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Abstract

Rankings are ubiquitous since they are a natural way to present information to people

who are making decisions. There are seemingly countless scenarios where rankings

arise, such as deciding whom to hire at a company, determining what movies to watch,

purchasing products, understanding human perception, judging science fair projects,

voting for political candidates, and so on. In many of these scenarios, the number of

items in consideration is prohibitively large, such that asking someone to rank all of

the choices is essentially impossible. On the other hand, collecting preference data on a

small subset of the items is feasible, e.g., collecting answers to “Do you prefer item A or

item B?” or “Is item A closer to item B or item C?”. Therefore, an important machine

learning task is to learn a ranking of the items based on this preference data. This

thesis theoretically and empirically addresses three key challenges of preference learning:

intransitivity in preference data, non-convex optimization, and algorithmic bias.

Chapter 2 addresses the challenge of learning a ranking given pairwise comparison

data that violate rational choice assumptions such as transitivity. Our key observation is

that two items compared in isolation from other items may be compared based only on

a salient subset of features. Formalizing this framework, we propose the salient feature

preference model and prove a sample complexity result for learning the parameters of

our model and the underlying ranking with maximum likelihood estimation.

Chapter 3 addresses the non-convexity of a class of optimization problems that find

feasible points to a set of quadratic inequalities. This class contains the ordinal embedding

problem, which is a preference learning task. We aim to understand the local minimizers

and global minimizers of the non-convex objective, which corresponds to penalizing each

violated quadratic inequality with the hinge loss. Under certain assumptions, we give

necessary conditions for non-global, local minimizers of the objective and additionally

show that in two dimensions, every local minimizer is a global minimizer.

Chapters 4 and 5 address the challenge of algorithmic bias. We consider training

xii



machine learning models that are fair in the sense that their performance is invariant

under certain sensitive perturbations to the inputs. For example, the performance of a

résumé screening system should be invariant under changes to the gender and ethnicity of

the applicant. We formalize this notion of algorithmic fairness as a variant of individual

fairness. In Chapter 4, we consider classification and develop a distributionally robust

optimization approach, SenSR, that enforces this notion of individual fairness during

training and provably learns individually fair classifiers.

Chapter 5 builds upon Chapter 4. We develop a related algorithm, SenSTIR, to train

provably individually fair learning-to-rank (LTR) models. The proposed approach ensures

items from minority groups appear alongside similar items from majority groups. This

notion of fair ranking is based on the individual fairness definition considered in Chapter

4 for the classification context and is more nuanced than prior fair LTR approaches that

simply provide underrepresented items with a basic level of exposure. The crux of our

method is an optimal transport-based regularizer that enforces individual fairness, and

we provide an efficient algorithm for optimizing the regularizer.

xiii



Chapter 1

Introduction

Faced with a set of choices, people typically use rankings to facilitate decision-making.

This scenario is ubiquitous: search engines rank webpages given a query, recommender

systems rank products for purchase or movies for entertainment, universities and compa-

nies rank applicants, and in some jurisdictions in the United States and other countries,

voters rank political candidates and vote via these rankings, which is known as “ranked

choice voting.” In many of these applications, the number of choices is prohibitively

large for a person to manually rank, so data-driven techniques are employed to rank

the choices. However, there are several challenges encountered when utilizing these

data-driven approaches. This thesis in particular addresses three key challenges in

preference learning: intransitivity in preference data, non-convexity of preference models,

and algorithmic biases of ranking models and data.

1.1 Intransitivity

The first challenge of preference learning this thesis considers is intransitivity in preference

data. We specifically consider the scenario where there is a set of n items and one unknown

ranking of these items. Although collecting full ranking data from humans is prohibitive,

it is relatively easy for people to answer pairwise comparison questions, i.e., questions of

the form “Is item A better than item B?”. Then, the underlying ranking can be efficiently

estimated by aggregating this pairwise comparison data. For example, if the pairwise

comparison data is noiseless, ranking the items is equivalent to sorting a list. Some sorting

algorithms like merge sort can sort a list with O(n log n) pairwise comparisons [CLRS09],

1



which is significantly fewer than all O(n2) unique pairwise comparisons.

There is one implicit but crucial assumption in this discussion: we assumed that

pairwise comparison data is consistent with the underlying ranking of all of the items. In

other words, we assumed the decision-making processes people use to rank all of the items

at once are the same decision-making processes people use to answer pairwise comparison

questions. In fact, many ranking models and algorithms, like the Bradley-Terry-Luce

model [BT52, Luc59] and ranking SVM [Joa02], make this assumption. If pairwise

comparison data is consistent with the underlying ranking, then the pairwise comparison

data cannot contain intransitivity. That is, there cannot be three items A, B, C such

that on average item A is preferred to item B, item B is preferred to item C, but item

C is preferred to item A. This example contradicts transitivity, since transitivity of the

choices implies item A should instead be preferred to item C.

However, we argue–just as researchers in social science [She64,Tor65,Tve77,Tve72,

BGS13] and recently in machine learning have [SPU19,ROS20,HSR+19,PGH19,KMU17,

SW17,RU16,NR17,BKT16,CJ16b,CJ16a,RGLA15,YBW15,Agr12]–that intransitivity

is a prevalent characteristic of real preference data. For illustration, see Table 1.1. Let

PA,B be the empirical probability that item A beats item B in a pairwise comparison.

The first column “Valid Triplets” refers to |{(A,B,C) : PA,B ≥ 1
2

and PB,C ≥ 1
2
}|, and

the number in parenthesis in the last three columns is the fraction of “Valid Triples”

that violate one of three stochastic transitivity properties. The last three columns of

the table correspond to different types of transitivity violations. Three items A,B, and

C such that PA,B ≥ 1
2

and PB,C ≥ 1
2

violate weak stochastic transitivity if PA,C < 1
2
,

violate moderate stochastic transitivity if PA,C < min{PA,B, PB,C}, and violate strong

stochastic transitivity if PA,C < max{PA,B, PB,C}. Clearly, each data set contains a

significant amount of stochastic transitivity violations. This is problematic for the

Bradley-Terry-Luce model [BT52,Luc59]–arguably one of the most popular and widely

used ranking models–since it assumes the pairwise comparison data does not violate

even strong stochastic transitivity.

Although there are several different reasons for why intransitivity can arise [RBM06]

including heterogeneous preferences, in Chapter 2, we attribute intransitivity to pairwise

contextual effects since each pairwise comparison asks for a human judgement about

two items in isolation of all the other items. Our model is inspired by theories in

social science [Tve72, TS93, RBM06, BP09, She64, Tor65, Tve77, BGS13, KKK17]. For
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Valid Strong Moderate Weak
Data Set Triplets Violations Violations Violations

NBA 2015 [Kel20] 2654 1439 (54%) 1185 (45%) 272 (10%)
Tennis 2014 [Gob20] 4793 1092 (23%) 1080 (23%) 651 (14%)
Nascar [GS09] 65003 26354 (41%) 17128 (26%) 4171 (6%)
Jester [GRGP01] 161700 14560 (9%) 327 (.2%) 78 (.05%)
Sushi-A [KA09] 120 28 (23%) 0 (0%) 0 (0%)
Sushi-B [KA09] 139992 66013 (47%) 26366 (19%) 4939 (4%)
District [KKK17] 48 25 (52%) 8 (16%) 0 (0%)
Car [ASBP13] 120 46 (38%) 7 (6%) 0 (0%)
Sonancia [LLY17] 874 175 (20%) 175 (20%) 108 (13%)
New Yorker [Sie20] 3990 1823 (51%) 606 (17%) 199 (6%)

Table 1.1: Intransitivity is a prevalent characteristic of real preference data.

example, the authors in [KKK17] wanted to obtain a ranking of legislative districts in the

United States from most compact to least compact in order to better understand human

perception of compactness. They attempted to use a pairwise comparison approach but

deemed the pairwise comparison data unreliable potentially because a pairwise “approach

enables respondents to make each paired comparison independently of the others, and may

even encourage, them to use different dimensions for different comparisons” [KKK17].

Inspired by this idea for why intransitivity arises, we propose the salient feature

preference model, which reconciles intransitive pairwise preferences with a global ranking

of the items. Specifically, we posit that for each pair of items, there is a potentially

different subset of salient features that stand out to people. For each pair, these salient

features are the only features taken into consideration when answering the corresponding

pairwise comparison question. On the other hand, our model assumes that if a person

could view all of the items at once, they would consider all the features when deciding

how to rank the items. Therefore, in our model, pairwise contextual effects due to

which two items are being compared prevent the underlying ranking from being perfectly

reflected in pairwise comparison data. In Chapter 2, we study the statistical properties of

the maximum likelihood estimator of our model, and we demonstrate strong performance

of our model and algorithm on real preference data that contain intransitive preferences.
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1.2 Non-Convexity

The second challenge of preference learning this thesis addresses is non-convex optimiza-

tion. In order to turn data into an actionable model, we need to find a model that fits

the data as well as possible. Typically, this requires solving an optimization problem.

When the resulting optimization problem is convex, first order methods like stochastic

gradient descent are guaranteed to find an optimal model. On the other hand, stochastic

gradient descent can get stuck in a local optimum instead of finding a global optimum

when the optimization problem is non-convex.

The aforementioned salient feature preference model considered in Chapter 2 turns out

to be convex. However, other preference models, like the ordinal embedding model, result

in non-convex optimization problems. In the ordinal embedding model, we assume there

is a set of items such that each item has an unknown low-dimensional representation,

which we would like to estimate. We collect answers to questions of the form “Is item A

closer to item B or item C?” and assume the answers to these questions are governed

by the Euclidean distances between the low-dimensional representations of the items.

Downstream applications of ordinal embedding include visualization and rankings, e.g.,

items can be ranked in order of their distances to a fixed item. Estimating the low-

dimensional representation of each point can be written as a non-convex optimization

problem.

To illustrate ordinal embedding, consider Figure 1.1, which shows the state capitals of

the continental United States. Using data of the form “capital A is closer to capital B

than capital C,” we attempt to estimate the locations of the state capitals to fit this data

as well as possible. Figure 1.2 shows the estimated location of each state capital where

the estimates were obtained by solving a non-convex problem with stochastic gradient

descent.

Interestingly, the estimated locations of the state capitals are perfectly consistent

with the observed data, i.e., if capital A is truly closer to capital B than capital C in

the observed data, then the estimated location of capital A is closer to the estimated

location of capital B than the estimated location of capital C. In other words, despite

solving a non-convex optimization problem, stochastic gradient descent finds a global

optimum. This observation suggests that every local optima of this problem is a global

optima since gradient descent does not get stuck in saddle points [LSJR16]. In fact,
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Figure 1.1: This map shows the true locations of the state capitals of the conti-
nental United States [Wat20].
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there has been a flurry of recent work showing that all optima are global optima in many

non-convex problems [GJZ17,BVB16]. Motivated by these findings and the empirical

success of solving ordinal embedding problems, like we just have illustrated with the

state capitals, in Chapter 3, we study the the local and global optima of the non-convex

quadratic feasibility problem theoretically and empirically. This class of optimization

problems includes the ordinal embedding problem and other preference learning problems

as special cases.

1.3 Algorithmic Bias

The third challenge of preference learning this thesis addresses is bias in ranking models

and ranking data. Algorithms touch several facets of our daily lives ranging from

seemingly inconspicuous tasks like web search to high-stakes scenarios like access to

employment. Alarmingly, it has been well-established that algorithms are not neutral

since they can perpetuate or exacerbate existing biases due to reasons like historical

discrimination and racism, underrepresentation of certain demographic groups, or poor

data collection and algorithm design choices. In high-stakes domains such as access to

financial services, access to employment, policing, and criminal justice, algorithms can

have serious and grave consequences.

For example, algorithms in high-stakes settings can have gender biases. In the financial

services domain, Apple credit card is under investigation by New York State regulators

due to potential algorithmic gender biases. Several pairs of heterosexual married couples

claim that although both partners have essentially the same data, e.g., same bank

account, similar credit scores, etc., men were given substantially higher credit limits than

women [Vig19]. In the employment domain, Amazon stopped using an internal résumé

screening tool that was biased against women: “It penalized résumés that included the

word ‘women’s,’ as in ‘women’s chess club captain.’ And it downgraded graduates of

two all-women’s colleges, according to people familiar with the matter” [Das18].

Furthermore, algorithms in high-stakes settings can have racial biases. In the policing

domain, a Black man was recently wrongfully handcuffed and arrested at his home in

front of his family, was held overnight in a detention center, took a mugshot, gave his

DNA and fingerprints, and used a vacation day to appear in court for an arraignment

all because a facial recognition system incorrectly identified him as a shoplifter [Hil20].
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Although dependent on the specific tool, facial recognition tools are known to typically

have significantly higher false positive rates for Black people than for Caucasian people

[GNH19]. In the criminal justice domain, ProPublica showed that the false positive rate

(respectively, false negative rates) of the COMPAS algorithm–used to predict whether or

not someone will recommit a crime and taken into account by judges when considering

sentencing or parole–are significantly higher (respectively lower) for Black people than

for white people [ALMK16].

Biases in algorithms extend far beyond these striking examples. Therefore, as machine

learning researchers, we have a responsibility to understand the ethical implications of

our algorithms and understand how and the extent to which we can mitigate these biases.

Although defining what algorithmic “fairness” means is still an active area of research

especially in areas outside of classification like rankings, most definitions fall into either

the “group fairness” category or “individual fairness” category.

Group fair definitions typically assume the data can be partitioned into demographic

groups, e.g., women and men, and require a statistical quantity, like false positive rates

or proportion of positive labels, to be equal over these demographic groups [HPPS16].

For example, ProPublica showed that the COMPAS algorithm violated group fairness:

the false positive rate for Blacks is much higher than the false positive rate for whites

[ALMK16]. However, group fairness has several deficiencies: although group fairness

guarantees that individuals from different groups are treated the same on average, group

fair algorithms provide no guarantees to individuals themselves, and algorithms can even

be “Gerrymandered” to make an arguably unfair algorithm appear group fair [KNRW18].

To illustrate, we use the following example from [KNRW18]. Consider a classification

task such that each person is a woman or a man and Black or white, and assume that

among the four resulting demographic groups, the number of people in each group is

equal. A classifier that always gives a negative label to Black women and white men and

a positive label to Black men and white women is both gender group fair and race group

fair, but it is clearly unfair to Black women and white men since they always receive a

negative label.

In contrast to group fairness, individual fairness requires similar individuals be treated

similarly by an algorithm [DHP+12]. For instance, the algorithm used to determine

credit limits in the Apple credit example purportedly violates individual fairness: each

husband and wife pair claim that despite having similar features, e.g., filing joint tax
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returns, owning the same exact assets, and having joint bank accounts, the credit limit

given to the husband is substantially higher than the credit limit given to the wife.

Individual fairness can be advantageous over group fairness. For example, individually

fair algorithms are not susceptible to being “Gerrymandered” like group fair algorithms

can be. However, despite being introduced nearly a decade ago, individual fairness has

largely not been operationalized since defining the similarity between individuals, i.e.,

the fair metric, is non-trivial. In Chapter 4, we view individual fairness through the lens

of distributional robustness, propose a model and algorithm to learn the fair metric from

data, and propose an algorithm to learn an individually fair classifier. We study the

statistical properties of our model as well as empirically demonstrate the efficacy of our

model to mitigate biases on real data.

Until recently, the fairness of ranking systems has been given relatively little attention

in comparison to classification, and furthermore, most of the work in fair rankings has

focused on group fairness notions. In Chapter 5, we apply similar ideas as in Chapter 4

to propose an individually fair based definition for fair ranking systems and to propose an

algorithm to learn individually fair ranking systems. We study the statistical properties

of our model and illustrate that our model can mitigate biases on real data. Our proposed

notion for individual fairness in ranking systems requires rankings to be stable with

respect to certain perturbations of the features. To illustrate, see Figure 1.3. Suppose

a job recruiter is searching for software engineers, and they are presented a ranking of

potential job candidates, each of which is a man or a woman. Women are represented

by relatively longer hair than men. Consider a counterfactual set of job candidates

where, for sake of simplicity, the gender of each candidate is flipped. We require an

individually fair ranking system to rank the original set of candidates and counterfactual

set of candidates the same as illustrated on the right hand side of Figure 1.3. In contrast,

the left hand side of Figure 1.3 shows an unfair ranking system that is biased against

women. The man who was originally ranked first is now ranked significantly lower in

third under the counterfactual ranking when he is regarded as a woman. Similarly, the

women in the second and third positions are boosted up in the counterfactual ranking

when they are regarded as men.
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Unfair Individually Fair
Ranking System Ranking System

Ranking Original Counterfactual Original Counterfactual
Position Ranking Ranking Ranking Ranking

#1

#2

#3

#4

#5

#6

Figure 1.3: In this example, a job recruiter is searching for software engineers.
Given the original set of job candidates, consider a counterfactual set
of job candidates where each person’s gender is flipped. The ranking
system on the left hand side is biased against women since the coun-
terfactual ranking changes substantially in favor of men, whereas the
stable system on the right hand side is considered fair.

9



1.4 Publications

The following are my publications where ∗ indicates equal contribution.

• Chapter 2: Amanda Bower and Laura Balzano. “Preference Modeling with Context-

Dependent Salient Features.” In ICML 2020.

• Chapter 3: Amanda Bower, Lalit Jain, Laura Balzano. “The Landscape of Non-

Convex Quadratic Feasibility.” In ICASSP 2018.

• Chapter 4: Mikhail Yurochkin*, Amanda Bower*, and Yuekai Sun. “Training

individually fair ML models with sensitive subspace robustness.” In ICLR 2020.

• Chapter 5: Amanda Bower, Hamid Eftekhari, Mikhail Yurochkin, and Yuekai Sun.

“Individually Fair Rankings.” In submission.

• Other:

– Amanda Bower*, Laura Niss*, Yuekai Sun*, and Alex Vargo*. “Debiasing Rep-

resentations by Removing Unwanted Variation Due to Protected Attributes.”

In FAT-ML workshop at ICML 2018.

– Amanda Bower, Sarah Kitchen*, Laura Niss*, Martin Strauss*, Alex Vargo*,

and Suresh Venkatasubramanian*. “Fair Pipelines.” In FAT-ML workshop at

KDD 2017.

10



Chapter 2

Preference Modeling with

Context-Specific Salient Features

The work in this chapter is joint with Laura Balzano. This work is published as Preference

Modeling with Context-Specific Salient Features at ICML 2020.

2.1 Introduction

The problem of estimating a ranking is ubiquitous and has applications in a wide

variety of areas such as recommender systems, review of scientific articles or proposals,

search results, sports tournaments, and understanding human perception. Collecting

full rankings of n items from human users is infeasible if the number of items n is large.

Therefore, k-wise comparisons, k < n, are typically collected and aggregated instead.

Pairwise comparisons (k = 2) are popular since it is believed that humans can easily

and quickly answer these types of comparisons. However, it has been observed that

data from k-wise comparisons for small k often exhibit what looks like irrational choice,

such as systematic intransitivity among comparisons. Common models address this

issue with modeling noise, ignoring its systematic nature. We observe, as others have

before us [SPU19,ROS20,PGH19,KMU17,BKT16,CJ16b,CJ16a], that these systematic

irrational behaviors can likely be better modeled as rational behaviors made in context,

meaning that the particular k items used in a k-wise comparison will affect the comparison

outcome.

Consider the most common model for learning a single ranking from pairwise com-
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parisons, the Bradley-Terry-Luce (BTL) model. In this model, there exists a judgment

vector w∗ ∈ Rd that indicates the favorability of each of the d features of an item (e.g.

for shoes: cost, width, material quality, etc), and each item has an embedding Ui ∈ Rd,

i = 1, . . . , n, indicating the value of each feature for that given item. Subsequently, the

outcome of a comparison is made with probability related to the inner product 〈Ui, w∗〉;
the larger this inner product, the more likely item i will be ranked above other items

to which it is compared. A key implicit assumption is that the features used to rank

all n items are the same features used to rank just k items in the absence of the other

n− k items. However, we argue that the context of that particular pairwise comparison

is also relevant; it is likely that when a pairwise comparison is collected, if there are a

small number of features that “stand out,” a person will use only these features and

ignore the rest when he or she makes a comparison judgment. Otherwise, if there are

no salient features between a pair of items, a person will take all features into consider-

ation. This theory has been hypothesized by the social science community to explain

violations of rational choice [Tve72,TS93,RBM06,BP09,She64,Tor65,Tve77,BGS13].

For example, [KKK17] collected preference data to understand human perception of the

compactness of legislative districts. They hypothesized that the features respondents

use in a pairwise comparison task to judge district compactness vary from pair to pair,

which explains why their data are more reliable for larger k. To illustrate this point,

we highlight a concrete example from their experiments. Given two images of districts,

they asked respondents to pick which district is more compact. When comparing district

A with district B or district C in Figure 2.1, one of the most salient features is the

degree of nonconvexity. However, when comparing district B and district C, the degree

of nonconvexity is no longer a salient feature. These districts look similar on many

dimensions, forcing a person to really think and consider all the features before making

a judgment. Let Pij be the empirical probability that district i beats district j with

respect to compactness. Then, from the experiments of [KKK17], we have PAB = 100%,

PBC = 67%, and PAC = 70%. These three districts violate strong stochastic transitivity,

the requirement that if PAB ≥ 50% and PBC ≥ 50%, then PAC ≥ max{PAB, PBC}.
We propose a novel probabilistic model called the salient feature preference model for

pairwise comparisons such that the features used to compare two items are dependent on

the context in which two items are being compared. The salient feature preference model

is a variation of the standard Bradley-Terry-Luce model. At a high level, given a pair
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District A District B District C

Figure 2.1: Three districts used in pairwise comparison tasks in [KKK17]

of items in Rd, we posit that humans perform the pairwise comparison in a coordinate

subspace of Rd. The particular subspace depends on the salience of each feature of

the pairs being compared. Crucially, if any human were able to rank all the items at

once, he or she would compare the items in the ambient space without projection onto

a smaller subspace. This single ranking in the ambient space is the ranking that we

would like to estimate. Our contributions are threefold. First, we precisely formulate

this model and derive the associated maximum likelihood estimator (MLE) where the

log-likelihood is convex. Our model can result in intransitive preferences, despite the

fact that comparisons are based off a single universal ranking. In addition, our model

generalizes to unseen items and unseen pairs. Second, we then prove a necessary and

sufficient identifiability condition for our model and finite sample complexity bounds

for the MLE. Our result specializes to the sample complexity of the MLE for the BTL

model with features, which to the best of our knowledge has not been provided in

the literature. Third, we provide synthetic experiments that support our theoretical

results and also illustrate scenarios where our salient feature preference model results in

systematic intransitives. We also demonstrate the efficacy of our model and maximum

likelihood estimation on real preference data about legislative district compactness and

the UT Zappos50K data set.

2.1.1 Related Work

The Bradley-Terry-Luce Model One popular probabilistic model for pairwise com-

parisons is the Bradley-Terry-Luce (BTL) model [BT52,Luc59]. In this model, there are

n items each with an unknown utility ui for i ∈ [n], and the items are ranked by sorting
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the utilities. The BTL model defines

P(item i beats item j) =
eui

eui + euj
. (2.1)

Although the BTL model makes strong parametric assumptions, it has been analyzed

extensively by both the machine learning and social science community and has been

applied in practice. For instance, the World Chess Federation has used a variation of

the BTL model in the past for ranking chess players [MM08]. The sample complexity of

learning the utilities or the ranking of the items with maximum likelihood estimation

(MLE) has been studied recently in [RA14,NOS16]. Moreover, there is a recent line of

work that analyzes the sample complexity of learning the utilities with MLE and other

algorithms under several variations of the BTL model, including when the items have

features that may or may not be known [LCF+18,OTX15a,LN15a,PNZ+15a,SR18,NR17].

Our model is also a variation of the BTL model where the utility of each item is dependent

on the items it is being compared to.

Violations of Rational Choice The social science community has long recognized and

hypothesized about irrational choice [She64,Tor65,Tve77,Tve72,BGS13]. See [RBM06]

for an excellent survey of this area including references to social science experiments

that demonstrate scenarios where humans make choices that can violate a variety of

rational choice axioms such as transitivity. There has been recent progress in modeling

and providing evidence for violations of rational choice axioms in the machine learning

community [SPU19,ROS20,HSR+19,PGH19,KMU17,SW17,RU16,NR17,BKT16,CJ16b,

CJ16a,RGLA15,YBW15,Agr12]. In contrast to our work, none of these works model

preference data that both violates rational choice and admits a universal ranking of

the items with the exception of [SW17, HSR+19]. Assuming there is a true ranking

of the items, our model makes a direct connection between pairwise comparison data

that violates rational choice and the underlying ranking. Violations of rational choice,

including intransitivty, occur in our model because of contextual effects due to which

pairs of items are being compared. These contextual effects distort the true ranking,

whereas in the work of [SW17, HSR+19] the intransitive choices define the ranking.

Specifically, the items are ranked by sorting the items by the probability that an item

beats any other item.
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We now focus on the works most similar to ours. The work in [SPU19], which

generalizes [CJ16b,CJ16a] from pairwise comparisons to k-wise comparisons, considers a

model for context dependent comparisons. However, because they do not assume access

to features, their model cannot predict choices based on new items, which is a key task

for very large modern data sets. In contrast, our model can predict pairwise outcomes

and rankings of new items. Both [ROS20] and [PGH19] assume access to features of

items and propose learning contextual utilities with neural networks. In contrast, we

propose a linear approach with typically far fewer parameters to estimate. Furthermore,

the latter work does not contain any theory, whereas we prove a sample complexity result

on estimating the parameters of our model. In all of the aforementioned works in this

paragraph, the resulting optimization problems are non-convex with the exception of a

special case in [SPU19] that requires sampling every pairwise comparison. In contrast,

the negative log likelihood of our model is convex. Interestingly, the work in [MU19]

shows that for a class of parametric models for pairwise preference probabilities, if

intransitives exist, then the negative log likelihood cannot be convex. Our model does

not belong to the class of parametric models they consider.

Notation For an integer d > 0, [d] := {1, . . . , d}. For x, y ∈ Rd, 〈x, y〉 :=
∑d

i=1 xiyi.

For x ∈ Rd and Ω ⊂ [d], let xΩ ∈ Rd where (xΩ)i = xi if i ∈ Ω and 0 otherwise. For

i, j ∈ [n], “i >B j” means “item i beats item j.” Let P(X) be the power set of a set X.

Given a set of vectors S = {xi ∈ Rd}qi=1, span(S) = {
∑q

i=1 αixi : αi ∈ R}.

2.2 Model and Algorithm

Salient Feature Preference Model Suppose there are n items, and each item j ∈ [n]

has a known feature vector Uj ∈ Rd. Let U :=
[
U1U2 · · ·Un

]
∈ Rd×n. Let w∗ ∈ Rd be the

unknown judgment weights, which signify the importance of each feature when comparing

items. Let τ : [n]× [n]→ P([d]) be the known selection function that determines which

features are used in each pairwise comparison. Let P := {(i, j) ∈ [n] × [n] : i < j}
be the set of all pairs of items. Let Sm = {(i`, j`, y`)}m`=1 be a set of m independent

pairwise comparison samples where (i`, j`) ∈ P are chosen uniformly at random from

P with replacement, and y` ∈ {0, 1} indicates the outcome of the pairwise comparison

where 1 indicates item i` beat item j` and 0 indicates item j` beat item i`. We model
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y` ∼ Bern(P(i` >B j`)) where

P(i` >B j`) =
exp

(
〈U τ(i`,j`)

i`
, w∗〉

)
exp

(
〈U τ(i`,j`)

j`
, w∗〉

)
+ exp

(
〈U τ(i`,j`)

i`
, w∗〉

) . (2.2)

To understand the probability model given by Equation (2.2), note that 〈U τ(i,j)
i , w∗〉

is the inner product of Ui and w∗ after Ui is projected to the coordinate subspace

given by τ(i, j). Therefore, Equation (2.2) is simply the utility model of Equation (2.1)

where the utilities are inner products computed in the subspace defined by the selection

function τ . If the selection function returns all the coordinates, i.e. τ(i, j) = [d], then

Equation (2.2) becomes the standard BTL model where the utility of item i is 〈Ui, w∗〉
and fixed regardless of context, i.e., regardless of which pair is being compared. This

model is typically called “BTL with features,” and we will refer to it as FBTL. See

Section 2.6.1 in the Supplement for a natural extension of Equation (2.2) to k-wise

comparisons for k > 2. Furthermore, we assume that the true ranking of all the items

depends on all the features and is given by sorting the items by 〈Ui, w∗〉 for i ∈ [n].

Selection Function We propose a selection function τ inspired by the social science

literature, which posits that violations of rational choice axioms arise in certain scenarios

because people make comparison judgments on a set of items based on the features that

differentiate them the most [RBM06,BP09,BGS13].

For two variables w, z ∈ R, let µ := (w+ z)/2 be their mean and s̄ := ((w−µ)2 + (z−
µ)2)/2 be their sample variance. Given t ∈ [d] and items i, j ∈ [n], the top-t selection

function selects the t coordinates with the t largest sample variances in the entries of

the feature vectors Ui, Uj.

Algorithm: Maximum Likelihood Estimation Given observations

Sm = {(i`, j`, y`)}m`=1, item features U ∈ Rd×n, and a selection function τ , the negative

log-likelihood of w ∈ Rd is

Lm(w;U, Sm, τ) =
m∑
`=1

log (1 + exp (ui`,j`))− y`ui`,j` , (2.3)

16



where ui`,j` =
〈
w,U

τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉
.

Equation 2.3 is equivalent to logistic regression with features x` = U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

.

See Section 2.6.2 of the Supplement for the derivation. We estimate w∗ with the

maximum likelihood estimator ŵ, which requires minimizing a convex function: ŵ :=

argminwLm(w;U, Sm, τ).

2.3 Theory

In this section, we analyze the sample complexity of estimating the judgment weights

with the MLE given by minimizing Lm of Equation (2.3). We first consider the sample

complexity under an arbitrary selection function, and then specialize to two concrete

selection functions: one that selects all features per pair and another that selects just one

feature per pair. Throughout this section, we assume the set-up and notation presented

in the beginning of Section 2.2.

First, the following proposition completely characterizes the identifiability of w∗.

Identifiability means that with infinite samples, it is possible to learn w∗. Precisely, the

salient feature preference model is identifiable if for all (i, j) ∈ P and for w1, w2 ∈ Rd, if

P(i >B j;w1) = P(i >B j;w2), then w1 = w2 where P(i >B j;w) refers to Equation (2.2)

where w is the judgement vector. The proof is in Section 2.6.3 of the Supplement.

Proposition 2.3.1 (Identifiability). Given item features U ∈ Rn×d, the salient feature

preference model with selection function τ is identifiable if and only if span{U τ(i,j)
i −U τ(i,j)

j :

(i, j) ∈ P} = Rd.

Now we present our main theorem on the sample complexity of estimating w∗. Let

b∗ := max
(i,j)∈P

|〈w∗, U τ(i,j)
i − U τ(i,j)

j 〉|,

which is the maximum absolute difference between two items’ utilities when comparing

them in context, i.e. based on the features given by the selection function τ . Let

W(b∗) := {w ∈ Rd : max
(i,j)∈P

|〈w,U τ(i,j)
i − U τ(i,j)

j 〉| ≤ b∗}.

We constrain the MLE toW(b∗) so that we can bound the entries of the Hessian of Lm in
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our theoretical analysis. We do not enforce this constraint in our synthetic experiments.

Theorem 2.3.2 (Sample complexity of learning w∗). Let U ∈ Rd×n, w∗ ∈ Rd, τ , and Sm

be defined as in the beginning of Section 2.2. Let ŵ be the maximum likelihood estimator,

i.e. the minimum of Lm in Equation (2.3), restricted to the set W(b∗). The following

expectations are taken with respect to a uniformly chosen random pair of items from P .

For (i, j) ∈ P , let

Z(i,j) := (U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T

λ := λmin(EZ(i,j)),

η := σmax(E((Z(i,j) − EZ(i,j))
2)),

ζ := max
(k,`)∈P

λmax(EZ(i,j) − Z(k,`)),

where for a positive semidefinite matrix X, λmin(X) and λmax(X) are the smallest/largest

eigenvalues of X, and where for any matrix X, σmax(X) is the largest singular value of

X. Let

β := max
(i,j)∈P

‖U τ(i,j)
i − U τ(i,j)

j ‖∞. (2.4)

Let δ > 0. If λ > 0 and

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ) ,

C2(η + λζ)
log(2d/δ)

λ2

}
,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 = O

exp(b∗)

λ

√
(β2d+ β

√
d) log(4d/δ)

m


where C1, C2 are constants given in the proof and the randomness is from the randomly

chosen pairs and the outcomes of the pairwise comparisons.

We utilize the proof technique of Theorem 4 in [NOS16], which proves a similar result

for the standard BTL model of Equation (2.1), i.e. when U = In×n, the n× n identity

matrix, d = n, and τ(i, j) = [d] for all (i, j) ∈ P . We modify the proofs for arbitrary U
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and d. See Section 2.6.5 in the Supplement for the proof.

We now discuss the terms that appear in Theorem 2.3.2. First, the d log(d/δ) terms

are natural since we are estimating d parameters. Second, estimating w∗ well essentially

requires inverting the logistic function. When b∗ is large, we need to invert the logistic

function for pairwise probabilities that are close to 0 and 1. This is precisely the

challenging regime, since a small change in probabilities results in a large change in the

estimate of w∗, and thus we expect to require many samples to estimate w∗ when b∗ is

large. The exponential dependence on b∗ is standard for this type of analysis and arises

from the Hessian of Lm. Third, η and ζ arise from a matrix concentration bound applied

to the Hessian of Lm. Fourth, λ arises from the minimum eigenvalue of the Hessian of Lm
in a neighborhood of w∗, which controls the convexity of Lm. This type of dependence

also appears in other state of the art finite sample complexity analyses [NRW+12]. In

addition, to better understand the role of λ, we present the following proposition whose

proof is in Section 2.6.4 in the Supplement. Proposition 2.3.3 shows that the requirement

λ > 0 in Theorem 2.3.2 is fundamental, because we would otherwise be unable to bound

the estimation error for the non-identifiable part of w∗, i.e., the projection of w∗ onto

the orthogonal complement of span{U τ(i,j)
i − U τ(i,j)

j : (i, j) ∈ P} = Rd.

Proposition 2.3.3. λ > 0 if and only if the salient feature preference model is identifi-

able.

Finally, if one assumes λ, η, ζ, β, exp(b∗) are O(1), then Ω(d log(d/δ)) samples are

enough to guarantee the error is O(1). However, as we will show in the corollaries,

these parameters are not always O(1), increasing the complexity. We point out that

the combination of the features U and the selection function τ is what dictates the

parameters of Theorem 2.3.2. For the top-t selection function in particular, we plot

λ, ζ, η, b∗, β, the number of samples required by Theorem 2.3.2, and the bound on the

estimation error as a function of intransitivity rates in the Supplement in Section 2.6.8,

to provide further insight into these parameters. Since we envision practical selection

functions will be dependent on the features themselves, further analysis is a challenging

but exciting subject of future work.

For deterministic U , we now specialize our results to FBTL as well as to the case

where a single feature is used in each comparison. The following corollaries provide

insight into how a particular selection function τ impacts λ, η, and ζ and thus the sample
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complexity.

