Namely, the input language is the language generated by the sensor readings while the

output language is the language generated by the attacker to confuse the supervisor. In this model,
three key assumptions are made: the attacker can only modify a subset of the sensor readings;
modifications are bounded; and the attacker finishes its modifications before the physical process
executes a new event.

On the other hand, Wakaiki et al. models sensor deception attacks as a function instead of input-
output automaton [14]. This function has languages as domain and co-domain in a similar manner
as the input and output languages in [13]. However, Wakaiki et al. impose different constraints to
their attack model compared to the ones in [13], which leads to a different closed-loop behavior.

Recently, the work in [15] modeled sensor and actuator deception attacks as input-output au-
tomaton similar as [13]. Differently than [13], they do not impose any bound constraint over the
attacker. However, their supervisory control framework differs from the standard framework. They
assume that the supervisor can actively change the state of the physical process. In the standard
supervisory control framework, the supervisor cannot change the state of the plant.

Actuator deception attacks were introduced by [16, 17, 18]. The models of actuator attacks in

these works are similar to the previously mentioned methodologies for sensor deceptions attacks.

1.2.2 Intrusion detection of deception attacks

Detecting and mitigating deception attacks become an essential part of CPS. For this reason,
CPS are enhanced with intrusion detection modules that are constructed to detect specific types of
attacks. These modules provide additional information for supervisors in order to mitigate attacks
[12, 19].

Intrusion detection of deception attacks has been studied in DES since the work in [20]. In
[20], the authors focus on deciding when it is possible to detect actuator deception attacks such
that a supervisor can satisfy a specification both in normal operation and after an attack.

Similarly, the work in [9] focuses on actuator deception attacks. It provides conditions for the
detection and mitigation of these attacks. The work of [9] is closest to the work in [21], where

after detecting an attack the system reconfigures the control law in order to mitigate it. Extension

of their work is found in [10, 11, 12], where it fully encompasses deception attacks. Recently, a

stochastic notion of intrusion detection is considered in [22].

1.2.3 Synthesis of deception attacks

Intrusion detection modules are not always capable of detecting deception attacks. Therefore,
considering the attacker’s perspective provides a way of characterizing vulnerabilities in feedback
control systems. In other words, studying systematic methods to synthesize deception attacks that
are undetectable by intrusion detection modules is of great importance.

The work in [13] studied synthesis of bounded sensor deception stealthy attack strategies. They
are considered stealthy since they are not detected by a given detection mechanism. However, [13]
only focuses on bounded sensor deception attacks.

The work of [23] also investigated the synthesis of sensor deception stealthy attacks. Neverthe-
less, they studied this problem in an open-loop context instead of the closed-loop context shown in
Fig. 1.1.

Similarly, the work in [16] investigated the synthesis of actuator enablement attack strategies.

In that work, the authors assume that actuator events are observable, which simplifies the problem.

1.2.4 Synthesis of supervisors resilient against deception attacks

Both of the previous topics assumed that a feedback control system already exists and it is fixed.
However, if the feedback control system is being designed, i.e., it was not implemented, then could
we design a feedback control system robust against deception attacks? Namely, we wish to design
a feedback control system that does not necessarily need an intrusion detection module since it is
provably robust by design.

In [14, 13], authors studied the synthesis of robust supervisors against sensor deception at-
tacks. Wakaiki et al. provide necessary and sufficient conditions for the existence of a supervisor
that exactly achieves a specification under sensor deception attacks [14]. On the other hand, Su

describes a synthesis procedure that obtains the supremal normal sublanguage robust against sen-

5

sor deception attacks [13]. However, the solution provided by [13] only calculates the supremal
normal sublanguage and it has triple exponential complexity.

The works of [18, 17] analyze the synthesis of supervisors robust against actuator attacks.
In [17], the robustness property is enforced using obfuscation methods to enforce robustness. The
system output is obfuscated so as to deceive the attacker. Other cybersecurity problems, such as the
opacity enforcement problem [24], successfully employed this obfuscation technique. The work

of [18] enforces robustness against bounded actuator attacks using supervisory control techniques.

1.3 Organization and main contributions

The main contributions and the organization of this dissertation are summarized as follows.

Chapter II: Supervisory control theory

This chapter reviews basic notions and operations in DES such as: deterministic finite au-
tomata, parallel composition and observer automaton. We also describe the standard supervisory
control framework.

Chapter III: Supervisory control theory under sensor deception attacks [25, 26, 27, 28]

In this chapter, we first provide a general model for sensor deception attacks in the supervisory
control framework. Sensor readings in DES are modeled by possible sequences of events over an
“alphabet”, i.e., a language. Thus, a sensor deception attack is defined as the manipulation of these
sequences of events. This attack model is general and applicable to different attack goals, such as

“reach an unsafe state” or “denial of service”.

r—>» Supervisor - R

gttack function
T— Plant- G |«—

Figure 1.2: Sensor deception attacks in the supervisory control framework

The second task of this chapter is to include this attack model into the supervisory control
framework, as depicted in Fig. 1.2. Namely, we provide a way to analyze the closed-loop behavior
of the controlled system under sensor deception attack. In other words, we precisely capture the
language generated by the controlled system under attack. The subsequent chapters are developed
based on this newly described supervisory control framework.

Chapter I'V: Synthesis of stealthy sensor deception attacks for supervisory control [25, 26]

Many complex systems already have existing supervisors in place; however, these supervisors
were designed without taking into account sensor deception attacks. Our main goal in this chapter
is to answer three questions: When does a sensor deception attack cause damage to the system?
How does this attack cause damage? Could this attack hide its actions? These questions enlighten
the vulnerabilities of the closed-loop system.

To answer these questions, we put ourselves into the attacker’s shoes. The attacker searches for
ways to cause damage to the plant while concealing its actions. Namely, the behavior generated
by the controlled system under attack can reach the critical region (damage) of the uncontrolled
system, as shown in Figure 1.3. The controlled behavior without attacks provides the baseline for
the stealthiness of the attacker. As long as the system observed behavior is within this baseline,
the attacker conceals its presence, i.e., the controlled system seems to be operating in normal

conditions.

Uncontrolled behavior

=

Controlled
under att

~
~

-

-~

_— e— —— -

Figure 1.3: Controlled system under attack

We study three specific types of attacks that are based on the interaction between the attacker
and the controlled system. The methodology developed to synthesize these attacks is inspired

by the work in [24, 29, 30]. As in these works, we employ a discrete structure to model the

7

game-like interaction between the supervisor and the environment. This game-theoretical approach
provides a structure for each attack class that incorporates all successful stealthy attacks. Different
stealthy attack strategies can be extracted from these structure. By providing a general synthesis
framework, our goal is to allow CPS engineers to detect and address potential vulnerabilities in
their control systems.

Chapter V: Synthesis of optimal sensor deception attacks for stochastic supervisory con-
trol [31, 32]

Chapter IV provides qualitative results about synthesizing attack strategies, i.e., an attack strat-
egy is either successful or not. In this chapter, we investigate synthesizing sensor deception attacks
in a quantitative manner, assuming a stochastic controlled system. The stochasticity of the con-
trolled system allows a quantitative analysis of the attack strategies. This gives rise to a broader
class of attack strategies, as compared with our previous results.

As a consequence of the stochastic control system model that we adopt, it is possible to quantify
each attack strategy by the likelihood of reaching an unsafe state of the uncontrolled plant. First, we
investigate the synthesis of an attack function that generates the maximum likelihood of reaching
an unsafe state. The second problem investigated is the synthesis of attack functions that satisfy
multiple objectives (multi-objective). Namely, the attack function must reach an unsafe state with
maximum probability while minimizing a cost function based on the attacker sensor modifications.

Our solution methodology employs results from the area of stochastic control systems, more
specifically Markov Decision Processes (MDPs). First, we show how to build the “right” MDP
that captures the interaction of the attacker and the control system. Next, we show that the solution
of the two investigated problems is reducible to known problems in the MDP literature.

Chapter VI: Synthesis of supervisors robust against sensor deception attacks [27, 28]

The previous two chapters focus on the synthesis of sensor deception attacks. They consider
the attacker’s perspective given a fixed and known supervisor. Although the results in the previous
chapters show the possible vulnerabilities of closed-loop systems, they do not provide means of

“fixing” them. To “fix” any vulnerability, we must redirect our attention from the attacker to the

supervisor. In Chapter VI, we consider the “dual” problem of synthesizing a supervisor that will be
robust against sensor deception attacks; thus, this work focuses on defense strategies. Pictorially,
the behavior generated by the feedback control system under attack should never intersect the

critical region, as shown in Figure 1.4.

Figure 1.4: Robust controlled system under attack

We present two different methodologies to solve this problem: one uses graph-game meth-
ods together with supervisory control methods whereas the other uses only supervisory control
methods. There exists a trade-off between these two methodologies. While the method relying on
supervisory control techniques is computationally more efficient than the graph-game technique,
it does not provide flexibility on the selection of the robust supervisor. This flexibility on choos-
ing a robust supervisor is feasible with the graph-game technique but the price for it is a more
computationally “expensive” method.

Chapter VII: Conclusion

In this chapter, we summarize the contributions of this dissertation. Moreover, we present

promising directions for future work.

