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Abstract: Active shape models (ASM) showed to have potential for segmenting the right ventricle (RV) in cardiac magnetic
resonance images (MRIs). Nevertheless, the large variability and complexity of the RV shape do not allow for concisely
capturing all possible shape variations among patients and anatomical cross-sections. Noticeably, the latter increases the
number of iterations required to converge to a proper solution and reduces the segmentation accuracy. In this study, the authors
propose a new ASM framework that can model the RV shape in short-axis cardiac MRI images. In this framework, the RV
contour is split into two simpler segments, septal (SP) and free wall, whose shape variations are independently modelled using
two separate (dual) ASM models. The contour splitting is done at the location of the RV insertion points into the SP wall. Further,
instead of using the conventional Procrustes method, the RV contours are aligned using the Bookstein coordinate
transformation, which uses the RV insertion points as landmarks to linearly align the RV contours. The results from a dataset of
14 patients show that the proposed framework outperforms the conventional ASM framework and can model complex RV shape
variation with more accuracy and in less iteration steps.

1 Introduction
Assessment of the structure and function of the right ventricle (RV)
from cardiac magnetic resonance images (MRIs) plays an
important role in diagnosing and monitoring a number of
cardiovascular diseases, including pulmonary hypertension,
cardiomyopathy, myocardial infarction, and congenital heart
disease [1–4]. In a typical study, a stack of parallel short-axis cross-
sections of the heart is acquired, from which the RV volume is
computed to estimate important clinical parameters, such as the RV
ejection fraction [2, 4]. A necessary step for such analysis is the
delineation of the RV boundaries in the acquired images at the
different cardiac phases. The automation of this process is
challenging due to the complex shape of the RV, presence of
trabecular muscles, irregular RV shape in certain diseases (e.g.
severe pulmonary hypertension), image artefacts, and low tissue-
to-blood contrast (especially at the apical cross-sections due to the
accentuated partial volume artefacts) [5]. This challenging problem
has been investigated by a number of researchers using a number
of different image processing techniques [5–19].

Generally, the ventricular boundary detection techniques can be
classified as either atlas-based (probabilistic [20], statistical [20],
or geometrical [21]), intensity-based [22], and model-based
techniques [23–30]. While the atlas-based techniques are
appealing, their implementation in clinical practice is limited by
the need for extensive manual segmentation during the training
process and the possibility of missing important cases during the
training phase that could limit the atlas's capability of identifying
similar cases during implementation. The intensity-based
techniques are easier to implement; however, they are limited by
the image quality, e.g. signal-to-noise ratio (SNR) and presence of
artefacts, and the accumulation of tracking error, e.g. in the case of
non-rigid image registration. The model-based analysis techniques
provide a powerful approach for fast and accurate evaluation of the
heart images. By customising anatomical and functional models of
the heart to images from an individual subject, information about
the heart shape and function can be obtained, which is helpful for
studying normal ranges of variation in the population and
differences in pathological cases. Compared with model-free
approaches, the model-based techniques have the advantage that

they provide information about the expected shapes of the
structures of interest, which makes it easier to identify these
structures in images with low SNR or in the presence of imaging
artefacts. Further, the structures of interest can be described with a
small number of parameters, and all image analysis and shape
modelling steps can be conducted in a common framework. Model-
based analysis techniques have been implemented for evaluating
global [31, 32] and regional [23, 26] heart function, and for
investigating new descriptors of cardiac function [27–30].

Among the different techniques used for RV segmentation,
active shape models (ASM's) showed to have a strong potential due
to their ability to model the complex shape of the RV [15–19].
Basically, ASM's detect the cardiac contour by minimising an
energy function that measures the difference between the model
and image data. For two-dimensional (2D) RV segmentation, an
ASM model is built for each cross-section by capturing the mean
shape and principal modes of variations of the RV contours present
in a training dataset. The latter is constructed from manually
extracted RV contours [33, 34]. Nevertheless, the ASM technique
is challenged by the extensive shape variability of the RV across
different slices, timeframes, and patients. Especially, the latter does
not allow for succinct representation, i.e. using a small set of
modes of variations, of possible RV shapes.

