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ABSTRACT

Electrification and vehicle-to-vehicle connectivity have become two of the ma-

jor areas of vehicle development in recent years. Electrified vehicles show signifi-

cant advantages because of their high performance in fuel economy and low emis-

sions compared to conventional vehicles. Hybrid electric vehicles (HEVs) share a

significant amount of market among electrified vehicles. Although HEV develop-

ment has resulted in a variety of powertrain architectures and designs, novel high-

performance powertrain solutions with fewer components and low cost remain an

important need. In addition, common HEV configurations use small internal com-

bustion engines, which can suffer from high torque fluctuations detrimental for NVH

performance and safety. Advanced powertrains that absorb these fluctuations effi-

ciently are needed. This thesis presents a novel HEV powertrain architecture without

any planetary gears or clutches. Using physics-based component model, a proof-of-

concept powertrain model is implemented and demonstrated ability to remove over

99.5% torque fluctuation and fulfill vehicle driving demands. A comprehensive design

and control optimization for the novel powertrain is performed. A single utility func-

tion is designed by combining multiple objectives, and is tuned using the Pareto front

of the novel powertrain performance to obtain different optimal powertrain designs.

Optimal novel powertrain designs show comparable performance with optimal designs

of commercially available power-split benchmark powertrains. Torque fluctuations in

HEVs may result in electromagnetic-structural (EMS) phenomena within the electric

machines of the powertrain. The distributed electromagnetic (EM) forces that exist

in such devices can lead to structural deformations. These deformations may in turn

xiii



change the EM forces. Consequently, the mechanical and EM behaviors are coupled.

Periodic forces generated by permanent magnets or windings and other disturbances

to the EM device can lead to excitation of specific structural resonances due to EMS

coupling. Existing EMS models are usually 2D and do not capture the EMS coupling.

Thus, a model that accurately and efficiently captures EMS phenomena is required.

To capture the EMS phenomena, displacement-dependent EM forces are introduced

in the modal space to the structural dynamics of electric machines. Both linear and

nonlinear approximations of EM forces are calculated using high-fidelity FEA models,

forming a reduced-order model (ROM) with EMS coupling, namely the EMS ROM.

The dynamics of the EMS ROM is similar to a damped dynamical system governed by

Mathieu’s equation, which exhibits parametric excitation. The EMS ROM is used to

compute the stability transition threshold for the parametric excitation. Parametric

resonance peaks are revealed in the responses from an unstable device with EMS. In

addition, a frequency shift of the primary resonance peak caused by (nonlinear) EM

force harmonics is detected. Time-domain analyses using the high-fidelity FEA model

confirm the EMS phenomena and accuracy of the EMS ROM. Multiple vehicles, each

with an advanced powertrain can be used in platoons to enhance fuel economy, road

capacity, and safety compared to a single vehicle. Studies that focus on platooning

usually do not focus on task-based longitudinal planning and do not capture detailed

powertrain operations, which impact the control and energy consumption of the over-

all platoon. In this thesis, multiple vehicles, each equipped with the novel powertrain,

are investigated when they form a platoon and drive on a specified path. The drive

schedule and vehicle controllers are optimized to minimize the total energy consump-

tion of the platoon. Energy optimization requires an integrated vehicle-following

model and a high-fidelity powertrain model. In addition, component-level, vehicle-

level, and platoon-level constraints are applied. Parametric studies are performed for

both homogeneous and heterogeneous platoons. Optimization is shown to effectively

xiv



reduce the maximum headway error by an order of magnitude and enhance energy

saving of 17% to 37%.
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CHAPTER I

Introduction

1.1 Motivation and Background

With the purpose of reducing emissions and improving fuel economy, policies on

vehicle fuel consumption and emission have been set up around the world. This has

triggered significant new developments in hybrid electric vehicles (HEVs) and pla-

tooning over recent years [124, 5, 109, 3]. Recent studies have proved that HEVs out-

performs conventional vehicles in fuel economy and emissions [82, 40, 49, 107, 22, 104].

For decades of development, HEV powertrain architectures/configurations have be-

come standardized. The HEV powertrain configurations can usually be categorized as

series, parallel, and power-split. New architectures that are out of the three categories

still exist and can demonstrate comparable performance to best existing powertrain

configurations. Exploring and optimizing new powertrain architecture is meaningful.

Platooning of vehicles, compared to single vehicle operations, can reduce energy con-

sumption of driving, boost road capacity, and improve safety [4, 20, 11, 81]. Vehicle

electrification and connection are vital parts of solutions to requirements and regu-

lations on energy efficiency and emission. The two research areas are growing and

more overlaps of them will be emerging. Platooning of electrified vehicles contribute

to future development of transportation systems. The controls from the component

level within electrified powertrains up to the platoon level are all coupled and impact

1



the overall energy efficiency of transportation. Thus efficient operations and controls

of platoons of electrified powertrains are necessary.

On the scale of vehicles, hybrid electric vehicles use more than one type of power

source. Among all combinations of available power sources, an ICE plus an elec-

tric battery system that drives one or more electric motors/generators is the most

popular. Since the ICE is not their only power source, typical HEVs use smaller

ICEs with fewer cylinders compared to conventional vehicles. Such ICEs suffer from

higher torque fluctuations which lower the noise, vibration, and harshness (NVH)

performance [18, 115, 83]. Such fluctuation, plus the AC currents, could cause para-

metric resonances within the electric machines, because the electromagnetic force and

structural dynamics of electric machines are coupled. For the purpose of this study,

the coupling is referred to as electro-magnetic-strucutral (EMS) coupling. A multi-

physics modeling framework that efficiently and accurately captures the the EMS

coupling is needed for comprehensive structural analysis of electrified powertrains.

1.2 State of the Art

1.2.1 Electric Machines

Electric machines play a key role in the powertrain of these new vehicles. In

particular, the design of powertrains for electric vehicles requires high performance

electric motors with high power density and low weight [24, 154, 116, 117, 141].

Moreover, with the increasing demand for low emission vehicles and the development

of novel battery technologies, the trend of vehicle electrification and application of

high performance electric machines will most likely grow.

The design of systems with EM devices requires accurate modeling methodologies

for such devices. The objectives of such models include magnetic force, structural, and

thermal analyses [151, 144, 86]. Studies have looked into the impact electromagnetic
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force on the structure of electric machine [54, 153, 98, 105]. In general, the two

commonly used methods for magnetic force analysis are the Maxwell stress tensor

method and the co-energy method. The Maxwell stress tensor method uses spatial

derivatives, and can determine the spatial distribution of the EM force [135, 118, 27].

However, in finite element analysis (FEA) the application of the Maxwell stress tensor

method requires high-order finite differences in space. Hence, the accuracy of the

Maxwell stress tensor method is highly dependent on the quality of the mesh. As

an alternative, researchers have applied the co-energy method to find the net force

in both lumped parameter models and FEA models [28, 46]. The co-energy method

does not require spatial derivatives; moreover, its computational cost is typically lower

than that of the Maxwell stress tensor method.

1.2.2 Structural Analyses

1.2.2.1 Reduced-Order Models

In structural analysis, reduced-order models (ROMs) are commonly used [13, 56,

57, 50, 155]. ROMs require a modal analysis of the structure and projection onto the

modal space. Modal analysis decouples the structural equations of motion, limiting

ROMs to a frequency range of interest that can greatly reduce the number of equations

for structural dynamics. In addition, for structures with cyclic symmetry, the FEA

model of a single sector is needed for modal analysis [93]. Various ROMs have been de-

veloped in the past year for both pristine [125] and mistuned structures [13, 21, 99, 99],

or structure with mulitple-physics interface [47, 31, 123, 34, 35, 32]. Typically, ROMs

can reduce the computational cost from full model by orders of magnitude, depending

on the resolusion of full model, symmetry of structure, and physics complexity.
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1.2.2.2 Parametric Resonances

The stiffness and damping within a common dynamic system is usually considered

constants. However, when stiffness and/or damping are time-varying and periodic,

the stability of the system is subject to change. These periodic parameters create

parametric excitations to the system. Parametric resonances differ from usual reso-

nances that are caused by force harmonics. Parametric resonances can co-exist with

usual resonances. Methodologies to analyze the stability of dynamic systems under

parametric excitations were established in previous studies [102, 66]. In these studies,

a characteristic equation called the Mathieu’s equation is analyzed. The Mathieu’s

equation is both time and mass normalized, and can represent most systems with

parametric excitations. The unique solving technique presented in [102] is able to de-

termine the stability of system in frequency domain, given the intensity of parametric

excitation.

1.2.3 Hybrid Elctric Vehicles

Solutions have been developed to suppress the torque fluctuations within power-

trains. Mechanically dampening torque fluctuations is one way to address the torque

fluctuation problem and enhance NVH performance for HEVs. However, the energy

loss in such approaches can be large, and that can affect the efficiency of the power-

train. Previous studies of NVH in HEV powertrains focus mostly on vibrations which

occur during the transient period upon mode shifting, clutch engaging or disengag-

ing [131, 52, 63].

Typical configurations of HEV powertrains fall into three categories, namely se-

ries, parallel, and power-split. Studies of such architectures have been carried out re-

cently [78, 76, 108, 41, 45, 134, 25, 84, 48] with most focusing on power-split hybrids.

Other than that, more limited research focuses on series and parallel hybrids [132, 44].

Related studies for commercial HEV powertrains have been done by Chan [23], and
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Wu et al. [138].

To study HEVs, models of powertrain architectures are needed. These include

modeling methods and tools for powertrains, system dynamics, and emissions. Pow-

ertrain dynamics modeling usually requires integration of component dynamics and

vehicle dynamics. Powertrain performance is typically evaluated at vehicle level, like

vehicle energy consumption and fuel economy. In past studies, Liu et al. developed

a widely applied modeling framework for power-split powertrain dynamics [79, 80].

Such modeling framework requires building torque-angular acceleration mapping ma-

trix rigorously based on powertrain configuration. The matrix creation process is

efficient when applied on power-split powertrain configurations that apply planetary

gear as transmission can connection among powertrain components. Kim et al. have

designed a novel multi-mode parallel HEV powertrain and assessed its fuel economy.

Multi-mode operation is realized by planetary gears [65] and by engaging or disengag-

ing different power sources. For example, Zhu et al. have designed a HEV powertrain

with a single electric machine and two planetary gears [152]. Millo et al. developed

models and a prototype for an urban hybrid bus [87]. Bougrine et al. applied a

chemistry-based method and simulated CO and NO emissions models [17]. Also, sev-

eral researchers have developed modeling tool for HEV architectures with embedded

rule-based controllers [26].

Control are also needed for designing HEVs of different topologies, including con-

trol and power management of single powertrains and of multi-mode powertrains.

Al-Aawar et al. have designed an optimal control strategy which maximizes fuel

economy by using a mathematical search algorithm, and maximizes drivability by us-

ing a fuzzy logic algorithm [2]. Hou et al. have developed a control strategy based on

estimating trip information acquired using statistical methods [51]. Other approaches

use game theory controllers developed by Dextreit et al. Their time-independent con-

trol strategy manages power by judging the cost of fuel consumption, emissions, and

5



battery SOC [29]. In 2014, Finesso et al. designed and optimized a diesel paral-

lel hybrid powertrain [39]. Torres et al. developed an optimal power management

strategy for plug-in hybrid electric vehicles [126]. In contrast, Lee et al. successfully

created a controller of continuously variable transmission (CVT) ratio to improve

parallel HEVs [70]. Kum et al. have developed a real-time optimal power and cata-

lyst management strategy for plug-in HEV and parallel HEV based on studying the

characteristics of dynamic programming results [68, 67]. Zhang et al. have proposed a

real-time control strategy that selects the most power efficient mode of a multi-mode

HEV powertrain to achieve near-optimal fuel-economy [147]. A similar method is

described in Shabbir and Evangelou’s work [113], Other control strategies on multi-

mode HEVs are found in the work of Zhang et al. [145], Borhan et al. [16], Ahn et

al. [1], Katrašnik [60], and Lin et al. [75], among others.

Optimal control methods have been developed for HEV powertrains. For example,

dynamic programming (DP) is widely applied in HEV powertrain control optimization

[133][69][77]. DP can find the global optimal control for best performance with given

component sizes. However, dynamic programming is not a real-time control strategy,

and its computational cost is high. Another approach of control optimization is the

Pontryagin’s minimum principle (PMP). The PMP was applied widely in optimal

control for HEV powertrains [111][64]. The PMP, when applied to optimize HEV

powertrains, typically requires partial derivatives of the rate of change of the battery

state of charge (SOC). These derivatives, in many cases, cannot be approximated very

accurately. For that reason, a simplified control method based on PMP was developed,

namely the equivalent consumption minimization strategy (ECMS) [95][112], as a

near-optimal control strategy for HEVs. The performance with this control approach

is lower but very close to the optimal performance [64]. The advantage of ECMS is

the relatively low computational cost. In this study, ECMS is applied to evaluate the

performance of powertrain designs with different component sizes.
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With given devices, a certain (typically large) number of possible powertrain

topologies exist. It is of great interest to finding which of these topologies are best,

namely maximize for some utility function such as fuel economy. Zhang et al. have

developed an exhaustive search methodology for optimal designs for topologies with

given power sources and planetary gear sets and clutches [146]. Mohan et al. have de-

signed a framework with similar functionality, but using a systematic search method

which compares all possible topologies simultaneously [88]. Silvas et al. have designed

an automatic HEV topology generator which generates feasible topologies using given

power sources and transmission components [114].

1.2.4 Hybrid Powertrain Optimization

The design optimization and the control optimization problems for HEV pow-

ertrains are typically coupled. Optimization methods have been developed for such

coupled design and control optimization problems. These methods include sequential,

iterative, nested, and simultaneous approaches [37, 9, 10]. Among these approaches,

the nested and the simultaneous approaches are more reliable in finding optimal solu-

tions. Nested approaches search different designs in an outer loop, while the optimal

control strategy forms an inner loop for each design to find the optimal performance.

Nested approaches are able to make use of existing control methods compared with

simultaneous approaches.

1.2.5 Platooning

1.2.5.1 Vehicle-to-Vehicle Connection

The primary goal of platooning is to save fuel for vehicles. The vehicles in a

platoon benefit from aerodynamic drag reduction. The drag reduction is mainly

caused by the propagation of wake and depends on rearward distance and vehicle

speed [122, 130, 106]. Experiments and simulations have shown that platooning can

7



improve fuel efficiency, safety, and road capacity [128, 11, 42].

Platooning involves inter-vehicular communications and controls. The communi-

cations can be unidirectional or bidirectional. The topology and delays of commu-

nication does have an impact on the control of platoons [59, 12, 38, 30, 149], while

the control of platoons can be centralized or distributed [71, 15, 129, 72]. One key

purpose of platoon-level control is maintaining string stability, regardless of topology

or delay of communication. A simple yet classic strategy that achieves string stability

is the adaptive cruise control (ACC) [53, 36]. The limitation of of such strategy is

the lack of V2V/V2R/V2I communications. To address this issue, control strategies

that integrates communications into ACC have been developed. Such a collective

control strategies are called the cooperative ACC (CACC). The CACC, if designed

correctly, can ensure string stability and save control efforts compared to ACC [140].

In designing of advanced CACC strategies, the inter-vehicular distance or headway

is an important parameter. The selection of headway affects the aerodynamic drag

reduction, safety, and road capacity [121]. The trade-off between safety and fuel ef-

ficiency is an important aspect of designing CACC strategy. Cooperative adaptive

cruise control strategies have been designed and developed [74, 100, 101, 62]. Exper-

imental verification is usually effective to prove the reliability and robustness of the

CACC strategy [90].

In addition, comprehensive dynamics and control models known as vehicle follow-

ing models (VFMs) have been developed [110, 127, 91, 119, 33]. The development of

VFMs is to study high-level performance such as overall fuel economy, traffic through-

put and traffic flows [19].

1.2.5.2 Longitudinal Planning

Motion planning of vehicles and robots has become a major link in autonomy.

The focus in planning is mostly on path planning in a field for either holonomic or
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nonholonomic system [89, 6, 97]. The objective of path planning is on generating a

graph that the object can travel from vertex to vertex through edges, and search for

a feasible or optimal path between two points on the graph [120, 61, 85, 58]. In path

planning problems, the speed of object is usually ignored by assumption.

Longitudinal and lateral vehicle motion planning require time derivatives of po-

sition information of vehicle. Longitudinal planning can be real-time or full-horizon.

In real-time longitudinal planning, model-predictive control (MPC) like methods are

usually applied [139, 92, 73, 148, 43]. Real-time control can be flexible to varying

objective, environment, and road conditions. Nevertheless, full-horizon longitudinal

planning can be beneficial to task-based operating vehicles, like postal vehicles, deliv-

ery trucks, and even some passenger vehicles that belong to people drive to work daily.

Such vehicles drives repetitively on the same path. Thus, if the longitudinal motion

of vehicle on its task is optimized, energy consumption can be reduced potentially.

1.3 Contributions of This Work

To summarize, this work presents a multi-physics ROM that captures EMS cou-

pling and analyzes the system stability accurately and efficiently, the design, modeling

and control of a novel hybrid electric powertrain architecture, the control and design

optimization of the novel powertrain, and the drive schedule and vehicle control op-

timization for platoon of HEVs that are equipped with the novel powertrain.

1.3.1 Capturing EMS Phenomena

Within electric machines, EM forces and structural deformations are coupled.

However, the modelling methodology for EMS coupling in previous studies has been

either limited. A lot of the models are in 2D and the electromagnetic forces are

therefore approximated. In addition, the EMS coupling have not been accurately

and efficiently captured. Therefore, in this work, we present multi-physics ROMs
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that capture structural vibrations, EM forces, and the EMS coupling. The

coupling is considered as a deformation-dependent EM force. Given that the ROMs

are built in the modal space, a modal EM force calculation method based

on the co-energy method is presented. In addition, the EM forces are functions

of currents that are functions of time. Thus, time-varying parameters exist in the

equations of motion. These time-varying parameters create parametric excitations to

the system. In this study, a proof-of-concept device was designed and optimized to

analyze parametric resonances. A FEA model was created to collect parameters that

are necessary to build multi-physics ROMs for this design and to verify the stability

of the system using a frequency domain analysis. In addition, The frequency domain

response was verified using time domain analysis on the FEA model.

1.3.2 Novel Hybrid Electric Powertrain Architiecture

We have designed a novel hybrid electric powertrain in this work. The powertrain

system analyzed in this work takes advantage of a specialized electric machine

which has a stator that is allowed to rotate [142]. This machine is connected

to the ICE (which unavoidably exhibits torque fluctuations) and to another, conven-

tional electric machine. Having a rotating stator enables the first machine to adjust

the angular velocity in the powertrain downstream of the ICE. The conventional ma-

chine controls the torque transmitted to the wheels, and also suppresses torque

fluctuations caused by the ICE. Typical mechanical connections for HEVs such as

planetary gears and clutches are not needed in this novel powertrain. This

new architecture does not fall into any of the three existing HEV configurations, but

is viewed as between a series and a power-split.

To evaluate the performance of the new powertrain architecture, a vehicle-level

model is created. This includes a two-level control framework which sets the ICE

operating point and distributes power to the electric machines. The controller uses
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an event-based power management strategy where events represent changes in

driving conditions and vehicle status.

The vehicle-level model and its control were implemented in Matlab Simulink R©

with separate physics=based models for the powertrain and vehicle components,

namely: ICE model, electric machine models, battery model, vehicle dynamics, and

driver model. The electric machine models contain their drive, including the power

electronics, and real-time field-oriented controllers. The component models and con-

trollers were connected to obtain a vehicle-level model. Each component of the model

was tested individually. With the complete powertrain model, tests verify that the

functionality of the powertrain system are the same as designed. These tests include

vehicle driving on a single and multiple drive cycles, which monitor the functionality

of individual devices and components, and the power sustaining of the powertrain

system over relatively long times of driving.

1.3.3 Design and Control Optimization of Novel Powertrain

The potential of each new architecture can be estimated based on its optimal

performance, which is largely based on the powertrain design, component sizes, and

control scheme. Metrics used to quantify the optimal performance typically include

fuel economy, 0–60 mph acceleration time, cost, etc., or a combination thereof [8] [136].

