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ABSTRACT

One of the key frontiers in genomics research is decoding the function of non-

coding sequence and variation. Non-coding sequence, once thought to be junk DNA,

is now known to regulate gene expression in a tissue-specific manner, and is fre-

quently found to be mutated in cases of complex human disease. Despite their

importance in human disease, non-coding regions are vastly understudied compared

to protein coding regions. This is in part due to the abundance of non-coding se-

quences currently predicted to comprise 98.8% of the genome compared to protein

coding regions, which make up only 1.2%. To complicate things further, most of this

sequence is non-functional. A non-coding mutation may lead to a change in gene

expression or a difference in human phenotype, yet it could show no change in gene

expression at all. Therefore, there is considerable demand for novel computational

and experimental tools focused on identifying functional non-coding sequences, and

prioritizing variation associated with gene expression regulation and human disease.

The focus of the work in this dissertation is the development of novel tools to

identify functional non-coding regulatory sequences, and to prioritize the variation

that falls within these sequences. I will introduce the following computational tools,

the SNP Effect Matrix Pipeline (SEMpl) and the SNP Effect Matrix Pipeline with

Methylation (SEMplMe). These methods integrate data from genome-wide anno-

tations of functional elements, such as sites of transcription factor protein binding

(ChIP-seq), open chromatin (DNase-seq), and DNA methylation (WGBS), to gener-

x



ate predictions of the consequences of nucleotide and methylation changes to binding

affinity in transcription factor binding sites. As transcription factor binding sites are

the building blocks of larger regulatory sequences, such as regulatory elements, func-

tional alterations caused by the introduction of a variant or DNA methylation may

lead to aberrant gene expression. SEMpl and SEMplMe are easy to use tools to help

researchers prioritize the hundreds of putative regulatory variants that emerge from

high-throughput studies, such as genome-wide association studies. This will greatly

increase the rate at which non-coding variation can be experimentally validated.

I will also introduce experimental tools focused on identifying larger blocks of reg-

ulatory non-coding sequence: cis-regulatory elements. Cis-regulatory elements are

sequences that are able to alter or drive gene expression. Currently, a large body of in-

formation exists for regulatory elements that are associated with an increase in gene

expression, known as positive regulatory elements. However, regulatory elements

associated with a decrease in gene expression, also known as negative regulatory el-

ements, are comparatively understudied. To help fill this gap in knowledge between

positive and negative regulatory elements, I helped develop two novel methodolo-

gies that are able to invert negative regulation into a positive reporter signal. The

observed positive output allows negative regulatory elements to be characterized in

a spatio-temporal manner in vivo in whole animals. This advancement will allow

negative regulatory elements to be studied in a manner similar to what has already

been achieved for positive regulatory elements for the first time.

Together, the studies in this dissertation investigate non-coding regulatory se-

quence genome-wide through the development of novel tools which prioritize regula-

tory variation and identify and characterize regulatory elements.
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CHAPTER I

Introduction

1.1 Introduction to the Non-coding Genome

Prior to the completion of the Human Genome Project in 2001, scientists believed

that non-genic sequences in the genome represented ‘junk DNA’ – potentially vesti-

gial sequence no longer playing an important role in human development. However,

the results of this seminal study and many studies since have found that there exist

only approximately 20,000 genes in the human genome, making up about 1.2% of

the total genomic sequence [1]. This surprisingly low number of genes hints that

additional mechanisms must be in place for these 20,000 protein-producing units to

generate all of the complexity required to form the multitude of tissue-types found

in humans. Scientists have now come to appreciate that the other 98.8% of the

genome is not simply ‘junk’, but functions as an additional level of gene expression

regulation – altering the availability or rate at which genes are transcribed. These

functional, non-coding regulatory sequences can be cell-type specific, allowing for dif-

ferent expression patterns across the same sets of genes to generate distinct cell types.

However, while coding regions of the genome have been well annotated, non-coding

regulatory regions remain vastly understudied.

Non-coding regulatory sequence is primarily divided into discrete regions known

1
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as cis-regulatory elements. These include promoters - which fall directly upstream of

the transcription start site of their target gene and initiate gene expression through

the recruitment of transcription machinery, enhancers - which recruit activator pro-

teins to increase target gene expression likely through DNA looping to boost activity

at the promoter, silencers - which recruit repressor proteins to decrease target gene

expression though a variety of mechanisms, and enhancer blockers - which limit

the range of enhancer activity, likely through CTCF-mediated DNA looping into

regulatory-activity-insulated topological domains. Regulatory sequences are classi-

cally characterized by their activity and are made up of transcription factor binding

sites which facilitate protein-DNA interactions. These transcription factor binding

sites are where activator or repressor proteins are recruited, and mutations within

these sites can lead to transcription factor binding affinity changes, aberrant down-

stream gene expression, and human disease [2].

1.2 Non-coding Variation is Associated with Human Disease

One of the most surprising results to emerge from genome-wide association stud-

ies (GWAS) is that the majority of variation in the human genome associated with

disease is found in non-coding regions. Though it has long been known that 95%

of genomic variation falls into non-coding sequences, it was unexpected that 88% of

potentially disease causing variants identified by GWAS would exist in intronic or in-

tergenic regions [3]. Additionally, simulations have predicted that regulatory regions

may account for up to 79% of imputed heritability of examined human traits [4]. In

support of this finding, many non-coding variants have been found to contribute to

human disease phenotypes [5].
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Variants falling into transcription factor binding sites found in regulatory sequence

can be categorized by their effect on transcription factor binding (Figure 1.1) [6].

The most common is a change to transcription factor binding affinity. For example,

a variant associated with Hirschsprung disease in a putative enhancer was found to

decrease reporter gene expression six-fold compared to the wild-type allele, consistent

with decreased transcription factor binding at this locus (Figure 1.1A) [7]. Variants

strongly associated with Type 2 diabetes and colorectal cancer have been seen to

significantly increase reporter gene expression, consistent with increased transcription

factor binding (Figure 1.1B) [8]. Ablation of transcription factor binding is also a

known consequence of non-coding variation, as was seen in a variant within an AP2

transcription factor binding site associated with cleft lip (Figure 1.1C) [9]. There

are other instances where a variant leads to ablation of the binding of its original

transcription factor while concurrently gaining a site for an aberrant transcription

factor (Figure 1.1E). This was observed in a variant associated with myasthenia gravis

in which an SP1 site was disrupted, generating a novel NF-kB transcription factor

binding site [10]. Variation in nonfunctional non-coding sequences may also produce

novel transcription factor binding sites (Figure 1.1F). This type of variation has

been noted in patients with high cholesterol where a novel binding site for the known

activator protein C/EBP is produced from a common single nucleotide polymorphism

[11]. It has been postulated that variation altering a transcription factor binding site

may lead to an additional transcription factor binding alongside the original, however

I have yet to identify published evidence of this to date (Figure 1.1D).

Though the majority of validated regulatory elements are promoters and en-

hancers, silencers and enhancer blockers are predicted to play a major role in human

disease. Known disruptions of enhancer blockers have been found to arise from copy
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Figure 1.1: Changes to transcription factor binding affinity following the introduction of a variant
in a transcription factor binding site. A. A variant leading to increased binding affinity.
B. A variant causing decreased binding affinity. C. A variant leading to ablated binding
affinity. D. A variant which leads to affinity of an additional transcription factor. E.
A variant which ablates binding of the canonical transcription factor, and generates a
binding site for a new transcription factor. F. A variant which creates a transcription
factor binding site where there was previously none.

number variations or translocated sequences where aberrant enhancer blocker ac-

tivity disrupts normal regulatory networks. This is best characterized in cases of

limb malformation [12]. Additionally, many regulatory elements currently thought

to contribute to enhancer activity, may in fact function as silencers. For example, ul-

traconserved non-coding variants in patients with holoprosencephaly were identified

within a putative regulatory sequence which showed no enhancer activity by an in

vivo reporter assay [13]. Though the researchers speculate this may be the case of a

failure in the zebrafish in vivo reporter assay to fully recapitulate human regulatory

enhancer activity, it can be postulated that this sequence confers silencer activity,

which would not be detected by their classical enhancer reporter assay.
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1.3 Annotating Regulatory Sequence

While the Human Genome Project set out to sequence all coding sequence within

the human genome, the Encyclopedia of DNA Elements (ENCODE) Project is now

working to annotate the non-coding human genome [1]. Towards this goal, EN-

CODE generates high-throughput datasets of features associated with functional

DNA (Figure 1.2). This includes chromatin immunoprecipitation followed by se-

quencing (ChIP-Seq) which measures genome-wide binding of proteins and histone

modifications, DNase I hypersensitive sites sequencing (DNase-seq) that measures

regions of open chromatin where proteins are more likely to bind and genes are more

likely to be expressed, and Whole genome bisulfite sequencing (WGBS) which mea-

sures the average amount of DNA methylation at each nucleotide. These data provide

a substantial baseline of features associated with functional regulatory sequence. For

example, histone modifications are widely used as a proxy for putative regulatory

elements, such as promoters and enhancers [14]. Transcription factor protein binding

in non-coding sequence may also indicate the presence of regulatory sequence, such

as an enhancer or silencer.

Additional annotations also correlate to functional non-coding regions, includ-

ing sequence conservation from multiple species alignments and catalogs of human

variation. Comparative genomics is a tool often used for genic sequence interpreta-

tion and can be applied to the non-coding genome to identify regions of sequence

undergoing positive selection [16]. These typically include sequences which main-

tain >70% sequence identity across distantly related species, as with human and

Drosophila. Unlike genic sequences, regulatory non-coding sequences are less likely

to be conserved, possibly due to the redundant function of regulatory elements [17].
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Figure 1.2: Datasets generated by ENCODE. A. Open chromatin from analyses such as DNase-
seq, ATAC-seq, and FAIRE-seq. B. Histone modifications from ChIP-seq. C. DNA
methylation from whole genome bisulfite sequencing (WGBS). D. 3D interactions from
analyses such as Hi-C and ChIP-PET. E. Protein binding from transcription factor
ChIP-seq. F. Transcription from RNA-seq. G. RNA-protein interactions from analyses
such as icLIP. H. Gene annotations from analyses such as RT-PCR. Figure adapted
from Diehl and Boyle [15].

Large-scale sequencing initiatives, such as the 1000 Genomes Project, are utilized to

calculate positive and negative selection occurring within the human genome [18].

Additionally, these databases can help to identify discrepancies in the frequency of

non-coding variants to those in the general population. The datasets presented here

only represent features associated with functional sequence. Further experimental

validation is required to verify predicted functional sequence and putatively causal

variation.

1.4 Computational Predictions of Regulatory Sequence

While experimental validation is the gold standard for confirming functional non-

coding sequences, it can be difficult to prioritize which of these regions may be
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functional out of the >2.9 billion base pairs in the human genome. Focusing on

transcription factor binding sites, which are more likely to have regulatory activity,

can narrow this down to 240 million base pairs. However, as genomic regions are

traditionally tested for functional regulatory activity <1000bp at a time, validat-

ing non-coding variation remains a herculean task. Additional methodologies are

required to further prioritize putatively functional non-coding genomic sequences in

order to make the experimental validation of non-coding regions more accessible.

Computational non-coding annotation tools use genomic features associated with

functional sequence to predict how likely a genomic region is to have functional or

regulatory activity. These tools utilize many of the same types of high-throughput

datasets generated by ENCODE, such as ChIP-seq and DNase-seq, as well as ad-

ditional annotations, including sequence conservation derived from software such as

phyloP, and 3D chromatin contacts from assays like Hi-C and ChIA-pet [1, 19, 20, 21].

Analyses that include direct association tests can be utilized to identify expression

quantitative trait loci (eQTL), which are markers of genetic variation directly asso-

ciated with gene expression changes [22]. Together, these annotations are used by

non-coding SNP annotation tools heuristically or to train machine learning models

to generate quantitative scores predicting the likelihood that variants are associated

with, but not necessarily causal of, gene expression changes [22, 23].

Tools like RegulomeDB previously used a heuristic scoring system of ChIP-seq,

DNase-seq, and eQTL data to generate prediction scores [24]. However, the newer

version of RegulomeDB (RegulomeDB 2.0) utilizes these annotations, as well as

scores from another non-coding SNP annotation method, DeepSEA, in a random

forest machine learning model to better prioritize non-coding variation [25, 26]. Ad-

ditional tools, such as CADD and deltaSVM, have also emerged as popular choices
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of machine learning methods for predicting functional non-coding variations, and for

coding variations in the case of CADD [27, 28]. Despite the benefits these tools pro-

vide, <40% of GWAS failed to follow up on variation falling into non-coding regions

using one of these tools [23]. This is due to the need for more robust predictions of

non-coding variation that can arise from increasing the types of function-associated

annotations used in these methods. The high cost of experimental follow-up, paired

with a lack of tools to validate and characterize non-coding variation and regulatory

regions is also a large contributor.

1.5 Experimental Validation of Regulatory Sequence

In addition to generating genomic annotations of features associated with func-

tional regulatory sequence, such as those available from ENCODE, experimental

assays have been developed to validate the function of putative regulatory elements

and variants.

One such assay is the classical reporter assay that is used to validate and charac-

terize promoter and enhancer activity in cells or whole organisms. Enhancer assays

function by inserting a putative enhancer upstream of a minimal promoter driving

a reporter gene, such as GFP, on a plasmid backbone. In cases where the tested se-

quence has enhancer activity, GFP expression will increase above minimal promoter

expression levels. Similarly, promoter assays involve insertion of putative promoters

into a plasmid backbone directly upstream of GFP. Observable expression is pre-

dicted if the putative promoter sequence is able to promote GFP expression. This

type of assay can be used to generate transgenic animal models to examine spatio-

temporal activity of regulatory elements, and is commonly employed in mice using
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LacZ as a reporter, and in zebrafish using a GFP reporter [29, 30]. Large-scale

initiatives, such as the VISTA Enhancer Browser, are working to characterize the

spatio-temporal activity of an abundance of regulatory elements using reporter assays

[31].

The classic reporter assay has been extended for use in high-throughput studies

of enhancer activity. Massively parallel reporter assays (MPRAs) use the logic of

classical reporter assays, but are able to investigate whole sequencing libraries in

parallel by labeling plasmids with unique barcodes in place of a reporter gene [32].

Following transfection into a cell line, the expressed barcodes are purified from mRNA

and sequenced alongside the DNA plasmid library to link the tested enhancer with

its corresponding barcode. Enhancers matching an expressed barcode are considered

active. A similar method named self-transcribing active regulatory region sequencing

(STARR-seq) is also able to evaluate entire sequencing libraries in parallel [33]. This

assay circumvents the use of a barcode by inserting putative enhancers downstream

of a minimal promoter to drive their own expression. Any enhancer recovered after

mRNA sequencing from transfected cells is considered active in the tested cell-type.

Classical reporter assays have also been adapted to assess the regulatory activity

of putative silencers and enhancer blockers [34]. These assays rely on placing putative

silencers upstream of a known enhancer and minimal promoter that drives reporter

gene activity, with the output being a reduction in expression. A similar assay exists

for enhancer blockers wherein a putative enhancer blocker is inserted between the

enhancer and minimal promoter. This expected reduction in reporter signal greatly

increases the number of false positives yielded by these assays, and makes them

impractical for use in vivo. These disparities in reporter assay technology between

promoters/enhancers and silencers/enhancer blockers is a key driver of the imbalance
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in studies between these regulatory element types.

In addition to reporter assays, the function of a regulatory variant can be evalu-

ated by assessing the transcription factor protein-DNA binding differences between

variant and wild-type alleles [9]. This is commonly achieved using electrophoretic mo-

bility shift assay (EMSA) analysis, in which transcription factors and their potential

binding sites are mixed tougher and allowed to form a complex in vitro. These mix-

tures are run through an agarose gel where protein-DNA complexes appear shifted

compared to unbound DNA. The shifted bands can be quantified to determine rel-

ative binding affinity between DNA fragments of different alleles. Alternatively,

mass-spectrometry has been used to quantify the abundance of transcription fac-

tor binding to risk and non-risk alleles from heterozygous patient cell cultures [35].

Relative binding of alleles can be measured using this method by examining the

ratios of allelic peaks as a proxy for allelic load following immunoprecipitation of a

transcription factor of interest.

Novel technologies, such as clustered interspaced short palindromic repeats (CRIS-

PR), have recently been employed to directly study patient mutations. For exam-

ple, CRISPR-mediated genomic rearrangements matching patient genotypes were

used to study human limb malformations [12]. This method found that disrupted

enhancer blocker activity within topologically associated domain boundary regions

lead to aberrant gene expression contributing to patient syndactyly, brachydactyly,

and F-syndrome. Generating patient mutations in regulatory sequence followed by

assessment of global gene expression levels by RNA-seq can determine if a non-coding

variant is functional, as well as delineate genes in its regulatory pathway. Similarly,

novel chromatin conformation technologies, like Hi-C and ChIA-PET, can link val-

idated regulatory elements to their target gene, further unraveling the regulatory
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landscape of the genome [19].

1.6 Overview of Dissertation

Recent high-throughput analyses have established that the majority of variation

in the human genome associated with disease falls in non-coding regions. The bulk

of this variation is likely found in regulatory sequence - regions of DNA able to alter

tissue-specific gene expression. However, much of the regulatory sequence predicted

to be in the genome has yet to be identified, and it remains an undertaking to

predict the possible consequences of variation and epigenetic changes falling within

this sequence.

In this dissertation I describe novel tools to interpret non-coding variation and

methylation, as well as validate and characterize non-coding regulatory regions.

Chapter 2 examines current computational tools to prioritize and predict the function

of non-coding variants. Chapter 3 introduces a novel tool, SEMpl, to help prioritize

non-coding variation by predicting the effect of variation falling into transcription

factor binding sites. Chapter 4 extends the SEMpl method to include predictions

of the effect of DNA methylation on transcription factor binding. Chapter 5 estab-

lishes a widely-used experimental technology, the lac operator-repressor system, as

functional in zebrafish cells. Chapter 6 utilizes this lac operator-repressor system,

as well as CRISPR technologies, to generate novel inversion assays able to validate

and characterize the spatio-temporal activity of silencers and enhancer blockers in

zebrafish. Finally, chapter 7 concludes with perspectives on how this research can

contribute to the field, and future directions of the study of non-coding variation

going forward.



CHAPTER II

Mining the Unknown:
Assigning Function to Non-coding SNPs

2.1 Abstract

One of the formative goals of genetics research is to understand how genetic vari-

ation leads to phenotypic differences and human disease. Genome-wide association

studies (GWASs) bring us closer to this goal by linking variation with disease faster

than ever before. Despite this, GWASs alone are unable to pinpoint disease-causing

single nucleotide polymorphisms (SNPs). Non-coding SNPs, which represent the

majority of GWAS SNPs, present a particular challenge. To address this challenge,

an array of computational tools designed to prioritize and predict the function of

non-coding GWAS SNPs have been developed. However, fewer than 40% of GWAS

publications from 2015 utilized these tools. We discuss several leading methods

for annotating non-coding variants and how they can be integrated into research

pipelines in hopes that they will be broadly applied in future GWAS analyses.