In this work, we propose a modified ASM framework that can
be used to efficiently capture the variations among the RV shapes.
Two contributions have been included in this work. First, the RV
contour is split into two segments: free (FR )wall and septal (SP)
segments, where a separate ASM is built for each segment. The
second contribution in this work is the normalisation of all the
contour segments using the Bookstein transformation, rather than
the conventional Procrustes alignment. As will be shown later,
these two modifications allow for succinct representation of the RV
contours, which leads to more accurate segmentation results. It is
worth mentioning that the current work is based on some
preliminary study presented in [35].
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2 Methods
2.1 Conventional active shape modelling

Conventional 2D ASM is based on constructing the shape model
from a set of contours delineating the object boundaries in a set of
training images. A fixed set of n landmark boundary points, e.g.
{(x1, y1), (x2, y2), …, (xn, yn)}, are selected from each contour in
the training set. Then, these training sets of points are aligned to
minimise the variance in distance between the corresponding
landmark points. This step is essential for proper model formation
as it reduces the contributions from non-specific shape variations
caused by, for example, affine transformation. The Procrustes
alignment method is commonly used to align the contours in the
training set [19, 24, 33] using proper affine transformations. The x-
and y-coordinate values of each point on a given aligned contour, i,
are stacked to form a vector x of length 2n, i.e.�� = [�1, �2…, ��, �1, �2…, ��]T . (1)

Then, the mean, �̄ = (1/�)∑� = 1� ��, and the covariance,� = (1/(� − 1))∑� = 1� (��− �̄)(��− �̄)T, of the training contours
are calculated and the shape model is represented by the following
equation: � = �̄+ � .�, (2)

where P is a matrix of size 2n × k whose columns are the first k
Eigenvectors of the covariance matrix, and b is a vector of the
shape parameters. The value of k is determined as the smallest
number of modes of variations that capture a predetermined
percentage of the shape variance (=98% in this work) [33].

2.2 Contour splitting

To simplify the geometric complexity of the RV contours, each RV
contour in the training dataset is split into two segments: the SP
wall segment, Csp, and the FR wall segment, Cfr, as shown in
Fig. 1. Anatomically, the choice of the insertion points to split the

contour is based on fact that these two points are the anatomical
junctions representing the location where the muscle of the RV is
inserted into the left ventricle. That is, the shape variation of the
FR wall during contraction, i.e. at the different cardiac phases, is
independent from that of the SP wall [36–38]. Geometrically, the
operation of splitting the contour at the insertion points reduces its
complexity. Table 1 shows the complexity metrics (proposed by
Brinkhoff et al. [39]) of the entire contour and the individual
segments of all RV contours in the dataset. As can be seen in the
table, all the complexity metrics are significantly reduced by
splitting the contour. In the training phase, this process is
performed semi-automatically, where the user is prompted, after
drawing the RV contour, to select the two insertion points of the
RV into the SP wall. Each contour segment is modelled separately,
yielding a dual ASM model�sp = �̄sp+ �sp�sp, (3.a)�fr = �̄fr+ �fr�fr, (3.a)

To ensure continuity of the final segmentation results, an
overlap (5% of the contour points) between the two segments is
maintained to allow the fusion of the two segments into a single
smooth RV contour. By the end of the segmentation process, the
two parts (SP and FR) are merged together using a B-Spline
algorithm of order 3 to obtain a smooth contour at the cut points.

2.3 Alignment in the Bookstein coordinates

In this work, the Bookstein method is used to align the training
contours [40]. The Bookstein method allows taking advantage of
the manually selected insertion points in both model building, or
training, phase as well as the segmentation phase. This can result in
a more reasonable alignment of the contours because, first, it uses
the line extending between the two insertion points as an
orientation reference for rotating the training contours. This has
advantage of properly align the contours in diseased conditions
where the RV contours do not have a distinguished pose; i.e. of
rounded shapes. The latter usually represents a challenge for the
Procrustes method, which estimates the rotation angle that yields
the minimum distance among the contours irrespective of the
proper anatomical orientation. Another feature of the Bookstein
method is that it implicitly scales the contours based on the
distance between the two insertion points. This gives an advantage
during the test phase, over the Procrustes method, because the
mean contour is properly scaled to fit the size of the RV to be
segmented. Another advantage of the Bookstein alignment is that it
constrains the RV contour to pass through the two insertion points
throughout the iterative segmentation process as will be discussed
later. This prevents the contour, while searching for the best match
of the appearance model, from taking arbitrary orientation,
position, and scale.

