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Abstract: This study applies retrospective cost adaptive control to command following in the presence of multi-variable
convex input saturation constraints. To account for the saturation constraint, the authors use convex optimisation to minimise
the quadratic retrospective cost function. The use of convex optimisation bounds the magnitude of the retrospectively optimised
input and thereby influences the controller update to satisfy the control bounds. This technique is applied to a multi-rotor
helicopter with constraints on the total thrust magnitude and inclination of the rotor plane.
1 Introduction

All real-world control systems must operate subject to con-
straints on the allowable control inputs. These constraints
typically have the form of a saturation input non-linearity
[1]. The effects of saturation are addressed through anti-
windup strategies [2–7]. Within the context of modern
multi-variable control, techniques for dealing with satura-
tion are presented in [8–12]. Saturation within the context
of adaptive control is addressed in [13–16].

In the case of multiple control inputs, it is usually the case
that individual control inputs are subject to independent sat-
uration [17]. However, in many applications, a saturation
constraint may constrain multiple control inputs. This is the
case, for example, if the control inputs are produced by com-
mon hardware, such as a single power supply, amplifier or
actuator.

In the present paper, we consider an adaptive control for
problems, in which multiple control inputs may be subject to
dependent saturation constraints. In particular, we are moti-
vated by the problem of safely controlling the trajectory
of a multi-rotor helicopter by constraining the total thrust
magnitude and inclination in order to restrict the vehicle
acceleration.

To address this problem, we revisit the problem of ret-
rospective cost adaptive control (RCAC) under constraints
[15]. RCAC can be used for adaptive command follow-
ing and disturbance rejection for possibly non-minimum-
phase systems under minimal modelling information
[18–21]. Unlike [17], the present paper uses convex opti-
misation to perform the retrospective input optimisation
[22]. The use of convex optimisation bounds the magnitude
of the retrospectively optimised input and thereby influ-
ences the controller update to satisfy the control bounds. We
demonstrate this technique on illustrative numerical exam-
ples involving single and multiple inputs. We then apply this
approach to trajectory control for a multi-rotor helicopter.
We use the convex programming code [23] for the numer-
ical optimisation. A related technique was used within the
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context of RCAC in [24] to address the problem of unknown
non-minimum-phase zeros.

The contents of the paper are as follows. In Section 2,
we describe the command-following problem with input
saturation non-linearities. In Section 3, we summarise the
RCAC algorithm. Numerical simulation results are presented
in Section 4, and conclusions are given in Section 5.

2 Problem formulation

Consider the multiple-input multiple-output (MIMO)
discrete-time Hammerstein system

x(k + 1) = Ax(k) + BSat(u(k)) + D1w(k) (1)

where, for all k ≥ 0, x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz ,

w(k) ∈ R
lw and u(k) ∈ R

lu . The signal u(k) is the com-
manded control input, and w(k) is exogenous signal. How-
ever, because of saturation, the actual control input is given
by v(k) = sat(u(k)), where the saturation input non-linearity
is sat : R

lu → U , and U ⊆ R
lu is the convex control con-

straint set. We assume that the function ‘Sat’ is onto, that
is, sat(Rlu) = U . In particular, if U is rectangular, then

Sat(u) =
⎡
⎢⎣

sata1,b1(u1)
...

satalu ,blu
(ulu)

⎤
⎥⎦ (2)

where u = [u1 · · · ulu ]T ∈ U = [a1, b1] × · · · × [alu , blu ] and
sat : R → [a, b] is defined as

sata,b(u) =
⎧⎨
⎩

a, if u < a
u, if a ≤ u ≤ b
b, if u > b

(3)

We consider the Hammerstein command-following and dis-
turbance rejection problem with the performance variable

z(k) = E1x(k) + E0w(k) (4)
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and we assume that measurements of z(k) are available for
feedback; however, measurements of sat(u(k)) are not avail-
able. The goal is to develop an adaptive output feedback
controller that minimises the performance error z(k) with
minimal modelling information about the plant dynamics,
exogenous signal w and input saturation non-linearity sat.
Note that w can represent either a command signal to be
followed, an external disturbance to be rejected or both.
For example, if D1 = 0 and E0 �= 0, then the objective is to
have the output E1x follow the command signal −E0w. On
the other hand, if D1 �= 0 and E0 = 0, then the objective is
to reject the disturbance w from the performance variable
E1x. The combined command-following and disturbance-
rejection problem is considered when D1 = [D11 0],
E0 = [0 E02] and w(k) = [wT

1 (k) wT
2 (k)]T, where the

objective is to have E1x follow −E0w2 while rejecting the
disturbance w1. Finally, if D1 and E0 are zero matrices, then
the objective is output stabilisation, that is, convergence of
z to zero.

