
1.  Introduction
Corotating Interaction Regions (CIRs) form where corotating high-speed streams, originating from coronal 
holes, overtake slower-speed solar wind (Belcher & Davis, 1971; for a recent review, see Richardson, 2018). 
As the solar wind flows radially outward, forward, and reverse shocks can form along the CIR, often beyond 
1 au (e.g., Jian et al., 2006, 2008; Pizzo, 1978; Smith & Wolfe, 1976), which serve as a significant source of 
energetic particles in the interplanetary medium (Tsurutani et al., 1982; van Hollebeke et al., 1981). While 
shock acceleration has historically been viewed as a main acceleration mechanism at CIRs, some studies 
have indicated the importance of particle acceleration mechanisms within 1 au such as stochastic processes 
(e.g., Chotoo et al., 2000; Richardson, 1985; Schwadron et al., 1996) or processes in the unshocked com-
pression region due to the velocity gradient across the CIR (e.g., Chen et al., 2015; Ebert et al., 2012; Filwett 
et al., 2017; Giacalone et al., 2002).

The Helios 1 and 2 missions, launched in 1974 and 1976, respectively, allowed the ability to probe CIRs 
in the inner heliosphere for the first time. To better understand how CIRs evolve with radial distance, 
Richter and Luttrell (1986) performed a superposed epoch analysis using 16 CIRs between 0.3 and 0.4 au, 
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allowed for the unprecedented ability to study Corotating Interaction Regions (CIRs) at multiple radial 
distances without significant temporal/longitudinal variations. On September 19, 2019, PSP observed a 
CIR at ∼0.5 au when it was nearly radially aligned with the Solar Terrestrial Relations Observatory-Ahead 
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PSP than at STEREO-A, although at much lower intensities. The longitudinal spread appears to be largely 
a consequence of magnetic field line topology at CIRs between the compressed slow solar wind upstream 
and high-speed stream following the CIR, underscoring the importance of the large-scale topology of 
these structures.
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and 31 CIRs between 0.9 and 1.0 au. They found that the density, temperature, pressure, and magnetic 
field increase at the CIR interface increased with increasing radial distance. The azimuthal variation in the 
solar wind velocity profile also steepened with increasing distance. Other studies of near radially aligned 
CIR observations between the Helios spacecraft also found this velocity steepening and increased com-
pression along the CIR interface (see Balogh et al.,  1999; Forsyth & Marsch, 1999). While these studies 
illustrate the evolution of the CIR structure with distance due to the increasing inclination of the Parker 
spiral with respect to the radial direction, other studies have found the opposite correlations. Statistical 
results by Schwenn (1990), e.g., reported a decrease in the longitudinal speed gradients at the leading edge 
of CIRs from 0.3 to 0.5 au, attributing this to the sharp speed gradients at the boundaries of coronal holes, 
before becoming relatively unchanged from 0.5 to 1 au. Comparisons between Pioneer, Venus Orbiter, and 
Advanced Composition Explorer (ACE)/wind have also allowed for insight into the average variation of 
CIR characteristics between 0.72 and 1 au (Jian et al., 2008), finding little change in the velocity variation 
between these observations. However, very few events have been recorded by spacecraft at different radial 
distances but with the same longitude. As such, while changes in the average CIR profile by radial distance 
have been studied, though resulting in different trends at times, how individual CIRs evolve with radial 
distance is still largely unknown.

