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Abstract 

 

The Developmental Origins of Health and Disease (DOHaD) paradigm correlates a 

suboptimal intrauterine environment to increased risk of chronic disease. This association is well 

accepted, and recent work indicates that environmentally induced changes in cellular function 

and disease etiology are mediated by changes in the epigenetic profile. For the purpose of this 

dissertation, epigenetics is defined as the study of mitotically and/or meiotically heritable 

changes in gene expression that cannot be explained by changes in DNA sequence. While we are 

beginning to understand the outcomes associated with prenatal exposure to components like the 

maternal diet and bisphenol-A (BPA), few studies in humans assess the epigenetic impact of 

these exposures.  In order to accurately discern the association between maternal exposure and 

epigenetic reprogramming, studies are needed that evaluate prenatal exposure to both bisphenols 

and maternal diet during early pregnancy.  Additionally, more research is needed that establishes 

epigenetic signatures of exposure in peripheral tissues. We utilized the Michigan Mother-Infant 

Pairs (MMIP) cohort to assess (Aim 1) the association of prenatal exposure to the bisphenols 

BPA, BPF, and BPS and infant cord blood leukocyte DNA methylation,  (Aim 2) maternal one-

carbon metabolites across pregnancy and in association with DNA methylation in infant cord 

blood leukocytes, (Aim 3a) DNA methylation at candidate genes across three tissue types and 

their association with bisphenol exposure, and (Aim 3b) the association between prenatal 

bisphenol exposure and placental DNA methylation. Cutting edge techniques of microarray 

technology to profile DNA methylation at >850,000 CpG sites in both infant cord blood and 
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placenta, untargeted metabolomics, and pyrosequencing were combined to answer our research 

questions.  

Aim 1 results suggest that prenatal exposure to BPA, as measured in maternal urine 

between 8-14 weeks of gestation, was significantly associated with differential DNA methylation 

at 38 CpG sites and three differentially methylated regions. Pathway analysis of BPA-associated 

CpG sites revealed enrichment for pathways associated with the nervous system, immune 

response, and neuroinflammation. Aim 2 results suggest that maternal third trimester and cord 

blood one-carbon metabolite S-adenosylhomocysteine (SAH) were significantly correlated with 

a shift in the global distribution of DNA methylation in infant cord blood leukocytes. This aim 

also provides evidence of patterns of one-carbon metabolites within time points and across 

pregnancy. For example, concentrations of maternal choline increased from first trimester to 

term, while betaine concentrations decreased; possibly reflecting the shift in choline dynamics 

during pregnancy.  Aim 3a results suggest that candidate gene DNA methylation and tissue-

specific associations with prenatal bisphenol exposure do significantly differ at some but not all 

genes tested across cord blood, cord tissue, and placenta from the same individuals. For example, 

mixed effect regression revealed that placental tissue DNA methylation was significantly 

associated with bisphenol exposure at three out of four genes, as compared to one in cord blood 

and none in cord tissue.  These data may inform selection of surrogate tissues for environmental 

epigenetic studies. Lastly, Aim 3b exploratory analysis of epigenome-wide placental DNA 

methylation suggests prenatal exposure to bisphenols may be associated with alternations in 

pathways related to inflammation, vascularization, and preeclampsia.  

  This dissertation contributes to the burgeoning field of epigenomics and helps to establish 

a foundation in our understanding of maternal exposures and their influences on epigenetic 
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programming. Advances in epigenome-wide association studies will ultimately enable 

researchers, clinicians, and policymakers to target risk factors (e.g. environmental and nutritional 

exposures that perturb the methylome and downstream birth outcomes) and to better understand 

a portion of the myriad of elements underlying the developmental origins of health and disease.  
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Chapter 1 An Introduction to Environmental Epigenetic Studies 

 

The intervening time between preconception and early infancy is critical in posturing an 

individual’s lifetime health trajectory. Interruptions to typical human development, whether 

major, acute events or chronic exposures, can have measurable consequences as we grow and 

age. The Developmental Origins of Health and Disease (DOHaD) paradigm correlates a 

suboptimal intrauterine environment to increased risk of chronic disease. The theory of DOHaD 

is a foundational pillar of the work contained within this dissertation and also forms the basis of 

most early-life exposure research (Wadhwa et al., 2009). The field of Developmental Origins is 

principally attributed to David Barker; his early epidemiological work on infant and adult 

mortality during the late-1980’s and early-1990’s, and the associations he detected, has since 

evolved into a significantly sized field of study with a wide array of topic areas.  

Barker’s cardinal study investigated the geographic correlation between infant mortality 

in England and Wales from 1921-1925 and ischemic heart disease from 1968-1978 (Barker & 

Osmond, 1986). He concluded that early-life nutrition and variations therein, as related to 

geographic location and socioeconomic status, influenced the associated-risk and risk factors for 

developing heart disease later in life. This study was followed by a retrospective cohort study 

that evaluated men born in Hertfordshire, England between 1911-1930 and who subsequently 

died of an ischemic heart-related event (Barker et al., 1989). Barker and colleagues detected that 

those individuals born with the lowest birth weights had the highest rates of death and those with 

the highest birth weights had the lowest rates of death (Barker et al., 1989). Barker refined his 

earlier conclusions to include the notion that an early-life environment that negatively impacts 
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fetal and infant growth is likely followed by an adult environment with increased risk for heart 

disease. Barker’s final work in this triptych assessed fetal undernutrition at different stages of 

gestation and the consequent impact on birth and adult metabolic outcomes (Barker et al., 1993). 

It was with this study that Barker determined that fetal undernutrition during pregnancy is 

correlated to a dysfunctional relationship between glucose and insulin and results in a 

reprogramming of key metabolic and growth factors; the perturbation of which subsequently 

correspond to heart disease risk during adulthood.  

The conclusions generated from Barker’s work are now fundamental to the way in which 

many scientists approach the study of developmental origins of health and disease. That an insult 

experienced during early life, which perturbs the prenatal environment, can be harmful to a 

growing fetus for its timing, duration, or nature; and then, manifest itself in shifting the risk 

framework for cardiometabolic and other diseases in adulthood (Lau et al., 2011). This capsule is 

defined as developmental reprogramming and it has supported the modern progression of the 

field to investigate an immense depth and breadth of exposures and outcomes; from air pollution 

and psychosocial stress to behavioral conditions and cancer. Naturally, with the discovery of 

these associations, comes an interest in determining the possible mechanisms of developmental 

reprogramming. These include, but are not limited to, alternations in nutrient sensing pathways 

(Brumbaugh & Friedman, 2014; Padmanabhan et al., 2016), epigenetic modifications (Guay et 

al., 2019), hormone and endocrine systems (Veiga-Lopez et al., 2016), and stem cell precursors 

(Sen et al., 2015). In other words, reprogramming can occur at the organ, cellular, and epigenetic 

level (Ross & Desai, 2013; Tarry-Adkins & Ozanne, 2011). That permanent effects on tissue 

function, cellular proportions, or gene expression might be the result of an early-life exposure 

has been demonstrated principally through animal models, with evidence increasing in human 
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cohorts. This dissertation evaluates the potential effects of two early life exposures utilizing a 

developmental programming framework examining epigenetic changes – specifically to DNA 

methylation. 

 

Epigenetics, development reprogramming, and DOHaD 

Discussions of epigenetics often begin with Conrad H. Waddington and his utilization of 

the term in his studies of embryology and genetics beginning in the 1930s (Nicoglou & Merlin, 

2017). Waddington was deeply interested in development and in understanding how the elements 

of an embryo and genes might interact to produce differentiated cells, structures, and the 

varieties of human form. After many years of study, he came to define epigenetics as an 

integrated network of interactions with the genotype and the environment, the result of which 

established an organism (Nicoglou & Merlin, 2017).  Waddington’s work and definition were 

foundational and later built upon by Barbara McClintock, François Jacob and Jacques Monod; 

Britten and Davidson, and Nanney to provide a deeper understanding of cellular differentiation 

during development and the regulation of gene expression. For the work presented in this 

dissertation we will use a definition of epigenetics as influenced by the works of Holliday 

(Holliday, 1994), Russo, Martienssen, & Riggs (Robertson, 2007); Skinner (Skinner, 2011), and 

Dolinoy and Jirtle (Dolinoy, Weidman, et al., 2007a). Wherein “epigenetics is the study of 

mitotically and/or meiotically heritable changes in gene function that cannot be explained by 

changes in DNA sequence” (Dolinoy, Weidman, et al., 2007b; Holliday, 1994; Robertson, 2007).  

For the purposes of this dissertation we will evaluate the epigenetic modification of DNA 

methylation. DNA methylation is the process by which methyl groups (-CH3) are enzymatically 

transferred from S-adenosylmethionine (SAM) to the carbon-5 position of the cytosine ring 
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(Dolinoy, Weidman, et al., 2007b; Mahmoud & Ali, 2019). Cytosine methylation typically 

occurs on those contained within CpG dinucleotides, and the 5-methylcytosine (5mC) created is 

functionally important in cellular processes—most notably by interfering with transcription 

machinery.  The non-random distribution of CpG dinucleotides throughout the genome manifest 

as discrete regions with specific concentrations of CpGs; often referred to as CpG islands, 

shores, or shelfs (Dolinoy, Weidman, et al., 2007b). CpG islands, for example, contain at least 

50% CpG content, are often located near promoter regions or first exons, and are often 

principally unmethylated (logically so as to allow for constitutive access to and transcription of a 

gene) (Dolinoy, Weidman, et al., 2007b). Alternatively, CpG sites located in the promoter or 

regulatory regions of transposable elements are typically highly methylated so as to suppress 

their activity. The study of DNA methylation in the context of DOHaD is relevant and critical as 

mechanism through which to characterize of an epigenetic link between the prenatal environment 

and offspring outcomes (McMillen & Robinson, 2005). Evidence suggests that these epigenetic 

mechanisms are susceptible to environmental influence, particularly during development. 

Periods during which the epigenome experiences extensive reprogramming are 

gametogenesis and pre-implantation (Reik et al., 2001). Research has shown that this 

exceptionally dynamic time of epigenetic activity is defined, in part, by the asymmetric 

epigenomic landscape of the maternal and paternal genomes during embryogenesis (Cantone & 

Fisher, 2013). Proper methylation/demethylation and histone/chromatin interactions during these 

two sensitive time periods (the length of this stage is not inconsequential although it is quite 

short) can affect development later by interrupting sequential activation of the maternal/paternal 

genomes (Cantone & Fisher, 2013). During embryonic development, the epigenome is 

comprehensively reprogrammed at two critical time periods. Primordial germ cells and somatic 
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embryonic stem cells undergo genome-wide demethylation and then remethylation (Stein & Lee 

Davis, 2012).  Preimplantation embryos also experience methylation reprogramming; wherein 

the paternal genome is actively demethylated and the maternal genome is passively demethylated 

(Messerschmidt et al., 2014; Reik et al., 2001). The maternal and paternal genomes are 

remethylated around the time of implantation. Environmental exposure during this crucial time 

has the potential to alter the normal epigenomic operating landscape via perturbation of 

activation kinetics of parental alleles (Gu et al., 2011). Interruptions in or incomplete epigenetic 

reprogramming of the fetal genome at either phase could lead to a de novo establishment of  

‘primary epimutations’ (Hitchins, 2015). Alterations in DNA methylation in somatic embryonic 

stem cells and primordial germ cells could result in changes that could be propagated to 

subsequent cells and possibly  influence development and disease later in life. (Marsit, 2015) 

Exposures of particular interest when experienced during pregnancy, because of growing 

evidence of their association with changes in fetal epigenetic reprograming, are the group of 

toxicants called bisphenols and maternal levels of nutrients from the one-carbon metabolism 

pathway that supply methyl groups and are key components of DNA methylation reactions. 

 

Exposure to Bisphenols and their role in fetal epigenetic reprogramming 

Bisphenol-A (BPA) is a chemical commonly used in receipts, plastics, and food 

packaging with striking evidence demonstrating its role as an endocrine disruptor (Acconcia et 

al., 2015). Human exposure to this toxicant is considered to be ‘ubiquitous,’ principally because 

of its wide-spread use as components in every-day products. Exposure to BPA and two of its 

commonly-used replacement analogues, bisphenol-F (BPF) and bisphenol-S (BPS), are readily 

detectable in U.S. populations (Calafat et al., 2005, 2008; Lehmler et al., 2018; Thayer et al., 
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2016). Recent reports indicate that BPA is detectable in over 95% of individuals (Acconcia et al., 

2015). BPF and BPS have been increasingly utilized in place of BPA as a result of consumer and 

scientific-based advocacy efforts. This pressure effectively elicited the Food and Drug 

Administration’s (FDA) ban of BPA in infant-related plastics and products (Siracusa et al., 

2018).  While it was and is significant that companies are removing BPA from their products, 

remarkably less is known about the toxicity or biological effects of exposure to BPF and BPS. 

New evidence suggests that these replacement chemicals, which have close structural similarities 

to BPA, may have comparable or increased levels of potency as endocrine disruptors and may 

also negatively impact the reproductive system (Eladak et al., 2015; Rochester & Bolden, 2015a; 

Siracusa et al., 2018). A recent systematic review compared the endocrine and physiological 

effects of BPA, BPF, and BPS and demonstrated that BPF and BPS have similar in vitro 

metabolism, potencies, and mechanisms of action to that of BPA and additional toxicity in 

separate hormonal actions (Rochester & Bolden, 2015b). It is unclear to what extent humans are 

exposed to BPF/S particularly as, in the United States, BPF and BPS were only recently added to 

the list of chemicals measured in the National Health and Nutrition Examination Survey 

(NHANES), appearing for the first time from 2013-2014 (Lehmler et al., 2018).  Rates of 

detection for BPF and BPS in the total population were 66.5% and 89.4% respectively. Despite 

the changes that have been made in ‘reducing’ utilization of BPA, it is evident that exposure to 

this environmental toxicant is still commonplace and there are additional concerns about the 

chemicals used in its stead. It is important to underscore that exposure in general is of concern 

not simply because it is common, but also because of the amount of evidence that links bisphenol 

exposure to serious health effects.  
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Considerable work has been done evaluating BPA exposure in vitro and these studies 

provide foundational evidence for the mechanisms of action through which BPA may alter or 

impact health. For example, BPA interrupts the activity of endogenous estrogens and estrogen 

nuclear hormone receptors; it affects androgen systems, thyroid hormone function, development, 

differentiation, and function of the central nervous system; the immune system; and intracellular 

signal transduction pathways (Wetherill et al., 2007). And while there are far fewer in vivo 

studies, their findings similarly identify BPA exposure to interfere with the mechanisms detected 

in vitro and to furthermore be associated with cancer, developmental problems, diabetes, obesity, 

metabolic syndrome, and possibly infertility or subfertility (Acconcia et al., 2015). What’s more, 

both in vitro and in vivo studies recognize the potential for BPA to elicit epigenetic 

dysregulation, particularly when experienced prenatally. Studies that investigate the association 

of prenatal BPA exposure with DNA methylation in mice observe differential methylation in 

genes and pathways involved in neuronal and inflammatory signaling (Weinhouse et al., 2016); 

intracellular signaling (Anderson et al., 2017); and repetitive elements (Faulk et al., 2016). Few 

studies have investigated prenatal exposure to BPA and DNA methylation in humans (Nahar et 

al., 2014, 2015). Although these studies contribute to understanding the impact of prenatal BPA 

exposure on specific tissues, little is known of the effect in full-term healthy infants or later in 

childhood. As of this writing, four human pregnancy cohort studies have evaluated the epigenetic 

impact of prenatal exposure to BPA in infants or children (Alavian-Ghavanini et al., 2018; Junge 

et al., 2018; Miura et al., 2019; Montrose et al., 2018) (Figure 1-1). There currently are no 

published studies that evaluate prenatal exposure to BPF and BPS.  

 

Maternal dietary exposures 
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 ‘Maternal exposure’ also encapsulates maternal dietary quality—the growing fetus is 

similarly exposed to the constitutive components and metabolites of a mother’s diet as it is 

environmental toxicants. There is significant evidence to support the notion that in mammals, the 

maternal diet can impact DNA methylation and fetal epigenetic reprogramming in her offspring 

(Canani et al., 2011; Hogg et al., 2012; Lau et al., 2011; Lillycrop & Burdge, 2011, 2015; 

Mathers, 2007; Saffery & Novakovic, 2014; Szyf, 2009; Thornburg et al., 2010) and increased 

risk of later life disease (e.g. obesity, type 2 diabetes and cardiovascular disease) (Ainge et al., 

2011; Gluckman et al., 2007; McMillen & Robinson, 2005; Volpato et al., 2012). Most of this 

evidence derives from animal studies, with the field beginning to establish studies and reveal 

findings and correlations in human cohorts.  

Studies performed in the viable yellow agouti (Avy) mouse, which has the distinct 

advantage of coat-color change as a visual biosensor, have been used to demonstrate the long-

term impacts of perinatal exposures (Dolinoy, 2008; Waterland & Jirtle, 2004).  One such study 

demonstrated that supplementation of the maternal diet with methyl donors (e.g. a diet high in 

folate) or the phytoestrogen genistein, negated the DNA hypomethylating effect of BPA 

exposure (Dolinoy et al., 2006; Dolinoy, Huang, et al., 2007). Human populations display 

significant variety in dietary patterns, yet few studies have evaluated the association between 

dietary pattern, BPA exposure and alterations in DNA methylation in a comprehensive and 

integrated approach.  

A notable study done in humans was performed by Heijmans et al. in 2008, which 

evaluated the impact of periconceptional and prenatal exposure to the Dutch Winter Famine of 

1944-45 (Heijmans et al., 2008). The study demonstrated that periconceptional exposure to 

famine resulted in significantly less DNA methylation of the maternally imprinted gene IGF2 
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more than 60 years later in affected individuals. IGF2 is a gene that is fundamental in human 

growth and development, and it is one of the best-characterized epigenetically regulated loci (F. 

M. Smith et al., 2006). Another excellent example is provided by Steegers-Theunisson et al., 

who conducted a study that investigated the impact of maternal dietary supplementation with 

folic acid on DNA methylation of the IGF2 differentially methylated region (DMR) in offspring 

(Steegers-Theunissen et al., 2009).  They demonstrated that infants whose mothers consumed a 

folic acid supplement prior to pregnancy had a 4.5% higher IGF2 DMR methylation, as 

compared to those infants whose mothers did not consume the supplement. Of increasing interest 

and promise in the field is the use of metabolomics to assess dietary intake or nutritional status of 

an individual and their associations with health and disease. Through the profiling of small-

molecule chemicals, nutrition and diet can be integrated to larger scale and more complex system 

analyses (e.g. in conjunction with epigenomics and genomics data) (Claus & Swann, 2013; Jones 

et al., 2012; Shin et al., 2014).  

A critical mechanism through which maternal dietary components might alter the fetal 

epigenome is the one-carbon metabolism pathway. One-carbon metabolism (OCM) is an 

integrated system of biochemical reactions catalyzed by enzymes and coenzymes (Anderson, 

Sant, et al., 2012; Mahmoud & Ali, 2019). Coenzymes take the form of dietary micronutrients 

such as folate, vitamin B12, vitamin B6, betaine, choline, and methionine. Through this system 

one-carbon groups (-CH3) are transferred from donor molecules to proteins or DNA. S-

adenosylmethionine (SAM) is the universal methyl donor for DNA methylation and is the 

cofactor for the key enzyme DNA methyltransferase (DNMT). Because one-carbon metabolism 

is a cycle, a fundamental element of its integrity is negative feedback; levels and availability of 



 10 

micronutrient cofactors influence the cycle’s ability to generate, maintain, and replenish the 

components of the cycle, while also swiftly responding to the cell’s needs.   

A growing body of evidence supports the role of methyl donors during pregnancy and 

their role in modifying DNA methylation in the infant. Investigations have evaluated gene-

specific DNA methylation (Hoyo et al., 2011; Pauwels, Ghosh, Duca, Bekaert, Freson, 

Huybrechts, A. S. Langie, et al., 2017; Pauwels, Ghosh, Duca, Bekaert, Freson, Huybrechts, 

Langie, et al., 2017) and epigenome-wide DNA methylation (Joubert et al., 2016; Knight et al., 

2018) in infants in response to maternal dietary or supplemental intake of one-carbon 

metabolites.  Ultimately, the field has only begun to understand the dynamics of maternal OCM 

across pregnancy and how they are associated with DNA methylation in the infant. Larger 

studies that evaluate a broader range of metabolites, assess the association between maternal and 

infant levels at multiple time points, and interrogate the infant epigenome at additional genes are 

needed to both validate existing studies and provide additional evidence of the importance of 

one-carbon dynamics during pregnancy.   

 

Approaches in environmental epigenomic studies  

 Environmental epigenomic studies that evaluate a prenatal exposure in humans, whether 

dietary or toxicant, often examine its association with DNA methylation in infant umbilical cord 

blood leukocytes (Herzog et al., 2020). A common topic of debate is whether cord blood serves 

as an accurate surrogate tissue in the measurement of these associations. Infant cord blood and 

whole blood in general is commonly utilized to measure epigenome-wide DNA in response to 

environmental exposure, because it is readily available, acceptable to collect (particularly in 

human birth cohorts), and the DNA methylation profile in whole blood is associated with a 
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variety of health conditions or exposures (Houseman et al., 2015). Recent work has started to 

integrate the use of algorithms that control for cell-composition effects of whole blood—a 

method that, when combined with epigenomic analysis in whole-blood DNA, offers the potential 

to assess many components of exposure response (Bakulski et al., 2016). However, increasing 

evidence also points to the potential for differential methylation across the epigenome to be 

tissue-and cell type-specific. For example, Herzog et al. detected tissue-specific differentially 

methylated regions (tDMRs) associated with human umbilical vein endothelial cells and with 

placenta (Herzog et al., 2020). Similar studies by Lin et al. and Wu et al. also detected tissue-

specific results when comparing epigenome-wide DNA methylation between cord blood and 

cord tissue (Lin et al., 2017; Y. Wu et al., 2019). These findings are important to acknowledge, 

because with the advances in technology to survey epigenome-wide DNA methylation, comes 

the additional responsibility to select appropriate tissues for the exposure and outcomes of 

interest. Studies are needed that not only evaluate tissue-specific DNA methylation in multiple 

tissues, but also evaluate such differences in the context of response to exposure and offer this 

perspective in a paired fashion.  

Currently, the correlation between exposure-induced epigenetic alterations in target and 

in surrogate tissues is unclear. Furthermore, this association may depend on the established 

epigenetic landscape of the tissues, the timing, route, and dose of exposure, among other 

components. Determining the utility of surrogate tissues in epigenomic analyses will enable 

more effective use of population-based studies to make connections between exposure, 

epigenetic changes, and the development of disease. Furthermore, it remains to be elucidated if 

cessation or elimination of pertinent exposure that may result in reversal of phenotype is 

associated with changes in the epigenome. This dissertation involves investigating first trimester 
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exposures—a highly relevant time in the context of epigenetic reprogramming. As a result, 

peripheral tissues like cord blood or cord tissue could be more appropriate for our research 

questions than they traditionally are, because of the propagation of early gestational epigenetic 

changes across tissues in the growing fetus.  

 

A healthy placenta is essential for a successful pregnancy and proper fetal development  

The placenta is a crucial mediator between mother and fetus; regulating nutrient supply 

and waste exchange. The placenta possesses an immense ability to adapt to the maternal 

environment, particularly during suboptimal conditions, ultimately, however, compromised 

placental development impacts fetal development (Myatt, 2006). Altered maternal environment, 

such as underfeeding, as primarily examined in animal models, has demonstrated to alter 

placental area (McCrabb et al., 1991), reduce placental vascularization and circulation (Reynolds 

et al., 2005), reduce placental nutrient transfer capacity (Maiiendran et al., 1993), and alter 

placental endocrine function (Sibley et al., 2004). DNA methylation and other epigenetic 

modifications are required for normal placental form and function (Tarrade et al., 2015), with 

evidence starting to indicate a role for altered placental DNA methylation in the etiology of adult 

or later-life disease. Furthermore, exposure to specific toxicants or maternal dietary components 

has been shown to alter DNA methylation of specific candidate genes or the whole DNA 

methylome (S.-A. Lee & Ding, 2012; Marsit, 2015). Studies are needed that examine altered 

maternal environment, placental epigenomics and offspring outcomes from a wider array of 

human exposures.   

  

Human pregnancy cohort  
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The samples to be used as part of this dissertation are derived from the Michigan Mother-

Infant Pairs study (MMIP; PI-Vasantha Padmanabhan), which initiated in 2012. This pregnancy 

cohort is valuable in its recruitment of women during their first trimester and emphasis on 

collecting a variety of maternal and infant biological samples (e.g., maternal blood and urine). 

Establishing a formal link between a given exposure and increased disease risk via epigenetic 

reprogramming, however, requires studies that examine the relationship from many different 

angles. These include: demonstrating epigenetic variability in early life in response to specific 

environmental exposures, establishing a link between epigenetic change and disease prior to 

onset, and determining the functional relevance of specific epigenetic changes (Saffery, 2014). 

Studies that utilize longitudinal models that begin prior to birth and follow offspring after birth 

have the greatest potential to elucidate the role of epigenetic reprogramming in the wide variety 

of human disease. Currently, only a few such studies exist that evaluate the prenatal environment 

and its consequent impact on the fetal and later-life epigenome in this type of longitudinal 

approach.    

 

Aims 

There is a critical need to evaluate early prenatal exposure to bisphenols and maternal 

diet in association with epigenetic outcomes in the offspring. Given the expansion of capabilities 

and tools in environmental epigenomics, it is vital that studies include additional tissues to assist 

in our understanding of the utility of surrogate tissues and in the diversity of fetal tissue response 

to prenatal exposure. Approaches that consider overall dietary quality and its impact on the fetal 

epigenome are a necessary part of facilitating risk evaluation; particularly as the necessary 

element of this work being that we should not only identify the consequences of prenatal toxicant 
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exposure, but as public health scholars we should also be able to provide actionable remedies to 

help individuals and populations live healthfully. The aims and goals of this dissertation are as 

follows.  