Given the contour from the training set, the two insertion
points, (q1x, q1y) and (q2x, q2y), are manually selected and
transformed into points (0,0) and (1,0), respectively, in the
Bookstein coordinates. The remaining contour points, (cx, cy), are
then transformed to their corresponding points, (px, py), in the
Bookstein coordinates using the following equations:

�� = ��− �1� × ��+ ��− �1� × ����2 + ��2 , (4.a)

�� = ��− �1� × ��− ��− �1� × ����2 + ��2 , (4.b)

where dx = (q2x − q1x) and dy = (q2y − q1y). It is worth noting that
the inverse of (4) can be numerically solved to transform back a
given point from the Bookstein coordinates to its original location
in the image space. In order to achieve that, the trust region dogleg
method for unconstrained optimisation is used to get the inverse
Bookstein transformation [41] (See Fig. 2). That implies finding

Fig. 1  RV contour is divided into two segments (SP and FR wall) in each
short-axis image

 

Table 1 Complexity metrics (mean±SD) of whole contours
and individual segments
Metrica Complete RV FR part SP part
notches 0.5 ± 0.05 0.27 ± 0.068 0.23 ± 0.12
ampl 0.043 ± 0.0078 0.0017 ± 0.002 0.003 ± 0.003
conv 0.2013 ± 0.03 0.0115 ± 0.011 0.04 ± 0.053
aMore details on calculating the metrics is described in [40].
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the optimal positions of the landmark points by iteratively
minimising the following cost function:�opt = arg min� �(� |�, �1, �2), (5)

where (see (6)) 

2.4 Dataset and training

To test and validate the proposed framework, a database contains
840 images from the York University dataset of short-axis cardiac
MRI images [42]. The images’ size is 256 × 256 pixels with pixel
size between 0.9 and 1.5 mm. The dataset covers the whole cardiac
cycle (20 frames per cycle) at three cross-sectional levels (basal,
mid-cavity, and apical slices) from 14 different subjects. This
yielded a total of 280 RV shapes for each cross-sectional level. The
dataset has been randomly divided into two subsets: a training set
of 168 images that form 56 RV shapes (about 20% of the whole
dataset selected from 9 subjects) and a testing set of 672 images
that form 224 RV shapes. The ground truth is defined by manually
delineating all RV boundaries in the dataset.

For each contour, 60 landmarks (contour points) at equal
distances are used to represent the shape of that RV. Furthermore,
two insertion points for each contour are included to form the
baseline of the Bookstein alignment and to define the ends of the
SP and FR parts. Both parts of the RV shapes in the training set
were aligned separately with respect to their insertion points using
2D Bookstein coordinates, as mentioned before. Principal
component analysis was then applied to the aligned shapes to
estimate the mean shape for every part. The first 8 and 15 modes of
variation (i.e. Eigen vectors) were selected to represent about 98
and 95% of the variance in the training set for the FR wall and SP
parts, respectively.

For each contour point, m, a grey-level appearance model is
built. First, the image is obtained by sampling the intensity along a
line perpendicular to the contour and passes through this point. The
length of intensity profile, l, was chosen to be 17 pixels centred at
the contour point. For the entire set of training images, the mean
intensity profile is obtained, �̄�, as well as the covariance matrix.
The first k eigenvectors of the covariance matrix, corresponding to
98% of total variation, are used to represent the modes of
variations matrix, Qm, of size= l × k. That is, the appearance model
is given by the following equation:

�� = �̄�+ �� ⋅ �, (7)

where h is a k × 1 vector representing the appearance parameters.

2.5 Segmentation of the RV

Fig. 3 shows a flowchart of the main steps applied to delineate the
RV from a given input image. The same iterative implementation
of the conventional ASM described previously by Ginneken et al.
[18] is used in this work. First, the two RV insertion points, It1 and
It2, are selected and used to inversely transform the mean contour,�̄, from the Bookstein coordinates to the image coordinates using
the inverse of (4). The mean contour is then iteratively evolved,
point-by-point, such that the image intensity profile in the
neighbourhood of each contour point matches the profile captured
by the appearance model. For example, given any contour point,
the image intensity profile along a line passing through this point
perpendicular to the evolved contour is obtained, gm. Then, the
iterative search algorithm continues to minimise the error function
given by the following equation:� = �−1/2 ⋅ �� ⋅ (��− �̄�), (8)

where D is a diagonal matrix whose entries are the eigenvalues
corresponding to the eigenvectors of the matrix P. After evolving
all of the contour points, the resulting contour is transformed to the
Bookstein coordinates and projected on the shape model as in (8).
The latter guarantees that the contour belongs to the subspace of all
training RV shapes captured by the model. Finally, the resulting
contour is transformed back to the image space and the process is
repeated. The algorithm is then terminated after a pre-specified
number of iterations (=20 in this work). 