In addition to radial evolution, CIRs also evolve in time, longitude, and latitude. From one solar rotation 
to the next, the observed bulk plasma properties and the suprathermal particle intensities in CIRs change 
with time (e.g., Mason et al., 2009). Even when observed in close enough proximity, the suprathermal ion 
flux and spectra can be different between observations. Several studies have suggested this difference could 
be a result of successive observations being magnetically connected to a shock front at increasingly further 
distances, allowing for increasingly larger amounts of acceleration (e.g., Barnes & Simpson, 1976; Simnett 
& Roelof, 1995; Wijsen et al., 2019; Zhao et al., 2015). Beyond single CIR observations, solar cycle variations 
have also been observed in CIR occurrence and properties (Jian et al., 2011, 2019) and in their suprather-
mal ion composition (Allen et al., 2019; Filwett et al., 2017; Mason et al., 2008, 2012). As such, inferences 
from combining all CIR observations from many different points in time may not accurately represent any 
single constituent event. In the modern era of the Heliophysics System Observatory, Parker Solar Probe 
(PSP), in combination with observations at 1 au, allows for an unprecedented opportunity to disentangle 
the radial and temporal evolution of CIRs. During the first orbit of PSP, several studies investigated CIRs in 
the inner heliosphere (Allen et al., 2020a; Cohen et al., 2020; Desai et al., 2020; Joyce et al., 2020; McComas 
et al., 2019). Allen et al. (2020a) matched CIRs observed at PSP during its first orbit with observations at 1 au 
from the Solar Terrestrial Relations Observatory-Ahead (STEREO-A), ACE, and wind missions. While this 
provided insight into possible differences in the energization of suprathermal ions in the inner heliosphere 
and their connectivity to shocks further out in the heliosphere, the conjunction geometry did not allow for 
the ability to differentiate between temporal and radial evolution.

In this study, we investigate a conjunction between PSP and STEREO-A, when the two spacecraft were 
nearly radially aligned. This allows for a comparison of the radial evolution of a CIR without the uncertain-
ties arising from effects of significant temporal evolution. Section 2 describes the data sets used, the results 
of which are presented in Section 3. Discussion and summary of the conclusions of this work are given in 
Sections 4 and 5, respectively.

2.  Missions and Data Sets
2.1.  Parker Solar Probe

The PSP mission (Fox et al., 2016) was launched into a heliocentric orbit around the Sun on August 12, 
2018. This study uses 1-min averages of bulk solar wind measurements from the Solar Probe Cup (SPC; 
Case et al., 2020), part of the Solar Wind Electrons Alpha and Protons (SWEAP) instrument suite (Kasper 
et al., 2016). Magnetic field measurements are provided by the FIELDS suite (Bale et al., 2016), and are av-
eraged into a 1-min resolution product. This study computes proton temperature (T), specific entropy argu-
ment (S), and the combined proton plasma and magnetic pressure (P) following the methodology outlined 
in Allen et al. (2020a). Suprathermal ion measurements from the Energetic Particle Instrument-Lo (EPI-Lo; 
Hill et al., 2017), part of the Integrated Science Investigation of the Sun (ISʘIS; McComas et al., 2016), are 
averaged to a 30-min resolution data set.
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2.2.  STEREO-A

The STEREO mission (Kaiser et al., 2008) is a set of two spacecraft that were launched on October 25, 2006, 
and sent to orbit the Sun in opposing directions when viewed in a Sun-Earth fixed frame. This study focuses 
on observations by STEREO-A (STA) and uses 1-min averaged magnetic field observations from the mag-
netometer (Acuña et al., 2008), along with suprathermal particle measurements from the Solar Electron 
and Proton Telescope (SEPT; Müller-Mellin et al., 2008) instrument, both part of the In situ Measurements 
of Particles and CME Transients (IMPACT) investigation (Luhmann et al., 2008). SEPT is able to measure 
ions, but cannot differentiate ion species, so these ions are assumed to predominantly be H+. Additionally, 
1-min bulk solar wind properties (i.e., velocity, temperature, and density) are provided by the Plasma and 
Suprathermal Ion Composition (PLASTIC) investigation (Galvin et al., 2008).

2.3.  Wind

For comparison to STEREO-A, data from the wind mission (Acuña et al., 1995) are also presented. Wind 
was launched on November 1, 1994 and has been stationed at L1 since 2004. 1-min resolution bulk solar 
wind plasma properties, from the Solar Wind Experiment (SWE; Ogilvie et al., 1995), and magnetic field 
measurements, from the Magnetic Field Instrument (MFI; Lepping et al., 1995), are used in this study.