2.2 Toward the Goal of Understanding Variation

Genome-wide association studies (GWASs) are a popular method of linking ge-

nomic variation with human disease and have produced over 100,000 genomic re-

12
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gion–disease associations to date [36]. These studies are successful at narrowing

down potential variants associated with a disease; however, they are incapable of de-

termining causative single nucleotide polymorphisms (SNPs) on their own. GWAS

variants are typically screened using a set of lead SNPs, which are informative but

often not causative. The causative SNP may lie anywhere within the linkage dis-

equilibrium (LD) block surrounding the lead SNP, but these can span over 100 kb

and often contain over 1000 individual SNPs. Improvements in the identification of

causative SNPs from GWASs will advance our understanding of disease mechanisms

and reveal potential therapy targets. Fine mapping techniques using high-throughput

imputation have the potential to refine GWAS SNPs in LD loci down to a testable

number, and can be used to make predictions of SNP associations with a phenotype

when paired with statistical predictions of association, such as Bayesian refinement

[8, 37]. Indeed, combining fine mapping and functional annotations has yielded im-

portant discoveries. For example, Bauer et al. identified a single variant in LD with

a GWAS locus associated with hemoglobin disorders, which disrupts the motif of

an enhancer in a regulator of fetal hemoglobin, BCL11A, and now represents an at-

tractive therapeutic target for the treatment of hemoglobinopathies [38]. However,

this methodology requires dense genotyping and large sample sizes, and may not be

effective for all loci. Because of these challenges, researchers have now developed

many computational tools designed to assist with the prioritization of GWAS SNPs

to reduce the resources and time needed to experimentally validate causative SNPs

[39, 40]. Although the vast majority of GWAS-implicated SNPs are found in non-

coding sequence, the majority of SNP annotation tools only annotate SNPs in coding

regions of the genome [3]. This is in part because non-coding SNPs are more chal-

lenging to annotate than SNPs in coding regions where the consequences of variation
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are better understood. Landmark initiatives now provide sufficient data to begin the

task of predicting and prioritizing functional SNPs in non-coding DNA. These include

catalogs of human variation (1000 Genomes Project, International HapMap Project),

annotations of functional elements [Encyclopedia of DNA elements (ENCODE)], and

conservation information derived from multiple species alignments [18, 1]. Since 2010,

a handful of tools to annotate non-coding SNPs have been released. These tools pro-

vide hypotheses to the functional nature of non-coding SNPs, a powerful first step

that reduces the pool of possible variants for experimental follow-up. However, many

studies do not take advantage of these tools. In fact, of 44 GWASs released in 2015,

only 16 use any sort of non-coding SNP annotations for variant follow-up (see Table

S1 in the supplemental information online). Regulatory variants can have dramatic

effects on gene regulation. Kasowski et al. [2, 41] initially demonstrated this on a

genome-wide scale by showing allele-specific binding of the transcription factor (TF)

nuclear factor-kappa B and CCCTC-binding factor (CTCF). Subsequently, Degner

et al. [42] demonstrated that a single variant can result in both disruption of TF

binding and alteration of chromatin accessibility. Other studies have demonstrated

similar dramatic effects of non-coding variation on regulatory networks and gene

expression control mechanisms [43, 44]. These findings suggest a mechanistic link

between regulatory variation and disease phenotypes. It is clear that, by restrict-

ing experimental follow-up to easily classified variants, we likely miss a substantial

proportion of variants directly relevant to disease. Through broad application of

non-coding SNP annotation tools to GWAS, we can improve our understanding of

genetic disease predispositions. In the following sections, we review several leading

non-coding SNP annotation tools, examine their strengths and limitations, and dis-

cuss how they can be integrated into GWAS pipelines to augment their findings.
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Their incorporation will significantly accelerate discovery of disease-causal variants

from GWASs and provide vital information to shape hypotheses about their function.

2.3 Annotation of Functional SNPs

Tools for SNP annotation can take advantage of diverse genomic data types to

provide putative functional annotations or predict functional effects. Here, we divide

the tools into three categories: functional, conservation, and machine learning based.

While all of the tools reviewed here utilize functional data, conservation-based tools

also include measures of conservation, and machine learning tools may incorporate

multiple lines of evidence, including functional annotations and conservation.

Functional Annotation

GWAS SNPs have been shown to be enriched for functional annotations, with 81%

of GWAS LD regions containing at least one functional SNP [45]. Many types

of high-throughput assays are used to predict features associated with putative

regulatory function in the non-coding genome, including DNase I hypersensitive

sites sequencing (DNase-seq), assay for transposase-accessible chromatin with high-

throughput sequencing (ATAC-seq), formaldehyde-assisted isolation of regulatory

elements-sequencing (FAIRE-seq), TF ChIP-seq, histone modification ChIP-seq, and

expression quantitative trait loci (eQTL) analysis (Figure 2.1 ) [46]. In some cases,

genomic features such as distance from the nearest gene, guanine–cytosine content,

predicted TF binding motifs, and manual annotations of published variants are also

included. As many of these analyses identify cell-type specific interactions, the range

of conditions (cell-types, stages of development, etc.) for which data are available
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restricts the range of functional elements a tool is able to detect. In addition, these

methods will miss functional elements that do not coincide with known annotation

co-occurrence patterns. Examples of tools that annotate non-coding SNPs using

only functional genomics information include the Ensembl Variant Effect Predictor

(VEP), RegulomeDB, and Functional Identification of SNPs (FunciSNP) [24, 47, 48].

Conservation

In addition to functional genomics data, including conservation data allows variants

to be ranked based on well-accepted measures of evolutionary constraint. Conser-

vation is typically determined by multiple sequence alignments, from which we can

estimate rates at which different categories of genomic regions have evolved over

time. Conservation can be measured by comparing the substitution rate within

a genomic region of interest to an estimate of the neutral substitution rate. Re-

gions with a significantly lower-than-expected substitution rate are considered to be

conserved, and are therefore likely under functional constraint. However, because

humans have likely undergone recent rapid adaptations in tissue-specific regulation,

strict conservation-based approaches to regulatory element detection may miss criti-

cal human-only advancements in tissue types such as the brain [49]. Methods that in-

tegrate conservation into their annotation include ANNOVAR, HaploReg, GWAS3D,

and fitCons [50, 51, 52, 53].

Machine Learning

Machine learning algorithms have recently become popular for SNP annotation be-

cause of their multifaceted predictions based on robust statistical methods. These

powerful tools are able to build complex predictive models of SNP function [54]. All
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Figure 2.1: Data and tools used to analyze non-coding variants. Single nucleotide polymorphism
(SNP) aligned with functional (red) and conservation (blue) data, machine learning
methods (green), and tool features (yellow). Each tool discussed in this perspective is
labeled with annotation types used in its non-coding variant analysis platform. * rep-
resents optional input data sets supplied by the user. Abbreviations: 3C, chromosome
conformation capture; 5C, chromosome conformation capture carbon copy; CADD,
combined annotation-dependent depletion; ChIA-PET, chromatin interaction analysis
by paired-end tag sequencing; DANN, deleterious annotation of genetic variants using
neural networks; DNase-seq, DNase I hypersensitive sites sequencing; eQTL, expression
quantitative trait loci; FAIRE, formaldehyde-assisted isolation of regulatory elements;
FunciSNP, Functional Identification of SNPs; GWAVA, genome-wide annotation of vari-
ants; TF, transcription factor; VEP, Variant Effect Predictor.
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these methods incorporate functional data and most incorporate conservation data

to train their prediction models, each using different models and approaches. Though

powerful, machine learning methods are susceptible to biases found in training sets

and annotations such as enrichments of variants near genes, gaps in functional an-

notations, or overfitting due to suboptimal parameterization or insufficient training

data. Much care is required to limit the effect these biases have on pattern predic-

tion [27, 55]. In addition, the basis for functional categorization may not be intu-

itive, as reasons for annotation may not be directly reported in the results. Current

methods using machine learning to prioritize candidate functional variants include

genome-wide annotation of variants (GWAVA), combined annotation-dependent de-

pletion (CADD), deleterious annotation of genetic variants using neural networks

(DANN), FATHMM-MKL, deltaSVM, and DeepSEA [27, 28, 56, 40, 57, 58]. Im-

portantly, the data sets used to train machine learning methods can alter which

variants they call. As there is currently no gold-standard training set for detrimen-

tal non-coding variants, non-coding annotation tools use a variety of data sets to

train their algorithms. For example, GWAVA and FATHMM-MKL use manually

curated disease-associated variants from the Human Gene Mutation Database [59], a

data set composed of experimentally validated and likely disease-associated variants.

However, these databases do not contain randomly sampled variants from across the

genome and so are subject to ascertainment bias. GWAVA and FATHMM-MKL

attempt to mitigate these biases by sampling nearby nondisease-associated variants.

By contrast, CADD and DANN use randomly simulated deleterious variants and

conservation between humans and chimp to generate hypothetical sets of deleterious

and nondeleterious variants. Though this approach may reduce selection bias, using

randomly simulated variants risks capturing nondeleterious alleles in the deleterious
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training set, and deleterious alleles in the nondeleterious training set, as it does not

use any experimental measure of deleteriousness. Newer methods such as deltaSVM

and DeepSEA are forgoing the generation of detrimental SNP training sets altogether

in favor of strict functional annotation to identify cell-specific regulatory elements

and randomly sampled matched control regions. However, similar to randomly sim-

ulated variation, there is no guarantee that randomly selected control regions do not

confer some regulatory function or undiscovered disease association. Finally, as ma-

chine learning methods do not provide functional annotations alongside predictions

of SNP deleteriousness, additional analysis using a functional- or conservation-based

tool or manual functional annotation may still be needed to suggest hypotheses for

how functional SNPs affect their associated disease phenotypes.

2.4 Integrating SNP Annotation into the GWAS Pipeline

The aforementioned tools offer a powerful way to improve the resolution of GWAS.

By integrating them into GWAS pipelines, as shown in Figure 2.2, a list of SNPs in

LD with the lead SNP can be annotated and ranked according to their likelihood of

function.

Many of these tools approach the variant annotation from the perspective of an

individual variant rather than considering all variants in LD with the reported SNP

(e.g., RegulomeDB, CADD/ DANN, deltaSVM). For these methods, preprocessing

with tools, such as IMPUTE2, is necessary to identify SNPs in linkage with the lead

SNP [60]. Other SNP annotation tools (e.g., FunciSNP, HaploReg, GWAS3D) incor-

porate LD SNPs without the need of additional tools. However, it is important for

researchers to consider the genomic background of their samples when using tools
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Figure 2.2: Following GWAS analysis, lead SNPs implicated as important in disease risk can be
passed to an SNP annotation tool. Annotation tools sensitive to linkage disequilibrium
(LD) regions, or who make predictions covering genomic regions can be used directly,
while those tools without imputation methods must first be put through an imputation
program to make predictions for all SNPs in a region of LD. Once a SNP annotation
tool has been implemented, the resulting scores or functional annotations can be used
to prioritize candidate SNPs for further experimental validation following generation
of a hypothesis of function. Abbreviations: 3C, chromosome conformation capture;
CADD, combined annotation-dependent depletion; CRISPR, clustered regularly inter-
spaced short palindromic repeats; DANN, deleterious annotation of genetic variants
using neural networks; EMSA, electrophoretic mobility shift assay; FunciSNP, Func-
tional Identification of SNPs; MPRA, massively parallel reporter assay; VEP, Variant
Effect Predictor.
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that incorporate LD, as regions of LD vary between ethnicities. Because of this,

it may be advisable to perform independent imputation as is standard in GWAS

before applying these tools. Not only can functional annotations narrow the pool

of candidates for experimental follow-up, but also the content of the functional as-

sociations (overlapping TF binding sites, chromatin marks, etc.) can suggest casual

mechanisms and help direct the strategies used for experimental validation. An-

notation tools that provide quantitative scores [such as RegulomeDB, fitCons, and

machine learning methods (Figure 2.1)] are particularly well suited to this appli-

cation. The scores provide a way to directly rank individual SNPs and prioritize

them for follow-up. Incorporating expert domain knowledge of the system(s) in-

volved can further guide this process. The associated annotations can provide direct

clues to the function of the sequence harboring a SNP of interest, leading to testable

hypotheses regarding the tissues, cell types, pathways, target genes, and specific reg-

ulatory mechanisms potentially disrupted by a given variant. A final consideration

in the use of these tools is the application interface provided to the researcher. Some

tools (e.g., FunciSNP, ANNOVAR, deltaSVM) only provide a command-line interface

that, while not particularly user friendly, is ideal for integration into bioinformatic

pipelines. Conversely, some tools provide Web interfaces with associated graphics

and sorting capabilities to allow a noncomputationally focused researcher to perform

these analyses with ease, allowing online visualization or opportunities to download

scores for further analysis. However, these methods may be difficult to incorporate

into automated analysis pipelines. The ideal interface will likely be defined by the

research process of each group and should be considered on a case-by-case basis. A

recent example of the successful integration of annotation analysis into the GWAS

pipeline comes from Higgins et al. [61]. This study examined 31 putative causal SNPs
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associated with psychotropic drug response, narrowed down from 2,024 SNPs aggre-

gated across 26 GWAS in the National Human Genome Research Institute (NHGRI)

GWAS catalog [36]. They first imputed lead GWAS SNPs from using LD data from

HaploReg. Imputed SNPs were then analyzed by SNP annotation methods and ad-

ditional functional features, including RegulomeDB, HaploReg, and chromatin state.

This allowed the authors to identify putative functional SNPs within their LD re-

gions, as well as assign possible regulatory activity to the regions associated with

these SNPs (promoter, enhancer, transcribed domain). Finally, by incorporating 3D

chromatin interaction data, including GWAS3D analysis, the authors were able to

predict cis-regulatory interactions. In total, these predictions provided hypotheses

of SNP regulatory activity and interactions, which allow a higher confidence start-

ing point for experimental verification. Another clear demonstration of the power of

SNP annotation of GWAS and subsequent experimental validation was recently pub-

lished by He and colleagues [62]. This study used HaploReg functional annotations,

along with known TF binding and histone modification data, to identify multiple

novel functional regions and four variants likely to be functional in papillary thyroid

cancer. They determined that these variants lead to increased enhancer activity by

luciferase assay and increased TF binding by ChIP assay. Using chromosome confor-

mation capture (3C), the authors also identified the gene targets of these enhancers.

In this study, the use of non-coding SNP annotation tools, along with additional

functional annotations, allowed the authors to distinguish novel enhancers, within

which they were able to prioritize and validate SNPs of interest.
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2.5 Validation of Tools on Liver SNPs

To demonstrate the applicability and accuracy of these methods, we used four non-

coding annotation tools to examine human liver enhancer SNPs previously shown to

affect enhancer activity by massively parallel report assay [63](see the ‘Methods’

section). None of these variants occurs in dbSNP and would be considered de novo

variants. The chosen liver data sets were not used to train any of the machine learn-

ing methods examined here. Using the default settings for the online interfaces of

RegulomeDB, CADD, FATHMM-MKL, and DeepSEA, we found that four of the

top seven SNPs that correlated with the greatest change in translational activity

were called putatively detrimental or functional by all of the assayed methods, two

additional SNPs were called by three of the four methods, and six more SNPs were

called by just two of the methods. Only four of the ten SNPs with no effect on tran-

scriptional activity were called benign or nonfunctional by all of the assayed meth-

ods. DeepSEA scores had the greatest correlation with the absolute log2-fold change

on transcriptional activity (R2 = 0.307), followed by RegulomeDB (R2 = 0.262),

CADD (R2 = 0.187), and FATHMM-MKL (R2 = 0.168; Figure 2.3). DeepSEA and

RegulomeDB also had the highest agreement when comparing scores (R2 =0.677).

Interestingly,all methods were biased toward predicting SNPs, leading to a decrease

in transcriptional activity rather than an increase. Though this trend makes sense

for annotation-based methods such as RegulomeDB, the ability to identify SNPs

with a positive effect of transcription is surprisingly low for sequence based methods

CADD and FATHMM-MKL. These results are striking, as none of the tools exam-

ined includes measures of SNP effects on gene expression in their prediction models.

Discrepancies among scores given to the same variant by different annotation tools
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are not surprising. McCarthy et al. [64] explored the effect of annotation tools

on coding variant prediction using ANNOVAR and VEP, and found only an 87%

agreement between annotation calls. We expect to find far more discrepancies in

non-coding regions of the genome, where markers of regulatory activity are far less

understood. As an independent large-scale comparison of these methods has yet to

be published, it remains unclear which tool, if any, is generally the most effective.

Figure 2.3: Effect size represents the absolute value log2 change of the transcriptional activity of
the variant compared with wild type. R2 values are given for all data points, and for
positive and negative data points individually. Red points represent variants correlated
with a negative effect on transcription, blue points are those correlated with a positive
effect on transcription, and green points are correlated with no effect on transcription.
Abbreviation: CADD, combined annotation-dependent depletion.

Our comparison demonstrates disparities in the agreement between the calls of
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different tools, suggesting that the use of multiple tools in tandem may increase the

confidence of called SNPs, and this strategy has been successful in multiple pub-

lished studies [65, 66, 67]. For example, Chen and colleagues [68] utilized VEP,

RegulomeDB, ANNOVAR, and HaploReg to predict the likelihood of function and

regulatory feature type for 9,184 non-coding variants from the NHGRI database.

Strikingly, they were able to predict regulatory functions for 96% of these variants.

Furthermore, they randomly selected three variants from their list for functional

testing in a reporter assay, and found all three to have enhancer or silencer activity.

These results highlight the promise of using multiple non-coding annotation meth-

ods to increase the confidence of predicted casual SNPs. Indeed, combining multiple

annotation tools may balance out the biases inherent to single tools, thus yielding

more reliable predictions.

2.6 Experimental SNP Validation

Many experimental methods exist for investigating the effects of SNPs, but with-

out specific functional hypotheses, choosing an appropriate method of experimental

follow-up is challenging [69, 70]. Integrating annotation tools that report functional

information into the GWAS pipeline provides multiple lines of evidence to suggest

appropriate tests, including the correct tissue or cell type, how a SNP affects reg-

ulation at a locus (e.g., by altering TF binding), the gene target of the regulatory

region, and the expression-level effect on the target gene. In particular, functional

annotations provided by many tools can suggest the cell type in which a SNP may

have an effect. This is particularly crucial in non-coding regions of the genome, as

most regulatory regions are tissue specific. Thus, cell-type predictions can inform de-
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cisions on which cells to use for in vitro analyses, such as luciferase reporter assays,

and which tissues to examine in in vivo analyses, such as immunohistochemistry.

One method commonly used to investigate the disruption of protein–DNA interac-

tions by regulatory SNPs is electrophoretic mobility shift assay. This assay can be

used to determine if a protein is capable of interacting in vitro with a DNA sequence

of interest, and can be used to assay if DNA–protein interactions are perturbed by

introducing a SNP [71]. Proteome-wide analysis of SNPs can also be used to identify

SNPs producing differential TF binding [72]. Many GWAS findings are distal to any

obvious target gene and many regulatory elements have been shown to act on a gene

other than the nearest gene [73]. To identify the target for a regulatory region, one

can use a 3D genomic assay such as 3C, chromosome conformation capture-on-chip

(4C), chromosome conformation capture carbon copy (5C), chromatin interaction

analysis by paired-end tag sequencing, Hi-C, Capture C, or Capture Hi-C (CHi-C)

[74, 75, 20, 76, 77]. The GWAS3D annotation tool includes a set of 3D interaction

data in its annotations and some tools include eQTL information that may give an

idea of the gene regulatory interaction. In cases where there are no current data,

an assay such as 4C will allow interrogation of all interactions with the significant

locus. Following target gene identification, expression changes can be assayed using

reverse transcription PCR. However, though these methods can demonstrate reg-

ulatory interactions between non-coding sequences and target genes, they cannot

discern specific functional effects. Reporter assays offer a complementary approach

to the aforementioned methods, offering the ability to directly measure the functional

effect of a variant on gene expression levels. They work by placing a regulatory el-

ement upstream of a minimal promoter and a reporter gene in a plasmid, which

can be transfected into an organism and analyzed for regulatory activity [62]. High-
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throughput forms of these assays can be used to measure functional consequences of

variation more broadly [33, 32]. Likewise, transgenic animal models, including mice

and zebrafish, offer powerful tools to assay the phenotypic effect of mutations in vivo

[78, 29]. With the discovery of clustered regularly interspaced short palindromic re-

peats (CRISPR) editing, non-coding variants and structural changes may now more

easily be investigated in these more complex model systems [79].