The novel hybrid electric powertrain architecture illustrated in Fig. 1.1 was pro-

posed in a previous study [143] in which the component sizes are arbitrarily selected

only to prove the functionality of the novel architecture, and the control scheme was

rule-based and non-optimal. Either using components with larger size or employing

optimal control was able to improve the fuel economy, as shown in Fig. 1.2. The

optimal control strategy illustrated in this example is dynamic programming (DP).

The focus of the current study was to apply control and design optimization

techniques to determine the potential performance of the novel powertrain

11



Figure 1.1: Architecture of a novel hybrid electric powertrain

architecture [141]. This included optimizing the various components, including the

electric machines (the two machines denoted A and B), battery, and final drive gear

ratio. The major objectives of the optimization is maximizing the fuel economy and

minimizing the component sizes. When building the vehicle and powertrain model, a

physics-based modeling method was applied to the electric machines and battery

pack, which differs from scalable maps in conventional powertrain modeling. While

the focus of this study was passenger sized vehicles, the same method is also applicable

to other types of vehicles.

Here, the design problem was specifically related to the powertrain components;

thus, the architecture of the powertrain remained fixed throughout. A near-optimal

control simulation model that included the ECMS was constructed to evaluate the per-

formance of each design. To solve the multi-objective optimization problem, Pareto

front is searched and approximated by evaluating multiple randomly generated de-

signs in design space. Single objective function is formulated using weighted sum of

the two individual objectives. Combining with Pareto front, different optimal pow-

ertrain design can be obtained by adjusting the weight in single objective function.

The optimal design obtained here requires information of Pareto front, which is only

an approximation. Thus, the single objective powertrain optimization is necessary.
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Figure 1.2:
Fuel economy was improved by up-sizing components or applying optimal
control

A polynomial surrogate model is developed to represent the ECMS model to accel-

erate the optimization process. The single objective optimization process is depicted

in Fig. 1.3.

Multiple optimal designs are obtained with different relative weight between com-

ponent size cost and fuel cost. To verify the optimal designs for novel powertrain,

four commercially available power-split HEV powertrains are selected as

benchmark powertrains. The benchmark poowertrains are and evaluated and op-

timized. Power-split configurations are selected as benchmarks due to their similary

with the novel powertrain. Similar component functionalities and operations

can be observed between novel and benchmark powertrains. The optimal
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Figure 1.3: Block diagram of the system-level optimization

designs for benchmark powertrains are compared to those for novel powertrain, with

same weights in single objective function. The results show that the novel powertrain

produces comparable performance to benchmark powertrains.

1.3.4 Platooning of Electrified Powertrains

The platooning of electrified vehicles is desired for future transportation. Never-

theless, interaction of electrified powertrains and energy efficiency of a platoon is by

far undermined. The components of electrified powertrains are all coupled together.

The power management decisions are made by a supervisory controller based on the

power demand from the driver or vehicle. Determining the power demand of each

individual vehicle is the key to platooning. Thus the component status impacts the

platoon operations. The drive schedule design for platoons in a specific task was not

rigorously studied. The optimization of drive schedule design of vehicles can therefore

improve energy efficiency in platoon operations.
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In this work, a modeling and optimization framework was built for platoons

of HEVs. The vehicles in this study are equipped with the novel hybrid electric pow-

ertrain. The study is aimed at analyzing and optimizing the energy efficiency and

quality of vehicle following while moving the connected vehicles from the starting

point to destination. The road grade along the way is specified. Inter-vehicular inter-

action includes the drag reduction [122] of vehicles and vehicle communications. We

employed adaptive ECMS as the power management strategy for each individual ve-

hicle. The drive schedule and vehicle controllers are optimized to minimize

energy consumption while maintaining minimal vehicle following error and

relatively high vehicle speed.

The modeling and optimization framework is applied on homogeneous platoons

and heterogeneous platoons. Homogeneous platoon contain all identical vehicles while

the size of vehicle or powertrain components can vary from vehicle to vehicle in a

heterogeneous platoon. Parametric studies are designed for both homogeneous and

heterogeneous platoons. Reference headway and its impact on optimal drive schedule

design is explored for homogeneous platoon. The order of vehicles in a heterogeneous

platoon is investigated. Optimization is shown to effectively reduce the maximum

headway error by an order of magnitude and enhance energy saving of 17% to 37%.
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CHAPTER II

Multi-Physics ROMs for EMS Coupling

2.1 Structural ROMs

A class of reduced-order modeling techniques use full-order finite element models

and projection. In this study, the multi-physics ROMs apply modal projection to

construct a structural ROM as a precursor for building the multi-physics ROMs.

A structural ROM can be built by carrying out modal analysis on the structure

of interest. The full-order equation of motion of the structure can be expressed as

follows

Mẍ + Cẋ + Kx = 0, (2.1)

where M, C, and K are the mass, damping, and stiffness matrices, and x is the vector

of displacements for all degrees of freedom. By projecting Eq. (2.1) onto the modal

space, the structural ROM can be expressed using the modal matrix Φ as

MROM q̈ + CROM q̇ + KROMq = 0, (2.2)

where

MROM = ΦTMΦ, CROM = ΦTCΦ, KROM = ΦTKΦ, (2.3)
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and

x = Φq. (2.4)

Next, multi-physics ROMs are designed to suit systems/devices with potential

EMS coupling phenomena. The electromagnetic (EM) forces f experienced by EM

devices are modeled as generalized modal forces that are added to the structural ROM

to obtain

MROM q̈ + CROM q̇ + KROMq = f . (2.5)

It should be noted that EM forces are dependent on current, magnetic flux, and

structural deformations. In this sense, the ROM can be written as

MROM q̈ + CROM q̇ + KROMq = f
(
q,y(t)

)
, (2.6)

where y(t) accounts for the current applied to system (and the flux). The electromag-

netic force is typically nonlinear with respect to modal displacements. Thus, Eq. (2.6)

represents the multi-physics ROM with nonlinear electromagnetic force. For struc-

tural vibrations with small displacements, this force can be linearized with respect to

modal displacements. Linearizing the force, the following equation is obtained

f
(
q,y(t)

)
= f
(
0,y(t)

)
+ Ke

(
y(t)

)
q + H.O.T., (2.7)

where H.O.T. refers to higher order terms in q. By excluding these higher-order terms,

the EM force can be approximated by finding the modal EM force and stiffness at

equilibrium. Let f0(t) = f
(
0,y(t)

)
and Ke(t) = Ke

(
y(t)

)
. Then, the equation of

motion for the multi-physics ROM with linearized electromagnetic force is given as

MROM q̈ + CROM q̇ + KROMq = f0(t) + Ke(t)q. (2.8)
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Evaluating the EM force is key to capturing accurately the EMS coupling. For

a multi-physics ROM with a linearized force, this is equivalent to determining the

modal EM stiffness Ke(t). Moreover, this term is time dependent and usually periodic

because of the periodic nature of the current input and/or operations of the EM

system. Thus, building a multi-physics ROM necessitates an approach for evaluating

the modal EM force f0(t) and stiffness Ke(t) at zero structural deformation. In this

study, the co-energy method is applied to evaluate f0(t) and Ke(t) for the ROM with

linearized force, and f
(
q, t
)

for the ROM with nonlinear force.

2.2 Modal EM Force and Stiffness Calculation

The co-energy method is an alternative to the Maxwell stress tensor method for

determining EM forces. The primary advantage of the co-energy method over the

Maxwell stress tensor method is that for FEA models, a spatial finite difference along

the mesh is not required. In this study, the multi-physic ROM is built directly in

the modal space. To compute the modal EM forces and stiffness in the modal space

using the Maxwell stress tensor, the EM force distributions are found first. Then,

these forces are projected onto the modal space to obtain the modal EM forces. The

same process is repeated at multiple magnitudes of modal displacements in order to

find the modal EM stiffness. In contrast, with the co-energy method, the co-energy

is determined at multiple magnitudes of modal displacement to compute both the

modal EM forces and stiffness.

The co-energy of an EM system can be expressed as

W ′(q,y) =

∫
V

∫
H

B(H) · dHdV, (2.9)

where B(q,y) and H(q,y) are the magnetic flux density and magnetic field, respec-

tively. The displacement q = [q1, q2, . . . , qn]T . In the modal space, the modal EM
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force and stiffness for mode k can be expressed as

fk(t) =
∂W ′

∂qk

∣∣∣∣
q=0

, k = 1, 2, . . . , n (2.10)

Ke(t) =


∂f1
∂q1

. . . ∂f1
∂qn

...
. . .

...

∂fn
∂q1

. . . ∂fn
∂qn


∣∣∣∣∣∣∣∣∣∣
q=0

=


∂2W ′

∂q21
. . . ∂2W ′

∂q1qn

...
. . .

...

∂2W ′

∂q1qn
. . . ∂2W ′

∂q2n


∣∣∣∣∣∣∣∣∣∣
q=0

(2.11)

It should be noted that a numerical approximation for the first and second order

derivatives of the co-energy is required. The finite difference approximations can be

expressed as

f0,i =
W ′(∆qi)−W ′(−∆qi)

2∆qi
, (2.12)

Ke,ii =
W ′(∆qi) +W ′(−∆qi)− 2W ′(0)

∆q2i
, (2.13)

Ke,ij =
W ′(∆qi,j) +W ′(0)−W ′(∆qi)−W ′(∆qj)

∆qi∆qj
, (2.14)

where

∆qi = [0, . . . , 0,∆qi, 0, . . . , 0]T , (2.15)

∆qi,j = [0, . . . , 0,∆qi, 0, . . . , 0,∆qj, 0, . . . , 0]T , (2.16)

where ∆qi is a small perturbation in qi at qi = 0. The indices i, j = 1, 2, . . . , n.

By choosing an 8-pole AC synchronous electric machine as an example, the re-

sulting modal EM stiffness matrix of the stator is shown in Fig. 2.1.

The matrix is diagonally dominant and time-dependent. Consider, for example

that the electric machine is rotating at a constant angular velocity; thus, the rotor

angle is proportional to time. Figure 2.2 illustrates the diagonal terms of Ke(t) with

respect to the rotor angle.
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(a) (b)

Figure 2.1:
8 pole AC machine (left) and Ke(t) matrix at one time instant (right).
Such matrix is diagonally dominant.

For an 8-pole synchronous machines, Ke is periodic with respect to rotor angle and

the period is 2π/8 at a constant rotor angular velocity. The periodicity of Ke with

respect to time may cause unexpected resonances and system performance issues, as

discussed next.

2.3 Stability of the EMS System under Parametric Excita-

tion

The projection of equations of motion onto the structural modal space reduces the

model order and simultaneously decouples the structural equations. For the structure-

only model, the mass and stiffness matrices are diagonal in the modal space. However,

for the multi-physics ROM, the EM stiffness matrix is not completely diagonal. How-

ever, the EM stiffness matrix is still diagonally dominant, even for structures with

high modal density. Therefore, the analysis of a single mode is necessary to under-

stand the stability of the system. The stability of multi-physics ROM with linearized

EM forces is discussed in this section. The equation of motion for a single mode is
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Figure 2.2:
The diagonal terms are shown relative to the rotor angle at constant rotor
angular velocity. Periodicity holds, as expected.

expressed as

mROM q̈ + cROM q̇ + kROMq = f0(t) + ke(t)q. (2.17)

The periodic EM force and stiffness can be expressed as a Fourier series in time

as

f0(t) = f0,s +
∞∑
n=1

fn,v cos(nωt), (2.18)

ke(t) = k0 +
∞∑
n=1

kn cos(nωt), (2.19)

where ω is the fundamental frequency. In cases where the fundamental frequency is
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dominant, one can approximate f0(t) and ke(t) as

f0(t) = f0,s + f0,v cos(ωt), (2.20)

ke(t) = k0 + k1 cos(ωt). (2.21)

For studying the stability of the structure under parametric excitation, the force

f0(t) is omitted. Thus, Eq. 2.17 becomes

d2q

dτ 2
+

cROM
mROMω

dq

dτ
+

(
kROM − k0
mROMω2

− k1
mROMω2

cos τ

)
q = 0, (2.22)

where τ = ωt. Note that mROM = 1 for a mass-normalized system. Thus, the

equation of motion can be simplified to

d2q

dτ 2
+
cROM
ω

dq

dτ
+

(
kROM − k0

ω2
− k1
ω2

cos τ

)
q = 0. (2.23)

This equation is in the form of damped Mathieu’s equation [102], namely

d2x

dt2
+ c

dx

dt
+ (δ + ε cos t)x = 0. (2.24)

A system governed by Eq. (2.24) becomes unstable once the amplitude of para-

metric excitation ε is large enough. The threshold value of ε is a function of δ. The

stability transition curve in the neighbourhood of δ = 1/4 is expressed as

δ =
1

4
±
√
ε2 − c2

2
. (2.25)

To explore the theoretical stability transition stiffness, the model of a dynamical

system described by Eq. (2.23) is examined. When the parametric excitation fre-

quency is twice that of the natural frequency of the structure, the transition stiffness

is k1,t = 2cROMωn. In this study, the damping is determined by selecting the damping

22



(a) (b)

Figure 2.3:
(a) Observed parametric resonance when amplitude of parametric excita-
tion is 10% higher than the transition stiffness.(b) Parametric resonance
was not triggered when amplitude of parametric excitation is 10% lower
than the transition stiffness.

ratio. Thus, cROM = 2ζ
√
kROM . The transition stiffness is expressed as

k1,t = 4ζkROM , (2.26)

where ζ is the damping ratio of the structure. Two k1 values were selected, 0.9k1,t

and 1.1k1,t. In both cases, the (peak-to-peak) amplitude of the steady state response

was evaluated using time marching simulation over the frequency range, both with

and without the parametric excitation term k1
ω2 cos τ . The response showed that a

parametric resonance peak was obtained when k1 = 1.1k1,t, which is slightly higher

than the transition stiffness in Fig. 2.3. In contrast, that peak was not observed when

k1 = 0.9k1,t, as shown in Fig. 2.3. In these plots, the horizontal axis represents the

ratio between frequency of force harmonics and the natural frequency. The parametric

excitation frequency is the same as the frequency of force.
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2.4 Proof-of-Concept Device

In this study, a proof-of-concept device is considered to demonstrate the EMS

phenomena by applying the multi-physics ROM. The device is a laminated soft iron

core with coil to support AC current, as shown in Fig. 2.4. The upper arm is allowed to

deform and vibrate, while the other portions of the core are fixed. The electromagnetic

force is periodic when the input is a periodic AC current. Thus, both the force and

the parametric excitation frequencies are dependent on the frequency of AC current.

Table 2.1 shows the properties of the device. In this table, the notations I and

N represent the amplitude of the AC current and the number of turns in the coil,

respectively.

Figure 2.4: Magnetic flux and geometry plot for the proof-of-concept device.

Table 2.1: Parameters of the Proof-of-Concept Device
L 0.20 m
w 0.01 m
T 0.01 m
h 0.005 m
I 2.0 A
N 150

2.4.1 Construction of Multi-Physics ROMs

A high fidelity FEA model is constructed first. Then structural parameters and

electromagnetic forces are determined. Their quantities are necessary for constructing
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the multi-physics ROM for the proof-of-concept device.

2.4.1.1 Construction of Multi-Physics ROMs with Linearized EM Forces

The construction of multi-physics ROMs force involves creating first a model for

the EM forces and stiffness using the co-energy method. The advantage of using the

co-energy method is that only static EM analyses are needed using the full-fidelity

FEA model. The co-energy of the device depends on the modal displacement and

the current. For calculating the linearized EM force, the co-energy of the device is

computed under different current values. By perturbing the magnitude of the modal

displacement, the EM force and stiffness at all current values can be determined using

Eqs. (2.12) to (2.14). Thus, the EM force and stiffness are obtained as functions of

the current. The current input is a function of time. Thus, the EM force and stiffness

can be determined as functions of time. The amplitudes of the EM force and stiffness

for the first mode of the device and the stability transition stiffness when damping

ratio ζ = 0.045 are listed in Tab. 2.2. These results of EM forces and stiffness suggest

that the amplitude of parametric excitation k1 is larger than the transition stiffness

kt for the selected mode. The current input in these calculations is harmonic with an

amplitude of I = 2A as shown in Tab. 2.1.

Table 2.2: FEA Results
f0,v 8.87 [mkg1/2s−2]
kt 8.52 × 104[s−2]
k1 9.32× 104 [s−2]

The EM force f0 and stiffness ke depend on the current. The current depends

on time, which makes f0 and ke depend on time. The corresponding FEA results for

f0(t) and ke(t) are shown in Fig. 2.5. These results show that the modal EM force and

stiffness are both quadratic functions of current for this design. They are therefore
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(a) (b)

Figure 2.5:
(a) Modal EM force is a quadratic function of current. (b) Model EM
stiffness is a quadratic function of current.

approximated as

f0(t) = af i(t)
2,

ke(t) = aki(t)
2,

(2.27)

where i(t) is the current, and parameters af and ak are determined using regres-

sion. Note that the quadratic relationship holds because the magnetic material is

not saturated. Therefore, the quadratic relation is valid only for a limited range of

current values. With the expressions for the modal EM force and stiffness found, the

multi-physics ROM with linearized force is expressed as

mROM q̈ + cROM q̇ + (kROM − aki(t)2)q = af i(t)
2. (2.28)

2.4.1.2 Construction of Multi-Physics ROMs with Nonlinear EM Forces

Building ROMs with nonlinear EM forces requires finding the EM forces as a

function of both the current and the modal displacement. Assume that the modal

displacement is small such that the change of air gap thickness is the result of dis-

placement in an EMS model. An analytic study results in an expression of the total
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co-energy within the device in the form.

W ′ ∼=
βh
(
i(t)
)

(αq + 1)2
, (2.29)

where h is the magnetic field as a function of current, α and β are constant coefficients

that need to be determined, and q is the modal displacement of the selected mode.

The values of α and β are mode dependent.

This is a generalized expression, which is applicable to both linear and nonlin-

ear magnetic materials. The FEA results for the device suggest that the magnetic

material was not saturated, which means that such material can be treated as linear

magnetic material. Thus, the co-energy can be expressed as function of the modal

displacement

W ′ ∼=
γi2(t)

(αq + 1)2
, (2.30)

where γ is a constant value that can be determined using FEA analysis. Taking

the derivative of W ′ with respect to the modal displacement q, the modal force is

expressed as

f ∼= −
2αγi2(t)

(αq + 1)3
. (2.31)

The multi-physics ROM with nonlinear force can thus be expressed as

mROM q̈ + cROM q̇ + kROMq = − 2αγi2(t)

(αq + 1)3
. (2.32)

Parameters α and γ are required to complete building the ROM. These parameters

are calculated using the high-fidelity FEA model as follows. The co-energy of the

device is computed at various values of the modal displacement and current as shown

in Fig.. A function approximation given by Eq. (2.31) is obtained by using the

high0fidelity calculations. The errors in the approximation of the co-energy and force

in Eq. (2.31) are acceptable, as shown in Fig. 2.6.
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(a) (b)

Figure 2.6:
(a) Co-energy approximation illustrates high accuracy. (b) EM force ap-
proximation yield acceptable accuracy.

2.4.2 Parametric Resonance

We performed a frequency domain study of the response of the device using the

multi-physics ROM to verify the stability of the proof-of-concept device. A transient

analysis was performed until the system settled onto a periodic behavior. By con-

sidering a single mode, namely the first mode of the upper arm of the device, the

multi-physics ROM has a single structural degree of freedom.

2.4.3 Response of ROM with Linearized EM Forces

The stiffness kROM was obtained from the results of FEA, and the damping ratio

was first set to ζ = 0.045. For a harmonic current, the quadratic relationship between

ke and current ensures that ke is harmonic plus a constant, with a frequency that is

twice that of the AC current. As stated earlier, the parametric resonance occurs when

the parametric excitation frequency is twice the natural frequency. Therefore, for this

design, the parametric resonance occurs when the current frequency is close to the

natural frequency.

Results of a time dependent analysis of the multi-physics ROM are shown in

Fig. 2.7. Symbols + represent the frequency domain response from the model without
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Figure 2.7:
Frequency domain response at ζ = 0.045 shows peak amplification and
shift of normal resonance and appearance of parametric resonance peak.

ke. Circles indicate the response from the system with parametric excitation, i.e.

with ke. With parametric excitation, a new peak appears slightly before the current

frequency reaches the natural frequency. This peak represents a parametric resonance.