3.  Results
3.1.  Observations at 1 au

A CIR was observed at 1 au by STA and wind (∼84° in longitude apart) during solar rotations prior to and 
after the observation of the CIR at PSP at 0.51 au on September 19, 2019. Figure 1 shows plasma, magnet-
ic field, and suprathermal particle observations at 1 au for this CIR. These observations are time-shifted 
such that the individual interfaces all line up with that of the third STA observation, denoted by the ver-
tical dashed line in Figure 1. With each successive observation (comparing the dark blue and red traces 
in Figures 1a–1h, in particular), the velocity increase becomes steeper, the density pileup becomes more 
pronounced, and the increases in temperature and entropy also steepen. Additionally, the suprathermal 
ion enhancement seen by STA (Figures 1i–1k) becomes more intense. These variations between successive 
observations highlight the various ways in which long-lived CIRs can evolve in time.

3.2.  Radial Evolution

During the third STA observation of this CIR (STA E3 in Figure 1), STA and PSP were nearly radially aligned 
(within 4.2° longitude and 0.26° latitude when the CIR passed over PSP on September 19, 2019), with PSP at 
∼0.5 au (∼80° in longitude from L1) and STA at 0.98 au. To compare the solar wind and IMF observations 
at different radial distances (r), approximate scaling laws (see Kivelson & Russell, 1995) were applied to 
the STA data set: 2n r , 4/3T r , 2

rB r , and 1
tB r , where Br and Bt denote the radial and tangen-

tial components of the interplanetary magnetic field (IMF) in radial-tangential-normal (RTN) coordinates. 
These scalings are applied to remove the underlying systematic radial variations, such as from volumetric 
expansion, to highlight the variations caused by the interaction between the slow and high-speed streams. 
Figure 2 illustrates the PSP observations (in black) and the scaled STA observations (in blue) that are also 
shifted in time by −1.77 days to align the CIR interfaces (as determined by eye). This shift is consistent 
with corotation after taking into account the different radial distances. The velocity, density, temperature, 
entropy, pressure, and magnetic field observations at PSP and the radially scaled STA E3 observations are in 
remarkable agreement, suggesting very little temporal variation between the observations. Focusing on the 
transition from slow to fast solar wind, the density pileup and pressure enhancement are more pronounced 
at STA than at PSP, although comparisons of the velocity, temperature, entropy, and magnetic field strength 
are difficult to fully assess due to data gaps during the interval at PSP (to conserve power, the instruments 
are powered off during scheduled high-rate Ka-band downlink opportunities). While both PSP and STA are 
within 0.26° of each other in heliographic latitude, STA likely observed the CIR closer to the heliospheric 
current sheet (HCS) than PSP (as apparent in the abrupt change in RTN  observed just before the CIR; Fig-
ure 2h). Additionally, a suprathermal ion flux enhancement associated with the CIR was observed at both 
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PSP (Figure 2i) and STA (Figure 2j). The small enhancement at STA prior to the HCS crossing is likely un-
related to the CIR (see, Smith et al., 1978). Notably, the suprathermal ion enhancement at PSP is observed 
for a longer duration, corresponding to a larger longitudinal extent, than at STA.

To further investigate the radial change of the suprathermal ion population, intensities over two time in-
tervals, September 19, 2019/14:40–September 20, 2019/06:40 UT (defined to be within the main pressure 
enhancement of the CIR and denoted by the dotted vertical lines and green triangles) and September 20, 
2019/14:00–September 21, 2019/02:00 UT (encompassing the time period in the high-speed stream with both 
PSP and STA suprathermal ion observations and denoted by the vertical dashed lines and green squares), 
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Figure 1.  Observations of a CIR at 1 au from STA and wind time-shifted to match the stream interface of the STA 
event 3 (E3) (vertical dashed line). The CIR interface, identified as the time of peak pressure of the CIR (e.g., Jian 
et al., 2006), occurred at July 30, 2019/19:33:30 (labeled STA E1), August 5, 2019/08:01:30 (Wind E1), August 25, 
2019/05:05:30 (STA E2), August 31, 2019/01:06:30 (Wind E2), September 21, 2019/10:55:30 (STA E3), and September 27, 
2019/13:54:30 (Wind E3). From top to bottom, (a) radial velocity, (b) density, (c) temperature, (d) entropy, (e) combined 
proton and magnetic field pressure, (f) magnetic field magnitude, magnetic field (g) RTN  and (h) RTN  components 
in the RTN coordinate system, and (i)–(k) suprathermal ion intensity from SEPT on STA for the first, second, and third 
STA observations, respectively. CIR, Corotating Interaction Region; STA, STEREO-A; SEPT, Solar Electron and Proton 
Telescope.
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were averaged to construct ion spectra. Due to the data gaps at PSP, EPI-Lo observations are only shown for 
the second timeframe. Figure 3 displays these spectra with STA SEPT observations (green), PSP H+ (red), 
and PSP 4Hen+ (blue). Power law fits were applied for energies <1,000 keV/nuc for STA and <600 keV/nuc 
for PSP. The enhancement in suprathermal ion flux for PSP H+ above 600 keV is related to known cross-talk 
background in the instrument (see Hill et al., 2020), and is ignored in our analysis.