First, we consider FBTL. In this case, the selection function selects all the features

in each pairwise comparison, so there cannot be intransitivities in the preference data.

The following Corollary of Theorem 2.3.2 gives a simplified form for λ and upper bounds

ζ and η. The terms involving the conditioning of UUT are natural; since we make no

assumption on w∗, if the feature vectors are concentrated in a lower dimensional subspace,

estimation of w∗ will be more difficult. See Section 2.6.6 of the Supplement for the proof.

Corollary 2.3.4 (Sample complexity for FBTL). For the selection function τ , suppose

|τ(i, j)| = d for any (i, j) ∈ P . In other words, all the features are used in each pairwise

comparison. Let ν := max{max(i,j)∈P ‖Ui − Uj‖2
2, 1}. Assume n > d. Without loss of

generality, assume the columns of U sum to zero:
∑n

i=1 Ui = 0. Let δ > 0. Then,

λ =
nλmin(UUT )(

n
2

) ,

ζ ≤ ν +
nλmax(UUT )(

n
2

) , and

η ≤ νnλmax(UUT )(
n
2

) +
n2λmax(UUT )2(

n
2

)2 .

Hence, if

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ),

C3 log(2d/δ)νnλ̄
}

where

λ̄ =

(
λmax(UUT ) + λmax(UUT )2 + λmin(UUT )

λmin(UUT )2

)
then with probability at least 1− δ,

‖w∗ − ŵ‖2 = O

 exp(b∗)n

λmin(UUT )

√
(β2d+ β

√
d) log(4d

δ
)

m


where C1 and C3 are constants given in the proof.

To the best of our knowledge, this is the first analysis of the sample complexity for the
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MLE of FBTL parameters. There are related results in [SR18,NRW+12,HSR+19,SW17]

to which our bound compares favorably, and we discuss this in Section 2.6.6 of the

Supplement.

Second, suppose the selection function is very aggressive and selects only one coordinate

for each pair, i.e. |τ(i, j)| = 1 for all (i, j) ∈ P . For instance, the top-1 selection function

has this property. This type of selection function can cause intransitivities in the

preference data as we show in the synthetic experiments of Section 2.4.1.

Corollary 2.3.5. Assume that for any (i, j) ∈ P , |τ(i, j)| = 1. Partition P = tdk=1Pk

into d sets where (i, j) ∈ Pk if τ(i, j) = {k} for k ∈ [d]. Let β be defined as in Theorem

2.3.2 and

ε := min
(i,j)∈P

‖U τ(i,j)
i − U τ(i,j)

j ‖∞.

Let δ > 0. Then

λ ≥ ε2(
n
2

) min
k∈[d]
|Pk|,

ζ ≤ β2 +
β2(
n
2

) max
k∈[d]
|Pk|, and

η ≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) .
Hence, if

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ), C4(Q1 +Q2)

}
,

where

Q1 =

(
β4

ε4

) (n
2

)
maxk∈[d] |Pk|+ maxk∈[d] |Pk|2

mink∈[d] |Pk|2
,

Q2 =

(
β2

ε2

) (n
2

)
+ maxk∈[d] |Pk|
mink∈[d] |Pk|

,
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then with probability at least 1− δ,

‖w∗ − ŵ‖2 = O

exp(b∗)
(
n
2

)
ε2min
k∈[d]
|Pk|

√
(β2d+ β

√
d) log(4d

δ
)

m


where C1 and C4 are constants given in the proof.

There are two main implications of Corollary 2.3.5 if we consider β and ε constant.

First, suppose there is a coordinate k ∈ [d] such that |Pk| := |{(i, j) ∈ P : τ(i, j) = k}|
is small. Intuitively it will take many samples to estimate w∗ well, since the chance of

sampling a pairwise comparison that uses the k-th coordinate of w∗ is |Pk|/
(
n
2

)
. Corollary

2.3.5 formalizes this intuition. In particular, λ = O(|Pk|/
(
n
2

)
), and since λ comes into

the bounds of Theorem 2.3.2 in the denominator of both the lower bound on samples

and the upper bound on error, a small λ makes estimation more difficult.

Second, on the other hand, if ε is fixed, the maximum lower bound on λ given by

Corollary 2.3.5 is max mini∈[d] |Pi| =
(
n
2

)
/d where the maximum is with respect to any

partition of P . In this case, |Pi| ≈ |Pj| for all i, j ∈ [d], so the chance of sampling

a pairwise comparison that uses any coordinate is approximately equal. Therefore,

λ, η, ζ = O(1/d), and by tightening a bound used in the proof of Theorem 2.3.2,

Ω(d2 log(d/δ)) samples ensures the estimation error is O(1). See Section 2.6.6 in the

Supplement for an explanation.

Ultimately, we seek to estimate the underlying ranking of the items. The following

corollary of Theorem 2.3.2 says that by controlling the estimation error of w∗, the

underlying ranking can be estimated approximately. The sample complexity depends

inversely on the square of the differences of full feature item utilities. Intuitively, if the

absolute difference between the utilities of two items is small, then many samples are

required in order to rank these items correctly relative to each other. See Section 2.6.7

in the Supplement for the proof.

Corollary 2.3.6 (Sample complexity of estimating the ranking). Assume the set-up of

Theorem 2.3.2. Pick k ∈ [
(
n
2

)
]. Let αk be the k-th smallest number in {|〈w∗, Ui − Uj〉| :

(i, j) ∈ P}. Let M := maxi∈[n] ‖Ui‖2. Let γ∗ : [n]→ [n] be the ranking obtained from w∗

by sorting the items by their full-feature utilities 〈w∗, Ui〉 where γ∗(i) is the position of

item i in the ranking. Define γ̂ similarly but for the estimated ranking obtained from the
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MLE estimate ŵ. Let δ > 0. If

m ≥ max
{
C1(β2d+ β

√
d) log(4d/δ),

C2(η + λζ)
log(2d/δ)

λ2
,

C5M
2e2b∗(β2d+ β

√
d) log(4d/δ)

α2
kλ

2

}
,

then with probability 1− δ,
K(γ∗, γ̂) ≤ k − 1,

where K(γ∗, γ̂) = |{(i, j) ∈ P : (γ∗(i) − γ∗(j))(γ̂(i) − γ̂(j)) < 0}| is the Kendall tau

distance between two rankings and C1, C2, and C5 are constants given in the proof.

2.4 Experiments

See Section 2.6.9 of the Supplement for additional details about the algorithm implemen-

tation, data, preprocessing, hyperparameter selection, and training and validation error

for both synthetic and real data experiments.

2.4.1 Synthetic Data

We investigate violations of rational choice arising from the salient feature preference

model and illustrate Theorem 2.3.2 while highlighting the differences between the salient

feature preference model and the FBTL model throughout. Given the very reasonable

simulation setup we use, these experiments suggest that the salient feature preference

model may sometimes be better suited to real data than FBTL.

For these experiments, the ambient dimension d = 10, the number of items n = 100,

and comparisons are sampled from the salient feature preference model with top-t

selection function. The coordinates of U , respectively w∗, are drawn from N (0, 1/
√
d),

respectively N (0, 4/
√
d), so that P(i >B j) is bounded away from 0 and 1 for i, j ∈ [n].

This set-up ensures b∗ does not become too large.

First, the salient feature preference model can produce preferences that systematically

violate rational choice. In contrast, the FBTL model cannot. Let Pij = P(i >B j)
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Figure 2.2: The salient feature preference model with the top-t selection function
produces systematic intransitives and pairwise comparisons that are
inconsistent with the underlying ranking. When t = 10, the salient
feature preference model with the top-t selection function is the FBTL
model, and hence there are no intransitives or pairwise inconsistencies.

and T = {(i, j, k) ∈ [n]3 : Pij > .5, Pjk > .5}. Then (i, j, k) ∈ T satisfies strong

stochastic transitivity if Pik ≥ max{Pij, Pjk}, moderate stochastic transitivity if Pik ≥
min{Pij, Pjk}, and weak stochastic transitivity if Pik ≥ .5 [Cat12]. We sample U and w∗

10 times as described in the beginning of the section and allow t to vary in [d]. Figure

2.2 shows the average ratio of the number of weak, moderate, and strong stochastic

transitivity violations to |T | as a function of t ∈ [d]. There is very little deviation from

the average. The standard error bars over the 10 experiments were plotted but they are

so small that the markers covered them. All
(
n
2

)
probabilities given by Equation (2.2) are

used to calculate the intransitivity rates. In the same figure we also show the percentage

of pairwise comparisons that are inconsistent with the true ranking under the same

experimental set-up. These are the pairs i, j such that 〈Ui − Uj, w∗〉 < 0, meaning item

i is ranked lower than item j in the true ranking, but 〈U τt(i,j)
i −U τt(i,j)

j , w∗〉 > 0 meaning

item i beats item j by at least 50% when compared in isolation from the other items.

Notice that when t = 10, the salient feature preference model is the FBTL model, so

there are no pairwise inconsistencies or intransitives. Although this example is synthetic,

real data exhibits intransitivity and even inconsistent pairs with the underlying ranking

as discussed in the real data experiments in Section 2.4.2.
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Figure 2.3: Illustration of Theorem 2.3.2 with the exact theoretical upper bound
for the salient feature preference model with the top-1 selection func-
tion. Although there is a gap between the bound and the observed
estimation error, they decrease at the same rate eventually. Exclud-
ing the first two points, the salient feature MLE error’s slope on the
log-log scale is -0.154, whereas the theoretical bound’s slope is -0.151.

Second, we illustrate Theorem 2.3.2 with the top-1 selection function, and where U

and w are sampled once as described in the beginning of this section. We sample m

pairwise comparisons for m ∈ {(100)2i−1 : i ∈ [10]}, fit the MLEs of both the salient

preference model with the top-1 selection function and FBTL, and repeat 10 times.

Figure 2.3 shows the average estimation error of w∗ on a logarithmic scale as a function

of the number of pairwise comparison samples also on a logarithmic scale. Figure 2.3

also shows the exact theoretical upper bound where δ = 1
d

= 1
10

of Theorem 2.3.2 without

constants C1 and C2 as stated in Section 2.6.5 of the Supplement. Again, there is very

little deviation from the average. The standard error bars over the 10 experiments were

plotted but they are so small that the markers covered them. There is a gap between

the observed error and the theoretical bound, though the error decreases at the same

rate. The error of the MLE of FBTL does not improve with more samples, since the

pairwise comparisons are generated according to the salient feature preference model

with the top-1 selection function. See Section 2.6.8 in the Supplement for investigating
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Figure 2.4: Kendall tau correlation between the true ranking and the estimated
ranking where pairwise comparisons are sampled from the salient fea-
ture preference model with the top-1 selection function. Estimating
w∗ well implies being able to estimate the underlying ranking well as
stated in Corollary 2.3.6.

model misspecification, i.e. fitting the MLE of the top-t selection function for t 6= 1 with

the same experimental set-up.

By estimating w∗ well, we can estimate the underlying ranking well by Corollary

2.3.6. Under the same experimental set up, Figure 2.4 shows the Kendall tau correlation

(definition given in Supplement 2.6.8) between the true ranking (obtained by ranking

the items according to 〈Ui, w∗〉) and the estimated ranking (according to 〈Ui, ŵ〉) but on

a new set of 100 items drawn from the same distribution. The maximum Kendall tau

correlation between two rankings is 1 and occurs when both rankings are equal. Also,

estimating w∗ well allows us to predict the outcome of unseen pairwise comparisons well,

as shown in the Supplement in Section 2.6.8.

2.4.2 Real Data

For the following experiments, we use the top-t selection function for the salient feature

preference model, where t is treated as a hyperparameter and tuned on a validation set.

We compare to FBTL, RankNet [BSR+05] with one hidden layer, and Ranking SVM

[Joa02]. We append an `2 penalty to Lm for the salient feature preference model and the

26



Table 2.1: Average Kendall tau correlation over individual rankings on test sets
for district compactness. The number in parenthesis is the standard
deviation.

Model: Shiny1 Shiny2 UG1-j1 UG1-j2 UG1-j3 UG1-j4 UG1-j5

Salient features .14 (.26) .26 (.2) .48 (.21) .41 (.09) .6 (.1) .14 (.14) .42 (.09)
FBTL .09 (.22) .18 (.17) .2 (.12) .26 (.07) .45 (.15) .2 (.13) .06 (.14)
Ranking SVM .09 (.22) .18 (.17) .22 (.12) .26 (.07) .45 (.15) .2 (.13) .06 (.14)
RankNet .12 (.24) .24 (.18) .28 (.14) .37 (.08) .53 (.11) .28 (.08) .15 (.15)

FBTL model, that is, for regularization parameter µ, we solve minw∈Rd Lm(w) + µ‖w‖2
2.

For RankNet, we add to the objective function an `2 penalty on the weights. As explained

in more detail in subsection 2.6.9 in the Supplement, the hyperparameters for the salient

feature preference model are t for the top-t selection function and µ, the hyperparameter

for FBTL is µ, the hyperparameter for Ranking SVM is the coefficient corresponding

to the norm of the learned hyperplane, and the hyperparameters for RankNet are the

number of nodes in the single hidden layer and the coefficient for the `2 regularization of

the weights.

District Compactness [KKK17] collected preference data to understand human

perception of compactness of legislative districts in the United States. Their data include

both pairwise comparisons and k-wise ranking data for k > 2 as well as 27 continuous

features for each district, including geometric features and compactness metrics. Although

difficult to define precisely, the United States law suggests compactness is universally

understood [KKK17]. In fact, the authors provide evidence that most people agree on

a universal ranking, but they found the pairwise comparison data was extremely noisy.

They hypothesize that pairwise comparisons may not directly capture the full ranking,

since all features may not be used when comparing two districts in isolation from the

other districts. Hence, this problem is applicable to our salient feature preference model

and its motivation.

The goal as set forth by [KKK17] is to learn a ranking of districts. We train on

5,150 pairwise comparisons collected from 94 unique pairs of districts to learn ŵ, an

estimate of the judgment vector w∗, then estimate a ranking by sorting the districts by

〈ŵ, Ui〉. The k-wise ranking data sets are used for validation and testing. Since there is
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no ground truth for the universal ranking, we measure how close the estimated ranking

is to each individual ranking. In this scenario, we care about the accuracy of the full

ranking, and so we consider Kendall tau correlation. Given a k-wise comparison data

set, Table 2.1 shows the average Kendall tau correlation between the estimated ranking

and each individual ranking where the number in parenthesis is the standard deviation.

The standard deviation on shiny1 and shiny2 is relatively high because the Kendall

tau correlation between pairs of rankings in these data sets has high variability, shown

in Figure 2.10 in the Supplement.

The MLE of the salient feature preference model under the top-t selection function

outperforms both the MLE of FBTL and Ranking SVM by a significant amount on 6

out 7 test sets, suggesting that pairwise comparison decisions may be better modeled by

incorporating context. The MLE of the salient feature preference model, which is linear,

is competitive with RankNet, which models pairwise comparisons as in Equation (2.1)

except where the utility of each item uses a function f defined by a neural network, i.e.

ui = f(Ui).

The salient feature preference model may be outperforming FBTL and Ranking SVM

since this data exhibits significant violations of rational choice. First, on the training

set of pairwise comparisons, there are 48 triplets of districts (i, j, k) where both (1)

all three distinct pairwise comparisons were collected and (2) Pij > .5 and Pjk > .5.

Seventeen violate strong transitivity, 3 violate moderate transitivity, but none violate

weak transitivity. Second, given a set of k-wise ranking data, let P̂ij be the proportion

of rankings in which item i is ranked higher than item j. There are 20 pairs of districts

that appear in both the k-wise ranking data and the pairwise comparison training data.

Four of these pairs of items i, j have the property that (.5− Pij)(.5− P̂ij) < 0, meaning

item i is typically ranked higher than item j in the ranking data, but j typically beats i

in the pairwise comparisons.

UT Zappos50k The UT Zappos50K data set consists of pairwise comparisons on images

of shoes and 960 extracted vision features for each shoe [YG14,YG17]. Given images of

two shoes and an attribute from {“open,” “pointy,” “sporty,” “comfort”}, respondents

picked which shoe exhibited the attribute more. The data consists of easier, coarse

questions, i.e. based on comfort, pick between a slipper or high-heel, and harder, fine

grained questions i.e. based on comfort, pick between two slippers.
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Table 2.2: Average pairwise prediction accuracy over 10 train/validation/test
splits on the test sets by attribute for UT Zappos50k. C stands for coarse
and F stands for fine grained. O stands for open, P stands for pointy, S
stands for sporty, and Co stands for comfort. The number in parenthesis
is the standard deviation.

Model: O-C P -C S-C Co-C O-F P -F S-F Co-F

Salient features .73(.02) .78(.02) .78(.03) .77(.03) .6(.04) .59(.04) .59(.03) .56(.03)
FBTL .73(.02) .77(.03) .8(.03) .78(.03) .6(.03) .6(.03) .59(.03) .58(.05)
Ranking SVM .74(.02) .78(.03) .79(.03) .78(.03) .6(.03) .6(.04) .6(.04) .58(.03)
RankNet .73(.01) .79(.01) .78(.03) .8(.02) .61(.02) .59(.02) .59(.04) .59(.05)

We now consider predicting pairwise comparisons instead of estimating a ranking since

there is no ranking data available. We train four models, one for each attribute. See

Table 2.2 for the average pairwise comparison accuracy over ten train (70%), validation

(15%), and test splits (15%) of the data. The pairwise comparison accuracy is defined

as the percentage of items (i, j) where i beats j a majority of the time and the model

estimates the probability that i beats j exceeds 50%.

In this case, the MLE of the FBTL model and the salient feature preference model

under the top t selection function perform similarly. Nevertheless, while the FBTL model

utilizes all 990 features, the best t’s on each validation set and split of the data do not

use all features, so our model is different from yet competitive to FBTL. See Table 2.3

in the Supplement. This suggests that the salient feature preference model under the

top-t selection function for relatively small t is still a reasonable model for real data.

2.5 Conclusion

We focused on the problem of learning a ranking from pairwise comparison data with

irrational choice behaviors, and we formulated the salient feature preference model

where one uses projections onto salient coordinates in order to perform comparisons.

We proved sample complexity results for MLE on this model and demonstrated the

efficacy of our model on both synthetic and real data. Going forward, we would like

to develop techniques to learn both the selection function τ and feature embeddings

simultaneously. Finally, it will be useful to consider how to incorporate context into
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models more sophisticated than BTL, and also consider contextual effects in other tasks

that use human judgements such as ordinal embedding [TL14].

2.6 Supplement

2.6.1 k-wise Comparisons Extension

We describe how to extend the salient feature preference model of Equation (2.2) from

pairwise comparisons to k-wise comparisons when k > 2. We base our generalization on

the Placket-Luce model [Pla75,Luc59], which is a generalization of the BTL model from

pairwise comparisons to k-wise comparisons.

Let the domain of the selection function τ be [n]k instead of [n]× [n], i.e. τ : [n]k →
P([d]). Then for T` = (t1, . . . , tk) where ti ∈ [n] are items, the probability of picking the

ranking t1 >B · · · >B tk is

P(t1 >B · · · >B tk) =
k∏
`=1

exp
(
〈U τ(T`)

t`
, w∗〉

)
∑

j∈[k]\[`−1] exp
(
〈U τ(T`)

tj , w∗〉
) , (2.5)

where “t1 >B · · · >B tk” means item t1 is preferred to item t2 and so on and so forth.

We explain Equation (2.5): Given items T` = (t1, . . . , tk), first project each item’s

features Uti onto the coordinate subspace spanned by the coordinates given by τ(T`).

Then the utility of item ti in the presence of the other items in T is given by the inner

product of its projected features with w∗: 〈(Uti)τ(T`), w∗〉. The higher the utility an item

has, the more likely the item will be ranked higher among the items in T`. Now imagine

a bag of balls where each ball corresponds to one of the items in T`. We select balls from

this bag without replacement where the probability of picking a ball is the ratio of its

utility to the sum of the utilities of all the remaining balls. The order in which we select

balls results in a ranking of the k items. This process is what Equation (2.5) represents.

In the pairwise comparison case (k = 2) for two items T` = (i, j), Equation (2.5)

reduces to Equation (2.2), which is the salient preference model. We can also extend the

top-t selection function naturally to accommodate k-wise comparisons.
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2.6.2 Negative Log-Likelihood Derivation

Lemma 2.6.1. Under the set-up of Section 2.2, the negative log-likelihood of w ∈ Rd is

Lm(w;U, Sm, τ) =
m∑
`=1

log
(

1 + exp
(
〈U τ(i`,j`)

i`
− U τ(i`,j`)

j`
, w〉
))
−y`〈U τ(i`,j`)

i`
−U τ(i`,j`)

j`
, w〉.

(2.6)

Proof. Let Pw(Sm) be the joint distribution of the m samples Sm with respect to the

judgement vector w. Then

Lm(w;U, Sm, τ) (2.7)

= − logPw(Sm) (2.8)

= − log

(
m∏
`=1

(P(y` = 1)y`P(y` = 0)1−y`)

)
by independence and since y` ∈ {0, 1}

(2.9)

= −
m∑
i=1

y` log(P(y` = 1)) + (1− y`) log(1− P(y` = 1)) (2.10)

= −
m∑
i=1

y` log

 exp
(
〈U τ(i`,j`)

i`
− U τ(i`,j`)

j`
, w〉
)

1 + exp
(
〈U τ(i`,j`)

i`
− U τ(i`,j`)

j`
, w〉
)
 (2.11)

+ (1− y`) log

 1

1 + exp
(
〈U τ(i`,j`)

i`
− U τ(i`,j`)

j`
, w〉
)


=
m∑
i=1

log
(

1 + exp
(
〈U τ(i`,j`)

i`
− U τ(i`,j`)

j`
, w〉
))
− y`〈U τ(i`,j`)

i`
− U τ(i`,j`)

j`
, w〉 (2.12)

2.6.3 Proof of Proposition 2.3.1

Proposition 2.6.2 (Restatement of Proposition 2.3.1). Given item features U ∈ Rd×n,

the salient feature preference model with selection function τ is identifiable if and only if

span{U τ(i,j)
i − U τ(i,j)

j : (i, j) ∈ P} = Rd.
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Proof. Let w ∈ Rd. Then for any (i, j) ∈ P ,

P(i >B j;w) = P(i >B j;w
∗) (2.13)

⇐⇒
exp

(
〈U τ(i,j)

i − U τ(i,j)
j , w〉

)
1 + exp

(
〈U τ(i,j)

i − U τ(i,j)
j , w〉

) =
exp

(
〈U τ(i,j)

i − U τ(i,j)
j , w∗〉

)
1 + exp

(
〈U τ(i,j)

i − U τ(i,j)
j , w∗〉

) (2.14)

⇐⇒ exp
(
〈U τ(i,j)

i − U τ(i,j)
j , w〉

)
= exp

(
〈U τ(i,j)

i − U τ(i,j)
j , w∗〉

)
(2.15)

⇐⇒ 〈U τ(i,j)
i − U τ(i,j)

j , w〉 = 〈U τ(i,j)
i − U τ(i,j)

j , w∗〉 (2.16)

⇐⇒ 〈U τ(i,j)
i − U τ(i,j)

j , w∗ − w〉 = 0. (2.17)

⇒ Assume identifiability. By contradiction, if span{U τ(i,j)
i − U τ(i,j)

j : (i, j) ∈ P} 6= Rd,

then there is some vector x 6= 0 that is orthogonal to span{U τ(i,j)
i − U τ(i,j)

j : (i, j) ∈ P}.
Consider w∗ − x. Then, for any (i, j) ∈ P

〈U τ(i,j)
i − U τ(i,j)

j , w∗ − (w∗ − x)〉 = 〈U τ(i,j)
i − U τ(i,j)

j , x〉 (2.18)

= 0. (2.19)

Therefore, with w = w∗−x, Equation (2.17) is true and implies Equation (2.13) meaning

P(i > j;w∗ − x) = P(i > j;w∗),

contradicting identifiability since w∗ − x 6= w∗ because x 6= 0.

⇐ Now assume span{U τ(i,j)
i −U τ(i,j)

j : (i, j) ∈ P} = Rd. We want to prove identifiability

so suppose there exists w such that Equation (2.13) holds. We will show w = w∗. Let

x ∈ Rd where x =
∑

(i,j)∈P αi,j(U
τ(i,j)
i − U τ(i,j)

j ) for αi,j ∈ R. Then by Equation (2.17),〈 ∑
(i,j)∈P

αi,j

(
U
τ(i,j)
i − U τ(i,j)

j

)
, w∗ − w

〉
= 0.

Since this is true for any x ∈ Rd, w∗ − w = 0, which means w = w∗.
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2.6.4 Proof of Proposition 2.3.3

Proposition 2.6.3 (Restatement of Proposition 2.3.3). Under the set-up of Section

2.2, λ := λmin(E(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ) > 0 if and only if the salient feature

preference model with selection function τ is identifiable.

Proof. For both directions, we prove the contrapositive.

⇒ Assume λmin(E(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ) = 0. Recall the expectation is

with respect to a uniformly at random chosen pair of items. Let 0 ∈ Rd be the all 0

vector. Then there exists y 6= 0 ∈ Rd that has unit norm such that

(E(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T )y = 0 (2.20)

=⇒ yT (E(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T )y = 0 (2.21)

=⇒ 1(
n
2

) ∑
(i,j)∈P

yT (U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T )y = 0 (2.22)

=⇒ 1(
n
2

) ∑
(i,j)∈P

‖(U τ(i,j)
i − U τ(i,j)

j )Ty‖2
2 = 0 (2.23)

=⇒ ‖(U τ(i,j)
i − U τ(i,j)

j )Ty‖2
2 = 0 ∀(i, j) ∈ P (2.24)

=⇒ (U
τ(i,j)
i − U τ(i,j)

j )Ty = 0 ∀(i, j) ∈ P, (2.25)

where Equation (2.22) is because (i, j) ∈ P is chosen uniformly at random.

We now show y /∈ span{U τ(i,j)
i − U

τ(i,j)
j : (i, j) ∈ P}, which establishes the salient

feature preference model is not identifiable by Proposition 2.3.1. By contradiction,

suppose there exist αi,j ∈ R such that

y =
∑

(i,j)∈P

αi,j(U
τ(i,j)
i − U τ(i,j)

j ).

Then

1 = 〈y, y〉 (2.26)

=

〈 ∑
(i,j)∈P

αi,j

(
U
τ(i,j)
i − U τ(i,j)

j

)
, y

〉
(2.27)
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=
∑

(i,j)∈P

αi,j

〈(
U
τ(i,j)
i − U τ(i,j)

j

)
, y
〉

(2.28)

= 0, (2.29)

a contradiction.

⇐ Now suppose that the preference model is not identifiable. By Proposition 2.3.1,

span{U τ(i,j)
i − U τ(i,j)

j : (i, j) ∈ P} 6= Rd. In particular, there exists y ∈ Rd such that

y 6= 0 and 〈y, U τ(i,j)
i −U τ(i,j)

j 〉 = 0 for all (i, j) ∈ P , i.e. y is in the orthogonal complement

of span{U τ(i,j)
i − U τ(i,j)

j : (i, j) ∈ P}. Furthermore,

1(
n
2

) ∑
(i,j)∈P

(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )Ty = 0 (2.30)

=⇒ (E(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T )y = 0, (2.31)

(2.32)

since the expectation is with respect to a uniformly at random chosen pair of items.

Therefore, λmin(E(U
τ(i,j)
i − U

τ(i,j)
j )(U

τ(i,j)
i − U

τ(i,j)
j )T ) = 0 since all the eigenvalues of

E(U
τ(i,j)
i −U τ(i,j)

j )(U
τ(i,j)
i −U τ(i,j)

j )T are non-negative since it is a sum of positive semidef-

inite matrices, and 0 is an eigenvalue.

2.6.5 Proof of Theorem 2.3.2

Recall the set-up from the beginning of Section 2.2. There are n items where the features

of the items are given by the columns of U ∈ Rd×n and let w∗ ∈ Rd be the judgment vector.

Let τ be the selection function. Let Sm = {(i`, j`, y`)}m`=1 be the m samples of independent

pairwise comparisons where each pair of items (i`, j`) is chosen uniformly at random from

all the pairs of items P := {(i, j) ∈ [n]× [n] : i < j}. Furthermore, y` is 1 if the i`-th item

beats the j`-th item and 0 otherwise where y` ∼ Bernoulli

(
exp
(
〈Uτ(i`,j`)i`

−Uτ(i`,j`)j`
,w∗〉

)
1+exp

(
〈Uτ(i`,j`)i`

−Uτ(i`,j`)j`
,w∗〉

)
)

.

We will not repeat these assumptions in the following lemmas.

In this section, we present the exact lower bounds on the number of samples and upper

bound on the estimation error. The exact values of the constants that appear in the

main text, i.e. C1 and C2, appear at the end of the proof.

Theorem 2.6.4 (restatement of Theorem 2.3.2: sample complexity of estimating w∗).
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Let U , w∗, τ , and Sm be defined as above. Let ŵ be the maximum likelihood estimator,

i.e. the minimum of Lm in Equation (2.3), restricted to the set W(b∗). The following

expectations are taken with respect to a uniformly chosen random pair of items from P .

For (i, j) ∈ P , let

Z(i,j) := (U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T

λ := λmin(EZ(i,j)),

η := σmax(E((Z(i,j) − EZ(i,j))
2)),

ζ := max
(k,`)∈P

λmax(EZ(i,j) − Z(k,`)),

where for a positive semidefinite matrix X, λmin(X) and λmax(X) are the smallest/largest

eigenvalues of X, and where for any matrix X, σmax(X) is the largest singular value of

X. Let

β := max
(i,j)∈P

‖U τ(i,j)
i − U τ(i,j)

j ‖∞. (2.33)

Let δ > 0. If λ > 0 and if

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,
8 log(2d/δ)(6η + λζ)

3λ2

}
,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m

where the randomness is from the randomly chosen pairs and the outcomes of the pairwise

comparisons.

Proof. We use the proof technique of Theorem 4 in [NOS16]. We use the notation Lm(w)

instead of Lm(w;U, Sm, τ) throughout the proof since it is clear from context.

By definition Lm(ŵ) ≤ Lm(w∗). Let ∆ := ŵ − w∗. Then

Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉 (2.34)

≤ −〈∇Lm(w∗),∆〉 (2.35)

≤ ‖∇Lm(w∗)‖2‖∆‖2, (2.36)
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by the Cauchy-Schwarz inequality.

Recall Taylor’s theorem:

Theorem 2.6.5 (Taylor’s Theorem). Let f : Rn → R. If the Hessian Hf of f exists

everywhere on its domain, then for any x,∆ ∈ Rn, there exists λ ∈ [0, 1] such that

f(x+ ∆) = f(x) + 〈∇f(x),∆〉+ 1
2
∆THf (x+ λ∆)∆.

Now, we lower bound Equation (2.34). Let HLm be the Hessian of Lm. Then by

Taylor’s theorem, there exists λ ∈ [0, 1] such that

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (2.37)

=
1

2m
∆THLm(w∗ + λ∆)∆ (2.38)

=
1

2m

m∑
`=1

h(〈w∗ + λ∆, U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉)∆T (U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T∆

(2.39)

where the Hessian HLm is computed in Lemma 2.6.10 and h(x) := ex

(1+ex)2
.

Note

|〈w∗ + λ∆, U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉| (2.40)

= |(1− λ)〈w∗, U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉+ λ〈ŵ, U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉| (2.41)

≤ (1− λ)b∗ + λb∗ (2.42)

= b∗ (2.43)

where the second to last inequality is by definition of b∗ and since ŵ ∈ W(b∗). Because

h(x) = ex

(1+ex)2
is symmetric and decreases on [0,∞) by Lemma 2.6.11, for any i, j ∈ [n],

h(〈w∗ + λ∆, U
τ(i,j)
i − U τ(i,j)

j 〉) ≥ h(b∗) =
exp(b∗)

(1 + exp(b∗))2
.

Therefore,

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (2.44)
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≥ exp(b∗)

2m(1 + exp(b∗))2

m∑
`=1

∆T (U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T∆. (2.45)

By Lemma 2.6.6 and 2.6.8 and combining Equation (2.36) and Equation (2.45), with

probability at least 1− δ if

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,
8 log(2d/δ)(6η + λζ)

3λ2

}
,

(
exp(b∗)

2(1 + exp(b∗))2

)
λ

2
‖∆‖2

2 ≤
1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (2.46)

≤

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
‖∆‖2 (2.47)

=⇒ ‖∆‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
. (2.48)

In the main text of this chapter with order terms, it is easy to see the O(·) bound on the

upper bound on the estimation error. Furthermore, it is easy to see that for the constants

C1 and C2 given in the main text of this chapter, we have C1 = 4/6 and C2 = 48/3.

We now present the lemmas used in the prior proof.

Lemma 2.6.6. Let δ > 0. Under the model assumptions in this section, if

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6
,

then with probability at least 1− δ
2
,

∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

≤

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m

where β := max(i,j)∈P

∥∥∥U τ(i,j)
i − U τ(i,j)

j

∥∥∥
∞
.
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Proof. For ` ∈ [m], let

X` =
1

m

(
U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)( exp(〈w∗, U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉)
1 + exp(〈w∗, U τ(i`,j`)

i`
− U τ(i`,j`)

j`
〉)
− y`

)
,

so 1
m
∇Lm(w∗) =

∑m
`=1X` by Lemma 2.6.10.

We now show (1) E(X`) = 0 where the expectation is taken with respect to a uniformly

chosen pair of items, (2) the coordinates of X` are bounded, and (3) the coordinates of

X` have bounded second moments.

First E(X`) = 0. By conditioning on each pair of items, each of which have the same

probability of being chosen,

E(X`) =
1(
n
2

) ∑
(i,j)∈P

E(X`|items i, j are chosen) (2.49)

=
1(
n
2

) ∑
(i,j)∈P

1

m

(
U
τ(i,j)
i − U τ(i,j)

j

)( exp(〈w∗, U τ(i,j)
i − U τ(i,j)

j 〉)
1 + exp(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)

− E(y(i,j))

)
(2.50)

=
1(
n
2

) ∑
(i,j)∈P

1

m

(
U
τ(i,j)
i − U τ(i,j)

j

)
(2.51)

(
exp(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)

1 + exp(〈w∗, U τ(i,j)
i − U τ(i,j)

j 〉)
−

exp(〈w∗, U τ(i,j)
i − U τ(i,j)

j 〉)
1 + exp(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)

)
= 0, (2.52)

where the expectation is with respect to the random pair that is drawn and the outcome

of the pairwise comparison.

Second, |X(k)
` | ≤

β
m

where X
(k)
` is the k-th coordinate of X`. Then for k ∈ [d]

|X(k)
` | (2.53)

=

∣∣∣∣∣ 1

m

(
(U

τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k)
)( exp(〈w∗, U τ(i`,j`)

i`
− U τ(i`,j`)

j`
〉)

1 + exp(〈w∗, U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉)
− y`

)∣∣∣∣∣ (2.54)
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≤ 1

m

∣∣∣((U
τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k)
)∣∣∣ since

exp(〈w∗, U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉)
1 + exp(〈w∗, U τ(i`,j`)

i`
− U τ(i`,j`)

j`
〉)
, y` ∈ [0, 1]

(2.55)

≤ 1

m
max

(i,j)∈P
‖U τ(i,j)

i − U τ(i,j)
j ‖∞ (2.56)

=
β

m
, (2.57)

by definition of β.