3 Retrospective cost adaptive control

In this section, we describe the constrained retrospective cost
optimisation algorithm.

3.1 ARMAX modelling

Consider the autoregressive-moving-average model with
exogenous inputs (ARMAX) representation of (1)–(4) given
by

z(k) =
n∑

i=1

−αiz(k − i) +
n∑

i=d

βisat(u(k − i))

+
n∑

i=0

γiw(k − i) (5)

where α1, . . . , αn ∈ R, β1, . . . , βn ∈ R
lz×lu , γ0, . . . , γn ∈ R

lz×lw

and d is the relative degree. Next, let v(k) � Sat(u(k)), and
define the transfer function

Gzv(q) � E1(qI − A)−1B =
∞∑

i=d

q−iHi = Hd
α(q)

β(q)
(6)

where q is forward shift operator and, for each positive
integer i, the Markov parameter Hi of Gzv is defined by

Hi � E1Ai−1B ∈ R
lz×lu (7)

Note that, if d = 1, then H1 = β1, whereas, if d ≥ 2, then

β1 = · · · = βd−1 = H1 = · · · = Hd−1 = 0 (8)

and Hd = βd . The polynomials α(q) and β(q) have the form

α(q) = qn−1 + α1qn−1 + · · · + αn−1q + αn (9)

β(q) = qn−d + βd+1qn−d−1 + · · · + βn−1q + βn (10)
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Next, define the extended performance Z(k) ∈ R
plz and

extended plant input V (k) ∈ R
qclu by

Z(k) �

⎡
⎢⎣

z(k)
...

z(k − p + 1)

⎤
⎥⎦ , V (k) �

⎡
⎢⎣

v(k − 1)
...

v(k − qc)

⎤
⎥⎦

=
⎡
⎢⎣

sat(u(k − 1))
...

sat(u(k − qc))

⎤
⎥⎦ (11)

where the data window size p is a positive integer, and qc �
n + p − 1. Therefore (11) can be expressed as

Z(k) = Wzwφzw(k) + Bf V (k) (12)

where (see (13))

Bf �

⎡
⎢⎢⎢⎣

β1 · · · βn 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0lz×lu

0lz×lu · · · 0lz×lu β1 · · · βn

⎤
⎥⎥⎥⎦ ∈ R

plz×qclu

(14)

and

φzw(k) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z(k − 1)
...

z(k − p − n + 1)
w(k)

...
w(k − p − n + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
qclz+(qc+1)lw (15)

Note that Wzw includes modelling information about the
poles of Gzv and the exogenous signals, whereas Bf includes
modelling information about the zeros of Gzv.

For the open-loop system (5), we make the following
assumptions:

(A.1) The relative degree d is known.
(A.2) The first non-zero Markov parameter Hd is known.
(A.3) There exists an integer n̄ such that n < n̄ and n̄ is
known.
(A.4) If ζ ∈ C, |ζ | > 1, and β(ζ ) = 0, then the spectral
radius of A is less than 1.
(A.5) The performance variable z(k) is measured and avail-
able for feedback.
(A.6) Each component of the function Sat is monotonically
non-decreasing in each component in u with the remaining
components of u fixed.
Wzw �

⎡
⎢⎢⎢⎣

−α1Ilz · · · −αnIlz 0lz×lz · · · 0lz×lz γ0 · · · γn 0lz×lw · · · 0lz×lw

0lz×lz

. . .
. . .

. . .
... 0lz×lw

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0lz×lz

...
. . .

. . .
. . . 0lz×lw

0lz×lz · · · 0lz×lz −α1Ilz · · · −αnIlz 0lz×lw · · · 0lz×lw γ0 · · · γn

⎤
⎥⎥⎥⎦ ∈ R

plz×[qclz+(qc+1)lw] (13)
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(A.7) The exogenous signal w(k) is generated by

xw(k + 1) = Awxw(k) (16)

w(k) = Cwxw(k) (17)

where xw ∈ R
lw and all of the eigenvalues of Aw are on the

unit circle and do not coincide with the transmission zeros
of Gzv.
(A.8) There exists an integer n̄w such that nw < n̄w and n̄w

is known.
(A.9) The exogenous signal w(k) is not measured.
(A.10) α(q), β(q), n and x(0) are unknown.