2.7 Concluding Remarks

We believe computational SNP annotation tools will prove invaluable to the inter-

pretation of GWAS SNPs. The tools reviewed here provide annotations and predic-

tions of the regulatory effects of these often-difficult-to-interpret variants using three

primary methodologies: functional annotations, conservation, and machine learning

(Table 1). Though the majority of GWAS analyses using these methods stop at

selecting possible functional variants within an LD region, the power of these an-

notation methods will come from increasing the speed and ease of experimentally

validating putative causal SNPs associated with disease [80]. This improvement will

be primarily through reducing the set of variants for experimental follow-up and

guiding hypothesis generation regarding their target tissues and regulatory impacts.

Validated causal SNPs can then feed back into future development efforts, further

refining these techniques and improving their utility. As gaps in functional data

are filled and high-throughput sequencing technologies improve, SNP annotation

methods will become more powerful. Notably, increased adoption of whole-genome

sequencing technology, along with improvements to the technologies themselves, will

vastly improve the breadth and resolution of available sequence data. This will allow
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not only non-coding variants to be detected, but also improved annotations of struc-

tural variation such as copy number variation [81]. In addition, the development of

ensemble predictors, similar to those available for coding annotations, would allow

users to run several annotation models in parallel, providing the same benefit as

implementing multiple tools. The expansion of functional data sets across a wide

range of cell types will be key to improving variant predictions for tissue-specific

phenotypes. Finally, incorporation of 3D structural data will likely improve our abil-

ity to assign regulatory SNPs to their target genes, with additional improvements

in our ability to discern their functions and place them in their biological context, a

necessary step for critical pharmacogenetic advancements.

The widespread use of non-coding SNP annotation methods will help us predict

the effects of genomic variation, elucidate mechanisms and pathways of disease, and

bring us closer to understanding the full complexity of the human genome.

2.8 Methods

SNP Selection

Variants in Figure 2.3 were chosen from two human enhancer loci previously ex-

amined at a nucleotide level by massively parallel reporter assay [63]. Enhancer

loci were divided into fifths, with three SNPs chosen from each region (ALDOB,

hg19:chr9:104195570–104195820; ECR11, hg19:chr2:169939182–169939682). From

each fifth we selected the two SNPs that correlated with the greatest positive or neg-

ative change in transcriptional activity, and the first occurrence of a SNP leading to

no change (or in the absence of any such SNP, the variant closest to 0 translational

activity) in the region, for a total of 30 SNPs.
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Tool Description Ref
VEP VEP incorporates annotations from the Ensembl database, allow-

ing it to make predictions genome-wide as well as predict tissue-
specific activity for 13 human cell lines.

McLaren et
al. [48]

RegulomeDB RegulomeDB uses a heuristic scoring system to catalog the like-
lihood that a given SNP or indel resides in a functional region,
using functional data from over 100 cell types.

Boyle et al.
[24]

FunciSNP FunciSNP is an R/Bioconductor package that employs user input
annotations to prioritize SNPs, allowing users to customize their
annotations to query a cell type of interest.

Coetzee et
al. [47]

ANNOVAR ANNOVAR is a command line tool that uses region-based anno-
tations to annotate non-coding variants and insertions and dele-
tions (indels), in addition to comparing them to known variation
databases.

Wang et al.
[52]

HaploReg HaploReg is a searchable repository for SNPs and indels from the
1000 Genomes Project, providing a summary of known annota-
tions for variants within an LD block.

Ward and
Kellis [53]

GWAS3D GWAS3D evaluates SNPs and indels by analyzing their 3D chro-
mosomal interactions and disruptions to TF binding affinity. It
outputs scores as well as a circle plot mapping local 3D interac-
tions.

Li et al. [51]

fitCons fitCons uses the INSIGHT method to predict the probability that
SNPs will influence fitness by screening for signatures positive and
negative selection using data from three cell types.

Gulko et al.
[50]

GWAVA GWAVA trains on a random forest algorithm using disease mu-
tations from HGMD and control variants from the 1000 genomes
project to predict if queried variants are functional.

Ritchie et al.
[40]

CADD CADD trains on a linear kernel support vector matrix using sim-
ulated variants as deleterious variants and alleles fixed between
human and chimpanzee as control variants.

Kircher et al.
[27]

DANN DANN trains on a nonlinear learning neural network algorithm
using the same training set data (fixed alleles vs. simulated vari-
ants) as CADD.

Quang et al.
[56]

FATHMM-
MKL

FATHMM-MKL implements a kernel-based classifier to estimate
complex nonlinear patterns using HGMD pathogenic and 1000
Genomes Project control variant training set data.

Shihab et al.
[57]

deltaSVM deltaSVM uses a gapped k-mer support vector machine to esti-
mate the effect of a variant in a cell-type-specific manner.

Lee et al.
[28]

DeepSEA DeepSEA uses a multilayered hierarchical structured deep
learning-based sequence model to predict functional SNPs with
single nucleotide sensitivity using ENCODE and Roadmap Epige-
nomics data.

Zhou and
Troyanskaya
[58]

Table 2.1: Online resources for accessing non-coding SNP annotation tools
Abbreviation: HGMD, Human Gene Mutation Database.

Non-coding SNP Validation

RegulomeDB, CADD, FATHMM-MKL, and DeepSEA were all accessed through
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their online portals, and run using their default parameters. Variants were sub-

mitted in variant call format (VCF) and VCF-like formats. For RegulomeDB, all

variants returning a score of ‘No Data’ were given a score of 7 for downstream anal-

ysis. For DeepSEA, functional significance scores were used.

2.9 Notes & Acknowledgments

This chapter was previously published in Trends in Genetics (Volume 7, No 1) in

January, 2017 [23].



CHAPTER III

Predicting the Effects of SNPs on Transcription Factor
Binding Affinity

3.1 Abstract

Genome-wide association studies have revealed that 88% of disease-associated

single-nucleotide polymorphisms (SNPs) reside in non-coding regions. However, non-

coding SNPs remain understudied, partly because they are challenging to prioritize

for experimental validation. To address this deficiency, we developed the SNP effect

matrix pipeline (SEMpl). SEMpl estimates transcription factor-binding affinity by

observing differences in chromatin immunoprecipitation followed by deep sequencing

signal intensity for SNPs within functional transcription factor-binding sites (TFBSs)

genome-wide. By cataloging the effects of every possible mutation within the TFBS

motif, SEMpl can predict the consequences of SNPs to transcription factor bind-

ing. This knowledge can be used to identify potential disease-causing regulatory loci.

Availability and implementation: SEMpl is available from https://github.com/Boyle-

Lab/SEM CPP.

31
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3.2 Introduction

To date, genome-wide association studies (GWAS) have identified over 100,000

loci associated with over 200 human diseases and phenotypic traits [69, 36]. Though

95% of known single-nucleotide polymorphisms (SNPs) and 88% of GWAS SNPs

fall into non-coding regions of the genome, most genetics studies focus on mutations

within coding regions [3, 82]. This large disparity in knowledge gained from big

data initiatives is likely due to the more direct interpretability of genic variation

even though non-coding variation is also strongly linked to human disease [83, 79].

Identifying non-coding mutations leading to gene misregulation is critical to fully

understand GWAS results and their impact on complex and polygenic disorders.

As non-coding GWAS variants are overwhelmingly abundant compared to cod-

ing variants, many methods have been developed to prioritize potentially disease-

associated mutations in non-coding regions for further study [23]. Generally, these

tools focus on known regulatory regions of the genome, relying on variant overlap

with experimental annotations, such as regions of open chromatin and transcription

factor binding [24, 27, 49]. To date, these computational prioritization tools have

assisted in identifying a handful of causal disease mutations from GWAS [62, 61].

However, these tools have only shown up to a 50% concordance rate between pre-

dictions, highlighting the need for additional prioritization metrics [23]. One way to

improve these predictions is to investigate additional regulatory features to better

understand a variant’s mechanism of action.

Transcription factor binding sites (TFBSs) are a regulatory feature of particular

interest as they make up 31% of GWAS SNPs, yet only comprise 8% of the genome

[1]. Mutations in TFBSs influence transcription factor-binding affinity, alter gene
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expression, and have been associated with multiple human diseases including cancer

and type 2 diabetes, as well as with increased total cholesterol [84, 8, 11, 35, 85, 86].

However, altering different bases within a TFBS have been found to confer different

effects on transcription factor binding [2, 41]. This finding has been reflected in cases

of human disease, where certain bases in a sequence motif are more correlated with

an associated disease than others [87]. Currently, the effect of mutations in a TFBS

is estimated using a position weight matrix (PWM), which denotes a transcription

factor’s binding motif using in silico analyses to determine its predominant binding

sequence using a competitive binding assay (Figure 3.1A) [88]. PWMs predict where

a transcription factor may bind in the genome by acting as its most frequent binding

sequence; however they may not recapitulate known binding activity and are not

sufficient to predict which mutations within a motif may alter binding affinity [89].

Additionally, using PWMs to predict how a SNP may affect transcription factor

binding can be challenging, as PWMs do not contain information on the potential

direction of effect of a mutation.

While multiple tools have been developed to predict which mutations may lead to

changes in binding affinity, many of these methods rely solely on information from

PWMs and are thus subject to similar limitations [90, 91, 92, 93, 94, 95, 96]. More

recent methods have incorporated additional measures of binding affinity, includ-

ing protein-binding microarray data, systematic evolution of ligands by exponential

enrichment (SELEX) data and/or chromatin immunoprecipitation followed by deep

sequencing (ChIP-seq) data [97, 98, 99, 28, 100, 101, 26]. These methods represent

a marked improvement over a strict input of PWMs, however they have their own

pitfalls. As protein-binding microarray and SELEX data are generated outside of

a native cell context they may not represent patterns of true intercellular binding.
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In addition, the majority of these models output de novo motifs similar in style to

PWMs, which are not informative to direction of effect of a mutation. One tool of

particular interest, the Intragenomic Replicates (IGR) method, was developed as a

way to investigate FOXA1 involvement in breast cancer using GWAS data [102]. This

method compares TFBSs containing putatively deleterious mutations to their wild-

type counterparts using genome-wide ChIP-seq data to estimate predicted changes to

transcription factor-binding affinity. The predictions generated by IGR were found to

be highly correlated with ChIP-qPCR results and were successfully used to identify

a risk allele associated with a 5-fold change in gene expression in breast cancer. IGR

represents a marked improvement over other methods due to its specific calibration

of variants to ChIP-seq data, an endogenous source of transcription factor-binding

affinity information. Currently, IGR exists only as a method designed to probe indi-

vidual mutations and must be reconstructed for each new mutation and transcription

factor. However, the premise of using ChIP-seq data to predict transcription factor

binding could be expanded to more quickly and accurately predict TBFS mutations.

In order to improve current methods to be applicable to a wide range of tran-

scription factors and to better predict which mutations within TFBSs may lead to

changes in binding affinity, we have developed a new method: the SNP effect ma-

trix pipeline (SEMpl). Our method uses endogenous ChIP-seq data and existing

variants genome-wide similar to the IGR method, however SEMpl also includes a

catalog of kmers separated by a single base change from a TFBS motif, allowing it

to provide an estimate of the consequence of every possible mutation in a TFBS. We

call these as SNP effect matrices (SEMs, Figure 3.1). Here, we demonstrate that

SEMs recapitulate known motifs, are robust to input data and cell type, and are

better at predicting changes to transcription factor-binding affinity than the current
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standard, PWMs. By developing SEM scores, we aim to improve the prioritization

of non-coding GWAS variants for further experimental validation, expand the under-

standing of non-coding genomic variation and further technology toward developing

tools for personalized medicine.

3.3 Materials and methods

Usage/accessibility

SEMpl is open access and can be downloaded from github: https:// github.com/Boyle-

Lab/SEM CPP.

SNP effect matrix pipeline

SEMpl utilizes three types of experimental evidence to make its predictions: ChIP-

seq data, which provides a transcription factor’s endogenous binding in the genome;

DNase I hypersensitive site (DNase-seq) data, which represents regions of open chro-

matin where transcription factors are known to function and PWMs, which denote

previous knowledge of the binding pattern of transcription factors (Figure 3.1). We

obtained ChIP-seq and DNase-seq data from the ENCODE project and PWMs from

the JASPAR, Transfac, UniPROBE and Jolma databases [1, 103, 104, 92, 52].

SEMpl first enumerates a PWM of interest into a list of kmers using a permissive

cutoff P-value threshold of 4 5 using the software transcription factor matrix P-value

(TFM-PVALUE) (Figure 3.2A) [105]). This first list of kmers, referred to as the

endogenous kmer list, represents sequences where the transcription factor of interest

has an increased likelihood of binding. To observe additional sequences which may

show distinct binding preferences, SEMpl next takes the endogenous kmer list and



36

Figure 3.1: PWM versus SEM of transcription factor GATA1. (A) The PWM can be read as likely
nucleotides along a transcriptions factor’s motif. (B) Similarly, the SEM can be read as
nucleotides along a motif, but with additional information about the effect any given
SNP may have on transcription factor-binding affinity. The solid gray line represents
endogenous binding, the dashed gray line represents a scrambled background. We define
anything above the solid gray line as predicted to increase binding on average, anything
between the two lines as decreasing average binding and anything falling below the
dashed gray line as ablating binding on average.
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simulates all possible SNPs in silico to create lists of mutated kmers (Figure 3.2B).

For example, by changing all bases in position 6 to a G nucleotide in every kmer in

the endogenous kmer list, SEMpl creates a mutated kmer list for G in position 6.

These lists of mutated kmers are then aligned to the hg19 reference human genome

in regions of open chromatin using bowtie, as determined by DNase-seq [106]. The

ChIP-seq score is then calculated as the highest signal value over the region 50bp

before and after the aligned site (Figure 3.2C). Next the SEM score for each position

is computed as the log2 of the average ChIP-seq signal to endogenous signal ratio

for the mapped kmers for each mutated kmer list. Taken together, the SEM scores

for each base form a matrix for each nucleotide at every position along the motif.

Scores can be evaluated at individual nucleotides, or calculated across a full-length

kmer by adding the nucleotide score for each position along the motif, similar to a

PWM.

The above process is repeated, using a slightly more stringent TFM-PVALUE

cutoff of 4-5.5 to generate kmers, until convergence using an estimation maximiza-

tion (EM)-like method in order to correct for differences arising from unique starting

kmers (Figure 3.2D, Figure 3.3). This process continues until the number of kmers

from the endogenous kmer list does not change or until 250 iterations, with the aver-

age run converging by iteration 117. To control for poor quality data and to identify

background levels of binding, a final kmer list of randomly scrambled endogenous

kmers is included to represent a random baseline where transcription factor binding

would not be expected to occur (displayed as a dashed gray line on an SEM plot).

Finally, we define scores above 0 as predicted to increase binding on average, scores

between 0 and the scrambled background as decreasing average binding on average

and scores falling below the scrambled background as ablating binding on average.
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Figure 3.2: SEM methods pipeline. (A) All kmers with a PWM score below the TFM-PVALUE
are generated for a single transcription factor. (B) All possible SNPs are introduced in
silico for each kmer. (C) All enumerated kmers are then aligned to the genome, and
filtered for regions of open chromatin by DNase-seq. The average ChIP-seq scores are
then calculated for each alignment (dashed line represents endogenous binding, dotted
line represents scrambled background). (D) Final SEM scores are log2 transformed
and normalized to the average binding score of the original kmers (solid gray line). A
scrambled baseline, representing the binding score of randomly scrambled kmers of the
same length is also added (dashed gray line). Once a SEM score is calculated, the
output can be used to generate a new PWM. This iterative process can correct for
disparities introduced by the use of different starting PWMs. The HepG2 cell line data
were used for the ChIP-seq and DNase data for HNF4a.

SEMpl output files include error messages during the run (.err), the cache, a

tally of kmer similarity between iterations (kmer similarity.out) and an output file

containing information on run time and where the program is in the run (.out). Addi-

tionally, within each iteration, output files include the alignments for the SNP kmer

lists (alignment folder) and endogenous and scrambled kmer lists (baseline folder)

which include the aligned loci and ChIP-seq signal. A quality control file is also

provided within each iteration file that provides the number of kmers mapped within

the iteration, as well as a –log10(P-value) representing the average of 100 t-tests

from 1000 randomly chosen kmers from the SNP signal files versus 1000 randomly

chosen kmers from the scrambled signal file. We used a threshold of 2.5 to report

confidence in a SEM run. Resulting aligned loci and ChIP-seq values are stored in
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Figure 3.3: Different starting PWMs yield highly similar SEMs. A. Two starting PWMs were cho-
sen, representing distinct binding profiles and motif length (TFAP2E PWM 1, M00189;
TFAP2E PWM 2, M00915). B. Both PWMs were run using SEMpl, and similarities
between kmers generated from PWMs were tracked over 250 iterations. Red represents
more differences in number of kmers between the two sets and deep blue represents fewer
differences in number of kmers between the two sets. C&D. Final SEMs from starting
with PWM 1 or PWM 2 appear highly similar, with the SEM of PWM 2 containing an
extra nucleotide in position 1 of the motif.

a cache, which allows for a quick lookup of nonunique kmers without realignment.

SEMpl options include –readcache, which can be used to speed up a run for which

a cache has already been created. SEMpl is written in C++ and R. PWMs were

created using the R package seqLogo [107].
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Scoring a variant or sequence with a SEM

Scoring variants or sequences using SEMpl are as straightforward as scoring using

a PWM. A score can be computed in two ways. First, a single base change can be

scored by subtracting the wild-type nucleotide score from the variant score using the

SEM matrix to determine the total predicted difference between the two nucleotides.

Second, a kmer sequence can be scored in a manner very similar to a PWM. Because

the matrix is log transformed, the score of each nucleotide can be added to reflect

the predicted binding of the full sequence. In this way the effect of multiple variants

can be calculated for a single sequence. In either case, the final value represents the

expected change compared to endogenous binding levels.

Correlation with ChIP-seq data

All possible kmers from the original transcription factor PWMs were generated.

For each unique kmer, average ChIP-seq signal and standard error were calculated.

PWM, SEM, DeepBind and LS-GKM scores were calculated for each kmer. Deep-

Bind scores were calculated from precomputed models, and LS-GKM scores were

computed using the options l=10 and k=6 for motifs with length ≥10—as recom-

mended by the author. For LS-GKM motifs length 9, I=9 and k=6, and motifs length

8 were run using l=8 and k=5. Correlations cutoffs were calculated for PWMs above

the standard TFM-PVALUE cutoff (P-value=4-8) typically used for PWM visualiza-

tion. Correlation cutoffs for SEM, DeepBind and LS-GKM scores were defined as

the average scrambled baseline across all iterations for a single transcription factor

run.
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SEM correlation across runs

SEM outputs from different starting ChIP-seq or PWM data were compared using

least square regression in R. Overlapping DNase-seq peaks were downloaded from

ENCODE and calculated using bedtools [108]. SEMpl runs from the same cell type,

and therefore using the same DNase dataset, share 100% DNase peak overlap.

Allele-specific CTCF-binding pattern analysis

Allele-specific binding sites were defined as loci containing one or more heterozy-

gous SNPs while showing significant differences in ChIP-seq signal from two alleles.

We applied the AlleleDB pipeline to count the number of ChIP-seq reads from two

alleles respectively for each heterozygous site and identified 468 allele-specific bind-

ing sites at an FDR of 5% [109]. CTCF ChIP-seq data from GM12878 cell line was

used in this analysis (accession number: ENCSR000DZN). For all heterozygous sites

within CTCF ChIP-seq peaks in GM12878 cell line, 240 of them also have matching

CTCF PWMs, which we further used for the comparison of SEM and PWM scores.

For those 240 heterozygous sites, we calculated the allelic ratio defined by the ratio

between the number of ChIP-seq reads from the maternal allele and the total number

of reads from two alleles. We then evaluated the correlation between the change of

SEM or PWM scores and allelic ratios.

