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Abstract: Stochastic resonance (SR) is widely used in signal processing issues. The classic evaluation index of SR must know
the characteristic frequency in prior. However, the accuracy frequency which needs to be detected is not known in advance. To
solve this problem, the authors propose a new index, which calls improved signal-to-noise ratio (SNR) in adaptive SR. This new
index is effective without knowing the accuracy characteristic frequency first. Meanwhile, the general scale transformation and
random particle swarm optimisation algorithm are used to satisfy the conditions of SR and help to obtain the optimal system
parameters. On the basis of this new index, the simulation and experimental bearing fault signals are both processed perfectly
when compared with the classic SNR index. More importantly, it overcomes the drawbacks of the classic SNR index that the
accuracy characteristic frequency must be known in advance. Therefore, these results indicate that new index has important
practical values in signal processing issues.

1 Introduction
Bearing vibration signal is one kind of engineering signal that may
contain different characteristic frequencies. However, rolling
element bearings are vulnerable to the threats of mechanical failure
under a harsh working environment. Moreover, these weak signals
with bearing fault information become more difficult to be
identified when they are buried by background noises. Therefore,
recognising the characteristic fault from bearing vibration time
series in noise background is a hot topic. Stochastic resonance (SR)
which was first proposed by Benzi has become a popular method in
signal processing issues [1]. Therefore, the SR method has
significant applications in bearing fault diagnosis. This method is
different from the traditional methods such as wavelet analysis [2,
3], neural network [4, 5] and empirical mode decomposition [6, 7].
The unique feature of SR is the noise energy transfers to the weak
signal which contains feature information [8] rather than
suppressing the noise in the raw signals. As a result, the proposed
SR method is not only effective but also avoids the deterioration of
useful bearing characteristic information. The traditional SR is
excited by adjusting the noise intensity until the index reaches its
maximum value. However, the noise is hard to change, especially
to reduce, in real engineering environment. In this case, adaptive
SR which fixes the noise and optimises the system parameters is
used to adapt to the actual situation [9, 10]. In terms of the adaptive
SR, many optimisation algorithms [11–13] have been studied to get
the optimal system parameters of adaptive SR. Herein, the random
particle swarm optimisation algorithm [14–16] is used to optimise
the system parameters. In most studies, signal-to-noise ratio (SNR)
is the most common index in the SR method [17]. Although the
SNR plays an important role in the SR method, it still has a fatal
drawback that it should know the accuracy characteristic frequency
in advance when the value of SNR is calculated. However, it is
impossible to know the accuracy characteristic frequency in prior
in most real situations. Hence, we propose a new index which is
called as improved SNR (ISNR). In the calculation of the ISNR,
we do not need to know the accuracy characteristic frequency first.
The ISNR is obtained just needed to know the approximated
characteristic frequency, which is received by the corresponding

computational formula or according to engineering experience.
Owing to the accuracy characteristic frequency has a little error
with the approximated one, it can be successfully found in the
range of the neighbourhood of the approximated value.

In consideration of the classic SR method only fitting for small
parameters, Tan et al. [18, 19] and Leng et al. proposed a
frequency-shifted and re-scaling SR method. Leng also puts
forward the twice sampling SR to solve this limit [20]. Moreover,
He et al. use multiscale noise tuning SR to realise the weak signal
detection [21, 22]. Among these methods, the multiscale noise
tuning SR is a most widely used method. This method is usually
realised by the normalised scale transformation and this
transformation method may not achieve the optimal SR. Herein, we
use the method of general scale transformation to solve this
limitation of SR [23].

The rest of the contents of this paper are arranged as follows.
The related theories of SR, the definition of ISNR and the
optimisation algorithm are introduced in Section 2. In Sections 3
and 4, the feasibility of ISNR is proved by the simulation signal
and the experimental signal, respectively. Meanwhile, the adaptive
SR with classic SNR is also used to make a comparison. Finally,
the main conclusions are given in Section 5.

2 Theory and model
In this section, we first introduce the theory of SR and its relevant
calculation method. Then, the new model of ISNR is defined.
Finally, the random particle swarm optimisation algorithm is
briefly introduced. The specific processes of this method are
revealed in Fig. 1. 