Third, E((X
(k)
` )2) ≤ β2

m2 . Let p(x) = ex

1+ex
. For k ∈ [d],

E((X
(k)
` )2) (2.58)

=
1(
n
2

) ∑
(i,j)∈P

E((X
(k)
` )2|items i, j are chosen) (2.59)

=
1(
n
2

) ∑
(i,j)∈P

1

m2

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

E
((

p(〈w∗, U τ(i,j)
i − U τ(i,j)

j 〉)− y(i,j)

)2
)

(2.60)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

(2.61)(
p(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)2 − 2E(y(i,j))p(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉) + E((y(i,j))

2)
)

(2.62)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2 (
−p(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)2 + E((y(i,j))

2)
)

(2.63)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2 (
−p(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)2 + E(y(i,j))

)
(2.64)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

(2.65)(
p(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)− p(〈w∗, U τ(i,j)

i − U τ(i,j)
j 〉)2

)
(2.66)

≤ β2

4m2
(2.67)

where Equation (2.64) is because y(i,j) ∈ {0, 1} and where the last line is by definition of
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β and since p(〈w∗, U τ(i,j)
i − U τ(i,j)

j 〉) ∈ [0, 1] and x− x2 ≤ 1
4

for x ∈ [0, 1].

Therefore, 1
m
∇Lm(w∗) =

∑m
`=1X` is a sum of i.i.d. mean zero random variables.

Hence, each coordinate is also a sum of i.i.d. random variables with mean zero, so

Bernstein’s inequality applies. Recall Bernstein’s inequality:

Theorem 2.6.7 (Bernstein’s inequality). Let Xi be i.i.d. random variables such that

E(Xi) = 0 and |Xi| ≤M . Then for any t > 0,

P

(
m∑
i=1

Xi > t

)
≤ exp

(
−

1
2
t2∑

EX2
i + 1

3
Mt

)
.

We apply Bernstein’s inequality to the k-th coordinate of 1
m
∇Lm(w∗):

P
(∣∣∣∣ 1

m
∇Lm(w∗)(k)

∣∣∣∣ > t

)
≤ 2 exp

(
−

1
2
t2

β2

4m
+ βt

3m

)
(2.68)

since
∑m

`=1 E((X
(k)
` )2) ≤ β2

4m
and |X(k)

` | ≤
β
m

.

Since ‖x‖2 ≤
√
d‖x‖∞ for any x ∈ Rd,

P
(∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

> t

)
(2.69)

≤ P

(√
d

m
‖∇Lm(w∗)‖∞ > t

)
(2.70)

= P
(∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
∞
>

t√
d

)
(2.71)

≤ 2d exp

− 1
2
t2

d

β2

4m
+

β t√
d

3m

 by union bound and inequality Equation (2.68) (2.72)

= 2d exp

(
− t2

dβ2

2m
+ 2βt

√
d

3m

)
(2.73)

= 2d exp

(
− 6mt2

3dβ2 + 4βt
√
d

)
. (2.74)
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In other words, for t > 0, with probability at least 1− 2d exp
(
− 6mt2

3dβ2+4βt
√
d

)
,

‖ 1

m
∇Lm(w∗)‖2 ≤ t.

Let

α := 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ).

Set

t =

√
α

6m
.

If

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6
=
α

6
,

then

2d exp

(
− 6mt2

3dβ2 + 4βt
√
d

)
≤ δ

2
,

which we establish below.

If

m ≥ α

6
(2.75)

=⇒ m ≥ α(4β log (4d/δ))2d

6(4β log (4d/δ))2d
(2.76)

=⇒ m ≥ α(4β log (4d/δ))2d

6(α− 3β2 log (4d/δ)d)2
(2.77)

=⇒ m ≥ αd

6
(
α−3β2 log (4d/δ)d

4β log (4d/δ)

)2 (2.78)

=⇒
(
α− 3β2 log (4d/δ)d

4β log (4d/δ)

)2

≥ αd

6m
(2.79)

=⇒
α

log (4d/δ)
− 3β2d

4β
≥
√
αd

6m
(2.80)

=⇒ α

log (4d/δ)
≥ 4β

√
αd

6m
+ 3β2d (2.81)

=⇒ α

4β
√

αd
6m

+ 3β2d
≥ log (4d/δ) (2.82)
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=⇒ t26m

4βt
√
d+ 3β2d

≥ log (4d/δ) (2.83)

=⇒ 2d exp

(
− 6mt2

4βt
√
d+ 3β2d

)
≤ δ

2
(2.84)

(2.85)

Therefore, if

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6

with probability at least 1− δ
2
,

∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

<

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
.

Lemma 2.6.8. For (i, j) ∈ P , let Z(i,j) = (U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T . Let

λ := λmin(EZ(i,j))

where for a square matrix U , λmin(U) is the smallest eigenvalue of U . Let

η := σmax(E((Z(i,j) − EZ(i,j))
2))

where σmax(X) is the largest singular value of a matrix X. Let

ζ := max
(i,j)∈P

λmax(EZ(i,j) − Z(i,j)),

where λmax(X) is the largest eigenvalue of X. The expectation in λ, η, and ζ is taken

with respect to a uniformly chosen random pair of items.

Let δ > 0. Under the model assumptions in this section, if λ > 0 and if

m ≥ 8 log(2/δ)(6η + λζ)

3λ2
,
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then with probability at least 1− δ
2
,

1

m

m∑
`=1

∆T (U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T∆ ≥ ‖∆‖2
2

λ

2

where

∆ = ŵ − w∗.

Proof. Let

X` =
1

m
(U

τ(i`,j`)
i`

−U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

−U τ(i`,j`)
j`

)T− 1

m
E((U

τ(i,j)
i −U τ(i,j)

j )(U
τ(i,j)
i −U τ(i,j)

j )T )).

Notice that 1
m

∑m
`=1(U

τ(i`,j`)
i`

−U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

−U τ(i`,j`)
j`

)T is a sum of random matrices

where the randomness is from the random pairs of items that are chosen in the samples.

Therefore, bounding the smallest eigenvalue of this random matrix is sufficient to get

the desired lower bound as we show.

Since EX` = 0 by construction and X` is self-adjoint since it is symmetric and real,

we apply the following concentration bound to
∑m

`=1X`:

Theorem 2.6.9 (Theorem 1.4 in [Tro12]). Consider a finite sequence {Xk} of indepen-

dent, random, self-adjoint matrices with dimension d. Assume that each random matrix

satisfies EXk = 0 and λmax(Xk) ≤ R almost surely. Then for all t ≥ 0

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d exp

(
−t2/2

σ2 +Rt/3

)
, (2.86)

where

σ2 := σmax

(∑
k

E
(
X2
k

))
.

Notice

σmax

(
m∑
`=1

E
(
X2
`

))
= mσmax(E

(
X2

1

)
) since each X` is distributed the same (2.87)

=
m

m2
η (2.88)

=
1

m
η. (2.89)
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Then applying the above theorem, for t ≥ 0,

P

(
λmax

(
m∑
`=1

−X`

)
≥ t

)
≤ d exp

(
−t2/2

η/m+ ζt/(3m)

)
(2.90)

≤ d exp

(
−3mt2

6η + 2ζt

)
. (2.91)

In other words, for all t ≥ 0, with probability at least 1− d exp
(
−3mt2

6η+2ζt

)
,

λmax

(
m∑
`=1

−X`

)
≤ t (2.92)

=⇒ ∆T

‖∆‖2

(
m∑
`=1

−X`

)
∆

‖∆‖2

≤ t (2.93)

=⇒ ∆T (E((U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ))−

1

m

m∑
`=1

(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T )∆ ≤ t‖∆‖2
2 (2.94)

=⇒ ∆T
(
E((U

τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ))
)

∆− t‖∆‖2
2

≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T

)
∆ (2.95)

=⇒ ‖∆‖2
2

∆T

‖∆‖2

(
E((U

τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ))
) ∆

‖∆‖2

− t‖∆‖2
2

≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T

)
∆ (2.96)

=⇒ (λ− t)‖∆‖2
2 ≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T

)
∆

(2.97)

since λ := λmin(E((U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T )).

Set t = λ
2
. Since λ > 0 by assumption, Equation (2.97) becomes

λ

2
‖∆‖2

2 ≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T

)
∆
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and holds with probability at least 1− δ
2

if

m ≥ 8 log(2d/δ)(6η + λζ)

3λ2

since

d exp

(
−3mλ2

4

6η + 2λ
2
ζt

)
≤ δ

2
(2.98)

=⇒
−3mλ2

4

6η + 2λ
2
ζt
≤ − log(2d/δ) (2.99)

=⇒
3mλ2

4

6η + 2λ
2
ζt
≥ 2 log(2d/δ) (2.100)

=⇒ m ≥ 8 log(2d/δ)(6η + λζ)

3λ2
. (2.101)

(2.102)

Lemma 2.6.10 (Gradient and Hessian of Equation (2.3)). Given samples Sm, features

of the n items U ∈ Rd×n, and w ∈ Rd,

1

m
∇Lm(w;U, Sm, τ) (2.103)

=
1

m

m∑
`=1

exp(〈w,U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉)
1 + exp(〈w,U τ(i`,j`)

i`
− U τ(i`,j`)

j`
〉)

(
U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)
− y`

(
U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)
(2.104)

and

1

m
HLm(w;U, Sm, τ) (2.105)

=
1

m

m∑
`=1

exp(〈w,U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉)
(1 + exp(〈w,U τ(i`,j`)

i`
− U τ(i`,j`)

j`
〉))2

(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)T

(2.106)
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Proof. Gradient: Let f(x) := log(1 + ex) for x ∈ R and g(w; y) := 〈w, y〉 for w, y ∈ Rd,

so

1

m
Lm(w;U, Sm, τ) =

1

m

m∑
`=1

(f ◦ g)(w;U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

) + y`g(w;U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

).

Note

f ′(x) =
ex

1 + ex

and ∇wg(w; y) = y.

We arrive at the desired result by the chain rule:

1

m
Lm(w;U, Sm, τ) = (2.107)

1

m

m∑
`=1

f ′(g(w;U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)) (2.108)

∇wg(w;U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)− y`∇wg(w;U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

).

Hessian: Note

f ′′(x) =
ex(1 + ex)− e2x

(1 + ex)2
=

ex

(1 + ex)2
.

Let [HLm(w;U, Sm)]k be the kth row of the Hessian and ∇Lm(w;U, Sm)(k) be the kth

entry of the gradient. Then by the chain rule again,

[HLm(w;U, Sm)]Tk

= ∇w(∇Lm(w;U, Sm)(k))

=
m∑
`=1

((U
τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k))f ′′(g(w;U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

))∇wg(w;U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

)

=
m∑
`=1

exp(〈w,U τ(i`,j`)
i`

− U τ(i`,j`)
j`

〉)
(1 + exp(〈w,U τ(i`,j`)

i`
− U τ(i`,j`)

j`
〉))2

((U
τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k))(U
τ(i`,j`)
i`

− U τ(i`,j`)
j`

),

which proves the claim.

Lemma 2.6.11. Let h(x) = ex

(1+ex)2
. Then h(x) is symmetric and decreases on [0,∞).
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Proof. Symmetry:

h(−x) =
e−x

(1 + e−x)2
(2.109)

=
e−x

e−2x(ex + 1)2
(2.110)

=
ex

(ex + 1)2
(2.111)

= h(x). (2.112)

Decreasing on [0,∞):

Note

h′(x) =
ex(1 + ex)2 − e2x2(1 + ex)

(1 + ex)4
(2.113)

=
ex(1 + ex)− e2x2

(1 + ex)3
(2.114)

=
ex(1− ex)
(1 + ex)3

(2.115)

≤ 0 (2.116)

for x ∈ [0,∞) since on this interval, 1 − ex ≤ 0 but ex, (1 + ex)3 ≥ 0. Thus h(x) is

decreasing on [0,∞).

2.6.6 Specific Selection Functions: Proofs of Corollaries 2.3.4

and 2.3.5

In this section, we present the full lower bounds on the number of samples and upper

bound on the estimation error. The definitions of the constants that appear in the main

text, i.e. C3 and C4, appear at the end of the applicable proofs.

Proof of Corollary 2.3.4

The following lemma is a straight forward generalization from [NOS16], but we include

the proof for completeness. We need this lemma to prove Corollary 2.3.4.
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Lemma 2.6.12. Let U ∈ Rd×n. Assume that the columns of U sum to 0:
∑n

i=1 Ui = 0.

Then

E((Ui − Uj)(Ui − Uj)T ) =
n(
n
2

)UUT

where the expectation is with respect to a uniformly at randomly chosen pair of items.

Proof. Let ei ∈ Rn denote the i-th standard basis vector, In×n denote the n× n identity

matrix, and 1 ∈ Rn be the vector of all ones. Since the expectation is over a uniformly

chosen pair of items (i, j) ∈ P ,

E((Ui − Uj)(Ui − Uj)T ) (2.117)

= E(U(ei − ej)(ei − ej)TUT ) (2.118)

=
1(
n
2

)U
 ∑

(i,j)∈P

eie
T
i − eieTj − ejeTi + eje

T
j

UT (2.119)

=
1(
n
2

)U
(n− 1)

n∑
i=1

eie
T
i −

∑
(i,j)∈P

eie
T
j + eje

T
i

UT , each item is in n− 1 comparisons

(2.120)

=
1(
n
2

)U
(n− 1)In×n −

∑
(i,j)∈P

eie
T
j + eje

T
i

UT (2.121)

=
1(
n
2

)U ((n− 1)In×n −
(
11

T − In×n
))
UT explained below (2.122)

=
1(
n
2

)U (nIn×n − 11
T
)
UT (2.123)

=
1(
n
2

)(nUUT − U11TUT ) (2.124)

=
n(
n
2

)UUT since U1 =
n∑
i=1

Ui = 0 by assumption. (2.125)

Equation (2.122) is because eie
T
j is the matrix with a 1 in the i-th row and j-th column

and 0 elsewhere and we are summing over all (i, j) ∈ [n]× [n] where i < j. Thus, the sum

equals 11T − In×n, which is the matrix with ones everywhere except for the diagonal.
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Corollary 2.6.13 (Restatement of Corollary 2.3.4). Assume the set-up stated in the

beginning of Section 2.2. For the selection function τ , suppose τ(i, j) = [d] for any

(i, j) ∈ P . In other words, all the features are used in each pairwise comparison. Assume

n > d. Let ν := max{max(i,j)∈P ‖Ui − Uj‖2
2, 1}. Without loss of generality, assume the

columns of U sum to zero:
∑n

i=1 Ui = 0. Then,

λ =
nλmin(UUT )(

n
2

) ,

ζ ≤ ν +
nλmax(UUT )(

n
2

) ,

and

η ≤ νnλmax(UUT )(
n
2

) +
n2λmax(UUT )2(

n
2

)2 .

Let

m1 =
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6

and

m2 =
48 log(2d/δ)

(
n
2

)2

3n2λmin(UUT )2

(
νnλmax(UUT )(

n
2

) +
n2λmax(UUT )2(

n
2

)2

)

+
8 log(2d/δ)

(
n
2

)
3nλmin(UUT )

(
ν +

nλmax(UUT )(
n
2

) )
.

Let δ > 0. Hence, if

m ≥ max {m1,m2} ,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

(
n
2

)
exp(b∗)nλmin(UUT )

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
. (2.126)

Proof. Throughout this proof, we use Ui instead of U
τ(i,j)
i for any items i, j since τ(i, j)

selects all coordinates.
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If
∑n

i=1 Ui 6= 0, simply subtract the column mean, Ū := 1
n

∑n
i=1 Ui, from each column.

This operation does not affect the underlying pairwise probabilities since

P(item i beats item j) =
1

1 + exp(−〈w∗, Ui − Uj〉)
(2.127)

=
1

1 + exp(−〈w∗, (Ui − Ū)− (Uj − Ū)〉)
. (2.128)

Let Ũ = U(I − 1
n
11

T ) be the centered version of U , i.e. where we subtract Ū from each

column of U . Since n > d and by Proposition 2.6.14, if λmin(U) > 0, then λmin(Ũ) > 0

generically. Therefore, WLOG, we may assume
∑n

i=1 Ui = 0.

First, we simplify λ. By Lemma 2.6.12,

λ = λmin(E((Ui − Uj)(Ui − Uj)T )) =
nλmin(UUT )(

n
2

) .

Second, we upper bound ζ. Let (k, `) ∈ P , then

λmax

(
E(Ui − Uj)(Ui − Uj)T − (Uk − U`)(Uk − U`)T

)
(2.129)

= λmax

(
n(
n
2

)UUT − (Uk − U`)(Uk − U`)T
)

by Lemma 2.6.12 (2.130)

≤ λmax

(
n(
n
2

)UUT

)
+ λmax

(
(Uk − U`)(Uk − U`)T

)
(2.131)

= λmax

(
n(
n
2

)UUT

)
+ ‖(Uk − U`)‖2

2 (2.132)

≤ λmax

(
n(
n
2

)UUT

)
+ ν, (2.133)

(2.134)

where the second to last line is since the largest eigenvalue of a rank one matrix xxT is

‖x‖2
2 and the last line is by definition of ν.

Third, we upper bound η. Let ei ∈ Rn denote the i-th standard basis vector. For any
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random variable X, we have

E(X − E(X))2 = E(X2)− E(X)2. (2.135)

Furthermore, since η is the largest singular value of a symmetric matrix squared, the

largest eigenvalue of that matrix is also equal to η. Therefore,

η = λmax

(
E((Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T )− E((Ui − Uj)(Ui − Uj)T )2

)
.

Most steps are explained below after the equations. Because the expectation is with

respect to a uniformly at random pair of items (i, j) ∈ P and by Lemma 2.6.12,

λmax

(
E((Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T )− E((Ui − Uj)(Ui − Uj)T )2

)
(2.136)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T −
n2(
n
2

)2UU
TUUT


(2.137)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
(Ui − Uj)(Ui − Uj)T −

n2(
n
2

)2UU
TUUT


(2.138)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT − n2(

n
2

)2UU
TUUT


(2.139)

≤ λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT

 (2.140)

+ λmax

(
n2(
n
2

)2UU
TUUT

)

= max
x

xT

‖x‖

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT

 x

‖x‖
(2.141)

+ λmax

(
n2(
n
2

)2UU
TUUT

)
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= max
x

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

) xT
‖x‖

U(ei − ej)(ei − ej)TUT x

‖x‖


+ λmax

(
n2(
n
2

)2UU
TUUT

)
(2.142)

≤ max
x

 ν(
n
2

) ∑
(i,j)∈P

xT

‖x‖
U(ei − ej)(ei − ej)TUT x

‖x‖

+ λmax

(
n2(
n
2

)2UU
TUUT

)
(2.143)

= λmax

 ν(
n
2

) ∑
(i,j)∈P

U(ei − ej)(ei − ej)TUT

+ λmax

(
n2(
n
2

)2UU
TUUT

)
(2.144)

=
νn(
n
2

)λmax

(
UUT

)
+

n2(
n
2

)2λmax

(
UUT

)2
by Lemma 2.6.12. (2.145)

(2.146)

Equation (2.138) is because (Ui − Uj)T (Ui − Uj) ∈ R. Equation (2.143) is because

(Ui − Uj)T (Ui − Uj) ≥ 0 and xT

‖x‖U(ei − ej)(ei − ej)TUT x
‖x‖ ≥ 0.

Now that we have bounds on η and ζ and a simplified form for λ, we apply Theorem

2.3.2, completing the proof.

Now we explain how to get from these results to those in the main text of this chapter

with the order terms. The O(·) upper bound on the estimation error is easy to see. The

value of C1 is given at the end of the proof of Theorem 2.3.2. The only remaining term to

explain from the main text of this chapter is the upper bound of 8 log(2d/δ)(6η+λζ)
3λ2

, which

gives us a lower bound on the number of samples required.

In particular,

8 log(2d/δ)(6η + λζ)

3λ2
(2.147)

=
48 log(2d/δ)η

3λ2
+

8 log(2d/δ)ζ

3λ
(2.148)

=
48 log(2d/δ)

(
n
2

)2

3n2λmin(UUT )2

(
νnλmax(UUT )(

n
2

) +
n2λmax(UUT )2(

n
2

)2

)
(2.149)

+
8 log(2d/δ)

(
n
2

)
3nλmin(UUT )

(
ν +

nλmax(UUT )(
n
2

) )
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=
48 log(2d/δ)

3λmin(UUT )2

((
n
2

)
νλmax(UUT )

n
+ λmax(UUT )2

)
(2.150)

+
8 log(2d/δ)

3λmin(UUT )

((
n
2

)
ν

n
+ λmax(UUT )

)

≤ 48 log(2d/δ)

3λmin(UUT )2

((
n
2

)
νλmax(UUT )

n
+ nλmax(UUT )2

)
(2.151)

+
8 log(2d/δ)

3λmin(UUT )

((
n
2

)
ν

n
+ nλmax(UUT )

)

≤ 48 log(2d/δ)

3λmin(UUT )2

(
nνλmax(UUT ) + nλmax(UUT )2

)
+

48 log(2d/δ)

3λmin(UUT )

(
nν + nλmax(UUT )

)
(2.152)

≤
48 log(2d

δ
)nν

3

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )
+
λmax(UUT )

λmin(UUT )

)
(2.153)

≤ 2 ∗ 48 log(2d/δ)nν

3

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )

)
(2.154)

= C3 log(2d/δ)nν

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )

)
(2.155)

where Equation (2.153) is because ν ≥ 1, Equation (2.154) is because λmax(UUT )
λmin(UUT )

≥ 1, and

C3 = 2 ∗ 48/3. We remark that the assumption that ν ≥ 1 was made to simplify the

upper bound and is not required.

As we mentioned, we can assume U is centered without loss of generality, because we

can subtract the mean column from all columns if they are not centered. However one

may wonder then what happens to λmin(UUT ) =
√
σmin(U) once U is centered. Since

we assume n > d, it will generically be non-zero, as we make precise in the following

proposition.

Proposition 2.6.14. Given an arbitrary rank-d, d× n matrix Ũ , let U be its centered

version, i.e. U = Ũ(I − 1
n
11

T ). Then σmin(U) = 0 if and only if the all-ones vector is in

the row space of Ũ .

Proof. Suppose Ũ contains the all-ones vector in its row space, and therefore let v be
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such that ŨTv = 1. Let Q = (I − 1
n
11

T ). Then

UTv = QŨTv = 0

since the all-ones vector is in the nullspace of Q, implying that σmin(U) = 0. For the

other direction suppose σmin(U) = 0. Then there exists a vector v 6= 0 such that

0 = UTv = QŨTv.

This implies either that ŨTv = 0 or ŨTv is in the nullspace of Q. Since we assumed that

Ũ has full row rank, then it must be that ŨTv = 1, the only vector in the nullspace of

Q.

Discussion of Corollary 2.3.4 as compared to related work

While our sample complexity theorem for MLE of the parameters of FBTL is novel to

the best of our knowledge, there are some related results that merit a comparison. First,

there is a result in [SR18] that gives sample complexity results for a different estimator

of FBTL parameters under a substantially different sampling model. In particular, they

only allow pairs to be sampled from a graph, and then for each sampled pair they observe

a fixed number of pairwise comparisons. In their results one can see that as the number

of pairs sampled increases, their error upper bound increases and the probability of their

resulting bound also decreases. In contrast, our analysis shows that our error bound

decreases as m increases, and the probability of our resulting bound remains constant.

Second, we can also attempt a comparison to the bounds for BTL without features

in [NRW+12], despite the fact that with standard basis features, our bound does not

apply because λ = 0. Assuming that exp(b∗)/λ is a constant in our bound and that νλ̄ is

a constant, we roughly have an error bound of O(1) given m = Θ(n2(β2 + β)d log(d/δ))

samples. The result in [NRW+12] instead has that m = Θ(d2 log d) gives an error bound

of O(1) with probability 1− 2
d
, recalling that in their setting d = n. So if we can tighten

bounds that require β in our proof, our results may compare favorably.

Recall the definition of β in Equation (2.4): β := max(i,j)∈P ‖U τ(i,j)
i −U τ(i,j)

j ‖∞. In our

proof, we use this to bound differences between feature vectors at Equation (2.67). In

particular, we bound 1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤ β2. If we instead directly
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made the assumption that

β̃2 :=
1(
n
2

) max
k∈[d]

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

,

we could replace β with β̃ directly in our bounds. Assume β̃ ≤ 1/n2. Then our sample

complexity would reduce to m = Θ(d log(d/δ)) = Θ(d log(2d2)) = Θ(d log(d)) where

recall δ = 2
d
, beating the complexity in [NRW+12]. However, it is not clear in general

what impact the assumption that β̃ ≤ 1/n2 would have on the minimum eigenvalue of

UUT . Indeed, the standard basis vectors are a special case where β̃ ≤ 1/n, and as we

pointed out, for this special case λ = 0.

Third, although there are crucial differences between our model and the model in

[SW17] that make a direct comparison impossible, we attempt to roughly compare results.

The first difference is that they assume the feature vectors of the items are standard basis

vectors, which means our bounds do not apply just as in the comparison with [NRW+12].

The second difference, perhaps the most crucial, is that we make different assumptions

about how the intransitive pairwise comparisons are related to the ranking. In [SW17],

the items are ranked based on the probability that one items beats any other item chosen

uniformly at random. There are scenarios where the true ranking in our model is not the

same as the true ranking in [SW17]. The third difference is that we assume that pairs

are drawn uniformly at random, whereas they assume each pair (i, j) ∈ P is drawn xi,j

times where xi,j ∼ Binom(r, p) for r, p > 0.

Their result (Theorem 2) roughly says with probability 1/n13, if the gap between a pair

of consecutively ranked items’ scores is at least
√

log n/(npr), then their algorithm learns

the ranking exactly. We compare to our Corollary 2.3.6 with k = 1 and δ = 1
n13 though

again we emphasize an exact comparison is impossible because our model is not a special

case of theirs or vice versa. Our corollary says with enough samples with high probability,

we learn the ranking exactly. On average, their sampling method will see O(n2rp) samples,

so a reasonable way to compare results is to show the required number of samples in our

method is comparable to O(n2rp). If we assume that β, η, ζ, λ, and M are all constant,

αk =
√

log n/(npr) which is their assumed gap between scores, and d = n, the number

of samples we require is max{n log(n ∗n13), log(n), n log(n ∗n13)npr/ log(n)} = O(n2pr),

matching their bounds.
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Fourth, the set-up of [HSR+19] is the same as [SW17] except it considers the adaptive

setting. If the gaps of the utilities of consecutively ranked items are constant and denoted

by ∆, then under the same assumptions in the discussion about [SW17], our Corollary

2.3.6 is slightly better by a log factor than their Theorem 1a: O(log(n/δ)n/(∆)2)) vs.

O(log(n/δ)n log(2 log(2/∆))/(∆)2)). However, if many gaps between scores are large

and only some gaps between scores are small, their adaptive method is better than our

Corollary 2.3.6. This is not surprising since they can adaptively chose which pair to

sample next based on the past pairwise comparisons, whereas we consider the passive

setting.

Proof of Corollary 2.3.5

Corollary 2.6.15 (Restatement of Corollary 2.3.5). Assume the set-up stated in the

beginning of Section 2.2. Assume that for any (i, j) ∈ P , |τ(i, j)| = 1. Partition

P = tdk=1Pk into d sets where (i, j) ∈ Pk if τ(i, j) = {k} for k ∈ [d]. Let ε :=

min(i,j)∈P ‖U τ(i,j)
i − U τ(i,j)

j ‖∞. Then

λ ≥ ε2(
n
2

) min
k∈[d]
|Pk|,

ζ ≤ β2 +
β2(
n
2

) max
k∈[d]
|Pk|,

and

η ≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) .
Furthermore, let

m1 =
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6

and let

m3 :=
48 log(2d/δ)β4 maxk∈[d]

((
n
2

)
|Pk|+ |Pk|2

)
3ε4 mink∈[d] |Pk|2

+
8 log(2d/δ)β2

((
n
2

)
+ maxk∈[d] |Pk|

)
3ε2 mink∈[d] |Pk|

.
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Let δ > 0. If m ≥ max{m1,m3}, then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

(
n
2

)
exp(b∗)ε2 mink∈[d] |Pk|

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
,

where the randomness is from the randomly chosen pairs and the outcomes of the pairwise

comparisons.

Proof. Note that |Pk| > 0, so that λ > 0, for all k ∈ [d] if the model is identifiable. Let

U
(j)
i be the j-th coordinate of the vector Ui, ei be the i-th standard basis vector, and for

a vector x, let diag(x) be the diagonal matrix whose (i, i)-th entry is the i-th entry of x.

First we simplify and bound λ. Since each pair of items are chosen uniformly at

random,

E((U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ) (2.156)

=
1(
n
2

) ∑
(i,j)∈P

(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T (2.157)

=
1(
n
2

) d∑
k=1

∑
(i,j)∈Pk

(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T (2.158)

=
1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U

(k)
j )2

 diag(ek), (2.159)

which is a diagonal matrix. Therefore,

λ =
1(
n
2

) min
k∈[d]

 ∑
(i,j)∈Pk

(U
(k)
i − U

(k)
j )2

 (2.160)

≥ ε2(
n
2

) min
k∈[d]
|Pk|. (2.161)

Second, we simplify and bound ζ. Since |τ(k, j)| = 1 for all k, j ∈ P , let U
(τ(k,j))
i

denote the coordinate of Ui corresponding to the only element in τ(k, j). Define eτ(k,j)

similarly, which is one of the standard basis vectors. From the proof of bounding λ in

Equation (2.157) to Equation (2.159), we have E((U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ) =
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1

(n2)

∑d
k=1

(∑
(i,j)∈Pk(U

(k)
i − U

(k)
j )2

)
diag(ek). Let U(i, j) := U

τ(i,j)
i − U τ(i,j)

j . Thus,

ζ = max
(`,p)∈P

λmax(E(U(i, j)U(i, j)T )− U(`, p)U(`, p))T (2.162)

= max
(`,p)∈P

λmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

U(i, k)2

 diag(ek)− U(`, p)U(`, p)T

 (2.163)

= max
(`,p)∈P

λmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

U(i, k)2

 diag(ek)− U(`, p)2diag(eτ(`,p))

 (2.164)

≤ β2

(
max
k∈[d]

(
|Pk|(
n
2

) + 1

))
(2.165)

(2.166)

since the maximum eigenvalue of a diagonal matrix is bounded by the absolute value of

its largest entry. We have also applied the triangle inequality and the definition of β

since |τ(i, j)| = 1 for all (i, j) ∈ P .

Third, we simplify η. First notice from the proof of bounding λ from Equation (2.157)

to Equation (2.159),(
E(U

τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T
)2

(2.167)

=

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U

(k)
j )2

 diag(ek)

2

(2.168)

=
1(
n
2

)2

d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U

(k)
j )2

2

diag(ek), (2.169)

since the matrices above are diagonal.

Also,

E(((U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T )2) (2.170)

= E((U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T (U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T ) (2.171)
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=
1(
n
2

) d∑
k=1

∑
(i,j)∈Pk

(U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T (U
τ(i,j)
i − U τ(i,j)

j )(U
τ(i,j)
i − U τ(i,j)

j )T

(2.172)

=
1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U

(k)
j )4

 diag(ek), (2.173)

For any random variable X, we have

E(X − E(X))2 = E(X2)− E(X)2. (2.174)

Therefore,

η =
1(
n
2

)σmax

 d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U

(k)
j )4 − 1(

n
2

)
 ∑

(i,j)∈Pk

(U
(k)
i − U

(k)
j )2

2 diag(ek)


(2.175)

≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) (2.176)

since the largest singular value of a diagonal matrix is bounded by the largest entry of the

diagonal in absolute value. We have also applied the triangle inequality and definition of

β.

The remainder of the corollary follows by applying the bounds on λ, ζ and η to Theorem

2.3.2.

Now we explain how to get from these results to those in the main text of this chapter

with the order terms. The O(·) upper bound on the estimation error is easy to see. The

value of C1 is given at the end of the proof of Theorem 2.3.2. Finally, it is easy to see

C4 = 48/3 in the main text of this chapter.

Tightening the bounds of Corollary 2.3.5

Still in the setting where the selection function chooses one coordinate per pair, assume

|Pi| ≈ |Pj| for all i, j ∈ [d], where Pi is defined in Corollary 2.3.5. Then, as we have stated

in the main text, λ, η, ζ = O(1/d), and so by Corollary 2.3.5, Ω(d3 log(d/δ)) samples
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ensures the estimation error is O(1). However, by tightening a bound used in the proof

of Theorem 2.3.2, we can show Ω(d2 log(d/δ)) samples ensures the estimation error is

O(1).

Recall the definition of β in Equation (2.4): β := max(i,j)∈P ‖U τ(i,j)
i − U τ(i,j)

j ‖∞. In

our proof, we use this to bound differences between feature vectors at Equation (2.67).

In particular, for k ∈ [d] we bound 1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤ β2. For

any k ∈ [d], since |Pi| ≈ |Pj| for all i, j ∈ [d], each coordinate is chosen approximately(
n
2

)
/d times. Therefore, 1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤ β2 d since only
(
n
2

)
/d

of the
(
n
2

)
terms in the sum are non-zero. We can now replace β with β/

√
d in Corollary

2.3.5. Therefore, Ω(d2 log(d/δ)) samples ensures the estimation error is O(1) since

λ, η, ζ = O(1/d).

2.6.7 Proof of Corollary 2.3.6

In this section, we present the full lower bounds on the number of samples and upper

bound on the estimation error. The definitions of the constants that appear in the main

text, i.e. C5, appear at the end of the proof.

Corollary 2.6.16 (restatement of Corollary 2.3.6: sample complexity of learning the

ranking). Assume the set-up of Theorem 2.3.2. Pick k ∈ [
(
n
2

)
]. Let αk be the k-th smallest

number in {|〈w∗, Ui − Uj〉| : (i, j) ∈ P}. Let M := maxi∈[n] ‖Ui‖2. Let γ∗ : [n]→ [n] be

the ranking obtained from w∗ by sorting the items by their full-feature utilities 〈w∗, Ui〉
where γ∗(i) is the position of item i in the ranking. Define γ̂ similarly but for the

estimated ranking obtained from the MLE estimate ŵ. Let δ > 0. Let

m1 =
3β2 log (2d/δ)d+ 4

√
dβ log (2d2/δ)

6
,

m2 =
8 log(4d/δ)(6η + λζ)

3λ2
,

and

m3 =
64M2(1 + exp(b∗))4(3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ))

6α2
k exp(b∗)2λ2

.

If m ≥ {m1,m2,m3}, then with probability 1− 2
d
, K(γ∗, γ̂) ≤ k − 1, where K(γ∗, γ̂) =

|{(i, j) ∈ P : (γ∗(i)− γ∗(j))(γ̂(i)− γ̂(j)) < 0}| is the Kendall tau distance between two
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rankings.

Proof. By Theorem 2.3.2, with probability 1− δ, we have

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
(2.177)

≤ αk
2M

(2.178)

by definition of m.