Electrophoretic mobility shift assay (EMSA) analysis

The DNA-binding domains of CTCF (F1–F9) were amplified from Addgene plas-

mid 102859 and cloned into a bacterial expression vector with a GST tag (pGEX4T)

[110]. This construct was transformed into BL21(DE3) cells. 1L LB liquid bacteria

cultures were induced by 0.25mM IPTG at OD600=0.6 and incubated at 12 C for
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24h. Cells were lysed by sonication, and GST-CTCF was pulled down by a glu-

tathione column. Following five washes with wash buffer (20mM HEPES-KOH, pH

7.2, 150mM KCl, 0.05% NP-40, 10% glycerol), the sample was cleaved by throm-

bin and run through a column, resulting in purified, cleaved CTCF (F1–F9) protein

(Figure 3.4A).

Figure 3.4: Electrophoretic mobility shift assay (EMSA) for CTCF. A. Coomassie-stained gel show-
ing GST-tagged CTCF protein DNA binding domain (F1-F9) fragment and thrombin-
cleaved CTCF protein fragment. B. Table of variable region sequences alongside SEMpl
predictions and EMSA scores. All scores EMSA scores normalized to the genomic (+)
sequence and scaled between 0 and 1. Color corresponds to the SNP made in the
variable region. C. Gel Images of variable region EMSAs. 50nM variable regions were
incubated with 0nM, 50nM, 100nM, 250nM, and 500nM CTCF protein fragment. All
ladders on the left side of their gel are 100bp (NEB, N3231S) and all ladders on the
right side of their gel are 1kb plus (Invitrogen, 10787018).
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For our EMSA analysis, we tested a 20-bp genomic binding region to CTCF

flanked by 200 bp upstream and downstream of endogenous sequence (hg19, chr9:

135045357–135045377). We introduced mutations to create 10 variable regions con-

taining a single mutation and one scrambled region. We completed EMSAs as pre-

viously reported [111], incubating 50 nM DNA fragments with 0, 50, 100, 250 and

500 nM purified CTCF protein fragments for 30min. EMSA reactions were then

run on 4–12% TBE gels (EC62352BOX) for 3h at 80 V and 4 C. EMSA analysis

was completed as previously reported using densiometric scanning by ImageJ and

an Excel Solver Package [112, 113]. EMSA scores were normalized to the genomic

background (+) and scaled between 0 and 1.

3.4 Results

SEM scores better recapitulate endogenous binding than PWMs

SEM scores are expected to be more representative of endogenous binding patterns

than PWMs as these predictions are generated using an endogenous measure of

genome-wide binding affinity. We demonstrate this by correlating SEM and PWM

scores across full-length kmers for transcription factor FOXA1 to their average ChIP-

seq signals at corresponding sequences genome wide (Figure 3.5). When comparing

predictions with experimentally generated binding affinity data above standard cut-

offs, SEMs had a stronger correlation than PWMs (SEM: R2=0.66, PWM: R2=0.24),

demonstrating our predictions represent a more robust measure of endogenous bind-

ing affinity. This pattern holds true when allowing a very lenient PWM cutoff of

11 (R2=0.28) as well as for the entire datasets (SEM: R2=0.19; PWM: R2=0.03)

(Figure 3.6).



44

Figure 3.5: SEMs show a better correlation with whole kmer ChIP-seq signal (B, R2=0.66) than
PWMs (A, R2=0.24). The line dividing the plot represents a standard cutoff for PWM
visualization (P-value=4-8). Coefficient of determinations (R2) were calculated to the
right of the vertical lines, representing the TFM-PVALUE cut-off for PWMs and the
average scrambled background cutoff for SEMs (0.36 for FOXA1). SEM values are
displayed as 2n for visualization purposes. PWM values only shown >0, a full plot can
be found in Figure 3.6

These findings indicate that SEM plots better recapitulate known patterns of

transcription factor binding beyond the information detailed in a PWM. Of note,

there are cases where the PWM shows approximately equal information content for

distinct bases sharing a position, yet the SEM plot reveals a wide margin of binding

differences between the two bases fueled by differences in predicted direction of effect

on binding affinity (i.e. position 3 or 10 of HNF4a in Figure 3.2).
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Figure 3.6: Correlation of PWM scores for full kmers versus average ChIP-seq signal. All possible
kmers from a starting FOXA1 PWM were included. This is an extension of Figure 3.5,
with x-axis bounds from -30 to 15.

Ubiquitous transcription factors show cell type and dataset indepen-

dence

To determine if SEM results show a dataset-specific dependence, we evaluated

the transcription factor FOXA1 using ChIP-seq data from two different ENCODE

datasets gathered in the same HepG2 cell line (ENCFF658RGX; ENCFF898FCL)

(Figure 3.5). We found nearly identical SEMpl outputs (P-value=4.14e-56, RMSD=0.0178)
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using least-squares regression analysis.

We next expanded this to investigate if SEM results were dependent on the cell

line used and thus included three additional ChIP-seq datasets (ENCFF699KBP;

ENCFF845PAS; ENCFF723DLM) from distinct cell types (Figure 3.7). It is impor-

tant to note that while some of the regions tested in the cell lines are at the same

locations, there are large differences in the open chromatin regions (and thus site ac-

cessibility) across these cell types, often with >50% unique sites between cell types

(bottom half of Figure 3.7). We saw high levels of correlation using these additional

cell types, with R2 values over 0.97 for HepG2, A549 and T47D (P-values <1e-32,

RMSD <0.0717). We also saw this trend between SEMs run on different cell lines for

additional transcription factors including in MYC, NKFB1 and FOS, suggesting that

for ubiquitous transcription factors, we expect there to be no appreciable difference

between SEMpl outputs (Figures 3.8-3.10).

It has been proposed that there may be binding affinity differences between cell

types when a transcription factor has known cell type-specific functions or cofactors.

To address this, we investigated the protooncogene MYC, which encodes for the

transcription factor c-myc known to have distinct functions and cofactors between

differing cell types [114]. Interestingly, we found that c-myc yielded a highly similar

pattern between almost all cell types observed, but a distinct SEM plot in HeLa

cells that cannot be explained by low data quality (Figure 3.8). This suggests that

SEMpl can also be used to identify transcription factors that have distinct cell type-

specific functions. However, this seems to be the exception rather than the rule as

the majority of SEMs we observed were cell-type agnostic.

Finally, we asked if the starting PWM for a TF would influence the final SEM

output. We found no appreciable difference in SEMpl outputs when using different
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Figure 3.7: Different ChIP-seq input produce similar SEMs. The top right half of the table shows a
least square regression analysis which reveals that FOXA1 SEMs are highly correlated
across four cell types and one pair of biological replicates with correlations between
samples ranging from R2 = 0.86 and R2 = 1. The bottom left half of the table shows
overlapping DNase peaks between cell types. A549, lung carcinoma cell line HepG2,
hepatocellular carcinoma cell line T47D, breast tumor cell line MCF-7, breast adeno-
carcinoma cell line.

starting PWMs, given that the starting PWMs represent the general binding of the

transcription factor of interest (Figure 3.3). However, certain PWMs and/or datasets

do not contain enough information about the binding of a TF and so do not produce

any significant enrichments in the final SEM output and are thus discarded.
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Figure 3.8: MYC shows cell-line specific binding affinity across different ChIP-seq input data (HeLa
v. others). The top right half of the table shows a least square regression analysis, while
r-squared analysis and p-values can be found on the bottom left.

SEMpl recapitulates known allele-specific binding patterns

Allele-specific binding differences in non-coding regions of the genome have long been

associated with regulatory sequence [2, 41]. To compare SEM scores against known

allele-specific binding data, we annotated heterozygous sites in the GM12878 cell

line with ChIP-seq read counts from two alleles using ENCODE CTCF ChIP-seq
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Figure 3.9: NFKb shows robust correlations across different ChIP-seq input data. The top right
half of the table shows a least square regression analysis, while r-squared analysis and
p-values can be found on the bottom left.

datasets. Least-squares regression analysis of SEM or PWM score changes against

ChIP-seq signal changes of these 240 heterozygous sites in CTCF-binding sites re-

vealed a higher correlation for SEM score changes with an R2 of 0.50 compared to a

PWM R2 of 0.41 (Figure 3.11). We also observed a more dispersed distribution of

SEM score changes, where the allele-specific binding sites have overall larger changes

between two alleles (red points in Figure 3.11). These indicate that the SEM score
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Figure 3.10: FOS shows robust correlations across different ChIP-seq input data. The top right
half of the table shows a least square regression analysis, while r-squared analysis and
p-values can be found on the bottom left.

is more able to capture the change of TF-binding affinity compared to PWM.

To validate that SEMpl scores accurately predict transcription factor-binding

affinity changes in vitro, we compared SEMpl scores to previously generated ChIP-

qPCR data, which measures endogenous transcription factor-binding affinity [102].

ChIP-qPCR was generated from 10 allele-specific FOXA1-binding sites in the genome.

Regression analysis comparing SEMpl scores to changes in transcription factor bind-
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Figure 3.11: SEMs reflect allele-specific CTCF-binding patterns. Linear regression reveals a higher
correlation between SEM score change and binding affinity change in two alleles of
heterozygous sites (R2=0.50) than PWM scores (R2=0.41). Allele-binding affinity
change was measured by allelic ratio, which is the ratio between CTCF ChIP-seq read
counts from maternal allele and total read counts from two alleles. Allele-specific
binding sites (red/light gray points) generally have larger changes on SEM scores.

ing by ChIP qPCR analysis reveal that SEM scores are a better predictor of SNP

changes (R2 = 0.64) than PWMs (R2 = 0.44) (Figure 3.12).

We examined SEMpl predictions further by comparing them to in vitro binding

data generated by EMSA of purified protein of the DNA-binding domains of CTCF

to engineered DNA consensus sequences. EMSAs of 10 CTCF-binding sites con-

taining a mutation, which we define here as variable regions, compared to a known

CTCF-binding site along with the endogenous sequence and scrambled background

reveals a better correlation with SEM predictions (R2 = 0.76) than PWM predictions

(R2 = 0.65) (Figure 3.13A, Figure 3.4). This is further supported by comparing SEM

and PWM scores to previously published EMSA data for the mouse transcription

factor FoxA1 [111]. This analysis showed a marked improvement of SEM scores (R2

= 0.75) compared to PWM scores (R2 = 0.6), and machine learning models Deep-

Bind (R2 = 0.66) and LS-GKM (R2 = 0.67), and suggests that the SEMs of highly
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Figure 3.12: SEMs scores are a better predictor of transcription factor binding changes from SNPs
than PWMs when compared to ChIP qPCR analysis for FoxA1 [102]. ChIP-qPCR
data for 10 FOXA1 SNPs from the IGR paper was used as an endogenous measure of
binding affinity change. Colors represent the SNP change (green, A; blue, C; yellow,
G; red, T). The SEM was generated using HepG2 cell line data for the ChIP-seq and
DNase. PWM change is measured in change to information content (IC).

conserved transcription factors may be comparable between species (Figure 3.13B)

[97, 28]. Together, these results suggest that SEMpl has the ability to return biolog-

ically meaningful results and can be used to predict the direction and magnitude of

allele-specific changes.

SEMpl predictions agree with experimentally validated SNPs from the

literature

To verify that SEMpl would allow researchers to identify variants potentially lead-

ing to transcription factor-binding changes associated with gene expression changes,

we validated our method against four published TFBS SNPs found to disrupt tran-
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Figure 3.13: SEMpl scores agree with in vitro transcription factor-binding results. (A) Elec-
trophoretic mobility shift assay (EMSA) for CTCF correlated to SEMpl and PWM
predictions. Correlations are calculated without the inclusion of the genomic and
scrambled controls (black points). Additional colors correspond to the SNP change
made to the variable region. (B) FoxA1 EMSA data from Levitsky et al. correlated
to PWM, SEM, DeepBind and LS-GKM predictions [111].

scription factor binding (Figure 3.14). In most cases, we found that SEMpl predic-

tions agreed with the direction of the validated changes, as well as the magnitude,

when available. For example, a T to G change in position 12 of a TCF7L2-binding

site was found to increase binding affinity by 1.3-fold by mass spec [35], where SEMpl

predicted a 1.27-fold increase. Only one of the four SEMpl predictions that we identi-

fied did not match the experimentally determined variant. This C/T allele in position

11 of a FOXA2-binding site was predicted to decrease binding affinity by FAIRE-seq,

however SEMpl predicted no difference in binding between the two alleles (data not

shown). Interestingly, PWMs also predicted no difference in binding between the

two alleles, suggesting additional factors may be at play.

We also compared SEMpl predictions to predicted variant effects measured through

a massively parallel reporter assay (MPRA) [32]. We found a correlation between

these previously published expression changes and SEM score changes (Figure 3.15).
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Figure 3.14: Known variants affecting transcription factor binding affinity [102, 84, 35].

However, this relationship was not as strong (R2 = 0.23), though still outperforming

PWMs (R2 = 0.16), possibly due to the nonlinear relationship between transcription

factor binding, regulatory element use and gene expression.

SEMpl outperforms other methods in predicting changes to transcrip-

tion factor binding

In order to compare SEMpl to current state-of-the-art methods, we compared

SEMpl and PWMs to methods utilizing machine learning able to predict the conse-

quence of variants to transcription factor binding, DeepBind and LS-GKM [97, 28].

Both tools use models trained on ChIP-seq datasets to generate predictions of func-

tion variation. Here, we compared scores for all methods (PWM, SEMpl, Deepbind

and LS-GKM) against ChIP-seq scores for all kmers from 13 transcription factors

(Figure 3.16).

Using a performance comparison, we found that SEMpl better correlates with
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Figure 3.15: SEM scores are correlated with reporter expression changes. Reporter assay expression
changes across 5 transcription factors from Kheradpour et al. were compared to SEM
score changes [32].

ChIP-seq data than both DeepBind and LS-GKM for 6/13 of the transcription fac-

tors tested, and comparably to 3/13 (Figure 3.17). Of the final four transcription fac-

tors, two were better predicted by PWMs (EGR1 and MEF2A), HNF4a was poorly

predicted by all methods and FOXA2 was best predicted by DeepBind. However, we

note that, with some exception, all methods do have good apparent correlation with

ChIP-seq data and provide some indication of the effect of variation on TF binding.

We would expect transcription factors with binding strongly dependent on sequence

outside of the central motif to be better predicted by machine leaning models such as

DeepBind and LS-GKM, however for the majority of transcription factors examined

here SEMpl predictions based on the central motif were sufficient. This is inter-

esting as it suggests reasonable predictions for transcription factor-binding affinity
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Figure 3.16: Correlations of ChIP-seq data to PWM, SEM, DeepBind, and LS-GKM binding pre-
dictions for 13 transcription factors.



58

changes can be made using a much simpler scoring system, analogous to scoring

using a PWM, while avoiding the pitfalls and computational effort required to train

a machine learning model. Indeed, by providing pregenerated predictions for many

transcription factors, we hope to make using SEMpl as fast and straightforward as

possible.

Figure 3.17: Performance comparison of SEMpl to other non-coding SNP prediction methods. Pre-
dictions for 13 TFs were generated using PWM (A), SEM, DeepBind (B), and LS-
GKM (C) and compared to the average ChIP-seq score for the analogous kmer se-
quence. Correlations for each transcription factor were then compared across meth-
ods. SEMpl produced better or comparable correlations for 9/13 transcription factors
tested. PWMs performed better for EGR1 and MEFF2A, and DeepBind performed
best for FOXA2. All methods performed poorly for HNF4. The colors/shades of gray
of points are unique to each transcription factor.

3.5 Discussion

A deeper understanding of the role non-coding variants play in altering gene ex-

pression is critical to fully illustrate the regulatory complexity of our genome and is an

important first step toward developing tools for personalized medicine. Approaches

such as the IGR method have expanded our ability to use currently available data

to predict SNPs that play a regulatory role and have successfully been implemented

in multiple studies to link human disease to specific transcription factors and their

binding sites. Since its release, the IGR method has been used to successfully iden-

tify functional SNPs in TFBSs from GWAS data for breast cancer, atrial fibrillation
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and lupus [115, 116, 117]. Functional predictions for these SNPs were experimentally

validated, suggesting that the IGR process can be a robust method for functional

non-coding GWAS SNP prediction. Unfortunately, this method is not accessible for

widespread use. By developing a tool which generalizes the IGR methodology to

predict the magnitude and direction of effect of all SNPs within a TFBS, we can

identify novel variants associated with human disease in TFBSs genome-wide.

In this article, we introduced SEMpl, a new tool designed to identify putative

deleterious mutations in TFBSs. SEMpl predictions reflect known patterns of tran-

scription factor binding while providing additional information about magnitude and

direction of predicted change. We demonstrate that SEMpl provides more robustand

consistent predictions both on a single variant and a TFBS kmer level than the cur-

rent standard, PWMs. The method leverages simulation and real data to better

model strength of binding rather than a consensus sequence. Additionally, SEMpl

scores correlate with known allele-specific binding sites and agree with in vitro bind-

ing analysis via ChIP qPCR and EMSA as well as previously published variants

known to alter transcription factor-binding affinity. Importantly, we found that

SEMpl predictions outperform popular machine learning methods for the majority

of transcription factors tested.

SEMpl was designed to be easy to use and accessible. In addition to being available

as an open source application, precompiled SEM plots for 90 transcription factors

from over 200 PWMs are available online. While SEMpl is currently limited to

transcription factors with available ChIP-seq and PWM data, we may be able to

eliminate the use of PWMs to guide TFBS loci in future versions of our pipe- line,

potentially by using overrepresented kmers from the ChIP-seq data, which would

reduce bias and expand our list of compatible transcription factors. In addition, we
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are working to include additional genomic features, such as DNA methylation which

would allow the inclusion of additional bases to SEM plots and a more nuanced

understanding of transcription factor binding.

SEMpl’s ability to better predict the impact of genomic variation on transcrip-

tion factor binding has broad implications to the cross- disciplinary study of the

regulatory genome. SEMpl has great usability for prioritizing GWAS SNPs for ex-

perimental follow-up, in individual studies or through the evaluation of non-coding

GWAS catalog SNPs. With the increased need for experimental validations follow-

ing large-scale genomics studies, we anticipate that annotation tools, such as SEMpl,

will be critical in revealing developmental and disease-associated regulatory SNPs.

3.6 Notes & Acknowledgments

This chapter was previously published in Bioinformatics (Volume 36, Issue 2) in

January, 2020 [118]. The work presented here represents a group effort. I performed

all experiments and analysis with the following notable exceptions. This project was

originally pioneered by Natalie Ng and Alan P Boyle. Shengcheng Dong completed

the allele-specific binding analysis. Robert S Porter generated the CTCF protein used

in the EMSA experiments. Cody Morterud and Colten Williams translated the code

into C++. Courtney Asman and Jessica A Switzenberg supported all experimental

work, notably the mutagenesis of variable regions used in the EMSA experiments.



CHAPTER IV

SEMplMe: A Tool for Integrating DNA Methylation Effects
in Transcription Factor Binding Affinity Predictions

4.1 Abstract

Aberrant DNA methylation in transcription factor binding sites has been shown

to lead to anomalous gene regulation that is strongly associated with human dis-

ease. However, the majority of methylation-sensitive positions within transcription

factor binding sites remain unknown. Here we introduce SEMplMe, a computational

tool to generate predictions of the effect of methylation on transcription factor bind-

ing strength in every position within a transcription factor’s motif. SEMplMe uses

ChIP-seq and whole genome bisulfite sequencing to predict effects of methylation

within binding sites. SEMplMe validates known methylation sensitive and insensi-

tive positions within a binding motif, identifies cell type specific transcription factor

binding driven by methylation, and outperforms SELEX-based predictions. These

predictions can be used to identify aberrant sites of DNA methylation contributing

to human disease. Availability and Implementation: SEMplMe is available from

https://github.com/Boyle-Lab/SEMplMe.