2.1 Theory of SR

The model of SR subjected to external periodic driving force and
noise is usually described by the following Langevin equation [24,
25]:

IET Sci. Meas. Technol., 2018, Vol. 12 Iss. 6, pp. 795-801
© The Institution of Engineering and Technology 2018

795



dx

dt
= − U′(x) + s(t) + n(t)

n(t) = 0, n(t), n(0) = 2Dδ(t)

, (1)

where s(t) represents the fault signal and n(t) symbolises the
Gaussian white noise. D is the intensity of noise. δ(t) is the Dirac
delta function.

As the typical model of SR, the bistable system is widely used.
Its potential function is

U(x) = −
a

2
x

2 +
b

4
x

4 . (2)

In (2), a and b are the positive system parameters.
The following Langevin equation can be obtained by

substituting (2) into (1):

dx

dt
= ax − bx

3 + s(t) + n(t) . (3)

To realise the general scale transformation, some variables are
introduced

x(t) = z(τ), τ = mt . (4)

Substituting (4) into (3) and letting s(t) = A sin(2π f t). Equation (3)
can be rewritten as

m
dz

dτ
= az − bz

3 + A sin 2π
f

m
τ + n

τ

m

n
τ

m
= 2Dmξ(τ)

, (5)

where m is the time scale.
Equation (5) is simplified as

dz

dτ
=

a

m
z −

b

m
z

3 +
A

m
sin 2π

f

m
τ +

2D

m
ξ(τ)

ξ(τ) = 0, ξ(τ), ξ(0) = δ(τ)

, (6)

Letting a1 = a/m , b1 = b/m . Equation (6) is the equivalent form
of (3). In addition, the system parameters a1 and b1 are optimised
by the random particle swarm optimisation algorithm after the
general scale transformation. Then, the values of a and b are
obtained by multiplying the time scale m. Herein, this type of
equation can be solved by the fourth-order Runge–Kutta algorithm
[26, 27].

2.2 Model of ISNR

As we know, the SNR refers to the ratio of signal energy and noise
energy. To distinguish the definition of the classic SNR and the
new index ISNR, we use SNRc and SNRI to represent them,
respectively, in the calculation formula. The specific expression of
classic SNR is

SNRc = 10 lg
S f r

N f r

S f r = X kr
2

N f r = ∑
i = kr − M

kr + M

|X(i) |2 − S( f r)

, (7)

where fr is the accuracy characteristic frequency of the input signal
and kr is the serial number of fr. X(·) is the amplitude of the
response and X(kr) is the amplitude at fr. S(fr) denotes the energy of
input signal at the accuracy characteristic frequency. N(fr) denotes
the energy of noise around fr. It is calculated in the interval fr−MΔfr
and fr + MΔfr and excludes fr, where Δfr is the frequency step of the
discrete amplitude spectrum. Therefore, the SNR here is the local

SNR because of the choice of M. Herein, we should know the
accuracy characteristic frequency in prior when we calculate the
value of the classic SNR.

However, it is difficult to know the accuracy characteristic
frequency in most practical cases. Therefore, it is meaningful to put
forward this new index ISNR. The expression of ISNR is

SNRI = 10lg
S f t

N f t

S f t = ∑
i = kt − l

kt + l

X i
2

l ≠ 0,

N f t = ∑
j = kt − M

kt + M

X j
2 − S( f t)

(8)

where ft is the theoretical fault frequency and kt is the serial
number of ft. S(ft) represents the total energy which in the vicinity
of ft−lΔft and ft + lΔft and it is centred on ft. The definition of Δft is
similar to Δfr, but Δft is the result under the condition of calculating
ISNR. N(ft) denotes the energy of noise in a certain range and it
excludes the S(ft). Its calculation method is the same as (7). In this
case, we do not need to know the accuracy characteristic frequency
in advance and we can obtain the theoretical fault frequency
through the corresponding fault calculation formula. Then, the
accuracy characteristic frequency can be easily found near the
theoretical fault frequency. This is the unique advantage of this
new index.