The Michigan Mother-Infant Pair (MMIP) pregnancy cohort will be used to investigate 

the hypothesis that prenatal exposure to bisphenols or maternal dietary components leads 

to the alteration of the offspring epigenome. Ultimately, these changes may contribute to 

differences in infant birth outcomes and disease risk later in life. Maternal biological specimens 

(e.g. blood and urine) collected at a first trimester visit and at delivery in conjunction with infant 

cord blood and tissue collected at delivery allow for evaluation of the relationship between 

maternal exposure (BPA, BPF, and BPS and maternal one-carbon metabolites) and 

developmental epigenetic reprogramming. Placental and umbilical cord tissue collected at 

delivery from a subset of families, in conjunction with umbilical cord blood, allows for the 

evaluation of the epigenetic differences in tissue response to exposure. Few studies combine the 

innovative technologies of epigenetics and metabolomics to consider an integrative and 

longitudinal view of maternal exposure and offspring outcomes. This proposal will address the 

following three aims:  

 

Aim 1: To identify changes in infant cord blood DNA methylation associated with 

maternal exposures to the bisphenols BPA, BPF, and BPS. Maternal first-trimester urine samples 

were evaluated for bisphenol concentration in partnership with NSF International (Ann Arbor, 

MI). Quantification of DNA methylation at >850,000 CpG sites in N=69 infant umbilical cord 

blood samples was performed with the use of the Infinium Methylation EPIC Beadchip (Illumina 

Platform). Multivariate regression models were used to investigate adjusted associations between 
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maternal bisphenols exposure and mean infant cord blood DNA methylation to evaluate the 

impact of maternal exposure on the infant epigenome. We hypothesize that maternal bisphenol 

levels will be associated with differentially methylated CpG sites (DMS) in infant cord blood. 

 

Aim 2: To identify genome-wide changes in infant cord blood DNA methylation 

associated with exposure to one-carbon metabolites. Untargeted metabolomic analysis via LC-

MS/MS was performed on maternal first-trimester, third trimester, and umbilical cord plasma for 

N=89 maternal-infant pairs. From these data, we extracted one-carbon cycle metabolites betaine, 

choline, methionine, SAM, and SAH for further analysis. Multivariate regression models were 

used to investigate adjusted associations between these one-carbon metabolites and the 

cumulative distribution of infant cord blood DNA methylation across all CpG sites to evaluate 

the impact of maternal exposure on the infant epigenome and relative patterns of association 

between the timepoints. We hypothesize that one-carbon metabolites will be associated with 

global shifts in the DNA methylation profile in infant cord blood. 

 

Aim 3: To compare DNA methylation response to bisphenols between matched umbilical 

cord blood, umbilical cord tissue, and placental samples. Using N=23 tissue triads, four 

candidate genes identified as associated with BPA exposure in Aim 1 in cord blood were 

assessed via pyrosequencing to investigate the following: 1) How does DNA methylation at 

candidate genes FN1, SNAP25, HOXA-AS3, and PRSS22 compare in cord blood, cord tissue, and 

placenta? 2) How does environmental response to bisphenols differ across these tissues? 3) What 

is the placental epigenome-wide response to prenatal bisphenol exposure?  Mixed effects 

regression was used to assess the response of these tissues to maternal exposure to bisphenols. 
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We hypothesize that DNA methylation at the candidate genes will be significantly different 

across tissue type, that prenatal bisphenol exposure will be differentially significantly associated 

by tissue, and that placental epigenome-wide DNA methylation will be associated with bisphenol 

exposure. 

 

Innovation  

Successful completion of the proposed research will contribute fundamental knowledge 

to the field and understanding of epigenetic reprogramming in response to maternal exposure. 

Figure 1-1 displays currently published human studies that evaluate maternal bisphenol exposure 

and infant DNA methylation. These studies, however, are not uniform across their approach in 

three key elements: (1) the time point and sample type in which bisphenol exposure was 

measured  (e.g., urinalysis during pregnancy or cord blood)], (2) the type of DNA methylation 

profiling (e.g., in candidate genes or epigenome-wide), and (3) the timepoint at which DNA 

methylation was analyzed in offspring. Establishing a formal link between a given exposure and 

increased disease risk via epigenetic reprogramming requires studies that examine the 

relationship from many different angles. These include: demonstrating epigenetic variability in 

early life in response to specific environmental exposures, demonstrating genetic and sex-

specific effects, establishing a link between epigenetic change and disease prior to onset, and 

determining the functional relevance of specific epigenetic changes (Saffery, 2014). Studies that 

utilize longitudinal models that begin prior to birth and follow offspring after birth have the 

greatest potential to elucidate the role of epigenetic reprogramming in the wide variety of human 

disease. This study is of the few to evaluate prenatal exposure to bisphenols or metabolites 

during the first trimester and its epigenome-wide association with DNA methylation infant cord 
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blood. As of this writing, this is the first study to not only include cord blood, umbilical cord, and 

placenta in DNA methylation analyses, but also to evaluate the differences between each tissue 

and prenatal bisphenol exposure.  Furthermore, this is also the first study to perform epigenome-

wide analysis in placenta evaluating its association with prenatal bisphenol exposure.  

 

Public health significance  

With the understanding that early-life exposures like BPA or maternal diet can have 

consequences for later-life disease, there is a genuine need to develop better tools for (1) 

assessing risk of exposure, (2) understanding the variation in consequences for an infant’s long-

term health, and (3) the potential for nutrient co-exposures with toxicant exposures to harm or to 

help mitigate risk. Improved insight into whole dietary patterns by newer dietary evaluation 

methods and the association with fetal epigenetic reprogramming will facilitate risk evaluation 

and development of better maternal nutrition counseling. Advances in epigenome-wide 

association studies will ultimately enable researchers, clinicians, and policymakers to target risk 

factors (e.g. environmental and nutritional exposures that perturb the methylome and 

downstream birth outcomes) and to better understand a portion of the myriad of elements 

underlying the developmental origins of health and disease. 
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Figure 1-1: A comparison of currently published human pregnancy cohort studies and the work proposed in this dissertation that 

investigate human prenatal bisphenol exposure and its association with offspring DNA methylation. 

 
 

Human Studies Investigating Human Prenatal BPA Exposure 

Trimester 1 Trimester 2 Trimester 3 Birth Childhood 

BPA in CB 

Miura et al., 2019 

450k

Maternal uBPA 1yr & 6yr

Junge et al., 2019 

450k

Maternal uBPA 7yr 

Alavian-Ghavanini et al., 2018 

Candidate genes via 

pyrosequencing

Maternal uBPA Infant CB  

Montrose et al., 2018 

Candidate genes via 

pyrosequencing

Maternal uBPA Infant CB  

Present study included in this manuscript  

850k
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Chapter 2 Maternal Environmental Exposure to Bisphenols and Epigenome-Wide DNA 

Methylation in Infant Cord Blood 

 

Introduction 

Bisphenol-A (BPA), a chemical commonly used in receipts, plastics and food packaging, 

is considered to be a ‘ubiquitous exposure,’ principally because of its wide-spread usage and 

high rate (over 95%) of detection in human urine (Calafat et al., 2008). Exposure to BPA and 

two of its commonly-used replacement analogues, bisphenol-F (BPF) and bisphenol-S (BPS), are 

readily detectable in U.S. populations (Calafat et al., 2005, 2008; Lehmler et al., 2018; Thayer et 

al., 2016). BPF and BPS are now increasingly utilized in place of BPA particularly as a result of 

consumer and scientific-based advocacy efforts. This pressure effectively elicited the U.S. Food 

and Drug Administration’s ban of BPA in infant-related plastics and products (Siracusa et al., 

2018). However, significantly less is known about BPF and BPS, with new evidence suggesting 

that these replacement chemicals with close structural similarities to BPA may have comparable 

or increased levels of potency as endocrine disruptors and may also negatively impact the 

reproductive system (Eladak et al., 2015; Rochester & Bolden, 2015a; Siracusa et al., 2018). In 

the U.S., BPF and BPS were only recently added to the list of chemicals measured in the 

National Health and Nutrition Examination Survey (NHANES), appearing for the first time from 

2013-2014 (Lehmler et al., 2018).  

While the proportion of adults and children with detectable levels of these bisphenols is 

concerning, the exposure patterns experienced by pregnant and lactating mothers introduce an 

additional layer of consideration. Specifically, when the potential impact on fetal development 
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and lifetime health trajectory are evaluated. Pregnant women in the U.S. and internationally are 

typically exposed to or have biological concentrations of urinary bisphenols at similar levels to 

non-pregnant women (Arbuckle et al., 2015; Callan et al., 2013; Gerona et al., 2016; Woodruff et 

al., 2011). Furthermore, BPA, BPF and BPS have the potential to cross the placenta at differing 

rates and with inter-individual variation (Grandin et al., 2018, 2019; J. Lee et al., 2018). 

Environmental research establishes the framework of time around conception, gestation, 

and birth as one of the most developmentally susceptible times of life. This aligns with the 

Developmental Origins of Health and Disease (DOHaD) hypothesis, which recognizes the 

connection between maternal exposure during pregnancy and the risks posed to her offspring’s 

health and later-life disease (Dolinoy, Weidman, et al., 2007a). An increasing number of studies 

have investigated the impact of prenatal exposure to bisphenols on phenotypic outcomes in 

infants and children. Maternal and prenatal exposure to bisphenols in humans is associated with 

pregnancy duration and birth weight (Ferguson et al., 2016; Veiga-Lopez et al., 2015; Wan et al., 

2018; Weinberger et al., 2014), increased risk of preeclampsia (Cantonwine et al., 2016), early 

childhood behavior (Braun et al., 2009; Evans et al., 2014; Perera et al., 2012), childhood body 

mass index (BMI) (Harley et al., 2013), and peripubertal metabolic homeostasis (Ashley-Martin 

et al., 2014; Watkins et al., 2016). Studies in mice have demonstrated that prenatal or early-life 

exposure to bisphenols is associated with altered brain development and behavior (Jašarević et 

al., 2013) as well as disruptions in metabolic homeostasis (Alonso-Magdalena et al., 2010; 

Anderson et al., 2013; J. Liu et al., 2013; Van Esterik et al., 2014), glucose metabolism (García-

Arévalo et al., 2016; J. Li et al., 2016), neuroendocrine function (Franssen et al., 2016; Witchey 

et al., 2019), and immune function (Fischer et al., 2016; Weinhouse et al., 2014). Despite these 

developments in understanding of the association between prenatal bisphenol exposure and 
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phenotypic outcomes in offspring, less is known of the possible mechanism through which 

bisphenols elicit these outcomes. 

Recent work indicates that environmentally induced disease etiology may be mediated by 

changes in the epigenetic profile (Cardenas et al., 2019; Ladd-Acosta & Fallin, 2019; Witt et al., 

2018). For the purposes of this chapter, we define the epigenome as consisting of chemical 

modifications (e.g. DNA methylation and histone modification) that are mitotically heritable and 

regulate gene expression but are not the result of a change in the DNA sequence (Dolinoy, 

Weidman, et al., 2007a). Currently, very few studies exist that evaluate prenatal bisphenol 

exposure and its consequent longitudinal impact on the fetal and later-life epigenome 

(Kundakovic & Champagne, 2011; McCabe et al., 2017). Most studies were completed in mice; 

with evidence suggesting that prenatal exposure to bisphenols is associated with changes in DNA 

methylation in genes regulating hepatic function (Strakovsky et al., 2015), metabolism 

(Anderson et al., 2016a; Anderson, Nahar, et al., 2012), neuronal (Kundakovic et al., 2013) and 

inflammatory pathways (Weinhouse et al., 2016), and other regulatory epigenetic machinery 

(Senyildiz et al., 2017). Four human studies in pregnancy cohorts have evaluated the epigenetic 

impact of prenatal exposure to bisphenols (Alavian-Ghavanini et al., 2018; Junge et al., 2018; 

Miura et al., 2019; Montrose et al., 2018). From these collective investigations comes significant 

insight into elements of the association between prenatal BPA exposure and DNA methylation in 

offspring growth and neurological function in addition to its sexually dimorphic nature. 

However, these studies are not uniform across their approach in three key elements: (1) the time 

point and sample type in which bisphenol exposure was measured  (e.g., urinalysis during 

pregnancy or cord blood)], (2) the type of DNA methylation profiling (e.g., in candidate genes or 

epigenome-wide), and (3) the timepoint at which DNA methylation was analyzed in offspring. 
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With advances in exposure science and DNA methylation technology, it is critical to evaluate 

exposure to multiple bisphenols from the first trimester, a time during which the epigenome is 

highly susceptible to reprogramming; and measure outcomes at birth, utilizing methods that 

generate data at all genes.  

This study discussed in this chapter aimed to test the association between maternal exposure to 

the bisphenol BPA or its substitute chemicals, BPF and BPS, and cord blood leukocyte DNA 

methylation at >800,000 loci in a longitudinal pregnancy cohort. We hypothesized that maternal 

bisphenol levels would be associated with differentially methylated CpG sites (DMS) in infant 

cord blood. This study is of the few to evaluate prenatal exposure to bisphenols during the first 

trimester and its epigenome-wide association with DNA methylation infant cord blood. 

Importantly, we are the first to use this method to also investigate the replacement phenols BPF 

and BPS.  

 

Methods 

Study Population 

The samples used in this study were derived from the Michigan Mother-Infant Pairs 

pregnancy cohort (MMIP), which initiated in 2011. Briefly, women providing informed, written 

consent were enrolled during their first prenatal visit to the University of Michigan Women’s 

Hospital clinic. At this visit, maternal first trimester blood and urine were collected.  Women 

also completed a questionnaire that gathered socio-demographic factors, health behaviors, food 

consumption and personal care product use, among other measures. Exclusion criteria included: 

age <18 years, prior infertility treatment, pregnancy with multiple fetuses, and pregnancy <8 

weeks or >14 weeks gestation. Women were provided study materials between weeks 34-38 of 
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gestation for blood and urine collection upon admission into labor. Maternal blood and urine 

were collected when admitted and umbilical cord blood samples were collected at delivery. At 

the time of writing, 331 mothers have enrolled in MMIP, and 200 have been followed-up 

through labor and delivery. For the analysis described here, a subset of MMIP families enrolled 

between 2011 and 2017 with first trimester exposure assessment of three urinary bisphenols and 

DNA methylation analysis via the Infinium EPIC were included (n=69). The University of 

Michigan Medical School Institutional Review Board approved all study procedures 

(HUM00017941).  

 

Epigenome-Wide DNA Methylation Analysis of Infant Umbilical Cord Blood 

 Infant cord blood samples (N=69) were collected into PaxGene Blood DNA tubes 

(PreAnalytix) with the use of butterfly needles at the time of birth and stored at -80℃ until 

processing. Total DNA was extracted with the PaxGene Blood DNA kit. DNA quality and 

concentration were assessed via Qubit at the University of Michigan Advanced Genomics Core. 

DNA was bisulfite converted using the EZ-96 DNA Methylation Kit (Zymo), wherein 

approximately 500ng of input DNA was used. The kit utilized sodium bisulfite to convert un-

methylated cytosines to uracil and ultimately thymine, while methylated cytosines were 

protected (Grunau et al., 2001).  

 Following bisulfite treatment, DNA methylation at >850,000 CpG sites was evaluated 

using the Illumina Infinium MethylationEPIC BeadChip (‘EPIC’) at the University of Michigan 

Advanced Genomics Core according to standard protocols. Cord blood samples were run on 

three separate days, and these experimental batches are considered in statistical models.   
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Processing and Quality Control of Infinium MethylationEPIC Data  

 Arrays were assessed for quality of samples and probes using a standard pipeline. Briefly, 

the pipeline utilized the minfi package (Aryee et al., 2014) (R Project for Statistical Computing) 

to read in raw data image files. Quality control of samples was assessed by comparing estimated 

sex (from methylation values on the X and Y chromosomes) with known infant sex, detection p-

values of probes, and intensity signals.  

Probes with poor detection (positions that failed detection in more than 10% of samples  

N=1475), cross-reactive probes, and probes that target polymorphic CpG sites in the Illumina 

HumanMethylation arrays were dropped (McCartney et al., 2016). The Functional Normalization 

(Fortin et al., 2014) R package was used to correct for background and perform dye-bias 

normalization.   

Using estimateCellCounts, the relative proportion of B-cells, CD4, CD8T, granulocytes, 

monocytes, neutrophils, and nucleated red blood cells (nRBCs) were estimated for each cord 

blood sample using an established algorithm based on DNA methylation profiles of sorted major 

cord blood cell types (Bakulski et al., 2016). estimateCellCounts is a cell proportion estimation 

algorithm that estimates the relative proportions of cell types within a given sample based on 

DNA methylation signatures of each cell type. 

These preprocessing steps resulted in 822,020 retained probes from N=69 cord blood 

samples that passed all quality control measures. Finally, M-values, defined as the log2 ratio of 

intensities of methylated probe versus unmethylated probes, were generated for each sample at 

these CpG sites and were used in downstream statistical analyses unless otherwise noted. 

 

Maternal Bisphenol Measurement 
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 Bisphenols (BPA, BPF, and BPS) were measured in spot urine samples collected from 

mothers during their first trimester visit (between 8-14 weeks) for this subset of MMIP 

participants (n=69). Samples were collected into polypropylene urine collection containers, 

aliquoted into glass vials, and frozen at -80℃ until analysis. Total urinary BPA, BPF, and BPS 

were measured at NSF International (Ann Arbor, MI) using isotope dilution-liquid 

chromatography-tandem mass spectrometry (ID-LC-MS/MS), as reported previously. (Goodrich 

et al., 2019) Specific gravity (SG) was measured using a handheld digital refractometer (Atago 

Co., Ltd., Tokyo, Japan) at the time of sample analysis. Urinary bisphenol values below the limit 

of detection (LOD, 0.2 ng/mL) were replaced with LOD/√2 (0.141 ng/mL).   

  

Statistical Analysis 

 All statistical analyses were performed in R version 3.6.0 (Platform: x86_64-apple-

darwin15.6.0 (64-bit) & Running under: macOS Mojave 10.14.6). We first performed univariate 

analyses on all exposure biomarkers and potential covariates of interest. We then assessed 

relationships between exposures and covariates to identify potential confounders via chi-square 

tests, t-tests, and Spearman correlations. First-trimester urinary BPA was modeled as a 

continuous variable, and BPF and BPS were modeled as categorical (above or below the LOD) 

(Supplemental Tables 1-3).  Singular Value Decomposition (SVD) analysis was performed with 

the ChAMP package (Tian et al., 2017). The correlation between principal components of the 

methylation data with biological and technical covariates was determined using linear regression 

(continuous variables) or Kruskal-Wallis (categorical variables). We did not identify potential 

confounders (i.e. covariates associated with both BPA and DNA methylation) to include in the 

model. However, due to their significant (p<1x10-5) association with the DNA methylation data 
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in the SVD analysis, infant sex, B-cells, nRBCs, and sample-plate (batch) were selected as 

covariates to adjust for in final models. 

 

Single-Site Association Analysis  

 Linear regression was used to identify differentially methylated CpG sites (using M-

values) by each maternal urinary bisphenol exposure, adjusting for covariates described above 

(infant sex, B-cells, nRBCs, sample plate). An empirical Bayes method in the limma (Smyth, 

2005) R package was then used to shrink probe-wise variances towards a pooled estimate and 

calculate a moderated t-statistic. M-values were selected for statistical analysis given their 

advantages which include meeting the assumption of homoscedasticity and superior performance 

in Detection Rate (DR) and True Positive Rate (TPR), especially for highly methylated and 

unmethylated sites (Du et al., 2010; Xie et al., 2019). P-value correction by the Benjamini-

Hochberg false discovery rate (FDR) method was used, (Hochberg & Benjamini, 1990) and a 5% 

FDR (i.e. q<0.05) were considered significant.  

Sensitivity analyses were performed. One maternal urinary BPA sample was identified as 

a statistical outlier (+2 standard deviations (SD) from the mean). The outlier was removed, and 

the single site analyses were rerun. The direction and significance of the sites identified as 

significant in the initial model were compared to the results from the model without the outlier. 

Additional analyses included examining scatterplots of the relationship between BPA and 

methylation at each significant site. 

In order to test whether the bisphenol exposures may be influencing the same genes, we 

calculated the Pearson correlation between the effect estimates of all CpG sites from models for 

each bisphenol.  
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Lastly, we compared results of previously published epigenome-wide studies focused on 

BPA exposure with our results.(Junge et al., 2018; Miura et al., 2019) Pearson correlation was 

run between the effect estimates for sites reported by Miura et al. as significant at p<0.0001 for 

all infants (Miura et al., 2019) and the corresponding results in our BPA model. Results from 

Junge et al. and Alavian-Ghavanini et al. were compared to our results for replication of the 

direction of the effect of BPA.  

 

Differentially Methylated Regions (DMRs) 

 We utilized dmrcate (Peters et al., 2015) to test for differentially methylated regions by 

maternal first trimester urinary phenols exposure. A differentially methylated region had to 

consist of at least 2 consecutive probes. Probes that were two nucleotides or closer to a single-

nucleotide polymorphism (SNP) that had minor allele frequency greater than 0.05 were filtered 

out first. The model was adjusted for cell type (Bcell and nRBC), infant sex, and batch. 

GenomicRanges (Lawrence et al., 2013) was used to graph an annotated representation of the 

DMRs. GenomicRanges requires the use of beta values (e.g., proportion of DNA methylation at 

CpG sites), and data are displayed as averaged across quartiles of BPA. Quartile cut-offs are as 

follows: Q1 [<LOD, 0.348], Q2 [0.349, 0.897], Q3 [0.898,1.90], Q4 [1.91,6.76] in ng/mL BPA. 

DMRcate analysis was also repeated without the BPA outlying subject.  

 

Pathway Analysis  

 LRpath (J. H. Kim et al., 2012) was utilized to perform gene-set enrichment across all 

probes annotated to genes (using Entrez Gene IDs) using concepts (also known as gene-sets) 

from KEGG and GO (Biological Process, Molecular Function, and Cellular Component). LRpath 
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uses raw p-values, fold changes, and Entrez gene IDs for each probe mapping to a known gene 

from the single-site linear model for the association between each bisphenol and DNA 

methylation. LRPath utilizes logistic regression in determining gene set membership status 

(dependent variable) by the statistical significance of genes' differential methylation 

(independent variable, raw p-value). Concepts from both Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) databases were selected from LRPath’s internal 

annotation database of gene-sets (concepts) as those onto which our data should be mapped, and 

only gene-sets with a minimum of 10 and a maximum of 250 genes were used; a directional test 

was included based on the direction of association between BPA and DNA methylation at each 

site. LRPath tests the odds that the genes in a concept have higher significance values (e.g., 

lower p-values from the differential methylation analysis) than expected at random, and FDR of 

5% was considered a statistically significant enriched gene-set.  

 

Results: 

Study Population Characteristics  

  Table 2-1 contains the demographic data of the maternal-infant pairs included in this 

study. The mean maternal age was 32, and on average, the number of weeks to delivery was 39.5 

weeks. After adjusting for specific gravity, mean maternal, first-trimester urinary BPA 

concentration was 1.19 ng/mL (range <LOD - 6.78 ng/mL) (Figure 2-1). The highest maternal 

BPA exposure was determined to be an outlier (e.g., greater than two SD away from the mean). 

However, her exposure levels were biologically plausible, given its fitting within the distribution 

of measured samples in the most recent NHANES report from 2014-2015. Therefore, this sample 

was retained. Fifty-nine of 69 (85.5%) maternal samples had urinary BPA levels above the LOD. 
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Mean maternal first-trimester urinary BPA concentration was 1.27 ng/mL (range <LOD – 19.97 

ng/mL) (Figure 2-1). Thirty-nine of 69 (56.5%) maternal samples had urinary BPF levels above 

the LOD, and two outliers were detected. Mean maternal first-trimester urinary BPS 

concentration was 0.37 ng/mL (range <LOD – 4.50 ng/mL) (Figure 2-1). Forty of 69 (57.9%) 

maternal samples had urinary BPS levels above the LOD.  

 When we assessed relationships between maternal first trimester urinary BPA exposure 

and covariates of interest, including maternal characteristics and estimated cord blood cell type 

proportions (Appendix Table 1) using Spearman correlations or t-tests, none were statistically 

significant. Similarly, t-tests and chi-square tests for covariates of interest with maternal first 

trimester urinary BPF and BPS (modeled as categorical variables) were not statistically 

significant except for pre-pregnancy BMI by BPF (detected vs. <LOD) (Appendix Table 2 & 3).  

 

Single-Site DNA methylation 

Single-Site Association Analysis revealed maternal first-trimester urinary BPA exposure 

was associated with 38 differentially methylated sites (DMS) in infant cord blood at q<0.05. The 

genomic inflation factor (lambda) for the analysis was 0.823. Increasing BPA concentrations 

were associated with lower DNA methylation at 87% of significant sites (Table 2-2). The five 

most significantly differentially methylated sites (q<0.003) were within the genes SLC2A1-AS1, 

KIF21B, CRYL1, HSPBAP1, and FN1. For interpretability, Table 2-2 also shows effect estimates 

from a model of the beta values. To more clearly demonstrate percent difference in methylation 

at each site, M-values were replaced with beta values in the single-site analysis. For example, for 

every 1ng/mL increase in BPA, DNA methylation at SLC2A1-AS1 decreased by 10%, while 

DNA methylation at KIF21B increased by 2.7%.  
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Appendix Table 4 provides results for the 38 DMS associated with prenatal BPA 

exposure when the model is run without the BPA outlying subject. When the outlier was 

removed, only two sites remained significantly associated with BPA at p < 0.0001, 

lambda=0.948 (in SLC2A1-AS1 and RAD52). The remaining CpG sites may be false positives or 

may only be perturbed at higher levels of exposure; this should be tested further in future studies.  

 BPF exposure, dichotomized as below or above the LOD, was not associated with DMS 

at FDR of q<0.05, but was associated with 19 DMS at p<0.0001, lambda=0.788.  BPS exposure, 

also dichotomized as below or above the LOD, was not associated with DMS at the FDR of 

q<0.05 but was associated with one differentially methylated site at VPS53 at p<0.0001, 

lambda=0.674.  

The effect estimates from the BPA, BPF, and BPS models were significantly correlated. 

BPA and BPF (cor=0.194), BPA and BPS (cor=0.116), and BPF and BPS (cor=0.179) were each 

significantly, positively correlated at p<2.2e-16. 