The estimated full feature utility for item i is no further than αk
2

to the true utility of

item i:

|〈w∗ − ŵ, Ui〉| ≤ ‖w∗ − ŵ‖2‖Ui‖2 by Cauchy–Schwarz (2.179)

≤ αk‖Ui‖2

2M
(2.180)

≤ αk
2
. (2.181)

Therefore for any i ∈ [n],

〈w∗, Ui〉 −
αk
2
≤ 〈ŵ, Ui〉 ≤ 〈w∗, Ui〉+

αk
2
. (2.182)

Let Pαk := {(i, j) ∈ P : |〈w∗, Ui − Uj〉| ≥ αk} and let (i, j) ∈ Pαk . WLOG, suppose

〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0, i.e. γ∗(i) − γ∗(j) ≤ 0, which means item j is ranked higher

than item i in the true ranking given by γ. We want to show 〈ŵ, Ui〉 − 〈ŵ, Uj〉 ≤ 0,

i.e. γ̂(i)− γ̂(j) ≤ 0, meaning that item j is ranked higher than item i in the estimated

ranking given by γ̂.

By applying Equation (2.182) and using the fact 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0, we have

〈ŵ, Ui〉 ≤ 〈w∗, Ui〉+
αk
2

by Equation (2.182) (2.183)

= 〈w∗, Ui〉 − 〈w∗, Uj〉+ 〈w∗, Uj〉+
αk
2

(2.184)

≤ −αk + 〈w∗, Uj〉+
αk
2

since (i, j) ∈ Pαk and since 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0

(2.185)

≤ 〈w∗, Uj〉 −
αk
2

(2.186)
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≤ 〈ŵ, Uj〉 by Equation (2.182). (2.187)

Hence, 〈ŵ, Ui〉 − 〈ŵ, Uj〉 ≤ 0 for every i, j ∈ Pk, meaning that for any (i, j) ∈ Pk, γ∗

and γ̂ agree on the relative ordering of item i and j. Furthermore, |Pk| =
(
n
2

)
− (k − 1).

Therefore, K(γ∗, γ̂) ≤
(
n
2

)
− |Pk| = k − 1.

Now we explain how to get from these results to those in the main text of this chapter

with the order terms. The value of C1 and C2 are given at the end of the proof of

Theorem 2.3.2. It is easy to see that C5 = 64 ∗ 4 ∗ 24/6.

2.6.8 Synthetic Experiments

Code is available at https://github.com/Amandarg/salient_features.

Plot of Parameters in Theorem 2.3.2

In this section, the goal is to empirically illustrate how the top-t selection function and

intransitivities effect the parameters b∗, ζ, η, β, and λ from Theorem 2.3.2 and hence the

number of samples required and the exact upper bound on the estimation error. Just as

in the synthetic experiment section, we sample each coordinate of U from N(0, 1√
d
) and

each coordinate of w∗ is sampled from N(0, 4√
d
).

In the experiments, the ambient dimension d = 10 and the number of items n = 100.

We repeat the following 10 times: sample U and w∗, and use this U and w∗ while varying

t ∈ [d] to compute all of the parameters of interest and intransitivity rates. The x-axis

of each plot is the average strong stochastic transitivity (SST) violation rate defined

in Section 2.4.1 where the average is taken over the 10 experiments. From Figure 2.2,

intransitives decrease as t increases, so the x-axis in Figures 2.5 and 2.6 could roughly,

but not exactly, be replaced with t, where t is decreasing from 10 to 1. The y-axis on

the plots depict the average value and the bars represent the standard error over the 10

experiments.

Figure 2.5 shows the parameters in Theorem 2.3.2. Larger λ means smaller sample

complexity, whereas smaller b∗, ζ, β and η means smaller sample complexity.

Recall in the Supplement re-statement of Theorem 2.3.2, the number of samples m
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Figure 2.5: The parameters of Theorem 2.3.2 for the top-t selection function as
a function of the average strong stochastic transitivity violation rate
over the 10 experiments. The average over 10 experiments where a
new U and w∗ are drawn each time is depicted. The bars represent
the standard error over the 10 experiments.

required in the theorem is

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,
8 log(2d/δ)(6η + λζ)

3λ2

}
.

Let m1 = 3β2 log (4d/δ)d+4
√
dβ log (4d/δ)

6
and m2 = 8 log(2d/δ)(6η+λζ)

3λ2
. Figure 2.6 shows m1, m2,

and the bound from Theorem 2.3.2 with δ = 1
δ

= 1
10

without the number of samples, i.e.

the upper bound plot on the left does not include the number of samples in it. The plot

shows

4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6

without the 1√
m

term. Note that m1 has constant average and standard error bars since

with the dimension fixed, it is a function of β, which is constant in this case. Furthermore,

this plot suggests that m1 << m2.

Additional Synthetic Experiments and Details

First we define the Kendall tau correlation. It is used in both Sections 2.4.1 and 2.4.2,

and is defined as follows. Let γ, ρ : [n]→ [n] be two rankings on n items where γ(i) and

ρ(i) is the position of item i in the ranking. Let A =
∑

(i,j)∈P 1{(σ(i)−σ(j))(ρ(i)−ρ(j))>0},
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Figure 2.6: Number of samples m1 and m2 and upper bound on estimation error
from Theorem 2.3.2 for the top-t selection function as a function of
the average strong stochastic transitivity violation rate over the 10
experiments. The average over 10 experiments where a new U and w∗

are drawn is depicted. The bars represent the standard error over the
10 experiments.

respectively D =
∑

(i,j)∈P 1{(σ(i)−σ(j))(ρ(i)−ρ(j))≤0}, be the number of pairs of items that

σ and ρ agree, respectively disagree, on the relative ordering. Then the Kendall tau

correlation of ρ and γ is

KT (γ, ρ) :=
A−D(

n
2

) . (2.188)

Second, recall the set-up in Section 2.4: The ambient dimension d = 10, the number

of items n = 100, and the top-1 selection function is used. The coordinates of U are

drawn from N
(

0, 1√
d

)
,and the coordinates of w∗ are drawn from N

(
0, 4√

d

)
. We sample

m pairwise comparisons for m ∈ {2i ∗ (100) : i ∈ [11]}, fit the MLEs of the FBTL and

salient preference model with the top-1 selection function, and repeat 10 times. Figure

2.7 shows the average pairwise prediction accuracy, which is defined as

|{(i, j) ∈ P : (Pij − .5)(P̂ij − 5) > 0}|(
n
2

)
where P̂ij is the estimated pairwise probability that item i beats item j. The bars

shows the standard error over the 10 experiments. The gap between the salient feature

preference model MLE and the FBTL MLE is expected since the data is generated from

the salient feature preference model.
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Figure 2.7: Pairwise prediction accuracy as a function of the number of samples,
which are on the logarithmic scale, where the pairwise comparisons
are sampled from the salient feature preference model with the top-1.

Third, see Figures 2.8 and 2.9 for plots investigating model misspecification. In

particular, we use the same experimental set-up as in Section 2.4.1 except that in Figure

2.9 the salient feature preference model with the top-3 selection function is used to

generate the preference data. We fit the MLE for the salient feature preference model for

the top-t selection function for all t ∈ [d] for both plots. The FBTL model is equivalent

to when t = 10.

In Figure 2.8, we see that the model is very sensitive to the choice of t. As we would

expect, t = 2 has the second smallest error when the number of samples exceed 210.

In Figure 2.9, we see that the model is still sensitive to the choice of t, but not as

sensitive as in Figure 2.8. In this case, we can not only overestimate t, i.e. t > 3, but

underestimate t, i.e. t < 3. We see that t = 2 and t = 4–the two values of t closest

to the truth of t = 3–have roughly the same error. Interestingly, t = 1 has the worst

performance.

2.6.9 Real Data Experiments

Code is available at https://github.com/Amandarg/salient_features.

Algorithm Implementation

In this section, we provide relevant details about how each algorithm is implemented.
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Figure 2.8: These plots investigate model misspecification. The true generative
model for the pairwise preference data is the salient feature preference
model with the top-1 selection function. The coordinates of U and w
are sampled from a Gaussian as described in the main text. The
MLEs for the salient feature preference model with the top-t selection
function for t ∈ [d] is shown.
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function for t ∈ [d] is shown.

67



• RankNet: We use the RankNet implementation found at https://github.com/

airalcorn2/RankNet, which uses Keras. However, we use the Adam optimizer

with default parameters except with a learning rate of 0.0001. We also add an `2

penalty to the weights.

• Salient feature preference model and FBTL: We use sklearn’s logistic re-

gression solver. In particular, we set tol = 1e − 10 and max iter = 10000.

Furthermore, we do not fit an intercept. We use the default liblinear solver for

real data experiments, and the sag solver for synthetic data experiments since we

do not use regularization. All other parameters use the default values.

• Ranking SVM: We use sklearn’s LinearSVC solver with the same parameters

as above. In particular, we do not fit an intercept.

The synthetic experiments were ran on a 2016 MacBook Pro with a 2.6 GhZ Quad-

Core Intel Core i7 processor. The real data experiments were ran on the University of

Michigan’s Great Lakes Cluster 1.

District Compactness Experiments

We refer the reader to [KKK17] for the full details about the district compactness data,

but provide relevant details here. We obtained the data by contacting the authors.

Pairwise comparison description There were three pairwise comparison studies.

Due to data collection issues, only two of these pairwise comparison studies, called

shiny2pairs and shiny3pairs, are available. In shiny2pairs, there are 3,576 pairwise

for 298 people who each answered 12 pairwise comparisons. In shiny3pairs, there are

1,800 pairwise comparisons for 90 people who each answered 20 pairwise comparisons.

There is no overlap in the districts used in shiny2pairs and shiny3pairs.

k-wise rankings for k > 2 description There are 8 sets of k-wise ranking data.

In many cases, the feature data for some districts are missing entirely, so in our own

experiments, we throw out any district without feature data. Recall, we use the k-wise

1https://arc-ts.umich.edu/greatlakes/
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ranking data for validation and testing, so we also remove any districts present in the

training set.

• Shiny1 contains rankings for 298 people on 20 districts, but the feature information

for 10 districts are missing. The people are composed of undergraduate students,

PhD students, law students, consultants, legislators involved in the redistricting

process, and judges.

• Shiny2 contains rankings on 20 districts for 103 people collected on Mturk. The

feature information on 10 of the districts are missing however.

• Mturk contains another set of Mturk experiments collected on 100 districts and 13

people, which we use as our validation set. However, 34 of the districts also had

pairwise comparison information collected about them, so we throw these out.

• UG1-j1, UG1-j2, UG1-j3, UG1-j4, and UG1-j5 are 4 sets of 20-wise ranking data

for 4 undergraduates at Harvard. The initial task was to rank 100 districts at once,

but the resulting data set contains 5 sets of rankings on 20 districts. Out of the

100 districts used across the 5 sets of rankings, there are 38 districts with missing

feature information.

See Figure 2.10 which depicts the average Kendall tau correlation between pairs of

rankings in a k-wise ranking data set and the standard deviation. Recall the Kendall tau

correlation, KT (·, ·), is defined in Equation (2.188). This plot shows roughly how much

people agree with each other, where higher values mean more agreement. In particular,

suppose there are N k-wise rankings given by σ1, . . . , σN . Then the average Kendall tau

correlation for the N rankings is

1

2
(
N
2

) ∑
(i,j)∈[N ]×[N ]

KT(σi, σj)

and refer to this quantity as the average intercoder Kendall tau correlation. We see that

people typically disagree on shiny2 and shiny1, whereas people tend to agree more

often on the rest of the k-wise data sets perhaps because there are fewer people.

The districts used in shiny1 and shiny2 are the same, and these districts also comprise

one of the UG1 data sets as well. However, the districts in mturk are disjoint from the rest
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Figure 2.10: For each of the k-wise ranking data sets, the average agreement be-
tween people in terms of the Kendall tau correlation is shown.

of the k-wise ranking sets. In addition, mturk has relatively low intercoder variability.

For these two reasons, we decided to use mturk as our validation set. We decided to

keep shiny1 and shiny2 separate since the original authors did and also since they are

comprised of different groups of people resulting in different behavior, e.g., shiny1 has a

higher average intercoder Kendall tau correlation than shiny2.

Data preprocessing We remove pairwise comparisons that were asked fewer than

5 times resulting in 5,150 pairwise comparisons over 94 unique pairs on 122 districts.

There are 8 sets of k-wise comparison data that we use for validation and testing. We

remove any districts in the k-wise ranking data that are present in the training data.

We standardize the features of the districts by subtracting the mean and dividing by the

standard deviation, where we use the mean and standard deviation from the training set.

Standardizing the features is important for the salient feature preference model with the

top-t selection function, so that each feature is roughly on the same scale. Otherwise, the

top-t selection function might just choose the coordinates with the largest magnitude,

and not the coordinates truly with the most variability.

Experiment details The hyperparameters for the salient feature preference model

with the top-t selection function are t and the `2 regularization parameter µ. The

hyperparameter for FBTL is the `2 regularization parameter µ. For Ranking SVM, the
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only hyperparameter is C which controls the penalty for violating the margin. We vary

t ∈ [d] where d = 27 since there are 27 features. We vary µ and C in

{.00001, .0001, .001, .01, .1, 1, 10, 100, 1000, 10000, 100000, 1000000}.

The hyperparameters for RankNet include the `2 regularization parameter µ and

number of nodes in the hidden layer. We use one hidden layer. We varied the number of

nodes in the single hidden unit in in {5 ∗ i : i ∈ [19]}. We use a batch size of 250, and

we use 800 epochs. Initially, we varied µ also in

{.00001, .0001, .001, .01, .1, 1, 10, 100, 1000, 10000, 100000, 1000000},

but as we will discuss in the next section we decided to vary µ in

{.00001, .0001, .001, .01, .1, 1, 10}.

Best performing hyperparameters Again, the validation set that was use is the

mturk ranking data. Given ŵ, an estimate of w∗, we estimate the ranking by sorting each

item’s features with its inner product with ŵ. Then we pick the best hyperparameters by

the largest average Kendall tau correlation of the estimated ranking with each individual

ranking in mturk.

For FBTL, the best performing hyperparameter is µ = 100000. The average Kendall

tau correlation of the estimated ranking to each individual ranking in mturk is 0.38 with a

standard deviation of 0.05. The pairwise comparison accuracy on the training set is 56%,

which is defined in Section 2.6.8 of the Supplement. Although the regularization strength

is large, the norm of the estimated judgement vector is .015. The largest coordinate of

the judgement vector in absolute value is .005 and the smallest is .0001.

For the salient feature preference model with the top-t selection function the best

performing hyperparameters are t = 2 and µ = .001. The average Kendall tau correlation

of the estimated ranking to each individual ranking in mturk is 0.54 with a standard

deviation of 0.06. The pairwise comparison accuracy on the training set is 69%.

Figure 2.11 shows how often each of the 27 features are selected by the top-2 selection

function over unique pairwise comparisons in the training data. Notice that var xcoord

and circle area are never selected. The learned weights for those features in the FBTL
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model when all the features are used are 2 of the top 3 features with the smallest weights,

so these features play a relatively insignificant role when all the features are used any

way.

For RankNet, the best hyperparameters on the validation set are µ = .1 and 75 nodes

in the hidden layer. The average Kendall tau correlation of the estimated ranking to

each individual ranking in mturk is 0.407 with a standard deviation of 0.05. The pairwise

comparison accuracy on the training set is 59%. As we discussed in the previous section,

we initially searched over larger values of µ. The best performing hyperparameters were

µ = 10000 and 40 nodes in the hidden layer. The pairwise comparison training accuracy

was higher (69%) and the average Kendall tau correlation on the validation set was also

higher (.48 with a standard deviation of .05). However, these hyperparameters were very

unstable, i.e. training on the same data with the same hyperparameters sometimes gave

a completely different model where the average Kendall tau correlation on the validation

set or some of the test sets were sometimes negative.

For Ranking SVM, the best hyperparameter on the validation set is C = 1000000.

The average Kendall tau correlation of the estimated ranking to each individual ranking

in mturk is 0.38 with a standard deviation of 0.05. The pairwise comparison accuracy on

the training set is 56%. Although C is large, the norm of the estimate of the judgement

vector is .006, the largest entry in absolute value is .002, and the smallest is .0006, so it

is finding a non-zero estimate for the judgement vector.

Zappos Experiments

We refer the reader to [YG14,YG17] for the full details about the UT Zappos50k data set

but provide relevant details here. The data can be found at http://vision.cs.utexas.

edu/projects/finegrained/utzap50k/.

Pairwise comparison data description The UT Zappos50K data set consists of

pairwise comparisons on images of shoes and 960 extracted color and vision features

for each shoe [YG14,YG17]. Given images of two different shoes and an attribute from

{“open,” “pointy,” “sporty,” “comfort”}, respondents were asked to pick which shoe

exhibits the attribute more. The data consists of both easier, coarse questions, i.e. based

on comfort, pick between a slipper or high-heel, and also harder, fine grained questions
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Figure 2.11: The frequency that the top-2 selection function chooses each feature
over unique pairwise comparisons in the training data.
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i.e. based on comfort, pick between two slippers. Each pairwise comparison is asked to 5

different people, and the confidence of each person’s answer is also collected.

There are 2,863 unique pairwise comparisons involving 5,319 shoes for open, 2,700

unique pairwise comparisons involving 5,028 shoes for pointy, 2,766 unique pairwise

comparisons involving 5,144 shoes for sporty, and 2,756 unique pairwise comparisons

involving 5,129 shoes for comfort. For each attribute, 86% of unique pairwise comparisons

involve an item that is in no other pairwise comparison regarding that attribute. Also,

for each attribute, nearly 93% of items only appear in one pairwise comparison. In light

of this, an algorithm like [CJ16b] will likely not work well since (1) this model requires

learning a set of parameters for each item and (2) the model does not work for unseen

items, i.e., we must ensure that items in testing also appear in training to evaluate the

model.

Furthermore, for each of the attributes, there are no triplets of items (i, j, k) where

pairwise comparison data has been collected on i vs. j, j vs. k, and k vs. i. Therefore,

we cannot even test if there are intransitivities in this data.

Data pre-processing Respondents were given the option to declare a tie between

two items. We do not train on any of these pairwise comparisons. To be clear, we use

both the “coarse” and “fine-grained” comparisons during training. We standardize the

features by subtracting the mean and dividing by the standard deviation, where we use

the mean and standard deviation of the training set for each attribute since we train a

model for each attribute.

Experiment details The hyperparameters for the salient feature preference model

with the top-t selection function are t and the `2 regularization parameter µ. The

hyperparameter for FBTL is the `2 regularization parameter µ. For Ranking SVM,

the only hyperparameter is C which controls the penalty for violating the margin.

We vary t ∈ {10 ∗ i : i ∈ [99]} since there are 990 features. We vary µ and C in

{.000001, .00001, .0001, .001, .01, .1}. For RankNet, the hyperparameters are µ and the

number of nodes in the hidden layer. We vary µ in {.05, .1, .15} and the nodes in

{50, 250, 500}. We choose these values of µ to try since on validation sets, it appeared

that any value less than .05 was over fitting (train accuracy was in the 90%s but validation

accuracy was in the 70%s) and values above .15 were not learning a good model (train
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Table 2.3: Statistics about the best performing t for the salient feature preference
model with the top-t selection function on the validation set over 10
train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 440 310 110 40
Max 830 980 850 950
Average 663 614 550 563
Standard deviation 150 198 238 305

Table 2.4: Statistics about the best performing µ for the salient feature preference
model on the validation set over 10 train/validation/test splits for UT

Zappos50k.

Attribute: open pointy sporty comfort

Min 1000 100 1000 10
Max 10000 100000 10000 10000
Average 4600.0 12520.0 5500.0 5311.0
Standard deviation 4409.08 29389.65 4500.0 4700.46

accuracy was in the 60%s). We only search over these hyperparameters due to time

constraints. We use ten 70% train, 15% validation, and 15% test split.

Best performing hyperparameters Because the pairwise comparisons are either

“coarse” or “fine-grained,” we pick the best hyperparameters based on the average of the

pairwise comparison accuracy on the “coarse” questions and the “fine-grained” questions

on the validation set. See Table 2.3 for statistics about the best performing t for the

salient feature preference model with the top-t selection function on the validation set

over 10 train/validation/test splits. See Tables 2.4, 2.5, 2.7 for statistics about the best

performing µ for the salient feature preference model, FBTL model, and RankNet on

the validation set over the 10 train/validation/test splits. See Table 2.6 for statistics

about the best performing C for Ranking SVM on the validation set over the over the

10 train/validation/test splits. See Table 2.8 for the best performing number of nodes

in the hidden layer on the validation set over the 10 splits. We also report the average

pairwise accuracy, which has been defined in the main text, on the validation set for all

algorithms in Table 2.9.
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Table 2.5: Statistics about the best performing µ for FBTL on the validation set
over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 1000 100 1000 10
Max 100000 100000 100000 100000
Average 15400 12520 17200 24211
Standard deviation 28517 29389 27827 38131

Table 2.6: Statistics about the best performing C for Ranking SVM on the valida-
tion set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 10000 1000 10000 100
Max 100000 1000000 1000000 1000000
Average 70000 124300 163000 144010
Standard deviation 42426 294261 281888 288619

Table 2.7: Statistics about the best performing µ for RankNet on the validation
set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min .05 .05 .05 .05
Max .15 .1 .15 .15
Average .075 .055 .085 .105
Standard deviation .033 .015 .039 .041

Table 2.8: Statistics about the best performing number of nodes in the hidden
layer for RankNet on the validation set over 10 train/validation/test
splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 50 50 50 250
Max 500 500 250 500
Average 335 205 190 350
Standard deviation 178.95 201.84 91.65 122.47
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Table 2.9: Average pairwise prediction accuracy over 10 train/validation/test
splits on the validation sets by attribute for UT Zappos50k. C stands
for coarse and F stands for fine grained. O stands for open, P stand for
pointy, S stands for sporty, and Co stands for comfort. The number in
parenthesis is the standard deviation.

Model: O-C P -C S-C Co-C O-F P -F S-F Co-F

Salient features .75(.01) .8(.01) .79(.02) .77(.03) .64(.03) .6(.03) .62(.03) .66(.03)
FBTL .75(.02) .8(.01) .79(.01) .77(.02) .63(.03) .59(.03) .6(.02) .62(.03)
Ranking SVM .75(.02) .8(.02) .8(.01) .77(.02) .62(.04) .59(.03) .6(.02) .62(.04)
RankNet .75(.02) .78(.03) .78(.01) .76(.02) .67(.03) .61(.04) .61(.02) .64(.03)
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Chapter 3

The Landscape of Non-Convex

Quadratic Feasibility

The work in this chapter is joint with Lalit Jain and Laura Balzano, and parts of this

work is published as The Landscape of Non-Convex Quadratic Feasibility at ICASSP

2018.

3.1 Introduction

In this chapter, we consider quadratic feasibility problems and present theory and

experimental results utilizing first order methods for recovering a feasible point. We are

motivated by a natural set of quadratic feasibility problems, namely ordinal embedding

and collaborative ranking, that arise when using ordinal comparisons to find a Euclidean

embedding for a set of items. These embeddings are useful for downstream machine

learning applications such as rank aggregation, visualization, or recommender systems.

We present both the ordinal embedding problem and collaborative ranking problem in

full detail at the end of this section. Importantly, we will show both these embedding

problems can be cast as the following homogeneous quadratic feasibility problem:

find x ∈ Rn (3.1)

subject to xTPix > 0, i = 1, . . . ,m ,
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where Pi ∈ Rn×n is a trace 0, symmetric matrix corresponding to the i-th constraint.

Quadratic feasibility is a special case of quadratically constrained quadratic programming,

which has been extensively studied. For instance, see the excellent survey [PB17]. In

general, quadratic feasibility with indefinite Pi matrices is NP-hard.

We propose to solve Equation (3.1) by solving the following optimization problem that

penalizes a candidate point when it does not satisfy a quadratic constraint:

minimize
x∈Rn

∑
i∈[m]

max{0, 1− xTPix}. (3.2)

Similar to support vector machines, the hinge loss in Equation (3.2) captures a margin,

which quantifies the amount a constraint is violated. Furthermore, the 1 in the objective

of Equation (3.2) prevents first order methods from converging to the infeasible point

x̂ = 0 and can be replaced with any positive constant. Since the constraint matrices are

trace 0, they are indefinite, and thus Equation (3.2) is non-convex.

Assuming Equation (3.1) is feasible, there is a correspondence between feasible points

and global minimizers of Equation (3.2). Indeed, any feasible point can be scaled to

have an objective value of 0, the global minimum. Furthermore, any global minimizer

corresponds to a feasible point. Thus our goal is to find a global minimum of the objective

in Equation (3.2).

We propose to solve Equation (3.2) with a first order method, like stochastic gradient

descent (SGD). First order methods are attractive in big data scenarios due to low memory

and computation requirements. Although first order methods are computationally

advantageous, they can converge to non-global, local minimizers for non-convex problems.

In general the landscape of local and global minimizers of non-convex functions can be

very complex, but a heightened interest in machine learning has lead to a flurry of activity

showing several non-convex problems for which all local minima are global. Examples

include matrix completion [GJZ17] and Burer-Monteiro factorization for semidefinite

programming [BVB16]. In these cases, a first order method can successfully avoid saddle

points and so converges to global minima [LSJR16].

To the best of our knowledge, the local minimizers of the objective in Equation (3.2)

have not been studied extensively making it unclear whether a first order method applied

to Equation (3.2) finds a solution to Equation (3.1). We provide partial theoretical results

towards understanding the optimization landscape of Equation (3.2) and compelling
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empirical results. We point out that [KS17] also recently proposed a similar method

applying SGD to a smoothed version of Equation (3.2) that shows promising empirical

results. However, they do not provide any theoretical results about the existence of

non-global, local minima nor provide any assumptions regarding the success of recovering

a feasible point of Equation (3.1) by applying a first order method to Equation (3.2).

Furthermore, [TDN20] recently study a related problem dealing with finding a feasible

point that satisfies a set of quadratic equalities with the `2-loss. They show that the

optimization landscape is well-behaved, i.e. it has no spurious local minima and saddle

points have strictly negative curvature, when the constraints are complex and drawn from

a Gaussian distribution. The work in [BE06] identifies a sufficient condition for strong

duality to hold when minimizing an indefinite quadratic function subject to two quadratic

constraints. The work in [BTT96] shows that minimizing an indefinite quadratic over a

sphere is equivalent to minimizing a convex function subject to linear constraints and

minimizing an indefinite quadratic subject to finitely many convex quadratic constraints

is equivalent to solving a minimax convex problem. In both cases, the solutions to the

original non-convex problems are obtainable from their convex counterparts. These

works are not applicable since we consider finding a feasible point to an arbitrary number

of indefinite constraints.

Furthermore, the formulation of Equation (3.2) has been used in the specific case of

ordinal embedding and collaborative ranking. For example, see [TVL14,JN11,AWC+07,

PNZ+15b]. In both of these applications, extensive work has been done on bounding

the sample complexity and determining the uniqueness of an embedding [JJN16,LN15b,

PNZ+15b,OTX15b,AC+17], but little work has been done on theoretically understanding

the proposed non-convex optimization problems and methods used to solve them.

Specifically, our work has three main contributions. First, assuming all Pi are trace 0

and share a feasible point, we give necessary conditions for a point to be a local minimum

of the objective of Equation (3.2); see Theorem 3.2.1. Second, in R2 under suitable

assumptions, we show the objective of Equation (3.2) has no local minima; see Theorem

3.2.4. Third, we provide experiments showing the success of a first order method applied

to Equation (3.2) for solving Equation (3.1).
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3.1.1 Motivating Quadratic Feasibility Problems

Ordinal Embedding The first type of embedding model we consider is ordinal em-

bedding (also known as non-metric multidimensional scaling [She62, Kru64]) and is

based on Euclidean distance comparisons. Given ordinal constraints on distances of the

form T = {(i, j, k) : item i is closer to item j than item k}, the goal is to find n points,

{x1, x2, . . . , xn : xi ∈ Rd}, that satisfy Euclidean distance constraints. In particular, the

constraint that corresponds to “item i is closer to item j than item k” is

||xi − xj||2 < ||xi − xk||2 (3.3)

⇐⇒ 〈xi, xi〉 − 2〈xi, xj〉+ 〈xj, xj〉 < 〈xi, xi〉 − 2〈xi, xk〉+ 〈xk, xk〉 (3.4)

⇐⇒ 0 < 2〈xi, xj − xk〉 − 〈xj, xj〉+ 〈xk, xk〉. (3.5)

These are quadratic constraints, and finding a set of points that satisfies these constraints

results in a quadratic feasibility problem. We now rewrite finding a set of points that

satisfies the constraints in terms of finding a vector X ∈ Rdn that satisfies a set of

constraints of the form XTPi,j,kX > 0 where Pi,j,k ∈ Rnd×nd. It turns out that Pi,j,k is

trace 0 and symmetric, which motivates our study of trace 0, symmetric matrices. Let

X :=


x1

x2

...

xn

 . (3.6)

Consider the constraint that “item i is closer to item k than item j.” Let Pijk ∈ Rnd×nd.

Let P
(r,t)
ijk denote the (r, t)−th entry of Pijk. Define Pijk as follows:

• P
(t,t)
ijk = −1 for t ∈ {(j − 1)d+ 1, . . . , jd},

• P
(t,t)
ijk = 1 for t ∈ {(k − 1)d+ 1, . . . , kd},

• P
(r,t)
ijk = P

(t,r)
ijk = 1 for (t, r) ∈ {((i− 1)d+ 1, (j − 1)d+ 1), ((i− 1)d+ 2, (j − 1)d+

2), . . . , (id, jd)},

• P
(r,t)
ijk = P

(t,r)
ijk = −1 for (t, r) ∈ {((i− 1)d+ 1, (k− 1)d+ 1), ((i− 1)d+ 2, (k− 1)d+

2), . . . , (id, kd)}, and
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• P
(r,t)
ijk = 0 for all other (r, t).

For example, if there are n = 3 points, {x, y, z}, in d = 2 dimensions and x is closer to

z than y, the corresponding matrix is

P =



0 0 −1 0 1 0

0 0 0 −1 0 1

−1 0 1 0 0 0

0 −1 0 1 0 0

1 0 0 0 −1 0

0 1 0 0 0 −1


We check that this matrix does indeed capture the constraint. LetX := (x1, x2, y1, y2, z1, z2)T ,

then

XTPX = XT (−y1 + z1,−y2 + z2,−x1 + y1,−x2 + y2, x1 − z1, x2 − z2)T

= 2〈x, z − y〉 − 〈z, z〉+ 〈y, y〉,

which is exactly what we wanted to encode.

Therefore, we can formulate the ordinal embedding feasibility problem as follows:

find X ∈ Rnd (3.7)

subject to XTPi,j,kX > 0, (i, j, k) ∈ T .

Collaborative Ranking The second type of embedding model is a low-rank approach

to collaborative ranking. We assume there are n users and m items. Given preference

constraints of the form

P = {(i, j, k) : user i prefers item j to item k},

the goal of low-rank collaborative ranking is to find points {ui ∈ Rd}mi=1 corresponding to

the items and points {wi ∈ Rd}ni=1 corresponding to the users that satisfy the following

constraints:

〈uj, wi〉 > 〈uk, wi〉 for (i, j, k) ∈ P .
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For user j and item i, 〈uj, wi〉 represents the unknown score that user j assigns to item i.

These scores define the preferences of user i where items with larger scores are preferred

to items with smaller scores.

Finding {ui ∈ Rd}mi=1 and {wi ∈ Rd}ni=1 that satisfy the constraints in P is a quadratic

feasibility problem once again. We will write this problem in terms of finding a vector

X ∈ R(n+m)d that satisfies XTLi,j,kX > 0 where Li,j,k ∈ R(n+m)d×(n+m)d. Again, it turns

out Li,j,k is trace 0 and symmetric.

Let

X :=



u1

u2

...

um

w1

w2

...

wn


.

For (i, j, k) ∈ P , let Li,j,k ∈ R(n+m)d×(n+m)d. Let L
(r,t)
i,j,k denote the (r, t)th entry of Li,j,k.

Define Li,j,k as follows:

• L
(r,t)
i,j,k = L

(t,r)
i,j,k = 1/2 for (r, t) ∈ {((j − 1)d+ 1, (m+ i− 1)d+ 1), ((j − 1)d+ 2, (m+

i− 1)d+ 2) . . . , ((j − 1)d+ d, (m+ i− 1)d+ d)}

• L
(r,t)
i,j,k = L

(t,r)
i,j,k = −1/2 for (r, t) ∈ {((k− 1)d+ 1, (m+ i− 1)d+ 1), ((k− 1)d+ 2, (m+

i− 1)d+ 2) . . . , ((k − 1)d+ d, (m+ i− 1)d+ d)}

• L
(r,t)
i,j,k = 0 for all other r, t.

For instance, suppose that n = 1, m = 2, d = 2, i.e. there is only one person and two

items and we seek an embedding in two dimensions. If this person says item 1 is better
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than item 2, then

L1,1,2 =



0 0 0 0 1/2 0

0 0 0 0 0 1/2

0 0 0 0 −1/2 0

0 0 0 0 0 −1/2

1/2 0 −1/2 0 0 0

0 1/2 0 −1/2 0 0


We check that this matrix does indeed capture the constraint. Let

X :=



u11

u12

u21

u22

w11

w12


Then

XTL1,1,2X = XT (1/2w1,1, 1/2w1,1,−1/2w1,1,−1/2w1,2, 1/2(u11 − u21), u21 − u22)T

= 1/2(u11w1,1 + u12w1,1 − u21w1,1 − u22w1,2 + w11(u11 − u21)− w12(u21 − u22))

= 〈u1 − u2, w〉,

where u1 = (u11, u12)T , u2 = (u21, u22)T , and w = (w11, w12)T , which is exactly what we

wanted to encode.

Therefore, the low-rank collaborative ranking problem can be re-written as

find X ∈ R(n+m)d (3.8)

subject to XTLi,j,kX > 0, (i, j, k) ∈ P .
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3.2 Theory

3.2.1 Necessary Conditions for Minimizers

The following theorem gives necessary conditions for a point to be a non-global, local

minimizer of optimization problem Equation (3.2). Notice that both the matrix con-

straints Pi,j,k arising in ordinal embedding and Li,j,k arising in collaborative ranking

discussed in the introduction are trace 0 and symmetric. Hence, we restrict our analysis

to trace 0, symmetric matrices. We say a set of matrices {Pi ∈ Rn×n} have a feasible

point or share a feasible point if there is an x ∈ Rn so that xTPix > 0 for all i.

Theorem 3.2.1. Let {Pi ∈ Rn×n}mi=1 be a set of real, symmetric trace 0 matrices that

share a feasible point. Assume x is not a global minimizer of Equation (3.2). If x ∈ Rn

is a non-global, local minimizer of Equation (3.2), x must satisfy the following two

equations: ∑
i∈{k:xTPkx<1}

xTPix < 0, (P1)

and ∑
i∈{k:xTPkx<1}

xTPix+
∑

i∈{k:xTPkx=1}

xTPix ≥ 0. (P2)

In particular, {i : xTPix = 1} 6= ∅.