The Assumption 3.1 is motivated by Yan and Bernstein
[25], where it is shown that monotonicity of the input
non-linearity preserves the signs of the Markov parameters
of the linearised system.

3.2 Controller construction

The commanded control u(k) is given by the exactly proper
time-series controller

u(k) =
nc∑

i=1

Mi(k)u(k − i) +
nc∑

j=0

Nj(k)z(k − j) (18)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lu×lu , and, for all

j = 0, . . . , nc, Nj(k) ∈ R
lu×lz . We express (18) as

u(k) = θ(k)φ(k − 1) (19)

where

θ(k) �
[
M1(k) · · · Mnc(k) N0(k) · · · Nnc(k)

]
∈ R

lu×(nclu+(nc+1)lz) (20)

and

φ(k − 1) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(k − 1)
...

u(k − nc)
z(k)

...
z(k − nc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
nclu+(nc+1)lz (21)

3.3 Retrospective performance

Define the retrospective performance Ẑ(k) ∈ R
plz by

Ẑ(k) � Wzwφzw(k) + Bf V (k) + B̄f [Û (k) − U (k)] (22)

where (see (23))

is the retrospective input matrix with the model informa-
tion of Gzv. Specifically, H̄1, . . . , H̄m in (23) are estimates of
the Markov parameters of Gzv, where m ∈ Z

+. Next, define
1098
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the extended commanded control U (k) ∈ R
qclu and the retro-

spectively optimised extended control vector Û (k) ∈ R
qclu by

U (k) �

⎡
⎢⎣

u(k − 1)
...

u(k − qc)

⎤
⎥⎦ and Û (k) �

⎡
⎢⎣

ûk(k − 1)
...

ûk(k − qc)

⎤
⎥⎦ (24)

where ûk(k − i) ∈ R
lu is a recomputed control. Subtracting

(12) from (22) yields

Ẑ(k) = Z(k) + B̄f [Û (k) − U (k)] (25)

Note that the retrospective performance Ẑ(k) does not
depend on Wzw or the exogenous signal w. For disturbance
rejection, we do not assume that the disturbance is known;
for command-following, the command-following error is
needed but the command w need not be separately measured.
The model information matrix B̄f is discussed in Section 3.5.

3.4 Retrospective cost and RLS controller update
law

3.4.1 Retrospective cost: We define the retrospective
cost function

J (Û (k), k) � ẐT(k)R(k)Ẑ(k) + η(k)Û (k)TÛ (k) (26)

where, for all k > 0, η(k) ≥ 0 is a scalar and R(k) ∈ R
plz×plz

is a positive-definite performance weighting. The goal is
to determine retrospectively optimised controls Û (k) that
would have provided better performance than the controls
U (k) that were applied to the plant. The retrospectively opti-
mised controls Û (k) are subsequently used to update the
controller. Using (25), (26) can be rewritten as

J (Û (k), k) = Û (k)TA(k)Û (k) + B(k)Û (k) + C(k) (27)

where

A(k) � B̄T
f R(k)B̄f + η(k)Iqclu

B(k) � 2B̄T
f R(k)[Z(k) − B̄f U (k)]

C(k) � ZT(k)R(k)Z(k) − 2ZT(k)R(k)B̄f U (k)

+ U (k)TB̄T
f R(k)B̄f U (k)

Note that if either B̄f has full rank or η(k) > 0, then A(k)
is positive definite.

Next, we consider the problem of minimising (26)
subject to

Û (k) ∈ U × · · · × U (28)

The following result follows from the Weierstrass theorem.