CHAPTER 11

Supervisory control theory

2.1 Automata models and relevant operations

2.1.1 Automata models

To study the behavior of the DES, we consider the theories of languages and automata. We consider
that the system under examination is described by a language over a set of events. Each event
define a specific “change” of this system and the concatenation of events, a string, specifies how
the system evolves. For example, consider a simple road intersection where we define the events
as Cy,¢ to denote that a car entered the intersection and C,,,; the exiting of the car. A possible string
is C;,:C,ut, Where a car entered and exited the intersection.

Formally, let X be a finite set of events. A language is defined as a finite set of strings over ..
The symbol € expresses the empty string, i.e., a string with no event. We denote by >* the set of
all finite strings over X.. Therefore, a language L over X is a subset of X%, i.e., L. C X*.

For any string s € >*, we use the following notation. The prefix closure of s is the set pre(s) :=
{t € ¥* : Ju € ¥*.tu = s}. With an abuse of notation, we use pre(L) to denote the prefix closure
of language L C ¥*. We denote by s[i] the i™ event of s such that s := s[1]s[2] ... s[|s|], where |s]|
denotes the length of s. We denote by s the i prefix of s, namely s° := s[1]...s[i] and s° := e.
Finally, we use N to be the set of natural numbers, [n] and [n]" to be, respectively, the set of natural
numbers and the set of positive natural numbers both bounded by n € N.

Although languages, as defined, can describe systems of interest, it is cumbersome to easily

define and manipulate them. For this reason, we use the modeling formalism of automata to rep-

10

resent and manipulate languages. This assumption is not without loss of generality since there
exists languages that cannot be represented as automata [33, 34]. Languages that can be repre-
sented as automata are denoted as regular languages [33]. Hereafter, the system of interest, e.g.,

cyber-physical systems, is modeled as a deterministic finite-state automaton.

Definition 2.1. A deterministic finite-state automaton (DFA) G is defined as a tuple

G = (X¢,2¢, ¢, To)

where X is the finite set of states; Y. is the finite set of events; 6g : Xg X Yg — Xg is the

partial transition function; xo g € X is the initial state.

Remark 2.1. Definition 2.1 differs from the standard definition of DFA [33]. We do not define the
set of final states as in the standard DFA definition. Every state in G is final, which limits our DFA
definition to only describe prefix-closed regular languages. In DES, the set of final states describes
liveness properties, which are not used in this dissertation. Furthermore, we allow the transition

function 0 to be partially defined (incomplete).

The function ¢ is extended in the usual manner to domain X x X7. The language generated
by G is defined as £(G) = {s € ¥;|0a(zo,s)!}, where | means “is defined”. The enabled

function Eng : X — 2 1s defined as the set of events enabled at a given state in X.

Eng(z) :={e € ¢ | dg(x,e)l} (2.1)

This function is extended to a set of state X C X¢, i.e., Eng(z) := Ugex Eng(z).

By an abuse of notation, the function ¢, is also extended to domain 2X¢ x Y.

5 (X.0) i U,ex da(z,e) ife € Eng(X) 22)

1) otherwise

Example 2.1. Figure 2.1 depicts an automaton with 9 states and 4 events. The set of events is Y. =

11

{Bint, Bout, Rint; Rout}- We also provide examples for the operators Eng and dg: Eng(1) =
{Bz’nt7 Rmt} and 5G<{17 2}7 Rmt) = {47 5}

Bint - ‘ Bout -

> -5 -3
Rlnt Rintl Rmt

Bin Bou \

4 >5—">6
Rout Routl Rout

Figure 2.1: Automaton GG

2.1.2 Accessible part

The accessible procedure removes states from G that are unreachable from z(. Namely, it pro-
duces an automaton where every state in it is accessible/reachable from z ¢, i.e., there is a directed
path from x ¢ to every state. Namely, it removes states from x € X such that there does not exist
s € 3%, such that 0¢(zo.¢, s) = . This operation does not alter the language of the automaton of
interest as we can note from the definition of £(G).

We generalize the accessible procedure to remove states from a given set X C X. Namely,
the generalized accessible procedure removes states X and computes the accessible part of the

remaining states in G.

Definition 2.2. Given G and X C X, we denote by Ac(G, X) to be automaton with the accessible

part of G after deleting X. Formally, Ac(G, X) := (Xue, X6, Oac, To,c) where

Xoe ={r € Xe\ X | 3s € ¢ da(z0c,5) = x AVi € [|s]]. 5g(x0,(;,si) ¢ X}

5ac - 5G |XGCXEG—>XGC

12

The notation Ac(G) is used when X = ().

Example 2.2. Based on Fig. 2.1, Figure 2.2 depicts automaton Ac(G, {2,5}).
Rintl
4

Rout

Bin ou
7 > 8 >9

Figure 2.2: Ac(G,{2,5})

B

2.1.3 Parallel composition

Parallel composition describes the interconnectivity of a set of automata. It describes the joint
behavior of automata that operate concurrently. The coupling is performed based on the set of
events of each automaton. Events that only belong to one automaton are ignored by the other au-
tomata, i.e., they executed asynchronously. On the other hand, events that belong to more than one
automaton must be executed simultaneously. In summary, “shared” events occur synchronously

while “private” events act asynchronously.

Definition 2.3. Given automata G, G, the parallel composition of G and G, is the automaton

G1||G2 = AC((XGI X XGQ, 201 U EG2, 601“@27 <$0,G17J70,G2))) where

(
(0, (71, €),06,(xa,€)) ife € Eng,(z1) N Eng,(z2)
(5@1(:13176),1‘2) ife € EnGl(xl) \ZGz
5G1HG2<<371’ x2)? 6) =
(xh 6G2 (*r?v 6)) ife € EnG2 (xQ) \ EGl
\ undefined otherwise

13

2.1.4 Projection map

There might be events in the system of interest that cannot be “sensed/observed” due to limited
sensing capabilities. For example, the event C,,; could be unobservable if there is no sensor to
observe a car exiting the intersection. For this reason, we define a projection map for strings that
projects strings from a larger set of events, >;, to a smaller set of events, ;. Intuitively, the

projection map erases the events not in 3., from a given string.

Definition 2.4. Given the set of events ¥; and X5 C Y, the projection function Ps,s,, : X — X

is defined as:

e ifee
€ ifeEZl\Zs

Py, (se) = Py;x,(s) Pyx,(e)

The inverse projection Pyy, : X% — 2% is defined as Py, (t) := {s € Xj|Py,x.(s) = t}.
Moreover, Py, 5, and Py, 12 are extended to languages by simply applying the projection map for

each string in the language.

2.1.5 Observer

As we mentioned, events in the system of interest might not be observed due to limited sensing
capabilities. We characterize this limited sensing by partitioning the event set into the set of ob-
servable events, denoted by >, and the set of unobservable events, denoted by >.,,,4s. In other
words, our system of interest is modeled by automaton G whose set of events Y = > U 20ps
and Xops N Xyops = 0.

The observer automaton of GG characterizes the projected language of GG with respect to ¥ and

Yobs» 1.e., L(Obs(G)) = Py,yx,,.(L(G)). To define the observer automaton, we need to define the

14

unobservable reach function (U R). The unobservable reach of a set of state X C X is the set of
all states that can be reached from X via unobservable strings. In words, if we start from any state

in X, then we could be in any state of U R(.X) via unobservable strings.

UR(X):={z € X¢ | (Fy € X)(3s € Euops).06(y,s) = x}
Definition 2.5. Given automaton G with observable events Y, C Y., the observer automaton of

G is Obs(G) = Ac((2%¢, X pps, dovs(c), UR({zo,c})) where

UR(0g(X,e)) ife € Eng(X) N X
Sons(c) (X, €) = (e (X)) 6(X) N Zap 2.3)

undefined otherwise

Note that if we start from any state in X, then dops () (X, e) defines the set of states that G
could be, after it observes event e. In words, the set of state where G could be, given what we have

observed, i.e., observable event.

Example 2.3. Let us provide an example of the Observer automaton using the automaton shown

in Fig. 2.1. We assume that X5 = { Rint, Rout }. The observer automaton is shown in Fig. 2.3.
—>{1 2, 3}

Rintl

{4,5,6}

Routl
{7,8,9}

Figure 2.3: Observer automaton

15

2.2 Supervisory control theory

We consider the supervisory layer of a feedback control system, as depicted in Fig. 2.4, where
the uncontrolled system (plant) is modeled as a DFA in the discrete-event modeling formalism.
Namely, the plant is modeled by automaton G = (X¢, 3, ¢, 7o,¢)'. Language £(G) is considered

as the uncontrolled system behavior since it includes all possible executions of G.

—>» Supervisor - R

PZZobs
T— Plant - G |«

Figure 2.4: Supervisory control framework

In the context of the supervisory control theory (SCT) of DES [35], system G is considered as
the plant that needs to be controlled in order to satisfy given specifications. In this framework, the
plant G is controlled by a supervisor that dynamically enables/disables events to satisfy the given
specification. Intuitively, it is assumed that the supervisor observes the events generated by the
plant and decides which events are allowed to be executed next.

In the intersection example, the supervisor receives strings such as Cj,;C,,;. Assume that it
is unsafe to allow two cars in the intersection at the same time, i.e., string C},,C;,; is unsafe.
Therefore, a supervisor would disable event Cj,; to occur until it knows the current car in the
intersection has left (Cl,,;). The controlled language for this system resembles a intersection with
a stop sign where C;,,; events are immediately followed by C,,; events, e.2., CintCout Cing Cout-

Due to lack of actuation over (G, it might not be possible to disable some events in . This
problem is addressed by partitioning > into the set of controllable events and the set of uncon-

trollable events, >, and X, respectively. Therefore, the set of admissible control decisions is

'We have dropped the subscript G from the set of events of G. Hereafter, ¥ is the set of events of plant G’ unless
we state differently.