The peak exists because the amplitude of the parametric excitation is higher than the

stability transition stiffness. The other peak of the usual resonance shifts slightly to

the left. This can be attributed to the non-zero mean of the modal EM stiffness. As

shown in Eq. (2.23), the constant k0 component of ke is subtracted from the structural

model stiffness, which results in a shift in the usual resonance. In addition, the usual

resonance peak is higher in the presence of parametric excitation.

Results in Fig. 2.7 were obtained for ζ = 0.045. The value of the damping ra-

tio affects the system responses as shown in Fig. 2.8. These results show that the

parametric resonance is sensitive to the damping ratio.
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2.4.4 Response of ROM with Nonlinear EM Forces

The nonlinear EM force is stiffening with respect to modal displacement. Thus,

an amplification of the response is expected. Thus, a smaller amplitude of current

was selected to avoid instability. With the damping ratio ζ = 0.02 and an amplitude

I = 1.2A of the current, the frequency domain response of nonlinear ROM is shown

in Fig. 2.9. In this plot, the response of the ROM with linearized EM force under the

selected damping and current is shown for comparison. A zoomed-in version of the

frequency response near the parametric resonance frequency shows the existence of a

parametric resonance peak.

The resonance peak caused by force harmonics is amplified and shifted for system

responses with EMS coupling, for both linearized and nonlinear EM forces. While the

amount of frequency shift is the same for linear and nonlinear model, the amplification

is stronger with a nonlinear EM force. Nonlinearity amplifies the force compared to its

linear prediction. The peak-to-peak amplitude of nonlinear force in frequency domain

is shown in Fig. 2.10. Note that the amplitude of EM force with EMS coupling is

higher than that without EMS coupling. The amplitude of the nonlinear EM force is

higher than the linearized EM force.

2.4.5 FEA Verification of ROM Simulation Results

The results obtained from time marchings using the multi-physics ROM were

verified using time domain analysis (TDA) on the FEA model. Two scenarios are de-

signed for this verification process. One is the verification of the resonance caused by

force harmonics without EMS coupling. The other is the verification of the response

to displacement-dependent EM forces. A harmonic AC current in the coil is the input

to the system for both scenarios. A comparison of frequency domain responses using

FEA model and multi-physics ROM are shown in Figs. 2.11 and 2.12.

In the first scenario, the FEA verification is done for the case without EMS cou-
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pling. The residual between the FEA and ROM results is approximately 4.3%. This

residual is expressed as r = ||DROM−DFEA||2
||DFEA||2

, where DROM and DFEA are the vec-

tors of amplitudes of modal displacement frequency domain responses using ROM

and transient analysis of FEA, respectively. The frequencies in these vectors are the

frequencies used in FEA verification.

In the second scenario, the EM force is determined at each instant, as the structure

deforms and vibrates. Thus, the physical displacement of vertices, especially the FEA

vertices at both edges of the air gap, are limited by the geometry of the structure. The

amplitude of the current for the second scenario is selected so that the displacement

of these vertices does not exceed the geometric limits. The residual between FEA and

ROM results at these critical frequencies is approximately 12.8%. The computational

times required to find the frequency domain responses for the ROM and the FEA

approaches is listed below in Tab. 2.3.

Table 2.3: Comparison of Computational Time at a Single Frequency
Method Value

ROM without EMS Coupling 30.7 [ms]
ROM with Linearized EM Force 31.0 [ms]
ROM with Nonlinear EM Force 953 [ms]

FEA with EMS Coupling ∼4 [hr]

The FEA time-domain analysis is computationally expensive. The computation

time shown in Tab. 2.3 for FEA simulation is for the response of one frequency only,

which is much higher than the time for the ROM. These two verification scenarios

demonstrate the computational accuracy and efficiency for the proposed ROM.

2.5 Conclusions

Eletromagnetic-structural (EMS) phenomena are caused by the coupling of struc-

tural deformation and distributed electromagnetic forces in electromagnetic devices.

However, previous studies, especially those focused on electric machines, did not ad-
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equately model EMS coupling phenomena. This study demonstrates that coupling

can lead to excitation of specific structural resonances, such as parametric resonances.

In addition, multi-physics ROMs that capture the EMS coupling between structural

vibration and electromagnetic forces was presented. A proof-of-concept electric de-

vice was proposed, and a multi-physics ROM was constructed for the device. The

ROM was shown to capture the system response in the frequency domain, including

the shift and amplification of the response caused by force harmonics and parametric

resonances. Results suggest that the response is sensitive to structural parameters.

The amplification of the force response and the appearance of parametric resonances

are stronger for devices with lighter materials and smaller damping, which are pre-

ferred in high-performance electromagnetic products. The insights gained from the

proposed EMS models can aid in the design of high performance EM devices.
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(a) (b)

(c) (d)

Figure 2.8:
(a) Frequency domain response at ζ = 0.05 shows peak amplification and
shift of normal resonance and very small parametric resonance peak. (b)
Frequency domain response at ζ = 0.04 shows peak amplification and shift
of normal resonance and high parametric resonance peak. (c) Frequency
domain response at ζ = 0.035 shows extremely high parametric resonance
peak. (d) Zoomed in frequency domain response at ζ = 0.035 shows peak
amplification and shift of left resonance peak.
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(a) (b)

Figure 2.9:
(a) Frequency domain response of ROM with nonlinear force shows higher
amplification of the resonance peak compared with ROM with linearized
force, while the amounts of frequency shift are the same. (b) Zoomed
frequency domain response shows the existence of parametric resonance
peak for models with EMS coupling.

Figure 2.10:
Amplitude of force with nonlinear force can reach as high as 9 times the
amplitude of force without considering EMS coupling
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Figure 2.11:
FEA results are matching the frequency domain response of the EM
force without EMS coupling.

Figure 2.12:
Residual between amplitude of response from FEA results and ROM
results is below 13%
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CHAPTER III

Novel Hybrid Electric Powertrain Architecture

3.1 Hybrid Powertrain Structure Overview

This section introduces the new hybrid powertrain architecture, including its struc-

ture and operating modes.

This hybrid powertrain system consists of an ICE, two electric machines (mo-

tors/generators) with their regulators, a battery, and necessary mechanical connec-

tions. Existing HEV powertrain designs typically use planetary gears and clutches [7].

However, planetary gears and clutches are not necessary in our design. This change

sacrifices the multiple configuration possibilities, but enhances the reliability of the

powertrain. The two electric machines are referred to as the A and B machines. The

configuration of the powertrain is shown in Fig. 3.1. The ICE block is mounted on

the frame of the vehicle. The crank shaft (rotor) of the ICE is connected to the A

rotor. The A stator can rotate, and is connected to the B rotor, which is further

connected to the wheels and may include a gear with a fixed ratio. The B stator is

mounted on the vehicle frame.

The crank shaft angular velocity is denoted by ωE and the angular velocity of

the A rotor by ωAR. When the shaft connecting the ICE and the A rotor is rigid,

ωAR = ωE. The angular velocity of the A stator is denoted by ωAS and the angular

velocity of the B rotor is denoted by ωB. When the shaft connecting the A rotor to
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Figure 3.1:
Structure of the novel powertrain showing the ICE, the A machine which
has a rotating stator and the conventional B machine. The A machine
controls the angular velocity transmitted to the wheels, and the B machine
controls the torque transmitted to the wheel

the B rotor is rigid, ωAS = ωB. Also, the angular velocity of the rotating components

which are upstream of the final drive but downstream of the B machine is denoted

by ωd. When the shaft connecting the B rotor to the final drive is rigid, ωd = ωB.

The angular velocity of the wheels is denoted by ωw. The final drive ratio can be

expressed as rf = ωd/ωw, and thus the vehicle speed is v = rwωw = rw(ωd/rf ), where

rw is the wheel radius.

Note that neither the stator nor the rotor of the A machine is fixed. The A rotor

has an angular velocity of ωAR whereas the A stator has an angular velocity of ωAS.

Thus, the A machine is able to provide a difference between the angular velocities ωE

of the crank shaft and the angular velocity ωB of the B rotor. We refer to the relative

angular velocity between the rotor and the stator of the A machine as the A angular

velocity, and denote it by ωA = ωAR − ωAS. The angular velocity ωA enables the A

machine ultimately to regulate the angular velocity transferred to the B machine.

The B machine has the role of regulating the torque applied to the wheels. The

B machine does not change the vehicle speed, but can regulate the torque applied

to the wheels. Since the torque produced by the ICE has fluctuations, the B ma-
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chine accomplishes two goals. First, it regulates the torque applied to the wheels by

adding or subtracting from the average torque which comes from the ICE. Second, it

suppresses the torque fluctuations that come from the ICE.

This new powertrain architecture resembles a series hybrid configuration, but the

stator of the generator (corresponding to the stator of the A machine) is movable and

connected to the rotor of the motor (corresponding to the rotor of the B machine).

This change in configuration compared to series hybrid enables the split of power. It

is possible for the power from the ICE to partially flow to the battery and partially

to the wheels. However, the hybrid powertrain designed here is not a traditional

power-split hybrid either. Neither a planetary gear nor a clutch is being used. The

transmission function of this newly designed hybrid powertrain is referred to as an

extended electronic continuously variable transmission (EECVT) system.

The EECVT system can accomplish many operation modes. A list of such modes

is shown in Tab. 3.1. Note also that the new architecture allows the ICE to be used

either at several operating points or just at a single optimal operating point. The

operating points for the ICE can be chosen so that the power efficiency of the ICE

is highest. Both the A and the B machines operate sometime in generator mode,

and other times in motor mode. The freedom of operation for each device ensures

multiple operation modes for the EECVT system.

The novel architecture has advantages, but it also has some drawbacks. The main

drawback is the fact that it requires electrification of a rotating component. This can

be addressed through the next generation of slip rings.

3.2 Vehicle-Level Model

To analyze the powertrain system, a model was developed and implemented in

Matlab Simulink R©. This section describes first the models of the different components

which comprise the powertrain. Next, this section presents the system-level model
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Table 3.1: Operation modes for the EECVT system (EV=electric vehicle mode)

A B Operation
ICE

Machine Machine Mode

EV Mode
Off Off Motor

Acceleration

EV Mode
Off Off Generator

Acceleration

Power Boost
On Motor Motor

High Speed

Battery Charging
On Motor Generator

High Speed

Power Boost
On Generator Motor

Low Speed

Battery Charging
On Generator Generator

Low Speed

for the vehicle and powertrain dynamics, electric machines, battery, and ICE.

3.2.1 Powertrain Dynamics

To predict the vehicle dynamics, simplified models such as ones based on rigid

bodies and lumped inertia/masses have been used in the literature [78]. We augment

such models with elastic coupling elements to account for the elasticity of the me-

chanical couplings and shafts. Thus, we develop a system-level model which accounts

for vibrations due to the flexibility of the shafts which connect the ICE to the A

machine, the A machine to the B machine, and the B machine to the wheels.

Figure 3.2 shows the characteristics of the components modeled. Three flexible

shafts are modeled with three torsional stiffnesses k1, k2, and k3. The moments of

inertia are modeled for the ICE crank shaft, the A rotor, the A stator, the B rotor,

and the components downstream of the B rotor, including the wheels and the inertia

of the vehicle. This results in a model with 5 degrees of freedom, namely: the angles

of rotation θE of the ICE crank shaft, the angle of rotation θAR of the A rotor, the
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Figure 3.2:
Structure of the novel powertrain showing the moments of inertia IE,
IAR, IAS, IB, and IW of the ICE rotating components, the A rotor, the
A stator, the B rotor, and the rotating components downstream of the B
machine, including the wheels and the effects of the vehicle mass. The
angles of rotation and the torsional stiffnesses of the elastic elements are
indicated also.

angle of rotation θAS of the A stator, the angle of rotation θB of the B rotor, and

the angle of rotation θd of the components downstream of the B machine but before

the final drive. Note that the elasticity in the final drive is not explicitly considered.

Hence, the angle of rotation θw of the wheels is not a degree of freedom. Instead, θw

is related to θd by the final drive ratio θw = θd/rf . The equations of motion can be

expressed as

IE θ̈E =TE − k1(θE − θAR),

IARθ̈AR =k1(θE − θAR) + TA,

IAS θ̈AS =− TA − k2(θAS − θB),

IB θ̈B =k2(θAS − θB) + TB − k3(θB − θd),

Idθ̈d =k3(θB − θd)− fmvg
1

ηf

(rw
rf

)
− 1

2
ρdAF θ̈

2
d

1

ηf

(rw
rf

)3
,

(3.1)

where IE, IAR, IAS, IB, and Id = 6mw+mv

ηf
( rw
rf

)2 are the moments of inertia of the

ICE rotating components, the A rotor, the A stator, the B rotor, and the rotating
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components downstream of the B machine, including the wheels. The final drive ratio

is rf , and the final drive efficiency is ηf . The vehicle mass is mv. The wheel mass is

mw and the wheel radius is rw. TE is the torque value created by the ICE. TA and

TB are the electromagnetic torques created in the A machine and the B machine. In

addition, resistive forces including aerodynamic drag and friction are included. f is

the rolling resistance ratio, ρ is the density of air, d is the drag coefficient, AF is the

frontal area.

The first 4 relations in Eq. 3.1 are obtained easily for each of the corresponding

components. The 5th relation is obtained by first accounting for the rolling motion

of the wheels and the translation motion of the vehicle to obtain

4

((
1
2
mwr

2
w

)
θ̈w

rw
+mwv̇

)
+mvv̇ = Fw

−fmvg −
1

2
ρdAFv

2,

(3.2)

where Fw is the forward drive force acting on the four wheels. Using v̇ = rwθ̈w, one can

transform Eq. 3.2 to obtain successively 4
(
1
2
mwv̇+mwv̇

)
+mvv̇ = Fw−fmvg−1

2
ρdAFv

2

and

(6mw +mv)v̇ = Fw − fmvg −
1

2
ρdAFv

2, (3.3)

The force Fw is related to the torque Tw applied to the wheels by Fw = Tw/rw.

Also, the torque applied to the wheels is related to the torque Td applied by the B

rotor immediately upstream of the final drive by Tw = rfηfTd. Thus, Fw = rfηfTd/rw.

Moreover, the torque Td is related to the elastic deformation of the shaft connecting

the B rotor to the final drive by Td = k3(θB − θd), so
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Fw =
rfηfTd
rw

=
rfηfk3(θB − θd)

rw

=
rf
rw
ηfk3(θB − θd),

(3.4)

Substituting Fw from Eq. 3.4 into Eq. 3.3, one obtains

(6mw +mv)rwθ̈w =
rf
rw
ηfk3(θB − θd)

−fmvg −
1

2
ρdAF (rwθ̇w)2,

(3.5)

Substituting θw = θd/rf , one transforms Eq. 3.5 into

(6mw +mv)
rw
rf
θ̈d =

rw
rf
ηfk3(θB − θd)

−fmvg −
1

2
ρdAF (

rw
rf
θ̇d)

2,

(3.6)

which leads to the 5th relation in Eq. 3.1 after algebraic manipulation.

A simpler model can be obtained by assuming [78] that the shafts connecting the

ICE, and the A and B machines are very stiff (i.e., rigid). As a consequence, the

torsional stiffnesses k1, k2, and k3 are condidered infinite. The equations of motion

are simplified to
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θE =θAR,

(IE + IAR)θ̈E =TE + TA,

θAS =θB,

(IAS + IB + Id)θ̈d =TB − TA − fmvg
1

ηf

(rw
rf

)
− 1

2
ρdAF θ̇

2
d

1

ηf

(rw
rf

)3
,

θB =θd,

(3.7)

Thus, the simplified model has only 2 degrees of freedom (namely θE and θd) and

two lumped inertias, namely IE + IAR and IAS + IB + Id.

3.2.2 Electric Machine Models

The two electric machines being chosen in the EECVT system are both surface-

mounted permanent magnet (SMPM) machines [103]. SMPMs are one of the types

of the alternating current permanent magnet synchronous machines (PMSM). In this

work, each SMPM machine is modeled by governing equations, which is more accurate

and distinct from look-up tables. The physics based models we use are more intensive

computationally, but they are more accurate and are easier to modify automatically,

which is beneficial for system optimization. Once the optimal system-level parameters

are identified, lookup tables can be used for the two electric machines for faster vehicle-

level simulations [150].

From a transfer function perspective, the model we use for each electric machine

takes as input the voltage supplied by the battery and the torque command for that

machine, and provides as output the actual electromagnetic torque and corresponding

current. The model of each electric machine contains a field-oriented controller [14],

power electronics and the electric machine itself. Direct current (DC) to alternative
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current (AC), three-phase to two-phase transforms [96] are applied for modeling each

machine, which enables the connection between each AC electric machine and the

battery (which, of course, is a DC power source). The parameters of the electric

machine models are shown in Tab. 3.2.

Table 3.2: Parameters of the A and B electric machine models
Parameter Notation Value[unit]
Resistance RA and RB 0.08[Ω]
Direct

Inductance
LAd and LBd 0.2[mH]

Quadrature

Inductance
LAq and LBq 0.2[mH]

Rotor Flux Linkage ΛA and ΛB 0.1[Wb]
Number of Poles nAp and nBp 8

A field-oriented controller regulates the electromagnetic torque of each electric

machine by regulating the direct currents irAd and irBd, and the quadrature currents

irAq and irBq in a synchronous reference frame, namely the rotor reference frame for

each machine. The commands of the irAq and irBq regulators are obtained from the

torque requirements of the two electric machines TAr and TBr. The command values

of the quadrature currents ĩrAq and ĩrBq are proportional to TAr and TBr, and are given

by

ĩrAq =
TAr

3
4
nApΛ̂A

, ĩrBq =
TBr

3
4
nBpΛ̂B

,

ĩrAd = 0, ĩrBd = 0,

(3.8)

where Λ̂A and Λ̂B are estimated rotor flux linkages, which for simplicity are considered

equal to their exact values ΛA and ΛB. The command values of the direct currents

ĩrAd and ĩrBd are set to zero to achieve minimum current operation.

The current regulators provide two-phase voltage commands ṽrAd and ṽrBd, and ṽrAq
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and ṽrBq in the rotor reference frame of each machine. These voltages are converted

into voltages ṽAd and ṽBd, and ṽAq and ṽBq in the stator reference frame for each

machine by using inverse Park transforms expressed as

ṽAd
ṽAq

 =

cos θeA − sin θeA

sin θeA cos θeA


ṽrAd
ṽrAq

 , and

ṽBd
ṽBq

 =

cos θeB − sin θeB

sin θeB cos θeB


ṽrBd
ṽrBq

 ,
(3.9)

where θeA = 1
2
nAp

∫ t
τ=0

ωAdτ and θeB = 1
2
nBp

∫ t
τ=0

ωBdτ are the electric field angles in

the stator reference frame of each machine.

Next, the three-phase voltages needed are obtained. A pulse width modulation

(PWM) technique referred to as space vector modulation is applied for voltage gen-

eration [103]. The two-phase duty cycles DAd and DAq, and DBd and DBq for the two

electric machines, and the three-phase duty cycles DAa, DAb, and DAc, and DBa, DBb,

and DBc are calculated for each electric machine using the space vector modulation

from ṽAd and ṽAq, and ṽBd and ṽBq.

The space vector modulation technique for duty cycle calculation can be expressed

for the A machine by first defining

DAd =
ṽAd
Vb
, DAq =

ṽAq
Vb
, (3.10)

where Vb is the supply voltage, i.e. an output from the battery model in Eq. 3.24

(described in more detail in the next section).

When DAq ≥ 0 and DAd > DAq/
√

3, or when DAq ≤ 0 and DAd < DAq/
√

3 the

values of DAa, DAb, and DAc, are obtained as
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DAa =
1

2
+

3

4
DAd +

√
3

4
DAq,

DAb =
1

2
− 3

4
DAd +

3
√

3

4
DAq,

DAc =
1

2
− 3

4
DAd −

√
3

4
DAq,

(3.11)

When DAq ≥ 0 and DAd < −DAq/
√

3, or when DAq ≤ 0 and DAd > −DAq/
√

3

the values of DAa, DAb, and DAc, are obtained as

DAa =
1

2
+

3

4
DAd −

√
3

4
DAq,

DAb =
1

2
− 3

4
DAd +

√
3

4
DAq,

DAc =
1

2
− 3

4
DAd −

3
√

3

4
DAq,

(3.12)

Otherwise the values of DAa, DAb, and DAc, are obtained as

DAa =
1

2
+

3

2
DAd,

DAb =
1

2
+

√
3

2
DAq,

DAc =
1

2
−
√

3

2
DAq,

(3.13)

For the B machine, one obtains similar three-phase duty cycles as those in Eqs. 3.11, 3.12

and 3.13 (omitted for the sake of brevity).