Lemma 3.1: If U is compact, then (26) has at least one min-
imiser. If, in addition, U is convex, then (26) has a unique
B̄f �

⎡
⎢⎢⎢⎢⎣

0lz×(d−1)lu H̄d · · · H̄m 0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu

0lz×(d−1)lu 0lz×lu

. . .
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0lz×(d−1)lu 0lz×lu · · · 0lz×lu H̄d · · · H̄m 0lz×lu · · · 0lz×lu

⎤
⎥⎥⎥⎥⎦ ∈ R

plz×qclu (23)
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minimiser. In particular, if U = R
lu , then the unique global

minimiser of J (Û (k), k) is

Û (k) = −1

2
A−1(k)B(k) (29)

3.4.2 Cumulative cost and RLS update: Define the
cumulative cost function

Jcum(θ , k) �
k∑

i=d+1

λk−i‖φT(i − d − 1)θ(i − 1) − ûk(i − d)‖2

+ λk [θ(k) − θ(0)]TP−1
0 [θ(k) − θ(0)] (30)

where ‖ · ‖ is the Euclidean norm, P0 ∈
R

lu[nclu+(nc+1)lz ]×[nclu+(nc+1)lz ] is positive definite, and λ ∈ (0, 1]
is the forgetting factor. The next result follows from standard
recursive least-squares (RLS) theory [26, 27].

Lemma 3.2: For each k ≥ d, the unique global minimiser of
the cumulative retrospective cost function (30) is given by

θ(k) = θ(k − 1) + P(k − 1)φ(k − d)ε(k − 1)

λ + φT(k − d)P(k − 1)φ(k − d)
(31)

where

P(k) = 1

λ

[
P(k − 1) − P(k − 1)φ(k − d)φT(k − d)P(k − 1)

λ + φT(k − d)P(k − 1)φ(k − d)

]
(32)

P(0) = P0, and ε(k − 1) � φT(k − d − 1)θ(k − 1) −
û(k − d).

3.5 Model information B̄f

For soft-input soft-output, minimum-phase, asymptotically
stable linear plants, using the first non-zero Markov parame-
ter in B̄f yields asymptotic convergence of z to zero [19, 28].
In this case, let m = d and H̄d = Hd in (23). Furthermore,
if the open-loop linear plant is non-minimum-phase and the
absolute values of all non-minimum-phase zeros are greater
than the plant’s spectral radius, then a sufficient number of
Markov parameters can be used to approximate the non-
minimum-phase zeros [19]. Alternatively, a phase-matching
condition with η > 0 is given in [29, 30] to construct B̄f . For
MIMO Lyapunov-stable linear plants, an extension of the
phase-matching-based method is given in [31]. For unsta-
ble, non-minimum-phase plants, knowledge of the locations
of the non-minimum-phase zeros is needed to construct B̄f .
For details, see [19, 32].

In this paper, we consider only the case where
the zeros of Gzv are either minimum-phase or on
the unit circle. Therefore we set p = 1 and let B̄f =[
01z×(d−1)lu Hd 01z×(n−d)lu

] ∈ R
lz×nlu .

4 Numerical examples

In this section, we present numerical examples to illus-
trate the response of RCAC for plants with input saturation
based on constrained retrospective optimisation. The numer-
ical examples are constructed such that the objective is to
minimise the performance z = y − w, with φ(k) given by
IET Control Theory Appl., 2014, Vol. 8, Iss. 12, pp. 1096–1104
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Fig. 1 Example 4.1. Mass-spring structure with single-direction
force actuation

(21). In all simulations, we set λ = 1 and initialise θ(0) to
zero.

Example 4.1: Command following for an undamped mass-
spring structure with single-direction force actuation.
Consider the mass-spring-damper structure shown in Fig. 1
modelled by

mq̈ + kq = v (33)

where m = 1 kg and k = 30 N/m are the mass and stiffness,
q and q̇ are the position and velocity, respectively, of the
mass. The saturated control v is given by

v = sat(u) = sat0,50(u) (34)

The discrete-time transfer function with sampling time Ts =
0.1 s is given by

Gzv(z) = 0.004(z + 1)

z2 − 1.707z + 1
(35)

The goal is to bring the mass to rest at q = 0. We consider
(3) with v = sat0,50(u). Note that this problem is related to
the classical problem of controllability using positive con-
trols considered in [33–35]. However, 33’s theorem given
in [33, 34] assumes that B = I , which is not the case in this
example.

The adaptive controller (18) with known saturation
bounds is implemented in feedback with nc = 5, η = 0.0001,
P0 = 0.1I and B̄f = [0.004 0].

The goal is to bring the mass to q = 0 with single-
direction force actuation. Fig. 2 shows the response with
q(0) = 3 m and q̇(0) = 5 m/s. Note that, by constraining
the retrospectively optimised control û(k), the commanded
control u(k) is non-negative for all k > 25.