16

defined as:
F:{ng‘zuctrgf)/}

Admissibility guarantees that a control decision will never disable an uncontrollable event.

In addition, when the system is partially observed due to limited sensing capabilities of G, the
event set is also partitioned into X = X, U Xy,0p5 as discussed in the previous section. In this case,
the supervisor only takes its actions after receiving an observable event. For this reason, Fig. 2.4
depicts the projection map Py, , .

Formally, a partially observation supervisor is a (partial) function

EDIE
The resulting controlled behavior is a new DES denoted by S/G, resulting in the closed-loop
language £(S/G). Basically, S/G defines feasible strings of G allowed by the supervisor S. This

closed-loop language is defined recursively as follows:

e € L(S/G)

s € L(S/G)and se € L(G) and e € S(Pgy,,,(s)) < se € L(S/G)

Normally, a supervisor S is encoded by an automaton R known as the supervisor realization,
where every state encodes a control decision, see, e.g., [34]. Throughout our work, we use inter-
changeably supervisor S and its realization /. Based on the supervisor realization R, the closed-

loop language can be easily obtained by parallel composing R and G, i.e., L(R/G) = L(R]|G).

Example 2.4. We use the collision avoidance problem of vehicles at an intersection as running
example throughout this thesis. We have two roads with one car in each road approaching an
intersection as in Figure 2.5(a). The cars must cross the intersection without colliding with each
other, or equivalently, both cannot be at the intersection at the same time. This system is modeled

by the automaton G shown in Fig. 2.5(b).

17

""""""" Rint
=T T
S® Iifersection} Out
N\ Rout

(a) Intersection

Bint - Bout g

> >

Rlint Rint
Bint ‘/5\ Bout ‘

> >

Rout

Bint -

Rout

Bout >

(b) Intersection model

Figure 2.5: Intersection model

First, let us assume that every event is observable but the supervisor can only control when

a car enters the intersection, i.e., ¥ = Y5 and Yoy = {Bint, Rint }. The supervisor realization

Ry, depicted in Fig. 2.6(a), guarantees that the specification is met. Next, we consider that Y., =

{Rint, Bint} and Xops = { Rint, Rout }- A supervisor realization Ry that guarantees the specification

is depicted in Fig. 2.6(b).

]]?{out Rout
out
Bint ‘Q
R/int
Bout
Rout
Bint o Bout -
Bout o
Rout

Rout

(a) Supervisor Ry

Bout

B int
out
(b) Supervisor Ry

Figure 2.6: Supervisors

The closed-loop language L(R1/G) is easily defined by inspection since Ry is a copy of G

without state 5. Therefore, L(R,/G) is all strings in G that do no reach state 5. On the other hand,

the closed-loop language L(Ry/G) is more restrictive than L(R1/G). This less permissiveness is

the price paid by the partial observation scenario we have assumed. L(Rs/G) is described by the

18

automaton in Fig. 2.7.

We also recall the notions of controllability, observability, and normality for a prefix-closed lan-
guage K C L(G). These are properties that the closed-loop behavior must satisfy. For example,
controllability ensures that the supervisor does not disable uncontrollable events while observabil-
ity guarantees that the supervisor takes consistent control decision with respect to its observation.

Normality is a stronger property that ensures observability. We say the language K is
* controllable w.r.t. to X, if KX, N L(G) C K;

e observable w.r.t. to Y, and X, if (Vs € K,Ve € Y, : se € K)[szlobs(ngobs(s))e N

L(G) C K];

e normal w.r.t. to ¥ s and X, if K = Pgéobs(PEgobs(K)) N L(G).

>1||1

Ri ntl

4|4

Routl
B B

7||[7—17] [8—15-7] |9

Figure 2.7: Ry||G

We complete this section by defining two useful functions. The unobservable reach of a set of

states X C X under the subset of events v C I'is given by:

UR,(X)= | dc(X,s) (2.4)

s€ (Zuobs m"/)*

Given L C L(G), the set of all possible states in G reachable from its initial state via a string with

19

the same projection as s € L is given by:

Reg(s, L) := U da({moc},t) (2.5)

tel:
PEZobs (S): E¥0bs (t)

20

CHAPTER III

Supervisory control under sensor deception attacks

3.1 Introduction

In our intersection example, the supervisor 12 guarantees that the two cars do not collide by func-
tioning similarly as a stop sign. If the red car enters the intersection (R;,;) before the blue car,
then the blue car must wait until the intersection is empty. However, if for an unknown reason
the supervisor does not receive the event I?;,,, then it believes that the intersection is empty and
allows the blue car to enter as well. It suffices for one incorrectly transmitted event to cause a
car collision when this supervisor R is deployed. The framework described in Chapter II does not
allow analysis of the closed-loop system under unreliable conditions since it was not defined as
such.

Although these unreliable conditions can be originated by different aspects, e.g., unreliable
communication, unreliable models, our work focuses specifically on adversarial sensor communi-
cation between the plant and the supervisor as depicted in Fig. 3.1. An attacker tampers the event
communication between the plant and the supervisor. This type of attacks is known as sensor de-
ception attacks. In this chapter, we enhance the supervisory control framework to include sensor
deception attacks.

First, we provide a general model for sensor deception attacks in the SCT. Sensor readings
in DES are modeled as strings of events; and thus a sensor deception attack is modeled by string
editions. Intuitively, an edit function performs these editions based on its memory and the events
executed by the plant. This attack model is general and applicable to different attack goals, such

as “reach an unsafe state” or “denial of service”.

21

r—>» Supervisor - R

qmck function
T— Plant- G |«€—

Figure 3.1: Sensor deception attacks in the supervisory control framework

The second task of this chapter is to incorporate this attack model to the supervisory control
framework. Namely, we provide a way to analyze the closed-loop behavior of the controlled system
under sensor deception attack. In other words, we precisely capture the language generated by the
controlled system under attack.

The remainder of this chapter is organized as follows. A general sensor deception attack model
is provided in Section 3.2. In Section 3.3, the closed-loop behavior of the controlled system under
sensor deception attack is defined. We discuss different classes of attack functions in Section 3.4.
For completeness purposes, Section 3.5 defines the closed-loop behavior using languages instead

of automata. Finally, we conclude this chapter in Section 3.6.

Related work

Several recent works leveraged the concepts and techniques of SCT of DES to study cyber-security
issues in CPS. The works in [20, 11] on intrusion detection and prevention of cyber-attacks using
discrete event models focused on modeling the attacker as faulty behavior. Even though both
works described deception attacks in the SCT framework, their attack model is intertwined with
the plant and the supervisor models which makes it inflexible. Nevertheless, their attack definition
1s intuitive and easy to manipulate using automata operations. Our approach differs from theirs by
first introducing a sensor deception attack model that is independent of the plant and the supervisor
which introduces flexibility to the supervisory control framework under attack. Second, we provide
a method to introduce this flexibility into their attack model so that we also leverage automata

operations.

22

The bounded sensor deception attack model introduced in [13] is similar to the one adopted
in our work. The attack model is independent of the plant and the supervisor. This model differs
from our approach since it only covers bounded attacks, i.e., the attacker has a fixed bound on
the number of modifications it can perform between plant executions. Our attack model covers
bounded and unbounded attacks. An additional difference between our approach and the approach
in [13] is the way the dynamical interaction between the attacker and the supervisor is captured.

In [14], the authors presented a study of supervisory control of DES under sensor deception
attacks. Their attack model generalizes the one introduced in [13] since it does not impose a bound
on the attacker. Our attack model differs from theirs in one aspect: the attacker memory. While in
[14] the attacker has access to all previous events executed by the plant, it does not “remember”
its own modifications. This difference allows us to precisely define the behavior generated by the
interaction between the plant, the supervisor and the attack model.

Since the focus of our work is sensor deception attacks, our model differs from the attack
models of actuator deception attacks described in [16]. Several prior works considered robust
supervisory control under different notions of robustness [36, 37, 38, 39, 40], but they did not
study robustness against attacks. In the cyber-security literature, some works have been carried
out in the context of discrete event models, especially regarding opacity and privacy or secrecy
properties [41, 42, 43, 24, 44]. These works are concerned with studying information release
properties of the system, and they do not address the impact of an intruder over the physical parts

of the system.

3.2 A general sensor deception attack model

3.2.1 Attack function

As illustrated in Fig. 3.1, the attacker intervenes in the communication channel between the plant’s
sensors and the supervisor. It has the ability to edit some of the sensor readings in this communica-

tion channel, by inserting fictitious events or deleting the legitimate events. Moreover, we denote

23

as the compromised event set the events that the attacker can manipulate. The attacker performs
event editions based on its memory and the events executed by the plant. Informally, we have that
the attack function f, can be defined as f, : memory X event observation — edit string. The
attacker replaces the newly observed event by the edit string based on its memory and the observed
event.