Half-bridge inverters use the duty cycles of each machine to generate three-phase

voltages vAa, vAb, and vAc (for the A machine) and vBa, vBb, and vBc (for the B

machine) which drive each electric machine
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vi = DiVb, where i = Aa,Ab,Ac,Ba,Bb,Bc, (3.14)

The electric machines first transfer three-phase voltages vAa, vAb, and vAc (for the

A machine) and vBa, vBb, and vBc (for the B machine) into two-phase voltages vAd

and vAq (for the A machine) and vBd and vBq (for the B machine) in stator reference

frames using

vAd
vAq

 =

2
3
−1

3
−1

3

0
√
3
3
−
√
3
3



vAa

vAb

vAc

 ,
vBd
vBq

 =

2
3
−1

3
−1

3

0
√
3
3
−
√
3
3



vBa

vBb

vBc

 ,
(3.15)

The two-phase voltages are converted from stator reference frames into voltages

vrAd and vrAq (for the A machine) and vrBd and vrBq (for the B machine) in rotor reference

frames using Park transforms as

vrAd
vrAq

 =

 cos θeA sin θeA

− sin θeA cos θeA


vAd
vAq

 ,
vrBd
vrBq

 =

 cos θeB sin θeB

− sin θeB cos θeB


vBd
vBq

 ,
(3.16)

The two-phase voltage-current relation for each machine in the rotor reference

frame can be expressed as
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LA
d

dt

irAd
irAq

 =

 −RA ωeALA

−ωeALA −RA


irAd
irAq


+

vrAd
vrAq

+

 0

−ωeA

ΛA,

LB
d

dt

irBd
irBq

 =

 −RB ωeBLB

−ωeBLB −RB


irBd
irBq


+

vrBd
vrBq

+

 0

−ωeB

ΛB,

(3.17)

where ωeA = 1
2
nApωA and ωeB = 1

2
nBpωB are the electric field angular velocities in

the stator reference frame of each machine (i.e., time derivatives of θeA and θeB). Also,

the two-phase voltages from Eq. 3.16 are used in Eq. 3.17. Note that parameters RA,

LA, RB and LB are the resistances and inductances within each of the two the electric

machines (Tab. 3.2), where the direct and quadrature inductances are considered to

have the same values.

The two-phase currents irAd and irAq (for the A machine) and irBd and irBq (for the

B machine) are used as inputs to four separate PI current regulators (two regulators

for each machine), which close the loop with the command values of the direct and

quadrature and currents ĩrAd, ĩ
r
Aq, and ĩrBd, ĩ

r
Bq The gains of the 4 controllers are

designed as

kpAd = kpAq = cpRA, k
p
Bd = kpBq = cpRB, (3.18)
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kiAd = kiAq =
(kpAd +RA)2

ciLA
,

kiBd = kiBq =
(kpBd +RB)2

ciLB
,

(3.19)

where superscript p indicates proportional gain, and superscript i indicates integral

gain. The nondimensional coefficients cp and ci were chosen to obtain a good torque

response (overshoot and time constant).

The torque generated by each of the two electric machines is proportional to

corresponding quadrature current in the rotor frame as

TA =
3

4
nApΛAi

r
Aq, TB =

3

4
nBpΛBi

r
Bq, (3.20)

The battery model is connected to the models of the A and B electric machines by

using the total power Pr required by both electric machines, which can be expressed

as a sum of mechanical power output and loss due to electric resistance as

Pr =ηATAωA + (irAq
2 + irAd

2)RA

+ ηBTBωB + (irBq
2 + irBd

2)RB,

(3.21)

where
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ηA =


1 + ηp, TAωA ≥ 0

1− ηp, TAωA < 0

,

ηB =


1 + ηp, TBωB ≥ 0

1− ηp, TBωB < 0

,

(3.22)

Here ηp is an efficiency penalty added to the model to capture otherwise unmod-

eled losses in the electric machines. The value of ηp was obtained by the following

procedure. An efficiency map was generated for the electric machine models we use

but with parameter values corresponding to an existing product, namely UQM Power-

Phase 145 (and using the governing equations in this section). The difference between

the efficiency map predicted by the model and the actual efficiency map for the prod-

uct revealed a difference at the electric machine operating points shown by the dark

areas in Fig. 3.3. Thus, a constant efficiency penalty is added to the electric machine

model. The efficiency differences at these operating points can be observed between

these two efficiency maps. As the results show, the average efficiency difference is less

than 5%. We choose a more conservative value of 5% as a worst-case estimation so

that our fuel economy estimates are lower. Note that the use of a constant efficiency

penalty is a conventional estimation approach for electric machines. Thus, the effi-

ciency penalty ηp = 5% was used to compute the power requirements for the electric

machines.

Look-up tables with experimental data are not used because the model is designed

not only for simulation of one powertrain realization, but also for system-level op-

timization. Hence, all aspects of the model are physics-based and parameterized to

allow the components in the powertrain to be easily re-sized during optimization.
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Figure 3.3:
Comparison of efficiency maps for UQM PowerPhase 145 (left) and model
(right) with A and B machine operating points illustrates that the model
efficiency is up to 5% higher.

3.2.3 Battery Model

The battery model is derived from the work of Liu et al. [55]. The battery model

is cell-based, which allows us to easily change the number of cells during system-

level optimization. For simplicity, we consider a battery system where all cells are

connected in series. Also for simplicity, we consider the case where the temperature

in the battery is regulated and does not vary considerably. The open circuit voltage

of the entire battery pack, V0 is proportional to the open circuit voltage V c
0 of each

cell as

V0 = ncV
c
0 , (3.23)

where nc is the number of cells in the battery system.

For each of the cells, the open circuit voltage is a function of the state of charge

(SOC) of the battery system. Note that we consider the case where the SOC of each

cell is regulated to be approximately the same. Also, the internal resistance of each
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cell, Rc is a function of the SOC, and is distinct for charging and discharging. The

open circuit voltage, and the charging/discharging internal resistance used in this

work for each cell are shown in Fig. 3.4.

Figure 3.4:
Open circuit voltage, and the internal resistance used in this work for
each Li-ion cell in the battery system.

From a transfer function perspective, the battery model takes as input the power

Pr required by the two electric machines, in Eq. 3.21, and outputs the voltage Vb and

the SOC of the battery system as

Vb = V0 −RbIb, (3.24)

SOC = SOC0 −
1

C0

t∫
τ=0

Ibdτ, (3.25)

where C0 is the battery pack capacity, SOC0 is the initial SOC, Rb is the total

internal resistance of the battery system, given by Rb = ncRc, and Ib is the total
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current through the battery system, given by

Ib =
1

2Rb

(
V0 −

√
V 2
0 − 4RbPr

)
, (3.26)

Note that Pr is the total power, which can be negative when (one or both) the

electric machines are generators. Also, note that the output voltage Vb of the battery

is the DC voltage supplied to the power electronics, which in turn supply the A and

B machines.

3.2.4 Simplified Internal Combustion Engine Model

To maximize fuel efficiency, the ICE in the novel architecture is operated either at

its peak efficiency point or it is turned off. Thus, the ICE can be modeled using a very

simplified approach as having an angular velocity ωE which is constant over time, and

an engine torque TE which varies over time (due to ICE torque fluctuations). Also,

the ICE is considered to be either on or off. In the off state, the ICE has zero ωE and

zero engine torque TE. The engine torque is the sum of a constant and two sinusoidal

functions, where the sinusoidal functions are chosen to resemble torque fluctuations.

One example of torque fluctuations is illustrated in Fig. 3.5.

The torque fluctuation data in Fig. 3.5 is representative of experimental measure-

ments of a 3-cylinder ICE. Such data are collected in a test of the ICE at a fixed

operating point, i.e. fixed load and fixed angular velocity. The measured test data

(torque) is Fourier transformed, and the DC components and two of the dominating

frequencies are selected. The specific frequencies used in this process are related to

the fact that the ICE has 3 cylinders. That being said, the algorithms and the overall

powertrain architecture can tackle other frequencies as well. We limit the analysis to

a 3-cylinder ICE for the sake of brevity.

The ICE could be operated not just as the on-and-off fashion, but also with

a variable angular velocity and torque. From a system-level perspective, various
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Figure 3.5: ICE torque versus time, which shows fluctuations.

ICE operations may enhance the fuel economy. However, our goal in this study is

not to show the best possible fuel economy, but to demonstrate that the proposed

architecture is efficient even when the system is not optimized. When the system is

optimized, components are re-sized and the control logic is adjusted. This can lead

to the use of various ICE operation points for optimal fuel economy.

3.2.5 Driver Model

A vehicle-level model requires a model for the driver. For clarity, we use a simple

driver model, namely a PI controller [55] which takes the speed command (from a

drive cycle) and the actual vehicle speed as inputs and generates two outputs, namely

the operational throttle ft, and the operational brake fb given by

ft = |max(us, 0)|, fb = |min(us, 0)|, (3.27)
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where the variable us is obtained by a well known formula using proportional and

integral gains denoted by kpd and kid as follows

us =


−1, u < −1

u, −1 ≤ u ≤ 1

1, u > 1

,where

u = kpd(vr − v) + kid

t∫
τ=0

(vr − v)dτ,

(3.28)

The speed vr is the required vehicle speed, and comes from the drive cycle. Note

that since us is saturated between -1 and 1, both ft and fb vary only between 0 to

1, and they are never simultaneously non-zero. Also, ft and fb are used to determine

the required value Tdr for the torque Td as

Tdr = (ft − fb)Tc, (3.29)

where Tc is a torque capacity, namely the maximum torque allowed to be required,

and is a constant in the powertrain model.

3.3 Control Strategy

The control strategy is to regulate the vehicle speed and the distribution of power

to or from ICE and the electric machines according to real-time driving conditions.

To achieve power distribution, a control strategy with two levels is designed and

two corresponding controllers are modeled. These controllers are referred to as the

multi-state EECVT controller, and the hybrid controller. This section introduces the

control strategy, and the logic that the two controllers follow.

The overall control architecture is illustrated in Fig. 3.6. The driver converts the
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speed command vr from the drive cycle and the actual vehicle speed v in Eqs. 3.28

and 3.2 into an operational throttle signal ft and an operational brake signal fb using

Eqs. 3.27 and 3.28. The hybrid controller converts ft and fb into a torque command

Tdr in Eq. 3.29. At the same time, the hybrid controller uses the ICE operating

condition (namely on or off) and calculates the torque commands for the A and B

machines, namely TAr and TBr which are used in Eq. 3.8. The distribution of the

torque command between the A and B machines is discussed in Sec. 4.1. The torque

Td is applied downstream of the B machine. The torque TE from the ICE and the

torques TA and TB from Eq. 3.20 generated by the A and B machines are input to the

vehicle dynamics model. The vehicle dynamics model calculates the vehicle speed v

which is input to the driver model in Eq. 3.28.

Figure 3.6: Block diagram illustrating the overall control strategy.

In addition to the processes mentioned above, the multi-state EECVT controller
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monitors the driving conditions, namely the vehicle speed v and the battery SOC and

determines the operating point command for the ICE, namely on or off.

3.3.1 Hybrid Controller

First, we focus on the hybrid controller. This controller starts by interpreting the

operational throttle signal ft and the brake signal fb in Eq. 3.27 from the driver as

torque requirement from driver, namely Tdr in Eq. 3.29. The hybrid controller then

distributes the torque to the A machine and to the B machine in Eq. 3.8 so that the

applied torque Td follows the required torque Tdr. In case of very stiff shafts, the

torque TA of the A machine is obtained from Eq. 3.20 for the steady state operation

of the ICE, namely for θ̈E = 0. Hence, the hybrid controller calculates the difference

between the command torque for the vehicle Tdr and the command torque from the

A machine TAr as command torque TBr to the B machine.

The hybrid controller is designed to ensure that the system operated for different

ICE operating conditions. In that sense, the system can operate even without a multi-

state EECVT controller, because such controller is only deciding the operating point

of the ICE. However, if the ICE is not controlled according to driving conditions, but

is kept at a pre-specified condition instead, some unreasonable scenarios can occur.

For example, the ICE can provide more power than required into the system all the

time during a drive cycle even when the battery is fully charged. This would be a

waste of energy. Many other issues, beyond this simple example, may occur if the

ICE is not properly controlled. The multi-state EECVT controller controls the ICE

operation according to vehicle speed, required torque, battery SOC, and operational

throttle. The controller makes sure that the battery SOC is kept within a reasonable

range. During operations which do not involve battery-charging, the controller avoids

improper energy distribution among the two electric machines.
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Table 3.3: State definitions for the multi-state EECVT controller
State Description vehicle

speed
Torque
Required

Battery SOC

Rest Vehicle parked 0 0 DC
EV Mode Vehicle driven only by

electric machine
Details shown SOC sufficient

Boost Vehicle driven by ICE
and electric machines

in Table 3.4 SOC sufficient

Regenerative
Braking

Negative power re-
quired by the driver

DC Negative SOC sufficient

Battery
Charging

Battery SOC is low,
ICE is on to charge the
battery

DC DC Expected SOC
is between
SOCmed and
SOChigh

SOC Pro-
tection

Battery SOC is very
low, ICE provides
high power for SOC
regeneration

DC DC Expected SOC is
between SOClow
and SOCmed

3.3.2 Multi-State EECVT Controller

In this section, we focus on the multi-state EECVT controller. This controller

follows the event-based logic. Six states are defined for different driving modes. An

event means that the change in driving conditions triggers switching among states. In

this controller, three variables are monitored to judge the driving conditions, namely

the vehicle speed v, the torque required by the driver Tdr, and the battery SOC. Each

state corresponds to a set of general conditions as shown in Tab. 3.3, where DC means

“do not care”.

The multi-state EECVT controller sustains the battery SOC during driving. The

logic for the switching between states as a function of the three SOC thresholds,

namely SOClow, SOCmed, and SOChigh are shown in Fig. 3.7. The bar in the figure

represents the battery SOC, which is 100% at the top, and 0% at the bottom. The blue

and green regions are normal regions for driving. The green region shows the expected

range of battery SOC where the battery should remain while driving. The yellow and
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red regions represent SOC ranges where the battery requires SOC regeneration, with

red indicating a region of urgent requirement for SOC regeneration.

Figure 3.7:
SOC control logic and threshold values with a expected switching shown
on the right and the SOC values on the left.

For example, consider that the vehicle is driving with a battery SOC within the

normal driving SOC region. Driving the vehicle consumes power and the SOC drops

below SOCmed, and enters the yellow region. At this moment, the controller switches

to the battery charging state. Two cases may occur when the battery charging starts.

In the first case, the battery charging power from the ICE is sufficient to recharge the

battery. Thus, the SOC increases back to the normal driving region, and the controller

switches to normal driving states as needed. In the second case, the battery charging

power from the ICE is not sufficient to regenerate the SOC and also drive. Thus,

the SOC keeps dropping, and enters red region below SOClow. The controller now

changes to the SOC protection state, and more power is required from ICE for SOC

regeneration. The battery SOC is raised until it reached SOCmed. After that, the

battery charging state takes over and continues to charge the battery raising the SOC

until it reaches SOChigh. The vehicle is back in the normal driving region.
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Once the multi-state EECVT controller switches to the SOC protection state, the

vehicle speed and the required torque are not affecting the EECVT state. The SOC

protection state continues until the battery SOC reaches SOCmed (when the SOC

protection state ends, and the battery charging state starts).

Once the multi-state EECVT controller switches to the battery charging state,

the vehicle speed and the required torque are not affecting the EECVT state until

the battery SOC reaches SOChigh (when the battery charging state ends).

Thresholds for the vehicle speed and required torque are used for switching among

normal driving states, especially between the EV mode state and the boost state,

whenever SOC is sufficient. The effects of the vehicle speed and required torque

on state switching is summarized in Tab. 3.4. The logic is able to avoid requiring

high power, either as a motor or as a generator. Tl and Th are torque thresholds

which separate low, medium and high torque values. In addition, vt is a vehicle speed

threshold between high and low speed. This value is chosen so that the vehicle speed

is vt when ωA is close to zero and the ICE is on.

Table 3.4: Vehicle speed and required torque thresholds

Vehicle Desired
Required Torque, Tdr Speed, v State

Low(< Tl) < vt EV Mode
Low(< Tl) ≥ vt EV Mode
Medium(≥ Tl& ≤ Th) < vt EV Mode
Medium(≥ Tl& ≤ Th) ≥ vt Boost
High(> Th) < vt Boost
High(> Th) ≥ vt Boost
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3.4 Results

3.4.1 System Failure Modes

In this section we present some of the consequences of the failure of the ICE, elec-

tric machines, and battery. We explore different combinations of component failures

to understand when a vehicle with such failures is still able to drive. All component

failure combinations which lead to a powertrain able to propel the vehicle are listed

in Tab. 3.5, where 1 indicates a functional component, and 0 indicates a component

which has failed.

In certain situations, a locking mechanism is needed for the B machine or for the

ICE to allow the rest of the powertrain move the vehicle. Such mechanisms do not

have to provide the functionality as clutches, but they are simpler locking devices.

Note also that certain combinations of failures may result in an impaired ability to

drive the vehicle, when not all normal driving features are available.

3.4.2 Drive Cycle Tests

The controllers together with all system components, were assembled in a vehicle-

level model in MATLAB Simulink R©. Simulations using this model on EPA drive

cycles were carried out. These simulations include single drive cycle tests on EPA

UDDS, HWFET (Highway Fuel Economy Driving Schedule), and US06 drive cycles.

These tests focus on illustrating the functionality of the novel system. Also, these re-

sults were obtained for very rigid shafts, which simplify the models and the controllers

needed.

The parameters used to model the vehicle are listed in Tab. 3.6. These are rea-

sonable values selected to mimic a real commercial HEV sedan. These values were

chosen without systematic system-level optimization.

First, we focus on drive cycle following, A speed, B torque, and battery SOC
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Table 3.5: Powertrain failure modes where the vehicle can still move
ICE BatteryA B Resultant System

Description
0 1 0 1 Only EV mode is pos-

sible
0 1 1 0 EV mode when ICE

engine locked
0 1 1 1 Only EV mode is pos-

sible
1 0 0 0 Need to lock beta, var-

ious ICE operation re-
quired

1 0 0 1 Need to lock beta, var-
ious ICE operation re-
quired

1 0 1 0 Need to lock beta, var-
ious ICE operation re-
quired

1 0 1 1 Need to lock beta, var-
ious ICE operation re-
quired

1 1 0 0 Need to lock beta, var-
ious ICE operation re-
quired

1 1 0 1 Need to lock beta, var-
ious ICE speed re-
quired

1 1 1 0 Various ICE torque re-
quired

sustaining performance. Figure 3.8 shows that the novel system is able to follow the

drive cycle. From top to bottom, the three plots correspond to UDDS, HWFET, and

US06, respectively.

The maximum errors between the target and the actual vehicle speed in the UDDS,

HWFET and US06 tests were 0.1052m/s, 0.0975m/s and 0.8078m/s, respectively.

The largest speed error occurs in the US06 drive cycle due to sharp speed changes in

this drive cycle, which require very high power and short reaction time.

The operation of the throttle and the brake is as expected, as shown in Fig. 3.9
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Table 3.6: Main parameters for the vehicle-level model

Parameter Value
Vehicle Mass (mv) 1, 565kg
Wheel Weight (mw) 7.5kg
Roll Resistance (f) 0.015
Air Density (ρ) 1.225kg/m3

Drag Coefficient (d) 0.25
Front Area (A) 1.8m2

Wheel Radius (rw) 0.3m
Final Drive Ratio (rf ) 3.267
FDR Efficiency (ηf ) 0.96
Rated Battery Voltage 330V
Battery Capacity (C0) 22Ah
Torque Capacity (Tc) 375Nm
Driver Proportional Gain (kpd) 5s/m
Driver Integral Gain (kid) 1/601/m
Electric Machine Proportional
Control Coefficient (cp)

100

Electric Machine Integral Con-
trol Coefficient (ci)

16

Torque Threshold Low (Tl) 100Nm
Torque Threshold High (Th) 200Nm
Vehicle Speed Threshold (vt) 25m/s
SOC Threshold Low (SOClow) 44%
SOC Threshold Med
(SOCmed)

45%

SOC Threshold High
(SOChigh)

55%

which displays the operational throttle and brake profile throughout the HWFET

drive cycle.