Comparing the STA ion power law within the CIR (triangles) to those later in the high-speed stream 
(squares), the power law hardens slightly through the event (−3.1 to −2.5, respectively). While the power 
law indices are nearly the same between PSP and the later STA interval (−2.5), the intensity of the su-
prathermal ion enhancement at PSP is significantly lower by a factor of ∼40 (i.e., red vs. green squares in 
Figure 3).

ALLEN ET AL.

10.1029/2020GL091376

5 of 10

Figure 2.  CIR observation at PSP (black) and STA (blue) for STA E3. The STA E3 observations are shifted in time by 
1.77 days and are scaled according the relations provided in the text. From top to bottom, (a) radial velocity, (b) density, 
(c) temperature, (d) entropy, (e) combined proton and magnetic field pressure, (f) magnetic field magnitude, (g) RTN , 
(h) RTN , (i) PSP EPI-Lo “ToF only” mode count rate, and (j) STA SEPT flux spectrograms are shown. See text for 
description of markings on panels i and j, denoting intervals in Figures 3 and 4. CIR, Corotating Interaction Region; 
STA, STEREO-A; SEPT, Solar Electron and Proton Telescope; PSP, Parker Solar Probe.
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3.3.  Longitudinal Spread of Energetic Particles

To further investigate the longitudinal spread of the suprathermal ion en-
hancement at PSP vs. that at STA, we define start and stop times of the 
enhancements for both observations. Red horizontal dashed lines in Fig-
ure 2i mark the average EPI-Lo count rates before and after the suprath-
ermal ion enhancement at PSP. The time that the EPI-Lo count rate ex-
ceeds the averaged preevent background count rate is considered the start 
time (t0 = September 19, 2019/14:00 UT, shown by the orange vertical 
dashed line in Figures 2i and 2j). Using a similar method, the time-shifted 
STA SEPT flux was found to become enhanced at the same time (in the 
shifted timeframe). The time the STA count rate reached the postevent 
average rate was defined as the STA enhancement stop time (t1 = Sep-
tember 20, 2019/22:20 UT, shown by the thick vertical dashed line in 
Figures 2i and 2j). This method also identified the PSP enhancement stop 
time (t2, shown as the solid yellow vertical line in Figures 2i and 2j) at 
September 21, 2019/23:30 UT. Comparing the times of the suprathermal 
ion enhancements at STA to the bulk plasma properties during this inter-
val, the enhancements begins near the CIR interface. Additionally, there 
is a decrease in the suprathermal ion intensity near the trailing edge of 
the CIR at STA; however, the intensity remains elevated into the high-

speed stream. Due to data gaps in the PSP observations, we cannot reliably compare the energetic particle 
enhancements at PSP to the bulk plasma structure of the CIR in the same fashion.