Let us formalize our intuitive attack function description by giving formal definitions for the
compromised event set, memory, event observation and edit string. First, we assume that
the attacker observes all events in >, that are executed by G, i.e., the attacker has the same
observable capabilities as the supervisor. Therefore, the event observation domain is >,,;. For
generality purposes, we assume that the compromised event set, denoted as >.;.,,, is a subset of the
observable events, i.e., Ys,, C Xps. The attacker has the ability of inserting >,.,, events in the
communication channel or deleting >.,.,, events from this channel.

To formally introduce the domains for memory and edit string, we first define two new sets
of events. The sets X;,s = {ins(e) | e € Yy} and Xy = {del(e) | e € Xy, } are defined as the
sets of inserted and deleted events, respectively. We assume that ins(e) and del(e) are not defined
in ¥ for any e € Y.,. These sets represent the actions of the attacker, i.e., ins(e) (del(e)) denotes
inserting fictitious (deleting legitimate) event e € >, in (from) the communication channel. For
convenience, we define >, = Y, U 240 as the set of attacker events and >,; = > U X4 as the
set of all events in this control system.

Based on these new sets, we define the two remaining missing variable domains. In the case
of memory, we assume that we have an attacker that remembers everything it has seen, including
its own edits. For this reason, memory is defined to be strings in (X5 U 24s¢)*. In respect to
the edit string, we assume that the attacker might have more than one option in its hand, i.e.,
a nondeterministic edition. Moreover, the attacker outputs, in general, strings from the domain

Yobs Uzatt);’<

(3ops U Xgse)*. Therefore, the domain for edit string is 2 , the set of sets of edit strings.

(Eobs Uzatt)*

Each element in 2 is a set of edit strings.

Intuitively, the attacker is triggered by a new observation unless the plant has been just ini-

24

tialized. The initialization of the plant can trigger the attacker to insert fictitious events without
observing an event. Other than this initialization case, the attacker is always triggered by a new
event observation. Whenever the attacker receives a new event, there are two cases: the event is
not compromised, not in >J,.,,; the event is compromised, in >..,,. If the event is not compromised,
then the attacker must not delete the event from the channel, i.e., the event must reach the supervi-
sor. Nonetheless, observing this event might trigger the attacker to insert fictitious events after the
observation. On the other hand, if the event is compromised, then the attacker can choose to delete
or not the event from the channel. Again, the observation of this event might trigger the attacker to

insert fictitious events. Formally, we model an attacker as a nondeterministic string edit function.

Definition 3.1. Given a system G and the compromised event set Y., C Yo, an attacker is
defined as a (potentially partial) function fa : (Xops U Xapt)* X (Zops U {€}) — (2FopsUEart)™ \ ())

such that f 4 satisfies the following constraints:
1. fa(e,€) C Xps™ and Vs € ((Zops U Xare)*\{€}) : fal(s,€) = {e};
2. Vs € (Zops UXau)™, € € Bops \Zsen = fal(s,e) C {e}Xins"s
3. Vs € (Zops UXan)", € € Xgen: fals,e) C {e, del(e) } s

The function f4 captures a general model of sensor deception attack. Given the past edited
string s € (X U Xgye)* and observing a new event e € X, executed by G, the attacker may
choose to edit e based on Y., and replace e by selecting an edited suffix from the set f4(s, e). The
first case in the above definition gives an initial condition for an attack. The second case constrains
the attacker from erasing e when e is outside of >,.,. Since the event e is not compromised, it
cannot be deleted by the attacker. However, observing event e might trigger the attacker to insert
event after the supervisor observes e. Lastly, the third case in Definition 3.1 is for e € Y,.,; the
attacker can edit the event to any string in the set {e, del(e)}¥;,s*. In this case, the attacker can
choose to delete or not event e since it is a compromised event. Again, after observing this event

might trigger the attacker to insert fictitious events.

25

As mentioned before, f only defines the possible edited suffixes based on the last observed
event and the edit history. It is interesting to define a function that defines the possible edited
strings based on the executed string. Formally, the string-based edit (potentially partial) function

fa:2r = 2(FebsUBa)” ig defined as

obs

A

Fa(se) == {ut € (Sops USan)* | u € fals) At e falu,e)}

forany s € X7, and e € X, and

The function f () returns the set of possible edited strings for a given string s € X%, . Note that,

*
obs*

in general, f, is a partial function, and f4(s) may only be defined for selected s € %

Lemma 3.1. Forany s € 7, then fa(s) # 0.

obs’

*
obs*

Proof. We prove this result by induction on the length of s € X
Basis: by the definition of f4, we have that f4(e, €) # 0. Therefore, f4(¢) # 0.

Induction hypothesis: assume that f4(s) # 0 for |s| = n.

*
obs

Induction step: let s € X%, such that all s such that |s| = n and e € ¥, The induction
hypothesis provides that f4(s) (), which implies that there exists u € f4(s). By the definition

of fa, fa(t,e) # 0 forany t € (Zops U Sy)*. Therefore, fa(se) # 0. O

3.2.2 Attack function as an automaton

In order to have effective ways of manipulating the attack function, we assume that f, has been
encoded into a DFA A = (X4, X0 U Xgu, 04,20 4). This assumption allows us to define the
closed-loop behavior using automata operations with A. However, we lose generality since the
attacker’s memory must be a regular language over (X5 U 34)*. This assumption is similar to
the assumption of a supervisor realization.

Given the automaton A that encodes an f 4, then the function f, is extracted from A as follows:

26

Vs € L(A)and e € Eops, fa(s,e) = {t € {e,del(€)}3ins™ | da(zo.a, st)}, fale,€) ={t € Lins™ |
da(moa,t)}, and fa(s,e) = {e} forall s € (Epps U Xgn)* \ L(A) and e € Xps.

This formulation provides a simple way to handle attack functions and it characterizes the
behavior of the attacker. It also provides a way to define specific attackers that are more constrained
than the usual constraints of Definition 3.1, i.e., when some prior knowledge about the attacker is
available. In other words, the automaton A can encode different attack strategies, e.g., replacement
attack [14], bounded attack [13], etc. One important attack strategy for this problem is the all-
out attack strategy introduced in [11, 12]. In this model, the attacker could attack whenever it is
possible. We return to this discussion about attack constraints after we describe the closed-loop

behavior under attack.

Example 3.1. Let ¥ = ¥, = {a, b} be the set of events in the system G and let ¥, = {a} be
the compromised event set. We define fa1 as: fa(e,€) = X5 ., far(s,a) = {a,del(a)}X%, and

ms

far(s,b) = {b}X%,, for any s € X%,. Namely, the attacker can perform all possible actions that
satisfy the constraints in Def. 3.1. This attacker is the “all-out” attacker and the automaton A'
depicted in Fig. 3.2(a) encodes f1. Although the all-out strategy is a nondeterministic strategy

since the attacker can try all possible combinations of attacks, its automaton representation is a

deterministic automaton. Automaton A? shown in Fig. 3.2(b) encodes a one sensor deletion attack

strategy.
a, ins(a),
del(a), b b ab
OO
(a) A (b) A?

Figure 3.2: Attack functions

27

3.3 The controlled behavior under sensor deception attack

The output of the attack function f, as defined in Def. 3.1 is inconsistent with the supervisor input.
We have defined it in this manner on purpose so that we can define the attack function as general
as possible. There are two problems that we have to fix in order to define the closed-loop behavior:
the attacker’s nondeterministic choice and matching both the input and the output of f4 to the
output domain of GG and input domain of R, respectively.

First, we deal with the attacker’s nondeterministic choice in f4. This is dealt similarly as in the
plant’s case. At any given state of (G, there might be more than one event that the G can execute,
e.g., either the red or the blue car enter the intersection from the initial state of in Fig. 2.5. The
plant selects one of the possible decisions in order to evolve. Similarly, we assume that the attacker
selects one of the possible decisions from the possible choices that f4 gives. In Example 3.1, the
attacker chooses one of the strings in fa:1 (€, €) = X7 _ at its initial state, e.g., it might choose € (no
insertion). After this decision, the attacker updates its memory based on its selection and awaits
for a new observation.

For the second issue instead of projecting the events in >, to X5, we decide to augment both
the plant G and the supervisor R such that they include the attacker actions. Namely, we lift the
closed-loop language space from X to >,;;. This new framework gives us leverage in the analysis
of the closed-loop system since it is defined over events in >.,;. The behavior added in the lifting

process only reflects the attacker action and it does not add infeasible behavior with respect to G.

Attacked
Supervisor - Ra

%ttack function

Figure 3.3: Augmented supervisory control framework under sensor deception attack

Attacked
Plant - Ga [€—

The supervisory control framework depicted in Fig. 3.1 is substituted by the one depicted in

Fig. 3.3, where G, and R, are the augmented versions of G and R. We will define these augmented

28

versions of G and R shortly. Before their definition, we define three projection operator that help
us analyze the lifted behavior in X.;;. Intuitively, these operators project the attack actions, >, to

how they are executed by the plant, observed by the supervisor, or projected to >..,,.

