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Abstract: This study proposes an alternative utopia-tracking multiobjective economic model prediction control scheme
of constrained non-linear systems with guaranteed asymptotic stability and convergence of average performance. The
proposed scheme minimises the distance of its cost function vector to a vector of independently minimised objectives
evaluated at ultimate transient operation, i.e. ultimate utopia point. Recursive feasibility and stability of the scheme are
established by a closed-loop optimisation dual-mode formulation. Moreover, convergence of the closed-loop average
performance is established in the context of multiobjective optimisation. The theoretical results are illustrated by two
examples of chemical processes.
1 Introduction

Economic model predictive control (EMPC) has recently received
much attention due to its ability in integrating real-time pro-
cess economic optimisation and feedback control into an optimal
control framework [1, 2]. In contrast to the traditional MPC
where quadratic cost functions are often used, EMPC directly
utilises general economic criteria as stage costs. Using different
assumptions and/or additional constraints, several EMPC schemes
were proposed to address the critical challenges of designing
controllers with guaranteed stability and optimal economic perfor-
mance [3–13]. In particular, Rawlings et al. [14] summarised recent
development on the stabilising design of EMPC and [1] reviewed
the recent results on closed-loop system stability and performance
issues on the various EMPC schemes in the literature.

In many EMPC applications, the economic performance encap-
sulates many control objectives, such as tracking, profitability,
sustainability, etc. The cost criteria representing these objectives
are generally incompatible and in conflict such that no unique
(globally) optimal solution to the multiobjective optimisation prob-
lem (MOOP) is attainable [15, 16]. In order to solve this type of
MOOPs, an accepted solution is to find a set of non-inferior or
non-dominated Pareto optimal solutions that optimise the multiple
cost criteria as much as possible [16]. In this sense, multiobjective
EMPC (MO-EMPC) with multiple economic criteria often yields
a number of different Pareto optimal EMPC controllers that reflect
different tradeoffs among the competing economic criteria and pro-
vide implementers with different design candidates that can accom-
modate different control requirements. However, it is not easy to
determine which Pareto optimal EMPC controllers are preferred
over others, unless some additional procedures are followed.

A well-known procedure for dealing with multiple competing
objectives is to use the weighted sum approach [16], where a
single objective optimisation problem is formulated by combin-
ing the multiple objectives through a weighted sum so that it can
be conveniently solved by conventional single objective optimisa-
tion methods. In general, the weights need to be tuned and even to
be adjusted at each sampling time [17–19] for desired responses.
However, tuning the weights to select a preferred Pareto solution is
conceptually easy but in practice suffers from some intrinsic draw-
backs [19]. For instance, a systematic variation of weights does
not necessarily result in a uniform distribution of Pareto solutions.
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To overcome the difficulties in weight selection, Flores-Tlacuahuac
et al. [20] proposed a steady-state utopia-tracking MO-MPC
scheme ensuring asymptotic stability by a terminal constraint and
a strong duality assumption [21]. By minimising the distance of a
set of stage cost functions to its steady-state utopia point, the pro-
posed controller does not need to compute online the Pareto optimal
solution set, instead it minimises multiple objectives automatically
without requiring weights to be adjusted or expert knowledge to
be used. To improve this MO-MPC in terms of computational
load and feasible state set, in [22] we used control Lyapunov
functions [23] to propose a dual-mode utopia-tracking MO-MPC
scheme for input-affine non-linear systems, where a terminal region
constraint, a varying prediction horizon and an explicit closed-
loop optimisation were exploited to ensure recursive feasibility and
stability.

One of the main features of the utopia-tracking MO-EMPC is
that the resulting closed-loop system may exhibit a non-converging
or even cyclic behaviour [24]. Hence, Maree and Imsland [15]
introduced the concept of dynamic utopia point for periodic pro-
cesses and presented a dynamic utopia-tracking MO-EMPC design
for cyclic operation, where the controller minimises the aver-
age cyclic performance defined by a cost distance from the
dynamic utopia point. Recursive feasibility of the scheme was
achieved using a cyclic terminal constraint; however, conditions
for closed-loop stability were not established.

In EMPC, the economic cost L(x, u) may not be positive defi-
nite with respect to any steady-state point (xs, us). Consequently, it
may occur that L(x, u) < L(xs, us) for some transient points (x, u)
[7]. This typical phenomenon of EMPC can also be expected in
MO-EMPC that optimises multiple economic criteria. Hence, it is
possible that the utopia points defined by average performance of
ultimate transient processes outperform those defined by steady-
state ones. Although the non-converging behaviour resulted from
the utopia-tracking strategy can be accepted in some applications
[15], convergence to an equilibrium is essential in many other
cases where improved economics should not come at the cost
of losing convergence. Hence, one of the important problems of
utopia-tracking MO-EMPC is to find conditions under which the
closed-loop system converges to an equilibrium point. Moreover,
to our best knowledge, the existing utopia-tracking MO-EMPC
schemes have not addressed the average performance topic in the
context of economic MOOP.
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Here we proposed an alternative utopia-tracking MO-EMPC
for constrained continuous-time non-linear systems. An alternative
utopia point is defined to cope with economic multiobjective
optimisation. Then a utopia-tracking closed-loop optimisation
problem is formulated by choosing the cost function as the dis-
tance of the cost functions to the new utopia point. Recursive
feasibility and stability of the MO-EMPC are established under
the assumptions of controllability, a terminal region and a fam-
ily of local controllers defined on the terminal region. Moreover,
the average performance of each cost function is shown to con-
verge to the compromised point. Compared with the steady-state
utopia-tracking strategies, e.g. [21], the first contribution of this
work is to propose an alternative definition of utopia point for
economic optimisation, i.e. the ultimate utopia point, which may
improve the average performance of economic criteria. The second
contribution of this work is that recursive feasibility and stabil-
ity of the proposed MO-EMPC are established in the dual-mode
framework using the controllability and terminal region conditions,
which increases the size of the set of initial feasible states. These
features will be illustrated by an example of chemical process
control.

Notation: Let I≥0 denote the set of non-negative integer numbers,
I≥a be the set {i ∈ I≥0: i ≥ a} and Ia:b be the set {i ∈ I≥0: a ≤ i ≤ b}
for some a ∈ I≥0 and b ∈ I≥0. Denote by A\B = {x : x ∈ A, x /∈ B}
the difference of two given sets A ⊆ Rn and B ⊆ Rn. Notation ‖·‖ is
a standard two-norm and uk:k+N is a (piecewise) continuous signal
u(t) for t ∈ [tk , tk+N ]. The solution to a system at time t from the
initial state x0 for an input u0:N is denoted as x(t) = ϕ(t; x0, u0:N ).