3.4.3 Battery SOC Sustaining and Controller State

Consider a test using the EPA HWFET drive cycle. The desired battery SOC

operating range are set between SOChigh = 55% and SOClow = 45%. The initial

battery SOC is SOC0 = 55%. The battery SOC and the switching in the controller

states over time are shown in Fig. 3.10. Results show that the battery SOC bounces

between 55% and 45%, as expected. The increase in the battery SOC coincides with
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Figure 3.8:
Drive cycle following results, from top to bottom, the plots correspond to
the UDDS, HWFET, and US06 drive cycles.

state 5 (namely the battery charging state) over time because the system enters the

battery charging state when SOC drops below 45%.

A similar result is obtained also after the multiple drive cycles. The battery SOC

and ICE operation are shown in Fig. 3.11. The powertrain sustains the battery SOC

effectively over time. The EPA HWFET drive cycle requires relatively low power

compared to the EPA UDDS and US06 drive cycles. Also, the EPA HWFET drive

cycle does not require high power or torque. Thus, the system keeps changing between

EV mode and battery charging state as expected.

3.4.4 Electric Machine Performance

Recall that the angular velocity ωA is the relative angular velocity between the A

stator and A rotor. The values obtained for ωA are shown in Fig. 3.12 for the EPA

HWFET drive cycle. While the ICE is off, ωA is proportional to the vehicle speed
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Figure 3.9:
Operational throttle and operational brake profiles in the HWFET drive
cycle test.

in the drive cycle because the ICE angular velocity is zero, and hence the angular

velocity of the A rotor is also zero, which means that ωA is the same as the B angular

velocity ωB, which is the same as ωd, which is proportional to vehicle speed. However,

during HWFET cycle, the system enters battery charging state, where the ICE is on.

That period corresponds to the time interval in Fig. 3.12 where ωA has low values.

The operation of the B machine depends on the ICE operating point. When the

ICE is off, the powertrain is in EV mode, and the B machine is the only torque

which propels the vehicle. When the ICE is on, the B machine suppresses the torque

fluctuations from the ICE, and changes the average ICE torque to the required torque

to follow the drive cycle. The torque in the B machine is shown in Fig. 3.13. Whenever

the ICE is off, the torque in the B machine is the same as the torque required by

the driver. When the ICE is on in this EPA HWFET drive cycle, the system is

in battery charging state. During such periods, fluctuations in the torque of the B

machine occur. A detail of the torque in the B machine when the ICE is on is shown

in Fig. 3.14. A closer view of the torque in the B machine shows that its fluctuations

cancel the ICE torque fluctuations. The difference between the average torque in

the B machine and the output torque means that the B machine compensates the

difference between the required output torque and the average ICE torque.

The power required from the A and the B machines is related to the fuel economy.
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Figure 3.10:
Battery SOC and the switching in the controller states over time in the
EPA HWFET drive cycle.

Figure 3.11:
Vehicle speed, battery SOC and ICE state over time in three consecutive
EPA HWFET drive cycles.

The power over time in the EPA HWFET drive cycle is shown in Fig. 3.15. The power

of the A machine varies from −10kW to 25kW . The power of the B machine varies

between −40kW and 20kW . The power of the A machine is zero when the ICE is off.

In this drive cycle, the ICE is on when entering battery charging state, where the A

power is not zero, and varies according to the ICE torque and the speed requirement.

At the same time, the B machine is working as a generator most of the time when

the ICE is on, which means that the ICE is providing more energy than necessary

for driving during this battery charging state. Thus, the power generated by the A
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Figure 3.12:
Comparison of the A speed ωA and the vehicle speed over time in the
EPA HWFET drive cycle.

machine goes to the battery. Also, the power of both the A and the B machines are

fluctuating as expected due to fluctuations in the ICE torque.

3.4.5 Fuel Economy Analysis

Finding fuel economy values in miles per gallon (MPG) for HEVs requires con-

sistent initial and final battery SOC values. To achieve consistent SOC, simulations

with long duration are used so that the initial and final SOC values are the same,

or the effect of the difference between the initial and final SOC values is negligible.

To avoid long testing durations, we developed an alternative to assess the real-time

cumulative MPG during a drive cycle. The method takes SOC variation into account.

In the proposed MPG analysis method, we consider an SOC drop from its initial

value as additional fuel consumption. Also, we consider an SOC rise from its initial

value as additional EV miles. Thus, we obtain an MPG value corrected for the SOC
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Figure 3.13:
Comparison of the torque of the B machine and the output torque to
the vehicle over time in the EPA HWFET drive cycle.

value. The MPG value is assessable at any moment during the simulation.

Two preliminary calculations are performed before a simulation on drive cycles.

In the first calculation, we start with a low initial SOC at SOCmed, which is the lower

bound of the expected normal SOC range during driving. Next, the ICE is turned

on while the vehicle is parked. The calculation lasts until the battery SOC reaches

SOChigh, the higher bound of the normal SOC range. We measure the total fuel

consumed in this simulation, and obtain the fuel consumption per 1% SOC recovery

ηd. The value of ηd is used to calculate the extra fuel consumed to charge the battery

back to its initial SOC when the SOC at the end of a drive cycle is lower that the

initial SOC. The corrected MPG is given by

MPG =
Ds

Fs + ηd|∆SOC|
, (3.30)

where Ds is the total number of miles traveled during a simulation, Fs is the total
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Figure 3.14:
Detail of the torque of the B machine illustrates the function of the B
machine as vibration suppression, canceling out the ICE torque fluctua-
tions.

fuel consumed in that simulation, and ∆SOC is the difference between the initial and

the final SOC in the simulation.

In the second calculation, the initial SOC is set at SOChigh, and the vehicle is

driven only in EV mode on the drive cycle (which is the same as the drive cycle to be

simulated) until the SOC reaches SOCmed. The total miles traveled are calculated.

These extra EV miles per 1% SOC spent ηr are calculated. The corrected MPG is

given by

MPG =
Ds + ηr|∆SOC|

Fs
, (3.31)

The real-time MPG values obtained after correction in the EPA HWFET drive

cycle is shown in Fig. 3.16.

The vehicle was tested under different drive cycles. The fuel economy performance,

69



Figure 3.15:
Power of the A and B machines over time in the EPA HWFET drive
cycle.

in different driving conditions defined by the drive cycles are shown in Tab. 3.7.

Table 3.7: Fuel economy values for two drive cycles

Drive Proposed Conventional
Cycle Method Method
UDDS 52.52 mpg 52.96 mpg
HWFET 54.25 mpg 53.09 mpg
Combined 53.30 mpg 53.02 mpg

We applied one of the conventional MPG calculation methods and compared the

results with our strategy. We simulated our model for several consecutive drive cycles

and found the cumulative fuel economy when the ending/final SOC value is the same

as the starting/initial SOC value. In our case, the ICE operating point is fixed, and

hence the fuel consumption is dependent essentially only on the amount of time the

ICE was on, and on the number of times the ICE was turned on. The MPG results

from the conventional method are shown in Tab. 3.7.
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Figure 3.16:
Real-time MPG values and the switching in the controller states over
time in the EPA HWFET drive cycle.

The fuel economy values from both methods are close which indicates that the

proposed fuel economy calculation approach is consistent with the results provided

by the conventional method.

Note that the values reported here are for a system without a system-level op-

timization. Fuel economy is expected to improve for optimized parameter values.

Such optimization includes adjusting the sizes of components, and the optimization

of the control. Preliminary optimization results show improved fuel economy when

the final drive ratio and the sizes of the electric machines are changed as shown below

in Tab. 3.8.

Table 3.8: Fuel economy values for two drive cycles, with re-sized components

Drive Cycle Fuel Economy
UDDS 70.23 mpg
HWFET 59.19 mpg
Combined 65.27 mpg
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3.5 Conclusions

The high torque fluctuations in ICEs used in HEV powertrains motivated the

design of a new architecture and a new EECVT system which suppresses torque

fluctuations. The system takes advantage of a rotating stator of an electric machine

in a new configuration which lies between a series and a power-split hybrid. The

new architecture is able to change the angular velocity and torque created by an

ICE, as well as to add or remove power, replacing the function of transmissions.

To test the functionality of this EECVT powertrain, a vehicle-level model including

the powertrain and vehicle dynamics was developed in Simulink R©. In addition, a

two-level control strategy was designed and modeled. The model was simulated for

several EPA drive cycles. The simulation results verified that the controllers and

components work as expected, and the entire powertrain is able to fulfill the goal of

torque fluctuation suppression and power management while providing excellent fuel

economy.
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CHAPTER IV

Optimization of Novel Powertrain

4.1 Powertrain Co-Optimization Overview

A novel hybrid electric powertrain architecture was designed in an earlier work [142].

The design is illustrated in Fig. 4.1. Similar to commercially available powertrain de-

signs, the novel powertrain architecture contains an internal combustion engine (ICE),

two electric machines (machine A and B), a battery system, and a final transmission.

The novelty of the powertrain is that no planetary gears or clutches are applied, by

allowing the stator of machine A to rotate.

The purpose of this study is to explore the full capabilities of the new architecture

architecture by co-optimizing the components the control algorithms used to operate

it such that the fuel economy is maximized and component costs(sizes) are minimized.

Both control and component sizes affect the powertrain performance. In addition,

the design and control of powertrains are coupled, and component behaviours are

nonlinear. Component sizes change the component efficiency map and have an impact

on power management.

In co-optimization, the design variables are the component sizes and the control

inputs at all time instances. The nested optimization allows ECMS to determine

the control inputs based on the global rule of minimizing the total equivalent fuel

consumption, for each set of values of the component sizes. Thus, the control inputs
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Figure 4.1: Novel powertrain allows the stator of machine A to rotate

are not explicit design variables in the powertrain co-optimization. The explicit design

variables, denoted as x = [x1, x2, . . . , x7]
T in this study are listed in Tab. 4.1.

Table 4.1: List of design variables

Notation Variable
x1, PAr Rated power of machine A in kW
x2, TAr Rated torque of machine A in Nm
x3, PBr Rated power of machine B in kW
x4, TBr Rated torque of machine B in Nm
x5, rf Final drive ratio
x6, Vb Voltage of battery pack in V
x7, Cb Capacity of battery pack in Ah

Two powertrain performance metrics are used as utility functions in this study.

The utility functions represent fuel and component costs. They can be expressed as

Jf = −Fe,cb(x), (fuel costs)

Jc = γ1x1 + γ2x3 + γ3x6 + γ4x7, (component costs)

(4.1)

where

Fe,cb = 0.55Fe,ur(x) + 0.45Fe,hw(x), (4.2)

The fuel cost Jf is defined as the negative of the combined fuel economy Fe,cb,

74



which is a weighted sum of urban and highway fuel economy Fe,ur and Fe,hw. The

component size cost Jc is based on the sizes of the electric machines and the battery

pack because larger component sizes typically lead to higher manufacturing cost. The

component costs in Jc are expressed as a regression of the rated power of the electric

machines and the battery capacity. The regression reflects the relation between the

component sizes and the dollar cost for several commercially available component

products. The coefficients of the linear regression γi, i = 1, 2, 3, 4 are summarized in

Tab. 4.2.

Table 4.2: Component size cost normalization parameter

Parameter Value
γ2 0.0600 kW−1

γ3 0.0600 kW−1

γ4 0.0263 V −1

γ5 0.395 Ah−1

Both utility functions need to be minimized to obtain the best fuel economy at

minimum component costs. To apply a gradient-based optimization, a single objective

can be formed as

J = Jf + αJc, (4.3)

where the parameter α can be adjusted to obtain different optimal solution on the

Pareto front.

A nested approach is applied in this study to solve the coupled design and con-

trol optimization problem for the novel powertrain, as illustrated in Fig. 4.2. Such

approach allows the application of existing control algorithms. In this study, the

near-optimal control algorithm ECMS is applied. The near-optimal control algorithm

ECMS is selected rather than optimal control like DP and PMP. This is due to the

fact that DP is computationally expensive. The computational time to evaluate one

design using ECMS is about 2 minutes CPU time, while DP requires about an hour.

Applying PMP requires finding the time derivative of battery state of charge (SOC)
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Figure 4.2:
The nested co-optimization contains the design optimization as the outer
loop and control optimization as the inner loop. In the inner loop, a surro-
gate model for a high-fidelity model with a model-based control strategy
is applied. The model-based control strategy is the near-optimal ECMS
control.

as a function of battery power. Computing such derivatives can be inaccurate with-

out high-resolution battery data. In addition, the performance of powertrains using

ECMS and PMP are very similar [64]. The computational cost of ECMS is slightly

better than PMP due to the one fewer degree of freedom in the optimal control.

Despite these good features of ECMS, the computation efficiency still need to be

improved. Thus, a polynomial surrogate model is developed for the novel powertrain

architecture and its control. This surrogate model is applied as the inner loop in the

nested co-optimization.

4.2 Powertrain Model and Power Management

The powertrain model contains the powertrain dynamics, component models, and

ECMS control algorithm. The objective of the ECMS control is to minimize the total

equivalent fuel consumption expressed as

min

tf∫
t=0

ṁE(t) + ṁb(t)dt, (4.4)
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where

ṁb(t) = fCfP
(
SOC(t)

)
Pb(t), (4.5)

SOC(0) = SOC(tf ). (4.6)

The total equivalent fuel rate contains the engine fuel rate ṁE and the virtual

fuel rate ṁb from the battery power Pb. The parameter fC is a constant conversion

factor that converts battery power to virtual fuel rate. The variable SOC denotes the

battery state of charge, and fP is the penalty function that adjusts the conversion

factor for better SOC control. The constraint in Eq. 6 shows the boundary condition

for the ECMS control problem. This condition eliminates the effect of total battery

energy on fuel economy.

The ICE fuel rate ṁE(t) and virtual fuel fate ṁb(t) depend on the operation

of components, including ICE, electric machines, and battery. The operations of

all components are coupled through powertrain and battery dynamics. The ECMS

control algorithm needs to find the operating point of all components that minimizes

the equivalent fuel rate. Thus, the powertrain dynamics and component models are

required to establish the relationship between the component operating point and

fuel rate. These components include the ICE, two electric machines, and the battery.

4.2.1 Powertrain Dynamics

The equations of motion for the novel powertrain can be expressed as

(IE + IAR)ω̇E = TE + TA,

(IAS + IB + Id)ω̇d = TB − TA − Tr,
(4.7)
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where

Tr = fmvg
rw
rfηf

+
1

2
ρaCdAvω

2
d

(
rw
rf

)3

, (4.8)

Id =
6mw +mv

ηf

(
rw
rf

)2

, (4.9)

mv = mf +mA +mB +mbatt. (4.10)

(4.11)

Here, the equivalent torque from road resistance is denoted as Tr. The variables

ωE and ωd denote the ICE crankshaft and pre-final-transmission angular velocities,

respectively. The torque of ICE, machine A, and machine B are denoted as TE, TA,

and TB. The parameters in powertrain dynamics are listed in Tab. 4.3. Further

details of this model can be found at [142].

Table 4.3: Parameters of the powertrain dynamics

Notation Parameter
IE Rotational moment of inertia, ICE crankshaft
IAR Rotational moment of inertia, machine A rotor
IAS Rotational moment of inertia, machine A stator
IB Rotational moment of inertia, machine B rotor
Id Equivalent vehicle rotational moment of inertia, pre-final-transmission
rw Wheel radius
ηf Final drive efficiency
ρa Air density
Cd Drag coefficient of vehicle
Av Frontal area of vehicle
mf Mass of vehicle frame
mw Mass of wheel
mv Mass of vehicle
mA Mass of electric machine A
mB Mass of electric machine B
mbatt Mass of battery system

78



4.2.2 Internal Combustion Engine Model

The fuel rate of the ICE can be obtained as

ṁE(t) = ṁE(ωE(t), TE(t)), (4.12)

where optimal brake specific fuel consumption (BSFC) operation is assumed for the

ICE. Thus,

TE(t) = fob(ωE). (4.13)

with fob being the optimal BSFC curve, which indicates the ICE torque that grants

optimal BSFC at various ICE speed.

4.2.3 Electric Machine Model

Efficiency maps for both electric machines are needed in the ECMS model. In

this study, the efficiency maps depend on the sizes of both electric machines, and

are generated using physics-based models. The sizes of the two electric machines

in the novel powertrain are defined by 4 of the design variables, namely PAr, TAr,

PBr, and TBr as shown in Tab. 4.1. These design variables are considered primary

parameters in electric machine models. The primary parameters are required to

calculate the secondary parameters that are required to generate the efficiency maps.

The secondary parameters contain the wire resistances RA, RB, inductances LA, LB,

and masses mA, mB. A second order polynomial surrogate model is created and

trained to convert primary parameters to secondary parameters, using parameters

collected from several commercially available electric machines.

The efficiency map contains efficiency of the electric machines at specified oper-

ating points. The operating points are defined by the torques TA, TB and angular

speeds ωA, ωB for the electric machines. The mechanical power output of the two
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electric machines A and B can be expressed as

Pm,A = TAωA,

Pm,B = TBωB.

(4.14)

The damping loss of each electric machine is expressed as

Plc,A = bAω
2
A,

Plc,B = bBω
2
B.

(4.15)

where bA and bB represent the damping characteristics of each electric machine.

By assuming minimum current operations for both electric machines, equivalent

2-phase currents are obtained as

Id,A = 0, Id,B = 0, Iq,A =
4TA

3pAΛA

, Iq,B =
4TB

3pBΛB

. (4.16)

Note that minimum current operation is applicable over range of angular speeds

of interest in this application. Here, parameters pA and pB represent the number of

poles. The parameters ΛA and ΛB denotes the permanent magnet flux linkages of

each respective electric machine. Thus, the wire losses of the electric machines are

expressed as

Ple,A = (I2d,A + I2q,A)RA,

Ple,B = (I2d,B + I2q,B)RB.

(4.17)
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The core loss of each electric machine can be expressed as

Pc,A =
(I2d,A + I2q,A)LA|ωA|pA2√

(LAωA
pA
2

)2 +R2
C,A

,

Pc,B =
(I2d,B + I2q,B)LB|ωB|pB2√

(LBωB
pB
2

)2 +R2
C,B

.

(4.18)

where RC,A and RC,B represent the equivalent core loss resistance of electric machines

A and B.

The efficiencies ηmA and ηmB of each electric machine in motor mode and the effi-

ciencies ηgA and ηgB in generator mode can be expressed as.

ηA =
Pm,A

Pm,A + Plc,A + Ple,A + Pc,A
,

ηB =
Pm,B

Pm,B + Plc,B + Ple,B + Pc,B
.

(4.19)

ηA =
Pm,A + Plc,A + Ple,A + Pc,A

Pm,A
,

ηB =
Pm,B + Plc,B + Ple,B + Pc,B

Pm,B
.

(4.20)

4.2.4 Battery Model

The bus power indicates the power flow between battery and the electric machines,

and can be obtained as

Pbus = Pm,Aη
−sign(Pm,A)
A + Pm,Bη

−sign(Pm,B)
B . (4.21)

The battery current is calculated as

Ib =
Voc −

√
V 2
oc − 4RbPbus
2Rb

, (4.22)
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where Voc = Voc(SOC) is the open circuit battery voltage, which depends on battery

SOC. The time derivative of the battery SOC and the battery power can be expressed

as

˙SOC = − Ib
3600Cb

, Pb = IbVoc. (4.23)

4.2.5 Power Management

The fuel economy of a specified powertrain design using ECMS control is valid

only when the boundary condition in Eqn. 7 is satisfied. The conversion factor fc

can directly affect the final SOC and the operating point selection of all compo-

nents. Thus, the conversion factor fc needs to be tuned to find the fuel economy.