Definition 3.2. P° : ¥, — 3, P9 : S — S and M : Y, — X are natural projections that

treat events in the following manner:

PS(ins(e)) == e, € € Byen; P(del(e)) =€, € € Dyen; Po(e) =€, e € X 3.1)
PY(ins(e)) =€, € € Lyen; PC(del(e)) :=¢, € € Lyen; P?(e) :=¢, e € X (3.2)

M(ins(e)) = M(del(e)) :=e, e € Lgen; M(e) =€, e € X (3.3)

The superscript S determines that P° describes how the supervisor observes the modified
events. The supervisor observes inserted events as if they are legitimate observation, while it does
not observe deleted events since they were deleted from the channel. Namely, given an event, P°
outputs the legitimate event if the event was inserted by the attacker, it outputs the empty string if
the event was deleted by the attacker, and it outputs the legitimate event otherwise. Similarly, the
superscript (7 is used because P“ describes how the plant executed the modified events. Insertions
are fictitious events that do not occur in G, therefore they are project to the empty string by P¢.
On the other hand, deletion events are events executed by G, but deleted by the attacker. For this
reason, P“ projects deleted events to legitimate events. Lastly, the mask M removes the operators

ins or del.

3.3.1 Attacked plant

The attacked plant is obtained by augmenting the plant G with the possible actions of the attacker,

i.e., to augment G with events in X.,;;. In order words, (G, is a copy of G with additional transitions

with respect to ;. In fact, G, contains all possible attacker actions with respect to >,;; and G.
We start by introducing insertion events to the attacked plant. In the attacked plant, the events

ins(e) simulate the insertion ability of the attacker. Since these events are fictitious events that

29

might be introduced in the communication channel, they cannot alter the state of the plant GG. For
this reason, the insertion events ins(e) are defined to be self-loops in GG,. Every state of GG, has
self-loops with all insertion events.

On the other hand, the events del(e) simulate the deletion ability of the attacker. An event can
only be deleted by the attacker, if this event actually occurred in the plant. For this reason, these
events are defined in parallel to transitions with events in >.;.,,. Formally, we define the attack plant

as following:

Definition 3.3. Given G and .., we define the attacked plant G, as:

Gy = (Xa, = Xa, X, 96, To.c, ‘= To,c) where

;

da(xz,e) ifecXande € Eng(x)

T l:f€ € Eins
dg, (x,e) =< (3.4)
dg(x,e') ife=del(e')and ¢ € Eng(x)

\ undefined otherwise

Example 3.2. Let us construct the attacked plant G, for the plant of our intersection example
(Example 2.4) when g, = {Rint}. G is depicted in the right figure in Fig. 3.4 where events in
Yt are in red. For convenience, the model of G is shown in the left of Fig. 3.4. Note that the states

in G, are a copy of the ones in G.

/715}1?\,',:) flzfs(i?vmz) 71;(\Rvmf)
1 nt »2) out >3 1 — 2 :1:3,‘
del(R del(R del(Rint)
Rie| Rin Rint Ry ey i)

Y Y Y E Y Y Y =
a Bint 4 5 Bout) & C) i g8 Do ‘6) e
a4 > O >0 y > >R =

R R R \V)wx* ; S
out out out Rout Rout \\\‘ Rout

Y Y Y Y Y
7L, g g & @ \9/‘

i)’lé’(R,‘m) Rmf) Rim‘)

Figure 3.4: Plant of the intersection example (left) and its attacked plant (right) for ¥, = {Rin:}

30

We can show that we can extract the language of G from G, by simply using the projection P¢.
This result follows from the definition of G, and PY. Although this is a straightforward result, it

shows that (G, is exactly a copy of GG augmented with attacker actions.

Proposition 3.1. £(G) = PY(L(G,))

3.3.2 Attacked supervisor

The construction of R, is similar to the construction of (G,. However, insertion and deletion events
affect the supervisor in the opposite manner as they affect the plant as we saw in the definition of
PS. Namely, insertion events are seen as legitimate events where deletion events are not observed
by the supervisor.

The attacked supervisor R, is a copy of R with additional transition with events in >.,;;. Dele-
tion events del(e) are defined to be self-loops in the states of R, where the legitimate events
e € X4 are defined. If the event is deleted by the attacker, then it must have been enabled by the
supervisor first. Moreover, they are self-loops since the supervisor does not receive any informa-
tion, i.e., it remains in the same state.

On the other hand, insertion events ins(e) are defined in parallel to their legitimate events
e € Ygen. In other words, insertion events are seen by the supervisor as legitimate events.

Since we have not yet constrained the attack function, it is possible that the attacker inserts an
event that is not enabled by the supervisor. For simplicity, we assume that the supervisor simply
“ignores” insertions of events that are not enabled by the current control decision. We revisit this

assumption later in this chapter as well as in Chapter I'V.

Definition 3.4. Given R and .., we define the attacked supervisor as:

R, := (Xg, := Xg,Xau, Or,, To.r, ‘= Tor) where

31

6Ra (QJ, 6) =

dr(z,e)
Sr(x, P3(e))

T

| undefined

ife€ Y ande € Eng(z)

ife € Yge and M(e) € Eng(x)

ife € ¥ins and M(e) € Eng(x)

(3.5)

ife € ¥ins and M(e) € Eng(x)

otherwise

Remark 3.1. Although R, is a modification of R, this modification does not alter the control

decisions taken by R. In other words, the plant G is still supervised by the supervisor R. R, is

defined such that it takes into account the modifications made by the attacker.

Example 3.3. Let us construct the attacked supervisor R, for the supervisor Ry of our intersection

example (Example 2.4) when Yo, = { Rt} R, is depicted in the right figure in Fig. 3.5, where

events in Y., are in red. Supervisor Ry is shown in the left of Fig. 3.5. Note that states in R, are

a copy of the ones in G.

out

out Rout
1nt Q

1 -2

Rl ntl

out
out
mt ‘@

out Rout

out

out

I§(H11 Iz(ﬂl
out out out
del(Rmt) (del(Rlnt)
Bint %%;;3(Bout =:\EE;
ins(Rint) -~ ins(R t
—_ Rint Ring

- .

E 5
P =Y
aa) \g &z

=)

-~ Rout, 0‘11 ﬁ

SR~
R'(mf out <ml

out

out

Figure 3.5: Supervisor of the intersection example (left) and its attacked supervisor (right) for

sen - {Rmt}

Since we added the assumption that the attacked supervisor 7, ignores insertion events that are

disabled in R, we cannot provide a result as Prop. 3.1.

32

3.3.3 Controlled language under sensor deception attack

All the ingredients to define the closed-loop language of the supervisory control framework under
sensor deception attacks (Fig 3.3) are formally defined. We now need to compose them in order to
formally define the closed-loop language. We use the parallel composition operator (Def. 2.3) to

compose G, R,, and A.

Definition 3.5. Given R, G, and A, the closed-loop language of the attacked system under sensor
deception attacks is defined by L(G,||A||R,). The closed-loop language executed by G is defined
by L(SA/G) == PY(L(G,]|A||R.)).

Example 3.4. Let us obtain the closed-loop language of the attacked system our intersection ex-
ample (Example 3.2) where Y., = {Rini}. We use the attacked supervisor constructed in Ex-
ample 3.3. First, we assume that Al is the all-out attacker with respect to Y, = {Rin:}. Fig-
ure 3.6(a) depicts the automaton G,||AY||R,. In this case, we can see that the attacker can suc-
cessfully reach the critical state 5 via the string s = del(Rint) Bins. Note that, §¢(xo.q, P€(s)) =5
which in fact reaches the critical state in G. However, this attack strategy might lead to non-critical
deadlock states, states 10 and 11.

Figure 3.6(b) depicts the automaton G,||A%|R, where A* is the one-deletion attacker con-
structed as in Example 3.1. This attack strategy can also successfully reach the critical state 5 via

string del(Rint) Bing-

3.4 Different classes of attack functions

3.4.1 All-out attacker

As we already mentioned, the all-out attacker is an important attack strategy even though it is a
simple one. The word “strategy” is misleading since the all-out attack strategy just means all possi-
ble attacker actions. In this strategy, we enumerate all possible actions that the attacker can perform

at any given time. Nevertheless, it does not mean that the attacker will indeed perform them. This

33

ins(Rmt) 10 L1, ins(Rint)
Blnt > Bout

- ‘ -3 1 ; 2 out
\Ael mt 2 d@l(in)' 3 \ Mlt del m,t

1 2 1 1 Rmt
Rini ' Bint Bout l Rmi mt Bout l
4 ‘{“Rim)\A 5 43(35‘ 6 /

/ | , \5
l Rout l Rout ROUtl

4 6
l Out lRout Routl
7' Bint > 8 Bout > 9/‘ - Bmt > 8 Bout > 9

(@) Gol||AY|| R, (we omitted the self-loops with (b) Gol|A%||R,
ins(Rint))

Blnt

Figure 3.6: Closed-loop attacked systems

describes an attacker that is only constrained by the constraints defined in Def. 3.1. Note that, the
construction of G, and R, depicts the “all-out” strategy, i.e., L(G||R,) = L(Gal| Aati-out|| Ra)-
This attack strategy becomes useful when there is not much information about the attacker
constraints. When we investigate defense techniques in Chapter VI, the all-out attack strategy
becomes essential to show general robutness properties. This strategy was first introduced in [11]
to investigate attack detection properties in attacked systems. We refrain ourselves to continue this

discussion and return to it later in Chapter VI.

3.4.2 Interruptible attacker

Until this point, we have not constrained the attacker’s behavior with the supervised system. We
have assume that any attack modification the attacker decides to perform is successfully applied.
However, the supervised system is a dynamic entity and this “unconstrained” attacker is too pow-
erful. For this reason, we introduce the subclass of sensor deception attacks called interruptible
attacks. We assume that the plant can interrupt the attacker’s modification at any point. This con-
straint is intuitively depicted in Fig. 3.7 where the attacker must have a contingency strategy when
interrupted by the plant.