2 Problem description and preliminaries

Consider continuous-time non-linear systems of the form

ẋ(t) = f (x(t), u(t)), x(0) = x0 (1)

where the state x ∈ X ⊆ Rn, control u ∈ U ⊆ Rm and function f :
X × U → X is locally Lipschitz continuous in (x, u). x0 is the
initial state. Let O = {xs ∈ Rn|∃us ∈ U s.t. 0 = f (xs, us)} be the
admissible equilibrium set of the system, which is assumed to be
non-empty. The constraints X and U are compact sets satisfying
O ⊂ X . We assume that the states can be measured at each time
instance of the discrete time sequence {tk , k ∈ I≥0} with tk = t0 +
kδ and a sampling period δ > 0. For simplicity, let t0 = 0. Given
a finite N ∈ I≥1 and a compact set XT ⊆ X with O ⊂ XT , an input
u0:N is said to be feasible for x0 ⊆ X if u(t) ∈ U , ϕ(t; x0, u0:N ) ∈ X
and ϕ(tN ; x0, u0:N ) ∈ XT for all t ∈ [0, tN ], where ϕ satisfies (1).

Consider a set of economic criteria with l ∈ I≥2 general stage
costs of the form Lj : X × U → R, j ∈ I1:l . We are interested in
the multiobjective optimal control problem (OCP) defined over a
prediction horizon of N -time periods,

min
uk:k+N

{J1(xk , uk:k+N ), . . . , Jl(xk , uk:k+N )} (2a)

s.t. ẋ(t) = f (x(t), u(t)), ∀t ∈ [tk , tk+N ] (2b)

x(t) ∈ X , u(t) ∈ U , ∀t ∈ [tk , tk+N ] (2c)

x(tk ) = xk , x(tk+N ) ∈ XT (2d)

where the cost function Jj(x, u) is defined as

Jj(xk , uk:k+N ) =
∫ tk+N

tk
Lj(x(t), u(t))dt (3)

for all j ∈ I1:l , initial condition xk is the state at sampling time
tk and XT is a terminal set. Let L(x, u) = [L1(x, u), . . ., Ll(x, u)]T

be a stage cost vector and J (x, u) = [J1(x, u), . . ., Jl(x, u)]T be a
cost function vector. Since the economic criteria Lj(x, u) are gen-
erally conflicting, the optimality of the multiobjective OCP (2) is
typically defined in the sense of Pareto optimality based on cost
vector dominance [15, 16].
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Definition 1 [15]: At time tk , k ∈ I≥0, a feasible solution ûk:k+N
to (2) is Pareto optimal if there is no other feasible solution
uk:k+N such that Jj(xk , uk:k+N ) ≤ Jj(xk , ûk:k+N ) for all j ∈ I1:l and
Ji(xk , uk:k+N ) < Ji(xk , ûk:k+N ) for at least one i ∈ I1:l .

Unlike static multiobjective optimisation where the Pareto
optimal solutions depend solely on the cost functions, Pareto opti-
mality of (2) is dependent on the initial condition xk at each time
tk because of its receding horizon feature. In general, construct-
ing a Pareto optimal set is computationally exhaustive, making
it impractical for real-time control. To overcome the difficulties
in computing solutions for the MO-EMPC problem given by (2)
and (3), feasible methods have been proposed to directly use the
stage costs Lj(x, u) to design MO-EMPC, such as the steady-state
utopia-tracking strategy [21].

Definition 2 [21]: A vector L∗
s ∈ Rl is the steady-state utopia point

of system (1) with respect to the cost vector L(x, u) if and only if
for each j ∈ I1:l , we have

L∗
s,j = min

(x,u) ∈ X ×U
{Lj(x, u) s.t. f (x, u) = 0} (4)

with the optimal solution (x∗
s,j , u∗

s,j).

Definition 3 [21]: A state xc
s ∈ O is a compromised steady state of

system (1) with respect to L(x, u) if and only if it satisfies

(xc
s , uc

s) = arg min
(x,u) ∈ X ×U

{||L(x, u) − L∗
s || s.t. f (x, u) = 0} (5)

with the compromised point L(xc
s , uc

s), where L∗
s = [L∗

s,1, L∗
s,2, . . . ,

L∗
s,l]T.

The idea of the utopia-tracking strategy is to minimise a dis-
tance of its cost vector to the steady-state utopia point L∗

s . The
main advantage of this strategy is that it can make a trade-off
between multiple objectives of interest automatically with no need
to construct the entire Pareto front or select weights. In general,
each stage cost Lj(x, u) is transformed to be dimensionless in
order to improve computational performance, especially when each
element of L(x, u) has different unit.

Remark 1: If each Lj(x, u) is positive definite with respect
to its optimal equilibrium point (x∗

s,j , u∗
s,j), i.e. Lj(x, u) ≥ 0 for

(x, u) ∈ X × U and Lj(x, u) = L∗
s,j = 0 if and only if (x, u) =

(x∗
s,j , u∗

s,j), then the steady-state utopia point L∗
s is unachievable

for the conflicting cost functions Lj(x, u) with j ∈ I1:l . However,
this property will not hold for general economic criteria L(x, u)
since there usually exist some points (x, u) ∈ X × U such that
Lj(x, u) ≤ L∗

s,j for j ∈ I1:l . Recall that for single objective EMPC,
the average performance of Lj(x, u) is achieved as

lim
k→∞

sup
1

tk

∫ tk

0
Lj

(
φ(t; x(0), u0:tk

)
, u(t))dt ≤ Lj

(
x∗

s,j , u∗
s,j

)
= L∗

s,j

(6)

under some feasibility conditions [1, 7]. The aforementioned facts
suggest that the utopia point defined by (4) may not be the
best choice of utopia point in the context of economic criteria
optimisation.