2.3 Optimisation algorithm

Herein, we use the random particle swarm optimisation algorithm
to optimise the system parameters. The main steps of this algorithm
are as follows:

Step 1: Set the initialisation condition: Determine the learning
factors, the mean of the random weight, the number of iterations,
the number of particles and the spatial dimension. The learning
factors are generally set as 2. The maximum mean and minimum
mean of the random weight is set as 0.8 and 0.5, respectively. The
variance of the mean random weight is set as 0.2. The number of
iterations and particles are set as 40 and 50, respectively. Here, we
optimise two system parameters, so the spatial dimension is set as
2.
Step 2: Initialise individual particles in the population: Randomly
initialise the position and velocity of a particle here.
Step 3: Calculate the fitness of each particle and find the local
optimal value and global optimal value. Herein, the fitness refers to
the specific evaluation index and we use ISNR as the evaluation
index in this paper.

Fig. 1  Flowchart of the proposed method
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Step 4: Enter the main loop: First, update the position and velocity
of the particle according to the calculation formula of the particle
swarm optimisation algorithm. Second, recalculate the fitness of
each particle and update the local optimal value and global optimal
value. Then, judge whether the optimal value is between 0 and 2.
Finally, judge whether the maximum number of iterations has been
reached. If not, continuing the loop. If reached, go to the next step.
Step 5: Obtain the optimal system parameters.

By the random particle swarm optimisation algorithm, the
optimal values of a1 and b1 are obtained at adaptive SR of a small
parameter. Then, the optimal system parameters of a and b can be
obtained according to time scale m.

3 Numerical simulation
In this section, we verify the effectiveness of this new index ISNR.
Herein, we use a harmonic signal to simulate fault signal. The
expression of this harmonic signal is

x(t) = 0.1 cos(2π × 100t) . (9)

To simulate the noise environment, we add the Gaussian white
noise with the intensity of 1 into the harmonic signal. Herein, the
sampling frequency is 1000 and the number of sampling points is
5000. The passband frequency and stopband frequency of the high-
pass filter are set as 95 and 90 Hz, respectively. The scale of time
m is set as 1000, in general scale transformation. In the calculations
of SNR and ISNR, M is set as 500. Fig. 2a shows the time-domain
waveform and frequency spectrum of the noisy signal under the
high-pass filter and before SR. From Fig. 2a, we find the fault
frequency is submerged in the noise background and it is hardly to
be found. 

First, the classic index SNR is used in adaptive SR to process
the noisy signal. The time-domain waveform and frequency
spectrum of the noisy signal after adaptive SR is shown in Fig. 2b.
As we see from Fig. 2b, the fault frequency appears clearly in the
frequency spectrum and the adaptive SR performs well.

Then, we use the new index ISNR in adaptive SR and three
ranges are selected to verify the validity of the index. The first case
is the frequency range of 99–101 Hz and l is set as 5. The second
case is the frequency range of 98–102 Hz and l is set as 10. The
third case is the frequency range of 97–103 Hz and l is set as 15.
Fig. 3 shows the time-domain waveforms and frequency spectrums
about these three situations, respectively. Table 1 shows the values
of the classic SNR and the new ISNR before and after adaptive SR.
From Fig. 3 and Table 1, we find the fault frequency is easily

identified after adaptive SR and the value of ISNR is improved
greatly. Therefore, the adaptive SR with the new index ISNR has
the same good effect as the classic index SNR. 

To prove the new index ISNR is suitable for a small range of
fault frequency changes in different noise intensities, Fig. 4
expresses the relationship between the amplitude of the fault
frequency and bandwidth after adaptive SR. Here, bandwidth
Δ f = l × f s/P × 2 = l × Δ f t × 2. In this formula, fs is the
sampling frequency and P is the sampling number. On account of
the theoretical fault frequency is equal to the accurate fault
frequency in the simulation signal, the case of Δf = 0 is the adaptive
SR with the classic index SNR. From Fig. 4, the amplitude of the
fault frequency is basically unchanged in the search range no
matter which value of l at the situations of different noise
intensities. More importantly, this new method has better
robustness because the good effect of adaptive SR with ISNR is not
influenced by noise intensities. Therefore, the accuracy
characteristic frequency can be clearly observed when seeking it in
the range of the neighbourhood of the theoretical fault frequency. 