61
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4.2 Introduction

DNA methylation is an epigenetic mark as it contributes to changes in the infor-

mation content of DNA without changing the underlying sequence. The majority of

DNA methylation in the human genome occurs at cytosine-phosphate-guanine (CpG)

nucleotides. These have long been considered a repressive mark based on early stud-

ies of promoters where methylation correlated with transcriptional repression [119].

Methylation at transcription factor binding sites has previously been thought to

correlate with the repression of transcription by either disrupting the binding of

methylation-sensitive transcription factors or by having no effect on methylation-

insensitive transcription factor binding (Figure 4.1A) [120]. However, recent high

throughput studies have found that methylation within transcription factor binding

sites can lead to increased or decreased transcription factor binding dependent on

the position within the motif [121, 122]. Recent work has shown that the strength

of the effect of methylation on transcription factor binding affinity varies between

nucleotides within a single transcription factor motif. It is vital to determine the

specific functional impact of methylation within transcription factor binding sites

as aberrant methylation is a hallmark of many human diseases, including cancer,

schizophrenia, and autism spectrum disorder [123, 124, 125]. Methods that can bet-

ter predict these effects on gene transcription can assist in identifying and prioritizing

potentially harmful variations.

The effect of methylation on the binding of individual proteins has been studied

in vitro using protein binding microarrays (PBMs) and newer systematic enrichment

of ligands by exponential enrichment (SELEX) based methods [126, 127, 128, 129].

Both PBMs and SELEX rely on proteins binding to DNA fragments in vitro and may
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Figure 4.1: SEM pipeline with methylation predicts the effect of methylation on transcription factor
binding affinity. A. Traditional model of methylation sensitivity where methylation sen-
sitive transcription factors are unable to bind their site with DNA methylation present,
and methylation insensitive transcription factors can bind regardless of the presence
of DNA methylation. B. SEMplMe expands on SEMpl output by adding WGBS to
divide ChIP-seq signal peaks of C and W into the proportion of their signal affected
by DNA methylation using a weighted sum. C. SEMplMe output is displayed as all
6 nucleotides, including methylated C (M), and G opposite to methylated C (W), at
every position along the motif. All values are displayed as log 2 and normalized to
an endogenous binding baseline set to 0 (dark gray line). A scrambled baseline is also
included (dashed gray line).
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not recapitulate endogenous binding patterns within the genome. A recent study of

methylation sensitivity in 542 human transcription factors using a high throughput

SELEX method, methyl-SELEX, found 23% of transcription factors were sensitive

to methylation, 34% were enhanced by methylation, and 40% were insensitive to

methylation [122]. Computational methods to analyze methyl-SELEX data, such as

Methyl-Spec-Seq, provide quantitative information on the magnitude and direction

of the predicted effect of methylation on transcription factor binding [129]. Addi-

tional SELEX-based studies have also observed differences in methylation sensitivity

between different positions in a single motif, and is supported by evidence that some

bases within transcription factor binding motifs are more correlated with disease

compared to others [130, 87]. However, predictions produced from these methods

are limited as they rely on in vitro SELEX data and may not reflect binding patterns

in a native context. Methods to determine the methylation sensitivity of transcrip-

tion factors in vivo exist, however they are experimentally rigorous, or do not directly

estimate methylation consequence on transcription factor binding, and are therefore

challenging to use for broad interpretation [121, 131, 132]. A robust method to study

the native context of DNA methylation within transcription factor binding sites us-

ing in vivo data is still needed to more accurately model the role these epigenetic

marks play on transcriptional regulation.

To address this need, we have adapted SEMpl, a computational genome-wide

transcription factor binding affinity prediction method developed by our lab, to in-

corporate whole genome bisulfite-seq (WGBS) data. This allows our predictions to

include the effects of DNA methylation on binding affinity [118]. SEMpl uses open-

source in vivo data to generate predictions using transcription factor binding data

from ChIP-seq and open chromatin data from DNase-seq for a transcription factor
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of interest. The results are displayed as a SNP effect matrix providing predictions

for every potential base change in a transcription factor’s motif. Our SNP Effect

Matrix pipeline with Methylation (SEMplMe) method expands these results by in-

corporating methylation data from WGBS, generating predictions that encompass

the magnitude and direction of change to transcription factor binding for all 4 nu-

cleotide base pairs, and adds two additional nucleotide letters: methylated C (M),

and G opposite to a methylated C (W). This new tool provides improved specificity

to determine which variants lead to disruption of transcription factor binding by in-

tegrating endogenous functional information on methylation states and transcription

factor binding, advancing our ability to interrogate and prioritize mutations likely to

be associated with human disease.

4.3 Methods

Usage/accessibility

SEMplMe is open source and can be downloaded from https://github.com/Boyle-

Lab/SEMplMe. Precomputed SEMplMe plots are available for more than 70 tran-

scription factors.

SNP Effect Matrix pipeline with Methylation

SEMplMe functions as an extension of our previously published method SEMpl.

Using the final output of SEMpl as a template, SEMplMe uses whole genome bisul-

fite sequencing (WGBS) data to evaluate the contribution of DNA methylation on

transcription factor binding (Figure 4.1B). WGBS data is gathered for each kmer

aligned to the genome containing an in silico SNP. All data shown was generated us-
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ing matched cell types for ChIP-seq, DNase, and WGBS data. As the vast majority

of sites in WGBS data methylation are not binary, the contribution of the propor-

tion of methylation on binding for C and G SNPs at each position within a motif is

calculated. Methylation is calculated for each aligned SNP list using the equation:∑n
k=1

M∗S
k

, where M represents the proportion of methylation for an aligned kmer, S

represents the ChIP-seq signal for it’s alignment, and n represents the total number

of kmers in the list. Therefore, the equation:
∑n

k=1 1 − M∗S
k

represents the signal

contribution of the non-methylated kmer. Using this method, cytosines are divided

into methylated and non-methylated components for each position within the motif

of a transcription factor. Following this, all 6 nucleotides are included in a SNP effect

matrix at each position along the motif of the transcription factor and plotted for

an easy to visualize model of transcription factor binding (Figure 4.1C).

SEMplMe is written in perl and R. In addition to a the matrix file (.me.sem) and

the pdf of the visualized sem ( semplot.me.pdf), the output also includes a matrix

of standard error (.sterr) and a matrix of total ChIP-seq signal (.me.totals). New

alignment and baseline files are also generated for SEMplMe (.me). A quality control

file was used, which provides the -log10(P-value) of the average of 100 t-tests from

1000 randomly chosen kmers from the signal files versus the scrambled signal files

from SEMpl. A threshold of 3.15 was set to report confidence in a SEM plot, with

runs falling under this threshold highlighted in red.

SEMplMe sequence scoring

Scoring a full sequence with SEMplMe can be done in the same manner as PWMs or

SEMpl, where the log2 score analogous to the nucleotide of interest at each position

is added to reflect the predicted binding score of the sequence. This allows predic-
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tions to be made for motifs carrying more than one variant.

EMSA

Kd values for CEBPB and ATF4 were calculated from a previously published EMSA

reaction by densiometric scanning by ImageJ and the Excel Solver Package [112, 127,

113]. All EMSA scores are represented as a ratio to the unmethylated control.

Correlation with ChIP-seq data

All kmers likely to bind CTCF were recovered from the final iteration of SEMpl. For

each kmer with at least 50 occurrences, the average ChIP-seq signal and standard

error were calculated. Correlation cutoffs for SEMplMe were defined as the scram-

bled baseline for the final iteration of SEMpl.

4.4 Results

SEMplMe provides quantitative predictions based on in vivo measures

of binding affinity

SEMplMe integrates endogenous functional data encompassing transcription factor

binding, open chromatin, and DNA methylation to provide a quantitative predic-

tion of the effect of methylation on transcription factor binding affinity at every

position within a binding motif. By including measures of DNA methylation, SEM-

plMe is able to calculate the relative average transcription factor binding affinity

of methylated genomic sequence by using a weighted sum of ChIP-seq signal and

the proportion of methylation at the site from WGBS (Figure 4.1B). Averaging this

signal genome-wide for methylated and unmethylated sequence separately allows for
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the generation of a quantitative prediction matrix of the effect methylation has on

transcription factor binding affinity (Figure 4.1C). SEMplMe represents an advance-

ment over currently existing methods as its predictions are generated from in vivo

functional data, it is generally accessible without additional experimental work, and

the resulting matrix is both quantitative for a single position and across an entire

motif.

SEMplMe recapitulates differences in methylation sensitivity between

transcription factors

Transcription factor differences in methylation sensitivity were examined by calcu-

lating the absolute difference between methylated and unmethylated bases at each

position within SEMplMe matrices for methylation sensitive and insensitive tran-

scription factors. Methylation sensitive transcription factors examined here include

CREB, cMYC, USF, NFkB, E2F, MYC, and ZFX [133, 120, 134, 129]. Methylation

insensitive transcription factors examined here include SP1, REST, CEBPa, FOXA1,

RXRA, and ARNT2 [135, 126, 133, 120, 136, 129]. As expected, transcription factors

previously associated with methylation sensitivity show a larger average difference

in SEM scores between C and M, and G and W nucleotides compared to transcrip-

tion factors previously defined as insensitive (Figure 4.2). This suggests that prior

definitions of methylation sensitivity and insensitivity may reflect general trends of

transcription factor methylation sensitivity. However, it remains unclear if this trend

is driven from methylation sensitivity across an entire motif, or typically driven by

a single position.

DNA methylation drives cell type specific transcription factor binding
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Figure 4.2: SEMplMe confirms differences in methylated SEM scores for sensitive versus insensi-
tive transcription factors. A. Known methylation sensitive transcription factor MYC
shows a large difference between methylated and unmethylated nucleotides at most po-
sitions. B. Known methylation insensitive transcription factor CEBPa shows very little
difference between methylated and unmethylated nucleotides at most positions. For
some positions (i.e. position 5), a small increase in binding is predicted for a methy-
lated cytosine. C. Transcription factors previously annotated as methylation sensitive
and insensitive show a significant difference in methylated (M/W) and non-methylated
(C/G) SEM scores (T-test C-M P–value = 0.007 and G-W P-value = 1.32*107). Error
bars represent standard deviation.

DNA methylation is hypothesized to contribute to cell type specific transcription

factor binding by altering the availability of DNA sequence. In support of this, the

input cell type was found to influence the output of SEMplMe for some transcription

factors. One example, JUN, shows high correlation of SEMplMe outputs for methy-

lated sites (MW) between H1-hESC and K562 cell lines (R2 = 0.91), and a reduced

correlation to HepG2 (R2 => 0.43) (Figure 4.3). This is supported by MethMotif

data, in which JUN shows many more methylated binding sites, most of which fall

into a mid- to highly-methylated state in HepG2, as opposed to comparatively few

overlapping methylated sites in K562 and H1-hESC [132]. This pattern of reduced

correlation was not observed when looking across the entire SEMplMe output, sug-

gesting methylated sites are driving this difference (Figure 4.4). Of note, this pattern

is not seen for another transcription factor, CEBPB, where the SEMplMe output for

methylated sites is highly correlated between all cell types examined (K562, IMR-
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90, HepG2, and GM12878), suggesting that not all transcription factors are subject

to cell type specificity due to methylation differences (Figure 4.5). Interestingly,

SEMpl data without methylation appears to be primarily cell type agnostic, provid-

ing evidence that methylation plays a meaningful role in cell type specificity for some

transcription factors [118].

Figure 4.3: SEMplMe output for JUN varies between cell types. SEM plots vary more between
cell types when only considering methylated sites (top right) than methylated and
unmethylated sites (bottom left). This suggests methylation plays a key role in the cell
type specificity of the transcription factor JUN.

SEMplMe validation using in vitro measures of transcription factor

binding affinity

To evaluate SEMplMe on a metric external to ChIP-seq data, our predictions were

compared to PBM data, which has been used by previous studies to examine the

affinity of individual transcription factors to potential target sequence in vitro [126,

127, 128]. SEMplMe predictions were compared to microarray Z-scores data from
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Figure 4.4: SEMplMe output between cell types versus SEMpl without methylation. SEM plots
show more variance between cell types for SEMplMe (top right) than SEMpl without
methylation (bottom left).

PBMs, which represent transcription factor binding affinity to methylated or un-

methylated DNA sequence. A high level of agreement was observed between SEM-

plMe predictions and previously published PBM data across 8 transcription factors

(Figure 4.6A)(R2=0.67)(CEBPA, CEBPB, CEBPD, CREB1, ATF4, JUN, JUND,

CEBPG) [128]. This agreement is reduced when using SEMpl scores without methy-

lation (R2=0.56), suggesting that the inclusion of methylation in our model improves

scores for methylated sequences (Figure 4.6B). Discrepancies between SEM predic-

tions and PBM data can be attributed to differences in in vivo versus in vitro methods

of generation.

To further functionally validate SEMplMe, data from in vitro electrophoretic mo-

bility shift assays (EMSAs) were utilized to examine our predictions. Previously

published EMSA data was evaluated for two transcription factors, ATF4(CREB)
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Figure 4.5: CEBPB SEM output between cell types. SEM plots show little variance between cell
types when considering only methylated sites (top right) or both methylated and un-
methylated sites (bottom left) for CEBPB. This suggests methylation does not play a
large role in cell type specificity for CEBPB.

and CEBPB. This measure of in vitro binding showed marginal agreement with our

predictions (R2=0.65)(Figure 4.6C)[127]. This observed low agreement is driven en-

tirely by CEBPB which has relatively low correlation with our predictions (R2=0.17),

as opposed to ATF4 (R2=0.92). CEBPB has been reported to preferentially bind

to methylated sequence, thus the discrepancy in predictions has previously been
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Figure 4.6: SEMplMe predictions agree with in vitro experimental methods. A. SEMplMe agrees
with previously published protein binding microarray (PBM) data of methylated and
unmethylated binding sites for 8 transcription factors (R2 = 0.67) [128]. B. SEMpl
shows a reduced correlation with PBM data compared to SEMplMe (R2 = 0.56), sug-
gesting the addition of methylation data improves methylated sequence predictions. C.
SEMplMe predictions correlate with previously published electrophoretic mobility shift
assay (EMSA) data for methylated, hemi-methylated, and unmethylated binding sites
for ATF4 and CEBPB (R2 = 0.65) [127].

thought to be a result of limited genome methylated sequence availability, a neces-

sity for calculating more accurate predictions in SEMplMe [127]. SEMplMe identified

comparatively few methylated sites throughout the genome, leading to a much higher

standard deviation for the effect of methylated sites (Supplementary Figure 3). This

unavailability of methylated sites is consistent with previous data showing methy-

lated CEBPB motifs to bind well in vitro, but poorly in vivo [137].
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Figure 4.7: Total number of kmers for each nucleotide in the SEM of CEBPB. A. SEM plot of
CEBPB with error bars representing standard deviation. B. Counts of mapped kmers in
the genome for each nucleotide at each position. These counts are inversely proportional
to the standard deviation seen in the SEM.

SEMplMe predictions are consistent with previous findings for CTCF

CTCF is a well studied transcription factor previously shown to be methylation sen-

sitive [138, 139]. CTCF binding predictions using SEMplMe found the majority of

positions to be methylation sensitive for both M and W. Notably, a handful of sites

had methylated sequence scores at or slightly above their unmethylated counter-

part, and likely represent methylation insensitive positions. These results are consis-

tent with CTCF’s role as a methylation sensitive transcription factor. As CTCF is

widely used in research studies, its binding to sites containing methylated positions
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within its motif have been previously surveyed by a variety of methodologies, includ-

ing qualitative EMSA, observation of binding following demethylation of cells, and

SELEX-based methods [138, 121, 140, 110]. When SEMplMe results were compared

to measures of binding at individual positions within the CTCF motif, a general

agreement was observed for the direction of binding for all positions predicted to

decrease binding affinity (Figure 4.8). Though the majority of sites identified by

previous studies within the CTCF motif were found to be overwhelmingly methy-

lation sensitive, two sites were predicted to lead to increased binding affinity when

methylated. Though SEMplMe did not identify these positions, one site overlaps

a SEMplMe position consistent with methylation insensitivity, and the other was

found to not significantly increase binding by all prior studies [121]. Overall, our

predictions are consistent with previous studies of CTCF binding direction.

Correlation between the entirety of the CTCF matrices generated by SEMplMe

and the recently published Methyl-Spec-seq method, which uses in vitro SELEX

to predict methylation effects on transcription factor binding affinity, was assayed

(R2=0.56) (Figure 4.9A)[110]. SEMplMe outperformed Methyl-Spec-seq by per-

formance comparison when comparing scores across entire kmers to their average

ChIP-seq signal (SEMplMe R2=0.25, Methyl-Spec-seq R2=0.04) (Figure 4.9B&C).

The kmer set used is associated with active CTCF binding and includes both methy-

lated and unmethylated sequences. This provides further evidence that predictions

of change to transcription factor binding affinity perform better when generated from

in vivo data, rather than in vitro data such as from SELEX methods.
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Figure 4.8: SEMplMe predictions agree with previously published predictions and experimental
measures of CTCF binding to methylated sequence. Signs (+/-) found below the SEM
plot represent the reduction or increase in binding affinity reported by previous studies
at the analogous position. All signs shown without an M or W represent a methylated
cytosine (M). Error bars represent standard deviation. [110, 121, 140]

4.5 Discussion

DNA methylation is a key epigenetic mark known to act in a regulatory capac-

ity, allowing transcription factors to bind in a cell-type specific manner. Counter to

the idea that all methylation is able to disrupt transcription factor binding, recent

studies have revealed that certain methylated loci impact binding more than others.

Predicting the locations of these methylation sensitive loci and quantifying the ef-

fect of methylation on transcription factor binding affinity is challenging. Here we

introduce an expansion to our previously released software SEMpl, called SEMplMe,

which integrates predictions of the effect of cytosine methylation on transcription fac-

tor binding affinity based on WGBS data. These predictions agree with in vitro data

of transcription factor binding, are cell-type specific, and show a general agreement
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Figure 4.9: SEMplMe has higher correlation with in vivo CTCF binding than Methyl-Spec-seq. A.
Correlation of CTCF matrices between SEMplMe and Methyl-Spec-seq show a modest
agreement (R2=0.56). B&C. SEMplMe outperforms Methyl-Spec-seq when compar-
ing to CTCF ChIP-seq scores for whole kmers, including methylated sites (SEMplMe
R2=0.25, Methyl-Spec-seq R2=0.04).
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with data from transcription factors previously annotated as methylation sensitive

and insensitive.

SEMplMe is poised to advance our understanding of the effects of methylation

on transcription factor binding affinity through its generation of quantitative pre-

dictions using in vivo functional data. SEMplMe will both improve our ability to

predict putative disease loci affected by aberrant DNA methylation, and increase

predictions of transcription factor binding affinity in general [133]. This is expected

to hold true regardless of whether reduced methylation in a transcription factor’s

motif contributes to its binding, or is caused by its binding [141]. The nucleotide W

was included to capture not just position dependent, but stand dependent methy-

lation, as strand specificity due to hemi-methylation has previously been found to

influence transcription factor binding [110]. This is likely driven by changes in DNA

structure.

SEMplMe has similar limitations to its predecessor SEMpl, such as a dependence

on available ChIP-seq, DNase-seq, and WGBS data. It is further restricted by the

limited number of methylated sites in the genome available for use in generating

models of binding. In instances where few sequence specific sites also contain methy-

lation, our measure of standard deviation increases considerably. Though the low

confidence in these sites can be visualized by error bars, predictions of methylation

at these loci are limited. Additionally, cell type should be carefully considered before

running SEMplMe for optimal predictions as cell type specificity contributes to the

final SEMplMe plot, and methylation sensitivity has been previously found to be

paralog specific [130].

The inclusion of CpG methylation provides additional information to help fully

understand context-specific transcription factor binding. However, the addition of
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more nuanced molecular mechanisms that contribute to transcription factor bind-

ing are likely to further improve our predictions. This includes additional types of

DNA methylation, such as hydroxymethylation and nonCpG methylation, as well as

measures of structural changes to the genome [130, 46, 142, 128, 143].