In ECMS simulations, different conversion factor values lead to different final SOC

values, SOC(tf ). One can denote the difference between the final and the initial SOC

as SOCd = SOC(tf )− SOC(0). The relationship between SOCd and the conversion

factor fc is usually monotonic. This relationship can be written as

SOCd = fECMS(fc). (4.24)

To ensure satisfaction of the SOC boundary condition in ECMS, finding the root

of Eqn. 4.24 is required. A iterative root searching method, namely the secant search,

is applied in this study as

fc,i = fc,i−1 −
SOCd,i−1
gi−1

, (4.25)

where

gi−1 =
SOCd,i−1 − SOCd,i−2

fc,i−1 − fc,i−2
. (4.26)

Here, subscript i indicates that the value belongs to the ith iteration. The root

of Eqn. 4.24 can be denoted as f ∗c . For each value of the conversion factor fc, a
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fuel economy result Fe can be obtained. The fuel economy that corresponds to f ∗c

is considered the fuel economy value with SOC correction, or f ∗e . This process is

repeated for both EPA urban and highway drive cycles for fuel economy. Thus, the

urban and highway fuel economy of the specified powertrain design, fe,ur and fe,hw,

are obtained.

4.3 Surrogate Model

A surrogate ECMS model can reduce the computational cost in control optimiza-

tion. Polynomial surrogate models are often used [10]. Such models can be expressed

in a general form as

y(x) =

r7∑
m7=0

r6∑
m6=0

r5∑
m5=0

r4∑
m4=0

r3∑
m3=0

r2∑
m2=0

r1∑
m1=0

(βn

7∏
i=1

xmi
i ), (4.27)

where indices mi, i = 1, 2, . . . , 7 represent the order of each design variable. Param-

eters ri, i = 1, 2, . . . , 7 are integers that denote the maximum order of each design

variable. Each of the indices mi is an integer that ranges from 0 to ri. βn repre-

sent the coefficients of all terms in the polynomial surrogate model. The index n of

each term in the polynomial model is between 1 and
∏7

i=1(ri + 1). The relationship

between n, mi, and ri can be expressed as

n =
7∑

a=2

ma

a−1∏
b=1

(rb + 1) +m1. (4.28)

The maximum order ri of design variables xi needs to be selected for the surrogate

model. At first, latin hypercude sampling (LHS) is applied to generate approximately

40, 000 valid powertrain designs, which are combinations of the 7 design variables in

vector x. The combined fuel economy of all these designs are evaluated using the

high-fidelity ECMS model. The resulting data set is divided into a training and a
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validation set (in a 80%− 20% ratio).

Training the surrogate model with a specified set of maximum orders ri is equiv-

alent to finding coefficients βn of all terms. The total number of samples within the

training set is denoted asN , and the kth design is denoted by x̃(k) = [x
(k)
1 , x

(k)
2 , . . . , x

(k)
7 ],

k = 1, 2, . . . , n. The combined fuel economy of the kth sample is denoted as y(k), where

y(k) = Fe,cb(x
(k)), given by Eqn. 4.1. For a specified set of maximum orders ri, a ma-

trix X̃ and a column array ỹ are constructed. The matrix X̃ is a N by
∏7

i=1(ri + 1)

matrix. The terms on the kth row and nth column of X̃ can be denoted as X̃k,n. The

kth term in ỹ can be denoted as ỹk. Elements in the matrix X̃ and in the array ỹ can

be expressed as

X̃k,n = x
(k)
1

m1

x
(k)
2

m2

x
(k)
3

m3

x
(k)
4

m4

x
(k)
5

m5

x
(k)
6

m6

x
(k)
7

m7

, (4.29)

ỹk = y(k), (4.30)

where the relationship between index of term n and order of variables mi is expressed

in Eqn. 4.28.

Matrix X̃ can be close to singular due to the existence of high-order polynomial

terms for large ri values. Normalization of X̃ and ỹ addresses this issue. The nor-

malized matrix and array can be denoted as X and y, respectively. The column-wise

normalization is expressed as

Xn =
X̃n − X̄n

σ(X̃n)
,

y =
ỹ − ȳ
σ(ỹ)

,

(4.31)

where X̃n and Xn are the nth column in matrices X̃ and X, respectively. The terms

X̄n and σ(X̃n) denote the average value and the standard deviation of all elements

in column X̃n. Note that the first column in X̃n contains all ones as elements and
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represents the constant term in the surrogate model. This column can remain the

same in the normalized matrix Xn. Thus, the normalization for X̃n is executed for

n = 2, 3, . . . ,
∏7

i=1(ri+1). Finally, the following equation holds for normalized matrix

X and array y.

xβ = y, (4.32)

where β is a column array with elements βn. The array β contains all coefficients

of the normalized surrogate model. The coefficients β that minimize the regression

error between the model and data can be obtained as

β = (XTX)−1XTy. (4.33)

For powertrain designs within the validation set, the performance approximations

are obtained using the surrogate model. These approximations can be denoted as

ys. The results given by the high-fidelity ECMS model can be denoted as yv. A

residual δ is applied as criterion of determining the quality of the surrogate model.

The residual is expressed as

δ =
‖ys − yv‖2
‖yv‖2

. (4.34)

The residual values are associated with each combination of ri values. The com-

bination of maximum orders ri that yields the smallest residual in the surrogate

model validation are listed in Tab. 4.4. These ri values are used in the overall co-

optimization.

Table 4.4: Maximum orders of design variables in the tuned surrogate model

Order r1 r2 r3 r4 r5 r6 r7
Value 5 2 4 2 4 1 1
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4.4 Optimization Results and Discussion

4.4.1 Parameters and Constraints

A mid-sized passenger vehicle is chosen to demonstrate the design and control

co-optimization for novel powertrain. The parameters of the vehicle are specified

in Tab. 4.5. Limits of design variables are shown in Tab. 4.6. Safety and physical

constraints are summarized in Tabs. 4.7 and 4.8.

Table 4.5: Vehicle parameters in powertrain optimization problem

Notation Value Notation Value
f 0.0015 rw 0.287 m
ηf 0.96 ρa 1.20 kg/m3

Cd 0.29 mw 7.5 kg
mf 1,560 kg Av 2.20 m2

Table 4.6: Litmits of design variable

Variable Lower bound Upper bound
x1 20 kW 100 kW
x2 150 Nm 400 Nm
x3 20 kW 100 kW
x4 150 Nm 400 Nm
x5 1.75 5.25
x6 100 V 400 V
x7 5 Ah 30 Ah

Table 4.7: Physical constraints

Expression Description
c1x2 − x6 ≤ 0 Minimum battery voltage requirement

to drive machine A

c1x4 − x6 ≤ 0 Minimum battery voltage requirement
to drive machine B

−30
π
x1
x2

+ c2 ≤ 0 Minimum nominal angular velocity
requirement of machine A

− (x4+TEn)x5
rwmv

+ c3 ≤ 0 Vehicle acceleration capacity requirement

(x4 + TEn)x5 − c4 ≤ 0 Maximum shaft torque allowance
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Table 4.8: Parameters in Physical Constraints

Parameter Value Description
c1 0.45 V/Nm Voltage/torque conversion

factor

c2 2,000 rpm Angular velocity threshold
c3 2 m/s2 Vehicle acceleration

threshold

c4 4,000 Nm Driving shaft torque
threshold

TEn 100 Nm Most frequent engine torque

The conversion factor c1 in Tab. 4.8 is derived from electric machines and power

electronics models for different motor sizes. The threshold value c2 is derived from the

powertrain kinematics. Parameters c3 and c4 are empirical values from powertrain

simulations of mid-sized passenger HEVs.

4.4.2 Optimization of the Novel Powertrain

Multiple objectives are considered in the co-optimization problem as stated in

Eqn. 4.1. An approximation of the Pareto front for the novel powertrain architec-

ture is necessary. Collecting results from all LHS-generated powertrain designs when

building the surrogate model, the Pareto front obtained for the novel architecture is

shown in Fig. 4.3.

The Pareto front is approximated using all data points. Adjusting the parameter

α leads to different single utility functions as shown in Eqn. 4.3. A family of straight

lines Jf + αJc = J can be defined in the (Jf , Jc) space. There exist a straight line

Jf + αslJc = Jsl that is tangent the Pareto front for some αsl value. In this case,

the tangential point indicates the optimal design for the single objective function

J = Jf + αslJc. Multiple tangential lines are shown in Fig. 4.4, which select different

optimal designs.

The Pareto front curve illustrated in Fig. 4.4 is an approximation of the exact
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Figure 4.3:
An approximation of the Pareto front can be obtained by selecting Pareto
efficient designs in the (Jf , Jc) space using simulation results collected
from randomly generated designs.

Pareto front, due to the fact that exhaustive search in continuous design space is

impossible. Thus, powertrain optimization is necessary. In this study, multiple initial

powertrain designs are randomly generated in the design space. A modified single ob-

jective function is applied in optimization. A soft penalty on large deviation between

urban and highway drive cycle is added to the objective function as

Ĵ = Jf + αJc + Jd, (4.35)

where

Jd = γ5
(
max(0, |Fe,ur − Fe,hw| − 10)

)2
. (4.36)
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Figure 4.4:
The optimal design can be selected using straight lines that represent
a single utility function. The tangential point of the straight line and
Pareto front can be considered a near-optimal design. Varying the value
of α forms different single utility functions and leads to a different slope
of the straight line.

Surrogate model is applied in the nested powertrain optimization as an approx-

imation of ECMS model. Thus, the performances of the optimal designs are eval-

uated using the ECMS model. The residual between the surrogate model and the

high-fidelity ECMS model for the optimal designs are computed using the method

illustrated in Eqn. 4.34. The residual is less than 3%. This small residual value ver-

ifies that the surrogate model is an accurate approximation of the ECMS model at

optimal designs. In addition, the optimal design variables are rounded considering

commercial availability of components. Specifically, designs are obtained by rounding

the all design variables except for final drive ratio. Optimal designs for two α values
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are presented in Tab. 4.9.

Table 4.9: Optimal Designs for Novel Powertrain

Optimal Design 1 Optimal Design 2
Variable Original Rounded Original Rounded

α 1 mpg 1 mpg 2 mpg 2 mpg
PAr 54.66 kW 55.00 kW 30.48 kW 30.00 kW
TAr 334.2 Nm 330.0 Nm 170.0 Nm 170.0 Nm
PBr 88.19 kW 90.00 kW 41.93 kW 40.00 kW
TBr 231.7 Nm 230.0 Nm 363.4 Nm 360.0 Nm
rf 2.003 2.003 2.158 2.158
Vb 162.4 V 162.0 V 160.7 V 161.0 V
Cb 15.87 Ah 16.00 Ah 5.968 Ah 6.000 Ah

Jf (−Fe,cb) -66.02 mpg -65.69 mpg -54.24 mpg -53.66 mpg
Jc 19.13 19.30 10.94 10.82

4.4.3 Benchmark Powertrain Architectures

Existing powertrain architectures are compared to the novel architecture. Speci-

ficly, four commercially available benchmark powertrain (BP) configurations are se-

lected, including Toyota Hybrid System generations 1 through 3 (BP1, BP2, BP3)

and Chevy Volt generation 2 (BP4). The configurations of the four selected BPs are

illustrated in Fig. 4.5. In this study, the same vehicle parameters as in the novel

powertrain co-optimization are applied when evaluating the BPs.

All selected BPs are in power split topology due to their similarity in component

operations with the novel powertrain, regardless of the number of planetary gears

(PGs). All BP configurations contain an ICE and two electric machines. The electric

machines are referred to as motor/generator (MG). For all BP configurations, the

engine and one of the electric machines (MG1, WLOG) are directly connected to the

same PG (PG1) that is farthest from the wheel. In such a connection, MG1 allows

the freedom of choosing the ICE speed. At the same time, MG1 is able to leverage

the torque that is transferred to the vehicle. Thus, the functions of MG1 is similar

to machine A in the novel powertrain.
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(a) BP1 (b) BP2

(c) BP3 (d) BP4

Figure 4.5:
Architectures of the benchmark power-split hybrid powertrains are illus-
trated using level diagram. The notations S, C, and R represents sun,
carrier, and ring gear in a planetary gear (PG), respectively. The power-
train components, namely the ICE and the electric machines are denoted
as ICE, MG1, and MG2. Clutches are denoted as C1 and C2 for BP3
and BP4. Engaging different clutches in BP3 and BP4 lead to different
powertrain operating modes.

The wheels and MG2 are typically connected to the same PG (PG2). Thus, MG2 is

able to drive the vehicle or regenerate power directly. For multi-mode configurations,

engaging different clutches only changes the gear ratio from MG2 to vehicle or ICE to

vehicle. Thus, the function of MG2 is similar to Machine B in the novel powertrain.

A Three-PG configuration usually just adds an additional PG as additional trans-

mission to the powertrain either between PG1 and PG2, or between PG2 and the

wheels. This does not change the functionality of the ICE, MG1 and MG2.

Over 1,000 designs are generated using LHS for each BP. These data provide an
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(a) BP1
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(b) BP2
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(c) BP3
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(d) BP4

Figure 4.6:
Simulation results for all benchmark powertrains are shown. The approx-
imation of Pareto fronts are obtained by selecting Pareto efficient designs.
The plot is ordered as (a) BP1, THS G1; (b)BP2, THS G2; (c) BP3, THS
G3; (d) BP4, Volt G2.

approximation of the Pareto front for each BP, as shown in Fig. 4.6.

To compare the performance of BPs and the novel powertrain, same weight α

is selected as applied earlier for the novel powertrain. Under each selected α value,

the best design is determined and applied as the initial design in a BP optimization.

The fuel economy and component cost Jc of optimal designs for novel architecture

and all BPs are shown in Fig. 4.7. These optimal designs for all BPs are specified

and illustrated in Tabs. A.1 through A.4 in Appendix A. Similar to the optimal

novel powertrain designs, designs with rounded component sizes are illustrated for

BPs. The columns indicated as rounded contain the powertrain designs with rounded
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Figure 4.7:
The optimal powertrain architecture shows comparable performance with
all BPs. Novel Architecture is more sensitive to the value of α.

design parameters and the performance metrics for such designs.

The optimal novel powertrain designs perform comparably with optimal BP de-

signs. Overall the performance of BP1 and BP4 are closer to the novel powertrain,

while the performance of BP2 and BP3 can be slightly worse. The main reason for

this difference is that BP2 and BP3 are designed for vehicles in a different size from

the mid-sized passenger vehicle in this study. In contrast, the original commercially

available vehicles for BP1 and BP4 are vehicles with similar size.

Among the conventional power-split hybrid powertrain configurations like the BPs,

the factors that affect the powertrain performance are the gear ratios. The net effect

of changing the number of PGs, the ratio of such PGs, and mode switches (clutch

engagements) is changing the gear ratios, specifically the net gear ratios from com-

ponents to wheels. Taking BP1 and BP2 as examples, these are architectures in two

consecutive generations of the Toyota Hybrid System. One additional PG is added

between MG2 and wheels in BP1 and forms BP2. Thus, the net gear ratios from en-

gine to wheels and from MG1 remain the same. The only difference between BP1 and

BP2 is the net gear ratio between MG2 and the wheels. This leads to the difference

of performance among all BPs.
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The novel powertrain architecture does not demand any PGs or clutches. Nev-

ertheless, the novel powertrain allows the stator of machine A to rotate. Thus, the

freedom in selecting the ICE operation point is granted like in power-split powertrains.

In addition, machine A allows a various ratio transmission between such component

and the wheels. In contrast, the net gear ratio from MG1 to wheel in power-split

hybrid powertrains is either fixed or contains a limited number of choices. Thus,

the operation of machine A in novel powertrain is more flexible than in power-split

powertrains. Nevertheless, machine B in the novel powertrain architecture is less

flexible than MG2 in power-split powertrains. Machine B is a conventional electric

machine without transmission. In power-split powertrains, PG2 usually serves as the

transmission for MG2. Proper selection of gear ratio can improve efficiency in MG2

operations. Thus, machine A operation in the novel powertrain architecture is more

flexible than that for MG1 in power-split powertrains, while the contrary applies for

machine B and MG2.

4.5 Conclusions

This study demonstrated the co-optimization of the design and control for a novel

powertrain architecture. Fuel economy and component sizes were considered as utility

functions. A nested approach was applied to decouple the design and control optimiza-

tion problems and to make use of an existing near optimal power management strat-

egy, ECMS. A high-fidelity powertrain model with physics-based component models

and ECMS control were implemented. Using randomly generated powertrain designs,

an approximation of the Pareto front in the objective space was formed. A single ob-

jective function is formed using a weighted sum of utility functions. Optimal solutions

were obtained through single objective optimization by assigning different weight val-

ues to individual utility functions. A polynomial surrogate model was designed and

trained to improve computational efficiency of the optimization process. The opti-
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mal novel powertrain designs were compared with optimal designs for several selected

benchmark powertrains. The selected powertrains all have a power-split configura-

tion. Overall, the performance of the novel powertrain architecture is comparable

to the selected benchmark powertrains. Although the novel powertrain does not re-

quire any planetary gears or clutches, similarities in functionalities of components

were identified. The lack of planetary gears or clutches trades flexibility of machine

B operation for that of machine A operation.
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CHAPTER V

Platooning of Connected Hybrid Electric Vehicles

5.1 Overview of Platoon Optimization

The purpose of platoon optimization in this study is to enhance the drive schedule

and vehicle control for a platoon that is executing a specific task in order to min-

imize energy consumption, while maintaining the platoon ability to keep a desired

headway between neighbouring vehicles. The task of the platoon is to move a desired

distance with a limited time on a road with given road load. In this study, the road

load considers road resistance from the road grade. A three-subsystem optimization

framework organized in a three-layer structure is created, as shown in Fig. 5.1.

The optimization subsystem optimizes the drive schedule and vehicle controls for

a platoon. The drive cycles and parameters for vehicle controls from the optimization

subsystem are sent to the platoon subsystem. The high-level vehicle controller deter-

mines the traction or brake force for each vehicle. The traction or brake requirement

for each vehicle is handled by the powertrain subsystem. The traction or brake force

generated by the powertrain is sent to the platoon dynamics. The performance of the

platoon on the current drive cycle is reported to the optimization subsystem.
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Figure 5.1:
A three-layer optimization framework is shown. The optimization subsys-
tem on the left solves the drive schedule and vehicle control optimization
problem. The middle layer contains the platoon subsystem, including
platoon dynamics and vehicle controllers. The powertrain subsystem, in-
cluding component models and powertrain controls, are on the right. The
powertrain subsystem can be simplified to enhance computational speed.

5.2 Powertrain Model

5.2.1 Component Models

The powertrain configuration explored in this study was developed in an earlier

study [142]. The configuration is illustrated in Fig 5.2. The internal combustion

engine (ICE) is connected to the rotor of electric machine A. The stator of machine

A is allowed to rotate and is connected to the rotor of electric machine B. Machine

B is a conventional electric machine connected to the final transmission and vehicle.

This powertrain consists of 2 degrees of freedom (DOF) when all shaft connections

are considered rigid. The powertrain dynamics for the ith vehicle in a platoon can be

expressed as

(IE,i + IAR,i)θ̈E,i =TE,i + TA,i,

(IAS,i + IB,i + Id,i)θ̈d,i =TB,i − TA,i − Tr,i,
(5.1)

where the parameters and variables in this equation are illustrated in Tab. 5.1. In

the context of platoon models, including platoon dynamics and powertrain control,

the subscript i represents a variable or parameter that belongs to the ith vehicle, if

not specified otherwise.
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Figure 5.2:
Novel configuration of powertrain contains an ICE, two electric machines
(machine A and B), a battery pack (not shown in this drawing), and final
transmission.

The ICE considered in this study is a 2.6L, 350hp gasoline engine. The fuel rate

can be obtained from the fuel map of the engine expressed as

ṁE,i = ṁE(TE,i, ωE,i), (5.2)

where TE,i is the torque created by the ICE of the ith vehicle, and ωE,i is the angular

speed of the ICE.

Engine operations are bounded by angular speed and torque limits. Such bound-

aries can be expressed as

0 ≤ωE,i ≤ ωE,max,

TE,min(ωE,i) ≤TE,i ≤ TE,max(ωE,i).