4 Experimental verification
In this section, we verify the effectiveness of this new index ISNR
in adaptive SR by experimental bearing fault signal. The
experimental system of a bearing test rig is shown in Fig. 5. The
three-phase asynchronous motor whose type is YVF2-90L-4 has
variable frequency and variable speed. Different speed conditions
are simulated by tuning the motor speed by a frequency converter.
Radial loading devices simulate radial loads in real operating
conditions and the load is measured by the dynamometer. The
planetary reducer is used to reduce the output speed and further
meet the low-speed operation of magnetic powder brake. The type
of magnetic powder brake is FZ-A-100. The input current of the
magnetic powder brake is adjusted by the magnetic powder brake
controller and it is used to change the output torque. In this case,
we use it to simulate the torques in actual operating conditions. The
fault bearing with the type of N306E is installed in the bearing seat
at the end of the spindle. The experimental signal is collected by
piezoelectric acceleration sensor with the type of 1A206E, which
locates the bearing seat. Then, the collected signal is transmitted to
a computer by acquisition card with the type of NI9234. Finally,
we realise the data reading by the Labview software and DAQmx
driver in a laptop. We do the fault diagnosis of the scratch fault in
the outer ring here. The depth and width of the penetration scratch
are 1.2 and 0.5 mm, respectively. In the experiment, the rotational
speed is 1421 rpm. The braking torque is 30 Nm (1.2 A) and the
radial force is 0 N. According to (10) and the structure size of

Fig. 2  Time-domain waveforms and frequency spectrums of the noisy signal before adaptive SR and after adaptive SR with the classic index SNR
(a) Time-domain waveform and frequency spectrum of the noisy signal before adaptive SR, (b) Time-domain waveform and frequency spectrum of the noisy signal after adaptive SR
with the classic index SNR. Optimal output with a = 0.516 and b = 1459.125
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N306E, the theoretical fault frequency of bearing outer ring is
105.208 Hz

f t =
Z

2
N

60
1 −

Db

Dc
cos α , (10)

where Z represents the number of rolling elements and N stands for
rotational speed. Db and Dc symbolise the diameter of rolling

element and pitch diameter of bearing, respectively. α is the contact
angle. 

In the analysis of the experimental signal, the sampling
frequency is set as 12,800 and the number of sampling points is set
as 64,000. The real fault frequency of the fault bearing is 105 Hz.
In the calculations of SNR and ISNR, M is set as 500. The serial
numbers kt and kr corresponding to the theoretical fault frequency ft
and accurate fault frequency fr are 527 and 526, respectively. The
passband frequency and stopband frequency of the high-pass filter
are set as 100 and 95 Hz, respectively. The scale of time is set as
1000 in general scale transformation. The system parameters a and
b in adaptive SR are obtained by the random particle swarm
optimisation algorithm. Fig. 6a shows the time-domain waveform
and frequency spectrum of the noisy signal under the high-pass
filter and before adaptive SR. From Fig. 6a, we find the fault
frequency is hard to be found as it is submerged in the noise. 

First, the noisy signal is processed by the adaptive SR with
classic index SNR. The time-domain waveform and frequency
spectrum of the noisy signal after adaptive SR is shown in Fig. 6b.
In Fig. 6b, the accurate fault frequency can be clearly identified in
the frequency spectrum and the effect of adaptive SR with the
classic index is satisfactory.