Since conventional ASM uses only one point to set the initial
location of the mean contour while the proposed model uses two
points, the latter might have an advantage over the former.
Therefore, to allow for fair comparison, the two RV insertion
points were used to improve the initial orientation and scaling of
the conventional ASM model, as shown in Fig. 4. First, assume
that the location of the two insertion points on the mean RV
contour are Im1 and Im2. Then, for forming the initial contour, a
given point, p(x, y), on the mean shape is transformed to point, p′(x,
y), using the following equation:

� � |�, �1, �2 = ��− �1� × ��+ ��− �1� × ��− �� × ��2 + ��2 ,��− �1� × ��− ��− �1� × ��− �� × ��2 + ��2 (6)

Fig. 2  Transformation of the RV shape to the Bookstein 2D coordinates can be performed in two steps: (i) registering the two insertion points, q1 and q2 to
points 0 and 1 on the x-axis; and (ii) normalising each point on the original RV shape with respect to the distance between the two insertion points. The RV
shape can be transformed back in the Cartesian coordinates by reversing the Bookstein transformation
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�′(�,�) = � cos(�) −sin(�)sin(�) cos(�) �(�,�)− �̄centre +�̄centre+ �, (9)

where α is a scaling factor, equal to It1 − It2/Im1 − Im2, �̄centre is the
centre-of-mass of the mean shape, θ is the angle between the two
vectors (It1 − It2) and (Im1 − Im2), and d is the approximate location
of the RV centre point. 

2.6 Testing and validation

The final contours extracted by the proposed ASM method are
evaluated using the manually extracted contours as a reference.
Three error measures are used to validate the results. The first
measure is the mean absolute distance (MAD) [43]. The MAD is a
local distance measure that calculates the average absolute distance
between the estimated contour, Cest, and every point,pi, on the
manually delineated contour (ground truth)

MAD = 1� ∑� = 1
� �(��, �est) , (10)

Fig. 3  Flowchart for RV segmentation using the proposed ASM framework, the same framework can be used for either FW or SP parts
 

Fig. 4  Improved initial placement of the RV mean shape in conventional ASM, where the location of the two RV insertion points is used to estimate proper
scaling, rotation, and translation parameters to form the mean shape
(a) Initial RV shape without improvements, (b) Initial RV shape with improvements

 

720 IET Image Process., 2016, Vol. 10 Iss. 10, pp. 717-723
© The Institution of Engineering and Technology 2016



where d(.,.) is the minimum Euclidean distance between the points
gi and contour Cest and, n is the number of points on the contour.
The second error measure used in this work is the Hausdorff
distance [44], which measures the maximum distance between the
estimated contour, Cest and the reference contour, Cref. This can be
formulated asHausdorff �est,�ref = max(max�{d(��, �est)}, max�{d(��,�ref)}), (11)

where qj is the jth point on Cest and pi is the ith point on Cref. It is
worth noting that these two measures, MAD and Hausdorff, are
calculated in millimetre in our calculations for the segmentation
errors. The third error measure used in this work is the Dice index
[45], which measures the mean overlapping, or intersection,
between the areas enclosed by the estimated contour, Cest, and that
enclosed by the ground truth contour, Cref

Dice = 2 �ref ∩ �est�ref + �est (12)

The Dice index ranges from 0 to 1 and, and unlike the MAD and
Hausdorff measures, its value increases with improved
segmentation accuracy.

3 Results and discussion
Table 2 shows the average [mean ± standard deviation (SD)] errors
between the contours produced by the proposed and conventional
ASM models with respect to the manually delineated contours at
the three different cross-sectional slices. The table shows the three
error measures: MAD, Hausdorff distance, and Dice index. As can
be seen in Table 2, the performance of the proposed ASM
framework is better than that of the conventional ASM model. This
is evident by the lower value of the MAD and Hausdorff measures
and higher value of the Dice index. 

The table also shows that the error of both methods is higher at
the apical cross-sections compared with that at the basal and mid-
cavity slices. This can be attributed to the increased blurring of the
myocardium boundaries, due to the partial volume effects
accentuated by the curvature of the RV FR wall near the apex. This
results in a number of problems. First, it leads to increased operator
uncertainty during the manual segmentation of the apical slices,
which, in turn, leads to erroneous contours that do not properly
capture the true shape of the RV. Another problem is that the
appearance model is trained by vague intensity patterns that are not
robust to be matched during the segmentation phase. It is worth
noting that the performance of many other RV segmentation
techniques was compromised at the apical level as reported by
some researchers [5, 15].

Another observation that can be seen in Table 2, is that the
errors at the basal slices are slightly higher than that at the mid-
cavity slices. This is due to inaccurate delineation of some RV
boundaries especially at end-systolic phases where the motion of
the myocardial base causes parts of the RV boundaries to disappear
(by moving towards the apex).