(5.3)

The optimal brake-specific fuel consumption (BSFC) curve is obtained to reduce

the computational cost. The optimal BSFC curve indicates an ICE torque-angular

velocity relationship. The curve can be expressed as
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Table 5.1: Parameters in the dynamic equation governing the powertrain

Notation Parameter
IE,i Rotational moment of inertia, crankshaft of ICE
IAR,i Rotational moment of inertia, rotor of machine A
IAS,i Rotational moment of inertia, stator of machine A
IB,i Rotational moment of inertia, rotor of machine B
Id,i Equivalent rotational moment of inertia, vehicle, pre-final-transmission
θE,i Angle of rotational, crankshaft of ICE
θd,i Equivalent angle of rotational, vehicle
TE,i Torque of ICE
TA,i Torque of machine A
TB,i Torque of machine B
Tr,i Equivalent torque of road resistance

TE,i,opt(ωE,i) = argmin
TE,i

BSFCi(TE,i, ωE,i), (5.4)

where

BSFCi(TE,i, ωE,i) =
ṁE,i(TE,i, ωE,i)

TE,iωE,i
. (5.5)

Similar to the model of an ICE, the information needed to build a model for an

electric machine includes an efficiency map and the speed-dependent torque limit.

The efficiency map and torque limit are obtained using an electric machine scaling

tool that was developed in the literature [151]. The efficiency map and torque limits

are expressed as

ηA,i = ηA,i(TA,i, ωA,i),

ηB,i = ηB,i(TB,i, ωB,i),

(5.6)

where ηA,i and ηB,i are the efficiencies of electric machines A and B for the ith vehicle,

respectively. The limits of the operating points for machine A and B are expressed
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as

ωA,i,min ≤ωA,i ≤ ωA,i,max,

TA,i,min(ωA,i) ≤TA,i ≤ TA,i,max(ωA,i),

ωB,i,min ≤ωB,i ≤ ωB,i,max,

TB,i,min(ωB,i) ≤TB,i ≤ TB,i,max(ωB,i).

(5.7)

Here, the angular velocity of machine A, ωA,i is defined as ωA,i = ωAR,i−ωAS,i, where

ωAR,i = ωE,i and ωAS,i = ωd,i. The total electric power for both electric machines in

a powertrain is expressed as [142]

Pbus,i = TA,iωA,iη
−sign(TA,iωA,i)
A,i + TB,iωB,iη

−sign(TB,iωB,i)
B,i . (5.8)

The battery current can be calculated as [78]

Ib,i =
Voc,i −

√
V 2
oc,i − 4Pbus,iRint,i

2
, (5.9)

where the open circuit voltage is Voc,i = Voc,i(SOCi), and the internal resistance of

the battery is Rint,i = Rint,i(SOC, sign(Pbus,i)), with SOCi being the state of charge

(SOC) of the ith battery.

The battery power and time derivative of the SOC are given by

Pb,i = Ib,iVoc,i, (5.10)

˙SOCi =
Ib,i
Cb,i

, (5.11)

where Cb,i is the capacity of the ith battery.
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5.2.2 Powertrain Control Algorithm

The powertrain control algorithm applied in this study is the adaptive ECMS.

Adaptive ECMS is a near-optimal power management algorithm for electrified vehi-

cles. The algorithm aims to minimize the total equivalent fuel, which contains the

actual fuel consumption and a virtual fuel consumption that is converted from the

battery energy. The power management problem can be written as [94]

min
TE,i(t),TA,i(t),TB,i(t)

tf∫
t=0

ṁE,i + pi(SOCi)Cv,iPb,idt, (5.12)

where Cv,i is the conversion factor, pi(SOCi) is the penalty function that limits battery

SOC in a desired range, and tf is the total time required for a platoon to complete a

drive cycle. The fuel rate of an ICE (ṁE,i) and the battery power (Pb,i) depend on

the battery SOC and on the torques and angular velocities of the ICE and electric

machines (SOCi, TE,i, TA,i, TB,i, ωE,i, ωA,i, ωB,i).

The power management problem is constrained by powertrain equations of motion

(Eqn. (5.1)) and by the relationship between the SOC and the operation of the electric

machines. In addition, limits of angular velocities and torques of the ICE and electric

machines apply. Another condition that needs to be satisfied is the consistency of the

initial and final SOC, SOCi(t = 0) = SOCi(t = tf ).

Both the conversion factor Cv,i and the penalty function pi(SOCi) have an impact

on the final SOC by indicating the cost of electric power. The conversion factor is

a constant that requires tuning to obtain consistency of initial and final SOC. The

penalty function is a SOC-dependent penalty on conversion and helps maintain the

SOC within a range. The penalty function in this study is adapted from [94] and is

expressed as
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Figure 5.3:
The configuration of the platoon contains leader vehicle and n−1 follower
vehicles. Speeds of vehicles are vi and the coordinate of the vehicle along
the road is qi. The leader reference has coordinate qdes. The headway for
vehicle i is di.

pi(SOCi) = 1−
(

2
SOCi − SOCdes,i

SOChigh,i − SOClow,i

)3
, (5.13)

where SOCdes,i is the desired state of charge that is between high and low SOC limits

SOChigh,i and SOClow,i.

5.3 Platoon Dynamics and Vehicle Controllers

The platoon system contains the platoon dynamics and vehicle controllers. Lon-

gitudinal vehicle dynamics are considered in this study. The full vehicle dynamics are

derived and linearized. The vehicle controllers are then designed using the linearized

system.

5.3.1 Platoon Dynamics

The platoon configuration is illustrated in Fig 5.3. For an n-vehicle platoon,

vehicle 1 is the leading vehicle, while vehicles 2 through n are following vehicles. The

leading vehicle is following a leader reference that is a point moving exactly at the

velocity that the drive schedule defines.

The platoon dynamics are expressed in state space. For an n-vehicle platoon, the
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state variables contain the headways and longitudinal velocities of all vehicles as

xs = [d1, v1, · · · , di, vi, · · · , dn, vn]T . (5.14)

The platoon dynamics can be expressed as

dxs
dt

=
d

dt



d1

v1
...

di

vi
...

dn

vn



=



vdes − v1
F1−R1

m1

...

vi−1 − vi
Fi−Ri

mi

...

vn−1 − vn
Fn−Rn

mn



= f(xs,us), (5.15)

where us = [F1, · · · , Fi, · · · , Fn]T denotes the driving force generated by each vehicle.

The driving forces are control inputs to the system. The mass of the vehicles are

denoted by mi, i = 1, . . . , n. The road resistances for all vehicles are denoted as Ri,

i = 1, . . . , n. The resistance is expressed as

Ri(xs) = fimig cos θi + 1/2ρaCd,i(1−DR,i(xs))Aiv
2
i +mig sin θi. (5.16)

Here fi, mi, g, Cd,i, Ai denote the coefficient of rolling resistance, the weight

of vehicle, the gravitational acceleration, the aerodynamics drag coefficient, and the

vehicle frontal area, respectively. The road grade is denoted by θi. The value of θi

depends on the position of vehicle i. The variable ρa represents the density of air.

The term DR,i is the aerodynamic drag reduction that is attributed from vehicles

driving closely after one another in a platoon. A vehicle creates highly turbulent

flow behind it, forming a wake propagation. The wake propagation reduces the drag
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that the following vehicles experience. The equations for drag reduction are derived

experimentally in [122]. The equations for drag reduction for a two-vehicle platoon

(leading vehicle and one following vehicle) can be expressed as

DR,1 = Cpb,

DR,2 = 1− (1− ε1)2(1 + Cpf ),

(5.17)

where

ε1 = 1.05C0.2
d,1(1− Cpb)0.2

(
v0ht,2

A
1/2
1

)−2/3
,

Cpb = 1−

(
1−

(
6.3

v0ht,2 + 6.3

)3
)2

,

Cpf = 97.124(v0ht,2)
−2.745,

ht,2 =
d2
v2
.

The term A1 represents the frontal area of the leading vehicle, and v0 represents the

constant velocity of the vehicles in the experiment to determine drag reduction. These

equations are slightly modified from headway-dependent equations into headway-

time-dependent equations, in order to adapt for platoons with time-varying speed.

The drag reductions for a three-vehicle platoon can be written as [122]

DR,1 = Cpb,

DR,2 = 1− (1− ε1)2(1 + Cpf,1 − Cpb,1),

DR,3 = 1− (1− ε2)2(1 + Cpf,2)(1−D′R,2),

(5.18)
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where

εk = 1.05C0.2
d,k(1− Cpb,k)0.2

(
v0ht,k+1

A
1/2
k

)−2/3
,

Cpb,k = 1−

(
1−

(
6.3

v0ht,k+1 + 6.3

)3
)2

,

Cpf,k = 97.124(v0ht,k+1)
−2.745,

ht,k+1 =
dk+1

vk+1

, k = 1, 2.

5.3.2 Linearization and Controller Design

The platoon dynamics contain nonlinear terms and some quantities that are hard

to measure in real-time. For the purpose of developing vehicle controllers, lineariza-

tion of the platoon dynamics with respect to a time-varying reference is performed.

The platoon dynamics are written in a simplified form considering the aerodynamic

drag reduction and resistance from road grade disturbances.

dxs
dt

=
d

dt



d1

v1
...

di

vi
...

dn

vn



=



vdes − v1
F1

m1
− R1,0(v1)

m1

...

vi−1 − vi
Fi

mi
− Ri,0(vi)

mi

...

vn−1 − vn
Fn

mn
− Rn,0(vn)

mn



= f̂(xs,us), (5.19)

where

Ri,0(xs) = fimig + 1/2ρCd,iAiv
2
i . (5.20)

To linearize the simplified dynamics with respect to a time-varying reference,
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the states and control inputs are decomposed into a summation of their errors and

references as

xs =



d1

v1
...

di

vi
...

dn

vn



=



d̃1

ṽ1
...

d̃i

ṽi
...

d̃n

ṽn



+



d1,ref

v1,ref
...

di,ref

vi,ref
...

dn,ref

vn,ref



= x̃s + xs,ref , (5.21)

us =



F1

...

Fi
...

Fn


=



F̃1

...

F̃i
...

F̃n


+



F1,ref

...

Fi,ref
...

Fn,ref


= ũs + us,ref , (5.22)

where x̃s and ũs denote the errors of states and control inputs. The terms xs,ref and

us,ref represent the time-varying references of states and control inputs. To establish

the error dynamics, the reference dynamics are defined. First, the reference headways

for all vehicles are selected as

d1,ref = 0,

di,ref = di,0 + hdesvi,ref ,

(5.23)

where hdes denotes a constant headway time which accounts for the need to increase

the headway as the speed increases, and di,0 represents a constant headway at zero

speed for all the following vehicles. Under this definition of reference headways,

the leading vehicle is expected to follow the drive schedule exactly. For all following
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vehicles, the reference headways are velocity-dependent. Thus, the reference velocities

for all following vehicles are not exactly the same but depend on the velocity defined

by the drive schedule vdes(t). Using both the definition of headways and the expression

for desired headways, the reference velocities can be derived from the drive schedule.

Therefore, all references can be determined using the reference dynamics as

dxs,ref
dt

=
d

dt



0

v1,ref
...

di,0 + hdesvi,ref

vi,ref
...

dn,0 + hdesvn,ref

vn,ref



=



vdes − v1,ref
F1,ref

m1
− R1,0(v1,ref )

m1

...

vi−1 − vi,ref
Fi,ref

mi
− Ri,0(vi,ref )

mi

...

vn−1 − vn,ref
Fn,ref

mn
− Rn,0(vn,ref )

mn



. (5.24)

The reference velocity of the leading vehicle in Eqn. (5.24) is the same as that

defined by the drive schedule. Note that in the reference dynamics, the reference of

vehicle i is derived from the actual velocity of vehicle (i− 1) instead of its reference

velocity. Such a way of deriving the reference velocity avoids potential collisions in

case a large velocity error occurs with the front vehicle. However, such a definition

of reference velocities can cause dxs

dt
6= f̂(xs,ref ,us,ref ). This inconsistency becomes

apparent in the final linearization. Thus, a residual function is defined as

f̃(x̃s) =
dxs,ref
dt

− f̂(xs,ref ,us,ref ). (5.25)

The residual function in matrix form can be expressed as

f̃(x̃s) = A′x̃s, (5.26)
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where matrix A′ is a 2n × 2n matrix that contains mostly zeros, but a few ones in

sub-diagonal terms as shown below

A′2i,2i−1 = 0, i = 1, . . . , n. (5.27)

The error dynamics of the linearized platoon dynamics are expressed as

dx̃s
dt

= −A′x̃s +
∂ f̂

∂xs

∣∣∣∣
xs,ref ,us,ref

x̃s +
∂ f̂

∂us

∣∣∣∣
xs,ref ,us,ref

ũs. (5.28)

The linearized platoon dynamics becomes a linear time-varying system and the

state matrix A(t) and input matrix B(t) can be determined using Eqn. 5.28. The

force commands are determined using LQR control as

us,c = −Kx̃s + us,ref , (5.29)

where

K = LQR(A(t),B(t),Q,R). (5.30)

Here, the Q and R are matrices that define the cost of errors of states and control

inputs when determining the control gains using LQR control. The terms in these

matrices are determined using the design variables in the optimization problem. The

force commands us,c are transformed into angular acceleration commands as

ω̇d,i,com =
Td,i,com − Tr,i

Id,i
, (5.31)

where

Td,i,com =
us,i,crw,i
rf,i

,

Tr,i =
rw,iRi,0

rf,i
.

(5.32)
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Here, the term us,i,c is the ith component of the force command us,c. The tire radius

is denoted as rw,i. The torques of components in the powertrain are determined using

the adaptive ECMS algorithm. The final control inputs, expressed in terms of torques

of powertrain components, are

us,i = (ω̇d,iId,i + Tr,i)
rf,i
rw,i

, (5.33)

where

ω̇d,i =
TB,i − TA,i − Tbrk,i − Tr,i

IAS,i + IB,i + Id,i
,

Tbrk,i = TB,i − TA,i − Td,i,com, when Td,i,com < 0, Td,i,com < TB,i − TA,i,

Id,i =
2mw,i +mi

ηf,i

(rw,i
rf,i

)2
.

(5.34)

Here, rf,i and ηf,i denote the ratio and efficiency of the final drive, respectively. The

parameter mw,i represents the mass of a wheel. Note that the component torques are

bounded by component sizes. Thus, the final force inputs may not be exactly the

same as the force commands.

5.4 Platoon Optimization

5.4.1 Design Variables

The platoon optimization contains the drive schedule design and the vehicle con-

troller design. The design variables are denoted as x = [xTDC ,x
T
CT ]T , where xDC

contains design variables that define the drive schedule, and the entries of xCT are

related to designing the Q and R matrices in the vehicle controllers in Eqn. (5.38).

Details of these design variables are described in this section.

The design variables in xDC are the desired velocities at the characteristic points

between the initial position and the destination. The positions of the characteristic
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points dDC are obtained using Chebychev sampling as

dDC,k =
dtot
2

(
1− cos

(2k − 1

2nDC
π
))

, k = 1, . . . , nDC . (5.35)

Here, dDC,k is the kth component in dDC . The constant nDC is the number of charac-

teristic points in the drive schedule design. Thus, nDC is the length of both xDC and

dDC vectors. The total distance of the road is denoted as dtot.

The full drive schedule vdes as a function of distance ddes is expressed using piece-

wise cubic Hermite polynomial interpolation, using the characteristic velocities in

xDC and distances in dDC . Note that the characteristic distances in dDC do not

involve the initial and final position of the road. At these two positions, the desired

velocities are always zero. Thus, the desired velocities at these two points are not

design variables. The drive schedule as a function distance can be expressed as

vdes(t) = fDC(ddes(t)). (5.36)

Here, the drive schedule vdes(t) and distance ddes(t) are both functions of time. By

definition, vdes(t) = d
dt
ddes(t). Thus, vdes(t) and ddes(t) can be obtained by solving

vdes(t) =
d

dt
ddes(t) = fDC(ddes(t)). (5.37)

The design variables in xCT define the diagonal terms of the diagonal matrices Q

and R in controller design as

Qj,j = xCT,j, j = 1, . . . , 2n,

Rk,k = xCT,2n+j, k = 1, . . . , n.

(5.38)

Note that index k is a dummy variable and is not the same as in Eqn (5.35). For

an n-vehicle platoon, the length of xCT is 3n. Also, the length of xCT is 3n.

110



5.4.2 Cost Function and Constraints

The purpose of the platoon optimization is to minimize energy consumption while

maintaining minimal error in headway keeping. Thus, the optimization problem can

be written as

minimize
x

J(x) =
n∑
i=1

∫
t=0

tfPE,i + Pb,idt+ α
n∑
i=1

∫
t=0

tf d̃
2
idt, (5.39)

subject to

ga(xDC) ≤ 0,

gt(xDC) ≤ 0,

gbDC(xDC) ≤ 0,

gbCT (xCT ) ≤ 0,

(5.40)

where ga(xDC) contains acceleration constraints on drive schedule velocities at char-

acteristic points, which can be expressed as

ga,k =

∣∣∣∣ x2DC,k+1 − x2DC,k
2(dDC,k+1 − dDC,k)

∣∣∣∣− amax. (5.41)

where the maximum acceleration amax is a value chosen by the designer.

The gt constraint ensures the time the platoon requires to reach the destination

is not longer than a defined time tmax. The function gt is expressed as

gt(xDC) =

dtot∫
d=0

dddes
vdes

− tmax. (5.42)

Note that gt depends on xDC because ddes and vdes depend on xDC .

The last two constraints gbDC(xDC) and gbCT (xCT ) define upper and lower bound-

aries of all design variables.
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Figure 5.4:
A problem-specified optimization process is designed, combining opti-
mization with both simplified and high-fidelity model, and random per-
turbations to avoid narrow/local optimal solution.

5.4.3 Design of Procedures for Platoon Optimization

A high-fidelity model was created and contains the powertrain operations and

controls as shown in Sec. 5.2. The platoon optimization using this high-fidelity model

requires a high computational cost. To speed up the computation, a series of problem-

associated optimization procedures were designed. These procedures are illustrated

in Fig. 5.4.

The idea for designing these procedures is to speed up the first steps of optimiza-

tion using a simplified model. In the simplified model, the high-fidelity powertrain

model is replaced by vehicle power limits. The optimal solution from optimization

with the simplified model becomes the initial solution in the next optimization using
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the high-fidelity model. Random perturbations are applied to the optimization re-

sults obtained using the high-fidelity model to avoid the algorithm being trapped in

narrow local optimal solutions. Only the random perturbations on the local optimal

solution that lead to a smaller cost value and satisfy all constraints at the same time

are stored. The optimal solution with the stored random perturbations becomes the

initial solution in the new optimization. Once applying random perturbations to the

local optimal solution does not yield a better performance of the platoon after a cer-

tain number of sampling iterations, the process ends and the current optimal solution

is considered the final (and optimal) solution.

5.5 Results

The optimization framework enables the study of various platoons by allowing

flexibility in selecting vehicle and powertrain component sizes. A homogeneous and

a heterogeneous platoon are studied using the framework. A homogeneous platoon

contains identical vehicles, while various vehicles can form a heterogeneous platoon.

Parametric studies are proviced in this section for both platoons.

The upper and lower bounds for each desired velocity in xDC are 100 m/s and

0 m/s, respectively. The upper and lower bounds for each controller parameter in

xCT are 103 and 10−1. The maximum acceleration amax is 3 m/s2. The threshold

number of iterations in applying random perturbations is 500.

5.5.1 Parametric Study of a Homogeneous Platoon

The parametric study is enabled with the optimization framework with high fi-

delity model that has been designed and implemented. In this section, a parametric

study on the headway is demonstrated. A homogeneous platoon with 2 vehicles is

considered. The vehicle and powertrain parameters are listed in Tab 5.2.
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Notation Value Notation Value
mi 2,300 kg ρa 1.2 kg/m3

Ai 6.97 m2 Cd,i 0.36
fi 0.015 PAr,i 120 kW
g 9.81 m/s2 TAr,i 300 N

mw,i 10 kg PBr,i 120 kW
rt,i 0.4 m TBr,i 300 N
rf,i 7 Vbr,i 600 V
ηf,i 0.96 Cbr,i 5 Ah

Table 5.2: Parameters used in the homogeneous platooning problem.
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Figure 5.5:
The road grade is defined at characteristic positions and linearly interpo-
lated in between.

The parameter being explored here is the constant component in reference head-

way, or d2,0. The selected values of d2,0 are 3 m, 10 m, and 30 m.