 

Differentially Methylated Regions 

Three differentially methylated regions (DMRs) were detected in association with 

maternal first trimester urinary BPA exposure, wherein each region possessed at least seven CpG 

sites. These genes were HOXA-AS3, PRSS22, and ZSCAN12P1. Two of the three regions 

(HOXA-AS3 and PRSS22) displayed an increase in DNA methylation with increasing BPA 

(Table 2-3).  Figure 2-2 includes the 18 HOXA-AS3 CpG sites contained within the DMR. 

Similarly, for PRSS22, across its 13 CpG sites higher maternal exposure first-trimester BPA 

exposure was associated with increased percent DNA methylation, and this association remained 

after exclusion of the BPA outlier (p=0.00000752). Alternatively, in the seven CpG sites of 
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ZSCAN12P1, higher maternal first-trimester urinary BPA exposure was associated with lower 

percent methylation.  

 

Pathway Analysis  

 BPA exposure associated DNA methylation sites were enriched for 38 pathways 

significant at FDR <0.05. Higher BPA exposure was associated with increased methylation for 

all enriched pathways (Table 2-4). The pathway or concept with the greatest odds of enrichment 

for differential methylation was type I interferon receptor binding; pathways related to type I 

interferon activity appeared four additional times. Other highly enriched pathways included 

JAK/STAT signaling and response; G-protein coupled receptor signaling, and immune response 

(Table 4). In general, the enriched pathways were associated with the nervous system, immune 

response, and neuroinflammation.   

Results from the BPF exposure were enriched for smaller p-values in one pathway: 

systemic lupus erythematosus (q=0.0295). Higher BPF exposure was associated with increased 

methylation in genes of this pathway (Table 2-4). BPS exposure associated DNA methylation 

sites were not enriched for pathways at FDR <0.05.  

 

Comparison of Results with Previously Published BPA Studies  

 42 of the 45 probes reported in Miura et al. as significantly associated with BPA exposure 

at p<0.0001 were included in our dataset. Pearson correlation between effect estimates at these 

42 sites revealed a slightly positive correlation (cor=0.106) that was not significant (p=0.503) 

(Supplemental Table 5). The direction of the effect of BPA exposure on DNA methylation in 

MEST and RAB408 in our results did not correspond to that detected by Junge et al. However, 
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Junge et al. modeled BPA as high versus low BPA exposure. The direction of the effect of BPA 

exposure on DNA methylation in GRIN2B also did not correspond to that reported by Alavian-

Ghavanini et al. Again, this group chose to model BPA as an ordered categorical variable and as 

4th quartile versus 1st quartile and reported odds ratios (Appendix Table 5).  

 

Discussion:  

In this chapter we evaluated the association of maternal first-trimester bisphenol exposure 

with differential DNA methylation in the infant cord blood. Utilizing the Illumina Infinium 

MethylationEPIC BeadChip (‘EPIC’) array to quantify DNA methylation in infant cord blood 

leukocytes at over 800,000 CpG sites, this study identified that maternal prenatal BPA exposure 

was associated with DNA methylation at 38 CpG sites while BPF and BPS in this same subset 

were not associated with specific CpG sites at q<0.05.  

The preconception period and early pregnancy is a sensitive developmental time period 

for both physiological development and epigenetic reprogramming. During embryonic 

development, primordial germ cells and preimplantation embryos undergo two waves of 

methylation reprogramming (Messerschmidt et al., 2014; Reik et al., 2001). During the first 

wave, the paternal genome is actively demethylated and the maternal genome is passively 

demethylated, followed by reprogramming and remethylation of somatic embryonic stem cells 

and primordial germ cells in accordance with infant sex (Stein & Lee Davis, 2012). The interface 

of this essential reprogramming event with potential environmental or maternal exposures leaves 

the fetal epigenome extremely vulnerable to insult or alteration (Marsit, 2015). It is therefore 

possible that   exposures experienced during this time period may alter DNA methylation in 
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somatic embryonic stem cells and primordial germ cells; changes which could be propagated to 

subsequent cells and possibly  influence development and disease later in life (Marsit, 2015). 

Considering very early in development is the most susceptible and a critical period for 

epigenetic effects (McCabe et al., 2017), the focus of this investigation centered on maternal 

exposure to bisphenols during the first trimester.  Our single-site analysis revealed 38 individual 

CpG sites in infant cord blood leukocytes that were differentially methylated in relation to early 

maternal BPA exposure (Table 2) and three differentially methylated regions in the genes 

HOXA-AS3, PRSS22, and ZSCAN12P1 (Table 3). However, the association of prenatal BPA 

exposure to DNA methylation in most of these genes was diminished when sensitivity analyses 

that excluded one outlying subject were performed. Associations with BPA and DNA 

methylation at CpG sites in SLC2A1-AS1 and RAD52 and the DMR in PRSS22 remained 

(p<0.001) after outlier exclusion emphasizing the need to study these further in other birth 

cohorts with phenol exposures.  

Using raw p-values, differentially methylated genes associated with BPA were enriched 

in pathways related to the nervous system, immune response, and neuroinflammation. For 

instance, a highly enriched set of concepts, as identified by the LRpath analysis, were 

JAK/STAT signaling and response. Previous literature has demonstrated an association between 

prenatal BPA exposure and disruption to genes involved in JAK/STAT signaling (Anderson et 

al., 2016b; Weinhouse et al., 2016). G-protein coupled receptors (GPCRs), which play an 

important role in the nervous system, were also enriched; 7 of 38 single sites were in genes that 

have functions related to this pathway (e.g., KIF21B, DIRC2, SNAP25, PDE8A, CAMKK2, 

ERC2, and DIP2C). Increasing evidence has demonstrated a connection between BPA exposure 

and dysregulation of the nervous system (Arambula et al., 2016; Jadhav et al., 2017; Martínez et 
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al., 2018). Lastly, the Interferon (IFN) 1 receptor and immune function pathways were also 

highly enriched with 5 of 38 single sites in genes with functions related to these pathways (e.g., 

MSC, RNF181, USP15, KIAA0922, and XKR6). Of particular interest as related to interferon 1 

receptor binding is its role in the severity and manifestation of systemic lupus erythematosus 

(SLE) (Crow, 2014). USP15, KIAA0922, and XKR6 are specifically related to this pathway and 

with SLE. It has been demonstrated that BPA can stimulate estrogen-receptor alpha (ERalpha) 

and IFN signaling in myeloid cells and immune pathways resulting in activation of innate 

immune sensors (Panchanathan et al., 2015), and increasing evidence supports the B-cell 

receptor pathway and IFN signaling in SLE pathogenesis (Järvinen et al., 2012). USP15 has been 

documented to play a role in regulating the type 1 interferon response, particularly as it relates to 

pathogenic neuroinflammation (Torre et al., 2017). TLR2 has also been demonstrated to be 

associated with arterial thrombosis in patients with SLE (Kaiser et al., 2014). Lastly, XKR6 is 

associated with susceptibility and childhood onset of SLE in a variety of cohorts (Bin Joo et al., 

2018; Yesim Demirci et al., 2017; You et al., 2015). Despite not reaching significance in the 

single-site models, urinary BPF exposure was also associated with the SLE gene set during 

enrichment analysis.   

Currently published literature of prenatal exposure to BPA and its epigenetic impact 

present similar findings of genes and pathways related to neurological function and 

inflammation. Junge et. al detected hypomethylation at two CpG sites in infant cord blood in 

response to maternal prenatal exposure to BPA: cg17580798 in the MEST promoter region and 

cg23117250 in an intronic region of RAB408 (Junge et al., 2018). These sites were not 

significantly associated with prenatal BPA exposure in our study; however, MEST expression in 

mesenchymal tissue and mesenchymal stem cells (MSCs) and its functional significance to 
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adipogenesis, particularly in the context of BPA exposure, is relevant to the role of HOXA-AS3, 

one of the DMRs detected in this study. HOXA-AS3 has a distinct role as an epigenetic switch in 

the lineage specification of mesenchymal stem cells as either promoting the adipogenic or 

osteogenic induction of MSCs (Zhu et al., 2016). Although we did not detect differential DNA 

methylation in the same genes, there is concordance between our results and those reported by 

Junge et. al. in the potential for prenatal BPA exposure to impact genes related to MSCs, 

adipogenesis, and perhaps long-term body weight. Montrose et. al investigated the impact of 

maternal first-trimester urinary BPA exposure on DNA methylation in candidate genes in the 

same MMIP cohort (Montrose et al., 2018). Urinary BPA exposure was associated with a 

decrease in DNA methylation in IGF2 and PPARA in female infants; highlighting both the 

sexually dimorphic response of exposure to bisphenols and its association with disruption of 

genes related to growth and, adipogenesis, and metabolism. Alavian-Ghavanini, et. al, a priori 

selected GRIN2B, a gene involved in neural function, and assessed associations between prenatal 

BPA exposure and DNA methylation at this gene in buccal DNA of 7-year old children 

(Alavian-Ghavanini et al., 2018). In the present study, prenatal BPA exposure was not associated 

with differential DNA methylation at the GRIN2B gene in infant cord blood leukocytes. 

However, there is evidence that expression of GRIN2B and two genes associated with BPA in the 

present study, SLC2A1 and HIF1A, are related to one another via overlapping pathways 

(Alavian-Ghavanini et al., 2018; Bild et al., 2006; G. Wu et al., 2010). Miura et. al, utilized a 

Japanese cohort for whom they measured BPA concentrations in  cord blood and evaluated 

cross-sectional epigenome-wide associations with cord blood DNA methylation (Miura et al., 

2019). A principle element of the study involved sex-stratified analyses, which detected 

significant differences in the response of male and female infants. They detected 28 differentially 
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methylated sites (q<0.05) in male infants and 16 differentially methylated sites in female infants 

(Miura et al., 2019). While the same genes were not significant in the present study, there was 

concordance between the genes Miura et al., detected and the results presented in this study as 

related to gene families. For example, PRSS is a gene family for which we detected a 

differentially methylated region (PRSS22), and CpG sites within SLC and KIAA were associated 

with BPA in the Japanese cohort.  

The discovery that neither BPF nor BPS maternal exposures were significantly associated 

with differential DNA methylation in the infant cord blood in this study was not surprising given 

the small sample size of the study, the necessity to model these exposures as categorical, and 

given that roughly half of mothers had undetectable levels of these bisphenols in their urine. 

Despite this, it was and is important to include BPF and BPS in the investigation of maternal 

exposure to bisphenols. BPF and BPS were first included in NHANES in 2013-2014, and 

Lehmler et. al found that exposures to BPA, BPF, and BPS among adults and children could be 

considered near-ubiquitous (Lehmler et al., 2018). We recommend assessment of other 

bisphenols in epigenetic studies in the future, because as the use of BPA substitutes in consumer 

products and manufacturing increases, it is pertinent to not only evaluate population exposure, 

but also to determine the impact of that exposure. Furthermore, we consider it valuable to 

simultaneously assess multiple bisphenols in human exposure studies so as to classify and 

categorize the similarities and differences of these toxicants.  

 

Limitations and Future Directions  

The MMIP cohort used in this study is based out of the University of Michigan Hospital 

in Ann Arbor, Michigan, and the majority of participants enrolled into the study were non-
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Hispanic White. This may limit the generalizability of the results. The final number of mother-

infant pairs included in this study was determined by the availability of samples with data (e.g., 

maternal first-trimester urine with exposure assessment and infant umbilical cord blood). This 

limited our statistical power to detect differentially methylated sites by all bisphenols, and 

broader pathways in association with maternal bisphenol exposure. However, in line with our 

recommendations for the inclusion of these bisphenols in exposure studies, the non-significant 

results that we detected for BPF and BPS still allow us to observe trends of exposure over time 

and a baseline to which we can compare future studies. We also acknowledge that the small 

sample size may lead to spurious effects from statistical outliers. Thus, we report results with and 

without one BPA outlier. Since we cannot determine in this study whether individuals with 

higher exposure levels would display similar associations with BPA, we recommend future 

studies of prenatal BPA exposure and the offspring epigenome be performed in populations with 

a wide range of exposure to better understand how families with increased toxicant burdens may 

be impacted.  

We also acknowledge the potential limitations of using infant cord blood as a surrogate 

tissue for evaluating the impact of prenatal exposures. While we control for cell-type 

heterogeneity with the use of a cord blood-specific cell type reference panel, cord blood is still 

principally made up of immune cells. This may explain, in part, why some of the single sites that 

we detected were associated with immune function. However, we consider it a distinct strength 

of this study that we chose first trimester maternal exposure assessment, particularly because we 

expect changes induced early in pregnancy to propagate across all germ layers and tissues of the 

developing fetus.  

Conclusion 
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This study examined the association between maternal first-trimester urinary bisphenol 

exposure and DNA methylation in infant cord blood. Maternal BPA exposure was associated 

with differential methylation at 38 single-sites in genes related to pathways of neurological 

function, inflammation, and in particular SLE. With mounting evidence of the consequences 

associated with exposure to endocrine disrupting chemicals comes the sincere need to evaluate a 

variety of exposures across many populations. BPA and its replacement chemicals, BPF and 

BPS, remain heavily utilized in manufacturing, and exposure to these chemicals is considered 

ubiquitous. This study adds to the body of evidence about prenatal exposure to bisphenols and its 

association with differential DNA methylation in infants. Furthermore, these data begin to 

elucidate the correlation between these chemicals and ultimately provide additional tools that 

may be integrated in risk assessment and mitigation in individuals or populations with higher 

bisphenol exposure levels. 
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Table 2-1: Descriptive statistics [median (25th, 75th percentiles) or n (%) for N=69 mother-infant pairs in the MMIP cohort. 

Maternal age (years) 32 (30, 34) 

Number of days to delivery (days) 277 (273, 282) 

Maternal Race/Ethnicity  

White 66 (95%) 

African American 1 (1.45%) 

Asian 1 (1.45%) 

Other or mixed race 1 (1.45%) 

B cell proportion 0.0890 (0.0625, 0.111) 

Monocyte proportion 0.0916 (0.0767, 0.105) 

nRBC proportion  0.0696 (0.0481, 0.113) 

CD4+cell proportion 0.151 (0.114, 0.189) 

CD8+ cell proportion 0.124 (0.100, 0.148) 

Natural killer cell proportion 0.00563 (0.0, 0.0270) 

Maternal urinary BPA (ng/mL) 0.898 (0.349, 1.91) 

Maternal urinary BPF (ng/mL) 0.298 (0.177, 0.820) 

Maternal urinary BPS (ng/mL) 0.226  (0.145, 0.365) 

Infant Sex 

   Female 37 (53.6%) 

   Male 32 (46.3%) 

Infant birth weight (gms) 3500 (3270, 3820) 

Limit of detection (LOD) <0.2 ng/mL. Urinary bisphenol measures 

adjusted for specific-gravity. 

 

 



 40 

Table 2-2: Differentially methylated CpG sites associated with maternal first trimester urinary BPA exposure. 

Locus Gene Name 
Relation to CpG 

Island 

Effect Estimate 

using Beta-

values 

Effect Estimate 

using M-values 

q-value  

FDR 

chr1: 43437674 SLC2A1-AS1 Open Sea -0.10 -0.86 0.00069 

chr1: 14591868  Open Sea -0.060 -0.69 0.00154 

chr1: 200992656 KIF21B Island 0.027 0.35 0.00154 

chr19: 36661673  Open Sea 0.031 0.29 0.00155 

chr13: 21049223 CRYL1 Open Sea -0.063 -0.75 0.00166 

chr18: 33160855  North Shore -0.0071 -0.47 0.00239 

chr3: 122512541 HSPBAP1 Island 0.028 0.37 0.00239 

chr8: 10622805  Open Sea -0.027 -0.27 0.00290 

chr2: 216237359 FN1 Open Sea -0.057 -0.68 0.00290 

chr16: 51184562 SALL1 Island -0.00096 -0.27 0.00290 

chr20: 10199434 SNAP25 North Shore -0.0011 -0.29 0.00290 

chr15: 85660361 PDE8A Open Sea -0.060 -0.70 0.00290 

chr8: 72756155 MSC Island -0.00077 -0.27 0.00333 

chr12: 121698404 CAMKK2 Open Sea -0.058 -0.50 0.00333 

chr19: 3180815  South Shore -0.00096 -0.41 0.00333 

chr2: 85822726 RNF181 Island -0.0038 -0.43 0.00370 

chr2: 239039182 ESPNL North Shore -0.045 -0.33 0.00402 

chr8: 33342681 MAK16 Island -0.00086 -0.27 0.00402 

chr7: 142536625  Open Sea -0.049 -0.36 0.00402 

chr11: 26595206 MUC15 Open Sea -0.060 -0.71 0.00487 

chr2: 71017846 FIGLA Island -0.017 -0.26 0.00712 

chr7: 1068244 C7orf50 Island 0.013 0.21 0.00712 

chr5: 106879524 EFNA5 Open Sea -0.030 -0.26 0.00753 

chr2: 172957268  North Shore -0.015 -0.40 0.00913 

chr12: 11324011 SMIM10L1 Island -0.00060 -0.26 0.00963 

chr3: 46752152 TMIE Open Sea -0.037 -0.24 0.01499 

chr16: 8735575 METTL22 Open Sea -0.028 -0.28 0.01543 

chr12: 62653559 USP15 North Shore -0.0021 -0.34 0.01769 

chr3: 56502021 ERC2 Island -0.012 -0.36 0.01797 

chr1: 111098247  Island -0.00062 -0.16 0.01906 

chr12: 123380878 VPS37B Island -0.0083 -0.44 0.02749 

chr19: 2462065  Island -0.00094 -0.27 0.02749 

chr10: 636076 DIP2C Open Sea -0.027 -0.26 0.02775 

chr14: 62210927 HIF1A Open Sea -0.017 -0.19 0.03846 

chr4: 154400013 KIAA0922 Open Sea -0.031 -0.27 0.03846 

chr4: 154349775  Open Sea -0.015 -0.18 0.03846 
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chr12: 1058965 RAD52 Island 0.011 0.25 0.03990 

chr8: 11059042 XKR6 Island -0.00049 -0.17 0.04156 

Note: Results shown are for CpG sites associated with maternal urinary first-trimester BPA exposure below false discovery 

rate (FDR) significance of q<0.05. Model was adjusted for infant sex, nRBCs, Bcells, and sample plate (batch).  Effect 

estimate is the unit change with each 1 ng/mL increase in BPA from the model of M-values (logit-transformed beta values). 

Beta is the effect estimate when modeling the proportion of methylation (beta value) at the same CpG site instead and 

represents the increase in proportion methylated per each ng/mL increase in first trimester BPA. The beta estimate is included 

for interpretation purposes; significance values are generated from the M-value analysis. 
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Table 2-3: Differentially methylated regions in association with maternal first trimester urinary BPA exposure. Significance was 

considered at q<0.05. 

Chromosome Gene Name Start (bp) End (bp) 
Number of 

CpG Sites 

P-

value(a) 

Max Beta Change per ng/mL 

BPA increase(b) 

7 
HOXA-AS3 

27183794 27184375 18 1.79E-14 0.0190 

16 PRSS22 2907517 2908715 13 6.83E-18 0.0376 

6 ZSCAN12P1 28058802 28059208 7 2.25E-13 -0.0388 

(a) Minimum FDR p-value for the region 
    

(b) For interpretability, changes across the DMR are reported as proportion methylated (beta), though models used logit-

transformed beta values (M-values).  
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Table 2-4: Gene-sets enriched for differentially methylated genes in cord blood leukocytes by maternal first trimester urinary 

BPA exposures using LRPath. 

Panel A. Pathways associated with maternal first-trimester urinary BPA exposure.     

Pathway 
ID 

Pathway Name 

Databa
se with 
Conce

pt 

No. of 
Genes 

in 
Conce

pt 

FDR 
Directi

on 

GO:0005
132 type I interferon receptor binding GOMF 13 

7.82E-
07 up 

GO:0000
786 nucleosome GOCC 86 

1.53E-
04 up 

GO:0044
815 DNA packaging complex GOCC 92 

1.53E-
04 up 

GO:0005
549 odorant binding GOMF 81 

3.07E-
04 up 

GO:0033
139 regulation of peptidyl-serine phosphorylation of STAT protein GOBP 18 

0.0020
6 up 

GO:0033
141 positive regulation of peptidyl-serine phosphorylation of STAT protein GOBP 17 

0.0020
6 up 

GO:0002
323 natural killer cell activation involved in immune response GOBP 25 

0.0025
8 up 

GO:0042
501 serine phosphorylation of STAT protein GOBP 22 

0.0025
8 up 

GO:1900
424 regulation of defense response to bacterium GOBP 11 

0.0025
8 up 

GO:0002
922 positive regulation of humoral immune response GOBP 15 

0.0035
9 up 

GO:0001
055 RNA polymerase II activity GOMF 10 

0.0057
0 up 

GO:0007
259 JAK-STAT cascade GOBP 155 

0.0058
4 up 

GO:0042
100 B cell proliferation GOBP 81 

0.0058
4 up 

GO:0043
330 response to exogenous dsRNA GOBP 40 

0.0058
4 up 

GO:0097
696 STAT cascade GOBP 155 

0.0058
4 up 

GO:0006
959 humoral immune response GOBP 157 

0.0063
1 up 

GO:0042
742 defense response to bacterium GOBP 205 

0.0083
7 up 

GO:0071
880 adenylate cyclase-activating adrenergic receptor signaling pathway GOBP 18 

0.0091
7 up 

hsa04623 Cytosolic DNA-sensing pathway KEGG 51 
0.0098

2 up 
GO:0016
290 palmitoyl-CoA hydrolase activity GOMF 11 0.0105 up 
GO:0007
189 adenylate cyclase-activating G-protein coupled receptor signaling pathway GOBP 82 0.0164 up 
GO:0007
192 adenylate cyclase-activating serotonin receptor signaling pathway GOBP 11 0.0164 up 
GO:0071
875 adrenergic receptor signaling pathway GOBP 25 0.0184 up 
GO:0032
993 protein-DNA complex GOCC 154 0.0209 up 

hsa04630 Jak-STAT signaling pathway KEGG 145 0.0213 up 

hsa04140 Regulation of autophagy KEGG 30 0.0213 up 
GO:0033
617 mitochondrial respiratory chain complex IV assembly GOBP 13 0.0337 up 
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GO:0034
340 response to type I interferon GOBP 79 0.0337 up 
GO:0060
337 type I interferon signaling pathway GOBP 75 0.0337 up 
GO:0071
357 cellular response to type I interferon GOBP 75 0.0337 up 
GO:0097
034 mitochondrial respiratory chain complex IV biogenesis GOBP 13 0.0337 up 

hsa05320 Autoimmune thyroid disease KEGG 44 0.0341 up 
GO:0050
830 defense response to Gram-positive bacterium GOBP 65 0.0381 up 

hsa05322 Systemic lupus erythematosus KEGG 118 0.0403 up 
GO:0007
187 

G-protein coupled receptor signaling pathway, coupled to cyclic 
nucleotide second messenger GOBP 183 0.0457 up 

GO:0002
286 T cell activation involved in immune response GOBP 84 0.0460 up 
GO:0019
731 antibacterial humoral response GOBP 35 0.0460 up 
GO:0005
665 DNA-directed RNA polymerase II, core complex GOCC 17 0.0497 up 

      

Panel B. Pathway associated with maternal first-trimester urinary BPF exposure.     

Pathway 
ID 

Pathway Name 

Databa
se with 
Conce

pt 

Numb
er of 

Genes 
in 

Conce
pt 

FDR 
Directi

on 

hsa05322 Systemic lupus erythematosus KEGG 118 0.0296 up 

Note: Significance was considered at FDR q<0.05.      
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Figure 2-1: Histograms of maternal first trimester urinary bisphenol measures (ng/mL) adjusted for specific gravity (SG). 
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Figure 2-2: Differentially methylated regions associated with first trimester urinary BPA exposure. 

 
 

 

 

Legend: Three DMRS in cord blood leukocytes in a) HOXA-AS3, b) PRSS22, and C) ZSCAN12P1 were identified via DMRcate 
that were associated with first trimester BPA levels (modeled as a continuous variable and adjusted for infant sex, batch, and 
estimated nRBCs and B cells). Here, proportion of DNA methylation (beta values) at CpG sites within the DMR are displayed, 

averaged across quartiles of BPA. Quartile cut-offs are as follows: Q1 [<LOD, 0.348], Q2 [0.349, 0.897], Q3 [0.898,1.90], Q4 
[1.91,6.76] in ng/mL BPA. 
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Chapter 3 Prenatal Timing of Exposure to One-Carbon Metabolites and the Epigenome-

Wide Response in Infant Cord Blood Leukocytes 

 

Introduction  

Nutritional adequacy in women during pre-pregnancy, pregnancy, and post-partum is 

critical for both maternal health and the health of her child. The first 1000 days, or the time 

between conception and a child’s second birthday (Schwarzenberg & Georgieff, 2018), is a time 

of such nutritional demand that rectifying preexisting nutritional deficiency is of immense 

importance. While consuming a well-rounded diet during pregnancy is foundational, there are 

many key nutrients that women are not sufficiently consuming and for which nutritional status is 

often not assessed. Furthermore, established requirements during pregnancy for many nutrients 

are either insufficient or are being reevaluated. The physiological changes that accompany 

pregnancy result in definitive changes in maternal nutritional needs.  

In general, the literature acknowledges that requirements during pregnancy increase and 

that maternal nutrient deficits or excess can have measurable impacts on her growing offspring 

(Mousa et al., 2019). For example, excessive fat or protein intake during pregnancy is associated 

with metabolic perturbations of fetal and postnatal development (Mennitti et al., 2015; Symonds 

et al., 2009). This is of particular concern because nearly three-fourths of the US population 

consumes a diet low in vegetables, fruits, dairy, and oils; while also exceeding the 

recommendations for added sugars, saturated fat, and sodium (Mosher et al., 2016). Additionally, 

increasing evidence demonstrates that maternal diet is significantly associated with altered fetal 

epigenetic reprogramming (Hogg et al., 2012; Lau et al., 2011; Mathers, 2007; Saffery & 
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Novakovic, 2014; Szyf, 2009; Thornburg et al., 2010) and increased risk of later life disease (e.g. 

obesity, type 2 diabetes, and cardiovascular disease) (Ainge et al., 2011; Gluckman et al., 2007; 

McMillen & Robinson, 2005; Volpato et al., 2012). Nutrients like folate, choline, betaine, 

methionine, and their metabolic derivatives may play a critical role in the modification of the 

infant epigenome (Jiang et al., 2012; Kulkarni et al., 2011; Pauwels, Ghosh, Duca, Bekaert, 

Freson, Huybrechts, A. S. Langie, et al., 2017; West et al., 2013; Yan et al., 2013). This set of 

nutrients is highly correlated to and involved in the one-carbon metabolism pathway.  