3 Utopia points for economic criteria
optimisation

In the context of economic optimisation, the average performance
of each Lj(x, u), measured over an enough long time horizon, may
be less than its economically optimal steady-state performance and
is dependent on the initial state x0. Similarly, it is known from
IET Control Theory Appl., 2016, Vol. 10, Iss. 13, pp. 1487–1495
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Definition 1 that at each sampling time tk , k ∈ I≥0, the Pareto opti-
mal front of the OCP (2) also depends on the boundary condition
x(tk ) = xk . Moreover, the control optimising the economic crite-
ria does not necessarily lead to a trajectory which converges to
some steady-state points [11]. Therefore the closed-loop system
may exhibit behaviour such as a periodic orbit [24]. For many
applications, a desirable property of an optimal control is that
the closed-loop system will remain at some economically opti-
mal steady-state points, such as the compromised point (xc

s , uc
s),

after an appropriate transient operation. Clearly, the control input
u(t) ≡ uc

s has this desirable property if the initial state is picked
as xc

s . Otherwise, for any x0 ∈ X , a general condition ensuring this
desirable property is to use a terminal constraint

φ(tT ; x0, u0:T ) = xopt
s (7)

where xopt
s ∈ O is an economically optimal steady state with respect

to some economic criteria of interest and tT = Tδ, T ∈ I≥1, is an
ultimately transient time after which the closed-loop system enters
the steady state after starting from x0. In this sense, condition (7)
generalises the case where the boundary condition (2) is directly
set as the steady state. Note that for cyclic processes, (7) can be
substituted by the cyclic terminal constraint in [15]. Motivated by
this dynamic utopia point for cyclic operation, a new utopia point
for non-cyclic operation is defined, which attempts at finding an
optimal period length such that average performance measured over
this period may be less than the steady-state optimal performance
for any x0 ∈ X .

Definition 4: A vector L∗
u ∈ Rl is an ultimate utopia point of system

(1) with respect to L(x, u) if and only if

L∗
u,j = min

x0,tT ,u0:T
Jj(x0, u0:T )/tT (8a)

s.t. ẋ(t) = f (x(t), u(t)), x(t0) = x0 (8b)

x(t) ∈ X , u(t) ∈ U , x0 ∈ X , ∀t ∈ [t0, tT ] (8c)

x(tT ) = x∗
s,j , tT ≥ 0 (8d)

for each j ∈ I1:l , where x∗
s,j ∈ O is the optimal steady state with

respect to Lj(x, u).

Remark 2: In Definition 2, the initial state x0 and time window
tT are chosen as the decision variables of (8) in addition to u0:T .
The optimal initial state and period length enable us to evaluate
an optimal average performance of each Lj(x, u) with respect to
X and time range. For computational considerations, however, tT
can be limited to some upper bound. For instance, we can use a
priori information of the bound of tT satisfying (7) to solve (8). It
is noted that the solution of (8) is obtained offline and it does not
increase the computational demand of solving MPC actions online.

Proposition 1: Consider the optimisation problems (4) and (8). If
t∗T > 0, we have L∗

u,j ≤ L∗
s,j for each j ∈ I1:l . Else, we have L∗

u,j =
L∗

s,j if t∗T → 0.

Proof: Consider Lj(x, u) for any j ∈ I1:l . Let (x∗
s,j , u∗

s,j) with L∗
s,j and

(x∗
0,j , t∗T , u∗

0:T ) with L∗
u,j be the solutions to (4) and (8) for j ∈ I1:l ,

respectively. Using x∗
s,j , u∗

s,j and t∗T , we construct a solution candi-
date (x∗

s,j , t∗T , ũ0:T ) to (8) with ũ0:T = u(t) ≡ u∗
s,j for t ∈ [0, t∗T ]. It

is clear that this candidate satisfies the constraints (8b)–(8d) with
x0 = x∗

s,j . Since the pair (x∗
s,j , u∗

s,j) is a steady-state point, the can-
didate (x∗

s,j , t∗T , ũ0:T ) is a feasible solution to (8). Substituting it to
(4), we have Jj(x∗

s,j , ũ0:T ) = t∗T L∗
s,j . From the definition of L∗

u,j , we
derive that L∗

u,j ≤ Jj(x∗
s,j , ũ0:T )/t∗T = L∗

s,j .
IET Control Theory Appl., 2016, Vol. 10, Iss. 13, pp. 1487–1495
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Consider the case of t∗T → 0. Since Lj(x, u) is continuous on its
arguments, we have

lim
tT →0

Jj(x0, u0:T ) = lim
tT →0

∫ tT

0
Lj(x(t), u(t))dt = Lj(x0, u0).

Then from (4) and (8), it is concluded that the optimal values L∗
u,j

and L∗
s,j are identical when t∗T → 0. �

Consider the steady-state utopia-tracking OCP

u∗
s = arg min

u
{Js(x, u) s.t. (2b) − (2d)} (9)

where x is the state at time tk and Js(x, u) is the steady-state
utopia-tracking objective function

Js(x, u) =
∫ tN

0
||L(x(t), u(t)) − L∗

s ‖dt. (10)

Define the ultimate utopia-tracking objective function

Ju(x, u) =
∥∥∥∥
∫ tN

0
[L(x(t), u(t)) − L∗

u]dt

∥∥∥∥ (11)

and the corresponding ultimate utopia-tracking OCP is formulated
as

u∗
u = arg min

u
{Ju(x, u) s.t. (2b) − (2d)}. (12)

Define two time-average performances as

J a
u = 1

tN

∫ tN

0
L(x(t), u∗

u(t))dt, J a
s = 1

tN

∫ tN

0
L(x(t), u∗

s (t))dt.

We have the following result on the steady-state utopia point and
the ultimate utopia point:

Proposition 2: Suppose that the optimisation problems (9) and (12)
are feasible for the state x ∈ X and the finite horizon tN > 0. Then
we have

∥∥J a
u − L∗

u

∥∥ ≤ ∥∥J a
s − L∗

u

∥∥ , (13)∥∥J a
s − L∗

s

∥∥ ≤ ∥∥J a
u − L∗

s

∥∥ . (14)

Moreover, the performance J (x, u∗
u) (i.e. tN J a

u ) is no worse than
J (x, u∗

s ) (i.e. tN J a
s ) if J a

s ≥ L∗
u.

Proof: Let u∗
s be the optimal solution to the problem (9). Then u∗

s
satisfies (2b)–(2d), which implies that u∗

s is a feasible solution to
(12). Hence, we have Ju(x, u∗

u) ≤ Ju(x, u∗
s ), i.e.