Example 4.2: Position command following for a multi-rotor
helicopter. Consider the multi-rotor helicopter illustrated in
Fig. 6. The body frame SB = {XB, YB, ZB} is attached to the
vehicle at its centre of mass (CM) with the ZB axis normal
to the rotor plane. The reference frame SR = {XR, YR, ZR}
is fixed on the ground at point O with the ZR axis aligned
with the local vertical. The vehicle has six degrees of free-
dom, three of which are of rotation and the other three are
of translational motion. The present example is concerned
only with the translational motion, which can be described
in SR by

q̈ = 1

m
u +

[
0
0

−g

]
(36)

where q = [q1 q2 q3]T ∈ R
3 describes the position of

CM, with q1 and q2 denoting horizontal position and q3

representing the altitude, u = [u1 u2 u3]T ∈ R
3 is the
1099
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Fig. 2 Example 4.1. Command-following for an undamped mass-spring-damper structure with single-direction force actuation. The
adaptive controller (18) is implemented with nc = 5, η = 0.0001, P0 = 0.1I and B̄f = [0.004 0]. The goal is to bring the mass to q = 0
with single-direction force actuation with q(0) = 3 m and q̇(0) = 5 m/s

Fig. 3 Example 4.2. The multi-rotor helicopter and the body and
reference frame

total thrust vector, m = 0.5z kg is the mass of the vehicle,
and g = 9.8 m/s2 is the gravitational acceleration (Fig. 3).
Consider the initial conditions q(0) = [0 0 0]T and
q̇(0) = [0 0 0]T. Define the inclination angle ϕ of the
rotor plane to be

ϕ � cos−1 u3

‖u‖ (37)

where ‖u‖ denotes the Euclidean norm of u. Fig. 6 shows
that ϕ is the angle between the thrust vector u and the ZR

axis (local vertical).
In order to implement the so-obtained controller in prac-

tice, the vehicle system is required to feature two low-level
control loops: a total thrust controller and an attitude con-
troller. In this case, the thrust magnitude ‖u‖ serves as a
command to the total thrust controller, whereas the thrust

Fig. 4 Example 4.2. The convex control constraint set U formed
by (40)–(42)

direction u/‖u‖ is used to generate an attitude command to
the attitude controller. In this example, both low-level con-
trollers are assumed to be accurate and significantly faster
than the translational dynamics, in such a way that their
command u can be considered equal to its corresponding
actual value.

Define the tracking error z ∈ R
3 by

z � q − w (38)
1100 IET Control Theory Appl., 2014, Vol. 8, Iss. 12, pp. 1096–1104
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Fig. 5 Example 4.2. Command following for the multi-rotor helicopter. The adaptive controller (18) with the saturation bounds in (44)
is implemented in feedback with nc = 8, η = 0, P0 = 0.1I , B̄f = [0.01I3×3 03×3] and θ(0) = 0. Note that y1, y2, y3 follow the commands
w1, w2 and w3 after the transient

where w = [w1 w2 w3] ∈ R
3 denotes a position com-

mand. Consider

w(t) =
[

2 cos(0.1t)
2 sin(0.1t)
0.3t + 1

]
(39)

Let 0 ≤ ϕmax ≤ 90◦ and umax > 0 denote the maximum
allowable values of ϕ and ‖u‖, respectively. Consider
ϕmax = 20◦ and umax = 6 N.

The control problem is to construct a feedback law for u
that minimises ‖z‖ subject to

√
u2

1 + u2
2

‖u‖ ≤ sin ϕmax (40)

u3 ≥ 0 (41)

and

‖u‖ ≤ umax (42)

The inequalities (40)–(42) form the conic convex control
constraint set U illustrated in Fig. 4. The problem of min-
imising the retrospective cost function on U can thus be
rewritten as the following second-order cone programming
(SOCP) problem

min J (Û (k), k) (43)

subject to

‖PÛ (k)‖2 ≤ QÛ (k) and ‖Û (k)‖2 ≤ 6 (44)

where

P �
[

1 0 00 1 0
0 0 0

]
(45)

and
Q � tan(ϕmax)

[
0 0 1

]T
(46)

The non-linear programming method SOCP available in the
CVX toolbox [23] is used to solve the above optimisation
problem.
IET Control Theory Appl., 2014, Vol. 8, Iss. 12, pp. 1096–1104 1101
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Fig. 6 Example 4.2. The adaptive controller (18) with known saturation bounds in (44) is implemented in feedback with nc = 8, η = 0,
P0 = 0.1I , B̄f = [0.01I3×3 03×3] and θ(0) = 0. The black dots represent the constraint set in (40) and (42), and the blue dots represent the
unsaturated controller output u. The blue crosses outside the boundary of the constraint (black dots region) are because of the transient
behaviour of RLS update in (31) and (32)