One-carbon metabolism (OCM) is principally mediated by folate, and it is a highly 

compartmentalized system of biosynthetic and catabolic reactions; the results of which produce 

and metabolize nucleotides and amino acids (Anderson, Sant, et al., 2012; Mahmoud & Ali, 

2019). Purines, thymidylate, the regeneration of methionine from homocysteine, and 

transmethylation reactions are products and functions of the OCM network. The intersecting 

pathways of remethylating homocysteine to methionine and the formation of the universal one-

carbon donor S-adenosylmethionine (SAM or AdoMet) are of particular focus in this chapter. 

  Methionine is a sulfur-containing amino acid and one of the nine amino acids essential to 

the diet (James D. Finkelstein, 1990). Within every cell, methionine use or function is divided 

into either protein synthesis or the formation of SAM (J. D. Finkelstein, 2000). Something to 

note here, and will be revisited shortly, is that amino acids, like methionine, and protein are very 

important for regulating energy metabolism in the body; protein is considered to be the second 

largest energy store in the body (George, 2006). The formation of SAM from methionine 

principally occurs in the liver; nearly 85% of the transmethylation reactions carried out by SAM 

and nearly 50% of methionine metabolism occurs in hepatic tissues (Lu & Mato, 2012). 

Methionine is converted to SAM with the addition of an adenosyl molecule by the enzyme 
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methionine adenosyltransferase (MAT) (J. D. Finkelstein, 2000). SAM is then poised to donate 

its one-carbon group (methyl group or -CH3) to other molecules, including proteins, nucleic 

acids, carbohydrates, lipids, and small molecules in transmethylation reactions (e.g., the transfer 

of methyl-groups), which is catalyzed by a class of enzymes called methyltransferases (MTs) (Lu 

& Mato, 2012). MT enzymes include the DNA methyltransferase (DNMT) family, which uses 

SAM to transfer methyl groups on to C5 of the cytosine nucleotide ring. The establishment and 

maintenance of DNA methylation epigenetic marks is therefore highly dependent upon the 

availability of methionine and SAM in the cell, and by association, a myriad of additional 

cofactors and coenzymes in the OCM cycle. Coenzymes take the form of dietary micronutrients 

such as folate, vitamin B12, vitamin B6, betaine, choline, and methionine.  

 SAM-dependent reactions create S-adenosylhomocysteine (SAH) as a byproduct and 

competitive inhibitor of these reactions (J. D. Finkelstein, 2000). SAH is subsequently 

metabolized to homocysteine and adenosine by SAH hydrolase in a reversible reaction. SAH 

hydrolase favors the biosynthesis of SAH, so it is critical to OCM homeostasis for the 

homocysteine generated from hydrolysis of SAH be removed (Lu & Mato, 2012). Homocysteine 

can either enter the transulfuration pathway whereby it is converted to cysteine or it can be 

remethylated to regenerate methionine. The regeneration of methionine from homocysteine 

occurs through either methionine synthase (MS), which requires both folate and vitamin B12 as 

cofactors, or through betaine homocysteine methyltransferase (BHMT), which requires 

betaine—generated through the oxidation of choline (Kalhan, 2016).  Micronutrient deficiencies 

and reduced protein intake have the potential to interfere with this pathway. So, baseline levels 

of given components of OCM are necessary, but because one-carbon metabolism is a cycle, a 

fundamental element of its integrity is negative feedback; levels and availability of micronutrient 
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cofactors influence the cycle’s ability to generate, maintain, and replenish the components of the 

cycle, while also swiftly responding to the cell’s needs.  

 Evidence suggests that disruptions of methionine metabolism and the related increased 

levels of plasma homocysteine are associated with metabolic abnormalities and health conditions 

in healthy adults and are of particular concern during pregnancy (Miller, 2012). Elevated 

homocysteine levels in adults is considered a risk factor for cardiovascular disease (Ganguly & 

Alam, 2015), neurodegeneration (A. D. Smith & Refsum, 2016), and other conditions (Fratoni & 

Brandi, 2015; Lai & Kan, 2015). In pregnancy, elevated levels of maternal plasma homocysteine 

are implicated in disorders such as preeclampsia (Gaiday et al., 2018; M. W. Kim et al., 2012), 

spontaneous abortion, and premature delivery (Bergen et al., 2012).  Several studies exist that 

evaluate the normal fluctuation of OCM metabolites across human pregnancy (Cikot et al., 2001; 

Dasarathy et al., 2010; Gilley et al., 2020; Lindsay et al., 2015; Pinto et al., 2015), however,  few 

studies have investigated a collective of OCM metabolites in association with epigenome-wide 

DNA methylation in the infant (Joubert et al., 2016; Knight et al., 2018). There is a genuine need 

to evaluate overall dietary quality and its impact on the fetal epigenome; such that improved 

insight into whole dietary patterns by newer dietary evaluation methods and the association with 

fetal epigenetic reprogramming will facilitate risk evaluation and development of better maternal 

nutrition counseling. 

Protein is a highly studied macronutrient, and although most women in developed 

countries are consuming enough protein, cross-sectional data on the rates of sufficiency and/or 

insufficiency of protein intake are not plentiful. Furthermore, very little is known about amino 

acid requirements in humans. Studies indicate that during pregnancy, the requirements for some 

amino acids increase to a greater extent than others, such that it is likely inaccurate to assume 
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that amino acid requirements increase in proportion to protein requirements (Elango & Ball, 

2016). Recent data derived through indicator amino acid oxidation, reveal that the current 

estimated average requirement (EAR) and recommended dietary allowance (RDA) are 

underestimates for many different groups, including pregnant women (Elango & Ball, 2016). 

Furthermore, studies in pigs show that requirements for threonine, lysine, isoleucine, and 

tryptophan increase during the later stages of pregnancy, but not at the same rate (Elango & Ball, 

2016).  

It is accepted that maternal diet during pregnancy is critical for normal fetal development. 

Evidence also supports the notion that maternal dietary requirements change for pregnancy to 

support mom and the various stages of fetal development. What requires elucidation is how 

nutrient requirements change at specific time points in pregnancy and the metabolic or 

physiologic fetal events that those changes are tied to and necessary for. OCM (proteins and the 

cofactor micronutrients) are such key compounds that understanding their concentrations from 

M1 to M3 opens the door to generating a map of 1) OCM dynamics during pregnancy, 2) linked 

developmental events relevant to those changes, and 3) the OCM with the greatest potential to 

alter the fetal epigenome or development. Interrogating these questions, with the endpoint of 

evaluating how OCM dynamics and concentration is associated with the availability of one-

carbon groups for methylating an offspring’s DNA, then allows for future investigations of 

whether current dietary recommendations are sufficient to support the metabolic changes at those 

timepoints. A study by Yan et al., eloquently demonstrates a portion of this process by 

investigating choline dynamics during late pregnancy with the use of stable isotope methodology 

and two choline intake groups. Yan et al., connected the concentration of a key OCM metabolite 

to metabolic processes and determined that current dietary recommendations for choline intake 
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during pregnancy were not sufficient to support the increased demand of those pathways. We 

considered it to be valuable and necessary to evaluate maternal levels of OCM at two time points 

and infant OCM levels at birth in association with fetal DNA methylation.  

 In this chapter we sought to identify genome-wide changes in infant cord blood DNA 

methylation associated with exposure to one-carbon metabolites. Untargeted metabolomic 

analysis via LC-MS/MS was performed on maternal first-trimester, third trimester, and umbilical 

cord plasma for N=89 maternal-infant pairs. From these data, we extracted one-carbon cycle 

metabolites betaine, choline, methionine, SAM, and SAH for further analysis. Multivariate 

regression models were used to investigate adjusted associations between these one-carbon 

metabolites and the cumulative distribution of infant cord blood DNA methylation across all 

CpG sites to evaluate the impact of maternal exposure on the infant epigenome and relative 

patterns of association between the timepoints. We hypothesized that one-carbon metabolites 

would be associated with global shifts in the DNA methylation profile in infant cord blood. 

 

Methods 

Study Population 

The samples used in this study were derived from the Michigan Mother-Infant Pairs 

pregnancy cohort (MMIP), which initiated in 2011. Briefly, women providing informed, written 

consent were enrolled during their first prenatal visit to the University of Michigan Women’s 

Hospital clinic. At this visit, maternal first trimester blood and urine were collected.  Women 

also completed a questionnaire that gathered socio-demographic factors, health behaviors, food 

consumption and personal care product use, among other measures. Exclusion criteria included: 

age <18 years, prior infertility treatment, pregnancy with multiple fetuses, and pregnancy <8 
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weeks or >14 weeks gestation. Women were provided study materials between weeks 34-38 of 

gestation for blood and urine collection upon admission into labor. Maternal blood and urine 

were collected when admitted and umbilical cord blood samples were collected at delivery. At 

the time of writing, 331 mothers have enrolled in MMIP, and 200 have been followed-up 

through labor and delivery. For the analysis described here, a subset of MMIP families enrolled 

between 2011 and 2017 with DNA methylation analysis via the Infinium EPIC and with 

untargeted metabolomics at each time point (maternal first trimester N=93, maternal third 

trimester N=98, and cord blood N=96) were included. The University of Michigan Medical 

School Institutional Review Board approved all study procedures (HUM00017941).  

 

Epigenome-Wide DNA Methylation Analysis of Infant Umbilical Cord Blood 

 Infant cord blood samples (N=111) were collected into PaxGene Blood DNA tubes 

(PreAnalytix) with the use of butterfly needles at the time of birth and stored at -80℃ until 

processing. Total DNA was extracted with the PaxGene Blood DNA kit. DNA quality and 

concentration were assessed via Qubit at the University of Michigan Advanced Genomics Core. 

DNA was bisulfite converted using the EZ-96 DNA Methylation Kit (Zymo), wherein 

approximately 500ng of input DNA was used. The kit utilized sodium bisulfite to convert un-

methylated cytosines to uracil and ultimately thymine, while methylated cytosines were 

protected. (Grunau et al., 2001) Following bisulfite treatment, DNA methylation at >850,000 

CpG sites was evaluated using the Illumina Infinium MethylationEPIC BeadChip (‘EPIC’) at the 

University of Michigan Advanced Genomics Core according to standard protocols. Cord blood 

samples were run on three separate days, and these experimental batches are considered in 

statistical models.   
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Processing and Quality Control of Infinium MethylationEPIC Data  

 Arrays were assessed for quality of samples and probes using a standard pipeline. Briefly, 

the pipeline utilized the minfi package (Aryee et al., 2014) (R Project for Statistical Computing) 

to read in raw data image files. Quality control of samples was assessed by comparing estimated 

sex (from methylation values on the X and Y chromosomes) with known infant sex, detection p-

values of probes, and intensity signals. Probes with poor detection (positions that failed detection 

in more than 10% of samples  N=1475), cross-reactive probes, and probes that target 

polymorphic CpG sites in the Illumina HumanMethylation arrays were dropped. (McCartney et 

al., 2016)  The Functional Normalization(Fortin et al., 2014)  R package was used to correct for 

background and perform dye-bias normalization.   

Using estimateCellCounts, the relative proportion of B-cells, CD4, CD8T, granulocytes, 

monocytes, neutrophils, and nucleated red blood cells (nRBCs) were estimated for each cord 

blood sample using an established algorithm based on DNA methylation profiles of sorted major 

cord blood cell types. (Bakulski et al., 2016)  

These preprocessing steps resulted in 804,108 retained probes from N=111 cord blood 

samples that passed all quality control measures. Finally, M-values, defined as the log2 ratio of 

intensities of methylated probe versus unmethylated probes, were generated for each sample at 

these CpG sites and were used in downstream statistical analyses unless otherwise noted. 

 

Metabolomics Profiling 

Metabolites were extracted using an extraction solvent of MAA (Methanol : Acetonitrile : 

Acetone 1:1:1) with internal standards; for 200 samples 100 ml extraction solvent and 4 ml 
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internal standard mixture. Samples were reconstituted with the solvent: Methanol : H2O, 2 : 98. 

Untargeted shotgun metabolomics was performed on the reconstituted M1, M3, and CB samples. 

Samples in Ex00616 (N=56) were ionized in positive and negative ionization model using an 

Agilent Technologies 6530 Accurate-Mass Q-TOF with a dual ASJ ESI ion source. Samples 

from Ex00946 (N=) analysis was performed on an Agilent system consisting of an Infinity Lab II 

UPLC coupled with a 6545 QTof mass spectrometer (Agilent Technologies, Santa Clara, CA) 

using a JetStream ESI source in negative mode. 

  Raw data processing was done using Agilent software (Agilent MassHunter Qualitative 

Analysis). Metabolites participating in one carbon metabolism were classified using the National 

Institute of Standards and Technology (NIST) reference manual (Moorthy et al., 2017). 

Annotated metabolites were identified via comparing their MS/MS spectra to authentic 

standards, purchased internal or external standards ran on the same instrument. 

Data normalization followed a recently described method (Fernández-Albert et al., 2014), 

using “pooled” reference samples that were analyzed repeatedly throughout each batch (M. Chen 

et al., 2014). Missing peak intensities were imputed by K-nearest neighbor-5 in features with at 

least 70% detection. R package “impute” was used for imputation. Features with less than 70% 

detection across samples were removed. Metabolites were log10 and z-score transformed. Z-

score transformation was accomplished by using the scale function in R with centering. To 

center, the column mean of each metabolite is subtracted from its corresponding column. To 

scale, the centered columns of x are divided by their standard deviations. This was done for both 

first trimester and term maternal metabolites as well as for infant cord blood metabolites prior to 

using them in downstream analyses. Analyses performed on across timepoints that include M1, 
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M3, and CB include N=89 samples. For SS-association analysis and global, analyses were 

performed within-set numbers M1(N=93), M3 (N=98), CB (N=96). 

 

Statistical Analysis 

 All statistical analyses were performed in R version 3.6.0 (Platform: x86_64-apple-

darwin15.6.0 (64-bit) & Running under: macOS Mojave 10.14.6). We first performed univariate 

analyses on all metabolites and potential covariates of interest. We then assessed relationships 

between metabolites within and across timepoints using Pearson correlation. Equality of 

variances across time points were tested using Levene’s Test (Fox et al., 2014). Following this, 

the distribution of metabolite concentration for each time point was visualized with boxplots. 

Subsequently, bivariate analyses were performed. Pearson correlation was used to test the 

correlation between metabolites, CB cell type proportions, and other covariates. T-test and 

ANOVA were performed to compare metabolite concentrations across categorical maternal and 

infant covariates and to compare average metabolite concentrations across timepoints. 

Singular Value Decomposition (SVD) analysis was performed with the ChAMP package. 

(Tian et al., 2017) The correlation between principal components of the methylation data with 

biological and technical covariates was determined using linear regression (continuous variables) 

or Kruskal-Wallis (categorical variables). SVD analysis revealed that infant cord blood DNA 

methylation was significantly correlated with covariates of interest. Infant sex, B-cells, nRBCs, 

and sample-plate (batch) were selected as covariates to adjust for in final models at each time 

point due to their significant (p<1x10-5) association with the DNA methylation data. Appendix 

1.6 provides the SVD plots for each time point.  
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Cumulative Distribution 

We performed unadjusted and adjusted logistic regression to assess the association 

between metabolite concentrations and global DNA methylation in infant cord blood. We 

calculated global methylation for each subject by first computing the mean methylation across all 

804,108 CpG sites (or probes). We also calculated mean methylation for each subject across sites 

annotated to CpG islands, CpG shores, and CpG shelves. From the GAMP R package (Zhao et 

al., 2015), the TestCDF function was used to test the association between the DNA methylation 

distribution across all probes for each subject and exposure to one of the five metabolites at each 

of the three time points. The function uses a functional regression approach to approximate the 

cumulative distribution function (CDF) of the methylation values for each individual and a 

variance component test to assess significance. 

 

Single-Site Association Analysis  

 Linear regression was used to identify differentially methylated CpG sites (using M-

values) by each metabolite exposure, adjusting for covariates described above (infant sex, B-

cells, nRBCs, sample plate). An empirical Bayes method in the limma (Smyth, 2005) R package 

was then used to shrink probe-wise variances towards a pooled estimate and calculate a 

moderated t-statistic. M-values were selected for statistical analysis given their advantages which 

include meeting the assumption of homoscedasticity and superior performance in Detection Rate 

(DR) and True Positive Rate (TPR), especially for highly methylated and unmethylated sites. 

(Du et al., 2010; Xie et al., 2019) P-value correction by the Benjamini-Hochberg false discovery 

rate (FDR) method was used, (Hochberg & Benjamini, 1990) and a 5% FDR (i.e. q<0.05) were 

considered significant.  
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Comparison to Previously Published Literature 

Single-site results from Knight et al., 2018 (Knight et al., 2018) that derived from their 

analysis of the association of cord blood DNA methylation with one-carbon metabolites in infant 

cord blood were compared to our dataset. Specifically, we examined the association between 

one-carbon metabolites and DNA methylation in our data set using the m-values of five CpG 

sites, which Knight et al., identified as associated with metabolites. The sites tested were as 

follows: cg09238801, cg09501509, cg13753351, cg03527802, cg20694545, and p<0.05 was 

considered significant. 

 

Differentially Methylated Regions (DMRs) 

 We utilized dmrcate (Peters et al., 2015) to test for differentially methylated regions by 

metabolite exposure. A differentially methylated region had to consist of at least 2 consecutive 

probes. Probes that were two nucleotides or closer to a single-nucleotide polymorphism (SNP) 

that had minor allele frequency greater than 0.05 were filtered out first. The model was adjusted 

for cell type (Bcell and nRBC), infant sex, and batch.  

 

Pathway Analysis  

 LRpath (J. H. Kim et al., 2012) was utilized to perform gene-set enrichment across all 

probes annotated to genes (using Entrez Gene IDs) using concepts from KEGG and GO 

(Biological Process, Molecular Function, and Cellular Component). Raw P-values generated 

from the single-site linear model for the association between each metabolite and DNA 

methylation at sites within genes were used. Concepts from both Gene Ontology (GO) and 
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Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were selected, and only gene-

sets with a minimum of 10 and a maximum of 250 genes were used; a directional test was 

included. LRPath tests the odds that the genes in a concept have higher significance values (e.g., 

lower p-values from the differential methylation analysis) than expected at random.   

 

Results  

Table 3-1 contains the univariate descriptive statistics of the maternal-infant pairs 

included in this study. The mean maternal age was 32, and on average, the number of weeks to 

delivery was 39.7 weeks. The majority of participants in this subset identified as White (~94%). 

Mothers also identified themselves as African American (2%), Asian (2%), or Other (2%). 

 Average metabolite concentrations within timepoint were graphed to evaluate trends 

across time point. Trends between M1 and M3 differed across metabolites. For example, average 

concentrations of SAM and betaine decreased between M1 and M3, while average concentration 

of methionine, choline, and SAH increased (Figure 3-1). Mean metabolite concentration change 

across pregnancy (between M1 and M3) was significantly different for SAH, SAM, betaine, and 

choline at p<0.001. Alternatively, average concentration significantly increased between M3 and 

CB for each metabolite at p<0.001. Lastly, with the exception of betaine and SAM, metabolite 

concentrations also increased between M1 and CB (Figure 3-1). Next within-metabolite 

concentrations were graphed across time point (Figure 3-2). Levene’s test revealed that the 

variance among timepoints for each metabolite was significantly different (p<0.001). CB 

metabolite concentrations had the greatest variance compared to M1 and M3.  

Pearson correlations between metabolites and between metabolites and CB cell types 

were performed (Figure 3-3). M3 metabolites betaine, choline, and methionine were the only 
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metabolites to be significantly correlated with maternal/infant covariates of interest. M3 betaine 

was positively correlated with infant gestational age (r=0.235), M3 choline was positively 

associated with infant birth weight (r=0.290), and M3 methionine was negatively associated with 

maternal age (r=-0.222). Metabolites within- and across-timepoints displayed significant 

correlations with CB cell type covariates (Figure 3-3). Three M1 metabolites betaine, choline, 

and SAM had significant correlations with CB cell types: betaine:nRBC (r=0.211); choline:NK 

(r=0.284); SAM:CD8T (r=0.284), SAM:Gran (-0.289), SAM:NK (0.248). M3 SAH was 

significantly correlated with Mono (r=-0.253) and NK (-0.227), and CB SAH was significantly 

correlated with NK (r=-0.249) (Figure 3-3). Given the small sample size of this study, we chose 

to include those cell types with the strongest association with DNA methylation in our 

population. 

Within-time point 

Within M1, betaine and choline were positively correlated (r=0.50), betaine and SAM 

were positively correlated (r=0.22), and SAM and SAH were negatively correlated (r=-0.47) 

(Figure 3-3). Within M3, betaine and choline were positively correlated (r=0.47), betaine and 

methionine were positively correlated (r=0.33), choline and methionine were positively 

correlated (r=0.24) (Figure 3-3). Within CB, betaine was positively correlated with choline 

(r=0.65), methionine (r=0.91), and SAH (r=0.57). Choline was highly positively correlated with 

methionine (r=0.76), and methionine was positively correlated with SAH (r=0.47) (Figure 3-3).  

Across time points 

M1 to M3: M1 choline was correlated with M3 choline (r=0.289), and M1 methionine 

was correlated with M3 methionine (r=0.496). M1 SAH was correlated with M3 methionine (r=-

0.257), M3 SAH (r=0.584), and M3 SAM (r=-0.267). M1 SAM was correlated with M3 choline 
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(r=0.235), M3 methionine (r=0.217), M3 SAH (r=-0.310), and M3 SAM (r=0.265). M1 SAH 

was significantly correlated with CB betaine (r=0.298) and CB SAH (r=0.756). M1 SAM was 

significantly correlated with CB SAH (r=-0.495). Three M3 metabolites were significantly 

correlated with CB SAH: M3 methionine (r=-0.253), M3 SAH (r=0.625), and M3 SAM 

(r=0.266).  

 

Global Changes in DNA Methylation 

 M1 SAH metabolite concentration was significantly associated with the global 

distribution of DNAm in infant CB in both unadjusted (p=0.000139) and adjusted (p=0.0467) 

models (Table 3-2). This analysis indicates that the entire distribution of DNAm is shifted as 

metabolite concentrations increase. To infer the direction of this shift, we performed linear 

regression, adjusting for covariates, on mean DNA methylation levels across all CpG sites and 

within regulatory regions (e.g., CpG islands). While not statistically significant, the associations 

between DNA methylation and SAH were negative, indicating a shift towards less methylation. 

M1 SAM, methionine, choline, and betaine metabolite concentrations were not significantly 

associated with the global distribution of DNAm in infant CB. Similarly, M3 metabolites were 

not significantly associated with the global distribution of DNAm in infant CB.  

 CB SAH metabolite concentration was significantly associated with the global 

distribution of DNAm in infant CB in both unadjusted (p=0.00115) and adjusted (p=0.00110) 

models (Table 3-2). This analysis indicates that the entire distribution of DNAm is shifted as 

metabolite concentrations increase. Again, we performed linear regression to infer the direction 

of this shift, adjusting for covariates, on mean DNA methylation levels across all CpG sites and 

within regulatory regions (e.g., CpG islands). While not statistically significant, the associations 
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between DNA methylation and SAH were negative for three of four regions, indicating a shift 

towards less methylation. CB SAM, methionine, and choline metabolite concentrations were not 

significantly associated with the global distribution of DNAm in infant CB.  

 

Single Site Association Analysis  

M1 metabolites were not significantly associated with differential DNA methylation at 

specific loci in infant cord blood at q<0.05. M3 SAH was significantly associated with 

methylation at 272 sites in infant cord blood at q<0.05. The genomic inflation factor (lambda) for 

this analysis was 0.832, indicating a slightly underpowered model. Increasing maternal SAH 

concentrations were associated with higher DNA methylation at 74% of significant sites. M3 

SAM, methionine, betaine, and choline were not significantly associated with differential DNA 

methylation in infant cord blood at q<0.05.  

CB SAH, betaine, and methionine were significantly associated with differential DNA 

methylation in infant cord blood. CB SAH was significantly associated with 81 sites at q<0.05. 

The genomic inflation factor (lambda) for this analysis was 0.942. Increasing CB SAH 

concentrations were associated with higher DNA methylation at 93% of significant sites. Betaine 

was significantly associated with two sites at q<0.05 (lambda= l.28). Lastly, CB methionine was 

associated with one site at q<0.05 (lambda=1.01). A site located in the gene FBXO16 was 

detected as the most differentially methylated site in both single site association analyses of CB 

betaine and of CB methionine. Increasing CB levels of betaine and methionine were associated 

with higher DNA methylation in this gene. CB SAM and CB choline were not significantly 

associated with differential DNA methylation in infant cord blood at q<0.05. 
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Comparison to Previously Published Literature  

We found one published study that assessed the association between metabolites (in CB) 

and CB DNA methylation. We compared results from our models at 5 CpG sites from Knight et 

al., that were associated with metabolites. In our dataset, these 5 CpG sites were not significantly 

associated with any CB metabolite at p<0.05. We also tested the association of the five CpG sites 

with OCM metabolites in from M1 and M3 timepoints. Site cg13753351 (PSMB7) and 

cg09501509 (unannotated) were significantly associated with M1 SAM at p<0.05 and 

cg09501509 (unannotated) was close to significant in M1 choline. cg09238801 (PNMA1) was 

significantly associated with M3 choline.  

 

Differentially Methylated Regions (DMRs)  

Forty-four differentially methylated regions were detected in association with M3 SAH 

metabolite levels. Each region contained at least two sites, with a maximum of 12 (Table 3-3). 