∥∥∥∥
∫ tN

0
[L(x(t), u∗

u(t)) − L∗
u]dt

∥∥∥∥ ≤
∥∥∥∥
∫ tN

0
[L(x(t), u∗

s (t)) − L∗
u]dt

∥∥∥∥
(15)

which is equal to (13). Similarly, one can obtain (14).
By contradiction, we assume that J (x, u∗

u) is worse than J (x, u∗
s ),

i.e. ∫ tN

t0
Lj

(
x(t), u∗

u(t)
)

dt >

∫ tN

t0
Lj

(
x(t), u∗

s (t)
)

dt (16)

for each j ∈ I1:l . Being divided by tN and subtracting L∗
u from both

sides of (16), we have

J a
u − L∗

u > J a
s − L∗

u. (17)

Since J a
s ≥ L∗

u, (17) leads to ||J a
u − L∗

u|| > ||J a
s − L∗

u||, which
contradicts (13). Therefore, J (x, u∗

u) is no worse than J (x, u∗
s ) if

J a
s ≥ L∗

u. �
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Remark 3: Fig. 1 illustrates the basic ideas of Propositions 1 and 2,
where the larger circle has L∗

u as the centre and ||J a
s − L∗

u|| as the
radius, while the smaller circle has L∗

s as the centre and ||J a
s − L∗

s ||
as the radius. Note that J a

s is a tangent point of both circles. For
simplicity, in this figure we use only two conflicting criteria L1
and L2 to compute the control actions which meet both criteria
in the manner of the utopia solution. From this figure, one can
see that J a

u is closer to L∗
u than J a

s , and it is always in the larger
circle but not in the smaller circle. Hence, it is not obtained that
J (x, u∗

u) = tN J a
u > tN J a

s = J (x, u∗
s ). In other words, J (x, u∗

u) is no
worse than J (x, u∗

s ).

4 Multiobjective EMPC

4.1 Utopia-tracking MO-EMPC algorithm

Consider the compromised solution (xc
s , uc

s) obtained by solving (5)
and let (xc

s , uc
s) = (0, 0) for simplicity.

Assumption 1: There exists a locally Lipschitz control law
u = h(x, θ) with h(0, θ) = 0 and some parameter θ ∈ Rq such that
the origin of the system (1) in the closed-loop with u = h(x, θ ) is
locally asymptotically stable. Moreover, there exists a continuously
differentiable Lyapunov function V : Rn → R≥0 such that

α1(||x||) ≤ V (x) ≤ α2(||x||)
∂V (x)

∂x
f (x, h(x, θ)) ≤ −α3(||x||)

(18)

Fig. 1 Basic ideas of Propositions 1 and 2 for two conflicting criteria.
Pareto front featuring the conflicting criteria and the compromised point
L(xc

s , uc
s) are shown
1490
for some θ and all x ∈ D, where D is an open neighbourhood of
the origin and αi, i ∈ I1:3 are class-K functions.

Let � ⊆ Rq be the parameter set such that Assumption 1 holds
for any θ ∈ �. In the literature, several approaches have been
used to select h(x, θ) and � to satisfy Assumption 1; e.g. feed-
back linearisation [23], control Lyapunov function [25, 26] and
backstepping control [23, 27].

Let xk be the state at sampling time tk , k ∈ I≥0. The ultimate
utopia-tracking MO-EMPC problem is formulated as the following
dual-mode OCPs

min
uk:k+N

Ju(xk , uk:k+N ) (19a)

s.t.

⎧⎪⎨
⎪⎩

ẋ(t) = f (x(t), u(t)), x(tk ) = xk

(x(t), u(t)) ∈ X × U , ∀t ∈ [tk , tk+N ]
x(tk+N ) ∈ XT

(19b)

where the terminal regionXT ⊆ X contains the origin in its interior,
and

min
θ(tk ) ∈ �

Ju(xk , uk:k+N ) (20a)

s.t.

⎧⎪⎨
⎪⎩

ẋ(t) = f (x(t), u(t)), x(tk ) = xk

u(t) = h(x(t), θ(tk )),
(x(t), u(t)) ∈ X × U , ∀t ∈ [tk , tk+N ]

(20b)

where Ju(x, u) is given by (11). Then the steps of implementing
this strategy are summarised as Algorithm 1.

Remark 4: In Algorithm 1 (Fig. 2), the control input within the
first N time samples does not employ the receding horizon nature
of MPC. Nevertheless, the optimal control input in Steps 3–5 can
be computed by solving (19) online in the fashion of shrinking
prediction horizon and then applied to the system (1) in the man-
ner of receding horizon control. Moreover, (20) is a closed-loop
optimisation problem due to the state feedback nature of h(x, θ)
and its optimal solution θ∗(tk ) relies on the current state x(tk ),
i.e. θ∗(tk ) = θ∗(x(tk )). Hence, the controller minimising (20) is a
time-invariant state feedback control law.

Algorithm 1 (Fig. 2) implicitly defines an ultimate utopia-
tracking MO-EMPC controller

umo(x(t)) = u∗
k:k+1, ∀t ∈ [tk , tk+1], ∀k ∈ I≥0 (21)

and the closed-loop system

ẋ(t) = f (x(t), umo(x(t))), x(0) = x0. (22)

In what follows, we analyse the stability of (22) and the closed-loop
average performance of L(x, u).
Fig. 2 Ultimate utopia-tracking algorithm
IET Control Theory Appl., 2016, Vol. 10, Iss. 13, pp. 1487–1495
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4.2 Stability and performance

In general, the region D is not invariant for the system (1) in the
closed-loop with h(x, θ). We define a level set of V (x) as 	(r) =
{x ∈ Rn| V (x) ≤ r, r > 0} and it is a compact invariant subset of D,
containing the origin as its interior. Clearly, the radius r depends
on θ . We give a procedure to derive 	(r) as large as possible
provided that V (x) is known.

Consider the system (1) and define set Xh = {x ∈ Rn|∃θ ∈ �
s.t. h(x, θ) ∈ U }. Iteratively increase r from 0 until 	(r) is not
contained in X ∩ Xh, which yields a preferably largest radius rmax.
Let XT = {x ∈ Rn|V (x) ≤ rmax} ⊆ X . Then XT is a maximal esti-
mate of invariant sets 	(r) of the system (1) in the closed-loop
with h(x, θ) for some θ ∈ �. Therefore, there exists a θ ∈ � such
that the closed-loop system satisfies the constraints while meeting
asymptotic stability criterion in XT .