Proof. First we set some notation. Let L(x) be the objective of optimization problem

Equation (3.2). Consider the partition of the constraints at x given by

I=1
x := {i : xTPix = 1}

with I>1
x and I<1

x defined similarly. Therefore, L(x) = |I<1
x | − xTP<1

x x = |I<1
x |+ |I=1

x | −
xTP<1

x x− xTP=1
x x where P<1

x :=
∑

i∈I<1
x
Pi and P=1

x :=
∑

i∈I=1
x
Pi.

If P1 or P2 is not true at some x′ that is not a global minimizer, we claim x′ cannot

be a local minimizer by finding x arbitrarily close to x′ with L(x) < L(x′).

First, assume P1 is not true. Since x′ is not a global minimizer and a feasible point

exists, P<1
x′ exists and is non-zero. Hence, since trace(P<1

x′ ) = 0 and P<1
x′ is symmetric,

P<1
x′ is indefinite, i.e., it has positive and negative eigenvalues. Therefore, take u to be a

unit eigenvector of P<1
x′ with positive eigenvalue λ. Without loss of generality, we can
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assume x′Tu ≥ 0. Otherwise, repeat the argument with −u.

Let vδ,ε = εx′+ δu and x := x′+vδ,ε. By choosing ε, δ sufficiently small, x is sufficiently

close to x′. Again choosing ε, δ sufficiently small, if j ∈ I=1
x′ ,

xTPjx = (1 + ε)2 + 2(1 + ε)δuTPjx
′ + δ2uTPju > 1,

which implies I=1
x′ ⊆ I>1

x , and similarly with small enough ε, δ, I>1
x′ ⊆ I>1

x and I=1
x = ∅.

Hence, I<1
x′ = I<1

x . Since P1 is not true and since x′Tu ≥ 0,

L(x) = |I<1
x | − xTP<1

x x (3.9)

= |I<1
x′ | − xTP<1

x′ x (3.10)

= |I<1
x′ | − (1 + ε)2x′TP<1

x′ x
′ − δλ(2(1 + ε)x′Tu+ δ) (3.11)

< L(x′). (3.12)

In the second case, we assume P2 is not true. Consider x := (1− ε)x′ for ε > 0. For ε

sufficiently small I<1
x′ ⊆ I<1

x and I>1
x′ ⊆ I>1

x . If j ∈ I=1
x′ , then xTPjx = (1−ε)2x′TPjx

′ < 1,

so I=1
x′ ⊆ I<1

x and as a result I<1
x = I<1

x′ ∪ I=1
x′ . Then

L(x) = |I<1
x | − xTP<1

x x (3.13)

= |I<1
x′ |+ |I=1

x′ | − (1− ε)2x′T
(
P<1
x′ + P=1

x′

)
x′ (3.14)

< |I<1
x′ |+ |I=1

x′ | −
(
x′TP<1

x′ x
′ + x′TP=1

x′ x
′) (3.15)

= L(x′), (3.16)

where P2 not being true implies the second to last line.

We note that for x ∈ Rn, if I=1
x = ∅, then L(x) is a differentiable function in

some sufficiently small neighborhood of x whose Hessian is indefinite since any trace

0 matrix is indefinite and the sum of trace 0 matrices is trace 0. From standard

unconstrained optimization results all critical points of L(x) in this neighborhood are

saddle points. Therefore, a non-global, local minimizer x must have the property that

{i : xTPix = 1} 6= ∅, which gives an alternative proof to the second part of the theorem

statement.
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3.2.2 Two Dimensions

In this section, for trace 0 matrices in R2 sharing a feasible point, we show the objective

of Equation (3.2) has no local minima. In the case of homogeneous quadratic equations

in R2, there is a simple algorithm for finding a feasible point by using the quadratic

formula to find the feasible region of each constraint. There is a feasible point if the

intersection of these regions is non-empty. However, this algorithm does not generalize

to higher dimensions unlike solving Equation (3.2). We hope that our results in R2

generalize to higher dimensions.

Lemma 3.2.2. Assume A,B ∈ R2×2 are linearly independent, trace 0 matrices. At any

point x′ on the curve xTBx = 1, there is a tangent direction of xTBx = 1 at x′ which is

a descent direction for a− xTAx at x′ where a ∈ R is a constant.

Proof. By the method of Lagrange multipliers, if x′ ∈ R2 is a local minimizer of a−xTAx
subject to xTBx = 1, there exists λ ∈ R such that Ax′ = λBx′ and x′TBx′ = 1. Hence,

x′ 6= 0. Since A,B ∈ R2×2, tr(A − λB) = 0, and they are independent, A − λB is

invertible so no such x′ or λ can exist. Therefore, we can always move along the curve

xTBx = 1 while decreasing 1− xTAx.

Lemma 3.2.3. Assume P1, P2, P3 ∈ R2×2 are trace 0, pairwise linearly independent

matrices sharing a feasible point. Assume for some x′, x′TP1x
′ = x′TP2x

′ = 1 and

x′TP3x
′ < 0. Then at x′, there is a tangent direction of xTP1x = 1 (respectively

xTP2x = 1) which is an ascent direction of xTP2x (respectively xTP1x) and a descent

direction for α− xTP3x, where α ∈ R is a constant.

Proof. We have P3 = UDUT where D ∈ R2×2 is diagonal and U ∈ R2×2 is orthogonal.

Let P̂i = UTPiU for i ∈ {1, 2, 3}, and x′′ = Ux′. Then x′′T P̂ix
′′ = x′TPix

′, so x′′ evaluates

to the same value as x′ on each matrix. Similarly, xF ∈ R2 is a feasible point of Pi for

i ∈ {1, 2, 3} if and only if UxF is a feasible point of P̂i. It is easy to see that P̂i are

trace zero and pairwise linearly independent. Hence, the assumptions of the lemma still

hold for P̂i and in particular, P̂3 = UTP3U = D is diagonal. Therefore, without loss of

generality,

P3 =

(
e 0

0 −e

)
,
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P1 =

(
a c

c −a

)
,

and

P2 =

(
b d

d −b

)
.

For i ∈ [1, 2], let fi(x) = xTPix and f3(x) = α− xTP3x.

Let

T =

(
0 1

−1 0

)
Then a tangent vector to the curve xTPix = 1 at x′ is UPix

′. A computation shows

〈∇f2(x′), TP1x
′〉 = −2(ad− bc)‖x′‖2

2, (3.17)

〈∇f1(x′), TP2x
′〉 = 2(ad− bc)‖x′‖2

2. (3.18)

Likewise

〈∇f3(x′), TP1x
′〉 = −2ce‖x′‖2

2, (3.19)

〈∇f3(x′), TP2x
′〉 = −2de‖x′‖2

2. (3.20)

Since P1, P2 are linearly independent with P3, c, d 6= 0. By Lemma 3.2.5 (whose proof

is delayed until the end of this subsection), cd > 0. Without loss of generality, assume

c, d > 0 and e > 0. Since 〈∇f2(x′), TP1x
′〉 and 〈∇f1(x′), TP2x

′〉 have opposite signs, one

is non-negative. WLOG say 〈∇f1(x′), TP2x
′〉 ≥ 0, so TP2x

′ is an ascent direction of f1

restricted to xTP2x = 1.

Because d, c, e > 0, Equation (3.20) is negative, so TP2x
′ is also a descent direction

for f3. Therefore, at x′, as we move along the curve xTP2x = 1, in the tangent direction

TP2x
′, xTP1x increases by Equation (3.18) and α− xTP3x decreases by Equation (3.20).

If c, d < 0 or e < 0, then the same argument applies but with the tangent vector

−TPix′.

Theorem 3.2.4 (Arbitrary Number of Constraints). Let {Pi ∈ R2×2} be real, symmetric,

trace zero matrices that share a feasible point. Then every local minimizer of the objective
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of Equation (3.2) is a global minimizer.

Proof. First we claim that no three of the curves xTPix = 1 can intersect at a point.

By the quadratic equation (for instance, see the proof of case 5 in Lemma 3.2.5), the

solutions to xTPix = xTPjx are given by two lines of the form x2 = α1x1 and x2 = α2x1

such that α1 = −1
α2

. Clearly, the solutions to xTPix = xTPjx = 1 must be on these lines.

Therefore, the solution set to xTPkx = xTPix = xTPjx = 1 must be empty since any

solution must satisfy both xTPkx = xTPix and xTPix = xTPjx. There are two lines such

that xTPkx = xTPix and two different lines such that xTPix = xTPjx. The intersection

of all these lines is the origin, which is not a point such that xTPix = 1.

For x ∈ R2, let I=1
x , I<1

x , I>1
x , and P<1

x be as defined in the proof of Theorem 3.2.1. By

contradiction, suppose ẑ ∈ R2 is a non-global, local minimizer of objective Equation (3.2).

By Theorem 3.2.1, ẑTP<1
ẑ ẑ < 0 and 1 ≤ |I=1

ẑ | ≤ 2, where the upper bound follows since

at most two of the xTPix = 1 intersect. We will now break into cases depending on the

size of I=1
ẑ . Recall that L(x) = |I<1

x | − xTP<1
x x.

First, assume |I=1
ẑ | = 1, so WLOG, I=1

ẑ = {1}. Assume P1 and P<1
ẑ are linearly

independent. In this case, Lemma 3.2.2 shows that there is a direction to move along

the curve xTP1x = 1 from ẑ such that L(x) decreases. If P1 and P<1
ẑ are linearly

dependent, then λP1 = P<1
ẑ for some λ; a feasible point for all the Pi imply λ > 0.

However, λ = λẑTP1ẑ = ẑTP<1
ẑ ẑ < 0, a contradiction. Thus, P1 and P<1

ẑ must be

linearly independent.

Second, assume |I=1
ẑ | = 2 and WLOG, I=1

ẑ = {1, 2}. If P1, P2 and P<1
ẑ are pairwise

linearly independent, an identical argument as above now follows from Lemma 3.2.3.

Now assume P1, P2 and P<1
ẑ are not pairwise independent. Since |I=1

ẑ | = 2, P1 6= λP2 for

any λ ∈ R. Now, if P1 = λP<1
ẑ or P2 = λP<1

ẑ , we repeat the argument from the case

when |I=1
ẑ | = 1. Therefore, P1, P2, and P<1 are pairwise independent.

We now return to the proof of Lemma 3.2.5 used in Lemma 3.2.3. First, we need two

propositions.

Proposition 1. Assume P1, P2, P3 ∈ R2×2 are trace 0, pairwise linearly independent

matrices such that

P1 =

(
a c

c −a

)
,
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P2 =

(
b d

d −b

)
,

and

P3 =

(
e 0

0 −e

)
.

where b, c > 0 and a, d < 0. If there is a feasible point (xF , yF ) in the first quadrant (i.e.,

xF , yF > 0), then
c−
√
c2 + a2

a
<
d+
√
d2 + b2

b
.

Proof. The main idea is to characterize the feasible regions of P1 and P2 separately, and

then consider when these regions have a non-empty intersection in the first quadrant.

Let z := (x, y)T . By the quadratic formula, the solutions to zTP1z = 0 are given by two

lines:

y =
(c±

√
c2 + a2)x

a
. (3.21)

Since c > 0 and a < 0, the line y = c−
√
c2+a2

a
x has positive slope. Consider any point

z = (x, (c−
√
c2+a2)x
a

+ ε)T such that x, ε > 0, which characterizes any point in the first

quadrant above the line y = (c−
√
c2+a2)x
a

. Then zTP1z > 0:

zTP1z (3.22)

= a

x2 −

(
c−
√
c2 + a2

a
x+ ε

)2
+ 2cx

(
c−
√
c2 + a2

a
x+ ε

)
(3.23)

= a

(
x2 − (c−

√
c2 + a2)2

a2
x2 − 2

c−
√
c2 + a2

a
xε− ε2

)
+ 2cx

c−
√
c2 + a2

a
x+ 2cxε

(3.24)

= −εa

(
2
c−
√
c2 + a2

a
x+ ε

)
+ 2cxε (3.25)

> 0 (3.26)

where the second to last line uses the fact that for z1 = (x, c−
√
c2+a2

a
x)T , zT1 P1z1 = 0 by

construction and the last line is true since x, c, ε, c−
√
c2+a2

a
> 0 and a < 0.

Similarly, we can show that any z = (x, (c−
√
c2+a2)x
a

− ε)T where x > 0 and ε > 0 such
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that (c−
√
c2+a2)x
a

− ε > 0, which characterizes any point in the first quadrant below the

line y = (c−
√

2+a2)x
a

, we have zTP1z < 0.

A similar argument shows that the solutions to zTP2z = 0 are the lines y = d±
√
d2+b2

b
x,

and the line y = d+
√
d2+b2

b
x has positive slope. Any point z in the first quadrant above

this line has the property that zTP2z < 0 and any point z in the first quadrant below

this line has the property that zTP2z > 0.

Therefore, P1 and P2 share a feasible point in the first quadrant if there is a point above

the line c−
√
c2+a2

a
x which is also below the line d+

√
d2+b2

b
x meaning c−

√
c2+a2

a
< d+

√
d2+b2

b
.

Furthermore, P3 has a feasible point (x, y) in the first quadrant whenever x > y.

Equivalently, any point in the first quadrant above the line y = x is infeasible for P3 and

any point in the first quadrant below the line y = x is feasible for P3. Hence, it is easy

to see that P3 always shares a feasible point with P2 since they both have feasible points

arbitrarily close to the x-axis in the first quadrant. Lastly, P1 shares a feasible point

with P3 if c−
√
c2+a2

a
< 1 which is always true since a < 0 and c > 0:

c−
√
c2 + a2

a
< 1 (3.27)

⇐⇒ c− a >
√
a2 + c2 (3.28)

⇐⇒ c+ |a| >
√
a2 + c2. (3.29)

Therefore, P1, P2 and P3 share a feasible point in the first quadrant if c−
√
c2+a2

a
<

d+
√
d2+b2

b
.

Proposition 2. Let a, d < 0 and b, c > 0. Let

f(x) = x+
√
b2c2 + b2a2 −

√
b2c2 + b2a2 + x2 + 2bcx.

Then f(x) > 0 if and only if x > 0.

Proof. The derivative of f(x) is

f ′(x) = 1− 2x+ 2bc

2
√
b2c2 + b2a2 + x2 + 2bcx

.
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We have

f ′(x) = 1− 2x+ 2bc

2
√
b2c2 + b2a2 + x2 + 2bcx

> 0 (3.30)

⇐⇒
√
b2c2 + b2a2 + x2 + 2bcx > x+ bc (3.31)

⇐⇒ b2c2 + b2a2 + x2 + 2bcx > (x+ bc)2 = x2 + 2bcx+ b2c2 (3.32)

⇐⇒ b2a2 > 0. (3.33)

(3.34)

Therefore, since b2a2 > 0, f ′(x) > 0, meaning that f is always increasing. It is easy

to see that f(0) = 0. Thus, since f(0) = 0 and f is increasing, f(x) > 0 if x > 0 and

f(x) < 0 if x < 0.

Lemma 3.2.5. Assume P1, P2, P3 ∈ R2×2 are trace 0, pairwise linearly independent

matrices such that

P1 =

(
a c

c −a

)
,

P2 =

(
b d

d −b

)
,

and

P3 =

(
e 0

0 −e

)
.

If P1, P2, and P3 share a feasible point zF = (xF , yF )T ∈ R2 and there exists z′ =

(x′, y′)T ∈ R2 such that x′TP1x
′ = x′TP2x

′ = 1 and x′TP3x
′ < 0, then cd > 0.

Proof. We prove this lemma by showing zF or z′ cannot exist when cd < 0 by considering

every case based on the signs of a, b, c, d, and xFyF . We eliminate having to consider

the cases when c = 0, d = 0, xFyF = 0, e ≤ 0 or a = b = 0. First, c, d 6= 0 since P2 and

P3 are linearly independent with P1. Second, since P1 and P2 are linearly independent,

it cannot be the case that a = b = 0. Third, without loss of generality, we may assume

xFyF 6= 0 since if there is a feasible point, there is always a feasible point (x′F , y
′
F ) such

that x′F 6= 0 and y′F 6= 0 since zTPiz is a continuous function of z. Fourth, since there is

a feasible point, e 6= 0. Without loss of generality, e > 0. To see this, we can multiply
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a b c d xFyF proof case number
+ + + − + 1
+ − + − + 2
− + + − + 5
− − + − + 2

= 0 + + − + 1
= 0 − + − + 2
+ = 0 + − + 1
− = 0 + − + 2
+ + + − − 3
+ − + − − 6
− + + − − 4
− − + − − 4

= 0 + + − − 4
= 0 − + − − 4
+ = 0 + − − 3
− = 0 + − − 7

Table 3.1: All the cases based on the signs of the variables we consider and the
corresponding case number in the proof.

each matrix on the left and right by

T :=

(
0 1

1 0

)
,

and the assumptions of the lemma hold with z̃′ = Tx′ and z̃F = TzF . The entry in the

first row and column of TP3T is −e > 0.

See Table 3.1 for a summary of all the cases we will consider in the proof based on the

signs of a, b, c, d, and xFyF and the corresponding proof cases. We only consider the

case when c > 0 and d < 0 in our proofs. However, an identical proof holds for when

d > 0 and c < 0 by switching the roles of c and d.

By definition of zF ,

a(x2
F − y2

F ) + 2cxFyF > 0 (3.35)

b(x2
F − y2

F ) + 2dxFyF > 0 (3.36)

x2
F − y2

F > 0, (3.37)
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and by definition of z′,

a(x′2 − y′2) + 2cx′y′ = 1 (3.38)

b(x′2 − y′2) + 2dx′y′ = 1 (3.39)

x′2 − y′2 < 0. (3.40)

Case 1: Assume a ≥ 0, b ≥ 0, c > 0, d < 0, xFyF > 0. By Equation (3.39),
1−b(x′2−y′2)

2d
= x′y′. Since b ≥ 0, x′2 − y′2 < 0 and d < 0, x′y′ < 0. By Equation (3.38),

1−a(x′2−y′2)
2x′y′

= c. However, since x′y′ < 0, 0 > 1−a(x′2−y′2)
2x′y′

= c, a contradiction since c > 0.

Case 2: Assume b ≤ 0, c > 0, d < 0, xFyF > 0 (this case is independent of the sign of

a). By Equation (3.37) and since b ≤ 0, d < 0 and xFyF > 0, b(x2
F − y2

F ) + 2dxFyF < 0,

which contradicts Equation (3.36).

Case 3: Assume a ≥ 0, b ≥ 0, c > 0, d < 0, xFyF < 0. By Equation (3.38),
1−a(x′2−y′2)

2c
= x′y′. Since a ≥ 0, c > 0 and x′2 − y′2 < 0, x′y′ > 0. By Equation (3.39),

1−b(x′2−y′2)
2d

= x′y′. Since b ≥ 0, d < 0, and x′2 − y′2 < 0, x′y′ < 0, a contradiction.

Case 4: Assume a ≤ 0, c > 0, d < 0, xFyF < 0 (this case is independent of the

sign of b). By Equation (3.35),
−a(x2F−y

2
F )

2c
< xFyF . But

−a(x2F−y
2
F )

2c
≥ 0, so 0 < xFyF , a

contradiction since xFyF < 0.

Case 5: Assume a < 0, b > 0, c > 0, d < 0, xFyF > 0. We show Equation (3.40)

cannot hold. If xFyF > 0, then either xF , yF > 0 or xF , yF < 0. In the latter case,

multiplying xF and yF by -1 is a feasible point with positive coordinates. Therefore, by

Proposition 1 and the assumptions of this lemma,

c−
√
c2 + a2

a
<
d+
√
d2 + b2

b
(3.41)

=⇒ bc− b
√
c2 + a2 > ad+ a

√
d2 + b2 since a < 0, b > 0 (3.42)

=⇒ 0 > ad− bc+ (a
√
d2 + b2 + b

√
c2 + a2). (3.43)

Let ad− bc = ε. Then d = ε+bc
a

, so plugging this into the inequality above, we have

0 > ad− bc+ a
√
d2 + b2 + b

√
c2 + a2 (3.44)

= ε+ a

√(
ε+ bc

a

)2

+ b2 + b
√
c2 + a2 (3.45)
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= ε−
√
ε2 + 2εbc+ b2c2 + b2 +

√
b2c2 + b2a2. (3.46)

Hence, ε−
√
ε2 + 2εbc+ b2c2 + b2 +

√
b2c2 + b2a2 < 0, so ε = ad− bc < 0 by Proposition

2. We will use ad− bc < 0 while computing the closed form for z′ next.

Let z′′ = (x′′, y′′)T . Note that a− b 6= 0 since a < 0 and b > 0. Thus, by the quadratic

formula, the solutions to z′′TP1z
′′ = z′′TP2z

′′T are given by the two lines x′′ = α+y
′′ and

x′′ = α−y
′′ where

α+ =
((d− c) +

√
(c− d)2 + (a− b)2)

a− b
(3.47)

and

α− =
((d− c)−

√
(c− d)2 + (a− b)2)

a− b
. (3.48)

Using this relationship between x′′ and y′′, we solve for when z′TP1z
′ = z′TP2z

′ = 1, i.e.

Equation (3.38) and Equation (3.39). In particular, we need to solve for y′ such that

a(α+y
′2 − y′2) + 2cα+y

′2 = 1, (3.49)

or

a(α−y
′2 − y′2) + 2cα−y

′2 = 1, (3.50)

If a(α2
+ − 1) + 2cα+ > 0, two solutions are

y′ = ±

√
1

a(α2
+ − 1) + 2cα+

. (3.51)

If a(α2
− − 1) + 2cα− > 0, two solutions are

y′ = ±

√
1

a(α2
− − 1) + 2cα−

. (3.52)

We now characterize when a(α2
+ − 1) + 2cα+ > 0 and a(α2

− − 1) + 2cα− > 0. Let
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β =
√

(a− b)2 + (d− c)2. Then,

a(α2
− − 1) + 2cα− > 0 (3.53)

⇐⇒ a

(
((d− c)− β)2

(a− b)2
− 1

)
+ 2c

(
(d− c)− β

a− b

)
> 0 (3.54)

⇐⇒ a
(
((d− c)− β)2 − (a− b)2

)
+ 2c ((a− b)(d− c)− (a− b)β) > 0 (3.55)

⇐⇒ a
(
2(d− c)2 − 2(d− c)β

)
+ 2c ((a− b)(d− c)− (a− b)β) > 0 (3.56)

⇐⇒ 2a(d− c)2 − 2β(c(a− b) + a(d− c)) + 2c(a− b)(d− c) > 0 (3.57)

⇐⇒ 2a(d− c)2 − 2β(ad− bc) + 2c(a− b)(d− c) > 0 (3.58)

⇐⇒ (d− c)(ad− bc)− β(ad− bc) > 0 (3.59)

⇐⇒ (ad− bc)((d− c)− β) > 0 (3.60)

A similar calculation shows a(α2
+−1)+2cα+ > 0 if and only if (ad−bc)((d−c)+β) > 0.

From our earlier calculations, we know ad− bc < 0. Furthermore, it is easy to see that

(d − c) + β > 0 and (d − c) − β < 0 since d < 0 and c > 0 and by definition of β.

Therefore, (ad− bc)((d− c) +β) < 0 and (ad− bc)((d− c)−β) > 0, so the only solutions

to z′TP1z
′ = z′TP2z

′ = 1 are (α−y
′, y′) where

y′ = ±

√
1

a(α2
− − 1) + 2cα−

. (3.61)

Now we show that at z′ = (α−y
′, y′), z′TP3z

′ > 0, contradicting the assumption of this

lemma. Plugging x′ and y′ into Equation (3.40), we have

α2
−y
′2 − y′2 < 0 (3.62)

⇐⇒ α2
− < 1 (3.63)

⇐⇒
(d− c)2 − 2(d− c)

√
(c− d)2 + (a− b)2 + (c− d)2 + (a− b)2

(a− b)2
< 1 (3.64)

⇐⇒ (d− c)2 − 2(d− c)
√

(c− d)2 + (a− b)2 + (c− d)2 + (a− b)2 < (a− b)2 (3.65)

⇐⇒ (d− c)2 − 2(d− c)
√

(c− d)2 + (a− b)2 + (c− d)2 < 0 (3.66)

⇐⇒ (d− c)−
√

(c− d)2 + (a− b)2 > 0 (3.67)
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Figure 3.1: Existence of non-global, local minimum of objective of Equation (3.2)
when trace 0 assumptions are not satisfied.

since (d − c) < 0. However, (d − c) −
√

(c− d)2 + (a− b)2 < 0 since d < 0 and c > 0.

Therefore, z′TP3z
′ > 0, a contradiction.

Case 6: Assume a > 0, b < 0, c > 0, d < 0, xFyF < 0. A similar proof as case 5 holds

by showing Equation (3.38), Equation (3.39), and Equation (3.40) cannot simultaneously

hold.

Case 7: Assume a < 0, b = 0, c > 0, d < 0, and xFyF < 0. Then Equation (3.36)

cannot hold since b(x2
F − y2

F ) + 2dxFyF = 2dxFyF < 0.

3.2.3 Importance of Assumptions

The trace 0 assumption of Theorem 3.2.4 is necessary. Otherwise, consider

Q1 =

(
1 0

0 −.5

)
,

Q2 =

(
.5 1

1 1

)
,

Q3 =

(
0 1

1 5

)
,
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which share a feasible point: [1, 1]T . Figure 3.1 shows that x ≈ [1.1,−.7] is a non-

global, local minimizer of the objective of Equation (3.2) since the global minimum is 0.

Therefore, proper initialization of first order methods and appropriate assumptions on

the constraint matrices need to be more thoroughly studied to guarantee the success of

solving Equation (3.2) with first order methods.

3.3 Experiments

In our experiments, we focus on validating SGD on Equation (3.2) for finding feasible

points. Due to the non-convexity of the problem, it seems to be challenging to determine

how step size and initialization affect the success of a first order method like SGD.

Therefore, we experiment with different step sizes and initializations at different scales.

We remark that [KS17] contains an extensive set of experiments that validate using first

order methods on a smoothed version of Equation (3.2) to find feasible points. However,

they did not consider different initializations.

The first experiment is in the case of ordinal embedding. To construct our constraints,

we sampled a set of 50 points from N (0, I) in R2 and used all ordinal constraints arising

from these points. To find a feasible embedding, we used SGD on objective Equation (3.2).

We varied the initial step size (.001, .01, .1, .5) and the scale of the initialization, i.e.,

the initialization was sampled from N (0, αI) for α = 1, 10, 100, . . . , 106. The step sizes

decayed exponentially as .1
2t

where t is the number of epochs. Figure 3.2 shows the

proportion of success over 20 experiments per choice of step size and initial scale, where

a new set of points was sampled each time. SGD was given a budget of 8000 epochs.

For the next experiment, we sampled 2000 symmetric matrices {Pi}i∈[2000] ⊂ R20×20

from N (0, I) and then projected them onto the subspace of trace 0 matrices. We picked

a vector x and negated the Pi as needed so that xTPix > 0 for all i ensuring feasibility.

Initial step sizes and scalings were varied as in the previous experiment and exponentially

decaying weights were used. SGD was given a budget of 4000 epochs. See Figure 3.3.

In both experiments, for a large enough initial step size and initialization, SGD reliably

recovers a feasible point. Although not illustrated, SGD with small, constant step sizes

produced similar results. Interestingly, initialization seems to play a large role in the

success of SGD in both of the above experiments.
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Figure 3.2: Success of recovering a feasible embedding.
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Figure 3.3: Success of general quadratic feasibility in R20.
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3.4 Why [BY20] Is Not Applicable

Since the problem of quadratic feasibility is so well-studied, it is natural to ask whether

existing results for non-convex problems apply to our setting. Some of the most state

of the art results are given in [BY20]. In this section, we show the sufficient conditions

identified in [BY20] for the Shor relaxation of the following problem related to quadratic

feasibility are not satisfied:

minimize
x∈Rn

xTx

subject to xTAix ≤ −1, i = 1, . . . ,m

xTx ≤M2,

(3.68)

where M ∈ R, Ai ∈ Rn×n are indefinite matrices, i.e., each have both positive and

negative eigenvalues, whose non-zero eigenvalues have the same magnitude. We assume

that there is a feasible point of Equation (3.68). This type of problem arises in the

low-rank preference models that motivated the previous section.

The Shor relaxation of Equation (3.68), where A ·B = trace(AB), is

minimize
X∈Sn×n, x∈Rn

I ·X

subject to Ai ·X ≤ −1, i = 1, . . . ,m

I ·X ≤M2,

Y (x,X) � 0,

(3.69)

where Y (x,X) =

(
1 xT

x X

)
.

Before that, there are three assumptions from the paper that we need to check our

problem satisfies:

1. The feasible set of Equation (3.68) is non-empty. For our problem, we assume this

is the case.

2. There exists y ≤ 0 such that
∑m

i=1 yiAi + ym+1I ≺ 0. For our problem, set yi = 0

for i = 1, . . . ,m and ym+1 = −1, which satisfies this condition.
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3. The interior of the feasible set of Equation (3.69) is nonempty. For our problem,

since we know there is a feasible point x of Equation (3.68), there is a feasible point

of Equation (3.69): (xxT , 0). At this feasible point, if any of the constraints are

active, we just consider (αxxT , 0) where 0 < α < 1. It is not difficult to see that

a small neighborhood around this point is also a feasible point of Equation (3.69)

since the first two constraints will be satisfied and the last constraint will also be

satisfied since eigenvalues are continuous.

The sufficient condition identified in [BY20] for the Shor relaxation to be exact is

stated for problems where Ai is diagonal, so we need to “diagonalize” the problem (as

done in [BY20]). We consider the “lifted” problem with n(m+1) variables (as opposed to

n variables), where Ai = QiDiQ
T
i is the spectral decomposition of Ai. The diagonalized

problem is as follows where in our problem Di is a diagonal matrix whose non-zero terms

all have the same magnitude:

minimize
x,yi∈Rn

xTx

subject to yTi Diyi ≤ −1, i = 1, . . . ,m

yi = QT
i x, i = 1, . . . ,m

xTx+
m∑
i=1

yTi yi ≤ (m+ 1)M2, i = 1, . . . ,m.

(3.70)

Now we state the sufficient condition from [BY20], after which we will show that our

problem in Equation (3.68) does not satisfy this sufficient condition.

Theorem 3.4.1 (sufficient condition with perturbation trick in [BY20]). Consider the

following linear system in X, Yi ∈ Rn×n for i = 1, . . . ,m and ε > 0:

I ·X + ε

m∑
i=1

I · Yi = −1 (3.71)

Di · Yi ≤ 0, i = 1, . . . ,m (3.72)

I ·X +
m∑
i=1

I · Yi ≤ 0, (3.73)

X, Yi diagonal, i = 1, . . . ,m (3.74)
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Furthermore, constrain all but one of the variables in X, Yi to be non-negative. This

gives n(m+ 1) different linear systems. If there is a solution to each of these n(m+ 1)

systems, then the Shor relaxation of Equation (3.68) is exact. (This comes from Theorem

2 in [BY20] along with their perturbation trick. See equation (10) in the paper.)

Proposition 3. When the non-zero values of Di have the same magnitude for i =

1, . . . , n, Equation (3.68) does not satisfy the sufficient condition in Theorem 3.4.1, i.e.,

there is not a solution to each of the n(m+1) systems in Equation (3.71) - Equation (3.74).

First, we need a lemma.

Lemma 3.4.2. If X ′, Y ′1 , . . . , Y
′
m is a solution to Equation (3.71) - Equation (3.74) with

[Y1]jj having any sign and all other variables constrained to be non-negative, then there

exists another solution X ′′, Y ′′1 , . . . , Y
′′
m where X ′′ = 0, Y ′′2 = 0, . . . , Y ′′m = 0.

Proof. Since X ′, Y ′1 , . . . , Y
′
m is a solution such that X ′, Y ′2 , . . . , Y

′
m have non-negative

entries,

−1− I ·X ′ − ε
m∑
i=2

I · Y ′i ≤ −1 6= 0.

Therefore, consider Y ′′1 = −1
−1−I·X′−ε

∑m
i=2 I·Y ′i

Y ′1 . We claimX ′′ = 0, Y ′′1 , Y
′′

2 = 0, . . . , Y ′′m =

0 is also a solution.

When X ′′ = 0, Y ′′2 = 0, . . . , Y ′′m = 0, clearly equations Equation (3.72) and Equa-

tion (3.74) for i = 2, . . . ,m are satisfied. The rest of the equations Equation (3.71) -

Equation (3.73) simplify to

εI · Y1 = −1 (3.75)

D1 · Y1 ≤ 0 (3.76)

I · Y1 ≤ 0 (3.77)

From Equation (3.71) since X ′, Y ′1 , . . . , Y
′
m is a solution,

εI · Y ′1 = −1− I ·X ′ − ε
m∑
i=2

I · Y ′i ,
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so multiplying both sides by −1
−1−I·X′−ε

∑m
i=2 I·Y ′i

, we see

εI · Y ′′1 = −1.

Thus, Equation (3.75) is satisfied. Since Equation (3.75) is satisfied, clearly, Equa-

tion (3.77) is satisfied. Finally, −1
−1−I·X′−ε

∑m
i=2 I·Y ′i

> 0 since we have previously shown the

denominator is negative. Thus, we see Equation (3.76) is also satisfied since D1 · Y ′1 ≤ 0.

Proof of Proposition 3. Without loss of generality, suppose [D1]11, [D1]22, . . . , [D1]kk < 0.

We will show that there can be no solution to Equation (3.71) - Equation (3.74) when

[Y1]11 is “free” but all other variables must be non-negative.

Seeking a solution, by Lemma 3.4.2, we may set X, Y2, . . . , Ym = 0, and through a

similar argument as Lemma 3.4.2, we may set [Y1]ii = 0 for i = k + 1, . . . , n.

At this point, we seek as solution to the following system in the variables [Y1]11, . . . , [Y1]kk:

ε ([Y1]11 + · · ·+ [Y1]kk) = −1 (3.78)

[D1]11[Y1]11 + · · ·+ [D1]11[Y1]kk ≤ 0 (3.79)

[Y1]11 + · · ·+ [Y1]kk ≤ 0 (3.80)

[Y1]22, . . . , [Y1]kk ≥ 0, (3.81)

(3.82)

where we have used the assumption that [D1]11 = · · · = [D1]kk.

However, because [D1]11 < 0, we see that Equation (3.79) and Equation (3.80) cannot

simultaneously hold since multiplying Equation (3.79) by [D1]11, we must satisfy

[Y1]11 + · · ·+ [Y1]kk =
−1

ε
< 0 (3.83)

[Y1]11 + · · ·+ [Y1]kk ≥ 0 (3.84)

(3.85)
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3.5 Conclusion

In this chapter, motivated by ordinal embedding and collaborative filtering, we studied

the homogeneous non-convex quadratic feasibility problem. We posed this problem as

an unconstrained non-convex optimization problem by penalizing a point for violating

a quadratic constraint with the hinge loss, and we proposed to solve this problem

with a first order method like stochastic gradient descent. Therefore, it is important

to understand the optimization landscape, i.e. local minimizers. Assuming that the

constraints are trace 0, symmetric matrices, we provided a necessary condition for a

point to be a non-global, local minimizer and showed in the two dimensional case that

all local minimizers are global minimizers.
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Chapter 4

Training Individually Fair Machine

Learning Models With Sensitive

Subspace Robutness

The work in this chapter is joint with Mikhail Yurochkin and Yuekai Sun. Specifically,

the theoretical results are Yuekai Sun’s work and the experimental results were split

with Mikhail Yurochkin. This work was published as Training Individually Fair Machine

Learning Models with Sensitive Subspace Robustness at ICLR 2020.