The total distance of the road is 2,439.3 m. The road grade is defined at char-

acteristic points and linearly interpolated at other locations, as shown in Fig 5.5.

The road grade is randomly generated to match the pattern of the measured data for

actual roads in the United States [137].

The initial drive schedule in the optimization problem is a constant-speed drive

cycle. The desired velocities at the initial position and the destination are both zero.

Thus, such a drive schedule contains acceleration, constant speed driving, and decel-

eration, where the acceleration and deceleration at both ends of the drive schedule

satisfy the acceleration constraints. The initial and final drive schedule in the op-

timizations are illustrated in Fig 5.6. The intermediate results in the optimization
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Figure 5.6:
The optimal drive schedule depends on the constant component of ref-
erence headway d2,0. Optimal drive schedules are shown above for (a)
d2,0 = 3 m, (b) d2,0 = 10 m, and (c) d2,0 = 30 m.
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Figure 5.7:
The headway keeping errors of both leading and following vehicles are
smaller with the optimized vehicle controller compared to initial con-
troller. Control optimization reduces the maximum headway-keeping er-
ror from over 1.0[m] to less than 0.2[m].

process are not shown in the figure for clarity.

The initial design variables for vehicle controllers are selected as xCT,init = [10, 10, 10, 10, 100, 100]T .

To illustrate the effectiveness of vehicle control optimization, the headway-keeping

errors of both vehicles in platoon with initial and optimal controllers are shown in

Fig 5.7. The constant component of reference headway is 10 m for the results that

are shown in the figure.

The headway-keeping errors become smaller when the control is optimized. With

optimal controllers, the component of the cost that comes from the headway keeping

error is significantly reduced from that of the initial controller.
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Figure 5.8:
The drive schedules in the three scenarios are illustrated. The drive sched-
ule in baseline scenario 1 is a constant speed schedule without any peaks.
The other two drive schedules contain each one a peak at different loca-
tions.

In the optimal drive schedule, when d2,0 = 30 m, the peak of the vehicles’ velocity

is near 750 m, instead of 1,500 m in the other cases where the desired headway is

smaller. To validate the peak shift at high intravehicular distancing, three different

drive schedule scenarios were designed, as shown in Fig 5.8. The three drive schedules

contain scenario 1 as a baseline design, which is a constant speed drive schedule at

20 m/s. In the other two drive schedules, a single velocity peak is added at the

characteristic position close to 750 m in scenario 2 and at 1,500 m in drive schedule

3, respectively. The scenarios are created to study the impact of the location of the

velocity peak on energy consumption when d2,0 = 30 m.

For each of these drive schedules, the same platoon with the same vehicle con-
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trollers is evaluated. The vehicle controllers in all scenarios are optimal controllers for

d2,0 = 30 m. The resulting energy consumption is summarized in Tab 5.3. The initial

and optimal costs in all cases in this parametric study are summarized in Tab 5.4.

Scenario Energy Consumption
2 7.132 MJ
3 7.232 MJ

Table 5.3:
The energy consumption in scenario 2 is smaller than that in scenario 3,
indicating higher energy efficiency of early peak when d2,0 = 30 m.

The results suggests that when d2,0 = 30 m, a velocity peak near 750 m can result

in slightly lower energy consumption compared to the peak near 1,500 m, given the

specific road grade in this study of headway.

Constant Headway Initial Cost Optimal Cost Cost Reduction
3 m 5.561 MJ 4.520 MJ 18.7%
10 m 6.376 MJ 5.280 MJ 17.4%
30 m 6.910 MJ 5.523 MJ 20.1%

Table 5.4:
Energy reductions are observed in all reference constant headway settings.

The total energy consumption of multiple vehicles that drive through a specified

path is reduced due to two factors, namely the drive schedule and vehicle controller

improvement, and platoon formation. Applying either of these factors, or a combina-

tion of both, can save energy. The optimal results obtained in this study are taking

advantage of both optimization and platoon formation to save energy.

The effectiveness of the factors are evaluated by establishing four cases with dif-

ferent d2,0 values. Case 1 is a baseline case, with decoupled vehicles driving through

the constant speed drive schedule (initial drive schedule in optimization) with non-

optimal vehicle controllers. The other three cases modify the setup in the baseline

case to highlight the effects of the two energy saving factors. In case 2, the drive

schedule and vehicle controllers are replaced by the final optimal design. Note that,

in case 2, the vehicles are still decoupled. Thus, the final drive schedule and vehicle
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Figure 5.9:
Percentage energy savings of cases 2 to 4 compared with the baseline case
are summarized to evaluate the effectiveness of two factors on reducing
energy consumption. The two factors in combination can save over 20%
of energy for a two-vehicle homogeneous platoon.

controller design for a platoon is not necessarily optimal, but improved compared to

the initial drive schedule and vehicle controllers. In case 3, the coupling of vehicles

is considered while the drive schedule and vehicle controllers remain the same as in

case 1. Case 4 contains the platoon driving through the final drive schedule with

the optimal controllers, which is the overall optimal solution. The percentage energy

reductions by comparing cases 2 through 4 to the baseline case for all d2,0 values are

summarized in Fig 5.9.

The energy saving is over 20% when both optimization and platoon formation

are applied. Such saving can be close to 40% when the headway is smaller. A

significant part of the energy reduction within cases 3 and 4 compared to the baseline

case 1 is from platoon formation. The energy saving through platoon formation is

obtained through drag reduction, which is headway-dependent. Thus, the longer

the headway, the smaller these energy reductions are, and the weaker the effect the

platoon formation has on energy saving.

5.5.2 Parametric Study of a Heterogeneous Platoon

A 3-vehicle heterogeneous platoon is defined and implemented. The three vehicles

are referred to as light, medium, and heavy vehicles according to their weight. The
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vehicle and component-level parameters are shown in Tab 5.5.

Notation Heavy Vehicle Medium Vehicle Light Vehicle
mi 3,000 kg 2,300 kg 1,600 kg
Ai 4.32 m2 6.97 m2 2.20 m2

fi 0.015 0.015 0.015
mw,i 10 kg 10kg 7.5 kg
rt,i 0.400 m 0.400 m 0.287 m
rf,i 10.0 7.0 7.0
ηf,i 0.96 0.96 0.96
Cd,i 0.57 0.36 0.29
PAr,i 200 kW 120 kW 60 kW
TAr,i 500 N 300 N 200 N
PBr,i 200 kW 120 kW 60 kW
TBr,i 500 N 300 N 200 N
Vbr,i 600 V 600 V 400 V
Cbr,i 10 Ah 5 Ah 5 Ah

Table 5.5: Parameters of vehicles in the heterogeneous platoon.

The purpose of this study is to explore the effects of the order of vehicles in the

3-vehicle platoon. The vehicle orders in the heterogeneous platoon are defined in

Tab 5.6.

Order Leading Vehicle Following Vehicle 1 Following Vehicle 2
1 Heavy Medium Light
2 Heavy Light Medium
3 Medium Heavy Light
4 Medium Light Heavy
5 Light Heavy Medium
6 Light Medium Heavy

Table 5.6: Order of vehicles in the heterogeneous platoon.

The initial drive schedule in this study is the 20 m/s constant speed drive schedule

like in homogeneous platoon optimizations. The initial design variables for vehicle

controllers are xCT,init = [10, 10, 10, 10, 10, 10, 100, 100, 100]T . The initial and final

cost of the optimization for platoons in all orders are listed in Tab. 5.7. The initial

and final drive schedules are summarized in Fig. 5.10.

In this study, the drive schedule and vehicle controller optimization is able to
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Order Initial Solution Optimal Solution Improvement
1 14.20 MJ 10.43 MJ 26.6%
2 13.17 MJ 09.06 MJ 31.2%
3 14.54 MJ 09.17 MJ 37.0%
4 12.33 MJ 09.49 MJ 23.0%
5 13.30 MJ 08.36 MJ 37.2%
6 13.20 MJ 09.67 MJ 26.7%

Table 5.7:
Significant energy reductions are observed within the heterogeneous pla-
toon for all vehicle orders.

reduce the energy consumption for the 3-vehicle heterogeneous platoon in all orders.

The energy reductions are over 20% for vehicles in all orders.

The effectiveness of energy saving from two factors are presented in Fig. 5.11.

These two factors contain the improvement of the drive schedule and vehicle controller

design, and the platoon formation.

The order of vehicles can impact the inter-vehicular coupling, which leads to dif-

ferences in resistances and force demands for each vehicle. In an optimization process,

the boundaries on powertrain components are activated and affect the optimization

results. Focusing on the optimal solution for order 6, the torque of machine B in the

light vehicle (leading vehicle in this case) and the battery SOC is shown in Figs. 5.12

and 5.13. All torque constraints, including those for ICE and both electric machines,

for each vehicle are hard constraints. The constraints on battery SOC, on the other

hand, are soft constraints. The desired range for SOC is defined, and the cost of

electrical energy is penalized as shown in Eqn. 5.13.

5.6 Conclusions

Platooning of electrified vehicles can improve vehicle performance by enhancing

energy efficiency and safety. The control algorithm and sizes of components can im-

pact the performance of the platoon. In this study, a system-level optimization of the

drive schedule and vehicle control for platoons of electrified vehicles was designed.
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Figure 5.10:
Initial and optimal drive schedules for all vehicle orders of the three-
vehicle heterogeneous platoon are presented. The optimal drive sched-
ules show similar behaviors because the road grade is the same in all
cases.

A high-fidelity modeling and optimization framework was implemented considering

vehicle dynamics, powertrain controls and operations. Parametric studies for both

homogeneous and heterogeneous platoons were implemented using the high-fidelity

optimization framework to explore parameters that can impact platoon efficiencies.

The results of these optimizations and energy comparisons suggest that optimization

of drive schedule and vehicle control can lead to significant reduction in energy con-

sumption for vehicles on a specific path without compensation on the duration of the

drive schedule. The effectiveness of the optimization for energy saving is compara-

ble or even higher than that of the formation of the platoon. Validations of results

were designed and revealed the impact of powertrain operations and component-level

power limits on the optimization and platoon-level energy efficiency.
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Figure 5.11:
Percentage energy savings suggest higher significance of drive schedule
and vehicle control improvement than platoon formation in energy saving
for a three-vehicle heterogeneous platoon. The combination of both
factors can lead to over 40% energy reduction in some cases.
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Figure 5.12:
Torque constraint for machine B in the light vehicle is activated in several
occasions in the optimal solution for vehicle order 6.
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Figure 5.13:
The soft SOC constraints for all vehicles in the platoon penalize the SOC
change from the initial SOC value, through varying the cost of electrical
energy.
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CHAPTER VI

Conclusions and Contributions

In this dissertation, multiple topic have been covered. To summarize, the topics

include building the multi-physics ROM for EMS coupling, design and model of a

novel hybrid electric powertrain architecture, design and control optimization of the

novel powertrain, and platooning of electrified powertrain.

The multi-physics ROM targets at a key component in electrified powertrains, the

electric machine. This modeling method innovatively suggested the model of the cou-

pling between electromagnetic force and the structural motion. The model turned out

to be a system under parametric excitation, in the form of damped Mathieu’s equa-

tion. The stability of damped Mathieu’s equation was revisited. The threshold values

for amplitude of parametric excitation that separates stable and unstable regions were

derived. Two versions of multi-physics ROMs were developed, including the ROM

with linearized force and nonlinear force. Using the multi-physics ROM and the re-

sults of stability We were able to find the parametric resonances on a proof-of-concept

design. Frequency domain responses showed that the parametric resonance could oc-

cur in electric machines and other electromagnetic devices. In addition, a shift and

amplification of the primary resonance that is caused by force harmornic could occur

due to the softening effect of a constant component of the parametric excitation of

the electric machine. Eventually, time-domain analyses verified the simulation results
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from the ROM.

The design of the novel hybrid electric powertrain in this work was inspired by

the idea of efficiently removing the torque fluctuation from the smaller ICEs that are

usually applied for HEVs. The design allows the stator of one electric machine to

rotate, so that no clutches or planetary gears are needed. In addition, the architecture

allows flexible operation for the ICE. A multi-state rule-based controller have been

developed to prove the functions of the novel powertrain. The electric machines, which

are designed for specific purposes, are able to acrry out their functionality successfully.

Overall, the torque fluctuation is removed and the AC energy associated with that

can be efficiently recovered. At the same time, the controller showed comparable

performance to other existing HEV powertrains.

The architecture of novel powertrain was designed and the first model proved its

functionalities. However, a fuel economy analysis suggested that by either resizing the

components or replace the rule-based controller with a optimal controller, improve-

ments in fuel efficiency were observed. Thus, the design and control optimization is

necessary in order to improve the newly designed architecture and find the benchmark

performance. Nested approach is applied for the coupled design and control optimiza-

tion for the novel powertrain. Sequential quadratic programming was applied in the

outer loop while the ECMS was employed in the inner loop. A polynomial surro-

gate model that approximates the ECMS calculation was designed and built lower

computation cost in the optimization problem. The physics-based models for the

components were built, as oppose to the look-up table model in similar studies. The

optimization is designed as a multi-objective problem. Approach of forming single

utility function is designed using the Pareto front of the novel powertrain. Multiple

optimal powertrain designs can be selected by assigning different relative weight to in-

dividual objectives. Numerous commercially available HEV powertrains are selected

as benchmark powertrains. The benchmark powertrains are evaluated and optimized.
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The optimal results of novel powertrain and benchmark powertrains are compared un-

der different weight selection in single utility function. The novel powertrain shows

comparable or better fuel economy to benchmark powertrains. Similarities and dif-

ferences between functionalities of components in novel powertrain and benchmark

powertrains are detected.

Platooning problem in this study focused on optimizing the drive cycle, in order to

minimize the energy consumption when a platoon of electrified vehicles are moving

through a certain distance, while maintaining the headway keeping quality. The

platooning problem in this study takes account of the powertrain operation and the

impact of powertrain status on platoon performance. The drive cycle and vehicle

controllers are optimized to minimize the energy consumption for a platoon on a

specified task. The performance of platoon is evaluated using high-fidelity platoon

model. A three-level optimization problem was formulated, including optimization,

platoon dynamics and vehicle control, and powertraion subsystem. Platoon dynamics

are investigated and vehicle controllers are designed and developed. The driver is

designed as a model that takes account of inter-vehicular communication, perceptions,

and predictions. High-fidelity hybrid powertrain model with near-optimal adaptive

ECMS power management is implemented. The optimization framework enables the

study of different types of platoons. Homogeneous and heterogeneous platoons are

investigated in this dissertation. Parametric studies are designed and completed for

both types of platoons. The results suggested a significant drop in headway keeping

error and energy consumption for all platoons after optimization.
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CHAPTER VII

Future Work

Multi-physics ROM for system with EMS coupling is implemented in this dis-

sertation. The ROM is able to reduce computation time significantly compared to

full-order FEA time marching simulations. The method can be improved by applying

strucural symmetry. The symmetry can further reduce the computational cost by ap-

proximately one order of magnitude. The basic ideas of EMS ROM can be extended

to other multi-physics system, like battery or fuel cell where chemical-structural in-

teractions occur.

A major improvement that could happen to HEV powertrain is on vehicle control.

The existing optimal and near optimal power management strategies require solving

in discretized time domain in practice. In addition, the number operating points to

select is finite. The discretization in time and control space lead to imperfect boundary

condition satisfaction. This results in nonsmoothness of energy-related powertrain

performance with respect to design variables of powertrain. Such nonsmoothness

has caused some issues in the research area of HEVs. Current solutions usually

contain relaxing the boundary condition to tolerate the nonsmoothness. However,

such method do not eliminate the nonsmoothness in powertrain evaluation. Methods

like surrogate model could potentially resolve the issue. The format of the surrogate

model could be improved from the polynomial model in this dissertation.
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Optimization-based control like optimal powertrain control strategies and Lya-

punov like control can be applied as baseline controls to develop data-driven control

strategy. Due to the wide adaptivity of optimal control methods, the control strategy

can potentially be applied on but not limited to powertrains and vehicles.

Limitations and challenges remain on platooning problem. The optimization prob-

lem is a high-dimension problem with hundreds of design variables. The cost function

for the drive cycle optimization is a result of a complete time domain simulation. Such

simulation goes through a optimization process to determine powertrain component

operation. Approach that speeds up the platoon evaluation can be valuable.

The study of platooning can be extended to more vehicle motions, such as lateral

motion. More vehicle motions means more dimensions in the environment that the

vehicle is travelling on. When platooning problem is extended to 2D or 3D space,

the optimization problem become a subset of motion planning problem, but with

powertrain operation as constrains. The high-fidelity platoon modeling and longitu-

dinal planning framework in this dissertation can be extended to integrate with path

planning problem.
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APPENDIX A

Optimal Powertrain Designs and Their

Performance

Table A.1: Optimal designs for benchmark powertrain 1 (BP1)

Optimal Design 1 Optimal Design 2
Variable Original Rounded Original Rounded

α 1 mpg 1 mpg 2 mpg 2 mpg
PAr 58.26 kW 60.00 kW 49.33 kW 50.00 kW
TAr 233.6 Nm 230.0 Nm 323.6 Nm 320.0 Nm
PBr 79.99 kW 80.00 kW 73.70 kW 75.00 kW
TBr 233.4 Nm 230.0 Nm 327.1 Nm 330.0 Nm
rf 1.760 1.760 2.709 2.709
Vb 220.9 V 221.0 V 203.4 V 203.0 V
Cb 11.34 Ah 11.00 Ah 11.15 Ah 11.00 Ah

Jf (−Fe,cb) -64.42 mpg -64.21 mpg -62.88 mpg -62.31 mpg
Jc 18.60 18.58 17.15 17.20
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Table A.2: Optimal designs for benchmark powertrain 2 (BP2)

Optimal Design 1 Optimal Design 2
Variable Original Rounded Original Rounded

α 1 mpg 1 mpg 2 mpg 2 mpg
PAr 44.15 kW 45.00 kW 46.27 kW 45.00 kW
TAr 349.9 Nm 350.0 Nm 298.3 Nm 300.0 Nm
PBr 72.73 kW 75.00 kW 43.23 kW 45.00 kW
TBr 216.5 Nm 220.0 Nm 288.3 Nm 290.0 Nm
rf 1.985 1.985 2.476 2.476
Vb 238.2 V 238.0 V 224.6 V 225.0 V
Cb 10.51 Ah 11.00 Ah 11.66 Ah 12.00 Ah

Jf (−Fe,cb) -59.80 mpg -59.64 mpg -57.26 mpg -57.25 mpg
Jc 17.45 17.82 15.90 16.07

Table A.3: Optimal designs for benchmark powertrain 3 (BP3)

Optimal Design 1 Optimal Design 2
Variable Original Rounded Original Rounded

α 1 mpg 1 mpg 2 mpg 2 mpg
PAr 52.45 kW 50.00 kW 57.62 kW 60.00 kW
TAr 223.3 Nm 220.0 Nm 397.6 Nm 400.0 Nm
PBr 48.46 kW 50.00 kW 42.33 kW 40.00 kW
TBr 276.9 Nm 280.0 Nm 151.8 Nm 150.0 Nm
rf 2.249 2.249 2.666 2.666
Vb 211.1 V 211.0 V 210.7 V 211.0 V
Cb 12.73 Ah 13.00 Ah 10.83 Ah 11.00 Ah

Jf (−Fe,cb) -54.88 mpg -54.85 mpg -53.46 mpg -53.43 mpg
Jc 16.65 16.70 15.84 15.91

Table A.4: Optimal designs for benchmark powertrain 4 (BP4)

Optimal Design 1 Optimal Design 2
Variable Original Rounded Original Rounded

α 1 mpg 1 mpg 2 mpg 2 mpg
PAr 44.72 kW 45.00 kW 40.48 kW 40.00 kW
TAr 352.3 Nm 350.0 Nm 224.1 Nm 220.0 Nm
PBr 54.14 kW 55.00 kW 51.06 kW 50.00 kW
TBr 353.1 Nm 350.0 Nm 226.5 Nm 230.0 Nm
rf 2.433 2.433 3.210 3.210
Vb 244.1 V 244.0 V 212.0 V 212.0 V
Cb 15.50 Ah 15.00 Ah 13.26 Ah 13.00 Ah

Jf (−Fe,cb) -60.20 mpg -59.33 mpg -58.86 mpg -58.71 mpg
Jc 18.50 18.36 16.32 16.13
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