Let XN be the set of feasible initial conditions such that there
is an input u∗

0:N satisfying the constraints in (19) at time t0. From
the dual-mode principle [28, 29], XN is an invariant subsets of X
and satisfies that XN ⊇ XN−1 ⊇ 
 ⊇ X1 ⊇ X0 = XT .

Theorem 1: Under Assumption 1, the origin of the closed-loop
system (20) is asymptotically stable with XN as a region of
attraction.

Proof: We first prove recursive feasibility of (20) and then show
asymptotic stability of (22).
Part 1: Consider the nominal system (1) and any x0 ∈ XN \XT at
sampling time t0. We compute the optimal control input u∗

0:N to
(19) and apply it to the system until the time tN arrives. Due to
the nominal system and satisfaction of the constraints in (19), it
is derived that the system in the closed-loop with u(t) = u∗

0:N ,
t0 ≤ t ≤ tN , starting from x0 enters XT within N -time periods, i.e.
x(tN ) = (tN ; x0, u∗

0:N ) ∈ XT .
Without loss of generality, pick any xk ∈ XT at sampling time

tk . Let θ∗(tk ) be optimal solution to (20) at tk , with asso-
ciated input u∗

k:k+N . Applying u∗
k:k+N to the system (1), we

have x(tk+1) = ϕ(tk+1; xk , u∗
k:k+N ) ∈ XT due to the invariance of

XT . From the construction of XT , there exists a θ ∈ � such
that u(t) = h(x(t), θ) ∈ U and ϕ(t; xk+1, u∗

k+1:k+1+N ) ⊆ X for all
t ∈ [tk+1, tk+1+N ] and ϕ(tk+N ; xk+1, u∗

k+1:k+1+N ) ∈ XT . Namely, θ

is a feasible solution to (20) at next time tk+1, which leads to
recursive feasibility of (20).
Part 2: From Part 1, it is known that starting from any x0 ∈ XN \XT ,
the system (22) applied by solving (19) enters XT within N -time
periods, i.e. x(tN ) ∈ XT . Then the MO-EMPC is switched to
solve (20).

For any x(tk+N ) ∈ XT at sampling time tk+N , we have
u∗(t) = h(x(t), θ∗(tk )) for t ∈ [tk+N , tk+N+1] by solving (20). It is
derived from (18) that the closed-loop system satisfies V (x(t)) <
V (x(tk+N )) and hence x(t) ∈ XT for all t ∈ [tk+N , tk+N+1]. At
the next time tk+N+1, compute u∗(t) = h(x(t),θ∗(t)), t ∈ [tk+N+1,
tk+N+2] to (20) with the state x(tk+N+1). Using again (18), we have
V (x(t)) < V (x(tk+N+1)) for all t ∈ [tk+N+1, tk+N+2]. By repeat-
ing the process, the system (22) satisfies limtk →∞ V (x(t)) = 0
because of the positive definiteness of V (x). Therefore, the closed-
loop states starting from x(tk+N ) ∈ XT satisfy x(tk ) → 0 as tk →
∞. Integrating the control input of (19), we conclude that the
closed-loop system starting from any x(t0) ∈ XN converges to the
origin. Namely, asymptotic stability of the closed-loop system is
established with XN as a region of attraction. �

Remark 5: From the practical points of view, it is desired that the
stability properties of systems in the closed-loop with controllers
are not related to their criteria. Algorithm 1 (Fig. 2) satisfies such
requirement to some extent. Specially, recursive feasibility and sta-
bility of (22) are independent of the choice of Nand L(x, u). Hence,
we can adjust online these terms to achieve better performances
without causing stability concerns. In addition, from the proof of
Theorem 1, the stability properties of (22) can be guaranteed by a
feasible solution. Hence, the computational burden of solving both
IET Control Theory Appl., 2016, Vol. 10, Iss. 13, pp. 1487–1495
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(19) and (20) can be reduced at the expense of the optimality of
the OCPs.

Theorem 2: Consider the closed-loop system (22) within XN .
Under Assumption 1, the closed-loop average performance of
L(x, u) satisfies that

lim
k→∞

sup
1

tk

∫ tk

t0
L(x(t), umo(t))dt = L

(
xc

s , uc
s

)
. (23)

Proof: Since the system (20) asymptotically converges to the
equilibrium point (xc

s , uc
s), for any ε > 0 there exists a number

tŇ = t0 + Ňδ, Ň ∈ I≥1 such that

||L(x(t), umo(t)) − L(xc
s , uc

s)|| < ε/2, ∀t ≥ t�
N

. (24)

For any tk ≥ tŇ , then it is obtained that

∥∥∥∥
∫ tk

t0
L(x(t), umo(t))dt − tk L(xc

s , uc
s)

∥∥∥∥
≤

∫ t�
N

t0

∥∥L(x(t), umo(t)) − L(xc
s , uc

s)
∥∥ dt

+
∫ tk

t�
N

∥∥L(x(t), umo(t)) − L(xc
s , uc

s)
∥∥ dt

≤ t�
N

L̂ + (tk − t�
N

)ε/2 (25)

where L̂ = supt ∈ [t0,t�
N

]
∥∥L(x(t), umo(t)) − L(xc

s , uc
s)

∥∥ is finite. Let

tN∗ = 2tŇ (L̂ − ε/2)/ε. Then for any tk > tN∗, we have

∥∥∥∥ 1

tk

∫ tk

t0
L(x(t), umo(t))dt − L(xc

s , uc
s)

∥∥∥∥≤ (L̂ − ε/2)t�
N

/tk + ε/2 < ε.

(26)
From [12], this shows that (23) holds. �

5 Examples

Two examples are used to illustrate effectiveness of the results
presented here. For both examples, all optimisation problems had
been solved by the function of fmincon in MATLAB 2014a on
the computer of an Intel® Xeon® CPU with 3.2 GHz and 8 GB
RAM, and Euler’s first-order approximation is employed for all
derivatives.