To further examine the role of the underlying IMF structure in the longitudinal spread of the energet-
ic particles, Parker spiral IMF lines were computed using the solar wind velocity observed by PSP at the 
beginning and end of the suprathermal ion enhancements (t0 and t2 computed above). The Parker spiral 

IMF line corresponding to the end of the suprathermal ion enhancement 
at PSP was then corotated backward to correspond to its location at the 
start of the ion enhancement (t0). For both the Parker spiral calculations 
and corotation distance, a fixed corotation speed of 14.7°/day was used, 
consistent with the equatorial corotation speed of the Sun. Using a wider 
range of corotation speeds that have been previously observed for CIRs 
(13.4°/day–14.7°/day, cf. Allen et al., 2020b) yielded similar results (not 
shown). The two Parker spiral IMF lines are shown in Figure 4, with the 
“compression field line” denoting the Parker spiral based on observations 
at the start of the ion enhancement at PSP (t0), and the “rarefaction field 
line” denoting the corotated Parker spiral in the fast solar wind when the 
suprathermal ion flux returned to the background level (t2).

Taking the start/stop times of the suprathermal ion enhancements at 
both PSP and STA, we compute the time difference between those times 
and t0. Using this time difference and a fixed corotation speed (14.7°/
day), we corotate the locations of PSP and STA observations to the ref-
erence time t0, resulting in the labeled triangles in Figure 4. These loca-
tions are seen to largely agree with the Parker spiral field lines. Due to 
the rarefaction field line being more radial than the compression field 
line, arising from the different solar wind speeds at those times, the dif-
ferent curvatures lead to variable longitudinal spreads. For this event, 
the longitudinal spread at the radial distance of PSP was 31.8°, while the 
longitudinal spread at STA was only 18.8°. While it is known that the in-
teraction between slow and fast streams can cause the magnetic topology 
to deviate from a Parker spiral configuration, this coarse approximation 
over smaller distances (0.5 au in this case) is found to be appropriate in 
aligning these observations. Although the zeroth-order treatment here 
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Figure 3.  Flux spectra for suprathermal 4Hen+ (blue) and H+ (red) 
observed at PSP, and total ions (green) observed at STA for a subinterval 
inside the CIR structure (triangles) and within the trailing high-speed 
stream (squares) where both STA and PSP have measurements available. 
CIR, Corotating Interaction Region; STA, STEREO-A; PSP, Parker Solar 
Probe.

Figure 4.  Parker spiral field lines calculated from PSP observations at the 
start and stop times of the suprathermal ion enhancements are shown by the 
solid and dotted maroon lines, respectively. The start and stop location of the 
PSP and STA suprathermal ion enhancements (triangles) are corotated to the 
beginning of the PSP enhancement. STA, STEREO-A; PSP, Parker Solar Probe.
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aligns the timing of the observations quite well, small variations are observed which could be an effect of 
higher-order corrections to the Parker spiral and/or differences in instrument sensitivities. The compres-
sion and rarefaction field lines approach each other at a distance of ∼1.5 au, suggesting the CIR-associated 
acceleration processes are occurring within this distance, and so allowing the suprathermal particles access 
to the flux tube constrained by these field lines.

4.  Discussion and Summary
This study explores a unique and fortuitous CIR event when PSP and STA were nearly radially aligned. 
Additionally, we examined the variations of this CIR over several solar rotations as seen by STA and wind. 
At 1 au, the CIR structure persisted for three solar rotations and shows a clear temporal evolution from one 
observation to the next (Figure 1). The third STA observation of the CIR occurred when STA and PSP were 
nearly radially aligned. Shifting the STA E3 measurements earlier in time by 1.77 days temporally aligned 
the observations between PSP and STA. Scaling the STA plasma and fields measurements by theoretical 
radial dependencies aligned the observations remarkably, suggesting little temporal evolution between ob-
servations at PSP and the third STA observation of this CIR (Figure 2).

Examining the suprathermal ion energy spectra associated with the CIR observed at PSP, the 4Hen+ spectral 
slope is harder than for H+ (−1.5 to −2.5, respectively). This is often observed for CIRs at and beyond 1 au, 
and is thought to be an effect of preferential acceleration of pick up ions at CIRs, possibly indicating ac-
celeration within 1 au (e.g., Chotoo et al., 2000; Gloeckler & Geiss, 1998; Gloeckler et al., 1994; Schwadron 
et al., 1996). Future studies probing how the spectral slopes for helium ions as compared to protons vary 
with radial distance can give further insight into species-dependent transport and acceleration processes. 
Looking at the full CIR interval at 1 au, the STA ion spectral slope evolves throughout event (noting the 
green triangles vs. the green squares in Figure 3). This evolution in the spectral slopes is likely associated 
with the spectra being taken inside vs. outside of the CIR structure (e.g., Barnes & Simpson, 1976). When 
observations exist for both spacecraft toward the latter half of the suprathermal ion enhancement, the spec-
tral indices of ions at STA and H+ at PSP are approximately the same (∼2.5; green and red squares for STA 
and PSP, respectively, in Figure 3).