One advantage of the proposed ASM technique is its robustness
especially in low quality images, where the RV boundaries are not
sharp enough to attract the iterated ASM contour. This is because,
at each iteration, the contour is implicitly constrained to pass
through the two manually selected insertion points and thus
maintains its correct position and pose. On the other side, the

iterations of the conventional ASM, in absence of clear RV
boundaries, could yield a contour of wrong pose and/or at wrong
position.

The results of the pairwise t-test showed that the Hausdorff and
the MAD errors of the proposed model are significantly lower than
those of the conventional ASM. For basal, mid-cavity, and apical
slices, a clear significant difference between the two methods was
found (p-value<0.005) for all comparing measures. Since the shape
of the RV undergoes significant changes at the end-systole time-
frame, all end-systole shapes in all cross-sectional slices have been
separately tested. The results of these end-systole timeframes
showed MAD, Hausdorf, and Dice indices of 4.1 ± 2.4, 8.0 ± 4.5,
and 0.89 ± 0.07, respectively. Clearly, these values are within the
average error range indicated in Table 2.

Fig. 5 shows the evolution of the ASM models from the initial
contour to the contours at iterations number 5 and 20 for two
patients. It can be seen in the figure that the initial contour of the
proposed ASM framework is much better than that of the
conventional ASM model. It is worth noticing that, as mentioned
above, that both methods make use of the available manually
selected RV insertion points. In fact, it was found that the initial
and final errors of the conventional ASM model become worse if
no rotation, translation, or scaling was applied. The figure also
shows that the proposed ASM framework converges after almost 5
iterations whereas the conventional ASM model needs 15–20
iterations to correctly delineate the RV contour. 

Case 1 in Fig. 5 shows the segmentation results for a patient
with a dilated RV. As can be seen in the figure, both methods show
approximately the same performance at the basal slice and almost
converged at five iterations. For the mid-cavity and apical images,
both methods resulted in accurate delineation of the FR part of the
RV. Nevertheless, the proposed ASM method outperformed the
conventional ASM at the SP part. This is mainly because of the
dual nature of the proposed method where the FR contour segment
can freely evolve to the correct RV boundaries independent of the
SP segment. Fig. 5 shows the segmentation results of another case
where the proposed ASM method shows results that are better than
that of the conventional ASM especially at the apical slice.

Since the segmentation errors leads to estimation errors of the
clinical parameters, we have calculated the ejection fraction of the
RV and quantified the error, which was found to be 7.7 and 13.9%
for the proposed ASM and the conventional ASM, respectively.
The average computation times for segmenting one slice using a
personal computer with dual-core 1.33 GHz processor and 4G
RAM were 0.09 and 0.17 s for the conventional and proposed
ASM models, respectively. This increase in computation time in
the proposed model is mainly due to the process of calculating the
inverse Bookstein alignment equations. Nevertheless, the
parallelised nature of the problem renders this difference
insignificant. For example, several cardiac slices, as well as the two
contour segments, can be simultaneously segmented using
graphical processing units boards. Finally, it is worth noting that
although the proposed framework extracts only the RV
endocardium, the epicardium can be segmented through dilating
the endocardium contour, similar to the work previously proposed
in the literature [6].

4 Conclusion
In this work, a method for accurately segmenting the RV shape has
been proposed. The method reduces the extraneous variations
among the different RV shapes in the training dataset through two
major steps: (i) splitting each RV contour into two simpler contour
segments (SP and FR wall parts); and (ii) building a separate ASM
model for each contour segment in the Bookstein coordinate space.

Table 2 Mean ± SD of the MAD, Hausdorff, and Dice index measures of the segmented contours at basal, mid-cavity, and
apical levels using the proposed and conventional ASM methods with respect to the ground truth

MAD Hausdorff Dice index
Basal Mid Apical Basal Mid Apical Basal Mid Apical

proposed ASM 4.0 ± 3.5 3.8 ± 3.4 4.0 ± 4.3 7.3 ± 5.7 6.8 ± 5.2 7.6 ± 7.1 0.91 ± 0.07 0.91 ± 0.07 0.86 ± 0.11
conventional ASM 7.2 ± 4.5 6.0 ± 3.3 7.6 ± 4.5 11.2 ± 6.9 9.8 ± 5.4 12.8 ± 7.0 0.83 ± 0.13 0.84 ± 0.14 0.76 ± 0.18
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The results showed that the proposed method outperforms the
conventional ASM method with more accurate results reached in
less number of iterations. Future work includes investigating
methods for automatic determination of the RV insertion points
using intrinsic features, such as the contour curvature.
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