Then, the new index ISNR is used to process the noisy
experimental signal in adaptive SR and three ranges are selected to
demonstrate the efficiency of this new index. As the theoretical
fault frequency is about 105.2 Hz, three ranges are set as 104.2–
106.2, 103.2–107.2 and 102.2–108.2 Hz, respectively. The related
values of l are set as 5, 10 and 15, respectively. Fig. 7 shows the
time-domain waveforms and frequency spectrums about these three
situations. Table 2 shows the values of the classic SNR and the new

Fig. 3  Time-domain waveforms and frequency spectrums of the noisy signal after adaptive SR with the new index ISNR
(a) l = 5: Optimal output with a = 2.374 and b = 1560.739, (b) l = 10: Optimal output with a = 0.0638 and b = 1312.799, (c) l = 15: Optimal output with a = 1.377 and b = 938.445

 
Table 1 Values of the classic SNR and the new ISNR before and after adaptive SR, ft = 100 Hz, Δft = 0.2 Hz

SNR, dB ISNR, dB ISNR, dB ISNR, dB
l = 0 l = 5 l = 10 l = 15

Before SR −22.491 −19.098 −16.09 −14.808
After SR −16.449 −13.124 −10.204 −8.852

 

Fig. 4  Relationship between the amplitude of the fault frequency and
bandwidth after adaptive SR
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ISNR before and after adaptive SR. From Fig. 7 and Table 2, we
find the accurate fault frequency can be easily recognised and the
values of ISNR are improved greatly after adaptive SR. Thus, the
results which are processed by the adaptive SR with ISNR are
satisfactory such as the classic SNR. 

For purpose of proving the new index ISNR is suitable for a
small range of fault frequency changes in different noise intensities
such as simulation signal, Fig. 8 reveals the relationship between
the amplitude of the real fault frequency and bandwidth after
adaptive SR. In Fig. 8, the black points represent the amplitude of
the real fault frequency in different noise intensities when the
adaptive SR with classic index SNR is used. When Δf is not equal
to zero, the green points, red points and blue points symbolise the
amplitude of the real fault frequency in different noise intensities
by new index ISNR. Besides the colour points in the ordinate, the
values of these colour points have little differences at the same
noise intensity and have the same good effect as the SNR method.
This result is the same as the situation in simulation signal.
However, the green point, red point and blue point in the ordinate
are the amplitude of real frequency when the ISNR is calculated
with l = 0. In other words, they are obtained when the SNR is

calculated at theoretical fault frequency. However, the correct
definition of SNR is calculated at the real fault frequency. So these
points are not calculated by the correct definition of SNR or ISNR.
For example, when the signal is processed by ISNR with Δf = 0 at
the noise intensity of 2, this point has larger fluctuation compared
with other points at the same noise intensity and shows a negative
effect compared with the result of SNR. Therefore, the accurate
fault frequency is always observed obviously when we look for it
with the correct ISNR in the range of the neighbourhood of the
theoretical fault frequency. 

To verify the effectiveness of the ISNR in identifying the
unknown frequency of failures, we give a detection case with real
unknown characteristic frequency and the type of this fault and the
value of accurate fault frequency are unknown. However, it is well
known that rolling bearing has four typical faults which are outer
ring fault, inner ring fault, rolling ball fault and cage fault,
respectively. Therefore, we can calculate theoretical fault
frequencies of these four typical faults in the rotational speed of
1425 rpm, which is shown by the speedometer. By the calculation
formula of theoretical fault frequencies, we get the theoretical fault
frequencies of the outer ring, inner ring, rolling ball and cage are

Fig. 5  Experiment system of the bearing test rig
 

Fig. 6  Time-domain waveforms and frequency spectrums of the noisy signal before adaptive SR and after adaptive SR with the classic index SNR
(a) Time-domain waveform and frequency spectrum of the noisy signal before adaptive SR, (b) Time-domain waveform and frequency spectrum of the noisy signal after adaptive SR
with the classic index SNR. Optimal output with a = 51.869 and b = 747.836
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105.5, 171.8, 119 and 9.6 Hz, respectively. Fig. 9 demonstrates the
results of this proposed method with the new ISNR, which is
calculated by the above four theoretical fault frequencies. Fig. 9a is
obtained by the ISNR which is calculated at 105.5 Hz with l = 10.
As we know, there is a little error between the accuracy fault
frequency and the theoretical fault frequency. However, the highest
point in Fig. 9a is 117.8 Hz which has great errors with 105.5 Hz
and interference components around it also exists. Therefore, it is
not an outer ring fault and the accuracy fault frequency of rolling
ball is shown. Fig. 9b is got by the ISNR which is calculated at