Formally, we define interruptible attack strategies as:

Definition 3.6. An arttack function fa is an interruptible attack function if (Vs € (Xgps U

34

want to insert 5 events
before the plant reacts

@
O

Dops! The plant executed

an event before |1 was done.
What should I do?

I need a contingency pla

PI
—25 IN51INS9INS3INS4INSs

@)
Executloninsl,L-,ns2 @
Plant executed
an event

Figure 3.7: Interruptible attacker strategy

Yare)") (Ve € Xops) [t € fals,e) = pre(t)\{e} C fa(s,e)].

3.4.3 Unbounded deterministic attacker

Contrary to the interruptible attack strategies, we now assume that the attacker has “time” to per-
form any unbounded modification. In other words, the system does not execute any event until the
attacker finishes its modification. Such an attack function is defined as an unbounded deterministic

attack function.

Definition 3.7. An unbounded deterministic attack function is an attack function f, s.t. (Vs €

(Xops U Eatt)*)(Ve € Yops)[fa(s,e)l = |fa(s,e)| = 1].

3.4.4 Bounded deterministic attacker

The previous scenario considers a powerful attacker, and it might be unrealistic in many real ap-
plications. In this case, the second scenario limits the first one by considering only bounded deter-
ministic attack functions. In other words, we assume that the system does not react up to a bounded
number of modifications made by the attacker. Bounded deterministic attack functions are defined

next.

35

Definition 3.8. Given N, € N*, a bounded deterministic attack function is an attack function f

s.t. (Vs € (ZopsUZa)*) (Ve € Sons) [(fals, e)l = |fa(s,€)] = 1)A(t € fa(s,€) = |sa] < Na)l.

3.4.5 Other attackers

Although there are other attacker constraints that we can introduce, we limit ourselves to these four
subclasses of sensor deception attack strategies. Definition 3.1 models in a general manner sensor

deception attacks in the framework of supervisory control theory.

3.5 Controlled behavior under sensor deception attack - lan-
guage definition

In Section 3.3, we defined the closed-loop behavior of the controlled system under sensor deception
attack with the assumption that the attacker is encoded via automaton A. For completeness of this
chapter, we provide this closed-loop behavior without this assumption. This section is mainly
for completeness purposes and it will not be used in the following chapters. The reader can skip
this section without any consequences since we only use the more intuitive definition described in
Section 3.3.

The presence of the attacker induces a new controlled language that needs to be investigated.
More specifically, .5, f 1, and P° together effectively generate a new supervisor S, for system G.

Formally, we define Sy : X%, — 2" as Su(s) = [Sp o PS o f4(s)]. Note that f4(s) returns

obs
the set of modified strings and S assigns a control decision to each projected modified string; S
returns the set containing all these control decisions. An equivalent definition is S4(s) = {7 |
Js4 € fals)st.y = S(P5(s4))}. Defining the supervised language based on nondeterministic
control decisions is cumbersome and complicated [37]. Nonetheless, we can avoid this difficulty
by analyzing the language generated by the events in X U ;. For this reason, we define the

function S = Sp o P° to be the deterministic part of S4. The function S4 is used when the

attacker has decided which modified string to send to the supervisor. Based on f4 and S¢ the

36

language generated by S4/G is defined recursively as follows:
1. e € L(S4/G)

2. (t1 € LIG) Nl (Zobs U{e})) A (Tta € fale,e) and iy < iy < ... < iy € N2l st
Vi e Nl s ¢1[5] € S4(t5)) A (Pss,,, (t1) # € = ijn) = |t]) <t € L(S4/G)

3. (s € L(Sa/Q)) A (s[]s]] € Zops) A (st € L(G) where t; € 37, (Sops U {e})) A (Tt €

fAA<PEEObS<8|S‘_1)>, Eltg € fA(tg,SHSH) and ’il S ig S S ’l"t1| € N‘tQ‘ S.t. VJ € N'tll .

t1[5] € S4(tsty)) A (Pas,,.(th) # € = i = |ta]) < st1 € L(Sa/G)

The above definition captures the intricate interaction between plant, supervisor and attacker. Two
important concepts are applied in this definition. First, the supervisor issues a control decision
whenever it receives an observable event. An observable event can be either a legitimate event or
a fictitious event inserted by an attacker. Second, the plant can execute any unobservable event
enabled by the current control decision. To demonstrate how to compute £(S4/G), we illustrate

condition (2) in Figure 3.8.

U017 09 ob
Uuo1 U09 e — > o —P o —p o
d i d (i ’ d (41 d (41 d (41
i))) i
SA (t21) SA (t22) SA (t21) SA (t22> SA (t23)
(a) Only unobservable events (b) Last event is observable

Figure 3.8: Demonstration of Condition (2)

Assume that u01, w0y € 3ypps, 0b € gps and woquoy, uojuogob € L(G). Figure 3.8(a) describes
how t; = wojuoy € L(S4/G). The string uojuo, belongs to £(S4/G) whenever there exists
a string ty € fa(e,€) and indices i; < i € N such that uo; € S4(t3') and uo, € S4(t2).
Similarly, Fig. 3.8(b) describes how wojuo,0b € L(S4/G). If we use the same indices i1, iy as
before, then we just need to test if ob € S%(t5) = S%(t,). In the case of the last event being
observable, we assume that the attacker has finished its entire modification ¢,. On the other hand,

we assume that unobservable events can be executed based on control decisions of string prefixes

37

of t5. Condition (3) applies the same mechanism of Condition (2), however it has nuances related

to previous modifications made by the attacker.

3.6 Conclusion

In this chapter, we defined a general model for sensor deception attacks. This attacker intervenes in
the communication channels between the system’s sensors and the supervisor and it has the ability
to edit some of the sensor readings in these communication channels, by inserting fictitious events
or deleting the legitimate events.

Following the attacker definition, we integrate this attacker model into the supervisory control
framework. In other words, we define the supervisory control framework under sensor deception
attacks. Based on this definition, we are able to analyze the closed-loop behavior of the controlled
system under sensor deception attacks.

Four specific sensor deception attack models are formally introduced. These attack models are
defined by constraining our general sensor deception attack model based on different assumptions

on the attacker’s capability.

38

CHAPTER IV

Synthesis of stealthy sensor deception attacks for supervisory

control

4.1 Introduction

Many complex systems already have existing supervisors in place; however, these supervisors
were designed without taking into account sensor deception attacks. In Chapter III, we provide a
supervisory control framework for analyzing closed-loop systems under sensor deception attacks.
Nevertheless, we did not explore when and how a sensor deception attack could cause damage to
the plant. Our main goal in this chapter is to answer these two questions: When does a sensor
deception attack cause damage? How does this sensor deception attack cause damage?

Answering these questions discloses possible unknown vulnerabilities of the closed-loop sys-
tem. To answer them, we put ourselves into the attacker’s shoes. We search for ways, if possible, to
cause damage to the plant. Namely, the behavior generated by the controlled system under attack
can reach a critical region of the uncontrolled system, as shown in Figure 4.1

Back to the definition of the closed-loop attacked system, the described attacker did not care if
its identity was revealed, i.e., when inserting unfeasible behavior. At this point, we (as the attacker)
think that it is important to conceal our attacks. In other words, the damage must be caused without
raising any alarm in the control system, i.e., in a stealthy manner. By raising alarms, we assume that
the closed-loop system has an embedded intrusion detection module, which determines whether the
system is under attack. A key issue is determining whether an attacker can exploit the supervisor

and cause damage to the system without setting off the intrusion module.

39

Uncontrolled behavior

e

Controlled
under att

~

-~

S~
-~

T e

Figure 4.1: Controlled system under attack

In our research, we first note that the supervisor is passive since its actions have already been
designed; and second, the attacker does not want to set off the intrusion detection module. Because
the attacker wants to remain stealthy during the entire attack, each sensor modification it makes
must be deliberately planned. Therefore, a game between attacker and supervisor is designed.

Leveraging graph-games theory techniques [45], an algorithm that synthesizes stealthy sensor
deception attacks that successfully causes damage to the system. In words, this attack can reach
a critical region of the uncontrolled system and it does not trigger the intrusion detector. At this
point, it becomes possible to know the vulnerabilities of the controlled system under attack.

We study three specific types of attacks that are based on the interaction between the attacker
and the controlled system. The methodology developed to synthesize these attacks is inspired by
the work in [24, 29, 30]. As in these works, we employ a discrete structure to model the game-
like interaction between the supervisor and the environment. We call this structure an Insertion-
Deletion Attack structure (or IDA). By construction, an IDA embeds all desired scenarios where the
attacker modifies some subset of the sensor events without being noticed by the supervisor. Once
constructed according to the classes of attacks under consideration, an IDA serves as the basis for
solving the synthesis problem. In fact, this game-theoretical approach provides a structure for each
attack class that incorporates all successful stealthy attacks. Different stealthy attack strategies
can be extracted from this structure. This is a distinguishing feature of our work as compared to
previous works mentioned above. By providing a general synthesis framework, our goal is to allow
CPS engineers to detect and address potential vulnerabilities in their control systems.

The remainder of this chapter is organized as follow. The problem statement is formalized in

40

Section 4.2. Section 4.3 describes the IDA structure and its properties. Section 4.4 introduces
the AIDA (All Insertion-Deletion Attack structure) and provides a construction algorithm for it.
Sections 4.5 introduce for each attack type their stealthy IDA structure, together with a simple

synthesis algorithm to extract an attack function. Lastly, Section 4.6 presents concluding remarks.