4.1 Introduction

Machine learning (ML) models are gradually replacing humans in high-stakes decision

making roles. For example, in Philadelphia, an ML model classifies probationers as high

or low-risk [MS20]. In North Carolina, “analytics” is used to report suspicious activity

and fraud by Medicaid patients and providers [MS20]. Although ML models appear to

eliminate the biases of a human decision maker, they may perpetuate or even exacerbate

biases in the training data [BS16]. Such biases are especially objectionable when it

adversely affects underprivileged groups of users [BS16].

In response, the scientific community has proposed many mathematical definitions

of algorithmic fairness and approaches to ensure ML models satisfy the definitions.

Unfortunately, this abundance of definitions, many of which are incompatible [KMR17,

Cho17], has hindered the adoption of this work by practitioners. There are two types of
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formal definitions of algorithmic fairness: group fairness and individual fairness. Most

recent work on algorithmic fairness considers group fairness because it is more amenable

to statistical analysis [RSZ17]. Despite their prevalence, group notions of algorithmic

fairness suffer from certain shortcomings. One of the most troubling is there are many

scenarios in which an algorithm satisfies group fairness, but its output is blatantly unfair

from the point of view of individual users [DHP+12].

In this chapter, we consider individual fairness instead of group fairness. Intuitively,

an individually fair ML model treats similar users similarly. Formally, an ML model is a

map h : X → Y , where X and Y are the input and output spaces. The leading notion of

individual fairness is metric fairness [DHP+12]; it requires

dy(h(x1), h(x2)) ≤ Ldx(x1, x2) for all x1, x2 ∈ X , (4.1)

where dx and dy are metrics on the input and output spaces and L ≥ 0 is a Lipschitz

constant. The fair metric dx encodes our intuition of which samples should be treated

similarly by the ML model. We emphasize that dx(x1, x2) being small does not imply

x1 and x2 are similar in all respects. Even if dx(x1, x2) is small, x1 and x2 may differ in

certain problematic ways, e.g. in their protected/sensitive attributes. This is why we

refer to pairs of samples x1 and x2 such that dx(x1, x2) is small as comparable instead of

similar.

Despite its benefits, individual fairness was dismissed as impractical because there

is no widely accepted fair metric for many ML tasks. Fortunately, there is a line of

recent work on learning the fair metric from data [Ilv20, WGL+19]. In this chapter,

we consider two data-driven choices of the fair metric: one for problems in which the

sensitive attribute is reliably observed, and another for problems in which the sensitive

attribute is unobserved (see Appendix 4.6.2).

The rest of this chapter is organized as follows. In Section 4.2, we cast individual

fairness as a form of robustness: robustness to certain sensitive perturbations to the

inputs of an ML model. This allows us to leverage recent advances in adversarial

ML to train individually fair ML models. More concretely, we develop an approach

to audit ML models for violations of individual fairness that is similar to adversarial

attacks [GSS15] and an approach to train ML models that passes such audits (akin to

adversarial training [MMS+18]). We justify the approach theoretically (see Section 2.3)
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and empirically (see Section 4.4).

4.2 Fairness Through (Distributional) Robustness

To motivate our approach, imagine an auditor investigating an ML model for unfairness.

The auditor collects a set of audit data and compares the output of the ML model on

comparable samples in the audit data. For example, to investigate whether a resume

screening system is fair, the auditor may collect a stack of resumes and change the

names on the resumes of Caucasian applicants to names more common among the

African-American population. If the system performs worse on the edited resumes,

then the auditor may conclude the model treats African-American applicants unfairly.

Such investigations are known as correspondence studies, and a prominent example

is [BM04]’s celebrated investigation of racial discrimination in the labor market. In

a correspondence study, the investigator looks for inputs that are comparable to the

training examples (the edited resumes in the resume screening example) on which the

ML model performs poorly. In the rest of this section, we formulate an optimization

problem to find such inputs.

4.2.1 Fair Wasserstein Distances

Recall X and Y are the spaces of inputs and outputs. To keep things simple, we assume

that the ML task at hand is a classification task, so Y is discrete. We also assume that

we have a fair metric dx of the form

dx(x1, x2)2 := 〈x1 − x2,Σ(x1 − x2)〉
1
2 ,

where Σ ∈ Sd×d+ . For example, suppose we are given a set of K “sensitive” directions that

we wish the metric to ignore; i.e., d(x1, x2)� 1 for any x1 and x2 such that x1 − x2 falls

in the span of the sensitive directions. These directions may be provided by a domain

expert or learned from data (see Section 4.4 and Appendix 4.6.2). In this case, we may

choose Σ as the orthogonal complement projector of the span of the sensitive directions.

We equip X with the fair metric and Z := X × Y with

dz((x1, y1), (x2, y2)) := dx(x1, x2) +∞ · 1{y1 6= y2}.
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We consider d2
z as a transport cost function on Z. This cost function encodes our

intuition of which samples are comparable for the ML task at hand. We equip the space

of probability distributions on Z with the fair Wasserstein distance

W (P,Q) = infΠ∈C(P,Q)

∫
Z×Z c(z1, z2)dΠ(z1, z2),

where C(P,Q) is the set of couplings between P and Q. The fair Wasserstein distance

inherits our intuition of which samples are comparable through the cost function; i.e.,

the fair Wasserstein distance between two probability distributions is small if they are

supported on comparable areas of the sample space.

4.2.2 Auditing Machine Learning Models for Algorithmic Bias

To investigate whether an ML model performs disparately on comparable samples, the

auditor collects a set of audit data {(xi, yi)}ni=1 and solves the optimization problem

maxP :W (P,Pn)≤ε
∫
Z `(z, h)dP (z), (4.2)

where ` : Z × H → R+ is a loss function, h is the ML model, Pn is the empirical

distribution of the audit data, and ε > 0 is a small tolerance parameter. We interpret

ε as a moving budget that the auditor may expend to discover discrepancies in the

performance of the ML model. This budget forces the auditor to avoid moving samples

to incomparable areas of the sample space. We emphasize that Equation (4.2) detects

aggregate violations of individual fairness. In other words, although the violations that

the auditor’s problem detects are individual in nature, the auditor’s problem is only

able to detect aggregate violations. We summarize the implicit notion of fairness in

Equation (4.2) in a definition.

Definition 4.2.1 (distributionally robust fairness (DRF)). An ML model h : X → Y is

(ε, δ)-distributionally robustly fair (DRF) WRT the fair metric dx iff

maxP :W (P,Pn)≤ε
∫
Z `(z, h)dP (z) ≤ δ. (4.3)

Although Equation (4.2) is an infinite-dimensional optimization problem, it is possible

to solve it exactly by appealing to duality. [BM19] showed that the dual of Equation (4.2)
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is
supP :W (P,Pn)≤ε EP

[
`(Z, h)

]
= infλ≥0{λε+ EPn

[
`cλ(Z, h)

]
},

`cλ((xi, yi), h) := supx∈X `((x, yi), h)− λd2
x(x, xi).

(4.4)

This is a univariate optimization problem, and it is amenable to stochastic optimization.

We describe a stochastic approximation algorithm for Equation (4.4) in Algorithm 1.

Inspecting the algorithm, we see that it is similar to the PGD algorithm for adversarial

attack.

Algorithm 1 stochastic gradient method for Equation (4.4)

Require: starting point λ̂1, step sizes αt > 0

1: repeat

2: draw mini-batch (xt1 , yt1), . . . , (xtB , ytB) ∼ Pn

3: x∗tb ← arg maxx∈X `((x, ytb), h)− λd2
x(xtb , x), b ∈ [B]

4: λ̂t+1 ← max{0, λ̂t − αt(ε− 1
B

∑B
b=1 d

2
x(xtb , x

∗
tb

))}
5: until converged

It is known that the optimal point of Equation (4.2) is the discrete measure

1

n

n∑
i=1

δ(Tλ(xi),yi),

where Tλ : X → X is the unfair map

Tλ(xi)← arg maxx∈X `((x, yi), h)− λd2
x(x, xi). (4.5)

We call Tλ an unfair map because it reveals unfairness in the ML model by mapping

samples in the audit data to comparable areas of the sample space that the system

performs poorly on. We note that Tλ may map samples in the audit data to areas of

the sample space that are not represented in the audit data, thereby revealing disparate

treatment in the ML model not visible in the audit data alone. We emphasize that Tλ

more than reveals disparate treatment in the ML model; it localizes the unfairness to

certain areas of the sample space.

We present a simple example to illustrating fairness through robustness (a similar

example appeared in [HSNL18]). Consider the binary classification dataset shown in
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(c) classifier from SenSR

Figure 4.1: Figure (a) depicts a binary classification dataset in which the minority
group shown on the right of the plot is underrepresented. This tilts
the logistic regression decision boundary in favor of the majority group
on the left. Figure (b) shows the unfair map of the logistic regression
decision boundary. It maps samples in the minority group towards the
majority group. Figure (c) shows an algorithmically fair classifier that
treats the majority and minority groups identically.

Figure 4.1. There are two subgroups of observations in this dataset, and (sub)group

membership is the protected attribute (e.g., the smaller group contains observations

from a minority subgroup). In Figure 4.1a we see the decision heatmap of a vanilla

logistic regression, which performs poorly on the blue minority subgroup. The two

subgroups are separated in the horizontal direction, so the horizontal direction is the

sensitive direction. Figure 4.1b shows that such classifier is unfair with respect to the

corresponding fair metric, i.e. the unfair map Equation (4.5) leads to significant loss

increase by transporting mass along the horizontal direction with very minor change of

the vertical coordinate.

Comparison with metric fairness Before moving on to training individually fair ML

models, we compare DRF with metric fairness Equation (4.1). Although we concentrate

on the differences between the two definitions here, they are more similar than different:

both formalize the intuition that the outputs of a fair ML model should perform similarly

on comparable inputs. That said, there are two main differences between the two

definitions. First, instead of requiring the output of the ML model to be similar on all

inputs comparable to a training example, we require the output to be similar to the
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training label. Thus DRF not only enforces similarity of the output on comparable

inputs, but also accuracy of the ML model on the training data. Second, DRF considers

differences between datasets instead of samples by replacing the fair metric on inputs

with the fair Wasserstein distance induced by the fair metric. The main benefits of this

modifications are (i) it is possible to optimize Equation (4.2) efficiently, (ii) we can show

this modified notion of individual fairness generalizes.

4.2.3 Fair Training with Sensitive Subspace Robustness

We cast the fair training problem as training supervised learning systems that are robust

to sensitive perturbations. We propose solving the minimax problem

inf
h∈H

sup
P :W (P,Pn)≤ε

EP
[
`(Z, h)

]
= inf

h∈H
inf
λ≥0

λε+ EPn
[
`cλ(Z, h)

]
, (4.6)

where `cλ is defined in Equation (4.4). This is an instance of a distributionally robust

optimization (DRO) problem, and it inherits some of the statistical properties of DRO.

To see why Equation (4.6) encourages individual fairness, recall the loss function is a

measure of the performance of the ML model. By assessing the performance of an ML

model by its worse-case performance on hypothetical populations of users with perturbed

sensitive attributes, minimizing Equation (4.6) ensures the system performs well on all

such populations. In our toy example, minimizing Equation (4.6) implies learning a

classifier that is insensitive to perturbations along the horizontal (i.e. sensitive) direction.

In Figure 4.1c this is achieved by the algorithm we describe next.

To keep things simple, we assume the hypothesis class is parametrized by θ ∈ Θ ⊂ Rd

and replace the minimization with respect to H by minimization with respect to θ. In

light of the similarities between the DRO objective function and adversarial training,

we borrow algorithms for adversarial training [MMS+18] to solve Equation (4.6) (see

Algorithm 2).
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Algorithm 2 Sensitive Subspace Robustness (SenSR)

Require: starting point θ̂1, step sizes αt, βt > 0

1: repeat

2: sample mini-batch (x1, y1), . . . , (xB, yB) ∼ Pn

3: x∗tb ← arg maxx∈X `((x, ytb), θ)− λ̂td2
x(xtb , x), b ∈ [B]

4: λ̂t+1 ← max{0, λ̂t − αt(ε− 1
B

∑B
b=1 d

2
x(xtb , x

∗
tb

))}
5: θ̂t+1 ← θ̂t − βt

B

∑B
b=1 ∂θ`((x

∗
tb
, ytb), θ̂t)

6: until converged

Related work Our approach to fair training is an instance of distributionally robust

optimization (DRO). In DRO, the usual sample-average approximation of the expected

cost function is replaced by L̂DRO(θ) := supP∈U EP
[
`(Z, θ)

]
, where U is a (data dependent)

uncertainty set of probability distributions. The uncertainty set may be defined by

moment or support constraints [CSS07,DY10,GS10], f -divergences [BdDW+12,LZ15,

MMK+16,ND16], and Wasserstein distances [SEK15,BKM19,EK15,LR18,SND18]. Most

similar to our work is [HSNL18]: they show that DRO with a χ2-neighborhood of

the training data prevents representation disparity, i.e. minority groups tend to suffer

higher losses because the training algorithm ignores them. One advantage of picking a

Wasserstein uncertainty set is the set depends on the geometry of the sample space. This

allows us to encode the correct notion of individual fairness for the ML task at hand in

the Wasserstein distance.

Our approach to fair training is also similar to adversarial training [MMS+18], which

hardens ML models against adversarial attacks by minimizing adversarial losses of the

form supu∈U `(z + u, θ), where U is a set of allowable perturbations [SZS+14, GSS15,

PMJ+16,CW17,KGB17]. Typically, U is a scaled `p-norm ball: U = {u : ‖u‖p ≤ ε}. Most

similar to our work is [SND18]: they consider an uncertainty set that is a Wasserstein

neighborhood of the training data.

There are a few papers that consider adversarial approaches to algorithmic fairness.

[ZLM18] propose an adversarial learning method that enforces equalized odds in which

the adversary learns to predict the protected attribute from the output of the classifier.

[ES16] propose an adversarial method for learning classifiers that satisfy demographic

parity. [MCPZ18] generalize their method to learn classifiers that satisfy other (group)
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notions of algorithmic fairness. [GPL+19] propose to use adversarial logit pairing [KKG18]

to achieve fairness in text classification using a pre-specified list of counterfactual tokens.

4.3 SenSR Trains Individually Fair Machine

Learning Models

One of the main benefits of our approach is it provably trains individually fair ML models.

Further, it is possible for the learner to certify that an ML model is individually fair a

posteriori. As we shall see, both are consequences of uniform convergence results for the

DR loss class. More concretely, we study how quickly the uniform convergence error

δn := supθ∈Θ

{∣∣supP :W∗(P,P∗)≤ε EP
[
`(Z, θ)

]
− supP :W (P,Pn)≤ε EP

[
`(Z, θ)

]∣∣} , (4.7)

where W∗ is the Wasserstein distance on ∆(Z) with a transportation cost function c∗

that is possibly different from c, vanishes, and P ∗ is the true distribution on Z. We

permit some discrepancy in the (transportation) cost function to study the effect of

a data-driven choice of c. In the rest of this section, we regard c∗ as the exact cost

function and c as a cost function learned from human supervision. We start by stating

our assumptions on the ML task:

(A1) the feature space X is bounded: D := max{diam(X ), diam∗(X )} <∞;

(A2) the functions in the loss class L = {`(·, θ) : θ ∈ Θ} are non-negative and bounded:

0 ≤ `(z, θ) ≤M for all z ∈ Z and θ ∈ Θ, and L-Lipschitz with respect to dx:

supθ∈Θ{sup(x1,y),(x2,y)∈Z |`((x1, y), θ)− `((x2, y), θ)|} ≤ Ldx(x1, x2);

(A3) the discrepancy in the (transportation) cost function is uniformly bounded:

sup(x1,y),(x2,y)∈Z |c((x1, y), (x2, y))− c∗((x1, y), (x2, y))| ≤ δcD
2.

Assumptions A1 and A2 are standard (see [LR18, Assumption 1, 2, 3]) in the DRO

literature. We emphasize that the constant L in Assumption A2 is not the constant
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L in the definition of metric fairness; it may be much larger. Thus most models that

satisfy the conditions of the loss class are not individually fair in a meaningful sense.

Assumption A3 deserves further comment. Under A1, A3 is mild. For example, if the

exact fair metric is

dx(x1, x2) = (x1 − x2)TΣ∗(x1 − x2)
1
2 ,

then the error in the transportation cost function is at most

|c((x1, y), (x2, y))− c∗((x1, y), (x2, y))|

= |(x1 − x2)TΣ(x1 − x2)− (x1 − x2)TΣ∗(x1 − x2)|

≤ D2‖Σ− Σ∗‖2,

We see that the error in the transportation cost function vanishes in the large-sample

limit as long as Σ is a consistent estimator of Σ∗.

We state the uniform convergence result in terms of the entropy integral of the loss

class: C(L) =
∫∞

0

√
logN∞(L, r)dr, where N∞(L, r) as the r-covering number of the

loss class in the uniform metric. The entropy integral is a measure of the complexity of

the loss class.

Proposition 4.3.1 (uniform convergence). Under Assumptions A1–A3, Equation (4.7)

satisfies

δn ≤
48C(L)√

n
+

48LD2

√
nε

+
LδcD

2

√
ε

+M(
log 2

t

2n
)
1
2 (4.8)

with probability at least 1− t.

We note that Proposition 4.3.1 is similar to the generalization error bounds by [LR18].

The main novelty in Proposition 4.3.1 is allowing error in the transportation cost function.

We see that the discrepancy in the transportation cost function may affect the rate at

which the uniform convergence error vanishes: it affects the rate if δc is ωP ( 1√
n
).

A consequence of uniform convergence is SenSR trains individually fair classifiers (if

there are such classifiers in the hypothesis class). By individually fair ML model, we

mean an ML model that has a small gap

supP :W∗(P,P∗)≤ε EP
[
`(Z, θ)

]
− EP∗

[
`(Z, θ)

]
, (4.9)

The gap is the difference between the optimal value of the auditor’s optimization problem
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Equation (4.2) and the (non-robust) risk. A small gap implies the auditor cannot

significantly increase the loss by moving samples from P∗ to comparable samples.

Proposition 4.3.2. Under the assumptions A1–A3, as long as there is θ̄ ∈ Θ such that

supP :W∗(P,P∗)≤ε EP
[
`(Z, θ̄)

]
≤ δ∗ (4.10)

for some δ∗ > 0, θ̂ ∈ arg minθ∈Θ supP :W (P,Pn)≤ε EP
[
`(Z, θ)

]
satisfies

supP :W∗(P,P∗)≤ε EP
[
`(Z, θ̂)

]
− EP∗

[
`(Z, θ̂)

]
≤ δ∗ + 2δn,

where δn is the uniform convergence error Equation (4.7).

Proposition 4.3.2 guarantees Algorithm 2 trains an individually fair ML model. More

precisely, if there are models in H that are (i) individually fair and (ii) achieve small test

error, then Algorithm 2 trains such a model. It is possible to replace Equation (4.10)

with other conditions, but a condition to its effect cannot be dispensed with entirely. If

there are no individually fair models in H, then it is not possible for Equation (4.6) to

learn an individually fair model. If there are individually fair models in H, but they all

perform poorly, then the goal of learning an individually fair model is futile.

Another consequence of uniform convergence is Equation (4.9) is close to its empirical

counterpart

supP :W (P,Pn)≤ε EP
[
`(Z, θ)

]
− EPn

[
`(Z, θ)

]
. (4.11)

In other words, the gap generalizes. This implies Equation (4.11) is a certificate of

individual fairness ; i.e., it is possible for practitioners to check whether an ML model is

individually fair by evaluating Equation (4.11).

Proposition 4.3.3. Let

R(θ, Pn) = sup
P :W (P,Pn)≤ε

EP
[
`(Z, θ)

]
− EPn

[
`(Z, θ)

]
and

R(θ, P∗) = sup
P :W∗(P,P∗)≤ε

EP
[
`(Z, θ)

]
− EP∗

[
`(Z, θ)

]
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Under the assumptions A1–A3, for any ε > 0,

supθ∈Θ {R(θ, Pn)−R(θ, P∗)} ≤ 2δn with probability at least 1− t.

4.4 Computational Results

In this section, we present results from using SenSR to train individually fair ML models

for two tasks: sentiment analysis and income prediction. We pick these two tasks to

demonstrate the efficacy of SenSR on problems with structured (income prediction) and

unstructured (sentiment analysis) inputs and in which the sensitive attribute (income

prediction) is observed and unobserved (sentiment analysis). We refer to Appendix 4.6.3

and 4.6.4 for the implementation details.

4.4.1 Fair Sentiment Prediction with Word Embeddings

Table 4.1: Sentiment prediction experiments over 10 restarts

Acc.,% Race gap Gend. gap Cuis. gap

SenSR 94±1 0.30±.05 0.19±.03 0.23±.05
SenSR-E 93±1 0.11±.04 0.04±.03 1.11±.15
Baseline 95±1 7.01±.44 5.59±.37 4.10±.44
Project 94±1 1.00±.56 1.99±.58 1.70±.41
Sinha+ 94±1 3.88±.26 1.42±.29 1.33±.18
Bolukb.+ 94±1 6.85±.53 4.33±.46 3.44±.29

Problem formulation We study the problem of classifying the sentiment of words

using positive (e.g. ‘smart’) and negative (e.g. ‘anxiety’) words compiled by [HL04].

We embed words using 300-dimensional GloVe [PSM14] and train a one layer neural

network with 1000 hidden units. Such classifier achieves 95% test accuracy, however it

entails major individual fairness violation. Consider an application of this sentiment

classifier to summarizing customer reviews, tweets or news articles. Human names are

typical in such texts and should not affect the sentiment score, hence we consider fair

metric between any pair of names to be 0. Then sentiment score for all names should

116



Baseline Bolukbasi+ Project Sinha+ SenSR SenSR-E

−20

−10

0

10

20

se
nt

im
en

t s
co

re

Protected Attribute
Race: Caucasian
Race: African-American
Gender: Male
Gender: Female

Figure 4.2: Box-plots of sentiment scores

be the same to satisfy the individual fairness. To make a connection to group fairness,

following the study of [CBN17] that reveals the biases in word embeddings, we evaluate

the fairness of our sentiment classifier using male and female names typical for Caucasian

and African-American ethnic groups. We emphasize that to satisfy individual fairness,

the sentiment of any name should be the same.

Comparison metrics To evaluate the gap between two groups of names, N0 for Cau-

casian (or female) and N1 for African-American (or male), we report 1
|N0|

∑
n∈N0

(h(n)1−
h(n)0)− 1

|N1|
∑

n∈N1
(h(n)1 − h(n)0), where h(n)k is logits for class k of name n (k = 1

is the positive class). We use list of names provided in [CBN17], which consists of 49

Caucasian and 45 African-American names, among those 48 are female and 46 are male.

The gap between African-American and Caucasian names is reported as Race gap, while

the gap between male and female names is reported as Gend. gap in Table 4.1. As

in [Spe17], we also compare sentiment difference of two sentences: “Let’s go get Italian

food” and “Let’s go get Mexican food”, i.e. cuisine gap (abbreviated Cuis. gap in Table

4.1), as a test of generalization beyond names. To embed these sentences we average

their word embeddings.
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Sensitive subspace We consider embeddings of 94 names that we use for evaluation

as sensitive directions, which may be regarded as utilizing the expert knowledge, i.e.

these names form a list of words that an expert believes should be treated equally. The

fair metric is then defined using an orthogonal complement projector of the span of

sensitive directions as we discussed in Section 4.2.1. When expert knowledge is not

available, or we wish to achieve general fairness for names, we utilize a side dataset of

popular baby names in New York City.2 The dataset has 11k names, however only 32

overlap with the list of names used for evaluation. Embeddings of these names define a

group of comparable samples that we use to learn sensitive directions with SVD (see

Appendix 4.6.2 and Algorithm 3 for details). We take top 50 singular vectors to form

the sensitive subspace. It is worth noting that, unlike many existing approaches in the

fairness literature, we do not use any protected attribute information. Our algorithm

only utilizes training words, their sentiments and a vanilla list of names.

Results From the box-plots in Figure 4.2, we see that both race and gender gaps are

significant when using the baseline neural network classifier. It tends to predict Caucasian

names as “positive”, while the median for African-American names is negative; the

median sentiment for female names is higher than that for male names. We considered

three other approaches to this problem: the algorithm of [BCZ+16] for pre-processing

word embeddings; pre-processing via projecting out the sensitive subspace that we

used for training SenSR (this is analogous to [PTB19]); training a distributionally

robust classifier with Euclidean distance cost [SND18]. All approaches improved upon

the baseline, however only SenSR can be considered individually fair. Our algorithm

practically eliminates gender and racial gaps and achieves the notion of individual fairness

as can be seen from almost equal predicted sentiment score for all names. We remark

that using expert knowledge (i.e. evaluation names) allowed SenSR-E (E for expert) to

further improve both group and individual fairness. However we warn practitioners that

if the expert knowledge is too specific, generalization outside of the expert knowledge

may not be very good. In Table 4.1 we report results averaged across 10 repetitions

with 90%/10% train/test splits, where we also verify that accuracy trade-off with the

baseline is minor. In the right column we present the generalization check, i.e. comparing

a pair of sentences unrelated to names. Utilizing expert knowledge led to a fairness

2titled “Popular Baby Names” and available from https://catalog.data.gov/dataset/
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Table 4.2: Summary of Adult classification experiments over 10 restarts

B-Acc,% S-Con. GR-Con. GapRMS
G GapRMS

R Gapmax
G Gapmax

R

SenSR 78.9 .934 .984 .068 .055 .087 .067
Baseline 82.9 .848 .865 .179 .089 .216 .105
Project 82.7 .868 1.00 .145 .064 .192 .086
Adv. Debias. 81.5 .807 .841 .082 .070 .110 .078
CoCL 79.0 - - .163 .080 .201 .109

over-fitting effect, however we still see improvement over other methods. When utilizing

the SVD of a larger dataset of names we observe better generalization. Our generalization

check suggests that fairness over-fitting is possible, therefore datasets and procedure for

verifying fairness generalization are needed.

4.4.2 Adult Income Prediction

Problem formulation Demonstrating the broad applicability of SenSR outside of

natural language processing tasks, we apply SenSR to a classification task on the

Adult [DG17a] data set to predict whether an individual makes at least $50k based

on features like gender and occupation for approximately 45,000 individuals. Models

that predict income without fairness considerations can contribute to the problem of

differences in pay between genders or races for the same work. Throughout this section,

gender (male or female) and race (Caucasian or non-Caucasian) are binary.

Comparison metrics Arguably a classifier is individually unfair if the classifications

for two data points that are the same on all features except demographic features

are different. Therefore, to assess individual fairness, we report spouse consistency

(S-Con.) and gender and race consistency (GR-Con.), which are measures of how often

classifications change only because of differences in demographic features. For S-Con

(resp. GR-con), we make 2 (resp. 4) copies of every data point where the only difference

is that one is a husband and the other is a wife (resp. difference is in gender and race).

S-Con (resp. GR-Con) is the fraction of corresponding pairs (resp. quadruples) that

have the same classification. We also report various group fairness measures proposed
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by [DARW+19] with respect to race or gender based on true positive rates, i.e. the ability

of a classifier to correctly identify a given class. See Appendix 4.6.4 for the definitions.

We report GapRMS
R , GapRMS

G , Gapmax
R , and Gapmax

G where R refers to race, and G refers

to gender. We use balanced accuracy (B-acc) instead of accuracy3 to measure predictive

ability since only 25% of individuals make at least $50k.

Sensitive subspace Let {(xi, xgi)}mi=1 be the set of features xi ∈ RD of the data except

the coordinate for gender is zeroed and where xgi indicates the gender of individual i.

For γ > 0, let wg = arg minw∈RD
1
m

∑m
i=1−xgi(wTxi) + log(1 + ew

T xi) + γ‖w‖2, i.e. wg is

the learned hyperplane that classifies gender given by regularized logistic regression. Let

eg ∈ RD (resp. er) be the vector that is 1 in the gender (resp. race) coordinate and 0

elsewhere. Then the sensitive subspace is the span of [wg, eg, er]. See Appendix 4.6.2 for

details.

Results See Table 4.2 for the average4 of each metric on the test sets over ten 80%/20%

train/test splits for Baseline, Project (projecting features onto the orthogonal complement

of the sensitive subspace before training), CoCL [DARW+19], Adversarial Debiasing

[ZLM18], and SenSR. With the exception of CoCL [DARW+19], each classifier is a 100

unit single hidden layer neural network. The Baseline clearly exhibits individual and

group fairness violations. While SenSR has the lowest B-acc, SenSR is the best by a

large margin for S-Con. and has the best group fairness measures. We expect SenSR

to do well on GR-consistency since the sensitive subspace includes the race and gender

directions. However, SenSR’s individually fair performance generalizes: the sensitive

directions do not directly use the husband and wife directions, yet SenSR performs well on

S-Con. Furthermore, SenSR outperforms Project on S-Con and group fairness measures

illustrating that SenSR does much more than just ignoring the sensitive subspace. CoCL

only barely improves group fairness compared to the baseline with a significant drop in

B-acc and while Adversarial Debiasing also improves group fairness, it is worse than the

baseline on individual fairness measures illustrating that group fairness does not imply

individual fairness.

3Accuracy is reported in Table 4.4 in Appendix 4.6.4.
4The standard error is reported in the supplement. Each standard error is within 10−2.
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4.5 Summary

We consider the task of training ML systems that are fair in the sense that their

performance is invariant under certain perturbations in a sensitive subspace. This notion

of fairness is a variant of individual fairness [DHP+12]. One of the main barriers to the

adoption of individual fairness is the lack of consensus on a fair metric for many ML

tasks. To circumvent this issue, we consider two approaches to learning a fair metric

from data: one for problems in which the sensitive attribute is observed, and another for

problems in which the sensitive attribute is unobserved. Given a data-driven choice of

fair metric, we provide an algorithm that provably trains individually fair ML models.

4.6 Supplement

4.6.1 Proofs

Proof of Proposition 4.3.1

By the duality result of [BM19], for any ε > 0,

sup
P :W∗(P,P∗)≤ε

EP
[
`(Z, θ)

]
− sup

P :W (P,Pn)≤ε
EP
[
`(Z, θ)

]
= inf

λ≥0
{λε+ EP∗

[
`c∗λ (Z, θ)

]}
− (λnε+ EPn

[
`cλn(Z, θ)

]
)

≤ EP∗
[
`c∗λn(Z, θ)

]
− EPn

[
`cλn(Z, θ)

]
,

where λn ∈ arg minλ≥0λε+ EPn
[
`cλ(Z, θ)

]
. By assumption A3,

|`c∗λn(z, θ)− `cλn(z, θ)|

=

∣∣∣∣ sup
x2∈X

`((x2, y), θ)− λnc∗((x, y), (x2, y))− sup
x2∈X

`((x2, y), θ)− λnc((x, y), (x2, y))

∣∣∣∣
≤ sup

x2∈X
λn|c∗((x, y), (x2, y))− c((x, y), (x2, y))|

≤ λnδc ·D2.
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This implies

sup
P :W∗(P,P∗)≤ε

EP
[
`(Z, θ)

]
− sup

P :W (P,Pn)≤ε
EP
[
`(Z, θ)

]
≤ EP∗

[
`c∗λn(Z, θ)

]
− EPn

[
`c∗λn(Z, θ)

]
+ λnδcD

2.

This bound is crude; it is possible to obtain sharper bounds under additional assumptions

on the loss and transportation cost functions. We avoid this here to keep the result as

general as possible.

Similarly,

sup
P :W (P,Pn)≤ε

EP
[
`(Z, θ)

]
− sup

P :W∗(P,P∗)≤ε
EP
[
`(Z, θ)

]
≤ EPn

[
`cλ∗(Z, θ)

]
− EP∗

[
`c∗λ∗(Z, θ)

]
≤ EPn

[
`c∗λ∗(Z, θ)

]
− EP∗

[
`c∗λ∗(Z, θ)

]
+ λ∗δcD

2,

where λ∗ ∈ arg minλ≥0{λε+ EP∗
[
`c∗λ (Z, θ)

]}
.

Lemma 4.6.1 ( [LR18]). Let λ̃ ∈ arg minλ≥0λε+ EP
[
`cλ(Z, θ)

]
. As long as the function

in the loss class are L-Lipschitz with respect to dx (see Assumption A2), λ̃ ≤ L√
ε
.

Proof. By the optimality of λ̃,

λ̃ε ≤ λ̃ε+ EP
[

sup
x2∈X

`((x2, Y ), θ)− λ̃dx(X, x2)2 − `((X, Y ), θ)
]

= λ̃ε+ EP
[
`c
λ̃
(Z, θ)− `(Z, θ)

]
≤ λε+ EP

[
`cλ(Z, θ)− `(Z, θ)

]
= λε+ EP

[
sup
x2∈X

`((x2, Y ), θ)− `((X, Y ), θ)− λdx(X, x2)2
]

for any λ ≥ 0. By Assumption A2, the right side is at most

λ̃ε ≤ λε+ EP
[

sup
x2∈X

Ldx(X, x2)− λdx(X, x2)2
]

≤ λε+ sup
t≥0

Lt− λt2

We minimize the right side with respect to t (set t = L
2λ

) and λ (set λ = L
2
√
ε
) to obtain

λ̃ε ≤ L
√
ε.
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By Lemma 4.6.1, we have

sup
P :W∗(P,P∗)≤ε

EP
[
`(Z, θ)

]
− sup

P :W (P,Pn)≤ε
EP
[
`(Z, θ)

]
≤ EP∗

[
`c∗λn(Z, θ)

]
− EPn

[
`c∗λn(Z, θ)

]
+
LδcD

2

√
ε

and

sup
P :W (P,Pn)≤ε

EP
[
`(Z, θ)

]
− sup

P :W∗(P,P∗)≤ε
EP
[
`(Z, θ)

]
≤ EPn

[
`c∗λ∗(Z, θ)

]
− EP∗

[
`c∗λ∗(Z, θ)

]
+
LδcD

2

√
ε
.

We combine the preceding bounds to obtain∣∣∣∣ sup
P :W (P,Pn)≤ε

EP
[
`(Z, θ)

]
− sup

P :W∗(P,P∗)≤ε
EP
[
`(Z, θ)

]∣∣∣∣
≤ sup

f∈Lc∗

∣∣∫
Z f(z)d(Pn − P∗)(z)

∣∣+
LδcD

2

√
ε
,

where Lc∗ = {`c∗λ (·, θ) : λ ∈ [0, L√
ε
], θ ∈ Θ} is the DR loss class. In the rest of the proof,

we bound supf∈Lc∗
∣∣ ∫
Z f(z)d(P∗ − Pn)(z)

∣∣ with standard techniques from statistical

learning theory. Assumption A2 implies the functions in F are bounded:

0 ≤ `((x1, y1), θ)−����
��λdx(x1, x1) ≤ `cλ(z1, θ) ≤ sup

x2∈X
`((x2, y1), θ) ≤M.

This implies has bounded differences, so δn concentrates sharply around its expectation.