Under the assumption that the main source of particle acceleration is at heliocentric distances beyond 
both spacecraft, transport processes undergone by the particles would typically be invoked to explain lower 
particle intensities with decreasing heliocentric distances. While the suprathermal H+ intensities are ∼40 
times lower at PSP than STA during the time period following the CIR interface when both spacecraft have 
data, the spectral profiles at both spacecraft have the same slope. Because these processes are also predicted 
to manifest themselves as an increasingly hardened spectra at lower energies with distance from the source 
region (e.g., Fisk & Lee, 1980), but no such hardening is observed in this event, this points to far weaker 
modulation of energetic particles than expected, as also indicated by other studies (e.g., Desai et al., 2020; 
Mason & Sanderson, 1999; Mason et al., 2008, 2012, 1997; Schwadron et al., 2020).

While the suprathermal ion enhancement at PSP is observed over a longer time period and longitudinal 
range than that seen for STA, this can be explained due to the geometry of the magnetic field lines (Fig-
ure 4). For this event, the suprathermal ion enhancement at both PSP and STA begin in the compressed 
slow solar wind and end in the rarefaction region high-speed stream (Figure 2). As a result of the difference 
in solar wind speed, the Parker spiral field line in the high-speed stream is more radial than that of the 
compressed slow solar wind. This difference in Parker spiral geometry results in a radial dependence to 
the longitudinal extent of the flux tube. For this event, this corresponds to a longitudinal extent of 18.8° 
and 31.8° at the radial distance of STA and PSP, respectively, consistent with the observations. Under the 
assumption that the particles were accelerated at larger heliospheric distances, the width of the suprather-
mal ion enhancements suggests acceleration occurred within ∼1.5 au. Since STA did not observe a shock 
at 1 au, but only a developing reverse shock, it is not clear if a shock became fully formed at slightly further 
heliospheric distances, or if instead compressive acceleration is resulting in the observed suprathermal 
particles through stochastic processes and/or mechanisms occurring in the unshocked compression region 
due the velocity gradient across the CIR, similar to diffusive shock acceleration at a quasi-parallel shock 
(e.g., Chen et al., 2015; Chotoo et al., 2000; Ebert et al., 2012; Filwett et al., 2017; Giacalone et al., 2002; Joyce 
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et al., 2020; Richardson, 1985). Due to the close proximity to the acceleration region estimated for this event 
(within 1.5 au), the Parker spiral approximation for the magnetic field topology well describes the general 
structuring of this CIR event to zeroth-order. However, determining the topology of CIR events in which 
acceleration occurs at larger heliospheric distances would require more detailed mapping due to sub-Parker 
spiral field lines (e.g., Murphy et al., 2002; Schwadron, 2002; Schwadron & McComas, 2005, Schwadron 
et al., 2020) and the interaction between the slow and fast solar wind along the CIR interface. Further inves-
tigation of other events between PSP and other observatories can be used to better understand the transport 
of suprathermal particles into the inner heliosphere. Additionally, future conjunctions between PSP, STA, 
wind, and Solar Orbiter will allow for continued investigation into the variations of CIRs with radial dis-
tance, longitude, and latitude.

Data Availability Statement
Parker Solar Probe data can be accessed from https://sppgway.jhuapl.edu/. The STEREO SEPT data are 
available at http://www2.physik.uni-kiel.de/stereo/data/sept/, and STEREO magnetic field and plasma 
data can be found at the STEREO Science Center: https://stereo-ssc.nascom.nasa.gov. Wind data are availa-
ble at https://cdaweb.gsfc.nasa.gov/. This event is taken from the catalog by Allen et al. (2020c).
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