The improved predictions provided by SEMplMe will contribute to a better un-

derstanding of the key positions within transcription factor binding sites affected by

DNA methylation. This advancement is central to improving our ability to prioritize

mutations associated with aberrant methylation contributing to human disease.

4.6 Notes & Acknowledgments

This chapter was previously published to bioRxiv in August, 2020 [144].



CHAPTER V

The Inducible lac Operator-repressor System is Functional
in Zebrafish Cells

5.1 Abstract

Zebrafish are a foundational model organism for studying the spatio-temporal

activity of genes and their regulatory sequences. A variety of approaches are cur-

rently available for editing genes and modifying gene expression in zebrafish including

RNAi, Cre/lox, and CRISPR-Cas9. However, the lac operator-repressor system, a

component of the E. Coli lac operon which has been adapted for use in many other

species and is a valuable, flexible tool for studying the inducible modulation of gene

expression, has not previously been tested in zebrafish. Here we demonstrate that

the lac operator-repressor system robustly decreases expression of firefly luciferase

in cultured zebrafish fibroblast cells. Our work establishes the lac operator-repressor

system as a promising tool for the manipulation of gene expression in whole zebrafish.

Our results lay the groundwork for the development of lac-based reporter assays in

zebrafish, and add to the tools available for investigating dynamic gene expression

in embryogenesis. We believe that this work will catalyze the development of new

reporter assay systems to investigate uncharacterized regulatory elements and their

cell-type specific activities.

80
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5.2 Background

Experimental approaches for the study of transcriptional regulation by cis-regulatory

elements in vivo require methods for both genetically modifying cells or organisms

and for measuring expression levels of specific genes. Zebrafish (Danio rerio) is an

ideal model organism for investigating the spatio-temporal-specific regulation of gene

expression throughout the developing embryo as it satisfies the requirements for ease

of genetic manipulation and expression readout. Microinjection of DNA into fertil-

ized embryos allows for simple and effective delivery of genome-modification tools,

such as Tol2 transposons, that mediate genomic integration of constructed expres-

sion cassettes. Additionally, the transparency of zebrafish embryos facilitates the

observation of fluorescent signal from reporter genes within live cells and tissue. Due

to its benefits as a model organism, many technologies for studying gene function

have been developed in zebrafish, including Cre/Lox [145], tamoxifen-inducible Cre

[146], the Tet-On system [147], RNAi [148, 149], and more recently, CRISPR based-

methods [150]. However, the use of the lac operator-repressor system, a tool which

functions transiently in a native context with minimal disruption of local regulation

compared to many of the aforementioned methods, has yet to be demonstrated in

zebrafish.

The lac operator-repressor system is an inducible repression system established

from studies of the lac operon in Escherichia coli (E. Coli) that regulates lactose

transport and metabolism [151]. The Lac repressor (LacI) binds specifically to a

lac operator sequence (lacO), inhibiting the lac promoter and lac operon expression

through steric hindrance [152]. Addition of the allosteric inhibitor Isopropyl β-d-1-

thiogalactopyranoside (IPTG) to cells frees the lac operon to express its associated
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gene by inhibiting the binding of LacI to lacO sequences. The use of IPTG with the

lac operator-repressor allows for inducible reversal of transcriptional repression.

Since its discovery in prokaryotes, the lac operator-repressor system has been

modified for use in eukaryotic organisms to study the regulation of gene transcription

[152, 153, 154, 155]. Experiments in mammalian cell lines from mouse, monkey, and

human [152, 156, 154, 155], as well as in whole mouse [157], demonstrate the utility

of the lac operator-repressor system. It has also successfully been applied in cell

lines and whole organisms of the amphibian axolotl, suggesting that this system can

be utilized in a wide range of organisms [158]. Modifications to the lac operator-

repressor system has allowed for constitutive, ubiquitous expression [152, 159, 160],

visually assessed output [156, 155], and the ability to study both gene repression

and activation [161, 162], emphasizing its flexibility for studying gene expression

dynamics. The ability of IPTG to relieve repression in the lac system makes it a more

adaptable tool for studying the temporal dynamics of gene expression, compared to

constitutively active or repressed reporter gene systems.

In this paper, we provide evidence that the lac operator-repressor system can

function in the zebrafish fibroblast cell line PAC2, adding a versatile new tool for

the study of zebrafish genetics and transcriptional regulation. The results in a ze-

brafish cell line support the potential functionality of the lac operator-repressor sys-

tem to function in whole zebrafish. In addition, we demonstrate that the CMV-SV40

enhancer-promoter produces strong, widespread reporter gene expression in both a

zebrafish cell line and embryos. This enhancer-promoter combination provides a

flexible, non-tissue specific expression module for zebrafish to aid in reporter gene

detection at a cellular level.
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5.3 Results

The CMV-SV40 enhancer-promoter shows widespread expression in

zebrafish

In order to promote the repression of a reporter gene in our assay, we sought to

increase LacI expression in transfected cells by including a strong enhancer-promoter

driving LacI. The CMV enhancer and promoter are frequently used in reporter vector

construction across a wide range of studies due to their strong and constitutive

promotion of gene expression. This includes zebrafish, where the CMV enhancer-

promoter has previously been shown to have strong tissue-specific expression [163].

However, recent studies have demonstrated that tissue-specific promoter function

of non-CMV promoters may be lost when paired with the CMV enhancer [164].

With the goal of identifying enhancer-promoter pairs driving non-tissue specific gene

expression in whole zebrafish we examined CMV enhancer activity paired with a

non-CMV promoter, the SV40 minimal promoter. The function of the CMV-SV40

enhancer-promoter was first validated in PAC2 cells, by inserting them upstream of

luciferase in a pGL3 plasmid. Relative luciferase output of the CMV-enhanced SV40

pGL3 plasmid was compared to a pGL3 plasmid containing only a minimal SV40

promoter. The CMV-SV40 enhancer-promoter was able to drive a 24-fold increase

in luciferase expression compared to the promoter-only control, suggesting that the

CMV-SV40 enhancer-promoter is able to function as a strong enhancer-promoter

combination in PAC2 zebrafish fibroblast cells (Figure 5.1A).

To determine if the CMV-SV40 enhancer-promoter was able to enhance reporter

expression in whole zebrafish, the Tol2 transposon system was utilized to integrate

eGFP-expressing test plasmids into zebrafish embryos. As in PAC2 cells, two con-
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Figure 5.1: A) CMV-SV40 enhancer-promoter shows a 24-fold increase in luciferase activity in
PAC2 zebrafish fibroblast cells when transfected with a CMV-SV40 enhancer-promoter
driving luciferase compared to a SV40-only plasmid. Error bars represent standard
deviation of 3 biological replicates. Statistical significance determined using a stand
2-sided T-test * P-score < 0.01. Points represent values for all 3 replicates in each con-
dition. B) SV40 promoter-only plasmids did not result in observable eGFP expression.
C) CMV-SV40 enhancer-promoter driving eGFP shows non-tissue specific expression
in zebrafish up to 72 hours post-fertilization. All plasmid components for each trans-
fection design are detailed as symbols at the top of the figure. The TSS begins where
the SV40 promoter begins to slope downward.
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structs were evaluated; one containing a CMV-SV40 enhancer-promoter upstream

of an eGFP reporter gene, and one with only a minimal SV40 promoter. While no

detectable level of eGFP activity in the promotor-only control was observed (Figure

5.1B), composite brightfield and GFP images of 24, 48 and 72 hours post-fertilization

embryos injected with the CMV-SV40 enhancer-promoter construct show non-tissue

specific eGFP expression (Figure 5.1C).

The lac operator-repressor system is functional in the PAC2 zebrafish

cell line

To test the functionality of the lac operator-repressor system, a repressible reporter

plasmid containing 6 lac operators in the 5’UTR of the firefly luciferase gene and a

LacI-expressing plasmid were co-transfected into PAC2 cells. When a plasmid ex-

pressing a non-functional LacI (NFLacI) gene was co-transfected, no repression was

observed (Figure 5.2), whereas a plasmid expressing CMV enhancer-driven levels of

LacI resulted in about 65% repression. An intermediate level of repression (∼40%)

was observed when LacI was expressed from a plasmid containing only a SV40 min-

imal promoter, indicating that the extent of repression correlates with LacI levels in

the cell. Addition of IPTG to the cells resulted in full relief of repression in all cases.

This indicates that LacI is responsible for repression of luciferase expression in these

cells.

To compare PAC2 repression levels to previously published data [165] and test

broad functionality within different cell lines, we replicated the LacI experiment

in the K562 human cell line. When both cell types were co-transfected with the

same plasmid mixture, the performance of the lac operator-repressor system was

nearly identical in PAC2 and K562 cells (Figure 5.3). Both PAC2 and K562 cells
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Figure 5.2: Co-transfection of LacI-expressing modules with repressible reporter modules result in
LacI-mediated repression in PAC2 cells. SV40 promoter-only driven expression of LacI
shows moderate repression (40%) and CMV-SV40 enhancer-promoter driven expression
LacI shows high repression (70%) of a repressible module containing 6x lacO sites. Ex-
pression of non-functional LacI (NFLacI, frameshift mutant) shows no repression and
all modules showed maximal reporter expression in the presence of 1mM IPTG. Error
bars represent standard deviation of replicates (n=3). Points represent values for all 3
replicates in each condition. The dashed line shows the NF LacI IPTG- negative con-
trol. The TSS begins where the SV40 promoter begins to slope downward. Statistical
significance determined using a stand 2-sided T-test * P-score < 0.001.

showed around 60-65% repression when co-transfected with a molar equivalent of

CMV enhancer-driven LacI containing plasmid (∼400ng), and roughly 10-20% re-

pression when co-transfected with a similar molar equivalent of SV40 promoter-only

driven LacI-expressing plasmid. These results demonstrate that the lac operator-

repressor system functions in PAC2 cells at a comparable level to human K562 cells.
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Figure 5.3: The lac operator-repressor system performs similarly in both human and zebrafish cell
lines. K562 and PAC2 cells transfected with the same lac operator-repressor plas-
mid mixtures result in similar repression profiles. The promoter-only LacI-expressing
plasmids resulted in roughly 10-20% repression in both cell types and the CMV-SV40
enhancer-promoter driven LacI-expressing plasmids resulted in ∼60% repression in both
cell types. For each of the 3 plasmid combinations above, 100ng of pRL, 4:1 molar equiv-
alents of repressible module plasmid:pRL, and 4:1 molar equivalents of LacI-expressing
plasmid:pRL were co-transfected into 1 million K562 cells or PAC2 cells. 6 biological
replicates were performed for each condition and 3 were exposed to 1mM IPTG and
the remaining 3 were not exposed to IPTG. Error bars represent standard deviation
of replicates (n=3). Points represent values for all 3 replicates in each condition. The
dashed line shows the NF LacI IPTG- negative control.

5.4 Discussion

Zebrafish are a commonly used model organism for studying the spatio-temporal

dynamics of cis-regulatory element activity and gene function. However, the flexi-

ble and widely used lac operator-repressor system has previously been untested in

zebrafish. Here we demonstrate that the lac operator-repressor system functions in

zebrafish cells, consistent with observed activity in other model eukaryotic systems.

For the development of a reporter system in whole organisms like zebrafish, it

is critical to demonstrate non-tissue specific activity of an enhancer to provide ro-

bust output for single-cell reporter signal detection. The CMV enhancer is routinely
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used in reporter assays to drive strong and constitutive gene expression. We provide

quantitative evidence that the CMV-SV40 enhancer-promoter robustly increases lu-

ciferase gene expression over an SV40-only control plasmid in zebrafish fibroblasts.

Furthermore, strong, non-tissue specific eGFP signal was observed in fertilized ze-

brafish eggs that persisted 72 hours post-fertilization after integration of a CMV

enhancer controlled SV40-eGFP reporter construct. The robust levels of expression

are critical in whole-organism studies where only a small number of cells may be

expressing a reporter gene, and a high level of expression from a non-tissue specific

enhancer-promoter such as CMV-SV40 may facilitate their detection.

Changes in expression of the reporter protein LacI are inversely related to changes

in reporter expression. This response appears to provide a level of repression directly

related to the LacI level rather than functioning as an on/off switch. This will allow

for a more nuanced measure of lac regulatory control. Upon the addition of IPTG,

luciferase signal was recovered to the levels of a non-functional LacI control, indicat-

ing that robust repression is completely reversible at low IPTG concentrations. The

pronounced response to IPTG treatment, as well as minimal toxicity in a zebrafish

cell line, suggest the lac operator-repressor system is a viable tool for use in whole

zebrafish.

Lac operator-repressor systems can be used to control endogenous gene expres-

sion without interrupting native regulatory processes as lacO sites can be inserted

in benign regions such as introns and UTRs. Transcriptional inhibition of RNA

polymerase by steric hindrance can achieve repression without introducing artificial

modifications to the locus and causing prolonged alterations in regulatory behav-

ior. This is in contrast to other systems that achieve transcriptional control by

tethering a protein domain with activating or silencing effects through chromatin
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modifying or other endogenous mechanisms. Specificity of repression is also less of

a concern compared to novel CRISPRi methods known for off-target effects [166].

As demonstrated by the REMOTE-control system, the lac system can also be used

in conjunction with Tet-related systems to drive both activation and repression of a

single loci, bringing additional flexibility to zebrafish studies [161]. This system also

allows for time-controlled experiments, where a reporter gene is repressed only for a

limited time window, making it a crucial tool for replicating the restriction of gene

expression during development.

5.5 Methods

Plasmid design

CMV-SV40 enhancer-promoter luciferase plasmids were generated by restriction di-

gestion to insert a CMV enhancer and a minimal SV40 promoter, or only a minimal

SV40 promoter, upstream of a luciferase reporter molecule in the context of a pGL3

plasmid (Promega, E1751). Plasmids designed for whole zebrafish injection were

generated by replacing the firefly luciferase reporter with an enhanced green fluo-

rescent protein (eGFP) reporter, and adding flanking minimal Tol2 200 base pair 5’

sequence and 150 base pair 3’ sequence for integration into the genome [167]. The

sequence of the CMV-SV40 promoter is as follows:

GGCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTA

GTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGG

CCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGA

CGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGG

GTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCA
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TATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCT

GGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTAC

ATCTACGTATTAGTCATCGCTATTACCATGGACTTGCATCTCAATTAGTC

AGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGC

CCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTAT

GCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGG

AGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTC.

Lac operator-repressor system plasmids were created using the EMMA golden gate

assembly method [168]. All plasmids assembled using EMMA have a backbone con-

sisting of an ampicillin resistance gene and a high-copy-number ColE1/pMB1/pBR32-

2/pUC origin of replication. Backbone elements are denoted by terminating dotted

lines in all plasmid schematics (Figure 5.1, Figure 5.2, Figure 5.4, Figure 5.3). The

EMMA toolkit was a gift from Yizhi Cai (Addgene kit # 1000000119) [168]. The lacI

CDS and C-terminal NLS were cloned from the Addgene plasmid pKG215 and in-

serted into an EMMA entry vector to create an EMMA part. pKG215 was a gift from

Iain Cheeseman (Addgene plasmid # 45110) [169]. A frameshift mutation was intro-

duced by inserting an adenosine in the fourth codon of lacI to create a non-functional

LacI (NFLacI) for use in control experiments. The LacI-expressing module contains

a minimal SV40 promoter, the lacI gene, and a SV40 polyA tail, with or without

the addition of an upstream CMV enhancer (Figure 5.2). The repressible reporter

plasmid includes a CMV enhancer and a minimal SV40 promoter upstream of a fire-

fly luciferase gene with symmetric lac operators inserted in its 5’UTR, terminated

by a SV40 polyA tail. In order to maximize repression activity, six copies of the lac

operators containing the sequence AATTGTGAGCGCTCACAATT were utilized in

this study. This sequence is the “symmetric” lac operator that possesses tighter
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binding with LacI than the canonical lac operator sequences [161].

Figure 5.4: High levels of IPTG negatively impact the output of the lac operator-repressor system in
K562 cells. Co-transfections of repressible reporter plasmids with equimolar amounts of
CMV-SV40 enhancer-promoter enhancer driven LacI-expressing plasmids were exposed
to increasing levels of IPTG. At 1mM IPTG, the output signal is restored to the level
observed when NFLacI-expressing plasmids are co-transfected with repressible reporter
plasmids, indicating that 1mM IPTG is sufficient to relieve LacI repression. At IPTG
concentrations >1mM we observed an increasingly lower output of signal relative to
NFLacI levels. Error bars represent standard deviation of replicates (n=3). Points
represent values for all 3 replicates in each condition. The dashed line shows the NF
LacI IPTG- negative control.

Cell culture

The zebrafish fibroblast cell line PAC2 was maintained as previously reported [170].

Cells were grown at 28 degrees Celsius in Leibovitz’s L-15 +glutamine Medium (In-

vitrogen, 21083027) containing 15% heat inactivated fetal bovine serum (FBS; Sigma-

Aldrich, F4135-500ML) and 1% antibiotic-antimycotic (Corning, MT30004CI) until

confluent. Confluent cells were washed with 1x phosphate buffered saline (PBS;

Invitrogen, 10010023) and detached from the plate with 0.05% Trypsin-EDTA for

5 minutes (Invitrogen, 25300054). Trypsin was quenched with FBS supplemented

Leibovitz’s L-15 Medium and detached cells were distributed into sterile flasks with
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fresh media.

Electroporation and luciferase reporter assay

To assess the activity of CMV enhancer in zebrafish cell culture, 4000ng of firefly

luciferase expressing plasmids either with or without the CMV enhancer were trans-

fected into 2x106 PAC2 cells via electroporation (Figure 5.1A). 100ng of the renilla

luciferase expressing plasmid (pRL-SV40 Promega, E2231) was included as a trans-

fection control. Firefly/renilla luciferase signal was calculated as the mean of ratios

of three technical replicates per biological replicate. Fold change was then calculated

relative to the signal of the SV40 promoter-only containing plasmid. The mean

of fold-changes is reported and error bars represent standard deviation. To test the

functionality of our dual module lac repressor system in zebrafish cell culture, 2000ng

repressible module and 2000ng of LacI-expressing plasmid were co-transfected into

2x106 PAC2 cells by electroporation. 400ng of pRL-SV40 was included as a trans-

fection control (Figure 5.2). All transfections were completed using 2mM cuvettes

(Bulldog Bio, 12358-346) and electroporated using a NEPA21 Electroporator (Nepa-

gene). Cells were harvested from culture and resuspended in 90uL of Opti-MEM

Reduced Serum Medium (ThermoFisher, 31985062) per 1x106 cells. Mastermixes of

cells and DNA were prepared according to scale of conditions, and distributed into

cuvettes (100uL/cuvette, 10uL of DNA and 90uL of cells). Poring pulse for PAC2

cells was set to the following: 200V, Length 5ms, Interval 50ms, Number of pulses

2, D rate% 10, Polarity +. Poring pulse for K562 was set to the following: 275V,

Length 5ms, Interval 50 ms, Number of pulses 1, D rate 10%, Polarity +. For both

cell types, the transfer pulse conditions were set to the following: 20V, Pulse length

50ms, Pulse interval 50ms, number of pulses 5, D rate 40%, Polarity +/-. Immedi-
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ately following electroporation, each cuvette was recovered in 900L of appropriate

media and distributed into a well on a 24-well culture plate. For the transfection

in Figure 2, PAC2 cells were recovered in 6-well plates. Each condition had a total

of 3 biological replicates. For experiments including LacI, IPTG was treated as a

separate condition and added to 1mM final concentration, unless otherwise specified,

at 1 hour and 24 hours post-transfection (Figure 5.4). Luciferase results were col-

lected 48 hours post-transfection on a GloMax-Multi+ Detection System (Promega,

E7081) using the Promega Dual-Glo Luciferase Assay System (Promega, E2940).