By the bounded-differences inequality and a symmetrization argument,

sup
f∈Lc∗

∣∣∫
Z f(z)d(Pn − P∗)(z)

∣∣ ≤ 2Rn(Lc∗) +M(
log 2

t

2n
)
1
2

WP at least 1− t, where Rn(F) is the Rademacher complexity of F :

Rn(F) = E
[

sup
f∈F

1

n

n∑
i=1

σif(Zi)

]
.
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Lemma 4.6.2. The Rademacher complexity of the DR loss class is at most

Rn(Lc) ≤ 24C(L)√
n

+
24LD2

√
nε

.

Proof. To study the Rademacher complexity of Lc, we first show that the Lc-indexed

Rademacher process Xf , 1
n

∑n
i=1 σif(Zi) is sub-Gaussian with respect to to a pseudo-

metric. Let f1 = `cλ1(·, θ1) and f2 = `cλ2(·, θ2). Define

dLc(f1, f2) , ‖`(·, θ1)− `(·, θ2)‖∞ +D2|λ1 − λ2|.

We check that Xf is sub-Gaussian with respect to dLc :

E
[

exp(t(Xf1 −Xf2))
]

= E
[

exp
( t
n

n∑
i=1

σi(`
c
λ1

(Zi, θ1)− `cλ2(Zi, θ2))
)]

= E
[

exp
( t
n
σ(`cλ1(Z, θ1)− `cλ2(Z, θ2))

)]n
= E

[
exp

( t
n
σ( sup

x1∈X
inf
x2∈X

`((x1, Y ), θ1)− λ1dx(x1, X)2 − `((x2, Y ), θ2) + λ2dx(X, x2)2))
)]n

= E
[

exp
( t
n
σ( sup

x1∈X
`((x1, Y ), θ1)− `((x1, Y ), θ2) + (λ2 − λ1)dx(x1, X)2))

)]n
≤ exp

(
1
2
t2dLc(f1, f2)

)
.

Let N(Lc, dLc , ε) be the ε-covering number of (Lc, dLc). We observe

N(Lc, dLc , ε) ≤ N(L, ‖ · ‖∞, ε2) ·N([0, L√
ε
], | · |, ε

2D2 ) (4.12)
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By Dudley’s entropy integral,

Rn(Lc) ≤ 12√
n

∫ ∞
0

logN(Lc, dLc , ε)
1
2dε

≤ 12√
n

∫ ∞
0

(
logN(L, ‖ · ‖∞, ε2) +N

(
[0, L√

ε
], | · |, ε

2D2

)) 1
2dε

≤ 12√
n

(∫ ∞
0

logN(L, ‖ · ‖∞, ε2)
1
2dε+

∫ ∞
0

N
(
[0, L√

ε
], | · |, ε

2D2

) 1
2dε

)
≤ 24C(L)√

n
+

24LD2

√
nε

∫ 1
2

0

log(1
ε
)dε

where we recalled Equation (4.12) in the second step. We evalaute the integral on the

right side to arrive at the stated bound:
∫ 1

2

0
log(1

ε
)dε < 1.

By Lemma 4.6.2,

sup
f∈Lc∗

∣∣∫
Z f(z)d(Pn − P∗)(z)

∣∣ ≤ 48C(L)√
n

+
48LD2

√
nε

+M(
log 2

t

2n
)
1
2 ,

which implies ∣∣∣∣ sup
P :W (P,Pn)≤ε

EP
[
`(Z, θ)

]
− sup

P :W∗(P,P∗)≤ε
EP
[
`(Z, θ)

]∣∣∣∣
≤ 48C(L)√

n
+

48LD2

√
nε

+
LδcD

2

√
ε

+M(
log 2

t

2n
)
1
2 .

WP at least 1− t.

Proofs of Propositions 4.3.2 and 4.3.3

Proof of Proposition 4.3.2. It is enough to show

supP :W∗(P,P∗)≤ε EP
[
`(Z, θ̂)

]
≤ δ∗ + 2δn
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because the loss function is non-negative. We have

sup
P :W∗(P,P∗)≤ε

EP
[
`(Z, θ̂)

]
≤ sup

P :W (P,Pn)≤ε
EP
[
`(Z, θ̂)

]
+ δn

≤ sup
P :W (P,Pn)≤ε

EP
[
`(Z, θ̄)

]
+ δn

≤ sup
P :W∗(P,P∗)≤ε

EP
[
`(Z, θ̄)

]
+ 2δn

≤ δ∗ + 2δn.

Proof of Proposition 4.3.3.

sup
P :W∗(P,Pn)≤ε

(
EP
[
`(Z, θ)

]
− EPn

[
`(Z, θ)

])
− sup

P :W (P,P∗)≤ε

(
EP
[
`(Z, θ)

]
− EP∗

[
`(Z, θ)

])
= sup

P :W∗(P,P∗)≤ε
EP
[
`(Z, θ)

]
− sup

P :W (P,Pn)≤ε
EP
[
`(Z, θ)

]
+ EP∗

[
`(Z, θ)

]
− EPn

[
`(Z, θ)

]
≤ δn + EP∗

[
`(Z, θ)

]
− EPn

[
`(Z, θ)

]
The loss function is bounded, so it is possible to bound EP∗

[
`(Z, θ)

]
− EPn

[
`(Z, θ)

]
by

standard uniform convergence results on bounded loss classes.

4.6.2 Data-Driven Fair Metrics

Learning the fair metric from observations of the sensitive attribute

Here we assume the sensitive attribute is discrete and is observed for a small subset

of the training data. Formally, we assume this subset of the training data has the

form {(Xi, Ki, Yi)}, where Ki is the sensitive attribute of the i-th subject. To learn the

sensitive subspace, we fit a softmax regression model to the data

Pr(Ki = l | Xi) =
exp(aTl Xi + bl)∑k
l=1 exp(aTl Xi + bl)

, l = 1, . . . , k,

and take the span of A =
[
a1 . . . ak

]
as the sensitive subspace to define the fair metric as

dx(x1, x2)2 = (x1 − x2)T (I − Pran(A))(x1 − x2). (4.13)
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This approach readily generalizes to sensitive attributes that are not discrete-valued:

replace the softmax model by an appropriate generalized linear model.

In many applications, the sensitive attribute is part of a user’s demographic information,

so it may not be available due to privacy restrictions. This does not preclude the proposed

approach because the sensitive attribute is only needed to learn the fair metric and is

neither needed to train the classifier nor at test time.

Learning the fair metric from comparable samples

In this section, we consider the task of learning a fair metric from supervision in a form

of comparable samples. This type of supervision has been considered in the literature

on debiasing learned representations. For example, method of [BCZ+16] for removing

gender bias in word embeddings relies on sets of words whose embeddings mainly vary

in a gender subspace (e.g. (king, queen)).

To keep things simple, we focus on learning a generalized Mahalanobis distance

dx(x1, x2) = (ϕ(x1)− ϕ(x2))T Σ̂(ϕ(x1)− ϕ(x2))
1
2 , (4.14)

where ϕ(x) : X → Rd is a known feature map and Σ̂ ∈ Sd×d+ is a covariance matrix. Our

approach is based on a factor model

ϕi = A∗ui +B∗vi + εi,

where ϕi ∈ Rd is the learned representation of xi, ui ∈ RK (resp. vi ∈ RL) is the

sensitive/irrelevant (resp. relevant) attributes of xi to the task at hand, and εi is an

error term. For example, in [BCZ+16], the learned representations are the embeddings

of words in the vocabulary, and the sensitive attribute is the gender bias of the words.

The sensitive and relevant attributes are generally unobserved.

Recall our goal is to obtain Σ̂ so that Equation (4.14) is small whenever v1 ≈ v2. One

possible choice of Σ̂ is the projection matrix onto the orthogonal complement of ran(A),

which we denote by Pran(A). Indeed,

dx(x1, x2)2 = (ϕ1 − ϕ2)T (I − Pran(A))(ϕ1 − ϕ2) (4.15)
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≈ (v1 − v2)TBT
∗ (I − Pran(A))B∗(v1 − v2), (4.16)

which is small whenever v1 ≈ v2. Although ran(A) is unknown, it is possible to estimate

it from the learned representations and groups of comparable samples by factor analysis.

The factor model attributes variation in the learned representations to variation in the

sensitive and relevant attributes. We consider two samples comparable if their relevant

attributes are similar. In other words, if I ⊂ [n] is (the indices of) a group of comparable

samples, then

HΦI = HUIA
T
∗ +���

��:≈ 0
HVIB

T
∗ +HEI ≈ HUIA

T
∗ +HEI , (4.17)

where H = I|I| − 1
|I|1|I|1

T
|I| is the centering or de-meaning matrix and the rows of ΦI

(resp. UI , VI) are ϕi (resp. ui, vi). If this group of samples have identical relevant

attributes, i.e., VI = 1|I|v
T for some v, then HVI vanishes exactly. As long as ui and εi

are uncorrelated (e.g, E
[
uiε

T
i

]
= 0), Equation (4.17) implies

E
[
ΦT
IHΦI

]
≈ AE

[
UT
I HUI

]
AT + E

[
ET
IHEI

]
,

This suggests estimating ran(A) from the learned representations and groups of compa-

rable samples by factor analysis. We summarize our approach in Algorithm 3.

Algorithm 3 estimating Σ̂ for the fair metric

1: Input: {ϕi}ni=1, comparable groups I1, . . . , IG
2: ÂT ∈ arg minWg ,A{

1
2

∑G
g=1 ‖HgΦIg −WgA

T‖2
F} . factor analysis

3: Q← qr(Â) . get orthonormal basis of ran(Â)

4: Σ̂← Id −QQT

4.6.3 SenSR Implementation Details

This section is to accompany the implementation of the SenSR algorithm and is best

understood by reading it along with the code implemented using TensorFlow.5 We

discuss choices of learning rates and few specifics of the code. Words in italics correspond

5https://github.com/IBM/sensitive-subspace-robustness
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to variables in the code and following notation in parentheses defines corresponding

name in Table 4.3, where we summarize all hyperparameter choices.

Handling class imbalance Datasets we study have imbalanced classes. To handle it,

on every epoch(E) (i.e. number of epochs) we subsample a batch size(B) training samples

enforcing equal number of observations per class. This procedure can be understood as

data augmentation.

Perturbations specifics Our implementation of SenSR algorithm has two inner

optimization problems — subspace perturbation and full perturbation (when ε > 0).

Subspace perturbation can be viewed as an initialization procedure for the attack. We

implement both using Adam optimizer [KB15] inside the computation graph for better

efficiency, i.e. defining corresponding perturbation parameters as Variables and re-setting

them to zeros after every epoch. This is in contrast with a more common strategy

in the adversarial robustness implementations, where perturbations (i.e. attacks) are

implemented using tf.gradients with respect to the input data defined as a Placeholder.

Learning rates As mentioned above, in addition to regular Adam optimizer for

learning the parameters we invoke two more for the inner optimization problems of

SenSR. We use same learning rate of 0.001 for the parameters optimizer, however different

learning rates across datasets for subspace step(s) and full step(f). Two other related

parameters are number of steps of the inner optimizations: subspace epoch(se) and

full epoch(fe). We observed that setting subspace perturbation learning rate too small

may prevent our algorithm from reducing unfairness, however setting it big does not seem

to hurt. On the other hand, learning rate for full perturbation should not be set too big

as it may prevent algorithm from solving the original task. Note that full perturbation

learning rate should be smaller than perturbation budget eps(ε) — we always use ε/10.

In general, malfunctioning behaviors are immediately noticeable during training and can

be easily corrected, therefore we did not need to use any hyperparameter optimization

tools.
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Table 4.3: SenSR hyperparameter choices in the experiments

E B s se ε f fe

Sentiment 4K 1K 0.1 10 0.1 0.01 10
Adult 12K 1K 10 50 10−3 10−4 40

4.6.4 Additional Adult Experiment Details

Preprocessing

The continuous features in Adult are the following: age, fnlwgt, capital-gain,

capital-loss, hours-per-week, and education-num. The categorical features are

the following: workclass, education, marital-stataus, occupation, relationship,

race, sex, and native-country. See [DG17a] for a description of each feature. We

remove fnlwgt and education but keep education-num, which is a integer representa-

tion of education. We do not use native-country, but use race and sex as predictive

features. We treat race as binary: individuals are either White or non-White. For

every categorical feature, we use one hot encoding. For every continuous feature, we

standardize, i.e., subtract the mean and divide by the standard deviation. We remove

anyone with missing data leaving 45,222 individuals.

This data is imbalanced: 25% make at least $50k per year. Furthermore, there is

demographic imbalance with respect to race and gender as well as class imbalance on

the outcome when conditioning on race or gender: 86% of individuals are white of which

26% make at least $50k a year; 67% of individuals are male of which 31% make at least

$50k a year; 11% of females make at least $50k a year; and 15% of non-whites make at

least $50k a year.

Full experimental results

See Tables 4.4 and 4.5 for the full experiment results. The tables report the average and

the standard error for each metric on the test set for 10 train and test splits.

Sensitive subspace

To learn the hyperplane that classifies females and males, we use our implementation of

regularized logistic regression with a batch size of 5k, 5k epochs, and .1 `2 regularization.
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Table 4.4: Summary of Adult classification experiments over 10 restarts

Accuracy B-TPR GapRMS
G GapRMS

R Gapmax
G Gapmax

R

SenSR .787±.003 .789±.003 .068±.004.055±.003.087±.005.067±.004
Baseline .813±.001.829±.001.179±.004 .089±.003 .216±.003 .105±.003
Project .813±.001.827±.001 .145±.004 .064±.003 .192±.004 .086±.004
Adv. Debias..812±.001 .815±.002 .082±.005 .070±.006 .110±.006 .078±.005
CoCL - .790 .163 .080 .201 .109

Table 4.5: Summary of individual fairness metrics in Adult classification experi-
ments over 10 restarts

Spouse ConsistencyGender and Race Consistency

SenSR .934±.012 .984±.000
Baseline .848±.008 .865±.004
Project .868±.005 1±0
Adv. Debias..807±.002 .841±.012

Hyperparameters and training

For each model, we use the same 10 train/test splits where use 80% of the data for

training. Because of the class imbalance, each minibatch is sampled so that there are

an equal number of training points from both the “income at least $50k class” and the

“income below $50k class.”

Baseline, Project, and SenSR See Table 4.3 for the hyperparameters we used when

training Baseline, Project, and SenSR (Baseline and Project use a subset). Hyperparam-

eters are defined in Appendix 4.6.3.

Advesarial debiasing We used [ZLM18]’s adversarial debiasing implementation in

IBM’s AIF360 package [BDH+18] where the source code was modified so that each mini-

batch is balanced with respect to the binary labels just as we did with our experiments

and dropout was not used. Hyperparameters are the following: adversary loss weight

= .001, num epochs = 500, batch size = 1000, and privileged groups are defined by

binary gender and binary race.
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Group fair metrics

Let C be a set of classes, A be a binary protected attribute and Y, Ŷ ∈ C be the true

class label and the predicted class label. Then for a ∈ {0, 1} and c ∈ C define TPRa,c =

P(Ŷ = c|A = a, Y = c); GapA,c = TPR0,c − TPR1,c; GapRMS
A =

√
1
|C|
∑

c∈C Gap2
A,c;

Gapmax
A = arg maxc∈C |GapA,c|; Balanced Acc = 1

|C|
∑

c∈C P(Ŷ = c|Y = c).

For Adult, we report GapRMS
R , GapRMS

G , Gapmax
R , and Gapmax

G where C is composed of

the two classes that correspond to whether someone made at least $50k, R refers to race,

and G refers to gender.
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Chapter 5

Individually Fair Rankings

The work in this chapter is joint with Hamid Eftekhari, Mikhail Yurochkin and Yuekai

Sun. Specifically, the theoretical work was mainly done by Hamid Eftekhari and the

experimental work was mainly done by me. This work is currently under review.

5.1 Introduction

Information retrieval (IR) systems are everywhere in today’s digital world, and ranking

models are an integral part of many IR systems. In light of their ubiquity, issues of

bias and unfairness in ranking models have come to the fore of the public’s attention.

In many applications, the items to be ranked are individuals, so bias in the output of

ranking models may directly affect people’s lives. For example, gender bias in job search

engines directly affect the career success of female applicants [Das18].

There is a rapidly growing literature on detecting and mitigating algorithmic bias

in machine learning (ML). The ML community has developed many formal definitions

of algorithmic fairness along with algorithms to enforce these definitions [DHP+12,

HPPS16,BHJ+18,KLRS17,RSZ17,YBS20]. Unfortunately, these issues have received less

attention in the IR community. In particular, compared to the myriad of mathematical

definitions of algorithmic fairness in the ML community, there are only a few definitions

of algorithmic fairness for ranking. A recent review of fair ranking [Cas19] identifies two

characteristics of fair rankings:

1. sufficient exposure of items from disadvantaged groups in rankings: Rankings should

display a diversity of items. In particular, rankings should take care to display
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items from disadvantaged groups to avoid allocative harms to items from such

groups.

2. consistent treatment of similar items in rankings: Items with similar relevant

attributes should be ranked similarly.

There is a line of work on fair ranking by [SJ18, SJ19] that focuses on the first

characteristic. In this chapter, we complement this line of work by focusing on the second

characteristic. In particular, we (i) specialize the notion of individual fairness in ML to

rankings and (ii) devise an efficient algorithm for enforcing this notion in practice. We

focus on the second characteristic since, in some sense, consistent treatment of similar

items implies sufficient exposure: if there are items from disadvantaged groups that

are similar to relevant items from advantaged groups, then a ranking model that treats

similar items consistently will provide sufficient exposure to the items from disadvantaged

groups.

5.1.1 Related work

Our work addresses the fairness of a learning-to-rank (LTR) system with respect to

the items being ranked. The majority of work in this area requires a fair ranking to

fairly allocate exposure (measured by the rank of an item in a ranking) to items. One

line of work [YS17,ZBC+17,CSV18,GAK19,CMV20,YGS19] requires a fair ranking to

place a minimum number of minority group items in the top k ranks. Another line of

work models the exposure items receive based on rank position and allocates exposure

based on these exposure models and item relevance [SJ18,ZC20,BGW18,SJ19,SZR+19].

There is some work that consider other fairness notions. The work of [KVR19] proposes

error-based fairness criteria, and the framework of [AJSD19] can handle arbitrary fairness

constraints given by an oracle. In contrast, we propose a fundamentally new definition: an

individually fair ranking is invariant to sensitive perturbations of the features of the items.

For example, consider ranking a set of job candidates, and consider the counterfactual

set of candidates obtained from the original set by flipping each candidate’s gender. We

require that a fair LTR model produces the same ranking for both the original and

counterfactual set.

The work in [ZBC+17,CSV18,SJ18,BGW18,GAK19,CMV20,YGS19,WZW18,AJSD19]

propose post-processing algorithms to obtain a fair ranking, i.e., algorithms that fairly

134



re-rank items based on estimated relevance scores or rankings from potentially biased

LTR models. However, post-processing techniques are insufficient since they can be

mislead by biased estimated relevance scores [ZC20,SJ19] with the exception of the work

in [CMV20] which assumes a specific bias model and provably counteracts this bias. In

contrast, like [ZC20,SJ19], we propose an in-processing algorithm.

We consider individual fairness as opposed to group fairness [YS17,ZBC+17,CSV18,

SJ18,ZC20,GAK19,SZR+19,KVR19,CMV20,YGS19,WZW18,AJSD19]. The merits

of individual fairness over group fairness have been well established, e.g., group fair

models can be blatantly unfair to individuals [DHP+12]. In fact, we show empirically

that individual fairness is sufficient for group fairness but not vice versa. The work

in [BGW18,SJ19] also considers individually fair LTR models. However, our notion of

individual fairness is fundamentally different since we utilize a fair metric on queries like

in the seminal work that introduced individual fairness [DHP+12] instead of measuring

the similarity of items through relevance alone. To see the benefit of our approach,

consider the job applicant example. If the training data does not contain highly ranked

minority candidates, then at test time our LTR model will be able to correctly rank a

minority candidate who should be highly ranked, which is not necessarily true for the

work in [BGW18,SJ19].

5.2 Problem formulation

A query q ∈ Q to a ranker consists of a candidate set of n items that needs to be

ranked dq , {dq1, . . . , dqn} and a set of relevance scores relq , {relq(d) ∈ R}d∈dq . Each

item is represented by a feature vector ϕ(d) ∈ X that describes the match between

item d and query q where X is the feature space of the item representations. We

consider stochastic ranking policies π(· | q) that are distributions over rankings r (i.e.

permutations) of the candidate set. Our notation for rankings is r(d): the rank of item

d in ranking r (and r−1(j) is the j-ranked item). A policy generally consists of two

components: a scoring model and a sampling method. The scoring model is a smooth

ML model hθ parameterized by θ (e.g. a neural network) that outputs a vector of scores:

hθ(ϕ(dq)) , (hθ(ϕ(dq1)), . . . , hθ(ϕ(dqn))). The sampling method defines a distribution on

rankings of the candidate set from the scores. For example, the Plackett-Luce [Pla75]
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model defines the probability of the ranking r = 〈d1, . . . , dn〉 as

πθ(r | q) =
n∏
j=1

exp(hθ(ϕ(dj)))

exp(hθ(ϕ(dj))) + · · ·+ exp(hθ(ϕ(dn)))
. (5.1)

To sample a ranking from the Placket-Luce model, items from a query are chosen without

replacement where the probability of selecting items is given by the softmax of the scores

of remaining items. The order in which the items are sampled defines the order of the

ranking from best to worst. The goal of the LTR problem is finding a policy that has

maximum expected utility:

π∗ , arg maxπEq∼Q
[
U(π | q)

]
where U(π | q) , Er∼π(·|q)

[
∆(r, relq)

]
, (5.2)

where Q is the distribution of queries, U(π | q) is the utility of a policy π for query q,

and ∆ is a ranking metric (e.g. normalized discounted cumulative gain). In practice, we

solve the empirical version of Equation (5.2):

π̂ , arg maxπ
1

N

N∑
i=1

[
U(π | qi)

]
, (5.3)

where {qi}Ni=1 is a training set. If the policy is parameterized by θ, it is not hard to

evaluate the gradient of the utility with respect to θ with the log-derivative trick:

∂θU(πθ | q) = ∂θEr∼πθ(·|q)
[
∆(r, relq)

]
=

∫
∆(r, relq)∂θπθ(r | q)dr

=

∫
∆(r, relq)∂θ{log πθ(r | q)}πθ(r | q)dr = Er∼πθ(·|q)

[
∆(r, relq)∂θ log πθ(r | q)

]
.

In practice, we (approximately) evaluate ∂θU(πθ | q) by sampling from πθ(· | q). This

set-up is mostly adopted from [YDJ19].

5.2.1 Fair Ranking via Invariance Regularization

We cast the fair ranking problem as training ranking policies that are invariant under

certain sensitive perturbations to the queries. Let dQ be a fair metric on queries that

encode which queries should be treated similarly by the LTR model. For example, a

136



LTR model should similarly rank a set of job candidates and the counterfactual set of

job candidates obtained from the original set via flipping the gender of each candidate.

Hence, these two queries should be close according to dQ. We propose Sensitive Set

Transport Invariant Ranking (SenSTIR) to enforce individual fairness in ranking via the

following optimization problem:

π∗ , arg maxπEq∼Q
[
U(π | q)

]
− ρR(π), (SenSTIR)

such that ρ > 0 is a regularization parameter and

R(π) ,


supΠ∈∆(Q×Q) E(q,q′)∼Π

[
dR(π(· | q), π(· | q′))

]
subject to E(q,q′)∼Π

[
dQ(q, q′)

]
≤ ε

Π(·,Q) = Q

 (5.4)

is an invariance regularizer where dR is a metric on ranking policies, ∆(Q×Q) is the

set of probability distributions on Q×Q where Q is the set of queries, and ε > 0. At

a high-level, individual fairness requires ML models to have similar outputs for similar

inputs. This property is exactly what the regularizer encourages: the LTR model is

encouraged to assign similar ranking policies (with respect to dR) to similar queries

(with respect to dQ). The problem of enforcing invariance for individual fairness has

been considered in supervised learning [YBS20,YS20]. However, these methods are not

readily applicable to the LTR setting because of two main challenges: (i) defining a fair

distance dQ on queries, i.e., sets of items, and (ii) ensuring the resulting optimization

problem is differentiable.

Optimal transport distance dQ between queries We appeal to the machinery of

optimal transport to define an appropriate metric dQ on queries, i.e., sets of items. First,

we need a fair metric on items dX that encodes our intuition of which items should

be treated similarly. Such a metric also appears in the traditional individual fairness

definition [DHP+12] for classification and regression problems. Learning an individually

fair metric is an important problem of its own that is actively studied in the recent

literature [Ilv20,WGL+19,YBS20,MYBS20b]. In the experiment section, the fair metric

on items dX is learned from data using existing methods. The key idea is to view queries,
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i.e., sets of items, as distributions on X so that a metric between distributions can

be used. In particular, to define dQ from dX , we utilize an optimal transport distance

between queries with dX as the transport cost:

dQ(q, q′) ,


infΠ∈∆(X×X )

∫
X×X dX (x, x′)dΠ(x, x′)

subject to Π(·,X ) = 1
n

∑n
j=1 δϕ(dqj )

Π(X , ·) = 1
n

∑n
j=1 δϕ(dq

′
j )

, (5.5)

where ∆(X ×X ) is the set of probability distributions on X ×X where X is the feature

space of item representations and δ is the Dirac delta function.

5.3 Algorithm

In order to apply stochastic optimization to Equation (SenSTIR), we appeal to duality. In

particular, using Theorem 2.3 of [YS20], if dR(π(· | q), π(· | q′))−λdQ(q, q′) is continuous

in (q, q′) for all λ, then the invariance regularizer R can be written as

R(π) = infλ≥0{λε+ Eq∼Q[rλ(π, q)]},where (5.6)

rλ(π, q) , supq′∈Q{dR(π(· | q), π(· | q′))− λdQ(q, q′)}. (5.7)

In order to compute rλ(π, q), we can use gradient ascent on u(q′ | π, q, λ) , dR(π(· |
q), π(· | q′))− λdQ(q, q′). We start by computing the gradient of dQ(q, q′) with respect to

x′ , ϕ(dq
′
). Let x , ϕ(dq). Let Π?(q, q′) be the optimal transport plan for the problem

defining dQ(q, q′), that is

dQ(q, q′) =

∫
X×X

dX (x, x′)dΠ?(x, x′), Π?(·,X ) =
1

n

n∑
j=1

δϕ(dqj )
, Π?(X , ·) =

1

n

n∑
j=1

δ
ϕ(dq

′
j )
.

The probability distribution Π?(q, q′) can be viewed as a coupling matrix where Π?
i,j ,

Π?(ϕ(dqi ), ϕ(dq
′

j )). Using this notation we have

∂x′jdQ(q, q′) =
n∑
i=1

Π?
i,j∂2dX (ϕ(dqi ), ϕ(dq

′

j )), (5.8)
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where ∂2dX denotes the derivative of dX with respect to its second input. If dR(πθ(· |
q), πθ(· | q′)) = ‖hθ(ϕ(dq))− hθ(ϕ(dq

′
))‖2

2/2, then by Equation (5.8), a single iteration of

gradient ascent on dQ with step size γ for x′ is

x
′(l+1)
j = x

′(l)
j + γ

(
∂x′jhθ(x

′(l))T (hθ(x
′(l))− hθ(x))− λ

n∑
i=1

Π?
i,j∂2dX (xi, x

′(l)
j )

)
. (5.9)

In our experiments, we use this choice of dR, which has been widely used, e.g., robustness

in image classification [KKG18,YWHD19] and fairness [YS20]. However, our theory and

set-up do not preclude other metrics. We can now present Algorithm 4, an alternating,

stochastic algorithm, to solve Equation (SenSTIR).

Algorithm 4 SenSTIR: Sensitive Set Transport Invariant Ranking

Require: Initial Parameters: θ0, λ0, ε, ρ; Step Sizes: γ, αt, ηt > 0, Training queries: Q̂

1: repeat

2: Sample mini-batch (qti , relqti )Bi=1 from Q̂

3: q′ti ← arg maxq′{1
2
‖hθt(ϕ(dqti ))− hθt(ϕ(dq

′
))‖2

2 − λtdQ(qti , q
′)}, i ∈ [B] . Using

(5.9)

4: λt+1 ← max{0, λt + αtρ(ε− 1
B

∑B
i=1 dQ(qti , q

′
ti

))}
5: θt+1 ← θt + ηt(

1
B

∑B
i=1 ∂θ{U(πθt | qti)} − ρ(∂θhθt(q

′
ti

) − ∂θhθt(qti))
T (hθt(q

′
ti

) −
hθt(qti))

6: until converged

5.4 Theoretical Results

In this section, we study the generalization performance of the invariance regularizer

R(hθ) := R(πθ), which is an instance of a hierarchical optimal transport problem

that does not have known uniform convergence results in the literature. Furthermore,

the regularizer is not a separable function of the training examples so classical proof

techniques are not applicable. To state the result, suppose that d̂X is an approximation

of the fair metric dX between items that is learned from data. The corresponding learned
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metric on queries is defined by

d̂Q(q, q′) ,


infΠ∈∆(X×X )

∫
X×X d̂X (x, x′)dΠ(x, x′)

subject to Π(·,X ) = 1
n

∑n
j=1 δϕ(dqj )

Π(X , ·) = 1
n

∑n
j=1 δϕ(dq

′
j )

, (5.10)

and the empirical regularizer is defined by

R̂(hθ) ,


supΠ∈∆(Q×Q) EΠ

[
dY(hθ(ϕ(dq)), hθ(ϕ(dq

′
))
]

subject to EΠ

[
d̂Q(q, q′)

]
≤ ε

Π(·,Q) = Q̂

, (5.11)

where Q̂ is the distribution of training queries and dY is a metric on Y , {hθ(ϕ(dq)) |
q ∈ Q}.

Define a class of loss functions D by D , {dhθ : Q × Q → R+ | hθ ∈ H}, where

dh(q, q
′) , dY(h(ϕ(dq)), h(ϕ(dq

′
))) and H is the hypothesis class of scoring functions.

Let N(D, d, ε) be the ε-covering of the class D with respect to a metric d. The entropy

integral of D (w.r.t. the uniform metric) measures the complexity of the class and is

defined by

J(D) ,
∫ ∞

0

√
logN(D, ‖ · ‖∞, ε)dε. (5.12)

Assumption A1. Bounded diameters: supx,x′∈X dX (x, x′) ≤ DX , supy,y′∈Y dY(y, y′) ≤
DY .

Assumption A2. Estimation error of dX is bounded: supx,x′∈X |d̂X (x, x′)−dX (x, x′)| ≤
ηd.

Theorem 5.4.1. If assumptions A1 and A2 hold and J(D) is finite, then with probability

at least 1− t

sup
hθ∈H

|R̂(hθ)−R(hθ)| ≤
48(J(D) + ε−1DXDY)√

n
+DY

(
log 2

t

2n

) 1
2

+
DYηd
ε

,

where n is the number of training queries. A proof of the theorem is given in the
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supplement. The key technical challenge is leveraging the transport geometry on the

query space to obtain a uniform bound on the convergence rate. This theorem implies

that for a trained ranking model ĥθ, the error term |R̂(ĥθ)−R(ĥθ)| is small for large n.

Therefore, one can certify that the value of the regularizer R(ĥθ) is small on yet unseen

(test) data by ensuring that the value of R̂(ĥθ) is small on training data.

5.5 Computational results

In this section, we demonstrate the efficacy of SenSTIR for learning individually fair

LTR models. One key conclusion is that enforcing individual fairness is sufficient to

achieve group fairness but not vice versa. See Section B of the supplement for full details

about the experiments.

Fair metric Following [YBS20], the individually fair metric dX on X is defined in

terms of a sensitive subspace A that is learned from data. In particular, dX is the

Euclidean distance of the data projected onto the orthogonal complement of A. This

metric encodes variation due to sensitive information about individuals in the subspace

and ignores it when computing the fair distance. For example, A can be formed by

fitting linear classifiers to predict sensitive information, like gender or age, of individuals

and taking the span of the vectors orthogonal to the corresponding decision boundaries.

In each experiment, we explain how A is learned.

Baselines For all methods, we learn linear score functions hθ and maximize normalized

discounted cumulative gain (NDCG), i.e., ∆ in Equation 5.2 is NDCG. We compare

SenSTIR to (1) vanilla training without fairness (“Baseline”), i.e., ρ = 0, (2) pre-

processing by first projecting the data onto the orthogonal complement of the sensitive

subspace and then using vanilla training (“Project”), (3) “Fair-PG-Rank” [SJ19], a

recent approach for training fair LTR models, and (4) randomly sampling the linear

weights from a standard normal (“Random”) to give context to NDCG.

5.5.1 Synthetic

We use synthetic data considered in prior fair ranking work [SJ19]. Each query contains

10 majority or minority items in R2 such that 8 items per query are majority group

items in expectation. For each item, z1 and z2 are drawn uniformly from [0, 3]. The
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relevance of an item is z1 + z2 clipped between 0 and 5. A majority item’s feature vector

is (z1, z2)T , whereas a minority item’s feature vector is corrupted and given by (z1, 0)T .

Fair Metric The sensitive subspace is spanned by the hyperplane learned by logistic

regression to predict whether an item is in the majority group. Recall, the fair metric is

the Euclidean distance of the projection of the data onto the orthogonal complement of

this subspace. Since this hyperplane is nearly equal to (0, 1)T , the biased feature z2 is

ignored in the fair metric.

Results Figure 5.1 illustrates SenSTIR for ρ ∈ {0, .0003, .001} with ε = .001. Each

point is colored by its relevance, and the contours show predicted scores where redder

(respectively bluer) regions indicates higher (respectively lower) predicted scores. Minority

items are on the horizontal z1-axis because of their corrupted features. When ρ = 0,

i.e., fairness is not enforced, this score function badly violates individual fairness since

there are pairs of items close in the fair metric but with wildly different predicted scores

because the biased feature z2 is used. For example, the bottom blue star is a minority

item with nearly the same relevance as the top black star majority item; however, the

majority item’s predicted score is much higher. When ρ is increased, the contours learned

by SenSTIR eventually become vertical, thereby ignoring the biased feature z2 and

achieving individual fairness. When ρ = .001, the scores of the blue and black star are

nearly equal because they are very close in the fair metric and the fair regularization

strength is large enough.

Figure 5.2 illustrates another individual fairness property of SenSTIR that Fair-PG-

Rank does not satisfy: ranking stability with respect to sensitive perturbations of the

features. For each test query q, let q′ 6= q be the closest test query in terms of the fair

distance dQ. We can view q′ as a counterfactual query in the test set. For each query q,

we sample 10 rankings corresponding to q and 10 counterfactual rankings corresponding

to q′ based on the learned ranking policy. The (i, j)-th entry of a heatmap in Figure

5.2 is the proportion of times the i-th ranked item for query q is ranked j-th in the

counterfactual ranking. To satisfy individual fairness, the original and counterfactual

rankings should be similar, meaning the heatmaps should be close to diagonal. Even

though the baseline is relatively stable for highly and lowly ranked items, these items

still change positions under the counterfactual rankings more than 50% of the time.