5.1 Example 1

Consider an isothermal chemical reactor system [4]

dc1

dt
=Qin

VR
(c1in − c1) − σc2

1

dc2

dt
=Qin

VR
(c2in − c2) + σc2

2

(27)

where c1 and c2 are the molar concentrations of species A1 and A2,
respectively, c1in and c2in are the feed concentrations of A1 and A2,
and Qin is the flow through the reactor. The volume of the reactor
VR = 10 L and the rate constant σ = 1.2l/(mol·s). The concentra-
tions c1 and c2 are the states and the flow Qin is the control. The
constraints are set to xi ∈ [0, 1] for i = 1, 2 and u ∈ [1, 20]. We con-
sider two economic objectives of interest. The first objective is to
maximise the amount of A2 in the reactor, i.e. minimise economic
stage cost L1(x, u) = −x2u. The second objective is to minimise the
amount of A1, i.e. minimise economic stage cost L2(x, u) = x1u.
The stage cost vector is defined as L(x, u) := [L1(x, u), L2(x, u)]T.
The control goal of the system is to minimise L1(x, u) and L2(x, u)
1491



0 0.1 0.2 30.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2

Fig. 3 Space distribution of four cases with respect to Av {Li(x, u)} applied by UMPC and SMPC, where ‘*’ denotes Case 1, ‘o’ Case 2, ‘×’ Case 3 and
‘+’ Case 4
simultaneously, while stabilising the system to some economically
optimal steady-state point in the face of the constraints.

According to the steady-state optimisation problem (4), the
steady-state utopia point of L(x, u) is computed as L∗

s =
[−5.9349, 0.25]T associated with the economically optimal steady-
state solutions (x1∗

s , u1∗
s ) = (0.7033, 0.2967, 20.0) and (x2∗

s , u2∗
s ) =

(0.2500, 0.7500, 1.0), respectively. Then the compromised solution
is determined as (xc

s , uc
s) = (0.4645, 0.5355, 4.8358). By evaluat-

ing (8) offline, the ultimate utopia point of L(x, u) is computed
as L∗

u = [−9.9288, 0.1567]T. Clearly, we have L∗
u,i < L∗

s,i for i = 1
and 2, which is due to the fact that the computation of L∗

u takes
into account the transient response of (27).

Let the system (A, B) be the linearised model of (27) at the point
(xc

s , uc
s). Solving the Riccati equation

ATP + PA − 2θ0PBBTP = −qI (28)

with θ0 = 0.1 and q = 10, we have a positive definite matrix
solution

P =
[

6.9854 5.5310
5.5310 10.3259

]
.

Then we construct a locally Lipschitz control law

u = −θK
(
x − xc

s

) + uc
s , θ ≥ θ0 (29)

where K = BTP = [0.0348, −0.1148]. Let V (z) = zTPz with the
shifted variable z = x − xc

s . We obtain the level set XT (xc
s ) =

{z ∈ R2|V (z) ≤ 1.5072} of V (z), which is an invariant set of
the system (27) in the closed-loop with (14). For computation
consideration, the upper bound of θ is set to 1000.

Denote by SMPC and UMPC the steady-state and the ultimate
utopia-tracking MO-MPC controllers, respectively. The sampling
period are chosen as δ = 0.1 s and the prediction horizon tN = 5δ.
Let Av{Li(x, u)} be the average performance of Li(x, u), i = 1,
2, evaluated over the simulation horizon. To compare the differ-
ences of Av{Li(x, u)} applied separately by UMPC and SMPC, we
consider the following four cases:
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Table 1 Average performances of L1(x , u) and L2(x , u) applied by SMPC
and UMPC from eight initial states

Av{L1(x, u)} Av{L2(x, u)}
Initial states SMPC UMPC SMPC UMPC Case

a(0.50, 0.90) −3.1731 −3.4875 2.3313 2.9327 2
b(0.90, 0.70) −3.3943 −3.6728 2.7750 3.2163 2
c(0.65, 0.50) −2.7872 −2.8731 2.4160 2.5923 2
d(0.50, 0.30) −2.2972 −2.2972 2.2610 2.2610 3
e(0.25, 0.70) −2.6440 −2.8117 2.1703 2.3307 2
f(0.14, 0.24) −2.0221 −2.0332 2.2204 2.2007 1
g(0.10, 0.10) −1.9729 −1.9737 2.4121 2.4055 1
h(0.25, 0.30) −2.0679 −2.0679 2.1438 2.1438 3

Case 1: UMPC outperforms SMPC in terms of both Av{L1(x, u)}
and Av{L2(x, u)}.

Case 2: UMPC outperforms SMPC in at least one of Av{L1(x, u)}
and Av{L2(x, u)}.

Case 3: UMPC and SMPC have equal performances.

Case 4: SMPC outperforms UMPC in terms of both Av{L1(x, u)}
and Av{L2(x, u)}.

Fig. 3 presents the distribution of these cases in the operation
space of system (27). It is depicted by gridding the state constraint
set [0, 1] × [0, 1] in increments of 0.05, which leads to a total of
141 initial points. As we can see, there is no point in Fig. 3 for
Case 4; but there are seven points for Case 1. In particular, Table 1
tabulates the values of Av{Li(x, u)} starting from eight initial states
(a)–(h), obtained by separately applying SMPC and UMPC. It is
observed that for the initial states (a), (b), (c) and (e), the average
performances of L1(x, u) by UMPC are better than those by SMPC;
however, the average performances of L2(x, u) by UMPC are worse
than those by SMPC. Nevertheless, we can see that for the initial
states (d) and (h), the average performances of both L1(x, u) and
IET Control Theory Appl., 2016, Vol. 10, Iss. 13, pp. 1487–1495
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L2(x, u) by UMPC are equal to those by SMPC; and for the ini-
tial states (f) and (g), the average performances of both L1(x, u)
and L2(x, u) by UMPC are better than those by SMPC. These
observations suggest that the closed-loop average performances of
stage costs obtained by applying UMPC are no worse than those
by SMPC.

Fig. 4 shows the closed-loop state phase profiles applied by
UMPC starting from the initial states (a)–(h), where the ‘*’ is
the economically optimal equilibrium state xc

s . Moreover, Fig. 5
depicts the state responses and control inputs of (27) in the closed-
loop with UMPC with initial state (a) (the solid lines) and (b)
(the dashed lines). From the graphs in Figs. 4 and 5, it is clear
that from the different initial states, the state trajectories of (27) in
the closed-loop with UMPC are asymptotically convergent to the
equilibrium state while satisfying the constraints for all times. Note
that it is not easy to ensure that the system (27) is dissipative with
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Fig. 4 Phase profiles of the closed-loop system under UMPC from
different initial concentrations
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respect to L1(x, u) and L2(x, u). On the other hand, it is seen from
Fig. 5 that the computed control input may be not smooth. This
limits the performance of the UMPC controller from the viewpoint
of smoothness of signals.