The topmost differentially methylated region is within gene ZNF559, which also appears among 

the topmost differentially methylated sites. Thirty-one out of 40 regions displayed increasing 

DNA methylation with increasing M3 SAH. Eight differentially methylated regions were 

detected in association with CB SAH metabolite levels. Each region contained at least two sites, 

with a maximum of 12 (Table 3-4). Five out of eight regions displayed decreasing DNA 

methylation with increasing CB SAH. ARGAP1 was also detected in the CB SAH single-site 

analysis.  Four differentially methylated regions were detected in association with CB betaine 

metabolite levels. Each region contained at least two sites, with a maximum of 11 (Table 3-4). 

Three out of four regions displayed decreasing DNA methylation with increasing infant CB 
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betaine. One differentially methylated region was detected in association with CB methionine 

metabolite levels; however, it was not within an identified gene.  

 

Pathway Analysis  

 M3 SAH associated DNA methylation sites were enriched for four gene-sets significant 

at FDR<0.05 (Table 3-5). For three of the four pathways, higher M3 SAH metabolite 

concentration was associated with decreased methylation in genes of the gene-set. CB SAH 

associated DNA sites were enriched for two gene-sets significant at FDR<0.05 and three gene-

sets significant at q<0.10 (Table 3.6). Higher CB SAH levels were associated with decreased 

methylation. The gene-set or concept with the greatest odds for enrichment for differential 

methylation was linoleic acid metabolism (FDR=0.0438). Pathways related to fatty acid and lipid 

metabolism, amino acid metabolism, and carbohydrate metabolism were significantly enriched.  

 

Discussion 

 This study examined the association of prenatal exposure to one-carbon metabolites at 

three time points with DNA methylation in the infant cord blood. By combining data from two 

high-dimensional platforms: LC-MS/MS untargeted metabolomics and the Illumina Infinium 

MethylationEPIC BeadChip (‘EPIC’) array, we identified  (1) patterns of one-carbon metabolites 

within time points and across pregnancy, (2) one-carbon metabolites with the potential to 

influence global DNA methylation in cord blood leukocytes, and (3) maternal and infant one-

carbon metabolites significantly associated with differential DNA methylation at specific genes 

in the infant cord blood.  
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 Pregnancy is a time defined by significant physiological adaptations of the maternal 

system that are designed to ensure the adequate transfer of nutrients and oxygen to the growing 

fetus.  Beginning around the time of implantation, the early embryo is fed by histiotrophic 

nutrition—the  secretion products of the uterine gland, which are also known as ‘uterine milk’ 

(Moser et al., 2018). The formation of the definitive placenta and hemotrophic nutrition of the 

fetus begins around the start of the second trimester (Pathology of the Human Placenta). The 

second, and particularly the third trimester are periods of immense fetal growth, with increasing 

demands for carbohydrates, free fatty acids, and OCM (Lain & Catalano, 2007). The placenta is 

a critical mediator of nutrient transport between the maternal and fetal circulation; however, our 

knowledge is limited about OCM and how their levels in maternal circulation change across 

pregnancy trimesters, how they are transferred into fetal circulation, and how perturbations in 

plasma levels (both maternal and fetal) of those nutrients might impact the essential processes of 

DNA methylation and the establishment of the fetal epigenome. This study provides some key 

insight into these unknowns.  

 We detected that average maternal plasma concentrations of the OCM SAM and betaine 

decreased between M1 and M3, while methionine, choline, and SAH levels increased. This 

pattern of temporal change across pregnancy is similar to those documented in the literature. 

Gilley et al., performed a longitudinal evaluation of maternal OCM and amino acids from 

preconception, 12 weeks’ gestation, and 32 weeks’ gestation using dried blood spots and LC-

MS/MS (Gilley et al., 2020). They determined that maternal methionine levels did not 

significantly change across pregnancy, while betaine significantly decreased, and choline 

significantly increased. These changes in betaine and choline were similarly detected by Yan et 

al., (Yan et al., 2012, 2013) and Visentin et al., (Visentin et al., 2015). In addition to evaluating 
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changes to maternal OCM concentrations across pregnancy, we were able to compare maternal 

OCM to CB OCM. We observed that infant CB levels of each metabolite were greater than 

maternal levels at M3. Reports by Visentin et al. and Molloy et al. found that cord plasma 

concentrations of free choline and betaine were 3 and 2 times maternal concentrations at birth 

(Molloy et al., 2005; Visentin et al., 2015). The study detailed in this chapter is unique in its 

measurement of SAM and SAH, and as it provides novel evidence of how these metabolites 

change across pregnancy as well as in comparison to CB concentrations.  

Typical or uncomplicated pregnancies are associated with an increased rate of 

transsulfuration during early gestation (Dasarathy et al., 2010). Transsulfuration involves the 

transfer of the sulfur group of homocysteine to form cysteine; cysteine is a critical component in 

protein synthesis and in the production of the antioxidant glutathione (Sbodio et al., 2019). This 

pathway is not active in the fetal liver and therefore the fetus is entirely dependent upon maternal 

transsulfuration throughout gestation (Kalhan, 2016). SAH acts as a competitive inhibitor of the 

transmethylation of SAM and as an indicator of OCM, such that the metabolism of SAH into 

homocysteine and its subsequent use in either the transsulfuration pathway or transmethylation 

pathway is critical to ensure that the cycle is not interrupted (James D. Finkelstein, 1990). 

Accordingly, the detected association between increasing concentrations of M1 SAH and the 

decreased global methylation of the infant epigenome at birth potentially implies a disruption in 

the metabolism of methionine that resulted in decreased availability of SAM and consequently in 

DNA hypomethylation. The remethylation of homocysteine to methionine can be accomplished 

by two separate pathways—a folate-dependent pathway, which utilizes methionine synthase 

(MS) and requires vitamin B12 as a co-enzyme; and a choline-dependent pathway whereby 

betaine homocysteine methyltransferase (BHMT) requires betaine as a co-factor. Evidence 
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indicates that SAH is the critical determinant of cellular methylation capacity and global DNA 

methylation in lymphocytes (Yi et al., 2000); increases in homocysteine are reflected in 

concomitant increases in SAH concentration. Further, evidence in murine models demonstrates 

that deficiencies in both folate and choline are associated with increases in SAH and global 

hypomethylation (B. Li et al., 2019; Mehedint et al., 2010). Our analyses also revealed that OCM 

concentrations between M1 and M3 were highly correlated, that SAH concentrations were 

positively correlated across all three timepoints, and that M1 SAH and SAM were most strongly 

correlated to CB SAH and SAM concentrations.  

In our analysis of the association between OCM and global changes in infant CB DNA 

methylation, M1 SAH and CB SAH were both significantly associated with the global 

distribution of DNA methylation in CB. From the linear regression analyses it was estimated that 

at both timepoints, increasing metabolite concentrations of SAH were associated with less 

methylation across the infant epigenome. The association between M1 SAH and a global shift in 

the infant epigenome is compelling, because not only is the first trimester an epigenetically 

vulnerable time (e.g., the critical period for fetal epigenetic reprogramming), but also because the 

fetus is directly dependent upon maternal dietary intake and nutrient stores for key metabolites 

like OCM to support DNA methylation reactions. That CB SAH was also significantly 

associated with a global shift in DNA methylation in the infant cord blood perhaps reveals the 

degree to which M1 OCM concentrations are predictive of CB concentrations and OCM 

potential (Molloy et al., 2005; Yan et al., 2012).  It is of value to consider whether this 

association is reflective of conditions during the first trimester that influenced the fetal epigenetic 

microenvironment and perpetuated across pregnancy so as to be detectable at birth. 



 68 

Alternatively, the association of M3 SAH and CB SAH with single-site DNA 

methylation in infant cord blood may be reflective of fine-tuning and changes in metabolism that 

are occurring as the fetus completes gestational growth. OCM concentrations are particularly 

important during this time period in relation to fetal tissue expansion, cellular growth, and the 

maintenance of DNA methylation marks (Yan et al., 2013). Analysis of the global distribution of 

DNA methylation provides some understanding of the metabolic environment during pregnancy 

overall. Single-site analysis of differential methylation at birth, on the other hand, aims to 

identify the most sensitive genes to change by one-carbon metabolite levels (Knight et al., 2018). 

We compared five CpG sites that were implicated as responsive to OCM by Knight et al., in their 

pilot study of OCM and infant CB DNA methylation, to M1, M3, and CB OCM and infant CB 

methylation in our cohort. Three of the five CpG sites were significantly associated with M1 and 

M3 metabolites in our cohort. There are few studies that evaluate the association between OCM 

concentration across pregnancy and DNA methylation such that, despite differences in study 

design, any replicability of detection of responsive genes across studies is promising and 

underscores the potential for OCM status to be a relevant exposure to fetal epigenetic 

reprogramming.  

DMR analysis detected 44 DMRs in association with M3 SAH and 8 DMRs in 

association with CB SAH. These regions include and span genes involved in gene expression 

and regulation. Pathway analysis indicated a potential enrichment of gene-sets involved in 

immune response for M3 SAH, while CB SAH pathways implicated specific lipid metabolism 

pathways. These differential changes in DNA methylation that are occurring in infant cord blood 

in association with period-specific levels of SAH are likely connected to critical functional and 

expression changes needed during pregnancy.  
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The results of this chapter implicate modifications in methionine metabolism of the one-

carbon pathway during pregnancy, which manifest as consistent associations between plasma 

SAH levels and both global and single-site DNA methylation in the infant cord blood. 

Methionine homeostasis is maintained not only through the cofactors B12, B6, and folate, but 

also through maternal dietary protein intake; the indirect and direct action of insulin and 

glucagon on methionine metabolism and whole-body protein turnover; and lastly through the 

redox state (Kalhan, 2009). Our global analyses and single-site analyses illuminate a portion of 

the relationship between OCM and gestational progress and the infant epigenome, while 

providing a foundation on which future investigations of OCM during pregnancy can build upon. 

 

Limitations and Future Directions 

 While the use of the untargeted metabolomics platform is a powerful analytic tool, using 

a targeted approach would have allowed us to quantify metabolites accurately. In this analysis 

we were limited to data on relative abundance of the five metabolites of SAM, SAH, choline, 

betaine, and methionine. The addition of homocysteine, serine, and folate likely would have 

provided a more detailed picture of the OCM dynamics in this cohort of women and infants. For 

example, evaluating homocysteine and serine levels across pregnancy may have given an 

indication of methionine’s utilization for transmethylation versus transulfuration. Furthermore, 

without dietary intake data for these mothers, our ability to detect associations between or make 

inferences about maternal sufficiency or insufficiency is finite. Our use of cord blood for 

epigenetics, as a surrogate tissue, limits our ability to draw conclusions about the association of 

OCM exposure on specific tissue development. Lastly, the sample size included in this study 
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limited our ability to detect all genes that were changing in response to the global shift in DNA 

methylation. 

 Future directions would include the addition of other metabolites in the OCM cycle, 

particularly cofactors and downstream metabolites of transulfuration. Evaluating maternal 

dietary intake of protein and foods high in methyl donors would allow for some understanding as 

to how intake correlates to plasma metabolite concentrations. Lastly, expanding epigenome-wide 

analyses to include the maternal timepoints of M1 and M3 in order to evaluate whether maternal 

epigenome or maternal OCM concentrations are more predictive of infant CB DNA methylation 

and OCM concentration.  

 

Conclusion 

 Maternal dietary intake during pregnancy is a critical factor in the growth and health of 

her offspring in utero and their risk of developing disease later in life. Key maternal dietary 

components are foundational in the one-carbon metabolism pathway—one function of which is 

to support and maintain DNA methylation throughout the body. Therefore, disruptions to both 

maternal diet and subsequently DNA methylation during pregnancy have the potential to alter 

fetal epigenetic reprogramming. We sought to evaluate OCM concentrations at M1, M3, and in 

CB and to determine the association between concentrations at those timepoints with infant cord 

blood DNA methylation. We found that SAH at both M3 and in CB were most significantly 

correlated with both global and single-site measures of DNA methylation and associated with 

pathways related to metabolism and cell-signaling. These data provide insight into patterns of 

OCM across pregnancy in maternal and fetal tissues and add novel information about the 



 71 

association between OCM concentrations during pregnancy and infant cord blood DNA 

methylation.    
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Table 3-1: Univariate descriptive statistics [median (25th, 75th percentiles) or n (%)] for N=89 mother-infant pairs in the MMIP 

cohort. 

Maternal age (years) 32 (30, 34) 

Number of days to delivery (days) 278.3 (274, 283) 

Maternal Race/Ethnicity  

White 83 (93.725%) 

African American 2 (2.24%) 

Asian 2 (2.24%) 

Other or mixed race 2 (2.24%) 

Pre-pregnancy BMI 26.17 (22.04, 28.29) 

Infant Sex 

   Female 47(52.8%) 

   Male 42 (47.20%) 

Infant birth weight (gms) 3533 (3270, 3820) 

B cell proportion 0.0873 (0.0649, 0.104) 

Monocyte proportion 0.0883 (0.0728, 0.105) 

nRBC proportion  0.0823 (0.0462, 0.112) 

CD4+ T cell proportion 0.150 (0.108, 0.188) 

CD8+ T cell proportion 0.123 (0.0969, 0.144) 

Natural killer cell proportion 0.0157 (0.0, 0.0230) 
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Table 3-2: Cumulative distribution (CDF) and linear regression analysis for one carbon metabolites across timepoints. 

Maternal First trimester Adjusted Model  

Cumulative Distribution p-value  

Methionine 0.446  

Betaine 0.551  

Choline 0.628  

SAH 0.0467  

SAM 0.200  

Linear Regression Estimate (SE) p-value 

SAH All CpG sites -4.30 0.375 

 Island -2.69 0.880 

 Shore -3.69 0.530 

 Shelf -3.55 0.351 

Maternal Third trimester   

Cumulative Distribution p-value  

Methionine 0.261  

Betaine 0.546  

Choline 1.0  

SAH 0.116  

SAM 0.819  

Cord Blood   

Cumulative Distribution  p-value  

Methionine 0.437  

Betaine 0.110  

Choline 0.820  

SAH 0.00110  

SAM 0.498  

Linear Regression Estimate p-value 

SAH All CpG sites -2.53 0.606 

 Island 5.99 0.741 

 Shore -2.41 0.684 

 Shelf -2.51 0.515 

 

 



 74 

Table 3-3: Differentially methylated regions associated with maternal third trimester SAH metabolite concentration. 

Coordinates Gene Name 
Number of CpG 

Sites 
P-value 

Max Beta Change 

per 1ln-SD Increase 

in SAH Metabolite 

chr19:9434270-9435397 ZNF559 12 3.01E-30 -0.0181775 

chr6:19042722-19042842  3 2.70E-20 0.09493959 

chr2:219697159-219697934  4 8.34E-17 0.08229797 

chr16:68563546-68564532 ZFP90 8 1.77E-16 -0.0098396 

chr10:134755601-134756707 TTC40 9 1.04E-15 -0.0373321 

chr10:75504089-75504431 SEC24C 4 6.81E-14 0.0028381 

chr1:32422024-32422214  2 1.20E-12 0.07419423 

chr20:45530115-45530513 EYA2 5 5.09E-12 0.07743727 

chr15:74466704-74467626  8 3.67E-11 0.07119991 

chr13:53602856-53603286  3 4.79E-11 0.0459873 

chr2:98612331-98612676  9 6.54E-11 0.00778542 

chr12:1772230-1773108  4 8.91E-11 0.04393667 

chr1:161697052-161697574  5 9.33E-11 -0.0016959 

chr12:49318487-49319263  9 9.33E-11 0.00677816 

chr15:90792223-90793056  10 9.40E-11 -0.0191133 

chr16:71688526-71688761  2 1.01E-10 0.0756491 

chr15:42213459-42213760  2 1.24E-10 0.04559198 

chr10:112610085-112610100  2 2.38E-10 0.06934625 

chr2:64978882-64979061  2 3.94E-10 0.00166852 

chr5:44575014-44575156  2 1.19E-09 0.02669672 

chr2:39493370-39493603  2 1.20E-09 0.06906493 

chr16:57219487-57220272  11 1.28E-09 -0.0366368 

chr9:140064540-140065057  8 2.85E-09 0.03047486 

chr2:46843324-46843544  4 2.86E-09 0.00284786 

chr13:43597263-43597736  6 7.52E-09 -0.0389196 

chr8:102216949-102217569  6 1.49E-08 0.00280453 

chr11:18433500-18434171  8 3.72E-08 0.03547202 

chr7:960246-960771  9 5.21E-08 -0.0300732 

chr19:55972646-55973338  11 6.50E-08 -0.022823 

chr16:83986452-83986941  6 6.56E-08 0.01504186 

chr12:76084308-76084805  4 9.07E-08 0.06835634 

chr7:157129430-157130065  9 9.16E-08 0.00367949 

chr12:124246917-124247223  7 2.92E-07 -0.0100377 

chr19:46144962-46145190  2 3.33E-07 -0.0031374 

chr6:20401608-20401796  3 3.83E-07 0.00171405 

chr1:103572615-103572723  2 6.41E-07 -0.0081583 

chr8:144653944-144653975  3 2.58E-06 0.00500794 

chr2:145281519-145281622  3 2.65E-06 0.00224292 

chr2:71162693-71162762  2 3.06E-06 0.03815554 

chr15:59180671-59180732  2 3.32E-06 0.04298845 

chr3:73046492-73046503  2 4.34E-06 0.00389077 

chr17:80189962-80190154  8 4.34E-06 0.01386486 

chr9:36136613-36136796  3 4.42E-06 -0.0017898 

chr10:127512031-127512103  3 4.96E-06 0.00119984 
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Table 3-4: Differentially methylated regions associated with cord blood metabolite concentration. 

 

Chromosome Gene Name Start (bp) End (bp) 
Number of 

CpG Sites 
P-value  

Max Beta Change per 1 

ln-SD Increase in SAH 

Metabolite  

CB SAH  chr17 ALOX12P2 6797466 6797590 2 5.02E-07 0.0342 

 chr22 ANKRD54 38244746 38244902 5 1.57E-10 0.0539 

 chr20 ARFGAP1 61915590 61916279 6 2.78E-13 -0.0330 

 chr16 PDK1 2652948 2653839 11 1.78E-15 -0.0533 

 chr2: NRP2 206628088 206629314 12 3.01E-15 -0.0632 

 chr16 CLDN9 3062056 3062975 10 5.18E-10 -0.0464 

 chr7 VWDE 12443529 12444115 10 7.78E-09 0.0581 

 chr6 CRISP2 49681178 49681391 8 4.59E-07 -0.0389 

CB Betaine chr2 CDKL4 39471028 39471182 2 3.17E-10 -0.0686 

 chr14   LOC646548 70690287 70690704 7 3.17E-10 0.111 

 chr1  S100A13 153599671 153600156 11 3.17E-10 -0.0736 

 chr6   RNF39 30039374 30039524 10 3.17E-10 -0.0544 
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Table 3-5: Gene-sets enriched for differentially methylated genes in cord blood leukocytes by maternal third trimester S-

adenosylhomocysteine (SAH) levels using LRPath. 

Pathway 

ID 
Pathway Name 

Database 

with 

Concept 

Number of Genes 

in Concept 
P-Value FDR Direction 

hsa04650 
Natural killer cell mediated 

cytotoxicity 
KEGG 121 5.17E-05 0.0108 down 

hsa04622 RIG-I-like receptor signaling pathway KEGG 63 2.04E-04 0.0213 down 

hsa05320 Autoimmune thyroid disease KEGG 43 3.38E-04 0.0235 down 

hsa00514 Other types of O-glycan biosynthesis KEGG 41 5.35E-04 0.0279 up 

Note: Significance was considered at q<0.05. 
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Table 3-6: Gene-sets enriched for differentially methylated genes in cord blood leukocytes by cord blood S-

adenosylhomocysteine (SAH) levels using LRPath. 

Pathway ID Pathway Name 
Database with 

Concept 

Number of Genes in 

Concept 
P-Value FDR Direction 

hsa05150 
Staphylococcus aureus 

infection 
KEGG 51 2.16E-05 0.00452 down 

hsa00591 Linoleic acid metabolism KEGG 30 4.20E-04 0.0438 down 

Note: Significance was considered at q<0.05. 
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Figure 3-1: One-carbon metabolite trends across time points. Concentrations averaged within maternal baseline, maternal term, 

and infant cord blood. 

 
 



 79 

Figure 3-2: Intra-individual variability within metabolite concentrations across time points. Betaine, Choline, Methionine, SAM, 

SAH. 

 
 

 



 80 

Figure 3-3: Matrix of Pearson correlations between metabolites, maternal and infant covariates, and cord blood cell types. Only 

statistically significant correlations (p<0.05) are colored in. 
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Chapter 4 DNA Methylation in Cord Blood, Cord Tissue, and Placenta: Comparison and 

Response to Prenatal Bisphenol Exposures 

 

Introduction 

 The theory of DOHaD, as demonstrated thus far in and throughout this dissertation, is an 

important scaffold onto which investigations of early-life exposures can build. Chapters 2 and 3 

aimed to expand upon the scientific understanding of the potential for maternal exposure to 

affect fetal epigenetic reprogramming, as one hallmark of DOHaD, by investigating changes in 

DNA methylation in cord blood leukocytes. Infant cord blood (CB), and whole blood in general, 

is commonly used to measure epigenome-wide DNA methylation in response to environmental 

exposure, because it is readily available, acceptable to collect (particularly in human pregnancy 

cohorts), and the DNA methylation profile in whole blood is associated with a variety of 

exposures and health conditions (Houseman et al., 2015). The epigenome differs in every tissue 

and even every cell type; a biological feature that assists in establishing tissue- or cell-specific 

gene expression and functions (Roadmap Epigenomics Consortium et al., 2015). Although 

advances have been made in elucidating how epigenomic signatures associated with cell types 

and tissues contribute to human disease (Campbell et al., 2020), additional studies are needed 

that address this concept. Epigenome-wide association studies (EWAS) can now integrate cell-

type estimation algorithms that allow for the determination and control of cell-composition 

effects of whole blood—a method that, when combined with whole-blood analyses, offers the 

potential to assess many components of exposure response (Bakulski et al., 2016).  
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The use of CB is as a surrogate tissue; whereby changes in CB DNA methylation are 

evaluated as a proxy for target tissues like the brain or liver (Chadwick et al., 2015; Rakyan et 

al., 2011). Most epidemiological studies are limited to the collection of surrogate tissues, because 

of the clear, ethical restrictions of utilizing target tissues. As a result, pregnancy cohort studies 

most typically use CB, and some also include the use of placental tissue. This pipeline is 

standard for early-life exposure EWAS in epidemiology, however, there is a growing consensus 

within the field of environmental epigenetics for the quantitative and comprehensive 

interrogation of the association between early-life exposures and alterations in epigenome-wide 

DNA methylation in multiple neonatal or infant tissues; beyond and in addition to CB. It is 

compelling to use CB, umbilical cord tissue (UC), and placenta (PL) together within a single 

pregnancy cohort because of the potential to elucidate the way that these tissues interact and 

respond to prenatal exposures. Both UC and PL are tissues that are feasible to collect at the same 

time as CB, and due to their different embryonic origins, they offer the potential to gather 

additional information about the association of an exposure with differential DNA methylation in 

separate developmental lineages.  

 In a study by Lin et al., DNA methylation profiling of CB and UC samples from 295 

neonates was performed with the IlluminaInfinium 450K array and compared between tissues 

(Lin et al., 2017). Hierarchical clustering analysis of infant UC and CB with 25 primary tissues 

and cells performed revealed that tissues and cells clustered in accordance with their germinal 

origin (Lin et al., 2017). Wherein CB clustered with hematopoietic stem cell (HSC)-derived 

mesodermic tissue (e.g. blood), while UC clustered with mesenchymal stem cell (MSC)-derived 

mesodermic tissue (e.g., muscle, heart, kidney) (Lin et al., 2017). Placenta, unlike CB and UC, is 

not composed solely of fetal cells, but rather it contains cells of both fetal and maternal origin. 
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These features of CB, UC, and PL, including that each tissue possesses its own epigenetic pattern 

of DNA methylation, establish a compelling incentive to not only add UC or PL to early-life 

EWAS, but also to compare their associations with exposures or outcomes of interest.  

 The PL is one of the most important tissues of pregnancy; engaging in multifaceted 

points of connection with the maternal and fetal system that require it to act as a master regulator 

to maintain the fetal environment. Proper formation and development of the PL is required for a 

successful pregnancy and is critical in fetal development. As such, research in fetal 

reprogramming and in human PL has turned its attention to the role of epigenetic regulation and 

modification in normal placental function and in the etiology of placental dysfunction (Maccani 

& Marsit, 2009). Recent evidence suggests that placentation, or the formation of the placenta, is 

regulated by epigenetic mechanisms and susceptible to dysregulation by environmental exposure 

(Strakovsky & Schantz, 2018). Not only is DNA methylation in the PL part of its normal 

physiology (Januar et al., 2015), but it also has varying characteristics of DNA methylation that 

are important for proper fetal development and progression through pregnancy. Currently, there 

is limited data detailing the effect of common human exposures like the bisphenols (BPA, BPF, 

and BPS) during pregnancy on placental or UC DNA methylation. However, birth cohort studies 

have reported associations between DNA methylation in PL and prenatal exposures including 

arsenic (Green et al., 2016), cadmium (Everson et al., 2018), copper (Kennedy et al., 2020), and 

maternal smoking (Morales et al., 2016). Both UC and PL are key tissues in fetal growth and 

development with evidence that UC and PL tissue-specific differentially methylated regions 

were enriched for functions in embryogenesis, vascular development, and the regulation of gene 

expression (Herzog et al., 2020). There is a critical gap in the literature of studies that compare 

CB, UC, and PL tissue DNA methylation both generally and in the context of prenatal exposure.  
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In this chapter, we compare DNA methylation across CB, UC, and PL at four genes. 

These genes were identified and selected from the study completed in Chapter 2—whereby 

prenatal exposure to BPA was associated with differential DNA methylation at 38 CpG sites and 

in three regions (DMRs) in CB. The candidate genes chosen include two genes from the single-

site analysis and two DMRs - FN1, SNAP25, HOXA-AS3, and PRSS22. These genes were 

selected in part because of their functional relevance to biological processes. 