Related work

Previous works such as [11, 21, 20] on intrusion detection and prevention of cyber-attacks using
discrete event models were focused on modeling the attacker as faulty behavior. Their correspond-
ing methodologies relied on fault diagnosis techniques.

Recently, [13] proposed a framework similar to the one adopted in our work, where they for-
mulated a model of bounded sensor deception attacks. Our approach is more general than the one
in [13], since we do not impose a normality condition to create an attack strategy; this condition
is imposed to obtain the so-called supremal controllable and normal language under the attack
model. In addition to bounded sensor deception attacks, we consider two other attack models.

In [14], the authors presented a study of supervisory control of DES under attacks. They
introduced a new notion of observability that captures the presence of an attacker. However, their
study is focused on the supervisor’s viewpoint and they do not develop a methodology to design
attack strategies. They assume that the attack model is given and they develop their results based
on that assumption. In that sense, the work in [14] is closer to robust supervisory control and it is
complementary to our work.

Several prior works considered robust supervisory control under different notions of robust-
ness [36, 37, 38, 39, 40], but they did not study robustness against attacks. In the cyber-security
literature, some works have been carried out in the context of discrete event models, especially
regarding opacity and privacy or secrecy properties [41, 42, 43, 24]. These works are concerned
with studying information release properties of the system, and they do not address the impact of

an intruder over the physical parts of the system.

41

4.2 Problem formulation

In Chapter III, we provide means to analyze the supervisory control framework under sensor de-
ception attacks. To analyze this new framework, we assumed that the attacker function is given,
i.e., fa is well-defined. As we discussed in the introduction of this chapter, we now focus on
searching specific attack functions, 1.e., we investigate a synthesis problem. Nonetheless, Chap-
ter 11 is crucial for the formalization of the problem investigated in this chapter. In other words, we
assume the general framework described in Chapter III as our starting point in the formalization of
this chapter. Namely, the standard supervisory control framework with plant G and supervisor R,

and an attacker that hijacks the sensor readings Y., C >, as shown in Fig. 4.2.

r—>» Supervisor - R

gttack function
T— Plant- G |«—

Figure 4.2: Sensor deception attacks in the supervisory control framework

Since we are searching for specific attack functions, we need to think as the attacker. We need
to answer questions such as “What is the attacker’s goals?”, “Which information about the system
does the attacker have?”, “Are there any constraints to follow?”, etc. In this way, we can portray
the attacker so that we can formalize the “searching” problem.

First, we informally portray the attacker we would like to formalize. Intuitively, the attacker de-
sires to damage the plant. For example, the attacker wants to cause the car collision in Example 3.4
where as the deadlock scenario is not appealing for this attacker.

This attacker also yearns stealthiness, i.e., it does not want its actions to be “discovered”. In
the definition of the attacked supervisor, we assumed that the supervisor does not react when it ob-
serves an unexpected event. This assumption was reasonable when we were defining the attacked

controlled language. However, this new attacker considers risky to have the same assumption. In

42

fact, it is likely that the controlled system has an intrusion detection mechanism which the attacker
does not want to trigger.

Finally, this attacker is knowledgeable, i.e., it has information about the controlled system.
We start our formalization by making an assumption to describe the attacker’s knowledge of the

controlled system.
Assumption 4.1. The attacker knows the models of G and R.

Therefore, the attacker has full knowledge of the controlled system. This assumption lets
the attacker understand its actions in the controlled system, i.e., it can effectively construct the
framework depicted in Fig 3.3 once it has decided its strategy.

With respect to the attacker’s desire of causing damage to the plant, this can be specified based

on the states of GG.

Assumption 4.2. The plant GG has a set of critical unsafe states defined as X..;; C Xq such that

Vo € X4, x is never reached when R controls G and no attacker is present.

In general, not all states reached by strings of GG that are disabled by R (when no attacker is
present) are critically unsafe. In practice, there will be certain states among those that correspond
to physical damage to the system, such as “overflow” states or “collision” states, for instance.
Similar notions of critical unsafe states have been used in other works, e.g., [46, 21]. Therefore,
the objective of the attacker is to force the controlled behavior under attack £(S54/G) to reach any
state in X ..

Lastly, we must address the attacker’s desire to remain stealthy. The attacker does not want its
actions to be “discovered”!. Therefore, all the actions taken by the attacker and their consequences
must “look™ as if the controlled system is not under attack. Every string that the supervisor observes
must be defined in the controlled system without attacks (Fig. 4.1). In other words, the supervisor

cannot receive an unexpected event otherwise it will seem questionable.

!'This implies that the attacker assumes an intrusion detection trying to “discover” its actions.

43

Definition 4.1. An attacker f 4 is stealthy if Vs € L(S4/G)

PS(fa(Pos,,.(5)) C Pos,, (L(R/G))

If f4 is given as an automaton A, then it is stealthy if

Pes,, (PP(L(Go||Al|Ra))) € Pes,, (L(R/G))

obs obs

Finally, we are able to formally state the synthesis of stealthy sensor deception attack problem.

Problem 4.1 (Synt. of Stealthy Sensor Deception Attacks). Given an attacker that has full knowl-
edge of the models G and R, and is capable of compromising events Y., T Y, sSynthesize an

attack function f 4 such that it generates a controlled language L(S4/G) that satisfies:
1. Vs € Py, (L(S4/G)).fa(s) is defined (Admissibility);

2. Vs € L(Sa/G).P5(fa(Pes,,.(5))) C Pos,,.(L(R/G)) (Stealthiness);

3(a). s € L(S4/G), Vt € [Py, (Pox,,.(s)) N L(Sa/G)]-0c(20,t) € Xerir-

In this case, we say that f4 is a strong attack. We additionally define the notion of a weak attack

as follows:
3(b). 3s € L(S4/G).06(xg,) € Xepir-

The Admissibility condition guarantees that f, is well defined for all projected strings in the
modified controlled language Py, (L£(S4/G)). The Stealthiness condition guarantees that the
attacker stays undetected by the supervisor, meaning that any string in Pyy, , (£(54/G)) should
be modified to a string within the original controlled behavior. Lastly, the reachability of critical
states is stated in condition 3, where condition 3(a) is a strong version of the problem. In the
strong case, the attacker is sure that the system has reached a critical state if string s occurs in

the system. Condition 3(b) is a relaxed version, where the attacker might not be sure if a critical

44

state was reached, although it could have been reached. Both variations of condition 3 guarantee
the existence of at least one successful attack, namely, when string s occurs in the new controlled

behavior.

Remark 4.1. Problem 4.1 assumes that the attacker has full knowledge of the plant and the su-
pervisor models. Although it might be difficult to achieve this assumption in practice, our work
studies the worst attack scenario case. Moreover, this assumption is common practice within the

cyber-security domain.

Problem 4.1 is posed based on the languages £(S4/G) and L(R/G). Conditions (1), (3a)
and (3b) are relatively easy to test using automata operations. On the other hand, condition (2) is
more intricate. We could replace condition (2) by Eq. (4.1), if we restrict ourselves to automata
versions of f,. However, we explore another solution for this problem so that we can easily test
all conditions of Problem 4.1 in a similar manner.

To capture the behavior that detects the attacker, we define an automaton that captures both the
control decisions of the supervisor and the normal/abnormal behavior. We start by defining the
automaton H = obs(R||G) and H = (X, Xops, 1, To,11), where X C 2X#*Xc The automaton
H captures only the normal projected behavior of the controlled system. However, I cannot be
used as an supervisor since it might contain inadmissible control decisions and it does not have all

decisions of R.

Definition 4.2. Based on H, we define R := (X := Xy U {dead}, %, 05, Ty f = To,r), and 6 p:

Forany x € Xy

du(xz,e) ife€ Eng(x)

dead ife € Xyar \ Enpgx

5i(z,e) = / o\ Enir() 4.1)
z l:fe € Zuctr N Zuobs ore ¢ Ectr N 2uobs N EnRHH(l‘)

undefined otherwise

And 0 (dead, e) := dead for any e € X,,, and undefined otherwise.

45

Automaton R embeds the same admissible control decisions as automaton R and it differen-
tiates normal/abnormal behavior. The state dead in R captures the abnormal behavior of the con-
trolled system. The attacker remains stealthy as long as R does not reach the state dead. Figure 4.3

illustrates the supervisor R computed for supervisor 171 in Example 2.4.

Figure 4.3: Supervisor R based on Supervisor R from Example 2.4. New transitions are in black
and we omit self-loops in state dead.

Remark 4.2. No new transition to the dead state with controllable events are included in the
definition of R. For simplicity, we assume that the supervisor does not enable controllable events

unnecessarily. In this manner, only uncontrollable events can reach the dead state.

4.3 Insertion deletion attack structure

4.3.1 Definition

An Insertion-Deletion Attack structure (IDA) is an extension of the notion of bipartite transition
structure presented in [30]. An IDA captures the game between the environment and the supervisor
considering the possibility that a subset of the sensor network channels may be compromised by
a malicious attacker, whose moves will be constrained according to various rules. In this game
we fix the supervisor’s decisions as those defined in the given R. The environment’s decisions
are those of the attacker and the system. Therefore, in this game, environment states have both

attacker’s and system’s decisions. In this section, we define the generic notion of an IDA. In the

46

next sections, we will construct specific instances of it, according to the permitted moves of the
attacker.