Zebrafish microinjections

Microinjections were carried out using the Tol2 transposon system as previously de-

scribed [167, 171]. Zebrafish embryos were injected from a master mixture of 2uL of

125ng/uL assay plasmid, 2uL 175ng/uL Tol2 mRNA, 1uL phenol red dye, and 5uL

sterile water within 30 minutes of fertilization. All embryos were maintained in Holt

buffer and fluorescent activity assessed at 24, 48, and 72 hours.
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CHAPTER VI

Novel Inversion Assays for the Study of Negative
Regulatory Elements in Whole Zebrafish

6.1 Abstract

Transcriptional regulation by non-coding cis-regulatory elements is a key process

driving tissue-specific gene expression during development. While the identification

and characterization of promoters and enhancers, also known as positive regula-

tory elements, has led to a better understanding of mechanisms of gene regulation

and variation associated with human disease, negative regulatory elements such as

silencers and enhancer blockers are comparatively understudied. This is because cur-

rent plasmid-based reporter assays used to identify and characterize cis-regulatory

elements are optimized for positive regulatory elements, but provide only a reduced

or negative reporter signal output for negative regulatory elements. Measuring a loss

of signal makes these assays susceptible to high rates of false positives and thus im-

practicable for characterizing negative regulatory activity in whole animals. Here we

describe the first reporter assay that produces a positive reporter output in response

to negative regulatory element activity. This assay can be used to identify negative

regulatory elements in cell lines and define the spatio-temporal activity of negative

regulatory elements in whole organisms. We demonstrate that this assay can be used

to assess negative regulatory activity in cell lines and potentially function in vivo.

94
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This advancement will allow for more reliable identification of negative regulatory

elements, supporting their identification genome-wide in a manner similar to what

has already been achieved for PREs, dramatically expanding our understanding of

genome-wide gene regulation.

6.2 Introduction

Over the last 30 years, the discovery and characterization of cis-regulatory ele-

ments has expanded our understanding of gene function and disease mechanisms.

It is now widely accepted that variants falling into non-coding regulatory sequences

have the ability to alter gene expression in ways that disrupt gene function, but are

less likely to be embryonic lethal compared to genic variants. This is supported by

genome-wide association studies (GWAS) that have found the majority of disease-

associated variation falls into non-coding sequence [3, 82]. In addition, regulatory

sequences are known to control tissue and time-point specific gene expression during

development. Efforts supporting the discovery and characterization of cis-regulatory

elements in the genome are necessary for the full delineation of human development

and disease-related risk loci.

The majority of characterized regulatory elements are associated with positive

target gene expression. These include promoters and enhancers, also known as pos-

itive regulatory elements (PREs), and have been the focus of many studies and

technological advances. Traditionally PREs have been studied using plasmid-based

reporter assays, where a putative PRE is inserted upstream of a reporter gene, such

as GFP [29]. If the putative PRE has activity consistent with driving or increasing

gene expression, a positive GFP fluorescent signal can be detected. These assays
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have been utilized successfully to identify many PREs as well as characterize their

spatio-temporal activity in vivo, as seen in studies of human limb malformations [83].

Large scale efforts to characterize enhancers have been untaken using reporter as-

says, as shown in the VISTA Enhancer Browser [31]. More recently, high-throughput

advancements of reporter assays, like massively parallel reporter assays (MPRAs)

and STARR-seq, have allowed for the identification of PREs at unprecedented rates

[33, 32, 173]. These assays have permitted the classification of histone modifications

associated with PREs, further facilitating their identification by providing parame-

ters to prioritize likely candidates [174, 175].

Despite the abundance of tools available for regulatory element testing, very few of

these elements have been associated with a decrease in target gene expression [176].

These negative regulatory elements (NREs) include enhancer blockers, which dis-

rupt enhancer-promoter communication in a position-specific manner, and silencers,

that potentially decrease gene expression through a variety of mechanisms, including

premature termination of transcriptional elongation (Figure 6.1) [177, 178]. There

are a predicted >1.7 million silencer elements alone within the human genome, how-

ever very few of these have been extensively characterized or functionally validated

[179, 180]. In fact, there are not yet enough validated NREs to confidently predict ad-

ditional NREs via histone modifications [181, 179, 180, 182, 183]. Multiple variants

fall within NREs and have been associated with various human diseases, includ-

ing muscular dystrophy, asthma, blood-pressure control, and Beckwith-Wildemann

syndrome. The lack of characterized NREs limits our understanding of genomic

mechanisms leading to human disease [184, 185, 186]. Extensive efforts to identify

and characterize NREs need to be implemented to advance our understanding of

gene regulation and disease mechanisms as a whole.
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Figure 6.1: Functions of four types of regulatory elements. Positive regulatory elements include
promoters, which initiate transcription, and enhancers, which increase gene expression.
Negative regulatory elements include silencers, which decrease gene expression, and
enhancer blockers, which interfere with enhancer activity on their target promoters. S,
silencer; Eb, enhancer blocker; E, enhancer; P, promoter. Adapted from Vandermeer
et al. [83].

Though recent efforts have been made to identify NREs in the genome using high-

throughput screens and prediction models, additional tools for validating NREs are

still required [179, 180, 187]. Low-throughput reporter assays, similar to those used

for PREs, have been applied to NRE characterization [34, 188]. These assays are

structured similarly to classic enhancer assays with the addition of an insertion site

for either a silencer upstream of the enhancer, or an enhancer blocker between the

enhancer and promoter. The resulting NRE activity is interpreted by a reduction or

complete ablation of signal from an initially moderate or high positive baseline signal.

This reliance on a reduction or loss of signal in these reporter assays makes them

vulnerable to false positives through mutated plasmids or failed transfections, and

false negatives though the masked signal of weak silencers or incompatible cell lines

or molecular machienery, and consequently has prevented them from being adopted

for widespread use. Evidence suggests that NREs may have tissue-specific activity,

however this activity remains difficult to assess when these assays are utilized in vivo,

as a small region of reduced fluorescence must be distinguished from the background

signal of a fully fluorescent animal [181, 189, 187]. Recent efforts have been made

to characterize the spatio-temporal activity of silencers in whole Drosphila using
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a classical silencer assay. The drawback is these assays are limited to silencing

expression driven by a cell-type specific enhancer, and are not easily scalable for

comprehensive studies of NREs within an organism [181].

In order to address the current limitations of NRE assays, we have developed

a panel of reporter assays that output a positive reporter signal in the presence

of active NREs. Two versions have been developed, using either CRISPR or the

lac operator-repressor system as a functional intermediate unit to generate double-

negative assays. The typical reduction of expression, stimulated by the presence of

a candidate repressive element, is linked to the increased expression of a reporter

gene through the use of these intermediates. This essentially inverts the NRE sig-

nal, turning negative regulation into positive expression. This advancement allows

for characterization and validation of the spatio-temporal activity of NREs, both in

cells and in whole animals. The CRISPR-based inversion assay is utilized here to

validate the activity of NREs in cells and demonstrate the tissue-specific activity of

a known silencer element in a transgenic zebrafish model organism.

6.3 Methods

dCas9 assay construction

The dCas9 plasmid was generated using dCas9 from the pHR-SFFV-KRAB-dCas9-

P2A-mCherry which was a gift from Jonathan Weissman (Addgene plasmid # 60954)

[166]. The self-cleaving ribosomes were synthesized as separate gBlocksand cloned

into pENTR1A (Thermo Fisher). Tol2 sites were taken from the Tol2kit plas-

mid #396 [190], and SV40 promoter from the pGL3.promoter commercial plasmid

(Promega).
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Our deactivated dCas9 (ddCas9) was generated using single site mutagenesis to

insert a thiamine directly after the ATG start codon, causing a frameshift mutation

and generating a stop codon.

lac operator-repressor assay construction

The lac operator-repressor plasmids were constructed using EMMA Mammalian

Modular Assembly (EMMA) golden gate assembly. The EMMA toolkit was a gift

from Yizhi Cai (Addgene kit # 1000000119) [168]. The lac operator-repressor sys-

tem components were cloned from the Addgene plasmid pKG215. pKG215 was a

gift from Iain Cheeseman (Addgene plasmid 45110) [169]. The SV40 promoter and

the CMV enhancer sequence is as previously published [172]. The version of LIRA

presented here contains six copies of the lacO sequence: AATTGTGAGCGCTCA-

CAATT.

Cell Culture

The human myelogenous leukemia cell line K562 was maintained as previously re-

ported by ATCC and briefly described here. Cells were grown at 37 degrees Celsius

and 5% CO2 in RPMI-1640+L-glutamate media (Sigma-Aldrich, 11875093) con-

taining 10% heat inactivated fetal bovine serum (Sigma-Aldrich, F4135) and 1%

antibiotic-antimycotic (Corning, MT300004CI)(RPMI 1640 complete media).

The zebrafish fibroblast cell line PAC2 was maintained as previously reported

[170]. Briefly, cells were grown at 28 degrees Celsius in Leibovitz’s L-15 +glutamine

media (Invitrogen, 21083027) containing 15% heat inactivated fetal bovine serum

(Sigma-Aldrich, F4135) and 1% antibiotic-antimycotic (Corning, MT300004CI).
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Cell Transfections

All transfections into K562 cells were completed using 2mM cuvettes (Bulldog Bio,

12358-346) and electroporated by a NEPA21 Electroporator (Nepagene). Cells were

harvested from culture and resuspended in 90uL of Opti-MEM Reduced Serum

Medium (ThermoFisher, 31985062) per 1x106 cells. Cells and DNA were combined

in a mastermix before distribution into cuvettes (100uL/cuvette: 10uL of DNA and

90uL of cells). Nepagene poring pulse was set to 275V, Length 5ms, Interval 50

ms, Number of pulses 1, D rate 10%, Polarity +. Nepagene transfer pulse was set

to 20V, Pulse length 50ms, Pulse interval 50ms, number of pulses 5, D rate 40%,

Polarity +/-. Immediately following electroporation cells were recovered in 900uL

RPMI 1640 complete media. Cells were then grown in 24-well culture plates and

RNA was harvested after 48hrs. All conditions had 2 biological replicates.

qPCR

RNA extraction was completed using the RNeasy mini kit (Qigen), and cDNA re-

verse transcription was carried out using the High Capacity RNA-to-DNA kit with

oligo dT (Applied Biosystems). Quantitative PCR (qPCR) was carried out using

Power SYBR Green master mix (Applied Biosystems, 4369659).

Zebrafish microinjection

Microinjections were carried out as previously described [167, 171]. Zebrafish em-

bryos were injected from a master mixture of 2uL of 125ng/uL assay plasmid, 2uL

175ng/uL Tol2 mRNA, 1uL phenol red dye, and 5uL sterile water within 30 minutes

of fertilization. All embryos were raised in 1x Holt buffer. Fluorescent activity was

assessed at 24 and 48 hours post fertilization (hpf).
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6.4 Results

dCas9 positive NRE assay

Here we introduce the first assay to characterize NRE activity in whole animals using

a positive readout for repressive activity. The creation of this inversion assay takes

advantage of the newly developed catalytically dead Cas9 (dCas9) protein as a tar-

geted transcriptional silencer of the reporter molecule enhanced GFP (eGFP) [188].

The assay functions by placing a sgRNA recognition sequence in the 5’ UTR of the

eGFP gene, allowing for the dCas9-sgRNA complex to bind. As the dCas9 is cat-

alytically dead, it will not cut when bound to this recognition sequence, and instead

blocks transcription elongation by steric hindrance (Figure 6.2). However, when an

active NRE is inserted upstream of the sequence encoding the sgRNA, it reduces

the available sgRNA that can complex with dCas9, allowing eGFP to be expressed.

Through this method, NREs are able to produce a positive reporter signal consistent

with the cell-type specificity of the NRE being tested. While transcription of sgRNA

is typically driven by a PolIII promoter in other assays, we chose to modify ours to be

compatible with PolII transcriptional control to maintain a regulatory environment

known to be compatible with the majority of regulatory element activity in eukary-

otes. A polyA sequence was added to the 3’ end of the sgRNA, which is removed

post-transcriptionally through the inclusion of flanking self-cleaving ribozymes along

with the excess 5’ sequence [191]. These ribozymes are capable of cleaving themselves

to free the sgRNA post-transcriptionally and allow it to complex properly with the

dCas9 protein.

We designed four versions of this plasmid, one to detect the activity of each of
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Figure 6.2: dCas9-based positive assay for negative regulatory elements. These assays use a cat-
alytically dead Cas9 (dCas9) as a targeted transcriptional silencer of a ubiquitously
expressed reporter molecule. A putative silencer or enhancer blocker is inserted (dashed
box) upstream of the regulatory machinery for an sgRNA which targets the 5’ end of
the reporter molecule (eGFP). eGFP is only expressed when an active negative regula-
tory element is present, repressing sgRNA expression which prevents dCas9 targeting
of eGFP. Alternatively, if the sequence inserted is not an active negative regulatory
element, sgRNA is expressed and complexes with the constitutively expressed dCas9,
targeting it to eGFP. The dCas9-sgRNA acts as an intermediate cassette to invert the
negative element’s signal, yielding a positive change in reporter expression. E, enhancer;
P, promoter.
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the four types of known regulatory elements (Figure 6.3). For NREs, the silencer

assay contains gateway sites that allow easy insertion of a putative silencer element

upstream of the enhancer and promoter driving sgRNA expression [192]. Similarly,

our enhancer blocker assay contains gateway sites between the enhancer and pro-

moter driving sgRNA expression. The PRE assays are mechanistically equivalent

to classical promoter and enhancer assays, and use the same backbone as the NRE

assays. This is to maintain size and content consistency between plasmids to avoid

bias when comparing putative regulatory elements across all four assays. Putative

PREs can be inserted upstream of the minimal eGFP promoter (enhancer assay), or

in place of the minimal eGFP promoter (promoter assay). To remove any transcrip-

tional repression of eGFP from dCas9 in these plasmids, mutagenesis was utilized to

generate a frameshift mutation leading to a truncated “deactivated” dCas9 protein

(ddCas9).

dCas9 inversion assays correctly assess activity of known silencers and

enhancer blockers

Plasmids of all four dCas9 assay types were constructed to contain five distinct test

regions: the HS2 enhancer, a conserved enhancer blocker, a non-conserved enhancer

blocker, a conserved silencer, and a non-conserved silencer [34]. These plasmids were

separately transfected along with two negative controls for the enhancer/promoter

(E/P) assay and silencer/enhancer blocker (S/EB) assay into K562 human myel-

ogenous leukemia cells. By quantifying the resulting eGFP expression by qPCR, we

found regulatory elements to show the highest levels of expression in plasmids match-

ing their expected regulatory type (Figure 6.4). This suggests that the 4 plasmid

model is able to accurately delineate the regulatory function of tested cis-regulatory



104

Figure 6.3: dCas9 inverted reporter assays for four regulatory element types. E, enhancer; P, pro-
moter; dCas9, catalytically dead Cas9; ddCas9, deactivated dCas9; red line, sgRNA
barcode recognition sequence; dashed box, gateway insertion site.

elements. While the majority of the NREs tested primarily showed activity in their

matched assay type, the conserved silencer element demonstrated activity in both

the silencer and the enhancer blocker assays, consistent with previous characteriza-

tions of silencers as orientation-independent [193].
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Figure 6.4: Control positive and negative elements demonstrate expected activities in dCas9-
inverted reporter assay panel. Five previously-tested control regulatory elements were
tested in each of our dCas9 assays. eGFP transcription levels were assessed by qPCR
48 hours post transfection into K562 cells. Control elements tested include the HS2
enhancer, a conserved enhancer blocker, a non-conserved enhancer blocker, a conserved
silencer, and a non-conserved silencer [34]. Dark bars represent the highest enrichment
ratio for each regulatory element. All elements tested generated the highest reporter
levels when placed in their corresponding assay position, i.e. enhancer blockers show
strongest activity when placed in the enhancer blocker position between enhancer and
promoter. All values shown are proportional to background reads from empty enhancer
and promoter (E/P) or silencer and enhancer blocker (S/Eb) controls. X-axis labels
represent the type of dCas9 assay used. Labels above the bars indicate the tested el-
ement. Error bars represent standard deviation of 2 biological replicates. E, enhancer
assay; P, promoter assay; S, silencer assay; Eb, enhancer blocker assay.

in vivo analysis of NRE in dCas9 inversion assay in zebrafish shows

highly mosaic expression

One of the largest advancements of these assays for NREs is the ability to utilize

them in model organisms to examine in vivo spatio-temporal expression patterns of

these elements. Zebrafish was chosen as a model system as they have historically

been used to assess the activity of enhancers via in vivo enhancer assays [29]. Similar

to PREs, functional conservation of NREs has been shown previously across species,

suggesting expression patterns produced from these assays will likely be conserved to

humans [194, 195, 196]. Zebrafish represent a convenient model organism for studies
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yielding a tissue-specific fluorescent output due to their high level of conservation to

human genic regions, large numbers of offspring per mating, rapid development, and

transparent bodies in early development [167].

Plasmids containing the known non-conserved silencer previously tested by qPCR

were microinjected into 302 one- or two-celled zebrafish embryos (86 uninjected con-

trols), and eGFP expression patterns were qualitatively analyzed at 24 and 48 hours

post fertilization (hpf) [167, 34, 171]. 69.8% (37/53) of our injected embryos were

eGFP positive and no eGFP activity was seen in the uninjected controls (0/8) at 24

hpf. Highly mosaic fluorescent activity across all eGFP positive zebrafish embryos

was observed (Figure 6.5). This mosaicism is likely due to the >12kb plasmid size,

as integration efficiency of the Tol2 recombination system is known to decrease with

plasmid size [197]. An mCherry gene was included on the backbone of the plasmid

assay as a transfection control. Some cells in the zebrafish embryos expressed both

mCherry and eGFP, signifying a tissue type in which the tested silencer is active.

However, some cells in these fish were observed to express mCherry but not eGFP,

representing tissue types where the tested silencer is inactive. These results strongly

support tissue-specificity of this silencer element, and broadly reinforce previous ev-

idence of tissue-specific NREs [181, 189, 187].

The Lac Inverted Reported Assay

The highly mosaic fluoresce seen following integration of the dCas9 silencer assay in

zebrafish embryos is consistent with low transfection efficiency of the plasmid and

size limitations of the Tol2 system. To address this limitation, an alternate repression

system was utilized to serve as the inversion mechanism driving our reporter assay.

The dCas9 assay was substituted with a lac operator-repressor system model, which
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Figure 6.5: Fluorescent signal in zebrafish 48 hours post-fertilization(hfp) reflects tissue-specific
silencer activity. A. Composite image shows a * where tissue specific active silencer
activity can be seen (yellow). B. Following microinjection of a non-conserved known
silencer element from Petrykowska et al. silencer activity was observed, signified by
eGFP expression [34]. C. Brightfield zebrafish. D. Tissues in which our assay has been
integrated into the genome are signified by mCherry expression.

has known reporter signal inversion capabilities, and reduces the genomic size of our

plasmid-based assay compared to the dCas9 model [161].

The lac operator-repressor system functions through the expression of a Lac re-

pressor protein (LacI) that specifically binds a lac operator sequence (lacO) [152].

When lacO sites are placed upstream of a reporter molecule, such as eGFP, and

LacI protein is present, eGFP transcription is inhibited via steric hindrance through

the LacI-lacO site binding. Our assay uses a classical NRE assay to drive LacI

expression, where an active NRE is expected to reduce the levels of LacI protein,

reducing LacI-lacO site binding, therefore allowing eGFP expression (Figure 6.6).
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We previously established the functionality of lac operator-system in the zebrafish

fibroblast cell line PAC2, supporting the potential function of this system in whole

fish [172]. We also included cHS4 insulators between the expression cassettes in the

assay to insulate potential secondary enhancer activity [198]. These insulators are

well characterized CTCF-based dual function insulator-enhancer blockers shown to

have strong activity across multiple cell types. This new NRE assay is termed the

Lac Inverted Reporter Assay (LIRA)(Figure 6.7).