Next, a state space representation of the multi-rotor
helicopter is given by

[
q̇
q̈

]
=

[
03×3 I3×3

03×3 03×3

] [
q
q̇

]
+

[
03×3
1
m

I3×3

]
v +

⎡
⎢⎢⎢⎢⎢⎣

d1

d2

0
0
0

−g

⎤
⎥⎥⎥⎥⎥⎦ (47)

y = [
I3×3 03×3

] [
q
q̇

]
(48)

z = y − w (49)

where the horizonal wind velocity d1 = d2 = 0.1 m/s and
v = Sat(u) ∈ U is the saturated control input given by

v =
[

v1

v2

v3

]
= Sat(u) =

[
Sat1(u1, u2, u3)
Sat2(u1, u2, u3)

Sat3(u3)

]
(50)

where (see (51) and (52))

Sat3(u3) � sat0,6(u3) (53)

and

ϑ � atan2(u2, u1) = 2 arctan
u2√

u2
1 + u2

2 + u1

(54)

Note that the function Sat in (50) satisfies 3.1. Next, we
discretise (47)–(49) using zero-order-hold with sampling
time Ts = 0.01 s. The adaptive controller (18) with knowl-
edge of the saturation (44) is implemented in feedback
with nc = 8, η = 0, P0 = 0.1I , d = 1, H1 = I3×3 and we let
B̄f = [0.01I3×3 03×3].

Fig. 5 shows the time history of y1, y2 and y3 of the heli-
copter. The transient especially along y3 direction is owing
to the fact that (47)–(49) is unstable, the discretised equiva-
lent of (47)–(49) has non-minimum-phase zeros at −1, and
the horizontal wind velocity d1, d2 and the gravitational
acceleration g are unmodelled. Furthermore, we initialise
the adaptive controller at θ(0) = 0. Note that the com-
manded control signal u does not exhibit integrator windup

Sat1(u1, u2, u3) �
{

u1 if u1 ≤ Sat3(u3) tan ϕmax cos ϑ

Sat3(u3) tan ϕmax cos ϑ otherwise
(51)

Sat2(u1, u2, u3) �
{

u2 if u2 ≤ sat3(u3) tan ϕmax sin ϑ

Sat3(u3) tan ϕmax sin ϑ otherwise
(52)
1102 IET Control Theory Appl., 2014, Vol. 8, Iss. 12, pp. 1096–1104
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Fig. 7 Example 4.2. At each time step, the distance between the
commanded control u(k) (blue crosses that are outside the control
constraint set U in Fig. 6 and the saturated control sat(u(k))

and remains bounded as shown in Fig. 6, where the black
dots represent the control constraint set U , and the blue
crosses represent the commanded control u. Note that the
blue crosses outside the control constraint set U (black dots
region) are caused by the transient behaviour of RLS update
in (31) and (32). Fig. 7 shows that at each time step, the
distance between the unsaturated commanded control u(k)
(blue crosses that are outside the control constraint set U in
Fig. 6 and the saturated control v(k).

5 Conclusions

Adaptive control based on constrained retrospective cost
optimisation was applied to command following for
Hammerstein systems with multi-variable convex input sat-
uration. We numerically demonstrated that convex optimi-
sation applied to the retrospective cost can improve the
tracking performance when following commands in the
presence of saturation. We also applied this technique to
a multi-rotor helicopter command-following problem by
formulating the multi-input constrained retrospective cost
function as a second-order cone optimisation problem. With
this approach, RCAC was shown to adapt to these con-
straints. The numerical results motivate future research on
the stability analysis of RCAC under input saturation.
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16 Do, H.M., Başar, T., Choi, J.Y.: ‘An anti-windup design for single
input adaptive control systems in strict feedback form,’ Proc. American
Control Conf., Boston, MA, June 2004, pp. 2551 – 2556

17 Tyan, F., Bernstein, D.S.: ‘Global stabilization of systems containing
a double integrator using a saturated linear controller,’ Int. J. Robust
Nonlinear Control, 1999, 9, (15), pp. 1143–1156