Intuitively, the IDA represents the framework of supervisory control under sensor deception at-
tack presented in Chapter III. However, the supervisor and the environment decisions are explicitly
separated in the IDA. This allows a better understanding of the attacker actions in the controlled
system.

In order to build the game, we define an information state as a pair IS € 2%¢ x X7, and the
set of all information states as I = 2%¢ x X . The first element in an IS represents the correct
state estimate of the system, as seen by the attacker for the actual system outputs. The second
element represents the supervisor’s state, which is the current state of its realization based on the
edited string of events that it receives. As defined, an /S embeds the necessary information for

either player to make a decision.

Definition 4.3. An Insertion-Deletion Attack structure (IDA) T w.rt. G, Y., and R, isa 7-tuple

T :=(Qs, Qe hsp, his; Xobs, Zatt, Yo) (4.2)

where:

* Qs C [is the set of S-states, where S stands for Supervisor and where each S-state is of
the formy = (Ic(y), Is(y)), where I5(y) and Is(y) denote the correct system state estimate

and the supervisor’s state, respectively;

* Qr C I is the set of E-states, where E stands for Environment; each E-state is of the form

z = (Ig(2), Is(2)) defined in the same way as in the S-states case;

* hsg : Qs x I' = Qg is the partial transition function from S-states to E-states that satisfies:

hse(y,V)! = hse(y,v) == (UR,(Ic(y)), Is(y)) (4.3)

47

* hps : Qp X (Zops U Xarr) — Qs is the partial transition function from E-states to S-states,

satisfying:

For any e € X,

e € Eng(Ig(2)) N Eng(Is(z)) A
hps(z,e)l =
hps(z,€) = (da(la(2),€), Op(Is(2),€))

For any e € Y.,

hrs(z,ins(e))! = e € Eng(ls(z)) A
his(z,ins(e)) = (Io(2), 0z(Is(2),e))

hps(eodel(e)) = © € EretleE) N Eng(lsz) A

hps(z,e) == (60(10(2), e),]S(z))
o Y IS the set of observable events of G;

o Y. IS the set of attacked events;

* Yo € Qg is the initial S-state: vy := ({xgjg},xo’}?).

4.4)

4.5)

(4.6)

Since the purpose of an IDA is to capture the game between the supervisor and the environment,

observable events to occur.

we use a bipartite structure to represent each entity. An S-state is an /.S containing the state
estimate of the system G and the supervisor’s state; it is where the supervisor issues its control

decision. An E-state is an IS at which the environment (system or attacker) selects one among the

A transition from an S-state to an E-state represents the updated unobservable reach in G’s

48

state estimate together with the current supervisor state. Note that hgp is only defined for y and
7 such that v = Enj(Is(y)). On the other hand, a transition from an E-state to an S-state repre-
sents the “observable reach” immediately following the execution of the observable event by the

environment. In this case, both the system’s state estimate and the supervisor’s state are updated.

However, these updates depend on the type of event generated by the environment: (i) true system
event unaltered by the attacker; (ii) (fictitious) event insertion by the attacker; or (iii) deletion by
the attacker of an event just executed by the system. Thus, the transition rules are split into three
cases, described below.

The partial transition function hgg is characterized by three cases: Eqs. (4.4-4.6). Each case
is coupled to the set of events X5, 2ins OF 4. The case of events in X, is related to plant’s
actions, while the cases of events in ;s or X, are related to attacker’s actions. Equation (4.4)
simulates the plant generating a feasible (enabled) event and the attacker letting the event reach the
supervisor intact, either because it cannot compromise that event, or because it chooses not to make
a move. In the case of insertion events, Eq. (4.5), the attacker only inserts events consistent with
the control decision of the current supervisor state. On the other hand, the attacker only deletes

actual observable events generated by the plant (Eq. (4.6)).

Remark 4.3. A given IDA contains some attack moves (since it is a generic structure), all of
which have to satisfy the constraints in the definition of hgs and hsg. A generic IDA represents a

controlled system under sensor deception attack given a specific attack function.
We assume that all states included in an IDA are reachable from its initial state.

Example 4.1. Let us consider the intersection example (Example 2.4) with supervisor R as in
Fig. 4.3. Considering the compromised event set Y.ger, = {Rint} and Xy = {5}, Fig. 4.4 gives
one IDA example. As we mentioned, this IDA represents an attacked controlled system given a
specific attack function. We can observe from Fig. 4.4 that the attack function in this example has
fale, €) = {e,ins(Rine)} as its initial condition. This attack function is not stealthy since the dead

state is reachable. We will address this problem in the next section.

4.3.2 Properties

Given two IDAs T} and 75, we say that 7} is a subsystem of 75, denoted by 7 T 75, if le - Q?,

Q? C Q?, and for any y € le, z € Q?, v eI, and e € X5 U Xy, we have that:

49

('{1}*1'. S) ({2}, '2",5) BO ({3}, '3, 9)
{Binta Rint} ¢ %lntv {}i/“—t/v ¢ {R’Lnt}

({1}, 1", E) 4 (R) ({2}, 2", E) ({3}, '3", E)
ns(Rint
R. N R .
e el (Rine) in
({4}, '4,5) ({1}, '4,5) ({6}, '3, 5) ({6} 6", S)
{}l (Rint} 0
Y Y
{} ({1}, '4, E) ({6}, '3 E) ({6} 6", E)
1:{out
Y L 7 Rout
({ay, 4. B) ({9}, 'dead:, 5)
Rouy
out !
(473,17 9) B; ({8}'.'8"s) ('{9}','9", S)
int
{Bint} ¢ / {} ¢ A ¢ {}
ERIE) ({8} '8 E) ({9}, '9', E)

Figure 4.4: IDA, intersection example with X, = {R;,}. States with S are supervisor states
(most in light green) while states with E are environment (most in light blue). States in red are states
where the attacker is discovered. Uncontrollable events are omitted from the control decisions, i.e.,

{} = {Routa Bout}-
L. hg(y,7) = z = hig(y,7) = z and
2. h?S(’Z: 6) =y= hEQS(Za 6) =Y.

Before, we discuss relevant properties of the IDA structure, we define a property about E-states.

(P1) An E-state z € Qg is called a race-free state, if the following condition holds:

(e € Eng(Is(2)) N Eng(Ig(2)) N Eos) = [hes(z,€)! V hgs(z, del(e))!]

Property (P1) ensures the non-existence of a race condition between the attacker and the system in
a given E-state. Specifically, when (P1) holds in any E-state, the attacker has the option of either
letting the event reach the supervisor intact or preventing the event from reaching the supervisor
(or allowing both). It means that the attacker can wait for the system’s response to the most recent
control action and react accordingly. Note that if the event in question is a compromised event,
then the attacker has the option of allowing both actions since we defined nondeterministic attack

functions. In the case of deterministic attack functions, we force the attacker to select one of the

50

actions. If (P1) does not hold at a particular E-state, then the attacker must insert an event, and
this insertion must take place before the system reacts to the most recent control action sent by the
supervisor. (In some sense, the attacker is “racing” with the system.) An IDA that satisfies (P1)

for all E-states is called a race-free IDA.

Definition 4.4 (Induced E-state). Given an IDA A, 1 E(z, s) is defined to be the E-state induced by

string s € (Xops U Xan)*, when starting in the E-state z. 1 E(z, s) is computed recursively as:

hse(y, Eng(Is(y))) ifhes(IE(z,s),¢e)! *7)

undefined otherwise

2862

where y = hgs(IE(z,s),€)

We also define [E(s) := I E(2, s), where 2y = hsg(yo, Eng(Is(yo))).

We conclude this section by defining the notion of embedded attack function in an IDA and
presenting a lemma about reachability in IDAs. First, we show that after observing an edited string
t, the attacker correctly keeps track of the supervisor state R. Then we show that an IDA correctly

estimates the set of possible states of the system after the occurrence of edited string ¢.

Definition 4.5. An attack function f. is said to be embedded in an IDA T if (Vs €
Py, (L(S4/G))) (Vt € fa(s)) (Vi € NMI=Y), then TE(") is defined.

Intuitively, an attack function is embedded in an IDA if for every modified string that is con-
sistent with the behavior of G, we can find a path in the IDA for that string. Note that we limit this
constraint on f4 to strings in Psy, , (£(S4/G)), since these are the ones consistent with G under
a given f4. We are not interested in the definition of any f4 for strings outside of the controlled
behavior f, defines.

Next, we provide a lemma that ties the definition of IDA with the attacked controlled system

defined in Chapter III. Previously, we informally stated this connection between the IDA and a

51

specific attack function. Actually, we can generalize this statement based on the definition of
embedded attack functions. Intuitively, the IDA captures the attacked controlled system for a
family of attack functions, i.e., the attack functions embedded in this IDA. This statement is
formalized in the following lemma. This lemma states that the information states in the IDA carry

the same information as the attacked controlled system.

Lemma 4.1. Given a system G, supervisor R, and an IDA structure T with an embedded attack

function f4 with automaton representation A, for any string s € L(Sa/G) and any string t €

N

fa(Pss,,.(s)), we have
Is(IE(t)) = 65(z 5 P5(1)) 4.8)

I6(TE(t)) = REG, (1, L(C.|A]|R,)) (49)

Proof. We prove the result by induction on the length of ¢. Fir