LIRA still requires validation to confirm that this method functions as expected

in whole zebrafish. The first planned assays for microinjection with Tol2 include

a positive control plasmid expressing LacI, and a negative control plasmid with no

functional LacI expression (Figure 6.8). In the positive control plasmid, no NRE

will be inserted upstream of LacI, allowing positive LacI expression and resulting

no eGFP expression. This positive control will demonstrate the function of the lac

operator-repressor system in whole zebrafish by revealing any tissue-specific eGFP

silencing by LacI. It is expected that all cell types in which the lac operon-repressor

system functions will be eGFP negative. In the negative control plasmid, no LacI

expression or eGFP expression is expected as it lacks an enhancer or putative NRE

upstream of LacI. In addition, the negative control will reveal any tissue-types in

which the enhancer element driving LacI is non-functional. Any tissue-types where

the enhancer is unable to drive LacI expression will be able to express eGFP. Addition

of the allosteric inhibitor Isopropyl β-d-1-thiogalactopyranoside (IPTG) may also be

used with the negative control fish to release LacI binding to lacO sites, functionally

reversing the repression driven by the lac operator-repressor system to reestablish

eGFP expression. The successful reversal of eGFP repression will further support

the functional role of the lac operator-repressor system in the LIRA assay as well as
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Figure 6.6: Lac Inverted Reporter Assay (LIRA) for the assessment of NRE activity. Our LIRA
inversion assay produces positive eGFP signals from active negative regulatory ele-
ments using the lac operator-repressor system. In the silencer assay, when no silencer
is inserted as part of the LacI cassette, LacI protein is expressed. This LacI protein
specifically binds to the lacO recognition sequences in the 5’ UTR of eGFP, sterically
hindering eGFP expression. Alternatively, when a silencer is inserted, LacI expression
is reduced and LacI protein is unavailable to bind to its lacO sites, allowing transcrip-
tion of eGFP. The lac operator-repressor system acts as an intermediate to invert the
silencer signal such that strong repressive activity produces strong eGFP expression.
LacI plasmid E, enhancer; P, promoter; dashed box, gateway insertion site.

in whole zebrafish. The negative control will determine whether components of this

assay, other than the presence of LacI, are responsible for driving aberrant eGFP
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Figure 6.7: LIRA assays for four regulatory element types to assess the potential regulatory activity
type of any putative regulatory element. Gray LacI represents a non-functional LacI
gene containing an early frameshift mutation. E, enhancer; P, promoter; dashed box,
gateway insertion site.

repression.

Following the observation of expected eGFP patterns within zebrafish controls,

microinjections of NRE plasmids containing known NREs will proceed. We plan

to start by examining conserved NREs identified by the classical NRE assays from

Petrykowska et al. [34]. As these NREs were classified as active in the K562 ery-
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Figure 6.8: LIRA control plasmids and expected outcomes. Control plasmids will be required to
test the function and feasibility of the LIRA assay system. A positive control, containing
no NRE, is expected to yield no eGFP signal. A negative control, containing no NRE
or enhancer driving LacI expression, is expected to yield ubiquitous eGFP expression.
mCherry functions as a transfection control and is expected to be actively expressed
in all cells which have successfully integrated the LIRA construct. E, enhancer; P,
promoter; dashed box, gateway insertion site.

throleukemia cell line, we hypothesize that these control regions will be active in

zebrafish blood cells, but may not be blood cell specific. The LIRA plasmid also

includes constitutively active mCherry cassettes, allowing visualization of all cells in

which the assays have successfully integrated into the genome to determine the level

of mosaic integration in whole zebrafish.

6.5 Discussion

Fully elucidating the spatio-temporal activity of NREs is a key step in understand-

ing regulatory processes and disease mechanisms. Here, we describe novel assays to

characterize the spatio-temporal activity of NREs in cell culture and in a transgenic

zebrafish model system. These assays use either dCas9 or the lac operator-repressor

system to invert NRE negative signal into positive reporter expression, overcoming

limitations of past NRE-based assays, and making these the first assays of their kind.
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The dCas9-based assays produced expected activity when tested using previously

annotated regulatory elements, including an enhancer, silencers, and enhancer block-

ers. This result provides confidence in our assays’ ability to define regulatory elements

by their biological function. In addition, we demonstrated tissue-specific silencer ac-

tivity of a known silencer by using our dCas9 silencer assay in a zebrafish model

organism. Going forward, the LIRA assays are expected to provide a more complete

view of tissue-specific NRE activity by reducing transgenic mosaicism within the

zebrafish models. We have developed novel assays capable of identifying the type

of regulatory activity of a putative regulatory element, as well as characterizing its

tissue-specific activity in vivo. These assays have the potential to rapidly expand the

pace of validation and characterization of NREs, enhancing our knowledge of gene

regulation.

The application of our assays to NRE testing across cell-types and organisms can

resolve key questions regarding the behavior of NREs. Though some elements have

been found to have dual silencer/enhancer blocker activity depending on cell type,

it remains unknown how widespread this bifunctional activity is [199, 181, 200, 201].

By utilizing both our silencer and enhancer assays in zebrafish microinjection for the

same putative bifunctional element, any differences in regulatory activity between

tissue types can be visualized. Additionally, some NREs have shown orientation-

dependent behavior, where they only function in certain orientations relative to a

promoter or enhancer [138, 202, 203, 176, 193]. By placing NREs in forward or

reverse orientation within our assays, this orientation-dependency of NREs can be

fully characterized. Due to the rapid nature of the method used for plasmid assembly,

integrating diverse promoters and enhancers into our plasmids to test for promoter

or enhancer specific NRE activity is also easily attainable [204, 205, 206].
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Our reporter assay is subject to the same limitations as other plasmid-based as-

says. Plasmids are commonly used due to the ease of generation and transfection,

however they require testing outside native chromatin contexts and may not entirely

reflect the native behavior of tested elements. Silencers have been known to function

through a variety of mechanisms, and certain types of silencing activity may not be

detectable in our assay, such as those thought to inhibit splicing [207, 208]. This

will likely have less of an affect on enhancer blockers, some of which are thought to

function through DNA structural changes [209, 210]. Given that our assay is con-

structed in vitro, it does not recapitulate endogenous patterns of DNA methylation

or histone modifications, both of which may be required for certain NRE repressor-

protein interactions [180]. Going forward it will be critical to validate that our assays

function in whole zebrafish in addition to PAC2 cells, in order to allow us to charac-

terize any cell-type specific expression driven by negative regulatory elements. It is

yet to be determined if the enhancer used in our assay drives fully ubiquitous eGFP

expression in whole zebrafish. We expect to observe false positive GFP expression

in tissue-types without enhancer activity, which would functionally appear as a si-

lenced or blocked enhancer area. Therefore it is imperative to examine our negative

control using transgenic zebrafish to reveal any tissues where the enhancer may not

be functional and actively expressing eGFP in the absence of a NRE. Additionally,

our positive control must be analyzed in fish to ensure the eGFP background signal

is low enough to not disrupt NRE assessment. Further reduction in NRE signal can

be achieved in our LIRA assays through the inclusion of additional lacO sites in the

5’ UTR of eGFP if this is an issue [161]. In addition, the use of a zebrafish model

organism has its own limitations, given that the regulatory elements we test will

likely need to be conserved from human to zebrafish in order to give us confidence



114

in the conserved function.

These assays can be adapted to identify silencers in an unbiased fashion genome-

wide by extending another version of enhancer reporter assays, the enhancer trap.

This method takes advantage of the random integration of Tol2 to insert an empty

enhancer assay construct so that nearby enhancers are able to trigger reporter ex-

pression at the integration site [211, 212, 213, 214]. By adapting this methodology

for use in our assays, we can identify novel silencers in the genome in an unbiased

fashion. Through integration of these results with Hi-C measures of chromatin or-

ganization, we can utilize identified NREs to generate maps of regulatory networks

within topologically associated domains (TADs) in the genome. This will provide

a previously unattainable comprehensive overview of gene regulation [215]. By tak-

ing advantage of the barcoded system within the dCas9 assay, we can generate a

high-throughput version of our assays. Genomic fragment libraries can be inserted

into the gateway sites, and transfected at a low copy number into cells allowing for

fluorescence-activated cell sorting. Isolated eGFP positive cells can be sequenced to

discover novel NREs driving eGFP expression in an unbiased fashion.

In this paper we introduced two novel methodologies which allow NREs to be

functionally characterized for spatio-temporal activity simultaneously across a whole

organisms for the first time. Reporter assays optimized for the study of NREs will

allow for more efficient validation and characterization of these elements in a time

where their discovery is rapidly increasing. Better NRE representation will provide a

more comprehensive understanding of gene regulation as a whole, as well as uncover

novel regulatory sequences in the genome potentially contributing to human disease.
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CHAPTER VII

Conclusions and Future Directions

Gene regulation is a key eukaryotic genomic process that allows the precise tran-

scription of genes in a cell-type specific manner. Genomic regulatory regions are

enriched for variants associated with a number of human diseases, including multiple

cancers and neurological disorders. Despite their importance to the interpretation of

the human genome and prediction of human disease, gene regulatory regions through-

out the non-coding genome remain vastly understudied.

The work presented in this dissertation advances non-coding genomic regulatory

sequence studies by introducing novel computational tools to examine variation and

methylation consequences within transcription factor binding sites, and the devel-

opment of novel experimental assays for regulatory element characterization. These

tools are expected to contribute to the study of gene regulation by providing ac-

cessible predictions and spatio-temporal characterizations of functional regulatory

sequence. The resulting datasets will help advance research and experimental vali-

dation of these understudied sequences.

116
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7.1 Improving Predictions of Non-coding Variant Function

The work presented in Chapters 2-4 provide background on the current field of

non-coding variation function prediction, as well as introduce novel tools advancing

these predictions for transcription factor binding sites.

There remains a large pool of unvalidated putative disease causing non-coding

variants identified by genome-wide association studies. This is due to experimentally

rigorous methods used to validate putatively functional non-coding variation, such

as fine mapping, that is impractical to implement for large numbers of variants.

To address this drawback, multiple computational tools have been developed to

assist in the prioritization of non-coding variants for further study. These tools

employ genome-wide functional annotations and measures of conservation to generate

predictions either heuristically, or using a machine learning based approach. In

Chapter 2, I examined four of these tools (DeepSEA, RegulomeDB, CADD, and

FATHMM-MKL) and revealed disparities in agreement between their functional calls

[24, 27, 57, 58]. Previous implementations of non-coding annotation methods found

they perform better in tandem, suggesting that combining annotation tools may

lead to improved predictions of functional non-coding variation [109]. This result,

combined with the finding that fewer than 40% of GWAS analyses in 2015 utilized

a non-coding variation annotation method, suggest that improved computational

predictions through the addition of functional annotations may further assist in the

prioritization of non-coding variants for experimental validation.

To aid in this goal, I developed the computational method SEMpl, which uses

functional annotations to generate predictions of variation falling within transcrip-

tion factor binding sites genome-wide, and is described in Chapter 3. This is accom-
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plished through the aggregation of quantitative transcription factor binding data

matched to allelic sequence. We can leverage these pre-existing transcription fac-

tor binding sites containing one or more in silico “variants” to generate predictions

of the consequences variations at every possible site along a binding motif has to

transcription factor binding. SEMpl surpassed the current standard, position weight

matrices (PWMs), when predicting measures of transcription factor binding from

ChIP-seq data. SEMpl was able to recapitulate experimental measures of transcrip-

tion factor binding, and outperformed other variant prediction methods. We found

SEMpl to be cell-type agnostic, suggesting that nucleotide sequence alone does not

drive differential transcription factor binding between cell-types.

I expanded the scope of SEMpl in Chapter 4 by including predictions of DNA

methylation consequences on transcription factor binding sites. This computational

tool, named SEMpl with Methylation (SEMplMe), is able to provide quantitative

predictions of the effect of methylation on transcription factor binding affinity by

following the same schema as SEMpl, with the addition of quantitative measures

of DNA methylation genome-wide. This allows us to add two additional letters to

the nucleotide alphabet, M – methylated cytosine, and W – guanine on the opposite

strand of a methylated cytosine. SEMplMe agrees with known annotations of methy-

lation sensitive and insensitive transcription factors, recapitulates prior experimen-

tal measures of transcription factor binding, and outperforms another method that

predicts the methylation consequences in transcription factor binding sites. Unlike

SEMpl, SEMplMe does differ between cell-types for methylated nucleotides, suggest-

ing that DNA methylation is able to drive differential transcription factor binding in

a cell-type specific manner.

Both SEMpl and SEMplMe are limited to currently available datasets. In order
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to run both tools for a single transcription factor, a PWM, ChIP-seq data set, cell-

type matched DNase-seq, and whole genome bisulfite sequencing data are required.

Prediction confidence at each base is correlated to the number of instances of the

in silico “variant” observed within the genome, which can be a limiting step in

some cases of methylated sequences with few binding sites. It is also expected that

some of our predictions made from genome-wide level annotations will not fully

recapitulate endogenous locus-specific binding patterns due to factors external to

the base sequence and methylation, such as cofactor binding.

Together SEMpl and SEMplMe can be used to prioritize non-coding variation

for experimental follow-up. For instance, GWAS variants from the National Hu-

man Genome Research Institute (NHGRI) catalogue can be screened for overlap

with predicted transcription factor binding sites by RegulomeDB, followed by rank-

ing potential functional variants using SEMpl and SEMplMe [24, 36]. Experimental

follow-up could be carried out based on different criteria, including variants most

likely to disrupt endogenous transcription factor binding, sites predicted to bind to a

specific transcription factor, or by regions of the genome known to be associated with

a specific disease. To make predictions as accessible as possible, pre-computed ma-

trices are available for >90 transcription factors from SEMpl, and >70 transcription

factors from SEMplMe. Providing SEMpl and SEMplMe scores alongside Regu-

lomeDB predictions of function can vastly improve the accessibility of these tools.

The further expansion of this methodology through the addition of more functional

annotations, such as hydroxymethylation and nonCpG methylation, may also help

improve SEMplMe predictions [216, 142].
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7.2 Characterizing the in vivo Activity of Regulatory Elements

The research presented in Chapters 5-6 describes novel experimental tools to val-

idate and characterize regulatory elements in zebrafish transgenic models. Zebrafish

is a classic model organism for the study of genomic regulatory elements and gene

function. In Chapter 5 I demonstrate that a widely used experimental method for

modifying gene expression is also capable of functioning in a zebrafish cell line. The

lac operator-repressor system is an inducible repression system where an expressed

protein (LacI) specifically binds to its operator sequence (lacO). When lacO sites

are placed between a promoter and a gene, the binding of LacI is able to prevent

expression of the gene via steric hindrance [161]. This repression system is often

used in mice and human cell lines to study gene activation and repression. I demon-

strate functionality of this system in zebrafish cells by repressing the expression

of a luciferase reporter gene in the PAC2 zebrafish fibroblast cell line. Luciferase

expression was rescued with the addition of the allosteric inhibitor Isopropyl β-d-1-

thiogalactopyranoside (IPTG), which prevents LacI binding, providing evidence that

the observed reduction of luciferase signal was due to the lac operator-repressor sys-

tem. The validation of this system in zebrafish cells strongly suggests it is functional

in whole zebrafish, providing a new way to investigate gene expression using this

model organism.

Following the validation of the lac operator-repressor system in zebrafish cells, I

utilized this repression system and a dCas9 repression system as the basis of two

novel reporter assays to characterize the function of negative regulatory elements in

transgenic zebrafish. Negative regulatory elements, such as silencers and enhancer

blockers, are associated with a decrease in gene expression and are largely understud-
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ied due to challenges detecting their regulatory activity. In Chapter 6, I introduce

two inversion assays that are able to take a negative regulatory element signal and

invert it into positive reporter expression. The dCas9 inversion assay uses negative

regulatory activity to decrease the expression of an sgRNA, reducing dCas9 binding

and subsequent blocking of GFP reporter gene transcription. The lac operator-

repressor inversion assay uses negative regulatory activity to decrease the expression

of LacI, reducing its binding to lacO sites located downstream of a promoter driving

GFP reporter expression. The positive reporter output of these assays represents

a breakthrough in the study of negative regulatory elements. These assays will al-

low the spatio-temporal characterization of negative regulatory elements in vivo in

whole animals, a feat previously only possible for positive regulatory elements, such

as promoters and enhancers. While these assays are promising, it remains to be seen

if they can work as reporter assays for negative regulatory elements in transgenic

animal models. Early attempts to utilize the dCas9 inversion assay in whole ze-

brafish resulted in highly mosaic animals, potentially due to the size of the plasmid

that integrates into the genome. While the feasibility of the lac operator-repressor

system is promising, this inversion assay has yet to be tested in zebrafish. Reporter

assays in general are limited in their construction, as they may not recapitulate en-

dogenous patterns of DNA methylation or histone modifications. There is possible

bias against tested regulatory elements, such as those required to be a specific dis-

tance from their target gene, or are orientation or promoter-dependent. This assay

is unlikely to be able to identify elements with weak regulatory activity. Future

applications of these inversion assays allow for the unbiased identification of novel

negative regulatory elements. This includes a potential silencer trap, where our assay

is randomly integrated into the zebrafish genome without the addition of a putative
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silencer element. Nearby silencers will then be able to activate reporter gene expres-

sion. The dCas9 inversion assay can be used to identify negative regulatory elements

in a high-throughput manner, by employing the sgRNA recognition sequence as a

barcode. This would allow negative regulatory elements to specifically repress only

the reporter activity expressed from their plasmid of origin. Following fluorescent

cell sorting and sequencing of GFP positive cells, we would be able to use this assay

to discover novel negative regulatory elements in a high-throughput fashion.

7.3 Concluding Remarks

The work in this thesis has provided novel computational and experimental tools

focused on elucidating the function of non-coding regulatory sequence in the human

genome. These tools are expected to provide a new baseline from which regulatory

elements can be validated and their function characterized. They will allow for

spatio-temporal characterization of entire regulatory elements, and investigation of

the transcription factor binding sites within them down to the nucleotide level.

While this work is critical to further the understanding of non-coding genomic

sequences, additional experimental validations of these sequences will be required to

fully elucidate the non-coding human genome. Predictions of functional non-coding

variants provided by SEMpl and SEMplMe will require experimental validation by

reporter assay, CRISPR-based mutagenesis, or in vitro methods such as EMSA, to

establish their putative roles in altering transcription factor binding affinity. Methods

such as RNA-seq of mutagenized cell culture can help establish these variant’s ef-

fects on global gene expression. Validating negative regulatory elements by inverted

reporter assays is especially important now that high-throughput technologies to
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identify putative silencer activity are being released [180, 187]. In addition to charac-

terizing tissue-specific regulatory activity, methods such as chromatin conformation

capture technologies can be implemented for validated negative regulatory elements

to identify their target genes. This work is expected to further unravel genome-wide

regulatory networks and elucidate non-coding loci capable of contributing to human

disease.

Going forward the prediction of non-coding variation and discovery of non-coding

regulatory elements will help to form a foundation toward the understanding of

the non-coding regulatory genome. Generating tools such as the VISTA Enhancer

Browser for silencers and genome-wide maps of insulators will allow researchers to

make more in depth predictions of function and better capture the complexities

of gene regulatory landscapes [31]. Furthermore, increasing understanding of non-

coding regions of the genome will bolster the use of whole-genome sequencing meth-

ods. The widespread use of these methods will help us to better understand se-

quencing variance in non-coding regions, assisting in predictions of disease-causing

variation in non-coding regions genome-wide. Eventually a firm understanding of

non-coding variation and regulatory networks will be able to contribute to health-

care outcomes by expanding our understanding of gene regulation in personalized

medicine and key non-coding variants contributing to rare disease.
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