171.8 Hz with l = 10. This failure result proves it is not an inner
ring fault. Fig. 9c is received by the ISNR which is calculated at
119 Hz with l = 10. The result is satisfactory and the accurate fault
frequency is 117.8 Hz, which is close to the theoretical fault
frequency. Fig. 9d is got by the ISNR which is calculated at 9.6 Hz
with l = 10 and the result is unsatisfactory. Therefore, Figs. 9a, b
and d demonstrate that there are no outer ring fault, inner ring fault
and cage fault of this unknown signal. Figs. 9a and c prove this
unknown signal has rolling ball fault and the accurate fault
frequency is 117.8 Hz. 

In practical engineering occasions, we do not know the accurate
fault frequency first. In these conditions, it is meaningless to
process signals by the classic SNR with theoretical fault frequency
and the results might also be unsatisfactory. However, the proposed
ISNR includes the accuracy fault frequency because it searches the
accuracy fault frequency within the theoretical frequency range.
Moreover, the ISNR has superior advantages when the accuracy
fault frequency is always changing. For example, the changes of
speed and load in working condition always lead to the variety of
the fault frequency. In view of this situation, the new index ISNR
which always includes the accuracy fault frequency within a
certain range is suitable for the situation of variable frequency. In
summary, the adaptive SR with ISNR has specific advantages in
signal processing and fault diagnosis.

5 Conclusion
Herein, we mainly propose a new index ISNR in adaptive SR to
extract the weak feature information in the noise background.

Fig. 7  Time-domain waveforms and frequency spectrums of the noisy signal after adaptive SR with the new index ISNR
(a) l = 5: Optimal output with a = 3.997 and b = 217.926, (b) l = 10: Optimal output with a = 21.366 and b = 622.882, (c) l = 15: Optimal output with a = 66.437 and b = 1184.316

 
Table 2 Values of the classic SNR and the new ISNR before and after adaptive SR, ft = 105.2 Hz, Δft = 0.2 Hz

SNR, dB ISNR, dB ISNR, dB ISNR, dB
l = 0 l = 5 l = 10 l = 15

before SR −19.529 −14.373 −13.18 −11.507
after SR −16.724 −11.496 −10.292 −8.731

 

Fig. 8  Relationship between the amplitude of the real fault frequency and
bandwidth after adaptive SR
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Compared to the classic index SNR, it has the following
advantages:

I. When we use the new ISNR index in adaptive SR, it does not
need to know the accurate characteristic frequency in prior
different from the classic index SNR. The accurate characteristic
frequency near the theoretical frequency is easy to be found by the
adaptive SR with ISNR. Therefore, the new index ISNR is more
specifically suited to the actual situation.
II. Both the simulation signal and experimental bearing fault signal
are used to verify the adaptive SR with ISNR, and they have the
same good performance.
III. The proposed new index ISNR in adaptive SR has strong
robustness and it is also suitable for another case such as the
characteristic frequency oscillates in a small scope. Consequently,
this method might have practical application values in signal
processing and vibration fault characteristic information extraction.

The proposed method is suitable for fault frequency changes in
a small scope, which is caused by the unstable working condition.
When the bearing operates under a time-varying rotational speed
condition and the variable speed is changing in a larger range, this
proposed method is not applicable. This problem is also our future
research issue.
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Fig. 9  Frequency spectrums of the unknown signal after adaptive SR with
the new index ISNR, which is calculated by the theoretical fault frequencies
of the outer ring, inner ring, rolling ball and cage, respectively
(a) ISNR is calculated by the theoretical fault frequency of outer ring with l = 10:
optimal output with a = 7.904 and b = 612.628, (b) ISNR is calculated by the
theoretical fault frequency of inner ring with l = 10: optimal output with a = 1435.707
and b = 371.198, (c) ISNR is calculated by the theoretical fault frequency of rolling
ball with l = 10: optimal output with a = 20.788 and b = 46.679, (d) ISNR is calculated
by the theoretical fault frequency of cage with l = 10: optimal output with a = 760.316
and b = 1369.539
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