FN1 (Fibronectin) is a high molecular weight glycoprotein and ubiquitous part of the 

extracellular matrix (ECM) (Dhanani et al., 2017). Fibronectin is involved in cell-adhesion and 

migration processes like embryogenesis and wound-healing; and expression levels of FN1 are 

correlated to pathologies like pre-eclampsia (PE) and intrauterine growth restriction (IUGR) 

(Wilson et al., 2015). SNAP25 (synaptosomal-associated protein 25) is a key protein of the 

SNARE complex—a fundamental component and actor in neuronal signaling, in 

neurodevelopment, and neuroendocrine release  (Kádková et al., 2019; Nazir et al., 2018). 

Disruption of the SNARE complex is linked to synaptic disfunction, neurodegeneration, and 

neurological disorders. SNAP25 has been distinguished as a potential neuropathological 

hallmark in identifying or treating disease (Karmakar et al., 2019).  

HOXA-AS3 belongs to the Hox gene family, which are evolutionarily conserved and 

who’s gene products are critical transcription factors (Quinonez & Innis, 2014). From 

developmental processes like anterior-posterior patterning to cell-lineage specification, Hox 

genes play a major role in development and oncogenesis. HOXA-AS3 is a non-protein coding 

Hox member, and as a long non-coding RNA (lncRNA), it is also considered an antisense 

transcript (AST) (Zhang et al., 2018). ASTs or antisense lncRNAs have been demonstrated to 

control and play a role in each level of gene regulation (Villegas & Zaphiropoulos, 2015). 
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PRSS22 (protease serine S member 22, brain-specific serine protease 4 (BSSP4), or tryptase 

epsilon) is a member of the human serine protease family (C. Y. Chen et al., 2014). It is an 

epithelial protein involved in ECM remodeling and in the urokinase plasminogen activator (uPA) 

system, which is implicated in a variety of cancers (Yasuda et al., 2005). Furthermore, PRSS22 

and the other members of the serine protease family, function to  degrade proteins in pathways 

related to inflammation, immunity, and embryonic development (Wong et al., 2001). 

The study presented in this chapter aimed to (1) compare average percent DNA 

methylation in candidate genes FN1, SNAP25, HOXA-AS3, and PRSS22 across CB, UC, and PL; 

(2) evaluate the association between prenatal exposure to the bisphenols BPA, BPF, and BPS and 

DNA methylation by tissue type; and (3) identify additional genes that are associated with 

prenatal bisphenol exposure in placental DNA using an epigenome-wide approach (EWAS). We 

hypothesized that DNA methylation at FN1, SNAP25, HOXA-AS3, and PRSS22 would be 

significantly different across tissue type, that prenatal bisphenol exposure would be significantly 

associated in a tissue-specific manner, and that placental EWAS would result in additional loci 

associated with bisphenol exposure. 

 

Methods 

Study Population 

The samples used in this study were derived from the Michigan Mother-Infant Pairs 

human birth cohort (MMIP), which initiated in 2011. Chapter 2 contains the details of participant 

recruitment, inclusion criteria, and study timeline. The study presented here utilized maternal 

urine collected at the first trimester visit and placenta, UC, and CB samples collected at the time 

of delivery from a subset of families. N=29 subjects had all three tissues (placenta, UC, and CB) 
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available—they are denoted as ‘tissue triads.’  N=23 maternal-infant pairs had maternal urinary 

bisphenol measures in addition to the tissue triads. The maternal and infant samples included in 

this study were collected between the years 2011-2017. Phenotypic data collected on and 

assessed in these samples included: maternal age, number of days to delivery, maternal height, 

maternal weight pre- and post-pregnancy, infant sex, and infant birth weight.   

 

DNA Extraction and Quantification of Tissue Triads 

DNA Extraction 

 Infant CB samples (N=29) were collected into PaxGene Blood DNA tubes (PreAnalytix) 

with the use of butterfly needles at the time of birth and stored at -80 until processing. Total 

DNA was extracted with the PaxGene Blood DNA kit. DNA quality and concentration were 

assessed via Qubit at the University of Michigan Advanced Genomics Core.  

 PL samples were collected shortly after birth; PL segments were dissected and stored at -

80 until processing. Total DNA was extracted with the AllPrep DNA/RNA/miRNA Universal 

Kit (Qiagen). DNA and quality concentration were assessed via Qubit at the University of 

Michigan Advanced Genomics Core.  

 UC samples were collected by dissecting a portion of the umbilical cord that was closest 

to the infant side. Samples were stored at -80 until processing. Total DNA was extracted with the 

DNeasy Blood & Tissue Kit (Qiagen). DNA quality and concentration were assessed via Qubit.  

Bisulfite Conversion 

DNA for each tissue was bisulfite converted using the EZ-96 DNA Methylation Kit 

(Zymo), wherein approximately 500ng of input DNA was used. The kit utilized sodium bisulfite 
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to convert unmethylated cytosines to uracil and ultimately thymine, while methylated cytosines 

were protected (Grunau et al., 2001).  

 

DNA methylation measurement  

Pyrosequencing (Tost & Gut, 2007) was used to measure DNA methylation levels at CpG 

sites in regions of interest in the genes FN1, SNAP25, HOXA-AS3, and PRSS22 in CB, UC, and 

placenta. PCR amplification was performed on the bisulfite converted DNA. Primers utilized for 

PCR amplification were designed using the PyroMark Assay Design Software 2.0 

(Supplementary file 1). DNA methylation levels were then quantified using the PyroMark Q96 

ID (Qiagen). Matched sample triads (e.g., CB, UC, and placenta) were run on the same plate for 

PCR amplification and pyrosequencing. All pyrosequencing plates included a 0% and 100% 

human bisulfite converted control, no-template controls, and one row of samples were run in 

duplicate.   

 

Maternal Bisphenol Measurement 

 Chapter 2 provides the full procedure by which the bisphenols BPA, BPF, and BPS were 

measured in maternal first trimester urine samples. Briefly, samples were collected from mothers 

during their first trimester visit at the University of Michigan Hospital, which took place between 

weeks 8-14 of pregnancy. Quantification of bisphenol concentrations and specific gravity (SG) 

were completed by NSF International (Ann Arbor, MI) as previously described (Goodrich et al., 

2019). Urinary bisphenol values below the limit of detection (LOD, 0.2ng/mL) were replaced 

with LOD/√2 (0.141ng/mL).  

 

Statistical Analyses  
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 All statistical analyses were performed in R version 3.6.0 (Platform: x86_64-apple-

darwin15.6.0 (64-bit) & Running under: macOS Mojave 10.14.6).  

Cross-tissue Comparison 

We first evaluated cross-tissue differences in DNA methylation at each gene. We 

visualized DNA methylation region averages for each subject through a spaghetti plot. Spearman 

correlations were calculated between tissue pairs. Finally, paired t-tests were run between tissue 

pairs to determine whether mean percent methylation at a gene was different across CB, CT, and 

PL.  

Bisphenol Exposure and Tissue Response  

 Additional univariate analyses were completed on those families for whom maternal 

bisphenol measures were available. Bivariate analyses were completed to classify the correlation 

between bisphenol exposures and candidate gene methylation, in addition to covariates of 

interest, utilizing Spearman correlation. Bisphenol measures were adjusted for specific gravity 

and natural log (ln) transformed. Mixed effects regression was utilized to assess associations 

between first trimester bisphenol exposures and DNA methylation in the tissue triads. BPA, BPF, 

or BPS were regressed on repeat measures of DNA methylation for each gene at the three 

tissues. Models included a random intercept representing each subject and also adjusted for sex 

and tissue type. An interaction term between tissue type and exposure was included to determine 

whether any tissue(s) relationship with the exposure differed from the rest. Given that this is a 

proof-of-concept study with a small sample-size, results with a p-value<0.20 were discussed.  

Since several genes had evidence for differential response across tissues (interaction term 

with p<0.20) by at least one bisphenol, the mixed effect regression was followed by linear 

regression for each gene in each separate tissue type to estimate the tissue-specific association 
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between exposure and DNA methylation. These models adjusted for infant sex, and when 

available, estimated cell type proportions of nRBCs and Bcells for CB and two surrogate cell 

type variables for placenta. Using estimateCellCounts, the relative proportion of B-cells, CD4 T-

cells, CD8 T-cells, granulocytes, monocytes, neutrophils, and nucleated red blood cells (nRBCs) 

were estimated for each CB sample using an established algorithm based on DNA methylation 

profiles of sorted major CB cell types (Bakulski et al., 2016). Using RefFreeEWAS, cell type 

proportions were estimated for placenta, which is explained in further detail below.   

 

Epigenome-Wide DNA Methylation Analysis of Placenta 

Following bisulfite treatment, PL DNA methylation at >850,000 CpG sites was evaluated 

using the Illumina Infinium MethylationEPIC BeadChip (‘EPIC’) at the University of Michigan 

Advanced Genomics Core according to standard protocols.  

Processing and Quality Control of Infinium MethylationEPIC Data  

 Arrays were assessed for quality of samples and probes using a standard pipeline. Briefly, 

the pipeline utilized the minfi package (Aryee et al., 2014) (R Project for Statistical Computing) 

to read in raw data image files. Quality control of samples was assessed by comparing estimated 

sex (from methylation values on the X and Y chromosomes) with known infant sex, detection p-

values of probes, and intensity signals. Probes with poor detection (positions that failed detection 

in more than 10% of samples  N=1475), cross-reactive probes, and probes that target 

polymorphic CpG sites in the Illumina HumanMethylation arrays were dropped. (McCartney et 

al., 2016)  The Functional Normalization(Fortin et al., 2014)  R package was used to correct for 

background and perform dye-bias normalization.   
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Using RefFreeEWAS, the relative proportion of putative cell types were estimated for PL 

with a reference-free deconvolution algorithm. This method utilized the underlying PL 

methylome to estimate constituent cell types and the number of cell types (Houseman et al., 

2016). After these steps, two ‘cell types’ were retained. These preprocessing steps resulted in 

822,020 retained probes from N=28 PL samples that passed all quality control measures. Finally, 

M-values, defined as the log2 ratio of intensities of methylated probe versus unmethylated 

probes, were generated for each sample at these CpG sites and were used in downstream 

statistical analyses unless otherwise noted. 

Single-Site Association Analysis  

 Linear regression was used to identify differentially methylated CpG sites (using M-

values) by each bisphenol exposure, adjusting for covariates infant sex and two surrogate 

variables for placental cell type. An empirical Bayes method in the limma (Smyth, 2005) R 

package was then used to shrink probe-wise variances towards a pooled estimate and calculate a 

moderated t-statistic. M-values were selected for statistical analysis given their advantages, 

which include meeting the assumption of homoscedasticity and superior performance in 

Detection Rate (DR) and True Positive Rate (TPR), especially for highly methylated and 

unmethylated sites.(Du et al., 2010; Xie et al., 2019). Due to the small sample size and 

exploratory nature of this part of our study, we used the p-value cut-off of p<0.0001. Ln-adjusted 

bisphenol measures were used in statistical models.  

Differentially Methylated Regions (DMRs) 

 We utilized dmrcate (Peters et al., 2015) to test for differentially methylated regions by 

bisphenol exposure. A differentially methylated region had to consist of at least 2 consecutive 

probes. Probes that were two nucleotides or closer to a single-nucleotide polymorphism (SNP) 
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that had minor allele frequency greater than 0.05 were filtered out first. The model was adjusted 

for placental cell type (here called X1 and X2) and infant sex. A significance cut-off of p<0.0001 

was used.  

Pathway Analysis  

 LRpath (J. H. Kim et al., 2012) was utilized to perform gene-set enrichment across all 

probes annotated to genes (using Entrez Gene IDs) using concepts from KEGG and GO 

(Biological Process, Molecular Function, and Cellular Component). Raw P-values generated 

from the single-site linear model for the association between each bisphenol and DNA 

methylation at sites within genes were used. Concepts from both Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were selected, and only gene-

sets with a minimum of 10 and a maximum of 250 genes were used; a directional test was 

included. LRPath tests the odds that the genes in a concept have higher significance values (e.g., 

lower p-values from the differential methylation analysis) than expected at random. Significance 

for gene-sets was considered at q<0.05.  

 

Results 

DNA Methylation Varies across Tissue Type  

 Initial trends in average percent DNA methylation in candidate genes across tissue, 

spaghetti plots were generated (Figure 4-1). Across candidate genes FN1, SNAP25, HOXA-AS3, 

and PRSS22, UC tended to have higher percent methylation compared to CB and patterns in 

methylation across tissue differed depending on whether a gene was highly or lowly methylated.  

 DNA methylation percent, averaged across the sites for a given gene in each tissue, were 

graphed in boxplots (Figure 4-2) and compared via t-tests. Correlations between tissues were 
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also assessed. Notably, FN1 and HOXA-AS3 displayed similar cross-tissue trends, as did 

SNAP25 and PRSS22. UC and PL average percent methylation were negatively correlated 

(p<0.05) in FN1 and HOXA-AS3, while CB and PL average percent methylation were positively 

correlated (p<0.05) in SNAP25 and PRSS22. Furthermore, paired t-tests demonstrated that 

average percent methylation was significantly different between at least one tissue pair per 

candidate gene. For example, in both FN1 and HOXA-AS3, UC had the highest average DNA 

methylation percent, while PL had the lowest (Figure 4-2). Lastly, SNAP25 and PRSS22 had two 

tissue pairs that were not significantly different upon comparison.  

Environmental Exposure Response across Tissue Type  

 To further assess tissue-specific differences or similarities we sought to determine the 

degree to which tissue types responded to environmental exposure to bisphenols. Table 1 details 

the univariate statistics for maternal BPA, BPF, and BPS exposure for the subset of families for 

whom all three tissues and first-trimester exposure levels were available. 95% of samples (22/23) 

had BPA levels above the LOD and 83% of samples (19/23) had BPF and BPS levels above the 

LOD.  

 First, mixed effects regression was performed to evaluate whether tissue-specific DNA 

methylation was associated with BPA, BPF, or BPS exposure (Figure 4-3). An interaction term 

between tissue and exposure was also included. Significant interactions were detected between 

BPF and tissue type for both FN1 (p=0.0102) and HOXA-AS3 (p=0.00882). Mixed effects 

modeling was followed by linear regression of each separate tissue to estimate associations 

between exposure and DNA methylation.While none were significant at p<0.05, we discussed 

with p<0.20 to inform future research. BPA exposure was associated with PL DNA methylation 

in candidate genes FN1, SNAP25, and PRSS22 (Figure 4-3). For example, for every ln-
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transformed-unit increase in BPA exposure (i.e. 2.23ng/mL), average PL DNA methylation at 

FN1 decreased by 5.45% (p=0.094) (Figure 4-3). BPA exposure was only associated with CB 

DNA methylation in SNAP25 (p=0.169) and did not display an association with UC DNA 

methylation. BPF exposure was associated with PL DNA methylation in FN1 (p=0.15) and 

HOXA-AS3 (p=0.098). BPF exposure was also associated with CB DNA methylation in HOXA-

AS3 and UC DNA methylation in PRSS22. Lastly, BPS exposure was associated with UC DNA 

methylation in FN1 (p=0.131) and CB DNA methylation in PRSS22 (p=0.108). Although some 

candidate genes displayed similar effects regardless of tissue type (e.g., SNAP25), DNA 

methylation response to bisphenol exposure ultimately exhibited tissue-specific patterns. 

  

Single-Site Epigenome-wide DNA Methylation in Placenta  

We assessed DNA methylation at 822,020 CpG sites via EPIC and report associations in 

placenta with bisphenols at p<0.0001 in this exploratory analysis. Maternal first-trimester urinary 

BPA exposure was associated with 63 differentially methylated sites (DMS) at p<0.0001. The 

genomic inflation factor (lambda) for the analysis was 1.20. Increasing BPA concentrations were 

associated with increasing DNA methylation at 83% of these CpG sites (Appendix 1.6). BPF 

exposure was associated with 29 sites at p<0.0001 (lambda=1.03) and increasing BPF 

concentrations were associated with decreasing DNA methylation at 97% of these CpG sites 

(Appendix 1.7). Similarly, BPS exposure was associated with 32 sites at p<0.0001 

(lambda=0.797). Increasing BPS concentrations were associated with decreasing DNA 

methylation at 90% of these CpG sites (Appendix 1.8).   

 

Differentially Methylated Regions in Placenta  
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 Six differentially methylated regions (DMRs) were detected in placenta in association 

with maternal first-trimester urinary BPA exposure at p<0.0001 (Table 4-2). Each region 

contained at least five sites, and four of the six regions displayed a decrease in DNA methylation 

with increasing BPA levels. Sixteen DMRs were detected in placenta in association with 

maternal first-trimester urinary BPF exposure at p<0.0001 (Table 4-2). Each region contained at 

least two sites, and 13/16 (81%) of sites displayed a decrease in DNA methylation with 

increasing BPF levels. Two genes, RPS6KA2 and CBFA2T3, contained two separate DMRs in 

association with BPF exposure. Thirty-seven DMRs were detected in placenta in association 

with maternal first-trimester urinary BPS exposure at p<0.0001 (Table 4-2). Each region 

contained at least three sites, and 23/37 (62%) of sites displayed a decreased in DNA methylation 

with increasing BPS levels. ADAMTS17 contained three DMRs while LMF1 contained two 

DMRs. 

 

Pathway Analysis of Placenta Single-Sites   

BPA exposure-associated DNA methylation sites were enriched for three gene-sets 

significant at FDR <0.05. Higher BPA exposure was associated with decreased methylation for 

genes in two out of three enriched pathways (Table 4-3). The pathway or concept with the 

greatest odds of enrichment for differential methylation was RIG-I-like receptor signaling 

pathway. In general, the enriched pathways were associated with immune sensing and 

inflammation/inflammatory host defenses. BPF exposure-associated DNA methylation sites were 

enriched for 13 pathways significant at FDR <0.05. Higher BPA exposure was associated with 

decreased methylation for genes in 12/13 pathways (Table 4-3). The pathway or concept with the 

greatest odds of enrichment for differential methylation was ascorbate and aldarate metabolism. 
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In general, the enriched pathways were associated with metabolism and drug metabolism. No 

pathways were significant for BPS exposure at FDR <0.05.  

 

Discussion  

Increasing evidence demonstrates that prenatal bisphenol exposure is associated with the 

disruption of many biological systems (Kolatorova et al., 2017). Just as the organs and tissues of 

the body operate in separate but synchronous ways to respond to and manage ‘typical’ functions 

or insults, so too do these organs and tissues respond in a multi-dimensional way to 

environmental toxicant exposure (Shu et al., 2019). Therefore, organ- or tissue-specific 

biological effects after fetal exposure must be characterized to enhance understanding of the 

broader processes that are implicated in exposure studies. One fundamental feature of tissue-

specific regulatory systems is the epigenome. The epigenome is known to differ across tissues 

(Zhou et al., 2017) and assist in establishing tissue- or cell-specific gene expression and 

functions (Roadmap Epigenomics Consortium et al., 2015). Although advances have been made 

in elucidating how epigenomic signatures associated with cell types and tissues contribute to 

human disease (Campbell et al., 2020), the extent to which tissues respond to environmental 

exposures in a similar or different manner is limited. This has only recently become an active 

area of research in the basic sciences (Wang et al., 2018) and epidemiology (Campbell et al., 

2020). In this study, we found tissue-specific differences in DNA methylation across candidate 

genes and responses to prenatal bisphenol exposure. PL displayed the greatest number of 

associations with bisphenol exposure across candidate genes, and the epigenome-wide analysis 

of DNA methylation in the placenta further emphasized these modest associations.  

The inclusion of matched CB, UC, and PL in this pilot study was an important first step in 
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deconstructing tissue-specific response to prenatal bisphenol exposure. Studies are needed that 

not only evaluate tissue-specific DNA methylation in multiple tissue types, but that also evaluate 

such differences in the context of response to exposure and offer this perspective in a paired 

fashion. The utility of UC and PL in early-life exposure studies is derived both from their 

separate embryonic origins from that of CB—specifically as it relates to assessing risk for target 

tissues for which CB, UC, or PL would serve as surrogates—and their differential physiological 

responses to environmental toxicants. For example, UC has an increased potential to accumulate 

lipophilic toxicants like BPA during gestation as compared to CB, and is suggested to be a better 

tissue in which to assess fetal toxicant exposure (Fukata et al., 2005). Despite this, currently no 

published studies have evaluated storage of bisphenols in UC. In a similar fashion, PL possesses 

mechanisms to protect the fetus from potentially toxic or harmful substances in maternal 

circulation (Gude et al., 2004) and likely increases its toxicant burden as a result. For example, 

Grandin et al. modeled perfused human PL exposure to BPA and BPS to determine the degree to 

which PL limits fetal exposure to these bisphenols (Grandin et al., 2019). They concluded that 

while the PL has the capacity to minimize transfer of both BPA and BPS into fetal circulation, it 

appears to be more efficient at limiting exposure to BPS—with higher clearance indexes and 

active efflux mechanisms (Grandin et al., 2019). These findings underscore the importance of 

evaluating multiple bisphenols in human cohorts and elucidating the tissue-specific response to 

prenatal exposure in these surrogate tissues.  

Exposures were assessed in the first trimester, because this a highly relevant time in the 

context of epigenetic reprogramming. Because of the propagation of early gestational epigenetic 

changes across tissues in the growing fetus, peripheral tissues like CB, UC, or PL are of 

particular value. In particular, CB and UC originate from separate germ layers, and genome-wide 
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comparison of DNA methylation patterns reveal distinct epigenetic profiles in each tissue when 

collected at birth (Lin et al., 2018; Sakurai et al., 2019). Until recently UC has been overlooked 

as an epigenetically relevant and rich surrogate tissue in prenatal exposure studies. Even more so, 

the PL methylome and epigenetic response to bisphenols has limited documentation in these 

contexts. 

Our initial assessment of DNA methylation at each candidate gene revealed baseline tissue-

specific differences. Further inspection indicated that these patterns replicated across candidate 

gene sets. FN1 and HOXA-AS3 methylation for both UC and PL were inversely correlated, and 

DNA methylation for each tissue type was significantly different. In SNAP25 and PRSS22 CB 

and PL were positively correlated even though baseline (mean) methylation levels differed. 

However, the particular utility in identifying tissue pairs that are correlated in candidate gene 

DNA methylation is the potential to leverage this information in selecting appropriate surrogate 

tissues and tissue pairs for prenatal exposure studies. Knowing how tissues are similar or 

different in their epigenomic patterning, as a consequence of embryonic origin or physiological 

function underscores why investigations should include more than one fetal surrogate tissue in 

environmental exposure studies. CB cell types originate from the mesoderm and cell type-

specific CpGs from CB tend to be enriched for immune pathways (Lin et al., 2018). 

Alternatively, UC cell types derive from the extraembryonic ectoderm as well as the mesoderm, 

and UC contains a rich population of mesenchymal stem cells (MSCs) within the Wharton’s jelly 

substructure of the UC (Bharti et al., 2018). Including overlapping tissues in EWAS expands our 

ability to detect associations between exposure and biological pathways or tissues derived from 

those embryonic tissues—associations which can then be translated into detangling human 

disease. 
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Some work has been done to compare the DNA methylomes of UC and CB. Recently, 

Sakurai et al., reported that UC exhibits hypomethylation across the genome as compared to CB, 

with location-specific hypomethylation around transcription start sites (Sakurai et al., 2019). 

They also noted that the UC methylome possesses enrichment of DMRs associated with HOX 

gene clusters and genes related to developmental body patterning and lineage-specific cellular 

differentiation (Sakurai et al., 2019). The addition of UC to prenatal studies has revealed 

additional and novel epigenetic associations and biological pathways with prenatal exposures 

and disease. Wu et al., in their study of preterm birth, illustrated the complementary benefit of 

including UC methylome in their analyses; of the 994 CpGs associated with preterm birth, only 

10 were detected in CB (Y. Wu et al., 2019). Moreover, Herzog et al. detected tissue-specific 

differentially methylated regions (tDMRs) associated with human umbilical vein endothelial 

cells and with PL (Herzog et al., 2020). The detectable differences in DNA methylation between 

CB and UC and PL are meaningful because of the measurable consequences to outcomes and 

these tissues should all be examined with respect to outcomes and exposures.  

We performed mixed effects and linear regression modeling to assess the similarities or 

differences by tissue in associations between prenatal bisphenol exposure and DNA methylation. 

Most commonly implicated were the bisphenols BPA and BPF, and they were consistently 

associated with PL DNA methylation across candidate genes using a relaxed p-value cut-off of 

0.20 (Figure 4-3). Although UC and CB also displayed some significant associations with 

bisphenol exposure, the association within tissues and across candidate genes did not achieve the 

same magnitude as PL. These results suggest tissue-specific responses to exposure that also 

differ by bisphenol. As of this writing, no published studies have evaluated prenatal bisphenol 

exposure and UC DNA methylation. Similarly, only one human epidemiological study is 
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currently published that assessed placental DNA methylation in association with bisphenol 

exposure. Nahar et al. demonstrated the tissue-specific effects of prenatal BPA exposure on 

DNA methylation and found that repetitive element (LINE-1) percent DNA methylation in PL 

but not in fetal liver or kidney was significantly positively associated with total and free BPA 

concentrations (Nahar et al., 2015). Our analysis of epigenome-wide placental DNA methylation 

using the Illumina Infinium EPIC array revealed modest associations with maternal first-

trimester BPA, BPF, and BPS exposure. Given the small sample size, we reported associations at 

p<0.0001 for each bisphenol; model results revealed that each exposure was associated with 

about the same number of differentially methylated sites. The gene family DNAH (dynein 

axonemal heavy chain) appeared in association with both BPA and BPS exposure, while the 

gene family TRP (transient receptor potential cation channel) appeared in association with both 

BPA and BPF exposure. However, no CpG sites were statistically significant at q<0.05, a 

common cut-off for statistical significance traditionally used in EWAS is a P-value correction by 

the Benjamini-Hochberg false discovery rate (FDR) (Hochberg & Benjamini, 1990). 

We detected DMRs and biological pathways significantly associated with differential 

methylation in the PL in response to maternal exposure to BPA, BPF, and BPS. BPA-linked 

genes EPHB4 (X. Liu et al., 2016, 2017; Shi et al., 2019); BPF-linked genes RPS6KA2 (Kimball 

et al., 2015) and CBFA2T3 (Fujiwara et al., 2013); and  BPS-linked genes ADAMTS-family 

(Namli Kalem et al., 2017; Namlı Kalem et al., 2018) revealed a consistent pattern of association 

with key developmental processes, like vascular development of the PL and disorders like 

preeclampsia and intrauterine growth restriction (IUGR). Gene-set analysis further emphasizes 

these associations and possibly delineates the way in which these bisphenols may differ overall. 