Although Fair-PG-Rank satisfies group fairness, it is worse than the baseline in terms of

counterfactual stability, i.e., individual fairness. In contrast, as ρ increases, SenSTIR
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Figure 5.1: The points represent items shaded by their relevances, and the con-
tours represent the predicted scores. The minority items lie on the
horizontal z1-axis because their z2 value is corrupted to 0. The blue
star and black star correspond to minority and majority items that
are close in the fair metric with nearly the same relevance. However,
they have wildly different predicted scores under the baseline. Us-
ing SenSTIR, as ρ increases, they eventually have the same predicted
scores.

becomes stable.

5.5.2 German Credit

Following [SJ19], we adapt the German Credit classification data set [DG17b], which is

susceptible to gender and age biases, to a LTR task. This data set contains 1000 individ-

uals with binary labels indicating creditworthiness. Features include demographics like

gender and age as well as information about savings accounts, housing, and employment.
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Figure 5.2: The (i, j)-th entries of these heatmaps represent the proportion of times
that the i-th ranked item is moved to position j under the correspond-
ing counterfactual ranking. With large enough ρ, SenSTIR ranks the
original queries and counterfactual queries similarly as desired.
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To simulate LTR data, individuals are sampled with replacement to build queries of size

10. Each individual has a binary relevance, and on average 4 individuals are relevant in

each query. To apply Fair-PG-Rank, age is the binary protected attribute where the two

groups are those younger than 25 and those 25 and older, a split proposed by [KC09].

For the fair metric, the sensitive subspace is spanned by the ridge regression coefficients

for predicting age based on all other features and the standard basis vector corresponding

to age.

Comparison metrics See Section B of the supplement for the precise definitions of

these metrics. To assess accuracy, following [SJ19], we report the average stochastic

test NDCG by sampling 25 rankings for each query from the learned ranking policy.

To assess individual fairness, we use ranking stability with respect to demographic

perturbations, which is the natural analogue of an evaluation metric for individual

fairness in classification [YS20, YBS20]. In particular, for each query, we create a

counterfactual query by flipping the (binary) gender of each individual in the query,

and deterministically rank by sorting the items by their scores. We report the average

Kendall’s tau correlation (higher implies better individual fairness) between a test query’s

ranking and its counterfactual ranking. To assess group fairness and fairly compare

to Fair-PG-Rank based on their fairness definition, we report the average stochastic

disparity of group exposure also with 25 sampled rankings per query. This metric

measures the asymmetric differences of the ratio of exposure a group receives to its

relevance per query and favors the group with less relevance for a given query. Let G1

(respectively G0) be the set of older (respectively younger) people for a query q. For

i ∈ {0, 1}, let MGi = (1/|Gi|)
∑

d∈Gi relq(d). If MG0 > MG1 , let GA = G0, GD = G1 and

GA = G1, GD = G0 otherwise. The stochastic disparity of group exposure for a set of

rankings {ri}Ni=1 corresponding to a query is

max

{
0,

1
N |GA|

∑
d∈GA

∑N
i=1

1
log2(ri(d)+1)

MGA

−
1

N |GD|
∑

d∈GD

∑N
i=1

1
log2(ri(d)+1)

MGD

}
. (5.13)

Results Figure 5.3 illustrates the fairness versus accuracy trade-off on the test set. The

error bars represent the standard error over 10 random train/test splits. Both SenSTIR

and Fair-PG-Rank enforce fairness through regularization, so we vary the regularization

strength (ρ for SenSTIR with ε constant). Based on the NDCG of “Random”, the
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Figure 5.3: Individual (left) and group fairness (right) versus accuracy for the
German credit data set

regularization strength ranges are reasonable for both methods. The left plot in Figure

5.3 shows the average Kendall’s tau correlation (higher is better) between test queries

and their gender counterfactuals versus the average stochastic NDCG. The maximum

Kendall’s tau correlation is 1, which SenSTIR achieves with relatively high NDCG. We

emphasize that the sensitive subspace that SenSTIR utilizes to define the fair query

metric directly relates to age, not gender. However, age is correlated with gender, so

this metric shows the individually fair properties of SenSTIR generalize beyond age.

Furthermore, SenSTIR gracefully trades off NDCG for individual fairness unlike Fair-PG-

Rank. “Project” is worse in terms of individual fairness than vanilla training without

enforcing fairness. Without direct age information, perhaps “Project” must more heavily

rely on gender to learn accurate rankings, which illustrates that SenSTIR’s generalization

properties from age to gender are non-trivial. Disparity of group exposure (where smaller

numbers are better) versus NDCG is depicted on the right plot of Figure 5.3. This

group fairness metric is exactly what Fair-PG-Rank regularizes with. On average, for

the same value of NDCG, SenSTIR typically outperforms Fair-PG-Rank showing that

individual fairness can be sufficient for group fairness but not vice versa. While “Project”

improves mildly upon the baseline, it shows being “age” blind does not result in group

fair rankings.

5.5.3 Microsoft Learning To Rank

The demographic biases are real in the German Credit data, but the LTR task is simulated.

There are no standard LTR data sets with demographic biases, so we consider Microsoft’s

Learning to Rank (MSLR) data set [QL13] with an artificial algorithmic fairness concern
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Figure 5.4: Individual (left) and group fairness (right) versus NDCG for the MSLR
data set

dealing with webpage quality following [YDJ19]. The data set consists of query-web page

pairs from a search engine with nearly 140 features with integral relevance scores. To

apply Fair-PG-Rank, following [YDJ19], the protected binary attribute is whether a web

page is high or low quality defined by the 40th percentile of quality scores (feature 133).

For the fair metric, the sensitive subspace is spanned by the ridge regression coefficients

for predicting the quality score (feature 133) based on all features and the standard basis

vector corresponding to the quality score.

Comparison metrics Again we use average stochastic NDCG to measure accuracy,

and the dispartiy of group exposure where the groups are high and low quality web

pages. To assess individual fairness, we use the same set-up as in the German Credit

experiments except the counterfactual for each test query q is the closest query q′ 6= q

with respect to the fair metric over the train and test set.

Results Figure 5.4 shows the fairness and accuracy trade-off on the test set. Fair-PG-

Rank becomes unstable with large fair regularization as it can drop below a random

ranking in NDCG. The left plot shows the Kendall’s tau correlation between test queries

and their counterfactuals. SenSTIR gracefully trades-off NDCG with Kendall’s tau

correlation unlike Fair-PG-Rank. The right plot shows that SenSTIR also smoothly

trades-off group fairness for NDCG. In contrast, as the regularization strength increases,

both NDCG and group exposure worsen for Fair-PG-Rank, which was also observed

by [YDJ19].
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5.6 Conclusion

We proposed SenSTIR, an algorithm to learn provably individually fair LTR models

with an optimal transport-based regularizer. This regularizer encourages the LTR model

to produce similar ranking policies, i.e., distributions over rankings, for similar queries

where similarity is defined by a fair metric. Our notion of a fair ranking is complementary

to prior definitions that require allocating exposure to items fairly with respect to merit.

In fact, we empirically showed that enforcing individual fairness can lead to allocating

exposure fairly for groups but allocating exposure fairly for groups does not necessarily

lead to individually fair LTR models.

5.7 Supplement

5.7.1 Proofs of Theoretical Results

Theorem 5.7.1 (Theorem 5.4.1). If assumptions A1 and A2 hold and J(D) is finite,

then with probability at least 1− t

sup
h∈H
|R̂(h)−R(h)| ≤ 48(J(D) + ε−1DXDY)√

n
+DY

(
log 2

t

2n

) 1
2

+
DYηd
ε

.

Proof. For queries q, q′ let

∆(q, q′) = {Π ∈ ∆(X × X ) : Π(X , ·) =
1

n

n∑
j=1

δϕ(dqj )
, Π(·,X ) =

1

n

n∑
j=1

δ
ϕ(dq

′
j )
}.

Let Π∗ ∈ arg minΠ∈∆(q,q′)EΠ[dX (X,X ′)] and observe that by assumption A2 and the

definition of dQ and d̂Q we have

d̂Q(q, q′)− dQ(q, q′) = inf
Π∈∆(q,q′)

EΠ[d̂X (X,X ′)]− inf
Π∈∆(q,q′)

EΠ[dX (X,X ′)]

= inf
Π∈∆(q,q′)

EΠ[d̂X (X,X ′)]− EΠ∗ [dX (X,X ′)]

≤ EΠ∗ [d̂X (X,X ′)]− EΠ∗ [dX (X,X ′)]

= EΠ∗ [d̂X (X,X ′)− dX (X,X ′)]
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≤ ηd.

Similarly,

dQ(q, q′)− d̂Q(q, q′) ≤ EΠ̂∗ [dX (X,X ′)− d̂X (X,X ′)] ≤ ηd.

It follows that

|d̂Q(q, q′)− dQ(q, q′)| ≤ ηd. (5.14)

Next, we will bound the difference |R̂(h)−R(h)|. To lighten the notation, we write

h, h′ for h = h(φ(dq)), h′ = h(φ(dq
′
)). From the dual representation of R(h) and R̂(h)

we have

R̂(h)−R(h) = inf
λ≥0
{λε+ Eq∼Q̂[r̂λ(h, q)]} − inf

λ≥0
{λε+ Eq∼Q[rλ(h, q)]} (5.15)

= inf
λ≥0
{λε+ Eq∼Q̂[r̂λ(h, q)]} − λ∗ε− Eq∼Q̂[r̂λ∗(h, q)] (5.16)

≤ Eq∼Q̂[r̂λ∗(h, q)]− Eq∼Q[rλ∗(h, q)] (5.17)

= Eq∼Q̂[rλ∗(h, q)]− Eq∼Q[rλ∗(h, q)] + Eq∼Q̂[r̂λ∗(h, q)− rλ∗(h, q)]. (5.18)

To bound the last term, note that

|r̂λ∗(h, q)− rλ∗(h, q)| = sup
q′
{d̂Y(h, h′)− λ∗dQ(q, q′)} − sup

q′
{d̂Y(h, h′)− λ∗dQ(q, q′)}

(5.19)

≤ λ∗ sup
q′
{|dQ(q, q′)− d̂Q(q, q′)| (5.20)

≤ λ∗ηd. (5.21)

Combining (5.21) and (5.18) yields

R̂(h)−R(h) ≤ Eq∼Q̂[rλ∗(h, q)]− Eq∼Q[rλ∗(h, q)] + λ∗ηd. (5.22)
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Using a similar argument,

R(h)− R̂(h) ≤ Eq∼Q[rλ̂∗(h, q)]− Eq∼Q̂[rλ̂∗(h, q)] + λ̂∗ηd. (5.23)

To find an upper bound on λ∗, observe that rλ(h, q) ≥ 0 for all h ∈ H, λ ≥ 0, as

rλ(h, q) = sup
q′∈X
{dY(h, h′)− λdQ(q, q′)}

≥ dY(h, h)− λdQ(q, q) = 0.

Thus

λ∗ε ≤ λ?ε+ Eq∼Q[rλ(h, q)] = R(h) ≤ DY .

Rearranging the above yields λ∗ ≤ DY
ε

and the same upper bound is also valid for λ̂? by

the same argument.

Combining inequalities (5.22,5.23) and the bound on λ∗, λ̂∗, we can write

|R̂(h)−R(h)| ≤ sup
f∈F

∣∣∣Eq∼Q̂f(q)− Eq∼Qf(q)
∣∣∣+

DYηd
ε

,

where F = {rλ(h, ·) : λ ∈ [0, L], h ∈ H}. A standard concentration argument proves

sup
f∈F

∣∣∣Eq∼Q̂f(q)− Eq∼Qf(q)
∣∣∣ ≤ 48(J(D) + ε−1DXDY√

n
+DY(

log 2
t

2n
)
1
2

with probability at least 1− t. This completes the proof of the theorem.

The main technical novelty in this proof is the bound on λ∗ in terms of the diameter

of the output space. This restricts the set of possible c-transformed loss function class,

thereby allowing us to appeal to standard techniques from empirical process theory

to obtain uniform convergence results. Prior work in this area (e.g. [LR18]) relies on

smoothness properties of the loss instead of the geometric properties of the output space,

but this precludes non-smooth output metrics.
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5.7.2 Experiments

All experiments were ran a cluster of CPUS. We do not require a GPU.

Data sets and pre-processing

Synthetic Synthetic data is generated as described in the main text such that there

are 100 queries in the training set and 100 queries in the test set.

German Credit The German Credit data set [DG17b] consists of 1000 individuals

with binary labels indicating if they are credit worthy or not. We use the version

of the German Credit data set that [SJ19] used found at https://www.kaggle.com/

uciml/german-credit. In particular, this version of the Geramn Credit data set only

uses the following features: age (integer), sex (binary, does not include any marital

status information unlike the original data set), job (categorical), housing (categorical),

savings account (categorical), checking account (integer), credit amount (integer),

duration (integer), and purpose (categorical). See [DG17b] for an explanation of each

feature.

Categorical features are the only features with missing data, so we treat missing data

as its own category. The following features are standardized by subtracting the mean

and dividing by the standard deviation (before this data is turned into LTR data): age,

duration, and credit amount. The remaining binary and categorical features are one

hot encoded.

We use an 80/20 train/test split of the original 1000 data points, and then sample

from the training/testing set with replacement to build the LTR data as discussed in

the main text. For our experiments, we use 10 random train/test splits.

Microsoft Learning to Rank The Microsoft Learning to Rank data set [QL13]

consists of query-web page pairs each of which has 136 features and integral relevance

scores in [0, 4]. We use Fold 1’s train/validation/test split. Following [YDJ19], we

use the data in Fold 1 and adopt the given train/validation/test split. The data and

feature descriptions can be found at https://www.microsoft.com/en-us/research/

project/mslr/. We remove the QualityScore feature (feature 132) since we use the

QualityScore2 (feature 133) feature to learn the fair metric, and it appears based on
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the description of these features, they are very similar. We standardize the remaining

features (except for the features corresponding to Boolean model, i.e. features 96-100,

which are binary) by subtracting the mean and dividing by the standard deviation.

Following [YDJ19], we remove any queries with less than 20 web pages. Furthermore,

we only consider queries that have at least one web page with a relevance of 4. For

each query, we sample 20 web pages without replacement until at least one of the 20

sampled web pages has a relevance of 4. After pre-processing, there are 33,060 train

queries, 11,600 validation queries, and 11,200 test queries.

Comparison Metrics

Let r be a ranking (i.e. permutation) of a set of n items that are enumerated such that

r(i) ∈ [n] is the position of the i-th item in the ranking and r−1(i) ∈ [n] is the item that

is ranked i-th. Let relq(i) be the relevance of item i given a query q.

Normalized Discounted Cumulative Gain (NDCG) Let Sn be the set of all

rankings on n items. The discounted cumulative gain (DCG) of a ranking r is

DCG(r) =
n∑
i=1

2relq(r−1(i)) − 1

log2(i+ 1)
.

The NDCG of a ranking r is
DCG(r)

maxr′∈Sn DCG(r′)
.

Because we learn a distribution over rankings and the number of rankings is too large,

we cannot compute the expected value of the NDCG for a given query. Thus, for each

query in the test set, we sample N rankings (where N = 10 for synthetic data, N = 25

for German credit data, and N = 32 for Microsoft Learning to Rank data) from the

Placket-Luce distribution, compute the NDCG for each of these rankings, and then take

an average. We refer to this quantity as the stochastic NDCG.

Kendall’s tau correlation Let r and r′ be two rankings on n items. Then

KT(r, r′) :=
1(
n
2

) ∑
{i<j:i,j∈[n]}

sign(r(i)− r(j))sign(r′(i)− r′(j))
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is the Kendall’s tau correlation between two rankings.

(Disparity of) Group exposure This definition was first proposed by [SJ19]. Assume

each item belongs to one of two groups. Let G1 (respectively G0) be the set of items

for a query q that belongs to group 1 (respectively group 0). For i ∈ {0, 1}, let

MGi = 1
|Gi|
∑

d∈Gi relq(d), which is referred to as the merit of group i for query q. For

a ranking r and for i ∈ {0, 1}, let vr(Gi) = 1
|Gi|
∑

d∈Gi
1

log2(r(d)+1)
. Because we learn a

distribution over rankings and the number of rankings is too large, we cannot compute

the expected value of vr(Gi) over this distribution. Instead, we sample N rankings

(where again N = 10 for synthetic data, N = 25 for German credit data, and N = 32 for

Microsoft Learning to Rank data) from the Placket-Luce model. Let Rq be the set of

these N sampled rankings for query q. Then the stochastic disparity of group exposure

for query q is
max

{
0,

1
N

∑
r∈Rq vr(G0)

MG0
−

1
N

∑
r∈Rq vr(G1)

MG1

}
if MG0 ≥MG1 > 0

max

{
0,

1
N

∑
r∈Rq vr(G1)

MG1
−

1
N

∑
r∈Rq vr(G0)

MG0

}
if 0 < MG0 < MG1

0 if MG0 = 0 or MG1 = 0.

In the language of [SJ19], we use the identity function for merit, and set the position

bias at position j to be 1
log2(1+j)

just as they did.

SenSTIR implementation details

We implement SenSTIR in TensorFlow and use the Python POT package to compute

the fair distance between queries and to compute Equation (5.9), which requires solving

optimal transport problems. Throughout this section, variable names from our code are

italicized, and the abbreviation we use to refer to these variables/hyperparameters are

followed in parenthesis.

Fair regularizer optimization Recall that in all of the experiments, the fair metric dX

on items is the Euclidean distance of the data projected onto the orthogonal complement

of a subspace. In order to optimize for the fair regularizer in Equation (SenSTIR), first

we optimize over this subspace, and we refer to this step as the subspace attack. Note,
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the distance between the original queries and the resulting adversarial queries in the

subspace is 0. Second, we use the resulting adversarial queries in the subspace as an

initialization to the full attack, i.e. we find adversarial queries that have a non-zero fair

distance to the original queries. We implement both using the Adam optimizer [KB15].

Learning rates As mentioned above, we use the Adam optimizer to optimize the fair

regularizer. For the subspace attack, we set the learning rate to adv step(as) and train

for adv epoch(ae) epochs, and for the full attack, we set the learning rate to l2 attack(fs)

and train for adv epoch full(fe) epochs. We also use the Adam optimizer with a learning

rate of .001 to learn the parameters of the score function hθ.

Fair start Our code allows training the baseline (i.e. when ρ = 0) for a percentage–

given by fair start(frs)–of the total number of epochs before the optimization includes

the fair regularizer.

Using baseline for variance reduction Following [SJ19], in the gradient estimate

of the empirical version of Eq∼Q
[
U(π | q)

]
in Equation (SenSTIR), we subtract off a

baseline term b(q) for each query q, where b(q) is the average utility U(π | q) over the

Monte Carlo samples for the query q. This counteracts the high variance in the gradient

estimate [Wil92].

Other hyperparameters In Tables 5.1 and 5.2, E stands for the total number of

epochs used to update the score function hθ, B stands for the batch size, l2 stands for

the `2 regularization strength of the weights, and MC stands for the number of Monte

Carlo samples used to estimate the gradient of the empirical version of Eq∼Q
[
U(π | q)

]
in Equation (SenSTIR) for each query.

Hyperparameters

For the synthetic data, we use one train/test split. For the German experiments, we

use 10 random train/test splits all of which use the same hyperparameters. For the

Microsoft experiments, we pick hyperparameters on the validation set (where the range

of hyperparameters considered are reported below) based on the trade-off of stochastic
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NDCG and individual (respectively group) fairness for SenSTIR (respectively Fair-PG-

Rank), and report the comparison metrics on the test set.

Fair metric For the synthetic data experiments, we use sklearn’s logistic regression

solver to classify majority and minority individuals with 1/100 `2 regularization strength.

For German and Microsoft, we use sklearn’s RidgeCV solver with the default hyper-

parameters to predict age and quality web page score, respectively. For the German

experiments, when predicting age, each individual is represented in the training data

exactly once, regardless of the number of queries that an individual appears in.

SenSTIR For every experiment, all weights are initialized by picking numbers in

[−.0001, .0001] uniformly at random, λ in Algorithm 4 is always initialized with 2, and

the learning rate for Adam for the score function hθ is always .001. For synthetic data,

the fair regularization strength ρ varied in {.0003, .001}. For German, ρ is varied in

{.001, .01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.06, 0.07, 0.08, 0.09, .1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16,

0.17, 0.18, 0.19, 0.28, 0.37, 0.46, 0.55, 0.64, 0.73, 0.82, 0.91, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50,

100}. For Microsoft, ρ is varied in {.00001, .0001, .001, .01, .04, .07, .1, .33, .66, 1.}. We

report results for all choices of ρ.

See Table 5.1 for the remaining values of hyperparameters where the column names

have been defined in the previous section except for ε, which refers to ε in the definition

of the fair regularizer. For Microsoft, the best performing hyperparameters on the

validation set are reported where the `2 regularization parameter for the weights are

varied in {.001, .0001, 0}, as is varied in {.01, .001}, ae and fe are varied in {20, 40}, and

ε is varied in {1, .1, .01}.

Table 5.1: SenSTIR hyperparameter choices

E B as ae ε fs fe frs l2 MC

Synthetic 2K 1 0.001 20 0.001 0.001 20 0 0 10
German 20K 10 .01 20 1 0.001 20 .1 0 25
Microsoft 68K 10 .01 40 .01 0.001 40 .1 0.001 32

Baseline and Project For the baseline (i.e. ρ = 0 with no fair regularization) and

project baseline, we use the same number of epochs, batch sizes, Monte Carlo samples,
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and `2 regularization as in Table 5.1 for SenSTIR. Furthermore, we use the same weight

initialization and learning rate for Adam as in the SenSTIR experiments.

Fair-PG-Rank We use the implementation found at https://github.com/ashudeep/

Fair-PGRank for the synthetic and German experiments, whereas we use our own imple-

mentation for the Microsoft experiments because we could not get their code to run on this

data. They use Adam for optimization, and the learning rate is .1 for the synthetic data

and .001 for German and Microsoft. Let λ refer to the Fair-PG-Rank fair regularization

strength. For synthetic, λ = 25. For German, λ is varied in {.1, 1, 1.5, 2, 2.5, 3, 3.5, 4}. For

Microsoft, λ is varied in {.001, .01, .1, .5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100, 500, 150, 200, 250,

300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000}. We report results

for all choices of λ. See Table 5.2 which summarizes the remaining hyperparameter

choices.

Table 5.2: Fair-PG-Rank hyperparameter choices

E B l2 MC

Synthetic 5 1 0 10
German 100 1 0 25
Microsoft 68K 10 .01 32
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Chapter 6

Conclusion and Future Work

In this thesis, we addressed three key challenges of preference learning: intransitivity,

non-convexity, and algorithmic bias. We proposed new models and algorithms with

empirical validation and theoretical guarantees using tools from statistical learning theory

and optimization. We now conclude with a brief summary of each chapter and propose

future directions.

6.1 Intransitivity

Although many preference models assume preferences are transitive, real preference data

often exhibit systematic intransitivity. Chapter 2 proposed the salient feature preference

model, which reconciles intransitive pairwise comparisons with a global ranking. Inspired

by social science theories on intransitivity, we assumed pairwise contextual effects prevent

the global ranking from being perfectly reflected in the pairwise comparison data. These

pairwise contextual effects arise since the two items in each pairwise comparison are

compared in isolation of the rest of the items, and the salient feature preference model

accounts for these contextual effects. We proposed to learn the parameters of our model

from pairwise comparison data via maximum likelihood estimation and analyzed its

sample complexity. Furthermore, we demonstrated strong performance of our model on

real preference data that contain intransitivity.

There are two main avenues to future work. First, our general framework about

contextual effects can be applied to other machine learning problems that use human

judgement data. The salient feature preference model for pairwise comparisons assumes
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humans make preference judgements about a small number of items based only on a small

subset of salient features that “stand out,” not on all the features. This framework can

be applied to the ordinal embedding problem considered in Chapter 3 where respondents

are asked “Is item A more similar to item B or item C?”. In addition, as discussed in

Chapters 4 and 5, we often need to learn the individually fair metric from data in order

to train fair models. There have been algorithms recently proposed either to learn the

metric from pairwise comparison data [MYBS20a] or to learn an individually fair classifier

from pairwise comparison data [JKN+19]. The work in [JKN+19] considers training a

fair recidivism model, so the type of data collected is of the form “Should these two

people be given the same recidivism score?”. It is reasonable to believe that contextual

effects–due to which two people are being compared and their demographics–affect human

judgements.

Second, we assumed the selection function τ is known, so one future direction is to

learn τ while simultaneously learning the other model parameters. Recall that given a

pair of items i and j, τ(i, j) determines which features the probabilistic outcome of a

comparison between i and j depends on. However, it can be unreasonable to assume

that τ is known, and poor choices of τ can lead to poor performance of our model.

For instance, in the experimental section of Chapter 2, we proposed the top-t selection

function, which returns the t coordinates with the largest magnitude difference. An

adversary could include a meaningless feature that has high variance so that the top-t

selection function always picks this meaningless feature.

Assuming τ selects a k-sparse subset of coordinates for every pair of items, we now

describe one set-up to facilitate learning τ . As in Chapter 2, suppose there are n items,

Ui ∈ Rd is the known feature vector of item i ∈ [n], and w∗ ∈ Rd is the unknown

judgement vector that we wish to estimate. Let τ : [n] × [n] → {s ⊆ [d] : |s| = k} be

the unknown selection function that we also wish to estimate. Assume that [n]× [n] is

partitioned into N enumerated sets such that (i, j), (o, p) ∈ [n]× [n] are in the same set of

the partition if and only if τ(i, j) = τ(o, p). We comment on why we need this partition

and how to obtain such a partition at the end of this subsection. Let W ∗ ∈ Rd×N where

the `-th column of W ∗, denoted W ∗
` , corresponds to the `-th set in the enumeration of

the partition. Let (i`, j`) be in the `-th set of the enumeration. Define W ∗
` := w∗τ(i`,j`)

where the q-th coordinate of w∗τ(i`,j`)
is the q-th coordinate of w∗ if q ∈ τ(i`, j`). See

Figure 6.1 for an illustration of the relationship between w∗ and W ∗.
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w * W *

Figure 6.1: On the left, w∗ ∈ R20 is depicted. On the right W ∗ ∈ R20×50 is depicted
where the grey entries indicate 0 values. Each column of W ∗ is at most
3-sparse. Along each row of W ∗, the non-zero entries are all equal and
match the corresponding coordinate in w∗.

Suppose we observe m independent pairwise comparisons Sm = {(ir, jr, `r, yr) : ir, jr ∈
[n], `r ∈ [N ], yr ∈ {0, 1}}mr=1 where (ir, jr) is in the `r-th set in the enumeration, and yr

indicates a human judgement between items ir and jr. We assume that yr ∼ Bern(P(ir,jr))

where

P(ir,jr) = P(yr = 1) (6.1)

= P(item ir is better than item jr) (6.2)

=
1

1 + exp
(
〈W ∗

`r
, Uir − Ujr〉

) . (6.3)

Determining the sample complexity of estimating W ∗ and ultimately w∗ is of great

interest. Towards this goal, for W ∈ Rd×N , let

f(W ) =
1

m

m∑
r=1

log
(
1 + exp

(〈
Wτ(ir,jr), Uir − Ujr

〉))
− yr

〈
Wτ(ir,jr), Uir − Ujr

〉
(6.4)

be the log-loss. We can estimate W ∗ by solving

Ŵ = argminW∈Rd×Nf(W ) + Ω(W ) (6.5)

where Ω(W ) is a regularizer on W . If Ω(W ) =
∑N

i=1 ‖Wi‖1, then Equation (6.5)

is `1-regularized logistic regression. In this case, the objective of Equation (6.5) is

separable into N separate problems over the columns of W . If each column of W ∗
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is k-sparse, we expect the sample complexity of estimating W ∗ with Equation (6.5)

to be O(Nk log(d)) [PV12]. However, we have additional information: the non-zero

entries of each row of W are equal. Can we use this information to come up with a

regularizer–perhaps one that encourages sparsity and clustering–to improve the sample

complexity of estimating W ∗? How do we estimate w∗ from the estimate of W ∗? Even

determining a meaningful lower bound on the sample complexity of estimating W ∗ and

w∗ outside of the regularization framework is of interest.

We now return to why we require a partition of the pairs of items and one idea to

obtain such a partition. Ideally, we would like a model that not only allows us to estimate

a ranking of the items but also allows us to predict the probability that item i beats

item j for an unseen pair of items i and j. If there is no additional structure on τ , we

cannot predict the probability that item i beats item j for an unseen pair of items i

and j since we do not know what τ(i, j), i.e., what features are relevant in the pairwise

comparison. The partition of the items is one way to add structure to τ .

In order to obtain the partition from data, one potential solution is to use a clustering

algorithm on {|Ui − Uj| : i, j ∈ [n]× [n]} since the probability that item i beats item j

depends on Ui−Uj as seen in Equation (6.1). For two pairs of items (i, j) and (o, p), it is

reasonable to believe that if |Ui − Uj| is close to |Uo − Up|, then the features that “stand

out” the most are the same in both pairwise comparisons. For an unseen pair of items

(i, j), we can predict the probability that item i beats item j in a two-step process. First

we determine what cluster |Ui − Uj| belongs to. Second, given any pair of items in the

training data (o, p) such that |Uo − Up| is in the same cluster as |Ui − Uj|, we estimate

τ(i, j) with the sparsity pattern of the estimate of W ∗
τ(o,p).

6.2 Non-convexity

Estimating the parameters of some preference models, like ordinal embedding and matrix

factorization models for collaborative filtering, requires optimizing a non-convex function.

In Chapter 3, we considered a particular class of non-convex homogeneous quadratic

feasibility problems that encompasses the aforementioned preference models. Each

feasibility problem entails finding a point that satisfies a set of quadratic inequalities.

We proposed to find a feasible point by minimizing a non-convex function that penalizes

a point each time it violates a quadratic inequality with the hinge loss. We empirically
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demonstrated that with proper initialization stochastic subgradient descent reliably

finds feasible points despite the non-convex nature of the problem, which suggests that

every local minimizer is a global minimizer. Motivated by this empirical finding, we

theoretically studied the optimization landscape, i.e., local and global minimizers, of the

non-convex optimization problem and paid special attention to the two-dimensional case.

There are two main directions of future work. First, generalizing our theoretical results

from two dimensions to higher dimensions is of great interest. Our experiments on

synthetic data suggest that the optimization landscape in higher dimensions is well-

conditioned since stochastic subgradient descent finds feasible points. Even if it may

not be the case that every minimizer is a global minimizer in higher dimensions, we

saw in particular that stochastic subgradient descent succeeds in finding feasible points

when the initialization points have large norm. Therefore, investigating the interplay of

stochastic subgradient descent and the geometry of the optimization landscape outside

an origin-centered ball with sufficiently large radius is of interest. Towards this goal,

Lemma 3.2.2 can be generalized to arbitrary dimensions so long as A and B both have

full rank. Suppose the associated matrices {Pi ∈ Rn×n} to the non-convex feasibility

problem and their sums have full rank. This property holds for random matrices drawn

from a continuous distribution like in our experiments. By the generalization of Lemma

3.2.2 and Theorem 3.2.1, any non-global, local minimizer x ∈ Rn must be a intersection

point of two or more curves of the form xTPix = 1. Hence, there are only finitely many

non-global, local minimizers, so the norms of non-global, local minimizers are bounded.

Thus, if stochastic subgradient descent can avoid a sufficiently large ball around the

origin, it will avoid all non-global, local minimizers and should succeed in finding feasible

points.

Second, generalizing the problem setting to incorporate noise is important. Our

problem setting assumed that there is always a feasible point to a set of quadratic

equations, which we exploited throughout our proofs. In the preference modeling setting

that motivated our work, this assumption means that people’s preferences are observed

perfectly, which is unrealistic. In order to pose the problem with noise, we could assume

that there is a link function that relates the geometry of the space to noisy human

judgements like in [JJN16]. In addition to the hinge loss, the logistic loss may be

interesting to consider in the noisy setting.
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6.3 Algorithmic Bias

It is well-established that machine learning algorithms can perpetuate or exacerbate

historical and societal biases. In Chapter 4 we considered the classification setting and

proposed SenSR, an algorithm that learns individually fair machine learning models

by enforcing model invariance with respect to feature perturbations defined by a fair

metric. For instance, suppose the model selects applicants for a job interview. Given

two applicants that only differ in gender, a model trained with SenSR will either select

both applicants for an interview or neither applicant. Furthermore, we also proposed an

algorithm to learn a fair metric from data, thereby operationalizing individual fairness.

This algorithm estimates a sensitive subspace of the feature space, and the fair metric

is defined to be the Euclidean distance in the orthogonal complement of this subspace.

The sensitive subspace corresponds to a region of the feature space that decisions should

not be based on, like gender and features correlated with gender.

By using ideas from Chapter 4, in Chapter 5 we proposed SenSTIR, an algorithm

that learns individually fair learning-to-rank (LTR) systems. We required individually

fair LTR systems to be stable with respect to sensitive perturbations of the features.

For example, an individually fair LTR system should identically rank a set of people

and a counterfactual set of people that is obtained from the original set by flipping

each person’s gender. In both chapters, we studied the statistical properties of our

algorithms and empirically demonstrated the ability of our algorithms to mitigate biases

on real-world data sets.

One main direction of future work is to identify sufficient conditions under which a

LTR system that satisfies our definition of individual fairness necessarily must satisfy

the group exposure notions of fairness [SJ19,ZC20,BGW18]. In fact, we saw empirical

evidence that a LTR system that satisfies our notion of individual fairness necessarily

allocated exposure fairly to groups in both the German credit and Microsoft LTR data

sets. However, we saw the converse is not necessarily true: group fair LTR systems are

not necessarily individually fair. See Figures 5.3 and 5.4. Therefore, a better theoretical

understanding of the interplay of individual fairness and group fairness for LTR systems

could suggest that it is typically preferable to enforce individual fairness over group

fairness since an individually fair LTR system may inherit all the properties of a group

fair system but not vice versa.
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Another direction of future work is to apply SenSTIR or SenSR with different fair

metrics. Both the fairness performance and accuracy performance of SenSR and SenSTIR

heavily depend on the fair metric. Although utilizing the fair metrics learned in Chapters

4 and 5 with SenSTIR or SenSR results in an arguably fair model, using these fair

metrics might unnecessarily lower the accuracy of the model in comparison to using

a fair metric that takes into account the causal nature of bias. For example, consider

the German credit data experiments in Chapter 5. We are given demographic features

like age and other features like credit history, and the goal is to rank a query of credit

applicants from most to least creditworthy. The fair metric used in Chapter 5 tries to

ignore variation in the data due to someone’s age by ignoring the subspace spanned by

the learned Ridge regression weights to predict someone’s age. Arguably, credit history

is a decent indication of whether someone is worthy of credit, but older people tend to

have longer credit histories. Therefore, the fair metric will try to ignore credit length

because it is correlated with age, but we may be losing too much information about

credit history–which helps us learn accurate rankings–with this metric. In contrast, it

might be worthwhile to use a fair metric based on the methods in [BNSV18] to account

for the causal nature of bias in the fair metric, e.g. this metric may be able to retain

more information about credit length while still maintaining fairness. Furthermore, as

we have discussed previously, there are relatively new data sets of human judgements in

the recidivism prediction domain that have been or can be used to learn a fair metric

from data using standard metric learning techniques [WGL+19,JKN+19].
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