18 Hoagg, J.B., Santillo, M.A., Bernstein, D.S.: ‘Discrete-time adaptive
command following and disturbance rejection for minimum phase
systems with unknown exogenous dynamics,’ IEEE Trans. Autom.
Control, 2008, 53, pp. 912–928

19 Santillo, M.A., Bernstein, D.S.: ‘Adaptive control based on retro-
spective cost optimization,’ AIAA J. Guid. Control Dyn., 2010, 33,
pp. 289–304

20 Hoagg, J.B., Bernstein, D.S.: ‘Retrospective cost model reference
adaptive control for nonminimum-phase systems,’ AIAA J. Guid.
Control Dyn., 2012, 35, pp. 1767–1786

21 Hoagg, J.B., Bernstein, D.S.:, ‘Retrospective cost adaptive control for
nonminimum-phase discrete-time systems part 1: The ideal controller
and error system; part 2: The adaptive controller and stability anal-
ysis,’ Proc. IEEE Conf. Dec. Control, Atlanta, GA, December 2010,
pp. 893–904

22 D’Amato, A.M., Bernstein, D.S.: ‘Adaptive forward-propagating
input reconstruction for nonminimum-phase systems,’ Proc. American
Control Conf., Montreal, Canada, June 2012,
pp. 598–603

23 Grant, M., Boyd, S.: (2013, March) CVX: Matlab software for
disciplined convex programming, version 2.0. http://cvxr.com/cvx/

24 Morozov, A., D’Amato, A.M., Hoagg, J.B., Bernstein, D.S.:
‘Retrospective cost adaptive control for nonminimum-phase systems
with uncertain nonminimum-phase zeros using convex optimiza-
tion,’ Proc. American Control Conf., San Francisco, CA, June 2011,
pp. 1188–2293

25 Yan, J., Bernstein, D.S.: ‘Minimum modeling retrospective cost
adaptive control of uncertain Hammerstein systems using auxiliary
nonlinearities,’ Int. J. Control, 2014, 87, pp. 483–505

26 Åström, K.J., Wittenmark, B.: ‘Adaptive control’ (Addison-Wesley,
1995)

27 Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering, prediction and control
(Prentice Hall, 1984)

28 D’Amato, A.M., Sumer, E.D., Bernstein, D.S.: ‘Frequency-domain
stability analysis of retrospective-cost adaptive control for systems
with unknown nonminimum-phase zeros,’ Proc. IEEE Conf. on Dec.
Control, Orlando, FL, December 2011, pp. 1098–1103

29 Sumer, E.D., D’Amato, A.M., Morozov, A.M., Hoagg, J.B.,
Bernstein, D.S.: ‘Robustness of retrospective cost adaptive control to
1103
© The Institution of Engineering and Technology 2014



www.ietdl.org
Markov-parameter uncertainty,’ Proc. IEEE Conf. on Dec. Control,
Orlando, FL, December 2011, pp. 6085–6090

30 Sumer, E.D., Holzel, M.H., D’Amato, A.M., Bernstein, D.S.:
‘FIR-based phase matching for robust retrospective-cost adaptive con-
trol,’ Proc. American Control Conf., Montreal, Canada, June 2012,
pp. 2707–2712

31 Sumer, E.D., Bernstein, D.S.: ‘Retrospective cost adaptive control
with error-dependent regularization for mimo systems with unknown
nonminimum-phase transmission zeros,’ Proc. AIAA Guid. Nav.
Control Conf., Minneapolis, MN, August 2012, AIAA-2012-4070
1104
© The Institution of Engineering and Technology 2014
32 Hoagg, J.B., Bernstein, D.S.: ‘Cumulative retrospective cost adaptive
control with RLS-based optimization,’ Proc. American Control Conf.,
Baltimore, MD, June 2010, pp. 4016–4021

33 Brammer, R.F.: ‘Controllability in linear autonomous systems with
positive controllers,’ SIAM J. Control, 1972, 10, pp. 339–353

34 Jacobson, D.H., Margin, D.H., Pachter, M., Geveci, T.: ‘Extensions of
linear-quadratic control theory’ (Springer, 1980)

35 Leyva, H., Solís-Daun, J., Suárez, R.: ‘Global CLF stabilization of sys-
tems with control inputs constrained to a hyperbox,’ SIAM J. Control
Opt., 2013, 51, pp. 745–766
IET Control Theory Appl., 2014, Vol. 8, Iss. 12, pp. 1096–1104
doi: 10.1049/iet-cta.2013.0528