The three significant gene-sets associated with BPA exposure are implicated in immune-sensing, 
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the microbiome and inflammation, and inflammatory host defenses (A H Bryant, 2017) (Antony, 

2015). Further, they are linked to initiating parturition through chromatin remodeling (Wang, 

2019), gestational diabetes (Zhao, 2011), and epigenetic dysregulation of placental gene 

expression in preeclampsia (Leavey, 2018). This correlates to evidence that BPA exposure is 

associated with dysregulated placentation and elicits ‘preeclampsia-like’ features in mice (Ye et 

al., 2019). BPF-associated gene-sets include steroid and drug metabolism, a feature that is 

commonly linked to BPA exposure with increasing evidence also implicating BPF (Yang et al., 

2017). Taken together, the DMR and gene-set analyses suggest a connection between prenatal 

exposure to bisphenols and increased inflammation, impaired vascularization, and endocrine 

disruption in the placenta. Although these births were uncomplicated and no pathology of the PL 

was detected, it is relevant to consider whether an increased sample size and a broader range of 

BPA exposure might validate these associations and increase our ability to detect complications. 

While there are studies that have evaluated BPA exposure and its association with changes in 

epigenetic marks like DNA methylation (Nahar et al., 2014), histone modifications  and 

chromatin remodeling (Senyildiz et al., 2017), the specific mechanism of how bisphenol 

exposure elicits those changes is unclear. These data as a whole point to the need for the 

inclusion of a variety of tissues in prenatal exposure studies with larger sample sizes; the similar, 

although at times divergent responses in CB and UC, and the unique PL epigenetic response, 

demonstrates their utility in combination—as a means to capture a fuller picture of the 

developmental effect of an exposure through epigenetic programming. Future work is needed to 

characterize whether DNA methylation in these surrogate tissues correlates with health outcomes 

and of which health outcomes UC and CB are the best predictors. Determining the utility of 

surrogate tissues in epigenomic analyses will enable more effective use of population-based 
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studies to make connections between exposure, epigenetic changes, and the development of 

disease. 

 

Limitations 

The small sample size across our analyses limits the reliability and generalizability of our 

results. Reported results should be considered trends to explore in future studies as we lacked 

statistical power to detect all true associations with typical significance cut-offs. Furthermore, 

bisphenols exhibit non-monotonic dose responses and evaluating families with exposure level 

extremes would add key information about the risks posed for that portion of the population. It is 

also a limitation that we only evaluated four candidate genes and regions. It is possible that the 

differences in DNA methylation that we detected may not be reflective of broader changes across 

tissues.  

 

Strengths and Future Directions 

Despite the limited availability of families with all three tissues, we consider it a notable 

strength of this study that we compared DNA methylation at four candidate genes in matched 

tissue samples of CB, UC, and PL. As of this writing, this is the first study to include paired CB, 

UC, and PL in DNA methylation analyses as well as to evaluate tissue-specific differences and 

prenatal bisphenol exposures. Furthermore, this is the first study to perform epigenome-wide 

analysis in PL evaluating its association with prenatal bisphenol exposures. Despite the small 

sample sizes presented in this study, our evaluation of three bisphenols provides technical 

foundation for the inclusion of BPA’s replacement analogs and emphasizes the need to evaluate 

their association with DNA methylation in multiple tissue types.  
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Future studies are warranted to examine whether the tissue-specific differences and 

associations can be replicated in a cohort with an increased number of subjects. Given the ease of 

collection of UC future studies are also needed that analyze epigenome-wide DNA methylation 

in UC in response to prenatal bisphenol exposure. The cross-tissue correlations detected 

underscore the importance of comparing epigenome-wide data across UC, CB and PL. The 

information gained through this Aim must be combined in future work with additional studies 

that evaluate health outcomes in order to enhance our understanding of changes in DNA 

methylation in these tissues as being representative tissues for diseases of interest.  

 

Conclusions 

This study is a proof-of-concept demonstrating similarities and differences in baseline 

DNA methylation across CB, UC, and PL, at four genes and in their associations with prenatal 

bisphenol exposures. Our exploratory analysis of epigenome-wide DNA methylation in placental 

tissue revealed modest associations with prenatal bisphenol exposure. We recommend that future 

investigations consider the addition of UC and/or PL as surrogate tissues in conjunction with CB 

to broaden the ability to detect or decipher biological pathways associated with environmental 

exposure.  
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Table 4-1: Descriptive statistics [median (25th, 75th percentiles) or n (%)] for N=28 mother-placenta pairs in the MMIP cohort 

included in this study. 

Maternal age (years) 33 (31, 35) 

Number of days to delivery (days) 275 (274, 278) 

Maternal Race/Ethnicity  

White 28 (100%) 

Cell type variable 1 0.502 (0.193, 0.827) 

Cell type variable 2 0.248 (0.0425, 0.385) 

Maternal urinary BPA (ng/mL) 1.01 (0.424, 1.30) 

Maternal urinary BPF (ng/mL) 1.87 (0.411, 2.05) 

Maternal urinary BPS (ng/mL) 0.331 (0.156, 0.375) 

Infant Sex 

   Female 14 (50%) 

   Male 14 (50%) 

Infant birth weight (gms) 3452 (3195, 3698) 

Limit of detection (LOD) <0.2 ng/mL. Urinary bisphenol measures 

adjusted for specific gravity. 
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Table 4-2: Differentially Methylated Regions in Placenta in Association with Maternal First-trimester Urinary Bisphenol 

Exposure. Significance considered at p<0.0001 

A. 

Location Gene Name Number of CpG Sites P-value(a) 
Max Beta Change per ln-

ng/mL BPA increase(b) 

Chr7: 100424355- 100425827 
EPHB4 

12 1.24E-12 -0.0620 

Chr1: 55246867-55247408 TTC22 5 1.14E-08 0.0779 

Chr1: 234367145-234367586 SLC35F3 5 6.36E-08 0.0642 

Chr11: 46367725-46368295 DGKZ 5 9.81E-08 -0.0517 

Chr2: 202125088-202125310 CASP8 5 1.22E-07 -0.0506 

Chr11: 67170528-67171585 PPP1CA 7 5.15E-10 -0.0335 

B. 

Location Gene Name Number of CpG Sites P-value(a) 
Max Beta Change per ln-

ng/mL BPF increase(b) 

chr6:167275395-167276650 RPS6KA2 16 1.87E-09 -0.0512389 

chr17:79098772-79099882 AATK 9 2.09E-08 -0.0249671 

chr16:88948617-88950197 CBFA2T3 9 7.01E-07 -0.0434763 

chr6:167190034-167190226 RPS6KA2 3 9.82E-07 -0.0317611 

chr2:219135802-219135936 PNKD 2 4.04E-06 -0.0040822 

chr6:31829644-31829960 NEU1 9 7.48E-06 -0.0296765 

chr8:91013575-91014327 DECR1 6 1.97E-05 0.03289722 

chr5:150618948-150619039 GM2A 2 2.10E-05 0.10775812 

chr1:76080294-76080727 SLC44A5 5 2.10E-05 0.05970793 

chr13:114111864-114112218 DCUN1D2 6 2.36E-05 -0.0407328 

chr4:124232-124622 ZNF718 6 2.98E-05 -0.0183294 

chr9:116225793-116225992 RGS3 4 3.11E-05 -0.0478295 

chr16:88942335-88942358 CBFA2T3 2 4.88E-05 -0.0315858 

chr11:3187511-3187939 OSBPL5 15 5.25E-05 -0.0165179 

chr6:31478822-31478830 MICB 2 5.34E-05 -0.0444635 

chr11:16761290-16761533 C11orf58 4 6.91E-05 -0.0272765 

C.  

Location Gene Name Number of CpG Sites P-value(a) 
Max Beta Change per ln-

ng/mL BPS increase(b) 

chr15:92398726-92399195 SLCO3A1 2 2.34E-06 -0.0519 

chr16:983381-983870 LMF1 2 5.78E-05 -0.0506 

chr17:77245306-77245327 RBFOX3 2 2.34E-06 -0.0656 

chr6:29690766-29692183 HLA-F 26 7.23E-16 -0.0967 

chr6:28983835-28985069  23 3.63E-13 0.0637 
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chr6:29648161-29649084 ZFP57 22 2.87E-16 -0.1067 

chr10:102278918-102280155 SEC31B 15 4.31E-11 0.0859 

chr2:70994758-70995607 ADD2 15 6.45E-11 0.1172 

chr12:96183791-96185064 NTN4 12 2.72E-13 0.0830 

chr9:33473445-33474350 NOL6 12 4.27E-08 0.0331 

chr12:81331012-81331863 LIN7A 11 4.25E-07 0.0797 

chr5:170735973-170736572 TLX3 11 1.73E-05 0.0323 

chr6:32116653-32116963 PRRT1 10 5.78E-05 0.0619 

chr3:185000208-185001026 MAP3K13 9 2.35E-09 -0.0740 

chr6:32022929-32023409 TNXB 9 1.10E-05 0.0364 

chr2:177042493-177043501 HOXD-AS1 8 4.10E-11 -0.1317 

chrX:154842296-154842856 TMLHE 8 3.43E-05 0.0738 

chr1:68517177-68517462 GNG12-AS1 7 1.76E-06 0.0353 

chr1:161228203-161228877 PCP4L1 6 5.06E-07 -0.0603 

chr16:1251787-1252484 CACNA1H 6 6.77E-06 -0.0663 

chr17:28088578-28088749 SSH2 6 6.58E-05 0.0897 

chr2:131792521-131793064 ARHGEF4 6 1.38E-05 -0.0862 

chr15:100532781-100533336 ADAMTS17 5 1.56E-05 -0.0693 

chr8:1814096-1814957 ARHGEF10 5 5.30E-06 -0.0357 

chr8:2003810-2004488 MYOM2 5 1.96E-06 -0.0814 

chr8:20831094-20831500  5 5.94E-07 -0.0427 

chr15:100537304-100537761 ADAMTS17 4 4.11E-05 -0.0659 

chr4:19756214-19756485 RP11-608O21.1 4 5.32E-06 -0.0798 

chr6:13873924-13874251  4 5.73E-06 0.0500 

chr1:158900384-158901032 PYHIN1 3 3.46E-07 -0.0915 

chr10:131686425-131686574 EBF3 3 4.95E-05 -0.0537 

chr15:72565016-72565039 CELF6 3 6.63E-05 -0.0170 

chr15:99408804-99409194 IGF1R 3 3.55E-05 0.0507 

chr15:100666162-100666305 ADAMTS17 3 3.27E-06 -0.0663 

chr16:971556-971820 LMF1 3 1.28E-05 -0.0458 

chr17:77657538-77657578  3 2.57E-07 -0.0535 

chr8:13372453-13372491 DLC1 3 6.73E-05 -0.0672 

A. BPA B. BPF C. BPS 

(a) Minimum FDR p-value for the region 

(b) For interpretability, changes across the DMR are reported as proportion methylated (beta), though models used logit-

transformed beta values (M-values). Models adjusted for infant sex and two surrogate variable cell types. 
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Table 4-3: Gene-sets enriched for differentially methylated genes in placenta by maternal first-trimester urinary bisphenol 

exposures using LRPath. 

A. 

BPA      

Pathway 

ID 
Pathway Name 

Database with 

Concept 

No. of Genes in 

Concept 
FDR Direction 

hsa04622 RIG-I-like receptor signaling pathway KEGG 67 0.00576 down 

hsa00650 Butanoate metabolism KEGG 29 0.00576 up 

hsa04060 Cytokine-cytokine receptor interaction KEGG 249 0.0259 down 

B. 

BPF     

Pathway 

ID 
Pathway Name 

Database with 

Concept 

No. of Genes 

in Concept 
FDR Direction 

hsa00053 Ascorbate and aldarate metabolism KEGG 22 1.04E-10 down 

hsa00040 Pentose and glucuronate interconversions KEGG 27 2.83E-09 down 

hsa00982 Drug metabolism - cytochrome P450 KEGG 67 2.50E-08 down 

hsa00983 Drug metabolism - other enzymes KEGG 46 4.81E-08 down 

hsa00140 Steroid hormone biosynthesis KEGG 52 4.81E-08 down 

hsa00830 Retinol metabolism KEGG 60 4.81E-08 down 

hsa00860 Porphyrin and chlorophyll metabolism KEGG 38 4.81E-08 down 

hsa00980 
Metabolism of xenobiotics by cytochrome 

P450 
KEGG 66 4.81E-08 down 

hsa00514 Other types of O-glycan biosynthesis KEGG 42 1.37E-07 down 

hsa00500 Starch and sucrose metabolism KEGG 46 1.39E-07 down 

hsa04742 Taste transduction KEGG 50 0.0301 down 

hsa04950 Maturity onset diabetes of the young KEGG 24 0.0349 down 

hsa04144 Endocytosis KEGG 197 0.0491 up 
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Figure 4-1: Average percent methylation across tissue type for four genes in matched samples. 

 

Legend: Spaghetti plots assist in identifying differences in DNA methylation as the graph is viewed (1) across tissue type; (2) 

within tissue type; and (3) within a single subject. Each graph represents one candidate gene, and average percent methylation in 

UC, CB, and PL was plotted for each subject (e.g., a subject is represented by a circle, and a subjects’ measurements are 

connected with a line across tissues) in each gene. 
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Figure 4-2: DNA methylation comparisons across CB, UC, and PL. 

 

 

*p=6e-07 *p=8.41e-07

*p=0.000612

Cord Tissue Placenta

Cord Blood -0.253 0.213

Cord Tissue -0.533

*p=2.96e-09

*p=4.59e-08

*p=0.00250

Cord Tissue Placenta

Cord Blood 0.261 -0.268

Cord Tissue -0.418

I

II

I

II

p=0.125 *p=0.0456

p=0.0964

Cord Tissue Placenta

Cord Blood 0.0348 0.840

Cord Tissue -0.0315

p=0.178

*p=0.00181

p=0.180

Cord Tissue Placenta

Cord Blood 0.0263 0.608

Cord Tissue 0.344

Panel I. DNA methylation percent averaged across the sites in a given gene for each tissue (N=29 subjects per tissue).

Boxes represent the IQR with the line showing the median. Significance shown for paired t-test between each

tissue and denoted with an asterisk (*) when p<0.05.

Panel II. Spearman correlation coefficients for DNA methylation at each gene are shown for matched tissues (N=29

subjects per tissue). Statistical significance denoted by correlation coefficients in bold (p<0.05).
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Figure 4-3: Mixed-effects and linear regression analysis of DNA methylation and bisphenol exposure across CB, UC, and PL. 
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Chapter 5 Conclusions 

 

Summary of Main Findings 

 The overall purpose of this dissertation was to examine DNA methylation in fetal tissues 

in response to maternal exposure to bisphenols and one-carbon metabolites. Specifically, we 

identified differential DNA methylation in infant cord blood leukocytes in association with 

prenatal exposure to BPA, BPF, and BPS. Additionally, we identified patterns of OCM across 

maternal and infant timepoints and OCM that were correlated with global shifts in the DNA 

methylation profile of infant cord blood. Lastly, utilizing matched CB, UC, and PL samples, we 

explored tissue-specific DNA methylation in candidate genes and examined both the differential 

tissue response across tissue triads and changes in epigenome-wide DNA methylation in placenta 

to bisphenol exposure.   

Maternal Environmental Exposure to BPA is Associated with Changes in Epigenome-Wide 

DNA Methylation in Infant Cord Blood   

In Chapter 2 we utilized the EPIC array to assess the association between maternal 

prenatal exposure to the bisphenols BPA, BPF, and BPS and epigenome-wide DNA methylation 

in infant cord blood. This study is one of the few human studies to leverage epigenome-wide 

DNA methylation technology to investigate early-life exposure to bisphenols. The focus of this 

investigation centered on maternal exposure to bisphenols during the first trimester, by virtue of 

early in development being the most susceptible and critical period for epigenetic effects 

(McCabe et al., 2017). The single-site analysis revealed 38 individual CpG sites in infant cord 
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blood leukocytes that were differentially methylated in relation to early maternal BPA exposure 

and three differentially methylated regions in the genes HOXA-AS3, PRSS22, and ZSCAN12P1. 

The association of prenatal BPA exposure to DNA methylation was diminished, however, when 

sensitivity analyses that excluded one outlying subject were performed. Associations with BPA 

and DNA methylation at CpG sites and the DMR in PRSS22 remained (p<0.001) after outlier 

exclusion.  

 Gene-set analysis demonstrated the enrichment of gene-sets linked to the nervous system, 

immune response, and neuroinflammation. Prior research has established an association between 

prenatal BPA exposure and disruption to genes involved in these pathways (Anderson et al., 

2016b; Arambula et al., 2016; Jadhav et al., 2017; Martínez et al., 2018; Weinhouse et al., 2016). 

Further, currently published literature of prenatal exposure to BPA and its epigenetic impact 

present similar findings of genes and pathways related to neurological function and inflammation 

(Alhomaidan et al., 2019; Kolatorova et al., 2017). Although we did not detect differential DNA 

methylation in the same genes, there is concordance between our results and those reported by 

Junge et al., Montrose et al., Alavian-Ghavanini et al., and Miura et al. in the potential for 

prenatal BPA exposure to impact genes related to MSCs, adipogenesis, and perhaps long-term 

body weight (Alavian-Ghavanini et al., 2018; Junge et al., 2018; Miura et al., 2019; Montrose et 

al., 2018). Neither BPF nor BPS maternal exposures were significantly associated with 

differential DNA methylation in the infant cord blood in this study, however ours is the first 

human study to evaluate the association of prenatal BPF or BPS exposure with infant DNA 

methylation. The results of this Aim suggest an association between prenatal bisphenol exposure 

and DNA methylation of key risk loci and biological pathways in infant cord blood.   
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Prenatal One-Carbon Metabolites are Highly Correlated across Pregnancy and Associated 

with Global Shifts in Infant Cord Blood DNA Methylation  

Chapter 3 we examined the association of prenatal exposure to one-carbon metabolites at 

three time points with DNA methylation in the infant cord blood. We utilized both LC-MS/MS 

untargeted metabolomics and the EPIC array to generate a high-dimensional perspective of this 

correlation. We detected that average maternal plasma concentrations of the OCM SAM, SAH, 

and betaine decreased between M1 and M3, while methionine and choline levels increased 

across timepoints. Similarly detected changes are validated in the literature for choline, betaine, 

and methionine, but to our knowledge, this is the first report to detail the pattern of SAM and 

SAH between M1 and M3 of pregnancy in conjunction with epigenome-wide association 

analysis (Gilley et al., 2020; Visentin et al., 2015; Yan et al., 2012, 2013). We also compared 

metabolite concentrations at maternal timepoints to those in CB. We observed that average 

concentration of SAM, SAH, methionine, and choline increased between M1 and CB, whereas 

each OCM increased in concentration between M3 and CB. Our analyses also revealed that 

OCM concentrations between M1 and M3 were highly correlated, that SAH concentrations were 

positively correlated across all three timepoints, and that M1 SAH and SAM were most strongly 

correlated to CB SAH and SAM concentrations. These observations contribute to our 

understanding of OCM patterns across pregnancy and their role in establishing OCM 

concentrations in infant CB. M1 SAH and CB SAH were both significantly correlated with the 

global distribution of DNA methylation in CB whereby increasing metabolite concentrations of 

SAH were associated with less methylation across the infant epigenome. These associations 

reveal the degree to which M1 OCM concentrations may predict CB concentrations and OCM 

potential to support DNA methylation reactions in the growing infant (Molloy et al., 2005; Yan 
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et al., 2012). Single-site, DMR, and pathway analyses of OCM across pregnancy and differential 

methylation in the infant cord blood illuminated fine-tuning changes in OCM metabolism that 

may occurr as the fetus completes gestational growth. The enrichment of gene-sets and pathways 

associated with gene expression and regulation and the immune response underscore the 

importance of OCM across pregnancy and the potential for maternal OCM plasma concentration 

to shape infant growth and development.  

DNA Methylation in Cord Blood, Cord Tissue, and Placenta: Comparison and Response to 

Prenatal Bisphenol Exposures 

In Chapter 4 we performed pyrosequencing to quantify CpG-level DNA methylation in 

candidate genes FN1, SNAP25, HOXA-AS3, and PRSS22 across three tissue types (CB, UC, and 

PL) from matched tissue samples. We utilized mixed effects and linear regression to determine 

the degree to which these tissues associated with prenatal bisphenol exposures in the same or 

different manner. Lastly, we performed an exploratory epigenome-wide analysis using the EPIC 

array to identify additional genes associated with bisphenol exposures in placenta. Our results 

indicated that DNA methylation at each candidate gene significantly differed at one or more 

tissue type. FN1 and HOXA-AS3, and SNAP25 and PRSS22 displayed DNA methylation patterns 

across tissue pairs that were reflective of overlapping tissue-specific gene regulation. Mixed 

effects and linear regression models detected significant associations between BPA and BPF and 

CB and PL. PL displayed the greatest number of associations with bisphenol exposure across 

candidate genes. Epigenome-wide analysis of DNA methylation in the placenta revealed modest 

associations with prenatal bisphenol exposure. This Aim and the tissue-specific associations of 

DNA methylation in both cross-tissue and bisphenol exposure analyses spotlight the importance 

of expanding the number of surrogate tissues used in EWAS. Future studies are needed that 
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leverage tissue-specific DNA methylation and the embryonic lineage of surrogate tissues to 

identify whether these differences in DNA methylation across tissue types are correlated with 

health outcomes of human disease.   

Comparison Across Studies  

An integrated analysis of the studies presented in this dissertation revealed similar 

environmentally responsive pathways. For example, gene-sets related to the immune system and 

autoimmunity like “RIG-I-like receptor signaling pathway,” “systemic lupus erythematous,” and 

“autoimmune thyroid” were consistently enriched in CB (Aim 1 & 2) and PL (Aim 3) in 

association with prenatal exposure to BPA, BPF, BPS, and SAH. Notably, models of prenatal 

bisphenol exposure in both CB (Aim 1) and PL (Aim 3) also displayed enrichment for gene-sets 

related to amino acid metabolism. One-carbon metabolism is essential for both DNA methylation 

and immune function. In particular, methionine is a key nutritional factor for CD4+ T helper cell 

proliferation and function (Roy et al., 2020) and for the maintenance of histone methylation 

(Tang et al., 2020); SAM generation and availability is critical to inflammatory macrophage 

function (Yu et al., 2019); and lastly methionine is necessary to B cell differentiation and 

function (Lio & Huang, 2020). It is possible that this observed concordance of immune function 

and sensitivity between Aim 1, 2, and 3 provides mechanistic insight into prenatal bisphenol 

exposure and epigenetic reprogramming. We performed post-hoc analysis of model results 

across each aim to determine the correlation between BPA-DNA methylation associations and 

OCM-DNA methylation associations in our cohort. When we compared the full model results 

from prenatal bisphenol exposure and infant CB DNA methylation in Aim 1 with the model 

results from prenatal SAH exposure and infant CB DNA methylation in Aim 2, we detected 

significant (p<2.2e-16) correlations between each bisphenol and CB SAH, M1 SAH, and M3 
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SAH (Table 5-1). Notably, the BPA:CB model was negatively correlated with each SAH model, 

while BPS:CB was positively correlated each SAH model. Furthermore, BPF:CB was positively 

correlated with SAH in M1, but negatively correlated with SAH in M3 and CB. These 

correlations highlight the differences between prenatal exposure to BPA, BPF, and BPS and in 

their association with OCM and DNA methylation. This result bears comparison with the 

foundational mouse study performed by Dolinoy et al., that utilized the Aguti Avy mouse in a 

prenatal exposure model of BPA and BPA + a methyl donor supplement (Dolinoy et al., 2006; 

Dolinoy, Huang, et al., 2007). They discovered that upon maternal dietary supplementation with 

methyl donors or the phytoestrogen genistein, the BPA-induced hypomethylation observed at the 

Avy IAP locus was counteracted (Dolinoy et al., 2006; Dolinoy, Huang, et al., 2007). The 

negative correlation between BPA and SAH indicate that these two exposures similarly have 

opposing effects on (a significantly sized portion of) the epigenome in this human cohort. In the 

context of the study by Dolinoy et al., the significance of maternal dietary supplementation 

negating the effect of prenatal BPA exposure on DNA methylation in the Avy IAP locus is also in 

the correlating shift in the coat color distribution away from yellow. Yellow Avy mice are the 

result of decreased methylation near the Avy IAP locus, and they are prone to metabolic disorders 

and obesity as compared to their genetically identical, brown siblings (Waterland & Jirtle, 2003). 

In humans, differential DNA methylation in association with a prenatal exposure evinces 

pleiotropic effects on health and disease that we are only beginning to untangle. The corollary 

between our results and those of Dolinoy et al., and the patterns observed for BPF and BPS—that 

BPF and OCM are negatively correlated at the end of pregnancy but not at the beginning, while 

BPS displays the same direction of effect as SAH—are important to distinguish because of the 
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value in translating these findings across species in leveraging the diet to mitigate the effect of 

exposures to environmental toxicants.  

We also compared model results from prenatal bisphenol exposure and infant CB DNA 

methylation in Aim 1 with the model results from prenatal bisphenol exposure and PL DNA 

methylation in Aim 2. We detected significant (p<2.2e-16) correlations between the estimates for 

CB and PL BPA and BPF models (Table 5-1). These correlations provide some foundational 

information about how DNA methylation in these two tissues responds to bisphenol exposure 

and underscores the importance for future studies to examine bisphenol and epigenetic 

associations uncovered in this study in larger cohorts or meta-analyses.  