To show the differences resulted from using the terminal region
and terminal state constraints, Table 2 tabulates the shortest
prediction horizon tN min that is used to guarantee the feasibility
of the OCPs at initial time t0 = 0. It is seen that tN min associ-
ated with the terminal region constraint is smaller than that with
the terminal state constraint. This difference is consistent with the
well-accepted conclusion of traditional single objective NMPC and
also implies that the set of initial feasible states corresponding to
the terminal region constraint is bigger than that to the terminal
state constraint if the prediction horizons are selected to be equal.

5.2 Example 2

In order to further demonstrate the proposed MO-EMPC strat-
egy, we consider a more realistic irreversible exothermic reaction
system [25, 28]

Ċ1 = q

V
(Cf − C1) − k0C1 exp

(
−E/R

Tr

)

Ṫr = q

V
(Tf − Tr) − �H

ρCp
k0C1 exp

(
−E/R

Tr

)
+ UA

VρCp
(Tc − Tr)

(30)

where C1 is the concentration of production A1 in the
reactor, Tr the reactor temperature and Tc the temperature

Table 2 Shortest prediction horizon for ensuring feasibility of the OCPs
at t0

a b c d e f g h

UMPC δ 2δ δ δ δ δ δ δ
SMPC 54δ 56δ 48δ 26δ 57δ 43δ 43δ 28δ
Fig. 5 State responses and control inputs of the closed-loop system under UMPC and the profiles of θ , associated with initial state

a (Solid lines)
b (Dashed lines)
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Fig. 6 State responses and control inputs of the closed-loop system
of coolant stream. The model parameters are chosen as
follows: q = 100 L/min, Tf = 350 K, Cf = 1 mol/l, V = 100 L,
ρ = 1000 g/L, Cp = 0.239 J/g·K, �H = −5 × 104 J/mol, E/R =
8750 K, k0 = 7.2 × 1010 min−1 and UA = 5 × 104 J/min·K. Let the
state vector be x = [x1, x2]T = [C1, Tr]T and the control variable
u = Tc. System (30) is subject to the following constraints

X = [0, 1] × [300, 370], U = [280, 350]. (31)

This system is required to be operated at the maximal production
rate of A1

r(x) = k0C1 exp

(
−E/R

Tr

)
= k0x1 exp

(
−E/R

x2

)
(32)

and the minimal energy usage/removal, Tc − (Tr − Tf )
2. Let

L1(x, u) = −r(x) and L2(x, u) = u − (x2 − Tf )
2. Then the goal is

to minimise L1(x, u) and L2(x, u) simultaneously, while stabilising
the system to some economically optimal steady-state point and
satisfying (31).

Let L(x, u) = [L1(x, u), L2(x, u)]T. By solving (4), the steady-
state utopia point of L(x, u) is computed as L∗

s = [−0.7943,
299.9547]T with the optimal solutions (x1∗

s , u1∗
s ) = (0.2057, 370.0,

300.1261) and (x2∗
s , u2∗

s ) = (0.4973, 350.1530, 299.9547), respec-
tively. Then the compromised solution (xc

s , uc
s) = (0.4948, 350.290,

299.9129). By evaluating (8) offline, the ultimate utopia point is
computed as L∗

u = [−0.7945, 299.980]T and satisfies that L∗
u,i <

L∗
s,i for i = 1 and 2. Using the same method as Example 1,

we have a locally Lipschitz control law (14) with θ0 = 0.5 and
K = [114.0403.3826], and the set XT (xc

s ) = {z ∈ R2|V (z) ≤ 210}
with V (z) = zT Pz and

P =
[

2543.2857 54.5133
54.5133 1.6169

]
.

The upper bound of θ in (29) is set to 1000.
Let the sampling period δ = 0.1 min and pick an initial state

(0.7 mol/l, 320 K). Fig. 6 depicts the state responses and control
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Table 3 Average economic performances and computational times for
different values of tN

tN 5δ 10δ 15δ 20δ

Av{L1(x, u)} −0.4844 −0.4861 −0.4838 −0.4961
Av{L2(x, u)} 331.9102 331.1098 331.8694 331.7117
Tmax (ms) 883.1 966.4 1175.8 1363.0
Tave (ms) 35.6 40.3 42.8 48.1

inputs of (30) in the closed-loop with the proposed MO-EMPC
with the prediction horizon tN = 5δ (solid lines), tN = 10δ (dashed
lines), tN = 15δ (dash-dotted lines), and tN = 20δ (dotted lines).
As expected that for different selection of the prediction hori-
zon, the closed-loop trajectories of production concentration C1,
reactor temperature Tr and coolant stream temperature Tc obtained
by applying the proposed MO-EMPC are asymptotically conver-
gent to the compromised equilibrium point (xc

s , uc
s) in the presence

of the state and control constraints (31). However, these closed-
loop trajectories approach the equilibrium point in different ways.
In particular, the selection of a larger prediction horizon speeds
up the response of the closed-loop system (e.g. see the dotted
lines).

In what follows, we quantitatively assess the average economic
performances over a simulation horizon tsim = 50δ and the com-
putational times with respect to the prediction horizon tN . Table 3
tabulates average performances and computational times by apply-
ing the proposed MO-EMPC for different prediction horizons. It
can be seen that the obtained average performances Av{L1(x, u)}
and Av{L2(x, u)} are not necessarily improved by extending or
reducing the prediction horizon tN . In other words, the aver-
age performance obtained by applying the proposed MO-EMPC
is not a monotone function on tN . However, the maximal com-
putational time Tmax and the average computational time Tave,
over the simulation horizon, are reduced when we select a shorter
length of tN . Hence, from Fig. 6 and Table 3 the prediction hori-
zon of the proposed MO-EMPC should be determined by the
trade-off among closed-loop responses, average performances and
computational times.
IET Control Theory Appl., 2016, Vol. 10, Iss. 13, pp. 1487–1495
© The Institution of Engineering and Technology 2016



6 Conclusion

In this work, an ultimate utopia-tracking MO-EMPC scheme was
presented to tackle multiobjective economic optimisation problems
of constrained non-linear systems. The concept of ultimate utopia
point was introduced to address conflicting economic criteria. Then
the utopia-tracking optimisation problem was formulated into a
dual-mode control problem, where the MO-EMPC law is deter-
mined by minimising the distance of its cost function vector to the
ultimate utopia point. The asymptotic stability and average perfor-
mance of the closed-loop system were established using a terminal
region constraint and the assumption of controllability. The sim-
ulation results demonstrated the good properties of the proposed
MO-EMPC to deal with conflicting economic criteria.