Strengths and Limitations 

Strengths of this dissertation are derived in part from the combination of two high 

dimensional datasets in our use of epigenome-wide DNA methylation from the EPIC array and 

untargeted metabolomics. The design of our human pregnancy cohort combines first-trimester 

exposure measures with DNA methylation in three fetal tissues at birth to closely capture and 

assess fetal epigenetic reprogramming. This dissertation was equally as innovative in our 

investigation of BPA along with its most common analogs BPF and BPS, providing pilot data of 

their association with DNA methylation in both CB and PL. In Chapter 3, the metabolomic 

evaluation of maternal plasma was an innovative way to reduce bias in the characterization of 

maternal diet & diet patterns. Furthermore, in Chapter 4, we compared DNA methylation at four 

candidate genes in matched tissue samples; this is the first study to not only include paired CB, 

UC, and PL in DNA methylation analyses, but also to evaluate the tissue-specific response to 

prenatal bisphenol exposures. Lastly, Chapter 4 is the first study to measure the association 

between prenatal bisphenol exposure and epigenome-wide DNA methylation in PL.  
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We equally acknowledge that this dissertation has limitations. The MMIP cohort used for 

each study is based out of the University of Michigan Hospital in Ann Arbor, Michigan, and the 

majority of the subjects eligible for inclusion in this dissertation were non-Hispanic White. This 

may limit the generalizability of the results. Further, the final number of mother-infant pairs 

included in this study was determined by the availability of samples with data. This limited our 

statistical power to detect differentially methylated sites by all bisphenols or OCM, and broader 

pathways in association with maternal exposure. Moreover, the small sample size in each of our 

studies may lead to spurious effects from statistical outliers.  

Future Research 

Future studies would consider the addition of subjects to bolster our findings, while also 

expanding the relative variation in maternal exposure levels. Such additions have the potential to 

improve our understanding of how families with more diverse prenatal environments may be 

impacted. For example, prioritizing the expansion of one carbon metabolites and methods to 

estimate maternal dietary intake. Future studies may also utilize transcription (RNAseq) analyses 

to determine the extent to which alterations in DNA methylation coordinate with alterations in 

the transcriptome, as well as identify additional candidate gene loci impacted by maternal 

exposure. This dissertation implicated a variety of biological pathways in association with 

maternal status. As such, it would be valuable to assess the extent to which such genes and 

pathways are associated with infant and childhood outcomes and the degree to which they 

mediate the relationship between exposure and outcomes. 

Implications 

The basic tenant of the DOHaD hypothesis on which this dissertation operates is the 

corollary between an adverse fetal environment and the increased risk of disease during 
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adulthood. The specific Aims address a small portion of this framework in evaluating two 

common maternal exposures. Figure 5-1 details this framework while also highlighting the 

particular contributions of the findings presented. Our cumulative investigation of maternal 

prenatal exposure to both bisphenols and OCM elucidated patterns of epigenome-wide DNA 

methylation and tissue-specific effects of exposure in a human pregnancy cohort. These studies 

impart initial data on which future studies can build to clarify the additional components 

connecting OCM and bisphenol exposures to both health and disease.  

One-carbon metabolites are critical and fundamental dietary components contained 

within proteins, fruits, and vegetables. That diet has the potential to mitigate the effects of 

bisphenol exposure has been demonstrated by Dolinoy et al. Given the significant variety in 

dietary patterns displayed by human populations, the studies presented in this dissertation sought 

to evaluate the association between dietary pattern, BPA exposure and alterations in DNA 

methylation in a comprehensive and integrated approach. Ultimately, we believe that advances in 

epigenome-wide association studies, and the incorporation of specific suggestions made within 

this work, will ultimately enable researchers, clinicians, and policymakers to target risk factors 

(e.g. environmental and nutritional exposures that perturb the methylome and downstream birth 

outcomes) and to better understand a portion of the myriad of elements underlying the 

developmental origins of health and disease. 
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Table 5-1: Comparison of effect estimates from epigenome-wide association models across Aims. 

(A) Bisphenol-DNA methylation associations (Aim 1) and SAH-DNA 

methylation associations (Aim 2) 

 CB SAH  M1 SAH M3 SAH  

BPA -0.135 -0.088 -0.121  

BPF -0.161 0.180 -0.139  

BPS 0.159 0.058 0.163  

(B) Cord Blood Bisphenol-DNA methylation associations (Aim 1) and 

Placenta Bisphenol-DNA methylation associations (Aim 3) 

 BPA:BPA  BPF:BPF BPS:BPS  

 0.0893 -0.0291 0.00205  

     
Note: Represents Pearson correlation coefficients. Significant 

correlations are shaded, p<2.2e-16. 
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Figure 5-1: The theoretical framework of this dissertation highlighting those components to which it specifically contributes 

 

Legend: The elements to which the studies presented in this dissertation addressed are highlighted with maroon 

arrows. Figure generated by Dr. Luke Montrose.  
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Appendix 

Appendix Tables  

Table A 1: Relationships between Bisphenol A and Covariates 

A.   

Mean (SD) in Female 

Group  

Mean (SD) in Male 

Group  
p-value 

1.34 (1.21) 1.02 (0.96) 0.236 

B.   

Variable p-value  
Correlation Coefficient 

(rho) 

Maternal Age 0.908 0.0141 

Parity 0.489 -0.0845 

Days to delivery 0.724 0.0435 

Birthweight 0.912 -0.0135 

nRBCs 0.14 0.179 

Gran 0.488 0.0848 

Mono 0.248 -0.14 

Bcell 0.692 0.0484 

NK 0.161 -0.17 

CD4T 0.896 -0.0159 

CD8T 0.949 0.0073 

Pre-preg wt 0.323 0.12 

Post-preg wt 0.26 0.137 

Pre-preg BMI 0.269 0.134 

Post-preg BMI 0.196 0.157 

Preg wt gain 0.9221 0.0119 

Panel A: T-test of maternal first-trimester BPA by infant sex, significance 

considered at p<0.05. 

Panel B: Spearman correlations between covariates and BPA, significance 

considered at p<0.05. 
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Table A 2: Bivariate Analyses of Covariate vs Maternal First Trimester Urinary BPF 

A.    

  BPF <LOD BPF >LOD 
P-value from Chi-

Squared test 

Male 18 (26%) 14 (20.2%)  

Female 12 (17.3%) 25 (36.2%)  

Total 30 (43.4%) 39 (56.5%) 0.0806 

B.    

Variable 
Mean (SD) in BPF 

<LOD Group 

Mean (SD) in BPF 

>LOD Group 
p-value from t-test 

Maternal Age 31.93 (4.14) 31.78 (3.05) 0.887 
 

Parity  1.5 (1.07) 1.08 (0.87) 0.165 
 
 

Days to deliv. 277.13 (7.17) 279.82 (7.41) 0.182 
 
 

Birthweight 3583.16 (393.3) 3557.82 (407.4) 0.818 
 
 

nRBCs 0.0879 (0.04) 0.0944 (0.06) 0.669 
 
 

Gran 0.454 (0.07) 0.481 (0.09) 0.274 
 
 

Mono 0.0957 (0.02) 0.0901 (0.02) 0.338 
 
 

Bcell 0.0954 (0.04) 0.083 (0.03) 0.217 
 
 

NK 0.026 (0.05) 0.0216 (0.02) 0.688 
 
 

CD4T 0.1526 (0.05) 0.1525 (0.05) 0.993 
 
 

CD8T 0.132 (0.04) 0.115 (0.04) 0.114 
 
 

Pre-preg wt 69.9 (14.81) 71.33 (19.7) 0.752 
 
 

Post-preg wt 83.17 (13.4) 84.49 (17.9) 0.744 
 
 

Pre-preg BMI 25.88 (6.05) 25.25 (6.75) 0.717 
 
 

Post-preg BMI 30.76 (5.51) 31.01 (6.1) 0.577 
  
 

Preg wt gain 13.27 (6.32) 12.71 (5.28) 0.948 
 
 

Panel A: Chi-squared bivariate test of maternal first-trimester BPF and infant sex, significance considered at 

p<0.05. 

Panel B: T-test comparing covariates of interest by maternal first-trimester BPF exposure category, 

significance considered at p<0.05. 
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Table A 3: Bivariate Analyses of Covariates vs Maternal First Trimester Urinary BPS 

A.    

  BPS <LOD BPS >LOD 
P-value from Chi-

Squared test 

Male 17 (24.6%) 15 (21.7%)  

Female 12 (17.3%) 25 (36.2%)  

Total 29 (42%) 40 (57.9%) 0.135 

B.    

Variable 
Mean (SD) in BPS <LOD 

Group 

Mean (SD) in BPS >LOD 

Group 
p-value from t-test 

Maternal Age 32.03 (4.17) 32.05 (3.05) 0.985 

Parity  1.07 (0.96) 1.3 (1.02) 0.344 

Days to deliv. 277.31 (8.16) 277.35 (6.63) 0.982 

Birthweight 3613 (422.32) 3475 379.33) 0.169 

nRBCs 0.0841 (0.05) 0.0861 (0.06) 0.872 

Gran 0.487 (0.1) 0.462 (0.08) 0.223 

Mono 0.0927 (0.02) 0.0869 (0.02) 0.57 

Bcell 0.0879 (0.04) 0.0884 (0.03) 0.9522 

NK 0.0163 (0.02) 0.0213 (0.04) 0.562 

CD4T 0.143 (0.06) 0.159 (0.04) 0.215 

CD8T 0.127 (0.04) 0.122 (0.04) 0.595 

Pre-preg wt 67.11 (11.16) 75.04 (20.72) 0.0655 

Post-preg wt 81.39 (10.61) 87.05 (18.82) 0.148 

Pre-preg BMI 24.37 (4.16) 27.49 (7.42) 0.0452 

Post-preg BMI 29.55 (3.94) 31.89 (6.74) 0.1 

Preg wt gain 14.28 (5.85) 12.01 (5.51) 0.104 

Panel A: Chi-squared bivariate test of maternal first-trimester BPS and infant sex, significance considered at p<0.05. 

Panel B: T-test comparing cohort covariates of interest by maternal first-trimester BPS exposure category, significance 

considered at p<0.05. 
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Table A 4: Comparison of Effect Estimates for DNA Methylation of CpG Sites Associated with BPA with and without one BPA 

Outlier (latter in bold) 

CpG Site 

Probe ID 
Effect Size* p-value 

Chromosomal 

Location 
Gene Name 

Relation to 

CpG Island 

cg14456173 -0.855248747 8.43E-10 chr1:43437674 SLC2A1-AS1 Open Sea 
 -0.508035596 0.00085458    

cg11176519 -0.689096099 4.24E-09 chr1:14591868  Open Sea 
 -0.013650245 0.775885547    

cg26228351 0.350294219 5.63E-09 chr1:200992656 KIF21B Island 
 0.003485497 0.887710689    

cg16660310 0.292487389 7.55E-09 chr19:36661673  Open Sea 
 0.039065071 0.262182476    

cg05445263 -0.748809244 1.01E-08 chr13:21049223 CRYL1 Open Sea 
 0.023916001 0.600050046    

cg21034201 -0.468096467 1.75E-08 chr18:33160855  North Shore 
 0.004776233 0.90339229    

cg11735305 0.371378387 2.04E-08 chr3:122512541 HSPBAP1 Island 
 0.020402941 0.618477184    

cg07935657 -0.268361981 3.04E-08 chr8:10622805  Open Sea 
 -0.029054728 0.408336608    

cg16783576 -0.684849307 3.52E-08 chr2:216237359 FN1 Open Sea 
 -0.038241384 0.638840449    

cg08526074 -0.270965932 3.58E-08 chr16:51184562 SALL1 Island 
 0.006523332 0.79499209    

cg11687406 -0.294697987 4.02E-08 chr20:10199434 SNAP25 North Shore 
 -0.068469805 0.148438015    

cg21589431 -0.698991603 4.24E-08 chr15:85660361 PDE8A Open Sea 
 0.031940099 0.600410198    

cg09734791 -0.270118659 5.42E-08 chr8:72756155 MSC Island 
 0.001470558 0.959509732    

cg03422016 -0.502120607 5.85E-08 chr12:121698404 CAMKK2 Open Sea 
 0.028839504 0.520154601    

cg02997560 -0.410411086 6.07E-08 chr19:3180815  South Shore 
 0.034457141 0.283035883    

cg25250853 -0.426976041 7.21E-08 chr2:85822726 RNF181 Island 
 0.00093833 0.984530915    

cg04151762 -0.328374363 8.56E-08 chr2:239039182 ESPNL North Shore 
 -0.031163747 0.504741557    

cg11554525 -0.272608968 9.06E-08 chr8:33342681 MAK16 Island 
 -0.002158948 0.947584705    

cg06983735 -0.35762919 9.28E-08 chr7:142536625  Open Sea 
 -0.04395762 0.411598405    

cg22393694 -0.71070928 1.19E-07 chr11:26595206 MUC15 Open Sea 
 0.085290582 0.123760838    

cg08834401 -0.264164034 1.86E-07 chr2:71017846 FIGLA Island 
 -0.024559793 0.544016907    

cg03870746 0.210032731 1.91E-07 chr7:1068244 C7orf50 Island 
 0.047008132 0.209474187    

cg26966186 -0.259203052 2.11E-07 chr5:106879524 EFNA5 Open Sea 
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 -0.100581873 0.055824125    

cg08380477 -0.39742086 2.67E-07 chr2:172957268  North Shore 
 -0.018438606 0.754563608    

cg11506835 -0.255103425 2.93E-07 chr12:11324011 SMIM10L1 Island 
 0.024541218 0.381556533    

cg13011901 -0.235782236 4.74E-07 chr3:46752152 TMIE Open Sea 
 -0.018474281 0.634141775    

cg14384920 -0.281391368 5.07E-07 chr16:8735575 METTL22 Open Sea 
 0.002287117 0.955730675    

cg15000998 -0.339853696 6.03E-07 chr12:62653559 USP15 North Shore 
 -0.002538768 0.961118696    

cg02699336 -0.363145454 6.34E-07 chr3:56502021 ERC2 Island 
 -0.030674738 0.620292159    

cg17725100 -0.163749266 6.95E-07 chr1:111098247  Island 
 0.005055642 0.833351931    

cg10848724 -0.436669167 1.07E-06 chr12:123380878 VPS37B Island 
 0.024109212 0.710797779    

cg11879536 -0.270277725 1.07E-06 chr19:2462065  Island 
 0.012939489 0.750878207    

cg11360973 -0.260694927 1.11E-06 chr10:636076 DIP2C Open Sea 
 -0.028694686 0.550561143    

cg01466219 -0.189413782 1.66E-06 chr14:62210927 HIF1A Open Sea 
 -0.03180952 0.402173079    

cg01490204 -0.271105221 1.68E-06 chr4:154400013 KIAA0922 Open Sea 
 -0.080316045 0.175214363    

cg25720128 -0.176365055 1.68E-06 chr4:154349775  Open Sea 
 0.004883887 0.866295287    

cg18715511 0.245313103 1.80E-06 chr12:1058965 RAD52 Island 
 0.16115613 0.009552043    

cg02066409 -0.172426358 1.92E-06 chr8:11059042 XKR6 Island 

  0.023933192 0.319455394       
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Table A 5: Comparison of statistically significant CpG sites associated with BPA in published literature with results in our model 

A.       

Junge et al., 2019      

CpG Chromosome Gene p value  Effect Estimate   

cg17580798 7 MEST 1.35E-07 -1.80%   
cg23117250 17 RAB408 1.55E-07 -2.00%   

McCabe et al., current study   
  

cg17580798 7 MEST 0.231 0.06%   
cg23117250 17 RAB408 0.523 0.03%   

* Effect estimate is reported as deltaB, because they modeled high vs low BPA exposure. Our effect estimate represents the 

change in methylation (beta) per 1 ng/mL increase in BPA.   
     

  

B.       

Alavian-Ghavanini et al., 2019      

CpG Chromosome Gene p value  Effect Estimate   

cg10091102 12 GRIN2B (0.91, 1.35) OR 1.11   

McCabe et al., current study     
cg10091102 12 GRIN2B 0.0509 -0.025%   

*Reported BPA as 4th quartile vs. 1st quartile, and results reported as odds ratios. Results from our study represent the change 

in methylation per 1 ng/mL increase in BPA.  
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Table A 6: Differentially methylated CpG sites in Placenta Associated with Maternal First Trimester BPA Exposure 

Locus Gene Name 
Relation to CpG 

Island 

Effect Estimate 

using M-values 
p-value 

chr15: 27787181  S_Shore 0.498 6.28E-06 

chr7: 95320969  OpenSea -0.769 6.90E-06 

chr18: 77171444 NFATC1 Island 0.638 9.17E-06 

chr19: 49016629 LMTK3 N_Shore 0.405 1.39E-05 

chr15: 24220187 PWRN4 OpenSea -0.359 1.40E-05 

chr4: 8689975  Island 0.486 1.42E-05 

chr1: 227635558  OpenSea 0.781 1.91E-05 

chr6: 29635692 MOG OpenSea 0.311 1.97E-05 

chr12: 132677645  S_Shelf 0.835 2.11E-05 

chr8: 54507218  Island 0.335 2.26E-05 

chr11: 1682006 HCCA2 OpenSea 0.610 2.48E-05 

chr9: 140033911 GRIN1 Island 0.531 2.60E-05 

chr1: 26198172 PAQR7 N_Shelf 0.432 2.69E-05 

chr4: 114744568  OpenSea -0.448 2.71E-05 

chrX: 106984142 TSC22D3 OpenSea 0.336 2.74E-05 

chr7: 67631771  OpenSea 0.545 2.79E-05 

chr19: 53540845  Island 0.457 3.05E-05 

chr1: 165853249 UCK2 OpenSea -0.324 3.28E-05 

chr1: 244143008  Island 0.184 3.58E-05 

chr19: 51685227  Island 0.532 3.92E-05 

chr18: 23805605 TAF4B N_Shore 0.439 4.08E-05 

chr19: 51141361 SYT3 N_Shore 0.607 4.08E-05 

chr8: 96614915 C8orf37-AS1 OpenSea -0.378 4.12E-05 

chr5: 135688594 TRPC7 N_Shelf 0.512 4.18E-05 

chr10: 133466918  OpenSea 0.586 4.18E-05 

chr7: 98189557  OpenSea 0.569 4.23E-05 

chr15: 94444099  OpenSea 0.281 4.42E-05 

chr20: 52225459  OpenSea 0.549 4.45E-05 

chr16: 56870473 NUP93 OpenSea 0.437 4.46E-05 

chr16: 69457334 CYB5B N_Shore 0.492 4.68E-05 

chr6: 29425610 OR2H1 OpenSea 0.501 4.81E-05 

chr2: 6616265  OpenSea 0.318 4.97E-05 

chr20: 59594954  N_Shelf 0.290 5.42E-05 

chr1: 181392832  OpenSea 0.425 5.49E-05 

chr8: 689392  Island 0.517 5.69E-05 

chr5: 50265443  Island 0.929 6.26E-05 

chr3: 186819037  OpenSea 0.390 6.36E-05 

chr19: 3286059 BRUNOL5 Island 0.542 6.91E-05 

chr13: 113777045 F10 OpenSea 0.340 7.18E-05 

chr1: 159175211 DARC OpenSea 0.266 7.24E-05 

chr17: 80836690 TBCD OpenSea -0.296 7.26E-05 
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chr1: 36565739 COL8A2 OpenSea 0.292 7.40E-05 

chr17: 74100186 EXOC7 S_Shore -0.424 7.42E-05 

chr16: 87960072 CA5A OpenSea -0.432 7.56E-05 

chr9: 124926741 MORN5 OpenSea 0.387 7.84E-05 

chr12: 126969338  OpenSea 0.758 7.99E-05 

chr22: 39369327 APOBEC3A_B OpenSea 0.294 8.06E-05 

chr11: 15057083  OpenSea 0.325 8.15E-05 

chr6: 26240307 HIST1H4F N_Shore 0.739 8.18E-05 

chr2: 178938591 PDE11A S_Shore 0.459 8.37E-05 

chr12: 113443790 OAS2 OpenSea 0.437 8.39E-05 

chr17: 74682676 MXRA7 OpenSea 0.403 8.47E-05 

chr18: 58079137  OpenSea 0.498 8.53E-05 

chr17: 4549127  OpenSea -0.375 8.59E-05 

chr3: 72027050  OpenSea 0.581 8.64E-05 

chr18: 75774460  OpenSea 0.472 8.70E-05 

chr13: 29166467  OpenSea -0.280 8.93E-05 

chr6: 38998315 DNAH8 OpenSea -0.314 9.02E-05 

chr13: 21872891  S_Shore 0.296 9.05E-05 

chr1: 248100276 OR2L13 N_Shore 0.271 9.08E-05 

chr10: 130122694  OpenSea 0.313 9.13E-05 

chr4: 11369007 MIR572 N_Shore 0.357 9.29E-05 

chr10: 28582533  OpenSea 0.532 9.79E-05 
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Table A 7: Differentially methylated CpG sites in Placenta Associated with Maternal First Trimester BPF Exposure 

Locus Probe Gene Name 
Relation to 

CpG Island 

Effect Estimate 

using M-values 
p-value 

chr2:219135936 cg11036438 AAMP S_Shore -0.216 4.70E-06 

chr8:139116005 cg07850450  OpenSea -0.306 6.66E-06 

chr2:241083975 cg00919014  OpenSea -0.159 8.61E-06 

chr6:167190034 cg01804233 RPS6KA2 OpenSea -0.187 1.17E-05 

chr10:72546264 cg23829193 C10orf27 OpenSea -0.221 2.37E-05 

chr1:114355693 cg00642679 RSBN1 S_Shore -0.194 2.38E-05 

chr7:150494998 cg07649114 TMEM176B N_Shore -0.317 2.48E-05 

chr16:82191819 cg03804206 MPHOSPH6 OpenSea -0.260 2.56E-05 

chr17:189544 cg09652172 RPH3AL OpenSea -0.188 2.89E-05 

chr6:19688777 cg08182409  N_Shelf -0.238 3.33E-05 

chr9:114602017 cg16066494  OpenSea -0.141 4.70E-05 

chr1: 85724328 cg09385306 C1orf52 N_Shore -0.417 4.98E-05 

chr3:158918327 cg02162900 IQCJ OpenSea -0.148 5.05E-05 

chr1: 76174873 cg08541923  OpenSea -0.254 5.14E-05 

chr19:54415925 cg02726501 CACNG7 S_Shelf -0.129 5.20E-05 

chr7: 1819220 cg09911010  OpenSea -0.371 5.35E-05 

chr21:36448197 cg00367967  OpenSea -0.310 6.21E-05 

chr4:175133103 cg24018520  N_Shelf 0.262 6.30E-05 

chr12:29762622 cg19240189 TMTC1 OpenSea -0.262 7.02E-05 

chr6:170398865 cg14468953  N_Shelf -0.182 7.54E-05 

chr8: 72941949 cg14667695 TRPA1 OpenSea -0.224 7.55E-05 

chr9:106005045 cg12307296 LINC01492 OpenSea -0.330 7.80E-05 

chr10:49916530 cg13125657 WDFY4 OpenSea -0.258 8.11E-05 

chr1:230118458 cg24605197  OpenSea -0.231 8.49E-05 

chr7: 48887421 cg22290893  N_Shore -0.308 9.06E-05 

chr11: 2444553 cg10955576 TRPM5 S_Shelf -0.195 9.18E-05 

chr3: 67345761 cg17478726  OpenSea -0.190 9.26E-05 

chr17:32427091 cg17995857 ASIC2 OpenSea -0.313 9.28E-05 

chr9 97491386 cg14163324 C9orf3 S_Shelf -0.148 9.94E-05 
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Table A 8: Differentially methylated CpG sites in Placenta Associated with Maternal First Trimester BPS Exposure 

Locus Probe Gene Name Relation to CpG Island 
Effect Estimate 

using M-values 
p-value 

chr19:57631384 cg05246057 USP29 S_Shore -0.324 2.29E-06 

chr18:75400720 cg02950608  N_Shore -0.696 2.38E-06 

chr3:116605431 cg18347332  OpenSea -0.586 3.80E-06 

chr7:156363743 cg23586788  OpenSea -0.419 4.28E-06 

chr9:127174352 cg07515961 PSMB7 N_Shelf -1.427 8.88E-06 

chr13:73112127 cg01086205  OpenSea -0.432 1.32E-05 

chr2: 52656979 cg15853771  OpenSea -0.563 1.53E-05 

chr8: 2197661 cg20299740  OpenSea -0.468 2.01E-05 

chr2:104668320 cg03407782  OpenSea -0.442 2.58E-05 

chr3: 77064282 cg27304415  OpenSea -0.766 2.73E-05 

chr8:106185570 cg14233855  OpenSea -0.602 2.82E-05 

chr17:77245306 cg24098990 HRNBP3 OpenSea -0.602 3.66E-05 

chr1:205557160 cg24435996 MFSD4 N_Shelf -0.403 3.67E-05 

chr1: 58126625 cg02058215 DAB1 OpenSea -0.455 4.30E-05 

chr2:168401402 cg22687547  OpenSea -0.633 5.08E-05 

chr15:92399195 cg12626076 SLCO3A11 S_Shore -0.329 5.78E-05 

chr6: 29648400 cg07134666  OpenSea -0.794 6.06E-05 

chr5: 13771787 cg24408918 DNAH5 OpenSea -0.365 6.14E-05 

chr5:155753616 cg03811411 SGCD OpenSea -0.452 6.37E-05 

chr1: 7063174 cg15604777 CAMTA1 OpenSea -0.551 6.38E-05 

chr7: 26192199 cg07986525 NFE2L3 Island 0.208 7.09E-05 

chr9: 17520350 cg01633078  OpenSea -0.373 7.24E-05 

chr10: 1338235 cg02319911 ADARB2 OpenSea -0.461 7.54E-05 

chr12:15038788 cg06601891 MGP OpenSea -0.711 8.21E-05 

chr11: 2022324 cg16574793  S_Shelf 0.234 8.41E-05 

chr8: 96619989 cg10712578  OpenSea 0.871 8.46E-05 

chr13:66887072 cg12853300 PCDH9 OpenSea -0.545 8.74E-05 

chr11:133913868 cg17434901  OpenSea -0.411 8.78E-05 

chr5: 41059254 cg11718442 MROH2B OpenSea -0.441 9.16E-05 

chr4: 155662375 cg27639408  N_Shore -0.784 9.58E-05 

chr15:100600822 cg19539605 ADAMTS17 OpenSea -0.446 9.64E-05 

chr5: 140561067 cg13394331 PCDHB16 S_Shore -0.667 9.79E-05 
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