7 Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China under grant no. 61374111 and Public Welfare
Technology Application Research Project of Zhejiang Province
under grant no. 2015C31057.

8 References

1 Ellis, M., Durand, H., Christofides, P.D.: ‘A tutorial review of economic
model predictive control methods’, J. Process Control, 2014, 24, (8),
pp. 1156–1178

2 Mayne, D.Q.: ‘Model predictive control: recent developments and future
promise’, Automatica, 2014, 50, pp. 2967–2986

3 Amrit, R., Rawlings, J.B., Angeli, D.: ‘Economic optimization using model
predictive control with a terminal cost’, Annu. Rev. Control, 2011, 35, (2),
p. 178186

4 Diehl, M., Amrit, R., Rawlings, J.B.: ‘A Lyapunov function for economic opti-
mizing model predictive control’, IEEE Trans. Autom. Control, 2011, 56, (3),
pp. 703–707

5 Heidarinejad, M., Liu, J., Christofides, P.D.: ‘Economic model predictive control
of nonlinear process systems using Lyapunov techniques’, AIChE J., 2012, 58,
pp. 855–870

6 Huang, R., Harinath, E., Biegler, L.T.: ‘Lyapunov stability of economically
oriented NMPC for cyclic processes’, J. Process Control, 2011, 21, (4),
pp. 501–509

7 Angeli, D., Amrit, R., Rawlings, J.B.: ‘On average performance and stability of
economic model predictive control’, IEEE Trans. Autom. Control, 2012, 57, (7),
pp. 1615–1626
IET Control Theory Appl., 2016, Vol. 10, Iss. 13, pp. 1487–1495
© The Institution of Engineering and Technology 2016
8 Fagiano, L., Teel, A.R.: ‘Generalized terminal state constraint for model
predictive control’, Automatica, 2013, 49, (9), pp. 2622–2631

9 Guay, M., Adetola, V.: ‘Adaptive economic optimising model predictive control
of uncertain nonlinear systems’, Int. J. Control, 2013, 86, (8), pp. 1425–1437

10 Grúne, L.: ‘Economic receding horizon control without terminal constraints’,
Automatica, 2013, 49, (3), pp. 725–734

11 Múller, M.A., Angeli, D., Allgówer, F. et al.: ‘Convergence in economic
model predictive control with average constraints’, Automatica, 2014, 50, (12),
pp. 3100–3111

12 Ellis, M., Christofides, P.D.: ‘On finite-time and infinite-time cost improvement
of economic model predictive control for nonlinear systems’, Automatica, 2014,
50, (10), pp. 2561–2569

13 Limon, D., De la Pereira, M., Pena, D.M. et al.: ‘Single-layer economic model
predictive control for periodic operation’, J. Process Control, 2014, 24, (8),
pp. 1207–1224

14 Rawlings, J.B., Angeli, D., Bates, C.N.: ‘Fundamentals of economic model
predictive control’, Proc. 51st IEEE Conf. Decision and Control, Maui, Hawaii,
2012, 0, pp. 3851–3861

15 Maree, J.P., Imsland, L.: ‘On multi-objective economic predictive control for
cyclic process operation’, J. Process Control, 2014, 24, (8), pp. 1328–1336

16 Ehrgott, M.: ‘Multicriteria optimization’ (Springer, Berlin Heidelberg, 2005, 2nd
edn.)

17 Vito, D., Scattolini, R.: ‘A receding horizon approach to the multiobjective
control problem’, Proc. 46th IEEE Conf. Decision and Control, New Orleans,
LA, 2007, 0, pp. 6029–6034

18 Bemporad, A., de la Pena Munoz, D.: ‘Multiobjective model predictive control’,
Automatica, 2009, 45, pp. 2823–2830

19 Vallerio, M., Van Impe, J., Logist, F.: ‘Tuning of NMPC controllers via
multi-objective optimisation’, Comput. Chem. Eng., 2014, 61, pp. 38–50

20 Flores-Tlacuahuac, A., Morales, P., Rivera-Toledo, M.: ‘Multiobjective Nonlin-
ear model predictive control of a class of chemical reactor’, Ind. Eng. Chem.
Res., 2012, 51, (17), pp. 5891–5899

21 Zavala, V.M., Flores-Tlacuahuac, A.: ‘Stability of multiobjective predictive
control: an utopia-tracking approach’, Automatica, 2012, 48, (10), pp. 2627–2632

22 He, D., Wang, L., Yu, L.: ‘Multi-objective nonlinear predictive control of process
systems: a dual-mode tracking control approach’, J. Process Control, 2015, 25,
pp. 142–151

23 Khalil, H.K.: ‘Nonlinear systems’ (Prentice Hall, Inc., 2002)
24 Maree, J.P., Imsland, L.: ‘Multi-objective predictive control for non steady-state

operation’, Proc. 2013 European Control Conf., Zurich, Switzerland, 2013, 0,
pp. 1541–1546

25 El-Farra, N.H., Christofides, P.D.: ‘Bounded robust control of constrained
multivariable nonlinear processes’, Chem. Eng. Sci., 2003, 58, pp. 3025–3047

26 He, D., Yu, L., Song, X.: ‘Optimized-based stabilization of constrained non-
linear systems: a receding horizon approach’, Asian J. Control, 2014, 16, (6),
pp. 1693–1701

27 Sepulchre, R., Jankovic, M., Kokotovic, P.V.: ‘Constructive nonlinear control’
(Springer, London, 1997)

28 Limon, D., Bravo, J.M., Alamo, T. et al.: ‘Robust MPC of constrained nonlinear
systems based on interval arithmetic’, IEE Proc. Control Theory Appl., 2005,
152, (3), pp. 325–332

29 Michalska, H., Mayne, D.Q.: ‘Robust receding horizon control of constrained
nonlinear systems’, IEEE Trans. Autom. Control, 1993, 38, (11), pp. 1623–1633
1495


